Science.gov

Sample records for azole antifungal agents

  1. Current and Emerging Azole Antifungal Agents

    PubMed Central

    Sheehan, Daniel J.; Hitchcock, Christopher A.; Sibley, Carol M.

    1999-01-01

    Major developments in research into the azole class of antifungal agents during the 1990s have provided expanded options for the treatment of many opportunistic and endemic fungal infections. Fluconazole and itraconazole have proved to be safer than both amphotericin B and ketoconazole. Despite these advances, serious fungal infections remain difficult to treat, and resistance to the available drugs is emerging. This review describes present and future uses of the currently available azole antifungal agents in the treatment of systemic and superficial fungal infections and provides a brief overview of the current status of in vitro susceptibility testing and the growing problem of clinical resistance to the azoles. Use of the currently available azoles in combination with other antifungal agents with different mechanisms of action is likely to provide enhanced efficacy. Detailed information on some of the second-generation triazoles being developed to provide extended coverage of opportunistic, endemic, and emerging fungal pathogens, as well as those in which resistance to older agents is becoming problematic, is provided. PMID:9880474

  2. Azole antifungal agents related to naftifine and butenafine.

    PubMed

    Castellano, S; La Colla, P; Musiu, C; Stefancich, G

    2000-06-01

    The methyl group of naftifine (1) and butenafine (2) was replaced by an azolic nucleus to obtain the new compounds 3-8 which exhibit the characteristics of both allylamine (or benzylamine) and azole antifungals. The title compounds were evaluated in vitro against several pathogenic fungi responsible for human disease. Among these, compounds 5, 6, and 8 were found to inhibit the growth of dermatophytes with a potency comparable to that of naftifine. The synthetic sequence includes the preparation of aminoazole Schiff bases, reduction, and alkylation of the corresponding secondary amines. PMID:10909187

  3. [A retrospective analysis of neurotoxicity induced by vinca alkaloids combined with azole anti-fungal agents in hematological malignancies].

    PubMed

    Osato, Yoichi; Yokoyama, Tomohisa; Saito, Yumiko; Kani, Rinako; Hayabe, Hiroko; Miyamatsu, Hironobu; Ohyashiki, Kazuma

    2011-10-01

    Vinca alkaloids (VA) are some of the key anti-tumor agents for patients with hematological malignancies, and various adverse events such as paralytic ileus, peripheral neuropathy, and constipation were now recognized as adverse VA effects. Furthermore, azole anti-fungal agents are known to enhance VA toxicity because they delay the metabolism and excretion of VA by inhibiting CYP3A4. However, their clinical relationship has not been clearly described. Therefore, we studied neurotoxicity as a possible adverse event associated with VA in patients treated with azole anti-fungal agents, retrospectively. In our study, 100 patients (479 episodes) who received VA in our department from August 2008 to December 2010 were analyzed. Adverse events attributed to the combined administration of vincristine (VCR) and azole anti-fungal agents were grade 3 paralytic ileuses in 8 patients (8 episodes), grade 3 or 4 constipation in 16 patients (16 episodes), and grade 3 peripheral neuropathy in 10 patients (16 episodes). In addition, we investigated whether temporal discontinuation of azole anti-fungal agents during VA treatment decreases the frequency of these adverse events, and detected that it is likely to help avoid neurotoxicities enhanced by itraconazole, such as severe constipation (p=0. 0308) and paralytic ileus (p=0. 0967). Our findings indicated that we should pay much more attention to these adverse events, and must select patients carefully when we administer azole anti-fungal agents to them while they are being treated with VA. PMID:21996963

  4. Modified agar dilution susceptibility testing method for determining in vitro activities of antifungal agents, including azole compounds.

    PubMed Central

    Yoshida, T; Jono, K; Okonogi, K

    1997-01-01

    In vitro activities of antifungal agents, including azole compounds, against yeasts were easily determined by using RPMI-1640 agar medium and by incubating the plates in the presence of 20% CO2. The end point of inhibition was clear by this method, even in the case of azole compounds, because of the almost complete inhibition of yeast growth at high concentrations which permitted weak growth of some Candida strains by traditional methods. MICs obtained by the agar dilution method were similar to those obtained by the broth dilution method proposed by the National Committee for Clinical Laboratory Standards. PMID:9174197

  5. Update on azole antifungals.

    PubMed

    Zonios, Dimitrios I; Bennett, John E

    2008-04-01

    This is a comprehensive, clinically oriented review of the four commercially available triazoles: fluconazole, itraconazole, voriconazole, and posaconazole. Emphasis is placed in pharmacology, drug interactions, adverse events, antifungal activity, and the evolving perspective of their clinical use. Key clinical trials are briefly discussed, and specific drug indications summarized. Fluconazole remains a valuable low-cost choice for the treatment of various fungal infections, including candidiasis and cryptococcosis. It has relatively few drug interactions and is safe but lacks activity against filamentous fungi. The use of itraconazole is historically plagued by erratic bioavailability of the oral capsule, improved with the oral solution. Drug interactions are numerous. Itraconazole exhibits significant activity against Aspergillus and the endemic fungi. Voriconazole has revolutionized the treatment of aspergillosis in severely immunocompromised patients, but its use is compromised by complicated pharmacokinetics, notable drug interactions, and relatively significant adverse events. Finally, posaconazole is the last addition to the azole armamentarium with extended antifungal spectrum, significant activity against the zygomycetes, and, apparently, optimal safety profile. Posaconazole has a significant role for the prophylaxis of invasive fungal infections in severely immunocompromised patients. Multiple daily dosing, a need for fatty foods for absorption, and absence of an intravenous formulation restrict its use to selected populations. PMID:18366001

  6. The Effect of Genetic Polymorphism on the Inhibition of Azole Antifungal Agents Against CYP2C9-Mediated Metabolism.

    PubMed

    Niwa, Toshiro; Hata, Tomomi

    2016-03-01

    We investigated the effect of cytochrome P450 (CYP) 2C9 polymorphism on the inhibition of methylhydroxylation activity of tolbutamide, a typical CYP2C9 substrate, by triazole antifungal agents, fluconazole and voriconazole. Although the Michaelis constants (Km), maximal velocities (Vmax), and Vmax/Km values for CYP2C9.1 (wild type) and CYP2C9.2 (Arg144Cys) were similar and CYP2C9.3 (Ile359Leu) had a higher Km and a lower Vmax than CYP2C9.1 and CYP2C9.2, the inhibition constants of fluconazole and voriconazole against CYP2C9.2 were lower than that against CYP2C9.1 and CYP2C9.3. These results suggest that more careful administration of azole antifungals to patients with the CYP2C9*2 allele might be required because of the strong inhibitory effects. PMID:26886310

  7. New antifungal agents.

    PubMed

    Gupta, Aditya K; Tomas, Elizabeth

    2003-07-01

    Currently, use of standard antifungal therapies can be limited because of toxicity, low efficacy rates, and drug resistance. New formulations are being prepared to improve absorption and efficacy of some of these standard therapies. Various new antifungals have demonstrated therapeutic potential. These new agents may provide additional options for the treatment of superficial fungal infections and they may help to overcome the limitations of current treatments. Liposomal formulations of AmB have a broad spectrum of activity against invasive fungi, such as Candida spp., C. neoformans, and Aspergillus spp., but not dermatophyte fungi. The liposomal AmB is associated with significantly less toxicity and good rates of efficacy, which compare or exceed that of standard AmB. These factors may provide enough of an advantage to patients to overcome the increased costs of these formulations. Three new azole drugs have been developed, and may be of use in both systemic and superficial fungal infections. Voriconazole, ravuconazole, and posaconazole are triazoles, with broad-spectrum activity. Voriconazole has a high bioavailability, and has been used with success in immunocompromised patients with invasive fungal infections. Ravuconazole has shown efficacy in candidiasis in immunocompromised patients, and onychomycosis in healthy patients. Preliminary in vivo studies with posaconazole indicated potential use in a variety of invasive fungal infections including oropharyngeal candidiasis. Echinocandins and pneumocandins are a new class of antifungals, which act as fungal cell wall beta-(1,3)-D-glucan synthase enzyme complex inhibitors. Caspofungin (MK-0991) is the first of the echinocandins to receive Food and Drug Administration approval for patients with invasive aspergillosis not responding or intolerant to other antifungal therapies, and has been effective in patients with oropharyngeal and esophageal candidiasis. Standardization of MIC value determination has improved the

  8. Overview of medically important antifungal azole derivatives.

    PubMed Central

    Fromtling, R A

    1988-01-01

    Fungal infections are a major burden to the health and welfare of modern humans. They range from simply cosmetic, non-life-threatening skin infections to severe, systemic infections that may lead to significant debilitation or death. The selection of chemotherapeutic agents useful for the treatment of fungal infections is small. In this overview, a major chemical group with antifungal activity, the azole derivatives, is examined. Included are historical and state of the art information on the in vitro activity, experimental in vivo activity, mode of action, pharmacokinetics, clinical studies, and uses and adverse reactions of imidazoles currently marketed (clotrimazole, miconazole, econazole, ketoconazole, bifonazole, butoconazole, croconazole, fenticonazole, isoconazole, oxiconazole, sulconazole, and tioconazole) and under development (aliconazole and omoconazole), as well as triazoles currently marketed (terconazole) and under development (fluconazole, itraconazole, vibunazole, alteconazole, and ICI 195,739). PMID:3069196

  9. In silico and in vitro screening to identify structurally diverse non-azole CYP51 inhibitors as potent antifungal agent.

    PubMed

    Singh, Aarti; Paliwal, Sarvesh Kumar; Sharma, Mukta; Mittal, Anupama; Sharma, Swapnil; Sharma, Jai Prakash

    2016-01-01

    The problem of resistance to azole class of antifungals is a serious cause of concern to the medical fraternity and thus there is an urgent need to identify non-azole scaffolds with high affinity for lanosterol 14α-demethylase (CYP51). In view of this we have attempted to identify novel non-azole CYP51 inhibitors through the application of pharmacophore based virtual screening and in vitro evaluation. A rigorously validated pharmacophore model comprising of 2 hydrogen bond acceptor and 2 hydrophobic features has been developed and used to mine NCI database. Out of 265 retrieved hits, NSC 1215 and 1520 have been chosen on the basis of Lipinski's rule of five, fit and estimated values. Both the hits were docked into the active site of CYP51. In view of high fit value and CDocker score, NSC 1215 and 1520 have been subjected to in vitro microbiological assay. The result reveals that NSC 1215 and 1520 are active against Candida albicans, Candida parapsilosis, Candida tropicalis, and Aspergillus niger. In addition to this the absorption characteristics of both the hits have also been determined using the rat sac technique and permeation in order of NSC 1520>NSC 1215 has been observed. PMID:26579619

  10. Potentiation of Azole Antifungals by 2-Adamantanamine

    PubMed Central

    Sun, Lingmei; Lister, Ida; Keating, John; Nantel, Andre; Long, Lisa; Ghannoum, Mahmoud; North, Jeffrey; Lee, Richard E.; Coleman, Ken; Dahl, Thomas; Lewis, Kim

    2013-01-01

    Azoles are among the most successful classes of antifungals. They act by inhibiting α-14 lanosterol demethylase in the ergosterol biosynthesis pathway. Oropharyngeal candidiasis (OPC) occurs in about 90% of HIV-infected individuals, and 4 to 5% are refractory to current therapies, including azoles, due to the formation of resistant biofilms produced in the course of OPC. We reasoned that compounds affecting a different target may potentiate azoles to produce increased killing and an antibiofilm therapeutic. 2-Adamantanamine (AC17) was identified in a screen for compounds potentiating the action of miconazole against biofilms of Candida albicans. AC17, a close structural analog to the antiviral amantadine, did not affect the viability of C. albicans but caused the normally fungistatic azoles to become fungicidal. Transcriptome analysis of cells treated with AC17 revealed that the ergosterol and filamentation pathways were affected. Indeed, cells exposed to AC17 had decreased ergosterol contents and were unable to invade agar. In vivo, the combination of AC17 and fluconazole produced a significant reduction in fungal tissue burden in a guinea pig model of cutaneous candidiasis, while each treatment alone did not have a significant effect. The combination of fluconazole and AC17 also showed improved efficacy (P value of 0.018) compared to fluconazole alone when fungal lesions were evaluated. AC17 is a promising lead in the search for more effective antifungal therapeutics. PMID:23689724

  11. Effect of voriconazole and other azole antifungal agents on CYP3A activity and metabolism of tacrolimus in human liver microsomes.

    PubMed

    Zhang, Shimin; Pillai, Venkateswaran C; Mada, Sripal Reddy; Strom, Steve; Venkataramanan, Raman

    2012-05-01

    Azole antifungal agents are known to inhibit cytochrome P450 3A (CYP3A) enzymes. Limited information is available regarding the effect of voriconazole on CYP3A activity. We examined the effect of voriconazole on CYP3A activity in human liver microsomes as measured by the formation of 6β-hydroxytestosterone from testosterone. We also evaluated the interaction between voriconazole and tacrolimus, an immunosuppressive drug, using human liver microsomes. The effect of voriconazole on CYP3A activity and tacrolimus metabolism was compared to that of other azole antifungal agents. CYP3A4 activity and the metabolism of tacrolimus were measured in the absence and in the presence of various concentrations of voriconazole (0-1.43 mM), fluconazole (0-1.63 mM), itraconazole (0-14 µM) and ketoconazole (0-0.19 µM). At a concentration of 21.2 ± 15.4 µM and 29.8 ± 12.3 µM, voriconazole inhibited the formation of 6β-hydroxytestosterone from testosterone and the metabolism of tacrolimus by 50%, respectively. The rank order of inhibition of 6β-hydroxytestosterone formation from testosterone and the metabolism of tacrolimus, is ketoconazole > itraconazole > voriconazole > fluconazole. Our observations suggest that voriconazole at clinically relevant concentrations will inhibit the hepatic metabolism of tacrolimus and increase the concentration of tacrolimus more than two-fold. Close monitoring of the blood concentrations and adjustment in the dose of tacrolimus are warranted when transplant patients receiving tacrolimus are treated with voriconazole. PMID:22106961

  12. Chloroquine sensitizes biofilms of Candida albicans to antifungal azoles.

    PubMed

    Shinde, Ravikumar Bapurao; Raut, Jayant Shankar; Chauhan, Nitin Mahendra; Karuppayil, Sankunny Mohan

    2013-01-01

    Biofilms formed by Candida albicans, a human pathogen, are known to be resistant to different antifungal agents. Novel strategies to combat the biofilm associated Candida infections like multiple drug therapy are being explored. In this study, potential of chloroquine to be a partner drug in combination with four antifungal agents, namely fluconazole, voriconazole, amphotericin B, and caspofungin, was explored against biofilms of C. albicans. Activity of various concentrations of chloroquine in combination with a particular antifungal drug was analyzed in a checkerboard format. Growth of biofilm in presence of drugs was analyzed by XTT-assay, in terms of relative metabolic activity compared to that of drug free control. Results obtained by XTT-metabolic assay were confirmed by scanning electron microscopy. The interactions between chloroquine and four antifungal drugs were determined by calculating fractional inhibitory concentration indices. Azole resistance in biofilms was reverted significantly (p<0.05) in presence of 250μg/mL of chloroquine, which resulted in inhibition of biofilms at very low concentrations of antifungal drugs. No significant alteration in the sensitivity of biofilms to caspofungin and amphotericin B was evident in combination with chloroquine. This study for the first time indicates that chloroquine potentiates anti-biofilm activity of fluconazole and voriconazole. PMID:23602464

  13. Antifungal agents.

    PubMed

    Ryder, N S

    1999-12-01

    At this year's ICAAC Meeting, new data on approximately 20 different antifungal agents were presented, while no new agents were disclosed. Drugs in late development include the triazoles, voriconazole (Pfizer Ltd) and Sch-56592 (Schering-Plough Corp), and the echinocandins, caspofungin (Merck & Co Inc) and FK-463 (Fujisawa Pharmaceutical Co Ltd). In contrast to previous years, presentations on these and earlier developmental compounds were relatively modest in scope, with few significant new data. Little new information appeared on the most recent novel class of agents, the sordarins (Glaxo Wellcome plc). Early clinical results were presented for FK-463, showing acceptable tolerability and dose-dependent efficacy in AIDS-associated esophageal candidiasis. A new liposomal formulation of nystatin (Nyotran; Aronex Pharmaceuticals Inc) was shown to be equivalent to conventional amphotericin B in empiric therapy of presumed fungal infection in neutropenic patients, but with reduced toxicity. Intravenous itraconazole (Janssen Pharmaceutica NV) was an effective prophylactic therapy in invasive pulmonary aspergillosis, while oral itraconazole was discussed as a treatment for fungal infection in heart and liver transplant patients. The allylamine compound, terbinafine (Novartis AG), showed good clinical efficacy against fungal mycetoma, a serious tropical infection. A major highlight was the first presentation of inhibitors of fungal efflux pumps as a strategy for overcoming resistance. MC-510027 (milbemycin alpha-9; Microcide Pharmaceuticals Inc) and its derivatives, potentiated the antifungal activity of triazoles and terbinafine in a number of Candida spp. Another pump inhibitor, MC-005172 (Microcide Pharmaceuticals Inc) showed in vivo potentiation of fluconazole in a mouse kidney infection model. Microcide Pharmaceuticals Inc also presented inhibitors of bacterial efflux pumps. PMID:16113946

  14. Structure-based rational design, synthesis and antifungal activity of oxime-containing azole derivatives.

    PubMed

    Xu, Yulan; Sheng, Chunquan; Wang, Wenya; Che, Xiaoying; Cao, Yongbing; Dong, Guoqiang; Wang, Shengzheng; Ji, Haitao; Miao, Zhenyuan; Yao, Jianzhong; Zhang, Wannian

    2010-05-01

    In an attempt to find novel azole antifungal agents with improved activity and broader spectrum, computer modeling was used to design a series of new azoles with piperidin-4-one O-substituted oxime side chains. Molecular docking studies revealed that they formed hydrophobic and hydrogen-bonding interactions with lanosterol 14alpha-demethylase of Candida albicans (CACYP51). In vitro antifungal assay indicates that most of the synthesized compounds showed good activity against tested fungal pathogens. In comparison with fluconazole, itraconazole and voriconazole, several compounds (such as 10c, 10e, and 10i) show more potent antifungal activity and broader spectrum, suggesting that they are promising leads for the development of novel antifungal agents. PMID:20362444

  15. Interaction of Common Azole Antifungals with P Glycoprotein

    PubMed Central

    Wang, Er-jia; Lew, Karen; Casciano, Christopher N.; Clement, Robert P.; Johnson, William W.

    2002-01-01

    Both eucaryotic and procaryotic cells are resistant to a large number of antibiotics because of the activities of export transporters. The most studied transporter in the mammalian ATP-binding cassette transporter superfamily, P glycoprotein (P-gp), ejects many structurally unrelated amphiphilic and lipophilic xenobiotics. Observed clinical interactions and some in vitro studies suggest that azole antifungals may interact with P-gp. Such an interaction could both affect the disposition and exposure to azole antifungal therapeutics and partially explain the clinical drug interactions observed with some antifungals. Using a whole-cell assay in which the retention of a marker substrate is evaluated and quantified, we studied the abilities of the most widely prescribed orally administered azole antifungals to inhibit the function of this transporter. In a cell line presenting an overexpressed amount of the human P-gp transporter, itraconazole and ketoconazole inhibited P-gp function with 50% inhibitory concentrations (IC50s) of ∼2 and ∼6 μM, respectively. Cyclosporin A was inhibitory with an IC50 of 1.4 μM in this system. Uniquely, fluconazole had no effect in this assay, a result consistent with known clinical interactions. The effects of these azole antifungals on ATP consumption by P-gp (representing transport activity) were also assessed, and the Km values were congruent with the IC50s. Therefore, exposure of tissue to the azole antifungals may be modulated by human P-gp, and the clinical interactions of azole antifungals with other drugs may be due, in part, to inhibition of P-gp transport. PMID:11751127

  16. Antifungal Azoles: Structural Insights into Undesired Tight Binding to Cholesterol-Metabolizing CYP46A1.

    PubMed

    Mast, Natalia; Zheng, Wenchao; Stout, C David; Pikuleva, Irina A

    2013-07-01

    Although there are currently three generations of antifungal azoles on the market, even the third-generation agents show undesirable interactions with human cytochrome P450 (P450) enzymes. CYP46A1 is a cholesterol-metabolizing P450 in the brain that tightly binds a number of structurally distinct azoles. Previously, we determined the crystal structures of CYP46A1 in complex with voriconazole and clotrimazole, and in the present work we cocrystallized the P450 with posaconazole at 2.5 Å resolution. This long antifungal drug coordinates the P450 heme iron with the nitrogen atom of its terminal azole ring and adopts a linear configuration occupying the whole length of the substrate access channel and extending beyond the protein surface. Numerous drug-protein interactions determine the submicromolar Kd of posaconazole for CYP46A1. We compared the crystal structure of posaconazole-bound CYP46A1 with those of the P450 in complex with other drugs, including the antifungal voriconazole and clotrimazole. We also analyzed the accommodation of posaconazole in the active site of the target enzymes, CYPs 51, from several pathogenic species. These and the solution studies with different marketed azoles, collectively, allowed us to identify the determinants of tight azole binding to CYP46A1 and generate an overall picture of azole binding to this important P450. The data obtained suggest that development of CYP51-specific antifungal agents will continue to be a challenge. Therefore, structural understanding of the azole binding not only to CYPs 51 from the pathogenic species but also to different human P450s is required to deal efficiently with this challenge. PMID:23604141

  17. Candida tropicalis Antifungal Cross-Resistance Is Related to Different Azole Target (Erg11p) Modifications

    PubMed Central

    Forastiero, A.; Mesa-Arango, A. C.; Alastruey-Izquierdo, A.; Alcazar-Fuoli, L.; Bernal-Martinez, L.; Pelaez, T.; Lopez, J. F.; Grimalt, J. O.; Gomez-Lopez, A.; Cuesta, I.; Zaragoza, O.

    2013-01-01

    Candida tropicalis ranks between third and fourth among Candida species most commonly isolated from clinical specimens. Invasive candidiasis and candidemia are treated with amphotericin B or echinocandins as first-line therapy, with extended-spectrum triazoles as acceptable alternatives. Candida tropicalis is usually susceptible to all antifungal agents, although several azole drug-resistant clinical isolates are being reported. However, C. tropicalis resistant to amphotericin B is uncommon, and only a few strains have reliably demonstrated a high level of resistance to this agent. The resistance mechanisms operating in C. tropicalis strains isolated from clinical samples showing resistance to azole drugs alone or with amphotericin B cross-resistance were elucidated. Antifungal drug resistance was related to mutations of the azole target (Erg11p) with or without alterations of the ergosterol biosynthesis pathway. The antifungal drug resistance shown in vitro correlated very well with the results obtained in vivo using the model host Galleria mellonella. Using this panel of strains, the G. mellonella model system was validated as a simple, nonmammalian minihost model that can be used to study in vitro-in vivo correlation of antifungals in C. tropicalis. The development in C. tropicalis of antifungal drug resistance with different mechanisms during antifungal treatment has potential clinical impact and deserves specific prospective studies. PMID:23877676

  18. Novel micelle formulations to increase cutaneous bioavailability of azole antifungals.

    PubMed

    Bachhav, Y G; Mondon, K; Kalia, Y N; Gurny, R; Möller, M

    2011-07-30

    Efficient topical drug administration for the treatment of superficial fungal infections would deliver the therapeutic agent to the target compartment and reduce the risk of systemic side effects. However, the physicochemical properties of the commonly used azole antifungals make their formulation a considerable challenge. The objective of the present investigation was to develop aqueous micelle solutions of clotrimazole (CLZ), econazole nitrate (ECZ) and fluconazole (FLZ) using novel amphiphilic methoxy-poly(ethylene glycol)-hexyl substituted polylactide (MPEG-hexPLA) block copolymers. The CLZ, ECZ and FLZ formulations were characterized with respect to drug loading and micelle size. The optimal drug formulation was selected for skin transport studies that were performed using full thickness porcine and human skin. Penetration pathways and micellar distribution in the skin were visualized using fluorescein loaded micelles and confocal laser scanning microscopy. The hydrodynamic diameters of the azole loaded micelles were between 70 and 165nm and the corresponding number weighted diameters (d(n)) were 30 to 40nm. Somewhat surprisingly, the lowest loading efficiency (<20%) was observed for CLZ (the most hydrophobic of the three azoles tested); in contrast, under the same conditions, ECZ was incorporated with an efficiency of 98.3% in MPEG-dihexPLA micelles. Based on the characterization data and preliminary transport experiments, ECZ loaded MPEG-dihexPLA micelles (concentration 1.3mg/mL; d(n)<40nm) were selected for further study. ECZ delivery was compared to that from Pevaryl® cream (1% w/w ECZ), a marketed liposomal formulation for topical application. ECZ deposition in porcine skin following 6h application using the MPEG-dihexPLA micelles was >13-fold higher than that from Pevaryl® cream (22.8±3.8 and 1.7±0.6μg/cm(2), respectively). A significant enhancement was also observed with human skin; the amounts of ECZ deposited were 11.3±1.6 and 1.5±0.4μg/cm(2

  19. New generation azole antifungals in clinical investigation.

    PubMed

    Girmenia, Corrado

    2009-09-01

    Considerable progress in treating systemic mycoses has been achieved in the past years through development of new drugs in association with more advanced diagnostic procedures. Here, we review the pharmacological, microbiological and clinical development progress with the so-called 'second generation' triazoles: voriconazole, posaconazole, ravuconazole, isavuconazole and albaconazole. All these drugs exhibit a favourable pharmacokinetic and toxicity profile and possess high activity against resistant and emerging pathogens. However, only voriconazole and posaconazole have been adequately investigated in Phase III studies and have been approved by the regulatory agencies in the treatment and prophylaxis of invasive fungal infections, respectively. On the contrary, ravuconazole, isavuconazole and albaconazole have not been investigated in adequate clinical trials and, in the absence of proper data, the real possibilities of these agents as competitors for the treatment and prevention of invasive mycoses in the clinical setting are still unknown. The drug interactions and the variability in the absorption and/or metabolism of the triazoles, in particular voriconazole and posaconazole, may determine an unpredictable exposure of the pathogens to the antifungal treatments. Literature evidences strongly support the use of therapeutic drug monitoring for these triazoles which may be crucial for the proper management of severe invasive fungal infections. PMID:19678798

  20. Pediatric Antifungal Agents

    PubMed Central

    Cohen-Wolkowiez, Michael; Moran, Cassandra; Benjamin, Daniel K.; Smith, P Brian

    2009-01-01

    Purpose of review In immunocompromised hosts, invasive fungal infections are common and fatal. In the past decade, the antifungal armamentarium against invasive mycoses has expanded greatly. The purpose of this report is to review the most recent literature addressing the use of antifungal agents in children. Recent findings Most studies evaluating the safety and efficacy of antifungal agents are limited to adults. However, important progress has been made in describing the pharmacokinetics and safety of newer antifungal agents in children, including the echinocandins. Summary Dosage guidelines for newer antifungal agents are currently based on adult and limited pediatric data. Because important developmental pharmacology changes occur throughout childhood impacting the pharmacokinetics of these agents, antifungal studies specifically designed for children are necessary. PMID:19741525

  1. UPC2A is required for high-level azole antifungal resistance in Candida glabrata.

    PubMed

    Whaley, Sarah G; Caudle, Kelly E; Vermitsky, John-Paul; Chadwick, Sean G; Toner, Geoffrey; Barker, Katherine S; Gygax, Scott E; Rogers, P David

    2014-08-01

    Candida glabrata, the second most common cause of Candida infections, is associated with high rates of mortality and often exhibits resistance to the azole class of antifungal agents. Upc2 and Ecm22 in Saccharomyces cerevisiae and Upc2 in Candida albicans are the transcriptional regulators of ERG11, the gene encoding the target of azoles in the ergosterol biosynthesis pathway. Recently two homologs for these transcription factors, UPC2A and UPC2B, were identified in C. glabrata. One of these, UPC2A, was shown to influence azole susceptibility. We hypothesized that due to the global role for Upc2 in sterol biosynthesis in S. cerevisiae and C. albicans, disruption of UPC2A would enhance the activity of fluconazole in both azole-susceptible dose-dependent (SDD) and -resistant C. glabrata clinical isolates. To test this hypothesis, we constructed mutants with disruptions in UPC2A and UPC2B alone and in combination in a matched pair of clinical azole-SDD and -resistant isolates. Disruption of UPC2A in both the SDD and resistant isolates resulted in increased susceptibility to sterol biosynthesis inhibitors, including a reduction in fluconazole MIC and minimum fungicidal concentration, enhanced azole activity by time-kill analysis, a decrease in ergosterol content, and downregulation of baseline and inducible expression of several sterol biosynthesis genes. Our results indicate that Upc2A is a key regulator of ergosterol biosynthesis and is essential for resistance to sterol biosynthesis inhibitors in C. glabrata. Therefore, the UPC2A pathway may represent a potential cotherapeutic target for enhancing azole activity against this organism. PMID:24867980

  2. Structural Basis of Human CYP51 Inhibition by Antifungal Azoles

    SciTech Connect

    Strushkevich, Natallia; Usanov, Sergey A.; Park, Hee-Won

    2010-09-22

    The obligatory step in sterol biosynthesis in eukaryotes is demethylation of sterol precursors at the C14-position, which is catalyzed by CYP51 (sterol 14-alpha demethylase) in three sequential reactions. In mammals, the final product of the pathway is cholesterol, while important intermediates, meiosis-activating sterols, are produced by CYP51. Three crystal structures of human CYP51, ligand-free and complexed with antifungal drugs ketoconazole and econazole, were determined, allowing analysis of the molecular basis for functional conservation within the CYP51 family. Azole binding occurs mostly through hydrophobic interactions with conservative residues of the active site. The substantial conformational changes in the B{prime} helix and F-G loop regions are induced upon ligand binding, consistent with the membrane nature of the protein and its substrate. The access channel is typical for mammalian sterol-metabolizing P450 enzymes, but is different from that observed in Mycobacterium tuberculosis CYP51. Comparison of the azole-bound structures provides insight into the relative binding affinities of human and bacterial P450 enzymes to ketoconazole and fluconazole, which can be useful for the rational design of antifungal compounds and specific modulators of human CYP51.

  3. Discovery of highly potent novel antifungal azoles by structure-based rational design.

    PubMed

    Wang, Wenya; Sheng, Chunquan; Che, Xiaoying; Ji, Haitao; Cao, Yongbing; Miao, Zhenyuan; Yao, Jianzhong; Zhang, Wannian

    2009-10-15

    On the basis of the active site of lanosterol 14alpha-demethylase from Candida albicans (CACYP51), a series of new azoles were designed and synthesized. All the new azoles show excellent in vitro activity against most of the tested pathogenic fungi, which represent a class of promising leads for the development of novel antifungal agents. The MIC(80) value of compounds 8c, 8i and 8n against C. albicans is 0.001 microg/mL, indicating that these compounds are more potent than fluconazole, itraconazole and voriconazole. Flexible molecular docking was used to analyze the structure-activity relationships (SARs) of the compounds. The designed compounds interact with CACYP51 through hydrophobic, van der Waals and hydrogen-bonding interactions. PMID:19748782

  4. Synergy Between Polyvinylpyrrolidone-Coated Silver Nanoparticles and Azole Antifungal Against Drug-Resistant Candida albicans.

    PubMed

    Sun, Lingmei; Liao, Kai; Li, Yiping; Zhao, Lei; Liang, Sai; Guo, Dan; Hu, Jun; Wang, Dayong

    2016-03-01

    In the clinical practice, resistance of Candida albicans to antifungal agents has frequently emerged. Silver-nanoparticles (Ag-NPs) have been demonstrated to have the antifungal property. We investigated the potential for synergy between polyvinylpyrrolidone (PVP)-coated Ag-NPs and azole antifungal, such as fluconazole or voriconazole, against drug-resistant C. albicans strain CA10. When antifungal agent was examined alone, fluconazole and voriconazole did not kill drug-resistant C. albicans, and PVP-coated Ag-NPs had only the moderate killing ability. In contrast, the combinational treatment of PVP-coated Ag-NPs with fluconazole or voriconazole was effective in being against the drug-resistant C. albicans. After the combinational treatment, we detected the disruption of cell membrane integrity, the tendency of PVP-coated Ag-NPs to adhere to cell membrane, and the inhibition of budding process. Moreover, after the combinational treatment, the defects in ergosterol signaling and efflux pump functions were detected. Our results suggest that the combinational use of engineered nanomaterials (ENMs), such as PVP-coated Ag-NPs, with the conventional antifungal may be a viable strategy to combat drug-resistant fungal infection. PMID:27455637

  5. Factors influencing the magnitude and clinical significance of drug interactions between azole antifungals and select immunosuppressants.

    PubMed

    Saad, Aline H; DePestel, Daryl D; Carver, Peggy L

    2006-12-01

    The magnitude of drug interactions between azole antifungals and immunosuppressants is drug and patient specific and depends on the potency of the azole inhibitor involved, the resulting plasma concentrations of each drug, the drug formulation, and interpatient variability. Many factors contribute to variability in the magnitude and clinical significance of drug interactions between an immunosuppressant such as cyclosporine, tacrolimus, or sirolimus and an antifungal agent such as ketoconazole, fluconazole, itraconazole, voriconazole, or posaconazole. By bringing similarities and differences among these agents and their potential interactions to clinicians' attention, they can appreciate and apply these findings in a individualized patient approach rather than follow only the one-size-fits-all dosing recommendations suggested in many tertiary references. Differences in metabolism and in the inhibitory potency of cytochrome P450 3A4 and P-glycoprotein influence the onset, magnitude, and resolution of drug interactions and their potential effect on clinical outcomes. Important issues are the route of administration and the decision to preemptively adjust dosages versus intensive monitoring with subsequent dosage adjustments. We provide recommendations for the concomitant use of these agents, including suggestions regarding contraindicated combinations, those best avoided, and those requiring close monitoring of drug dosages and plasma concentrations. PMID:17125435

  6. Transcription Factor ADS-4 Regulates Adaptive Responses and Resistance to Antifungal Azole Stress

    PubMed Central

    Wang, Kangji; Zhang, Zhenying; Chen, Xi; Sun, Xianyun; Jin, Cheng

    2015-01-01

    Azoles are commonly used as antifungal drugs or pesticides to control fungal infections in medicine and agriculture. Fungi adapt to azole stress by rapidly activating the transcription of a number of genes, and transcriptional increases in some azole-responsive genes can elevate azole resistance. The regulatory mechanisms that control transcriptional responses to azole stress in filamentous fungi are not well understood. This study identified a bZIP transcription factor, ADS-4 (antifungal drug sensitive-4), as a new regulator of adaptive responses and resistance to antifungal azoles. Transcription of ads-4 in Neurospora crassa cells increased when they were subjected to ketoconazole treatment, whereas the deletion of ads-4 resulted in hypersensitivity to ketoconazole and fluconazole. In contrast, the overexpression of ads-4 increased resistance to fluconazole and ketoconazole in N. crassa. Transcriptome sequencing (RNA-seq) analysis, followed by quantitative reverse transcription (qRT)-PCR confirmation, showed that ADS-4 positively regulated the transcriptional responses of at least six genes to ketoconazole stress in N. crassa. The gene products of four ADS-4-regulated genes are known contributors to azole resistance, including the major efflux pump CDR4 (Pdr5p ortholog), an ABC multidrug transporter (NcAbcB), sterol C-22 desaturase (ERG5), and a lipid transporter (NcRTA2) that is involved in calcineurin-mediated azole resistance. Deletion of the ads-4-homologous gene Afads-4 in Aspergillus fumigatus caused hypersensitivity to itraconazole and ketoconazole, which suggested that ADS-4 is a functionally conserved regulator of adaptive responses to azoles. This study provides important information on a new azole resistance factor that could be targeted by a new range of antifungal pesticides and drugs. PMID:26100701

  7. Cinnamaldehyde and its derivatives, a novel class of antifungal agents.

    PubMed

    Shreaz, Sheikh; Wani, Waseem A; Behbehani, Jawad M; Raja, Vaseem; Irshad, Md; Karched, Maribasappa; Ali, Intzar; Siddiqi, Weqar A; Hun, Lee Ting

    2016-07-01

    The last few decades have seen an alarming rise in fungal infections, which currently represent a global health threat. Despite extensive research towards the development of new antifungal agents, only a limited number of antifungal drugs are available in the market. The routinely used polyene agents and many azole antifungals are associated with some common side effects such as severe hepatotoxicity and nephrotoxicity. Also, antifungal resistance continues to grow and evolve and complicate patient management, despite the introduction of new antifungal agents. This suitation requires continuous attention. Cinnamaldehyde has been reported to inhibit bacteria, yeasts, and filamentous molds via the inhibition of ATPases, cell wall biosynthesis, and alteration of membrane structure and integrity. In this regard, several novel cinnamaldehyde derivatives were synthesized with the claim of potential antifungal activities. The present article describes antifungal properties of cinnamaldehyde and its derivatives against diverse classes of pathogenic fungi. This review will provide an overview of what is currently known about the primary mode of action of cinnamaldehyde. Synergistic approaches for boosting the effectiveness of cinnamaldehyde and its derivatives have been highlighted. Also, a keen analysis of the pharmacologically active systems derived from cinnamaldehyde has been discussed. Finally, efforts were made to outline the future perspectives of cinnamaldehyde-based antifungal agents. The purpose of this review is to provide an overview of current knowledge about the antifungal properties and antifungal mode of action of cinnamaldehyde and its derivatives and to identify research avenues that can facilitate implementation of cinnamaldehyde as a natural antifungal. PMID:27259370

  8. De-repression of CSP-1 activates adaptive responses to antifungal azoles

    PubMed Central

    Chen, Xi; Xue, Wei; Zhou, Jun; Zhang, Zhenying; Wei, Shiping; Liu, Xingyu; Sun, Xianyun; Wang, Wenzhao; Li, Shaojie

    2016-01-01

    Antifungal azoles are the major drugs that are used to treat fungal infections. This study found that in response to antifungal azole stress, Neurospora crassa could activate the transcriptional responses of many genes and increase azole resistance by reducing the level of conidial separation 1 (CSP-1), a global transcription repressor, at azole-responsive genes. The expression of csp-1 was directly activated by the transcription factors WC-1 and WC-2. Upon ketoconazole (KTC) stress, the transcript levels of wc-1 and wc-2 were not changed, but csp-1 transcription rapidly declined. A chromatin immunoprecipitation-quantitative polymerase chain reaction analysis revealed a rapid reduction in the WC-2 enrichment at the csp-1 promoter upon KTC treatment, which might be responsible for the KTC-induced csp-1 downregulation. Deletion of csp-1 increased resistance to KTC and voriconazole, while csp-1 overexpression increased KTC susceptibility. CSP-1 transcriptionally repressed a number of azole-responsive genes, including genes encoding the azole target ERG11, the azole efflux pump CDR4, and the sterol C-22 desaturase ERG5. Deletion of csp-1 also reduced the KTC-induced accumulation of ergosterol intermediates, eburicol, and 14α-methyl-3,6-diol. CSP-1 orthologs are widely present in filamentous fungi, and an Aspergillus fumigatus mutant in which the csp-1 was deleted was resistant to itraconazole. PMID:26781458

  9. Genesis of Azole Antifungal Resistance from Agriculture to Clinical Settings.

    PubMed

    Azevedo, Maria-Manuel; Faria-Ramos, Isabel; Cruz, Luísa Costa; Pina-Vaz, Cidália; Rodrigues, Acácio Gonçalves

    2015-09-01

    Azole fungal resistance is becoming a major public health problem in medicine in recent years. However, it was known in agriculture since several decades; the extensive use of these compounds results in contamination of air, plants, and soil. The increasing frequency of life-threatening fungal infections and the increase of prophylactical use of azoles in high-risk patients, taken together with the evolutionary biology evidence that drug selection pressure is an important factor for the emergence and spread of drug resistance, can result in a dramatic scenario. This study reviews the azole use in agricultural and medical contexts and discusses the hypothetical link between its extensive use and the emergence of azole resistance among human fungal pathogens. PMID:26289797

  10. Azole Antifungal Agents To Treat the Human Pathogens Acanthamoeba castellanii and Acanthamoeba polyphaga through Inhibition of Sterol 14α-Demethylase (CYP51).

    PubMed

    Lamb, David C; Warrilow, Andrew G S; Rolley, Nicola J; Parker, Josie E; Nes, W David; Smith, Stephen N; Kelly, Diane E; Kelly, Steven L

    2015-08-01

    In this study, we investigate the amebicidal activities of the pharmaceutical triazole CYP51 inhibitors fluconazole, itraconazole, and voriconazole against Acanthamoeba castellanii and Acanthamoeba polyphaga and assess their potential as therapeutic agents against Acanthamoeba infections in humans. Amebicidal activities of the triazoles were assessed by in vitro minimum inhibition concentration (MIC) determinations using trophozoites of A. castellanii and A. polyphaga. In addition, triazole effectiveness was assessed by ligand binding studies and inhibition of CYP51 activity of purified A. castellanii CYP51 (AcCYP51) that was heterologously expressed in Escherichia coli. Itraconazole and voriconazole bound tightly to AcCYP51 (dissociation constant [Kd] of 10 and 13 nM), whereas fluconazole bound weakly (Kd of 2,137 nM). Both itraconazole and voriconazole were confirmed to be strong inhibitors of AcCYP51 activity (50% inhibitory concentrations [IC50] of 0.23 and 0.39 μM), whereas inhibition by fluconazole was weak (IC50, 30 μM). However, itraconazole was 8- to 16-fold less effective (MIC, 16 mg/liter) at inhibiting A. polyphaga and A. castellanii cell proliferation than voriconazole (MIC, 1 to 2 mg/liter), while fluconazole did not inhibit Acanthamoeba cell division (MIC, >64 mg/liter) in vitro. Voriconazole was an effective inhibitor of trophozoite proliferation for A. castellanii and A. polyphaga; therefore, it should be evaluated in trials versus itraconazole for controlling Acanthamoeba infections. PMID:26014948

  11. Azole Antifungal Agents To Treat the Human Pathogens Acanthamoeba castellanii and Acanthamoeba polyphaga through Inhibition of Sterol 14α-Demethylase (CYP51)

    PubMed Central

    Lamb, David C.; Warrilow, Andrew G. S.; Rolley, Nicola J.; Parker, Josie E.; Nes, W. David; Smith, Stephen N.; Kelly, Diane E.

    2015-01-01

    In this study, we investigate the amebicidal activities of the pharmaceutical triazole CYP51 inhibitors fluconazole, itraconazole, and voriconazole against Acanthamoeba castellanii and Acanthamoeba polyphaga and assess their potential as therapeutic agents against Acanthamoeba infections in humans. Amebicidal activities of the triazoles were assessed by in vitro minimum inhibition concentration (MIC) determinations using trophozoites of A. castellanii and A. polyphaga. In addition, triazole effectiveness was assessed by ligand binding studies and inhibition of CYP51 activity of purified A. castellanii CYP51 (AcCYP51) that was heterologously expressed in Escherichia coli. Itraconazole and voriconazole bound tightly to AcCYP51 (dissociation constant [Kd] of 10 and 13 nM), whereas fluconazole bound weakly (Kd of 2,137 nM). Both itraconazole and voriconazole were confirmed to be strong inhibitors of AcCYP51 activity (50% inhibitory concentrations [IC50] of 0.23 and 0.39 μM), whereas inhibition by fluconazole was weak (IC50, 30 μM). However, itraconazole was 8- to 16-fold less effective (MIC, 16 mg/liter) at inhibiting A. polyphaga and A. castellanii cell proliferation than voriconazole (MIC, 1 to 2 mg/liter), while fluconazole did not inhibit Acanthamoeba cell division (MIC, >64 mg/liter) in vitro. Voriconazole was an effective inhibitor of trophozoite proliferation for A. castellanii and A. polyphaga; therefore, it should be evaluated in trials versus itraconazole for controlling Acanthamoeba infections. PMID:26014948

  12. Role of antifungal agents in the treatment of seborrheic dermatitis.

    PubMed

    Gupta, Aditya K; Nicol, Karyn; Batra, Roma

    2004-01-01

    Seborrheic dermatitis is a superficial fungal disease of the skin, occurring in areas rich in sebaceous glands. It is thought that an association exists between Malassezia yeasts and seborrheic dermatitis. This may, in part, be due to an abnormal or inflammatory immune response to these yeasts. The azoles represent the largest class of antifungals used in the treatment of this disease to date. In addition to their antifungal properties, some azoles, including bifonazole, itraconazole, and ketoconazole, have demonstrated anti-inflammatory activity, which may be beneficial in alleviating symptoms. Other topical antifungal agents, such as the allylamines (terbinafine), benzylamines (butenafine), hydroxypyridones (ciclopirox), and immunomodulators (pimecrolimus and tacrolimus), have also been effective. In addition, recent studies have revealed that tea tree oil (Melaleuca oil), honey, and cinnamic acid have antifungal activity against Malassezia species, which may be of benefit in the treatment of seborrheic dermatitis. In cases where seborrheic dermatitis is widespread, the use of an oral therapy, such as ketoconazole, itraconazole, and terbinafine, may be preferred. Essentially, antifungal therapy reduces the number of yeasts on the skin, leading to an improvement in seborrheic dermatitis. With a wide availability of preparations, including creams, shampoos, and oral formulations, antifungal agents are safe and effective in the treatment of seborrheic dermatitis. PMID:15663338

  13. Tissue Penetration of Antifungal Agents

    PubMed Central

    Felton, Timothy; Troke, Peter F.

    2014-01-01

    SUMMARY Understanding the tissue penetration of systemically administered antifungal agents is critical for a proper appreciation of their antifungal efficacy in animals and humans. Both the time course of an antifungal drug and its absolute concentrations within tissues may differ significantly from those observed in the bloodstream. In addition, tissue concentrations must also be interpreted within the context of the pathogenesis of the various invasive fungal infections, which differ significantly. There are major technical obstacles to the estimation of concentrations of antifungal agents in various tissue subcompartments, yet these agents, even those within the same class, may exhibit markedly different tissue distributions. This review explores these issues and provides a summary of tissue concentrations of 11 currently licensed systemic antifungal agents. It also explores the therapeutic implications of their distribution at various sites of infection. PMID:24396137

  14. Voriconazole: a new triazole antifungal agent.

    PubMed

    Johnson, Leonard B; Kauffman, Carol A

    2003-03-01

    Voriconazole is a second-generation azole antifungal agent that shows excellent in vitro activity against a wide variety of yeasts and molds. It can be given by either the intravenous or the oral route; the oral formulation has excellent bioavailability. The side effect profile of voriconazole is unique in that non-sight-threatening, transient visual disturbances occur in approximately 30% of patients given the drug. Rash (which can manifest as photosensitivity) and hepatitis also occur. The potential for drug-drug interactions is high and requires that careful attention be given to dosage regimens and monitoring of serum levels and effects of interacting drugs. Voriconazole has been approved for the treatment of invasive aspergillosis and refractory infections with Pseudallescheria/Scedosporium and Fusarium species, and it will likely become the drug of choice for treatment of serious infections with those filamentous fungi. PMID:12594645

  15. Trafficking through the late endosome significantly impacts Candida albicans tolerance of the azole antifungals.

    PubMed

    Luna-Tapia, Arturo; Kerns, Morgan E; Eberle, Karen E; Jursic, Branko S; Palmer, Glen E

    2015-04-01

    The azole antifungals block ergosterol biosynthesis by inhibiting lanosterol demethylase (Erg11p). The resulting depletion of cellular ergosterol and the accumulation of "toxic" sterol intermediates are both thought to compromise plasma membrane function. However, the effects of ergosterol depletion upon the function of intracellular membranes and organelles are not well described. The purpose of this study was to characterize the effects of azole treatment upon the integrity of the Candida albicans vacuole and to determine whether, in turn, vacuolar trafficking influences azole susceptibility. Profound fragmentation of the C. albicans vacuole can be observed as an early consequence of azole treatment, and it precedes significant growth inhibition. In addition, a C. albicans vps21Δ/Δ mutant, blocked in membrane trafficking through the late endosomal prevacuolar compartment (PVC), is able to grow significantly more than the wild type in the presence of several azole antifungals under standard susceptibility testing conditions. Furthermore, the vps21Δ/Δ mutant is able to grow despite the depletion of cellular ergosterol. This phenotype resembles an exaggerated form of "trailing growth" that has been described for some clinical isolates. In contrast, the vps21Δ/Δ mutant is hypersensitive to drugs that block alternate steps in ergosterol biosynthesis. On the basis of these results, we propose that endosomal trafficking defects may lead to the cellular "redistribution" of the sterol intermediates that accumulate following inhibition of ergosterol biosynthesis. Furthermore, the destination of these intermediates, or the precise cellular compartments in which they accumulate, may be an important determinant of their toxicity and thus ultimately antifungal efficacy. PMID:25666149

  16. Trafficking through the Late Endosome Significantly Impacts Candida albicans Tolerance of the Azole Antifungals

    PubMed Central

    Luna-Tapia, Arturo; Kerns, Morgan E.; Eberle, Karen E.; Jursic, Branko S.

    2015-01-01

    The azole antifungals block ergosterol biosynthesis by inhibiting lanosterol demethylase (Erg11p). The resulting depletion of cellular ergosterol and the accumulation of “toxic” sterol intermediates are both thought to compromise plasma membrane function. However, the effects of ergosterol depletion upon the function of intracellular membranes and organelles are not well described. The purpose of this study was to characterize the effects of azole treatment upon the integrity of the Candida albicans vacuole and to determine whether, in turn, vacuolar trafficking influences azole susceptibility. Profound fragmentation of the C. albicans vacuole can be observed as an early consequence of azole treatment, and it precedes significant growth inhibition. In addition, a C. albicans vps21Δ/Δ mutant, blocked in membrane trafficking through the late endosomal prevacuolar compartment (PVC), is able to grow significantly more than the wild type in the presence of several azole antifungals under standard susceptibility testing conditions. Furthermore, the vps21Δ/Δ mutant is able to grow despite the depletion of cellular ergosterol. This phenotype resembles an exaggerated form of “trailing growth” that has been described for some clinical isolates. In contrast, the vps21Δ/Δ mutant is hypersensitive to drugs that block alternate steps in ergosterol biosynthesis. On the basis of these results, we propose that endosomal trafficking defects may lead to the cellular “redistribution” of the sterol intermediates that accumulate following inhibition of ergosterol biosynthesis. Furthermore, the destination of these intermediates, or the precise cellular compartments in which they accumulate, may be an important determinant of their toxicity and thus ultimately antifungal efficacy. PMID:25666149

  17. In Vitro Activity of the Antifungal Azoles Itraconazole and Posaconazole against Leishmania amazonensis

    PubMed Central

    de Macedo-Silva, Sara Teixeira; Urbina, Julio A.; de Souza, Wanderley; Rodrigues, Juliany Cola Fernandes

    2013-01-01

    Leishmaniasis, caused by protozoan parasites of the Leishmania genus, is one of the most prevalent neglected tropical diseases. It is endemic in 98 countries, causing considerable morbidity and mortality. Pentavalent antimonials are the first line of treatment for leishmaniasis except in India. In resistant cases, miltefosine, amphotericin B and pentamidine are used. These treatments are unsatisfactory due to toxicity, limited efficacy, high cost and difficult administration. Thus, there is an urgent need to develop drugs that are efficacious, safe, and more accessible to patients. Trypanosomatids, including Leishmania spp. and Trypanosoma cruzi, have an essential requirement for ergosterol and other 24-alkyl sterols, which are absent in mammalian cells. Inhibition of ergosterol biosynthesis is increasingly recognized as a promising target for the development of new chemotherapeutic agents. The aim of this work was to investigate the antiproliferative, physiological and ultrastructural effects against Leishmania amazonensis of itraconazole (ITZ) and posaconazole (POSA), two azole antifungal agents that inhibit sterol C14α-demethylase (CYP51). Antiproliferative studies demonstrated potent activity of POSA and ITZ: for promastigotes, the IC50 values were 2.74 µM and 0.44 µM for POSA and ITZ, respectively, and for intracellular amastigotes, the corresponding values were 1.63 µM and 0.08 µM, for both stages after 72 h of treatment. Physiological studies revealed that both inhibitors induced a collapse of the mitochondrial membrane potential (ΔΨm), which was consistent with ultrastructural alterations in the mitochondrion. Intense mitochondrial swelling, disorganization and rupture of mitochondrial membranes were observed by transmission electron microscopy. In addition, accumulation of lipid bodies, appearance of autophagosome-like structures and alterations in the kinetoplast were also observed. In conclusion, our results indicate that ITZ and POSA are potent

  18. Haloprogin: a Topical Antifungal Agent

    PubMed Central

    Harrison, E. F.; Zwadyk, P.; Bequette, R. J.; Hamlow, E. E.; Tavormina, P. A.; Zygmunt, W. A.

    1970-01-01

    Haloprogin was shown to be a highly effective agent for the treatment of experimentally induced topical mycotic infections in guinea pigs. Its in vitro spectrum of activity also includes yeasts, yeastlike fungi (Candida species), and certain gram-positive bacteria. The in vitro and in vivo antifungal activity of haloprogin against dermatophytes was equal to that observed with tolnaftate. The striking differences between the two agents were the marked antimonilial and selective antibacterial activities shown by haloprogin, contrasted with the negligible activities found with tolnaftate. Addition of serum decreased the in vitro antifungal activity of haloprogin to a greater extent than that of tolnaftate; however, diminished antifungal activity was not observed when haloprogin was applied topically to experimental dermatophytic infections. Based on its broad spectrum of antimicrobial activity, haloprogin may prove to be a superior topical agent in the treatment of dermatophytic and monilial infections in man. PMID:5422306

  19. Effect of Nitric Oxide on the Antifungal Activity of Oxidative Stress and Azoles Against Candida albicans.

    PubMed

    Li, De-Dong; Yang, Chang-Chun; Liu, Ping; Wang, Yan; Sun, Yan

    2016-06-01

    Nitric oxide (NO) is a small molecule with a wide range of biological activities in mammalian and bacteria. However, the role of NO in fungi, especially Candida albicans, is not clear. In this study, we confirmed the generation of endogenous NO in C. albicans, and found that the production of endogenous NO in C. albicans was associated with nitric oxide synthase pathway. Our results further indicated that the production of endogenous NO in C. albicans was reduced under oxidative stress such as menadione or H2O2 treatment. Meanwhile, exogenous NO donor, sodium nitroprusside (SNP), synergized with H2O2 against C. albicans. Interestingly, SNP could inhibit the antifungal effect of azoles against C. albicans in vitro, suggesting that NO might be involved in the resistance of C. albicans to antifungals. Collectively, this study demonstrated the production of endogenous NO in C. albicans, and indicated that NO may play an important role in the response of C. albicans to oxidative stress and azoles. PMID:27570314

  20. Azole Resistance in Aspergillus fumigatus: Can We Retain the Clinical Use of Mold-Active Antifungal Azoles?

    PubMed Central

    Verweij, Paul E.; Chowdhary, Anuradha; Melchers, Willem J. G.; Meis, Jacques F.

    2016-01-01

    Azole resistance in Aspergillus fumigatus has emerged as a global health problem. Although the number of cases of azole-resistant aspergillosis is still limited, resistance mechanisms continue to emerge, thereby threatening the role of the azole class in the management of diseases caused by Aspergillus. The majority of cases of azole-resistant disease are due to resistant A. fumigatus originating from the environment. Patient management is difficult due to the absence of patient risk factors, delayed diagnosis, and limited treatment options, resulting in poor treatment outcome. International and collaborative efforts are required to understand how resistance develops in the environment to allow effective measures to be implemented aimed at retaining the use of azoles both for food production and human medicine. PMID:26486705

  1. Chalcone derivatives as potential antifungal agents: Synthesis, and antifungal activity.

    PubMed

    Gupta, Deepa; Jain, D K

    2015-01-01

    Much research has been carried out with the aim to discover the therapeutic values of chalcone derivatives. Chalcones possess wide range of pharmacological activity such as antibacterial, antimalarial, antiprotozoal, antitubercular, anticancer, and antifungal agents etc. The presence of reactive α,β-unsaturated keto group in chalcones is found to be responsible for their biological activity. The rapid developments of resistance to antifungal agents, led to design, and synthesize the new antifungal agents. The derivatives of chalcones were prepared using Claisen-Schmidt condensation scheme with appropriate tetralone and aldehyde derivatives. Ten derivatives were synthesized and were biologically screened for antifungal activity. The newly synthesized derivatives of chalcone showed antifungal activity against fungal species, Microsporum gypseum. The results so obtained were superior or comparable to ketoconazole. It was observed that none of the compounds tested showed positive results for fungi Candida albicans nor against fungi Aspergillus niger. Chalcone derivatives showed inhibitory effect against M. gypseum species of fungus. It was found that among the chalcone derivatives so synthesized, two of them, that is, 4-chloro derivative, and unsubstituted derivative of chalcone showed antifungal activity superior to ketoconazole. Thus, these can be the potential new molecule as antifungal agent. PMID:26317075

  2. Reduced susceptibility of Candida albicans clinical isolates to azoles and detection of mutations in the ERG11 gene.

    PubMed

    Zhang, Lei; Yang, Hai-Fei; Liu, Yan-Yan; Xu, Xi-Hai; Ye, Ying; Li, Jia-Bin

    2013-12-01

    We investigated the susceptibility of Candida albicans isolated from clinic specimens to azole antifungal agents and estimated the association of the ERG11 mutations with azole resistance during recent 5years in China. In this study, novel mutations G346A, A434V, and L480F in ERG11 may be related to azole resistance in C. albicans. PMID:24070847

  3. Azole Antifungal Sensitivity of Sterol 14α-Demethylase (CYP51) and CYP5218 from Malassezia globosa.

    PubMed

    Warrilow, Andrew G S; Price, Claire L; Parker, Josie E; Rolley, Nicola J; Smyrniotis, Christopher J; Hughes, David D; Thoss, Vera; Nes, W David; Kelly, Diane E; Holman, Theodore R; Kelly, Steven L

    2016-01-01

    Malassezia globosa cytochromes P450 CYP51 and CYP5218 are sterol 14α-demethylase (the target of azole antifungals) and a putative fatty acid metabolism protein (and a potential azole drug target), respectively. Lanosterol, eburicol and obtusifoliol bound to CYP51 with Kd values of 32, 23 and 28 μM, respectively, catalyzing sterol 14α-demethylation with respective turnover numbers of 1.7 min(-1), 5.6 min(-1) and 3.4 min(-1). CYP5218 bound a range of fatty acids with linoleic acid binding strongest (Kd 36 μM), although no metabolism could be detected in reconstitution assays or role in growth on lipids. Clotrimazole, fluconazole, itraconazole, ketoconazole, voriconazole and ketaminazole bound tightly to CYP51 (Kd ≤ 2 to 11 nM). In contrast, fluconazole did not bind to CYP5218, voriconazole and ketaminazole bound weakly (Kd ~107 and ~12 μM), whereas ketoconazole, clotrimazole and itraconazole bound strongest to CYP5218 (Kd ~1.6, 0.5 and 0.4 μM) indicating CYP5218 to be only a secondary target of azole antifungals. IC50 determinations confirmed M. globosa CYP51 was strongly inhibited by azole antifungals (0.15 to 0.35 μM). MIC100 studies showed itraconazole should be considered as an alternative to ketoconazole given the potency and safety profiles and the CYP51 assay system can be used in structure-activity studies in drug development. PMID:27291783

  4. Azole Antifungal Sensitivity of Sterol 14α-Demethylase (CYP51) and CYP5218 from Malassezia globosa

    PubMed Central

    Warrilow, Andrew G. S.; Price, Claire L.; Parker, Josie E.; Rolley, Nicola J.; Smyrniotis, Christopher J.; Hughes, David D.; Thoss, Vera; Nes, W. David; Kelly, Diane E.; Holman, Theodore R.; Kelly, Steven L.

    2016-01-01

    Malassezia globosa cytochromes P450 CYP51 and CYP5218 are sterol 14α-demethylase (the target of azole antifungals) and a putative fatty acid metabolism protein (and a potential azole drug target), respectively. Lanosterol, eburicol and obtusifoliol bound to CYP51 with Kd values of 32, 23 and 28 μM, respectively, catalyzing sterol 14α-demethylation with respective turnover numbers of 1.7 min−1, 5.6 min−1 and 3.4 min−1. CYP5218 bound a range of fatty acids with linoleic acid binding strongest (Kd 36 μM), although no metabolism could be detected in reconstitution assays or role in growth on lipids. Clotrimazole, fluconazole, itraconazole, ketoconazole, voriconazole and ketaminazole bound tightly to CYP51 (Kd ≤ 2 to 11 nM). In contrast, fluconazole did not bind to CYP5218, voriconazole and ketaminazole bound weakly (Kd ~107 and ~12 μM), whereas ketoconazole, clotrimazole and itraconazole bound strongest to CYP5218 (Kd ~1.6, 0.5 and 0.4 μM) indicating CYP5218 to be only a secondary target of azole antifungals. IC50 determinations confirmed M. globosa CYP51 was strongly inhibited by azole antifungals (0.15 to 0.35 μM). MIC100 studies showed itraconazole should be considered as an alternative to ketoconazole given the potency and safety profiles and the CYP51 assay system can be used in structure-activity studies in drug development. PMID:27291783

  5. Azole antifungal inhibition of buprenorphine, methadone and oxycodone in vitro metabolism.

    PubMed

    Moody, David E; Liu, Fenyun; Fang, Wenfang B

    2015-06-01

    Opioid-related mortality rates have escalated. Drug interactions may increase blood concentrations of the opioid. We therefore used human liver microsomes (HLMs) and cDNA-expressed human cytochrome P450s (rCYPs) to study in vitro inhibition of buprenorphine metabolism to norbuprenorphine (CYP3A4 and 2C8), oxycodone metabolism to noroxycodone (CYP3A4 and 2C18) and oxymorphone (CYP2D6), and methadone metabolism to R- and S-2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP; CYP3A4 and 2B6). In this study, we have examined the inhibitory effect of 12 (mostly antifungal) azoles. These compounds have a wide range of solubility; to keep organic solvent ≤1%, there was an equally wide range of highest concentration tested (e.g., itraconazole 5 µM to fluconazole 1000 µM). Inhibitors were first incubated with HLMs at three concentrations with or without preincubation of inhibitor with reducing equivalents to also screen for time-dependent inhibition (TDI). Posaconazole displayed evidence of TDI; metronidazole and albendazole had no significant effect. Azoles were next screened at the highest achievable concentration for non-CYP3A4 pathways. IC50 values (µM) were determined for most CYP3A4 pathways (ranges) and other pathways as dictated by screen results: clotrimazole (0.30 - 0.35; others >30 µM); econazole (2.2 - 4.9; 2B6 R-EDDP - 9.5, S-EDDP - 6.8; 2C8 - 6.0; 2C18 - 1.0; 2D6 - 1.2); fluconazole (7.7 - 66; 2B6 - 313, 361; 2C8 - 1240; 2C18 - 17; 2D6 - 1000); itraconazole (2.5 to >5; others >5); ketoconazole (0.032 - 0.094; 2B6 - 12, 31; 2C8 - 78; 2C18 - 0.98; 2D6 - 182); miconazole (2.3 - 7.6; 2B6 - 2.8, 2.8; 2C8 - 5.3; 2C18 - 3.1; 2D6 - 5.9); posaconazole (3.4 - 20; 2C18 - 3.8; others >30); terconazole (0.48 to >10; 2C18 - 8.1; others >10) and voriconazole (0.40 - 15; 2B6 - 2.4, 2.5; 2C8 - 170; 2C18 - 13; 2D6 >300). Modeling based on estimated Ki values and plasma concentrations from the literature suggest that the orally administered azoles, particularly

  6. Antifungal agents for onychomycosis: new treatment strategies to improve safety.

    PubMed

    Zane, Lee T; Chanda, Sanjay; Coronado, Dina; Del Rosso, James

    2016-01-01

    Onychomycosis is a common and difficult-to-treat fungal infection of the nail unit that gradually leads to dystrophic changes of the nail plate and nail bed. If untreated, infection progresses and may lead to discomfort, reduced quality of life, and risk of complications in patients with comorbid conditions (eg, diabetes, human immunodeficiency virus, peripheral vascular disease). Onychomycosis treatments are designed to eradicate causative pathogens (most commonly Trichophyton rubrum and Trichophyton mentagrophytes), restore healthy nails, and prevent recurrence or spread of infection. Given the deep-seated nature of most cases of onychomycosis, an effective antifungal agent needs to achieve and maintain sufficient drug concentrations throughout the nail unit for the duration of healthy nail in-growth. Oral antifungal drugs are the most effective available therapy and are generally well tolerated, but may be limited by safety concerns and the potential for drug-drug interactions (DDIs). Thus, treating physicians and pharmacists must be cognizant of a patient's current medications; indeed, it may not be feasible to treat onychomycosis in patients with diabetes, heart disease, or depression because of the risk for DDIs. Current topical therapy is not associated with risk of DDIs. Tavaborole and efinaconazole, two recently approved topical agents, have demonstrated good nail penetration and high negative culture rates in clinical trials of patients with onychomycosis. This article provides the treating physician and pharmacist with information on the safety and effectiveness of current oral (allylamine, azole) and topical (ciclopirox, efinaconazole, tavaborole) treatment to aid in making informed treatment decisions based on the unique characteristics (medication history, comorbidities, nature of onychomycosis) of each patient. PMID:27136621

  7. Multidrug Transporters and Alterations in Sterol Biosynthesis Contribute to Azole Antifungal Resistance in Candida parapsilosis

    PubMed Central

    Berkow, Elizabeth L.; Manigaba, Kayihura; Parker, Josie E.; Barker, Katherine S.; Kelly, Stephen L.

    2015-01-01

    While much is known concerning azole resistance in Candida albicans, considerably less is understood about Candida parapsilosis, an emerging species of Candida with clinical relevance. We conducted a comprehensive analysis of azole resistance in a collection of resistant C. parapsilosis clinical isolates in order to determine which genes might play a role in this process within this species. We examined the relative expression of the putative drug transporter genes CDR1 and MDR1 and that of ERG11. In isolates overexpressing these genes, we sequenced the genes encoding their presumed transcriptional regulators, TAC1, MRR1, and UPC2, respectively. We also sequenced the sterol biosynthesis genes ERG3 and ERG11 in these isolates to find mutations that might contribute to this phenotype in this Candida species. Our findings demonstrate that the putative drug transporters Cdr1 and Mdr1 contribute directly to azole resistance and suggest that their overexpression is due to activating mutations in the genes encoding their transcriptional regulators. We also observed that the Y132F substitution in ERG11 is the only substitution occurring exclusively among azole-resistant isolates, and we correlated this with specific changes in sterol biosynthesis. Finally, sterol analysis of these isolates suggests that other changes in sterol biosynthesis may contribute to azole resistance in C. parapsilosis. PMID:26169412

  8. Multidrug Transporters and Alterations in Sterol Biosynthesis Contribute to Azole Antifungal Resistance in Candida parapsilosis.

    PubMed

    Berkow, Elizabeth L; Manigaba, Kayihura; Parker, Josie E; Barker, Katherine S; Kelly, Stephen L; Rogers, P David

    2015-10-01

    While much is known concerning azole resistance in Candida albicans, considerably less is understood about Candida parapsilosis, an emerging species of Candida with clinical relevance. We conducted a comprehensive analysis of azole resistance in a collection of resistant C. parapsilosis clinical isolates in order to determine which genes might play a role in this process within this species. We examined the relative expression of the putative drug transporter genes CDR1 and MDR1 and that of ERG11. In isolates overexpressing these genes, we sequenced the genes encoding their presumed transcriptional regulators, TAC1, MRR1, and UPC2, respectively. We also sequenced the sterol biosynthesis genes ERG3 and ERG11 in these isolates to find mutations that might contribute to this phenotype in this Candida species. Our findings demonstrate that the putative drug transporters Cdr1 and Mdr1 contribute directly to azole resistance and suggest that their overexpression is due to activating mutations in the genes encoding their transcriptional regulators. We also observed that the Y132F substitution in ERG11 is the only substitution occurring exclusively among azole-resistant isolates, and we correlated this with specific changes in sterol biosynthesis. Finally, sterol analysis of these isolates suggests that other changes in sterol biosynthesis may contribute to azole resistance in C. parapsilosis. PMID:26169412

  9. [New antifungal agents: voriconazole and caspofungin].

    PubMed

    Dupont, B

    2003-12-01

    Among new available antifungal agents voriconazole is a new triazole with an intravenous (i.v.) and oral formulation, and caspofungin is an echinocandin, new family with a new mode of action on the cell wall. It is available as an i.v. preparation. Both drugs have a broad spectrum targeting most of the usual pathogens: Candida and Aspergillus, even with low suceptibility or resistance to other antifungals. Voriconazole is also active on Scedosporium and Fusarium. The efficacy of these molecules was established in vitro and in experimental infections in animals either normal or immunosuppressed. Voriconazole is active in oropharyngeal and esophageal candidiasis, in refractory invasive candidiasis and as a first line treatment of invasive aspergillosis with better results than amphotéricine B. It was also effective in scedosporiosis and in fusariosis. Caspofungin is active in oropharyngeal and esophageal candidiasis, in invasive candidiasis ranking among the best drugs in non neutropenic patients. It was shown effective in refractory aspergillosis. As empirical treatment of febrile neutropenic patients, these molecules should probably be restricted to the highest risk-population. Safety is good, side effects are a rare cause of discontinuation of treatment, class specific drug-drug interactions occur with voriconazole. These molecules open an important field of investigations with combination of antifungal agents. PMID:15022787

  10. Antifungal activity of ketoconazole and other azoles against Malassezia furfur in vitro and in vivo.

    PubMed

    Strippoli, V; Piacentini, A; D'Auria, F D; Simonetti, N

    1997-01-01

    The in vitro activity of several antifungal agents (ketoconazole, miconazole, econazole, fenticonazole, itraconazole, fluconazole) in routine clinical use against Malassezia furfur infections has been studied with freshly isolated strains of M. furfur from pityriasis versicolor lesions. The results indicate that the drugs tested exert a good activity, and both ketoconazole and itraconazole appear very active (0.8 mg/l respectively). Hair samples from the beards of volunteer patients affected by pityriasis versicolor but otherwise healthy were examined to determine ketoconazole levels during oral therapy (one or two 200 mg tablets daily). It was shown that the drug progressively accumulates in the beard, reaching levels proportional to the dose administered, although blood levels did not increase in parallel. The study of drug concentration profile has evidenced a long ketoconazole persistence in the beard at therapeutic levels. In conclusion, the possibility of reaching high and lasting ketoconazole levels in the keratin layer of the epidermis indicates that systemic ketoconazole therapy could be useful for eradication of M. furfur in patients affected by pityriasis versicolor. PMID:9334866

  11. Antifungal therapy with an emphasis on biofilms

    PubMed Central

    Pierce, Christopher G.; Srinivasan, Anand; Uppuluri, Priya; Ramasubramanian, Anand K.; López-Ribot, José Luis

    2013-01-01

    Fungal infections are on the rise as advances in modern medicine prolong the lives of severely ill patients. Fungi are eukaryotic organisms and there are a limited number of targets for antifungal drug development; as a result the antifungal arsenal is exceedingly limited. Azoles, polyenes and echinocandins, constitute the mainstay of antifungal therapy for patients with life-threatening mycoses. One of the main factors complicating antifungal therapy is the formation of fungal biofilms, microbial communities displaying resistance to most antifungal agents. A better understanding of fungal biofilms provides for new opportunities for the development of urgently needed novel antifungal agents and strategies. PMID:24011516

  12. Synthesis and characterization of azolate gold(I) phosphane complexes as thioredoxin reductase inhibiting antitumor agents.

    PubMed

    Galassi, Rossana; Burini, Alfredo; Ricci, Simone; Pellei, Maura; Rigobello, Maria Pia; Citta, Anna; Dolmella, Alessandro; Gandin, Valentina; Marzano, Cristina

    2012-05-01

    Following an increasing interest in the gold drug therapy field, nine new neutral azolate gold(I) phosphane compounds have been synthesized and tested as anticancer agents. The azolate ligands used in this study are pyrazolates and imidazolates substituted with deactivating groups such as trifluoromethyl, nitro or chloride moieties, whereas the phosphane co-ligand is the triphenylphosphane or the more hydrophilic TPA (TPA = 1,3,5-triazaphosphaadamantane). The studied gold(I) complexes are: (3,5-bis-trifluoromethyl-1H-pyrazolate-1-yl)-triphenylphosphane-gold(I) (1), (3,5-dinitro-1H-pyrazolate-1-yl)-triphenylphosphane-gold(I) (2), (4-nitro-1H-pyrazolate-1-yl)-triphenylphosphane-gold(I) (5), (4,5-dichloro-1H-imidazolate-1-yl)-triphenylphosphane-gold(I) (7), with the related TPA complexes (3), (4), (6) and (8) and (1-benzyl-4,5-di-chloro-2H-imidazolate-2-yl)-triphenylphosphane-gold(I) (9). The presence of deactivating groups on the azole rings improves the solubility of these complexes in polar media. Compounds 1-8 contain the N-Au-P environment, whilst compound 9 is the only one to contain a C-Au-P environment. Crystal structures for compounds 1 and 2 have been obtained and discussed. Interestingly, the newly synthesized gold(I) compounds were found to possess a pronounced cytotoxic activity on several human cancer cells, some of which were endowed with cis-platin or multidrug resistance. In particular, among azolate gold(I) complexes, 1 and 2 proved to be the most promising derivatives eliciting an antiproliferative effect up to 70 times higher than cis-platin. Mechanistic experiments indicated that the inhibition of thioredoxin reductase (TrxR) might be involved in the pharmacodynamic behavior of these gold species. PMID:22391922

  13. Neutral red assay in minimum fungicidal concentrations of antifungal agents.

    PubMed

    Fukuda, T; Naka, W; Tajima, S; Nishikawa, T

    1996-01-01

    We assayed the fungicidal effects of antifungal agents using neutral red staining. Fungal elements of Trichophyton mentagrophytes and T. rubrum were treated with various concentrations of antifungal agents in 96-well filtration plates and then stained with neutral red. The amount of neutral red incorporated by the surviving viable cells was determined from the automated spectrophotometric readings at 550 nm. The minimum fungicidal concentrations (MFCs) of antifungal agents determined by this assay correlated well with those determined by conventional assay. This newly developed procedure should provide a rapid, reproducible, quantitative, qualitative and semi-automated susceptibility test for determination of the MFCs of the fungicidal agents. PMID:8912170

  14. Antagonistic interactions between azoles and amphotericin B with yeasts depend on azole lipophilia for special test conditions in vitro.

    PubMed Central

    Scheven, M; Schwegler, F

    1995-01-01

    The interactions of the azole antifungal agents fluconazole, itraconazole, ketoconazole, or miconazole with amphotericin B (AmB) in their effect on Candida albicans were investigated. These four azoles antagonized the fungistatic activity of AmB at sub-MICs if both substances acted simultaneously. This coincubation test was primarily developed to observe the azole-mediated demethylase inhibition quantitatively by bioassay. Interestingly, the occurrence of azole-AmB antagonism depended on azole lipophilia if specially selected test conditions were applied. By a consecutive incubation regimen, preincubation at high azole concentrations (1 to 50 micrograms/ml) and then subsequent incubation with AmB (1 microgram/ml), only preincubation with the three lipophilic azoles decreased the fungicidal activity of AmB but not that of FCZ. It was shown that yeasts absorb only lipophilic azoles to a remarkable extent. This fact might be responsible for the absence of antagonism of FCZ to AmB when yeasts were incubated consecutively. It can be concluded with caution that consecutive treatment of candidiasis with FCZ and AmB does not necessarily result in a clinically relevant antagonism. PMID:7486918

  15. Analysis of Current Antifungal Agents and Their Targets within the Pneumocystis carinii Genome

    PubMed Central

    Porollo, Aleksey; Meller, Jaroslaw; Joshi, Yogesh; Jaiswal, Vikash; Smulian, A. George; Cushion, Melanie T.

    2013-01-01

    Pneumocystis pneumonia (PCP) remains a leading opportunistic infection in patients with weakened immune system. The fungus causing the infection belongs to the genus, Pneumocystis, and its members are found in a large variety of mammals. Adaptation to the lung environment of a host with an intact immune system has been a key to its successful survival. Unfortunately, the metabolic strategies used by these fungi to grow and survive in this context are largely unknown. There were considerable impediments to standard approaches for investigation of this unique pathogen, the most problematic being the lack of a long term in vitro culture system. The absence of an ex vivo cultivation method remains today, and many fundamental scientific questions about the basic biology, metabolism, and life cycle of Pneumocystis remain unanswered. Recent progress in sequencing of the Pneumocystis carinii genome, a species infecting rats, permitted a more informative search for genes and biological pathways within this pathogen that are known to be targets for existing antifungal agents. In this work, we review the classes of antifungal drugs with respect to their potential applicability to the treatment of PCP. Classes covered in the review are the azoles, polyenes, allylamines, and echinocandins. Factors limiting the use of standard antifungal treatments and the currently available alternatives (trimethoprim-sulfamethoxazole, atovaquone, and pentamidine) are discussed. A summary of genomic sequences within Pneumocystis carinii associated with the corresponding targeted biological pathways is provided. All sequences are available via Pneumocystis Genome Project at http://pgp.cchmc.org/. PMID:22934582

  16. Synthesis and investigation of novel benzimidazole derivatives as antifungal agents.

    PubMed

    Chandrika, Nishad Thamban; Shrestha, Sanjib K; Ngo, Huy X; Garneau-Tsodikova, Sylvie

    2016-08-15

    The rise and emergence of resistance to antifungal drugs by diverse pathogenic fungal strains have resulted in an increase in demand for new antifungal agents. Various heterocyclic scaffolds with different mechanisms of action against fungi have been investigated in the past. Herein, we report the synthesis and antifungal activities of 18 alkylated mono-, bis-, and trisbenzimidazole derivatives, their toxicities against mammalian cells, as well as their ability to induce reactive oxygen species (ROS) in yeast cells. Many of our bisbenzimidazole compounds exhibited moderate to excellent antifungal activities against all tested fungal strains, with MIC values ranging from 15.6 to 0.975μg/mL. The fungal activity profiles of our bisbenzimidazoles were found to be dependent on alkyl chain length. Our most potent compounds were found to display equal or superior antifungal activity when compared to the currently used agents amphotericin B, fluconazole, itraconazole, posaconazole, and voriconazole against many of the strains tested. PMID:27301676

  17. Research to Identify Effective Antifungal Agents, 1991 Annual Report.

    SciTech Connect

    Schreck, Carl

    1991-09-01

    This study is a continuation of ``Research to Identify Effective Antifungal Agents'' sponsored by Bonneville Power Administration (Schreck et al. 1990). The objectives of the present study was to evaluate up to 10 candidate fungicides.

  18. Research to Identify Effective Antifungal Agents, 1993 Annual Report.

    SciTech Connect

    Schreck, Carl

    1993-10-01

    This study is a continuation of ``Research to Identify Effective Antifungal Agents'' sponsored by Bonneville Power Administration (Schreck et al. 1990, 1991, and 1992). The objectives of the present study were to select and evaluate candidate fungicides.

  19. Pickering emulsions based on cyclodextrins: A smart solution for antifungal azole derivatives topical delivery.

    PubMed

    Leclercq, Loïc; Nardello-Rataj, Véronique

    2016-01-20

    Surfactants are usually used for the preparation of emulsions. Potential drawbacks on the human body or on the environment can be observed for some of them(e.g. skin irritation, hemolysis, protein denaturation, etc.). However, it is possible to use biocompatible emulsifiers such as native cyclodextrins (CDs). The mixture of oil (paraffin oil or isopropyl myristate), water and native CDs results in the formation of Pickering emulsions. The emulsion properties were investigated by ternary phase diagrams elaboration, multiple light scattering, optical and transmission microscopies. The results prove that these Pickering emulsions were very stable against coalescence due to the dense film format the oil/water interface. The rheological behavior has shown that these emulsions remain compatible for topical applications. This kind of emulsions (biocompatibility, stability and surfactant free) has been used to obtain sustainable formulations for antifungal econazole derivatives delivery. Our results prove that these new formulations are at least as active as commercially available formulations. PMID:26616822

  20. Chemosensitization as a Means to Augment Commercial Antifungal Agents

    PubMed Central

    Campbell, Bruce C.; Chan, Kathleen L.; Kim, Jong H.

    2012-01-01

    Antimycotic chemosensitization and its mode of action are of growing interest. Currently, use of antifungal agents in agriculture and medicine has a number of obstacles. Foremost of these is development of resistance or cross-resistance to one or more antifungal agents. The generally high expense and negative impact, or side effects, associated with antifungal agents are two further issues of concern. Collectively, these problems are exacerbated by efforts to control resistant strains, which can evolve into a treadmill of higher dosages for longer periods. This cycle in turn, inflates cost of treatment, dramatically. A further problem is stagnation in development of new and effective antifungal agents, especially for treatment of human mycoses. Efforts to overcome some of these issues have involved using combinations of available antimycotics (e.g., combination therapy for invasive mycoses). However, this approach has had inconsistent success and is often associated with a marked increase in negative side effects. Chemosensitization by natural compounds to increase effectiveness of commercial antimycotics is a somewhat new approach to dealing with the aforementioned problems. The potential for safe natural products to improve antifungal activity has been observed for over three decades. Chemosensitizing agents possess antifungal activity, but at insufficient levels to serve as antimycotics, alone. Their main function is to disrupt fungal stress response, destabilize the structural integrity of cellular and vacuolar membranes or stimulate production of reactive oxygen species, augmenting oxidative stress and apoptosis. Use of safe chemosensitizing agents has potential benefit to both agriculture and medicine. When co-applied with a commercial antifungal agent, an additive or synergistic interaction may occur, augmenting antifungal efficacy. This augmentation, in turn, lowers effective dosages, costs, negative side effects and, in some cases, countermands resistance

  1. The putative ABC transporter encoded by the orf19.4531 plays a role in the sensitivity of Candida albicans cells to azole antifungal drugs.

    PubMed

    Jiang, Linghuo; Xu, Dayong; Chen, Zhen; Cao, Yongbing; Gao, Pinghui; Jiang, Yuanying

    2016-05-01

    ATP-binding cassette (ABC) transporters constitute a large superfamily of integral membrane proteins in prokaryotic and eukaryotic cells. In the human fungal pathogen Candida albicans, there are 28 genes encoding ABC transporters and many of them have not been characterized so far. The orf19.4531 (also known as IPF7530) encodes a putative ABC transporter. In this study, we have demonstrated that disruption of orf19.4531 causes C. albicans cells to become tolerant to azoles, but not to polyene antifungals and terbinafine. Therefore, the protein encoded by orf19.4531 is involved in azole sensitivity and we name it as ROA1, the regulator of azole sensitivity 1 gene. Consistently, we show that the expression of ROA1 is responsive to treatment of either fluconazole or ketoconazole inC. albicans In addition, through a GFP tagging approach, Roa1 is localized in a small punctuate compartment adjacent to the vacuolar membrane. However, ROA1 is not essential for the in vitro filamentation of C. albicans cells. PMID:26975389

  2. Efinaconazole: Developmental and reproductive toxicity potential of a novel antifungal azole.

    PubMed

    Glynn, M; Jo, W; Minowa, K; Sanada, H; Nejishima, H; Matsuuchi, H; Okamura, H; Pillai, R; Mutter, L

    2015-04-01

    Efinaconazole is a new triazole antifungal for topical treatment of onychomycosis. The reproductive and developmental toxicity of efinaconazole was characterized in fertility and early embryonic development (rat), embryo-fetal development (rat and rabbit), and peri/post-natal development (rat) studies in accordance with current ICH guidances. In the fertility study, maternal reproductive toxicity was noted as estrous cycle prolongation (NOAEL=5mg/kg/day) but there were no male reproductive effects even in the presence of paternal toxicity (NOAEL=25mg/kg/day). Rat embryo-fetal and perinatal pup lethality was the most sensitive (NOAEL=5mg/kg/day) efinaconazole developmental toxicity and was noted at maternally toxic doses. Efinaconazole did not affect rabbit embryo-fetal development at maternally toxic doses (NOAEL=10mg/kg/day). No malformations were induced by efinaconazole in rats or rabbits. When compared with systemic exposures observed in onychomycosis patients, embryo-fetal toxicity in rats was noted at high (>100-fold) multiples of systemic exposure. PMID:25527861

  3. Synthesis, Antifungal Activities and Qualitative Structure Activity Relationship of Carabrone Hydrazone Derivatives as Potential Antifungal Agents

    PubMed Central

    Wang, Hao; Ren, Shuang-Xi; He, Ze-Yu; Wang, De-Long; Yan, Xiao-Nan; Feng, Jun-Tao; Zhang, Xing

    2014-01-01

    Aimed at developing novel fungicides for relieving the ever-increasing pressure of agricultural production caused by phytopathogenic fungi, 28 new hydrazone derivatives of carabrone, a natural bioactive sesquisterpene, in three types were designed, synthesized and their antifungal activities against Botrytis cinerea and Colletotrichum lagenarium were evaluated. The result revealed that all the derivatives synthesized exhibited considerable antifungal activities in vitro and in vivo, which led to the improved activities for carabrone and its analogues and further confirmed their potential as antifungal agents. PMID:24619221

  4. Characterization of Tamoxifen as an Antifungal Agent Using the Yeast Schizosaccharomyces Pombe Model Organism.

    PubMed

    Zhang, Xibo; Fang, Yue; Jaiseng, Wurentuya; Hu, Lingling; Lu, Yabin; Ma, Yan; Furuyashiki, Tomoyuki

    2015-01-01

    Tamoxifen, a selective estrogen receptor modulator used for managing breast cancer, is known to have antifungal activity. However, its molecular mechanism remains unknown. Using the fission yeast Schizosaccharomyces pombe as a model organism, we have explored the mechanism involved in antifungal action of tamoxifen. Since tamoxifen was shown to inhibit the binding of calmodulin to calcineurin in fungi, we first examined involvement of these molecules and found that overexpression of a catalytic subunit of calcineurin and its constitutively active mutant as well as calmodulin increases tamoxifen sensitivity. Since terbinafine and azoles inhibit enzymes for ergosterol biosynthesis, Erg1 and Erg11, for their antifungal actions, we also examined involvement of these molecules. Overexpression of Erg1 and Erg11 reduced the sensitivity to terbinafine and azoles, respectively, but increased tamoxifen sensitivity, suggesting that ergosterol biosynthesis is differently related to the action of tamoxifen and those of terbinafine and azoles. To elucidate molecules involved in tamoxifen action, we performed a genome-wide screen for altered sensitivity to tamoxifen using a fission yeast gene deletion library, and identified various hypersensitive and resistant mutants to this drug. Notably, these mutants are rarely overlapped with those identified in similar genetic screens with currently used antifungals, suggesting a novel mode of antifungal action. Furthermore, tamoxifen augmented antifungal actions of terbinafine and azoles, suggesting synergetic actions between these drugs. Therefore, our findings suggest that calmodulin-calcineurin pathway and ergosterol biosynthesis are related to antifungal action of tamoxifen, and propose novel targets for antifungal development as well as combined therapy with tamoxifen for fungal diseases. PMID:26628015

  5. Enhancement of Commercial Antifungal Agents by Kojic Acid

    PubMed Central

    Kim, Jong H.; Chang, Perng-Kuang; Chan, Kathleen L.; Faria, Natália C. G.; Mahoney, Noreen; Kim, Young K.; Martins, Maria de L.; Campbell, Bruce C.

    2012-01-01

    Natural compounds that pose no significant medical or environmental side effects are potential sources of antifungal agents, either in their nascent form or as structural backbones for more effective derivatives. Kojic acid (KA) is one such compound. It is a natural by-product of fungal fermentation commonly employed by food and cosmetic industries. We show that KA greatly lowers minimum inhibitory (MIC) or fungicidal (MFC) concentrations of commercial medicinal and agricultural antifungal agents, amphotericin B (AMB) and strobilurin, respectively, against pathogenic yeasts and filamentous fungi. Assays using two mitogen-activated protein kinase (MAPK) mutants, i.e., sakAΔ, mpkCΔ, of Aspergillus fumigatus, an agent for human invasive aspergillosis, with hydrogen peroxide (H2O2) or AMB indicate such chemosensitizing activity of KA is most conceivably through disruption of fungal antioxidation systems. KA could be developed as a chemosensitizer to enhance efficacy of certain conventional antifungal drugs or fungicides. PMID:23203038

  6. New and emerging antifungal agents: impact on respiratory infections.

    PubMed

    Feldmesser, Marta

    2003-01-01

    Fungal pathogens are increasingly important causes of respiratory disease, yet the number of antifungal agents available for clinical use is limited. Use of amphotericin B deoxycholate is hampered by severe toxicity. Triazole agents currently available have significant drug interactions; fluconazole has a limited spectrum of activity and itraconazole was, until recently, available only in oral formulations with limited bioavailability. The development of resistance to all three agents is increasingly being recognized and some filamentous fungi are resistant to the action of all of these agents. In the past few years, new antifungal agents and new formulations of existing agents have become available.The use of liposomal amphotericin B preparations is associated with reduced, but still substantial, rates of nephrotoxicity and infusion-related reactions. An intravenous formulation of itraconazole has been introduced, and several new triazole agents have been developed, with the view of identifying agents that have enhanced potency, broader spectra of action and improved pharmacodynamic properties. One of these, voriconazole, has completed large-scale clinical trials. In addition, caspofungin, the first of a new class of agents, the echinocandins, which inhibit cell wall glucan synthesis, was approved for use in the US in 2001 as salvage therapy for invasive aspergillosis. It is hoped that the availability of these agents will have a significant impact on the morbidity and mortality of fungal respiratory infections. However, at the present time, our ability to assess their impact is limited by the problematic nature of conducting trials for antifungal therapy. PMID:14719990

  7. From antidiabetic to antifungal: discovery of highly potent triazole-thiazolidinedione hybrids as novel antifungal agents.

    PubMed

    Wu, Shanchao; Zhang, Yongqiang; He, Xiaomeng; Che, Xiaoying; Wang, Shengzheng; Liu, Yang; Jiang, Yan; Liu, Na; Dong, Guoqiang; Yao, Jianzhong; Miao, Zhenyuan; Wang, Yan; Zhang, Wannian; Sheng, Chunquan

    2014-12-01

    In an attempt to discover a new generation of triazole antifungal agents, a series of triazole-thiazolidinedione hybrids were designed and synthesized by molecular hybridization of the antifungal agent fluconazole and rosiglitazone (an antidiabetic). Most of the target compounds showed good to excellent inhibitory activity against a variety of clinically important fungal pathogens. In particular, compounds (Z)-5-(2,4-dichlorobenzylidene)-3-(2-(2,4-difluorophenyl)-2-hydroxy-3-(1H-1,2,4-triazol-1-yl)propyl)thiazolidine-2,4-dione) (15 c), (Z)-3-(2-(2,4-difluorophenyl)-2-hydroxy-3-(1H-1,2,4-triazol-1-yl)propyl)-5-(furan-3-ylmethylene)thiazolidine-2,4-dione (15 j), and (Z)-3-(2-(2,4-difluorophenyl)-2-hydroxy-3-(1H-1,2,4-triazol-1-yl)propyl)-5-(furan-3-ylmethylene)thiazolidine-2,4-dione (15 r) were highly active against Candida albicans, with MIC80 values in the range of 0.03-0.15 μM. Moreover, compounds 15 j and 15 r were found to be effective against four fluconazole-resistant clinical isolates; these two compounds are particularly promising antifungal leads for further optimization. Molecular docking studies revealed that the hydrogen bonding interactions between thiazolidinedione and CYP51 from C. albicans are important for antifungal activity. This study also demonstrates the effectiveness of molecular hybridization in antifungal drug discovery. PMID:25196996

  8. Triazole antifungals: a review.

    PubMed

    Peyton, L R; Gallagher, S; Hashemzadeh, M

    2015-12-01

    Invasive fungal infections and systemic mycosis, whether from nosocomial infection or immunodeficiency, have been on an upward trend for numerous years. Despite advancements in antifungal medication, treatment in certain patients can still be difficult for reasons such as impaired organ function, limited administration routes or poor safety profiles of the available antifungal medications. The growing number of invasive fungal species becoming resistant to current antifungal medications is of appreciable concern. Triazole compounds containing one or more 1,2,4-triazole rings have been shown to contain some of the most potent antifungal properties. Itracon-azole and fluconazole were some of the first triazoles synthesized, but had limitations associated with their use. Second-generation triazoles such as voriconazole, posa-conazole, albaconazole, efinaconazole, ravuconazole and isavuconazole are all derivatives of either itraconazole or fluconazole, and designed to overcome the deficiencies of their parent drugs. The goal of this manuscript is to review antifungal agents derived from triazole. PMID:26798851

  9. Enhancement of commercial antifungal agents by kojic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Kojic acid (KA), a natural by-product of fungal fermentation, is a commonly used food and cosmetic additive. We show that KA increases activity of amphotericin B and strobilurin, medical and agricultural antifungal agents, respectively, possibly targeting the fungal antioxidative system. KA shows pr...

  10. Research to Identify Effective Antifungal Agents, 1992 Annual Report.

    SciTech Connect

    Schreck, Carl

    1993-03-01

    This study is a continuation of ``Research to Identify Effective Antifungal Agents'' sponsored by Bonneville Power Administration (Schreck et al. 1990 and Schreck et al. 1991). The objectives of the present study were to select and evaluate up to 10 candidate fungicides.

  11. Chemosensitization as a means to augment commercial antifungal agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is growing list of papers on antimycotic chemosensitization and the mechanisms by which they function. Currently, antifungal agents used in agriculture and in human or veterinary medicine are confronted by a number of obstacles, the main one being continual development of resistance to one, or...

  12. [Synthesis and antifungal activity of butenafine hydrochloride (KP-363), a new benzylamine antifungal agent].

    PubMed

    Maeda, T; Takase, M; Ishibashi, A; Yamamoto, T; Sasaki, K; Arika, T; Yokoo, M; Amemiya, K

    1991-02-01

    In screening of new antifungal agents, bis(naphthalenemethyl)amines were found to have more potent antifungal activity than clotrimazole. Studies on their structure-activity relationships indicated that benzylamines had potent antifungal activity. Among them, butenafine hydrochloride (N-p-tert-butylbenzyl-N-methyl-1-naphthalenemethylamine hydrochloride, KP-363) has proved to show the strongest activity. It exhibits a wide spectrum activity in vitro against particularly dermatophytes (87 strains; minimal inhibitory concentration (MIC) range, 0.0015 to 0.05 microgram/ml), and also against Aspergillus (15 strains; MIC range, 0.025 to 0.78 microgram/ml), Cryptococcus neoformans (4 strains; MICs 0.78 and 1.56 micrograms/ml) and yeasts of genus Candida (67 strains; MIC range, 3.13 to greater than 100 micrograms/ml). PMID:2056447

  13. Recent advances in topical formulation carriers of antifungal agents.

    PubMed

    Bseiso, Eman Ahmed; Nasr, Maha; Sammour, Omaima; Abd El Gawad, Nabaweya A

    2015-01-01

    Fungal infections are amongst the most commonly encountered diseases affecting the skin. Treatment approaches include both topical and oral antifungal agents. The topical route is generally preferred due to the possible side effects of oral medication. Advances in the field of formulation may soon render outdated conventional products such as creams, ointments and gels. Several carrier systems loaded with antifungal drugs have demonstrated promising results in the treatment of skin fungal infections. Examples of these newer carriers include micelles, lipidic systems such as solid lipid nanoparticles and nanostructured lipid carriers, microemulsions and vesicular systems such as liposomes, niosomes, transfersomes, ethosomes, and penetration enhancer vesicles. PMID:26261140

  14. Pharmacokinetics of antifungal agents in onychomycoses.

    PubMed

    Debruyne, D; Coquerel, A

    2001-01-01

    Onychomycosis is caused by infection by fungi, mainly dermatophytes and nondermatophyte yeasts or moulds; it affects the fingernails and, more frequently, the toenails. Dermatophytes are responsible for about 90 to 95% of fungal infections. Trichophyton rubrum is the most common dermatophyte; Candida albicans is the major nondermatophyte yeast. Although topical therapy of onchomycosis does not lead to systemic adverse effects or interactions with concomitantly taken drugs, it does not provide high cure rates and requires complete compliance from the patient. At present there are 3 oral antifungal medications that are generally used for the short term treatment of onychomycosis: itraconazole, terbinafine and fluconazole. The persistence of these active drugs in nails allows weekly administration, reduced treatment or a pulse regimen. Good clinical and mycological efficacies are obtained with itraconazole 100 to 200 mg daily, terbinafine 250mg daily for 3 months, or fluconazole 150 mg weekly for at least 6 months. Itraconazole is a synthetic triazole with a broad spectrum of action. It is well absorbed when administered orally and can be detected in nails 1 to 2 weeks after the start of therapy. The nail : plasma ratio stabilises at around 1 by week 18 of treatment. Itraconazole is still detectable in nails 27 weeks after stopping administration. Nail concentrations are higher than the minimum inhibitory concentration (MIC) for most dermatophytes and Candida species from the first month of treatment. The elimination half-life of itraconazole from nails is long, ranging from 32 to 147 days. Terbinafine is a synthetic allylamine that is effective against dermatophytes. Terbinafine is well absorbed from the gastrointestinal tract, and the time to reach effective concentrations in nail is 1 to 2 weeks. The half-life is from 24 to 156 days, explaining the observed persistence of terbinafine in nails for longer than 252 days. Fluconazole is a bis-triazole broad spectrum

  15. Emergence of Azole Resistance in Aspergillus.

    PubMed

    Wiederhold, Nathan P; Patterson, Thomas F

    2015-10-01

    Resistance to the azole antifungals itraconazole, voriconazole, and posaconazole in Aspergillus species is a growing concern. This is especially alarming for A. fumigatus, where acquired resistance has been documented in patients with invasive disease caused by this species that were exposed to these agents, as well as in azole-naive individuals. The primary mechanisms of resistance that have been described in clinical strains include different point mutations in the CYP51A gene, which encodes the enzyme responsible for converting lanosterol to ergosterol via demethylation. Some resistant isolates also contain a tandem repeat in the promoter region of this gene that causes increased expression. These mutations, including TR34/L98H and TR46/Y121F/T289A have also been found in the environment in several areas of the world and have been demonstrated to cause resistance to azole fungicides used in agriculture, thus raising the concern of environmental spread of resistance. Treatment options are limited in patients with infections caused by azole-resistant isolates and include amphotericin B formulations or combination therapy involving an echinocandin. However, there are few clinical data available to help guide therapy, and infections caused by resistant A. fumigatus isolates have been reported to have high mortality rates. PMID:26398534

  16. In Vitro Interactions between Target of Rapamycin Kinase Inhibitor and Antifungal Agents against Aspergillus Species.

    PubMed

    Gao, Lujuan; Ding, Xiaozhen; Liu, Zhun; Wu, Qingzhi; Zeng, Tongxiang; Sun, Yi

    2016-06-01

    In vitro interactions of INK128, a target of rapamycin (TOR) kinase inhibitor, and antifungals, including itraconazole, voriconazole, posaconazole, amphotericin B, and caspofungin, against Aspergillus spp. were assessed with the broth microdilution checkerboard technique. Our results suggested synergistic effects between INK128 and all azoles tested, against multiple Aspergillus fumigatus and Aspergillus flavus isolates. However, no synergistic effects were observed when INK128 was combined with amphotericin B or caspofungin. No antagonism was observed for any combination. PMID:26976874

  17. Breakpoints for antifungal agents: an update from EUCAST focussing on echinocandins against Candida spp. and triazoles against Aspergillus spp.

    PubMed

    Arendrup, Maiken C; Cuenca-Estrella, Manuel; Lass-Flörl, Cornelia; Hope, William W

    2013-12-01

    Candida and Aspergillus infections have emerged as significant pathogens in recent decades. During this same time, broad spectrum triazole and echinocandin antifungal agents have been developed and increasingly used. One consequence of widespread use is leading to the emergence of mutants with acquired resistance mutations. Therefore, accurate susceptibility testing and appropriate clinical breakpoints for the interpretation of susceptibility results have become increasingly important. Here we review the underlying methodology by which breakpoints have been selected by EUCAST (European Committee on Antimicrobial Susceptibility Testing). Five parameters are evaluated: dosing regimens used; EUCAST MIC distributions from multiple laboratories, species and compound specific epidemiological cut off values (upper MIC limits of wild type isolates or ECOFFs), pharmacokinetic/pharmacodynamic relationships and targets associated with outcome and finally clinical data by species and MIC when available. The general principles are reviewed followed by a detailed review of the individual aspects for Candida species and the three echinocandins and for Aspergillus and the three mould-active azoles. This review provides an update of the subcommittee on antifungal susceptibility testing (AFST) of the EUCAST methodology and summarises the current EUCAST breakpoints for Candida and Aspergillus. Recommendations about applicability of antifungal susceptibility testing in the routine setting are also included. PMID:24618110

  18. An overview about the medical use of antifungals in Portugal in the last years.

    PubMed

    Manuel da S Azevedo, Maria; Cruz, Luisa; Pina-Vaz, Cidália; Gonçalves-Rodrigues, Acácio

    2016-05-01

    Despite the introduction of new antifungal agents, the frequency of invasive and mucocutaneous fungal infections as well as resistance to antifungal drugs continues to increase. Over 300 million persons are infected annually with fungi. Resistance to antimicrobials is one of today's major health threats. Can the possible causes of fungal antimicrobial resistance be understood and prevented to minimize risks to public health. We provide an overview of antifungal drug use in European countries, particularly Portugal. We reviewed prescriptions for and over-the-counter sales (OTC) of azoles in Portuguese pharmacies and in alternative shops. We conclude that in Portugal, azole antifungal sales, as well as medical prescribed azoles are very high. The Portuguese population consumes more antifungal drugs per capita than others in Europe. PMID:26865319

  19. Restricticin, a novel glycine-containing antifungal agent.

    PubMed

    Schwartz, R E; Dufresne, C; Flor, J E; Kempf, A J; Wilson, K E; Lam, T; Onishi, J; Milligan, J; Fromtling, R A; Abruzzo, G K

    1991-05-01

    Restricticin (1) is a naturally-occurring antifungal agent which contains triene, pyran and glycine ester functionalities and is unrelated to any previously known family of natural products. This unstable compound, as well as its corresponding N,N-dimethyl derivative (2), have been produced and isolated from both solid and liquid fermentations of Penicillium restrictum. The desglycyl hydrolysis product, restrictinol (3), was produced via the hydrolysis of pure restricticin and as an artifact of the isolation of restricticin. PMID:2061189

  20. Synthesis and biological evaluation of vinyl ether-containing azole derivatives as inhibitors of Trichophyton rubrum.

    PubMed

    Wang, Lulu; Yang, Wenge; Wang, Kai; Zhu, Jing; Shen, Fei; Hu, Yonghong

    2012-07-15

    In an attempt to search for many target compounds with excellent activities, a series of vinyl ether-containing azole derivatives were designed, synthesized, and evaluated as antifungal agents. Results of preliminary antifungal tests against Trichophyton rubrum in vitro indicated that most of the synthesized compounds showed excellent activities. In comparison with fluconazole, itraconazole, voriconazole, omoconazole and amphotericin B, several compounds (such as 7d, 7g and 7h) exhibited more potent inhibitory activities, suggesting that they were promising leads for the development of novel antifungal agents. PMID:22683344

  1. International expert opinion on the management of infection caused by azole-resistant Aspergillus fumigatus.

    PubMed

    Verweij, Paul E; Ananda-Rajah, Michelle; Andes, David; Arendrup, Maiken C; Brüggemann, Roger J; Chowdhary, Anuradha; Cornely, Oliver A; Denning, David W; Groll, Andreas H; Izumikawa, Koichi; Kullberg, Bart Jan; Lagrou, Katrien; Maertens, Johan; Meis, Jacques F; Newton, Pippa; Page, Iain; Seyedmousavi, Seyedmojtaba; Sheppard, Donald C; Viscoli, Claudio; Warris, Adilia; Donnelly, J Peter

    2015-01-01

    An international expert panel was convened to deliberate the management of azole-resistant aspergillosis. In culture-positive cases, in vitro susceptibility testing should always be performed if antifungal therapy is intended. Different patterns of resistance are seen, with multi-azole and pan-azole resistance more common than resistance to a single triazole. In confirmed invasive pulmonary aspergillosis due to an azole-resistant Aspergillus, the experts recommended a switch from voriconazole to liposomal amphotericin B (L-AmB; Ambisome(®)). In regions with environmental resistance rates of ≥10%, a voriconazole-echinocandin combination or L-AmB were favoured as initial therapy. All experts recommended L-AmB as core therapy for central nervous system aspergillosis suspected to be due to an azole-resistant Aspergillus, and considered the addition of a second agent with the majority favouring flucytosine. Intravenous therapy with either micafungin or L-AmB given as either intermittent or continuous therapy was recommended for chronic pulmonary aspergillosis due to a pan-azole-resistant Aspergillus. Local and national surveillance with identification of clinical and environmental resistance patterns, rapid diagnostics, better quality clinical outcome data, and a greater understanding of the factors driving or minimising environmental resistance are areas where research is urgently needed, as well as the development of new oral agents outside the azole drug class. PMID:26282594

  2. Synthesis and biological evaluation of hydrazone derivatives as antifungal agents.

    PubMed

    Casanova, Bruna B; Muniz, Mauro N; de Oliveira, Thayse; de Oliveira, Luís Flavio; Machado, Michel M; Fuentefria, Alexandre M; Gosmann, Grace; Gnoatto, Simone C B

    2015-01-01

    Emerging yeasts are among the most prevalent causes of systemic infections with high mortality rates and there is an urgent need to develop specific, effective and non-toxic antifungal agents to respond to this issue. In this study 35 aldehydes, hydrazones and hydrazines were obtained and their antifungal activity was evaluated against Candida species (C. parapsilosis, C. tropicalis, C. krusei, C. albicans, C. glabrata and C. lusitaneae) and Trichosporon asahii, in an in vitro screening. The minimum inhibitory concentrations (MICs) of the active compounds in the screening was determined against 10 clinical isolates of C. parapsilosis and 10 of T. asahii. The compounds 4-pyridin-2-ylbenzaldehyde] (13a) and tert-butyl-(2Z)-2-(3,4,5-trihydroxybenzylidine)hydrazine carboxylate (7b) showed the most promising MIC values in the range of 16-32 μg/mL and 8-16 μg/mL, respectively. The compounds' action on the stability of the cell membrane and cell wall was evaluated, which suggested the action of the compounds on the fungal cell membrane. Cell viability of leukocytes and an alkaline comet assay were performed to evaluate the cytotoxicity. Compound 13a was not cytotoxic at the active concentrations. These results support the discovery of promising candidates for the development of new antifungal agents. PMID:26007181

  3. Voriconazole is a safe and effective anti-fungal prophylactic agent during induction therapy of acute myeloid leukemia

    PubMed Central

    Shah, Akash; Ganesan, Prasanth; Radhakrishnan, Venkatraman; Kannan, Krishnarathinam; Rajendranath, Rejiv; Mahajan, Vandana; Vijayakumar, Varalakshmi; Ganesan, Trivadi; Sagar, Tenali Gnana

    2016-01-01

    Background: Antifungal prophylaxis (AFP) reduces the incidence of invasive fungal infections (IFIs) during induction therapy of acute myeloid leukemia (AML). Posaconazole is considered the standard of care. Voriconazole, a generic cheaper alternative is a newer generation azole with broad anti-fungal activity. There is limited data on the use of voriconazole as a prophylactic drug. Materials and Methods: A single-center, prospective study was performed during which patients with AML undergoing induction chemotherapy received voriconazole as AFP (April 2012 to February 2014). Outcomes were compared with historical patients who received fluconazole as AFP (January 2011-March 2012, n = 66). Results: Seventy-five patients with AML (median age: 17 years [range: 1-75]; male:female 1.6:1) received voriconazole as AFP. The incidence of proven/probable/possible (ppp) IFI was 6.6% (5/75). Voriconazole and fluconazole cohorts were well-matched with respect to baseline characteristics. Voriconazole (when compared to fluconazole) reduced the incidence of pppIFI (5/75, 6.6% vs. 19/66, 29%; P < 0.001), need to start therapeutic (empiric + pppIFI) antifungals (26/75, 34% vs. 51/66, 48%; P < 0.001) and delayed the start of therapeutic antifungals in those who needed it (day 16 vs. day 10; P < 0.001). Mortality due to IFI was also reduced with the use of voriconazole (1/75, 1.3% vs. 6/66, 9%; P = 0.0507), but this was not significant. Three patients discontinued voriconazole due to side-effects. Conclusion: Voriconazole is an effective and safe oral agent for IFI prophylaxis during induction therapy of AML. Availability of generic equivalents makes this a more economical alternative to posaconazole. PMID:27051159

  4. Pyridine-grafted chitosan derivative as an antifungal agent.

    PubMed

    Jia, Ruixiu; Duan, Yunfei; Fang, Qiang; Wang, Xiangyang; Huang, Jianying

    2016-04-01

    Pyridine moieties were introduced into chitosan by nucleophilic substitution to afford N-(1-carboxybutyl-4-pyridinium) chitosan chloride (pyridine chitosan). The resulting chitosan derivative was well characterized, and its antifungal activity was examined, based on the inhibition of mycelial growth and spore germination. The results indicated that pyridine chitosan exhibited enhanced antifungal activity by comparison with pristine chitosan. The values of the minimum inhibitory concentration and the minimal fungicidal concentration of pyridine chitosan against Fulvia fulva were 0.13 mg/ml and 1 mg/ml, respectively, while the corresponding values against Botrytis cinerea were 0.13 mg/ml and 4 mg/ml, respectively. Severe morphological changes of pyridine chitosan-treated B. cinerea were observed, indicative that pyridine chitosan could damage and deform the structure of fungal hyphae and subsequently inhibit strain growth. Non-toxicity of pyridine chitosan was demonstrated by an acute toxicity study. These results are beneficial for assessing the potential utilization of this chitosan derivative and for exploring new functional antifungal agents with chitosan in the food industry. PMID:26593505

  5. Synthesis, In Vitro Biological Evaluation, and Molecular Docking of New Triazoles as Potent Antifungal Agents.

    PubMed

    Li, Xiang; Liu, Chao; Tang, Sheng; Wu, Qiuye; Hu, Honggang; Zhao, Qingjie; Zou, Yan

    2016-01-01

    Based on the structure of the active site of CYP51 and the structure-activity relationships of azole antifungal compounds that we designed in a previous study, a series of 1-{1-[2-(substitutedbenzyloxy)ethyl]-1H-1,2,3-triazol-4-yl}-2-(2,4-difluorophenyl)-3-(1H-1,2,4-triazol-1-yl)propan-2-ols (6a-n) were designed and synthesized utilizing copper-catalyzed azide-alkyne cycloaddition. Preliminary antifungal tests against eight human pathogenic fungi in vitro showed that all the title compounds exhibited excellent antifungal activities with a broad spectrum in vitro. Molecular docking results indicated that the interaction between the title compounds and CYP51 comprised π-π interactions, hydrophobic interactions, and the narrow hydrophobic cleft. PMID:26641629

  6. Therapeutic drug monitoring (TDM) of antifungal agents: guidelines from the British Society for Medical Mycology

    PubMed Central

    Ashbee, H. Ruth; Barnes, Rosemary A.; Johnson, Elizabeth M.; Richardson, Malcolm D.; Gorton, Rebecca; Hope, William W.

    2014-01-01

    The burden of human disease related to medically important fungal pathogens is substantial. An improved understanding of antifungal pharmacology and antifungal pharmacokinetics–pharmacodynamics has resulted in therapeutic drug monitoring (TDM) becoming a valuable adjunct to the routine administration of some antifungal agents. TDM may increase the probability of a successful outcome, prevent drug-related toxicity and potentially prevent the emergence of antifungal drug resistance. Much of the evidence that supports TDM is circumstantial. This document reviews the available literature and provides a series of recommendations for TDM of antifungal agents. PMID:24379304

  7. 9-O-butyl-13-(4-isopropylbenzyl)berberine, KR-72, Is a Potent Antifungal Agent That Inhibits the Growth of Cryptococcus neoformans by Regulating Gene Expression

    PubMed Central

    Hwang, Hyun Sook; Park, Ki Duk; Kim, Sung Uk; Bahn, Yong-Sun

    2014-01-01

    In this study we explored the mode of action of KR-72, a 9-O-butyl-13-(4-isopropylbenzyl)berberine derivative previously shown to exhibit potent antifungal activity against a variety of human fungal pathogens. The DNA microarray data revealed that KR-72 treatment significantly changed the transcription profiles of C. neoformans, affecting the expression of more than 2,000 genes. Genes involved in translation and transcription were mostly upregulated, whereas those involved in the cytoskeleton, intracellular trafficking, and lipid metabolism were downregulated. KR-72 also exhibited a strong synergistic effect with the antifungal agent FK506. KR-72 treatment regulated the expression of several essential genes, including ECM16, NOP14, HSP10 and MGE1, which are required for C. neoformans growth. The KR-72-mediated induction of MGE1 also likely reduced the viability of C. neoformans by impairing cell cycle or the DNA repair system. In conclusion, KR-72 showed antifungal activity by modulating diverse biological processes through a mode of action distinct from those of clinically available antifungal drugs such as polyene and azole drugs. PMID:25302492

  8. Which antifungal agent for onychomycosis? A pharmacoeconomic analysis.

    PubMed

    Joish, V N; Armstrong, E P

    2001-01-01

    The incidence of fungal nail infections is increasing and this is possibly because of several factors: better methods of detection, a growing population of immunocompromised patients who have a greater susceptibility to such infections, the increased use of immunosuppressive drugs, the increasing number of elderly people, worldwide travel, and the use of communal bathing facilities. Onychomycosis is a fungal infection of the fingernails and toenails that accounts for about 30% of all superficial fungal infections. It is characterised by nail discoloration, thickening and ultimately destruction of the nail plate. Management of this disease has improved significantly and treatment patterns have dramatically changed in recent years as a result of advances in new treatment options (e.g. oral antifungal agents) and changes in treatment regimens (e.g. pulse therapy). Also, newer drugs for onychomycosis have improved tolerability profiles compared with older agents. The overall costs of treating onychomycosis are substantial, and it has been estimated that direct cost for US Medicare patients with the disease is 43 million US dollars per year (year of costing not available). Pharmacoeconomic studies help in the decision-making process when selecting the most cost-effective antifungal agents to treat onychomycosis. To date there have been a number of national and international economic studies aimed at effectively assessing the efficacy and costs of the treatment options available to cure onychomycosis. The objectives of this paper are to (i) review the published findings regarding the epidemiology of onychomycosis; (ii) summarise the original pharmacoeconomic studies that describe the economic impact of the disease; and (iii) address the impact of the disease on patients' health-related quality of life. PMID:11735669

  9. Azole-carbodithioate hybrids as vaginal anti-Candida contraceptive agents: design, synthesis and docking studies.

    PubMed

    Kumar, Lalit; Lal, Nand; Kumar, Vikash; Sarswat, Amit; Jangir, Santosh; Bala, Veenu; Kumar, Lokesh; Kushwaha, Bhavana; Pandey, Atindra K; Siddiqi, Mohammad I; Shukla, Praveen K; Maikhuri, Jagdamba P; Gupta, Gopal; Sharma, Vishnu L

    2013-01-01

    Azole and carbodithioate hybrids were synthesized as alkyl 1H-azole-1-carbodithioates (7-27) and evaluated for spermicidal/microbicidal activities against human sperm, Trichomonas vaginalis and Candida species. Seventeen compounds (7-14, 16-18 and 20-25) showed spermicidal activity at MEC 1.0% (w/v) and permanently immobilized 100% normal human spermatozoa within ∼30 s. Seventeen compounds (7-11, 13-18 and 20-25) exhibited anti-Candida activity (IC50 1.26-47.69 μg/mL). All compounds were devoid of bactericidal activity against four bacterial strains (50.00 μg/mL) and antiprotozoal activity against Trichomonas vaginalis (200.00 μg/mL). Four promising compounds (10, 17, 20 and 22) have better safety profile as compared to Nonoxynol-9 (N-9). Docking study was done to visualize the possible interaction of designed scaffold with prospective receptor (Cyp51) of Candida albicans. PMID:24140949

  10. [Structural and biochemical characteristics of pathogenic fungus: cell walls, lipids and dimorphism, and action modes of antifungal agents].

    PubMed

    Kitajma, Y

    2000-01-01

    Cell walls (0.1-0.5 microm in thickness) of dermatophytes, at least Trichophyton mentagrophytes and Epidermophyton floccosum, are built of microfibrils (20 nm in diameter) and matrix embedding the fibrils. These fibrils are composed of chitin (70-80%) and a small amount of glucans, and the matrix is composed of beta-1-3, beta1-6 glucan, glucomannan, galactomannan and peptides. Another characteristic structure is the outermost layer (20-50 nm in thickness) of the cell wall, which consists of hydrophobic protein rodlets. Lipids are thought to play important roles in the regulation of dimorphism and virulence in pathogenic fungus. Generally, the ratio of phospholipid/ergosterol is less than 1 in yeast form and 2-20 in mycelial form cells in Candida albicans and Sporothrix schenckii. During the transition from yeast to mycelial forms, phosphatidylinositol and phosphatidylserine are reduced, whereas phosphatidylcholine increases. Phospho-lipase D is activated on this transition. Phospholipase B is now known to be a virulence factor in C. albicans. Polyene antifungal agents bind to ergosterol in membrane to form complexes, which generate pores and destroy the structures and functions of membrane. Azole antifungal agents inhibit the synthesis of ergosterol leading to deficiency in ergosterol content in membrane, and impair the function of membranes in fungal cells. We show the effects of polyenes on the ultrastructure of fungal plasma membrane and impairment of ionomycin-induced calcium influx in T. mentagrophytes, so that we can compare the differences in mode of actions between these two groups of agents. PMID:11064317

  11. [Chalcones and their heterocyclic analogs as potential antifungal chemotherapeutic agents].

    PubMed

    Opletalová, V; Sedivý, D

    1999-11-01

    Chalcones and their heterocyclic analogues show various biological effects, e.g. anti-inflammatory, antitumour, antibacterial, antituberculous, antiviral, antiprotozoal, gastroprotective, and others. The present review discusses in greater detail the fungistatic and fungicide properties of these compounds and presents also their chemical structures. The mechanism of antifungal effects of chalcones and their analogues has not been investigated in greater detail. Due to the presence of a reactive ketovinyl moiety in the molecule the compounds of this type are able to react with the thiol groups of enzymes. It cannot be excluded that chalcones interfere with the normal function of the membranes of fungi and moulds. Further investigation of chemical, physical, and biological properties of chalcones and their analogues could lead to the elucidation of the mechanism of their action and finding of effective fungicidal and fungistatic agents in this group of organic substances. PMID:10748740

  12. Augmenting the activity of antifungal agents against aspergilli using structural analogues of benzoic acid as chemosensitizing agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several benzoic acid analogs showed antifungal activity against strains of Aspergillus flavus, A. fumigatus and A. terreus, causative agents of human aspergillosis. Structure-activity analysis revealed that antifungal activities of benzoic and gallic acids increased by addition of a methyl, methoxyl...

  13. Characterization of Antifungal Activity and Nail Penetration of ME1111, a New Antifungal Agent for Topical Treatment of Onychomycosis.

    PubMed

    Tabata, Yuji; Takei-Masuda, Naomi; Kubota, Natsuki; Takahata, Sho; Ohyama, Makoto; Kaneda, Kaori; Iida, Maiko; Maebashi, Kazunori

    2016-02-01

    Fungal nail infection (onychomycosis) is a prevalent disease in many areas of the world, with a high incidence approaching 23%. Available antifungals to treat the disease suffer from a number of disadvantages, necessitating the discovery of new efficacious and safe antifungals. Here, we evaluate the in vitro antifungal activity and nail penetration ability of ME1111, a novel antifungal agent, along with comparator drugs, including ciclopirox, amorolfine, terbinafine, and itraconazole. ME1111 showed potent antifungal activity against Trichophyton rubrum and Trichophyton mentagrophytes (the major etiologic agents of onychomycosis) strains isolated in Japan and reference fungal strains with an MIC range of 0.12 to 0.5 mg/liter and an MIC50 and MIC90 of 0.5 mg/liter for both. Importantly, none of the tested isolates showed an elevated ME1111 MIC. Moreover, the antifungal activity of ME1111 was minimally affected by 5% wool keratin powder in comparison to the other antifungals tested. The ME1111 solution was able to penetrate human nails and inhibit fungal growth in a dose-dependent manner according to the TurChub assay. In contrast, 8% ciclopirox and 5% amorolfine nail lacquers showed no activity under the same conditions. ME1111 demonstrated approximately 60-fold-greater selectivity in inhibition of Trichophyton spp. than of human cell lines. Our findings demonstrate that ME1111 possesses potent antidermatophyte activity, maintains this activity in the presence of keratin, and possesses excellent human nail permeability. These results suggest that ME1111 is a promising topical medication for the treatment of onychomycosis and therefore warrants further clinical evaluation. PMID:26643333

  14. Antifungal Activities of SCY-078 (MK-3118) and Standard Antifungal Agents against Clinical Non-Aspergillus Mold Isolates

    PubMed Central

    Lamoth, Frédéric

    2015-01-01

    The limited armamentarium of active and oral antifungal drugs against emerging non-Aspergillus molds is of particular concern. Current antifungal agents and the new orally available beta-1,3-d-glucan synthase inhibitor SCY-078 were tested in vitro against 135 clinical non-Aspergillus mold isolates. Akin to echinocandins, SCY-078 showed no or poor activity against Mucoromycotina and Fusarium spp. However, SCY-078 was highly active against Paecilomyces variotii and was the only compound displaying some activity against notoriously panresistant Scedosporium prolificans. PMID:25896696

  15. The role of antifungal and antiviral agents in primary dental care.

    PubMed

    Lewis, Mike

    2014-11-01

    In comparison to the range of antibiotics used in medicine, the spectrum of antifungal and antiviral drugs used in primary dental care is relatively limited. In practical terms, there are only three antifungal agents and two antiviral agents that have a role. This paper will describe the clinical presentation of orofacial candidal and viral infections and the use of antimicrobial drugs in their management. PMID:25668378

  16. Design, Synthesis and Structure-Activity Relationships of Novel Chalcone-1,2,3-triazole-azole Derivates as Antiproliferative Agents.

    PubMed

    Zhang, Sai-Yang; Fu, Dong-Jun; Yue, Xiao-Xin; Liu, Ying-Chao; Song, Jian; Sun, Hui-Hui; Liu, Hong-Min; Zhang, Yan-Bing

    2016-01-01

    A series of novel chalcone-1,2,3-triazole-azole hybrids were designed, synthesized and evaluated for their antiproliferative activity against three selected cancer cell lines (SK-N-SH, EC-109 and MGC-803). Most of the synthesized compounds exhibited moderate to good activity against all the cancer cell lines selected. Particularly, compound I-21 showed the most excellent antiproliferative activity with an IC50 value of 1.52 μM against SK-N-SH cancer cells. Further mechanism studies revealed that compound I-21 induced morphological changes of SK-N-SH cancer cells possibly by inducing apoptosis. Novel chalcone-1,2,3-triazole-azole derivatives in this work might be a series of promising lead compounds to develop anticancer agents for treating neuroblastoma. PMID:27213317

  17. History of the development of azole derivatives.

    PubMed

    Maertens, J A

    2004-03-01

    Until the 1940s, relatively few agents were available for the treatment of systemic fungal infections. The development of the polyene antifungals represented a major advance in medical mycology. Although amphotericin B quickly became the mainstay of therapy for serious infections, its use was associated with infusion-related side-effects and dose-limiting nephrotoxicity. The continued search for new and less toxic antifungals led to the discovery of the azoles several decades later. Ketoconazole, the first available compound for the oral treatment of systemic fungal infections, was released in the early 1980s. For almost a decade, ketoconazole was regarded as the drug of choice in nonlife-threatening endemic mycoses. The introduction of the first-generation triazoles represented a second major advance in the treatment of fungal infections. Both fluconazole and itraconazole displayed a broader spectrum of antifungal activity than the imidazoles and had a markedly improved safety profile compared with amphotericin B and ketoconazole. Despite widespread use, however, these agents became subject to a number of clinically important limitations related to their suboptimal spectrum of activity, the development of resistance, the induction of hazardous drug-drug interactions, their less than optimal pharmacokinetic profile (itraconazole capsules), and toxicity. In order to overcome these limitations, several analogues have been developed. These so-called 'second-generation' triazoles, including voriconazole, posaconazole and ravuconazole, have greater potency and possess increased activity against resistant and emerging pathogens, in particular against Aspergillus spp. If the toxicity profile of these agents is comparable to or better than that of the first-generation triazoles and drug interactions remain manageable, then these compounds represent a true expansion of our antifungal arsenal. PMID:14748798

  18. Amphiphilic Tobramycin Analogues as Antibacterial and Antifungal Agents

    PubMed Central

    Shrestha, Sanjib K.; Fosso, Marina Y.; Green, Keith D.

    2015-01-01

    In this study, we investigated the in vitro antifungal activities, cytotoxicities, and membrane-disruptive actions of amphiphilic tobramycin (TOB) analogues. The antifungal activities were established by determination of MIC values and in time-kill studies. Cytotoxicity was evaluated in mammalian cell lines. The fungal membrane-disruptive action of these analogues was studied by using the membrane-impermeable dye propidium iodide. TOB analogues bearing a linear alkyl chain at their 6″-position in a thioether linkage exhibited chain length-dependent antifungal activities. Analogues with C12 and C14 chains showed promising antifungal activities against tested fungal strains, with MIC values ranging from 1.95 to 62.5 mg/liter and 1.95 to 7.8 mg/liter, respectively. However, C4, C6, and C8 TOB analogues and TOB itself exhibited little to no antifungal activity. Fifty percent inhibitory concentrations (IC50s) for the most potent TOB analogues (C12 and C14) against A549 and Beas 2B cells were 4- to 64-fold and 32- to 64-fold higher, respectively, than their antifungal MIC values against various fungi. Unlike conventional aminoglycoside antibiotics, TOB analogues with alkyl chain lengths of C12 and C14 appear to inhibit fungi by inducing apoptosis and disrupting the fungal membrane as a novel mechanism of action. Amphiphilic TOB analogues showed broad-spectrum antifungal activities with minimal mammalian cell cytotoxicity. This study provides novel lead compounds for the development of antifungal drugs. PMID:26033722

  19. Synergistic combinations of antifungals and anti-virulence agents to fight against Candida albicans

    PubMed Central

    Cui, Jinhui; Ren, Biao; Tong, Yaojun; Dai, Huanqin; Zhang, Lixin

    2015-01-01

    Candida albicans, one of the pathogenic Candida species, causes high mortality rate in immunocompromised and high-risk surgical patients. In the last decade, only one new class of antifungal drug echinocandin was applied. The increased therapy failures, such as the one caused by multi-drug resistance, demand innovative strategies for new effective antifungal drugs. Synergistic combinations of antifungals and anti-virulence agents highlight the pragmatic strategy to reduce the development of drug resistant and potentially repurpose known antifungals, which bypass the costly and time-consuming pipeline of new drug development. Anti-virulence and synergistic combination provide new options for antifungal drug discovery by counteracting the difficulty or failure of traditional therapy for fungal infections. PMID:26048362

  20. Acquired multi-azole resistance in Candida tropicalis during persistent urinary tract infection in a dog.

    PubMed

    Álvarez-Pérez, Sergio; García, Marta E; Cutuli, María Teresa; Fermín, María Luisa; Daza, María Ángeles; Peláez, Teresa; Blanco, José L

    2016-03-01

    Multi-azole resistance acquisition by Candida tropicalis after prolonged antifungal therapy in a dog with urinary candidiasis is reported. Pre- and post-azole treatment isolates were clonally related and had identical silent mutations in the ERG11 gene, but the latter displayed increased azole minimum inhibitory concentrations. A novel frameshift mutation in ERG3 was found in some isolates recovered after resistance development, so it appears unlikely that this mutation is responsible for multi-azole resistance. PMID:26949597

  1. Acquired multi-azole resistance in Candida tropicalis during persistent urinary tract infection in a dog

    PubMed Central

    Álvarez-Pérez, Sergio; García, Marta E.; Cutuli, María Teresa; Fermín, María Luisa; Daza, María Ángeles; Peláez, Teresa; Blanco, José L.

    2016-01-01

    Multi-azole resistance acquisition by Candida tropicalis after prolonged antifungal therapy in a dog with urinary candidiasis is reported. Pre- and post-azole treatment isolates were clonally related and had identical silent mutations in the ERG11 gene, but the latter displayed increased azole minimum inhibitory concentrations. A novel frameshift mutation in ERG3 was found in some isolates recovered after resistance development, so it appears unlikely that this mutation is responsible for multi-azole resistance. PMID:26949597

  2. Isavuconazole: Pharmacology, Pharmacodynamics, and Current Clinical Experience with a New Triazole Antifungal Agent.

    PubMed

    Rybak, Jeffrey M; Marx, Kayleigh R; Nishimoto, Andrew T; Rogers, P David

    2015-11-01

    Coinciding with the continually increasing population of immunocompromised patients worldwide, the incidence of invasive fungal infections has grown over the past 4 decades. Unfortunately, infections caused by both yeasts such as Candida and molds such as Aspergillus or Mucorales remain associated with unacceptably high morbidity and mortality. In addition, the available antifungals with proven efficacy in the treatment of these infections remain severely limited. Although previously available second-generation triazole antifungals have significantly expanded the spectrum of the triazole antifungal class, these agents are laden with shortcomings in their safety profiles as well as formulation and pharmacokinetic challenges. Isavuconazole, administered as the prodrug isavuconazonium, is the latest second-generation triazole antifungal to receive U.S. Food and Drug Administration approval. Approved for the treatment of both invasive aspergillosis and invasive mucormycosis, and currently under investigation for the treatment of candidemia and invasive candidiasis, isavuconazole may have therapeutic advantages over its predecessors. With clinically relevant antifungal potency against a broad range of yeasts, dimorphic fungi, and molds, isavuconazole has a spectrum of activity reminiscent of the polyene amphotericin B. Moreover, clinical experience thus far has revealed isavuconazole to be associated with fewer toxicities than voriconazole, even when administered without therapeutic drug monitoring. These characteristics, in an agent available in both a highly bioavailable oral and a β-cyclodextrin-free intravenous formulation, will likely make isavuconazole a welcome addition to the triazole class of antifungals. PMID:26598096

  3. Impact of First-Line Antifungal Agents on the Outcomes and Costs of Candidemia

    PubMed Central

    Ha, Young Eun; Joo, Eun-Jeong; Kim, Shin Woo; Jung, Sook-In; Chang, Hyun Ha; Park, Kyong Hwa; Han, Sang Hoon

    2012-01-01

    Candida species are the leading causes of invasive fungal infection among hospitalized patients and are responsible for major economic burdens. The goals of this study were to estimate the costs directly associated with the treatment of candidemia and factors associated with increased costs, as well as the impact of first-line antifungal agents on the outcomes and costs. A retrospective study was conducted in a sample of 199 patients from four university-affiliated tertiary care hospitals in Korea over 1 year. Only costs attributable to the treatment of candidemia were estimated by reviewing resource utilization during treatment. Risk factors for increased costs, treatment outcome, and hospital length of stay (LOS) were analyzed. Approximately 65% of the patients were treated with fluconazole, and 28% were treated with conventional amphotericin B. The overall treatment success rate was 52.8%, and the 30-day mortality rate was 47.9%. Hematologic malignancy, need for mechanical ventilation, and treatment failure of first-line antifungal agents were independent risk factors for mortality. The mean total cost for the treatment of candidemia was $4,743 per patient. Intensive care unit stay at candidemia onset and antifungal switch to second-line agents were independent risk factors for increased costs. The LOS was also significantly longer in patients who switched antifungal agents to second-line drugs. Antifungal switch to second-line agents for any reasons was the only modifiable risk factor of increased costs and LOS. Choosing an appropriate first-line antifungal agent is crucial for better outcomes and reduced hospital costs of candidemia. PMID:22526315

  4. In vitro susceptibility of dermatomycoses agents to six antifungal drugs and evaluation by fractional inhibitory concentration index of combined effects of amorolfine and itraconazole in dermatophytes.

    PubMed

    Tamura, Takashi; Asahara, Miwa; Yamamoto, Mikachi; Yamaura, Mariko; Matsumura, Mitsuru; Goto, Kazuo; Rezaei-Matehkolaei, Ali; Mirhendi, Hossein; Makimura, Miho; Makimura, Koichi

    2014-01-01

    To investigate the antifungal drug susceptibility of fungi responsible for dermatomycoses, minimum inhibition concentration (MIC) tests were performed in 44 strains of dermatophytes, including Trichophyton rubrum, Trichophyton mentagrophytes, Trichophyton verrucosum, Trichophyton tonsurans, Microsporum canis, Microsporum gypseum and Epidermophyton floccosum, with six antifungal drugs (amorolfine, terbinafine, butenafine, ketoconazole, itraconazole and bifonazole) by broth microdilution assay according to Clinical Laboratory Standard Institute protocols. Six possible dermatomycosis-causing non-dermatophytic fungi were also tested. The two major causes of tinea, T. rubrum and T. mentagrophytes, showed significantly different sensitivities to ketoconazole and bifonazole. Clinically derived dermatophytes were sensitive to the six antifungal drugs tested. However, non-dermatophytes, especially Fusarium spp., tended to be resistant to these antifungal drugs. In Trichophyton spp., the MICs of non-azole drugs had narrower distributions than those of azoles. To evaluate the effects of antifungal drug combinations, the fractional inhibitory concentration index was calculated for the combination of amorolfine and itraconazole as representative external and internal drugs for dermatophytes. It was found that this combination had synergistic or additive effects on most dermatophytes, and had no antagonistic effects. The variation in susceptibility of clinically derived fungal isolates indicates that identification of causative fungi is indispensable for appropriately choosing effective antifungal drugs in the early stages of infection. The results of combination assay suggest that multiple drugs with different antifungal mechanisms against growth of dermatophytes should be used to treat refractory dermatomycoses, especially onychomycosis. PMID:24215461

  5. Augmenting the activity of antifungal agents against aspergilli using structural analogues of benzoic acid as chemosensitizing agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Structure-activity analysis revealed that antifungal activities of benzoic and gallic acids were increased against strains of Aspergillus flavus, A. fumigatus and A. terreus, causative agents of human aspergillosis, by addition of a methyl, methoxyl or a chloro group at position 4 of the aromatic ri...

  6. Design, synthesis and molecular docking studies of novel triazole as antifungal agent.

    PubMed

    Chai, Xiaoyun; Zhang, Jun; Cao, Yongbing; Zou, Yan; Wu, Qiuye; Zhang, Dazhi; Jiang, Yuanying; Sun, Qingyan

    2011-07-01

    In order to meet the urgent need for novel antifungal agents with improved activity and broader spectrum, a series of 1-(1H-1,2,4-triazol-1-yl)-2-(2,4-difluorophenyl)-3-[(4-substituted trifluoromethyl phenyl)-piperazin-1-yl]-propan-2-ols were designed, synthesized and evaluated as antifungal agents. The MIC(80) values indicate that the compounds 7a-7q, 8a-8d showed higher antifungal activities against Candida albicans than 5a-5i, 6a-6j. Moreover, the molecular model for the binding between compound 5a, 7a and the active site of CACYP51 was provided based on the computational docking results, and the structure-activity relationship was analyzed. PMID:21531485

  7. Mechanism of Action of Efinaconazole, a Novel Triazole Antifungal Agent

    PubMed Central

    Nagashima, Maria; Shibanushi, Toshiyuki; Iwata, Atsushi; Kangawa, Yumi; Inui, Fumie; Siu, William J. Jo; Pillai, Radhakrishnan; Nishiyama, Yayoi

    2013-01-01

    The mechanism of action of efinaconazole, a new triazole antifungal, was investigated with Trichophyton mentagrophytes and Candida albicans. Efinaconazole dose-dependently decreased ergosterol production and accumulated 4,4-dimethylsterols and 4α-methylsterols at concentrations below its MICs. Efinaconazole induced morphological and ultrastructural changes in T. mentagrophytes hyphae that became more prominent with increasing drug concentrations. In conclusion, the primary mechanism of action of efinaconazole is blockage of ergosterol biosynthesis, presumably through sterol 14α-demethylase inhibition, leading to secondary degenerative changes. PMID:23459486

  8. Screening of Pharmacologically Active Small Molecule Compounds Identifies Antifungal Agents Against Candida Biofilms

    PubMed Central

    Watamoto, Takao; Egusa, Hiroshi; Sawase, Takashi; Yatani, Hirofumi

    2015-01-01

    Candida species have emerged as important and common opportunistic human pathogens, particularly in immunocompromised individuals. The current antifungal therapies either have toxic side effects or are insufficiently effect. The aim of this study is develop new small-molecule antifungal compounds by library screening methods using Candida albicans, and to evaluate their antifungal effects on Candida biofilms and cytotoxic effects on human cells. Wild-type C. albicans strain SC5314 was used in library screening. To identify antifungal compounds, we screened a small-molecule library of 1,280 pharmacologically active compounds (LOPAC1280TM) using an antifungal susceptibility test (AST). To investigate the antifungal effects of the hit compounds, ASTs were conducted using Candida strains in various growth modes, including biofilms. We tested the cytotoxicity of the hit compounds using human gingival fibroblast (hGF) cells to evaluate their clinical safety. Only 35 compounds were identified by screening, which inhibited the metabolic activity of C. albicans by >50%. Of these, 26 compounds had fungistatic effects and nine compounds had fungicidal effects on C. albicans. Five compounds, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate, ellipticine and CV-3988, had strong fungicidal effects and could inhibit the metabolic activity of Candida biofilms. However, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate and ellipticine were cytotoxic to hGF cells at low concentrations. CV-3988 showed no cytotoxicity at a fungicidal concentration. Four of the compounds identified, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate and ellipticine, had toxic effects on Candida strains and hGF cells. In contrast, CV-3988 had fungicidal effects on Candida strains, but low cytotoxic effects on hGF cells. Therefore, this screening reveals agent, CV-3988 that was previously unknown to be antifungal agent, which could be a novel therapies for superficial mucosal candidiasis. PMID

  9. Synergistic combination of violacein and azoles that leads to enhanced killing of major human pathogenic dermatophytic fungi Trichophyton rubrum

    PubMed Central

    Anju, S.; Kumar, Nishanth S.; Krishnakumar, B.; Kumar, B. S. Dileep

    2015-01-01

    Superficial mycoses caused by dermatophytic fungi such as Trichophyton rubrum represent the most common type of worldwide human infection affecting various keratinized tissues in our body such as the skin, hair, and nails, etc. The dermatophytic infection is a significant public health threat due to its persistent nature and high recurrence rates, and thus alternative treatments to cure this fungal infection are urgently required. The present study mainly focused on the synergistic activity of violacein with four azole drugs (ketoconazole, fluconazole, clotrimazole, and itraconazole) against T. rubrum. The synergistic antifungal activities of violacein and azoles were measured by checkerboard microdilution and time-kill assays. In our study, combinations of violacein and azoles predominantly recorded synergistic effect (FIC index < 0.5). Significant synergistic value was recorded by the combination of violacein and clotrimazole. Time-kill assay by the combination of MIC concentration of violacein and azoles recorded that the growth of the T. rubrum was significantly arrested after 4–12 h of treatment. The combination of violacein and azoles leads to the enhanced inhibition of mycelial growth and conidial germination. Moreover combination enhanced the rate of release of intracellular materials. Morphological changes by SEM analysis were also prominent with the combination. A normal human cell line [Foreskin (FS) normal fibroblast] was used to check the cytotoxicity of violacein. Interestingly violacein recorded no cytotoxicity up to 100 μg/ml. The in vitro synergistic effect of violacein and azoles against clinically relevant fungi, T. rubrum, is reported here for the first time. Finally, our findings support the potential use of the violacein as an antifungal agent especially against dermatophytic fungi T. rubrum. PMID:26322275

  10. Sulfonyl Azoles in the Synthesis of 3-Functionalized Azole Derivatives.

    PubMed

    Palmieri, Alessandro; Petrini, Marino

    2016-06-01

    Sulfonyl indoles, as well as related azolyl derivatives, have been recently introduced in synthesis as stable precursors of reactive indolenine intermediates. This personal account reports on the discovery of sulfonyl azoles and their practical utilization in many synthetic processes for the preparation of functionalized 3-substituted indoles, indazoles, and pyrroles. The indolenine intermediates obtained by treatment of sulfonyl azoles with Brønsted bases or Lewis acids can be considered as vinylogous imino derivatives that can be made to react with different nucleophilic reagents. These include organometallic reagents, reducing agents, stabilized carbanions, and heteronucleophiles. The controlled and mild conditions for the generation of indolenines from sulfonyl azoles make these substrates particularly useful in asymmetric synthesis, exploiting organo- or metal-catalyzed processes. Although less exploited, sulfonyl indoles can also be involved in photochemical processes for the preparation of polycyclic derivatives. PMID:27147297

  11. Penetration of anti-infective agents into pulmonary epithelial lining fluid: focus on antifungal, antitubercular and miscellaneous anti-infective agents.

    PubMed

    Rodvold, Keith A; Yoo, Liz; George, Jomy M

    2011-11-01

    Epithelial lining fluid (ELF) is often considered to be the site of extracellular pulmonary infections. During the past 25 years, a limited number of studies have evaluated the intrapulmonary penetration of antifungal, antitubercular, antiparasitic and antiviral agents. For antifungal agents, differences in drug concentrations in ELF or bronchoalveolar lavage (BAL) fluid were observed among various formulations or routes of administration, and between agents within the same class. Aerosolized doses of deoxycholate amphotericin B, liposomal amphotericin B and amphotericin B lipid complex resulted in higher concentrations in ELF or BAL fluid than after intravenous administration. The mean concentrations in ELF following intravenous administration of both anidulafungin and micafungin ranged between 0.04 and 1.38 μg/mL, and the ELF to plasma concentration ratios (based on the area under the concentration-time curve for total drug concentrations) were between 0.18 and 0.22 during the first 3 days of therapy. Among the azole agents, intravenous administration of voriconazole resulted in the highest mean ELF concentrations (range 10.1-48.3 μg/mL) and ratio of penetration (7.1). The range of mean ELF concentrations of itraconazole and posaconazole following oral administration was 0.2-1.9 μg/mL, and the ELF to plasma concentration ratios were <1. A series of studies have evaluated the intrapulmonary penetration of first- and second-line oral antitubercular agents in healthy adult subjects and patients with AIDS. The ELF to plasma concentration ratio was >1 for isoniazid, ethambutol, pyrazinamide and ethionamide. For rifampicin (rifampin) and rifapentine, the ELF to plasma concentration ratio ranged between 0.2 and 0.32, but in alveolar macrophages the concentration of rifampicin was much higher (145-738 μg/mL compared with 3.3-7.5 μg/mL in ELF). No intrapulmonary studies have been conducted for rifabutin. Sex, AIDS status or smoking history had no significant effects

  12. Pivotal Role for a Tail Subunit of the RNA Polymerase II Mediator Complex CgMed2 in Azole Tolerance and Adherence in Candida glabrata

    PubMed Central

    Borah, Sapan; Shivarathri, Raju; Srivastava, Vivek Kumar; Ferrari, Sélène; Sanglard, Dominique

    2014-01-01

    Antifungal therapy failure can be associated with increased resistance to the employed antifungal agents. Candida glabrata, the second most common cause of invasive candidiasis, is intrinsically less susceptible to the azole class of antifungals and accounts for 15% of all Candida bloodstream infections. Here, we show that C. glabrata MED2 (CgMED2), which codes for a tail subunit of the RNA polymerase II Mediator complex, is required for resistance to azole antifungal drugs in C. glabrata. An inability to transcriptionally activate genes encoding a zinc finger transcriptional factor, CgPdr1, and multidrug efflux pump, CgCdr1, primarily contributes to the elevated susceptibility of the Cgmed2Δ mutant toward azole antifungals. We also report for the first time that the Cgmed2Δ mutant exhibits sensitivity to caspofungin, a constitutively activated protein kinase C-mediated cell wall integrity pathway, and elevated adherence to epithelial cells. The increased adherence of the Cgmed2Δ mutant was attributed to the elevated expression of the EPA1 and EPA7 genes. Further, our data demonstrate that CgMED2 is required for intracellular proliferation in human macrophages and modulates survival in a murine model of disseminated candidiasis. Lastly, we show an essential requirement for CgMed2, along with the Mediator middle subunit CgNut1 and the Mediator cyclin-dependent kinase/cyclin subunit CgSrb8, for the high-level fluconazole resistance conferred by the hyperactive allele of CgPdr1. Together, our findings underscore a pivotal role for CgMed2 in basal tolerance and acquired resistance to azole antifungals. PMID:25070095

  13. Antifungal agents against Aspergillus niger for rearing rice leaffolder larvae (Lepidoptera: Pyralidae) on artificial diet.

    PubMed

    Su, Jianya; Wang, Ye-Cheng; Zhang, Shu-Kun; Ren, Xiu-Bei

    2014-06-01

    Mold contamination is an important issue in insect mass rearing. Frequently used antifungal agents such as sorbic acid and methylparaben have negative impact on many lepidopteran larvae, which might be one of the reasons for the difficulty in rearing rice leaffolder, Cnaphalocrocis medinalis (Güenée). In this study, 19 antifungal agents, including 7 food preservatives, 6 antifungal drugs, and 6 agricultural fungicides, were screened for their inhibitory activities on Aspergillus niger in diets. The results demonstrated that most of the tested chemicals are unsuitable as mold inhibitors in the diets of the rice leaffolder, and the rice leaffolder neonate is sensitive to sorbic acid and methylparaben. These two mold inhibitors at commonly used concentrations were shown to impact the survival of rice leaffolder larvae fed on artificial diets. Among the tested mold inhibitors, natamycin was the safest for the rice leaffolder larvae. Much higher larva survival was observed for the larvae fed on diets containing natamycin as an antifungal agent (59 and 72% at 200 and 400 ppm, respectively). Two agricultural fungicides, tebuconazole and azoxystrobin, are also potent as mold inhibitors when used in insect diets. The mixed use of natamycin and sorbic acid, or methylparaben, and the mixed use of sorbic acid and azoxystrobin resulted in significantly higher larva survival than sorbic acid + methylparaben. Natamycin + azoxystrobin and sorbic acid + tebuconazole resulted in larva survival similar to that of sorbic acid + methylparaben. The ternary combination of natamycin, sorbic acid, and methylparaben was the best combination for the rearing of rice leaffolder. PMID:25026669

  14. Outcome of empirical or targeted antifungal therapy after antifungal prophylaxis in febrile neutropenia.

    PubMed

    Hahn-Ast, C; Felder, L; Mayer, K; Mückter, S; Ruhnke, M; Hein, R; Hellmich, M; Schwab, K; Rachow, T; Brossart, P; von Lilienfeld-Toal, M

    2016-05-01

    Azole prophylaxis has been shown to be effective in preventing invasive fungal infections (IFIs) and increasing survival in patients with prolonged neutropenia after myelosuppressive chemotherapy for haematological malignancies. Similarly, empirical antifungal therapy for persistent neutropenic fever has been shown to reduce IFI-related mortality. However, to date, there is little information with regard to the outcome of patients who receive both strategies. Here, we present our retrospective data on three cohorts of patients receiving empirical or targeted antifungal therapy after different antifungal prophylaxis regimens. All records from patients who received myelosuppressive induction chemotherapy for acute myelogenous leukemia (AML) in our centre from 2004-2010 were analysed. From 2004-2006, itraconazole was used as antifungal prophylaxis; for the first 6 months in 2007, local polyenes and from mid-2007 till 2010, posaconazole. Data of 315 courses of chemotherapy in 211 patients were analysed. Antifungal therapy (empirical or targeted, time point and antifungal agent at the physician's discretion) was initiated in 50/174 (29 %), 7/18 (39 %) and 34/123 courses (28 %, p = 0.615) in the itra cohort, the cohort without systemic prophylaxis and the posa cohort, respectively, and was effective in 24/50 (48 %), 5/7 (71 %) and 22/34 courses (65 %, p = 0.221), respectively. IFI occurred in 25/174 (14 %), 4/18 (22 %) and 16/123 (13 %) courses, respectively (p = 0.580). IFI-related survival was not different in the three cohorts. Antifungal treatment in patients with AML who received azole prophylaxis resulted in the expected efficacy-importantly, prior posaconazole prophylaxis did not render subsequent antifungal treatment less effective than prior itraconazole prophylaxis. PMID:27021301

  15. Gene Expression Response of Trichophyton rubrum during Coculture on Keratinocytes Exposed to Antifungal Agents

    PubMed Central

    Komoto, Tatiana Takahasi; Bitencourt, Tamires Aparecida; Silva, Gabriel; Beleboni, Rene Oliveira; Marins, Mozart; Fachin, Ana Lúcia

    2015-01-01

    Trichophyton rubrum is the most common causative agent of dermatomycoses worldwide, causing infection in the stratum corneum, nails, and hair. Despite the high prevalence of these infections, little is known about the molecular mechanisms involved in the fungal-host interaction, particularly during antifungal treatment. The aim of this work was to evaluate the gene expression of T. rubrum cocultured with keratinocytes and treated with the flavonoid trans-chalcone and the glycoalkaloid α-solanine. Both substances showed a marked antifungal activity against T. rubrum strain CBS (MIC = 1.15 and 17.8 µg/mL, resp.). Cytotoxicity assay against HaCaT cells produced IC50 values of 44.18 to trans-chalcone and 61.60 µM to α-solanine. The interaction of keratinocytes with T. rubrum conidia upregulated the expression of genes involved in the glyoxylate cycle, ergosterol synthesis, and genes encoding proteases but downregulated the ABC transporter TruMDR2 gene. However, both antifungals downregulated the ERG1 and ERG11, metalloprotease 4, serine proteinase, and TruMDR2 genes. Furthermore, the trans-chalcone downregulated the genes involved in the glyoxylate pathway, isocitrate lyase, and citrate synthase. Considering the urgent need for more efficient and safer antifungals, these results contribute to a better understanding of fungal-host interactions and to the discovery of new antifungal targets. PMID:26257814

  16. Biogenic silver nanoparticles: efficient and effective antifungal agents

    NASA Astrophysics Data System (ADS)

    Netala, Vasudeva Reddy; Kotakadi, Venkata Subbaiah; Domdi, Latha; Gaddam, Susmila Aparna; Bobbu, Pushpalatha; Venkata, Sucharitha K.; Ghosh, Sukhendu Bikash; Tartte, Vijaya

    2016-04-01

    Biogenic synthesis of silver nanoparticles (AgNPs) by exploiting various plant materials is an emerging field and considered green nanotechnology as it involves simple, cost effective and ecofriendly procedure. In the present study AgNPs were successfully synthesized using aqueous callus extract of Gymnema sylvestre. The aqueous callus extract treated with 1nM silver nitrate solution resulted in the formation of AgNPs and the surface plasmon resonance (SPR) of the formed AgNPs showed a peak at 437 nm in the UV Visible spectrum. The synthesized AgNPs were characterized using Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), and X-ray diffraction spectroscopy (XRD). FTIR spectra showed the peaks at 3333, 2928, 2361, 1600, 1357 and 1028 cm-1 which revealed the role of different functional groups possibly involved in the synthesis and stabilization of AgNPs. TEM micrograph clearly revealed the size of the AgNPs to be in the range of 3-30 nm with spherical shape and poly-dispersed nature; it is further confirmed by Particle size analysis that the stability of AgNPs is due its high negative Zeta potential (-36.1 mV). XRD pattern revealed the crystal nature of the AgNPs by showing the braggs peaks corresponding to (111), (200), (220) and (311) planes of face-centered cubic crystal phase of silver. Selected area electron diffraction pattern showed diffraction rings and confirmed the crystalline nature of synthesized AgNPs. The synthesized AgNPs exhibited effective antifungal activity against Candida albicans, Candida nonalbicans and Candida tropicalis.

  17. In Vitro Activity of ASP2397 against Aspergillus Isolates with or without Acquired Azole Resistance Mechanisms.

    PubMed

    Arendrup, Maiken Cavling; Jensen, Rasmus Hare; Cuenca-Estrella, Manuel

    2016-01-01

    ASP2397 is a new compound with a novel and as-yet-unknown target different from that of licensed antifungal agents. It has activity against Aspergillus and Candida glabrata. We compared its in vitro activity against wild-type and azole-resistant A. fumigatus and A. terreus isolates with that of amphotericin B, itraconazole, posaconazole, and voriconazole. Thirty-four isolates, including 4 wild-type A. fumigatus isolates, 24 A. fumigatus isolates with alterations in CYP51A TR/L98H (5 isolates), M220 (9 isolates), G54 (9 isolates), and HapE (1 isolate), and A. terreus isolates (2 wild-type isolates and 1 isolate with an M217I CYP51A alteration), were analyzed. EUCAST E.Def 9.2 and CLSI M38-A2 MIC susceptibility testing was performed. ASP2397 MIC50 values (in milligrams per liter, with MIC ranges in parentheses) determined by EUCAST and CLSI were 0.5 (0.25 to 1) and 0.25 (0.06 to 0.25) against A. fumigatus CYP51A wild-type isolates and were similarly 0.5 (0.125 to >4) and 0.125 (0.06 to >4) against azole-resistant A. fumigatus isolates, respectively. These values were comparable to those for amphotericin B, which were 0.25 (0.125 to 0.5) and 0.25 (0.125 to 0.25) against wild-type isolates and 0.25 (0.125 to 1) and 0.25 (0.125 to 1) against isolates with azole resistance mechanisms, respectively. In contrast, MICs for the azole compounds were elevated and highest for itraconazole: >4 (1 to >4) and 4 (0.5 to >4) against isolates with azole resistance mechanisms compared to 0.125 (0.125 to 0.25) and 0.125 (0.06 to 0.25) against wild-type isolates, respectively. ASP2397 was active against A. terreus CYP51A wild-type isolates (MIC 0.5 to 1), whereas MICs of both azole and ASP2397 were elevated for the mutant isolate. ASP2397 displayed in vitro activity against A. fumigatus and A. terreus isolates which was independent of the presence or absence of azole target gene resistance mutations in A. fumigatus. The findings are promising at a time when azole-resistant A. fumigatus

  18. Comparison of the In Vitro Activities of Newer Triazoles and Established Antifungal Agents against Trichophyton rubrum

    PubMed Central

    Deng, Shuwen; Zhang, Chao; Seyedmousavi, Seyedmojtaba; Zhu, Shuang; Tan, Xin; Wen, Yiyang; Huang, Xin; Lei, Wenzhi; Zhou, Zhaojing; Fang, Wenjie; Shen, Shuaishuai; Deng, Danqi

    2015-01-01

    One hundred eleven clinical Trichophyton rubrum isolates were tested against 7 antifungal agents. The geometric mean MICs of all isolates were, in increasing order: terbinafine, 0.03 mg/liter; voriconazole, 0.05 mg/liter; posaconazole, 0.11 mg/liter; isavuconazole, 0.13 mg/liter; itraconazole, 0.26 mg/liter; griseofulvin, 1.65 mg/liter; and fluconazole, 2.12 mg/liter. PMID:25896691

  19. Effect of antifungal agents on lipid biosynthesis and membrane integrity in Candida albicans.

    PubMed Central

    Georgopapadakou, N H; Dix, B A; Smith, S A; Freudenberger, J; Funke, P T

    1987-01-01

    Eight antifungal agents were examined for effects on lipid biosynthesis and membrane integrity in Candida albicans. Lipids were labeled in vivo or in vitro with [14C]acetate and analyzed by thin-layer and gas chromatography. Membrane integrity was measured by a recently developed [14C]aminoisobutyric acid radiolabel release assay. The imidazole antifungal agents miconazole, econazole, clotrimazole, and ketoconazole, at concentrations inhibiting ergosterol biosynthesis (0.1 microM), decreased the ratio of unsaturated to saturated fatty acids in vivo but not in vitro. Similarly, naftifine, tolnaftate, and the azasterol A25822B, at concentrations inhibiting ergosterol biosynthesis (10, 100, and 1 microM, respectively), decreased the ratio of unsaturated to saturated fatty acids in vivo only. This suggests that the effect on fatty acids observed with ergosterol biosynthesis inhibitors may be secondary to the effect on ergosterol. With imidazoles, oleic acid antagonized inhibition of cell growth but not inhibition of ergosterol. This suggests that, with the C-14 demethylase inhibitors, decreased unsaturated fatty acids, rather than decreased ergosterol, are responsible for growth inhibition. Cerulenin, previously reported to be a potent inhibitor of both fatty acid and ergosterol biosynthesis, was found in the present study to inhibit the former (at 5 microM) but not the latter (up to 100 microM). Of the antifungal agents tested, econazole and miconazole (at 100 microM) produced complete release of [14C]aminoisobutyric acid, which is consistent with membrane damage. PMID:3551826

  20. In vitro susceptibility of Scedosporium isolates to N-acetyl-L-cysteine alone and in combination with conventional antifungal agents.

    PubMed

    Homa, Mónika; Galgóczy, László; Tóth, Eszter; Virágh, Máté; Chandrasekaran, Muthusamy; Vágvölgyi, Csaba; Papp, Tamás

    2016-10-01

    In recent years, Scedosporium species have been more commonly recognized from severe, difficult-to-treat human infections, such as upper respiratory tract and pulmonary infections. To select an appropriate therapeutic approach for these infections is challenging, because of the commonly observed resistance of the causative agents to several antifungal drugs. Therefore, to find a novel strategy for the treatment of pulmonary Scedosporium infections the in vitro antifungal effect of a mucolytic agent, N-acetyl-L-cysteine and its in vitro combinations with conventional antifungals were investigated. Synergistic and indifferent interactions were registered in 23 and 13 cases, respectively. Antagonism was not revealed between the compounds. PMID:27143635

  1. Antifungal agents. 10. New derivatives of 1-[(aryl)[4-aryl-1H-pyrrol-3-yl]methyl]-1H-imidazole, synthesis, anti-candida activity, and quantitative structure-analysis relationship studies.

    PubMed

    Tafi, Andrea; Costi, Roberta; Botta, Maurizio; Di Santo, Roberto; Corelli, Federico; Massa, Silvio; Ciacci, Andrea; Manetti, Fabrizio; Artico, Marino

    2002-06-20

    The synthesis, anti-Candida activity, and quantitative structure-activity relationship (QSAR) studies of a series of 2,4-dichlorobenzylimidazole derivatives having a phenylpyrrole moiety (related to the antibiotic pyrrolnitrin) in the alpha-position are reported. A number of substituents on the phenyl ring, ranging from hydrophobic (tert-butyl, phenyl, or 1-pyrrolyl moiety) to basic (NH(2)), polar (CF(3), CN, SCH(3), NO(2)), or hydrogen bond donors and acceptor (OH) groups, were chosen to better understand the interaction of these compounds with cytochrome P450 14-alpha-lanosterol demethylase (P450(14DM)). Finally, the triazole counterpart of one of the imidazole compounds was synthesized and tested to investigate influence of the heterocyclic ring on biological activity. The in vitro antifungal activities of the newly synthesized azoles 10p-v,x-c' were tested against Candida albicans and Candida spp. at pH 7.2 and pH 5.6. A CoMFA model, previously derived for a series of antifungal agents belonging to chemically diverse families related to bifonazole, was applied to the new products. Because the results produced by this approach were not encouraging, Catalyst software was chosen to perform a new 3D-QSAR study. Catalyst was preferred this time because of the possibility of considering each compound as a collection of energetically reasonable conformations and of considering alternative stereoisomers. The pharmacophore model developed by Catalyst, named HYPO1, showed good performances in predicting the biological activity data, although it did not exhibit an unequivocal preference for one enantiomeric series of inhibitors relative to the other. One aromatic nitrogen with a lone pair in the ring plane (mapped by all of the considered compounds) and three aromatic ring features were recognized to have pharmacophoric relevance, whereas neither hydrogen bond acceptor nor hydrophobic features were found. These findings confirmed that the key interaction of azole

  2. Antifungal susceptibility of Malassezia furfur, Malassezia sympodialis, and Malassezia globosa to azole drugs and amphotericin B evaluated using a broth microdilution method.

    PubMed

    Rojas, Florencia D; Sosa, María de los A; Fernández, Mariana S; Cattana, María E; Córdoba, Susana B; Giusiano, Gustavo E

    2014-08-01

    We studied the in vitro activity of fluconazole (FCZ), ketoconazole (KTZ), miconazole (MCZ), voriconazole (VCZ), itraconazole (ITZ) and amphotericin B (AMB) against the three major pathogenic Malassezia species, M. globosa, M. sympodialis, and M. furfur. Antifungal susceptibilities were determined using the broth microdilution method in accordance with Clinical and Laboratory Standards Institute reference document M27-A3. To support lipid-dependent yeast development, glucose, peptone, ox bile, malt extract, glycerol, and Tween supplements were added to Roswell Park Memorial Institute RPMI 1640 medium. The supplemented medium allowed good growth of all three species studied. The minimal inhibitory concentrations (MICs) were recorded after 72 h of incubation at 32ºC. The three species showed different susceptibility profiles for the drugs tested. Malassezia sympodialis was the most susceptible and M. furfur the least susceptible species. KTZ, ITZ, and VCZ were the most active drugs, showing low variability among isolates of the same species. FCZ, MCZ, and AMB showed high MICs and wide MIC ranges. Differences observed emphasize the need to accurately identify and evaluate antifungal susceptibility of Malassezia species. Further investigations and collaborative studies are essential for correlating in vitro results with clinical outcomes since the existing limited data do not allow definitive conclusions. PMID:24965946

  3. An Evaluation of Antifungal Agents for the Treatment of Fungal Contamination in Indoor Air Environments

    PubMed Central

    Rogawansamy, Senthaamarai; Gaskin, Sharyn; Taylor, Michael; Pisaniello, Dino

    2015-01-01

    Fungal contamination in indoor environments has been associated with adverse health effects for the inhabitants. Remediation of fungal contamination requires removal of the fungi present and modifying the indoor environment to become less favourable to growth.  This may include treatment of indoor environments with an antifungal agent to prevent future growth. However there are limited published data or advice on chemical agents suitable for indoor fungal remediation. The aim of this study was to assess the relative efficacies of five commercially available cleaning agents with published or anecdotal use for indoor fungal remediation. The five agents included two common multi-purpose industrial disinfectants (Cavicide® and Virkon®), 70% ethanol, vinegar (4.0%−4.2% acetic acid), and a plant-derived compound (tea tree (Melaleuca alternifolia) oil) tested in both a liquid and vapour form. Tea tree oil has recently generated interest for its antimicrobial efficacy in clinical settings, but has not been widely employed for fungal remediation. Each antifungal agent was assessed for fungal growth inhibition using a disc diffusion method against a representative species from two common fungal genera, (Aspergillus fumigatus and Penicillium chrysogenum), which were isolated from air samples and are commonly found in indoor air. Tea tree oil demonstrated the greatest inhibitory effect on the growth of both fungi, applied in either a liquid or vapour form. Cavicide® and Virkon® demonstrated similar, although less, growth inhibition of both genera. Vinegar (4.0%–4.2% acetic acid) was found to only inhibit the growth of P. chrysogenum, while 70% ethanol was found to have no inhibitory effect on the growth of either fungi. There was a notable inhibition in sporulation, distinct from growth inhibition after exposure to tea tree oil, Virkon®, Cavicide® and vinegar. Results demonstrate that common cleaning and antifungal agents differ in their capacity to inhibit the

  4. Nonplanar property study of antifungal agent tolnaftate-spectroscopic approach

    NASA Astrophysics Data System (ADS)

    Arul Dhas, D.; Hubert Joe, I.; Roy, S. D. D.; Balachandran, S.

    2011-09-01

    Vibrational analysis of the thionocarbamate fungicide tolnaftate which is antidermatophytic, antitrichophytic and antimycotic agent, primarily inhibits the ergosterol biosynthesis in the fungus, was carried out using NIR FT-Raman and FTIR spectroscopic techniques. The equilibrium geometry, various bonding features, harmonic vibrational wavenumbers and torsional potential energy surface (PES) scan studies have been computed using density functional theory method. The detailed interpretation of the vibrational spectra has been carried out with the aid of VEDA.4 program. Vibrational spectra, natural bonding orbital (NBO) analysis and optimized molecular structure show the clear evidence for electronic interaction of thionocarbamate group with aromatic ring. Predicted electronic absorption spectrum from TD-DFT calculation has been compared with the UV-vis spectrum. The Mulliken population analysis on atomic charges and the HOMO-LUMO energy were also calculated. Vibrational analysis reveals that the simultaneous IR and Raman activation of the C-C stretching mode in the phenyl and naphthalene ring provide evidence for the charge transfer interaction between the donor and acceptor groups and is responsible for its bioactivity as a fungicide.

  5. Chromatographic and electrophoretic techniques used in the analysis of triazole antifungal agents-a review.

    PubMed

    Ekiert, R J; Krzek, J; Talik, P

    2010-09-15

    Systematic review of literature coupled with integrative research of published data for triazole antifungal agents was done. The investigated literature covered chromatographic and electrophoretic methods developed in the last 10 years (2000-2009). The aim of this review was to compare different methodologies, assess preferences in the selection of analytical methods and to find still existing analytical problems. Last decade is characterized by dynamic development of instrumental methods, that results in advance and diversity of applied analytical procedures. The main focus was given to high-performance liquid chromatography (HPLC), the technique of choice in the analysis of most of pharmaceuticals. The review includes literature on 8 triazole antifungal drugs: fluconazole, itraconazole and terconazole from the first generation and posaconazole, voriconazole, ravuconazole, isavuconazole and albaconazole classified in second generation. Investigations of pharmaceutical formulations and biological samples were considered. PMID:20801303

  6. Design, synthesis, and biological evaluation of 1-[(biarylmethyl)methylamino]-2-(2,4-difluorophenyl)-3-(1H-1,2,4-triazol-1-yl)propan-2-ols as potent antifungal agents: new insights into structure-activity relationships.

    PubMed

    Guillon, Rémi; Pagniez, Fabrice; Rambaud, Charlotte; Picot, Carine; Duflos, Muriel; Logé, Cédric; Le Pape, Patrice

    2011-10-01

    We recently reported the design and synthesis of azole antifungal agents with a focus on modifications to the side chain appended to the propanol group. Herein we have identified a series of new 1-[(biarylmethyl)methylamino] derivatives with broad-spectrum antifungal activities against the most prevalent human pathogenic fungi (Candida spp. and Aspergillus fumigatus). Compounds containing a flexible benzylamine moiety were clearly shown to yield the best antifungal activities, without the need for a hydrogen-bond acceptor substituent directly attached to the para position. We were also able to determine that selected compounds are able to overcome gene overexpression and point mutations that lead to reduced susceptibility or resistance against current treatments, such as fluconazole. As the minor differences observed with small structural modifications cannot be explain with only a three-dimensional model of CYP51, adequate physicochemical parameters must be evaluated in terms of antifungal potency, bioavailability, and toxicity. Therefore, structure-activity relationship studies such as these reveal new insights for the development of future antifungal therapies. PMID:21748853

  7. Effect of treatment of palatal inflammatory papillary hyperplasia with local and systemic antifungal agents accompanied by renewal of complete dentures.

    PubMed

    Salonen, M A; Raustia, A M; Oikarinen, K S

    1996-04-01

    The aim of this study was to estimate the effect of local and systemic antifungal treatment, accompanied by renewal of complete dentures, on palatal inflammatory papillary hyperplasia (PIPH). The treatment groups consisted of 26 subjects treated with a local antifungal agent (miconazole, 2% gel) for 4 weeks and 13 subjects treated with a systemic antifungal agent (fluconazole, 50 mg) for 2 weeks (test groups). Ten subjects fitted with new complete dentures served as a control group. Variables examined before antifungal and prosthetic treatment included estimation of the size and color of the affected palatal area, measurements of the lengths of the papillae, and salivary variables. Six months after the completion of prosthetic treatment healing was determined as disappearance or marked reduction of the redness of the PIPH. Healing was more often observed in test groups (64%) than in the control group (20%) (p = 0.012). Fifty-eight per cent of the subjects treated with a local (miconazole, 2%) and 77% of those treated with a systemic (fluconazole, 50 mg) antifungal agent were healed. Even though papillary hyperplastic tissue did not disappear, the treatment of PIPH with an antifungal agent without surgery before renewal of dentures might be an alternative treatment in mild cases. PMID:8739138

  8. Synthesis and biological evaluation of new naphthalene substituted thiosemicarbazone derivatives as potent antifungal and anticancer agents.

    PubMed

    Altıntop, Mehlika Dilek; Atlı, Özlem; Ilgın, Sinem; Demirel, Rasime; Özdemir, Ahmet; Kaplancıklı, Zafer Asım

    2016-01-27

    New thiosemicarbazone derivatives (1-10) were obtained via the reaction of 4-(naphthalen-1-yl)thiosemicarbazide with fluoro-substituted aromatic aldehydes. The synthesized compounds were evaluated for their in vitro antifungal effects against pathogenic yeasts and molds using broth microdilution assay. Ames and umuC assays were carried out to determine the genotoxicity of the most effective antifungal derivatives. Furthermore, all compounds were evaluated for their cytotoxic effects on A549 human lung adenocarcinoma and NIH/3T3 mouse embryonic fibroblast cell lines using XTT test. Among these derivatives, 4-(naphthalen-1-yl)-1-(2,3-difluorobenzylidene)thiosemicarbazide (1) and 4-(naphthalen-1-yl)-1-(2,5-difluorobenzylidene)thiosemicarbazide (3) can be identified as the most promising antifungal derivatives due to their notable inhibitory effects on Candida species and no cytotoxicity against NIH/3T3 mouse embryonic fibroblast cell line. According to Ames and umuC assays, compounds 1 and 3 were classified as non-mutagenic compounds. On the other hand, 4-(naphthalen-1-yl)-1-(2,4-difluorobenzylidene)thiosemicarbazide (2) can be considered as the most promising anticancer agent against A549 cell line owing to its notable inhibitory effect on A549 cells with an IC50 value of 31.25 μg/mL when compared with cisplatin (IC50 = 16.28 μg/mL) and no cytotoxicity against NIH/3T3 cells. PMID:26706351

  9. Plant-derived antifungal agent poacic acid targets β-1,3-glucan

    PubMed Central

    Piotrowski, Jeff S.; Okada, Hiroki; Lu, Fachuang; Li, Sheena C.; Hinchman, Li; Ranjan, Ashish; Smith, Damon L.; Higbee, Alan J.; Ulbrich, Arne; Coon, Joshua J.; Deshpande, Raamesh; Bukhman, Yury V.; McIlwain, Sean; Ong, Irene M.; Myers, Chad L.; Boone, Charles; Landick, Robert; Ralph, John; Kabbage, Mehdi; Ohya, Yoshikazu

    2015-01-01

    A rise in resistance to current antifungals necessitates strategies to identify alternative sources of effective fungicides. We report the discovery of poacic acid, a potent antifungal compound found in lignocellulosic hydrolysates of grasses. Chemical genomics using Saccharomyces cerevisiae showed that loss of cell wall synthesis and maintenance genes conferred increased sensitivity to poacic acid. Morphological analysis revealed that cells treated with poacic acid behaved similarly to cells treated with other cell wall-targeting drugs and mutants with deletions in genes involved in processes related to cell wall biogenesis. Poacic acid causes rapid cell lysis and is synergistic with caspofungin and fluconazole. The cellular target was identified; poacic acid localized to the cell wall and inhibited β-1,3-glucan synthesis in vivo and in vitro, apparently by directly binding β-1,3-glucan. Through its activity on the glucan layer, poacic acid inhibits growth of the fungi Sclerotinia sclerotiorum and Alternaria solani as well as the oomycete Phytophthora sojae. A single application of poacic acid to leaves infected with the broad-range fungal pathogen S. sclerotiorum substantially reduced lesion development. The discovery of poacic acid as a natural antifungal agent targeting β-1,3-glucan highlights the potential side use of products generated in the processing of renewable biomass toward biofuels as a source of valuable bioactive compounds and further clarifies the nature and mechanism of fermentation inhibitors found in lignocellulosic hydrolysates. PMID:25775513

  10. Genomic identification of potential targets unique to Candida albicans for the discovery of antifungal agents.

    PubMed

    Tripathi, Himanshu; Luqman, Suaib; Meena, Abha; Khan, Feroz

    2014-01-01

    Despite of modern antifungal therapy, the mortality rates of invasive infection with human fungal pathogen Candida albicans are up to 40%. Studies suggest that drug resistance in the three most common species of human fungal pathogens viz., C. albicans, Aspergillus fumigatus (causing mortality rate up to 90%) and Cryptococcus neoformans (causing mortality rate up to 70%) is due to mutations in the target enzymes or high expression of drug transporter genes. Drug resistance in human fungal pathogens has led to an imperative need for the identification of new targets unique to fungal pathogens. In the present study, we have used a comparative genomics approach to find out potential target proteins unique to C. albicans, an opportunistic fungus responsible for severe infection in immune-compromised human. Interestingly, many target proteins of existing antifungal agents showed orthologs in human cells. To identify unique proteins, we have compared proteome of C. albicans [SC5314] i.e., 14,633 total proteins retrieved from the RefSeq database of NCBI, USA with proteome of human and non-pathogenic yeast Saccharomyces cerevisiae. Results showed that 4,568 proteins were identified unique to C. albicans as compared to those of human and later when these unique proteins were compared with S. cerevisiae proteome, finally 2,161 proteins were identified as unique proteins and after removing repeats total 1,618 unique proteins (42 functionally known, 1,566 hypothetical and 10 unknown) were selected as potential antifungal drug targets unique to C. albicans. PMID:24102473

  11. Lactobacillus amylovorus DSM 19280 as a novel food-grade antifungal agent for bakery products.

    PubMed

    Ryan, Liam A M; Zannini, Emanuele; Dal Bello, Fabio; Pawlowska, Agata; Koehler, Peter; Arendt, Elke K

    2011-04-29

    Mould spoilage is the main cause of substantial economic loss in bakery industry and might also cause public health problems due to the production of mycotoxins. The reduction of mould growth in bakery products is thus of crucial importance and there is great interest to develop safe and efficient strategies for this purpose. In this study Lactobacillus amylovorus DSM19280 has been shown to produce a wide spectrum of antifungal compounds active against common bread spoilage fungi. Among the indicator moulds, Aspergillus fumigatus and Fusarium culmorum were the most sensitive organisms. Several antifungal compounds were found to be present in synthetic medium inoculated with L. amylovorus DSM19280 strain, some of them being reported here for the first time. Wheat doughs fermented with L. amylovorus DSM19280 had good rheological properties and the breads thereof were of high quality as shown by rheofermentometer and texture analyser measurements. The results were compared with those obtained with a control non-antifungal L. amylovorus DSM20531(T) strain, a non-acidified and a chemically acidified dough. The quality of sourdough and bread fermented with L. amylovorus DSM 19280 was comparable to that obtained by using L. amylovorus DSM20531 (T). Additionally, breads were evaluated for the ability to retard the growth of Fusarium culmorum FST 4.05, Aspergillus niger FST4.21, Penicillium expansum FST 4.22, Penicillium roqueforti FST 4.11 and fungal flora from the bakery environment. The biological preservation of bread with L. amylovorus DSM 19280 was also compared to the most commonly used antifungal agent Calcium propionate. Breads containing sourdough fermented with L. amylovorus DSM 19280 were more effective in extending the shelf life of bread than the calcium propionate. PMID:21429613

  12. In Search of the Holy Grail of Antifungal Therapy

    PubMed Central

    Chapman, Stanley W.; Sullivan, Donna C.; Cleary, John D.

    2008-01-01

    The ideal antifungal agent remains an elusive goal for treatment of life-threatening systemic fungal infections. Such an agent would have broad antifungal activity, low rates of resistance, flexible routes of administration, few associated adverse events, and limited drug-drug interactions. Only three of the seven classes of antifungal agents currently available are suitable for treatment of systemic infection: the polyenes, the azoles, and the echinocandins. None match all the characteristics of an ideal agent, the Holy Grail of antifungal therapy. Academia and industry need to collaborate in the search for new lead antifungal compounds using traditional screening methods as well as the new pharmacogenomics methods. Enhancing efficacy and reducing toxicity of the currently available therapeutic agents is also another important avenue of study. As an example, the Mycosis Research Center at the University of Mississippi Medical Center has identified pyogenic polyenes in commercial preparations of amphotericin B deoxycholate which correlate with infusion related toxicities. A highly purified formulation of amphotericin B appears promising, with a better therapeutic index compared to its parent compound as evidenced by results of in vitro and in vivo studies reviewed in this presentation. PMID:18596853

  13. Activity of Isavuconazole and Other Azoles against Candida Clinical Isolates and Yeast Model Systems with Known Azole Resistance Mechanisms

    PubMed Central

    Coste, Alix T.

    2015-01-01

    Isavuconazole is a novel, broad-spectrum, antifungal azole. In order to evaluate its interactions with known azole resistance mechanisms, isavuconazole susceptibility among different yeast models and clinical isolates expressing characterized azole resistance mechanisms was tested and compared to those of fluconazole, itraconazole, posaconazole, and voriconazole. Saccharomyces cerevisiae expressing the Candida albicans and C. glabrata ATP binding cassette (ABC) transporters (CDR1, CDR2, and CgCDR1), major facilitator (MDR1), and lanosterol 14-α-sterol-demethylase (ERG11) alleles with mutations were used. In addition, pairs of C. albicans and C. glabrata strains from matched clinical isolates with known azole resistance mechanisms were investigated. The expression of ABC transporters increased all azole MICs, suggesting that all azoles tested were substrates of ABC transporters. The expression of MDR1 did not increase posaconazole, itraconazole, and isavuconazole MICs. Relative increases of azole MICs (from 4- to 32-fold) were observed for fluconazole, voriconazole, and isavuconazole when at least two mutations were present in the same ERG11 allele. Upon MIC testing of azoles with clinical C. albicans and C. glabrata isolates with known resistance mechanisms, the MIC90s of C. albicans for fluconazole, voriconazole, itraconazole, posaconazole, and isavuconazole were 128, 2, 1, 0.5, and 2 μg/ml, respectively, while in C. glabrata they were 128, 2, 4, 4, and 16 μg/ml, respectively. In conclusion, the effects of azole resistance mechanisms on isavuconazole did not differ significantly from those of other azoles. Resistance mechanisms in yeasts involving ABC transporters and ERG11 decreased the activity of isavuconazole, while MDR1 had limited effect. PMID:26482310

  14. Activity of Isavuconazole and Other Azoles against Candida Clinical Isolates and Yeast Model Systems with Known Azole Resistance Mechanisms.

    PubMed

    Sanglard, Dominique; Coste, Alix T

    2016-01-01

    Isavuconazole is a novel, broad-spectrum, antifungal azole. In order to evaluate its interactions with known azole resistance mechanisms, isavuconazole susceptibility among different yeast models and clinical isolates expressing characterized azole resistance mechanisms was tested and compared to those of fluconazole, itraconazole, posaconazole, and voriconazole. Saccharomyces cerevisiae expressing the Candida albicans and C. glabrata ATP binding cassette (ABC) transporters (CDR1, CDR2, and CgCDR1), major facilitator (MDR1), and lanosterol 14-α-sterol-demethylase (ERG11) alleles with mutations were used. In addition, pairs of C. albicans and C. glabrata strains from matched clinical isolates with known azole resistance mechanisms were investigated. The expression of ABC transporters increased all azole MICs, suggesting that all azoles tested were substrates of ABC transporters. The expression of MDR1 did not increase posaconazole, itraconazole, and isavuconazole MICs. Relative increases of azole MICs (from 4- to 32-fold) were observed for fluconazole, voriconazole, and isavuconazole when at least two mutations were present in the same ERG11 allele. Upon MIC testing of azoles with clinical C. albicans and C. glabrata isolates with known resistance mechanisms, the MIC90s of C. albicans for fluconazole, voriconazole, itraconazole, posaconazole, and isavuconazole were 128, 2, 1, 0.5, and 2 μg/ml, respectively, while in C. glabrata they were 128, 2, 4, 4, and 16 μg/ml, respectively. In conclusion, the effects of azole resistance mechanisms on isavuconazole did not differ significantly from those of other azoles. Resistance mechanisms in yeasts involving ABC transporters and ERG11 decreased the activity of isavuconazole, while MDR1 had limited effect. PMID:26482310

  15. In pursuit of the ideal antifungal agent for Candida infections: high-throughput screening of small molecules.

    PubMed

    Wong, Sarah S W; Samaranayake, Lakshman P; Seneviratne, Chaminda J

    2014-11-01

    Candida infections have created a great burden on the public healthcare sector. The situation is worsened by recent epidemiological changes. Furthermore, the current arsenal of antifungal agents is limited and associated with undesirable drawbacks. Therefore, new antifungal agents that surpass the existing ones are urgently needed. High-throughput screening of small molecule libraries enables rapid hit identification and, possibly, increases hit rate. Moreover, the identified hits could be associated with unrecognized or multiple drug targets, which would provide novel insights into the biological processes of the pathogen. Hence, it is proposed that high-throughput screening of small molecules is particularly important in the pursuit of the ideal antifungal agents for Candida infections. PMID:24952336

  16. In Vitro Antifungal Activities against Moulds Isolated from Dermatological Specimens

    PubMed Central

    Mohd Nizam, Tzar; Binting, Rabiatul Adawiyah AG.; Mohd Saari, Shafika; Kumar, Thivyananthini Vijaya; Muhammad, Marianayati; Satim, Hartini; Yusoff, Hamidah; Santhanam, Jacinta

    2016-01-01

    Background This study aimed to determine the minimum inhibitory concentrations (MICs) of various antifungal agents against moulds isolated from dermatological specimens. Methods We identified 29 moulds from dermatological specimens between October 2012 and March 2013 by conventional methods. We performed antifungal susceptibility testing on six antifungal agents, amphotericin B, clotrimazole, itraconazole, ketoconazole, miconazole and terbinafine, according to the Clinical and Laboratory Standards Institute guidelines contained in the M38-A2 document. Results Most antifungal agents were active against the dermatophytes, except for terbinafine against Trichophyton rubrum (geometric mean MIC, MICGM 3.17 μg/mL). The dematiaceous moulds were relatively susceptible to amphotericin B and azoles (MICGM 0.17–0.34 μg/mL), but not to terbinafine (MICGM 3.62 μg/mL). Septate hyaline moulds showed variable results between the relatively more susceptible Aspergillus spp. (MICGM 0.25–4 μg/mL) and the more resistant Fusarium spp. (MICGM 5.66–32 μg/mL). The zygomycetes were susceptible to amphotericin B (MICGM 0.5 μg/mL) and clotrimazole (MICGM 0.08 μg/mL), but not to other azoles (MICGM 2.52–4 μg/mL). Conclusion Amphotericin B and clotrimazole were the most effective antifungal agents against all moulds excepting Fusarium spp., while terbinafine was useful against dermatophytes (except T. rubrum) and Aspergillus spp. However, a larger study is required to draw more solid conclusions. PMID:27418867

  17. Identification of Aspergillus fumigatus multidrug transporter genes and their potential involvement in antifungal resistance.

    PubMed

    Meneau, Isabelle; Coste, Alix T; Sanglard, Dominique

    2016-08-01

    Aspergillus fumigatus can cause severe fatal invasive aspergillosis in immunocompromised patients but is also found in the environment. A. fumigatus infections can be treated with antifungals agents among which azole and echinocandins. Resistance to the class of azoles has been reported not only from patient samples but also from environmental samples. Azole resistance mechanisms involve for most isolates alterations at the site of the azole target (cyp51A); however, a substantial number of isolates can also exhibit non-cyp51A-mediated mechanisms.We aimed here to identify novel A. fumigatus genes involved in azole resistance. For this purpose, we designed a functional complementation system of A. fumigatus cDNAs expressed in a Saccharomyces cerevisiae isolate lacking the ATP Binding Cassette (ABC) transporter PDR5 and that was therefore more azole-susceptible than the parent wild type. Several genes were recovered including two distinct ABC transporters (atrF, atrI) and a Major Facilitator transporter (mdrA), from which atrI (Afu3g07300) and mdrA (Afu1g13800) were not yet described. atrI mediated resistance to itraconazole and voriconazole, while atrF only to voriconazole in S. cerevisiae Gene inactivation of each transporter in A. fumigatus indicated that the transporters were involved in the basal level of azole susceptibility. The expression of the transporters was addressed in clinical and environmental isolates with several azole resistance profiles. Our results show that atrI and mdrA tended to be expressed at higher levels than atrF in normal growth conditions. atrF was upregulated in 2/4 of azole-resistant environmental isolates and was the only gene with a significant association between transporter expression and azole resistance. In conclusion, this work showed the potential of complementation to identify functional transporters. The identified transporters were suggested to participate in azole resistance of A. fumigatus; however, this hypothesis will

  18. The Prevalence of Antifungal Agents Administration in Patients Undergoing Allogeneic Hematopoietic Stem Cell Transplantation: A Retrospective Study

    PubMed Central

    Kargar, Mona; Ahmadvand, Alireza; Ahmadvand, Milad; Hadjibabaie, Molouk; Gholami, Kheirollah; Khoee, Seyed Hamid; Javadi, Mohammad Reza; Ghavamzadeh, Ardeshir

    2013-01-01

    Background Invasive fungal infections (IFIs) are chief infectious complications in patients undergoing hematopoietic stem cell transplantation (HSCT). However, the diagnosis of fungal infections is difficult, and often empiric treatment initiates. Since there is no data available on the prevalence of antifungal drugs administration in allogeneic HSCT recipients in Iran, we decided to conduct this study. Methods This study was a retrospective review of records of patients who received allogeneic HSCT in the Hematology-Oncology, Bone Marrow Transplantation center at Shariati Hospital in Tehran, between August 2009 and August 2010. Results Sixty (73.1%) patients consist of 41 men (68.3%) with mean age of 26.3 (± 1.2) years received allogeneic HSCT. Patients received prophylaxis with fulconazole however; in 28 patients (46.7%) it was switched to low dose amphotericin B. Fifteen patients (25%) received treatment with antifungal agents. Amphotericin B was the empiric agent administered. In 3 patients treatment was switched to voriconazole. Neither positive culture nor direct microscopic evidence was available from the obtained specimen. Only in one patient the result of serum galactomannan assay was positive. There were no significant differences in neutropenia duration (P value: 0.54), length of hospital stay (P value: 0.27) and number of patients developed graft versus host disease (P value: 0.07) between patients received antifungal agents with those who did not receive treatment. Conclusion In this study HSCT recipients received antifungal agents for prophylaxis. Twenty five percent of patients received treatment with antifungal agents empirically. Improvement in diagnosis of these infections can be helpful and lead to targeted therapy. We suggest larger prospective trials for better assessment of antifungal agent administration. PMID:24505528

  19. First detection of Aspergillus fumigatus azole-resistant strain due to Cyp51A TR46/Y121F/T289A in an azole-naive patient in Spain.

    PubMed

    Pelaez, T; Monteiro, M C; Garcia-Rubio, R; Bouza, E; Gomez-Lopez, A; Mellado, E

    2015-07-01

    We report the first isolation of a voriconazole-resistant Aspergillus fumigatus strain harbouring the azole resistance mechanism TR46/Y121F/T289A, recovered from an azole-naive patient in Spain with chronic obstructive pulmonary disease. This new finding in Spain suggests the spread of this resistance mechanism and reinforces the need for antifungal susceptibility surveillance. PMID:26082842

  20. Quantitative and qualitative analyses of the cell death process in Candida albicans treated by antifungal agents.

    PubMed

    Kim, Kyung Sook; Kim, Young-Sun; Han, Ihn; Kim, Mi-Hyun; Jung, Min Hyung; Park, Hun-Kuk

    2011-01-01

    The death process of Candida albicans was investigated after treatment with the antifungal agents flucytosine and amphotericin B by assessing morphological and biophysical properties associated with cell death. C. albicans was treated varying time periods (from 6 to 48 hours) and examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). SEM and AFM images clearly showed changes in morphology and biophysical properties. After drug treatment, the membrane of C. albicans was perforated, deformed, and shrunken. Compared to the control, C. albicans treated with flucytosine was softer and initially showed a greater adhesive force. Conversely, C. albicans treated with amphotericin B was harder and had a lower adhesive force. In both cases, the surface roughness increased as the treatment time increased. The relationships between morphological changes and the drugs were observed by AFM clearly; the surface of C. albicans treated with flucytosine underwent membrane collapse, expansion of holes, and shrinkage, while the membranes of cells treated with amphotericin B peeled off. According to these observations, the death process of C. albicans was divided into 4 phases, CDP(0), CDP(1), CDP(2), and CDP(4), which were determined based on morphological changes. Our results could be employed to further investigate the antifungal activity of compounds derived from natural sources. PMID:22174777

  1. Repurposing the Clinically Efficacious Antifungal Agent Itraconazole as an Anticancer Chemotherapeutic.

    PubMed

    Pace, Jennifer R; DeBerardinis, Albert M; Sail, Vibhavari; Tacheva-Grigorova, Silvia K; Chan, Kelly A; Tran, Raymond; Raccuia, Daniel S; Wechsler-Reya, Robert J; Hadden, M Kyle

    2016-04-28

    Itraconazole (ITZ) is an FDA-approved member of the triazole class of antifungal agents. Two recent drug repurposing screens identified ITZ as a promising anticancer chemotherapeutic that inhibits both the angiogenesis and hedgehog (Hh) signaling pathways. We have synthesized and evaluated first- and second-generation ITZ analogues for their anti-Hh and antiangiogenic activities to probe more fully the structural requirements for these anticancer properties. Our overall results suggest that the triazole functionality is required for ITZ-mediated inhibition of angiogenesis but that it is not essential for inhibition of Hh signaling. The synthesis and evaluation of stereochemically defined des-triazole ITZ analogues also provides key information as to the optimal configuration around the dioxolane ring of the ITZ scaffold. Finally, the results from our studies suggest that two distinct cellular mechanisms of action govern the anticancer properties of the ITZ scaffold. PMID:27014922

  2. Natamycin as a selective antifungal agent in media for growth of Legionella spp.

    PubMed Central

    Edelstein, P H; Edelstein, M A

    1996-01-01

    The growth of 18 different Legionella sp. strains and 76 different yeast isolates was tested on buffered charcoal yeast extract medium supplemented with alpha-ketoglutarate (BCYE alpha medium) and with natamycin, an antifungal agent. Bacterial growth was no different on BCYE alpha medium made with or without natamycin, whereas complete inhibition of yeasts occurred in BCYE alpha medium containing 200 to 500 micrograms of natamycin per ml. Selective BCYE alpha media made with natamycin rather than anisomycin had no (formulation with vancomycin, polymyxin B, and agar) or little (formulation with cefamandole, polymyxin B, and agar) inhibitory effect on the growth of 14 different Legionella sp. bacteria. Natamycin is an inexpensive alternative to anisomycin in the formulation of selective BCYE alpha media. PMID:8748300

  3. Sparfloxacin-metal complexes as antifungal agents - Their synthesis, characterization and antimicrobial activities

    NASA Astrophysics Data System (ADS)

    Sultana, Najma; Arayne, M. Saeed; Gul, Somia; Shamim, Sana

    2010-06-01

    Metal complexes with the third-generation quinolone antibacterial agent sparfloxacin (SPFX) or 5-amino-1-cyclopropyl-7-(cis-3,5-dimethyl-1-piperazinyl)-6,8,di-fluoro-1-4-dihydro-4-oxo-3-quinocarboxylic acid have been synthesized and characterized with physicochemical and spectroscopic techniques such as TLC, IR, NMR and elemental analyses. In these complexes, sparfloxacin acts as bidentate deprotonated ligands bound to the metal through the pyridone oxygen and one carboxylate oxygen. The antimicrobial activity of these complexes has been evaluated against four Gram-positive and seven Gram-negative bacteria. Antifungal activity against five different fungi has been evaluated and compared with reference drug sparfloxacin. Fe 2+-SPFX and Cd 2+-SPFX complexes showed remarkable potency as compared to the parent drug.

  4. Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics.

    PubMed

    Meena, Khem Raj; Kanwar, Shamsher S

    2015-01-01

    A lot of crops are destroyed by the phytopathogens such as fungi, bacteria, and yeast leading to economic losses to the farmers. Members of the Bacillus genus are considered as the factories for the production of biologically active molecules that are potential inhibitors of growth of phytopathogens. Plant diseases constitute an emerging threat to global food security. Many of the currently available antimicrobial agents for agriculture are highly toxic and nonbiodegradable and thus cause extended environmental pollution. Moreover, an increasing number of phytopathogens have developed resistance to antimicrobial agents. The lipopeptides have been tried as potent versatile weapons to deal with a variety of phytopathogens. All the three families of Bacillus lipopeptides, namely, Surfactins, Iturins and Fengycins, have been explored for their antagonistic activities towards a wide range of phytopathogens including bacteria, fungi, and oomycetes. Iturin and Fengycin have antifungal activities, while Surfactin has broad range of potent antibacterial activities and this has also been used as larvicidal agent. Interestingly, lipopeptides being the molecules of biological origin are environmentally acceptable. PMID:25632392

  5. Lipopeptides as the Antifungal and Antibacterial Agents: Applications in Food Safety and Therapeutics

    PubMed Central

    Meena, Khem Raj; Kanwar, Shamsher S.

    2015-01-01

    A lot of crops are destroyed by the phytopathogens such as fungi, bacteria, and yeast leading to economic losses to the farmers. Members of the Bacillus genus are considered as the factories for the production of biologically active molecules that are potential inhibitors of growth of phytopathogens. Plant diseases constitute an emerging threat to global food security. Many of the currently available antimicrobial agents for agriculture are highly toxic and nonbiodegradable and thus cause extended environmental pollution. Moreover, an increasing number of phytopathogens have developed resistance to antimicrobial agents. The lipopeptides have been tried as potent versatile weapons to deal with a variety of phytopathogens. All the three families of Bacillus lipopeptides, namely, Surfactins, Iturins and Fengycins, have been explored for their antagonistic activities towards a wide range of phytopathogens including bacteria, fungi, and oomycetes. Iturin and Fengycin have antifungal activities, while Surfactin has broad range of potent antibacterial activities and this has also been used as larvicidal agent. Interestingly, lipopeptides being the molecules of biological origin are environmentally acceptable. PMID:25632392

  6. Antifungal susceptibilities of Paecilomyces species.

    PubMed

    Aguilar, C; Pujol, I; Sala, J; Guarro, J

    1998-07-01

    The MICs and minimum fungicidal concentrations (MFCs) of amphotericin B, miconazole, itraconazole, ketoconazole, fluconazole, and flucytosine for 52 isolates of Paecilomyces species were evaluated by the broth microdilution method, largely based on the recommendations of the National Committee for Clinical Laboratory Standards (document M27-A). The fungal isolates tested included 16 P. variotii, 11 P. lilacinus, 9 P. marquandii, 6 P. fumosoroseus, 4 P. javanicus, and 2 P. viridis isolates and 1 isolate of each of the following species: P. carneus, P. farinosus, P. fulvus, and P. niveus. The MFCs and the MICs at which 90% of isolates were inhibited (MIC90s) for the six antifungal agents were remarkably high; the MIC50s indicated that amphotericin B, miconazole, itraconazole, and ketoconazole had good activities, while fluconazole and flucytosine demonstrated poor efficacy. The ranges of the MICs were generally wider and lower than those of the MFCs. There were significant susceptibility differences among the species. All species with the exception of P. variotii were highly resistant to fluconazole and flucytosine; P. variotii was susceptible to flucytosine. Amphotericin B and the rest of the azoles showed good activity against P. variotii, while all the antifungal agents assayed showed low efficacy against P. lilacinus. PMID:9660991

  7. Antifungal Susceptibilities of Paecilomyces Species

    PubMed Central

    Aguilar, C.; Pujol, I.; Sala, J.; Guarro, J.

    1998-01-01

    The MICs and minimum fungicidal concentrations (MFCs) of amphotericin B, miconazole, itraconazole, ketoconazole, fluconazole, and flucytosine for 52 isolates of Paecilomyces species were evaluated by the broth microdilution method, largely based on the recommendations of the National Committee for Clinical Laboratory Standards (document M27-A). The fungal isolates tested included 16 P. variotii, 11 P. lilacinus, 9 P. marquandii, 6 P. fumosoroseus, 4 P. javanicus, and 2 P. viridis isolates and 1 isolate of each of the following species: P. carneus, P. farinosus, P. fulvus, and P. niveus. The MFCs and the MICs at which 90% of isolates were inhibited (MIC90s) for the six antifungal agents were remarkably high; the MIC50s indicated that amphotericin B, miconazole, itraconazole, and ketoconazole had good activities, while fluconazole and flucytosine demonstrated poor efficacy. The ranges of the MICs were generally wider and lower than those of the MFCs. There were significant susceptibility differences among the species. All species with the exception of P. variotii were highly resistant to fluconazole and flucytosine; P. variotii was susceptible to flucytosine. Amphotericin B and the rest of the azoles showed good activity against P. variotii, while all the antifungal agents assayed showed low efficacy against P. lilacinus. PMID:9660991

  8. Update on antifungal drug resistance mechanisms of Aspergillus fumigatus.

    PubMed

    Chamilos, G; Kontoyiannis, D P

    2005-12-01

    Although the arsenal of agents with anti-Aspergillus activity has expanded over the last decade, mortality due to invasive aspergillosis (IA) remains unacceptably high. Aspergillus fumigatus still accounts for the majority of cases of IA; however less susceptible to antifungals non-fumigatus aspergilli began to emerge. Antifungal drug resistance of Aspergillus might partially account for treatment failures. Recent advances in our understanding of mechanisms of antifungal drug action in Aspergillus, along with the standardization of in vitro susceptibility testing methods, has brought resistance testing to the forefront of clinical mycology. In addition, molecular biology has started to shed light on the mechanisms of resistance of A. fumigatus to azoles and the echinocandins, while genome-based assays show promise for high-throughput screening for genotypic antifungal resistance. Several problems remain, however, in the study of this complex area. Large multicenter clinical studies--point prevalence or longitudinal--to capture the incidence and prevalence of antifungal resistance in A. fumigatus isolates are lacking. Correlation of in vitro susceptibility with clinical outcome and susceptibility breakpoints has not been established. In addition, the issue of cross-resistance between the newer triazoles is of concern. Furthermore, in vitro resistance testing for polyenes and echinocandins is difficult, and their mechanisms of resistance are largely unknown. This review examines challenges in the diagnosis, epidemiology, and mechanisms of antifungal drug resistance in A. fumigatus. PMID:16488654

  9. Nucleotide substitutions in the Candida albicans ERG11 gene of azole-susceptible and azole-resistant clinical isolates.

    PubMed

    Strzelczyk, Joanna Katarzyna; Slemp-Migiel, Anna; Rother, Magdalena; Gołąbek, Karolina; Wiczkowski, Andrzej

    2013-01-01

    One of the mechanisms of Candida albicans resistance to azole drugs used in antifungal therapy relies on increased expression and presence of point mutations in the ERG11 gene that encodes sterol 14α demethylase (14DM), an enzyme which is the primary target for the azole class of antifungals. The aim of the study was to analyze nucleotide substitutions in the Candida albicans ERG11 gene of azole-susceptible and azole-resistant clinical isolates. The Candida albicans isolates represented a collection of 122 strains selected from 658 strains isolated from different biological materials. Samples were obtained from hospitalized patients. Fluconazole susceptibility was tested in vitro using a microdilution assay. Candida albicans strains used in this study consisted of two groups: 61 of the isolates were susceptible to azoles and the 61 were resistant to azoles. Four overlapping regions of the ERG11 gene of the isolates of Candida albicans strains were amplified and sequenced. The MSSCP (multitemperature single strand conformation polymorphism) method was performed to select Candida albicans samples presenting genetic differences in the ERG11 gene fragments for subsequent sequence analysis. Based on the sequencing results we managed to detect 19 substitutions of nucleotides in the ERG11 gene fragments. Sequencing revealed 4 different alterations: T495A, A530C, G622A and A945C leading to changes in the corresponding amino acid sequence: D116E, K128T, V159I and E266D. The single nucleotide changes in the ERG11 gene did not affect the sensitivity of Candida albicans strains, whereas multiple nucleotide substitutions in the ERG11 gene fragments indicated a possible relation with the increase in resistance to azole drugs. PMID:24340302

  10. Improved method for azole antifungal susceptibility testing.

    PubMed Central

    Gordon, M A; Lapa, E W; Passero, P G

    1988-01-01

    A reproducible method is described for the determination of the MICs of ketoconazole, miconazole, fluconazole, and itraconazole with sharp endpoints when employed with either yeasts or molds. A semisolid medium is used with controlled pH and standardized inoculum. The time of reading results is a critical factor in the conduct of this test. The medium is simple to prepare and has a relatively long refrigerator shelf life in a user-ready state, requiring only the addition of a freshly prepared inoculum after restoration to room temperature. Images PMID:2846651

  11. Voriconazole: How to Use This Antifungal Agent and What to Expect.

    PubMed

    Malani, Anurag N; Kerr, Lisa E; Kauffman, Carol A

    2015-10-01

    Voriconazole is an important agent in the antifungal armamentarium. It is the treatment of choice for invasive aspergillosis, other hyaline molds, and many brown-black molds. It is also effective for infections caused by Candida species, including those that are fluconazole resistant, and for infections caused by the endemic mycoses, including those that occur in the central nervous system. It has the advantage of being available in both an intravenous and an oral formulation that is well absorbed. Drawbacks to the use of voriconazole are that it has unpredictable, nonlinear pharmacokinetics with extensive interpatient and intrapatient variation in serum levels. Some of the adverse effects seen with voriconazole are related to high serum concentrations, and, as a result, therapeutic drug monitoring is essential when using this agent. Drug-drug interactions are common, and possible interactions must be sought before voriconazole is prescribed. With prolonged use, newly described adverse effects, including periostitis, alopecia, and development of skin cancers, have been noted. PMID:26398543

  12. In Vitro Activities of Five Antifungal Drugs Against Opportunistic Agents of Aspergillus Nigri Complex.

    PubMed

    Badali, Hamid; Fakhim, Hamed; Zarei, Fereshteh; Nabili, Mojtaba; Vaezi, Afsane; Poorzad, Nafiseh; Dolatabadi, Somayeh; Mirhendi, Hossein

    2016-04-01

    Black aspergilli, particularly Aspergillus niger and A. tubingensis, are the most common etiological agents of otomycosis followed by onychomycosis, pulmonary aspergillosis and aspergilloma. However, so far there is no systematic study on their antifungal susceptibility profiles. A collection of 124 clinical and environmental species of black aspergilli consisted of A. niger, A. tubingensis, A. uvarum. A. acidus and A. sydowii were verified by DNA sequencing of the partial β-tubulin gene. MICs of amphotericin B, itraconazole, voriconazole, posaconazole, and MECs of caspofungin were performed based on CLSI M38-A2. Posaconazole and caspofungin had the lowest MIC range (0.016-0.125 µg/ml and 0.008-0.031 µg/ml, respectively), followed by amphotericin B (0.25-4 µg/ml), voriconazole (0.125-16 µg/ml) and itraconazole (0.25 to >16) in an increasing order. Some strains of A. niger showed high MIC value for itraconazole and voriconazole (>16 µg/ml), in contrast only environmental isolates of A. tubingensis had high itraconazole MICs (>16 µg/ml). These results confirm that posaconazole and caspofungin are potential drugs for treatment of aspergillosis due to opportunistic agents of Aspergillus Nigri complex. However, in vivo efficacy remains to be determined. PMID:26615417

  13. Cilofungin (LY121019), an antifungal agent with specific activity against Candida albicans and Candida tropicalis.

    PubMed Central

    Hall, G S; Myles, C; Pratt, K J; Washington, J A

    1988-01-01

    Cilofungin (LY121019) is an antifungal agent that interferes with beta-glucan synthesis in the cells walls of fungi. The activity of this agent against 256 clinical isolates of yeasts was determined. It was found to be very active in vitro against Candida albicans (MIC for 90% of isolates [MIC90], less than or equal to 0.31 microgram/ml; minimal fungicidal concentration for 90% of isolates [MFC90], less than or equal to 0.31 micrograms/ml) and C. tropicalis (MIC90, less than or equal to 0.31 microgram/ml; MFC90, less than or equal to 0.31 microgram/ml) and moderately active against Torulopsis glabrata (MIC90 and MFC90, less than or equal to 20 micrograms/ml). All C. parapsilosis, Cryptococcus, and Saccharomyces cerevisiae strains were resistant. The activity of cilofungin was affected by medium and inoculum size. Antibiotic medium no. 3 was used as the standard medium. Isolates of C. albicans and C. tropicalis demonstrated a paradoxical effect in Sabouraud dextrose broth and yeast nitrogen base broth in that growth was partially inhibited at MICs equivalent to those in antibiotic medium no. 3, but growth continued, in many instances, throughout all concentrations tested. There was decreased activity of cilofungin with inocula greater than 10(5) CFU/ml. The temperature and duration of incubation did not affect its activity. Images PMID:3058017

  14. QuBiLs-MAS method in early drug discovery and rational drug identification of antifungal agents.

    PubMed

    Medina Marrero, R; Marrero-Ponce, Y; Barigye, S J; Echeverría Díaz, Y; Acevedo-Barrios, R; Casañola-Martín, G M; García Bernal, M; Torrens, F; Pérez-Giménez, F

    2015-01-01

    The QuBiLs-MAS approach is used for the in silico modelling of the antifungal activity of organic molecules. To this effect, non-stochastic (NS) and simple-stochastic (SS) atom-based quadratic indices are used to codify chemical information for a comprehensive dataset of 2478 compounds having a great structural variability, with 1087 of them being antifungal agents, covering the broadest antifungal mechanisms of action known so far. The NS and SS index-based antifungal activity classification models obtained using linear discriminant analysis (LDA) yield correct classification percentages of 90.73% and 92.47%, respectively, for the training set. Additionally, these models are able to correctly classify 92.16% and 87.56% of 706 compounds in an external test set. A comparison of the statistical parameters of the QuBiLs-MAS LDA-based models with those for models reported in the literature reveals comparable to superior performance, although the latter were built over much smaller and less diverse datasets, representing fewer mechanisms of action. It may therefore be inferred that the QuBiLs-MAS method constitutes a valuable tool useful in the design and/or selection of new and broad spectrum agents against life-threatening fungal infections. PMID:26567876

  15. Non-cytotoxic antifungal agents: isolation and structures of gageopeptides A-D from a Bacillus strain 109GGC020.

    PubMed

    Tareq, Fakir Shahidullah; Lee, Min Ah; Lee, Hyi-Seung; Lee, Yeon-Ju; Lee, Jong Seok; Hasan, Choudhury M; Islam, Md Tofazzal; Shin, Hee Jae

    2014-06-18

    Antifungal resistance and toxicity problems of conventional fungicides highlighted the requirement of search for new safe antifungal agents. To comply with the requirement, we discovered four new non-cytotoxic lipopeptides, gageopeptides A-D, 1-4, from a marine-derived bacterium Bacillus subtilis. The structures and stereochemistry of gageopeptides were determined by NMR data analysis and chemical means. Gageopeptides exhibited significant antifungal activities against pathogenic fungi Rhizoctonia solani, Botrytis cinerea, and Colletotrichum acutatum with minimum inhibitory concentration (MIC) values of 0.02-0.06 μM. In addition, these lipopeptides showed significant motility inhibition and lytic activities against zoospores of the late blight pathogen Phytophthora capsici. These compounds also showed potent antimicrobial activity against Gram positive and Gram negative bacteria with MIC values of 0.04-0.08 μM. However, gageopeptides A-D did not exhibit any cytotoxicity (GI50 > 25 μM) against cancer cell lines in sulforhodamine B (SRB), 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), and WST-1 ((4-[3-4-iodophenyl]-2-(4-nitrophenyl)-2H-5-tetrazolio)-1,3-benzene disulfonate)) assays, demonstrating that these compounds could be promising candidates for the development of non-cytotoxic antifungal agents. PMID:24857413

  16. Augmenting antifungal activity of oxidizing agent with kojic acid: Control of Penicillium strains infecting crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxidative treatment is a strategy for preventing Penicillium contamination in foods or crops. Antifungal efficacy of oxidant [hydrogen peroxide (H2O2)], biotic effector [kojic acid (KA)] and abiotic stress (heat), alone or in combination, was investigated in Penicillium. The levels of antifungal int...

  17. Biodirected synthesis of Miconazole-conjugated bacterial silver nanoparticles and their application as antifungal agents and drug delivery vehicles.

    PubMed

    Kumar, C Ganesh; Poornachandra, Y

    2015-01-01

    The recent strategy to improve the efficacy of drugs is to combine them with metal nanoparticles for the control of microbial infections. Considering this fact, we developed a low cost and eco-friendly method for silver nanoparticles synthesis using the cell free supernatant of Delftia sp. strain KCM-006 and their application as antifungal agents and as a drug carrier. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis revealed the formation of spherical and monodispersed silver nanoparticles with an average size of 9.8 nm. The synthesized nanoparticles were found to be photoluminescent, highly stable and crystalline in nature having a zeta potential of -31 mV. The silver nanoparticles exhibited very good antifungal activity against various pathogenic Candida strains. Furthermore, the efficacy of nanoparticles was increased by conjugating the antifungal drug Miconazole to silver nanoparticles which exhibited significant fungicidal activity, inhibition of ergosterol biosynthesis and biofilm inhibition by increasing ROS levels. In addition, the cell viability and immunocytochemistry analysis against different normal cell lines including Chinese hamster ovary cells (CHO), human lung cell line (MRC5) and human vascular endothelial cells (HUVEC) demonstrated that these nanoparticles were non-toxic up to a concentration of 20 μM. In conclusion, these results suggest that the synthesized nanoparticles find application as both antifungal agents and drug delivery vehicles. This is a first report on the preparation of silver nanoparticles using culture supernatant from Delftia sp. and also on the conjugation of Miconazole, an antifungal drug, to the bacterial silver nanoparticles. PMID:25460601

  18. Enzymatic Activity and Susceptibility to Antifungal Agents of Brazilian Environmental Isolates of Hortaea werneckii.

    PubMed

    Formoso, Andrea; Heidrich, Daiane; Felix, Ciro Ramón; Tenório, Anne Carolyne; Leite, Belize R; Pagani, Danielle M; Ortiz-Monsalve, Santiago; Ramírez-Castrillón, Mauricio; Landell, Melissa Fontes; Scroferneker, Maria L; Valente, Patricia

    2015-12-01

    Four strains of Hortaea werneckii were isolated from different substrates in Brazil (a salt marsh macrophyte, a bromeliad and a marine zoanthid) and had their identification confirmed by sequencing of the 26S rDNA D1/D2 domain or ITS region. Most of the strains were able to express amylase, lipase, esterase, pectinase and/or cellulase, enzymes that recognize components of plant cells as substrates, but did not express albuminase, keratinase, phospholipase and DNAse, whose substrates are animal-related. Urease production was positive for all isolates, while caseinase, gelatinase and laccase production were variable among the strains. All the strains grew in media containing up to 30% NaCl. We propose that the primary substrate associated with H. werneckii is plant-related, in special in saline environments, where the fungus may live as a saprophyte and decomposer. Infection of animal-associated substrates would be secondary, with the fungus acting as an opportunistic animal pathogen. All strains were resistant to fluconazole and presented high MIC for amphotericin B, while they were susceptible to all the other antifungal agents tested. PMID:26162643

  19. Progressive development in experimental models of transungual drug delivery of anti-fungal agents.

    PubMed

    Thatai, P; Tiwary, A K; Sapra, B

    2016-02-01

    Pre-clinical development comprises of different procedures that relate drug discovery in the laboratory for commencement of human clinical trials. Pre-clinical studies can be designed to recognize a lead candidate from a list to develop the procedure for scale-up, to choose the unsurpassed formulation, to determine the frequency, and duration of exposure; and eventually make the foundation of the anticipated clinical trial design. The foremost aim in the pharmaceutical research and industry is the claim of drug product quality throughout a drug's life cycle. The particulars of the pre-clinical development process for different candidates may vary; however, all have some common features. Typically in vitro, in vivo or ex vivo studies are elements of pre-clinical studies. Human pharmacokinetic in vivo studies are often supposed to serve as the 'gold standard' to assess product performance. On the other hand, when this general assumption is revisited, it appears that in vitro studies are occasionally better than in vivo studies in assessing dosage forms. The present review is compendious of different such models or approaches that can be used for designing and evaluation of formulations for nail delivery with special reference to anti-fungal agents. PMID:25919363

  20. Purification of an antifungal endochitinase from a potential biocontrol Agent Streptomyces griseus.

    PubMed

    Rabeeth, M; Anitha, A; Srikanth, Geetha

    2011-08-15

    Streptomyces griseus (MTCC 9723) is a chitinolytic bacterium isolated from prawn cultivated pond soil of Peddapuram Village; East Godavari District was studied in detailed. Chitinase (EC 3.2.1.14) was extracted from the culture filtrate of Streptomyces griseus and purified by ammonium sulfate precipitation, DEAE-cellulose ionexchange chromatography, Sephadex G-100 and Sephadex G-200 gel filtration chromatography. The molecular mass of the purified chitinase was estimated to be 34, 32 kDa by SDS gel electrophoresis and confirmed by activity staining with Calcofluor White M2R. Chitinase was optimally active at pH of 6.0 and at 40 degrees C. The enzyme was stable from pH 5-9 and up to 20-50 degrees C. The chitinase exhibited Km and Vmax values of 400 mg and 180 IU mL(-1) for colloidal chitin. Among the metals and inhibitors that were tested, the Hg+, Hg2+ and P-chloromercuribenzoic acid completely inhibited the chitinase activity at 1 mM concentration. The purified chitinase showed high activity on colloidal chitin, chitobiose, and chitooligosaccharide. An in vitro assay proved that the crude chitinase, actively growing cells of S. griseus having antifungal activity against all studied fungal pathogen. This result implies that characteristics of S. griseus producing endochitinase made them suitable for biotechnological purpose such as for degradation of chitin containing waste and it might be a promising biocontrol agent for plant pathogens. PMID:22545353

  1. Mechanism of Action of ME1111, a Novel Antifungal Agent for Topical Treatment of Onychomycosis.

    PubMed

    Takahata, Sho; Kubota, Natsuki; Takei-Masuda, Naomi; Yamada, Tsuyoshi; Maeda, Mari; Alshahni, Mohamed Mahdi; Abe, Shigeru; Tabata, Yuji; Maebashi, Kazunori

    2016-02-01

    Despite the existing treatment options for onychomycosis, there remains a strong demand for potent topical medications. ME1111 is a novel antifungal agent that is active against dermatophytes, has an excellent ability to penetrate human nails, and is being developed as a topical agent for onychomycosis. In the present study, we investigated its mechanism of action. Trichophyton mentagrophytes mutants with reduced susceptibility to ME1111 were selected in our laboratory, and genome sequences were determined for 3 resistant mutants. The inhibitory effect on a candidate target was evaluated by a spectrophotometric enzyme assay using mitochondrial fractions. Point mutations were introduced into candidate genes by a reverse genetics approach. Whole-genome analysis of the 3 selected mutants revealed point mutations in the structural regions of genes encoding subunits of succinate dehydrogenase (complex II). All of the laboratory-generated resistant mutants tested harbored a mutation in one of the subunits of succinate dehydrogenase (SdhB, SdhC, or SdhD). Most of the mutants showed cross-resistance to carboxin and boscalid, which are succinate dehydrogenase inhibitors. ME1111 strongly inhibited the succinate-2,6-dichlorophenolindophenol reductase reaction in Trichophyton rubrum and T. mentagrophytes (50% inhibitory concentrations [IC50s] of 0.029 and 0.025 μg/ml, respectively) but demonstrated only moderate inhibition of the same reaction in human cell lines. Furthermore, the target protein of ME1111 was confirmed by the introduction of point mutations causing the amino acid substitutions in SdhB, SdhC, and SdhD found in the laboratory-generated resistant mutants, which resulted in reduced susceptibility to ME1111. Thus, ME1111 is a novel inhibitor of the succinate dehydrogenase of Trichophyton species, and its mechanism of action indicates its selective profile. PMID:26596944

  2. Antifungal activities of diphenyl diselenide and ebselen alone and in combination with antifungal agents against Fusarium spp.

    PubMed

    Venturini, Tarcieli Pozzebon; Chassot, Francieli; Loreto, Érico Silva; Keller, Jéssica Tairine; Azevedo, Maria Izabel; Zeni, Gilson; Santurio, Janio Morais; Alves, Sydney Hartz

    2016-07-01

    Herein, we describe the in vitro activity of a combination of the organoselenium compounds diphenyl diselenide and ebselen alone and in combination with amphotericin B, caspofungin, itraconazole, and voriconazole against 25 clinical isolates of Fusarium spp. For this analysis, we used the broth microdilution method based on the M38-A2 technique and checkerboard microdilution method. Diphenyl diselenide (MIC range = 4-32 μg/ml) and ebselen (MIC range = 2-8 μg/ml) showed in vitro activity against the isolates tested. The most effective combinations were (synergism rates): ebselen + amphotericin B (88%), ebselen + voriconazole (80%), diphenyl diselenide + amphotericin B (72%), and diphenyl diselenide + voriconazole (64%). Combination with caspofungin resulted in low rates of synergism: ebselen + caspofungin, 36%, and diphenyl diselenide + caspofungin, 28%; combination with itraconazole demonstrated indifferent interactions. Antagonistic effects were not observed for any of the combinations tested. Our findings suggest that the antifungal potential of diphenyl diselenide and ebselen deserves further investigation in in vivo experimental models, especially in combination with amphotericin B and voriconazole. PMID:26773133

  3. Antifungal treatment in allergic bronchopulmonary aspergillosis with and without cystic fibrosis: a systematic review.

    PubMed

    Moreira, A S; Silva, D; Ferreira, A Reis; Delgado, L

    2014-10-01

    Allergic bronchopulmonary aspergillosis (ABPA) is a rare disease that affects patients with asthma or cystic fibrosis. Its debilitating course has led to the search for new treatments, including antifungals and monoclonal antibodies. To evaluate the efficacy and safety of antifungal treatments in patients with ABPA and either asthma or cystic fibrosis, we performed a systematic review of the literature on the effects of antifungal agents in ABPA using three biomedical databases. Quality assessment was performed using the GRADE methodology and, where appropriate, studies with comparable outcomes were pooled for meta-analysis. Thirty-eight studies - four randomized controlled trials and 34 observational studies - met the eligibility criteria. The antifungal interventions described were itraconazole, voriconazole, posaconazole, ketoconazole, natamycin, nystatin and amphotericin B. An improvement in symptoms, frequency of exacerbations and lung function was reported in most of the studies and was more common with oral azoles. Antifungals also had a positive impact on biomarkers and radiological pulmonary infiltrates, but adverse effects were also common. The quality of the evidence supporting these results was low or very low due to a shortage of controlled studies, heterogeneity between studies and potential bias. Antifungal interventions in ABPA improved patient and disease outcomes in both asthma and cystic fibrosis. However, the recommendation for their use is weak and clinicians should therefore weigh up desirable and undesirable effects on a case-by-case basis. More studies with a better methodology are needed, especially in cystic fibrosis, to increase confidence in the effects of antifungal treatments in ABPA. PMID:24809846

  4. Antifungal susceptibility profiles of 1698 yeast reference strains revealing potential emerging human pathogens.

    PubMed

    Desnos-Ollivier, Marie; Robert, Vincent; Raoux-Barbot, Dorothée; Groenewald, Marizeth; Dromer, Françoise

    2012-01-01

    New molecular identification techniques and the increased number of patients with various immune defects or underlying conditions lead to the emergence and/or the description of novel species of human and animal fungal opportunistic pathogens. Antifungal susceptibility provides important information for ecological, epidemiological and therapeutic issues. The aim of this study was to assess the potential risk of the various species based on their antifungal drug resistance, keeping in mind the methodological limitations. Antifungal susceptibility profiles to the five classes of antifungal drugs (polyens, azoles, echinocandins, allylamines and antimetabolites) were determined for 1698 yeast reference strains belonging to 992 species (634 Ascomycetes and 358 Basidiomycetes). Interestingly, geometric mean minimum inhibitory concentrations (MICs) of all antifungal drugs tested were significantly higher for Basidiomycetes compared to Ascomycetes (p<0.001). Twenty four strains belonging to 23 species of which 19 were Basidiomycetes seem to be intrinsically "resistant" to all drugs. Comparison of the antifungal susceptibility profiles of the 4240 clinical isolates and the 315 reference strains belonging to 53 shared species showed similar results. Even in the absence of demonstrated in vitro/in vivo correlation, knowing the in vitro susceptibility to systemic antifungal agents and the putative intrinsic resistance of yeast species present in the environment is important because they could become opportunistic pathogens. PMID:22396754

  5. Evaluation of Antifungal Activity and Mode of Action of New Coumarin Derivative, 7-Hydroxy-6-nitro-2H-1-benzopyran-2-one, against Aspergillus spp.

    PubMed Central

    Guerra, Felipe Queiroga Sarmento; de Araújo, Rodrigo Santos Aquino; de Sousa, Janiere Pereira; Pereira, Fillipe de Oliveira; Mendonça-Junior, Francisco J. B.; Barbosa-Filho, José M.; de Oliveira Lima, Edeltrudes

    2015-01-01

    Aspergillus spp. produce a wide variety of diseases. For the treatment of such infections, the azoles and Amphotericin B are used in various formulations. The treatment of fungal diseases is often ineffective, because of increases in azole resistance and their several associated adverse effects. To overcome these problems, natural products and their derivatives are interesting alternatives. The aim of this study was to examine the effects of coumarin derivative, 7-hydroxy-6-nitro-2H-1-benzopyran-2-one (Cou-NO2), both alone and with antifungal drugs. Its mode of action against Aspergillus spp. Cou-NO2 was tested to evaluate its effects on mycelia growth and germination of fungal conidia of Aspergillus spp. We also investigated possible Cou-NO2 action on cell walls (0.8 M sorbitol) and on Cou-NO2 to ergosterol binding in the cell membrane. The study shows that Cou-NO2 is capable of inhibiting both the mycelia growth and germination of conidia for the species tested, and that its action affects the structure of the fungal cell wall. At subinhibitory concentration, Cou-NO2 enhanced the in vitro effects of azoles. Moreover, in combination with azoles (voriconazole and itraconazole) Cou-NO2 displays an additive effect. Thus, our study supports the use of coumarin derivative 7-hydroxy-6-nitro-2H-1-benzopyran-2-one as an antifungal agent against Aspergillus species. PMID:26175794

  6. In vitro antifungal activity of ME1111, a new topical agent for onychomycosis, against clinical isolates of dermatophytes.

    PubMed

    Ghannoum, M; Isham, N; Long, L

    2015-09-01

    The treatment of onychomycosis has improved considerably over the past several decades following the introduction of the oral antifungals terbinafine and itraconazole. However, these oral agents suffer from certain disadvantages, including drug interactions and potential liver toxicity. Thus, there is a need for new topical agents that are effective against onychomycosis. ME1111 is a novel selective inhibitor of succinate dehydrogenase (complex II) of dermatophyte species, whose small molecular weight enhances its ability to penetrate the nail plate. In this study, we determined the antifungal activity of ME1111 against dermatophyte strains, most of which are known to cause nail infections, as measured by the MIC (n = 400) and the minimum fungicidal concentration (MFC) (n = 300). Additionally, we examined the potential for resistance development in dermatophytes (n = 4) following repeated exposure to ME1111. Our data show that the MIC90 of ME1111 against dermatophyte strains was 0.25 μg/ml, which was equivalent to that of the comparators amorolfine and ciclopirox (0.25 and 0.5 μg/ml, respectively). ME1111 was fungicidal at clinically achievable concentrations against dermatophytes, and its MFC90s against Trichophyton rubrum and Trichophyton mentagrophytes were 8 μg/ml, comparable to those of ciclopirox. Furthermore, ME1111, as well as ciclopirox, did not induce resistance in 4 dermatophytes tested. Our studies show that ME1111 possesses potent antifungal activity and suggest that it has low potential for the development of resistance in dermatophytes. PMID:26055386

  7. In Vitro Antifungal Activity of ME1111, a New Topical Agent for Onychomycosis, against Clinical Isolates of Dermatophytes

    PubMed Central

    Isham, N.; Long, L.

    2015-01-01

    The treatment of onychomycosis has improved considerably over the past several decades following the introduction of the oral antifungals terbinafine and itraconazole. However, these oral agents suffer from certain disadvantages, including drug interactions and potential liver toxicity. Thus, there is a need for new topical agents that are effective against onychomycosis. ME1111 is a novel selective inhibitor of succinate dehydrogenase (complex II) of dermatophyte species, whose small molecular weight enhances its ability to penetrate the nail plate. In this study, we determined the antifungal activity of ME1111 against dermatophyte strains, most of which are known to cause nail infections, as measured by the MIC (n = 400) and the minimum fungicidal concentration (MFC) (n = 300). Additionally, we examined the potential for resistance development in dermatophytes (n = 4) following repeated exposure to ME1111. Our data show that the MIC90 of ME1111 against dermatophyte strains was 0.25 μg/ml, which was equivalent to that of the comparators amorolfine and ciclopirox (0.25 and 0.5 μg/ml, respectively). ME1111 was fungicidal at clinically achievable concentrations against dermatophytes, and its MFC90s against Trichophyton rubrum and Trichophyton mentagrophytes were 8 μg/ml, comparable to those of ciclopirox. Furthermore, ME1111, as well as ciclopirox, did not induce resistance in 4 dermatophytes tested. Our studies show that ME1111 possesses potent antifungal activity and suggest that it has low potential for the development of resistance in dermatophytes. PMID:26055386

  8. Self-assembled cardanol azo derivatives as antifungal agent with chitin-binding ability.

    PubMed

    Mahata, Denial; Mandal, Santi M; Bharti, Rashmi; Gupta, Vinay Krishna; Mandal, Mahitosh; Nag, Ahindra; Nando, Golok B

    2014-08-01

    Cardanol is a non-isoprenoic phenolic lipid-mixture of distilled cashew nut shell liquid obtained from Anacardium occidentale. Herein, cardanol is purified from cashew nut shell liquid (CNSL) and synthesized to new compounds with different azo amphiphiles. These synthesized compounds are allowed to self-assembled in hydrophobic environment and checked antifungal activity against Candida albicans. Self-assembled structure of CABA showed higher antifungal activity (16μg/mL) and chitin-binding ability in comparison to CAP and CANB. Furthermore, the self-assembled azo amphiphiles are immobilized with silver ions to prepare hydrogel which showed eight folds enhanced antifungal activity. Toxicity is reduced by several folds of self-assembled or hydrogel structure in comparison to pure compounds. Thus, the self-assembled structure of amphiphiles and their hydrogels have been found to be new macromolecules of interest with potential use as antifungal drugs. PMID:24836571

  9. Consensus guidelines for optimising antifungal drug delivery and monitoring to avoid toxicity and improve outcomes in patients with haematological malignancy, 2014.

    PubMed

    Chau, M M; Kong, D C M; van Hal, S J; Urbancic, K; Trubiano, J A; Cassumbhoy, M; Wilkes, J; Cooper, C M; Roberts, J A; Marriott, D J E; Worth, L J

    2014-12-01

    Antifungal agents may be associated with significant toxicity or drug interactions leading to sub-therapeutic antifungal drug concentrations and poorer clinical outcomes for patients with haematological malignancy. These risks may be minimised by clinical assessment, laboratory monitoring, avoidance of particular drug combinations and dose modification. Specific measures, such as the optimal timing of oral drug administration in relation to meals, use of pre-hydration and electrolyte supplementation may also be required. Therapeutic drug monitoring (TDM) of antifungal agents is warranted, especially where non-compliance, non-linear pharmacokinetics, inadequate absorption, a narrow therapeutic window, suspected drug interaction or unexpected toxicity are encountered. Recommended indications for voriconazole and posaconazole TDM in the clinical management of haematology patients are provided. With emerging knowledge regarding the impact of pharmacogenomics upon metabolism of azole agents (particularly voriconazole), potential applications of pharmacogenomic evaluation to clinical practice are proposed. PMID:25482746

  10. Antifungal agent utilization evaluation in hospitalized neutropenic cancer patients at a large teaching hospital

    PubMed Central

    Vazin, Afsaneh; Davarpanah, Mohammad Ali; Ghalesoltani, Setareh

    2015-01-01

    To evaluate pattern of using of three antifungal drugs: fluconazole, amphotericin B and voriconazole, at the hematology–oncology and bone marrow transplant wards of one large teaching hospital. In a prospective cross-sectional study, we evaluated the appropriateness of using antifungal drugs in patients, using Infectious Disease Society of America (IDSA) and National Comprehensive Cancer Network (NCCN) guidelines. All the data were recorded daily by a pharmacist in a form designed by a clinical pharmacist and infectious diseases specialist, for antifungals usage, administration, and monitoring. During the study, 116 patients were enrolled. Indications of prescribing amphotericin B, fluconazole, and voriconazole were appropriate according to guidelines in 83.4%, 80.6%, and 76.9% respectively. The duration of treatments were appropriate according to guidelines in 75%, 64.5%, and 71.1% respectively. The dose of voriconazole was appropriate according to guidelines in 46.2% of patients. None of the patients received salt loading before administration of amphotericin B. The most considerable problems with the mentioned antifungals were about the indications and duration of treatment. In addition, prehydration for amphotericin B and dosage of voriconazole were not completely compatible with the mentioned guidelines. A suitable combination of controlling the use of antifungals and educational programs could be essential for improving the general process of using antifungal drugs at our hospital. PMID:26064070

  11. Synthesis and biological evaluation of novel fluconazole analogues bearing 1,3,4-oxadiazole moiety as potent antifungal agents.

    PubMed

    Liao, Jun; Yang, Fan; Zhang, Lei; Chai, Xiaoyun; Zhao, Qingjie; Yu, Shichong; Zou, Yan; Meng, Qingguo; Wu, Qiuye

    2015-04-01

    A novel series of fluconazole based mimics incorporating 1,3,4-oxadiazole moiety were designed and synthesized. All the title compounds were characterized by (1)H-NMR, (13)C-NMR, and Q-TOF-MS. Preliminary results revealed that most of analogues exhibited significant antifungal activity against seven pathogenic fungi. Compounds 9g and 9k (MIC80 ≤ 0.125 μg/mL, respectively) were found more potent than the positive controls itraconazole and fluconazole as broad-spectrum antifungal agents. The observed docking results showed that the 1,3,4-oxadiazole moiety enhanced the affinity binding to the cytochrome P450 14α-demethylase (CYP51). PMID:24838380

  12. New N,N,N',N'-tetradentate Pyrazoly Agents: Synthesis and Evaluation of their Antifungal and Antibacterial Activities.

    PubMed

    Abrigach, Farid; Bouchal, Btissam; Riant, Olivier; Macé, Yohan; Takfaoui, Abdelilah; Radi, Smaail; Oussaid, Abdelouahad; Bellaoui, Mohammed; Touzani, Rachid

    2016-01-01

    A new library of N,N,N',N' -tetradentate pyrazoly compounds containing a pyrazole moiety was synthesized by the condensation of (3,5-dimethyl-1H-pyrazol-1-yl)methanol 2a or (1H-pyrazol-1-yl)methanol 2b with a series of primary diamines in refluxed acetonitrile for 6h. The antifungal activity against the budding yeast Saccharomyces cerevisiae, as well as the antibacterial activity against Escherichia coli of these new tetradentate ligands were studied. We found that these tetradentate ligands act specifically as antifungal agents and lack antibacterial activity. Their biological activities depend on the nature of the structure of the compounds. PMID:25985861

  13. Importance of biofilm in Candida parapsilosis and evaluation of its susceptibility to antifungal agents by colorimetric method.

    PubMed

    Růzicka, F; Holá, V; Votava, M; Tejkalová, R

    2007-01-01

    The ability of C. parapsilosis (an important cause of nosocomial infections) to produce biofilm was evaluated in 32 bloodstream isolates and 85 strains isolated from skin. The biofilm formation was found in 19 (59%) blood isolates and only in 33 (39%) isolates from skin. The antifungal susceptibility was assessed for amphotericin B, itraconazole and voriconazole in planktonic and biofilm form of the 19 biofilm-positive bloodstream strains by broth microdilution method according to NCCLS standards. The method was modified by the use of resazurin as a colorimetric indicator of the metabolically active cells which makes the determination of the effect of antifungal agents easier. Biofilm forms of all strains were more resistant than their planktonic form. PMID:17702457

  14. Optimizing topical antifungal therapy for superficial cutaneous fungal infections: focus on topical naftifine for cutaneous dermatophytosis.

    PubMed

    Del Rosso, James Q; Kircik, Leon H

    2013-11-01

    Superficial cutaneous fungal infections (SCFIs) are commonly encountered in clinical practice in the United States, and comprise infections of the skin by dermatophytes and yeasts. The most common organisms causing SCFI are dermatophytes, especially Trichophyton spp. With the exception of onchomycosis and tinea capitis, most cases of SCFIs are amenable to properly selected topical antifungal therapy used over an adequate period of time.

    A variety of topical antifungal agents are available for the treatment of SCFIs, and they encompass a few major chemical classes: the polyenes (ie, nystatin), imidazoles (ie, ketoconazole, econazole, oxiconazole, etc), allylamines (ie, naftifine, terbinafine), benzylamines (ie, butenafine), and hydroxypyridones (ie, ciclopirox). The 2 major classes that represent the majority of available topical antifungal agents are the azoles and the allylamines. Overall, the allylamines are superior to the azoles in activity against dermatophytes, although both are clinically effective. The reverse is true against yeasts such as Candida spp and Malassezia spp, although topical allylamines have proven to be efficacious in some cases of tinea versicolor and cutaneous candidiasis.

    Naftifine, a topical allylamine, is fungicidal in vitro against a wide spectrum of dermatophyte fungi and has been shown to be highly effective against a variety of cutaneous dermatophyte infections. Rapid onset of clinical activity and favorable data on sustained clearance of infection have been documented with naftifine. The more recent addition of naftifine 2% cream has expanded the armamentarium, with data supporting a clinically relevant therapeutic reservoir effect after completion of therapy. PMID:24196340

  15. Analytical and Clinical Evaluation of the PathoNostics AsperGenius Assay for Detection of Invasive Aspergillosis and Resistance to Azole Antifungal Drugs during Testing of Serum Samples.

    PubMed

    White, P Lewis; Posso, Raquel B; Barnes, Rosemary A

    2015-07-01

    The commercially developed PathoNostics AsperGenius species assay is a multiplex real-time PCR capable of detecting aspergillosis and genetic markers associated with azole resistance. The assay is validated for testing bronchoalveolar lavage fluids, replacing the requirement for culture and benefiting patient management. Application of this assay to less invasive, easily obtainable samples (e.g., serum) might be advantageous. The aim of this study was to determine the analytical and clinical performance of the AsperGenius species and resistance assays for testing serum samples. For the analytical evaluations, serum samples were spiked with various concentrations of Aspergillus genomic DNA for extraction, following international recommendations. For the clinical study, 124 DNA extracts from 14 proven/probable invasive aspergillosis (IA) cases, 2 possible IA cases, and 33 controls were tested. The resistance assay was performed on Aspergillus fumigatus PCR-positive samples when a sufficient fungal burden was evident. The limits of detection of the species and resistance assays for A. fumigatus DNA were 10 and ≥75 genomes/sample, respectively. Nonreproducible detection at lower burdens was achievable for all markers. With a positivity threshold of 39 cycles, the sensitivity and specificity of the species assay were 78.6% and 100%, respectively. For 7 IA cases, at least one genetic region potentially associated with azole resistance was successfully amplified, although no resistance markers were detected in this small cohort. The AsperGenius assay provides good clinical performance with the added ability to detect azole resistance directly from noninvasive samples. While the available burden will limit application, it remains a significant advancement in the diagnosis and management of aspergillosis. PMID:25903571

  16. Analytical and Clinical Evaluation of the PathoNostics AsperGenius Assay for Detection of Invasive Aspergillosis and Resistance to Azole Antifungal Drugs during Testing of Serum Samples

    PubMed Central

    Posso, Raquel B.; Barnes, Rosemary A.

    2015-01-01

    The commercially developed PathoNostics AsperGenius species assay is a multiplex real-time PCR capable of detecting aspergillosis and genetic markers associated with azole resistance. The assay is validated for testing bronchoalveolar lavage fluids, replacing the requirement for culture and benefiting patient management. Application of this assay to less invasive, easily obtainable samples (e.g., serum) might be advantageous. The aim of this study was to determine the analytical and clinical performance of the AsperGenius species and resistance assays for testing serum samples. For the analytical evaluations, serum samples were spiked with various concentrations of Aspergillus genomic DNA for extraction, following international recommendations. For the clinical study, 124 DNA extracts from 14 proven/probable invasive aspergillosis (IA) cases, 2 possible IA cases, and 33 controls were tested. The resistance assay was performed on Aspergillus fumigatus PCR-positive samples when a sufficient fungal burden was evident. The limits of detection of the species and resistance assays for A. fumigatus DNA were 10 and ≥75 genomes/sample, respectively. Nonreproducible detection at lower burdens was achievable for all markers. With a positivity threshold of 39 cycles, the sensitivity and specificity of the species assay were 78.6% and 100%, respectively. For 7 IA cases, at least one genetic region potentially associated with azole resistance was successfully amplified, although no resistance markers were detected in this small cohort. The AsperGenius assay provides good clinical performance with the added ability to detect azole resistance directly from noninvasive samples. While the available burden will limit application, it remains a significant advancement in the diagnosis and management of aspergillosis. PMID:25903571

  17. Candida Infections, Causes, Targets, and Resistance Mechanisms: Traditional and Alternative Antifungal Agents

    PubMed Central

    Spampinato, Claudia

    2013-01-01

    The genus Candida includes about 200 different species, but only a few species are human opportunistic pathogens and cause infections when the host becomes debilitated or immunocompromised. Candida infections can be superficial or invasive. Superficial infections often affect the skin or mucous membranes and can be treated successfully with topical antifungal drugs. However, invasive fungal infections are often life-threatening, probably due to inefficient diagnostic methods and inappropriate initial antifungal therapies. Here, we briefly review our current knowledge of pathogenic species of the genus Candida and yeast infection causes and then focus on current antifungal drugs and resistance mechanisms. An overview of new therapeutic alternatives for the treatment of Candida infections is also provided. PMID:23878798

  18. Design, synthesis and evaluation of benzotriazole derivatives as novel antifungal agents.

    PubMed

    Shah, Jay J; Khedkar, Vijay; Coutinho, Evans C; Mohanraj, Krishnapriya

    2015-09-01

    Considering the need for discovery of new antifungal drugs with greater potency and broader spectrum of activity, a new series of 5-substituted benzotriazole derivatives were designed, through structure based design, as inhibitors of fungal cytochrome P450 lanosterol 14-α demethylase. These were further optimized by a combination of iterative medicinal chemistry principles and molecular docking. Based on the best docking scores, some benzotriazole derivatives were synthesized and characterized by IR, (1)H NMR and MS/MS. The molecules were evaluated for their antifungal action against Candida albicans by cup plate method and ergosterol quantification method by UV spectroscopy. Reasonably good correlation between docking scores and antifungal activity were observed. The computational predictions were in consensus with the experimental results. PMID:26117563

  19. Mitochondrial Complex I Is a Global Regulator of Secondary Metabolism, Virulence and Azole Sensitivity in Fungi

    PubMed Central

    Bromley, Mike; Johns, Anna; Davies, Emma; Fraczek, Marcin; Mabey Gilsenan, Jane; Kurbatova, Natalya; Keays, Maria; Kapushesky, Misha; Gut, Marta; Gut, Ivo; Denning, David W.; Bowyer, Paul

    2016-01-01

    Recent estimates of the global burden of fungal disease suggest that that their incidence has been drastically underestimated and that mortality may rival that of malaria or tuberculosis. Azoles are the principal class of antifungal drug and the only available oral treatment for fungal disease. Recent occurrence and increase in azole resistance is a major concern worldwide. Known azole resistance mechanisms include over—expression of efflux pumps and mutation of the gene encoding the target protein cyp51a, however, for one of the most important fungal pathogens of humans, Aspergillus fumigatus, much of the observed azole resistance does not appear to involve such mechanisms. Here we present evidence that azole resistance in A. fumigatus can arise through mutation of components of mitochondrial complex I. Gene deletions of the 29.9KD subunit of this complex are azole resistant, less virulent and exhibit dysregulation of secondary metabolite gene clusters in a manner analogous to deletion mutants of the secondary metabolism regulator, LaeA. Additionally we observe that a mutation leading to an E180D amino acid change in the 29.9 KD subunit is strongly associated with clinical azole resistant A. fumigatus isolates. Evidence presented in this paper suggests that complex I may play a role in the hypoxic response and that one possible mechanism for cell death during azole treatment is a dysfunctional hypoxic response that may be restored by dysregulation of complex I. Both deletion of the 29.9 KD subunit of complex I and azole treatment alone profoundly change expression of gene clusters involved in secondary metabolism and immunotoxin production raising potential concerns about long term azole therapy. PMID:27438017

  20. Mitochondrial Complex I Is a Global Regulator of Secondary Metabolism, Virulence and Azole Sensitivity in Fungi.

    PubMed

    Bromley, Mike; Johns, Anna; Davies, Emma; Fraczek, Marcin; Mabey Gilsenan, Jane; Kurbatova, Natalya; Keays, Maria; Kapushesky, Misha; Gut, Marta; Gut, Ivo; Denning, David W; Bowyer, Paul

    2016-01-01

    Recent estimates of the global burden of fungal disease suggest that that their incidence has been drastically underestimated and that mortality may rival that of malaria or tuberculosis. Azoles are the principal class of antifungal drug and the only available oral treatment for fungal disease. Recent occurrence and increase in azole resistance is a major concern worldwide. Known azole resistance mechanisms include over-expression of efflux pumps and mutation of the gene encoding the target protein cyp51a, however, for one of the most important fungal pathogens of humans, Aspergillus fumigatus, much of the observed azole resistance does not appear to involve such mechanisms. Here we present evidence that azole resistance in A. fumigatus can arise through mutation of components of mitochondrial complex I. Gene deletions of the 29.9KD subunit of this complex are azole resistant, less virulent and exhibit dysregulation of secondary metabolite gene clusters in a manner analogous to deletion mutants of the secondary metabolism regulator, LaeA. Additionally we observe that a mutation leading to an E180D amino acid change in the 29.9 KD subunit is strongly associated with clinical azole resistant A. fumigatus isolates. Evidence presented in this paper suggests that complex I may play a role in the hypoxic response and that one possible mechanism for cell death during azole treatment is a dysfunctional hypoxic response that may be restored by dysregulation of complex I. Both deletion of the 29.9 KD subunit of complex I and azole treatment alone profoundly change expression of gene clusters involved in secondary metabolism and immunotoxin production raising potential concerns about long term azole therapy. PMID:27438017

  1. Screening of antifungal agents using ethanol precipitation and bioautography of medicinal and food plants.

    PubMed

    Schmourlo, Gracilene; Mendonça-Filho, Ricardo R; Alviano, Celuta Sales; Costa, Sônia S

    2005-01-15

    In the search for bioactive compounds, bioautography and ethanol precipitation of macromolecules (proteins, polysaccharides, etc.) of plant aqueous extracts were associated in an antifungal screening. Thus, the supernatants, precipitates (obtained by ethanol precipitation) and aqueous extracts were investigated of medicinal and fruit bearing plants used against skin diseases by the Brazilian population. The agar diffusion and broth dilution methods were used to assess the activity against three fungi: Candida albicans, Trichophyton rubrum and Cryptococcus neoformans. The results, evaluated by the diameter of the inhibition zone of fungal growth, indicate that six plant species, among the 16 investigated, showed significant antifungal activity. The minimal inhibitory concentration (MIC) was determined on plant extracts that showed high efficacy against the tested microorganisms. The most susceptible yeast was Trichophyton rubrum and the best antifungal activity was shown by Xanthosoma sagittifolium supernatant. The bioautography was performed only for the aqueous extracts and supernatants of those plants that showed antifungal activity against Candida albicans and Cryptococcus neoformans, using n-butanol/acetic acid/water (BAW) 8:1:1 to develop silica gel TLC plates. Clear inhibition zones were observed for aqueous extracts of Schinus molle (R(f) 0.89) and Schinus terebinthifolius (R(f) 0.80) against Candida albicans, as for supernatant of Anacardium occidentale (R(f) 0.31) against Cryptococcus neoformans. The separation of macromolecules from metabolites, as in the case of Anacardium occidentale, Solanum sp. and Xanthosoma sagittifolium, enhances antifungal activity. In other cases, the antifungal activity is destroyed, as observed for Momordica charantia, Schinus molle and Schinus terebinthifolius. PMID:15619579

  2. Preliminary animal pharmacokinetics of the parenteral antifungal agent MK-0991 (L-743,872).

    PubMed

    Hajdu, R; Thompson, R; Sundelof, J G; Pelak, B A; Bouffard, F A; Dropinski, J F; Kropp, H

    1997-11-01

    MK-0991 (L-743,872) is a potent antifungal agent featuring long half-life pharmacokinetics. The pharmacokinetics of MK-0991 administered intravenously to mice, rats, rhesus monkeys, and chimpanzees is presented. Unique to MK-0991 is its consistent cross-species performance. The range of values for the pharmacokinetic parameters were as follows: clearance, 0.26 to 0.51 ml/min/kg; half-life, 5.2 to 7.6 h; and distributive volume, 0.11 to 0.27 liters/kg. The level of protein binding of MK-0991 was determined to be 96% in mouse and human serum. The compound exhibited high affinities for human serum albumin and at least two lipid components. The rationale for the selection of MK-0991 as a drug development candidate was based on its two- to threefold superior pharmacokinetic performance in chimpanzees over the performance of an otherwise equivalent analog, L-733,560. Once-daily dosing for MK-0991 is indicated by a graphical comparison of levels in the circulations of chimpanzees and mice. In a study of the pharmacokinetics of MK-0991 in mouse tissue, the organs were assayed following intraperitoneal administration. The area under the concentration-versus-time curves (AUC) segregated the tissues into three exposure categories relative to plasma. The tissues with greater exposure than that for plasma were liver (16 times), kidney (3 times), and large intestine (2 times). The exposure for small intestine, lung, and spleen were equivalent to that for plasma. Organs with lower levels of exposure were the heart (0.3 times that for plasma), thigh (0.2 times), and brain (0.06 times). Kinetically, drug was cleared more slowly from all tissues than from plasma, indicating that terminal-phase equilibrium had not been achieved by 24 h. Thus, some measure of accumulation is predicted for all tissues. Single daily doses of MK-0991 should provide adequate systemic levels of fungicidal activity as a result of its long half-life pharmacokinetics, wide distribution, and slowly

  3. Antifungal activity of Zuccagnia punctata Cav.: evidence for the mechanism of action.

    PubMed

    Svetaz, Laura; Agüero, María Belén; Alvarez, Sandra; Luna, Lorena; Feresin, Gabriela; Derita, Marcos; Tapia, Alejandro; Zacchino, Susana

    2007-08-01

    Petroleum ether and dichloromethane extracts of fruits, aerial parts and exudate of Zuccagnia punctata Cav. (Fabaceae) showed moderate antifungal activities against the yeasts C. albicans, S. cerevisiae and C. neoformans (MICs: 62.5 - 250 microg/mL) and very strong antifungal activities against the dermatophytes M. gypseum, T. rubrum and T. mentagrophytes (MICs: 8 - 16 microg/mL) thus supporting the ethnopharmacological use of this plant. Antifungal activity-directed fractionation of active extracts by using bioautography led to the isolation of 2',4'-dihydroxy-3'-methoxychalcone (1) and 2',4'-dihydroxychalcone (2) as the compounds responsible for the antifungal activity. Second-order studies included MIC (80), MIC (50) and MFC of both chalcones in an extended panel of clinical isolates of the most sensitive fungi, and also comprised a series of targeted assays. They showed that the most active chalcone 2 is fungicidal rather than fungistatic, does not disrupt the fungal membranes up to 4 x MFC and does not act by inhibiting the fungal cell wall. So, 2',4'-dihydroxychalcone would act by a different mechanism of action than the antifungal drugs in current clinical use, such as amphotericin B, azoles or echinocandins, and thus appears to be very promising as a novel antifungal agent. PMID:17628836

  4. Plant latex: a promising antifungal agent for post harvest disease control.

    PubMed

    Sibi, G; Wadhavan, Rashmi; Singh, Sneha; Shukla, Abhilasha; Dhananjaya, K; Ravikumar, K R; Mallesha, H

    2013-12-01

    Bioactive compounds from plant latex are potential source of antifungic against post harvest pathogens. Latex from a total of seven plant species was investigated for its phytochemical and antifungal properties. Six fungi namely Aspergillus fumigatus, A. niger, A. terreus, F. solani, P. digitatum and R. arrhizus were isolated from infected fruits and vegetables and tested against various solvent extracts of latex. Analysis of latex extracts with phytochemical tests showed the presence of alkaloids, flavonoids, glycosides, phenols, saponins, steroids, tannins and terpenoids. Antifungal assay revealed the potential inhibitory activity of petroleum ether extracts against the postharvest fungal isolates. Various degree of sensitivity was observed irrespective of plant species studied with A. terreus and P. digitatum as the most susceptible ones. F. solani and A. fumigatus were moderately sensitive to the latex extracts tested. Among the plants, latex of Thevetia peruviana (75.2%) and Artocarpus heterophyllus (64.8%) were having potential antifungal activity against the isolates followed by Manilkara zapota (51.1%). In conclusion, use of plant latex makes interest to control postharvest fungal diseases and is fitting well with the concept of safety for human health and environment. PMID:24506041

  5. Comparison of antifungal activities of various essential oils on the Phytophthora drechsleri, the causal agent of fruit decay

    PubMed Central

    Mohammadi, Ali; Hashemi, Maryam; Hosseini, Seyed Masoud

    2015-01-01

    Background and Objectives: The efficacy of Mentha piperita L, Zataria multiflora Boiss and Thymus vulgaris L essential oils (EOs) was evaluated for controlling the growth of Phytophthora drechsleri, the causative agent of damage to many crops that is consumed directly by humans. Materials and Methods: The EOs used in this study was purchased from Magnolia Co, Iran. The pour plate method in petri dishes containing Potato Dextrose Agar (PDA) was used to evaluate the antifungal properties of EOs. The minimal inhibitory concentrations (MIC), minimum fungicidal concentration (MFC) as well as mycelial growth inhibition (MGI) were measured. The IC50 value (the concentration inhibited 50% of the mycelium growth) was calculated by probit analysis. Results and Conclusion: The fungal growth was significantly reduced by increasing concentrations of tested EOs. The complete reduction was obtained with Shirazi thyme at all concentrations, whereas the complete reduction for peppermint and thyme was observed at 0.4% and 0.8% (v/v) concentrations, respectively. Meanwhile, the minimum inhibition was observed when 0.1% peppermint (MGI values of 9.37%) was used. The IC50, MIC and MFC values of Shirazi thyme was 0.053, 0.1% and 0.2%, respectively. Similarly, MIC and MFC values of peppermint and thyme were recorded 0.4% and 0.8%, respectively. The results obtained from this study may contribute to the development of new antifungal agents to protect the crops from this pathogenic fungus and many agricultural plant pathogens causing drastic crop losses. PMID:26644871

  6. In vitro studies of activities of some antifungal agents against Candida albicans ATCC 10231 by the turbidimetric method.

    PubMed Central

    Blanco, M T; Pérez-Giraldo, C; Blanco, J; Morán, F J; Hurtado, C; Gómez-García, A C

    1992-01-01

    Different criteria (the drug concentration which inhibited 50% of growth [IC1/2], the lowest drug concentration at which growth was just less than 30% of that in a positive control well [IC30], the visual inhibitory concentration [ICv], and the minimum fungicidal concentration [MFC]) were applied to study the effects of some antifungal agents against Candida albicans. Amphotericin B, flucytosine, and bifonazole produced total growth inhibition. Clotrimazole, itraconazole, ketoconazole, and miconazole produced partial growth inhibition. The values of IC1/2 and IC30 were similar for all agents and avoided the problems of partial inhibition; the values of ICv and MFC were higher than those of IC1/2 and IC30. PMID:1503456

  7. Efflux-Mediated Antifungal Drug Resistance†

    PubMed Central

    Cannon, Richard D.; Lamping, Erwin; Holmes, Ann R.; Niimi, Kyoko; Baret, Philippe V.; Keniya, Mikhail V.; Tanabe, Koichi; Niimi, Masakazu; Goffeau, Andre; Monk, Brian C.

    2009-01-01

    Summary: Fungi cause serious infections in the immunocompromised and debilitated, and the incidence of invasive mycoses has increased significantly over the last 3 decades. Slow diagnosis and the relatively few classes of antifungal drugs result in high attributable mortality for systemic fungal infections. Azole antifungals are commonly used for fungal infections, but azole resistance can be a problem for some patient groups. High-level, clinically significant azole resistance usually involves overexpression of plasma membrane efflux pumps belonging to the ATP-binding cassette (ABC) or the major facilitator superfamily class of transporters. The heterologous expression of efflux pumps in model systems, such Saccharomyces cerevisiae, has enabled the functional analysis of efflux pumps from a variety of fungi. Phylogenetic analysis of the ABC pleiotropic drug resistance family has provided a new view of the evolution of this important class of efflux pumps. There are several ways in which the clinical significance of efflux-mediated antifungal drug resistance can be mitigated. Alternative antifungal drugs, such as the echinocandins, that are not efflux pump substrates provide one option. Potential therapeutic approaches that could overcome azole resistance include targeting efflux pump transcriptional regulators and fungal stress response pathways, blockade of energy supply, and direct inhibition of efflux pumps. PMID:19366916

  8. Antifungal Susceptibility Testing of Ascomycetous Yeasts Isolated from Animals.

    PubMed

    Álvarez-Pérez, Sergio; García, Marta E; Peláez, Teresa; Martínez-Nevado, Eva; Blanco, José L

    2016-08-01

    Recent studies suggest that antifungal resistance in yeast isolates of veterinary origin may be an underdiagnosed threat. We tested a collection of 92 ascomycetous yeast isolates that were obtained in Spain from birds, mammals and insects for antifungal susceptibility. MICs to amphotericin B and azoles were low, and no resistant isolates were detected. Despite these results, and given the potential role of animals as reservoirs of resistant strains, continuous monitoring of antifungal susceptibility in the veterinary setting is recommended. PMID:27216048

  9. In vitro antifungal activities of luliconazole, a new topical imidazole.

    PubMed

    Koga, Hiroyasu; Nanjoh, Yasuko; Makimura, Koichi; Tsuboi, Ryoji

    2009-01-01

    Luliconazole is a topical antifungal drug newly developed in Japan. The present study compares the in vitro antifungal activity of luliconazole against clinically important dermatomycotic fungi with that of other representative antifungal drugs. The reference drugs chosen were five classes of nine topical agents, i.e., allylamine (terbinafine), thiocarbamate (liranaftate), benzylamine (butenafine), morpholine (amorolfine), and azole (ketoconazole, clotrimazole, neticonazole, miconazole and bifonazole). The minimum inhibitory concentrations (MIC) of luliconazole and the reference drugs against Trichophyton spp. (T. rubrum, T. mentagrophytes and T. tonsurans) and Candida albicans were measured by the standardized broth microdilution method. Luliconazole demonstrated greater potency against Trichophyton spp. (MIC range: agent involved in seborrhoeic dermatitis, was very low (MIC range: 0.004-0.016 microg/ml) suggesting action comparable to or stronger than that of ketoconazole. These results indicate a possible clinical role for luliconazole with its broad-spectrum antimycotic activity. PMID:19115136

  10. Fungal peritonitis in patients undergoing peritoneal dialysis (PD) in Brazil: molecular identification, biofilm production and antifungal susceptibility of the agents.

    PubMed

    Giacobino, Juliana; Montelli, Augusto Cezar; Barretti, Pasqual; Bruder-Nascimento, Ariane; Caramori, Jacqueline Teixeira; Barbosa, Luciano; Bagagli, Eduardo

    2016-10-01

    This paper presents data on fungal peritonitis (FP) in patients undergoing peritoneal dialysis (PD) at the University Hospital of Botucatu Medical School, São Paulo, Brazil. In a total of 422 patients, 30 developed FP, from which the medical records and the fungal isolates of 23 patient cases were studied. All patients presented abdominal pain, cloudy peritoneal effluent, needed hospitalization, had the catheter removed and were treated with fluconazole or fluconazole plus 5-flucitosine; six of them died due to FP. Concerning the agents, it was observed that Candida parapsilosis was the leading species (9/23), followed by Candida albicans (5/23), Candida orthopsilosis (4/23), Candida tropicalis (3/23), Candida guilliermondii (1/23), and Kodamaea ohmeri (1/23). All the isolates were susceptible to amphotericin B, voriconazole and caspofungin whereas C. albicans isolates were susceptible to all antifungals tested. Resistance to fluconazole was observed in three isolates of C. orthopsilosis, and dose-dependent susceptibility to this antifungal was observed in two isolates of C. parapsilosis and in the K. ohmeri isolate. Biofilm production estimates were high or moderate in most isolates, especially in C. albicans species, and low in C. parapsilosis species, with a marked variation among the isolates. This Brazilian study reinforces that FP in PD is caused by a diverse group of yeasts, most prevalently C. parapsilosis sensu stricto species. In addition, they present significant variation in susceptibility to antifungals and biofilm production, thus contributing to the complexity and severity of the clinical features. PMID:27143636

  11. Synthesis and biological evaluation of novel phosphoramidate derivatives of coumarin as chitin synthase inhibitors and antifungal agents.

    PubMed

    Ji, Qinggang; Ge, Zhiqiang; Ge, Zhixing; Chen, Kaizhi; Wu, Hualong; Liu, Xiaofei; Huang, Yanrong; Yuan, Lvjiang; Yang, Xiaolan; Liao, Fei

    2016-01-27

    A series of novel phosphoramidate derivatives of coumarin have been designed and synthesized as chitin synthase (CHS) inhibitors. All the synthesized compounds have been screened for their chitin synthase inhibition activity and antimicrobial activity in vitro. The bioactive assay manifested that most of the target compounds exhibited good efficacy against CHS and a variety of clinically important fungal pathogens. In particular, compound 7t with IC50 of 0.08 mM against CHS displayed stronger efficiency than the reference Polyoxin B with IC50 of 0.16 mM. In addition, the apparent Ki values of compound 7t was 0.096 mM while the Km of Chitin synthase prepared from Candida tropicalis was 3.86 mM for UDP-N-acetylglucosamine, and the result of the Ki showed that the compounds was a non-competitive inhibitor of the CHS. As far as the antifungal activity is concerned, compounds 7o, 7r and 7t were highly active against Aspergillus flavus with MIC values in the range of 1 μg/mL to 2 μg/Ml while the results of antibacterial screening showed that these compounds have negligible actions to the tested bacteria. These results indicated that the design of these compounds as antifungal agents was rational. PMID:26647304

  12. Selection of the antifungal agent decides prognosis of invasive aspergillosis: case report of a successful outcome with voriconazole.

    PubMed

    Arakawa, Hisaya; Suto, Chikako; Notani, Hiroko; Ishida, Takashi; Abe, Kayoko; Ookubo, Yasuo

    2014-02-01

    Invasive aspergillosis is a rare disease and is often misdiagnosed. The clinical course is quite aggressive and it is a potentially fatal disease. We report a case of invasive aspergillosis involving the dura mater and optic nerves which was successfully treated with voriconazole, even though the patient had residual monocular blindness. An 86-year-old Japanese man complained of developing loss of vision in his left eye while taking oral fluconazole prescribed by an otolaryngologist for mycosis of the left maxillary sinus. He was referred to our hospital. At the first visit, he already had no light perception in the left eye, with decreased ocular motility in all directions and orbital apex syndrome. His corrected distance visual acuity (CDVA) in the right eye was 20/25 with enlargement of Mariotte's blind spot. Magnetic resonance imaging revealed inflammation around both optic nerves that also involved the dura mater. His antifungal therapy was changed to intravenous voriconazole. Although his right CDVA temporarily declined to 20/50, it improved to 20/16 by 10 months after the initiation of treatment. Maxillary sinus biopsy detected Aspergillus. Invasive aspergillosis progresses rapidly and aggressively. The present case highlights the importance of early diagnosis and selection of an appropriate antifungal agent. PMID:23397120

  13. In vitro activities of five antifungal agents against 199 clinical and environmental isolates of Aspergillus flavus, an opportunistic fungal pathogen.

    PubMed

    Khodavaisy, S; Badali, H; Hashemi, S J; Aala, F; Nazeri, M; Nouripour-Sisakht, S; Sorkherizi, M S; Amirizad, K; Aslani, N; Rezaie, S

    2016-06-01

    Aspergillus flavus is the second leading cause of invasive and non-invasive aspergillosis, as well as the most common cause of fungal sinusitis, cutaneous infections, and endophthalmitis in tropical countries. Since resistance to antifungal agents has been observed in patients, susceptibility testing is helpful in defining the activity spectrum of antifungals and determining the appropriate drug for treatment. A collection of 199 clinical and environmental strains of Aspergillus flavus consisted of clinical (n=171) and environmental (n=28) were verified by DNA sequencing of the partial b-tubulin gene. MICs of amphotericin B, itraconazole, voriconazole, posaconazole, and MEC of caspofungin were determined in accordance with the Clinical and Laboratory Standards Institute M38-A2 document. Caspofungin, followed by posaconazole, exhibited the lowest minimum inhibitory concentrations (MIC). All isolates had caspofungin MEC90 (0.063μg/ml) lower than the epidemiologic cutoff values, and 3.5% of the isolates had amphotericin B MIC higher than the epidemiologic cutoff values. However, their clinical effectiveness in the treatment of A. flavus infection remains to be determined. PMID:26948143

  14. Clerodane type diterpene as a novel antifungal agent from Polyalthia longifolia var. pendula.

    PubMed

    Bhattacharya, Asish K; Chand, Hemender R; John, Jyothis; Deshpande, Mukund V

    2015-04-13

    Bioactivity-guided chemical examination of methanolic extract of leaves of Polyalthia longifolia var. pendula led to the isolation of the active constituent, a diterpene 1 which was identified as 16α-hydroxycleroda-3,13(14)Z-dien-15,16-olide on the basis of its spectral data. Among the tested strains, diterpene 1 was found to exhibit antifungal activities having MIC90 values of 50.3, 100.6 and 201.2 μM against Candida albicans NCIM3557, Cryptococcus neoformans NCIM3542 (human pathogens) and Neurospora crassa NCIM870 (saprophyte), respectively. Initial, structure-activity-relationship (SAR) data generated by synthesizing some derivatives revealed that the double bond between C3-C4 and the free hydroxyl group at C16 are crucial for the antifungal activity of the diterpene 1. The mode of action of 1 in C. albicans is due to compromised cell membrane permeability and also probably due to disruption of cell wall structures. The red blood cell haemolysis of all the compounds (1-4) did not show any significant haemolysis and was found to be less than 15% for all the compounds when tested at highest concentration, i.e. 1200 μM. Interestingly, all the tested compounds inhibited Y-H transition in dimorphic C. albicans NCIM3557 at much lower concentration than their MIC90 values. Determination of ROS generation by diterpene 1 using DCFH-DA and DHR123 (dihydrorhodamine) staining of C. albicans NCIM3557 indicated production of intracellular ROS as a mechanism of antifungal activity. PMID:25747495

  15. Experimental disseminated trichosporonosis in mice: tissue distribution and therapy with antifungal agents.

    PubMed

    Yamamoto, K; Makimura, K; Sudo, T; Shibuya, K; Uchida, K; Yamaguchi, H

    1997-01-01

    Mice treated with cyclophosphamide were infected intravenously with titrated doses of Trichosporon asahii TIMM3140 or TIMM3144. Mortality and survival time correlated with inoculum size and fungal growth was found in the lung, heart, liver, spleen, kidney and brain. Fluconazole and amphotericin B prolonged survival time and reduced the CFU in the kidney, with fluconazole being superior to amphotericin B. The serum level of (1-->3)-beta-D-glucan was reduced by antifungal therapy and correlated well with the CFU/organ in kidney, but not CFU/ml in blood. PMID:9467108

  16. Repositioning of Endonuclear Receptors Binders as Potential Antibacterial and Antifungal Agents. Eptyloxìm: A Potential and Novel Gyrase B and Cytochrome Cyp51 Inhibitor.

    PubMed

    Carrieri, Antonio; L'Abbate, Maria; Di Chicco, Mariangela; Rosato, Antonio; Carbonara, Giuseppe; Fracchiolla, Giuseppe

    2016-09-01

    A novel class of antibacterial and antifungal agents is here identified by means of dockings and virtual screening techniques. Biological data proved the initial effort, formulated on the structure similarity of nuclear receptors binders with known quinolones or thiazole derivatives, to reposition PPARs agonists as likely bacterial type II topoisomerases inhibitors. PMID:27546036

  17. In vitro and in vivo antifungal activities of D0870, a new triazole agent.

    PubMed Central

    Yamada, H; Tsuda, T; Watanabe, T; Ohashi, M; Murakami, K; Mochizuki, H

    1993-01-01

    In vitro and in vivo antifungal activities of D0870 were evaluated in comparison with those of fluconazole. D0870, which is the R-enantiomer of ICI195,739, was found to be the mycologically active enantiomer by comparing the activities of D0870 with those of M16355 (S-enantiomer of ICI195,739). D0870 showed a broad spectrum of antifungal activity and MICs and minimum antibiotic concentrations 4- to 2,000-fold lower in synthetic amino acid medium (fungal) agar than those of fluconazole for various fungi. Although MICs of D0870 were affected by variation of the test conditions, such as type of medium, inoculum size of fungi, supplementation with fetal bovine serum, and pH of medium, they were consistently much lower than those of fluconazole under any condition. In vivo activities of D0870 in the systemic infection models with Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus in normal mice and in the mice immunosuppressed with cyclophosphamide or cortisone acetate were 2- to 7-fold and 3- to 89-fold greater than those of fluconazole, respectively. In these infection models in immunosuppressed mice, the therapeutic efficacy of D0870 was almost equivalent to that in normal mice, whereas the efficacy of fluconazole was 2- to 50-fold lower than that in normal mice. PMID:8285626

  18. Synthesis, Biological Evaluation and Molecular Docking of Certain Sulfones as Potential Nonazole Antifungal Agents.

    PubMed

    Fares, Mohamed; Said, Mohamed A; Alsherbiny, Muhammad A; Eladwy, Radwa A; Almahli, Hadia; Abdel-Aziz, Marwa M; Ghabbour, Hazem A; Eldehna, Wagdy M; Abdel-Aziz, Hatem A

    2016-01-01

    We reported herein the synthesis, antifungal activity, docking and in silico ADME prediction studies of four novel series of sulfones 6a-f, 8a-c, 10a-f and 12a-c. All the newly synthesized sulfones were tested against four strains of Candida (including fluconazole-resistant Candida), two strains of Aspergillus, two dermatophytic fungi (Trichophytons mentagrophyte and Microsporum canis) and Syncephalastrum sp. with fluconazole as a reference drug. In general, compounds 8a and 10b showed selective and potent anticandidal activity (MIC: 0.19-0.81 µM) relative to fluconazole (MIC = 1.00 µM). Furthermore, 10e and 12a elicited a remarkable and selective antifungal activity against Aspergillus sp. and the dermatophytic fungi (MIC: 0.16-0.79 µM) relative to fluconazole (MIC: 2-2.6 µM). Moreover, the docking results of the sulfones 6a, 8a, 10a and 10b at the active site of CYT P450 14α-sterol demethylase showed a comparable binding interaction (interaction Energy = -34.87 to -42.43 kcal/mol) with that of fluconazole (IE = -40.37 kcal/mol). PMID:26805791

  19. Successful Treatment of Aspergillus Empyema Using Open Window Thoracostomy Salvage Treatment and the Local Administration of an Antifungal Agent.

    PubMed

    Ashizawa, Nobuyuki; Nakamura, Shigeki; Ide, Shotaro; Tashiro, Masato; Takazono, Takahiro; Imamura, Yoshifumi; Miyazaki, Taiga; Izumikawa, Koichi; Yamamoto, Yoshihiro; Yanagihara, Katsunori; Miyazaki, Yoshitsugu; Kohno, Shigeru

    2016-01-01

    A 76-year-old woman received long-term immunosuppressive treatment for collagen vascular disease-associated interstitial pneumonia. The patient developed a cavitary mass lesion in the right lower lung field, and both nontuberculous mycobacteria and Aspergillus spp. were isolated after bronchial washing. The patient underwent a right lower lobectomy but developed Aspergillus empyema. Empyema due to Aspergillus spp. is a rare and life-threatening condition; however, the standard therapeutic strategies for treating Aspergillus empyema are not clear. We herein report a case of Aspergillus empyema that was successfully treated with a combination therapy which included open-window thoracostomy and the administration of antifungal agents (systemic micafungin and local amphotericin-B). PMID:27477422

  20. Antifungal agents commonly used in the superficial and mucosal candidiasis treatment: mode of action and resistance development

    PubMed Central

    Bondaryk, Małgorzata; Kurzątkowski, Wiesław

    2013-01-01

    Recent progress in medical sciences and therapy resulted in an increased number of immunocompromised individuals. Candida albicans is the leading opportunistic fungal pathogen causing infections in humans, ranging from superficial mucosal lesions to disseminated or bloodstream candidiasis. Superficial candidiasis not always presents a risk to the life of the infected host, however it significantly lowers the quality of life. Superficial Candida infections are difficult to treat and their frequency of occurrence is currently rising. To implement successful treatment doctors should be up to date with better understanding of C. albicans resistance mechanisms. Despite high frequency of Candida infections there is a limited number of antimycotics available for therapy. This review focuses on current understanding of the mode of action and resistance mechanisms to conventional and emerging antifungal agents for treatment of superficial and mucosal candidiasis. PMID:24353489

  1. Azole Drugs Are Imported By Facilitated Diffusion in Candida albicans and Other Pathogenic Fungi

    PubMed Central

    Mansfield, Bryce E.; Oltean, Hanna N.; Oliver, Brian G.; Hoot, Samantha J.; Leyde, Sarah E.; Hedstrom, Lizbeth; White, Theodore C.

    2010-01-01

    Despite the wealth of knowledge regarding the mechanisms of action and the mechanisms of resistance to azole antifungals, very little is known about how the azoles are imported into pathogenic fungal cells. Here the in-vitro accumulation and import of Fluconazole (FLC) was examined in the pathogenic fungus, Candida albicans. In energized cells, FLC accumulation correlates inversely with expression of ATP-dependent efflux pumps. In de-energized cells, all strains accumulate FLC, suggesting that FLC import is not ATP-dependent. The kinetics of import in de-energized cells displays saturation kinetics with a Km of 0.64 uM and Vmax of 0.0056 pmol/min/108 cells, demonstrating that FLC import proceeds via facilitated diffusion through a transporter rather than passive diffusion. Other azoles inhibit FLC import on a mole/mole basis, suggesting that all azoles utilize the same facilitated diffusion mechanism. An analysis of related compounds indicates that competition for azole import depends on an aromatic ring and an imidazole or triazole ring together in one molecule. Import of FLC by facilitated diffusion is observed in other fungi, including Cryptococcus neoformans, Saccharomyces cerevisiae, and Candida krusei, indicating that the mechanism of transport is conserved among fungal species. FLC import was shown to vary among Candida albicans resistant clinical isolates, suggesting that altered facilitated diffusion may be a previously uncharacterized mechanism of resistance to azole drugs. PMID:20941354

  2. CT2108A and B: New fatty acid synthase inhibitors as antifungal agents.

    PubMed

    Laakso, Jodi A; Raulli, Robert; McElhaney-Feser, Gail E; Actor, Paul; Underiner, Ted L; Hotovec, Brian J; Mocek, Ursula; Cihlar, Ronald L; Broedel, Sheldon E

    2003-08-01

    A systematic screen for new natural products that displayed antifungal activity by inhibition of fungal fatty acid synthase (FAS) led to the discovery of two new fungal metabolites, designated CT2108A (1) and CT2108B (2). The metabolites were produced by Penicillium solitum (Westling) strain CT2108 and were classified as azaphilones. The structures of these new metabolites were determined using a variety of 1D and 2D NMR experiments, including COSY, HMQC, and HMBC. The chemical conversion of CT2108A to CT2108B was effected using WCl(6). The related metabolite, patulodin (3), was also isolated from the fermentation culture of this P. solitum isolate. Both new compounds inhibited fungal FAS, and neither was found to significantly inhibit human FAS activity. PMID:12932120

  3. 3-Bromopyruvate: a novel antifungal agent against the human pathogen Cryptococcus neoformans.

    PubMed

    Dyląg, Mariusz; Lis, Paweł; Niedźwiecka, Katarzyna; Ko, Young H; Pedersen, Peter L; Goffeau, Andre; Ułaszewski, Stanisław

    2013-05-01

    We have investigated the antifungal activity of the pyruvic acid analogue: 3-bromopyruvate (3-BP). Growth inhibition by 3-BP of 110 strains of yeast-like and filamentous fungi was tested by standard spot tests or microdilution method. The human pathogen Cryptococcus neoformans exhibited a low Minimal Inhibitory Concentration (MIC) of 0.12-0.15 mM 3-BP. The high toxicity of 3-BP toward C. neoformans correlated with high intracellular accumulation of 3-BP and also with low levels of intracellular ATP and glutathione. Weak cytotoxicity towards mammalian cells and lack of resistance conferred by the PDR (Pleiotropic Drug Resistance) network in the yeast Saccharomyces cerevisiae, are other properties of 3-BP that makes it a novel promising anticryptococcal drug. PMID:23541578

  4. First case of Tritirachium oryzae as agent of onychomycosis and its susceptibility to antifungal drugs.

    PubMed

    Naseri, Ali; Fata, Abdolmajid; Najafzadeh, Mohammad Javad

    2013-08-01

    The first case of Tritirachium oryzae isolated from an Iranian patient is reported. A 44-year-old woman with a lesion in her fingernail was examined for onychomycosis. Direct microscopic examination of the nail clippings revealed fungal filaments and inoculation of portions of the nail clippings on cultures media yielded T. oryzae after 8 days. The isolate was identified as Tritirachium spp. on the basis of gross morphological characteristics of the fungal colony and microscopic characterization of slide cultures. The diagnosis of T. oryzae was confirmed by PCR sequencing of the internal transcribed spacer domain of the rDNA gene. In vitro antifungal susceptibility test demonstrated that the fungus was susceptible to itraconazole and posaconazole. The patient was treated with oral itraconazole. PMID:23591624

  5. Synthesis of new pyrazolyl-2, 4-thiazolidinediones as antibacterial and antifungal agents

    PubMed Central

    2011-01-01

    Background Thiazolidine-2, 4-diones (TZDs) have become a pharmacologically important class of heterocyclic compounds since their introduction in the form of glitazones into the clinical use for the treatment of type 2 diabetes. TZDs lower the plasma glucose levels by acting as ligands for gamma peroxisome proliferators-activated receptors. In addition, this class of heterocyclic compounds possesses various other biological activities such as antihyperglycemic, antimicrobial, anti-inflammatory, anticonvulsant, insecticidal, etc. TZDs are also known for lowering the blood pressure thereby reducing the chances of heart failure and micro-albuminuria in the patients with type 2 diabetes. Results We have described herein the synthesis of three series of compounds, namely, ethyl 2-((Z)-5-((3-aryl-1-phenyl-1H-pyrazol-4-yl)methylene)-2, 4-dioxothiazolidin-3-yl)acetates (4), methyl 2-((Z)-5-((3-aryl-1-phenyl-1H-pyrazol-4-yl)methylene)-2, 4-dioxothiazolidin-3-yl)acetates (5), and 2-((Z)-5-((3-aryl-1-phenyl-1H-pyrazol-4-yl)methylene)-2, 4-dioxothiazolidin-3-yl)acetic acids (6). The compounds 4 and 5 were synthesized by Knoevenagel condensation between 3-aryl-1-phenyl-1H-pyrazole-4-carbaldehydes (1) and ethyl/methyl 2-(2, 4-dioxothiazolidin-3-yl)acetates (3, 2) in alcohol using piperidine as a catalyst. The resultant compounds 4 and 5 having ester functionality were subjected to acidic hydrolysis to obtain 6. All the new compounds were tested for their in vitro antibacterial and antifungal activity. Conclusions Knoevenagel condensation approach has offered an easy access to new compounds 4-6. Antimicrobial evaluation of the compounds has shown that some of the compounds are associated with remarkable antifungal activity. In case of antibacterial activity, these were found to be effective against Gram-positive bacteria. However, none of the compounds were found to be effective against Gram-negative bacteria. PMID:22373217

  6. The Aspergillus fumigatus Damage Resistance Protein Family Coordinately Regulates Ergosterol Biosynthesis and Azole Susceptibility

    PubMed Central

    Song, Jinxing; Zhai, Pengfei; Zhang, Yuanwei; Zhang, Caiyun; Sang, Hong; Han, Guanzhu; Keller, Nancy P.

    2016-01-01

    ABSTRACT Ergosterol is a major and specific component of the fungal plasma membrane, and thus, the cytochrome P450 enzymes (Erg proteins) that catalyze ergosterol synthesis have been selected as valuable targets of azole antifungals. However, the opportunistic pathogen Aspergillus fumigatus has developed worldwide resistance to azoles largely through mutations in the cytochrome P450 enzyme Cyp51 (Erg11). In this study, we demonstrate that a cytochrome b5-like heme-binding damage resistance protein (Dap) family, comprised of DapA, DapB, and DapC, coordinately regulates the functionality of cytochrome P450 enzymes Erg5 and Erg11 and oppositely affects susceptibility to azoles. The expression of all three genes is induced in an azole concentration-dependent way, and the decreased susceptibility to azoles requires DapA stabilization of cytochrome P450 protein activity. In contrast, overexpression of DapB and DapC causes dysfunction of Erg5 and Erg11, resulting in abnormal accumulation of sterol intermediates and further accentuating the sensitivity of ΔdapA strains to azoles. The results of exogenous-hemin rescue and heme-binding-site mutagenesis experiments demonstrate that the heme binding of DapA contributes the decreased azole susceptibility, while DapB and -C are capable of reducing the activities of Erg5 and Erg11 through depletion of heme. In vivo data demonstrate that inactivated DapA combined with activated DapB yields an A. fumigatus mutant that is easily treatable with azoles in an immunocompromised mouse model of invasive pulmonary aspergillosis. Compared to the single Dap proteins found in Saccharomyces cerevisiae and Schizosaccharomyces pombe, we suggest that this complex Dap family regulatory system emerged during the evolution of fungi as an adaptive means to regulate ergosterol synthesis in response to environmental stimuli. PMID:26908577

  7. Burkholderia terrae BS001 migrates proficiently with diverse fungal hosts through soil and provides protection from antifungal agents

    PubMed Central

    Nazir, Rashid; Tazetdinova, Diana I.; van Elsas, Jan Dirk

    2014-01-01

    Soil bacteria can benefit from co-occurring soil fungi in respect of the acquisition of carbonaceous nutrients released by fungal hyphae and the access to novel territories in soil. Here, we investigated the capacity of the mycosphere-isolated bacterium Burkholderia terrae BS001 to comigrate through soil along with hyphae of the soil fungi Trichoderma asperellum, Rhizoctonia solani, Fusarium oxysporum, F. oxysporum pv lini, Coniochaeta ligniaria, Phanerochaete velutina, and Phallus impudicus. We used Lyophyllum sp. strain Karsten as the reference migration-inciting fungus. Bacterial migration through presterilized soil on the extending fungal hyphae was detected with six of the seven test fungi, with only Phallus impudicus not showing any bacterial transport. Much like with Lyophyllum sp. strain Karsten, intermediate (106–108 CFU g-1 dry soil) to high (>108 CFU g-1 dry soil) strain BS001 cell population sizes were found at the hyphal migration fronts of four fungi, i.e., T. asperellum, Rhizoctonia solani, F. oxysporum and F. oxysporum pv lini, whereas for two fungi, Coniochaeta ligniaria and Phanerochaete velutina, the migration responses were retarded and population sizes were lower (103–106 CFU g-1 dry soil). Consistent with previous data obtained with the reference fungus, migration with the migration-inciting fungi occurred only in the direction of the hyphal growth front. Remarkably, Burkholderia terrae BS001 provided protection from several antifungal agents to the canonical host Lyophyllum sp. strain Karsten. Specifically, this host was protected from Pseudomonas fluorescens strain CHA0 metabolites, as well as from the anti-fungal agent cycloheximide. Similar protection by strain BS001was observed for T. asperellum, and, to a lower extent, F. oxysporum and Rhizoctonia solani. The protective effect may be related to the consistent occurrence of biofilm-like cell layers or agglomerates at the surfaces of the protected fungi. The current study represents

  8. Pseudomonas stutzeri YPL-1 Genetic Transformation and Antifungal Mechanism against Fusarium solani, an Agent of Plant Root Rot

    PubMed Central

    Lim, Ho-Seong; Kim, Yong-Su; Kim, Sang-Dal

    1991-01-01

    An actively antagonistic bacterium that could be used as a biocontrol agent against Fusarium solani, which causes root rots with considerable losses in many important crops, was isolated from a ginseng rhizosphere and identified as a strain of Pseudomonas stutzeri. In several biochemical tests with culture filtrates of P. stutzeri YPL-1 and in mutational analyses of antifungal activities of reinforced or defective mutants, we found that the anti-F. solani mechanism of the bacterium may involve a lytic enzyme rather than a toxic substance or antibiotic. P. stutzeri YPL-1 produced extracellular chitinase and laminarinase when grown on different polymers such as chitin, laminarin, or F. solani mycelium. These lytic extracellular enzymes markedly inhibited mycelial growth rather than spore germination and also caused lysis of F. solani mycelia and germ tubes. Scanning electron microscopy revealed degradation of the F. solani mycelium. Abnormal hyphal swelling and retreating were caused by the lysing agents from P. stutzeri YPL-1, and a penetration hole was formed on the hyphae in the region of interaction with the bacterium; the walls of this region were rapidly lysed, causing leakage of protoplasm. Genetically bred P. stutzeri YPL-1 was obtained by transformation of the bacterium with a broad-host-range vector, pKT230. Also, the best conditions for the transformation were investigated. Images PMID:16348417

  9. Identification and Evaluation of Novel Acetolactate Synthase Inhibitors as Antifungal Agents

    PubMed Central

    Richie, Daryl L.; Thompson, Katherine V.; Studer, Christian; Prindle, Vivian C.; Aust, Thomas; Riedl, Ralph; Estoppey, David; Tao, Jianshi; Sexton, Jessica A.; Zabawa, Thomas; Drumm, Joseph; Cotesta, Simona; Eichenberger, Jürg; Schuierer, Sven; Hartmann, Nicole; Movva, N. Rao; Tallarico, John A.

    2013-01-01

    High-throughput phenotypic screening against the yeast Saccharomyces cerevisiae revealed a series of triazolopyrimidine-sulfonamide compounds with broad-spectrum antifungal activity, no significant cytotoxicity, and low protein binding. To elucidate the target of this series, we have applied a chemogenomic profiling approach using the S. cerevisiae deletion collection. All compounds of the series yielded highly similar profiles that suggested acetolactate synthase (Ilv2p, which catalyzes the first common step in branched-chain amino acid biosynthesis) as a possible target. The high correlation with profiles of known Ilv2p inhibitors like chlorimuron-ethyl provided further evidence for a similar mechanism of action. Genome-wide mutagenesis in S. cerevisiae identified 13 resistant clones with 3 different mutations in the catalytic subunit of acetolactate synthase that also conferred cross-resistance to established Ilv2p inhibitors. Mapping of the mutations into the published Ilv2p crystal structure outlined the chlorimuron-ethyl binding cavity, and it was possible to dock the triazolopyrimidine-sulfonamide compound into this pocket in silico. However, fungal growth inhibition could be bypassed through supplementation with exogenous branched-chain amino acids or by the addition of serum to the medium in all of the fungal organisms tested except for Aspergillus fumigatus. Thus, these data support the identification of the triazolopyrimidine-sulfonamide compounds as inhibitors of acetolactate synthase but suggest that targeting may be compromised due to the possibility of nutrient bypass in vivo. PMID:23478965

  10. Reversal of efflux mediated antifungal resistance underlies synergistic activity of two monoterpenes with fluconazole.

    PubMed

    Ahmad, Aijaz; Khan, Amber; Manzoor, Nikhat

    2013-01-23

    Thymol (THY) and carvacrol (CARV), the principal chemical components of thyme oil have long been known for their wide use in medicine due to antimicrobial and disinfectant properties. This study, however, draws attention to a possible synergistic antifungal effect of these monoterpenes with azole antimycotic-fluconazole. Resistance to azoles in Candida albicans involves over-expression of efflux-pump genes MDR1, CDR1, CDR2 or mutations and over-expression of target gene ERG11. The inhibition of drug efflux pumps is considered a feasible strategy to overcome clinical antifungal resistance. To put forward this approach, we investigated the combination effects of these monoterpenes and FLC against 38 clinically obtained FLC-sensitive, and eleven FLC-resistant Candida isolates. Synergism was observed with combinations of THY-FLC and CARV-FLC evaluated by checkerboard microdilution method and nature of the interactions was calculated by FICI. In addition, antifungal activity was assessed using agar-diffusion and time-kill curves. The drug efflux activity was determined using two dyes, Rhodamine6G (R6G) and fluorescent Hoechst 33342. No significant differences were observed in dye uptakes between FLC-susceptible and resistant isolates, incubated in glucose free buffer. However, a significantly higher efflux was recorded in FLC-resistant isolates when glucose was added. Both monoterpenes inhibited efflux by 70-90%, showing their high potency to block drug transporter pumps. Significant differences, in the expression levels of CDR1 and MDR1, induced by monoterpenes revealed reversal of FLC-resistance. The selectively fungicidal characteristics and ability to restore FLC susceptibility in resistant isolates signify a promising candidature of THY and CARV as antifungal agents in combinational treatments for candidiasis. PMID:23111348

  11. Azole-resistant Candida albicans from a wild Brazilian porcupine (Coendou prehensilis): a sign of an environmental imbalance?

    PubMed

    Castelo-Branco, D S C M; Brilhante, R S N; Paiva, M A N; Teixeira, C E C; Caetano, E P; Ribeiro, J F; Cordeiro, R A; Sidrim, J J C; Monteiro, A J; Rocha, M F G

    2013-07-01

    This study aimed at evaluating the in vitro antifungal susceptibility of Candida albicans isolates obtained during necropsy of a wild Brazilian porcupine and the mechanism of azole resistance. Initially, we investigated the in vitro susceptibility of the three isolates to amphotericin B, caspofungin, fluconazole, itraconazole, ketoconazole and voriconazole. Afterwards, three sub-inhibitory concentrations (47, 21 and 12 mg/l) of promethazine, an efflux pump inhibitor, were tested in combination with the antifungal drugs in order to evaluate the role of these pumps in the development of antifungal resistance. In addition, the three isolates were submitted to RAPD-PCR and M13-fingerprinting analyses. The minimum inhibitory concentrations (MICs) obtained with the isolates were 1, 0.03125, 250, 125, 8 and 250 mg/l for amphotericin B, caspofungin, fluconazole, itraconazole, ketoconazole and voriconazole, respectively, and the isolates were found to be resistant to all tested azoles. The addition of the three subinhibitory concentrations of promethazine resulted in statistically significant (P < 0.05) reductions in the MICs for all tested drugs, with decreases to azoles being statistically greater than those for amphotericin B and caspofungin (P < 0.05). The molecular analyses showed a genetic similarity among the three tested isolates, suggesting the occurrence of candidemia in the studied animal. These findings highlight the importance of monitoring antifungal susceptibility of Candida spp. from veterinary sources, especially as they may indicate the occurrence of primary azole resistance even in wild animals. PMID:23286353

  12. An Antifungal Benzimidazole Derivative Inhibits Ergosterol Biosynthesis and Reveals Novel Sterols

    PubMed Central

    Keller, Petra; Müller, Christoph; Engelhardt, Isabel; Hiller, Ekkehard; Lemuth, Karin; Eickhoff, Holger; Wiesmüller, Karl-Heinz; Burger-Kentischer, Anke; Bracher, Franz

    2015-01-01

    Fungal infections are a leading cause of morbidity and death for hospitalized patients, mainly because they remain difficult to diagnose and to treat. Diseases range from widespread superficial infections such as vulvovaginal infections to life-threatening systemic candidiasis. For systemic mycoses, only a restricted arsenal of antifungal agents is available. Commonly used classes of antifungal compounds include azoles, polyenes, and echinocandins. Due to emerging resistance to standard therapies, significant side effects, and high costs for several antifungals, there is a need for new antifungals in the clinic. In order to expand the arsenal of compounds with antifungal activity, we previously screened a compound library using a cell-based screening assay. A set of novel benzimidazole derivatives, including (S)-2-(1-aminoisobutyl)-1-(3-chlorobenzyl)benzimidazole (EMC120B12), showed high antifungal activity against several species of pathogenic yeasts, including Candida glabrata and Candida krusei (species that are highly resistant to antifungals). In this study, comparative analysis of EMC120B12 versus fluconazole and nocodazole, using transcriptional profiling and sterol analysis, strongly suggested that EMC120B12 targets Erg11p in the ergosterol biosynthesis pathway and not microtubules, like other benzimidazoles. In addition to the marker sterol 14-methylergosta-8,24(28)-dien-3β,6α-diol, indicating Erg11p inhibition, related sterols that were hitherto unknown accumulated in the cells during EMC120B12 treatment. The novel sterols have a 3β,6α-diol structure. In addition to the identification of novel sterols, this is the first time that a benzimidazole structure has been shown to result in a block of the ergosterol pathway. PMID:26248360

  13. An Antifungal Benzimidazole Derivative Inhibits Ergosterol Biosynthesis and Reveals Novel Sterols.

    PubMed

    Keller, Petra; Müller, Christoph; Engelhardt, Isabel; Hiller, Ekkehard; Lemuth, Karin; Eickhoff, Holger; Wiesmüller, Karl-Heinz; Burger-Kentischer, Anke; Bracher, Franz; Rupp, Steffen

    2015-10-01

    Fungal infections are a leading cause of morbidity and death for hospitalized patients, mainly because they remain difficult to diagnose and to treat. Diseases range from widespread superficial infections such as vulvovaginal infections to life-threatening systemic candidiasis. For systemic mycoses, only a restricted arsenal of antifungal agents is available. Commonly used classes of antifungal compounds include azoles, polyenes, and echinocandins. Due to emerging resistance to standard therapies, significant side effects, and high costs for several antifungals, there is a need for new antifungals in the clinic. In order to expand the arsenal of compounds with antifungal activity, we previously screened a compound library using a cell-based screening assay. A set of novel benzimidazole derivatives, including (S)-2-(1-aminoisobutyl)-1-(3-chlorobenzyl)benzimidazole (EMC120B12), showed high antifungal activity against several species of pathogenic yeasts, including Candida glabrata and Candida krusei (species that are highly resistant to antifungals). In this study, comparative analysis of EMC120B12 versus fluconazole and nocodazole, using transcriptional profiling and sterol analysis, strongly suggested that EMC120B12 targets Erg11p in the ergosterol biosynthesis pathway and not microtubules, like other benzimidazoles. In addition to the marker sterol 14-methylergosta-8,24(28)-dien-3β,6α-diol, indicating Erg11p inhibition, related sterols that were hitherto unknown accumulated in the cells during EMC120B12 treatment. The novel sterols have a 3β,6α-diol structure. In addition to the identification of novel sterols, this is the first time that a benzimidazole structure has been shown to result in a block of the ergosterol pathway. PMID:26248360

  14. Emerging aspergillosis by azole-resistant Aspergillus fumigatus at an intensive care unit in the Netherlands, 2010 to 2013.

    PubMed

    van Paassen, Judith; Russcher, Anne; In 't Veld-van Wingerden, Astrid Wm; Verweij, Paul E; Kuijper, Eduard J

    2016-07-28

    The prevalence of invasive aspergillosis (IA) at the intensive care unit (ICU) is unknown and difficult to assess since IA also develops in patients lacking specific host factors. In the Netherlands, increasing azole-resistance in Aspergillus fumigatus complicates treatment of patients with IA. The aim of this study was to determine the prevalence of IA by azole-resistant A. fumigatus at the ICU among patients receiving antifungal treatment and to follow their clinical outcome and prognosis. A retrospective cohort study was conducted in a university hospital ICU from January 2010 to December 2013. From all patients who received antifungal treatment for suspected IA, relevant clinical and microbiological data were collected using a standardised questionnaire. Of 9,121 admitted ICU-patients, 136 had received antifungal treatment for suspected IA, of which 38 had a positive A. fumigatus culture. Ten of the 38 patients harboured at least one azole-resistant isolate. Resistance mechanisms consisted of alterations in the cyp51A gene, more specific TR34/L98H and TR46/T289A/Y121F. Microsatellite typing did not show clonal relatedness, though isolates from two patients were genetically related. The overall 90-day mortality of patients with IA by azole-resistant A. fumigatus and patients with suspicion of IA by azole-susceptible isolates in the ICU was 100% (10/10) vs 82% (23/28) respectively. We conclude that the changing pattern of IA in ICU patients requires appropriate criteria for recognition, diagnosis and rapid resistance tests. The increase in azole resistance rates also challenges a reconsideration of empirical antifungal therapy. PMID:27541498

  15. Resistance of Candida species to antifungal agents used in the treatment of onychomycosis: a review of current problems.

    PubMed

    Evans, E G

    1999-11-01

    Treatment of Candida infections with fluconazole has resulted in the emergence of drug resistance, a problem particularly apparent in HIV-infected patients. Frequently, the yeast is also cross-resistant to itraconazole and other azoles. In neutropenic patients fluconazole therapy or prophylaxis has caused overgrowth and infection by inherently less susceptible species of Candida, principally C. glabrata and C. krusei. Consequently, the use of intermittent long-term azole therapy to treat onychomycosis could result in changes in the commensal yeast flora of patients--either resistance or pathogen shift. An 'off-study' investigation undertaken in patients receiving either continuous terbinafine or intermittent itraconazole for toenail onychomycosis (L.I.ON. study) showed no evidence of changes in the yeast species present, nor in their sensitivity to itraconazole or fluconazole. Although intermittent itraconazole seems unlikely to cause problems in this respect, the situation with regard to intermittent fluconazole therapy of onychomycosis needs further study. PMID:10730912

  16. Mechanisms of azole resistance among clinical isolates of Candida glabrata in Poland.

    PubMed

    Szweda, Piotr; Gucwa, Katarzyna; Romanowska, Ewa; Dzierzanowska-Fangrat, Katarzyna; Naumiuk, Łukasz; Brillowska-Dabrowska, Anna; Wojciechowska-Koszko, Iwona; Milewski, Sławomir

    2015-06-01

    Candida glabrata is currently ranked as the second most frequently isolated aetiological agent of human fungal infections, next only to Candida albicans. In comparison with C. albicans, C. glabrata shows lower susceptibility to azoles, the most common agents used in treatment of fungal infections. Interestingly, the mechanisms of resistance to azole agents in C. albicans have been much better investigated than those in C. glabrata. The aim of the presented study was to determine the mechanisms of resistance to azoles in 81 C. glabrata clinical isolates from three different hospitals in Poland. The investigation was carried out with a Sensititre Yeast One test and revealed that 18 strains were resistant to fluconazole, and 15 were cross-resistant to all other azoles tested (voriconazole, posaconazole and itraconazole). One isolate resistant to fluconazole was cross-resistant to voriconazole, and resistance to voriconazole only was observed in six other isolates. All strains were found to be susceptible to echinocandins and amphotericin B, and five were classified as resistant to 5-fluorocytosine. The sequence of the ERG11 gene encoding lanosterol 14-α demethylase (the molecular target of azoles) of 41 isolates, including all strains resistant to fluconazole and three resistant only to voriconazole, was determined, and no amino acid substitutions were found. Real-time PCR studies revealed that 13 of 15 azole-resistant strains showed upregulation of the CDR1 gene encoding the efflux pump. No upregulation of expression of the CDR2 or ERG11 gene was observed. PMID:25818698

  17. Antifungal polypeptides

    DOEpatents

    Altier, Daniel J.; Ellanskaya, Irina; Ellanskaya, legal representative, Natalia; Gilliam, Jacob T.; Hunter-Cevera, Jennie; Presnail, James K.; Schepers, Eric; Simmons, Carl R.; Torok, Tamas; Yalpani, Nasser

    2009-09-15

    The invention relates to antifungal compositions and methods for protecting a plant from a fungal pathogen. Compositions including antifungal polypeptides isolated from a fungal fermentation broth are provided.

  18. Identification, antifungal susceptibility and scanning electron microscopy of a keratinolytic strain of Rhodotorula mucilaginosa: a primary causative agent of onychomycosis.

    PubMed

    da Cunha, Marcel M L; dos Santos, Luana P B; Dornelas-Ribeiro, Marcos; Vermelho, Alane B; Rozental, Sonia

    2009-04-01

    Onychomycosis is a dermatological problem of high prevalence that mainly affects the hallux toenail. Onychomycosis caused by the yeast Rhodotorula mucilaginosa was identified using colony morphology, light microscopy, urease and carbohydrate metabolism in a 57-year-old immunocompetent patient from Rio de Janeiro, Brazil. High-resolution scanning electron microscopy of nail fragments, processed by a noncoating method, led to the observation with fine detail of the structures of both nail and fungus involved in the infection. Yeasts were mainly found inside grooves in the nail. Budding yeasts presented a spiral pattern of growth and blastoconidia were found in the nail groove region. Keratinase assays and keratin enzymography revealed that this isolate was highly capable of degrading keratin. Antifungal susceptibility tests showed that the fungus was susceptible to low concentrations of amphotericin B and 5-flucytosine and resistant to high concentrations of fluconazole, itraconazole, voriconazole and terbinafine. These findings showed data for the first time concerning the interaction of R. mucilaginosa in toenail infection and suggest that this emerging yeast should also be considered an opportunistic primary causative agent of onychomycosis. PMID:19170752

  19. In Vitro Susceptibility of Candida Species to Four Antifungal Agents Assessed by the Reference Broth Microdilution Method

    PubMed Central

    Eksi, Fahriye; Gayyurhan, Efgan Dogan; Balci, Iclal

    2013-01-01

    This study was performed to determine the distribution of Candida species isolated from the blood cultures of the patients hospitalized in our hospital and to investigate their antifungal susceptibility. Candida strains were identified at species level by using classical methods and API ID 32C (bioMerieux, France) identification kits. The susceptibility of the strains to amphotericin B, fluconazole, voriconazole, and caspofungin was evaluated by using the reference broth microdilution method in document M27-A3 of the Clinical and Laboratory Standards Institute. Of the 111 Candida strains isolated, 47.7% were identified as C. albicans and 52.3% as non-albicans Candida strains. The MIC ranges were 0.03–1 μg/mL for amphotericin B, 0.125–≥64 μg/mL for fluconazole, 0.03–16 μg/mL for voriconazole, and 0.015–0.25 μg/mL for caspofungin. All Candida strains were susceptible to amphotericin B and caspofungin. 10.8% isolates were resistant to fluconazole and 8.1% isolates were dose-dependent susceptible. While 0.9% isolate was resistant to voriconazole, 0.9% isolate was dose-dependent susceptible. In our study, C. albicans and C. parapsilosis were the most frequently encountered agents of candidemia and it was detected that voriconazole with a low resistance rate might also be used with confidence in the treatment of infections occurring with these agents, primarily besides amphotericin B and caspofungin. PMID:24250260

  20. Resistance to antifungals that target CYP51.

    PubMed

    Parker, Josie E; Warrilow, Andrew G S; Price, Claire L; Mullins, Jonathan G L; Kelly, Diane E; Kelly, Steven L

    2014-10-01

    Fungal diseases are an increasing global burden. Fungi are now recognised to kill more people annually than malaria, whilst in agriculture, fungi threaten crop yields and food security. Azole resistance, mediated by several mechanisms including point mutations in the target enzyme (CYP51), is increasing through selection pressure as a result of widespread use of triazole fungicides in agriculture and triazole antifungal drugs in the clinic. Mutations similar to those seen in clinical isolates as long ago as the 1990s in Candida albicans and later in Aspergillus fumigatus have been identified in agriculturally important fungal species and also wider combinations of point mutations. Recently, evidence that mutations originate in the field and now appear in clinical infections has been suggested. This situation is likely to increase in prevalence as triazole fungicide use continues to rise. Here, we review the progress made in understanding azole resistance found amongst clinically and agriculturally important fungal species focussing on resistance mechanisms associated with CYP51. Biochemical characterisation of wild-type and mutant CYP51 enzymes through ligand binding studies and azole IC50 determinations is an important tool for understanding azole susceptibility and can be used in conjunction with microbiological methods (MIC50 values), molecular biological studies (site-directed mutagenesis) and protein modelling studies to inform future antifungal development with increased specificity for the target enzyme over the host homologue. PMID:25320648

  1. Antifungal drug resistance of oral fungi.

    PubMed

    Niimi, Masakazu; Firth, Norman A; Cannon, Richard D

    2010-02-01

    Fungi comprise a minor component of the oral microbiota but give rise to oral disease in a significant proportion of the population. The most common form of oral fungal disease is oral candidiasis, which has a number of presentations. The mainstay for the treatment of oral candidiasis is the use of polyenes, such as nystatin and amphotericin B, and azoles including miconazole, fluconazole, and itraconazole. Resistance of fungi to polyenes is rare, but some Candida species, such as Candida glabrata and C. krusei, are innately less susceptible to azoles, and C. albicans can acquire azole resistance. The main mechanism of high-level fungal azole resistance, measured in vitro, is energy-dependent drug efflux. Most fungi in the oral cavity, however, are present in multispecies biofilms that typically demonstrate an antifungal resistance phenotype. This resistance is the result of multiple factors including the expression of efflux pumps in the fungal cell membrane, biofilm matrix permeability, and a stress response in the fungal cell. Removal of dental biofilms, or treatments to prevent biofilm development in combination with antifungal drugs, may enable better treatment and prevention of oral fungal disease. PMID:20155503

  2. Enhanced production of farnesol by Candida albicans treated with four azoles.

    PubMed

    Hornby, Jacob M; Nickerson, Kenneth W

    2004-06-01

    The dimorphic fungus Candida albicans excretes farnesol, which is produced enzymatically from the sterol biosynthetic intermediate farnesyl pyrophosphate. Inhibition of C. albicans by four azole antifungals, fluconazole, ketoconazole, miconazole, and clotrimazole, caused elevated farnesol production (10- to 45-fold). Furthermore, farnesol production occurs in both laboratory strains and clinical isolates (J. M. Hornby et al., Appl. Environ. Microbiol. 67:2982-2992, 2001) of C. albicans. PMID:15155241

  3. Screening for amino acid substitutions in the Candida albicans Erg11 protein of azole-susceptible and azole-resistant clinical isolates: new substitutions and a review of the literature.

    PubMed

    Morio, Florent; Loge, Cedric; Besse, Bernard; Hennequin, Christophe; Le Pape, Patrice

    2010-04-01

    For several years, azole antifungal drugs have been a treatment option for potentially life-threatening Candida infections. However, azole resistance can occur through various mechanisms such as alterations in ERG11, encoding lanosterol 14alpha-demethylase (CYP51). In this study, we investigated the antifungal susceptibility to fluconazole, itraconazole, and voriconazole of 73 clinical isolates of Candida albicans. Screening for amino acid substitutions in Erg11 was performed on each of the 73 isolates. Twenty isolates displayed a marked decrease in azole susceptibility. Amino acid substitutions were detected in more than two-thirds of the strains. In all, 23 distinct substitutions were identified. Four have not been described previously, among which N136Y and Y447H are suspected to be involved in azole resistance. We suggest that the high genetic polymorphism of ERG11 must be considered in the rationale design of new azole compounds targeting lanosterol 14alpha-demethylase. A review of all Erg11 amino acid polymorphisms described to date is given. PMID:20226328

  4. The molecular mechanism of azole resistance in Aspergillus fumigatus: from bedside to bench and back.

    PubMed

    Wei, Xiaolei; Zhang, Yuanwei; Lu, Ling

    2015-02-01

    The growing use of immunosuppressive therapies has resulted in a dramatic increased incidence of invasive fungal infections (IFIs) caused by Aspergillus fumigatus, a common pathogen, and is also associated with a high mortality rate. Azoles are the primary guideline-recommended therapy agents for first-line treatment and prevention of IFIs. However, increased azole usage in medicinal and agricultural settings has caused azole-resistant isolates to repeatedly emerge in the environment, resulting in a significant threat to human health. In this review, we present and summarize current research on the resistance mechanisms of azoles in A. fumigatus as well as efficient susceptibility testing methods. Moreover, we analyze and discuss the putative clinical (bedside) indication of these findings from bench work. PMID:25626363

  5. Management of symptomatic erosive-ulcerative lesions of oral lichen planus in an adult Egyptian population using Selenium-ACE combined with topical corticosteroids plus antifungal agent

    PubMed Central

    Belal, Mahmoud Helmy

    2015-01-01

    Aim: Oral lichen planus (OLP) is a chronic mucocutaneous disease with an immunological etiology. This study was conducted to evaluate the effect of selenium combined with Vitamins A, C & E (Selenium-ACE) in the treatment of erosive-ulcerative OLP as an adjunctive to topical corticosteroids plus antifungal agent. Subjects and Methods: Thirty patients with a confirmed clinical and histopathologic diagnosis of OLP participated in this clinical trial. Patients were randomly allocated into one of three groups and treated as follows: (I) Topical corticosteroids, (II) topical corticosteroids plus antifungal, and (III) SE-ACE combined with topical corticosteroids plus antifungal. The patients were followed for 6 weeks. The pain and severity of the lesions were recorded at the initial and follow-up visits. All recorded data were analyzed using paired t-test and ANOVA test. A P ≤ 0.05 was considered significant. Results: The experimental groups showed a marked reduction in pain sensation and size of lesions, particularly in the final follow-up period, but there was no significant difference between the first two Groups I and II. However, healing of lesions and improvement of pain sensation was effective in Group III since a significant difference was found favoring Group III over both Groups I and II. Conclusion: No significant difference was found in treating erosive-ulcerative lesions of OLP by topical corticosteroids alone or combined with antifungal. However, when using SE-ACE in combination with topical corticosteroids plus antifungal, this approach may be effective in managing ulcerative lesions of OLP; but more research with a larger sample size and a longer evaluation period may be recommended. PMID:26681847

  6. In vitro and in vivo study on the effect of antifungal agents on hematopoietic cells in mice.

    PubMed

    Samalidou, Maria; Bougiouklis, Dimitris; Vyzantiadis, Timoleon-Achilleas; Meletiadis, Joseph; Monokrousos, Nikolaos; Siotou, Eleni; Sivropoulou, Afroditi; Anagnostopoulos, Achilles; Sotiropoulos, Damianos

    2015-12-01

    Liposomal amphotericin B, voriconazole, and caspofungin are currently used for systemic and severe fungal infections. Patients with malignant diseases are treated with granulocyte-colony stimulating factor (G-CSF) for the recovery of granulocytes after chemotherapy or hematopoietic cell (HC) transplantation. Since they have a high incidence of fungal infections, they inevitably receive antifungal drugs for treatment and prophylaxis. Despite their proven less toxicity for various cell types comparatively with amphotericin B and the decrease in the number of leukocytes that has been reported as a possible complication in clinical studies, the effect of liposomal amphotericin B, voriconazole, and caspofungin on HCs has not been clarified. The present study aimed to examine the in vitro and in vivo effect of these three modern antifungals on HCs. Colony-forming unit (CFU) assays of murine bone marrow cells were performed in methylcellulose medium with or without cytokines and in the presence or absence of various concentrations of liposomal amphotericin B, voriconazole, and caspofungin. In the in vivo experiments, the absolute number of granulocytes was determined during leukocyte recovery in sublethally irradiated mice receiving each antifungal agent separately, with or without G-CSF. In vitro, all three antifungal drugs were nontoxic and, interestingly, they significantly increased the number of CFU-granulocyte-macrophage colonies in the presence of cytokines, at all concentrations tested. This was contrary to the concentration-dependent toxicity and the significant decrease caused by conventional amphotericin B. In vivo, the number of granulocytes was significantly higher with caspofungin plus G-CSF treatment, higher and to a lesser extent higher, but not statistically significantly, with voriconazole plus G-CSF and liposomal amphotericin B plus G-CSF treatments, respectively, as compared with G-CSF alone. These data indicate a potential synergistic effect of

  7. Synthesis and evaluation of new quinazolone derivatives of nalidixic acid as potential antibacterial and antifungal agents.

    PubMed

    Grover, Gaurav; Kini, Suvarna G

    2006-02-01

    In continuation of our work on synthesis of biheterocycles carrying the biodynamic heterocyclic systems at position 3, a series of new nalidixic acid derivatives having quinazolones moiety were synthesised to achieve enhanced biological activity and wide spectrum of activity. Nalidixic acid was first converted into its acid chloride using thionyl chloride as an acylating agent at laboratory temperature. Later it was converted to methyl ester. Nalidixoyl chloride formed vigorously reacts with methanol to give a methyl ester of nalidixic acid. The ester on addition of hydrazine hydrate furnished nalidixic acid hydrazide. Appropriate anthranilic acid was refluxed with acetic anhydride to form Benzoxazine/Acetanthranil. 5-iodo-derivative of anthranilic acid was prepared and also utilised to obtain 6-iodo-Benzoxazine/Acetanthranil. Also, 6-nitro-Benzoxazine/Acetanthranil was obtained by nitration of acetanthranil using conc. H(2)SO(4) and fuming HNO(3). Equimolar proportions of the appropriate synthesised acetanthranils and nalidixic acid hydrazide in the presence of ethanol were refluxed to synthesise quinazolones. Elemental analysis and IR spectra confirmed nalidixic acid hydrazide formation. The structures of the compounds obtained have been established on the basis of Spectral (IR, (1)H NMR and mass) data. The current study also involves in vitro antimicrobial screening (using Agar dilution and Punch well diffusion method) of synthesised quinazolone derivatives bearing nalidixic acid moiety on randomly collected microbial strains. The derivatives Ga (NAH), Gb (QN) and Gd (NiQNA) showed marked inhibitory activity against enteric pathogen like Aeromonas hydrophila, a causative agent of diarrhoea in both children as well as adults. Among the respiratory pathogens included in study, derivative Gd (NiQNA) was found to be active against Streptococcus pyogenes. No significant inhibitory activity was seen by any of synthesised derivatives against Coagulase negative

  8. The In Vitro Antifungal Activity of Sudanese Medicinal Plants against Madurella mycetomatis, the Eumycetoma Major Causative Agent

    PubMed Central

    Elfadil, Hassabelrasoul; Fahal, Ahmed; Kloezen, Wendy; Ahmed, Elhadi M.; van de Sande, Wendy

    2015-01-01

    Eumycetoma is a debilitating chronic inflammatory fungal infection that exists worldwide but it is endemic in many tropical and subtropical regions. The major causative organism is the fungus Madurella mycetomatis. The current treatment of eumycetoma is suboptimal and characterized by low cure rate and high recurrence rates. Hence, an alternative therapy is needed to address this. Here we determined the antifungal activity of seven Sudanese medicinal plant species against Madurella mycetomatis. Of these, only three species; Boswellia papyrifera, Acacia nubica and Nigella sativa, showed some antifungal activity against M. mycetomatis and were further studied. Crude methanol, hexane and defatted methanol extracts of these species were tested for their antifungal activity. B. papyrifera had the highest antifungal activity (MIC50 of 1 ug/ml) and it was further fractionated. The crude methanol and the soluble ethyl acetate fractions of B. papyrifera showed some antifungal activity. The Gas-Liquid-Chromatography hybrid Mass-Spectrophotometer analysis of these two fractions showed the existence of beta-amyrin, beta-amyrone, beta-Sitosterol and stigmatriene. Stigmatriene had the best antifungal activity, compared to other three phytoconstituents, with an MIC-50 of 32 μg/ml. Although the antifungal activity of the identified phytoconstituents was only limited, the antifungal activity of the complete extracts is more promising, indicating synergism. Furthermore these plant extracts are also known to have anti-inflammatory activity and can stimulate wound-healing; characteristics which might also be of great value in the development of novel therapeutic drugs for this chronic inflammatory disease. Therefore further exploration of these plant species in the treatment of mycetoma is encouraging. PMID:25768115

  9. The in vitro antifungal activity of sudanese medicinal plants against Madurella mycetomatis, the eumycetoma major causative agent.

    PubMed

    Elfadil, Hassabelrasoul; Fahal, Ahmed; Kloezen, Wendy; Ahmed, Elhadi M; van de Sande, Wendy

    2015-03-01

    Eumycetoma is a debilitating chronic inflammatory fungal infection that exists worldwide but it is endemic in many tropical and subtropical regions. The major causative organism is the fungus Madurella mycetomatis. The current treatment of eumycetoma is suboptimal and characterized by low cure rate and high recurrence rates. Hence, an alternative therapy is needed to address this. Here we determined the antifungal activity of seven Sudanese medicinal plant species against Madurella mycetomatis. Of these, only three species; Boswellia papyrifera, Acacia nubica and Nigella sativa, showed some antifungal activity against M. mycetomatis and were further studied. Crude methanol, hexane and defatted methanol extracts of these species were tested for their antifungal activity. B. papyrifera had the highest antifungal activity (MIC50 of 1 ug/ml) and it was further fractionated. The crude methanol and the soluble ethyl acetate fractions of B. papyrifera showed some antifungal activity. The Gas-Liquid-Chromatography hybrid Mass-Spectrophotometer analysis of these two fractions showed the existence of beta-amyrin, beta-amyrone, beta-Sitosterol and stigmatriene. Stigmatriene had the best antifungal activity, compared to other three phytoconstituents, with an MIC-50 of 32 μg/ml. Although the antifungal activity of the identified phytoconstituents was only limited, the antifungal activity of the complete extracts is more promising, indicating synergism. Furthermore these plant extracts are also known to have anti-inflammatory activity and can stimulate wound-healing; characteristics which might also be of great value in the development of novel therapeutic drugs for this chronic inflammatory disease. Therefore further exploration of these plant species in the treatment of mycetoma is encouraging. PMID:25768115

  10. Ibuprofen Potentiates the In Vivo Antifungal Activity of Fluconazole against Candida albicans Murine Infection

    PubMed Central

    Miranda, Isabel M.; Silva-Dias, Ana; Silva, Ana P.; Rodrigues, Acácio G.; Pina-Vaz, Cidália

    2015-01-01

    Candida albicans is the most prevalent cause of fungemia worldwide. Its ability to develop resistance in patients receiving azole antifungal therapy is well documented. In a murine model of systemic infection, we show that ibuprofen potentiates fluconazole antifungal activity against a fluconazole-resistant strain, drastically reducing the fungal burden and morbidity. The therapeutic combination of fluconazole with ibuprofen may constitute a new approach for the management of antifungal therapeutics to reverse the resistance conferred by efflux pump overexpression. PMID:25845879

  11. In vitro susceptibility patterns of clinically important Trichophyton and Epidermophyton species against nine antifungal drugs.

    PubMed

    Badali, Hamid; Mohammadi, Rasoul; Mashedi, Olga; de Hoog, G Sybren; Meis, Jacques F

    2015-05-01

    Despite the common, worldwide, occurrence of dermatophytes, little information is available regarding susceptibility profiles against currently available and novel antifungal agents. A collection of sixty-eight clinical Trichophyton species and Epidermophyton floccosum were previously identified and verified to the species level by sequencing the internal transcribed spacer (ITS) regions of rDNA. MICs of amphotericin B, fluconazole, itraconazole, voriconazole, posaconazole, isavuconazole, terbinafine and MECs of caspofungin and anidulafungin were performed based on CLSI M38-A2. The resulting MIC90 s of all strains were, in increasing order, as follows: terbinafine (0.063 mg l(-1) ); posaconazole (1 mg l(-1) ); isavuconazole and anidulafungin (2 mg l(-1) ); itraconazole, voriconazole, amphotericin B, and caspofungin (4 mg l(-1) ) and fluconazole (>64 mg l(-1) ). These results confirm that terbinafine is an excellent agent for treatment of dermatophytosis due to T. rubrum, T. mentagrophytes, T. verrucosum, T. schoenleinii and E. floccosum. In addition, the new azoles POS and ISA are potentially useful antifungals to treat dermatophytosis. However, the clinical effectiveness of these novel antifungals remains to be determined. PMID:25757042

  12. Expression of Efflux Pumps and Fatty Acid Activator One Genes in Azole Resistant Candida Glabrata Isolated From Immunocompromised Patients.

    PubMed

    Farahyar, Shirin; Zaini, Farideh; Kordbacheh, Parivash; Rezaie, Sassan; Falahati, Mehraban; Safara, Mahin; Raoofian, Reza; Hatami, Kamran; Mohebbi, Masoumeh; Heidari, Mansour

    2016-07-01

    Acquired azole resistance in opportunistic fungi causes severe clinical problems in immunosuppressed individuals. This study investigated the molecular mechanisms of azole resistance in clinical isolates of Candida glabrata. Six unmatched strains were obtained from an epidemiological survey of candidiasis in immunocompromised hosts that included azole and amphotericin B susceptible and azole resistant clinical isolates. Candida glabrata CBS 138 was used as reference strain. Antifungal susceptibility testing of clinical isolates was evaluated using Clinical and Laboratory Standards Institute (CLSI) methods. Complementary DNA-amplified fragment length polymorphism (cDNA-AFLP) technology, semi-quantitative RT-PCR, and sequencing were employed for identification of potential genes involved in azole resistance. Candida glabrata Candida drug resistance 1 (CgCDR1) and Candida glabrata Candida drug resistance 2 (CgCDR2) genes, which encode for multidrug transporters, were found to be upregulated in azole-resistant isolates (≥2-fold). Fatty acid activator 1 (FAA1) gene, belonging to Acyl-CoA synthetases, showed expression in resistant isolates ≥2-fold that of the susceptible isolates and the reference strain. This study revealed overexpression of the CgCDR1, CgCDR2, and FAA1 genes affecting biological pathways, small hydrophobic compounds transport, and lipid metabolism in the resistant clinical C.glabrata isolates. PMID:27424018

  13. Interlaboratory evaluation of VITEK2 system and Sensititre YeastOne® for antifungal susceptibility testing of yeasts isolated from blood cultures against four antifungal agents.

    PubMed

    Farina, Claudio; Manso, Esther; Andreoni, Stefano; Conte, Marco; Fazii, Paolo; Lombardi, Gianluigi; Sanna, Silvana; Russello, Giuseppe

    2011-04-01

    An interlaboratory evaluation (seven centers) of VITEK2 System and Sensititre YeastOne® was conducted to test the antifungal susceptibilities of yeasts. The MICs of amphotericin B, fluconazole, flucytosine, and voriconazole were determined for 70 isolates of Candida spp. Our results demonstrated a higher interlaboratory agreement of VITEK 2 System than Sensititre YeastOne©. A good concordance between the two methods was observed for amphotericin B, fluconazole, voriconazole and 5-fluorocytosine (from 81.4% to 88.6%). The study suggests the potential value of the VITEK2 System as a convenient alternative method for testing the susceptibility of yeasts. It also indicates the need for further optimization of MIC endpoint criteria to improve interlaboratory agreement. PMID:21617832

  14. Epidemiology, species distribution, antifungal susceptibility, and ERG11 mutations of Candida species isolated from pregnant Chinese Han women.

    PubMed

    Yang, L; Su, M Q; Ma, Y Y; Xin, Y J; Han, R B; Zhang, R; Wen, J; Hao, X K

    2016-01-01

    The widespread use of antifungal agents has led to increasing azole resistance in Candida species. A major azole-resistance mechanism involves point mutations in the ERG11 gene, which encodes cytochrome P450 lanosterol 14a-demethylase. In this study, vaginal swabs were obtained from 657 pregnant Chinese Han women and cultured appropriately. The open reading frame of the obtained fungal species were amplified by PCR and sequenced; additionally, the ERG11 gene of the isolated Candida species was amplified and sequenced, and the antifungal susceptibility of the isolated species was determined. The vaginal swabs of 124 women produced fungal cultures; five species of Candida were isolated from the patients, among which Candida albicans was predominant. Twelve C. albicans isolates (13.8%) were resistant to fluconazole and 2 (2.2%) were resistant to itraconazole. Seventeen mutations, including 9 silent and 8 missense mutations, were identified in the ERG11 gene of 31 C. albicans isolates. Our findings suggest that infection caused by C. albicans and non-C. albicansis common in Chinese Han women of reproductive age. Moreover, the relationship between Candida infection and certain epidemiological factors emphasizes the need to educate women about the precise diagnosis and punctual treatment of vaginitis. PMID:27173274

  15. Advancements in Topical Antifungal Vehicles.

    PubMed

    Kircik, Leon H

    2016-02-01

    The primary treatment for superficial fungal infections is antifungal topical formulations, and allylamines and azoles represent the two major classes of topical formulations that are used to treat these infections. The stratum corneum (SC) is composed of keratinocytes that are surrounded by a matrix of lipids. The efficacy of topically applied formulations depends on their ability to penetrate this lipid matrix, and the vehicle plays an integral role in the penetration of active molecule into skin. There are several challenges to formulating topical drugs, which include the biotransformation of the active molecules as they pass through the SC and the physical changes that occur to the vehicle itself when it is applied to the skin. This article will review current and emerging topical antifungal vehicles. PMID:26885798

  16. Contribution of Clinically Derived Mutations in ERG11 to Azole Resistance in Candida albicans

    PubMed Central

    Flowers, Stephanie A.; Colón, Brendan; Whaley, Sarah G.; Schuler, Mary A.

    2014-01-01

    In Candida albicans, the ERG11 gene encodes lanosterol demethylase, the target of the azole antifungals. Mutations in ERG11 that result in an amino acid substitution alter the abilities of the azoles to bind to and inhibit Erg11, resulting in resistance. Although ERG11 mutations have been observed in clinical isolates, the specific contributions of individual ERG11 mutations to azole resistance in C. albicans have not been widely explored. We sequenced ERG11 in 63 fluconazole (FLC)-resistant clinical isolates. Fifty-five isolates carried at least one mutation in ERG11, and we observed 26 distinct positions in which amino acid substitutions occurred. We mapped the 26 distinct variant positions in these alleles to four regions in the predicted structure for Erg11, including its predicted catalytic site, extended fungus-specific external loop, proximal surface, and proximal surface-to-heme region. In total, 31 distinct ERG11 alleles were recovered, with 10 ERG11 alleles containing a single amino acid substitution. We then characterized 19 distinct ERG11 alleles by introducing them into the wild-type azole-susceptible C. albicans SC5314 strain and testing them for susceptibilities to FLC, itraconazole (ITC), and voriconazole (VRC). The strains that were homozygous for the single amino acid substitutions Y132F, K143R, F145L, S405F, D446E, G448E, F449V, G450E, and G464S had a ≥4-fold increase in FLC MIC. The strains that were homozygous for several double amino acid substitutions had decreased azole susceptibilities beyond those conferred by any single amino acid substitution. These findings indicate that mutations in ERG11 are prevalent among azole-resistant clinical isolates and that most mutations result in appreciable changes in FLC and VRC susceptibilities. PMID:25385095

  17. Contribution of clinically derived mutations in ERG11 to azole resistance in Candida albicans.

    PubMed

    Flowers, Stephanie A; Colón, Brendan; Whaley, Sarah G; Schuler, Mary A; Rogers, P David

    2015-01-01

    In Candida albicans, the ERG11 gene encodes lanosterol demethylase, the target of the azole antifungals. Mutations in ERG11 that result in an amino acid substitution alter the abilities of the azoles to bind to and inhibit Erg11, resulting in resistance. Although ERG11 mutations have been observed in clinical isolates, the specific contributions of individual ERG11 mutations to azole resistance in C. albicans have not been widely explored. We sequenced ERG11 in 63 fluconazole (FLC)-resistant clinical isolates. Fifty-five isolates carried at least one mutation in ERG11, and we observed 26 distinct positions in which amino acid substitutions occurred. We mapped the 26 distinct variant positions in these alleles to four regions in the predicted structure for Erg11, including its predicted catalytic site, extended fungus-specific external loop, proximal surface, and proximal surface-to-heme region. In total, 31 distinct ERG11 alleles were recovered, with 10 ERG11 alleles containing a single amino acid substitution. We then characterized 19 distinct ERG11 alleles by introducing them into the wild-type azole-susceptible C. albicans SC5314 strain and testing them for susceptibilities to FLC, itraconazole (ITC), and voriconazole (VRC). The strains that were homozygous for the single amino acid substitutions Y132F, K143R, F145L, S405F, D446E, G448E, F449V, G450E, and G464S had a ≥ 4-fold increase in FLC MIC. The strains that were homozygous for several double amino acid substitutions had decreased azole susceptibilities beyond those conferred by any single amino acid substitution. These findings indicate that mutations in ERG11 are prevalent among azole-resistant clinical isolates and that most mutations result in appreciable changes in FLC and VRC susceptibilities. PMID:25385095

  18. Application of "Hydrogen-Bonding Interaction" in Drug Design. Part 2: Design, Synthesis, and Structure-Activity Relationships of Thiophosphoramide Derivatives as Novel Antiviral and Antifungal Agents.

    PubMed

    Lu, Aidang; Ma, Yuanyuan; Wang, Ziwen; Zhou, Zhenghong; Wang, Qingmin

    2015-11-01

    On the basis of the structure of natural product harmine, lead compound 18, and the structure of compounds in part 1, a series of thiophosphoramide derivatives 1-17 were designed and synthesized from various amines in one step. Their antiviral and antifungal activities were evaluated. Most of the compounds showed significantly higher antiviral activity against tobacco mosaic virus (TMV) than commercial virucide ribavirin. Compound (R,R)-17 showed the best anti-TMV activity in vitro (70%/500 μg/mL and 33%/100 μg/mL) and in vivo (inactivation effect, 68%/500 μg/mL and 30%/100 μg/mL; curative effect, 64%/500 μg/mL and 31%/100 μg/mL; protection effect, 66%/500 μg/mL and 31%/100 μg/mL), which is higher than that of ningnanmycin and lead compound 18. The antiviral activity of (R,R)-17·HCl is about similar to that of (R,R)-17. However, the antifungal activity of (R,R)-17·HCl against Puccinia sorghi is slightly lower than that of (R,R)-17. The systematic study provides compelling evidence that these simple thiophosphoramide compounds could become efficient antiviral and antifungal agents. PMID:26485246

  19. Design, Synthesis, and Structure--Activity Relationship of New 2-Aryl-3,4-dihydro-β-carbolin-2-ium Salts as Antifungal Agents.

    PubMed

    Hou, Zhe; Zhu, Li-Fei; Yu, Xin-chi; Sun, Ma-Qiang; Miao, Fang; Zhou, Le

    2016-04-13

    Twenty-two 2-aryl-9-methyl-3,4-dihydro-β-carbolin-2-ium bromides along with four 9-demethylated derivatives were synthesized and characterized by spectroscopic analysis. By using the mycelium growth rate method, the compounds were evaluated for antifungal activities in vitro against six plant pathogenic fungi, and structure-activity relationships (SAR) were derived. Almost all of the compounds showed obvious inhibition activity on each of the fungi at 150 μM. For all of the fungi, 10 of the compounds showed average inhibition rates of >80% at 150 μM, and most of their EC50 values were in the range of 2.0-30.0 μM. SAR analysis showed that the substitution pattern of the N-aryl ring significantly influences the activity; N9-alkylation improves the activity, whereas aromatization of ring-C reduces the activity. It was concluded that the present research provided a series of new 2-aryl-9-alkyl-3,4-dihydro-β-carbolin-2-iums with excellent antifungal potency and structure optimization design for the development of new carboline antifungal agents. PMID:27004437

  20. Molecular structures and biological evaluation of 2-chloro-3-(n-alkylamino)-1,4-napthoquinone derivatives as potent antifungal agents

    NASA Astrophysics Data System (ADS)

    Pawar, Omkar; Patekar, Ashwini; Khan, Ayesha; Kathawate, Laxmi; Haram, Santosh; Markad, Ganesh; Puranik, Vedavati; Salunke-Gawali, Sunita

    2014-02-01

    Derivatives of 2-chloro-3-(n-alkylamino)-1,4-naphthoquinone {n-alkyl: methyl; L-1, ethyl; L-2, propyl; L-3 and butyl; L-4} have been synthesized and characterized by elemental analysis, FT-IR, 1H NMR, UV-visible spectroscopy, LC-MS and single crystal X-ray diffraction studies. Antifungal activity of L-1 to L-4 has been evaluated against Candida tropicalis, Candida albicans and Cladosporium herbarum. The intramolecular hydrogen bonding affects the N-H vibrational frequency in L-2 (3273 cm-1). The single crystal X-ray structure reveal that L-1 and L-3 crystallizes in triclinic P-1, whereas L-2 crystallizes in orthorhombic Pca21 space group. An extensive intra and intermolecular hydrogen bonding interactions were observed in L-1 to L-3 which leads to molecular association. Intramolecular N-H⋯O hydrogen bonding were observed in L-1 to L-3. Moreover π-π stacking interactions were observed between the quinonoid rings of L-1 and L-3, however no such interactions were observed in L-2. An electrochemical study showed molecular association of L-1 to L-4 in DMSO solution. Compounds L-1 to L-4 were found to be potent antifungal agents against all the three strains, especially against C. tropicalis. Amongst these promising antifungal candidates, L-1 showed better activity compared to the clinically administered antifungal drug Amphotericin B and Nitrofurantoin with MIC = 1.25 μg ml-1 and MIC = 0.025 μg ml-1 respectively against C. albicans. Structure and activity relationship (SAR) study suggest a Log P value of ˜2.0 and the cyclic voltammetry studies reveals additional chemical processes for L-1, which exhibits maximum activity against all fungal strains.

  1. Novel drug delivery strategies for improving econazole antifungal action.

    PubMed

    Firooz, Alireza; Nafisi, Shohreh; Maibach, Howard I

    2015-11-10

    Econazole is a commonly used azole antifungal in clinical treatment of superficial fungal infections. It is generally used as conventional cream and gel preparations under the brand names of Spectazole (United States), Ecostatin (Canada), Pevaryl (Western Europe). Treatment efficiency of antifungal drugs depends on their penetration through target layers of skin at effective concentrations. Econazole's poor water solubility limits its bioavailability and antifungal effects. Therefore, formulation strategies have been examined for delivering econazole through targeted skin sites. The present overview focuses on novel nano-based formulation approaches used to improve econazole penetration through skin for treatment of superficial fungal infections. PMID:26383840

  2. Functionalised isocoumarins as antifungal compounds: Synthesis and biological studies.

    PubMed

    Simic, Milena; Paunovic, Nikola; Boric, Ivan; Randjelovic, Jelena; Vojnovic, Sandra; Nikodinovic-Runic, Jasmina; Pekmezovic, Marina; Savic, Vladimir

    2016-01-01

    A series of novel 3-substituted isocoumarins was prepared via Pd-catalysed coupling processes and screened in vitro for antifungal activity against Candida species. The study revealed antifungal potential of isocoumarins possessing the azole substituents, which, in some cases, showed biological properties equal to those of clinically used voriconazole. Selected compounds were also screened against voriconazole resistant Candida krusei 6258 and a clinical isolate Candida parapsilosis CA-27. Although the activity against these targets needs to be improved further, the results emphasise additional potential of this new class of antifungal compounds. PMID:26586600

  3. Evaluating food additives as antifungal agents against Monilinia fructicola in vitro and in hydroxypropyl methylcellulose-lipid composite edible coatings for plums.

    PubMed

    Karaca, Hakan; Pérez-Gago, María B; Taberner, Verònica; Palou, Lluís

    2014-06-01

    Common food preservative agents were evaluated in in vitro tests for their antifungal activity against Monilinia fructicola, the most economically important pathogen causing postharvest disease of stone fruits. Radial mycelial growth was measured in Petri dishes of PDA amended with three different concentrations of the agents (0.01-0.2%, v/v) after 7 days of incubation at 25 °C. Thirteen out of fifteen agents tested completely inhibited the radial growth of the fungus at various concentrations. Among them, ammonium carbonate, ammonium bicarbonate and sodium bicarbonate were the most effective while sodium acetate and sodium formate were the least effective. The effective agents and concentrations were tested as ingredients of hydroxypropyl methylcellulose (HPMC)-lipid edible coatings against brown rot disease on plums previously inoculated with M. fructicola (curative activity). 'Friar' and 'Larry Ann' plums were inoculated with the pathogen, coated with stable edible coatings about 24h later, and incubated at 20 °C and 90% RH. Disease incidence (%) and severity (lesion diameter) were determined after 4, 6, and 8 days of incubation and the 'area under the disease progress stairs' (AUDPS) was calculated. Coatings containing bicarbonates and parabens significantly reduced brown rot incidence in plums, but potassium sorbate, used at 1.0% in the coating formulation, was the most effective agent with a reduction rate of 28.6%. All the tested coatings reduced disease severity to some extent, but coatings containing 0.1% sodium methylparaben or sodium ethylparaben or 0.2% ammonium carbonate or ammonium bicarbonate were superior to the rest, with reduction rates of 45-50%. Overall, the results showed that most of the agents tested in this study had significant antimicrobial activity against M. fructicola and the application of selected antifungal edible coatings is a promising alternative for the control of postharvest brown rot in plums. PMID:24742996

  4. An overview of topical antifungal therapy in dermatomycoses. A North American perspective.

    PubMed

    Gupta, A K; Einarson, T R; Summerbell, R C; Shear, N H

    1998-05-01

    Dermatophytes cause fungal infections of keratinised tissues, e.g. skin, hair and nails. The organisms belong to 3 genera, Trichophyton, Epidermophyton and Microsporum. Dermatophytes may be grouped into 3 categories based on host preference and natural habitat. Anthropophilic species predominantly infect humans, geophilic species are soil based and may infect both humans and animals, zoophilic species generally infect non-human mammals. It is important to confirm mycologically the clinical diagnosis of onychomycosis and other tinea infections prior to commencing therapy. The identity of the fungal organism may provide guidance about the appropriateness of a given topical antifungal agent. Special techniques may be required to obtain the best yield of fungal organisms from a given site, especially the scalp and nails. It is also important to realise the limitations of certain diagnostic aids e.g., Wood's light examination is positive in tinea capitis due to M. canis and M. audouinii (ectothrix organisms); however, Wood's light examination is negative in T. tonsurans (endothrix organism). Similarly, it is important to be aware that cicloheximide in culture medium will inhibit growth of non-dermatophytes. Appropriate media are therefore required to evaluate the growth of some significant non-dermatophyte moulds. For tinea infections other than tinea capitis and tinea unguium, topical antifungals may be considered. For effective therapy of tinea capitis an oral antifungal is generally necessary. Similarly, oral antifungals are the therapy of choice, especially if onychomycosis is moderate to severe. Furthermore, where the tinea infection involves a large area, in an immunocompromised host or if infection is recurrent with poor response to topical agents, then oral antifungal therapy may be necessary. Topical antifungal agents may be broadly divided into specific and nonspecific agents. The former group includes the polyenes, azoles, allylamines, amorolfine, ciclopirox

  5. In vivo activity of Sapindus saponaria against azole-susceptible and -resistant human vaginal Candida species

    PubMed Central

    2011-01-01

    Background Study of in vivo antifungal activity of the hydroalcoholic extract (HE) and n-BuOH extract (BUTE) of Sapindus saponaria against azole-susceptible and -resistant human vaginal Candida spp. Methods The in vitro antifungal activity of HE, BUTE, fluconazole (FLU), and itraconazole (ITRA) was determined by the broth microdilution method. We obtained values of minimal inhibitory concentration (MIC) and minimum fungicide concentration (MFC) for 46 strains of C. albicans and 10 of C. glabrata isolated from patients with vulvovaginal candidiasis (VVC). VVC was induced in hyperestrogenic Wistar rats with azole-susceptible C. albicans (SCA), azole-resistant C. albicans (RCA), and azole-resistant C. glabrata (RCG). The rats were treated intravaginally with 0.1 mL of HE or BUTE at concentrations of 1%, 2.5% and 5%; 100 μg/mL of FLU (treatment positive control); or distilled water (negative control) at 1, 24, and 48 h after induction of the infection, and the progress of VVC was monitored by culturing and scanning electron microscopy (SEM). The toxicity was evaluated in cervical cells of the HeLa cell line. Results The extracts showed in vitro inhibitory and fungicidal activity against all the isolates, and the MIC and MFC values for the C. glabrata isolates were slightly higher. In vivo, the SCA, RCA, and RCG infections were eliminated by 21 days post-infection, with up to 5% HE and BUTE, comparable to the activity of FLU. No cytotoxic action was observed for either extract. Conclusions Our results demonstrated that HE and BUTE from S. saponaria show inhibitory and fungicidal activity in vitro, in addition to in vivo activity against azole-resistant vaginal isolates of C. glabrata and azole-susceptible and resistant isolates of C. albicans. Also considering the lack of cytotoxicity and the low concentrations of the extracts necessary to eliminate the infection in vivo, HE and BUTE show promise for continued studies with purified antifungal substances in VVC yeast

  6. Etiologic Agents and Antifungal Susceptibility of Oral Candidosis from Romanian patients with HIV-infection or type 1 diabetes mellitus.

    PubMed

    Minea, Bogdan; Nastasa, Valentin; Kolecka, Anna; Mares, Magdalena; Marangoci, Narcisa; Rosca, Irina; Pinteala, Mariana; Hancianu, Monica; Mares, Mihai

    2016-01-01

    This is the first Romanian investigation of oral candidosis in patients suffering of HIV-infection or type 1 diabetes mellitus (T1DM). Candida albicans was the dominant species in both types of isolates: n = 14 (46.7%) in T1DM, n = 60 (69.8%) in HIV. The most frequent non-albicans Candida spp. were Candida kefyr (n = 6; 20%) in T1DM and Candida dubliniensis (n = 8; 9.3%) in HIV. Resistance to fluconazole was detected only in the HIV non-albicans Candida group (n = 8; 9.3%). All isolates were susceptible to VOR. The experimental drug MXP had MIC values equal or close to the ones of VOR. Echinocandin resistance was more frequent than azole resistance. PMID:27282005

  7. Molecular identification and antifungal susceptibility of 186 Candida isolates from vulvovaginal candidiasis in southern China.

    PubMed

    Shi, Xiao-Yu; Yang, Yan-Ping; Zhang, Ying; Li, Wen; Wang, Jie-Di; Huang, Wen-Ming; Fan, Yi-Ming

    2015-04-01

    There is limited information regarding the molecular epidemiology and antifungal susceptibilities of Candida isolates using the Neo-Sensitabs method in patients with vulvovaginal candidiasis (VVC). From August 2012 to March 2013, 301 non-pregnant patients aged 18-50 years with suspected VVC were prospectively screened at a teaching hospital in southern China. The vaginal isolates were identified by DNA sequencing of internal transcribed spacer and the D1/D2 domain. Antifungal susceptibility testing of seven antifungal agents was performed using the Neo-Sensitabs tablet diffusion method. Candida species were isolated from 186 cases (61.79 %). The most common pathogen was Candida albicans (91.4 %), followed by Candida glabrata (4.3 %), Candida tropicalis (3.2 %) and Candida parapsilosis (1.1 %). The susceptibility rates to C. albicans were higher for caspofungin, voriconazole and fluconazole than those for itraconazole, miconazole, ketoconazole and terbinafine (P<0.01). The resistance rates to C. albicans were 4.7, 6.5, 7.1, 7.6, 12.3, 27.7 and 74.7 % for caspofungin, miconazole, itraconazole, voriconazole, fluconazole, ketoconazole and terbinafine, respectively. No drugs tested apart from fluconazole exhibited differences in resistance between C. albicans and non-albicans Candida isolates. The results demonstrate that, using DNA sequencing, C. albicans is the most common isolate from Chinese patients with VVC. Caspofungin, voriconazole and fluconazole may be preferable to other azoles and terbinafine in the treatment of VVC. PMID:25596116

  8. Antifungal Susceptibility Analysis of Clinical Isolates of Candida parapsilosis in Iran

    PubMed Central

    LOTFALI, Ensieh; KORDBACHEH, Parivash; MIRHENDI, Hossein; ZAINI, Farideh; GHAJARI, Ali; MOHAMMADI, Rasoul; NOORBAKHSH, Fatemeh; MOAZENI, Maryam; FALLAHI, Aliakbar; REZAIE, Sassan

    2016-01-01

    Background: Candida parapsilosis is an emergent agent of invasive fungal infections. This yeast is one of the five most widespread yeasts concerned in invasive candidiasis. C. parapsilosis stands out as the second most common yeast species isolated from patients with bloodstream infections especially in neonates with catheter. Recently several reports suggested that its reduced susceptibility to azoles and polyene might become a cause for clinical concern, although C. parapsilosis is not believed to be intensely prone to the development of antifungal resistance. Methods: In the present report, One hundred and twenty clinical isolates of C. parapsilosis complex were identified and differentiated by using PCR-RFLP analysis. The isolates were then analyzed to determine their susceptibility profile to fluconazole (FLU), itraconazole (ITC) and amphotericin B. The minimum inhibitory concentration (MIC) results were analyzed according to the standard CLSI guide. Results: All of isolates were identified as C. parapsilosis. No C. metapsilosis and C. orthopsilosis strains were found. Evaluation of the antifungal susceptibility profile showed that only three (2.5%) C. parapsilosis were resistant to fluconazole, three (2.5%) C. parapsilosis were resistant to itraconazole and two (1.7%) C. parapsilosis were amphotericin B resistant. Conclusion: Profiles in clinical isolates of C. parapsilosis can provide important information for the control of antifungal resistance as well as distribution and susceptibility profiles in populations. PMID:27141494

  9. The effect of various antifungal agents on aflatoxin production and growth characteristics of Aspergillus parasiticus and Aspergillus flavus in liquid medium.

    PubMed

    Stewart, R G; Wyatt, R D; Ashmore, M D

    1977-09-01

    Various antifungal agents were added to a medium of 2% yeast extract-4% sucrose. Spores of a toxigenic strain of Aspergillus parasiticus were inoculated into the medium and incubated at 26 degrees C. for 10 days. Growth of the mold and aflatoxin formation were monitored every 48 hours during the experiment. Of the antifungal agents evaluated, propionic acid and crystal violet were the most effective compounds in retarding mold growth. Propionic acid was fungicidal at concentrations greater than 3.0 microgram/ml. whereas crystal violet exhibited a mold retarding activity at levels greater than 2,0 microgram/ml. Crystal violet retarded the growth rate of the mold during the initial stages of growth, however, this retardation was overcome after 10 days of incubation. Crystal violet also retarded aflatoxin production and sporulation of Aspergillus parasiticus; however, aflatoxin production was the most sensitive parameter. A survey involving 12 toxigenic isolates of A. parasiticus and A. flavus indicated that these species vary markedly in susceptibility to crystal violet. PMID:415299

  10. Clotrimazole as a potent agent for treating the oomycete fish pathogen Saprolegnia parasitica through inhibition of sterol 14α-demethylase (CYP51).

    PubMed

    Warrilow, Andrew G S; Hull, Claire M; Rolley, Nicola J; Parker, Josie E; Nes, W David; Smith, Stephen N; Kelly, Diane E; Kelly, Steven L

    2014-10-01

    A candidate CYP51 gene encoding sterol 14α-demethylase from the fish oomycete pathogen Saprolegnia parasitica (SpCYP51) was identified based on conserved CYP51 residues among CYPs in the genome. It was heterologously expressed in Escherichia coli, purified, and characterized. Lanosterol, eburicol, and obtusifoliol bound to purified SpCYP51 with similar binding affinities (Ks, 3 to 5 μM). Eight pharmaceutical and six agricultural azole antifungal agents bound tightly to SpCYP51, with posaconazole displaying the highest apparent affinity (Kd, ≤3 nM) and prothioconazole-desthio the lowest (Kd, ∼51 nM). The efficaciousness of azole antifungals as SpCYP51 inhibitors was confirmed by 50% inhibitory concentrations (IC50s) of 0.17 to 2.27 μM using CYP51 reconstitution assays. However, most azole antifungal agents were less effective at inhibiting S. parasitica, Saprolegnia diclina, and Saprolegnia ferax growth. Epoxiconazole, fluconazole, itraconazole, and posaconazole failed to inhibit Saprolegnia growth (MIC100, >256 μg ml(-1)). The remaining azoles inhibited Saprolegnia growth only at elevated concentrations (MIC100 [the lowest antifungal concentration at which growth remained completely inhibited after 72 h at 20°C], 16 to 64 μg ml(-1)) with the exception of clotrimazole, which was as potent as malachite green (MIC100, ∼1 μg ml(-1)). Sterol profiles of azole-treated Saprolegnia species confirmed that endogenous CYP51 enzymes were being inhibited with the accumulation of lanosterol in the sterol fraction. The effectiveness of clotrimazole against SpCYP51 activity (IC50, ∼1 μM) and the concentration inhibiting the growth of Saprolegnia species in vitro (MIC100, ∼1 to 2 μg ml(-1)) suggest that clotrimazole could be used against Saprolegnia infections, including as a preventative measure by pretreatment of fish eggs, and for freshwater-farmed fish as well as in leisure activities. PMID:25085484