Sample records for www.climate.be

  1. Can decadal climate predictions be improved by ocean ensemble dispersion filtering?

    NASA Astrophysics Data System (ADS)

    Kadow, C.; Illing, S.; Kröner, I.; Ulbrich, U.; Cubasch, U.

    2017-12-01

    Decadal predictions by Earth system models aim to capture the state and phase of the climate several years inadvance. Atmosphere-ocean interaction plays an important role for such climate forecasts. While short-termweather forecasts represent an initial value problem and long-term climate projections represent a boundarycondition problem, the decadal climate prediction falls in-between these two time scales. The ocean memorydue to its heat capacity holds big potential skill on the decadal scale. In recent years, more precise initializationtechniques of coupled Earth system models (incl. atmosphere and ocean) have improved decadal predictions.Ensembles are another important aspect. Applying slightly perturbed predictions results in an ensemble. Insteadof using and evaluating one prediction, but the whole ensemble or its ensemble average, improves a predictionsystem. However, climate models in general start losing the initialized signal and its predictive skill from oneforecast year to the next. Here we show that the climate prediction skill of an Earth system model can be improvedby a shift of the ocean state toward the ensemble mean of its individual members at seasonal intervals. Wefound that this procedure, called ensemble dispersion filter, results in more accurate results than the standarddecadal prediction. Global mean and regional temperature, precipitation, and winter cyclone predictions showan increased skill up to 5 years ahead. Furthermore, the novel technique outperforms predictions with largerensembles and higher resolution. Our results demonstrate how decadal climate predictions benefit from oceanensemble dispersion filtering toward the ensemble mean. This study is part of MiKlip (fona-miklip.de) - a major project on decadal climate prediction in Germany.We focus on the Max-Planck-Institute Earth System Model using the low-resolution version (MPI-ESM-LR) andMiKlip's basic initialization strategy as in 2017 published decadal climate forecast: http://www

  2. Alaska Center for Climate Assessment and Policy: Partnering with Decision-Makers in Climate Change Adaptation

    NASA Astrophysics Data System (ADS)

    White, D.; Trainor, S.; Walsh, J.; Gerlach, C.

    2008-12-01

    The Alaska Center for Climate Assessment and Policy (ACCAP; www.uaf.edu/accap) is one of several, NOAA funded, Regional Integrated Science and Policy (RISA) programs nation-wide (http://www.climate.noaa.gov/cpo_pa/risa/). Our mission is to assess the socio-economic and biophysical impacts of climate variability in Alaska, make this information available to local and regional decision-makers, and improve the ability of Alaskans to adapt to a changing climate. We partner with the University of Alaska?s Scenario Network for Alaska Planning (SNAP; http://www.snap.uaf.edu/), state and local government, state and federal agencies, industry, and non-profit organizations to communicate accurate and up-to-date climate science and assist in formulating adaptation and mitigation plans. ACCAP and SNAP scientists are members of the Governor?s Climate Change Sub-Cabinet Adaptation and Mitigation Advisory and Technical Working Groups (http://www.climatechange.alaska.gov/), and apply their scientific expertise to provide down-scaled, state-wide maps of temperature and precipitation projections for these groups. An ACCAP scientist also serves as co-chair for the Fairbanks North Star Borough Climate Change Task Force, assisting this group as they work through the five-step model for climate change planning put forward by the International Council for Local Environmental Initiatives (http://www.investfairbanks.com/Taskforces/climate.php). ACCAP scientists work closely with federal resource managers in on a range of projects including: partnering with the U.S. Fish and Wildlife Service to analyze hydrologic changes associated with climate change and related ecological impacts and wildlife management and development issues on Alaska?s North Slope; partnering with members of the Alaska Interagency Wildland Fire Coordinating Group in statistical modeling to predict seasonal wildfire activity and coordinate fire suppression resources state-wide; and working with Alaska Native Elders and

  3. Climate Variability and Change in the Mediterranean Region

    NASA Astrophysics Data System (ADS)

    Lionello, Piero; Özsoy, Emin; Planton, Serge; Zanchetta, Giovanni

    2017-04-01

    This special issue collects new research results on the climate of the Mediterranean region. It covers traditional topics of the MedCLIVAR programme (www.medclivar.eu, Lionello et al. 2006, Lionello et al. 2012b) being devoted to papers addressing on-going and future climate changes in the Mediterranean region and their impacts on its environment.

  4. The foundation for climate services in Belgium: CORDEX.be

    NASA Astrophysics Data System (ADS)

    Van Schaeybroeck, Bert; Termonia, Piet; De Ridder, Koen; Fettweis, Xavier; Gobin, Anne; Luyten, Patrick; Marbaix, Philippe; Pottiaux, Eric; Stavrakou, Trissevgeni; Van Lipzig, Nicole; van Ypersele, Jean-Pascal; Willems, Patrick

    2017-04-01

    According to the Global Framework for Climate Services (GFCS) there are four pillars required to build climate services. As the first step towards the realization of a climate center in Belgium, the national project CORDEX.be focused on one pillar: research modelling and projection. By bringing together the Belgian climate and impact modeling research of nine groups a data-driven capacity development and community building in Belgium based on interactions with users. The project is based on the international CORDEX ("COordinated Regional Climate Downscaling Experiment") project where ".be" indicates it will go beyond for Belgium. Our national effort links to the regional climate initiatives through the contribution of multiple high-resolution climate simulations over Europe following the EURO-CORDEX guidelines. Additionally the same climate simulations were repeated at convection-permitting resolutions over Belgium (3 to 5 km). These were used to drive different local impact models to investigate the impact of climate change on urban effects, storm surges and waves, crop production and changes in emissions from vegetation. Akin to international frameworks such as CMIP and CORDEX a multi-model approach is adopted allowing for uncertainty estimation, a crucial aspect of climate projections for policy-making purposes. However, due to the lack of a large set of high resolution model runs, a combination of all available climate information is supplemented with the statistical downscaling approach. The organization of the project, together with its main results will be outlined. The proposed coordination framework could serve as a demonstration case for regions or countries where the climate-research capacity is present but a structure is required to assemble it coherently. Based on interactions and feedback with stakeholders different applications are planned, demonstrating the use of the climate data.

  5. iClimate: a climate data and analysis portal

    NASA Astrophysics Data System (ADS)

    Goodman, P. J.; Russell, J. L.; Merchant, N.; Miller, S. J.; Juneja, A.

    2015-12-01

    We will describe a new climate data and analysis portal called iClimate that facilitates direct comparisons between available climate observations and climate simulations. Modeled after the successful iPlant Collaborative Discovery Environment (www.iplantcollaborative.org) that allows plant scientists to trade and share environmental, physiological and genetic data and analyses, iClimate provides an easy-to-use platform for large-scale climate research, including the storage, sharing, automated preprocessing, analysis and high-end visualization of large and often disparate observational and model datasets. iClimate will promote data exploration and scientific discovery by providing: efficient and high-speed transfer of data from nodes around the globe (e.g. PCMDI and NASA); standardized and customized data/model metrics; efficient subsampling of datasets based on temporal period, geographical region or variable; and collaboration tools for sharing data, workflows, analysis results, and data visualizations with collaborators or with the community at large. We will present iClimate's capabilities, and demonstrate how it will simplify and enhance the ability to do basic or cutting-edge climate research by professionals, laypeople and students.

  6. Does climate undermine subjective well-being? A 58-nation study.

    PubMed

    Fischer, Ronald; Van de Vliert, Evert

    2011-08-01

    The authors test predictions from climato-economic theories of culture that climate and wealth interact in their influence on psychological processes. Demanding climates (defined as colder than temperate and hotter than temperate climates) create potential threats for humans. If these demands can be met by available economic resources, individuals experience challenging opportunities for self-expression and personal growth and consequently will report lowest levels of ill-being. If threatening climatic demands cannot be met by resources, resulting levels of reported ill-being will be highest. These predictions are confirmed in nation-level means of health complaints, burnout, anxiety, and depression across 58 societies. Climate, wealth, and their interaction together account for 35% of the variation in overall subjective ill-being, even when controlling for known predictors of subjective well-being. Further investigations of the process suggest that cultural individualism does not mediate these effects, but subjective well-being may function as a mediator of the impact of ecological variables on ill-being.

  7. Reconstruction of Past Mediterranean Climate

    NASA Astrophysics Data System (ADS)

    García-Herrera, Ricardo; Luterbacher, Jürg; Lionello, Piero; Gonzáles-Rouco, Fidel; Ribera, Pedro; Rodó, Xavier; Kull, Christoph; Zerefos, Christos

    2007-02-01

    First MEDCLIVAR Workshop on Reconstruction of Past Mediterranean Climate; Pablo de Olavide University, Carmona, Spain, 8-11 November 2006; Mediterranean Climate Variability and Predictability (MEDCLIVAR; http://www.medclivar.eu) is a program that coordinates and promotes research on different aspects of Mediterranean climate. The main MEDCLIVAR goals include the reconstruction of past climate, describing patterns and mechanisms characterizing climate space-time variability, extremes at different time and space scales, coupled climate model/empirical reconstruction comparisons, seasonal forecasting, and the identification of the forcings responsible for the observed changes. The program has been endorsed by CLIVAR (Climate Variability and Predictability project) and is funded by the European Science Foundation.

  8. Comparing Commercial WWW Browsers.

    ERIC Educational Resources Information Center

    Notess, Greg R.

    1995-01-01

    Four commercial World Wide Web browsers are evaluated for features such as handling of WWW protocols and different URLs: FTP, Telnet, Gopher and WAIS, and e-mail and news; bookmark capabilities; navigation features; file management; and security support. (JKP)

  9. Being Prepared for Climate Change: Checklists of Potential Climate Change Risks, from Step 3

    EPA Pesticide Factsheets

    The Being Prepared for Climate Change workbook is a guide for constructing a climate change adaptation plan based on identifying risks and their consequences. These checklists (from Step 3 of the workbook) help users identify risks.

  10. The New WWW: Whatever, Whenever, Wherever

    ERIC Educational Resources Information Center

    March, Tom

    2006-01-01

    We are entering an age of instant media gratification, in which a "multimedia aura" will "accompany us wherever we go," writes Tom March. The New WWW, says March, offers us whatever we want, whenever and wherever we want it. The effect on our children may be unrealistic expectations, premature disillusionment, and unhappiness. To counterbalance…

  11. The SASSCAL contribution to climate observation, climate data management and data rescue in Southern Africa

    NASA Astrophysics Data System (ADS)

    Kaspar, F.; Helmschrot, J.; Mhanda, A.; Butale, M.; de Clercq, W.; Kanyanga, J. K.; Neto, F. O. S.; Kruger, S.; Castro Matsheka, M.; Muche, G.; Hillmann, T.; Josenhans, K.; Posada, R.; Riede, J.; Seely, M.; Ribeiro, C.; Kenabatho, P.; Vogt, R.; Jürgens, N.

    2015-07-01

    A major task of the newly established "Southern African Science Service Centre for Climate Change and Adaptive Land Management" (SASSCAL; www.sasscal.org"target="_blank">www.sasscal.org) and its partners is to provide science-based environmental information and knowledge which includes the provision of consistent and reliable climate data for Southern Africa. Hence, SASSCAL, in close cooperation with the national weather authorities of Angola, Botswana, Germany and Zambia as well as partner institutions in Namibia and South Africa, supports the extension of the regional meteorological observation network and the improvement of the climate archives at national level. With the ongoing rehabilitation of existing weather stations and the new installation of fully automated weather stations (AWS), altogether 105 AWS currently provide a set of climate variables at 15, 30 and 60 min intervals respectively. These records are made available through the SASSCAL WeatherNet, an online platform providing near-real time data as well as various statistics and graphics, all in open access. This effort is complemented by the harmonization and improvement of climate data management concepts at the national weather authorities, capacity building activities and an extension of the data bases with historical climate data which are still available from different sources. These activities are performed through cooperation between regional and German institutions and will provide important information for climate service related activities.

  12. Build a WWW Homepage for Your School!

    ERIC Educational Resources Information Center

    Chrobak, Kimberly

    1995-01-01

    Discusses the use of World Wide Web (WWW) Homepage for school information. Topics include school sites; installation of a WWW browser; file tags; sites for beginner's guides to the language (HTML); two Usenet discussion groups; and a sample lesson plan including objective, procedure, and evaluation. (AEF)

  13. Climate Education at the University of Hamburg

    NASA Astrophysics Data System (ADS)

    Dilly, Oliver; Stammer, Detlef; Pfeiffer, Eva-Maria

    2010-05-01

    The new graduate School of Integrated Climate Sciences (www.sicss.de) at the KlimaCampus of the University of Hamburg was opened at October 20, 2009 and includes a 2-yr MSc (120 ECTS, 30 compulsory, 90 eligible) and 3-yr doctoral program (12 ECTS). About 40 students were enrolled in early 2010. The interdisciplinary MSc program is based on a number of disciplines such as meteorology, geophysics, oceanography, geosciences and also economics and social sciences. These disciplines are required to address the faced key issues related to climate change effectively. The graduate school is guiding pupils and BSc students with competence in maths and physics on how to become a climate expert. Acquisition is done internationally at fairs, uni days and dircectly at schools and intuitions for higher education. BSc degree in the disciplines listed above is set for positive application. Climate experts are needed for both research and the professional world outside the university and research institutions. In accordance, connection within and outside the university are continuously explored and soft skills for the communication to politics and the public's are included in the MSc and PhD curricula. Since the graduate school was established within the cluster of excellence ‘Integrated Climate Analysis and Predication' (www.clisap.de), this school represents a prototype for graduate programs at the University of Hamburg. Advantages and limitations of this Climate System School concept will be discussed.

  14. Climate Web sites

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    With the growing interest in extreme climate and weather events, the National Oceanic and Atmospheric Administration (NOAA) has set up a one-stop Web site. It includes data on tornadoes, hurricanes, and heavy rainfall, temperature extremes, global climate change, satellite images, and El Niño and La Niña. The Web address is http://www.ncdc.noaa.gov.Another good climate Web site is the La Niña Home Page. Set up by the Environmental and Societal Impacts Group of the National Center for Atmospheric Research, the site includes forecasts, data sources, impacts, and Internet links.

  15. The Global Climate Dashboard: a Software Interface to Stream Comprehensive Climate Data

    NASA Astrophysics Data System (ADS)

    Gardiner, N.; Phillips, M.; NOAA Climate Portal Dashboard

    2011-12-01

    The Global Climate Dashboard is an integral component of NOAA's web portal to climate data, services, and value-added content for decision-makers, teachers, and the science-attentive public (www.clmate.gov). The dashboard provides a rapid view of observational data that demonstrate climate change and variability, as well as outputs from the Climate Model Intercomparison Project version 3, which was built to support the Intergovernmental Panel on Climate Change fourth assessment. The data shown in the dashboard therefore span a range of climate science disciplines with applications that serve audiences with diverse needs. The dashboard is designed with reusable software components that allow it to be implemented incrementally on a wide range of platforms including desktops, tablet devices, and mobile phones. The underlying software components support live streaming of data and provide a way of encapsulating graph sytles and other presentation details into a device-independent standard format that results in a common visual look and feel across all platforms. Here we describe the pedagogical objectives, technical implementation, and the deployment of the dashboard through climate.gov and partner web sites and describe plans to develop a mobile application using the same framework.

  16. Climate Prediction Center - Global Tropical Hazards Assessment

    Science.gov Websites

    Skip Navigation Links www.nws.noaa.gov NOAA logo - Click to go to the NOAA home page National Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News Organization Search Go Search the CPC Go Climate Outlooks Climate & Weather Link El Niño/La Niña MJO

  17. Climate change and health: Why should India be concerned?

    PubMed

    Majra, J P; Gur, A

    2009-04-01

    Overwhelming evidence shows that climate change presents growing threats to public health security - from extreme weather-related disasters to wider spread of such vector-borne diseases as malaria and dengue. The impacts of climate on human health will not be evenly distributed around the world. The Third Assessment Report (Intergovernmental Panel on Climate Change-2001) concluded that vulnerability to climate change is a function of exposure, sensitivity, and adaptive capacity. Developing country populations, particularly in small island states, arid and high mountain zones, and in densely populated coastal areas are considered to be particularly vulnerable. India is a large developing country, with the Great Himalayas, the world's third largest ice mass in the north, 7500 km long, and densely populated coast line in the south. Nearly 700 million of her over one billion population living in rural areas directly depends on climate-sensitive sectors (agriculture, forests, and fisheries) and natural resources (such as water, biodiversity, mangroves, coastal zones, grasslands) for their subsistence and livelihoods. Heat wave, floods (land and coastal), and draughts occur commonly. Malaria, malnutrition, and diarrhea are major public health problems. Any further increase, as projected in weather-related disasters and related health effects, may cripple the already inadequate public health infrastructure in the country. Hence, there is an urgent need to respond to the situation. Response options to protect health from effects of climate change include mitigation as well as adaptation. Both can complement each other and together can significantly reduce the risks of climate change.

  18. Sonification of Climate Data

    NASA Astrophysics Data System (ADS)

    Vogt, Katharina; Visda, Goudarzi

    2013-04-01

    Sonification is the acoustic analogue of data visualization and takes advantage of human perceptual and cognitive capabilities. The amount of data being processed today is steadily increasing, and both scientists and society need new ways to understand scientific data and their implications. Sonification is especially suited to the preliminary exploration of complex, dynamic, and multidimensional data sets, as can be found in climate science. In the research project SysSon (https://sysson.kug.ac.at/), we apply a systematic approach to design sonifications to climate data. In collaboration with the Wegener Center for Climate and Global Change (http://www.wegcenter.at/) we assessed the metaphors climate scientists use and their typical workflows, and chose data sets where sonification has high potential revealing new phenomena. This background will be used to develop an audio interface which is directly linked to the visualization interfaces for data analysis the scientists use today. The protoype will be evaluated according to its functionality, intuitivity for climate scientists, and aesthetic criteria. In the current stage of the project, conceptual links between climate science and sound have been elaborated and first sonification designs have been developed. The research is mainly carried out at the Institute of Electronic Music and Acoustics (http://iem.kug.ac.at/), which has extensive experience in interactive sonification with multidimensional data sets.

  19. Climate Adaptation is About More Than Climate: Value-Driven Science Delivery

    NASA Astrophysics Data System (ADS)

    Swanston, C.

    2015-12-01

    Efforts to deliver relevant scientific information and tools to diverse stakeholders have dramatically increased in recent years with the intention of promoting climate change adaptation. Much work has been done to understand the barriers to action, but these largely overlook the need to frame the discussion in terms of stakeholder values and co-create innovative solutions that meet their individual needs. A partnership-based effort in the upper Midwest and Northeast called the Climate Change Response Framework (CCRF; www.forestadaptation.org) ensures relevance, breadth, and credibility of its products through stakeholder inclusion at all levels. The fundamental role of the CCRF is to help people meet their land stewardship goals while minimizing climate risk. This represents a subtle but important shift in focus to people and their values, as opposed to climate change and its effects. The CCRF uses a climate planning tool, the Adaptation Workbook (www.adaptationworkbook.org), along with ecosystem vulnerability assessments and a diverse "menu" of adaptation approaches to generate site-specific adaptation actions that meet explicit conservation objectives. These tools are integrated into an Adaptation Planning and Practices workshop that leads organizations through this structured process of designing adaptation tactics for their projects and plans. All of these tools were developed with stakeholders, or in response to their direct and continuing feedback. The CCRF has involved thousands of people and over 100 organizations, published six ecoregional vulnerability assessments with more than 130 authors, and generated more than 125 intentional adaptation demonstrations in real-world land management projects on federal, state, tribal, county, conservancy, and private lands. The CCRF contributes strongly to the USDA Regional Climate Hubs, working on the applied end of the continuum of climate services occupied by providers such as the CSCs, LCCs, RISAs, and RCCs.

  20. Nuclear Data on the WWW

    NASA Astrophysics Data System (ADS)

    Firestone, Richard B.; Chu, S. Y. Frank; Ekstrom, L. Peter; Wu, Shiu-Chin; Singh, Balraj

    1997-10-01

    The Isotopes Project is developing Internet home pages to provide data for radioactive decay, nuclear structure, nuclear astrophysics, spontaneous fission, thermal neutron capture, and atomic masses. These home pages can be accessed from the Table of Isotopes home page at http://isotopes.lbl.gov/isotopes/toi.html. Data from the Evaluated Nuclear Structure Data File (ENSDF) is now available on the WWW in Nuclear Data Sheet style tables, complete with comments and hypertext linked footnotes. Bibliographic information from the Nuclear Science Reference (NSR) file can be searched on the WWW by combinations of author, A, Z, reaction, and various keywords. Decay gamma-ray data from several databases can be searched by energy. The Table of Superdeformed Nuclear Bands and Fission Isomers is continously updated. Reaction rates from Hoffman and Woosley and from Thielemann, fission yields from England and Rider, thermal neutron cross-sections from BNL-325, atomic masses from Audi, and skeleton scheme drawings and nuclear charts from the Table of Isotopes are among the information available through these websites. The nuclear data home pages are accessed by over 3500 different users each month.

  1. How to use the WWW to distribute STI

    NASA Technical Reports Server (NTRS)

    Roper, Donna G.

    1994-01-01

    This presentation explains how to use the World Wide Web (WWW) to distribute scientific and technical information as hypermedia. WWW clients and servers use the HyperText Transfer Protocol (HTTP) to transfer documents containing links to other text, graphics, video, and sound. The standard language for these documents is the HyperText MarkUp Language (HTML). These are simply text files with formatting codes that contain layout information and hyperlinks. HTML documents can be created with any text editor or with one of the publicly available HTML editors or convertors. HTML can also include links to available image formats. This presentation is available online. The URL is http://sti.larc.nasa. (followed by) gov/demos/workshop/introtext.html.

  2. December 2012 Policy Update: School Climate and Bully Prevention Trends State-by-State Assessment. School Climate Brief, Number 6

    ERIC Educational Resources Information Center

    Bellizio, Dan

    2012-01-01

    This December 2012 Brief updates NSCC's 2011 report "State Policies on School Climate and Bully Prevention Efforts: Challenges and Opportunities for Deepening State Policy Support for Safe and Civil School"s (www.schoolclimate.org/climate/papers-briefs.php). This Brief provides a summary of State level: (1) anti-bullying legislation; (2)…

  3. Climate change response of great basin bristlecone pine in the Nevada NSF-EPSCoR Project (www.nvclimatechange.org)

    Treesearch

    Franco Biondi; Scotty Strachan

    2011-01-01

    Predicting the future of high-elevation pine populations is closely linked to correctly interpreting their past responses to climatic variability. As a proxy index of climate, dendrochronological records have the advantage of seasonal to annual resolution over multiple centuries to millennia (Bradley 1999). All climate reconstructions rely on the 'uniformity...

  4. Special Issue ;Sediment cascades in cold climate geosystems;

    NASA Astrophysics Data System (ADS)

    Morche, David; Krautblatter, Michael; Beylich, Achim A.

    2017-06-01

    This Editorial introduces the Special Issue on sediment cascades in cold climate geosystems that evolved from the eighth I.A.G./A.I.G. SEDIBUD (Sediment Budgets in Cold Environments; http://www.geomorph.org/sedibud-working-group/) workshop. The workshop was held from 1st to 4th September 2014 at the Environmental Research Station ;Schneefernerhaus; (http://www.schneefernerhaus.de/en/home.html) located at Mt. Zugspitze, the highest peak of Germany, (2962 m asl). Paper and poster presentations focused on observations, measurements and modeling of geomorphological processes in sediment cascades in cold climate geosystems. This resulting Special Issue brings together ten selected contributions from arctic and alpine environments.

  5. 77 FR 43574 - National Climate Assessment and Development Advisory Committee (NCADAC); Open Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-25

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration (NOAA) National Climate... NOAA National Climate Assessment and Development Advisory Committee (NCADAC). Time and Date: The... check the National Climate Assessment Web site for additional information at http://www.globalchange.gov...

  6. 75 FR 22391 - Notice of Web Site Publication for the Climate Program Office

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    ...-01] Notice of Web Site Publication for the Climate Program Office AGENCY: Climate Program Office (CPO... its Web site at http://www.climate.noaa.gov . FOR FURTHER INFORMATION CONTACT: Eric Locklear; Chief... information is available on the Climate Program Office Web site pertaining to the CPO's research strategies...

  7. A Training Partnership Focused on Climate Change Impact on Water Resources and Coastal Vulnerabilities

    NASA Astrophysics Data System (ADS)

    Abshire, W. E.; Brekke, L. D.; Arnold, J. R.

    2015-12-01

    Beginning in 2010 the COMET® Program (www.comet.ucar.edu), a part of the UCAR Community Programs (UCP) at UCAR, entered into partnership with several Climate Change and Water Working Group (CCAWWG, http://www.ccawwg.us/) agencies to pilot a new training program. With funding coming from the Bureau of Reclamation and the US Army Corps of Engineers, a series of self-paced online lessons and live courses targeted at technical climate change and water science professionals have already been delivered. Since it's release in 2012, the first self-paced lesson developed under this partnership entitled, "Preparing Hydro-climate Inputs for Climate Change in Water Resource Planning", has been taken over 2600 times. Users have come from federal, state, and local agencies as well as academia, government and private sectors around the US as well as from other countries. Additionally, the most popular multi-day course, Hydrologic Impacts Under Climate Change (HIUCC), has been offered to a diverse audience in both residence and virtual formats. This presentation provides an overview of the training materials developed through this partnership as well as plans for future offerings. A recommended set of lessons for all users who wish explore the open materials will be highlighted, including excerpts from the newest materials covering climate change influences on water temperature for inland streams and watershed and channel sedimentation. These self-paced, online materials are currently freely available on the of the MetEd Web site (http://www.meted.ucar.edu) via the "Education & Training", "Climate" topic area. Users interested in directly accessing the materials can take these and many other lessons at http://meted.ucar.edu/climate. Additionally, the presentation highlights opportunities for learners to register for ongoing multi-day courses taught both live in person and at a distance. Now, in the beginning of the 6th year of partnership, new initiatives to train non

  8. WWW database of optical constants for astronomy

    NASA Astrophysics Data System (ADS)

    Henning, Th.; Il'In, V. B.; Krivova, N. A.; Michel, B.; Voshchinnikov, N. V.

    1999-04-01

    The database we announce contains references to the papers, data files and links to the Internet resources related to measurements and calculations of the optical constants of the materials of astronomical interest: different silicates, ices, oxides, sulfides, carbides, carbonaceous species from amorphous carbon to graphite and diamonds, etc. We describe the general structure and content of the database which has now free access via Internet: http://www.astro.spbu.ru/JPDOC/entry.html\\ or \\ http:// www. astro.uni-jena.de/Users/database/entry.html

  9. The MedCLIVAR program and the climate of the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Lionello, P.; Gacic, M.; Gomis, G.; Garcia-Herrera, R.; Giorgi, F.; Planton, S.; Trigo, R.; Theocharis, A.; Tsimplis, M. N.; Ulbrich, U.; Xoplaki, E.

    2012-04-01

    MedCLIVAR has become an independent platform for scientific discussion, the exchange of information and the coordination of activities across scientific groups around the Mediterranean. The scientific objects of the programme include past climate variability, connections between the Mediterranean and global climate, the Mediterranean Sea circulation and sea level, feedbacks on the global climate system, and the regional responses to greenhouse gas, air pollution, and aerosols. A strength of the MedCLIVAR programme is the development of a multidisciplinary vision of the evolution of Mediterranean climate, which includes atmospheric, marine and terrestrial components at multiple time scales, covering the range from paleo-reconstructions to future climate scenarios. MedCLIVAR has promoted scientific dissemination with many publication and by producing two books, which review the climate-related knowledge of the Mediterranean basin, one published at the beginning of the project and the second just recently finalized. Over these years, MedCLIVAR (www.medclivar.eu) has held 6 workshops and 2 schools, assigned 31 young scientist exchange grants and 7 senior scientist short visits, sponsored or co-sponsored 11 scientific meetings and organized annual sessions during the European Geophysical Union general assembly. A systematic archive of observations and model data simulations on the Mediterranean Climate, in order to both share data across the scientific community and ensure the data availability for 10 years, is presently being organized at the WDCC (http://cera-www.dkrz.de/CERA/MedCLIVAR.html)

  10. 76 FR 12945 - Instructions for Implementing Climate Change Adaptation Planning in Accordance With Executive...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-09

    ... COUNCIL ON ENVIRONMENTAL QUALITY Instructions for Implementing Climate Change Adaptation Planning... Availability of Climate Change Adaptation Planning Implementing Instructions. SUMMARY: The Chair of the Council... for Implementing Climate Change Adaptation Planning are now available at: http://www.whitehouse.gov...

  11. The ARM Climate Research Facility - New Capabilities and the Expected Impacts on Climate Science and Modeling

    NASA Astrophysics Data System (ADS)

    Voyles, J.; Mather, J. H.

    2010-12-01

    The ARM Climate Research Facility is a Department of Energy national scientific user facility. Research sites include fixed and mobile facilities, which collect research quality data for climate research. Through the American Recovery and Reinvestment Act of 2009, the U.S. Department of Energy’s Office of Science allocated $60 million to the ARM Climate Research Facility for the purchase of instruments and improvement of research sites. With these funds, ARM is in the process of deploying a broad variety of new instruments that will greatly enhance the measurement capabilities of the facility. New instruments being purchased include dual-frequency scanning cloud radars, scanning precipitation radars, Doppler lidars, a mobile Aerosol Observing System and many others. A list of instruments being purchased is available at http://www.arm.gov/about/recovery-act. Orders for all instruments have now been placed and activities are underway to integrate these new systems with our research sites. The overarching goal is to provide instantaneous and statistical measurements of the climate that can be used to advance the physical understanding and predictive performance of climate models. The Recovery Act investments enable the ARM Climate Research Facility to enhance existing and add new measurements, which enable a more complete understanding of the 3-dimensional evolution of cloud processes and related atmospheric properties. Understanding cloud processes are important globally, to reduce climate-modeling uncertainties and help improve our nation’s ability to manage climate impacts. Domer Plot of W-Band Reflectivity

  12. Clouds and more: ARM climate modeling best estimate data: A new data product for climate studies

    DOE PAGES

    Xie, Shaocheng; McCoy, Renata B.; Klein, Stephen A.; ...

    2010-01-01

    The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program (www.arm.gov) was created in 1989 to address scientific uncertainties related to global climate change, with a focus on the crucial role of clouds and their influence on the transfer of radiation atmosphere. Here, a central activity is the acquisition of detailed observations of clouds and radiation, as well as related atmospheric variables for climate model evaluation and improvement.

  13. CORDEX.be: COmbining Regional climate Downscaling EXpertise in Belgium

    NASA Astrophysics Data System (ADS)

    Termonia, P.

    2015-12-01

    The main objective of the ongoing project CORDEX.be, "COmbining Regional Downscaling EXpertise in Belgium: CORDEX and Beyond", is to gather existing and ongoing Belgian research activities in the domain of climate modelling to create a coherent scientific basis for future climate services in Belgium. The project regroups 8 Belgian Institutes under a single research program of the Belgian Science Policy (BELSPO). The project involves three regional climate models: the ALARO model, the COSMO-CLM model and the MAR model running according to the guidelines of the CORDEX project and at convection permitting resolution on small domains over Belgium. The project creates a framework to address four objectives/challenges. First, this projects aims to contribute to the EURO-CORDEX project. Secondly, RCP simulations are executed at convection-permitting resolutions (3 to 5 km) on small domains. Thirdly, the output of the atmospheric models is used to drive land surface models (the SURFEX model and the Urbclim model) with urban modules, a crop model (REGCROP), a tides and storm model (COHERENS) and the MEGAN-MOHYCAN model that simulates the fluxes emitted by vegetation. Finally, one work package will translate the uncertainty present in the CORDEX database to the high-resolution output of the CORDEX.be project. The organization of the project will be presented and first results will be shown, demonstrating that convection-permitting models can add extra skill to the mesoscale version of the regional climate models, in particular regarding the extreme value statistics and the diurnal cycle.

  14. CORDEX.be: COmbining Regional climate Downscaling EXpertise in Belgium

    NASA Astrophysics Data System (ADS)

    Termonia, Piet; Van Schaeybroeck, Bert; De Ridder, Koen; Fettweis, Xavier; Gobin, Anne; Luyten, Patrick; Marbaix, Philippe; Pottiaux, Eric; Stavrakou, Trissevgeni; Van Lipzig, Nicole; van Ypersele, Jean-Pascal; Willems, Patrick

    2016-04-01

    The main objective of the ongoing project CORDEX.be, "COmbining Regional Downscaling EXpertise in Belgium: CORDEX and Beyond" is to gather existing and ongoing Belgian research activities in the domain of climate modelling to create a coherent scientific basis for future climate services in Belgium. The project regroups eight Belgian Institutes under a single research program of the Belgian Science Policy (BELSPO). The project involves three regional climate models: the ALARO model, the COSMO-CLM model and the MAR model running according to the guidelines of the CORDEX project and at convection permitting resolution on small domains over Belgium. The project creates a framework to address four objectives/challenges. First, this projects aims to contribute to the EURO-CORDEX project. Secondly, RCP simulations are executed at convection-permitting resolutions (3 to 5 km) on small domains. Thirdly, the output of the atmospheric models is used to drive land surface models (the SURFEX model and the Urbclim model) with urban modules, a crop model (REGCROP), a tides and storm model (COHERENS) and the MEGAN-MOHYCAN model that simulates the fluxes emitted by vegetation. Finally, one work package will translate the uncertainty present in the CORDEX database to the high-resolution output of the CORDEX.be project. The organization of the project will be presented and first results will be shown, demonstrating that convection-permitting models can add extra skill to the mesoscale version of the regional climate models, in particular regarding the extreme value statistics and the diurnal cycle.

  15. Klimanavigator - Climate Navigator - Gateway to climate knowledge in Germany

    NASA Astrophysics Data System (ADS)

    Schuck-Zöller, Susanne

    2013-04-01

    Objective More than 50 German research institutions and networks are represented on www.klimanavigator.de, a common platform, where information about their work, and the latest findings from climate research and adaptation can be found. Thus Klimanavigator as a gateway to climate knowledge provides a information portal for those who have to respond to climate change. The internet portal gives an overview of the present state of research and is estimated as a decision support tool for appropriate mitigation and adaptation measures. Target Groups The portal collects the German climate research institutions to publish their scientific knowledge in a non-scientific language. Economists, policymakers, administration and the media are bound to find the names of scientific experts and institutions by an elaborated research tool. Methodology The chapter "Dossiers" is edited by the Klimanavigator-Coordinator CSC. It gathers information to a special issue looked upon from various points of view. Publications of outstanding German scientists are presented side by side, current knowledge is being synthesized, scientifically reviewed and disseminated. The latest news from climate and adaptation research is presented in an own chapter, dedicated to the press releases of the portal members. Via RSS-feed the press releases are collected from the different partner institutions. Thirdly, portraits of the member institutions, that are individually edited by themselves, draw a map of science in Germany and help to find appropriate cooperation partners. For the future further development is being planned. Common Management Klimanavigator is being managed by the partners in common. The main decisions concerning the concept and shape of the portal are made by the partners' assembly. An elected editorial committee decides about the content between the assemblies. The Climate Service Center (part of the Helmholtz-Zentrum Geesthacht) concentrates on facilitating the cooperation, and

  16. Climate Forecast System

    Science.gov Websites

    Skip Navigation Links www.nws.noaa.gov NOAA logo - Click to go to the NOAA home page National Weather Service NWS logo - Click to go to the NWS home page Climate Forecast System Home News Organization Search : Go Search Go CFS Home CFS version 2 News Documentation Downloads Reanalysis CFSv2 at CPC CFS

  17. Undoing climate warming by atmospheric carbon-dioxide removal: can a holocene-like climate be restored?

    NASA Astrophysics Data System (ADS)

    MacDougall, Andrew

    2013-04-01

    Understandably, most climate modelling studies of future climate have focused on the affects of carbon emissions in the present century or the long-term fate of anthropogenically emitted carbon. These studies make an assumption: that once net anthropogenic carbon emissions cease, that humanity will make no further effort to intervene in atmospheric composition. There is a case to be made, however, that there will be a desire to return to a "safe" atmospheric concentration of CO2. Realistically this implies synthetically removing CO2 from the atmosphere and storing it is some geologically stable form. For this study experiments were conducted using the University of Victoria Earth System Climate Model (UVic ESCM) forced with novel future atmospheric trace-gas concentration pathways to explore a gradual return to pre-industrial radiative forcing. The concentration pathways follow each RCP (2.6, 4.5, 6.0, and 8.5) exactly until the peak CO2 concentration of that RCP is reached, at which point atmospheric CO2 is reduced at the same rate it increased until the 1850 concentration of CO2 is reached. Non-CO2 greenhouse gas forcing follows the prescribed RCP path until the year of peak CO2, then is subsequently linearly reduced to pre-industrial forcing. Pasture and crop areas are also gradually reduced to their pre-industrial extent. Under the middle two concentration pathways (4.5 and 6.0) a climate resembling the 20th century climate can be restored by the 25th century, although surface temperature remains above the pre-industrial temperature until at least the 30th century. Due to carbon-cycle feedbacks the quantity of carbon that must be removed from the atmosphere is larger than the quantity that was originally emitted. For concentration pathways 2.6, 4.5, and 6.0 the sequestered CO2 is 115-190% of the original cumulative carbon emissions. These results suggest that even with monumental effort to remove CO2 from the atmosphere, humanity will be living with the

  18. Processes Understanding of Decadal Climate Variability

    NASA Astrophysics Data System (ADS)

    Prömmel, Kerstin; Cubasch, Ulrich

    2016-04-01

    The realistic representation of decadal climate variability in the models is essential for the quality of decadal climate predictions. Therefore, the understanding of those processes leading to decadal climate variability needs to be improved. Several of these processes are already included in climate models but their importance has not yet completely been clarified. The simulation of other processes requires sometimes a higher resolution of the model or an extension by additional subsystems. This is addressed within one module of the German research program "MiKlip II - Decadal Climate Predictions" (http://www.fona-miklip.de/en/) with a focus on the following processes. Stratospheric processes and their impact on the troposphere are analysed regarding the climate response to aerosol perturbations caused by volcanic eruptions and the stratospheric decadal variability due to solar forcing, climate change and ozone recovery. To account for the interaction between changing ozone concentrations and climate a computationally efficient ozone chemistry module is developed and implemented in the MiKlip prediction system. The ocean variability and air-sea interaction are analysed with a special focus on the reduction of the North Atlantic cold bias. In addition, the predictability of the oceanic carbon uptake with a special emphasis on the underlying mechanism is investigated. This addresses a combination of physical, biological and chemical processes.

  19. A World Wide Web (WWW) server database engine for an organelle database, MitoDat.

    PubMed

    Lemkin, P F; Chipperfield, M; Merril, C; Zullo, S

    1996-03-01

    We describe a simple database search engine "dbEngine" which may be used to quickly create a searchable database on a World Wide Web (WWW) server. Data may be prepared from spreadsheet programs (such as Excel, etc.) or from tables exported from relationship database systems. This Common Gateway Interface (CGI-BIN) program is used with a WWW server such as available commercially, or from National Center for Supercomputer Algorithms (NCSA) or CERN. Its capabilities include: (i) searching records by combinations of terms connected with ANDs or ORs; (ii) returning search results as hypertext links to other WWW database servers; (iii) mapping lists of literature reference identifiers to the full references; (iv) creating bidirectional hypertext links between pictures and the database. DbEngine has been used to support the MitoDat database (Mendelian and non-Mendelian inheritance associated with the Mitochondrion) on the WWW.

  20. Climate impacts on agricultural biomass production in the CORDEX.be project context

    NASA Astrophysics Data System (ADS)

    Gobin, Anne; Van Schaeybroeck, Bert; Termonia, Piet; Willems, Patrick; Van Lipzig, Nicole; Marbaix, Philippe; van Ypersele, Jean-Pascal; Fettweis, Xavier; De Ridder, Koen; Stavrakou, Trissevgeni; Luyten, Patrick; Pottiaux, Eric

    2016-04-01

    The most important coordinated international effort to translate the IPCC-AR5 outcomes to regional climate modelling is the so-called "COordinated Regional climate Downscaling EXperiment" (CORDEX, http://wcrp-cordex.ipsl.jussieu.fr/). CORDEX.be is a national initiative that aims at combining the Belgian climate and impact modelling research into a single network. The climate network structure is naturally imposed by the top-down data flow, from the four participating upper-air Regional Climate Modelling groups towards seven Local Impact Models (LIMs). In addition to the production of regional climate projections following the CORDEX guidelines, very high-resolution results are provided at convection-permitting resolutions of about 4 km across Belgium. These results are coupled to seven local-impact models with severity indices as output. A multi-model approach is taken that allows uncertainty estimation, a crucial aspect of climate projections for policy-making purposes. The down-scaled scenarios at 4 km resolution allow for impact assessment in different Belgian agro-ecological zones. Climate impacts on arable agriculture are quantified using REGCROP which is a regional dynamic agri-meteorological model geared towards modelling climate impact on biomass production of arable crops (Gobin, 2010, 2012). Results from previous work show that heat stress and water shortages lead to reduced crop growth, whereas increased CO2-concentrations and a prolonged growing season have a positive effect on crop yields. The interaction between these effects depend on the crop type and the field conditions. Root crops such as potato will experience increased drought stress particularly when the probability rises that sensitive crop stages coincide with dry spells. This may be aggravated when wet springs cause water logging in the field and delay planting dates. Despite lower summer precipitation projections for future climate in Belgium, winter cereal yield reductions due to drought

  1. 76 FR 27020 - National Climate Assessment and Development Advisory Committee (NCADAC); Notice of Open Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Climate Assessment... proposed agenda of a forthcoming meeting of the DoC NOAA National Climate Assessment and Development... Climate Assessment Web site for additional information at http://www.globalchange.gov/what-we-do...

  2. The National Oceanic and Atmospheric Administration (NOAA) Climate Services Portal: A New Centralized Resource for Distributed Climate Information

    NASA Astrophysics Data System (ADS)

    Burroughs, J.; Baldwin, R.; Herring, D.; Lott, N.; Boyd, J.; Handel, S.; Niepold, F.; Shea, E.

    2010-09-01

    With the rapid rise in the development of Web technologies and climate services across NOAA, there has been an increasing need for greater collaboration regarding NOAA's online climate services. The drivers include the need to enhance NOAA's Web presence in response to customer requirements, emerging needs for improved decision-making capabilities across all sectors of society facing impacts from climate variability and change, and the importance of leveraging climate data and services to support research and public education. To address these needs, NOAA (during fiscal year 2009) embarked upon an ambitious program to develop a NOAA Climate Services Portal (NCS Portal). Four NOAA offices are leading the effort: 1) the NOAA Climate Program Office (CPO), 2) the National Ocean Service's Coastal Services Center (CSC), 3) the National Weather Service's Climate Prediction Center (CPC), and 4) the National Environmental Satellite, Data, and Information Service's (NESDIS) National Climatic Data Center (NCDC). Other offices and programs are also contributing in many ways to the effort. A prototype NCS Portal is being placed online for public access in January 2010, http://www.climate.gov. This website only scratches the surface of the many climate services across NOAA, but this effort, via direct user engagement, will gradually expand the scope and breadth of the NCS Portal to greatly enhance the accessibility and usefulness of NOAA's climate data and services.

  3. Should Psychosocial Safety Climate Theory Be Extended to Include Climate Strength?

    PubMed

    Afsharian, Ali; Zadow, Amy; Dollard, Maureen F; Dormann, Christian; Ziaian, Tahereh

    2017-08-31

    Psychosocial safety climate (PSC; climate for psychological health) is an organizational antecedent to work conditions articulated in the job demands-resources model. We responded to calls for broader consideration of organizational climate in terms of both climate level and strength. We tested PSC level and strength as main and interactive predictors of work conditions, psychological health, and engagement. Using multilevel analysis and cross-sectional data, the effects of unit-level PSC constructs were investigated in 21 hospital work units (n = 249 employees) in Australia. The correlation between PSC levels (measured at the unit mean) and PSC strength (measured as unit -1 × SD) was moderate and positive, suggesting that ceiling effects of PSC scores were not problematic. PSC level was a better predictor than PSC strength or their interactions for job demands (psychological and emotional demands), job resources (e.g., skill discretion and organizational support), and health (emotional exhaustion). For engagement, the interaction was significant-improving engagement, therefore, benefits from high levels of PSC and PSC strength within the work units. So, in answer to the research question regarding PSC theory extension, "it depends on the outcome." Research limitations are acknowledged, and the potential of the PSC model to guide the reduction of workplace psychosocial risk factors and the negative consequences is discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. The Scatterometer Climate Record Pathfinder: Tools for Climate Change Studies

    NASA Astrophysics Data System (ADS)

    Long, D. G.; Jensen, M. A.

    2001-12-01

    While originally designed for wind measurement over the ocean, scatterometers have proven to be very effective in monitoring land cover and ice conditions as well. Scatterometer data is being operationally used for iceberg tracking and sea ice extent mapping. The frequent, global measurements make the instrument particularly well suited for global monitoring and the long-time series of scatterometer measurements dating back to SASS provide a valuable baseline for studies of climate change. For this reason the NASA Scatterometer Climate Record Pathfinder (SCP) project is generating a climate data record from the series of historic and ongoing, and approved scatterometer missions. Selected data is currently available from the SCP at URL http://www.scp.byu.edu/ in the form of resolution-enhanced backscatter image time series. A variety of tools for analyzing the image time series have been developed. The application of QuikSCAT data to climate change in Greenland and sea ice motion in the Arctic is illustrated. By comparing QuikSCAT with NSCAT and SASS data, long-term scatterometer-observed changes in Greenland are related to annual variations in melt extent and snow accumulation. Qu ikSCAT sampling enables high spatial resolution evaluation of the diurnal melt cycle. We demonstrate the value of the scatterometer data to augment passive microwave measurements by using PCA. The scatterometer data plays a key role in helping to discriminate physical changes in the Greenland firn from surface temperature effects.

  5. Introducing a New Elementary GLOBE Book on Climate: Supporting Educators and Students in their Understanding of the Concepts Underlying Climate and Climate Change

    NASA Astrophysics Data System (ADS)

    Stanitski, D.; Hatheway, B.; Gardiner, L. S.; Taylor, J.; Chambers, L. H.

    2016-12-01

    Much of the focus on climate literacy in K-12 occurs in middle and high school, where teachers and students can dig into the science in some depth. It is important, however, to introduce this topic at an early age, building on a child's natural curiosity about the world around them - but without overwhelming them with frightening climate change impacts. In some U.S. school systems, a recent focus on standardized testing has crowded out science instruction in order to bring up literacy scores. To give teachers a resource to maintain some science instruction under these conditions, a series of Elementary GLOBE books have been developed. These fictional stories describe sound science and engineering practices that are essential for students to learn the process of science while expanding literacy skills, strongly encouraged in the Next Generation Science Standards (NGSS). The main concepts developed in a new Elementary GLOBE book on climate, titled "What in the World Is Happening to Our Climate?", will be introduced in this presentation. This book complements six other Earth System Science modules within the Elementary GLOBE curriculum and is freely available on the GLOBE website (www.globe.gov/elementaryglobe). The book discusses the concept that climate is changing in different ways and places around the world, and what happens to the climate in one place affects other locations across the globe. Supporting ideas clarify the difference between weather and climate, introduce climate science concepts, reveal the impacts of sea level rise, and help students understand that, while humans are contributing to climate change, they can also participate in solutions that address this challenge. Accompanying teacher's notes and companion classroom activities will be described to help elementary school teachers understand how to approach the subject of climate change with their students.

  6. Current State of Climate Education in the United States: Are Graduate Students being Adequately Prepared to Address Climate Issues?

    NASA Astrophysics Data System (ADS)

    Kuster, E.; Fox, G.

    2016-12-01

    Climate change is happening; scientists have already observed changes in sea level, increases in atmospheric carbon dioxide, and declining polar ice. The students of today are the leaders of tomorrow, and it is our duty to make sure they are well equipped and they understand the implications of climate change as part of their research and professional careers. Graduate students, in particular, are gaining valuable and necessary research, leadership, and critical thinking skills, but we need to ensure that they are receiving the appropriate climate education in their graduate training. Previous studies have primarily focused on capturing the K-12, college level, and general publics' knowledge of the climate system, concluding with recommendations on how to improve climate literacy in the classroom. While this is extremely important to study, very few studies have captured the current perception that graduate students hold regarding the amount of climate education being offered to them. This information is important to capture, as it can inform future curriculum development. We developed and distributed a nationwide survey (495 respondents) for graduate students to capture their perception on the level of climate system education being offered and their view on the importance of having climate education. We also investigated differences in the responses based on either geographic area or discipline. We compared how important graduate students felt it was to include climate education in their own discipline versus outside disciplines. The authors will discuss key findings from this ongoing research.

  7. Geological Society of London Issues Statement on Climate Change

    NASA Astrophysics Data System (ADS)

    Summerhayes, Colin

    2011-02-01

    On 1 November the Geological Society of London (GSL) published a statement (http://www.geolsoc.org.uk/gsl/site//GSL//lang/en/climatechange) about the geological evidence relating to past climates, atmospheric carbon levels, and their interrelationships. The online version also carries a list of recommendations for further reading. The GSL's Geoscientist magazine (http://www.geolsoc.org.uk/gsl/site/GSL/lang/en/page8578.html) reported Bryan Lovell, GSL president, as saying, “Climate change is a defining issue of our time, whose full understanding needs geology's long perspective. Earth scientists can read…the geological record of changes in climate that occurred long before we were around to light so much as a camp fire, let alone burn coal, gas and oil. A dramatic global warming event 55 million years ago gives us a particularly clear indication of what happens when there is a sudden release of 1500 billion tonnes of carbon into Earth's atmosphere. It gets hot, the seas become more acid, and there is widespread extinction of life. We are a third of the way to repeating that ancient natural input of carbon through our own agency. The message from the rocks is that it would be a good idea to stop pulling that carbon trigger.”

  8. Image Reference Database in Teleradiology: Migrating to WWW

    NASA Astrophysics Data System (ADS)

    Pasqui, Valdo

    The paper presents a multimedia Image Reference Data Base (IRDB) used in Teleradiology. The application was developed at the University of Florence in the framework of the European Community TELEMED Project. TELEMED overall goals and IRDB requirements are outlined and the resulting architecture is described. IRDB is a multisite database containing radiological images, selected because their scientific interest, and their related information. The architecture consists of a set of IRDB Installations which are accessed from Viewing Stations (VS) located at different medical sites. The interaction between VS and IRDB Installations follows the client-server paradigm and uses an OSI level-7 protocol, named Telemed Communication Language. After reviewing Florence prototype implementation and experimentation, IRDB migration to World Wide Web (WWW) is discussed. A possible scenery to implement IRDB on the basis of WWW model is depicted in order to exploit WWW servers and browsers capabilities. Finally, the advantages of this conversion are outlined.

  9. ClimaDat: A long-term network to study at different scales climatic processes and interactions between climatic compartments

    NASA Astrophysics Data System (ADS)

    Morgui, Josep Anton; Agueda, Alba; Batet, Oscar; Curcoll, Roger; Ealo, Marina; Grossi, Claudia; Occhipinti, Paola; Sánchez-García, Laura; Arias, Rosa; Rodó, Xavi

    2013-04-01

    ClimaDat (www.climadat.es) is a pioneer project of the Institut Català de Ciències del Clima (IC3) in collaboration with and funded by "la Caixa" Foundation. This project aims at studying the interactions between climate and ecosystems at different spatial and temporal scales. The ClimaDat project consists of a network of eight long-term observatory stations distributed over Spain, installed at natural and remote areas, and covering different climatic domains (e.g. Mediterranean, Atlantic, subtropics) and natural systems (e.g. delta, karsts, high mountain areas). Data obtained in the ClimaDat network will help us to understand how ecosystems are influenced by and eventually might feedback different processes in the climate system. The point of focus of these studies will be taken into account regional-and-local conditions to understand climatic global scale eventsThe data gathered will be used to study the behavior of the global element cycles and associated greenhouse gas emissions. The network is expected to offer near real-time (NRT) data free for the scientific community. Instrumentation installed at these stations mainly consists of: CO2, CH4, H2O, CO, N2O, SF6 and 222Rn analyzers, isotopic CO2, CH4 and H2O analyzers, meteorological sensors, eddy covariance equipment, four-component radiometers, soil moisture and temperature sensors, and sap flow meters. Each station may have a more focused subset of all this equipment, depending on the specific characteristics of the site. Instrumentation selected for this network has been chosen to comply with standards established in international research infrastructure projects, such as ICOS (http://www.icos-infrastructure.eu/home) or InGOS (http://www.ingos-infrastructure.eu/). Preliminary data time-series of greenhouse gases concentrations and meteorological variables are presented in this study for three currently operational ClimaDat stations: the Natural Park of the Ebre Delta (lat 40.75° N - long 0.79° E), the

  10. A Framework for WWW Query Processing

    NASA Technical Reports Server (NTRS)

    Wu, Binghui Helen; Wharton, Stephen (Technical Monitor)

    2000-01-01

    Query processing is the most common operation in a DBMS. Sophisticated query processing has been mainly targeted at a single enterprise environment providing centralized control over data and metadata. Submitting queries by anonymous users on the web is different in such a way that load balancing or DBMS' accessing control becomes the key issue. This paper provides a solution by introducing a framework for WWW query processing. The success of this framework lies in the utilization of query optimization techniques and the ontological approach. This methodology has proved to be cost effective at the NASA Goddard Space Flight Center Distributed Active Archive Center (GDAAC).

  11. The WWW Cabinet of Curiosities: A Serendipitous Research Tool

    ERIC Educational Resources Information Center

    Arnold, Josie

    2012-01-01

    This paper proposes that the WWW is able to be fruitfully understood as a research tool when we utilise the metaphor of the cabinet of curiosities, the wunderkammer. It unpeels some of the research attributes of the metaphor as it reveals the multiplicity of connectivity on the web that provides serendipitous interactions between unexpected…

  12. An alternate approach to assessing climate risks

    NASA Astrophysics Data System (ADS)

    Brown, Casey; Wilby, Robert L.

    2012-10-01

    U.S. federal agencies are now required to review the potential impacts of climate change on their assets and missions. Similar arrangements are also in place in the United Kingdom under reporting powers for key infrastructure providers (http://www.defra.gov.uk/environment/climate/sectors/reporting-authorities/reporting-authorities-reports/). These requirements reflect growing concern about climate resilience and the management of long-lived assets. At one level, analyzing climate risks is a matter of due diligence, given mounting scientific evidence. However, there is no consensus about the means for doing so nor about whether climate models are even ft for the purpose; in addition, several important issues are often overlooked when incorporating climate information into adaptation decisions. An alternative to the scenarioled strategy, such as an approach based on a vulnerability analysis ("stress test"), may identify practical options for resource managers.

  13. Beneficial effects of restoration practices can be thwarted by climate extremes.

    PubMed

    Maccherini, Simona; Bacaro, Giovanni; Marignani, Michela

    2018-06-01

    The impacts of climate extremes on species, communities and ecosystems have become critical concerns to science and society. Under a changing climate, how restoration outcomes are affected by extreme climate variables is a largely unknown topic. We analyzed the effects of experimental factors (grazing and sowing of native species), extreme climate events (intense precipitation and extreme temperatures indexes) and their combination on the restoration progress of a dry, calcareous grassland in Tuscany (Italy) with a 1 year before/15 years continuous annual monitoring after, control/impact (BACI) experiment. Grazing had a beneficial effect on the diversity of the grassland, while sowing had a limited impact. The climatic index that most affected the entire plant community composition was the number of very heavy precipitation days. The interaction of grazing and extreme climatic indexes had a significant detrimental effect on restoration outcomes, increasing the cover of synanthropic and Cosmopolitan-Subcosmopolitan generalist species and decreasing the cover of more valuable species such endemic species. In the richest grazed plots, species richness showed a lower sensitivity to the average precipitation per wet day but in grazed site, restoration outcomes can be negatively influenced by the intensification of precipitation and temperature extremes. In a context of progressive tropicalization of the Mediterranean area, to assist managers setting achievable restoration goals, restoration practitioners should consider that climate extremes might interfere with the beneficial effects of restoration practices. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. U.N. climate convention goals may be out of reach

    NASA Astrophysics Data System (ADS)

    Wakefield, J.

    The chief goal of the 1992 Rio climate convention may be unobtainable, recent reports indicate, as nations are gearing up for the first conference on the U.N. framework in Geneva, August 22—September 2. And even if the convention goal of reducing carbon dioxide emissions to 1990 levels by the year 2000 is reached, some experts say, little would actually be accomplished to stabilize global climate change.For starters, reports earlier this month revealed that Japan and Australia, to name a couple, may be off the target. On a national level, Japan is projected to come in about 3% above the mark. Australia may even withdraw from the convention for economic reasons, according to Australian Foreign Minister Gareth Evans.

  15. Will China be the first to initiate climate engineering?

    NASA Astrophysics Data System (ADS)

    Moore, John C.; Chen, Ying; Cui, Xuefeng; Yuan, Wenping; Dong, Wenjie; Gao, Yun; Shi, Peijun

    2016-12-01

    Over the last 30 years, China has industrialized more rapidly than any other society in history and become the world's largest emitter of CO2. This has demonstrated unprecedented ability to change the socioeconomic landscape, produced great wealth, and led to some catastrophic environmental damage. This is the background that has motivated several authors to postulate that China would initiate geoengineering using solar radiation management. But will China be the first to pioneer climate engineering? The answer, we argue here, is likely to be "no!" We reach this conclusion from an analysis of the historic philosophical tradition that informs the Chinese world view, China's experience of mega-engineering projects both ancient and modern, and the policies implemented over the last 60 years. The debate on geoengineering has to-date been almost exclusively Euro-American, but China has mega-engineering experience, huge resources, and a radically different world-view that needs to be acknowledged. Furthermore we contend that these experiences can be useful internationally in helping to frame the debate on climate mitigation from the perspective of the earth as shared, multiuse and finite.

  16. Communicating Climate and Ecosystem Change in the Arctic

    NASA Astrophysics Data System (ADS)

    Soreide, N. N.; Overland, J. E.; Calder, J. A.; Rodionov, S.

    2005-12-01

    There is an explosion of interest in Northern Hemisphere climate, highlighting the importance of recent changes in the Arctic on mid-latitude climate and its impact on marine and terrestrial ecosystems. Traditional sea ice and tundra dominated arctic ecosystems are being reorganizing into warmer sub-arctic ecosystem types. Over the previous two years we have developed a comprehensive, near real-time arctic change detection protocol to track physical and biological changes for presentation on the web: http://www.arctic.noaa.gov/detect. The effort provides a continuous update to the Arctic Climate Impact Assessment (ACIA) Report, released in November 2004. Principles for the protocol include an accessible narrative style, scientifically credible and objective indicators, notes multiple uses for the information, acknowledges uncertainties, and balances having too many indicators-which leads to information overload-and too few-which does not capture the complexity of the system. Screening criteria include concreteness, public awareness, being understandable, availability of historical time series, and sensitivity. The site provides sufficient information for an individual to make their own assessment regarding the balance of the evidence for tracking change. The product provides an overview, recent news, links to many arctic websites, and highlights climate, global impacts, land and marine ecosystems, and human consequences. Since its inception a year ago, it has averaged about 9000 hits an day on the web, and is a major information source as determined by Google search. The future direction focuses on understanding the causes for change. In spring 2005 we also presented a near real-time ecological and climatic surveillance website for the Bering Sea: www.beringclimate.noaa.gov. The site provides up-to-date information which ties northward shifts of fish, invertebrate and marine mammal populations to physical changes in the Arctic. This site is more technical than the

  17. How could Mosan agriculture be impacted by climate change and future droughts ?

    NASA Astrophysics Data System (ADS)

    Bauwens, A.; Sohier, C.; Deraedt, D.; Degré, A.

    2012-04-01

    Despite the great uncertainties regarding the future climatic context, lots of studies have focused on hydrological effects of climate change on the Meuse catchment. It appears that both winter high flows and summer low flows could be exacerbated. Climate change and its impacts on hydrology will thus affect various socio-economic sectors. High flows have been widely studied compared to low-flows. This poster will put the emphasis on a methodology developed in order to study impacts of droughts on agriculture. Agriculture is among the most impacted sectors due to climate change. The consequences could be both positive as negative in accordance with the range of predicted changes and the adaptation capacity of agricultural systems. Most of the existing studies related to climate change on agriculture focused on specific territory. Within the AMICE Interreg IVB project, a transnational approach has been developed to assess droughts impacts on agriculture through the Meuse basin. The project's previous works gave us a common scenario of climate trends and of the evolution of the hydrology in the Meuse basin. The methodology is based on the use of a physically-based model able to simulate the water-soil-plant continuum (derived from EPIC model). In order to be transferable from one country to another, the methodology proposed used data available at the basin scale. The UE soil data base was complemented with local information on agricultural practices and statistics. Three crops have been studied: maize, wheat and barley. The basic cultural calendar is supposed to be the same for the different countries. The methodology developed permits to study the evolution of yields, leaf area index, crops stress due to excess or lack of water through time under different scenarios build up in the frame of the project. It appears that corn is negatively affected by climate change, and thus despite the CO2 fertilization effect. Wheat and barley have similar behavior and are

  18. 10Be in late deglacial climate simulated by ECHAM5-HAM - Part 2: Isolating the solar signal from 10Be deposition

    NASA Astrophysics Data System (ADS)

    Heikkilä, U.; Shi, X.; Phipps, S. J.; Smith, A. M.

    2013-10-01

    This study investigates the effect of deglacial climate on the deposition of the solar proxy 10Be globally, and at two specific locations, the GRIP site at Summit, Central Greenland, and the Law Dome site in coastal Antarctica. The deglacial climate is represented by three 30 yr time slice simulations of 10 000 BP (years before present = 1950 CE), 11 000 BP and 12 000 BP, compared with a preindustrial control simulation. The model used is the ECHAM5-HAM atmospheric aerosol-climate model, driven with sea surface temperatures and sea ice cover simulated using the CSIRO Mk3L coupled climate system model. The focus is on isolating the 10Be production signal, driven by solar variability, from the weather or climate driven noise in the 10Be deposition flux during different stages of climate. The production signal varies on lower frequencies, dominated by the 11yr solar cycle within the 30 yr time scale of these experiments. The climatic noise is of higher frequencies. We first apply empirical orthogonal functions (EOF) analysis to global 10Be deposition on the annual scale and find that the first principal component, consisting of the spatial pattern of mean 10Be deposition and the temporally varying solar signal, explains 64% of the variability. The following principal components are closely related to those of precipitation. Then, we apply ensemble empirical decomposition (EEMD) analysis on the time series of 10Be deposition at GRIP and at Law Dome, which is an effective method for adaptively decomposing the time series into different frequency components. The low frequency components and the long term trend represent production and have reduced noise compared to the entire frequency spectrum of the deposition. The high frequency components represent climate driven noise related to the seasonal cycle of e.g. precipitation and are closely connected to high frequencies of precipitation. These results firstly show that the 10Be atmospheric production signal is preserved

  19. 10Be in late deglacial climate simulated by ECHAM5-HAM - Part 2: Isolating the solar signal from 10Be deposition

    NASA Astrophysics Data System (ADS)

    Heikkilä, U.; Shi, X.; Phipps, S. J.; Smith, A. M.

    2014-04-01

    This study investigates the effect of deglacial climate on the deposition of the solar proxy 10Be globally, and at two specific locations, the GRIP site at Summit, Central Greenland, and the Law Dome site in coastal Antarctica. The deglacial climate is represented by three 30 year time slice simulations of 10 000 BP (years before present = 1950 CE), 11 000 and 12 000 BP, compared with a preindustrial control simulation. The model used is the ECHAM5-HAM atmospheric aerosol-climate model, driven with sea-surface temperatures and sea ice cover simulated using the CSIRO Mk3L coupled climate system model. The focus is on isolating the 10Be production signal, driven by solar variability, from the weather- or climate-driven noise in the 10Be deposition flux during different stages of climate. The production signal varies at lower frequencies, dominated by the 11 year solar cycle within the 30 year timescale of these experiments. The climatic noise is of higher frequencies than 11 years during the 30 year period studied. We first apply empirical orthogonal function (EOF) analysis to global 10Be deposition on the annual scale and find that the first principal component, consisting of the spatial pattern of mean 10Be deposition and the temporally varying solar signal, explains 64% of the variability. The following principal components are closely related to those of precipitation. Then, we apply ensemble empirical decomposition (EEMD) analysis to the time series of 10Be deposition at GRIP and at Law Dome, which is an effective method for adaptively decomposing the time series into different frequency components. The low-frequency components and the long-term trend represent production and have reduced noise compared to the entire frequency spectrum of the deposition. The high-frequency components represent climate-driven noise related to the seasonal cycle of e.g. precipitation and are closely connected to high frequencies of precipitation. These results firstly show that

  20. Climatic Data Integration and Analysis - Regional Approaches to Climate Change for Pacific Northwest Agriculture (REACCH PNA)

    NASA Astrophysics Data System (ADS)

    Seamon, E.; Gessler, P. E.; Flathers, E.; Sheneman, L.; Gollberg, G.

    2013-12-01

    The Regional Approaches to Climate Change for Pacific Northwest Agriculture (REACCH PNA) is a five-year USDA/NIFA-funded coordinated agriculture project to examine the sustainability of cereal crop production systems in the Pacific Northwest, in relationship to ongoing climate change. As part of this effort, an extensive data management system has been developed to enable researchers, students, and the public, to upload, manage, and analyze various data. The REACCH PNA data management team has developed three core systems to encompass cyberinfrastructure and data management needs: 1) the reacchpna.org portal (https://www.reacchpna.org) is the entry point for all public and secure information, with secure access by REACCH PNA members for data analysis, uploading, and informational review; 2) the REACCH PNA Data Repository is a replicated, redundant database server environment that allows for file and database storage and access to all core data; and 3) the REACCH PNA Libraries which are functional groupings of data for REACCH PNA members and the public, based on their access level. These libraries are accessible thru our https://www.reacchpna.org portal. The developed system is structured in a virtual server environment (data, applications, web) that includes a geospatial database/geospatial web server for web mapping services (ArcGIS Server), use of ESRI's Geoportal Server for data discovery and metadata management (under the ISO 19115-2 standard), Thematic Realtime Environmental Distributed Data Services (THREDDS) for data cataloging, and Interactive Python notebook server (IPython) technology for data analysis. REACCH systems are housed and maintained by the Northwest Knowledge Network project (www.northwestknowledge.net), which provides data management services to support research. Initial project data harvesting and meta-tagging efforts have resulted in the interrogation and loading of over 10 terabytes of climate model output, regional entomological data

  1. Academic climate, well-being and academic performance in a university degree course.

    PubMed

    Rania, Nadia; Siri, Anna; Bagnasco, Annamaria; Aleo, Giuseppe; Sasso, Loredana

    2014-09-01

    The psychological climate within organisations affects not only the behaviour and the attitude of group members, but also the performance of the group itself. According to the ecological model, this research examines how learning in different classroom contexts of the same nursing degree programme can affect academic performance, well-being, self-esteem and perceived climate. Four scales were used to assess students' perceptions by collecting primary data while academic performance was measured by obtaining students' academic records. A questionnaire completed by 391 first-year nursing students was administered. Differences were observed in the perceptions of climate and academic performance in different classroom contexts with trends, which did not always overlap; however, strong correlations were observed among self-esteem, well-being and climate, and schoolmate relationships. Universities should not merely train competent professionals but also build learning communities that support the well-being of relationships and the development of well-being contexts. The findings support the need for an educational intervention for improving the quality of life and well-being of the community and individual students. This type of intervention requires a 'compliant' organisational environment that puts studetns, teachers and professionals in the condition to practice their professional skills. © 2013 John Wiley & Sons Ltd.

  2. First AGU Climate Communication Prize awarded

    NASA Astrophysics Data System (ADS)

    McEntee, Christine

    2012-02-01

    Gavin Schmidt, a climate scientist at the NASA Goddard Institute for Space Studies and cofounder of the RealClimate blog (http://www.realclimate.org/), received the first AGU Climate Communication Prize at the honors ceremony. The prize recognizes excellence in climate communication as well as the promotion of scientific literacy, clarity of messaging, and efforts to foster respect and understanding for science-based values related to climate change. Sponsored by Nature's Own—a Boulder, Colo.-based company specializing in the sale of minerals, fossils, and decorative stone specimens—the prize comes with a $25,000 cash award. "AGU created this award to raise the visibility of climate change as a critical issue facing the world today, to demonstrate our support for scientists who commit themselves to the effective communication of climate change science, and to encourage more scientists to engage with the public and policy makers on how climate research can contribute to the sustainability of our planet," said AGU president Michael Mc Phaden. "That's why we are so pleased to recognize Gavin for his dedicated leadership and outstanding scientific achievements. We hope that his work will serve as an inspiration for others."

  3. In Brief: Climate Change Technology Program Plan

    NASA Astrophysics Data System (ADS)

    Bierly, Eugene

    2006-09-01

    The U.S. Department of Energy released its Plan for Climate Change Technology Programs (CCTP) at a 20 September hearing of the U.S. House of Representatives Science Subcommittee on energy. The goal of the hearing, which was chaired by Rep. Judy Biggert (R-Ill.), was to examine the Bush Administration's CCTP plan, review it in light of the Administration's stated goals, and determine what action might be undertaken to implement the plan. For details of the plan, see http://www.climatetechnology.gov/stratplan/final/index.htm

  4. Organization and dissemination of multimedia medical databases on the WWW.

    PubMed

    Todorovski, L; Ribaric, S; Dimec, J; Hudomalj, E; Lunder, T

    1999-01-01

    In the paper, we focus on the problem of building and disseminating multimedia medical databases on the World Wide Web (WWW). The current results of the ongoing project of building a prototype dermatology images database and its WWW presentation are presented. The dermatology database is part of an ambitious plan concerning an organization of a network of medical institutions building distributed and federated multimedia databases of a much wider scale.

  5. What climate changes could be observed by two generations of Poles?

    NASA Astrophysics Data System (ADS)

    Szwed, M.

    2010-09-01

    For many years, numerous scientific papers in different disciplines have been published on different aspects of the global warming. The issue of climate change and its impacts has become certainly a "fashionable" research area. In Poland, for example, the issue was tackled by one of the greatest hydro-climatological research projects, namely: "Extreme meteorological and hydrological events in Poland (the evaluation of forecasting events and their effects on human environment)". However, for several years, and certainly since 2007, when Al Gore, former U.S. vice-president, and the Intergovernmental Panel on Climate Change (IPCC) won the Nobel Peace Prize, this topic has started to be increasingly more frequently raised by the Polish media. The average Polish citizen increasingly more often learns from the press, radio and television about the global warming. There are also those skeptical of the climate change who loudly express their opinions in the media. Can the average Pole not get lost in the thicket of information? Can they refer to their own memory or the memory of their parents or grandparents on issues of climate change? How is the typical summer or winter perceived the previous generations? Is it possible to observe such changes without reference to extreme events? This article is to try to answer the question whether the average Pole could see climate change, most simply understood as changes in the thermal conditions and precipitations. If yes, then what seasons or months see the biggest changes. Which parts of the country witness the biggest changes? The starting point of the analysis are the 58-years time series of real monthly temperature and precipitation in the period of 1951-2008 for 20 stations across Poland. However, they will not be analyzed in more detail. In order to smooth the data sequences and thus to reject the short-term fluctuations, the long-term moving averages in different sequences (individual months, seasons and years) will be

  6. How can a climate change perspective be integrated into public health surveillance?

    PubMed

    Pascal, M; Viso, A C; Medina, S; Delmas, M C; Beaudeau, P

    2012-08-01

    Climate change may be considered as a key factor for environmental change, exposure to health risks and pathogens, consequently impairing the state of health among populations. Efficient health surveillance systems are required to support adaptation to climate change. However, despite a growing awareness, the public health surveillance sector has had very little involvement in the drafting of adaptation plans. This paper proposes a method to raise awareness about climate change in the public health community, to identify possible health risks and to assess the needs for reinforced health surveillance systems. A working group was set up comprising surveillance experts in the following fields: environmental health; chronic diseases and; infectious diseases. Their goal was to define common objectives, to propose a framework for risk analysis, and to apply it to relevant health risks in France. The framework created helped to organize available information on climate-sensitive health risks, making a distinction between three main determinants as follows: (1) environment; (2) individual and social behaviours; and (3) demography and health status. The process is illustrated using two examples: heatwaves and airborne allergens. Health surveillance systems can be used to trigger early warning systems, to create databases which improve scientific knowledge about the health impacts of climate change, to identify and prioritize needs for intervention and adaptation measures, and to evaluate these measures. Adaptation requires public health professionals to consider climate change as a concrete input parameter in their studies and to create partnerships with professionals from other disciplines. Copyright © 2012 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  7. European Master-Doctorate Course on "Vulnerability of Cultural Heritage to Climate Change"

    NASA Astrophysics Data System (ADS)

    Lefèvre, R.-A.

    2009-04-01

    « Vulnerability of Cultural Heritage to Climate Change », European Master-Doctorate Course, Council of Europe, Strasbourg 7-11 September 2009 The character of Cultural Heritage is closely related to the climate, and the urban landscape and the built heritage have been designed with the local climate in mind. The stability of Cultural Heritage is, therefore, closely tied to its interactions with the ground and the atmosphere. Climate Change is thus expected to have either catastrophic or subtle effects on Cultural Heritage materials and Cultural Landscapes. The major aim of the 2009 Strasbourg Course is to ensure that young European students are informed on these important problems and will be able in the future to undertake rigorous ongoing scientific monitoring of changes in conditions of Cultural Heritage. The Programme of the Course will cover the following topics: • Heritage Climatology • Principles of Mitigation and Adaptation of Cultural Heritage to Climate Change • Impact of Climate Change on building structures • Dose-Response and Damage Functions for materials in a Changing Climate • Modelling sea salts transport and deposition • Modelling wetting and drying of historic buildings • Impact of Climate Change on building materials: stone, mortar, modern glass, stained glass windows • Impact of Climate Change on organic materials • Biological impact of Climate Change on Cultural Heritage • Sea level rise models and possible application to Cultural Heritage • Past, present and future for Venice • The policies and action plans of International Organisations (Council of Europe, UNESCO, ICCROM) The Course is addressed to young people with scientific background: physicists, chemists, geologists, biologists, engineers, because of the high scientific level of the background required to follow the lectures. Teaching will be delivered in English without any simultaneous translation. The teachers belong to European Universities, National

  8. Ergonomics Climate Assessment: A measure of operational performance and employee well-being.

    PubMed

    Hoffmeister, Krista; Gibbons, Alyssa; Schwatka, Natalie; Rosecrance, John

    2015-09-01

    Ergonomics interventions have the potential to improve operational performance and employee well-being. We introduce a framework for ergonomics climate, the extent to which an organization emphasizes and supports the design and modification of work to maximize both performance and well-being outcomes. We assessed ergonomics climate at a large manufacturing facility twice during a two-year period. When the organization used ergonomics to promote performance and well-being equally, and at a high level, employees reported less work-related pain. A larger discrepancy between measures of operational performance and employee well-being was associated with increased reports of work-related pain. The direction of this discrepancy was not significantly related to work-related pain, such that it didn't matter which facet was valued more. The Ergonomics Climate Assessment can provide companies with a baseline assessment of the overall value placed on ergonomics and help prioritize areas for improving operational performance and employee well-being. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  9. User Interface Design for WWW-Based Courses: Building upon Student Evaluations.

    ERIC Educational Resources Information Center

    van Rennes, Linda; Collis, Betty

    This paper describes how student reactions shaped the design of a WWW (World Wide Web)-based course environment at the University of Twente (Netherlands), using the example of a first year course. The first section discusses the importance of user interface (re)design for WWW-based courses. The University's focus on student evaluations of…

  10. Experience real-time climate change: Environmental education at Jamtal glacier.

    NASA Astrophysics Data System (ADS)

    Fischer, Andrea; Seiser, Bernd; Hartl, Lea; Bendler, Gebhard

    2016-04-01

    Kids hear about climate change in everyday news, but, unlike grown-ups, they find it much harder to imagine changes over decades, i.e. much longer than their own life span. So how to teach them the issues of climate change? Jamtalferner is an Alpine glacier with an ongoing mass balance monitoring programme started in 1988/89. Surveys of glacier length changes by the Austrian Alpine Club date back even longer, so that the glacier retreat after the Little Ice Age is well documented. As the glacier is easy to access, at just one hour's easy walk from the mountain hut, Jamtalferner was selected to compile materials on climate change for the use in schools and for preparing excursions for a hands-on confrontation with climate change and to give an impression of decadal changes. The materials will be available at www.umweltbildung-jamtal.info and include time series of photographs, maps, tables, background information and exercises.

  11. Ionospheric Electron/Ion Densities Temperatures on CD-ROM and WWW

    NASA Technical Reports Server (NTRS)

    Bilitza, Dieter; Papitashvili, Natasha; Schar, Bill; Grebowsky, Joseph

    2002-01-01

    As part of this project a large volume of ionospheric satellite insitu data from the sixties, seventies and early eighties were made accessible online in ASCII format for public use. This includes 14 data sets from the BE-B, Alouette 2, DME-A, AE-B, ISIS-1, ISIS-2, OGO-6, DE-2, AEROS-A, AE-C, AE-D, AE-E, and Hinotori satellites. The original data existed in various machine-specific, highly compressed, binary encoding on 7-, or 9-track magnetic tapes. The data were decoded and converted to a common ASCII data format, solar and magnetic indices were added, and some quality control measures were taken. The original intent of producing CD-ROMs with these data was overtaken by the rapid development of the Internet. Most users now prefer to obtain the data directly online and greatly value WWW-interfaces to browse, plot and subset the data. Accordingly the data were made available online on the anonymous ftp site of NASA's National Space Science Data Center (NSSDC) at ftp://nssdcftp.gsfc.nasa.gov/spacecraft data/ and on NSSDC's ATMOWeb (http://nssdc.gsfc.nasa.gov/atmoweb/), a WWW-interface for plotting, subsetting, and downloading the data. Several new features were implemented into ATMOWeb as part of this project including a filtering and scatter plot capability. The availability of this new database and WWW system was announced through several electronic mailer (AGU, CEDAR, IRI, etc) and through talks and posters during scientific meetings.

  12. A Climate Information Portal for Copernicus: a central portal for European climate services?

    NASA Astrophysics Data System (ADS)

    Juckes, Martin; Swart, Rob; Thysse, Peter; Som de Cerff, Wim; Groot, Annemarie; Bennett, Victoria; Costa, Luis; Lückenkötter, Johannes; Callaghan, Sarah

    2015-04-01

    The FP7 project "Climate Information Portal for Copernicus" (CLIPC) is developing a demonstration portal for the Copernicus Climate Change Service (C3S). This project is one of a suite of FP7 research activities which are administratively independent of Copernicus, focussed on creating the technical and scientific building blocks needed for the service. It is to be expected that at EGU 2015 there will be many presentations describing portals delivering new and innovative ranges of services. It would be unwise to seek to replace all this creative activity with a single portal -- instead CLIPC is designing a portal to make distributed resources more accessible through flexible discovery systems. CLIPC needs to deliver more than a directory of resources: resources need to be presented in common protocols so that users can access multiple datasets. More information about the project objectives is available at www.clipc.eu. The gulf between the climate science communities and the end user communities is a central challenge being addressed in the project. It is important to understand that there is significant diversity and multiple communication barriers within these two sets of communities as well as between them. The CLIPC services must presentation will provide a review of progress towards this ambitious goal, through a discussion of user requirements activities, an overview of the proposed architecture, work on assessing and adjusting model biasses, and a discussion of the climate impact indicators which will be provided through the portal. When looking at the usability of data for the various users, CLIPC will implement a set of services functioning as a "knowledge base" supplying information to users about the data, including definitions of terminology used, quality of datasets, versioning, and user annotations.

  13. Enabling the use of climate model data in the Dutch climate effect community

    NASA Astrophysics Data System (ADS)

    Som de Cerff, Wim; Plieger, Maarten

    2010-05-01

    Within the climate effect community the usage of climate model data is emerging. Where mostly climate time series and weather generators were used, there is a shift to incorporate climate model data into climate effect models. The use of climate model data within the climate effect models is difficult, due to missing metadata, resolution and projection issues, data formats and availability of the parameters of interest. Often the climate effect modelers are not aware of available climate model data or are not aware of how they can use it. Together with seven other partners (CERFACS, CNR-IPSL, SMHI, INHGA, CMCC, WUR, MF-CNRM), KNMI is involved in the FP7 IS ENES (http://www.enes.org) project work package 10/JRA5 ‘Bridging Climate Research Data and the Needs of the Impact Community. The aims of this work package are to enhance the use of Climate Research Data and to enhance the interaction with climate effect/impact communities. Phase one is to define use cases together with the Dutch climate effect community, which describe the intended use of climate model data in climate effect models. We defined four use cases: 1) FEWS hydrological Framework (Deltares) 2) METAPHOR, a plants and species dispersion model (Wageningen University) 3) Natuurplanner, an Ecological model suite (Wageningen University) 4) Land use models (Free University/JRC). Also the other partners in JRA5 have defined use cases, which are representative for the climate effect and impact communities in their country. Goal is to find commonalities between all defined use cases. The common functionality will be implemented as e-tools and incorporated in the IS-ENES data portal. Common issues relate to e.g., need for high resolution: downscaling from GCM to local scale (also involves interpolation); parameter selection; finding extremes; averaging methods. At the conference we will describe the FEWS case in more detail: Delft FEWS is an open shell system (in development since 1995) for performing

  14. Adapting to Climate Change in the Great Lakes Region: The Wisconsin Initiative on Climate Change Impacts

    NASA Astrophysics Data System (ADS)

    Vimont, D.; Liebl, D.

    2012-12-01

    The mission of the Wisconsin Initiative on Climate Change Impacts (WICCI; http://www.wicci.wisc.edu) is to assess the impacts of climate change on Wisconsin's natural, human, and built environments; and to assist in developing, recommending, and implementing climate adaptation strategies in Wisconsin. WICCI originated in 2007 as a partnership between the University of Wisconsin Nelson Institute and the Wisconsin Department of Natural Resources, and has since grown to include numerous other state, public, and private institutions. In 2011, WICCI released its First Assessment Report, which documents the efforts of over 200 individuals around the state in assessing vulnerability and estimating the risk that regional climate change poses to Wisconsin. The success of WICCI as an organization can be traced to its existence as a partnership between academic and state institutions, and as a boundary organization that catalyzes cross-disciplinary efforts between science and policy. WICCI's organizational structure and its past success at assessing climate impacts in Wisconsin will be briefly discussed. As WICCI moves into its second phase, it is increasing its emphasis on the second part of its mission: development, and implementation of adaptation strategies. Towards these goals WICCI has expanded its organizational structure to include a Communications and Outreach Committee that further ensures a necessary two-way communication of information between stakeholders / decision makers, and scientific efforts. WICCI is also increasing its focus on place-based efforts that include climate change information as one part of an integrated effort at sustainable development. The talk will include a discussion of current outreach and education efforts, as well as future directions for WICCI efforts.

  15. Asymmetries in Climate Change Feedbacks: Why the Future may be Hotter Than you Think

    NASA Astrophysics Data System (ADS)

    Torn, M. S.; Harte, J.

    2006-12-01

    Feedbacks in the climate system are major sources of uncertainty, and climate predictions do not yet include one key set of feedbacks, namely biospheric greenhouse gas (GhG) feedbacks. Historical evidence shows that atmospheric GhG concentrations increase during periods of warming, implying a positive feedback to future climate change. We quantify this feedback for carbon dioxide (CO2) and methane (CH4) by combining the mathematics of feedback with both empirical ice-core information and general circulation model climate sensitivity. We find that a warming of 1.7-5.8°C predicted for the year 2100 is amplified to a warming commitment of 1.9-7.7°C, with the range deriving from different GCM simulations and paleo temperature records. Thus, anthropogenic emissions result in higher final GhG concentrations, and therefore more warming, than would be predicted in the absence of this feedback. Uncertainty in climate change predictions have been used as a rationale for inaction against the threat of global warming, based on a prevailing view that the uncertainties are symmetric, giving equal support to climate "optimists" (who think it will be a small problem) and "pessimists," (it will be a big problem). Our results show that even a symmetrical uncertainty in any component of feedback, whether positive or negative, produces an asymmetrical distribution of expected temperatures skewed towards higher temperature. For both reasons, the omission of key positive feedbacks and asymmetrical uncertainty from feedbacks, it is likely that the future will be hotter than we think, which implies more severe climate change impacts. Thus, these results suggest that a conservative policy approach would employ lower emission targets and tighter stabilization time horizons than would otherwise be required.

  16. Perceived school climate, academic well-being and school-aged children's self-rated health: a mediator analysis.

    PubMed

    Rathmann, Katharina; Herke, Max; Heilmann, Kristina; Kinnunen, Jaana M; Rimpelä, Arja; Hurrelmann, Klaus; Richter, Matthias

    2018-06-11

    Schools are crucial settings for young people's development. Rare studies have examined the impact of perceived school-climate and academic well-being on young people's self-rated health in joint analyses. This study focuses on the role of perceived school-climate and academic well-being for young people's self-rated health and examines whether school climate is mediated by indicators of academic well-being. Data were obtained from the German National Educational Panel Study, including seventh grade students (n = 6838) aged 11-12, nested in 710 classes within 277 schools. Indicators of school climate (teacher control, demands, autonomy, interaction, goal setting and orientation, teaching quality) and academic well-being (satisfaction with school, helplessness in major school subjects) were reported from students. Multilevel modelling was used to analyze the relative importance of perceived school-climate and academic well-being on school-aged children's self-rated health. Results showed that academic well-being is strongly related to self-rated health. The better students perceive their academic well-being, the lower the likelihood of poor self-rated health. In contrast, indicators of perceived school climate are only indirectly related to self-rated health, mediated by academic well-being or are not at all associated with self-rated health. This study suggests that school climate is important for academic well-being but not as important for students' self-rated health as academic well-being. Health promotion initiatives in schools have to ensure that school climate serves to enhance students' academic well-being to avoid health problems in the long-run.

  17. Pacific-Australia Climate Change Science and Adaptation Planning program: supporting climate science and enhancing climate services in Pacific Island Countries

    NASA Astrophysics Data System (ADS)

    Kuleshov, Yuriy; Jones, David; Hendon, Harry; Charles, Andrew; Shelton, Kay; de Wit, Roald; Cottrill, Andrew; Nakaegawa, Toshiyuki; Atalifo, Terry; Prakash, Bipendra; Seuseu, Sunny; Kaniaha, Salesa

    2013-04-01

    Over the past few years, significant progress in developing climate science for the Pacific has been achieved through a number of research projects undertaken under the Australian government International Climate Change Adaptation Initiative (ICCAI). Climate change has major impact on Pacific Island Countries and advancement in understanding past, present and futures climate in the region is vital for island nation to develop adaptation strategies to their rapidly changing environment. This new science is now supporting new services for a wide range of stakeholders in the Pacific through the National Meteorological Agencies of the region. Seasonal climate prediction is particularly important for planning in agriculture, tourism and other weather-sensitive industries, with operational services provided by all National Meteorological Services in the region. The interaction between climate variability and climate change, for example during droughts or very warm seasons, means that much of the early impacts of climate change are being felt through seasonal variability. A means to reduce these impacts is to improve forecasts to support decision making. Historically, seasonal climate prediction has been developed based on statistical past relationship. Statistical methods relate meteorological variables (e.g. temperature and rainfall) to indices which describe large-scale environment (e.g. ENSO indices) using historical data. However, with observed climate change, statistical approaches based on historical data are getting less accurate and less reliable. Recognising the value of seasonal forecasts, we have used outputs of a dynamical model POAMA (Predictive Ocean Atmosphere Model for Australia), to develop web-based information tools (http://poama.bom.gov.au/experimental/pasap/index.shtml) which are now used by climate services in 15 partner countries in the Pacific for preparing seasonal climate outlooks. Initial comparison conducted during 2012 has shown that the

  18. AmeriFlux US-SCd Southern California Climate Gradient - Sonoran Desert

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goulden, Mike

    This is the AmeriFlux version of the carbon flux data for the site US-SCd Southern California Climate Gradient - Sonoran Desert. Site Description - Half hourly data are available at https://www.ess.uci.edu/~california/. This site is one of six Southern California Climate Gradient flux towers operated along an elevation gradient (sites are US-SCg, US-SCs, US-SCf, US-SCw, US-SCc, US-SCd). This site is a low desert site in Southern California's rain shadow; the climate is extremely dry and hot. The site has experience repeated droughts, with negligible rainfall during several years of the record.

  19. Geospatial Analysis Tool Kit for Regional Climate Datasets (GATOR) : An Open-source Tool to Compute Climate Statistic GIS Layers from Argonne Climate Modeling Results

    DTIC Science & Technology

    2017-08-01

    This large repository of climate model results for North America (Wang and Kotamarthi 2013, 2014, 2015) is stored in Network Common Data Form (NetCDF...Network Common Data Form (NetCDF). UCAR/Unidata Program Center, Boulder, CO. Available at: http://www.unidata.ucar.edu/software/netcdf. Accessed on 6/20...emissions diverge from each other regarding fossil fuel use, technology, and other socioeconomic factors. As a result, the estimated emissions for each of

  20. Assessing climate change impact by integrated hydrological modelling

    NASA Astrophysics Data System (ADS)

    Lajer Hojberg, Anker; Jørgen Henriksen, Hans; Olsen, Martin; der Keur Peter, van; Seaby, Lauren Paige; Troldborg, Lars; Sonnenborg, Torben; Refsgaard, Jens Christian

    2013-04-01

    showed some unexpected results, where climate models predicting the largest increase in net precipitation did not result in the largest increase in groundwater heads. This was found to be the result of different initial conditions (1990 - 2010) for the various climate models. In some areas a combination of a high initial groundwater head and an increase in precipitation towards 2021 - 2050 resulted in a groundwater head raise that reached the drainage or the surface water system. This will increase the exchange from the groundwater to the surface water system, but reduce the raise in groundwater heads. An alternative climate model, with a lower initial head can thus predict a higher increase in the groundwater head, although the increase in precipitation is lower. This illustrates an extra dimension in the uncertainty assessment, namely the climate models capability of simulating the current climatic conditions in a way that can reproduce the observed hydrological response. Højberg, AL, Troldborg, L, Stisen, S, et al. (2012) Stakeholder driven update and improvement of a national water resources model - http://www.sciencedirect.com/science/article/pii/S1364815212002423 Seaby, LP, Refsgaard, JC, Sonnenborg, TO, et al. (2012) Assessment of robustness and significance of climate change signals for an ensemble of distribution-based scaled climate projections (submitted) Journal of Hydrology Stisen, S, Højberg, AL, Troldborg, L et al., (2012): On the importance of appropriate rain-gauge catch correction for hydrological modelling at mid to high latitudes - http://www.hydrol-earth-syst-sci.net/16/4157/2012/

  1. 21st Century Climate Change in the European Alps

    NASA Astrophysics Data System (ADS)

    Gobiet, Andreas; Kotlarski, Sven; Stoffel, Markus; Heinrich, Georg; Rajczak, Jan; Beniston, Martin

    2014-05-01

    The Alps are particularly sensitive to global warming and warmed twice as much as the global average in the recent past. In addition, the Alps and its surroundings are a densly populated areas where society is affected by climate change in many ways, which calls for reliable estimates of future climate change. However, the complex Alpine region poses considerable challenges to climate models, which translate to uncertainties in future climate projections. Against this background, the present study reviews the state-of-knowledge about 21st century climate change in the Alps based on existing literature and additional analyses. It will be demonstrated that considerable and accelerating changes are not only to be expected with regard to temperature, but also precipitation, global radiation, relative humidity, and closely related impacts like floods, droughts, snow cover, and natural hazards will be effected by global warming. Under the A1B emission scenario, about 0.25 °C warming per decade until the mid of the 21st century and accelerated 0.36 °C warming per decade in the second half of the century is expected. Warming will most probably be associated with changes in the seasonality of precipitation, global radiation, and relative humidity. More intense precipitation extremes and flooding potential are particularly expected in the colder part of the year. The conditions of currently record breaking warm or hot winter or summer seasons, respectively, may become normal at the end of the 21st century, and there is indication for droughts to become more severe in the future. Snow cover is expected to drastically decrease below 1500 - 2000 m and natural hazards related to glacier and permafrost retreat are expected to become more frequent. Such changes in climatic variables and related quantities will have considerable impact on ecosystems and society and will challenge their adaptive capabilities. Acknowledgements: This study has been initiated and is partly funded by

  2. Can a Human-Induced Climate Disaster be Avoided?

    NASA Astrophysics Data System (ADS)

    Watson, R.

    2012-12-01

    Emissions of greenhouse gases (GHG) are one of the greatest threats to our future prosperity. World emissions are currently around 50 billion tonnes of carbon dioxide-equivalent per annum and are growing rapidly. Atmospheric concentrations of GHG emissions in the atmosphere have increased, to over 400ppm of CO2e today, even after taking the offsetting radiative effects of aerosols into account, and are increasing at a rate of around 2.5ppm per year. The world's current lack of "adequate" commitments to reduce emissions are consistent with at least a 3oC rise (50-50 chance) in temperature: a temperature not seen on the planet for around 3 million years, with serious risks of 5oC rise: a temperature not seen on the planet for around 30 million years. So what are the implications of a 3-5oC rise in temperature, with associated changes in, rising sea levels, retreating mountain glaciers, melting of the Greenland ice cap, shrinking Arctic Sea ice, especially in summer, increasing frequency of extreme weather events, such as heat waves, floods, and droughts, and intensification of cyclonic events, such as hurricanes in the Atlantic. Even a 2oC increase in mean surface temperatures will adversely affect freshwater, food and fiber, natural ecosystems, coastal systems and low-lying areas, human health and social systems, especially in developing countries. The impacts of 3-5oC will be extensive, predominantly negative, undermine development and poverty alleviation goals and cut across most sectors. To address human-induced climate change requires a transition to a low carbon economy, which will require rapid technological evolution in the efficiency of energy use, environmentally sound low-carbon renewable energy sources and carbon capture and storage. The longer we wait to transition to a low carbon economy the more we are locked into a high carbon energy system with consequent environmental damage to ecological and socio-economic systems. Unfortunately the political will

  3. Improved Coast Guard Communications Using Commercial Satellites and WWW Technology: Slide Presentation

    DOT National Transportation Integrated Search

    1997-06-18

    The slides in this file amplify a paper that was presented at International Mobile Satellite Conference, (IMSC-97), Pasadena CA on 18 June 1997. The text of that presentation can be found at http://www.bts.gov/NTL/data/imsc.pdf.

  4. ClimatePipes: User-Friendly Data Access, Manipulation, Analysis & Visualization of Community Climate Models

    NASA Astrophysics Data System (ADS)

    Chaudhary, A.; DeMarle, D.; Burnett, B.; Harris, C.; Silva, W.; Osmari, D.; Geveci, B.; Silva, C.; Doutriaux, C.; Williams, D. N.

    2013-12-01

    The impact of climate change will resonate through a broad range of fields including public health, infrastructure, water resources, and many others. Long-term coordinated planning, funding, and action are required for climate change adaptation and mitigation. Unfortunately, widespread use of climate data (simulated and observed) in non-climate science communities is impeded by factors such as large data size, lack of adequate metadata, poor documentation, and lack of sufficient computational and visualization resources. We present ClimatePipes to address many of these challenges by creating an open source platform that provides state-of-the-art, user-friendly data access, analysis, and visualization for climate and other relevant geospatial datasets, making the climate data available to non-researchers, decision-makers, and other stakeholders. The overarching goals of ClimatePipes are: - Enable users to explore real-world questions related to climate change. - Provide tools for data access, analysis, and visualization. - Facilitate collaboration by enabling users to share datasets, workflows, and visualization. ClimatePipes uses a web-based application platform for its widespread support on mainstream operating systems, ease-of-use, and inherent collaboration support. The front-end of ClimatePipes uses HTML5 (WebGL, Canvas2D, CSS3) to deliver state-of-the-art visualization and to provide a best-in-class user experience. The back-end of the ClimatePipes is built around Python using the Visualization Toolkit (VTK, http://vtk.org), Climate Data Analysis Tools (CDAT, http://uv-cdat.llnl.gov), and other climate and geospatial data processing tools such as GDAL and PROJ4. ClimatePipes web-interface to query and access data from remote sources (such as ESGF). Shown in the figure is climate data layer from ESGF on top of map data layer from OpenStreetMap. The ClimatePipes workflow editor provides flexibility and fine grained control, and uses the VisTrails (http://www

  5. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being.

    PubMed

    Pecl, Gretta T; Araújo, Miguel B; Bell, Johann D; Blanchard, Julia; Bonebrake, Timothy C; Chen, I-Ching; Clark, Timothy D; Colwell, Robert K; Danielsen, Finn; Evengård, Birgitta; Falconi, Lorena; Ferrier, Simon; Frusher, Stewart; Garcia, Raquel A; Griffis, Roger B; Hobday, Alistair J; Janion-Scheepers, Charlene; Jarzyna, Marta A; Jennings, Sarah; Lenoir, Jonathan; Linnetved, Hlif I; Martin, Victoria Y; McCormack, Phillipa C; McDonald, Jan; Mitchell, Nicola J; Mustonen, Tero; Pandolfi, John M; Pettorelli, Nathalie; Popova, Ekaterina; Robinson, Sharon A; Scheffers, Brett R; Shaw, Justine D; Sorte, Cascade J B; Strugnell, Jan M; Sunday, Jennifer M; Tuanmu, Mao-Ning; Vergés, Adriana; Villanueva, Cecilia; Wernberg, Thomas; Wapstra, Erik; Williams, Stephen E

    2017-03-31

    Distributions of Earth's species are changing at accelerating rates, increasingly driven by human-mediated climate change. Such changes are already altering the composition of ecological communities, but beyond conservation of natural systems, how and why does this matter? We review evidence that climate-driven species redistribution at regional to global scales affects ecosystem functioning, human well-being, and the dynamics of climate change itself. Production of natural resources required for food security, patterns of disease transmission, and processes of carbon sequestration are all altered by changes in species distribution. Consideration of these effects of biodiversity redistribution is critical yet lacking in most mitigation and adaptation strategies, including the United Nation's Sustainable Development Goals. Copyright © 2017, American Association for the Advancement of Science.

  6. Of Climate Change and Crystal Balls: The Future Consequences of Climate Change in Africa

    DTIC Science & Technology

    2012-01-01

    Stationarity Is Dead For most of human existence, climate determined where and how we lived. Homo sapiens emerged sometime within the past half million...no. 1 ( January 2012): 35–50. 62. Schuyler Null, “ El Niño, Conflict, and Environmental Determinism: Assessing Climate’s Links to Instability,” New...Security Beat, 5 October 2011, http://www.newsecuritybeat.org/2011/10/ el -nino-conflict- and-environmental.html. 63. Ragnhild Nordås and Nils Petter

  7. Considering the Differential Impact of Three Facets of Organizational Health Climate on Employees' Well-Being.

    PubMed

    Zweber, Zandra M; Henning, Robert A; Magley, Vicki J; Faghri, Pouran

    2015-01-01

    One potential way that healthy organizations can impact employee health is by promoting a climate for health within the organization. Using a definition of health climate that includes support for health from multiple levels within the organization, this study examines whether all three facets of health climate--the workgroup, supervisor, and organization--work together to contribute to employee well-being. Two samples are used in this study to examine health climate at the individual level and group level in order to provide a clearer picture of the impact of the three health climate facets. k-means cluster analysis was used on each sample to determine groups of individuals based on their levels of the three health climate facets. A discriminant function analysis was then run on each sample to determine if clusters differed on a function of employee well-being variables. Results provide evidence that having strength in all three of the facets is the most beneficial in terms of employee well-being at work. Findings from this study suggest that organizations must consider how health is treated within workgroups, how supervisors support employee health, and what the organization does to support employee health when promoting employee health.

  8. Climate services in the tourism sector - examples and market research

    NASA Astrophysics Data System (ADS)

    Damm, Andrea; Köberl, Judith; Prettenthaler, Franz; Kortschak, Dominik; Hofer, Marianne; Winkler, Claudia

    2017-04-01

    vulnerability of their tourism destination. In this project we analysed the impacts of +2 °C global warming on winter tourism demand in ski tourism related regions in Europe. In order to achieve the climate targets, tailored climate information services - for individual businesses as well as at the regional and national level - play an important role. The current market, however, is still in the early stages. In the ongoing H2020 projects EU-MACS (www.eu-macs.eu) and MARCO (www.marco-h2020.eu) (Nov 2016 - Oct 2018) Joanneum Research explores the climate services market in the tourism sector. The current use of climate services is reviewed in detail and in an interactive process key market barriers and enablers will be identified in close collaboration with stakeholders from the tourism industry. The analysis and co-development of new climate services concepts for the tourism sector aims to reduce the gaps between climate services supply and demand.

  9. Common Ground on Climate Change: Pairing Opposing Viewpoints for Conversations about Climate Change

    NASA Astrophysics Data System (ADS)

    Kirk, K. B.; Duggan-Haas, D.; Hayhoe, K.

    2017-12-01

    In American public discourse, people tend to strongly identify with the viewpoints held by their cultural and political tribes. However, entrenched positions do little to advance understanding, or work toward solving problems constructively. Worse yet, it has become commonplace to dismiss or demonize those coming from a different point of view - leading to the vitriolic stalemate that often characterizes social media and comment threads when it comes to climate change. One way to break this pattern is to invite people with opposing opinions to actually talk to one another. This presentation describes the lessons learned during the Common Ground on Climate Change project, in which people with contrasting views about climate change engage in a moderated interview with each other. Prior to the interview, participants complete a set of values-based questions. The goal is to reveal areas of common ground between apparent opposites, such as a sense of stewardship for Earth's resources, or an opinion that solutions to climate change will be more beneficial than harmful. The structure of the interviews is based on the hypothesis that if a conversation begins with an appreciation of common values, it becomes easier to broach areas of disagreement. Participants are matched up in one-on-one moderated interviews where they are encouraged to share their concerns, ideas, and priorities about the validity of climate science, the need for urgent action, and the types of solutions they find most tenable. Emerging themes from this series of interviews include the value of a diversity of outlooks, and the ability for moderated conversations to find surprising areas of agreement. Articles about the interviews also appear on the Yale Climate Connections website, https://www.yaleclimateconnections.org/author/karin/.

  10. "Climate Matters Documoments": Enabling Regionally-Specific Climate Awareness

    NASA Astrophysics Data System (ADS)

    Keener, V. W.; Finucane, M.

    2012-12-01

    The Pacific Regional Integrated Sciences & Assessments (RISA) is a multidisciplinary program that enhances the ability of Pacific Island communities to understand, plan for, and adapt to climate-induced change. Using both social and physical science research methods, the Pacific RISA engages a network of regional decision-makers and stakeholders to help solve climate-related issues. Pacific RISA has a broad audience of local and regional decision-makers (i.e. natural resource managers, community planners, state and federal government agencies) and stakeholders (i.e. farmers and ranchers, fishermen, community and native islander groups). The RISA program engages with this audience through a mixed-method approach of two-way communication, including one-on-one interviews, workshops, consensus discussions and public presentations that allow us to tailor our efforts to the needs of specific stakeholders. A recent Pacific RISA project was the creation and production of four short, educational "documoment" videos that explore the different ways in which climate change in Hawaii affects stakeholders from different sectors. The documoments, generally titled "Climate Matters", start with a quote about why climate matters to each stakeholder: a rancher, a coastal hotel owner, the manager of a landfill, and the local branch of the National Weather Service. The narratives then have each stakeholder discussing how climate impacts their professional and personal lives, and describing the types of climate change they have experienced in the islands. Each video ends with a technical fact about how different climate variables in Hawaii (sea level, precipitation, ENSO) have actually changed within the last century of observational data. Freely available on www.PacificRISA.org, the Documoments have been viewed over 350 times, and have inspired similar video projects and received positive attention from different audiences of stakeholders and scientists. In other assessment work the

  11. Can Real-Time Data Also Be Climate Quality?

    NASA Astrophysics Data System (ADS)

    Brewer, M.; Wentz, F. J.

    2015-12-01

    GMI, AMSR-2 and WindSat herald a new era of highly accurate and timely microwave data products. Traditionally, there has been a large divide between real-time and re-analysis data products. What if these completely separate processing systems could be merged? Through advanced modeling and physically based algorithms, Remote Sensing Systems (RSS) has narrowed the gap between real-time and research-quality. Satellite microwave ocean products have proven useful for a wide array of timely Earth science applications. Through cloud SST capabilities have enormously benefited tropical cyclone forecasting and day to day fisheries management, to name a few. Oceanic wind vectors enhance operational safety of shipping and recreational boating. Atmospheric rivers are of import to many human endeavors, as are cloud cover and knowledge of precipitation events. Some activities benefit from both climate and real-time operational data used in conjunction. RSS has been consistently improving microwave Earth Science Data Records (ESDRs) for several decades, while making near real-time data publicly available for semi-operational use. These data streams have often been produced in 2 stages: near real-time, followed by research quality final files. Over the years, we have seen this time delay shrink from months or weeks to mere hours. As well, we have seen the quality of near real-time data improve to the point where the distinction starts to blur. We continue to work towards better and faster RFI filtering, adaptive algorithms and improved real-time validation statistics for earlier detection of problems. Can it be possible to produce climate quality data in real-time, and what would the advantages be? We will try to answer these questions…

  12. An Initial Look at DoD’s Activities Toward Climate Change Resiliency: An Annotated Bibliography

    DTIC Science & Technology

    2016-02-01

    Draft Working Paper An Initial Look at DoD’s Activities Toward Climate Change Resiliency An Annotated Bibliography Susan A. Resetar and Neil Berg...contribute www.rand.org iii Preface The global effects of climate change could have widespread effects and thus pose concerns for all governments...effects and consider possible responses. Many elements of the Department have taken steps to begin dealing with the implications of climate change

  13. Russian and CIS Library Internet Service: An Analysis of WWW-Server Development.

    ERIC Educational Resources Information Center

    Shraiberg, Yakov

    This paper traces the expansion of the Internet into Russian and Commonwealth of Independent States (CIS) libraries from basic access to the development of World Wide Web (WWW) servers. An analysis of the most representative groups of library WWW-servers arranged by projects, by corporate library network, or by geographical characteristics is…

  14. [The climate debate: the facts].

    PubMed

    van den Broeke, Michiel R

    2009-01-01

    The first report by the Intergovernmental Panel on Climate Change (IPCC) appeared almost 20 years ago. Environmental contamination has a negative effect on the environment in which we live. However, the public at large is confused about the ins and outs of climate change. Managers, politicians, various kinds of advisors, scientists, so-called experts, sceptics and journalists have all taken it upon themselves to lead the debate. Whose task is it to ensure a sound discussion? Surely it is the IPCC's task. However, most politicians and many journalists, and even many scientists, do not take the trouble to read the entire IPCC report or parts of it. As a consequence, much nonsense is published and broadcast. An effective procedure to deal with the climate problem starts with a fair discussion of the scientific evidence. My advice is: just read the free IPCC report: http://www.ipcc.ch/ and click on 'WG I The Physical Science Basis'.

  15. Asian Urban Environment and Climate Change: Preface.

    PubMed

    Hunt, Julian; Wu, Jianping

    2017-09-01

    The Asian Network on Climate Science and Technology (www.ancst.org), in collaboration with Tsinghua University, held a conference on environmental and climate science, air pollution, urban planning and transportation in July 2015, with over 40 Asian experts participating and presentation. This was followed by a meeting with local government and community experts on the practical conclusions of the conference. Of the papers presented at the conference a selection are included in this special issue of Journal of Environmental Science, which also reflects the conclusions of the Paris Climate meeting in Dec 2015, when the major nations of the world agreed about the compelling need to reduce the upward trend of adverse impacts associated with global climate change. Now is the time for urban areas to work out the serious consequences for their populations, but also how they should work together to take action to reduce global warming to benefit their own communities and also the whole planet! Copyright © 2017. Published by Elsevier B.V.

  16. Virtual dermatohistopathology at http://www.pathowiki.org.

    PubMed

    Roßner, Mathias; Roßner, Florian; Zwönitzer, Ralf; Hofmann, Harald; Sterry, Wolfram; Kalinski, Thomas

    2012-04-01

    PATHOWIKI (http://www.pathowiki.org) is a new specialized information system in the form of a web-based wiki with content from all sub-disciplines of human pathology. Essential components are articles and specimens which are located thematically in dermatopathology. The project is presented on the basis of impressive examples and possibilities. The ability to link all kinds of content and integrate pattern analysis theories creates an effective tool for teaching and training in dermatopathology. Collaborative work ensures the effective usage of available resources and a continually growing amount of content, the quality of which depends on the number of users and should be as high as possible. Therefore, all interested colleagues are invited to support the project. © The Authors • Journal compilation © Blackwell Verlag GmbH, Berlin.

  17. The Climate Response to Stratospheric Aerosol Geoengineering Can Be Tailored Using Multiple Injection Locations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacMartin, Douglas G.; Kravitz, Ben; Tilmes, Simone

    The climate response to geoengineering with stratospheric aerosols has the potential to be designed to achieve some chosen objectives. By injecting different amounts of SO2 at multiple different latitudes, the spatial pattern of aerosol optical depth (AOD) can be partially controlled. We use simulations from the fully-coupled whole-atmosphere chemistry-climate model CESM1(WACCM), to demonstrate that three spatial degrees of freedom of AOD can be achieved by appropriately combining injection at different locations: an approximately spatially-uniform AOD distribution, the relative difference in AOD between Northern and Southern hemispheres, and the relative AOD in high versus low latitudes. For forcing levels that yieldmore » 1–2°C cooling, the AOD and surface temperature response are sufficiently linear in this model so that many climate effects can be predicted from single-latitude injection simulations. Optimized injection at multiple locations is predicted to improve compensation of CO2-forced climate change, relative to a case using only equatorial aerosol injection. The additional degrees of freedom can be used, for example, to balance interhemispheric temperature differences and the equator to pole temperature difference in addition to the global mean temperature; this is projected in this model to reduce the mean-square error in temperature compensation by 30%.« less

  18. Ice_Sheets_CCI: Essential Climate Variables for the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Forsberg, R.; Sørensen, L. S.; Khan, A.; Aas, C.; Evansberget, D.; Adalsteinsdottir, G.; Mottram, R.; Andersen, S. B.; Ahlstrøm, A.; Dall, J.; Kusk, A.; Merryman, J.; Hvidberg, C.; Khvorostovsky, K.; Nagler, T.; Rott, H.; Scharrer, M.; Shepard, A.; Ticconi, F.; Engdahl, M.

    2012-04-01

    As part of the ESA Climate Change Initiative (www.esa-cci.org) a long-term project "ice_sheets_cci" started January 1, 2012, in addition to the existing 11 projects already generating Essential Climate Variables (ECV) for the Global Climate Observing System (GCOS). The "ice_sheets_cci" goal is to generate a consistent, long-term and timely set of key climate parameters for the Greenland ice sheet, to maximize the impact of European satellite data on climate research, from missions such as ERS, Envisat and the future Sentinel satellites. The climate parameters to be provided, at first in a research context, and in the longer perspective by a routine production system, would be grids of Greenland ice sheet elevation changes from radar altimetry, ice velocity from repeat-pass SAR data, as well as time series of marine-terminating glacier calving front locations and grounding lines for floating-front glaciers. The ice_sheets_cci project will involve a broad interaction of the relevant cryosphere and climate communities, first through user consultations and specifications, and later in 2012 optional participation in "best" algorithm selection activities, where prototype climate parameter variables for selected regions and time frames will be produced and validated using an objective set of criteria ("Round-Robin intercomparison"). This comparative algorithm selection activity will be completely open, and we invite all interested scientific groups with relevant experience to participate. The results of the "Round Robin" exercise will form the algorithmic basis for the future ECV production system. First prototype results will be generated and validated by early 2014. The poster will show the planned outline of the project and some early prototype results.

  19. Epidemics in Ming and Qing China: Impacts of changes of climate and economic well-being.

    PubMed

    Pei, Qing; Zhang, David D; Li, Guodong; Winterhalder, Bruce; Lee, Harry F

    2015-07-01

    We investigated the mechanism of epidemics with the impacts of climate change and socio-economic fluctuations in the Ming and Qing Dynasties in China (AD 1368-1901). Using long-term and high-quality datasets, this study is the first quantitative research that verifies the 'climate change → economy → epidemics' mechanism in historical China by statistical methods that include correlation analysis, Granger causality analysis, ARX, and Poisson-ARX modeling. The analysis provides the evidences that climate change could only fundamentally lead to the epidemics spread and occurrence, but the depressed economic well-being is the direct trigger of epidemics spread and occurrence at the national and long term scale in historical China. Moreover, statistical modeling shows that economic well-being is more important than population pressure in the mechanism of epidemics. However, population pressure remains a key element in determining the social vulnerability of the epidemics occurrence under climate change. Notably, the findings not only support adaptation theories but also enhance our confidence to address climatic shocks if economic buffering capacity can be promoted steadily. The findings can be a basis for scientists and policymakers in addressing global and regional environmental changes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Can the Climate of an Organization be Modified and Managed to Ensure Organizational Excellence?

    DTIC Science & Technology

    1988-03-30

    Since climate is directly related to effectiveness, CDRs shape the climate through both direct and indirect application of their leadership. 5 Sigmund ... Freud clearly describes the leader’s impact on a group: The leader can be central to the cohesion and viability not only of nations and armies but of

  1. Embedding Climate Services

    NASA Astrophysics Data System (ADS)

    Shafer, M.; Boone, M.; Keim, B. D.

    2015-12-01

    With the rapidly-increasing number of climate services providers, the landscape for putting climate into practice is getting both easier to access and more confusing. Each provider serves a different clientele, and in so doing draws more stakeholder organizations into the sphere of those using climate information in decision-making. The challenge has been in connecting these new stakeholders with expertise that may reside within a different provider organization. To help close the gap, the Southern Climate Impacts Planning Program (SCIPP; http://www.southernclimate.org), a NOAA RISA Team, initiated a summer internship program, where students with expertise in meteorology or climatology would work for an organization more closely aligned with another climate services provider network. The format was patterned after the successful NSF-funded Research Experience for Undergraduates (REU) program at the National Weather Center, where students are selected from undergraduate programs across the nation to spend a summer conducting research under a scientific mentor. The SCIPP initiative flipped this model, instead sending students to organizations with operational needs for climate information to work under their mentorship in partnership with SCIPP scientists. Over the past two summers, SCIPP has recruited students to work at landscape-based (Gulf Coast Joint Venture and National Wetlands Research Center) and community-based (Tulsa Partners) organizations. Students worked alongside the organizations' staff on a daily basis and were supported through periodic calls with the SCIPP team to help identify appropriate datasets and work through methodological issues. This presentation will discuss how these relationships were created, the expertise of each of the organizations involved, and outcomes from the projects.

  2. INTRODUCTION: Focus on Climate Engineering: Intentional Intervention in the Climate System

    NASA Astrophysics Data System (ADS)

    2009-12-01

    Geoengineering techniques for countering climate change have been receiving much press recently as a `Plan B' if a global deal to tackle climate change is not agreed at the COP15 negotiations in Copenhagen this December. However, the field is controversial as the methods may have unforeseen consequences, potentially making temperatures rise in some regions or reducing rainfall, and many aspects remain under-researched. This focus issue of Environmental Research Letters is a collection of research articles, invited by David Keith, University of Calgary, and Ken Caldeira, Carnegie Institution, that present and evaluate different methods for engineering the Earth's climate. Not only do the letters in this issue highlight various methods of climate engineering but they also detail the arguments for and against climate engineering as a concept. Further reading Focus on Geoengineering at http://environmentalresearchweb.org/cws/subject/tag=geoengineering IOP Conference Series: Earth and Environmental Science is an open-access proceedings service available at www.iop.org/EJ/journal/ees Focus on Climate Engineering: Intentional Intervention in the Climate System Contents Modification of cirrus clouds to reduce global warming David L Mitchell and William Finnegan Climate engineering and the risk of rapid climate change Andrew Ross and H Damon Matthews Researching geoengineering: should not or could not? Martin Bunzl Of mongooses and mitigation: ecological analogues to geoengineering H Damon Matthews and Sarah E Turner Toward ethical norms and institutions for climate engineering research David R Morrow, Robert E Kopp and Michael Oppenheimer On the possible use of geoengineering to moderate specific climate change impacts Michael C MacCracken The impact of geoengineering aerosols on stratospheric temperature and ozone P Heckendorn, D Weisenstein, S Fueglistaler, B P Luo, E Rozanov, M Schraner, L W Thomason and T Peter The fate of the Greenland Ice Sheet in a geoengineered

  3. The CLUVA project: Climate-change scenarios and their impact on urban areas in Africa

    NASA Astrophysics Data System (ADS)

    Di Ruocco, Angela; Weets, Guy; Gasparini, Paolo; Jørgensen, Gertrud; Lindley, Sarah; Pauleit, Stephan; Vahed, Anwar; Schiano, Pasquale; Kabisch, Sigrun; Vedeld, Trond; Coly, Adrien; Tonye, Emmanuel; Touré, Hamidou; Kombe, Wilbard; Yeshitela, Kumelachew

    2013-04-01

    CLUVA (CLimate change and Urban Vulnerability in Africa; http://www.cluva.eu/) is a 3 years project, funded by the European Commission in 2010. Its main objective is the estimate of the impacts of climate changes in the next 40 years at urban scale in Africa. The mission of CLUVA is to develop methods and knowledge to assess risks cascading from climate-changes. It downscales IPCC climate projections to evaluate threats to selected African test cities; mainly floods, sea-level rise, droughts, heat waves and desertification. The project evaluates and links: social vulnerability; vulnerability of in-town ecosystems and urban-rural interfaces; vulnerability of urban built environment and lifelines; and related institutional and governance dimensions of adaptation. A multi-scale and multi-disciplinary quantitative, probabilistic, modelling is applied. CLUVA brings together climate experts, risk management experts, urban planners and social scientists with their African counterparts in an integrated research effort focusing on the improvement of the capacity of scientific institutions, local councils and civil society to cope with climate change. The CLUVA approach was set-up in the first year of the project and developed as follows: an ensemble of eight global projections of climate changes is produced for east and west Africa until 2050 considering the new IPCC (International Panel on Climate Changes; http://www.ipcc.ch/) scenarios. These are then downscaled to urban level, where territorial modeling is required to compute hazard effects on the vulnerable physical system (urban ecosystems, informal settlements, lifelines such as transportation and sewer networks) as well as on the social context, in defined time frames, and risk analysis is then employed to assess expected consequences. An investigation of the existing urban planning and governance systems and its interface with climate risks is performed. With the aid of the African partners, the developed approach

  4. Bringing New Ph.D.s Together for Interdisciplinary Climate Change Research

    NASA Astrophysics Data System (ADS)

    Phelan, Liam; Jones, Holly; Marlon, Jennifer R.

    2013-01-01

    Climate change is complex and thus requires interdisciplinary research, and new scholars are rising to that challenge. The Dissertations Initiative for the Advancement of Climate Change Research (DISCCRS (pronounced "discourse"); see http://www.disccrs.org) brings together select groups of recent PhD graduates to encourage interdisciplinary work on climate change. The DISCCRS Symposium VII held just outside of Colorado Springs, Colo., brought together 33 graduates from fields as diverse as climatology, ecology, anthropology, and political science for an intensive week of cross-disciplinary engagement in activities like facilitation and leadership training, collaborative research development, peer networking, communication training, and analysis of working group processes.

  5. CancerNet redistribution via WWW.

    PubMed

    Quade, G; Püschel, N; Far, F

    1996-01-01

    CancerNet from the National Cancer Institute contains nearly 500 ASCII-files, updated monthly, with up-to-date information about cancer and the "Golden Standard" in tumor therapy. Perl scripts are used to convert these files to HTML-documents. A complex algorithm, using regular expression matching and extensive exception handling, detects headlines, listings and other constructs of the original ASCII-text and converts them into their HTML-counterparts. A table of contents is also created during the process. The resulting files are indexed for full-text search via WAIS. Building the complete CancerNet WWW redistribution takes less than two hours with a minimum of manual work. For 26,000 requests of information from our service per month the average costs for the worldwide delivery of one document is about 19 cents.

  6. The treatment of climate science in Integrated Assessment Modelling: integration of climate step function response in an energy system integrated assessment model.

    NASA Astrophysics Data System (ADS)

    Dessens, Olivier

    2016-04-01

    analysing GCMs with the step-experiments. Acknowledgments: This work is supported by the FP7 HELIX project (www.helixclimate.eu) References: Anandarajah, G., Pye, S., Usher, W., Kesicki, F., & Mcglade, C. (2011). TIAM-UCL Global model documentation. https://www.ucl.ac.uk/energy-models/models/tiam-ucl/tiam-ucl-manual Good, P., Gregory, J. M., Lowe, J. A., & Andrews, T. (2013). Abrupt CO2 experiments as tools for predicting and understanding CMIP5 representative concentration pathway projections. Climate Dynamics, 40(3-4), 1041-1053.

  7. Considering the Differential Impact of Three Facets of Organizational Health Climate on Employees' Well-Being

    PubMed Central

    Zweber, Zandra M.; Henning, Robert A.; Magley, Vicki J.; Faghri, Pouran

    2015-01-01

    One potential way that healthy organizations can impact employee health is by promoting a climate for health within the organization. Using a definition of health climate that includes support for health from multiple levels within the organization, this study examines whether all three facets of health climate—the workgroup, supervisor, and organization—work together to contribute to employee well-being. Two samples are used in this study to examine health climate at the individual level and group level in order to provide a clearer picture of the impact of the three health climate facets. k-means cluster analysis was used on each sample to determine groups of individuals based on their levels of the three health climate facets. A discriminant function analysis was then run on each sample to determine if clusters differed on a function of employee well-being variables. Results provide evidence that having strength in all three of the facets is the most beneficial in terms of employee well-being at work. Findings from this study suggest that organizations must consider how health is treated within workgroups, how supervisors support employee health, and what the organization does to support employee health when promoting employee health. PMID:26380360

  8. Addressing climate and energy misconceptions - teaching tools offered by the Climate Literacy and Energy Awareness Network (CLEAN)

    NASA Astrophysics Data System (ADS)

    Gold, A. U.; Ledley, T. S.; Kirk, K. B.; Grogan, M.; McCaffrey, M. S.; Buhr, S. M.; Manduca, C. A.; Fox, S.; Niepold, F.; Howell, C.; Lynds, S. E.

    2011-12-01

    Despite a prevalence of peer-reviewed scientific research and high-level reports by intergovernmental agencies (e.g., IPCC) that document changes in our climate and consequences for human societies, the public discourse regards these topics as controversial and sensitive. The chasm between scientific-based understanding of climate systems and public understanding can most easily be addressed via high quality, science-based education on these topics. Well-trained and confident educators are required to provide this education. However, climate science and energy awareness are complex topics that are rapidly evolving and have a great potential for controversy. Furthermore, the interdisciplinary nature of climate science further increases the difficulty for teachers to stay abreast of the science and the policy. Research has shown that students and educators alike hold misconceptions about the climate system in general and the causes and effects of climate change in particular. The NSF-funded CLEAN Pathway (http://cleanet.org) as part of the National Science Digital Library (http://www.nsdl.org) strives to address these needs and help educators address misconceptions by providing high quality learning resources and professional development opportunities to support educators of grade levels 6 through 16. The materials focus on teaching climate science and energy use. The scope and framework of the CLEAN Pathway is defined by the Essential Principles of Climate Science (CCSP, 2009) and the Energy Literacy Principles recently developed by the Department of Energy. Following this literacy-based approach, CLEAN helps with developing mental models to address misconceptions around climate science and energy awareness through a number of different avenues. These are: 1) Professional development opportunities for educators - interactive webinars for secondary teachers and virtual workshops for college faculty, 2) A collection of scientifically and pedagogically reviewed, high

  9. A WWW-Based Archive and Retrieval System for Multimedia

    NASA Technical Reports Server (NTRS)

    Hyon, J.; Sorensen, S.; Martin, M.; Kawasaki, K.; Takacs, M.

    1996-01-01

    This paper describes the Data Distribution Laboratory (DDL) and discusses issues involved in building multimedia CD-ROMs. It describes the modeling philosophy for cataloging multimedia products and the worldwide-web (WWW)-based multimedia archive and retrieval system (Webcat) built on that model.

  10. Development of adaptive IWRM options for climate change mitigation and adaptation

    NASA Astrophysics Data System (ADS)

    Flügel, W.-A.

    2011-04-01

    Adaptive Integrated Water Resources Management (IWRM) options related to the impacts of climate change in the twinning basins of the Upper Danube River Basin (UDRB) and the Upper Brahmaputra River Basin (UBRB) are developed based on the results obtained in the different work packages of the BRAHMATWINN project. They have been described and discussed in Chapter 2 till Chapter 9 and the paper is referring to and is integrating these findings with respect to their application and interpretation for the development of adaptive IWRM options addressing impacts of climate change in river basins. The data and information related to the results discussed in Chapter 2 till 8 have been input to the RBIS as a central component of the IWRMS (Chapter 9). Meanwhile the UDRB has been analysed with respect to IWRM and climate change impacts by various projects, i.e. the GLOWA-Danube BMBF funded project (GLOWA Danube, 2009; Mauser and Ludwig, 2002) the UBRB has not been studied so far in a similar way as it was done in the BRAHMATWINN project. Therefore the IWRM option development is focussing on the UBRB but the methodology presented can be applied for the UDRB and other river basins as well. Data presented and analysed in this chapter have been elaborated by the BRAHMATWINN project partners and are published in the project deliverable reports available from the project homepage www.brahmatwinn.uni-jena.de/index.php?id=5311&L=2" target="_blank">http://www.brahmatwinn.uni-jena.de/index.php?id=5311&L=2.

  11. The associations between work-life balance behaviours, teamwork climate and safety climate: cross-sectional survey introducing the work-life climate scale, psychometric properties, benchmarking data and future directions.

    PubMed

    Sexton, J Bryan; Schwartz, Stephanie P; Chadwick, Whitney A; Rehder, Kyle J; Bae, Jonathan; Bokovoy, Joanna; Doram, Keith; Sotile, Wayne; Adair, Kathryn C; Profit, Jochen

    2017-08-01

    Improving the resiliency of healthcare workers is a national imperative, driven in part by healthcare workers having minimal exposure to the skills and culture to achieve work-life balance (WLB). Regardless of current policies, healthcare workers feel compelled to work more and take less time to recover from work. Satisfaction with WLB has been measured, as has work-life conflict, but how frequently healthcare workers engage in specific WLB behaviours is rarely assessed. Measurement of behaviours may have advantages over measurement of perceptions; behaviours more accurately reflect WLB and can be targeted by leaders for improvement. 1. To describe a novel survey scale for evaluating work-life climate based on specific behavioural frequencies in healthcare workers.2. To evaluate the scale's psychometric properties and provide benchmarking data from a large healthcare system.3. To investigate associations between work-life climate, teamwork climate and safety climate. Cross-sectional survey study of US healthcare workers within a large healthcare system. 7923 of 9199 eligible healthcare workers across 325 work settings within 16 hospitals completed the survey in 2009 (86% response rate). The overall work-life climate scale internal consistency was Cronbach α=0.790. t-Tests of top versus bottom quartile work settings revealed that positive work-life climate was associated with better teamwork climate, safety climate and increased participation in safety leadership WalkRounds with feedback (p<0.001). Univariate analysis of variance demonstrated differences that varied significantly in WLB between healthcare worker role, hospitals and work setting. The work-life climate scale exhibits strong psychometric properties, elicits results that vary widely by work setting, discriminates between positive and negative workplace norms, and aligns well with other culture constructs that have been found to correlate with clinical outcomes. Published by the BMJ Publishing Group

  12. Web-phreeq: a WWW instructional tool for modeling the distribution of chemical species in water

    NASA Astrophysics Data System (ADS)

    Saini-Eidukat, Bernhardt; Yahin, Andrew

    1999-05-01

    A WWW-based tool, WEB-PHREEQ, was developed for classroom teaching and for routine calculation of low temperature aqueous speciation. Accessible with any computer that has an internet-connected forms-capable WWW-browser, WEB-PHREEQ provides user interface and other support for modeling, creates a properly formatted input file, passes it to the public domain program PHREEQC and returns the output to the WWW browser. Users can calculate the equilibrium speciation of a solution over a range of temperatures or can react solid minerals or gases with a particular water and examine the resulting chemistry. WEB-PHREEQ is one of a number of interactive distributed-computing programs available on the WWW that are of interest to geoscientists.

  13. Towards the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC)

    NASA Astrophysics Data System (ADS)

    Fuglestvedt, J. S.; Masson-Delmotte, V.; Zhai, P.; Pirani, A.

    2016-12-01

    The IPCC, set up in 1988 by WMO and UNEP, is the international body for assessing the science related to climate change. The reports of the IPCC include Assessments, Synthesis and Special Reports (and their Summaries for Policymakers), as well as Methodological Reports, providing policymakers with regular assessments of the scientific basis of climate change, its impacts and future risks, and options for adaptation and mitigation. These assessments are policy-relevant, but not policy-prescriptive, and based on the assessment of the published literature. The assessments of the IPCC follow precise procedures to ensure that they provide a rigorous and balanced scientific information. Particularly critical is the volunteer involvment of tens of scientists involved in the scoping of each report, as well as the work of hundreds of Coordinating Lead Authors and Lead Authors of reports, with the complementary expertise of hundreds of sollicited Contributing Authors. The review process plays a key role in the open and transparent process underlying the IPCC reports. It is organized in multiple rounds and mobilizes thousands of other experts, a process monitored by Review Editors. The author teams develop rigorous methodologies to report the degree of confidence associated with each finding and report information with uncertainty. As a result, successive IPCC reports provide regular steps to determine matured climate science, through robust findings, but also emerging research pathways, and facilitate science maturation through analyses of multiple perspectives provided by the scientific literature in a comprehensive approach. While the IPCC does not conduct its own scientific research, the timeline of the IPCC reports acts as a stimulation for the research community, especially for internationally coordinated research programmes associated with global climate projections. These aspects will be developed in this presentation, with a focus on Working Group I (the physical

  14. There's an Elephant in the Room! How Talking Around Climate Can Be More Effective Than Talking About Climate

    NASA Astrophysics Data System (ADS)

    Unger, M.; Rockwell, A.

    2014-12-01

    Conversations about climate change can easily devolve into polarization and political finger-pointing, where there should be a civilized discussion and enthusiastic brainstorming. How can we change the pugilistic back into the personable? We will examine some examples of reinstating dialogue in various settings, drawing on our experiences working with the public, students and educators in our visitor centers and public areas at the National Center for Atmospheric Research (NCAR), as well as using off-the-clock opportunities to communicate about our work in social and other informal settings. We will share lessons about what works and what doesn't when communicating about climate online and offline, and the differences in discussions that occur in virtual, digital settings and face-to-face.

  15. Can climate models be tuned to simulate the global mean absolute temperature correctly?

    NASA Astrophysics Data System (ADS)

    Duan, Q.; Shi, Y.; Gong, W.

    2016-12-01

    The Inter-government Panel on Climate Change (IPCC) has already issued five assessment reports (ARs), which include the simulation of the past climate and the projection of the future climate under various scenarios. The participating models can simulate reasonably well the trend in global mean temperature change, especially of the last 150 years. However, there is a large, constant discrepancy in terms of global mean absolute temperature simulations over this period. This discrepancy remained in the same range between IPCC-AR4 and IPCC-AR5, which amounts to about 3oC between the coldest model and the warmest model. This discrepancy has great implications to the land processes, particularly the processes related to the cryosphere, and casts doubts over if land-atmosphere-ocean interactions are correctly considered in those models. This presentation aims to explore if this discrepancy can be reduced through model tuning. We present an automatic model calibration strategy to tune the parameters of a climate model so the simulated global mean absolute temperature would match the observed data over the last 150 years. An intermediate complexity model known as LOVECLIM is used in the study. This presentation will show the preliminary results.

  16. Teaching About the Links Between Soils and Climate: An International Year of Soil Outreach by the Soil Science Society of America

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.

    2015-04-01

    Soil scientists are well aware of the intimate links that exist between soils and climate, but the same is not always true of the broader population. In an attempt to help address this, the Soil Science Society of America (SSSA) has designated the theme "Soils and Climate" for the month of November, 2015 as part of the SSSA International Year of Soil (IYS) celebration. The topic has been further subdivided into three subthemes: 1) carbon sequestration and greenhouse gases, 2) Soils and past environments, and 3) Desertification and drought. Each subtheme outreach has two parts 1) lesson plans that K-12 educators can use in their classrooms, and 2) materials that a trained soil scientist can present to the general public. Activities developed for the theme include classroom activities to accompany an online game that students can play to see how farm management choices influence greenhouse gas emissions, questions to go with a vermicomposting activity, and discussion session questions to go with a movie on the USA Dust Bowl. All materials are available online free of charge. The Soils and Climate materials can be found at https://www.soils.org/iys/12-month-resources/november; all of the SSSA IYS materials can be found at https://www.soils.org/iys.

  17. Putting climate impact estimates to work: the empirical approach of the American Climate Prospectus

    NASA Astrophysics Data System (ADS)

    Jina, A.; Hsiang, S. M.; Kopp, R. E., III; Rasmussen, D.; Rising, J.

    2014-12-01

    studies into a broad characterization of climate impacts across an economy, ensuring that each individual study can contribute to guiding policy priorities on climate change. References: [1] T. Houser et al. (2014), American Climate Prospectus, www.climateprospectus.org. [2] Hsiang, Burke, and Miguel (2013), Science.

  18. VALUE - Validating and Integrating Downscaling Methods for Climate Change Research

    NASA Astrophysics Data System (ADS)

    Maraun, Douglas; Widmann, Martin; Benestad, Rasmus; Kotlarski, Sven; Huth, Radan; Hertig, Elke; Wibig, Joanna; Gutierrez, Jose

    2013-04-01

    Our understanding of global climate change is mainly based on General Circulation Models (GCMs) with a relatively coarse resolution. Since climate change impacts are mainly experienced on regional scales, high-resolution climate change scenarios need to be derived from GCM simulations by downscaling. Several projects have been carried out over the last years to validate the performance of statistical and dynamical downscaling, yet several aspects have not been systematically addressed: variability on sub-daily, decadal and longer time-scales, extreme events, spatial variability and inter-variable relationships. Different downscaling approaches such as dynamical downscaling, statistical downscaling and bias correction approaches have not been systematically compared. Furthermore, collaboration between different communities, in particular regional climate modellers, statistical downscalers and statisticians has been limited. To address these gaps, the EU Cooperation in Science and Technology (COST) action VALUE (www.value-cost.eu) has been brought into life. VALUE is a research network with participants from currently 23 European countries running from 2012 to 2015. Its main aim is to systematically validate and develop downscaling methods for climate change research in order to improve regional climate change scenarios for use in climate impact studies. Inspired by the co-design idea of the international research initiative "future earth", stakeholders of climate change information have been involved in the definition of research questions to be addressed and are actively participating in the network. The key idea of VALUE is to identify the relevant weather and climate characteristics required as input for a wide range of impact models and to define an open framework to systematically validate these characteristics. Based on a range of benchmark data sets, in principle every downscaling method can be validated and compared with competing methods. The results of

  19. WWW Entrez: A Hypertext Retrieval Tool for Molecular Biology.

    ERIC Educational Resources Information Center

    Epstein, Jonathan A.; Kans, Jonathan A.; Schuler, Gregory D.

    This article describes the World Wide Web (WWW) Entrez server which is based upon the National Center for Biotechnology Information's (NCBI) Entrez retrieval database and software. Entrez is a molecular sequence retrieval system that contains an integrated view of portions of Medline and all publicly available nucleotide and protein databases,…

  20. Testing For The Linearity of Responses To Multiple Anthropogenic Climate Forcings

    NASA Astrophysics Data System (ADS)

    Forest, C. E.; Stone, P. H.; Sokolov, A. P.

    To test whether climate forcings are additive, we compare climate model simulations in which anthropogenic forcings are applied individually and in combination. Tests are performed with different values for climate system properties (climate sensitivity and rate of heat uptake by the deep ocean) as well as for different strengths of the net aerosol forcing, thereby testing for the dependence of linearity on these properties. The MIT 2D Land-Ocean Climate Model used in this study consists of a zonally aver- aged statistical-dynamical atmospheric model coupled to a mixed-layer Q-flux ocean model, with heat anomalies diffused into the deep ocean. Following our previous stud- ies, the anthropogenic forcings are the changes in concentrations of greenhouse gases (1860-1995), sulfate aerosol (1860-1995), and stratospheric and tropospheric ozone (1979-1995). The sulfate aerosol forcing is applied as a surface albedo change. For an aerosol forcing of -1.0 W/m2 and an effective ocean diffusitivity of 2.5 cm2/s, the nonlinearity of the response of global-mean surface temperatures to the combined forcing shows a strong dependence on climate sensitivity. The fractional change in decadal averages ([(TG + TS + TO) - TGSO]/TGSO) for the 1986-1995 period compared to pre-industrial times are 0.43, 0.90, and 1.08 with climate sensitiv- ities of 3.0, 4.5, and 6.2 C, respectively. The values of TGSO for these three cases o are 0.52, 0.62, and 0.76 C. The dependence of linearity on climate system properties, o the role of climate system feedbacks, and the implications for the detection of climate system's response to individual forcings will be presented. Details of the model and forcings can be found at http://web.mit.edu/globalchange/www/.

  1. Testing for the linearity of responses to multiple anthropogenic climate forcings

    NASA Astrophysics Data System (ADS)

    Forest, C. E.; Stone, P. H.; Sokolov, A. P.

    2001-12-01

    To test whether climate forcings are additive, we compare climate model simulations in which anthropogenic forcings are applied individually and in combination. Tests are performed with different values for climate system properties (climate sensitivity and rate of heat uptake by the deep ocean) as well as for different strengths of the net aerosol forcing, thereby testing for the dependence of linearity on these properties. The MIT 2D Land-Ocean Climate Model used in this study consists of a zonally averaged statistical-dynamical atmospheric model coupled to a mixed-layer Q-flux ocean model, with heat anomalies diffused into the deep ocean. Following our previous studies, the anthropogenic forcings are the changes in concentrations of greenhouse gases (1860-1995), sulfate aerosol (1860-1995), and stratospheric and tropospheric ozone (1979-1995). The sulfate aerosol forcing is applied as a surface albedo change. For an aerosol forcing of -1.0 W/m2 and an effective ocean diffusitivity of 2.5 cm2/s, the nonlinearity of the response of global-mean surface temperatures to the combined forcing shows a strong dependence on climate sensitivity. The fractional change in decadal averages ([(Δ TG + Δ TS + Δ TO) - Δ TGSO ]/ Δ TGSO) for the 1986-1995 period compared to pre-industrial times are 0.43, 0.90, and 1.08 with climate sensitivities of 3.0, 4.5, and 6.2 oC, respectively. The values of Δ TGSO for these three cases are 0.52, 0.62, and 0.76 oC. The dependence of linearity on climate system properties, the role of climate system feedbacks, and the implications for the detection of climate system's response to individual forcings will be presented. Details of the model and forcings can be found at http://web.mit.edu/globalchange/www/.

  2. The use of Meteonorm weather generator for climate change studies

    NASA Astrophysics Data System (ADS)

    Remund, J.; Müller, S. C.; Schilter, C.; Rihm, B.

    2010-09-01

    The global climatological database Meteonorm (www.meteonorm.com) is widely used as meteorological input for simulation of solar applications and buildings. It's a combination of a climate database, a spatial interpolation tool and a stochastic weather generator. Like this typical years with hourly or minute time resolution can be calculated for any site. The input of Meteonorm for global radiation is the Global Energy Balance Archive (GEBA, http://proto-geba.ethz.ch). All other meteorological parameters are taken from databases of WMO and NCDC (periods 1961-90 and 1996-2005). The stochastic generation of global radiation is based on a Markov chain model for daily values and an autoregressive model for hourly and minute values (Aguiar and Collares-Pereira, 1988 and 1992). The generation of temperature is based on global radiation and measured distribution of daily temperature values of approx. 5000 sites. Meteonorm generates also additional parameters like precipitation, wind speed or radiation parameters like diffuse and direct normal irradiance. Meteonorm can also be used for climate change studies. Instead of climate values, the results of IPCC AR4 results are used as input. From all 18 public models an average has been made at a resolution of 1°. The anomalies of the parameters temperature, precipitation and global radiation and the three scenarios B1, A1B and A2 have been included. With the combination of Meteonorm's current database 1961-90, the interpolation algorithms and the stochastic generation typical years can be calculated for any site, for different scenarios and for any period between 2010 and 2200. From the analysis of variations of year to year and month to month variations of temperature, precipitation and global radiation of the past ten years as well of climate model forecasts (from project prudence, http://prudence.dmi.dk) a simple autoregressive model has been formed which is used to generate realistic monthly time series of future periods

  3. Effects of climate change on landslide hazard in Europe (Invited)

    NASA Astrophysics Data System (ADS)

    Nadim, F.; Solheim, A.

    2009-12-01

    Landslides represent a major threat to human life, property and constructed facilities, infrastructure and natural environment in most mountainous and hilly regions of the world. As a consequence of climatic changes and potential global warming, an increase of landslide activity is expected in some parts of the world in the future. This will be due to increased extreme rainfall events, changes of hydrological cycles, meteorological events followed by sea storms causing coastal erosion and melting of snow and of frozen soils in the high mountains. During the past century, Europe experienced many fatalities and significant economic losses due to landslides. Since in many parts of Europe landslides are the most serious natural hazard, several recent European research projects are looking into the effects of climate change on the risk associated with landslides. Examples are the recently initiated SafeLand project, which looks into this problem across the continent, and GeoExtreme, which focused on Norway. The ongoing project SafeLand (www.safeland-fp7.eu) is a large, integrating project financed by the European Commission. It involves close to 30 organizations from 13 countries in Europe, and it looks into the effects of global change (mainly changes in demography and climate change) on the pattern of landslide risk in Europe. The SafeLand objectives are to (1) provide policy-makers, public administrators, researchers, scientists, educators and other stakeholders with improved harmonized framework and methodology for the assessment and quantification of landslide risk in Europe's regions; (2) evaluate the changes in risk pattern caused by climate change, human activity and policy changes; and (3) provide guidelines for choosing the most appropriate risk management strategies, including risk mitigation and prevention measures. To assess the changes in the landslide risk pattern in Norway over the next 50 years, the four-year integrated research project GeoExtreme (www

  4. A WWW-based information system on resistance of bacteria to antibiotics.

    PubMed

    Schindler, J; Schindler, Z; Schindler, J

    1998-01-01

    The information system on resistance of bacteria to antibiotics (WARN--World Antibiotic Resistance Network) is implemented as a WWW server at Charles University in Prague (http:/(/)www.warn.cas.cz). Its main goal is to give information about problems of antibiotic resistance of bacteria and to process data on isolated strains. The WARN web-site contains six main topics. Four of them form the core of the system: Topics of Interest bring information on selected timely topics in antibiotic resistance--pneumococci, staphylococci, beta-lactamases, glycopeptide--and aminoglycoside resistance. Global Monitor brings references and reports on resistance in the world as well as recommended method of surveillance. The topic Data contains raw data on strains in particular countries and hospitals. Data can be viewed in their original form as a list of records (strains) or processed to provide statistics about the resistance rates in the selected country or hospital respectively. The topic Search allows one to search for one or several terms in the whole document. Counts of accessed pages show, that there is a standing demand for information about the serious problems of antibiotic therapy of infectious diseases.

  5. ClimateInterpreter.org: an online sharing platform with best practices and resources on effective climate change communication, climate change exhibits, and sustainability efforts at aquariums, zoos, and science museums

    NASA Astrophysics Data System (ADS)

    Miller, M. K.; MacKenzie, S.

    2011-12-01

    Many aquariums, zoos, museums, and other informal science education (ISE) centers across the country want to connect their visitors with the important issue of climate change. Communicating climate change and the science it embodies is no easy task though, and ISE institutions are seeking creative and collaborative ways to best interpret the issue with their audiences. Some of these institutions, particularly aquariums and zoos, have live specimens on exhibit that stand to be severely impacted by climate change. Others see it as an educational and moral imperative to address such an important issue affecting the world today, especially one so close to the core mission of their institution. Regardless, informal science educators have noticed that the public is increasingly coming to them with questions related to climate change, and they want to be able to respond as effectively as they can. The Monterey Bay Aquarium is one partner in a coalition of aquariums, zoos, museums and informal science education institutions that are working together to present climate change to its visitors. These institutions hold enormous public trust as sources of sound scientific information. Whether it is through exhibitions like the Aquarium's Hot Pink Flamingos: Stories of Hope in a Changing Sea, interpretive and communication techniques to navigate challenging climate change discussions, or with sustainability planning and operational greening efforts, there is a concerted movement to improve the capacity of these institutions to respond to the issue. Ultimately, their goal is to inspire visitors in a way that positively impacts the country's discourse surrounding climate change, and helps steer our dialog toward a focus on solutions. In addition to the Hot Pink Flamingos exhibit, the Aquarium is also working with the coalition to build a website, www.climateinterpreter.org, that can serve as an online platform for sharing the experiences of what different partners have learned at

  6. Climate change and human health: what are the research trends? A scoping review protocol.

    PubMed

    Herlihy, Niamh; Bar-Hen, Avner; Verner, Glenn; Fischer, Helen; Sauerborn, Rainer; Depoux, Anneliese; Flahault, Antoine; Schütte, Stefanie

    2016-12-23

    For 28 years, the Intergovernmental Panel on Climate Change (IPCC) has been assessing the potential risks associated with anthropogenic climate change. Although interest in climate change and health is growing, the implications arising from their interaction remain understudied. Generating a greater understanding of the health impacts of climate change could be key step in inciting some of the changes necessary to decelerate global warming. A long-term and broad overview of the existing scientific literature in the field of climate change and health is currently missing in order to ensure that all priority areas are being adequately addressed. In this paper we outline our methods to conduct a scoping review of the published peer-reviewed literature on climate change and health between 1990 and 2015. A detailed search strategy will be used to search the PubMed and Web of Science databases. Specific inclusion and exclusion criteria will be applied in order to capture the most relevant literature in the time frame chosen. Data will be extracted, categorised and coded to allow for statistical analysis of the results. No ethical approval was required for this study. A searchable database of climate change and health publications will be developed and a manuscript will be complied for publication and dissemination of the findings. We anticipate that this study will allow us to map the trends observed in publications over the 25-year time period in climate change and health research. It will also identify the research areas with the highest volume of publications as well as highlight the research trends in climate change and health. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  7. The Climate Response to Stratospheric Aerosol Geoengineering Can Be Tailored Using Multiple Injection Locations

    NASA Astrophysics Data System (ADS)

    MacMartin, Douglas G.; Kravitz, Ben; Tilmes, Simone; Richter, Jadwiga H.; Mills, Michael J.; Lamarque, Jean-Francois; Tribbia, Joseph J.; Vitt, Francis

    2017-12-01

    By injecting different amounts of SO2 at multiple different latitudes, the spatial pattern of aerosol optical depth (AOD) can be partially controlled. This leads to the ability to influence the climate response to geoengineering with stratospheric aerosols, providing the potential for design. We use simulations from the fully coupled whole-atmosphere chemistry climate model CESM1(WACCM) to demonstrate that by appropriately combining injection at just four different locations, 30°S, 15°S, 15°N, and 30°N, then three spatial degrees of freedom of AOD can be achieved: an approximately spatially uniform AOD distribution, the relative difference in AOD between Northern and Southern Hemispheres, and the relative AOD in high versus low latitudes. For forcing levels that yield 1-2°C cooling, the AOD and surface temperature response are sufficiently linear in this model so that the response to different combinations of injection at different latitudes can be estimated from single-latitude injection simulations; nonlinearities associated with both aerosol growth and changes to stratospheric circulation will be increasingly important at higher forcing levels. Optimized injection at multiple locations is predicted to improve compensation of CO2-forced climate change relative to a case using only equatorial aerosol injection (which overcools the tropics relative to high latitudes). The additional degrees of freedom can be used, for example, to balance the interhemispheric temperature gradient and the equator to pole temperature gradient in addition to the global mean temperature. Further research is needed to better quantify the impacts of these strategies on changes to long-term temperature, precipitation, and other climate parameters.

  8. CFD Data Sets on the WWW for Education and Testing

    NASA Technical Reports Server (NTRS)

    Globus, Al; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    The Numerical Aerodynamic Simulation (NAS) Systems Division at NASA Ames Research Center has begun the development of a Computational Fluid Dynamics (CFD) data set archive on the World Wide Web (WWW) at URL http://www.nas.nasa.gov/NAS/DataSets/. Data sets are integrated with related information such as research papers, metadata, visualizations, etc. In this paper, four classes of users are identified and discussed: students, visualization developers, CFD practitioners, and management. Bandwidth and security issues are briefly reviewed and the status of the archive as of May 1995 is examined. Routine network distribution of data sets is likely to have profound implications for the conduct of science. The exact nature of these changes is subject to speculation, but the ability for anyone to examine the data, in addition to the investigator's analysis, may well play an important role in the future.

  9. CLIMANDES climate science e-learning course

    NASA Astrophysics Data System (ADS)

    Hunziker, Stefan; Giesche, Alena; Jacques-Coper, Martín; Brönnimann, Stefan

    2016-04-01

    Over the past three years, members of the Oeschger Centre for Climate Change Research (OCCR) and the Climatology group at the Institute of Geography at the University of Bern, have developed a new climate science e-learning course as part of the CLIMANDES project. This project is a collaboration between Peruvian and Swiss government, research, and education institutions. The aim of this e-learning material is to strengthen education in climate sciences at the higher education and professional level. The course was recently published in 2015 by Geographica Bernensia, and is hosted online by the Peruvian Servicio Nacional de Meteorología e Hidrología (SENAMHI): http://surmx.com/chamilo/climandes/e-learning/. The course is furthermore available for offline use through USB sticks, and a number of these are currently being distributed to regional training centers around the world by the WMO (World Meteorological Organization). There are eight individual modules of the course that each offer approximately 2 hours of individual learning material, featuring several additional learning activities, such as the online game "The Great Climate Poker" (http://www.climatepoker.unibe.ch/). Overall, over 50 hours of learning material are provided by this course. The modules can be integrated into university lectures, used as single units in workshops, or be combined to serve as a full course. This e-learning course presents a broad spectrum of topics in climate science, including an introduction to climatology, atmospheric and ocean circulation, climate forcings, climate observations and data, working with data products, and climate models. This e-learning course offers a novel approach to teaching climate science to students around the world, particularly through three important features. Firstly, the course is unique in its diverse range of learning strategies, which include individual reading material, video lectures, interactive graphics, responsive quizzes, as well as group

  10. Developing a Serious Game for decision making for the water-land-food-energy-climate Nexus in Sardinia-Italy: The SIM4NEXUS approach

    NASA Astrophysics Data System (ADS)

    Vamvakeridou-Lyroudia, Lydia; Alexandri, Eva; Blanco, Maria; Chew, Chengzi; Conradt, Tobias; Daskalou, Olympia; Evans, Barry; Guitart, Francesc; Mereu, Simone; Sartori, Martina; Susnik, Janez; Savic, Dragan

    2017-04-01

    A four-year EU H2020 project "Sustainable Integrated Management FOR the NEXUS of water-land-food-energy-climate for a resource-efficient Europe (SIM4NEXUS)" started in June 2016, with an overall grant of € 7.9M (www.sim4nexus.eu). The project involves 25 partners from 15 European countries. SIM4NEXUS has four objectives: (i) to adopt existing knowledge and develop new expertise on the water-energy-food-climate-land use Nexus; (ii) to reduce uncertainties of how policies, governance and institutions affect complex environmental systems; (iii) to showcase the implementation via a network of three regional, five national, two transboundary case studies in Europe, as well as continental and global studies; (iv) to valorise the project outputs by suitable business models. SIM4NEXUS develops an innovative concept and methodologies to facilitate the design of policies and bridge knowledge and technology gaps in the field of the Nexus under global change. The project will develop a methodology of integration using a complexity science approach and a Serious Game (a decision-based platform that allows policy makers to play out scenarios to see what would bring the best outcome) as an integrating tool for testing and evaluating policy decisions. The Serious Game is based on Aqua Republica (http://www.dhigroup.com/upload/publications/scribd/172629015-Exploring-the-World-of-Aqua-Republica-DHI-Case-Story.pdf ) and will cover a vast array of scenarios for all the case studies, over short, medium and long terms. In this presentation we focus on all the stages of the development of the Serious Game for one of our Case Studies (Sardinia, Italy) which is being used as a pilot example prior to wider rollout. Specifically we detail the components and steps involved in Game development including: (i) linking thematic models (CAPRI- http://www.capri-model.org/dokuwiki/doku.php and E3ME- http://www.e3me.com/) and downscaling to regional level; (ii) climate change scenarios (using and

  11. Changes of Mediterranean cyclones in the future climate employing high resolution climate simulations

    NASA Astrophysics Data System (ADS)

    Hatzaki, M.; Flocas, H. A.; Kouroutzoglou, J.; Keay, K.; Simmonds, I.; Giannakopoulos, C. A.; Brikolas, V.

    2011-12-01

    A number of studies suggest that cyclone activity over both hemispheres has changed over the second half of the 20th century. The assessment of the future changes of the cyclonic activity as imposed by global warming conditions is very important since these cyclones can be associated with extreme precipitation conditions, severe storms and floods. This is more important for the Mediterranean that has been found to be more vulnerable to climate change. The main objective of the current study is to better understand and assess future changes in the main characteristics of Mediterranean cyclones, including temporal and spatial variations of frequency of cyclonic tracks, and dynamic and kinematic parameters, such as intensity, size, propagation velocity, as well as trend analysis. For this purpose, the MPI-HH regional coupled climate model of the Max Planck Institute for Meteorology is employed consisting of the REgional atmosphere MOdel (REMO), the Max-Planck-Institute for Meteorology ocean model (MPI-OM) and the Hydrological Discharge Model (HD Model). A 25 km resolution domain is established on a rotated latitude-longitude coordinate system, while the physical parameterizations are taken from the global climate model ECHAM-4. These model data became available through the EU Project CIRCE which aims to perform, for the first time, climate change projections with a realistic representation of the Mediterranean Sea. The model results for the present climate are evaluated against ERA-40 Reanalysis (available through ECMWF), for the period 1962-2001. The identification and tracking of cyclones is performed with the aid of the Melbourne University algorithm (MS algorithm), according to the Lagrangian perspective. MS algorithm characterizes a cyclone only if a vorticity maximum could be connected with a local pressure minimum. According to the results, a decrease of the storm number and a tendency towards deeper cyclones is expected in the future, in general agreement with

  12. In Brief: Climate Adaptation Summit report released

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-10-01

    “We understand from the science that we have no choice between mitigation and adaptation. We have to do both,” John Holdren, President Barack Obama's science and technology advisor, said at a 29 September meeting where he was presented with a new report about national and regional preparations for adapting to changing climate. The report is based on the National Climate Adaptation Summit, which was convened by the University Corporation for Atmospheric Research in May 2010. Stating that the United States must adapt to a changing climate now and prepare for increasing impacts on urban infrastructure, food, water, human health, and ecosystems in the coming decades, the report identifies a set of priorities for near-term action. Among the priorities are developing an overarching national strategy, with research, planning, and management components to guide federal climate change adaptation programs. Other priorities include improving coordination of federal plans and programs and creating a federal climate information portal and a clearinghouse of best practices and tool kits for adaptation. The report also identifies other priorities, including the need for support for assessments in the U.S. Global Change Research Program agency budgets, for increasing funding for research on vulnerability and impacts, and for initiating a regional series of ongoing climate adaptation forums. For more information, see http://www.joss.ucar.edu/events/2010/ncas/index.html.

  13. SAVING KYOTO: Can the Kyoto Climate Treaty Be Saved From Itself?

    PubMed

    Kerr, R A

    2000-11-03

    The climate treaty being hammered out this month at The Hague may be doomed to failure, as numerous observers say the United States simply won't ratify any treaty that requires such wrenching reductions in carbon emissions, and if the United States bails out, the protocol is in very deep trouble. Some policy analysts think that by tweaking the rules, the United States could eventually sign on, but if they are tweaked too much, other countries may balk. The key, some say, will be keeping the treaty going now and rethinking its controversial goals later.

  14. Human health impacts avoided under the Paris Agreement on climate change

    NASA Astrophysics Data System (ADS)

    Mitchell, Dann

    2017-04-01

    This analyses makes use of the experiments and model data from the Half a degree Additional warming; Prognosis and Projected Impacts (HAPPI; www.happimip.org) analysis (Mitchell et al, 2016a). HAPPI is unique in that it is specifically designed to address the Paris Agreement priorities on climate impacts, by using equilibrated climates and super-ensembles, thereby enabling robust analysis of extremes. Here we first look at extreme hot and cold spells, and then make use of the most recent heat-mortality models, and heat stress metrics to look at any differences between 1.5C and 2C worlds compared to normal.

  15. AmeriFlux US-SCf Southern California Climate Gradient - Oak/Pine Forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goulden, Mike

    This is the AmeriFlux version of the carbon flux data for the site US-SCf Southern California Climate Gradient - Oak/Pine Forest. Site Description - Half hourly data are available at https://www.ess.uci.edu/~california/. This site is one of six Southern California Climate Gradient flux towers operated along an elevation gradient (sites are US-SCg, US-SCs, US-SCf, US-SCw, US-SCc, US-SCd). This site is a mixed oak/pine forest. The site experiences episodic severe drought and mortality, and has also experienced occasional logging and wildfire. Drought and mortality was especially severe in the early 2000s.

  16. Climate Services Information System Activities in Support of The Global Framework for Climate Services Implementation

    NASA Astrophysics Data System (ADS)

    Timofeyeva-Livezey, M. M.; Horsfall, F. M. C.; Pulwarty, R. S.; Klein-Tank, A.; Kolli, R. K.; Hechler, P.; Dilley, M.; Ceron, J. P.; Goodess, C.

    2017-12-01

    The WMO Commission on Climatology (CCl) supports the implementation of the Global Framework for Climate Services (GFCS) with a particular focus on the Climate Services Information System (CSIS), which is the core operational component of GFCS at the global, regional, and national level. CSIS is designed for producing, packaging and operationally delivering authoritative climate information data and products through appropriate operational systems, practices, data exchange, technical standards, authentication, communication, and product delivery. Its functions include climate analysis and monitoring, assessment and attribution, prediction (monthly, seasonal, decadal), and projection (centennial scale) as well as tailoring the associated products tUEAo suit user requirements. A central, enabling piece of implementation of CSIS is a Climate Services Toolkit (CST). In its development phase, CST exists as a prototype (www.wmo.int/cst) as a compilation of tools for generating tailored data and products for decision-making, with a special focus on national requirements in developing countries. WMO provides a server to house the CST prototype as well as support operations and maintenance. WMO members provide technical expertise and other in-kind support, including leadership of the CSIS development team. Several recent WMO events have helped with the deployment of CST within the eight countries that have been recognized by GFCS as illustrative for developing their climate services at national levels. Currently these countries are developing climate services projects focusing service development and delivery for selected economic sectors, such as for health, agriculture, energy, water resources, and hydrometeorological disaster risk reduction. These countries are working together with their respective WMO Regional Climate Centers (RCCs), which provide technical assistance with implementation of climate services projects at the country level and facilitate development of

  17. How Climate Science got to be in the Next Generation Science Standards (Invited)

    NASA Astrophysics Data System (ADS)

    Wysession, M. E.

    2013-12-01

    Climate science plays a prominent role in the new national K-12 Next Generation Science Standards (NGSS). This represents the culmination of a significant amount of effort by many different organizations that have worked hard to educate the public on one of the most interesting, complex, complicated, and societally important aspects of geoscience. While there are significant challenges to the full implementation of the NGSS, especially those aspects that relate to climate change, the fact that so many states are currently adopting the NGSS represents a significant milestone in geoscience education. When grade 6-12 textbooks were written ten years ago, such as Pearson's high school Physical Science: Concepts in Action (Wysession et al., 2004), very little mention of climate change was incorporated because it did not appear in state standards. Now, climate and climate change are an integral part of the middle school and high school NGSS standards, and textbook companies are fully incorporating this content into their programs. There are many factors that have helped the shift toward teaching about climate, such as the IPCC report, Al Gore's 'An Inconvenient Truth,' and the many reports on climate change published by the National Research Council (NRC). However, four major community-driven literacy documents (The Essential Principles of Ocean Science, Essential Principles and Fundamental Concepts for Atmospheric Science Literacy, The Earth Science Literacy Principles, and The Essential Principles of Climate Science) were essential in that they directly informed the construction of the Earth and Space Science (ESS) content of the NRC's 'Framework for K-12 Science Education' by the ESS Design Team. The actual performance expectations of the NGSS were then informed directly by the disciplinary core ideas of the NRC Framework, which were motivated by the community-driven literacy documents and the significant credentials these bore. The work in getting climate science

  18. How Climate Science got to be in the Next Generation Science Standards (Invited)

    NASA Astrophysics Data System (ADS)

    Westnedge, K. L.; Dallimore, A.; Salish Sea Expedition Team

    2011-12-01

    Climate science plays a prominent role in the new national K-12 Next Generation Science Standards (NGSS). This represents the culmination of a significant amount of effort by many different organizations that have worked hard to educate the public on one of the most interesting, complex, complicated, and societally important aspects of geoscience. While there are significant challenges to the full implementation of the NGSS, especially those aspects that relate to climate change, the fact that so many states are currently adopting the NGSS represents a significant milestone in geoscience education. When grade 6-12 textbooks were written ten years ago, such as Pearson's high school Physical Science: Concepts in Action (Wysession et al., 2004), very little mention of climate change was incorporated because it did not appear in state standards. Now, climate and climate change are an integral part of the middle school and high school NGSS standards, and textbook companies are fully incorporating this content into their programs. There are many factors that have helped the shift toward teaching about climate, such as the IPCC report, Al Gore's 'An Inconvenient Truth,' and the many reports on climate change published by the National Research Council (NRC). However, four major community-driven literacy documents (The Essential Principles of Ocean Science, Essential Principles and Fundamental Concepts for Atmospheric Science Literacy, The Earth Science Literacy Principles, and The Essential Principles of Climate Science) were essential in that they directly informed the construction of the Earth and Space Science (ESS) content of the NRC's 'Framework for K-12 Science Education' by the ESS Design Team. The actual performance expectations of the NGSS were then informed directly by the disciplinary core ideas of the NRC Framework, which were motivated by the community-driven literacy documents and the significant credentials these bore. The work in getting climate science

  19. Estimating the limits of adaptation from historical behaviour: Insights from the American Climate Prospectus

    NASA Astrophysics Data System (ADS)

    Jina, A.; Hsiang, S. M.; Kopp, R. E., III; Rasmussen, D.; Rising, J.

    2014-12-01

    The American Climate Prospectus (ACP), the technical analysis underlying the Risky Business project, quantitatively assessed the climate risks posed to the United States' economy in a number of economic sectors [1]. The main analysis presents projections of climate impacts with an assumption of "no adaptation". Yet, historically, when the climate imposed an economic cost upon society, adaptive responses were taken to minimise these costs. These adaptive behaviours, both autonomous and planned, can be expected to occur as climate impacts increase in the future. To understand the extent to which adaptation might decrease some of the worst impacts of climate change, we empirically estimate adaptive responses. We do this in three sectors considered in the analysis - crop yield, crime, and mortality - and estimate adaptive capacity in two steps. First, looking at changes in climate impacts through time, we identify a historical rate of adaptation. Second, spatial differences in climate impacts are then used to stratify regions into more adapted or less adapted based on climate averages. As these averages change across counties in the US, we allow each to become more adapted at the rate identified in step one. We are then able to estimate the residual damages, assuming that only the historical adaptive behaviours have taken place (fig 1). Importantly, we are unable to estimate any costs associated with these adaptations, nor are we able to estimate more novel (for example, new technological discoveries) or more disruptive (for example, migration) adaptive behaviours. However, an important insight is that historical adaptive behaviours may not be capable of reducing the worst impacts of climate change. The persistence of impacts in even the most exposed areas indicates that there are non-trivial costs associated with adaptation that will need to be met from other sources or through novel behavioural changes. References: [1] T. Houser et al. (2014), American Climate

  20. Framing climate change and spatial planning: how risk communication can be improved.

    PubMed

    de Boer, J

    2007-01-01

    Taking the role of frames into account may significantly add to the tools that have been developed for communication and learning on complex risks and benefits. As part of a larger multidisciplinary study into climate-related forms of sense-making this paper explores which frames are used by the citizens of Western European countries and, in particular, the Netherlands. Three recent multi-national public opinion surveys were analysed to examine beliefs about climate change in the context of beliefs about energy technology and concerns about other environmental issues, such as natural disasters. It appeared that many citizens had only vague ideas about the energy situation and that these do not constitute an unequivocal frame for climate issues. In contrast, the results suggest that the long-lasting rainfall and severe floods in Central Europe have had a significant impact. Climate change was often framed in a way that articulates its associations with rain- and river-based problems. This result is extremely important for risk communication, because especially in the Netherlands with its vulnerable coastal zones climate change may produce many more consequences than rain- and river-based problems only.

  1. Who Should be Empowered to Know about Earth's Changing Climate? The Case of Earth's Changing Cryosphere

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.

    2006-12-01

    Global climate change in the past century has nearly pushed the envelope of all prior natural changes experienced since the dawn of civilization, and all plausible projections have climate shooting completely out of this envelope this century. Some plausible projections for the cumulative magnitude of climatic change this and next century are, at the upper range of these projections, comparable to the shift that ended the Ice Age and would place Earth in a "hot house" unlike anything going back 55 million years. Much life will survive and thrive through these changes, but if it is civilization we are concerned with, then we should understand and reduce the rate and long-term cumulative impact of predictable climate change and to reduce the chances of accidental tripping of a hair-trigger mechanism of rapid climate change. Coping with (even deriving some benefit from) inevitable climate changes, and forestalling even more disruptive changes, can only be accomplished through informed planning. A critical society-shaping issue is who will have and utilize the knowledge of climatic impacts. Since climate change affects all of us, the observational tools and research pertaining the Earth's changing condition should be in the hands of the masses of people: publicly financed and unclassified. A trickier issue is how to deal with information that particular cities or countries are at special risk, especially when the risk might be imminent and catastrophic. How do we maximize the efficiency of socioeconomic changes that will be needed to adapt? How do we overcome inertia and business as usual without inducing unintended consequences, such as panic? How should governments deal with this type of information? How should individual scientists deal with discoveries about the changing world that seem to pose special risks for certain people on the century timescale, the decadal scale, or this year? Natural hazards, such as volcanism, earthquakes, and hurricanes are hard enough

  2. [Learning from regional differences: online platform: http://www.versorgungsatlas.de].

    PubMed

    Mangiapane, S

    2014-02-01

    In 2011, the Central Research Institute of Ambulatory Health Care in Germany (ZI) published the website http://www.versorgungsatlas.de, a portal that presents research results from regional health services in Germany. The Web portal provides a publicly accessible source of information and a growing number of selected analyses focusing on regional variation in health care. Each topic is presented in terms of interactive maps, tables, and diagrams and is supplemented by a paper that examines the results in detail and provides an explanation of the findings. The portal has been designed to provide a forum on which health service researchers can publish their results derived from various data sources of different institutions in Germany and can comment on results already available on http://www.versorgungsatlas.de. For health policy actors, the discussion of regional differences offers a new, previously unavailable basis for determining the region-specific treatment needs and for providing health-care management with the goal of high-quality care for each resident.

  3. In Brief: Refugee numbers could increase due to climate change

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2007-05-01

    Climate change could push the number of refugees globally to more than one billion by 2050, according to a new report from the British charity Christian Aid. Currently, there are about 155 million `internally displaced persons' worldwide, driven from their homes due to conflict, ethnic persecution, or natural disasters. The addition of climate change and growing population numbers could exacerbate these ongoing problems. In the report, Mali is presented as a case study where ongoing climate change is forcing farmers to find other ways to feed their families; one result is an increased number of people attempting to migrate to Europe. The report calls on rich nations to devote US$100 billion each year to help poor people adapt to changing weather patterns. The report, ``Human tide: the real migration crisis,'' is available at http://www.christian-aid.org.uk/indepth/705caweekreport/

  4. Confronting Misinformation in Climate Change Higher Education

    NASA Astrophysics Data System (ADS)

    Bedford, D. P.

    2012-12-01

    Among the many challenges faced by climate change educators is the highly politicized nature of the subject matter (e.g. McCright and Dunlap, 2011) and the associated misinformation from key media outlets and websites (e.g. see Oreskes and Conway, 2010). Students typically do not enter the classroom as 'blank slates', but often have already formed some opinion about climate change which may or may not be based on reputable sources. Further, many students have lives outside the classroom and/or off campus, and even those who do live in an isolated bubble of campus life will eventually graduate. Thus, providing students with a level of climate change knowledge and understanding robust enough to cope with misinformation may be an important goal for educators. This paper presents a case study of the direct use of climate change misinformation as a college-level classroom activity. Some research from other fields (notably psychology) has found that directly addressing misconceptions in the classroom can be the most effective means of dispelling them (Kowalski and Taylor, 2009). However, directly confronting misinformation in the classroom carries inherent risks, such as reinforcing misconceptions (e.g. Cook and Lewandowsky, 2011). This paper therefore considers approaches to minimizing those risks while attempting to maximize the possible benefits. This paper argues that use of misinformation as a teaching tool can provide useful exercises in critical thinking, testing of content knowledge, and consideration of the nature of science. Cook, J. and S. Lewandowsky. 2011. The Debunking Handbook. Online publication available www.skepticalscience.com/docs/Debunking_Handbook.pdf. Accessed 7 July 2012. Kowalski, P. and A.K. Taylor. 2009. DOI: 10.1080/00986280902959986. McCright, A., and R.T. Dunlap. 2011. The politicization of climate change and polarization in the American public's views of global warming, 2001-2010. The Sociological Quarterly 52:2, 155-194. Oreskes, N. and E

  5. How early can the seeding dates of spring wheat be under current and future climate in Saskatchewan, Canada?

    PubMed

    He, Yong; Wang, Hong; Qian, Budong; McConkey, Brian; DePauw, Ron

    2012-01-01

    Shorter growing season and water stress near wheat maturity are the main factors that presumably limit the yield potential of spring wheat due to late seeding in Saskatchewan, Canada. Advancing seeding dates can be a strategy to help producers mitigate the impact of climate change on spring wheat. It is unknown, however, how early farmers can seed while minimizing the risk of spring frost damage and the soil and machinery constraints. This paper explores early seeding dates of spring wheat on the Canadian Prairies under current and projected future climate. To achieve this, (i) weather records from 1961 to 1990 were gathered at three sites with different soil and climate conditions in Saskatchewan, Canada; (ii) four climate databases that included a baseline (treated as historic weather climate during the period of 1961-1990) and three climate change scenarios (2040-2069) developed by the Canadian global climate model (GCM) with the forcing of three greenhouse gas (GHG) emission scenarios (A2, A1B and B1); (iii) seeding dates of spring wheat (Triticum aestivum L.) under baseline and projected future climate were predicted. Compared with the historical record of seeding dates, the predicted seeding dates were advanced under baseline climate for all sites using our seeding date model. Driven by the predicted temperature increase of the scenarios compared with baseline climate, all climate change scenarios projected significantly earlier seeding dates than those currently used. Compared to the baseline conditions, there is no reduction in grain yield because precipitation increases during sensitive growth stages of wheat, suggesting that there is potential to shift seeding to an earlier date. The average advancement of seeding dates varied among sites and chosen scenarios. The Swift Current (south-west) site has the highest potential for earlier seeding (7 to 11 days) whereas such advancement was small in the Melfort (north-east, 2 to 4 days) region. The extent of

  6. Investigating Climate Change Issues With Web-Based Geospatial Inquiry Activities

    NASA Astrophysics Data System (ADS)

    Dempsey, C.; Bodzin, A. M.; Sahagian, D. L.; Anastasio, D. J.; Peffer, T.; Cirucci, L.

    2011-12-01

    In the Environmental Literacy and Inquiry middle school Climate Change curriculum we focus on essential climate literacy principles with an emphasis on weather and climate, Earth system energy balance, greenhouse gases, paleoclimatology, and how human activities influence climate change (http://www.ei.lehigh.edu/eli/cc/). It incorporates a related set of a framework and design principles to provide guidance for the development of the geospatial technology-integrated Earth and environmental science curriculum materials. Students use virtual globes, Web-based tools including an interactive carbon calculator and geologic timeline, and inquiry-based lab activities to investigate climate change topics. The curriculum includes educative curriculum materials that are designed to promote and support teachers' learning of important climate change content and issues, geospatial pedagogical content knowledge, and geographic spatial thinking. The curriculum includes baseline instructional guidance for teachers and provides implementation and adaptation guidance for teaching with diverse learners including low-level readers, English language learners and students with disabilities. In the curriculum, students use geospatial technology tools including Google Earth with embedded spatial data to investigate global temperature changes, areas affected by climate change, evidence of climate change, and the effects of sea level rise on the existing landscape. We conducted a designed-based research implementation study with urban middle school students. Findings showed that the use of the Climate Change curriculum showed significant improvement in urban middle school students' understanding of climate change concepts.

  7. A fickle sun could be altering Earth`s climate after all

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, R.A.

    1995-08-01

    A long effort to link slight fluctuations in solar output with climate on Earth may finally be succeeding. A cycle of temperature changes in much of the middle and low atmosphere matches the 11 year sunspot cycle over much of the Northern Hemisphere. The findings were reported at the International Union of Geodesy and Gophysics meeting in Colorado. This article discusses the evidence and the modeling which has been done to reveal this possible connection. 1 fig.

  8. AmeriFlux US-SCs Southern California Climate Gradient - Coastal Sage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goulden, Mike

    This is the AmeriFlux version of the carbon flux data for the site US-SCs Southern California Climate Gradient - Coastal Sage. Site Description - Half hourly data are available at https://www.ess.uci.edu/~california/. This site is one of six Southern California Climate Gradient flux towers operated along an elevation gradient (sites are US-SCg, US-SCs, US-SCf, US-SCw, US-SCc, US-SCd). This site is a coastal sage shrubland. Coastal sage is a small stature, closed canopy vegetation dominated by drought deciduous shrubs. The site has historically burned every 10-20 years, with the wild fire in October 2007. The tower data sets includes this recovery process.

  9. Towards Supporting Climate Scientists and Impact Assessment Analysts with the Big Data Europe Platform

    NASA Astrophysics Data System (ADS)

    Klampanos, Iraklis; Vlachogiannis, Diamando; Andronopoulos, Spyros; Cofiño, Antonio; Charalambidis, Angelos; Lokers, Rob; Konstantopoulos, Stasinos; Karkaletsis, Vangelis

    2016-04-01

    semantics-based interface to climate open data, eg{} to ESGF services, searching, downloading and indexing climate model and observational data, according to user requirements, such as coverage and experimental scenarios, executing dynamical downscaling models on institutional computing resources, and establishing a framework for metadata mappings and data lineage. The objectives of this pilot will be met building on the SemaGrow system and tools, which have been developed as part of the SemaGrow project in order to scale data intensive techniques up to extremely large data volumes and improve real time performance for agricultural experiments and analyses. SemaGrow is a query resolution and ingestion system for data and semantics. It is able to extract semantic features from data, index them and expose APIs to other BDE platform components. Moreover, SemaGrow provides tools for transforming and managing data in various formats (e.g. NetCDF), and their metadata. It can also interface between users and distributed, external data sources via SPARQL endpoints. This has been demonstrated as part of the SemaGrow project, on diverse and large-scale scientific use-cases. SemaGrow is an active data service in agINFRA, a data infrastructure for agriculture. https://github.com/semagrow/semagrow Big Data Europe (http://www.big-data-europe.eu) - grant agreement no.644564. Earth System Grid Federation: http://esgf.llnl.gov http://www.semagrow.eu http://aginfra.eu

  10. [Development of laboratory sequence analysis software based on WWW and UNIX].

    PubMed

    Huang, Y; Gu, J R

    2001-01-01

    Sequence analysis tools based on WWW and UNIX were developed in our laboratory to meet the needs of molecular genetics research in our laboratory. General principles of computer analysis of DNA and protein sequences were also briefly discussed in this paper.

  11. How should support for climate-friendly technologies be designed?

    PubMed

    Fischer, Carolyn; Torvanger, Asbjørn; Shrivastava, Manish Kumar; Sterner, Thomas; Stigson, Peter

    2012-01-01

    Stabilizing global greenhouse gas concentrations at levels to avoid significant climate risks will require massive "decarbonization" of all the major economies over the next few decades, in addition to the reduced emissions from other GHGs and carbon sequestration. Achieving the necessary scale of emissions reductions will require a multifaceted policy effort to support a broad array of technological and behavioral changes. Change on this scale will require sound, well-thought-out strategies. In this article, we outline some core principles, drawn from recent social science research, for guiding the design of clean technology policies, with a focus on energy. The market should be encouraged to make good choices: pricing carbon emissions and other environmental damage, removing distorting subsidies and barriers to competition, and supporting RD&D broadly. More specific policies are required to address particular market failures and barriers. For those technologies identified as being particularly desirable, some narrower RD&D policies are available.

  12. Can feedback analysis be used to uncover the physical origin of climate sensitivity and efficacy differences?

    NASA Astrophysics Data System (ADS)

    Rieger, Vanessa S.; Dietmüller, Simone; Ponater, Michael

    2017-10-01

    Different strengths and types of radiative forcings cause variations in the climate sensitivities and efficacies. To relate these changes to their physical origin, this study tests whether a feedback analysis is a suitable approach. For this end, we apply the partial radiative perturbation method. Combining the forward and backward calculation turns out to be indispensable to ensure the additivity of feedbacks and to yield a closed forcing-feedback-balance at top of the atmosphere. For a set of CO2-forced simulations, the climate sensitivity changes with increasing forcing. The albedo, cloud and combined water vapour and lapse rate feedback are found to be responsible for the variations in the climate sensitivity. An O3-forced simulation (induced by enhanced NOx and CO surface emissions) causes a smaller efficacy than a CO2-forced simulation with a similar magnitude of forcing. We find that the Planck, albedo and most likely the cloud feedback are responsible for this effect. Reducing the radiative forcing impedes the statistical separability of feedbacks. We additionally discuss formal inconsistencies between the common ways of comparing climate sensitivities and feedbacks. Moreover, methodical recommendations for future work are given.

  13. Deacclimation may be crucial for winter survival of cereals under warming climate.

    PubMed

    Rapacz, Marcin; Jurczyk, Barbara; Sasal, Monika

    2017-03-01

    Climate warming can change the winter weather patterns. Warmer temperatures during winter result in a lower risk of extreme freezing events. On the other hand the predicted warm gaps during winter will decrease their freezing tolerance. Both contradict effects will affect winter survival but their resultant effect is unclear. In this paper, we demonstrate that climate warming may result in a decrease in winter survival of plants. A field study of winterhardiness of common wheat and triticale was established at 11 locations and repeated during three subsequent winters. The freezing tolerance of the plants was studied after controlled cold acclimation and de-acclimation using both plant survival analysis and chlorophyll fluorescence measurements. Cold deacclimation resistance was shown to be independent from cold acclimation ability. Further, cold deacclimation resistance appeared to be crucial for overwintering when deacclimation conditions occurred in the field. The shortening of uninterrupted cold acclimation may increase cold deacclimation efficiency, which could threaten plant survival during warmer winters. Measurements of chlorophyll fluorescence transient showed some differences triggered by freezing before and after deacclimation. We conclude that cold deacclimation resistance should be considered in the breeding of winter cereals and in future models of winter damage risk. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Climate change's impact on key ecosystem services and the human well-being they support in the US

    USGS Publications Warehouse

    Nelson, Erik J.; Kareiva, Peter; Ruckelshaus, Mary; Arkema, Katie; Geller, Gary; Girvetz, Evan; Goodrich, Dave; Matzek, Virginia; Pinsky, Malin; Reid, Walt; Saunders, Martin; Semmens, Darius J.; Tallis, Heather

    2013-01-01

    Climate change alters the functions of ecological systems. As a result, the provision of ecosystem services and the well-being of people that rely on these services are being modified. Climate models portend continued warming and more frequent extreme weather events across the US. Such weather-related disturbances will place a premium on the ecosystem services that people rely on. We discuss some of the observed and anticipated impacts of climate change on ecosystem service provision and livelihoods in the US. We also highlight promising adaptive measures. The challenge will be choosing which adaptive strategies to implement, given limited resources and time. We suggest using dynamic balance sheets or accounts of natural capital and natural assets to prioritize and evaluate national and regional adaptation strategies that involve ecosystem services.

  15. Modelling climate impacts on the aviation sector

    NASA Astrophysics Data System (ADS)

    Williams, Paul

    2017-04-01

    The climate is changing, not just where we live at ground level, but also where we fly at 35,000 feet. We have long known that air travel contributes to climate change through its emissions. However, we have only recently become aware that climate change could have significant consequences for air travel. This presentation will give an overview of the possible impacts of climate change on the aviation sector. The presentation will describe how the impacts are modelled and how their social and economic costs are estimated. The impacts are discussed in the International Civil Aviation Organization's (ICAO's) latest Environmental Report (Puempel and Williams 2016). Some of the possible impacts are as follows. Rising sea levels and storm surges threaten coastal airports, such as La Guardia in New York, which was flooded by the remnants of Hurricane Sandy in 2012. Warmer air at ground level reduces the lift force and makes it more difficult for planes to take-off (Coffel and Horton 2015). More extreme weather may cause flight disruptions and delays. Clear-air turbulence is expected to become up to 40% stronger and twice as common (Williams and Joshi 2013). Transatlantic flights may collectively be airborne for an extra 2,000 hours each year because of changes to the jet stream, burning an extra 7.2 million gallons of jet fuel at a cost of US 22 million, and emitting an extra 70 million kg of carbon dioxide (Williams 2016). These modelled impacts provide further evidence of the two-way interaction between aviation and climate change. References Coffel E and Horton R (2015) Climate change and the impact of extreme temperatures on aviation. Weather, Climate, and Society, 7, 94-102. http://dx.doi.org/10.1175/WCAS-D-14-00026.1 Puempel H and Williams PD (2016) The impacts of climate change on aviation: Scientific challenges and adaptation pathways. ICAO Environmental Report 2016: On Board A Sustainable Future, pp 205-207. http://www

  16. Relationships among School Climate, School Safety, and Student Achievement and Well-Being: A Review of the Literature

    ERIC Educational Resources Information Center

    Kutsyuruba, Benjamin; Klinger, Don A.; Hussain, Alicia

    2015-01-01

    School climate, safety and well-being of students are important antecedents of academic achievement. However, school members do not necessarily experience school climate in the same way; rather, their subjective perceptions of the environment and personal characteristics influence individual outcomes and behaviours. Therefore, a closer look at the…

  17. Climate-induced warming of lakes can be either amplified or suppressed by trends in water clarity

    USGS Publications Warehouse

    Rose, Kevin C.; Winslow, Luke A.; Read, Jordan S.; Hansen, Gretchen J. A.

    2016-01-01

    Climate change is rapidly warming aquatic ecosystems including lakes and reservoirs. However, variability in lake characteristics can modulate how lakes respond to climate. Water clarity is especially important both because it influences the depth range over which heat is absorbed, and because it is changing in many lakes. Here, we show that simulated long-term water clarity trends influence how both surface and bottom water temperatures of lakes and reservoirs respond to climate change. Clarity changes can either amplify or suppress climate-induced warming, depending on lake depth and the direction of clarity change. Using a process-based model to simulate 1894 north temperate lakes from 1979 to 2012, we show that a scenario of decreasing clarity at a conservative yet widely observed rate of 0.92% yr−1 warmed surface waters and cooled bottom waters at rates comparable in magnitude to climate-induced warming. For lakes deeper than 6.5 m, decreasing clarity was sufficient to fully offset the effects of climate-induced warming on median whole-lake mean temperatures. Conversely, a scenario increasing clarity at the same rate cooled surface waters and warmed bottom waters relative to baseline warming rates. Furthermore, in 43% of lakes, increasing clarity more than doubled baseline bottom temperature warming rates. Long-term empirical observations of water temperature in lakes with and without clarity trends support these simulation results. Together, these results demonstrate that water clarity trends may be as important as rising air temperatures in determining how waterbodies respond to climate change.

  18. Seeing and Reading Red: Hue and Color-word Correlation in Images and Attendant Text on the WWW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newsam, S

    2004-07-12

    This work represents an initial investigation into determining whether correlations actually exist between metadata and content descriptors in multimedia datasets. We provide a quantitative method for evaluating whether the hue of images on the WWW is correlated with the occurrence of color-words in metadata such as URLs, image names, and attendant text. It turns out that such a correlation does exist: the likelihood that a particular color appears in an image whose URL, name, and/or attendant text contains the corresponding color-word is generally at least twice the likelihood that the color appears in a randomly chosen image on the WWW.more » While this finding might not be significant in and of itself, it represents an initial step towards quantitatively establishing that other, perhaps more useful correlations exist. These correlations form the basis for exciting novel approaches that leverage semi-supervised datasets, such as the WWW, to overcome the semantic gap that has hampered progress in multimedia information retrieval for some time now.« less

  19. The American Climate Prospectus: a risk-centered analysis of the economic impacts of climate change

    NASA Astrophysics Data System (ADS)

    Jina, A.; Houser, T.; Hsiang, S. M.; Kopp, R. E., III; Delgado, M.; Larsen, K.; Mohan, S.; Rasmussen, D.; Rising, J.; Wilson, P. S.; Muir-Wood, R.

    2014-12-01

    coastal damages, have monotonically increasing costs throughout the 21st century. Taken together, the results from the ACP presents a unique and novel view of the short-, medium-, and long-term economic risks of climate change in the US. References: [1] T. Houser et al (2014), American Climate Prospectus, www.climateprospectus.org.

  20. A first approach to calculate BIOCLIM variables and climate zones for Antarctica

    NASA Astrophysics Data System (ADS)

    Wagner, Monika; Trutschnig, Wolfgang; Bathke, Arne C.; Ruprecht, Ulrike

    2018-02-01

    For testing the hypothesis that macroclimatological factors determine the occurrence, biodiversity, and species specificity of both symbiotic partners of Antarctic lecideoid lichens, we present a first approach for the computation of the full set of 19 BIOCLIM variables, as available at http://www.worldclim.org/ for all regions of the world with exception of Antarctica. Annual mean temperature (Bio 1) and annual precipitation (Bio 12) were chosen to define climate zones of the Antarctic continent and adjacent islands as required for ecological niche modeling (ENM). The zones are based on data for the years 2009-2015 which was obtained from the Antarctic Mesoscale Prediction System (AMPS) database of the Ohio State University. For both temperature and precipitation, two separate zonings were specified; temperature values were divided into 12 zones (named 1 to 12) and precipitation values into five (named A to E). By combining these two partitions, we defined climate zonings where each geographical point can be uniquely assigned to exactly one zone, which allows an immediate explicit interpretation. The soundness of the newly calculated climate zones was tested by comparison with already published data, which used only three zones defined on climate information from the literature. The newly defined climate zones result in a more precise assignment of species distribution to the single habitats. This study provides the basis for a more detailed continental-wide ENM using a comprehensive dataset of lichen specimens which are located within 21 different climate regions.

  1. Evaluation of safety climate and employee injury rates in healthcare.

    PubMed

    Cook, Jacqueline M; Slade, Martin D; Cantley, Linda F; Sakr, Carine J

    2016-09-01

    Safety climates that support safety-related behaviour are associated with fewer work-related injuries, and prior research in industry suggests that safety knowledge and motivation are strongly related to safety performance behaviours; this relationship is not well studied in healthcare settings. We performed analyses of survey results from a Veterans Health Administration (VHA) Safety Barometer employee perception survey, conducted among VHA employees in 2012. The employee perception survey assessed 6 safety programme categories, including management participation, supervisor participation, employee participation, safety support activities, safety support climate and organisational climate. We examined the relationship between safety climate from the survey results on VHA employee injury and illness rates. Among VHA facilities in the VA New England Healthcare System, work-related injury rate was significantly and inversely related to overall employee perception of safety climate, and all 6 safety programme categories, including employee perception of employee participation, management participation, organisational climate, supervisor participation, safety support activities and safety support climate. Positive employee perceptions of safety climate in VHA facilities are associated with lower work-related injury and illness rates. Employee perception of employee participation, management participation, organisational climate, supervisor participation, safety support activities and safety support climate were all associated with lower work-related injury rates. Future implications include fostering a robust safety climate for patients and healthcare workers to reduce healthcare worker injuries. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  2. Highly Interactive WWW Services: A New Type of Information Sources.

    ERIC Educational Resources Information Center

    Vanouplines, Patrick; Nieuwenhuysen, P.

    The World Wide Web is evolving from a collection of texts linked by hypertext and hypermedia toward services that operate interactively with the information user, and which offer results through use of a broad spectrum of tools. This paper presents a collection of interactive WWW services. The services are classified on the basis of the client…

  3. MED40/472: A WWW Multimedia Textbook of Internal Propedeutics

    PubMed Central

    Zelenková, J; Vejvalka, J; Holá, D; Segethová, J

    1999-01-01

    Introduction Traditional ways of teaching techniques of physical examinations in the first clinical courses are rather demanding in terms of teacher involvement and a pool of patients suitable for demonstrations. For a long time, various audio-visual tools have been used to save teachers' and students' time and patients' patience. The modern technology of WWW publishing of multimedia allows good access to such teaching materials - and there already exist several collections of heart sounds, breath sounds etc. The aim of our project is to design and set up a comprehensive multimedia textbook of internal propedeutics that would present various physiological and pathological findings (auscultation, inspection, basic imaging) in the context of diagnostic patient investigation - the status praesens - as it is taught in the first clinical courses. Methods Unlike classical textbooks, hypertext presentation allows to ogranize the material into several structures - reflecting various approaches: systemic (digestive, cardiovascular etc.) approach, nosological, differential diagnoses, etc. To identify and implement the various useful approaches is the most difficult part of the task. The accompanying illustrative material is being prepared with the use of modern technologies - digital camera, scanner, video-camera and digitizer, digital audio recording, etc. Results In the first year of the project, the skeleton of the multimedia presentation is being constructed - corresponding to the various approaches to the subject. Concurrently, suitable illustrative material is being gathered from cases of the Internal Clinic. Various existing WWW presentations dealing with heart and breath sounds and other relevant investigations have been searched and listed. Discussion Experience and feedback from other projects of this type confirm that a rather elaborate logical and technical construction of multimedia textbooks is rewarded by a good acceptance by both students and teachers. Good

  4. Assess and Adapt: Coordinated Ecoregional Forest Vulnerability Assessments Covering the Upper Midwest and Northeast in Support of Climate-informed Decision-making

    NASA Astrophysics Data System (ADS)

    Swanston, C.; Janowiak, M.; Handler, S.; Butler, P.; Brandt, L.; Iverson, L.; Thompson, F.; Ontl, T.; Shannon, D.

    2016-12-01

    Forest ecosystem vulnerability assessments are rapidly becoming an integral component of forest management planning, in which there is increasing public expectation that even near-term activities explicitly incorporate information about anticipated climate impacts and risks. There is a clear desire among forest managers for targeted assessments that address critical questions about species and ecosystem vulnerabilities while delivering this information in an accessible format. We developed the Ecosystem Vulnerability Assessment Approach (EVAA), which combines multiple quantitative models, expert elicitation from scientists and land managers, and a templated report structure oriented to natural resource managers. The report structure includes relevant information on the contemporary landscape, past climate, future climate projections, impact model results, and a transparent vulnerability assessment of species and ecosystems. We have used EVAA in seven ecoregional assessments covering 246 million acres of forestland across the upper Midwest and Northeast (www.forestadaptation.org; five published, two in review). We convened a panel of local forest ecology and management experts in each assessment area to examine projected climate effects on system drivers, stressors, and dominant species, as well as the current adaptive capacity of the major ecoregional forest ecosystems. The panels provided a qualitative assessment of the vulnerability of forest ecosystems to climate change over the next century. Over 130 authors from dozens of organizations collaborated on these peer-reviewed assessment publications, which are delivered to thousands of stakeholders through live and recorded webinars, online briefs, and in-person trainings and seminars. The assessments are designed to be used with the Adaptation Workbook (www.adaptationworkbook.org), a planning tool that works at multiple scales and has generated more than 200 real-world forest adaptation demonstration projects.

  5. A Comparative Analysis of Climate-Risk and Extreme Event-Related Impacts on Well-Being and Health: Policy Implications

    PubMed Central

    Al-Amin, Abul Quasem; Wiesböck, Laura; Mugabe, Paschal; Aparicio-Effen, Marilyn; Fudjumdjum, Hubert; Chiappetta Jabbour, Charbel Jose

    2018-01-01

    There are various climate risks that are caused or influenced by climate change. They are known to have a wide range of physical, economic, environmental and social impacts. Apart from damages to the physical environment, many climate risks (climate variability, extreme events and climate-related hazards) are associated with a variety of impacts on human well-being, health, and life-supporting systems. These vary from boosting the proliferation of vectors of diseases (e.g., mosquitos), to mental problems triggered by damage to properties and infrastructure. There is a great variety of literature about the strong links between climate change and health, while there is relatively less literature that specifically examines the health impacts of climate risks and extreme events. This paper is an attempt to address this knowledge gap, by compiling eight examples from a set of industrialised and developing countries, where such interactions are described. The policy implications of these phenomena and the lessons learned from the examples provided are summarised. Some suggestions as to how to avert the potential and real health impacts of climate risks are made, hence assisting efforts to adapt to a problem whose impacts affect millions of people around the world. All the examples studied show some degree of vulnerability to climate risks regardless of their socioeconomic status and need to increase resilience against extreme events. PMID:29438345

  6. A Comparative Analysis of Climate-Risk and Extreme Event-Related Impacts on Well-Being and Health: Policy Implications.

    PubMed

    Filho, Walter Leal; Al-Amin, Abul Quasem; Nagy, Gustavo J; Azeiteiro, Ulisses M; Wiesböck, Laura; Ayal, Desalegn Y; Morgan, Edward A; Mugabe, Paschal; Aparicio-Effen, Marilyn; Fudjumdjum, Hubert; Chiappetta Jabbour, Charbel Jose

    2018-02-13

    There are various climate risks that are caused or influenced by climate change. They are known to have a wide range of physical, economic, environmental and social impacts. Apart from damages to the physical environment, many climate risks (climate variability, extreme events and climate-related hazards) are associated with a variety of impacts on human well-being, health, and life-supporting systems. These vary from boosting the proliferation of vectors of diseases (e.g., mosquitos), to mental problems triggered by damage to properties and infrastructure. There is a great variety of literature about the strong links between climate change and health, while there is relatively less literature that specifically examines the health impacts of climate risks and extreme events. This paper is an attempt to address this knowledge gap, by compiling eight examples from a set of industrialised and developing countries, where such interactions are described. The policy implications of these phenomena and the lessons learned from the examples provided are summarised. Some suggestions as to how to avert the potential and real health impacts of climate risks are made, hence assisting efforts to adapt to a problem whose impacts affect millions of people around the world. All the examples studied show some degree of vulnerability to climate risks regardless of their socioeconomic status and need to increase resilience against extreme events.

  7. Your opinion on climate change might not be as common as you think

    NASA Astrophysics Data System (ADS)

    Leviston, Z.; Walker, I.; Morwinski, S.

    2013-04-01

    Political and media debate on the existence and causes of climate change has become increasingly factious in several western countries, often resting on claims and counter-claims about what most citizens really think. There are several well-established phenomena in psychology about how people perceive the prevalence of opinions, including the false consensus effect (a tendency to overestimate how common one's `own' opinion is) and pluralistic ignorance (where most people privately reject an opinion, but assume incorrectly that most others accept it). We investigated these biases in people's opinions about the existence and causes of climate change. In two surveys conducted 12 months apart in Australia (n=5,036 n=5,030), respondents were asked their own opinion about the nature of climate change, and then asked to estimate levels of opinion among the general population. We demonstrate that opinions about climate change are subject to strong false consensus effects, that people grossly overestimate the numbers of people who reject the existence of climate change in the broader community, and that people with high false consensus bias are less likely to change their opinions.

  8. Motivational climate, staff and members' behaviors, and members' psychological well-being at a national fitness franchise.

    PubMed

    Brown, Theresa C; Fry, Mary D

    2014-06-01

    The purpose of this study was to examine the association between members' perceptions of staffs behaviors, motivational climate, their own behaviors, commitment to future exercise, and life satisfaction in a group-fitness setting. The theory-driven hypothesized mediating role of perceptions of the climate was also tested. Members (N = 5,541) of a national group-fitness studio franchise completed a survey regarding their class experiences. The survey included questions that measured participants' perceptions of the motivational climate (caring, task-involving, ego-involving), perceptions of staff's behaviors, their own behaviors, commitment to exercise, and life satisfaction. Structural equation modeling was used to assess both the association between variables and the theoretically driven predictive relationships. The participants perceived the environment as highly caring and task-involving and low ego-involving. They reported high exercise commitment and moderately high life satisfaction and perceived that the staffs and their own behaviors reflected caring, task-involving characteristics. Structural equation modeling demonstrated that those who perceived a higher caring, task-involving climate and lower ego-involving climate were more likely to report more task-involving, caring behaviors among the staff and themselves as well as greater commitment to exercise. In addition, a theory-driven mediational model suggested that staff behaviors may be an antecedent to members' exercise experiences by impacting their perceptions of the climate. The results of this study give direction to specific behaviors in which staff of group-fitness programs might engage to positively influence members' exercise experiences.

  9. Climate Prediction Center - Monitoring & Data: La Niña Seasonal Maps and

    Science.gov Websites

    Statistics Skip Navigation Links www.nws.noaa.gov NOAA logo - Click to go to the NOAA home page National Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News Organization Search Go Search the CPC Go About Us Our Mission Who We Are Contact Us

  10. Science-based Forest Management in an Era of Climate Change

    NASA Astrophysics Data System (ADS)

    Swanston, C.; Janowiak, M.; Brandt, L.; Butler, P.; Handler, S.; Shannon, D.

    2014-12-01

    Recognizing the need to provide climate adaptation information, training, and tools to forest managers, the Forest Service joined with partners in 2009 to launch a comprehensive effort called the Climate Change Response Framework (www.forestadaptation.org). The Framework provides a structured approach to help managers integrate climate considerations into forest management plans and then implement adaptation actions on the ground. A planning tool, the Adaptation Workbook, is used in conjunction with vulnerability assessments and a diverse "menu" of adaptation approaches to generate site-specific adaptation actions that meet explicit management objectives. Additionally, a training course, designed around the Adaptation Workbook, leads management organizations through this process of designing on-the-ground adaptation tactics for their management projects. The Framework is now being actively pursued in 20 states in the Northwoods, Central Hardwoods, Central Appalachians, Mid-Atlantic, and New England. The Framework community includes over 100 science and management groups, dozens of whom have worked together to complete six ecoregional vulnerability assessments covering nearly 135 million acres. More than 75 forest and urban forest adaptation strategies and approaches were synthesized from peer-reviewed and gray literature, expert solicitation, and on-the-ground adaptation projects. These are being linked through the Adaptation Workbook process to on-the-ground adaptation tactics being planned and employed in more than 50 adaptation "demonstrations". This presentation will touch on the scientific and professional basis of the vulnerability assessments, and showcase efforts where adaptation actions are currently being implemented in forests.

  11. Managing U.S. climate risk through mitigation: Insights from the American Climate Prospectus

    NASA Astrophysics Data System (ADS)

    Kopp, R. E., III; Hsiang, S. M.; Houser, T.; Larsen, K.; Rasmussen, D. M., Jr.; Jina, A.; Rising, J.; Delgado, M.; Mohan, S.; Muir-Wood, R.; Wilson, P. S.

    2014-12-01

    demand under all RCPs. Because of the slow response time of sea level to change in emissions, the coastal risk reduction in the current century from mitigation is least clear. References: [1] T. Houser et al. (2014), American Climate Prospectus, www.climateprospectus.org.

  12. National, ready-to-use climate indicators calculation and dissemination

    NASA Astrophysics Data System (ADS)

    Desiato, F.; Fioravanti, G.; Fraschetti, P.; Perconti, W.; Toreti, A.

    2010-09-01

    In Italy, meteorological data necessary and useful for climate studies are collected, processed and archived by a wide range of national and regional institutions. As a result, the density of the stations, the length and frequency of the observations, the quality control procedures and the database structure vary from one dataset to the other. In order to maximize the use of those data for climate knowledge and climate change assessments, a computerized system for the collection, quality control, calculation, regular update and rapid dissemination of climate indicators (denominated SCIA) was developed. Along with the pieces of information provided by complete metadata, climate indicators consist of statistics (mean, extremes, date of occurrence, standard deviation) over ten-days, monthly and yearly time periods of meteorological variables, including temperature, precipitation, humidity, wind, water balance, evapotranspitaton, degree-days, cloud cover, sea level pressure, solar radiation. In addition, normal values over thirty-year reference climatological periods and yearly anomalies are calculated and made available. All climate indicators, as well as their time series at a single location or spatial distribution at a selected time, are available through a dedicated web site (www.scia.sinanet.apat.it). In addition, secondary products like high resolution temperature maps obtained by kriging spatial interpolation, are made available. Over the last three years, about 40000 visitors accessed to the SCIA web site, with an average of 45 visitors per day. Most frequent visitors belong to categories like universities and research institutes; private companies and general public are present as well. Apart from research purposes, climate indicators disseminated through SCIA may be used in several socio-economic sectors like energy consumption, water management, agriculture, tourism and health. With regards to our activity, we base on these indicators for the estimation of

  13. Response of western mountain ecosystems to climatic variability and change: The Western Mountain Initiative

    USGS Publications Warehouse

    Stephenson, Nathan L.; Peterson, Dave; Fagre, Daniel B.; Allen, Craig D.; McKenzie, Donald; Baron, Jill S.; O'Brian, Kelly

    2007-01-01

    Mountain ecosystems within our national parks and other protected areas provide valuable goods and services such as clean water, biodiversity conservation, and recreational opportunities, but their potential responses to expected climatic changes are inadequately understood. The Western Mountain Initiative (WMI) is a collaboration of scientists whose research focuses on understanding and predicting responses of western mountain ecosystems to climatic variability and change. It is a legacy of the Global Change Research Program initiated by the National Park Service (NPS) in 1991 and continued by the U.S. Geological Survey (USGS) to this day as part of the U.S. Climate Change Science Program (http://www.climatescience.gov/). All WMI scientists are active participants in CIRMOUNT, and seek to further its goals.

  14. Insights on WWW-based geoscience teaching: Climbing the first year learning cliff

    NASA Astrophysics Data System (ADS)

    Lamberson, Michelle N.; Johnson, Mark; Bevier, Mary Lou; Russell, J. Kelly

    1997-06-01

    In early 1995, The University of British Columbia Department of Geological Sciences (now Earth and Ocean Sciences) initiated a project that explored the effectiveness of the World Wide Web as a teaching and learning medium. Four decisions made at the onset of the project have guided the department's educational technology plan: (1) over 90% of funding recieved from educational technology grants was committed towards personnel; (2) materials developed are modular in design; (3) a data-base approach was taken to resource development; and (4) a strong commitment to student involvement in courseware development. The project comprised development of a web site for an existing core course: Geology 202, Introduction to Petrology. The web site is a gateway to course information, content, resources, exercises, and several searchable data-bases (images, petrologic definitions, and minerals in thin section). Material was developed on either an IBM or UNIX machine, ported to a UNIX platform, and is accessed using the Netscape browser. The resources consist primarily of HTML files or CGI scripts with associated text, images, sound, digital movies, and animations. Students access the web site from the departmental student computer facility, from home or a computer station in the petrology laboratory. Results of a survey of the Geol 202 students indicate that they found the majority of the resources useful, and the site is being expanded. The Geology 202 project had a "trickle-up" effect throughout the department: prior to this project, there was minimal use of Internet resources in lower-level geology courses. By the end of the 1996-1997 academic year, we anticipate that at least 17 Earth and Ocean Science courses will have a WWW site for one or all of the following uses: (1) presenting basic information; (2) accessing lecture images; (3) providing a jumping-off point for exploring related WWW sites; (4) conducting on-line exercises; and/or (5) providing a communications forum

  15. The CpG island searcher: a new WWW resource.

    PubMed

    Takai, Daiya; Jones, Peter A

    2003-01-01

    Clusters of CpG dinucleotides in GC rich regions of the genome called "CpG islands" frequently occur in the 5' ends of genes. Methylation of CpG islands plays a role in transcriptional silencing in higher organisms in certain situations. We have established a CpG-island-extraction algorithm, which we previously developed [Takai and Jones, 2002], on a web site which has a simple user interface to identify CpG islands from submitted sequences of up to 50kb. The web site determines the locations of CpG islands using parameters (lower limit of %GC, ObsCpG/ExpCpG, length) set by the user, to display the value of parameters on each CpG island, and provides a graphical map of CpG dinucleotide distribution and borders of CpG islands. A command-line version of the CpG islands searcher has also been developed for larger sequences. The CpG Island Searcher was applied to the latest sequence and mapping information of human chromosomes 20, 21 and 22, and a total of 2345 CpG islands were extracted and 534 (23%) of them contained first coding exons and 650 (28%) contained other exons. The CpG Island Searcher is available on the World Wide Web at http://www.cpgislands.com or http://www.uscnorris.com/cpgislands/cpg.cgi.

  16. AmeriFlux US-SCg Southern California Climate Gradient - Grassland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goulden, Mike

    This is the AmeriFlux version of the carbon flux data for the site US-SCg Southern California Climate Gradient - Grassland. Site Description - Half hourly data are available at https://www.ess.uci.edu/~california/. This site is one of six Southern California Climate Gradient flux towers operated along an elevation gradient (sites are US-SCg, US-SCs, US-SCf, US-SCw, US-SCc, US-SCd). This site is a grassland that was historically dominated by exotic annuals and that underwent restoration with a focus on native bunch grasses in the 2010s. The site has historically burned every 10-20 years, with a wildfire in October 2007. The restoration involved several yearsmore » of mowing and herbicide application to suppress exotics followed by dense planting of Nasella bunch grasses.« less

  17. Producing a Climate-Quality Database of Global Upper Ocean Profile Temperatures - The IQuOD (International Quality-controlled Ocean Database) Project.

    NASA Astrophysics Data System (ADS)

    Sprintall, J.; Cowley, R.; Palmer, M. D.; Domingues, C. M.; Suzuki, T.; Ishii, M.; Boyer, T.; Goni, G. J.; Gouretski, V. V.; Macdonald, A. M.; Thresher, A.; Good, S. A.; Diggs, S. C.

    2016-02-01

    Historical ocean temperature profile observations provide a critical element for a host of ocean and climate research activities. These include providing initial conditions for seasonal-to-decadal prediction systems, evaluating past variations in sea level and Earth's energy imbalance, ocean state estimation for studying variability and change, and climate model evaluation and development. The International Quality controlled Ocean Database (IQuOD) initiative represents a community effort to create the most globally complete temperature profile dataset, with (intelligent) metadata and assigned uncertainties. With an internationally coordinated effort organized by oceanographers, with data and ocean instrumentation expertise, and in close consultation with end users (e.g., climate modelers), the IQuOD initiative will assess and maximize the potential of an irreplaceable collection of ocean temperature observations (tens of millions of profiles collected at a cost of tens of billions of dollars, since 1772) to fulfil the demand for a climate-quality global database that can be used with greater confidence in a vast range of climate change related research and services of societal benefit. Progress towards version 1 of the IQuOD database, ongoing and future work will be presented. More information on IQuOD is available at www.iquod.org.

  18. Perceptions of the motivational climate, need satisfaction, and indices of well- and ill-being among hip hop dancers.

    PubMed

    Quested, Eleanor; Duda, Joan L

    2009-01-01

    Grounded in the self-determination theoretical framework (SDT) formulated by Deci and Ryan, and specifically the basic needs mini-theory (BNT), this study examined the relationship between perceptions of the motivational climate manifested in hip hop environments, satisfaction of the three basic needs, and indicators of well- and ill-being among hip hop dancers. Fifty-nine hip hop dancers (mean age: 20.29 years) completed a questionnaire assessing the variables of interest in the study. Perceptions of a task-involving climate were positively associated with satisfaction of the needs for autonomy, competence, and relatedness. Perceptions of an ego-involving climate negatively predicted relatedness. Satisfaction of the need for competence was positively associated with positive affect, and negatively linked to negative affect. Competence need satisfaction significantly mediated the relationship between a perceived task-involving climate and positive and negative affective states. In sum, the findings provided partial support for the facets of SDT and BNT. The results also indicated that promoting the task-involving features of dance learning environments may be beneficial to dancers' well-being.

  19. Influence of climate change on the flowering of temperate fruit trees

    NASA Astrophysics Data System (ADS)

    Perez-Lopez, D.; Ruiz-Ramos, M.; Sánchez-Sánchez, E.; Centeno, A.; Prieto-Egido, I.; Lopez-de-la-Franca, N.

    2012-04-01

    It is well known that winter chilling is necessary for the flowering of temperate trees. The chilling requirement is a criterion for choosing a species or variety at a given location. Also chemistry products can be used for reducing the chilling-hours needs but make our production more expensive. This study first analysed the observed values of chilling hours for some representative agricultural locations in Spain for the last three decades and their projected changes under climate change scenarios. Usually the chilling is measured and calculated as chilling-hours, and different methods have been used to calculate them (e.g. Richarson et al., 1974 among others) according to the species considered. For our objective North Carolina method (Shaltout and Unrath, 1983) was applied for apples, Utah method (Richardson et al. 1974) for peach and grapevine and the approach used by De Melo-Abreu et al. (2004) for olive trees. The influence of climate change in temperate trees was studied by calculating projections of chilling-hours with climate data from Regional Climate Models (RCMs) at high resolution (25 km) from the European Project ENSEMBLES (http://www.ensembles-eu.org/). These projections will allow for analysing the modelled variations of chill-hours between 2nd half of 20C and 1st half of 21C at the study locations.

  20. C-LAMP Subproject Description:Climate Forcing by the Terrestrial Biosphere During the Second Half of the 20th Century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Covey, Curt; Hoffman, Forrest

    2008-10-02

    This project will quantify selected components of climate forcing due to changes in the terrestrial biosphere over the period 1948-2004, as simulated by the climate / carboncycle models participating in C-LAMP (the Carbon-Land Model Intercomparison Project; see http://www.climatemodeling.org/c-lamp). Unlike other C-LAMP projects that attempt to close the carbon budget, this project will focus on the contributions of individual biomes in terms of the resulting climate forcing. Bala et al. (2007) used a similar (though more comprehensive) model-based technique to assess and compare different components of biospheric climate forcing, but their focus was on potential future deforestation rather than the historicalmore » period.« less

  1. Bringing the Science of Climate Change to Elementary Students with new Classroom Activities from Elementary GLOBE

    NASA Astrophysics Data System (ADS)

    Gardiner, L. S.; Hatheway, B.; Taylor, J.; Chambers, L. H.; Stanitski, D.

    2016-12-01

    To address the dearth of climate education resources at the elementary level, we have developed a new module of Elementary GLOBE to showcase the science of climate change for young learners. Elementary GLOBE builds K-4 student understanding of the science concepts and the practices of science research. At the heart of each Elementary GLOBE module is a fiction storybook, describing how three kids investigate a science question. Accompanying classroom activities allow students to explore the science concepts in the book in more depth and in a context appropriate for young learners. The book for the Elementary GLOBE climate module, "What in the World Is Happening to Our Climate?," is the account of an adventure to explore climate change, how it is affecting melting glacial ice and sea level rise, and how climate change is a problem that can be solved. Three hands-on activities, which will be presented at this session, allow students to explore the topics in greater depth including differences between weather and climate, how sea level rise affects coastal areas, and how they can shrink their carbon footprint to help address recent climate change. Each activity includes instructions for teachers, background information, and activity sheets for students, and is aligned to the Next Generation Science Standards and Common Core Math and Language Arts Standards. The storybook and activities were field tested in classrooms and reviewed by climate and Earth system scientists as well as elementary education and climate education specialists and educators to ensure scientific accuracy and clear explanations, and that the resources are age appropriate and reflect the needs of the climate education community. Other Elementary GLOBE modules include the science of seasonal change, water, soil, clouds, aerosols, and Earth as a system. All Elementary GLOBE educational resources are freely available online (www.globe.gov/elementaryglobe).

  2. Visualization of uncertainties and forecast skill in user-tailored seasonal climate predictions for agriculture

    NASA Astrophysics Data System (ADS)

    Sedlmeier, Katrin; Gubler, Stefanie; Spierig, Christoph; Flubacher, Moritz; Maurer, Felix; Quevedo, Karim; Escajadillo, Yury; Avalos, Griña; Liniger, Mark A.; Schwierz, Cornelia

    2017-04-01

    Seasonal climate forecast products potentially have a high value for users of different sectors. During the first phase (2012-2015) of the project CLIMANDES (a pilot project of the Global Framework for Climate Services led by WMO [http://www.wmo.int/gfcs/climandes]), a demand study conducted with Peruvian farmers indicated a large interest in seasonal climate information for agriculture. The study further showed that the required information should by precise, timely, and understandable. In addition to the actual forecast, two complex measures are essential to understand seasonal climate predictions and their limitations correctly: forecast uncertainty and forecast skill. The former can be sampled by using an ensemble of climate simulations, the latter derived by comparing forecasts of past time periods to observations. Including uncertainty and skill information in an understandable way for end-users (who are often not technically educated) poses a great challenge. However, neglecting this information would lead to a false sense of determinism which could prove fatal to the credibility of climate information. Within the second phase (2016-2018) of the project CLIMANDES, one goal is to develop a prototype of a user-tailored seasonal forecast for the agricultural sector in Peru. In this local context, the basic education level of the rural farming community presents a major challenge for the communication of seasonal climate predictions. This contribution proposes different graphical presentations of climate forecasts along with possible approaches to visualize and communicate the associated skill and uncertainties, considering end users with varying levels of technical knowledge.

  3. Climate Products and Services to Meet the Challenges of Extreme Events

    NASA Astrophysics Data System (ADS)

    McCalla, M. R.

    2008-12-01

    existing federal climate products and services and the needed federal climate products and services which will address these weather thresholds. Just as important, as we work to meet the needs, a robust education and outreach program is essential to take full advantage of new products, services and capabilities. To ascertain what climate products and services currently exist to address weather thresholds relative to surface transportation, what climate products and services are needed to address these weather thresholds, and how to bridge the gap between what is available and what is needed, the OFCM surveyed the federal meteorological community. Consistent with the extreme events highlighted in the IPCC report, the OFCM survey categorized the weather thresholds associated with surface transportation into the following extreme event areas: (a) excessive heat, (b) winter precipitation, (c) summer precipitation, (d) high winds, and (e) flooding and coastal inundation. The survey results, the gap analysis, as well as OFCM's planned, follow-on activities with additional categories (i.e., in addition to surface transportation) and weather thresholds will be shared with meeting participants. 1 The OFCM is an interdepartmental office established in response to Public Law 87-843 with the mission to ensure the effective use of federal meteorological resources by leading the systematic coordination of operational weather and climate requirements, products, services, and supporting research among the federal agencies. 2 http://www.climatescience.gov/Library/sap/sap4-7/final-report/sap4-7-final-ch1.pdf 3 http://www.gcrio.org/ipcc/ar4/wg1/faq/ar4wg1faq-3-3.pdf

  4. Can Climate Information be relevant to decision making for Agriculture on the 1-10 year timescale? Case studies from southern Africa

    NASA Astrophysics Data System (ADS)

    Fujisawa, Mariko

    2016-04-01

    Climate forecasts have been developed to assist decision making in sectors averse to, and affected by, climate risks, and agriculture is one of those. In agriculture and food security, climate information is now used on a range of timescales, from days (weather), months (seasonal outlooks) to decades (climate change scenarios). Former researchers have shown that when seasonal climate forecast information was provided to farmers prior to decision making, farmers adapted by changing their choice of planting seeds and timing or area planted. However, it is not always clear that the end-users' needs for climate information are met and there might be a large gap between information supplied and needed. It has been pointed out that even when forecasts were available, they were often not utilized by farmers and extension services because of lack of trust in the forecast or the forecasts did not reach the targeted farmers. Many studies have focused on the use of either seasonal forecasts or longer term climate change prediction, but little research has been done on the medium term, that is, 1 to 10 year future climate information. The agriculture and food system sector is one potential user of medium term information, as land use policy and cropping systems selection may fall into this time scale and may affect farmers' decision making process. Assuming that reliable information is provided and it is utilized by farmers for decision making, it might contribute to resilient farming and indeed to longer term food security. To this end, we try to determine the effect of medium term climate information on farmers' strategic decision making process. We explored the end-users' needs for climate information and especially the possible role of medium term information in agricultural system, by conducting interview surveys with farmers and agricultural experts. In this study, the cases of apple production in South Africa, maize production in Malawi and rice production in Tanzania

  5. HIST-EU - a dataset of European relevance, a database to enable long-term climate variability studies on regional scale

    NASA Astrophysics Data System (ADS)

    Auer, I.; Böhm, R.; Ganekind, M.; Schöner, W.; Nemec, J.; Chimani, B.

    2010-09-01

    Instrumental time series of different climate elements are an important requisite for climate and climate impact studies. Long-term time series can improve our understanding of climate change during the instrumental period. During recent decades a number of national and international initiatives in European countries have significantly increased the number of existing long-term instrumental series; however a publically available data base covering Europe has not been created so far. For the "Greater Alpine Region" (4-19 deg E, 43-49 deg N, 0-3500m asl) the HISTALP data base has been established consisting of monthly homogenised temperature, pressure, precipitation, sunshine and cloudiness records. The data set may be described as follows: Long-term (fully exploiting the potential of systematically measured data). dense (network density adequate in respect to the spatial coherence of the given climate element) quality improved (outliers removed, gaps filled) homogenised (earlier sections adjusted to the recent state of the measuring site) multiple (covering more than one climate element) user friendly (well described and kept in different modes for different applications) HIST-EU is inteded to be a data set of European relevance allowing studying climate variability on regional scale. It focuses on data collection, data recovery and rescue, and homogenizing. HIST-EU will use the infrastructure of HISTALP (www.zamg.ac.at/histalp) and will allow free or restricted data access due to the regulations of data providers. HIST-EU will be carried out under the umbrella of ECSN/EUMETNET.

  6. Use of the WWW as a Collaborative Tool in a Large HEP Collaboration

    NASA Astrophysics Data System (ADS)

    Bower, G.; Dubois, R.; Johnson, A. S.; Moss, L.; Perl, J.; Langston, M.; Weiss, E.

    As the phenomenal growth of the WWW continues it is easy to view it purely as a tool for PR and advertising, and to forget its roots as a collaborative tool for HEP research. The SLD collaboration has made extensive use of WWW in this latter role, using it to allow collaborators to sign up for shifts, to monitor physics data-taking in near real time, and as a tool to educate and inform collaborators. By their nature such tools are accessible to all collaborators wherever they are located. In this talk we will describe our current system and comment on its effectiveness, and discuss possible enhancements based on forthcoming more powerful web browsers.

  7. Can Treeline Shift in Tropical Africa be Used As Proxy to Study Climate Change?

    NASA Astrophysics Data System (ADS)

    Jacob, M.; Frankl, A.; De Ridder, M.; Guyassa, E.; Beeckman, H.; Nyssen, J.

    2014-12-01

    The important ecosystem services of the vulnerable high altitude forests of the tropical African highlands are under increasing environmental and human pressure. The afro-alpine treeline forms an apparent and temperature-responsive vegetation boundary and is therefore potentially valuable as a proxy of climate change in the tropics. However, a review of the current literature about treeline dynamics in tropical Africa indicates that climate change did not cause rising treelines, due to high human pressure and growing human population densities. On average the treeline is depressed below its climatic limit by 400 ± 300 meter, but regional differences are high and there are still many uncertainties. A multidisciplinary study of treeline dynamics is conducted in the north Ethiopian highlands. The Erica arborea L. treeline is studied over a century, using satellite imagery, aerial photographs, repeat photography and dendroclimatology. Repeat photography is proven a unique tool for the identification of treeline dynamics on the long-term. Results in the Simen Mts. indicate a treeline rise of more than 100 meters since the early 20th century. In contrast, historical satellite and aerial imagery indicate that there has been strong deforestation since the last 30 years and a significant (p<0.05) but small rise of the treeline elevation of 11 ± 4 vertical meters in Lib Amba Mt. Dendroclimatological results indicate a weak but significant (p<0.05) correlation between tree ring width and interannual precipitation patterns. However, since treelines in the African tropical mountains are strongly disturbed by human and livestock pressure, they cannot directly be used as a proxy for climate change.

  8. Towards an integrated economic assessment of climate change impacts on agriculture

    NASA Astrophysics Data System (ADS)

    Lotze-Campen, H.; Piontek, F.; Stevanovic, M.; Popp, A.; Bauer, N.; Dietrich, J.; Mueller, C.; Schmitz, C.

    2012-12-01

    For a detailed understanding of the effects of climate change on global agricultural production systems, it is essential to consider the variability of climate change patterns as projected by General Circulation Models (GCMs), their bio-physical impact on crops and the response in land-use patterns and markets. So far, approaches that account for the interaction of bio-physical and economic impacts are largely lacking. We present an integrative analysis by using a soft-coupled system of a biophysical impact model (LPJmL, Bondeau et al. 2007), an economically driven land use model (MAgPIE, Lotze-Campen et al. 2008) and an integrated assessment model (ReMIND-R, Leimbach et al. 2010) to study climate change impacts and economic damages in the agricultural sector. First, the dynamic global vegetation and hydrology model LPJmL is used to derive climate change impacts on crop yields for wheat, maize, soy, rice and other major crops. A range of different climate projections is used, taken from the dataset provided by the Intersectoral Impact Model Intercomparison Project (ISI-MIP, www.isi-mip.org), which bias-corrected the latest CMIP5 climate data (Taylor et al. 2011). Crop yield impacts cover scenarios with and without CO2 fertilization as well as different Representative Concentration Pathways (RCPs) and different GCMs. With increasing temperature towards the end of the century yields generally decrease in tropical and subtropical regions, while they tend to benefit in higher latitudes. LPJmL results have been compared to other global crop models in the Agricultural Model Intercomparison and Improvement Project (AgMIP, www.agmip.org). Second, changes in crop yields are analysed with the spatially explicit agro-economic model MAgPIE, which covers their interaction with economic development and changes in food demand. Changes in prices as well as welfare changes of producer and consumer surplus are taken as economic indicators. Due to climate-change related reductions in

  9. Factors predicting publication of spinal cord injury trials registered on www.ClinicalTrials. gov.

    PubMed

    DePasse, J Mason; Park, Sara; Eltorai, Adam E M; Daniels, Alan H

    2018-02-06

    Treatment options for spinal cord injuries are currently limited, but multiple clinical trials are underway for a variety of interventions, drugs, and devices. The Food and Drug Administration website www.ClinicalTrials.gov catalogues these trials and includes information on the status of the trial, date of initiation and completion, source of funding, and region. This investigation assesses the factors associated with publication and the publication rate of spinal cord injury trials. Retrospective analysis of publically available data on www.ClinicalTrials.gov. The www.ClinicalTrials.gov was queried for all trials on patients with spinal cord injury, and these trials were assessed for status, type of intervention, source of funding, and region. Multiple literature searches were performed on all completed trials to determine publication status. There were 626 studies identified concerning the treatment of patients with spinal cord injury, of which 250 (39.9%) were completed. Of these, only 119 (47.6%) were published. There was no significant difference in the rate of publication between regions (p> 0.16) or by study type (p> 0.29). However, trials that were funded by the NIH were more likely to be published than trials funded by industry (p= 0.01). The current publication rate of spinal cord injury trials is only 47.6%, though this rate is similar to the publication rate for trials in other fields. NIH-funded trials are significantly more likely to become published than industry-funded trials, which could indicate that some trials remain unpublished due to undesirable results. However, it is also likely that many trials on spinal cord injury yield negative results, as treatments are often ineffective.

  10. Monitoring Users' Satisfactions of the NOAA NWS Climate Products and Services

    NASA Astrophysics Data System (ADS)

    Horsfall, F. M.; Timofeyeva, M. M.; Dixon, S.; Meyers, J. C.

    2011-12-01

    The NOAA's National Weather Service (NWS) Climate Services Division (CSD) ensures the relevance of NWS climate products and services. There are several ongoing efforts to identify the level of user satisfaction. One of these efforts includes periodical surveys conducted by Claes Fornell International (CFI) Group using the American Customer Satisfaction Index (ACSI), which is "the only uniform, national, cross-industry measure of satisfaction with the quality of goods and services available in the United States" (http://www.cfigroup.com/acsi/overview.asp). The CFI Group conducted NWS Climate Products and Services surveys in 2004 and 2009. In 2010, a prominent routine was established for a periodical assessment of the customer satisfaction. From 2010 onward, yearly surveys will cover major climate services products and services. An expanded suite of climate products will be surveyed every other year. Each survey evaluated customer satisfaction with a range of NWS climate services, data, and products, including Climate Prediction Center (CPC) outlooks, drought monitoring, and ENSO monitoring and forecasts, as well as NWS local climate data and forecast products and services. The survey results provide insight into the NWS climate customer base and their requirements for climate services. They also evaluate whether we are meeting the needs of customers and the ease of their understanding for routine climate services, forecasts, and outlooks. In addition, the evaluation of specific topics, such as NWS forecast product category names, probabilistic nature of climate products, interpretation issues, etc., were addressed to assess how our users interpret prediction terminology. This paper provides an analysis of the following products: hazards, extended-range, long-lead and drought outlooks, El Nino Southern Oscillation monitoring and predictions as well as local climate data products. Two key issues make comparing the different surveys challenging, including the

  11. The Effectiveness of a Geospatial Technologies-Integrated Curriculum to Promote Climate Literacy

    NASA Astrophysics Data System (ADS)

    Anastasio, D. J.; Bodzin, A. M.; Peffer, T.; Sahagian, D. L.; Cirucci, L.

    2011-12-01

    This study examined the effectiveness of a geospatial technologies - integrated climate change curriculum (http://www.ei.lehigh.edu/eli/cc/) to promote climate literacy in an urban school district. Five 8th grade Earth and Space Science classes in an urban middle school (Bethlehem, Pennsylvania) consisting of three different ability level tracks participated in the study. Data gathering methods included pre/posttest assessments, daily classroom observations, daily teacher meetings, and examination of student produced artifacts. Data was gathered using a climate change literacy assessment instrument designed to measure students' climate change content knowledge. The items included distractors that address misunderstandings and knowledge deficits about climate change from the existing literature. Paired-sample t-test analyses were conducted to compare the pre- and post-test assessment results. The results of these analyses were used to compare overall gains as well as ability level track groups. Overall results regarding the use of the climate change curriculum showed significant improvement in urban middle school students' understanding of climate change concepts. Effect sizes were large (ES>0.8) and significant (p<0.001) for the entire assessment and for each ability level subgroup. Findings from classroom observations, assessments embedded in the curriculum, and the examination of all student artifacts revealed that the use of geospatial technologies enable middle school students to improve their knowledge of climate change and improve their spatial thinking and reasoning skills.

  12. The National Climate Assessment: A Treasure Trove for Education, Communications and Outreach

    NASA Astrophysics Data System (ADS)

    McCaffrey, M.; Berbeco, M.; Connolly, R.; Niepold, F., III; Poppleton, K. L. I.; Cloyd, E.; Ledley, T. S.

    2014-12-01

    Required by Congress under the Global Change Act of 1990 to inform the nation on the findings of current climate research, the Third U.S. National Climate Assessment (NCA), released in May 2014, is a rich resource for climate change education, communications and outreach (ECO). Using a website design with mobile applications in mind, NCA takes advantage of mobile learning technology which is revolutionizing how, when and where learning occurs. In an effort to maximize the "teachable moments" inherent in the assessment, a community of experts from the National Center for Science Education and the CLEAN Network, working under the auspices of the National Climate Assessment Network (NCAnet) Education Affinity Group, have developed a series of NCA Learning Pathways that match key NCA messages and resources with reviewed educational materials and trusted online information sources, thereby adding pedagogical depth to the assessment. The NCA Learning Pathways, which focus on the regional chapters of the report, are designed make climate change science more local, human, relevant and, if properly framed by educators and communicators, hopeful for learners. This paper touches on the challenges and opportunities of infusing climate education, communications and outreach into curriculum and society, and details the development and content of NCA Learning Pathways, which are available online through NOAA's Climate.gov website: http://www.climate.gov/teaching

  13. The Regional Climate Model Evaluation System: A Systematic Evaluation Of CORDEX Simulations Using Obs4MIPs

    NASA Astrophysics Data System (ADS)

    Goodman, A.; Lee, H.; Waliser, D. E.; Guttowski, W.

    2017-12-01

    Observation-based evaluations of global climate models (GCMs) have been a key element for identifying systematic model biases that can be targeted for model improvements and for establishing uncertainty associated with projections of global climate change. However, GCMs are limited in their ability to represent physical phenomena which occur on smaller, regional scales, including many types of extreme weather events. In order to help facilitate projections in changes of such phenomena, simulations from regional climate models (RCMs) for 14 different domains around the world are being provided by the Coordinated Regional Climate Downscaling Experiment (CORDEX; www.cordex.org). However, although CORDEX specifies standard simulation and archiving protocols, these simulations are conducted independently by individual research and modeling groups representing each of these domains often with different output requirements and data archiving and exchange capabilities. Thus, with respect to similar efforts using GCMs (e.g., the Coupled Model Intercomparison Project, CMIP), it is more difficult to achieve a standardized, systematic evaluation of the RCMs for each domain and across all the CORDEX domains. Using the Regional Climate Model Evaluation System (RCMES; rcmes.jpl.nasa.gov) developed at JPL, we are developing easy to use templates for performing systematic evaluations of CORDEX simulations. Results from the application of a number of evaluation metrics (e.g., biases, centered RMS, and pattern correlations) will be shown for a variety of physical quantities and CORDEX domains. These evaluations are performed using products from obs4MIPs, an activity initiated by DOE and NASA, and now shepherded by the World Climate Research Program's Data Advisory Council.

  14. Online and classroom tools for Climate Change Education

    NASA Astrophysics Data System (ADS)

    Samenow, J. P.; Scott, K.

    2004-12-01

    EPA's Office of Atmospheric Programs has developed unique tools for educating students about the science of global warming and on actions that help address the issue. These tools have been highly successful and used in hundreds of classrooms across the country. EPA's Global Warming Kids' Site features interactive web-based animations for educating children, grades 4-8, about climate change. The animations illustrate how human activities likely influence the climate system through processes such as the greenhouse effect and carbon and water cycles. The pages also contain interactive quizzes. See: http://www.epa.gov/globalwarming/kids/animations.html For advanced high school and college students, EPA is nearing completion on the development of interactive visualizations of the emissions and climate scenarios featured in the Intergovernmental Panel on Climate Change's Third Assessment Report. These visualizations allow students to choose a scenario and see how emissions, the climate and the earth's surface change over time. The Global Warming Wheelcard Classroom Activity Kit is designed to help teachers of middle school students introduce the concept of human induced global warming in the context of how rates of energy usage can influence the increase or eventual slowing of climate change. The Climate Change, Wildlife, and Wildlands Toolkit for Teachers and Interpreters was produced in a partnership among three agencies - EPA, US Fish and Wildlife Service and the National Park Service (NPS). Both classroom teachers and outdoor interpreters find it useful in conveying information about climate change science and impacts to their students and visitors. The development of the toolkit led to a larger program between EPA and NPS that assists parks in inventorying their emissions, creating action plans, and talking to the public about what they are doing - a "lead by example" type program that the two agencies hope to replicate in other venues in the coming year.

  15. Protective factors for mental health and well-being in a changing climate: Perspectives from Inuit youth in Nunatsiavut, Labrador.

    PubMed

    Petrasek MacDonald, Joanna; Cunsolo Willox, Ashlee; Ford, James D; Shiwak, Inez; Wood, Michele

    2015-09-01

    The Canadian Arctic is experiencing rapid changes in climatic conditions, with implications for Inuit communities widely documented. Youth have been identified as an at-risk population, with likely impacts on mental health and well-being. This study identifies and characterizes youth-specific protective factors that enhance well-being in light of a rapidly changing climate, and examines how climatic and environmental change challenges these. In-depth conversational interviews were conducted with youth aged 15-25 from the five communities of the Nunatsiavut region of Labrador, Canada: Nain, Hopedale, Postville, Makkovik, and Rigolet. Five key protective factors were identified as enhancing their mental health and well-being: being on the land; connecting to Inuit culture; strong communities; relationships with family and friends; and staying busy. Changing sea ice and weather conditions were widely reported to be compromising these protective factors by reducing access to the land, and increasing the danger of land-based activities. This study contributes to existing work on Northern climate change adaptation by identifying factors that enhance youth resilience and, if incorporated into adaptation strategies, may contribute to creating successful and effective adaptation responses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Climate Observing Systems: Where are we and where do we need to be in the future

    NASA Astrophysics Data System (ADS)

    Baker, B.; Diamond, H. J.

    2017-12-01

    Climate research and monitoring requires an observational strategy that blends long-term, carefully calibrated measurements as well as short-term, focused process studies. The operation and implementation of operational climate observing networks and the provision of related climate services, both have a significant role to play in assisting the development of national climate adaptation policies and in facilitating national economic development. Climate observing systems will require a strong research element for a long time to come. This requires improved observations of the state variables and the ability to set them in a coherent physical (as well as a chemical and biological) framework with models. Climate research and monitoring requires an integrated strategy of land/ocean/atmosphere observations, including both in situ and remote sensing platforms, and modeling and analysis. It is clear that we still need more research and analysis on climate processes, sampling strategies, and processing algorithms.

  17. An ecological approach to promoting population mental health and well-being--a response to the challenge of climate change.

    PubMed

    Nurse, Jo; Basher, Damian; Bone, Angie; Bird, William

    2010-01-01

    Climate change can be viewed as human-induced change to climate and depletion of natural systems. It potentially the biggest global health threat of the 21st century. It is predicted to have wide-ranging impacts upon human mental health and well-being, through changes and challenges to people's environment, socioeconomic structures and physical security. Even the most conservative estimates of the health impacts are extremely alarming. Increasingly, the causes of poor human health and environmental damage are related. This implies that there are common solutions. For example, there are co-benefits to human health and biodiversity from mitigating and adapting to climate change (e.g. promoting active transport and reducing car use reduces CO2 emissions, benefits our environment and reduces morbidity and mortality associated with a sedentary lifestyle). This article outlines how climate change impacts upon mental health and well-being. It introduces ecological concepts, applies these to public health and outlines their implications in transforming the way that we prioritize and deliver public health in order to promote both environmental and human health. Evidence, from psychology and neuroscience, suggests that the perception of being disconnected from our inner selves, from each other and from our environment has contributed to poor mental and physical health. We argue that we must transform the way we understand mental health and well-being and integrate it into action against climate change. We describe a Public Health Framework for Developing Well-Being, based on the principles of ecological public health.

  18. Enhancing Communication of Climate Impacts Assessments: Examples of Local Stories, Animations and Video.

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, M. F.; Grigholm, B. O.

    2014-12-01

    Comprehensive climate impacts assessments are important vehicles for conveying salient information to the public and policy makers. However, over the last few decades communication of this important information has been hampered for a number of reasons. Firstly, we have a rapidly changing social media landscape, where there are fewer opportunities for in-depth treatment of issues. To compete in this arena, climate information needs to be packaged in sound bites, and much of the nuance and complexity may be lost. Secondly, scientific literacy among the general U.S. population is not particularly high, which creates a barrier to understanding and limits the audiences that can be reached. Thirdly, climate science has been undermined by misinformation over many years often funded by fossil fuel interests. While this latter obstacle is clearly diminishing - largely in the face of evidence from the undeniable climate impacts that are already being seen by communities - there has been much confusion generated to date. Despite the fact that 97% of active climate scientists agree that the planet is warming as a result of human greenhouse gas emission, only 42% of the U.S. population agrees (Pew Research, 2013). In the face of these challenges, much of the work that the Union of Concerned Scientists does to translate climate impacts assessments has shifted to visuals, animations, and videos that people can relate to and connect with more readily. In this session we will share some of the general design features, discuss target audiences, and outline production limitations of several local stories involving videos and animations, as well as present some recent infographics. One example of this work are case studies that focus on sea level rise and involve a local personality who can speak to climate impacts at the community level. We understand the power of visual images and stories in creating messages that stick, and we use this in designing animations that explain the

  19. Information transfer and synchronization among the scales of climate variability: clues for understanding anomalies and extreme events?

    NASA Astrophysics Data System (ADS)

    Palus, Milan

    2017-04-01

    also influences the phase of the AC and QB modes. These examples provide an inspiration for a discussion how novel data analysis methods, based on topics from nonlinear dynamical systems, their synchronization, (Granger) causality and information transfer, in combination with dynamical and statistical models of different complexity, can help in understanding and prediction of climate variability on different scales and in estimating probability of occurrence of extreme climate events. [1] M. Palus, V. Komarek, Z. Hrncir, K. Sterbova, Phys. Rev. E, 63(4), 046211 (2001) http://www.cs.cas.cz/mp/epr/sir1-a.html [2] J. Hlinka, N. Jajcay, D. Hartman, M. Palus, Smooth Information Flow in Temperature Climate Network Reflects Mass Transport, submitted to Chaos. http://www.cs.cas.cz/mp/epr/vetry-a.html [3] M. Palus, Phys. Rev. Lett. 112 078702 (2014) http://www.cs.cas.cz/mp/epr/xf1-a.html [4] N. Jajcay, J. Hlinka, S. Kravtsov, A. A. Tsonis, M. Palus, Geophys. Res. Lett. 43(2), 902-909 (2016) http://www.cs.cas.cz/mp/epr/xfgrl1-a.html

  20. PERSIANN-CDR Daily Precipitation Dataset for Hydrologic Applications and Climate Studies.

    NASA Astrophysics Data System (ADS)

    Sorooshian, S.; Hsu, K. L.; Ashouri, H.; Braithwaite, D.; Nguyen, P.; Thorstensen, A. R.

    2015-12-01

    Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network - Climate Data Record (PERSIANN-CDR) is a newly developed and released dataset which covers more than 3 decades (01/01/1983 - 03/31/2015 to date) of daily precipitation estimations at 0.25° resolution for 60°S-60°N latitude band. PERSIANN-CDR is processed using the archive of the Gridded Satellite IRWIN CDR (GridSat-B1) from the International Satellite Cloud Climatology Project (ISCCP), and the Global Precipitation Climatology Project (GPCP) 2.5° monthly product for bias correction. The dataset has been released and made available for public access through NOAA's National Centers for Environmental Information (NCEI) (http://www1.ncdc.noaa.gov/pub/data/sds/cdr/CDRs/PERSIANN/Overview.pdf). PERSIANN-CDR has already shown its usefulness for a wide range of applications, including climate variability and change monitoring, hydrologic applications, and water resources system planning and management. This precipitation CDR data has also been used in studying the behavior of historical extreme precipitation events. Demonstration of PERSIANN-CDR data in detecting trends and variability of precipitation over the past 30 years, the potential usefulness of the dataset for evaluating climate model performance relevant to precipitation in retrospective mode, will be presented.

  1. Making Dynamic Digital Maps Cross-Platform and WWW Capable

    NASA Astrophysics Data System (ADS)

    Condit, C. D.

    2001-05-01

    High-quality color geologic maps are an invaluable information resource for educators, students and researchers. However, maps with large datasets that include images, or various types of movies, in addition to site locations where analytical data has been collected, are difficult to publish in a format that facilitates their easy access, distribution and use. The development of capable desktop computers and object oriented graphical programming environments has facilitated publication of such data sets in an encapsulated form. The original Dynamic Digital Map (DDM) programs, developed using the Macintosh based SuperCard programming environment, exemplified this approach, in which all data are included in a single package designed so that display and access to the data did not depend on proprietary programs. These DDMs were aimed for ease of use, and allowed data to be displayed by several methods, including point-and-click at icons pin-pointing sample (or image) locations on maps, and from clicklists of sample or site numbers. Each of these DDMs included an overview and automated tour explaining the content organization and program use. This SuperCard development culminated in a "DDM Template", which is a SuperCard shell into which SuperCard users could insert their own content and thus create their own DDMs, following instructions in an accompanying "DDM Cookbook" (URL http://www.geo.umass.edu/faculty/condit/condit2.html). These original SuperCard-based DDMs suffered two critical limitations: a single user platform (Macintosh) and, although they can be downloaded from the web, their use lacked an integration into the WWW. Over the last eight months I have been porting the DDM technology to MetaCard, which is aggressively cross-platform (11 UNIX dialects, WIN32 and Macintosh). The new MetaCard DDM is redesigned to make the maps and images accessible either from CD or the web, using the "LoadNGo" concept. LoadNGo allows the user to download the stand-alone DDM

  2. Web Based Data Access to the World Data Center for Climate

    NASA Astrophysics Data System (ADS)

    Toussaint, F.; Lautenschlager, M.

    2006-12-01

    The World Data Center for Climate (WDC-Climate, www.wdc-climate.de) is hosted by the Model &Data Group (M&D) of the Max Planck Institute for Meteorology. The M&D department is financed by the German government and uses the computers and mass storage facilities of the German Climate Computing Centre (Deutsches Klimarechenzentrum, DKRZ). The WDC-Climate provides web access to 200 Terabytes of climate data; the total mass storage archive contains nearly 4 Petabytes. Although the majority of the datasets concern model output data, some satellite and observational data are accessible as well. The underlying relational database is distributed on five servers. The CERA relational data model is used to integrate catalogue data and mass data. The flexibility of the model allows to store and access very different types of data and metadata. The CERA metadata catalogue provides easy access to the content of the CERA database as well as to other data in the web. Visit ceramodel.wdc-climate.de for additional information on the CERA data model. The majority of the users access data via the CERA metadata catalogue, which is open without registration. However, prior to retrieving data user are required to check in and apply for a userid and password. The CERA metadata catalogue is servlet based. So it is accessible worldwide through any web browser at cera.wdc-climate.de. In addition to data and metadata access by the web catalogue, WDC-Climate offers a number of other forms of web based data access. All metadata are available via http request as xml files in various metadata formats (ISO, DC, etc., see wini.wdc-climate.de) which allows for easy data interchange with other catalogues. Model data can be retrieved in GRIB, ASCII, NetCDF, and binary (IEEE) format. WDC-Climate serves as data centre for various projects. Since xml files are accessible by http, the integration of data into applications of different projects is very easy. Projects supported by WDC-Climate are e.g. CEOP

  3. [Preparation of the database and the Internet (WWW) homepage for regulations on chemicals in Japan].

    PubMed

    Yamamoto, M; Morita, M; Kaminuma, T

    1999-01-01

    We prepared a database on chemical regulations in Japan. The regulations consist of "The Law concerning the Examination and Regulation of Manufacture, etc., of Chemical Substances", "Poisonous and Deleterious Substances", Control Law", "Waterworks Law", "Law for the Control of Household Products containing Harmful Substances", and Pesticide Residues in Food Sanitation Law". We also set up a World Wide Web (WWW) homepage containing an explanation of the law as well as chemical names, CAS registry numbers, and standards. The WWW pages contain lists of chemicals and the retrieval page for the database.

  4. Climate change in the Pacific - is it real or not?

    NASA Astrophysics Data System (ADS)

    Kuleshov, Yuriy

    2013-04-01

    evaluate information transmitted via the mass media. This is particularly important when educators present to students cutting edge science knowledge on climate change. Climate change skeptics through mass media attack climate scientists and dismiss their findings about magnitude of climate change. A novel approach implemented in our training workshops and teaching courses gives students practical hands on experience in examining climate data using the developed web-based information tools. Using the tools, students can examine climate of the Pacific Island Countries, derive trends in climate variables such as temperature and rainfall and make their own conclusions. An open forum "Is climate change real or not?" has also been included as an integral part of these workshops and teaching, giving an opportunity for students to present their findings. They have also been asked to provide examples of observed change in the environment in their countries which may be related to climate change. Tropical cyclones are the most destructive severe weather events in the Pacific which regularly affect countries in the region. Understanding importance of updating knowledge about cyclones, extensive training in using the Pacific Tropical Cyclone Data Portal (http://www.bom.gov.au/cyclone/history/tracks/) has also been provided. Using this sophisticated web-based tool, students can learn about occurrences of cyclones in waters around their countries and over the whole Pacific. Positive feedback from university students and participants of training workshops has been obtained and this approach may be recommended for educators to include in their courses. Acknowledgement The research discussed in this paper was conducted through the PASAP, PCCSP and PACCSAP supported by the AusAID and Department of Climate Change and Energy Efficiency and delivered by the Bureau of Meteorology and CSIRO.

  5. Hands-on Approach to Prepare Specialists in Climate Changes Modeling and Analysis Using an Information-Computational Web-GIS Portal "Climate"

    NASA Astrophysics Data System (ADS)

    Shulgina, T. M.; Gordova, Y. E.; Martynova, Y. V.

    2014-12-01

    A problem of making education relevant to the workplace tasks is a key problem of higher education in the professional field of environmental sciences. To answer this challenge several new courses for students of "Climatology" and "Meteorology" specialties were developed and implemented at the Tomsk State University, which comprises theoretical knowledge from up-to-date environmental sciences with computational tasks. To organize the educational process we use an open-source course management system Moodle (www.moodle.org). It gave us an opportunity to combine text and multimedia in a theoretical part of educational courses. The hands-on approach is realized through development of innovative trainings which are performed within the information-computational web GIS platform "Climate" (http://climate.scert.ru/). The platform has a set of tools and data bases allowing a researcher to perform climate changes analysis on the selected territory. The tools are also used for students' trainings, which contain practical tasks on climate modeling and climate changes assessment and analysis. Laboratory exercises are covering three topics: "Analysis of regional climate changes"; "Analysis of climate extreme indices on the regional scale"; and "Analysis of future climate". They designed to consolidate students' knowledge of discipline, to instill in them the skills to work independently with large amounts of geophysical data using modern processing and analysis tools of web-GIS platform "Climate" and to train them to present results obtained on laboratory work as reports with the statement of the problem, the results of calculations and logically justified conclusion. Thus, students are engaged in n the use of modern tools of the geophysical data analysis and it cultivates dynamic of their professional learning. The approach can help us to fill in this gap because it is the only approach that offers experience, increases students involvement, advance the use of modern

  6. Publishing high-quality climate data on the semantic web

    NASA Astrophysics Data System (ADS)

    Woolf, Andrew; Haller, Armin; Lefort, Laurent; Taylor, Kerry

    2013-04-01

    The effort over more than a decade to establish the semantic web [Berners-Lee et. al., 2001] has received a major boost in recent years through the Open Government movement. Governments around the world are seeking technical solutions to enable more open and transparent access to Public Sector Information (PSI) they hold. Existing technical protocols and data standards tend to be domain specific, and so limit the ability to publish and integrate data across domains (health, environment, statistics, education, etc.). The web provides a domain-neutral platform for information publishing, and has proven itself beyond expectations for publishing and linking human-readable electronic documents. Extending the web pattern to data (often called Web 3.0) offers enormous potential. The semantic web applies the basic web principles to data [Berners-Lee, 2006]: using URIs as identifiers (for data objects and real-world 'things', instead of documents) making the URIs actionable by providing useful information via HTTP using a common exchange standard (serialised RDF for data instead of HTML for documents) establishing typed links between information objects to enable linking and integration Leading examples of 'linked data' for publishing PSI may be found in both the UK (http://data.gov.uk/linked-data) and US (http://www.data.gov/page/semantic-web). The Bureau of Meteorology (BoM) is Australia's national meteorological agency, and has a new mandate to establish a national environmental information infrastructure (under the National Plan for Environmental Information, NPEI [BoM, 2012a]). While the initial approach is based on the existing best practice Spatial Data Infrastructure (SDI) architecture, linked-data is being explored as a technological alternative that shows great promise for the future. We report here the first trial of government linked-data in Australia under data.gov.au. In this initial pilot study, we have taken BoM's new high-quality reference surface

  7. Deep Space Climate Observatory (DSCOVR) lifted off from Cape Canaveral

    NASA Image and Video Library

    2015-02-13

    KSC-2015-1363 (02/11/2015) --- The SpaceX Falcon 9 rocket carrying NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Tony Gray and Tim Powers

  8. Deep Space Climate Observatory (DSCOVR) lifted off from Cape Canaveral

    NASA Image and Video Library

    2015-02-13

    KSC-2015-1341 (02/11/2015) --- The SpaceX Falcon 9 rocket carrying NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Liftoff occurred at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Ben Smegelsky

  9. A Self-Paced Online Module for Teachers Using Climate Change as a Context for Bringing Sustainability Education to the Classroom

    NASA Astrophysics Data System (ADS)

    Metzger, E. P.; Santone, S.; Smith, G.; Cordero, E.

    2013-12-01

    Sustainability education is an approach to learning that builds knowledge, skills, and values needed to create lasting economic prosperity, environmental health, and social justice. In collaboration with Creative Change Educational Solutions (http://www.creativechange.net/) and with funding from the Clarence E. Heller Charitable Foundation and NASA, scientists and science educators at San José State University (SJSU) are developing an online 'Introduction for Sustainability' course for middle and high school educators. The module will introduce sustainability as a context for learning, highlight connections to climate change science and solutions, and provide strategies for linking the environmental, economic and social dimensions of climate destabilization to fundamental sustainability concepts. This self-paced course will be piloted during the 2013-2014 academic year. Upon completion, participants will receive inexpensive university credit ( $50/unit) from SJSU. Course goals are to demonstrate the applicability of sustainability themes across disciplines; increase learners' knowledge about the causes and impacts of climate change and related sustainability challenges; and support learners in integrating course content and methods into their classroom teaching. Course activities combine: 1) reading selections and questions; 2) online discussion; 3) digital media (short videos and tutorials); and 4) journal entries and other written assignments, including consideration of how course content aligns with the Common Core and Next Generation Science Standards. The module is divided into five sections: 1) Defining What Matters - What Do We All Need for a Fulfilling Life?; 2) The Commons and Ecosystem Services; 3) Causes and Impacts of Climate Change; 4) Individual and Collective Actions to Mitigate Its Effects; and 5) Integrating Sustainability into the Curriculum. Initial recruitment for the course will take place among participants in workshops offered by the Bay

  10. The impact of climate change on the drought variability over Australia

    NASA Astrophysics Data System (ADS)

    Kirono, D. G. C.; Hennessy, K.; Mpelasoka, F.; Bathols, J.; Kent, D.

    2009-04-01

    Drought has significant environmental and socio-economic impacts in Australia. Government assistance for drought events is guided by the current National Drought Policy (NDP). The Commonwealth Government provides support to farmers and rural communities under the Exceptional Circumstances (EC) arrangements and other drought programs, while state and territory governments also participate in the NDP and provide support measures of their own. To be classified as an EC event, the event must be rare, that is must not have occurred more than once on average in every 20-25 years. Given the likely increase in the area of the world affected by droughts in future due to climate change (IPCC, 2007), this paper presents assessments on how climate change may affect the concept of a one in 20-25 year event into the future for Australia. As droughts can be experienced and defined in different ways, many drought indices are available to monitor and to assess drought conditions. Commonly, these indices are categorised into four types: meteorological, hydrological, agricultural, and socio-economic. The meteorological drought indices are more widely used because they require data that are readily available and that they are relatively easy to calculate. However, meteorological drought indices based on rainfall alone fail to include the important contribution of evaporation. Here, the assessment is made using outputs of 13 global climate models (GCMs) and a meteorological drought index called the Reconnaissance Drought Index (RDI). It incorporates the aggregated deficits between the rainfall and the evaporative demand of the atmosphere. If the RDI were the sole trigger for EC declarations, then the mean projections indicate that more declarations would be likely in the future. As a comparison, results from an assessment based on other measures (temperature, rainfall, and soil wetness) will also be presented. IPCC, 2007: Climate Change 2007 - The physical Science Basis. Contribution

  11. A Long-Term and Reproducible Passive Microwave Sea Ice Concentration Data Record for Climate Studies and Monitoring

    NASA Technical Reports Server (NTRS)

    Peng, G.; Meier, W. N.; Scott, D. J.; Savoie, M. H.

    2013-01-01

    A long-term, consistent, and reproducible satellite-based passive microwave sea ice concentration climate data record (CDR) is available for climate studies, monitoring, and model validation with an initial operation capability (IOC). The daily and monthly sea ice concentration data are on the National Snow and Ice Data Center (NSIDC) polar stereographic grid with nominal 25 km × 25 km grid cells in both the Southern and Northern Hemisphere polar regions from 9 July 1987 to 31 December 2007. The data files are available in the NetCDF data format at http://nsidc.org/data/g02202.html and archived by the National Climatic Data Center (NCDC) of the National Oceanic and Atmospheric Administration (NOAA) under the satellite climate data record program (http://www.ncdc.noaa.gov/cdr/operationalcdrs.html). The description and basic characteristics of the NOAA/NSIDC passive microwave sea ice concentration CDR are presented here. The CDR provides similar spatial and temporal variability as the heritage products to the user communities with the additional documentation, traceability, and reproducibility that meet current standards and guidelines for climate data records. The data set, along with detailed data processing steps and error source information, can be found at http://dx.doi.org/10.7265/N5B56GN3.

  12. Using Weather Types to Understand and Communicate Weather and Climate Impacts

    NASA Astrophysics Data System (ADS)

    Prein, A. F.; Hale, B.; Holland, G. J.; Bruyere, C. L.; Done, J.; Mearns, L.

    2017-12-01

    A common challenge in atmospheric research is the translation of scientific advancements and breakthroughs to decision relevant and actionable information. This challenge is central to the mission of NCAR's Capacity Center for Climate and Weather Extremes (C3WE, www.c3we.ucar.edu). C3WE advances our understanding of weather and climate impacts and integrates these advances with distributed information technology to create tools that promote a global culture of resilience to weather and climate extremes. Here we will present an interactive web-based tool that connects historic U.S. losses and fatalities from extreme weather and climate events to 12 large-scale weather types. Weather types are dominant weather situations such as winter high-pressure systems over the U.S. leading to very cold temperatures or summertime moist humid air masses over the central U.S. leading to severe thunderstorms. Each weather type has a specific fingerprint of economic losses and fatalities in a region that is quantified. Therefore, weather types enable a direct connection of observed or forecasted weather situation to loss of life and property. The presented tool allows the user to explore these connections, raise awareness of existing vulnerabilities, and build resilience to weather and climate extremes.

  13. Educational process in modern climatology within the web-GIS platform "Climate"

    NASA Astrophysics Data System (ADS)

    Gordova, Yulia; Gorbatenko, Valentina; Gordov, Evgeny; Martynova, Yulia; Okladnikov, Igor; Titov, Alexander; Shulgina, Tamara

    2013-04-01

    These days, common to all scientific fields the problem of training of scientists in the environmental sciences is exacerbated by the need to develop new computational and information technology skills in distributed multi-disciplinary teams. To address this and other pressing problems of Earth system sciences, software infrastructure for information support of integrated research in the geosciences was created based on modern information and computational technologies and a software and hardware platform "Climate» (http://climate.scert.ru/) was developed. In addition to the direct analysis of geophysical data archives, the platform is aimed at teaching the basics of the study of changes in regional climate. The educational component of the platform includes a series of lectures on climate, environmental and meteorological modeling and laboratory work cycles on the basics of analysis of current and potential future regional climate change using Siberia territory as an example. The educational process within the Platform is implemented using the distance learning system Moodle (www.moodle.org). This work is partially supported by the Ministry of education and science of the Russian Federation (contract #8345), SB RAS project VIII.80.2.1, RFBR grant #11-05-01190a, and integrated project SB RAS #131.

  14. Children's well-being at schools: Impact of climatic conditions and air pollution.

    PubMed

    Salthammer, Tunga; Uhde, Erik; Schripp, Tobias; Schieweck, Alexandra; Morawska, Lidia; Mazaheri, Mandana; Clifford, Sam; He, Congrong; Buonanno, Giorgio; Querol, Xavier; Viana, Mar; Kumar, Prashant

    2016-09-01

    Human civilization is currently facing two particular challenges: population growth with a strong trend towards urbanization and climate change. The latter is now no longer seriously questioned. The primary concern is to limit anthropogenic climate change and to adapt our societies to its effects. Schools are a key part of the structure of our societies. If future generations are to take control of the manifold global problems, we have to offer our children the best possible infrastructure for their education: not only in terms of the didactic concepts, but also with regard to the climatic conditions in the school environment. Between the ages of 6 and 19, children spend up to 8h a day in classrooms. The conditions are, however, often inacceptable and regardless of the geographic situation, all the current studies report similar problems: classrooms being too small for the high number of school children, poor ventilation concepts, considerable outdoor air pollution and strong sources of indoor air pollution. There have been discussions about a beneficial and healthy air quality in classrooms for many years now and in recent years extensive studies have been carried out worldwide. The problems have been clearly outlined on a scientific level and there are prudent and feasible concepts to improve the situation. The growing number of publications also highlights the importance of this subject. High carbon dioxide concentrations in classrooms, which indicate poor ventilation conditions, and the increasing particle matter in urban outdoor air have, in particular, been identified as primary causes of poor indoor air quality in schools. Despite this, the conditions in most schools continue to be in need of improvement. There are many reasons for this. In some cases, the local administrative bodies do not have the budgets required to address such concerns, in other cases regulations and laws stand in contradiction to the demands for better indoor air quality, and sometimes

  15. ClimatePad: Enabling public exploration of climate data

    NASA Astrophysics Data System (ADS)

    Walsh, J. E.; Chapman, W. L.

    2012-12-01

    Informal learners interested in climate issues can find a wealth of information in the print and online media related to climate and climate change. Throughout these resources, the equal use of generic terms like 'global warming' and 'climate change' suggest a level of nuance in the science that is not easy to convey in this conventional media. Perhaps more than any other discipline, climate literacy has the most potential to be enhanced via the process of cognitive construction and reconstruction, rather than simple transmission of knowledge. Constructionism suggests that meaningful learning happens most effectively if the learner is actively engaged in constructing a product in the real world rather than absorbing information passively. Recent technological innovations have introduced mobile computing devices with sufficient power to do serious data analysis. The potential of these devices to augment climate literacy by turning citizens into scientists has yet to be exploited. We introduce ClimatePad, an iPad application that permits students and public to actively browse climate datasets, construct trends, plot time series, create composite differences and view animations of real-world climate data. Interactions with the ClimatePad permits varying the starting and ending dates of trends and differences. Climate analysis maps and animations can be customized with different color palettes, enticing the user to delve into and absorb the subtleties of the regional and temporal variations of the recent climate record. Finally, user-generated climate visualizations created with ClimatePad can be emailed to friends and shared via Facebook, entraining even more active learners.

  16. A bottom-up, scientist-based initiative for the communication of climate sciences with the general public

    NASA Astrophysics Data System (ADS)

    Bourqui, Michel; Bolduc, Cassandra; Paul, Charbonneau; Marie, Charrière; Daniel, Hill; Angelica, Lopez; Enrique, Loubet; Philippe, Roy; Barbara, Winter

    2015-04-01

    This talk introduces a scientists-initiated, new online platform whose aim is to contribute to making climate sciences become public knowledge. It takes a unique bottom-up approach, strictly founded on individual-based participation, high scientific standards and independence The main purpose is to build an open-access, multilingual and peer-reviewed journal publishing short climate articles in non-scientific language. The targeted public includes journalists, teachers, students, local politicians, economists, members of the agriculture sector, and any other citizens from around the world with an interest in climate sciences. This journal is meant to offer a simple and direct channel for scientists wishing to disseminate their research to the general public. A high standard of climate articles is ensured through: a) requiring that the main author is an active climate scientist, and b) an innovative peer-review process involving scientific and non-scientific referees with distinct roles. The platform fosters the direct participation of non-scientists through co-authoring, peer-reviewing, language translation. It furthermore engages the general public in the scientific inquiry by allowing non-scientists to invite manuscripts to be written on topics of their concern. The platform is currently being developed by a community of scientists and non-scientists. In this talk, I will present the basic ideas behind this new online platform, its current state and the plans for the next future. The beta version of the platform is available at: http://www.climateonline.bourquiconsulting.ch

  17. Will the Antarctic tardigrade Acutuncus antarcticus be able to withstand environmental stresses related to global climate change?

    PubMed

    Giovannini, Ilaria; Altiero, Tiziana; Guidetti, Roberto; Rebecchi, Lorena

    2018-02-20

    Because conditions in continental Antarctica are highly selective and extremely hostile to life, its biota is depauperate, but well adapted to live in this region. Global climate change has the potential to impact continental Antarctic organisms because of increasing temperatures and ultraviolet radiation. This research evaluates how ongoing climate changes will affect Antarctic species, and whether Antarctic organisms will be able to adapt to the new environmental conditions. Tardigrades represent one of the main terrestrial components of Antarctic meiofauna; therefore, the pan-Antarctic tardigrade Acutuncus antarcticus was used as model to predict the fate of Antarctic meiofauna threatened by climate change. Acutuncus antarcticus individuals tolerate events of desiccation, increased temperature and UV radiation. Both hydrated and desiccated animals tolerate increases in UV radiation, even though the desiccated animals are more resistant. Nevertheless, the survivorship of hydrated and desiccated animals is negatively affected by the combination of temperature and UV radiation, with the hydrated animals being more tolerant than desiccated animals. Finally, UV radiation has a negative impact on the life history traits of successive generations of A. antarcticus , causing an increase in egg reabsorption and teratological events. In the long run, A. antarcticus could be at risk of population reductions or even extinction. Nevertheless, because the changes in global climate will proceed gradually and an overlapping of temperature and UV increase could be limited in time, A. antarcticus , as well as many other Antarctic organisms, could have the potential to overcome global warming stresses, and/or the time and capability to adapt to the new environmental conditions. © 2018. Published by The Company of Biologists Ltd.

  18. Future tendencies of climate indicators important for adaptation and mitigation strategies in forestry

    NASA Astrophysics Data System (ADS)

    Galos, Borbala; Hänsler, Andreas; Gulyas, Krisztina; Bidlo, Andras; Czimber, Kornel

    2014-05-01

    Climate change is expected to have severe impacts in the forestry sector, especially in low-elevation regions in Southeast Europe, where forests are vulnerable and sensitive to the increasing probability and severity of climatic extremes, especially to droughts. For providing information about the most important regional and local risks and mitigation options for the Carpathian basin, a GIS-supported Decision Support System is under development. This study focuses on the future tendencies of climate indicators that determine the distribution, growth, health status and production of forests as well as the potential pests and diseases. For the analyses the climate database of the Decision Support System has been applied, which contains daily time series for precipitation and temperature means and extremes as well as derived climate indices for 1961-2100. For the future time period, simulation results of 12 regional climate models are included (www.ensembles-eu.org) based on the A1B emission scenario. The main results can be summarized as follows: · The projected change of the climate indices (e.g. total number of hot days, frost days, dry days, consecutive dry periods) and forestry indices (e.g. Ellenberg climate quotient, Forestry aridity index; Tolerance index for beech) indicates the warming and drying of the growing season towards the end of the 21st century. These can have severe consequences on the ecosystem services of forests. · The climatic suitable area of the native tree species is projected to move northwards and upwards in the mountains, respectively. For beech (Fagus sylvatica L.) this shift would mean the drastic shrink of the distribution area in the analyzed region. · The characteristic climate conditions that are expected in the Carpathian basin in the second half of the century, are now located southeastern from the case study region. In this way, the potential future provenance regions can be determined. Results provide input for the climate

  19. International Collaboration in the field of GNSS-Meteorology and Climate Monitoring

    NASA Astrophysics Data System (ADS)

    Jones, J.; Guerova, G.; Dousa, J.; Bock, O.; Elgered, G.; Vedel, H.; Pottiaux, E.; de Haan, S.; Pacione, R.; Dick, G.; Wang, J.; Gutman, S. I.; Wickert, J.; Rannat, K.; Liu, G.; Braun, J. J.; Shoji, Y.

    2012-12-01

    International collaboration in the field of GNSS-meteorology and climate monitoring is essential, as severe weather and climate change have no respect for national boundaries. The use of Global Navigation Satellite Systems (GNSS) for meteorological purposes is an established atmospheric observing technique, which can accurately sense water vapour, the most abundant greenhouse gas, accounting for 60-70% of atmospheric warming. Severe weather forecasting is challenging, in part due to the high temporal and spatial variation of atmospheric water vapour. Water vapour is currently under-sampled and obtaining and exploiting more high-quality humidity observations is essential to severe weather forecasting and climate monitoring. A proposed EU COST Action (http://www.cost.eu) will address new and improved capabilities from concurrent developments in both GNSS and atmospheric communities to improve (short-range) weather forecasts and climate projections. For the first time, the synergy of the three GNSS systems, GPS, GLONASS and Galileo, will be used to develop new, advanced tropospheric products, stimulating the full potential exploitation of multi-GNSS water vapour estimates on a wide range of temporal and spatial scales, from real-time severe weather monitoring and forecasting to climate research. The Action will work in close collaboration with the Global Climate Observing System (GCOS) Reference Upper Air Network (GRUAN), GNSS Precipitable Water Task Team (TT). GRUAN is a global reference observing network, designed to meet climate requirements and to fill a major void in the current global observing system. GRUAN observations will provide long-term, high-quality data to determine climatic trends and to constrain and validate data from space-based remote sensors. Ground-based GNSS PW was identified as a Priority 1 measurement for GRUAN, and the GNSS-PW TT's goal is to develop explicit guidance on hardware, software and data management practices to obtain GNSS PW

  20. Solutions-based climate change education for K-Gray: Renewable energy and energy efficiency

    NASA Astrophysics Data System (ADS)

    Petrone, C.

    2017-12-01

    Through the National Science Foundation-funded MADE CLEAR (www.madeclear.org) climate change education project's Informal Climate Change Education (ICCE) Community, funds were received to collaboratively train teachers, informal educators, students, and university docents in climate change basics and solutions, specifically renewable energy and energy efficiency. In all, 10 docents, 50 classroom teachers, over 600 K-16 students, and several hundred science-interested citizens participated in programs and workshops lasting between one and seven hours. Using commercially available kits and other DIY projects, program participants used science content and engineering to develop models of wind turbines, wind mills, solar cells, solar cookers, solar stills, and wind-powered cars. Using thermal imaging cameras, Kill-a-Watt meters, "Carbon Food Print" kit, "Energy Matters" kit, and other tools, program participants learned about energy efficiency as not only a global climate change mitigation strategy, but also a way to save money. ICCE Community members and external partners, such as local electric cooperative personnel, university researchers, and state-sponsored energy efficiency program personnel, provided content presentations, discussions, and hands-on activities to program participants.

  1. Deep Space Climate Observatory (DSCOVR) lifted off from Cape Canaveral

    NASA Image and Video Library

    2015-02-13

    KSC-2015-1342 (02/11/2015) --- Backdropped by a bright blue sky, the SpaceX Falcon 9 rocket carrying NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, soars away from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Liftoff occurred at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Ben Smegelsky..

  2. Deep Space Climate Observatory (DSCOVR) lifted off from Cape Canaveral

    NASA Image and Video Library

    2015-02-13

    Open Image KSC-2015-1368.KSC-2015-1368 (02/11/2015) --- The SpaceX Falcon 9 rocket carrying NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Liftoff occurred at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Tony Gray and Tim Powers

  3. Energy Choices and Climate Change: A New Interactive Feature on Windows to the Universe

    NASA Astrophysics Data System (ADS)

    Gardiner, L. S.; Russell, R. M.; Ward, D.; Johnson, R. M.; Henderson, S.; Foster, S. Q.

    2009-12-01

    We have developed a new, self-paced online module to foster understanding of how choices made about energy production and energy use affect greenhouse gas emissions and climate change. The module, entitled “Energy Choices and Climate Change” is available on Windows to the Universe (www.windows.ucar.edu), an extensive educational Web site used by over 20 million people each year. “Energy Choices and Climate Change” provides a new way to look at issues related to energy and climate change, emphasizing the climate implications of the choices we make. “Energy Choices and Climate Change” allows users to explore two different scenarios through which they make decisions about energy production or use. In the “Ruler of the World” scenario, the user is given the authority to make decisions about the mix of energy sources that will be used worldwide with the aim of reducing emissions while meeting global energy demand and monitoring costs and societal implications. In “The Joules Family” scenario, the user makes decisions about how to change the way a hypothetical family of four uses energy at home and for transportation with the aim of reducing the family’s carbon emissions and fossil fuel use while keeping costs less than long-term savings. While this module is intended for a general public audience, an associated teacher’s guide provides support for secondary educators using the module with students. Windows to the Universe is a project of the University Corporation for Atmospheric Research Office of Education and Outreach. Funding for the Energy Choices and Climate Change online module was provided by the National Center for Atmospheric Research.

  4. Managing Climate Change Refugia for Climate Adaptation ...

    EPA Pesticide Factsheets

    The concept of refugia has long been studied from theoretical and paleontological perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, locations that may be unusually buffered from climate change effects so as to increase persistence of valued resources. Here we distinguish between paleoecological and contemporary viewpoints, characterize physical and ecological processes that create and maintain climate change refugia, summarize the process of identifying and mapping them, and delineate how refugia can fit into the existing framework of natural resource management. We also suggest three primary courses of action at these sites: prioritization, protection, and propagation. Although not a panacea, managing climate change refugia can be an important adaptation option for conserving valuable resources in the face of ongoing and future climate change. “In a nutshell” (100 words) • Climate change refugia are defined as areas relatively buffered from contemporary climate change, enabling persistence of valued physical, ecological, and cultural resources. • Refugia can be incorporated as key components of a climate adaptation strategy because their prioritization by management may enable their associated resources to persist locally and eventually spread to future suitable habitat. • Steps for

  5. Trends in free WWW-based E-learning Modules seen from the Learning Resource Server Medicine (LRSMed).

    PubMed

    Stausberg, Jürgen; Geueke, Martin; Bludßat, Kevin

    2005-01-01

    Despite the lost enthusiasm concerning E-learning a lot of material is available on the World Wide Web (WWW) free of charge. This material is collected and systematically described by services like the Learning Resource Server Medicine (LRSMed) at http://mmedia.medizin.uni-essen.de/portal/. With the LRSMed E-learning modules are made available for medical students by means of a metadata description that can be used for a catalogue search. The number of resources included has risen enormously from 100 in 1999 up to 805 today. Especially in 2004 there was an exponential increase in the LRSMed's content. Anatomy is still the field with the highest amount of available material, but general medicine has improved its position over the years and is now the second one. Technically and didactically simple material as scripts, textbooks, and link lists (called info services) is still dominating. Similar to 1999, there is not one module which could be truly referred to as tutorial dialogue. Simple material can not replace face-to-face-teaching. But it could be combined with conventional courses to establish some kind of blending learning. The scene of free E-learning modules on the WWW is ready to meet current challenges for efficient training of students and continuing education in medicine.

  6. Can changes in the distributions of resident birds in China over the past 50 years be attributed to climate change?

    PubMed

    Wu, Jianguo; Zhang, Guobin

    2015-06-01

    The distributions of bird species have changed over the past 50 years in China. To evaluate whether the changes can be attributed to the changing climate, we analyzed the distributions of 20 subspecies of resident birds in relation to climate change. Long-term records of bird distributions, gray relational analysis, fuzzy-set classification techniques, and attribution methods were used. Among the 20 subspecies of resident birds, the northern limits of over half of the subspecies have shifted northward since the 1960s, and most changes have been related to the thermal index. Driven by climate change over the past 50 years, the suitable range and latitude or longitude of the distribution centers of certain birds have exhibited increased fluctuations. The northern boundaries of over half of the subspecies have shifted northward compared with those in the 1960s. The consistency between the observed and predicted changes in the range limits was quite high for some subspecies. The changes in the northern boundaries or the latitudes of the centers of distribution of nearly half of the subspecies can be attributed to climate change. The results suggest that climate change has affected the distributions of particular birds. The method used to attribute changes in bird distributions to climate change may also be effective for other animals.

  7. Can changes in the distributions of resident birds in China over the past 50 years be attributed to climate change?

    PubMed Central

    Wu, Jianguo; Zhang, Guobin

    2015-01-01

    The distributions of bird species have changed over the past 50 years in China. To evaluate whether the changes can be attributed to the changing climate, we analyzed the distributions of 20 subspecies of resident birds in relation to climate change. Long-term records of bird distributions, gray relational analysis, fuzzy-set classification techniques, and attribution methods were used. Among the 20 subspecies of resident birds, the northern limits of over half of the subspecies have shifted northward since the 1960s, and most changes have been related to the thermal index. Driven by climate change over the past 50 years, the suitable range and latitude or longitude of the distribution centers of certain birds have exhibited increased fluctuations. The northern boundaries of over half of the subspecies have shifted northward compared with those in the 1960s. The consistency between the observed and predicted changes in the range limits was quite high for some subspecies. The changes in the northern boundaries or the latitudes of the centers of distribution of nearly half of the subspecies can be attributed to climate change. The results suggest that climate change has affected the distributions of particular birds. The method used to attribute changes in bird distributions to climate change may also be effective for other animals. PMID:26078858

  8. Impacts of Climate Change on Electricity Consumption in Baden-Wuerttemberg

    NASA Astrophysics Data System (ADS)

    Mimler, S.

    2009-04-01

    afternoons, evenings and nights. [1] Jacob, D. (2005a), "REMO A1B Scenario run, UBA project, 0.088 degree resolution, run no.006211, 1H data", World Data Center for Climate, CERA-DB "REMO_UBA_A1B_1_R006211_1H", http://cera-www.dkrz.de/WDCC/ui/Compact.jsp? acronym=REMO_UBA_A1B_1_R006211_1H Jacob, D. (2005b), "REMO climate of the 20th century run, UBA project, 0.088 degree resolution, run no. 006210, 1H data", World Data Center for Climate, CERA-DB "REMO_UBA_C20_1_R006210_1H", http://cera-www.dkrz.de/WDCC/ui/Compact. jsp?acronym=REMO_UBA_C20_1_R006210_1H

  9. NASA Parts Selection List (NPSL) WWW Site http://nepp.nasa.gov/npsl

    NASA Technical Reports Server (NTRS)

    Brusse, Jay

    2000-01-01

    The NASA Parts Selection List (NPSL) is an on-line resource for electronic parts selection tailored for use by spaceflight projects. The NPSL provides a list of commonly used electronic parts that have a history of satisfactory use in spaceflight applications. The objective of this www site is to provide NASA projects, contractors, university experimenters, et al with an easy to use resource that provides a baseline of electronic parts from which designers are encouraged to select. The NPSL is an ongoing resource produced by Code 562 in support of the NASA HQ funded NASA Electronic Parts and Packaging (NEPP) Program. The NPSL is produced as an electronic format deliverable made available via the referenced www site administered by Code 562. The NPSL does not provide information pertaining to patented or proprietary information. All of the information contained in the NPSL is available through various other public domain resources such as US Military procurement specifications for electronic parts, NASA GSFC's Preferred Parts List (PPL-21), and NASA's Standard Parts List (MIL-STD975).

  10. Urban Heat Island phenomenon in extreme continental climate (Astana, Kazakhstan)

    NASA Astrophysics Data System (ADS)

    Konstantinov, Pavel; Akhmetova, Alina

    2015-04-01

    Urban Heat Island (UHI) phenomenon is well known in scientific literature since first half of the 19th century [1]. By now a wide number of world capitals is described from climatological point of view, especially in mid-latitudes. In beginning of XXI century new studies focus on heat island of tropical cities. However dynamics UHI in extreme continental climates is insufficiently investigated, due to the fact that there isn't large cities in Europe and Northern America within that climate type. In this paper we investigate seasonal and diurnal dynamics UHI intensity for Astana, capital city of Kazakhstan (population larger than 835 000 within the city) including UHI intensity changes on different time scales. Now (since 1998) Astana is the second coldest capital city in the world after Ulaanbaatar, Mongolia [3] For this study we use the UHI investigation technology, described in [2]. According to this paper, we selected three stations: one located into city in high and midrise buildings area (including extensive lowrise and high-energy industrial - LCZ classification) and two others located in rural site (sparsely built or open-set and lightweight lowrise according LCZ classification). Also these stations must be close by distance (less than 100 km) and altitude. Therefore, first for Astana city were obtained numerical evaluations for UHI climate dynamics, UHI dependence of synoptic situations and total UHI climatology on monthly and daily averages. References: 1.Howard, L. (1833) The Climate of London, Deduced from Meteorological Observations. Volume 2, London. 2.Kukanova E.A., Konstantinov P.I. An urban heat islands climatology in Russia and linkages to the climate change In Geophysical Research Abstracts, volume 16 of EGU General Assembly, pages EGU2014-10833-1, Germany, 2014. Germany. 3.www.pogoda.ru.net

  11. Merger of three modeling approaches to assess potential effects of climate change on trees in the eastern United States

    Treesearch

    Louis R. Iverson; Anantha M. Prasad; Stephen N. Matthews; Matthew P. Peters

    2010-01-01

    Climate change will likely cause impacts that are species specific and significant; modeling is critical to better understand potential changes in suitable habitat. We use empirical, abundance-based habitat models utilizing decision tree-based ensemble methods to explore potential changes of 134 tree species habitats in the eastern United States (http://www.nrs.fs.fed....

  12. The climate4impact portal: bridging CMIP5 data to impact users

    NASA Astrophysics Data System (ADS)

    Som de Cerff, Wim; Plieger, Maarten; Page, Christian; Hutjes, Ronald; de Jong, Fokke; Barring, Lars; Sjökvist, Elin

    2013-04-01

    Together with seven other partners (CERFACS, CNRS-IPSL, SMHI, INHGA, CMCC, WUR, MF-CNRM), KNMI is involved in the FP7 project IS-ENES (http://is.enes.org), which supports the European climate modeling infrastructure, in the work package 'Bridging Climate Research Data and the Needs of the Impact Community'. The aim of this work package is to enhance the use of climate model data and to enhance the interaction with climate effect/impact communities. The portal is based on 17 impact use cases from 5 different European countries, and is evaluated by a user panel consisting of use case owners. As the climate impact community is very broad, the focus is mainly on the scientific impact community. This work has resulted in a prototype portal, the ENES portal interface for climate impact communities, that can be visited at www.climate4impact.eu. The portal is connected to all Earth System Grid Federation (ESGF) nodes containing global climate model data (GCM data) from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) and later from the Coordinated Regional Climate Downscaling Experiment (CORDEX). This global network of all major climate model data centers offers services for data description, discovery and download. The climate4impact portal connects to these services and offers a user interface for searching, visualizing and downloading global climate model data and more. A challenging task was to describe the available model data and how it can be used. The portal tries to inform users about possible caveats when using model data. All impact use cases are described in the documentation section, using highlighted keywords pointing to detailed information in the glossary. The current portal is a Prototype. It is built to explore state-of-art technologies to provide improved access to climate model data. The prototype will be evaluated and is the basis for development of an operational service. The portal and services provided will be sustained and

  13. Quantifying the risks of winter damage on overwintering crops under future climates: Will low-temperature damage be more likely in warmer climates?

    NASA Astrophysics Data System (ADS)

    Vico, G.; Weih, M.

    2014-12-01

    Autumn-sown crops act as winter cover crop, reducing soil erosion and nutrient leaching, while potentially providing higher yields than spring varieties in many environments. Nevertheless, overwintering crops are exposed for longer periods to the vagaries of weather conditions. Adverse winter conditions, in particular, may negatively affect the final yield, by reducing crop survival or its vigor. The net effect of the projected shifts in climate is unclear. On the one hand, warmer temperatures may reduce the frequency of low temperatures, thereby reducing damage risk. On the other hand, warmer temperatures, by reducing plant acclimation level and the amount and duration of snow cover, may increase the likelihood of damage. Thus, warmer climates may paradoxically result in more extensive low temperature damage and reduced viability for overwintering plants. The net effect of a shift in climate is explored by means of a parsimonious probabilistic model, based on a coupled description of air temperature, snow cover, and crop tolerable temperature. Exploiting an extensive dataset of winter wheat responses to low temperature exposure, the risk of winter damage occurrence is quantified under conditions typical of northern temperate latitudes. The full spectrum of variations expected with climate change is explored, quantifying the joint effects of alterations in temperature averages and their variability as well as shifts in precipitation. The key features affecting winter wheat vulnerability to low temperature damage under future climates are singled out.

  14. Climate stories: Why do climate scientists and sceptical voices participate in the climate debate?

    PubMed

    Sharman, Amelia; Howarth, Candice

    2017-10-01

    Public perceptions of the climate debate predominantly frame the key actors as climate scientists versus sceptical voices; however, it is unclear why climate scientists and sceptical voices choose to participate in this antagonistic and polarised public battle. A narrative interview approach is used to better understand the underlying rationales behind 22 climate scientists' and sceptical voices' engagement in the climate debate, potential commonalities, as well as each actor's ability to be critically self-reflexive. Several overlapping rationales are identified including a sense of duty to publicly engage, agreement that complete certainty about the complex assemblage of climate change is unattainable and that political factors are central to the climate debate. We argue that a focus on potential overlaps in perceptions and rationales as well as the ability to be critically self-reflexive may encourage constructive discussion among actors previously engaged in purposefully antagonistic exchange on climate change.

  15. Drug formulations intended for the global market should be tested for stability under tropical climatic conditions.

    PubMed

    Risha, P G; Vervaet, C; Vergote, G; Bortel, L Van; Remon, J P

    2003-06-01

    The quality of drugs imported into developing countries having a tropical climate may be adversely affected if their formulations have not been optimized for stability under these conditions. The present study investigated the influence of tropical climate conditions (class IV: 40 degrees C, 75% relative humidity) on the drug content, in vitro dissolution and oral bioavailability of different formulations of two essential drugs marketed in Tanzania: diclofenac sodium and ciprofloxacin tablets. Before and after 3 and 6 months storage under class IV conditions the drug content and in vitro dissolution were evaluated using United States Pharmacopoeia (USP) 24 methods. Following a randomized four-period cross-over study, the pharmacokinetic parameters of drug formulations stored for 3 months under class IV conditions were compared with those stored at ambient conditions. Drug content and drug release from all tested ciprofloxacin formulations were within USP-24 requirements and remained stable during storage at simulated tropical conditions. Oral bioavailability was also not influenced by tropical conditions. The dissolution rate of two diclofenac formulations (Diclo 50 manufactured by Camden and Dicloflame 50 manufactured by Intas) reduced significantly during storage under class IV conditions. After oral administration Camden tablets stored for 3 months under class IV conditions showed a reduction in C(max) (90% CI of C(max) ratio: 0.59 - 0.76). This reduction was smaller than expected based on the in vitro tests. Some drug formulations imported into Tanzania are not optimized for stability in a tropical climate. Manufacturers and regulatory authorities should pay more attention to the WHO recommendations for testing the stability of drugs under tropical climate conditions. Efforts should be made to improve the in vitro tests to better predict the bioavailability.

  16. The WWW as a research medium: an illustrative survey on paranormal belief.

    PubMed

    Göritz, A S; Schumacher, J

    2000-06-01

    Data collected with a short World Wide Web (WWW) survey on paranormal belief, age, sex, locus of control, extraversion, emotional and physical well-being, and mood were compared with findings from recent literature while controlling for effects of self-selection. Each variable was measured with one item. The sample comprised 342 women, 648 men, and 8 participants of unknown sex, of whom 76.7% were self-selected and 23.3% did not select themselves. There was a weak but, given the large sample, significant effect of self-selection regarding paranormal belief (rpb 932 = .08) but no relationships for paranormal belief and the examined variables. In the entire sample, statistically significant correlations ranging from .13 to .07 between paranormal belief and female sex, scores on external locus of control, good mood, extraversion, and emotional well-being corresponded with previous offline results.

  17. Climate@Home: Crowdsourcing Climate Change Research

    NASA Astrophysics Data System (ADS)

    Xu, C.; Yang, C.; Li, J.; Sun, M.; Bambacus, M.

    2011-12-01

    Climate change deeply impacts human wellbeing. Significant amounts of resources have been invested in building super-computers that are capable of running advanced climate models, which help scientists understand climate change mechanisms, and predict its trend. Although climate change influences all human beings, the general public is largely excluded from the research. On the other hand, scientists are eagerly seeking communication mediums for effectively enlightening the public on climate change and its consequences. The Climate@Home project is devoted to connect the two ends with an innovative solution: crowdsourcing climate computing to the general public by harvesting volunteered computing resources from the participants. A distributed web-based computing platform will be built to support climate computing, and the general public can 'plug-in' their personal computers to participate in the research. People contribute the spare computing power of their computers to run a computer model, which is used by scientists to predict climate change. Traditionally, only super-computers could handle such a large computing processing load. By orchestrating massive amounts of personal computers to perform atomized data processing tasks, investments on new super-computers, energy consumed by super-computers, and carbon release from super-computers are reduced. Meanwhile, the platform forms a social network of climate researchers and the general public, which may be leveraged to raise climate awareness among the participants. A portal is to be built as the gateway to the climate@home project. Three types of roles and the corresponding functionalities are designed and supported. The end users include the citizen participants, climate scientists, and project managers. Citizen participants connect their computing resources to the platform by downloading and installing a computing engine on their personal computers. Computer climate models are defined at the server side. Climate

  18. Fungi in a changing world: growth rates will be elevated, but spore production may decrease in future climates

    NASA Astrophysics Data System (ADS)

    Damialis, Athanasios; Mohammad, Aqilah B.; Halley, John M.; Gange, Alan C.

    2015-09-01

    Very little is known about the impact of climate change on fungi and especially on spore production. Fungal spores can be allergenic, thus being important for human health. The aim of this study was to investigate how climate change influences the responsive ability of fungi by simulating differing environmental regimes. Fungal species with high spore allergenic potential and atmospheric abundance were grown and experimentally examined under a variety of temperatures and different nutrient availability. Each represented the average decadal air temperature of the 1980s, 1990s and 2000s in the UK, along with an Intergovernmental Panel on Climate Change (IPCC) climate change scenario for 2100. All tests were run on six fungal species: Alternaria alternata, Aspergillus niger, Botrytis cinerea, Cladosporium cladosporioides, Cladosporium oxysporum and Epicoccum purpurascens. Mycelium growth rate and spore production were examined on each single species and competitive capacity among species combinations in pairs. All fungal species grew faster at higher temperatures, and this was more pronounced for the temperature projection in 2100. Most species grew faster when there was lower nutrient availability. Exceptions were the species with the highest growth rate ( E. purpurascens) and with the highest competition capacity ( A. alternata). Most species (except for E. purpurascens) produced more spores in the richer nutrient medium but fewer as temperature increased. C. cladosporioides was an exception, exponentially increasing its spore production in the temperature of the 2100 scenario. Regarding competitive capacity, no species displayed any significant alterations within the environmental range checked. It is suggested that in future climates, fungi will display dramatic growth responses, with faster mycelium growth and lower spore production, with questions risen on relevant allergen potential.

  19. Personal, Informal and Relatable: Engaging Wide Audiences in Climate Science with Nasa's Earth Right Now Blog

    NASA Astrophysics Data System (ADS)

    Tenenbaum, L. F.; Shaftel, H.; Jackson, R.

    2014-12-01

    There is no such thing as a non-scientist, but there are some who have yet to acknowledge their inner science spark. Aiming to ignite and fan the flame of curiosity, promote dialogue and attempt to make climate science personal and relevant to everyday life, NASA's Global Climate Change website http://climate.nasa.gov/ and Earth Right Now campaign http://www.nasa.gov/content/earth-right-now/ partnered together this year to launch the Earth Right Now blog http://climate.nasa.gov/blog. It quickly became one of the most popular blogs in all of NASA social media, receiving thousands of likes per week, and frequent comments as well as thoughtful and respectful discussions about climate change. Social media platforms such as blogs have become popular vehicles for engaging large swaths of the public in new exciting ways. NASA's Earth Right Now blog has become a powerful platform for engaging both scientists and the science-curious in constructive, fruitful conversations about the complex topic of climate science. We continue to interact and have ongoing dialogue with our readers by making the scientific content both accessible and engaging for diverse populations.

  20. Integrated climate and land change research to improve decision-making and resource management in Southern Africa: The SASSCAL approach

    NASA Astrophysics Data System (ADS)

    Helmschrot, J.; Olwoch, J. M.

    2017-12-01

    The ability of countries in southern Africa to jointly respond to climate challenges with scientifically informed and evidence-based actions and policy decisions remains low due to limited scientific research capacity and infrastructure. The Southern African Science Service Centre for Climate Change and Adaptive Land Management (SASSCAL; www.sasscal.org) addresses this gap by implementing a high-level framework to guide research and innovation investments in climate change and adaptive land management interventions in Southern Africa. With a strong climate service component as cross-cutting topic, SASSCAL's focus is to improve the understanding of climate and land management change impacts on the natural and socio-economic environment in Southern Africa. The paper presents a variety of SASSCAL driven activities which contribute to better understand climate and long-term environmental change dynamics at various temporal and spatial scales in Southern Afrika and how these activities are linked to support research and decision-making to optimize agricultural practices as well as sustainable environmental and water resources management. To provide consistent and reliable climate information for Southern Africa, SASSCAL offers various climate services ranging from real-time climate observation across the region utilizing the SASSCAL WeatherNet to regional climate change analysis and modelling efforts at seasonal-to-decadal timescales using climate data from various sources. SASSCAL also offers the current state of the environment in terms of recent data on changes in the environment that are necessary for setting appropriate adaptation strategies . The paper will further demonstrate how these services are utilized for interdisciplinary research on the impact of climate change on natural resources and socio-economic development in the SASSCAL countries and how this knowledge can be effectively used to mitigate and adapt to climate change by informed decision-making from

  1. Managing for delicious ecosystem service under climate change: can United States sugar maple (Acer saccharum) syrup production be maintained in a warming climate?

    Treesearch

    Stephen N. Matthews; Louis R. Iverson

    2017-01-01

    Sugar maple (Acer saccharum) is a highly valued tree in United States (US) and Canada, and its sap when collected from taps and concentrated, makes a delicious syrup. Understanding how this resource may be impacted by climate change and other threats is essential to continue management for maple syrup into the future. Here, we evaluate the current...

  2. Building Interdisciplinary Research and Communication Skills in the Agricultural and Climate Sciences

    NASA Astrophysics Data System (ADS)

    Johnson-Maynard, J.; Borrelli, K.; Wolf, K.; Bernacchi, L.; Eigenbrode, S.; Daley Laursen, D.

    2015-12-01

    Preparing scientists and educators to create and promote practical science-based agricultural approaches to climate change adaptation and mitigation is a main focus of the Regional Approaches to Climate Change (REACCH) project. Social, political and environmental complexities and interactions require that future scientists work across disciplines rather than having isolated knowledge of one specific subject area. Additionally, it is important for graduate students earning M.S. or Ph.D. degrees in agriculture and climate sciences to be able to communicate scientific findings effectively to non-scientific audiences. Unfortunately, university graduate curricula rarely adequately prepare students with these important skills. REACCH recognizes the need for graduate students to have thorough exposure to other disciplines and to be able to communicate information for outreach and education purposes. These priorities have been incorporated into graduate training within the REACCH project. The interdisciplinary nature of the project and its sophisticated digital infrastructure provide graduate students multiple opportunities to gain these experiences. The project includes over 30 graduate students from 20 different disciplines and research foci including agronomy, biogeochemistry, soil quality, conservation tillage, hydrology, pest and beneficial organisms, economics, modeling, remote sensing, science education and climate science. Professional develop workshops were developed and held during annual project meetings to enhance student training. The "Toolbox" survey (http://www.cals.uidaho.edu/toolbox/) was used to achieve effective interdisciplinary communication. Interdisciplinary extension and education projects were required to allow students to gain experience with collaboration and working with stakeholder groups. Results of student surveys and rubrics developed to gauge success in interdisciplinary research and communication may provide a helpful starting point for

  3. Managing climate change refugia for climate adaptation

    USGS Publications Warehouse

    Morelli, Toni L.; Jackson, Stephen T.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change.

  4. Managing Climate Change Refugia for Climate Adaptation.

    PubMed

    Morelli, Toni Lyn; Daly, Christopher; Dobrowski, Solomon Z; Dulen, Deanna M; Ebersole, Joseph L; Jackson, Stephen T; Lundquist, Jessica D; Millar, Constance I; Maher, Sean P; Monahan, William B; Nydick, Koren R; Redmond, Kelly T; Sawyer, Sarah C; Stock, Sarah; Beissinger, Steven R

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change.

  5. Managing Climate Change Refugia for Climate Adaptation

    PubMed Central

    Daly, Christopher; Dobrowski, Solomon Z.; Dulen, Deanna M.; Ebersole, Joseph L.; Jackson, Stephen T.; Lundquist, Jessica D.; Millar, Constance I.; Maher, Sean P.; Monahan, William B.; Nydick, Koren R.; Redmond, Kelly T.; Sawyer, Sarah C.; Stock, Sarah; Beissinger, Steven R.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change. PMID:27509088

  6. A Case Study: Climate Change Decision Support for the Apalachicola, Chattahoochee, Flint Basins

    NASA Astrophysics Data System (ADS)

    Day, G. N.; McMahon, G.; Friesen, N.; Carney, S.

    2011-12-01

    with existing or proposed operating rules to explore the range of potential climate impacts on lake levels, drought trigger frequency, hydropower generation, and low-flow statistics. Initial system implementation of the Climate Change DSS was focused in the State of Colorado working with water supply agencies in the Front Range to assess local water supply vulnerability to climate change. To facilitate national implementation, the system capitalizes on National Weather Service (NWS) watershed models currently used for operational river forecasting. These models are well calibrated and available for the entire country. The system has been extended to include the ACF and the Sacramento River basins because of the importance of the water resources in these basins. Plans are now being made to expand coverage to include the Baltimore-Washington, D.C. water supply area. The DSS is operational and publicly available (www.climatechangedss.com).

  7. 10Be in ice at high resolution: Solar activity and climate signals observed and GCM-modeled in Law Dome ice cores

    NASA Astrophysics Data System (ADS)

    Pedro, Joel; Heikkilä, Ulla; van Ommen, T. D.; Smith, A. M.

    2010-05-01

    Changes in solar activity modulate the galactic cosmic ray flux, and in turn, the production rate of 10Be in the earth's atmosphere. The best archives of past changes in 10Be production rate are the polar ice cores. Key challenges in interpreting these archives as proxies for past solar activity lie in separating the useful solar activity (or production) signal from the interfering meteorological (or climate) signal, and furthermore, in determining the atmospheric source regions of 10Be deposited to the ice core site. In this study we use a new monthly resolution composite 10Be record, which spans the past decade, and a general circulation model (ECHAM5-HAM), to constrain both the production and climate signals in 10Be concentrations at the Law Dome ice core site, East Antarctica. This study differs from most previous work on 10Be in Antarctica due to the very high sample resolution achieved. This high resolution, through a time period where accurate instrumental measurements of solar activity and climate are available, allows us to examine the response of 10Be concentrations in ice to short-term (monthly to annual) variations in solar activity, and to short-term variations in climate, including seasonality. We find a significant correlation (r2 = 0.56, P < 0.005, n = 92) between observed 10Be concentrations and solar activity (represented by the neutron counting rate). The most pervasive climate influence is a seasonal cycle, which shows maximum concentrations in mid-to-late-summer and minimum concentrations in winter. Model results show reasonable agreement with observations; both a solar activity signal and seasonal cycle in 10Be are captured. However, the modeled snow accumulation rate is too high by approximately 60%. According to the model, the main atmospheric source region of 10Be deposited to Law Dome is the 30-90°S stratosphere (~50%), followed by the 30-90°S troposphere (~30%). An enhancement in the fraction of 10Be arriving to Law Dome from the

  8. Population dynamics can be more important than physiological limits for determining range shifts under climate change.

    PubMed

    Fordham, Damien A; Mellin, Camille; Russell, Bayden D; Akçakaya, Reşit H; Bradshaw, Corey J A; Aiello-Lammens, Matthew E; Caley, Julian M; Connell, Sean D; Mayfield, Stephen; Shepherd, Scoresby A; Brook, Barry W

    2013-10-01

    Evidence is accumulating that species' responses to climate changes are best predicted by modelling the interaction of physiological limits, biotic processes and the effects of dispersal-limitation. Using commercially harvested blacklip (Haliotis rubra) and greenlip abalone (Haliotis laevigata) as case studies, we determine the relative importance of accounting for interactions among physiology, metapopulation dynamics and exploitation in predictions of range (geographical occupancy) and abundance (spatially explicit density) under various climate change scenarios. Traditional correlative ecological niche models (ENM) predict that climate change will benefit the commercial exploitation of abalone by promoting increased abundances without any reduction in range size. However, models that account simultaneously for demographic processes and physiological responses to climate-related factors result in future (and present) estimates of area of occupancy (AOO) and abundance that differ from those generated by ENMs alone. Range expansion and population growth are unlikely for blacklip abalone because of important interactions between climate-dependent mortality and metapopulation processes; in contrast, greenlip abalone should increase in abundance despite a contraction in AOO. The strongly non-linear relationship between abalone population size and AOO has important ramifications for the use of ENM predictions that rely on metrics describing change in habitat area as proxies for extinction risk. These results show that predicting species' responses to climate change often require physiological information to understand climatic range determinants, and a metapopulation model that can make full use of this data to more realistically account for processes such as local extirpation, demographic rescue, source-sink dynamics and dispersal-limitation. © 2013 John Wiley & Sons Ltd.

  9. A whole ecosystem approach to studying climate change in interior Alaska

    USGS Publications Warehouse

    Riggins, Susan; Striegl, Robert G.; McHale, Michael

    2011-01-01

    Yukon River Basin Principal Investigators Workshop; Portland, Oregon, 18-20 January 2011; High latitudes are known to be particularly susceptible to climate warming, leading to an emphasis of field and modeling research on arctic regions. Subarctic and boreal regions such as the Yukon River Basin (YRB) of interior Alaska and western Canada are less well studied, although they encompass large areas that are vulnerable to changes in forest composition, permafrost distribution, and hydrology. There is an urgent need to understand the resiliency and vulnerability of these complex ecosystems as well as their feedbacks to the global climate system. Consequently, U.S. Geological Survey scientists, with other federal agency, university, and private industry partners, is focusing subarctic interdisciplinary studies on the Beaver Creek Wild and Scenic River watershed (http://www.blm.gov/pgdata/content/ak/en/prog/nlcs/beavercrk_nwsr.html) and Yukon Flats National Wildlife Refuge (http://yukonflats.fws.gov/) in the YRB, south and west of Fort Yukon, Alaska. These areas are national treasures of wetlands, lakes, and uplands that support large populations of wildlife and waterfowl and are home to vibrant native Alaskan communities that depend on the area for a subsistence lifestyle.

  10. [Constructing climate. From classical climatology to modern climate research].

    PubMed

    Heymann, Matthias

    2009-01-01

    Both climate researchers and historians of climate science have conceived climate as a stable and well defined category. This article argues that such a conception is flawed. In the course of the 19th and 20th century the very concept of climate changed considerably. Scientists came up with different definitions and concepts of climate, which implied different understandings, interests, and research approaches. Understanding climate shifted from a timeless, spatial concept at the end of the 19th century to a spaceless, temporal concept at the end of the 20th. Climatologists in the 19th and early 20th centuries considered climate as a set of atmospheric characteristics associated with specific places or regions. In this context, while the weather was subject to change, climate remained largely stable. Of particular interest was the impact of climate on human beings and the environment. In modern climate research at the close of the 20th century, the concept of climate lost its temporal stability. Instead, climate change has become a core feature of the understanding of climate and a focus of research interests. Climate has also lost its immediate association with specific geographical places and become global. The interest is now focused on the impact of human beings on climate. The paper attempts to investigate these conceptual shifts and their origins and impacts in order to provide a more comprehensive perspective on the history of climate research.

  11. Steady 10Be-derived paleoerosion rates across the Plio-Pleistocene climate transition, Fish Creek-Vallecito basin, California

    NASA Astrophysics Data System (ADS)

    Oskin, M. E.; Longinotti, N. E.; Peryam, T. C.; Dorsey, R. J.; DeBoer, C. J.; Housen, B. A.; Blisniuk, K. D.

    2017-09-01

    Rates of erosion over time provide a valuable tool for gauging tectonic and climatic drivers of landscape evolution. Here we measure 10Be archived in quartz sediment from the Fish Creek-Vallecito basin to resolve a time series of catchment-averaged erosion rates and to test the hypothesis that aridity and increased climate variation after approximately 3 Ma led to an increase in erosion rates in this semiarid, ice-free setting. The Fish Creek-Vallecito basin, located east of the Peninsular Ranges in Southern California, is an ideal setting to derive a Plio-Pleistocene paleoerosion rate record. The basin has a rapid sediment accumulation rate, a detailed magnetostratigraphic age record, and its stratigraphy has been exposed through recent, rapid uplift and erosion. A well-defined source region of uniform lithology and low erosion rate provides a high, reproducible 10Be signal. We find that paleoerosion rates were remarkably consistent between 1 and 4 Ma, averaging 38 ± 24 m/Myr (2σ). Modern catchment-averaged erosion rates are similar to the paleoerosion rates. The uniformity of erosion over the past 4 Myr indicates that the landscape was not significantly affected by late Pliocene global climate change, nor was it affected by a local long-term increase in aridity.

  12. ARM Climate Research Facility: Outreach Tools and Strategies

    NASA Astrophysics Data System (ADS)

    Roeder, L.; Jundt, R.

    2009-12-01

    Sponsored by the Department of Energy, the ARM Climate Research Facility is a global scientific user facility for the study of climate change. To publicize progress and achievements and to reach new users, the ACRF uses a variety of Web 2.0 tools and strategies that build off of the program’s comprehensive and well established News Center (www.arm.gov/news). These strategies include: an RSS subscription service for specific news categories; an email “newsletter” distribution to the user community that compiles the latest News Center updates into a short summary with links; and a Facebook page that pulls information from the News Center and links to relevant information in other online venues, including those of our collaborators. The ACRF also interacts with users through field campaign blogs, like Discovery Channel’s EarthLive, to share research experiences from the field. Increasingly, field campaign Wikis are established to help ACRF researchers collaborate during the planning and implementation phases of their field studies and include easy to use logs and image libraries to help record the campaigns. This vital reference information is used in developing outreach material that is shared in highlights, news, and Facebook. Other Web 2.0 tools that ACRF uses include Google Maps to help users visualize facility locations and aircraft flight patterns. Easy-to-use comment boxes are also available on many of the data-related web pages on www.arm.gov to encourage feedback. To provide additional opportunities for increased interaction with the public and user community, future Web 2.0 plans under consideration for ACRF include: evaluating field campaigns for Twitter and microblogging opportunities, adding public discussion forums to research highlight web pages, moving existing photos into albums on FlickR or Facebook, and building online video archives through YouTube.

  13. Relevance of Regional Hydro-Climatic Projection Data for Hydrodynamics and Water Quality Modelling of the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Goldenberg, R.; Vigouroux, G.; Chen, Y.; Bring, A.; Kalantari, Z.; Prieto, C.; Destouni, G.

    2017-12-01

    The Baltic Sea, located in Northern Europe, is one of the world's largest body of brackish water, enclosed and surrounded by nine different countries. The magnitude of climate change may be particularly large in northern regions, and identifying its impacts on vulnerable inland waters and their runoff and nutrient loading to the Baltic Sea is an important and complex task. Exploration of such hydro-climatic impacts is needed to understand potential future changes in physical, ecological and water quality conditions in the regional coastal and marine waters. In this study, we investigate hydro-climatic changes and impacts on the Baltic Sea by synthesizing multi-model climate projection data from the CORDEX regional downscaling initiative (EURO- and Arctic- CORDEX domains, http://www.cordex.org/). We identify key hydro-climatic variable outputs of these models and assess model performance with regard to their projected temporal and spatial change behavior and impacts on different scales and coastal-marine parts, up to the whole Baltic Sea. Model spreading, robustness and impact implications for the Baltic Sea system are investigated for and through further use in simulations of coastal-marine hydrodynamics and water quality based on these key output variables and their change projections. Climate model robustness in this context is assessed by inter-model spreading analysis and observation data comparisons, while projected change implications are assessed by forcing of linked hydrodynamic and water quality modeling of the Baltic Sea based on relevant hydro-climatic outputs for inland water runoff and waterborne nutrient loading to the Baltic sea, as well as for conditions in the sea itself. This focused synthesis and analysis of hydro-climatically relevant output data of regional climate models facilitates assessment of reliability and uncertainty in projections of driver-impact changes of key importance for Baltic Sea physical, water quality and ecological

  14. Carbon, Climate and Cameras: Showcasing Arctic research through multimedia storytelling

    NASA Astrophysics Data System (ADS)

    Tachihara, B. L.; Linder, C. A.; Holmes, R. M.

    2011-12-01

    In July 2011, Tachihara spent three weeks in the Siberian Arctic documenting The Polaris Project, an NSF-funded effort that brings together an international group of undergraduate students and research scientists to study Arctic systems. Using a combination of photography, video and interviews gathered during the field course, we produced a six-minute film focusing on the researchers' quest to track carbon as it moves from terrestrial upland areas into lakes, streams, rivers and eventually into the Arctic Ocean. The overall goal was to communicate the significance of Arctic science in the face of changing climate. Using a selection of clips from the 2011 video, we will discuss the advantages and challenges specific to using multimedia presentations to represent Arctic research, as well as science in general. The full video can be viewed on the Polaris website: http://www.thepolarisproject.org.

  15. AmeriFlux US-SCw Southern California Climate Gradient - Pinyon/Juniper Woodland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goulden, Mike

    This is the AmeriFlux version of the carbon flux data for the site US-SCw Southern California Climate Gradient - Pinyon/Juniper Woodland. Site Description - Half hourly data are available at https://www.ess.uci.edu/~california/. This site is one of six Southern California Climate Gradient flux towers operated along an elevation gradient (sites are US-SCg, US-SCs, US-SCf, US-SCw, US-SCc, US-SCd). This site is a Pinyon Juniper woodland with trees that are at least 150 years old, and ephemeral herbaceous cover following winter or spring rains. The site has experienced repeated drought during the record and roughly 50% Pinyon mortality over the last decade. Amore » nearby tower site (US-SCc) burned in a 1994 wildfire; comparisons between US-SCw and US-SCc provide a measure of the effects of the 1994 on land-atmosphere exchange.« less

  16. Climate change threats to population health and well-being: the imperative of protective solutions that will last

    PubMed Central

    Kjellstrom, Tord; McMichael, Anthony J.

    2013-01-01

    Background The observational evidence of the impacts of climate conditions on human health is accumulating. A variety of direct, indirect, and systemically mediated health effects have been identified. Excessive daily heat exposures create direct effects, such as heat stroke (and possibly death), reduce work productivity, and interfere with daily household activities. Extreme weather events, including storms, floods, and droughts, create direct injury risks and follow-on outbreaks of infectious diseases, lack of nutrition, and mental stress. Climate change will increase these direct health effects. Indirect effects include malnutrition and under-nutrition due to failing local agriculture, spread of vector-borne diseases and other infectious diseases, and mental health and other problems caused by forced migration from affected homes and workplaces. Examples of systemically mediated impacts on population health include famine, conflicts, and the consequences of large-scale adverse economic effects due to reduced human and environmental productivity. This article highlights links between climate change and non-communicable health problems, a major concern for global health beyond 2015. Discussion Detailed regional analysis of climate conditions clearly shows increasing temperatures in many parts of the world. Climate modelling indicates that by the year 2100 the global average temperature may have increased by 3-4°C unless fundamental reductions in current global trends for greenhouse gas emissions are achieved. Given other unforeseeable environmental, social, demographic, and geopolitical changes that may occur in a plus-4-degree world, that scenario may comprise a largely uninhabitable world for millions of people and great social and military tensions. Conclusion It is imperative that we identify actions and strategies that are effective in reducing these increasingly likely threats to health and well-being. The fundamental preventive strategy is, of course

  17. Climate change threats to population health and well-being: the imperative of protective solutions that will last.

    PubMed

    Kjellstrom, Tord; McMichael, Anthony J

    2013-04-03

    The observational evidence of the impacts of climate conditions on human health is accumulating. A variety of direct, indirect, and systemically mediated health effects have been identified. Excessive daily heat exposures create direct effects, such as heat stroke (and possibly death), reduce work productivity, and interfere with daily household activities. Extreme weather events, including storms, floods, and droughts, create direct injury risks and follow-on outbreaks of infectious diseases, lack of nutrition, and mental stress. Climate change will increase these direct health effects. Indirect effects include malnutrition and under-nutrition due to failing local agriculture, spread of vector-borne diseases and other infectious diseases, and mental health and other problems caused by forced migration from affected homes and workplaces. Examples of systemically mediated impacts on population health include famine, conflicts, and the consequences of large-scale adverse economic effects due to reduced human and environmental productivity. This article highlights links between climate change and non-communicable health problems, a major concern for global health beyond 2015. Detailed regional analysis of climate conditions clearly shows increasing temperatures in many parts of the world. Climate modelling indicates that by the year 2100 the global average temperature may have increased by 34°C unless fundamental reductions in current global trends for greenhouse gas emissions are achieved. Given other unforeseeable environmental, social, demographic, and geopolitical changes that may occur in a plus-4-degree world, that scenario may comprise a largely uninhabitable world for millions of people and great social and military tensions. It is imperative that we identify actions and strategies that are effective in reducing these increasingly likely threats to health and well-being. The fundamental preventive strategy is, of course, climate change mitigation by

  18. Climate Leadership Literacy as a Component of Climate Literacy

    NASA Astrophysics Data System (ADS)

    Kothavala, D. L.

    2014-12-01

    How can the 3rd National Climate Assessment be used to go beyond climate change literacy, to include literacy in climate leadership and its improvement? The National Climate Assessment refers to "no-regrets" strategies (i.e., beneficial despite uncertainty), such as, e.g., energy efficiency, cultivating networks, and growing our adaptive capacity. As we cultivate our capacity as a species to pivot, climate leadership performance and its improvement become legitimate - and essential - realms of research, planning, and practice. However, climate leadership across sectors is not yet well-articulated; and operationalizing literacy expressed as 'what to do' may be viewed as overtly prescriptive by scientists. This talk examines approaches and illustrative examples provided in the Climate Assessment at the scale of cities, states, and firms; along with key findings from the National Academies on communicating science to decision makers; in identifying factors to enhance literacy in climate leadership and performance.

  19. State-dependent climate sensitivity in past warm climates and its implications for future climate projections.

    PubMed

    Caballero, Rodrigo; Huber, Matthew

    2013-08-27

    Projections of future climate depend critically on refined estimates of climate sensitivity. Recent progress in temperature proxies dramatically increases the magnitude of warming reconstructed from early Paleogene greenhouse climates and demands a close examination of the forcing and feedback mechanisms that maintained this warmth and the broad dynamic range that these paleoclimate records attest to. Here, we show that several complementary resolutions to these questions are possible in the context of model simulations using modern and early Paleogene configurations. We find that (i) changes in boundary conditions representative of slow "Earth system" feedbacks play an important role in maintaining elevated early Paleogene temperatures, (ii) radiative forcing by carbon dioxide deviates significantly from pure logarithmic behavior at concentrations relevant for simulation of the early Paleogene, and (iii) fast or "Charney" climate sensitivity in this model increases sharply as the climate warms. Thus, increased forcing and increased slow and fast sensitivity can all play a substantial role in maintaining early Paleogene warmth. This poses an equifinality problem: The same climate can be maintained by a different mix of these ingredients; however, at present, the mix cannot be constrained directly from climate proxy data. The implications of strongly state-dependent fast sensitivity reach far beyond the early Paleogene. The study of past warm climates may not narrow uncertainty in future climate projections in coming centuries because fast climate sensitivity may itself be state-dependent, but proxies and models are both consistent with significant increases in fast sensitivity with increasing temperature.

  20. Bioethics and Public Health Collaborate to Reveal Impacts of Climate Change on Caribbean Life

    NASA Astrophysics Data System (ADS)

    Macpherson, C.; Akpinar-Elci, M.

    2011-12-01

    about climate change than others [2] and no expertise is needed to discuss such experiences or related values. These are accessible concepts in all disciplines and across socioeconomic levels. Research to further identify and describe values challenged by climate change is needed and can be communicated across disciplines and to the public. The resultant dialog will facilitate interdisciplinary collaboration, public and political debate, and possibly generate behavior change. References 1. Alliance of Small Island States (AOSIS). Accessed July 6, 2011. http://aosis.info/members-and-observers/ 2. Spence A., Poortinga W., Butler C., Pidgeon N.F. Perceptions of climate change and willingness to save energy related to flood experience. Nature Climate Change. March 2011. Accessed July 6, 2011. http://www.nature.com/nclimate/journal/vaop/ncurrent/full/nclimate1059.html

  1. Climate Informatics

    NASA Technical Reports Server (NTRS)

    Monteleoni, Claire; Schmidt, Gavin A.; Alexander, Francis J.; Niculescu-Mizil, Alexandru; Steinhaeuser, Karsten; Tippett, Michael; Banerjee, Arindam; Blumenthal, M. Benno; Ganguly, Auroop R.; Smerdon, Jason E.; hide

    2013-01-01

    The impacts of present and potential future climate change will be one of the most important scientific and societal challenges in the 21st century. Given observed changes in temperature, sea ice, and sea level, improving our understanding of the climate system is an international priority. This system is characterized by complex phenomena that are imperfectly observed and even more imperfectly simulated. But with an ever-growing supply of climate data from satellites and environmental sensors, the magnitude of data and climate model output is beginning to overwhelm the relatively simple tools currently used to analyze them. A computational approach will therefore be indispensable for these analysis challenges. This chapter introduces the fledgling research discipline climate informatics: collaborations between climate scientists and machine learning researchers in order to bridge this gap between data and understanding. We hope that the study of climate informatics will accelerate discovery in answering pressing questions in climate science.

  2. University students as recipients of and contributors to information on climate change: insights from South Africa and implications for well-being.

    PubMed

    El Zoghbi, Mona Betour; El Ansari, Walid

    2014-06-01

    This study aimed to enhance the in-depth understanding of the contextual dimensions that shape the relationships between climate change communication approach and youth well-being. The study focused on university students who constitute the key stakeholders and future decision-makers and leaders for managing the long-term climate risks. A total of 10 focus group interviews were conducted with 117 undergraduate and graduate South African university students from over 12 universities located in different provinces of South Africa. In addition, another 16 interviews were also undertaken with university students, 10 interviews with key experts, and 3 youth national events were attended as participant-observation. As recipients of information on climate change, students' well-being was negatively affected by the media's pessimism of communicating risks and the inadequate or restricted networking of communicating solutions and strategies. As contributors to information on climate change, students faced key barriers to their efficacy and agency that entailed socio-cultural inequalities (e.g. race and language) and a lack of formal forums for community recognition, policy consultation and collaboration. In addition, for some students (e.g. journalism students), the lack of sufficient knowledge and skills on climate change and sustainability issues limited their ability to effectively communicate these issues to their audience. Platforms for interactive and reflective discussions, access to innovative technologies and social media, and opportunities for multi-stakeholder partnerships are keys to the success of youth-targeted and youth-initiated communication on climate change.

  3. A satellite simulator for TRMM PR applied to climate model simulations

    NASA Astrophysics Data System (ADS)

    Spangehl, T.; Schroeder, M.; Bodas-Salcedo, A.; Hollmann, R.; Riley Dellaripa, E. M.; Schumacher, C.

    2017-12-01

    Climate model simulations have to be compared against observation based datasets in order to assess their skill in representing precipitation characteristics. Here we use a satellite simulator for TRMM PR in order to evaluate simulations performed with MPI-ESM (Earth system model of the Max Planck Institute for Meteorology in Hamburg, Germany) performed within the MiKlip project (https://www.fona-miklip.de/, funded by Federal Ministry of Education and Research in Germany). While classical evaluation methods focus on geophysical parameters such as precipitation amounts, the application of the satellite simulator enables an evaluation in the instrument's parameter space thereby reducing uncertainties on the reference side. The CFMIP Observation Simulator Package (COSP) provides a framework for the application of satellite simulators to climate model simulations. The approach requires the introduction of sub-grid cloud and precipitation variability. Radar reflectivities are obtained by applying Mie theory, with the microphysical assumptions being chosen to match the atmosphere component of MPI-ESM (ECHAM6). The results are found to be sensitive to the methods used to distribute the convective precipitation over the sub-grid boxes. Simple parameterization methods are used to introduce sub-grid variability of convective clouds and precipitation. In order to constrain uncertainties a comprehensive comparison with sub-grid scale convective precipitation variability which is deduced from TRMM PR observations is carried out.

  4. Demonstrating the climate4impact portal: bridging the CMIP5 data infrastructure to impact users

    NASA Astrophysics Data System (ADS)

    Plieger, Maarten; Som de Cerff, Wim; Page, Christian; Hutjes, Ronald; de Jong, Fokke; Bärring, Lars; Sjökvist, Elin

    2013-04-01

    Together with seven other partners (CERFACS, CNRS-IPSL, SMHI, INHGA, CMCC, WUR, MF-CNRM), KNMI is involved in the FP7 project IS-ENES (http://is.enes.org), which supports the European climate modeling infrastructure, in the work package 'Bridging Climate Research Data and the Needs of the Impact Community'. The aim of this work package is to enhance the use of climate model data and to enhance the interaction with climate effect/impact communities. The portal is based on 17 impact use cases from 5 different European countries, and is evaluated by a user panel consisting of use case owners. As the climate impact community is very broad, the focus is mainly on the scientific impact community. This work has resulted in a prototype portal, the ENES portal interface for climate impact communities, that can be visited at www.climate4impact.eu. The portal is connected to all Earth System Grid Federation (ESGF) nodes containing global climate model data (GCM data) from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) and later from the Coordinated Regional Climate Downscaling Experiment (CORDEX). This global network of all major climate model data centers offers services for data description, discovery and download. The climate4impact portal connects to these services and offers a user interface for searching, visualizing and downloading global climate model data and more. During the project, the content management system Drupal was used to enable partners to contribute on the documentation section. The following topics will be demonstrated: - Security: Login using OpenID for access to the ESG data nodes. The ESG works in conjunction with several external websites and systems. The climate4impact portal uses X509 based short lived credentials, generated on behalf of the user with a MyProxy service. Single Sign-on (SSO) is used to make these websites and systems work together. - Discovery: Facetted search based on e.g. variable name, model and institute

  5. Climate Literacy and Energy Awareness Network (CLEAN) - Interactive Webinars for Teacher Professional Development

    NASA Astrophysics Data System (ADS)

    Grogan, M.; Ledley, T. S.; Buhr, S. M.

    2012-12-01

    Climate change will have far reaching impacts that the citizens of tomorrow will need to be prepared to address. In order for the citizens of tomorrow to be prepared, there is a clear need to support teachers in improving their understanding of the climate system and give them the resources to help their students develop that understanding. CLEAN (http://cleanet.org) is a National Science Digital Library (http://www.nsdl.org) project that is stewarding a collection of resources for teaching climate and energy science in grades 6-16. The collection contains classroom activities, lab demonstrations, visualizations, simulations, videos, and more. We have implemented a series of nine interactive webinars (iWebinars), each of which focuses on an aspect of the Essential Principles of Climate Science, pairs a scientist and a teacher to convey the science and how to teach that science using the vetted resources in the CLEAN collection, and gives the participants the opportunity to ask questions and discuss with the presenters and each other how they would use the resources in their classrooms and what else they would need to effectively teach the topic under discussion. The iWebinars were recorded and posted to the CLEAN portal (http://cleanet.org/clean/community/webinars/index.html) so that the participants and others can view them in the future. In this presentation, we will describe the scope and structure of the iWebinars; how the scientist's and teacher's presentations were coordinated to most effectively help the participants learn both the science and how to best convey it to their students; and how we involved the teachers in discussions to deepen their engagement and learning.

  6. Taming The Polar Bear

    DTIC Science & Technology

    2014-04-01

    Kennedy, “2012 State of the Climate : Arctiv Sea Ice” NOAA Climate.gov, 30 July 2013, http://www.climate.gov/news-features/understanding-climate/2012...Kennedy, Caitlin, “2012 State of the Climate : Arctiv Sea Ice” NOAA Climate.gov, 30 July 2013, http://www.climate.gov/news-features/understanding

  7. Rocks, Rain, and Climate: a GIFT Workshop for Teachers in Brazil

    NASA Astrophysics Data System (ADS)

    Passow, M. J.; Krusche, N.; Carneiro, C. D.

    2010-12-01

    included secondary school teachers and university professors from Brazil, Argentina, and the USA. Insights gained from developing this international GIFT program will be shared, including strengths, weaknesses, and attendee feedback. Archived versions of the slide shows and other resources (mostly in Portuguese, with some English) are available on http://www.earth2class.org and other websites created by the organizers for further dissemination. A bilingual paper by MJ Passow, “TRMM: Bringing remote sensing of precipitation into your classroom,” is part of Terræ Didatica, v. 6, iss. 1 (2010), available at http://www.ige.unicamp.br/terraedidatica/.

  8. Ontology development for provenance tracing in National Climate Assessment of the US Global Change Research Program

    NASA Astrophysics Data System (ADS)

    Ma, X.; Zheng, J. G.; Goldstein, J.; Duggan, B.; Xu, J.; Du, C.; Akkiraju, A.; Aulenbach, S.; Tilmes, C.; Fox, P. A.

    2013-12-01

    The periodical National Climate Assessment (NCA) of the US Global Change Research Program (USGCRP) [1] produces reports about findings of global climate change and the impacts of climate change on the United States. Those findings are of great public and academic concerns and are used in policy and management decisions, which make the provenance information of findings in those reports especially important. The USGCRP is developing a Global Change Information System (GCIS), in which the NCA reports and associated provenance information are the primary records. We were modeling and developing Semantic Web applications for the GCIS. By applying a use case-driven iterative methodology [2], we developed an ontology [3] to represent the content structure of a report and the associated provenance information. We also mapped the classes and properties in our ontology into the W3C PROV-O ontology [4] to realize the formal presentation of provenance. We successfully implemented the ontology in several pilot systems for a recent National Climate Assessment report (i.e., the NCA3). They provide users the functionalities to browse and search provenance information with topics of interest. Provenance information of the NCA3 has been made structured and interoperable by applying the developed ontology. Besides the pilot systems we developed, other tools and services are also able to interact with the data in the context of the 'Web of data' and thus create added values. Our research shows that the use case-driven iterative method bridges the gap between Semantic Web researchers and earth and environmental scientists and is able to be deployed rapidly for developing Semantic Web applications. Our work also provides first-hand experience for re-using the W3C PROV-O ontology in the field of earth and environmental sciences, as the PROV-O ontology is recently ratified (on 04/30/2013) by the W3C as a recommendation and relevant applications are still rare. [1] http://www

  9. Bridging the Divide Between Climate and Global Change Science and Education of Public and K-12 Visitors at the National Center for Atmospheric Research

    NASA Astrophysics Data System (ADS)

    Foster, S. Q.; Johnson, R. M.; Carbone, L.; Munoz, R.; Eastburn, T.; Ammann, C.; Lu, G.; Richmond, A.; Committee, S.

    2004-12-01

    knowledge, and address their misconceptions. Visitors view the exhibit every day of the year on their own, using an audiotour, or with a tour guide. NCAR/UCAR's educational content about climate change is increasingly available to national audiences through the new NCAR EO web site (www.ncar.ucar.edu/eo), Windows to the Universe (www.windows.ucar.edu), UCAR-EO's summer teachers workshops, and sessions at the National Science Teacher Association meetings and other professional education venues.

  10. www.elearnSCI.org: a global educational initiative of ISCoS.

    PubMed

    Chhabra, H S; Harvey, L A; Muldoon, S; Chaudhary, S; Arora, M; Brown, D J; Biering-Sorensen, F; Wyndaele, J J; Charlifue, S; Horsewell, J; Ducharme, S; Green, D; Simpson, D; Glinsky, J; Weerts, E; Upadhyay, N; Aito, S; Wing, P; Katoh, S; Kovindha, A; Krassioukov, A; Weeks, C; Srikumar, V; Reeves, R; Siriwardane, C; Hasnan, N; Kalke, Y B; Lanig, I

    2013-03-01

    To develop a web-based educational resource for health professionals responsible for the management of spinal cord injury (SCI). The resource:www.elearnSCI.org is comprised of seven learning modules, each subdivided into various submodules. Six of the seven modules address the educational needs of all disciplines involved in comprehensive SCI management. The seventh module addresses prevention of SCI. Each submodule includes an overview, activities, self-assessment questions and references. Three hundred and thirty-two experts from The International Spinal Cord Society (ISCoS) and various affiliated societies from 36 countries were involved in developing the resource through 28 subcommittees. The content of each submodule was reviewed and approved by the Education and Scientific Committees of ISCoS and finally by an Editorial Committee of 23 experts. The content of the learning modules is relevant to students and to new as well as experienced SCI healthcare professionals. The content is applicable globally, has received consumer input and is available at no cost. The material is presented on a website underpinned by a sophisticated content-management system, which allows easy maintenance and ready update of all the content. The resource conforms to key principles of e-learning, including appropriateness of curriculum, engagement of learners, innovative approaches, effective learning, ease of use, inclusion, assessment, coherence, consistency, transparency, cost effectiveness and feedback. www.elearnSCI.org provides a cost effective way of training healthcare professionals that goes beyond the textbook and traditional face-to-face teaching.

  11. The climate change consensus extends beyond climate scientists

    NASA Astrophysics Data System (ADS)

    Carlton, J. S.; Perry-Hill, Rebecca; Huber, Matthew; Prokopy, Linda S.

    2015-09-01

    The existence of anthropogenic climate change remains a public controversy despite the consensus among climate scientists. The controversy may be fed by the existence of scientists from other disciplines publicly casting doubt on the validity of climate science. The extent to which non-climate scientists are skeptical of climate science has not been studied via direct survey. Here we report on a survey of biophysical scientists across disciplines at universities in the Big 10 Conference. Most respondents (93.6%) believe that mean temperatures have risen and most (91.9%) believe in an anthropogenic contribution to rising temperatures. Respondents strongly believe that climate science is credible (mean credibility score 6.67/7). Those who disagree about climate change disagree over basic facts (e.g., the effects of CO2 on climate) and have different cultural and political values. These results suggest that scientists who are climate change skeptics are outliers and that the majority of scientists surveyed believe in anthropogenic climate change and that climate science is credible and mature.

  12. Using the WWW to Make YOHKOH SXT Images Available to the Public: The YOHKOH Public Outreach Project

    NASA Astrophysics Data System (ADS)

    Larson, M.; McKenzie, D.; Slater, T.; Acton, L.; Alexander, D.; Freeland, S.; Lemen, J.; Metcalf, T.

    1997-05-01

    The Yohkoh Public Outreach Project (YPOP) is funded by NASA as one of the Information Infrastructure Technology and Applications Cooperative Agreement Teams to create public access to high quality Yohkoh SXT data via the World Wide Web. These products are being made available to the scientific research community, K-12 schools, and informal education centers including planetaria, museums, and libraries. The project aims to utilize the intrinsic excitement of the SXT data, and in particular the SXT movies, to develop science learning tools and classroom activities. The WWW site at URL: http://www.space.lockheed.com/YPOP/ uses a movie theater theme to highlight available Yohkoh movies in a non-intimidating and entertaining format for non-scientists. The site features lesson plans, 'solar' activities, slide shows and, of course, a variety of movies about the Sun. Classroom activities are currently undergoing development with a team of scientists and K-12 teachers for distribution in late 1997. We will display the products currently online, which include a solar classroom with activities for teachers, background resources, and a virtual tour of our Sun.

  13. State-dependent climate sensitivity in past warm climates and its implications for future climate projections

    PubMed Central

    Caballero, Rodrigo; Huber, Matthew

    2013-01-01

    Projections of future climate depend critically on refined estimates of climate sensitivity. Recent progress in temperature proxies dramatically increases the magnitude of warming reconstructed from early Paleogene greenhouse climates and demands a close examination of the forcing and feedback mechanisms that maintained this warmth and the broad dynamic range that these paleoclimate records attest to. Here, we show that several complementary resolutions to these questions are possible in the context of model simulations using modern and early Paleogene configurations. We find that (i) changes in boundary conditions representative of slow “Earth system” feedbacks play an important role in maintaining elevated early Paleogene temperatures, (ii) radiative forcing by carbon dioxide deviates significantly from pure logarithmic behavior at concentrations relevant for simulation of the early Paleogene, and (iii) fast or “Charney” climate sensitivity in this model increases sharply as the climate warms. Thus, increased forcing and increased slow and fast sensitivity can all play a substantial role in maintaining early Paleogene warmth. This poses an equifinality problem: The same climate can be maintained by a different mix of these ingredients; however, at present, the mix cannot be constrained directly from climate proxy data. The implications of strongly state-dependent fast sensitivity reach far beyond the early Paleogene. The study of past warm climates may not narrow uncertainty in future climate projections in coming centuries because fast climate sensitivity may itself be state-dependent, but proxies and models are both consistent with significant increases in fast sensitivity with increasing temperature. PMID:23918397

  14. Impacts of weighting climate models for hydro-meteorological climate change studies

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Brissette, François P.; Lucas-Picher, Philippe; Caya, Daniel

    2017-06-01

    Weighting climate models is controversial in climate change impact studies using an ensemble of climate simulations from different climate models. In climate science, there is a general consensus that all climate models should be considered as having equal performance or in other words that all projections are equiprobable. On the other hand, in the impacts and adaptation community, many believe that climate models should be weighted based on their ability to better represent various metrics over a reference period. The debate appears to be partly philosophical in nature as few studies have investigated the impact of using weights in projecting future climate changes. The present study focuses on the impact of assigning weights to climate models for hydrological climate change studies. Five methods are used to determine weights on an ensemble of 28 global climate models (GCMs) adapted from the Coupled Model Intercomparison Project Phase 5 (CMIP5) database. Using a hydrological model, streamflows are computed over a reference (1961-1990) and future (2061-2090) periods, with and without post-processing climate model outputs. The impacts of using different weighting schemes for GCM simulations are then analyzed in terms of ensemble mean and uncertainty. The results show that weighting GCMs has a limited impact on both projected future climate in term of precipitation and temperature changes and hydrology in terms of nine different streamflow criteria. These results apply to both raw and post-processed GCM model outputs, thus supporting the view that climate models should be considered equiprobable.

  15. What will be the weather like tomorrow?

    NASA Astrophysics Data System (ADS)

    Christelle, Guilloux

    2014-05-01

    Since June 2010, our school is part of the network '"météo à l'école'": it hosts an autonomous weather station, approved by Météo France , which measures continuously the temperature and precipitation. The data is transmitted by a GSM module to a computer server. After its validation by Météo France, it is send online every day on a public accessible website : http://www.edumeteo.org/ The MPS Education ( Scientific Methods and Practices) in junior high school classes (one hour and half per week throughout the school year ) makes full use of data from the networks '"météo à l'école'" data and Météo France. Three scientific disciplines :; Mathematics, Life and Earth Sciences, Physical Sciences and Chemistry are part of a schedule defined after consultation and educational coherence to enable students to: - Discovering and understanding the operation of the sensors station, weather satellites ... - Operating satellite images, studying of the atmosphere and weather phenomena (formation of a storm, for example) - Operating collected data (networks 'météo à l'école' and Météo France) to identify climatic differences between regions, seasons, and their effects on living beings (study of the greenhouse effect and climate warming among others). The ultimate goal is to discover used tools and data to produce a weather forecast. We work for these purposes with the Cité de l'Espace in Toulouse (weather Pole) and the head forecaster Meteo France Merignac.

  16. Active and Passive Supplier Assessment Program (ASAP & PSAP) WWW Sites http://nepp.nasa.gov/imd/asap http://nepp.nasa.gov/imd/psap

    NASA Technical Reports Server (NTRS)

    Brusse, Jay

    2000-01-01

    The Active and Passive Supplier Assessment Programs (ASAP and PSAP) WWW Sites provide general information to the electronic parts community regarding the availability of electronic parts. They also provide information to NASA regarding modifications to commonly used procurement specifications and test methods. The ASAP and PSAP www sites are ongoing resources produced by Code 562 in support of the NASA HQ funded NASA Electronic Parts and Packaging (NEPP) Program. These WWW sites do not provide information pertaining to patented or proprietary information. All of the information contained in these www sites is available through various other public domain resources such as US Military Qualified Producers Listings (QPLs) and Qualified Manufacturer Listings (QMLs) and industry working groups such as the Electronics Industry Alliance (EIA) and the Space Parts Working Group (SPWG).

  17. Climate Discovery: Integrating Research With Exhibit, Public Tours, K-12, and Web-based EPO Resources

    NASA Astrophysics Data System (ADS)

    Foster, S. Q.; Carbone, L.; Gardiner, L.; Johnson, R.; Russell, R.; Advisory Committee, S.; Ammann, C.; Lu, G.; Richmond, A.; Maute, A.; Haller, D.; Conery, C.; Bintner, G.

    2005-12-01

    lessons and ancillary exhibit interactives and visualizations for the final Teachers' Guide unit about 'Climate Future.' Units developed so far are available in downloadable format on the NCAR EO and Windows to the Universe web sites for dissemination to educators and the general public public. Those web sites are, respectively, (http://eo.ucar.edu/educators/ClimateDiscovery) and (http://www.windows.ucar.edu). Encouragement from funding agencies to integrate and relate resources and growing pressure to implement efficiencies in educational programs have created excellent opportunities which will be described from the viewpoints of EO staff and scientists'. Challenges related to public and student perceptions about climate and global change, the scientific endeavor, and how to establish successful dialogues between educators and scientists will also be discussed.

  18. Satellite-based climate data records of surface solar radiation from the CM SAF

    NASA Astrophysics Data System (ADS)

    Trentmann, Jörg; Cremer, Roswitha; Kothe, Steffen; Müller, Richard; Pfeifroth, Uwe

    2017-04-01

    The incoming surface solar radiation has been defined as an essential climate variable by GCOS. Long term monitoring of this part of the earth's energy budget is required to gain insights on the state and variability of the climate system. In addition, climate data sets of surface solar radiation have received increased attention over the recent years as an important source of information for solar energy assessments, for crop modeling, and for the validation of climate and weather models. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) is deriving climate data records (CDRs) from geostationary and polar-orbiting satellite instruments. Within the CM SAF these CDRs are accompanied by operational data at a short time latency to be used for climate monitoring. All data from the CM SAF is freely available via www.cmsaf.eu. Here we present the regional and the global climate data records of surface solar radiation from the CM SAF. The regional climate data record SARAH (Surface Solar Radiation Dataset - Heliosat, doi: 10.5676/EUM_SAF_CM/SARAH/V002) is based on observations from the series of Meteosat satellites. SARAH provides 30-min, daily- and monthly-averaged data of the effective cloud albedo, the solar irradiance (incl. spectral information), the direct solar radiation (horizontal and normal), and the sunshine duration from 1983 to 2015 for the full view of the Meteosat satellite (i.e, Europe, Africa, parts of South America, and the Atlantic ocean). The data sets are generated with a high spatial resolution of 0.05° allowing for detailed regional studies. The global climate data record CLARA (CM SAF Clouds, Albedo and Radiation dataset from AVHRR data, doi: 10.5676/EUM_SAF_CM/CLARA_AVHRR/V002) is based on observations from the series of AVHRR satellite instruments. CLARA provides daily- and monthly-averaged global data of the solar irradiance (SIS) from 1982 to 2015 with a spatial resolution of 0.25°. In addition to the solar surface

  19. Being Prepared for Climate Change: A Workbook for Developing Risk-Based Adaptation Plans

    EPA Pesticide Factsheets

    This workbook is a guide for environmental professionals to construct a climate change adaptation plan based on identifying risks and their consequences. It incorporates watershed management, vulnerability assessments and action planning.

  20. Using satellite microwave sensors to develop climate data records

    NASA Astrophysics Data System (ADS)

    Ferraro, Ralph; Meng, Huan; Luo, Zhengzhao

    2011-08-01

    NOAA Workshop on Climate Data Records From Satellite Passive Microwave Sounders: AMSU/MHS/SSMT2; College Park, Maryland, 2-3 March 2011 ; The National Oceanic and Atmospheric Administration's (NOAA) Climate Data Record (CDR) program (http://www.ncdc.noaa.gov/cdr/index.html) is an effort to create long-term homogeneous records of satellite measurements and derived products. As part of this effort, scientists at two related projects that focus on passive microwave sensors with the goal of hydrological applications—one led by a National Environmental Satellite, Data, and Information Service/Center for Satellite Applications and Research (STAR) team and one led by the City College of New York (CCNY)—held a joint workshop with the following objectives: To allow the CDR teams to interact with satellite data and product users and other CDR developers on relevant aspects of sensor characteristics and intercalibration that will lead to mature CDRs; To provide a formal mechanism for input by subject matter experts, in particular, sensor scientists and engineers; and> To move toward a community consensus approach for NOAA microwave sounder CDRs.

  1. Climate variability and vulnerability to climate change: a review

    PubMed Central

    Thornton, Philip K; Ericksen, Polly J; Herrero, Mario; Challinor, Andrew J

    2014-01-01

    The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food systems, with a focus on the developing world. We present new analysis that tentatively links increases in climate variability with increasing food insecurity in the future. We consider the ways in which people deal with climate variability and extremes and how they may adapt in the future. Key knowledge and data gaps are highlighted. These include the timing and interactions of different climatic stresses on plant growth and development, particularly at higher temperatures, and the impacts on crops, livestock and farming systems of changes in climate variability and extreme events on pest-weed-disease complexes. We highlight the need to reframe research questions in such a way that they can provide decision makers throughout the food system with actionable answers, and the need for investment in climate and environmental monitoring. Improved understanding of the full range of impacts of climate change on biological and food systems is a critical step in being able to address effectively the effects of climate variability and extreme events on human vulnerability and food security, particularly in agriculturally based developing countries facing the challenge of having to feed rapidly growing populations in the coming decades. PMID:24668802

  2. 40 CFR 1037.810 - Incorporation by reference.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... must publish a notice of the change in the Federal Register and the material must be available to the... software is also available for download at http://www.epa.gov/otaq/climate/gem.htm. (2) [Reserved] (d... working version of this software is also available for download at http://www.epa.gov/otaq/climate/gem.htm. ...

  3. A longitudinal examination of coach and peer motivational climates in youth sport: implications for moral attitudes, well-being, and behavioral investment.

    PubMed

    Ntoumanis, Nikos; Taylor, Ian M; Thøgersen-Ntoumani, Cecilie

    2012-01-01

    Embedded in achievement goal theory (Ames, 1992; Meece, Anderman, & Anderman, 2006), this study examined how perceptions of coach and peer motivational climate in youth sport predicted moral attitudes, emotional well-being, and indices of behavioral investment in a sample of British adolescents competing in regional leagues. We adopted a longitudinal perspective, taking measures at the middle and the end of a sport season, as well as at the beginning of the following season. Multilevel modeling analyses showed that perceptions of task-involving peer and coach climates were predictive of more adaptive outcomes than were perceptions of ego-involving peer and coach climates. Predictive effects differed as a function of time and outcome variable under investigation. The results indicate the importance of considering peer influence in addition to coach influence when examining motivational climate in youth sport.

  4. Many atolls may be uninhabitable within decades due to climate change

    USGS Publications Warehouse

    Storlazzi, Curt; Elias, Edwin P.L.; Berkowitz, Paul

    2015-01-01

    Observations show global sea level is rising due to climate change, with the highest rates in the tropical Pacific Ocean where many of the world’s low-lying atolls are located. Sea-level rise is particularly critical for low-lying carbonate reef-lined atoll islands; these islands have limited land and water available for human habitation, water and food sources, and ecosystems that are vulnerable to inundation from sea-level rise. Here we demonstrate that sea-level rise will result in larger waves and higher wave-driven water levels along atoll islands’ shorelines than at present. Numerical model results reveal waves will synergistically interact with sea-level rise, causing twice as much land forecast to be flooded for a given value of sea-level rise than currently predicted by current models that do not take wave-driven water levels into account. Atolls with islands close to the shallow reef crest are more likely to be subjected to greater wave-induced run-up and flooding due to sea-level rise than those with deeper reef crests farther from the islands’ shorelines. It appears that many atoll islands will be flooded annually, salinizing the limited freshwater resources and thus likely forcing inhabitants to abandon their islands in decades, not centuries, as previously thought.

  5. Evaluation of GCMs in the context of regional predictive climate impact studies.

    NASA Astrophysics Data System (ADS)

    Kokorev, Vasily; Anisimov, Oleg

    2016-04-01

    Significant improvements in the structure, complexity, and general performance of earth system models (ESMs) have been made in the recent decade. Despite these efforts, the range of uncertainty in predicting regional climate impacts remains large. The problem is two-fold. Firstly, there is an intrinsic conflict between the local and regional scales of climate impacts and adaptation strategies, on one hand, and larger scales, at which ESMs demonstrate better performance, on the other. Secondly, there is a growing understanding that majority of the impacts involve thresholds, and are thus driven by extreme climate events, whereas accent in climate projections is conventionally made on gradual changes in means. In this study we assess the uncertainty in projecting extreme climatic events within a region-specific and process-oriented context by examining the skills and ranking of ESMs. We developed a synthetic regionalization of Northern Eurasia that accounts for the spatial features of modern climatic changes and major environmental and socio-economical impacts. Elements of such fragmentation could be considered as natural focus regions that bridge the gap between the spatial scales adopted in climate-impacts studies and patterns of climate change simulated by ESMs. In each focus region we selected several target meteorological variables that govern the key regional impacts, and examined the ability of the models to replicate their seasonal and annual means and trends by testing them against observations. We performed a similar evaluation with regard to extremes and statistics of the target variables. And lastly, we used the results of these analyses to select sets of models that demonstrate the best performance at selected focus regions with regard to selected sets of target meteorological parameters. Ultimately, we ranked the models according to their skills, identified top-end models that "better than average" reproduce the behavior of climatic parameters, and

  6. Climate change and Mediterranean storm tracks: present and future climate simulations of a high-resolution Mediterranean model

    NASA Astrophysics Data System (ADS)

    Hatzaki, M.; Flocas, H. A.; Simmonds, I.; Keay, K.; Giannakopoulos, C.; Brikolas, V.; Kouroutzoglou, J.

    2010-09-01

    ), according to the Lagrangian perspective. MS algorithm characterizes a cyclone only if a vorticity maximum could be connected with a local pressure minimum. This approach is considered to be crucial, since open lows are also incorporated into the storm life-cycle, preventing possible inappropriate time series breaks, if a temporary weakening to an open-low state occurs. According to the results, a decrease of the storm number and a tendency towards deeper cyclones is expected in the future, in general agreement with the results of previous studies. However, new findings reveal with respect to the dynamic/kinematic characteristics of the cyclonic tracks. ACKNOWLEDGMENTS: M. Hatzaki would like to thank the Greek State Scholarships Foundation for financial support through the program of postdoctoral research. The support of EU-FP6 project CIRCE Integrated Project-Climate Change and Impact Research: the Mediterranean Environment (http://www.circeproject.eu) for climate model data provision is also greatly acknowledged.

  7. Are You Being Served? The Relationship between School Climate for Service and Teachers' Engagement, Satisfaction, and Intention to Leave: A Moderated Mediation Model.

    PubMed

    Eldor, Liat; Shoshani, Anat

    2017-05-19

    The notion of service has been receiving increasing attention in organizational psychology literature in recent years, due to the client-oriented managerial movement. Yet, little to no attention has been paid to the service notion in educational psychology despite its high relevance to educational settings, given the pressure to be more service-oriented and possess a client-focused state of mind. The present study explores the notion of service in school domains by examining the joint effects of climate for service and the internal service in schools on teachers' work attitudes: work engagement, job satisfaction, and intention to leave their work. The notion of climate for service emphasizes the school's attitude of teachers as service providers to its clients (students and their parents); internal climate emphasizes the school's attitude of providing service to its teaching staff. The study was conducted via a sample of 423 teachers from 30 different schools in Israel. We hypothesized that the indirect relationship between the climate for service and teachers' job satisfaction and intention to leave work would be mediated by teacher work engagement. Our findings supported this hypothesis. Moreover, this indirect relationship via teacher work engagement was demonstrated most strongly when the internal service quality received was high, providing teachers with the capability to deliver what the service climate motivates them to do. Therefore, service-oriented resources-both climate for service and internal service-may be crucial in affecting teachers work attitudes and should be specifically targeted by principals and other educational decision makers.

  8. Insights into Meteoric 10Be Dynamics and Climate Stability along the Hawaiian Kohala Climosequence

    NASA Astrophysics Data System (ADS)

    Dixon, J. L.; Chadwick, O.

    2017-12-01

    We measure meteoric 10Be in soils across a well-studied climate gradient spanning Kohala, Hawaii to provide new understanding of the isotope behavior in soils and constraints on nuclide delivery rates to Earth's surface. Annual rainfall across the Kohala climogradient varies from 16 - 300 cm, with Hawaiian soils reflecting evolution over the past 150 ka, the nominal age of the volcanic parent material. We analyzed a sequence of nine soil profiles for meteoric 10Be and compared with previously measured data on soil chemistry and dust fluxes. In the Kohala system, soil inventories of 10Be span 40-300 x 109 atom/cm2 and generally increase linearly with rainfall, consistent with precipitation-driven fluxes and the high retention of 10Be in clay-rich soil horizons. However, nuclide inventories dramatically decrease for soils at rainfall >140 cm/y. The observed decrease corresponds with other strong changes in weathering intensity across the climate gradient, associated with previously studied and recognized pedogenic thresholds. These thresholds represent abrupt transitions in soil chemistry related to increased throughflow of soil solutions, decreases in base saturation and pH, and the destruction of phyllosilicates and replacement with amorphous oxyhydroxides. Meteoric-derived ages, based on 10Be-flux estimates and measured inventories are uniform for dry soils ( 60ka), but far less than the known substrate age (150ka), indicating that actual delivery rates are lower than predicted from current models in this region. Despite the offset in predicted and substrate ages, the consistency in pattern suggests that the rainfall gradient over the 150 thousand years of soil development has not deviated significantly from its present structure. Furthermore, based on clear 10Be losses in soils with high moisture availability, our results indicate meteoric 10Be may not be a robust tracer of soil age and movement in systems with high rainfall and weathering intensity and low soil

  9. The influence of question design on the response to self-assessment in www.elearnSCI.org: a submodule pilot study.

    PubMed

    Liu, N; Li, X-W; Zhou, M-W; Biering-Sørensen, F

    2015-08-01

    This is an interventional training session. The objective of this study was to investigate the difference in response to self-assessment questions in the original and an adjusted version for a submodule of www.elearnSCI.org for student nurses. The study was conducted in a teaching hospital affiliated to Peking University, China. In all, 28 student nurses divided into two groups (groups A and B; 14 in each) received a print-out of a Chinese translation of the slides from the 'Maintaining skin integrity following spinal cord injury' submodule in www.elearnSCI.org for self-study. Both groups were then tested using the 10 self-assessment multiple-choice questions (MCQs) related to the same submodule. Group A used the original questions, whereas group B received an adjusted questionnaire. The responses to four conventional single-answer MCQs were nearly all correct in both groups. However, in three questions, group A, with the option 'All of the above', had a higher number of correct answers than group B, with multiple-answer MCQs. In addition, in another three questions, group A, using the original multiple-answer MCQs, had fewer correct answers than group B, where it was only necessary to tick a single incorrect answer. Variations in design influence the response to questions. The use of conventional single-answer MCQs should be reconsidered, as they only examine the recall of isolated knowledge facts. The 'All of the above' option should be avoided because it would increase the number of correct answers arrived at by guessing. When using multiple-answer MCQs, it is recommended that the questions asked should be in accordance with the content within the www.elearnSCI.org.

  10. Lessons from Afar: A Review of www.daisakuikeda.org, Official Website of Daisaku Ikeda

    ERIC Educational Resources Information Center

    Arauz, Luis

    2012-01-01

    Daisaku Ikeda (1928- ) is a Buddhist leader, peace builder, school founder, and poet. His own biography and lifework provide a model for how one can transform adversity into alternative opportunities for some of the most disenfranchised students. Scrutinizing Ikeda's official website (www.daisakuikeda.org) reveals an extensive collection of his…

  11. Uncertainty information in climate data records from Earth observation

    NASA Astrophysics Data System (ADS)

    Merchant, C. J.

    2017-12-01

    How to derive and present uncertainty in climate data records (CDRs) has been debated within the European Space Agency Climate Change Initiative, in search of common principles applicable across a range of essential climate variables. Various points of consensus have been reached, including the importance of improving provision of uncertainty information and the benefit of adopting international norms of metrology for language around the distinct concepts of uncertainty and error. Providing an estimate of standard uncertainty per datum (or the means to readily calculate it) emerged as baseline good practice, and should be highly relevant to users of CDRs when the uncertainty in data is variable (the usual case). Given this baseline, the role of quality flags is clarified as being complementary to and not repetitive of uncertainty information. Data with high uncertainty are not poor quality if a valid estimate of the uncertainty is available. For CDRs and their applications, the error correlation properties across spatio-temporal scales present important challenges that are not fully solved. Error effects that are negligible in the uncertainty of a single pixel may dominate uncertainty in the large-scale and long-term. A further principle is that uncertainty estimates should themselves be validated. The concepts of estimating and propagating uncertainty are generally acknowledged in geophysical sciences, but less widely practised in Earth observation and development of CDRs. Uncertainty in a CDR depends in part (and usually significantly) on the error covariance of the radiances and auxiliary data used in the retrieval. Typically, error covariance information is not available in the fundamental CDR (FCDR) (i.e., with the level-1 radiances), since provision of adequate level-1 uncertainty information is not yet standard practice. Those deriving CDRs thus cannot propagate the radiance uncertainty to their geophysical products. The FIDUCEO project (www.fiduceo.eu) is

  12. Climate Information Needs for Financial Decision Making

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higgins, Paul

    Climate Information Needs for Financial Decision Making (Final Report) This Department of Energy workshop award (grant #DE-SC0008480) provided primary support for the American Meteorological Society’s study on climate information needs for financial decision making. The goal of this study was to help advance societal decision making by examining the implications of climate variability and change on near-term financial investments. We explored four key topics: 1) the conditions and criteria that influence returns on investment of major financial decisions, 2) the climate sensitivity of financial decisions, 3) climate information needs of financial decision makers, and 4) potential new mechanisms to promotemore » collaboration between scientists and financial decision makers. Better understanding of these four topics will help scientists provide the most useful information and enable financial decision makers to use scientific information most effectively. As a result, this study will enable leaders in business and government to make well-informed choices that help maximize long-term economic success and social wellbeing in the United States The outcomes of the study include a workshop, which brought together leaders from the scientific and financial decision making communities, a publication of the study report, and a public briefing of the results to the policy community. In addition, we will present the results to the scientific community at the AMS Annual Meeting in February, 2014. The study results were covered well by the media including Bloomberg News and E&E News. Upon request, we also briefed the Office of Science Technology Policy (OSTP) and the Council on Environmental Quality (CEQ) on the outcomes. We presented the results to the policy community through a public briefing in December on Capitol Hill. The full report is publicly available at www.ametsoc.org/cin. Summary of Key Findings The United States invests roughly $1.5 trillion U.S. dollars (USD

  13. Quantitative Analysis of Relevant Soil, Land-use and Climate Characteristics on Landscape Degradation in Hungary

    NASA Astrophysics Data System (ADS)

    Kertesz, Adam; Mika, Janos; Jakab, Gergely; Palinkas, Melinda

    2017-04-01

    The objective of our research is to survey degradation processes acting in each micro-region of Hungary in connection with geographical and climatic characteristics. A survey of land degradation processes has been carried out at medium scale (1:50 000) to identify the affected areas of the region. Over 18,000 rectangles of Hungary have been digitally characterised for several types of land degradation. Water-flow type gully erosion and soil-loss (RUSLE, 2015: Esdac-data) are studied for dependent variables in this study. USDA textural classes, available water capacity, bulk density, clay content, coarse fragments, silt content, sand content, soil parent material, soil texture, land-use type (Corine, 2012) are used for non-climatic variables. Some of these characteristics are quantified in a non-scalable way, so the first step was to arrange these qualitative codes or pseudo-numbers into monotonous order for including them into the following multi-regression analyses. Data available from the CarpatClim Project (www.carpatclim-eu.org/pages/home) for 1961-2010 are also used in their 50 years averages is seasonal and annual resolution. The selected variables from this gridded data set are global radiation, daily mean temperature, maximum and minimum temperature, number of extreme cold days (< 20 C), precipitation, extreme wet days (>20 mm), days with utilizable precipitation (>1mm/d), potential evapotranspiration, Palmer Index (PDSI), Palfai Index (PAI), relative humidity and wind speed at 10 m height. The gully erosion processes strongly depend on the investigated non-climatic variables, mostly on parent material and slope. The group of further climatic factors is formed by winter relative humidity, wind speed and all-year round Palmer index. Besides leading role of the above non-climatic factors, additional effects of the significant climate variables are difficult to interpret. Nevertheless, the partial effects of these climate variables are combined with future

  14. Sustaining a Stakeholder-Scientists Partnership in Co-producing Locally Relevant Data, Methods, and Tools

    NASA Astrophysics Data System (ADS)

    Asefa, T.

    2017-12-01

    This case study presents the experiences of two of the most successful boundary organizations that are engaged in co-producing decision relevant climate information for water resources management. The Water Utilities Climate Alliance (www.wucaonline.org) is a coalition of 11 of the nation's largest water utilities with customers base over 50 million. Whereas Florida Water and Climate Alliance (www.floridaWCA.org) is a state level collaborative Learning network that is engaged in co-exploration and co-development of actionable climate science. Lesson learned from these two structurally different organizations will be shared.

  15. The climate4impact portal: bridging the CMIP5 data infrastructure to impact users

    NASA Astrophysics Data System (ADS)

    Plieger, Maarten; Som de Cerff, Wim; Page, Christian; Hutjes, Ronald; de Jong, Fokke; Bärring, Lars; Sjökvist, Elin

    2013-04-01

    Together with seven other partners (CERFACS, CNRS-IPSL, SMHI, INHGA, CMCC, WUR, MF-CNRM), KNMI is involved in the FP7 project IS-ENES (http://is.enes.org), which supports the European climate modeling infrastructure, in the work package 'Bridging Climate Research Data and the Needs of the Impact Community'. The aim of this work package is to enhance the use of climate model data and to enhance the interaction with climate effect/impact communities. The portal is based on 17 impact use cases from 5 different European countries, and is evaluated by a user panel consisting of use case owners. As the climate impact community is very broad, the focus is mainly on the scientific impact community. This work has resulted in a prototype portal, the ENES portal interface for climate impact communities, that can be visited at www.climate4impact.eu. The portal is connected to all Earth System Grid Federation (ESGF) nodes containing global climate model data (GCM data) from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) and later from the Coordinated Regional Climate Downscaling Experiment (CORDEX). This global network of all major climate model data centers offers services for data description, discovery and download. The climate4impact portal connects to these services and offers a user interface for searching, visualizing and downloading global climate model data and more. A challenging task was to describe the available model data and how it can be used. The portal tries to inform users about possible caveats when using GCM data. All impact use cases are described in the documentation section, using highlighted keywords pointing to detailed information in the glossary. During the project, the content management system Drupal was used to enable partners to contribute on the documentation section. In this presentation the architecture and following items will be detailed: - Security: Login using OpenID for access to the ESG data nodes. The ESG works in

  16. Comparing NICU teamwork and safety climate across two commonly used survey instruments.

    PubMed

    Profit, Jochen; Lee, Henry C; Sharek, Paul J; Kan, Peggy; Nisbet, Courtney C; Thomas, Eric J; Etchegaray, Jason M; Sexton, Bryan

    2016-12-01

    Measurement and our understanding of safety culture are still evolving. The objectives of this study were to assess variation in safety and teamwork climate and in the neonatal intensive care unit (NICU) setting, and compare measurement of safety culture scales using two different instruments (Safety Attitudes Questionnaire (SAQ) and Hospital Survey on Patient Safety Culture (HSOPSC)). Cross-sectional survey study of a voluntary sample of 2073 (response rate 62.9%) health professionals in 44 NICUs. To compare survey instruments, we used Spearman's rank correlation coefficients. We also compared similar scales and items across the instruments using t tests and changes in quartile-level performance. We found significant variation across NICUs in safety and teamwork climate scales of SAQ and HSOPSC (p<0.001). Safety scales (safety climate and overall perception of safety) and teamwork scales (teamwork climate and teamwork within units) of the two instruments correlated strongly (safety r=0.72, p<0.001; teamwork r=0.67, p<0.001). However, the means and per cent agreements for all scale scores and even seemingly similar item scores were significantly different. In addition, comparisons of scale score quartiles between the two instruments revealed that half of the NICUs fell into different quartiles when translating between the instruments. Large variation and opportunities for improvement in patient safety culture exist across NICUs. Important systematic differences exist between SAQ and HSOPSC such that these instruments should not be used interchangeably. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  17. The Machinery Of Climate Anti-Science, Its Efforts Against Education, Top To Bottom

    NASA Astrophysics Data System (ADS)

    Mashey, J. R.

    2014-12-01

    "There's always one every year" a fine local science teacher said after once again being hassled by a vocal parent for teaching appropriate climate science in school. How does that happen? The machinery of climate anti-science starts from the top with funders working through a maze of money paths, think tanks and front groups, employing spokespeople who can be portrayed as experts. While much of the money flows are still dark, some have been exposed over the last few years, and the effects finally filter down to the state and local levels of education. Among others, the Heartland Institute has a long history of trying to inject anti-science into K-12 and college education, having sent books, DVDs or brochures to teachers or school boards, as well as monthly newsletters to state legislators. Such are aimed at the top of the state or local organizations that affect education. For a vocal subset of the citizenry, a constant flow of misinformation from books, blogs, newsletters and some newspapers and magazines stirs action such as writing letters to editors, complaining to schools, calling on pseudo-experts and demanding equal time for pseudoscience. As the teacher said, it only takes one person to cause trouble at the local level. After a brief review of the overall machinery, this focuses on examples of anti-education tactics seen already, with some brief advice for climate scientists and educators who need to understand the machinery that supports such tactics. Some earlier history is included in http://www.desmogblog.com/2012/10/23/fakery-2-more-funny-finances-free-tax, but other attempts have surfaced in last few years, including state-wide efforts to reject Common Core Educational standard to avoid teaching climate science. Fortunately, school boards sometimes respond quite well, including one just recently in Pennsylvania.

  18. SPECTRE (www.noveltis.fr/spectre): a web Service for Ionospheric Products

    NASA Astrophysics Data System (ADS)

    Jeansou, E.; Crespon, F.; Garcia, R.; Helbert, J.; Moreaux, G.; Lognonne, P.

    2005-12-01

    The dense GPS networks developed for geodesic applications appear to be very efficient ionospheric sensors because of interaction between plasma and electromagnetic waves. Indeed, the dual frequency receivers provide data from which the Slant Total Electron Content (STEC) can be easily extracted to compute Vertical Total Electron Content (VTEC) maps. The SPECTRE project, Service and Products for ionospheric Electron Content and Tropospheric Refractivity over Europe, is currently a pre-operational service providing VTEC maps with high time and space resolution after 3 days time delay (http://www.noveltis.fr/spectre and http://ganymede.ipgp.jussieu.fr/spectre). This project is a part of SWENET, SpaceWeather European Network, initiated by the European Space Agency. The SPECTRE data products are useful for many applications. We will present these applications in term of interest for the scientific community with a special focus on spaceweather and transient ionospheric perturbations related to Earthquakes. Moreover, the pre-operational extensions of SPECTRE to the californian (SCIGN/BARD) and japanese (GEONET) dense GPS networks will be presented. Then the method of 3D tomography of the electron density from GPS data will be presented and its resolution discussed. The expected improvements of the 3D tomographic images by new tomographic reconstruction algorithms and by the advent of the Galileo system will conclude the presentation.

  19. Factors influencing clicking of banner ads on the WWW.

    PubMed

    Cho, Chang-Hoan

    2003-04-01

    This paper explores various factors influencing the clicking of banner ads on the WWW. The study indicates that several important variables affect the clicking of banner ads: (1) level of product involvement, (2) congruency between the content of a vehicle and the product category of a banner ad, (3) attitude toward the vehicle, and (4) overall attitude toward web advertising. For methodology, this study employed a between-group experimental design and measured real click-through rates with the aid of an online data collection technology called FileMaker Pro. Results of logistic regressions show that people are more likely to click banner ads if they are highly involved with products, perceive high synergy between web pages and ads, have a favorable attitude toward a vehicle, or have a favorable attitude toward web advertising in general. A total of 756 subjects participated in this research.

  20. The Graduate School of Climate Sciences, University of Bern

    NASA Astrophysics Data System (ADS)

    Martin, L.

    2012-04-01

    The Graduate School of Climate Sciences, University of Bern, offers a specialised M.Sc. and a Ph.D. study programme in climate sciences. The graduate school has a highly interdisciplinary profile involving not only natural sciences, but also humanities/history, economics and law. The ten participating institutes with a total of 45 academics provide expertise in long-term climate variability, climate modelling, climate reconstruction, predictability of the future climate and extreme events, the impact of climate change on ecosystems and climate risks for society and economy. The graduate school is fully compliant with the Bologna Accords and collaborates closely with the sister institution C2SM at ETH Zurich by, e.g., jointly organised lectures. There are currently 23 master and 37 doctoral students in the programme. These originate from the University of Bern (28 %), from other Swiss universities (30 %) and from foreign universities (42 %). Comprehensive information about the Graduate School of Climate Sciences is available at http://www.climatestudies.unibe.ch . The M.Sc. in Climate Sciences programme (120 ECTS credits) is designed to attract students from all disciplines in natural sciences and offers them a tailor-made curriculum to reach their career aspirations. The students make their own course selection according to their profile envisaged (specialised versus broad education) and ideally already guided by a job perspective. Selecting the courses and the topic of the master thesis they specialise in one of five fields: climate and earth system science; atmospheric science; economics; economic, social and environmental history; statistics. Several courses are organised jointly with public authorities and the private industry, e.g. from experts working in the insurance business, in weather forecasting or in environmental pollution control. This provides the students hands-on experience and contacts to future employers. The master thesis (60 ECTS) involves the

  1. A Worldwide Web-portal for Aquatic Mesocosm Facilities: WWW.MESOCOSM.EU

    NASA Astrophysics Data System (ADS)

    Berger, S. A.; Nejstgaard, J. C.

    2016-02-01

    Experimental mesocosms are valuable tools to fill the gap between highly controlled/replicated lab experiments and uncontrolled/non-replicated natural environments such as rivers, lakes and oceans. WWW.MESOCOSM.EU is an open web-portal for leading aquatic mesocosm facilities around the world. It was created within the FP7 EU-project MESOAQUA (A network of leading MESOcosm facilities to advance the studies of future AQUAtic ecosystems from the Arctic to the Mediterranean). The goal of the portal is to increase international knowledge about existing mesocosm facilities, including information on locations, environment, equipment, contacts, research opportunities and mesocosm-based publications. MESOCOSM.EU specifically aims to be a tool to enhance the quality of research by facilitating international cooperative network building, announcement of new research initiatives, transfer of best practice, and dissemination of knowledge, public information and press releases. As an open platform for all aquatic ecosystem scale science (marine and freshwater), MESOCOSM.EU aims to fill the lack of a centralized, coordinating virtual infrastructure for international aquatic mesocosm research, from the mountains to the ocean and from polar to tropical regions.

  2. Estimation of landslides activities evolution due to land-use and climate change in a Pyrenean valley

    NASA Astrophysics Data System (ADS)

    Vandromme, Rosalie; Bernardie, Séverine; Houet, Thomas; Grémont, Marine; Grandjean, Gilles; Thiery, Yannick

    2016-04-01

    Global changes would have impacts worldwide, but their effects should be even more exacerbated in areas particularly vulnerable. Mountainous areas are among these vulnerable territories. Ecological systems are often at a fragile equilibrium, socio-economical activities are often climate-dependent and climate-driven natural hazards can be a major threat for human activities. In order to estimate the capacity of such mountainous valleys to face global changes (climate, but also climate- and human- induced land-use changes), it is necessary to be able to evaluate the evolution of the different threats. The present work shows a method to evaluate the influences of the evolution of both vegetation cover and climate on landslides activities over a whole valley until 2100, to propose adequate solutions for current and future forestry management. Firstly, the assessment of future land use is addressed through the construction of four prospective socio-economic scenarios up to 2050 and 2100, which are then spatially validated and modeled with LUCC models. Secondly, the climate change inputs of the project correspond to 2 scenarios of emission of greenhouse gases. The used simulations available on the portal DRIAS (http://www.drias-climat.fr) were performed with the GHG emissions scenarios (RCP: Representative concentration pathways, according to the standards defined by the GIEC) RCP 4.5 and RCP 8.5. The impact of land use and climate change is then addressed through the use of these scenarios into hazards computations. For that we use a large-scale slope stability assessment tool ALICE which combines a mechanical stability model (using finite slope analysis), a vegetation module which interfere with the first model, to take into account the effects of vegetation on the mechanical soil properties (cohesion and over-load), and an hydrogeological model. All these elements are interfaced within a GIS-based solution. In that way, future changes in temperature, precipitation and

  3. AMS Climate Studies: Improving climate literacy through undergraduate education

    NASA Astrophysics Data System (ADS)

    Brey, J. A.; Geer, I. W.; Moran, J. M.; Weinbeck, R. S.; Mills, E. W.; Blair, B. A.; Hopkins, E. J.; Kiley, T. P., Jr.; Ruwe, E. E.

    2009-12-01

    In working to promote scientific literacy among the public, the American Meteorological Society (AMS) has produced a suite of introductory college-level courses that engage students by investigating relevant topics in Earth science, and utilizing the most current, real-world environmental data. The newest of these courses, AMS Climate Studies, is a turnkey package which will be licensed by individual colleges for local offering in online, blended, or traditional lecture/lab settings. The course will place students in a dynamic learning environment where they will investigate Earth’s climate system using real-world data. This will allow the course to keep a strong focus on the science, while still addressing many of the societal impacts that draw the attention of today’s students. In this way, the course will serve as a great primer in preparing students to become responsible, scientifically-literate participants in discussions of climate science and climate change. Developed with major support from NASA, AMS Climate Studies will encourage students to investigate the atmosphere and world ocean as components of a larger Earth system. More than 500 colleges and universities throughout the United States have already offered AMS Weather Studies and AMS Ocean Studies, after which AMS Climate Studies will be modeled. The learning system will consist of a fully-integrated set of printed and online learning materials focused around a brand new, hardcover 15-chapter textbook, Climate Studies: Introduction to Climate Science and an Investigations Manual with 30 lab-style activities that will emphasize the use of authentic science data. The package will also include a course website providing weekly Current Climate Studies activities along with access to environmental data streams, including an impressive suite of NASA and NOAA images and products. The development and testing of AMS Climate Studies is currently nearing completion. A number of college and university

  4. Climate change induced risk analysis of Dar es Salaam city (Tanzania)

    NASA Astrophysics Data System (ADS)

    Topa, Maria Elena; Herslund, Lise; Cavan, Gina; Printz, Andreas; Simonis, Ingo; Bucchignani, Edoardo; Jean-Baptiste, Nathalie; Hellevik, Siri; Johns, Regina; Kibassa, Deusdedit; Kweka, Clara; Magina, Fredrick; Mangula, Alpha; Mbuya, Elinorata; Uhinga, Guido; Kassenga, Gabriel; Kyessi, Alphonce; Shemdoe, Riziki; Kombe, Wilbard

    2013-04-01

    CLUVA (CLimate change and Urban Vulnerability in Africa; http://www.cluva.eu/) is a 3 years project, funded by the European Commission in 2010. The main objective of CLUVA is to develop context-centered methods and knowledge to be applied to African cities to assess vulnerabilities and increase knowledge on managing climate related risks. The project estimates the impacts of climate changes in the next 40 years at urban scale and downscales IPCC climate projections to evaluate specific threats to selected African test cities. These are mainly from floods, sea-level rise, droughts, heat waves, and desertification. The project evaluates and links: social vulnerability; urban green structures and ecosystem services; urban-rural interfaces; vulnerability of urban built environment and lifelines; and related institutional and governance dimensions of adaptation. The multi-scale and multi-disciplinary qualitative, quantitative and probabilistic approach of CLUVA is currently being applied to selected African test cities (Addis Ababa - Ethiopia; Dar es Salaam - Tanzania; Douala - Cameroun; Ouagadougou - Burkina Faso; St. Louis - Senegal). In particular, the poster will present preliminary findings for the Dar es Salaam case study. Dar es Salaam, which is Tanzania's largest coastal city, is exposed to floods, coastal erosion, droughts and heat waves, and highly vulnerable to impacts as a result of ineffective urban planning (about 70% unplanned settlements), poverty and lack of basic infrastructure (e.g. lack of or poor quality storm water drainage systems). Climate change could exacerbate the current situation increasing hazard-exposure alongside the impacts of development pressures which act to increase urban vulnerability for example because of informal (unregulated) urbanization. The CLUVA research team - composed of climate and environmental scientists, risk management experts, urban planners and social scientists from both European and African institutions - has

  5. Impact of climate change on river discharge in the Teteriv River basin (Ukraine)

    NASA Astrophysics Data System (ADS)

    Didovets, Iulii; Lobanova, Anastasia; Krysanova, Valentina; Snizhko, Sergiy; Bronstert, Axel

    2016-04-01

    The problem of water resources availability in the climate change context arises now in many countries. Ukraine is characterized by a relatively low availability of water resources compared to other countries. It is the 111th among 152 countries by the amount of domestic water resources available per capita. To ensure socio-economic development of the region and to adapt to climate change, a comprehensive assessment of potential changes in qualitative and quantitative characteristics of water resources in the region is needed. The focus of our study is the Teteriv River basin located in northern Ukraine within three administrative districts covering the area of 15,300 km2. The Teteriv is the right largest tributary of the Dnipro River, which is the fourth longest river in Europe. The water resources in the region are intensively used in industry, communal infrastructure, and agriculture. This is evidenced by a large number of dams and industrial objects which have been constructed from the early 20th century. For success of the study, it was necessary to apply a comprehensive hydrological model, tested in similar natural conditions. Therefore, an eco-hydrological model SWIM with the daily time step was applied, as this model was used previously for climate impact assessment in many similar river basins on the European territory. The model was set up, calibrated and validated for the gauge Ivankiv located close to the outlet of the Teteriv River. The Nash-Sutcliffe efficiency coefficient for the calibration period is 0.79 (0.86), and percent bias is 4,9% (-3.6%) with the daily (monthly) time step. The future climate scenarios were selected from the IMPRESSIONS (Impacts and Risks from High-End Scenarios: Strategies for Innovative Solutions, www.impressions-project.eu) project, which developed 7 climate scenarios under RCP4.5 and RCP8.5 based on GCMs and downscaled using RCMs. The results of climate impact assessment for the Teteriv River basin will be presented.

  6. Temporal variability of total cloud cover at a Mediterranean megacity in the 20th century: Evidence from visual observations and climate models

    NASA Astrophysics Data System (ADS)

    Founda, Dimitra; Giannakopoulos, Christos; Pierros, Fragiskos

    2013-04-01

    /or sunshine duration/diurnal temperature range as depicted by regional climate models over Athens will be performed. Regional climate models are valuable tools for projections of future climate change but their performance is typically assessed only in terms of temperature and precipitation. The representation of non-standard parameters such as cloud cover and/or sunshine duration/diurnal temperature range has so far seen little or no evaluation in the models and can therefore be prone to large uncertainties. Regional climate models developed in the framework of recent EU projects, such as the ENSEMBLES (www.ensembles-eu.org) and the CIRCE (www.circeproject.eu) projects, will be used and an initial validation of these parameters against the historical archive of NOA will be performed.

  7. The NorWeST Stream Temperature Database, Model, and Climate Scenarios for the Northwest U.S. (Invited)

    NASA Astrophysics Data System (ADS)

    Isaak, D.; Wenger, S.; Peterson, E.; Ver Hoef, J.; Luce, C.; Hostetler, S. W.; Kershner, J.; Dunham, J.; Nagel, D.; Roper, B.

    2013-12-01

    Anthropogenic climate change is warming the Earth's rivers and streams and threatens significant changes to aquatic biodiversity. Effective threat response will require prioritization of limited conservation resources and coordinated interagency efforts guided by accurate information about climate, and climate change, at scales relevant to the distributions of species across landscapes. Here, we describe the NorWeST (i.e., NorthWest Stream Temperature) project to develop a comprehensive interagency stream temperature database and high-resolution climate scenarios across Washington, Oregon, Idaho, Montana, and Wyoming (~400,000 stream kilometers). The NorWeST database consists of stream temperature data contributed by >60 state, federal, tribal, and private resource agencies and may be the largest of its kind in the world (>45,000,000 hourly temperature recordings at >15,000 unique monitoring sites). These data are being used with spatial statistical network models to accurately downscale (R2 = 90%; RMSE < 1 C) global climate patterns to all perennially flowing reaches within river networks at 1-kilometer resolution. Historic stream temperature scenarios are developed using air temperature data from RegCM3 runs for the NCEP historical reanalysis and future scenarios (2040s and 2080s) are developed by applying bias corrected air temperature and discharge anomalies from ensemble climate and hydrology model runs for A1B and A2 warming trajectories. At present, stream temperature climate scenarios have been developed for 230,000 stream kilometers across Idaho and western Montana using data from more than 7,000 monitoring sites. The raw temperature data and stream climate scenarios are made available as ArcGIS geospatial products for download through the NorWeST website as individual river basins are completed (http://www.fs.fed.us/rm/boise/AWAE/projects/NorWeST.shtml). By providing open access to temperature data and scenarios, the project is fostering new research on

  8. Detection and Attribution of Simulated Climatic Extreme Events and Impacts: High Sensitivity to Bias Correction

    NASA Astrophysics Data System (ADS)

    Sippel, S.; Otto, F. E. L.; Forkel, M.; Allen, M. R.; Guillod, B. P.; Heimann, M.; Reichstein, M.; Seneviratne, S. I.; Kirsten, T.; Mahecha, M. D.

    2015-12-01

    climate extremes and associated impacts. [1] http://www.climateprediction.net/weatherathome/

  9. Climate adaptation

    NASA Astrophysics Data System (ADS)

    Kinzig, Ann P.

    2015-03-01

    This paper is intended as a brief introduction to climate adaptation in a conference devoted otherwise to the physics of sustainable energy. Whereas mitigation involves measures to reduce the probability of a potential event, such as climate change, adaptation refers to actions that lessen the impact of climate change. Mitigation and adaptation differ in other ways as well. Adaptation does not necessarily have to be implemented immediately to be effective; it only needs to be in place before the threat arrives. Also, adaptation does not necessarily require global, coordinated action; many effective adaptation actions can be local. Some urban communities, because of land-use change and the urban heat-island effect, currently face changes similar to some expected under climate change, such as changes in water availability, heat-related morbidity, or changes in disease patterns. Concern over those impacts might motivate the implementation of measures that would also help in climate adaptation, despite skepticism among some policy makers about anthropogenic global warming. Studies of ancient civilizations in the southwestern US lends some insight into factors that may or may not be important to successful adaptation.

  10. COST 734-CLIVAGRI: Impacts of Climate change and Variability on European Agriculture

    NASA Astrophysics Data System (ADS)

    Orlandini, S.; Nejedlik, P.; Eitzinger, J.; Alexandrov, V.; Toulios, L.; Kajfez Bogataj, L.; Calanca, P.; Trnka, M.; Olesen, J. E.

    2009-09-01

    COST is an intergovernmental framework for European Cooperation in Science and Technology, funded by its member countries through the EU Framework Programme. The objective of COST is to coordinate, integrate and synthesise results from ongoing national research within and between COST member countries to add value to research investment. COST Actions aim to deliver scientific syntheses and analyses of best available practice to aid problem identification, risk assessment, public utilities and policy development. During 2006, COST Action 734 (CLIVAGRI-Impacts of Climate Change and Variability on European Agriculture) was launched thanks to the coordinated activity of 15 EU countries. The main objective of the Action is the evaluation of possible impacts from climate change and variability on agriculture and the assessment of critical thresholds for various European areas (COST 734 MoU. www.cost.esf.org). Secondary objectives are: the collection and review of existing agroclimatic indices and simulation models, to assess hazard impacts on various European agricultural areas relating hazards to climatic conditions; building climate scenarios for the next few decades; the definition of harmonised criteria to evaluate the impacts of climate change and variability on agriculture; the definition of warning systems guidelines. Four working groups, with the integration of remote sensing sub working group 2.1 were created to address these aims: WG1 - Agroclimatic indices and simulation models WG2 - Evaluation of the current trends of agroclimatic indices and simulation model outputs describing agricultural impacts and hazard levels WG3 - Development and assessment of future regional and local scenarios of agroclimatic conditions WG4 - Risk assessment and foreseen impacts on agriculture The activity of WGs has been structured like a matrix, presenting on the rows the methods of analysis and on the columns the phenomena and the hazards. Each intersection point describes the

  11. Using Local Climate Science to Educate "Key Influentials" and their Communities in the San Diego Region

    NASA Astrophysics Data System (ADS)

    Boudrias, M. A.; Estrada, M.; Anders, S.; Silva-Send, N. J.; Yin, Z.; Schultz, P.; Young, E.

    2012-12-01

    The San Diego Regional Climate Education Partnership has formed an innovative and collaborative team whose mission is to implement a research-based climate science education and communications program to increase knowledge about climate science among highly-influential leaders and their communities and foster informed decision making based on climate science and impacts. The team includes climate scientists, behavioral psychologists, formal and informal educators and communication specialists. The Partnership's strategic plan has three major goals: (1) raise public understanding of the causes and consequences of climate change; (2) identify the most effective educational methods to educate non-traditional audiences (Key Influentials) about the causes and consequences of climate change; and (3) develop and implement a replicable model for regional climate change education. To implement this strategic plan, we have anchored our project on three major pillars: (1) Local climate science (causes, impacts and long-term consequences); (2) theoretical, research-based evaluation framework (TIMSI); and (3) Key! Influentials (KI) as primary audience for messages (working w! ith and through them). During CCEP-I, the Partnership formed and convened an advisory board of Key Influentials, completed interviews with a sample of Key Influentials, conducted a public opinion survey, developed a website (www.sandiego.edu/climate) , compiled inventories on literature of climate science education resources and climate change community groups and local activities, hosted stakeholder forums, and completed the first phase of on an experiment to test the effects of different messengers delivering the same local climate change message via video. Results of 38 KI Interviews provided evidence of local climate knowledge, strong concern about climate change, and deeply held values related to climate change education and regional leadership. The most intriguing result was that while 90% of Key

  12. Using simple chaotic models to interpret climate under climate change: Implications for probabilistic climate prediction

    NASA Astrophysics Data System (ADS)

    Daron, Joseph

    2010-05-01

    Exploring the reliability of model based projections is an important pre-cursor to evaluating their societal relevance. In order to better inform decisions concerning adaptation (and mitigation) to climate change, we must investigate whether or not our models are capable of replicating the dynamic nature of the climate system. Whilst uncertainty is inherent within climate prediction, establishing and communicating what is plausible as opposed to what is likely is the first step to ensuring that climate sensitive systems are robust to climate change. Climate prediction centers are moving towards probabilistic projections of climate change at regional and local scales (Murphy et al., 2009). It is therefore important to understand what a probabilistic forecast means for a chaotic nonlinear dynamic system that is subject to changing forcings. It is in this context that we present the results of experiments using simple models that can be considered analogous to the more complex climate system, namely the Lorenz 1963 and Lorenz 1984 models (Lorenz, 1963; Lorenz, 1984). Whilst the search for a low-dimensional climate attractor remains illusive (Fraedrich, 1986; Sahay and Sreenivasan, 1996) the characterization of the climate system in such terms can be useful for conceptual and computational simplicity. Recognising that a change in climate is manifest in a change in the distribution of a particular climate variable (Stainforth et al., 2007), we first establish the equilibrium distributions of the Lorenz systems for certain parameter settings. Allowing the parameters to vary in time, we investigate the dependency of such distributions to initial conditions and discuss the implications for climate prediction. We argue that the role of chaos and nonlinear dynamic behaviour ought to have more prominence in the discussion of the forecasting capabilities in climate prediction. References: Fraedrich, K. Estimating the dimensions of weather and climate attractors. J. Atmos. Sci

  13. Climate Literacy and Energy Awareness Network (CLEAN) - Supporting the Scientists and Citizens of Tomorrow

    NASA Astrophysics Data System (ADS)

    Ledley, T. S.; McCaffrey, M. S.; Gold, A. U.; Buhr, S. M.; Manduca, C. A.; Fox, S.; Kirk, K. B.; Grogan, M.; Niepold, F.; Lynds, S. E.; Howell, C.

    2011-12-01

    The US Global Change Research Program and a consortium of science and education partners in 2009 concluded "climate change will bring economic and environmental challenges as well as opportunities, and citizens who have an understanding of climate science will be better prepared to respond to both." In order for citizens to achieve that understanding there is a clear need to support teachers, students, and the public in becoming climate and energy literate and to enable them to make responsible decisions about the environment and energy use for themselves and for society. However, to pursue climate and energy literacy it is necessary to identify and access educational materials that are scientifically accurate, pedagogically effective, and technically robust, and to use them effectively. The CLEAN Pathway (http://cleanet.org) is a National Science Digital Library (http://www.nsdl.org) project that is stewarding a collection of materials for teaching climate and energy science in grades 6-16. The collection contains classroom activities, lab demonstrations, visualizations, simulations and more. Each resource is extensively reviewed for scientific accuracy, pedagogical effectiveness, and technical quality. Once accepted into the CLEAN collection, a resource is aligned with the Climate Literacy Essential Principles for Climate Science, the AAAS Project 2061 Benchmarks for Science Literacy and other national standards. The CLEAN website hosts a growing collection of currently 300+ resources that represent the leading edge of climate and energy science resources for the classroom. In this presentation we will demonstrate the various avenues of how the CLEAN portal that can help educators improve their own climate and energy literacy, help them determine why and how to effectively integrate the climate and energy principles into their teaching, and facilitate educators successfully using the resources with their students. This will include a brief overview of the: a

  14. The climate4impact portal: bridging the CMIP5 and CORDEX data infrastructure to impact users

    NASA Astrophysics Data System (ADS)

    Plieger, Maarten; Som de Cerff, Wim; Pagé, Christian; Tatarinova, Natalia; Cofiño, Antonio; Vega Saldarriaga, Manuel; Hutjes, Ronald; de Jong, Fokke; Bärring, Lars; Sjökvist, Elin

    2015-04-01

    The aim of climate4impact is to enhance the use of Climate Research Data and to enhance the interaction with climate effect/impact communities. The portal is based on 21 impact use cases from 5 different European countries, and is evaluated by a user panel consisting of use case owners. It has been developed within the European projects IS-ENES and IS-ENES2 for more than 5 years, and its development currently continues within IS-ENES2 and CLIPC. As the climate impact community is very broad, the focus is mainly on the scientific impact community. This work has resulted in the ENES portal interface for climate impact communities and can be visited at www.climate4impact.eu. The climate4impact is connected to the Earth System Grid Federation (ESGF) nodes containing global climate model data (GCM data) from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) and regional climate model data (RCM) data from the Coordinated Regional Climate Downscaling Experiment (CORDEX). This global network of climate model data centers offers services for data description, discovery and download. The climate4impact portal connects to these services using OpenID, and offers a user interface for searching, visualizing and downloading global climate model data and more. A challenging task was to describe the available model data and how it can be used. The portal tries to inform users about possible caveats when using climate model data. All impact use cases are described in the documentation section, using highlighted keywords pointing to detailed information in the glossary. During the project, the content management system Drupal was used to enable partners to contribute on the documentation section. In this presentation the architecture and following items will be detailed: - Visualization: Visualize data from ESGF data nodes using ADAGUC Web Map Services. - Processing: Transform data, subset, export into other formats, and perform climate indices calculations using

  15. A National Road Map to a Climate Literate Society: Advancing Climate Literacy by Coordinating Federal Climate Change Educational Programs (Invited)

    NASA Astrophysics Data System (ADS)

    Niepold, F.; Karsten, J. L.

    2009-12-01

    Over the 21st century, climate scientists expect Earth's temperature to continue increasing, very likely more than it did during the 20th century. Two anticipated results are rising global sea level and increasing frequency and intensity of heat waves, droughts, and floods. [IPCC 2007, USGCRP 2009] These changes will affect almost every aspect of human society, including economic prosperity, human and environmental health, and national security. Climate change will bring economic and environmental challenges as well as opportunities, and citizens who have an understanding of climate science will be better prepared to respond to both. Society needs citizens who understand the climate system and know how to apply that knowledge in their careers and in their engagement as active members of their communities. Climate change will continue to be a significant element of public discourse. Understanding the essential principles of climate science will enable all people to assess news stories and contribute to their everyday conversations as informed citizens. Key to our nations response to climate change will be a Climate Literate society that understands their influence on climate and climate’s influence on them and society. In order to ensure the nation increases its literacy, the Climate Literacy: Essential Principles of Climate Science document has been endorsed by the 13 Federal agencies that make up the US Global Change Research Program (http://globalchange.gov/resources/educators/climate-literacy) and twenty-four other science and educational institutions. This session will explore the coordinated efforts by the federal agencies and partner organizations to ensure a climate literate society. "Climate Literacy: The Essential Principles of Climate Sciences: A Guide for Individuals and Communities" produced by the U.S. Global Change Research Program in March 2009

  16. Accounting for multiple climate components when estimating climate change exposure and velocity

    USGS Publications Warehouse

    Nadeau, Christopher P.; Fuller, Angela K.

    2015-01-01

    The effect of anthropogenic climate change on organisms will likely be related to climate change exposure and velocity at local and regional scales. However, common methods to estimate climate change exposure and velocity ignore important components of climate that are known to affect the ecology and evolution of organisms.We develop a novel index of climate change (climate overlap) that simultaneously estimates changes in the means, variation and correlation between multiple weather variables. Specifically, we estimate the overlap between multivariate normal probability distributions representing historical and current or projected future climates. We provide methods for estimating the statistical significance of climate overlap values and methods to estimate velocity using climate overlap.We show that climates have changed significantly across 80% of the continental United States in the last 32 years and that much of this change is due to changes in the variation and correlation between weather variables (two statistics that are rarely incorporated into climate change studies). We also show that projected future temperatures are predicted to be locally novel (<1·5% overlap) across most of the global land surface and that exposure is likely to be highest in areas with low historical climate variation. Last, we show that accounting for changes in the variation and correlation between multiple weather variables can dramatically affect velocity estimates; mean velocity estimates in the continental United States were between 3·1 and 19·0 km yr−1when estimated using climate overlap compared to 1·4 km yr−1 when estimated using traditional methods.Our results suggest that accounting for changes in the means, variation and correlation between multiple weather variables can dramatically affect estimates of climate change exposure and velocity. These climate components are known to affect the ecology and evolution of organisms, but are ignored by most measures

  17. Climate and Global Change: Programs and Services Reaching Public and K-12 Audiences at a National Research Laboratory

    NASA Astrophysics Data System (ADS)

    Foster, S. Q.; Johnson, R. M.; Carbone, L.; Eastburn, T.; Munoz, R.; Lu, G.; Ammann, C.

    2004-05-01

    The study of climate and global change is an important on-going focal area for scientists at the National Center for Atmospheric Research (NCAR). Programs overseen by the University Corporation for Atmospheric Research Office of Education and Outreach (UCAR-EO) help to translate NCAR's scientific programs, methodologies, and technologies, and their societal benefits to over 80,000 visitors to the NCAR Mesa Laboratory each year. This is accomplished through the implementation of exhibits, guided tours, an audiotour, programs for school groups, and a teachers' guide to exhibits which is currently in development. The Climate Discovery Exhibit unveiled in July 2003 offers visitors a visually engaging and informative overview of information, graphics, artifacts, and interactives describing the Earth system's dynamic processes that contribute to and mediate climate change, the history of our planet's changing climate, and perspectives on geographic locations and societies around the world that have potential to be impacted by a changing climate. Climate Futures, an addition to this exhibit to open in the summer of 2004, will help visitors to understand why scientists seek to model the global climate system and how information about past and current climate are used to validate models and build scenarios for Earth's future climate, while clarifying the effects of natural and human-induced contributions to these predictions. UCAR-EO further strives to enhance public understanding and to dispel misconceptions about climate change by bringing scientists' explanations to visitors who learn about atmospheric sciences while on staff-guided tours and/or while using an audiotour developed in 2003 with a grant from the National Science Foundation. With advanced reservations, a limited number of visitors may experience demonstrations of climate models in the NCAR Visualization Laboratory. An instructional module for approximately 5,000 visiting school children and a teachers guide

  18. Euro-Climhist - a data platform for weather-, climate- and disaster history

    NASA Astrophysics Data System (ADS)

    Pfister, Christian

    2017-04-01

    The Euro-Climhist data base (http://www.euroclimhist.unibe.ch/de)/ presents evidence about weather and climate in space and time mostly originating from the archives of societies. It facilitates the cross-checking of proxy data with contemporaneous high-resolution narrative weather reports. Contemporary and non-contemporary data are distinguished for quality control. The original Euro-Climhist database was established between 1992 and 1994 to investigate weather patterns in Europe during the cold period of the late Maunder Minimum (1675-1715). The present-day internet version of Euro-Climhist went online in November 2015 with the Module Switzerland. It currently provides 160'000 records from 1501 to present, available in German, French, Italian and English. The module serves as a pilot project for developing an adequate methodology and user-friendly software. Currently a module "Middle Ages" led by Christian Rohr from the Bern University is being worked out. It includes evidence for the whole of Europe prior to 1501. Further modules may be established by regional working groups. The classification scheme includes 300 categories. A complementary facility—COMP—has been also been created to permit a still more precise description of events. For example, the facility can be used to describe in detail the impacts of nature-induced hazards. Moreover, it makes possible to rate quantitative evidence such as phenological data or the frequency of rain-days at a given location according to standard criteria. The elements of COMP are translated and can be augmented to an almost unlimited extent. The data are mapped according to the administrative organization of a country and to geographical units. Results are presented in the form of text and geographical charts. The structure of Euro-Climhist may be readily adapted to amplifications in relationship to content, spatial dimension and translation into further languages. In the long term, it may be possible to release

  19. Utilizing the NASA Data-enhanced Investigations for Climate Change Education Resource for Elementary Pre-service Teachers in a Technology Integration Education Course.

    NASA Astrophysics Data System (ADS)

    Howard, E. M.; Moore, T.; Hale, S. R.; Hayden, L. B.; Johnson, D.

    2014-12-01

    The preservice teachers enrolled in the EDUC 203 Introduction to Computer Instructional Technology course, primarily for elementary-level had created climate change educational lessons based upon their use of the NASA Data-enhanced Investigations for Climate Change Education (DICCE). NASA climate education datasets and tools were introduced to faculty of Minority Serving Institutions through a grant from the NASA Innovations in Climate Education program. These lessons were developed to study various ocean processes involving phytoplankton's chlorophyll production over time for specific geographic areas using the Giovanni NASA software tool. The pre-service teachers had designed the climate change content that will assist K-4 learners to identify and predict phytoplankton sources attributed to sea surface temperatures, nutrient levels, sunlight, and atmospheric carbon dioxide associated with annual chlorophyll production. From the EDUC 203 course content, the preservice teachers applied the three phases of the technology integration planning (TIP) model in developing their lessons. The Zunal website (http://www.zunal.com) served as a hypermedia tool for online instructional delivery in presenting the climate change content, the NASA climate datasets, and the visualization tools used for the production of elementary learning units. A rubric was developed to assess students' development of their webquests to meet the overall learning objectives and specific climate education objectives. Accompanying each webquest is a rubric with a defined table of criteria, for a teacher to assess students completing each of the required tasks for each lesson. Two primary challenges of technology integration for elementary pre-service teachers were 1) motivating pre-service teachers to be interested in climate education and 2) aligning elementary learning objectives with the Next Generation science standards of climate education that are non-existent in the Common Core State

  20. The Dependencies of Ecosystem Pattern, Structure, and Dynamics on Climate, Climate Variability, and Climate Change

    NASA Astrophysics Data System (ADS)

    Flanagan, S.; Hurtt, G. C.; Fisk, J. P.; Rourke, O.

    2012-12-01

    A robust understanding of the sensitivity of the pattern, structure, and dynamics of ecosystems to climate, climate variability, and climate change is needed to predict ecosystem responses to current and projected climate change. We present results of a study designed to first quantify the sensitivity of ecosystems to climate through the use of climate and ecosystem data, and then use the results to test the sensitivity of the climate data in a state-of the art ecosystem model. A database of available ecosystem characteristics such as mean canopy height, above ground biomass, and basal area was constructed from sources like the National Biomass and Carbon Dataset (NBCD). The ecosystem characteristics were then paired by latitude and longitude with the corresponding climate characteristics temperature, precipitation, photosynthetically active radiation (PAR) and dew point that were retrieved from the North American Regional Reanalysis (NARR). The average yearly and seasonal means of the climate data, and their associated maximum and minimum values, over the 1979-2010 time frame provided by NARR were constructed and paired with the ecosystem data. The compiled results provide natural patterns of vegetation structure and distribution with regard to climate data. An advanced ecosystem model, the Ecosystem Demography model (ED), was then modified to allow yearly alterations to its mechanistic climate lookup table and used to predict the sensitivities of ecosystem pattern, structure, and dynamics to climate data. The combined ecosystem structure and climate data results were compared to ED's output to check the validity of the model. After verification, climate change scenarios such as those used in the last IPCC were run and future forest structure changes due to climate sensitivities were identified. The results of this study can be used to both quantify and test key relationships for next generation models. The sensitivity of ecosystem characteristics to climate data

  1. The GCRP Climate Health Assessment: From Scientific Literature to Climate Health Literacy

    NASA Astrophysics Data System (ADS)

    Crimmins, A. R.; Balbus, J. M.

    2016-12-01

    As noted by the new report from the US GCRP, the Impacts of Climate Change on Human Health in the United States: A Scientific Assessment, climate change is a significant threat to the health of the American people. Despite a growing awareness of the significance of climate change in general among Americans, however, recognition of the health significance of climate change is lacking. Not only are the general public and many climate scientists relatively uninformed about the myriad health implications of climate change; health professionals, including physicians and nurses, are in need of enhanced climate literacy. This presentation will provide an overview of the new GCRP Climate Health Assessment, introducing the audience to the systems thinking that underlies the assessment of health impacts, and reviewing frameworks that tie climate and earth systems phenomena to human vulnerability and health. The impacts on health through changes in temperature, precipitation, severity of weather extremes and climate variability, and alteration of ecosystems and phenology will be explored. The process of developing the assessment report will be discussed in the context of raising climate and health literacy within the federal government.

  2. Eye tracking and climate change: How is climate literacy information processed?

    NASA Astrophysics Data System (ADS)

    Williams, C. C.; McNeal, K. S.

    2011-12-01

    The population of the Southeastern United States is perceived to be resistant to information regarding global climate change. The Climate Literacy Partnership in the Southeast (CLiPSE) project was formed to provide a resource for climate science information. As part of this project, we are evaluating the way that education materials influence the interpretation of climate change related information. At Mississippi State University, a study is being conducted examining how individuals from the Southeastern United States process climate change information and whether or not the interaction with such information impacts the interpretation of subsequent climate change related information. By observing the patterns both before and after an educational intervention, we are able to evaluate the effectiveness of the climate change information on an individual's interpretation of related information. Participants in this study view figures describing various types of climate change related information (CO2 emissions, sea levels, etc.) while their eye movements are tracked to determine a baseline for the way that they process this type of graphical data. Specifically, we are examining time spent viewing and number of fixations on critical portions of the figures prior to exposure to an educational document on climate change. Following the baseline period, we provide participants with portions of a computerized version of Climate Literacy: The Essential Principles of Climate Sciences that the participants read at their own pace while their eye movements are monitored. Participants are told that they will be given a test on the material after reading the resource. After reading the excerpt, participants are presented with a new set of climate change related figures to interpret (with eye tracking) along with a series of questions regarding information contained in the resource. We plan to evaluate changes that occur in the way that climate change related information is

  3. Climate change induced risk analysis of Addis Ababa city (Ethiopia)

    NASA Astrophysics Data System (ADS)

    Jalayer, Fatemeh; Herslund, Lise; Cavan, Gina; Printz, Andreas; Simonis, Ingo; Bucchignani, Edoardo; Jean-Baptiste, Nathalie; Hellevik, Siri; Fekade, Rebka; Nebebe, Alemu; Woldegerima, Tekle; Workalemahu, Liku; Workneh, Abraham; Yonas, Nebyou; Abebe Bekele, Essete; Yeshitela, Kumelachew

    2013-04-01

    CLUVA (CLimate change and Urban Vulnerability in Africa; http://www.cluva.eu/) is a 3 years project, funded by the European Commission in 2010. Its objective is to develop context-centered methods to assess vulnerability and increase knowledge on managing climate related risks and to estimate the impacts of climate changes in the next 40 years at urban scale in Africa. The project downscales IPCC climate projections to evaluate threats to selected African test cities; mainly floods, sea-level rise, droughts, heat waves, desertification. It also evaluates and links: social vulnerability; urban green structures and ecosystem services; urban-rural interfaces; vulnerability of urban built environment and lifelines; and related institutional and governance dimensions of adaptation. CLUVA combines assessment approaches to investigate how cities, communities and households can resist and cope with, as well as recover from climate induced hazards. This multi-scale and multi-disciplinary qualitative, quantitative and probabilistic approach of CLUVA is currently being applied to selected African test cities (Addis Ababa - Ethiopia; Dar es Salaam - Tanzania; Douala - Cameroun; Ouagadougou - Burkina Faso; St. Louis - Senegal). In particular, the poster will report on the progresses of the Addis Ababa case study. Addis Ababa, the largest city in Ethiopia, is exposed to heat waves, drought, and, more recently, to flash floods. Due to undulating topography, poor waste management and the absence of sustainable storm water management, Addis Ababa is prone to severe flood events during the rainy seasons. Metropolitan Addis Ababa is crossed by several small watercourses. Torrential rains, very common during the rainy season, cause a sudden rise in the flow of these water courses, inundating and damaging the settlements along their banks and affecting the livelihood of the local population. The combination of climate change and development pressures are expected to exacerbate the

  4. Tool kit development to refine and visualize essential climate data and information for marine protected areas

    NASA Astrophysics Data System (ADS)

    Cecil, L.; Stachniewicz, J.; Shein, K. A.; Ansari, S.; Jarvis, C.

    2013-05-01

    Marine ecosystem responses to climate variability and change such as changing water temperature, water chemistry (e.g., pH, salinity), water level, or storminess may result in adverse impacts including mass mortality, loss of habitat, increased disease susceptibility, and trophic cascade feedbacks. Unfortunately, while marine ecosystem resource managers are aware of these threats, they often lack sufficient expertise with identifying, accessing and using the many large and complex climate data products that would inform ecosystem-scale climate impact assessments. NOAA's National Climatic Data Center (NCDC) has been working with the Gulf of the Farallones National Marine Sanctuary Ocean Climate Center to enhance and expand the functionality of NCDC's Weather and Climate Toolkit (WCT) to begin to address this limitation. The WCT is a freely available, Java-based user interface (http://www.ncdc.noaa.gov/oa/wct/) designed to access, analyze, and display a variety of NCDC's georeferenced climate data products (e.g., satellite data, radar, reanalysis datasets, in-situ observations). However, the WCT requires the user to have already identified a data set of interest and gained access to it. This can limit its utility by users who are not knowledgeable about which data sets are relevant to their needs and where those data sets can be found. The Integrated Marine Protected Area Climate Tools (IMPACT) prototype modification to the WCT addresses those requirements through an iterative process between climate scientists and resource managers. The WCT-IMPACT prototype couples a user query approach with a quasi-expert system that determines, retrieves, and loads the appropriate data products for visualization and analysis by the user. Relevant data products are identified based on the environmental variables in which ecosystem managers have indicated an importance to their ecosystems. To improve response time, the user, through the WCT-IMPACT interface, crops (or subsets) the

  5. Climate Change Policy

    NASA Astrophysics Data System (ADS)

    Jepma, Catrinus J.; Munasinghe, Mohan; Bolin, Foreword By Bert; Watson, Robert; Bruce, James P.

    1998-03-01

    There is increasing scientific evidence to suggest that humans are gradually but certainly changing the Earth's climate. In an effort to prevent further damage to the fragile atmosphere, and with the belief that action is required now, the scientific community has been prolific in its dissemination of information on climate change. Inspired by the results of the Intergovernmental Panel on Climate Change's Second Assessment Report, Jepma and Munasinghe set out to create a concise, practical, and compelling approach to climate change issues. They deftly explain the implications of global warming, and the risks involved in attempting to mitigate climate change. They look at how and where to start action, and what organization is needed to be able to implement the changes. This book represents a much needed synopsis of climate change and its real impacts on society. It will be an essential text for climate change researchers, policy analysts, university students studying the environment, and anyone with an interest in climate change issues. A digestible version of the IPCC 1995 Economics Report - written by two of IPCC contributors with a Foreword by two of the editors of Climate Change 1995: Economics of Climate Change: i.e. has unofficial IPCC approval Focusses on policy and economics - important but of marginal interest to scientists, who are more likely to buy this summary than the full IPCC report itself Has case-studies to get the points across Separate study guide workbook will be available, mode of presentation (Web or book) not yet finalized

  6. Evidence of global demand for medication abortion information An analysis of www.medicationabortion.com

    PubMed Central

    Foster, Angel M.; Wynn, L. L.; Trussell, James

    2013-01-01

    Introduction The worldwide expansion of the Internet offers an important modality of disseminating medically accurate information about medication abortion. We chronicle the story of www.medicationabortion.com, an English-, Spanish-, Arabic-, and French-language website dedicated to three early abortion regimens. Methods We evaluated the website use patterns from 2005 through 2009. We also conducted a content and thematic analysis of 1,910 emails submitted during this period. Results The website experienced steady growth in use. In 2009, it received 35,000 visits each month from more than 20,000 unique visitors and was accessed by users in 208 countries and territories. More than half of all users accessed the website from a country in which abortion is legally restricted. Users from more than 40 countries sent emails with individual questions. Women often wrote in extraordinary detail about the circumstances of their pregnancies and attempts to obtain an abortion. These emails also reflect considerable demand for information about the use of misoprostol for self-induction. Conclusion The use patterns of www.medicationabortion.com indicate that there is significant demand for online information about abortion, and the findings suggest future priorities for research, collaboration, and educational outreach. PMID:24360644

  7. "Responding to Climate Change" Course: Research Integration

    NASA Astrophysics Data System (ADS)

    Pfirman, S. L.; Bowman, J. S.

    2015-12-01

    The "Responding to Climate Change" Barnard/Columbia course integrates current research as well as hands-on research-based activities modified for a classroom environment. The course covers the major response themes of adaptation, mitigation and communication. In the spring of 2015 the course was oriented around Arctic and Antarctic case studies. Each week a different theme is addressed, such as the physical setting, changing ecosystems, governance issues, perspectives of residents and indigenous peoples, geoengineering, commercial interests, security, and health and developmental issues. Frequent guest lectures from thematic experts keep the course grounded in realities and present the students with cutting edge issues. Activities match the weekly theme, for example during the week on Arctic development, students engage with the marine spatial planning simulation Arctic SMARTIC (Strategic Management of Resources in Times of Change) based on research on Arctic sea ice trends and projections coupled with current and projected developmental interests of stakeholders. Created under the Polar Learning and Responding: PoLAR Climate Change Education Partnership (thepolarhub.org), a complete set of SMARTIC resources is available on line for use by others (http://www.camelclimatechange.org/view/article/175297/). The Responding to Climate Change course is designed to be current and respond to events. For the Arctic case study, students developed proposals for the US State Department as the upcoming Chair of the Arctic Council. Student evaluations indicated that they appreciated the opportunity to connect science with policy and presentation of preliminary proposals in a workshop format was valued as a way to develop and hone their ideas. An additional finding was that students were surprisingly tolerant of technical issues when guest lecturers were linked in via Skype, allowing interaction with thematic experts across the US. Students commented positively on this exposure to

  8. HyCAW: Hydrological Climate change Adaptation Wizard

    NASA Astrophysics Data System (ADS)

    Bagli, Stefano; Mazzoli, Paolo; Broccoli, Davide; Luzzi, Valerio

    2016-04-01

    Changes in temporal and total water availability due to hydrologic and climate change requires an efficient use of resources through the selection of the best adaptation options. HyCAW provides a novel service to users willing or needing to adapt to hydrological change, by turning available scientific information into a user friendly online wizard that lets to: • Evaluate the monthly reduction of water availability induced by climate change; • Select the best adaptation options and visualize the benefits in terms of water balance and cost reduction; • Quantify potential of water saving by improving of water use efficiency. The tool entails knowledge of the intra-annual distribution of available surface and groundwater flows at a site under present and future (climate change) scenarios. This information is extracted from long term scenario simulation by E-HYPE (European hydrological predictions for the environment) model from Swedish Meteorological and Hydrological Institute, to quantify the expected evolution in water availability (e.g. percent reduction of soil infiltration and aquifer recharge; relative seasonal shift of runoff from summer to winter in mountain areas; etc.). Users are requested to provide in input their actual water supply on a monthly basis, both from surface and groundwater sources. Appropriate decision trees and an embedded precompiled database of Water saving technology for different sectors (household, agriculture, industrial, tourisms) lead them to interactively identify good practices for water saving/recycling/harvesting that they may implement in their specific context. Thanks to this service, users are not required to have a detailed understanding neither of data nor of hydrological processes, but may benefit of scientific analysis directly for practical adaptation in a simple and user friendly way, effectively improving their adaptation capacity. The tool is being developed under a collaborative FP7 funded project called SWITCH

  9. Bringing a Global Issue Closer to Home: The OSU Climate Change Webinar Series

    NASA Astrophysics Data System (ADS)

    Jentes Banicki, J.; Dierkes, C.

    2012-12-01

    When people think about the effects of climate change, many will still picture that iconic lone polar bear clinging to a shrinking iceberg in Antarctica. But many don't realize that the impacts that we will face here at home could also be severe, directly affecting the food we eat, the health we have, and the natural environments we appreciate. To help better explain and ultimately localize those impacts for Great Lakes residents, 10 departments within Ohio State University partnered in 2009 to create the Global Change, Local Impact webinar series. The monthly series brings in experts from around the Great Lakes region to discuss issues and impacts we will encounter regionally as our climate changes. Originally designed as a small series for Ohioans, the series has broadened to focus on Great Lakes-related issues, with more than 4,500 attendees representing 500 organizations in governmental agencies, academia, non-profit groups, private industry, and the legislature from around the country. Over the past two years, the OSU Climate Team expanded its educational reach by partnering with external groups like the Centers for Disease Control and Prevention, Great Lakes Regional Water Program, National Oceanic and Atmospheric Administration, and the Great Lakes Sea Grant Network to help deliver the most knowledgeable experts and resources for each Great Lake-focused climate topic and archive those resources on its www.changingclimate.osu.edu web site. As a result of these collaborative efforts, participants say the webinars are one of their primary resources for climate-related research information in the region, with 80-90% polled saying they use this information as an unbiased resource to help not only understand how climate change could affect local concerns like public health, agriculture, and infrastructure, but what they in their vocations and daily lives can do to prepare for it. For scientists and practitioners, this series serves as the perfect low carbon venue

  10. new scientist - singing in the name of climate change

    NASA Astrophysics Data System (ADS)

    Peragine, Marcel

    2015-04-01

    Basically what I am concerned with as composer, musician, film maker etc. is communicating in any way with the resources available the significance behind human civilization's impact on climate change. I accomplish this with the other components of my band, and the song that follows entitled New Scientist is an attempt to do this using the platform of the popular 3 minute rock song format. This Scientific Symposium is important no doubt, being a wonderful way of bringing creativity into science by inviting artists to participate. However time is running out and getting the message out on the scale necessary to start reversing the damage caused by modern man can only effectively be done with mass communication tools, hence broadcast and social media. The lyrics for New Scientist and other compositions we have in our repertoire try to provoke awareness by being set in the future, talking to the egocentric nature of mankind and to the small percentage of those who have the will and insight to attempt the almost supernatural feat of saving some semblance of human habitat either on Earth, or finding a new one elsewhere in the Universe. It is a bit satirical but oddly enough with world governments firmly in the hands of big business be it dirty oil or the factory farming of animals etc.,radical scientific solutions for the Earth seem to be mankind's only hope. It's great that NASA is finally making an attempt to reactivate manned space flights to Mars and deep space. In fact, nobody has ever taken seriously the impact of this research and technology on fighting climate change on Earth. To give an example, the hydrogen fuel cell is a technology not in use in everyday life in the modern world due to the lack of government special interests and subsidies. The good news however is that many of the scientific breakthroughs pioneered by NASA and its contractors have made available the ecologically friendly tools necessary to reverse climate change if only they would be made

  11. Minority Pre-service Teachers' and Faculty Training on Climate Change Education in Delaware State University

    NASA Astrophysics Data System (ADS)

    Ozbay, G.; Fox-Lykens, R.; Veron, D. E.; Rogers, M.; Merrill, J.; Harcourt, P.; Mead, H.

    2015-12-01

    Delaware State University is working toward infusing undergraduate education with climate change science and enhancing the climate change learning content of pre-service teacher preparation programs as part of the MADE-CLEAR project (www.madeclear.org). Faculty development workshops have been conducted to prepare and educate a cadre of faculty from different disciplines in global climate science literacy. Following the workshops, the faculty participants have integrated climate literacy tenets into their existing curriculum. Follow up meetings have helped the faculty members to use specific content in their curriculum such as greenhouse gases, atmospheric CO2, sea level rise, etc. Additional training provided to the faculty participants in pedagogical methods of climate change instruction to identify common misconceptions and barriers to student understanding. Some pre-service teachers were engaged in summer internships and learned how to become messenger of climate change science by the state parks staff during the summer. Workshops were offered to other pre-service teachers to teach them specific climate change topics with enhanced hands-on laboratory activities. The participants were provided examples of lesson plans and guided to develop their own lesson plans and present them. Various pedagogical methods have been explored for teaching climate change content to the participants. The pre-service teachers found the climate content very challenging and confusing. Training activities were modified to focus on targeted topics and modeling of pedagogical techniques for the faculty and pre-service teachers. Program evaluation confirms that the workshop participant show improved understanding of the workshop materials by the participants if they were introduced few climate topics. Learning how to use hands-on learning tools and preparing lesson plans are two of the challenges successfully implemented by the pre-service teachers. Our next activity includes pre

  12. Exploring the Multifaceted Topic of Climate Change in Our Changing Climate and Living With Our Changing Climate

    NASA Astrophysics Data System (ADS)

    Brey, J. A.; Kauffman, C.; Geer, I. W.; Mills, E. W.; Nugnes, K. A.; Stimach, A. E.

    2015-12-01

    As the effects of climate change become more profound, climate literacy becomes increasingly important. The American Meteorological Society (AMS) responds to this need through the publication of Our Changing Climate and Living With Our Changing Climate. Both publications incorporate the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the USGCRP's Third National Climate Assessment. Topic In Depth sections appear throughout each chapter and lead to more extensive, multidisciplinary information related to various topics. Additionally, each chapter closes with a For Further Exploration essay, which addresses specific topics that complement a chapter concept. Web Resources, which encourage additional exploration of chapter content, and Scientific Literature, from which chapter content was derived can also be found at the conclusion of each chapter. Our Changing Climate covers a breadth of topics, including the scientific principles that govern Earth's climate system and basic statistics and geospatial tools used to investigate the system. Released in fall 2015, Living With Our Changing Climate takes a more narrow approach and investigates human and ecosystem vulnerabilities to climate change, the role of energy choices in affecting climate, actions humans can take through adaption, mitigation, and policy to lessen vulnerabilities, and psychological and financial reasons behind climate change denial. While Living With Our Changing Climate is intended for programs looking to add a climate element into their curriculum, Our Changing Climate is part of the AMS Climate Studies course. In a 2015 survey of California University of Pennsylvania undergraduate students using Our Changing Climate, 82% found it comfortable to read and utilized its interactive components and resources. Both ebooks illuminate the multidisciplinary aspect of climate change, providing the opportunity for a more sustainable future.

  13. A New Tool for Climatic Analysis Using the Koppen Climate Classification

    ERIC Educational Resources Information Center

    Larson, Paul R.; Lohrengel, C. Frederick, II

    2011-01-01

    The purpose of climate classification is to help make order of the seemingly endless spatial distribution of climates. The Koppen classification system in a modified format is the most widely applied system in use today. This system may not be the best nor most complete climate classification that can be conceived, but it has gained widespread…

  14. ClimateSpark: An In-memory Distributed Computing Framework for Big Climate Data Analytics

    NASA Astrophysics Data System (ADS)

    Hu, F.; Yang, C. P.; Duffy, D.; Schnase, J. L.; Li, Z.

    2016-12-01

    Massive array-based climate data is being generated from global surveillance systems and model simulations. They are widely used to analyze the environment problems, such as climate changes, natural hazards, and public health. However, knowing the underlying information from these big climate datasets is challenging due to both data- and computing- intensive issues in data processing and analyzing. To tackle the challenges, this paper proposes ClimateSpark, an in-memory distributed computing framework to support big climate data processing. In ClimateSpark, the spatiotemporal index is developed to enable Apache Spark to treat the array-based climate data (e.g. netCDF4, HDF4) as native formats, which are stored in Hadoop Distributed File System (HDFS) without any preprocessing. Based on the index, the spatiotemporal query services are provided to retrieve dataset according to a defined geospatial and temporal bounding box. The data subsets will be read out, and a data partition strategy will be applied to equally split the queried data to each computing node, and store them in memory as climateRDDs for processing. By leveraging Spark SQL and User Defined Function (UDFs), the climate data analysis operations can be conducted by the intuitive SQL language. ClimateSpark is evaluated by two use cases using the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) climate reanalysis dataset. One use case is to conduct the spatiotemporal query and visualize the subset results in animation; the other one is to compare different climate model outputs using Taylor-diagram service. Experimental results show that ClimateSpark can significantly accelerate data query and processing, and enable the complex analysis services served in the SQL-style fashion.

  15. Medical pioneers in cyberspace: German practice owners advertising on the WWW.

    PubMed

    Schuh, C

    1999-01-01

    In the last few years, the number of Internet users has increased explosively. In the same way the number of Internet users has exploded, the costs in the public health sector have also increased. This resulted cost saving efforts by those responsible people in politics and medical administration. These economy measures have impacted in particular the established physicians. The current German practice owners are faced with an unknown economic situation and are forced to think and act like businessmen. Doubts arise concerning the age-old tradition of the advertising prohibition. Now advertisement is recognized as an important necessity. This study was conducted to answer the following questions: Who are the pioneers among the German practice owners presenting themselves to the public with their own website? How do they differ from their colleagues not advertising on the WWW? What motives and expectations do they associate with their website? Built on a detailed analysis of the relevant German and international literature, hypotheses were developed which were empirically checked in the further course of the work. For this purpose, an online survey was conducted on the WWW among established German physicians with their own websites. 194 physicians participated and 159 valid questionnaires were included in the analysis. The study revealed the following results: The age and sex distribution as well as the distribution of medical specialties in the examined group correspond to the expectations. A high percentage of the respondents participated in a medical professional organization. The median time in practice for practice age of the respondents was a little more than ten years. Many of the websites have been online less than one year. The following hypotheses could only partly be confirmed by the results of the survey: Physicians from different specialties deal with their own website differently. The Internet Familiarity of the physicians is responsible for the

  16. Making climate change tangible for strategic adaptation planning: The Climate Corridor Approach

    NASA Astrophysics Data System (ADS)

    Orlowsky, Boris; Calanca, Pierluigi; Ali, Irshad; Ali, Jawad; Elguera Hilares, Agustin; Huggel, Christian; Khan, Inamullah; Neukom, Raphael; Nizami, Arjumand; Qazi, Muhammad Abbas; Robledo, Carmenza; Rohrer, Mario; Salzmann, Nadine; Schmidt, Kaspar

    2017-04-01

    Climate change is a global phenomenon and difficult to grasp. Although its importance is generally acknowledged, impacts of (future) climate change on human activities are in many cases not taken into account explicitly, in particular when planning development projects. This is due to technical and conceptual challenges, missing financial and human resources and competing priorities. Neglecting climate change can become problematic, if a proposed activity requires specific climatological conditions under which it becomes feasible, a simple example being crop cultivation that needs certain temperature an d precipitation ranges. Comparing such ``climate corridors'' to future climate projections provides an intuitive and low-cost yet quantitative means for assessing needs for, and viability of, adaptation activities under climate change - a "poor man's approach" to climate suitability analysis. A chief advantage of this approach is its modest demand on data. Three case studies from Pakistan, Peru and Tajikistan show that climate corridor analysis can deliver robust results and can be used to efficiently communicate risks and challenges of climate change to partners and stakeholders in the developing countries.

  17. Choice of baseline climate data impacts projected species' responses to climate change.

    PubMed

    Baker, David J; Hartley, Andrew J; Butchart, Stuart H M; Willis, Stephen G

    2016-07-01

    Climate data created from historic climate observations are integral to most assessments of potential climate change impacts, and frequently comprise the baseline period used to infer species-climate relationships. They are often also central to downscaling coarse resolution climate simulations from General Circulation Models (GCMs) to project future climate scenarios at ecologically relevant spatial scales. Uncertainty in these baseline data can be large, particularly where weather observations are sparse and climate dynamics are complex (e.g. over mountainous or coastal regions). Yet, importantly, this uncertainty is almost universally overlooked when assessing potential responses of species to climate change. Here, we assessed the importance of historic baseline climate uncertainty for projections of species' responses to future climate change. We built species distribution models (SDMs) for 895 African bird species of conservation concern, using six different climate baselines. We projected these models to two future periods (2040-2069, 2070-2099), using downscaled climate projections, and calculated species turnover and changes in species-specific climate suitability. We found that the choice of baseline climate data constituted an important source of uncertainty in projections of both species turnover and species-specific climate suitability, often comparable with, or more important than, uncertainty arising from the choice of GCM. Importantly, the relative contribution of these factors to projection uncertainty varied spatially. Moreover, when projecting SDMs to sites of biodiversity importance (Important Bird and Biodiversity Areas), these uncertainties altered site-level impacts, which could affect conservation prioritization. Our results highlight that projections of species' responses to climate change are sensitive to uncertainty in the baseline climatology. We recommend that this should be considered routinely in such analyses. © 2016 John Wiley

  18. Climate Observations from Space

    NASA Astrophysics Data System (ADS)

    Briggs, Stephen

    2016-07-01

    The latest Global Climate Observing System (GCOS) Status Report on global climate observations, delivered to the UNFCCC COP21 in November 2016, showed how satellite data are critical for observations relating to climate. Of the 50 Essential Climate Variables (ECVs) identified by GCOS as necessary for understanding climate change, about half are derived only from satellite data while half of the remainder have a significant input from satellites. Hence data from Earth observing satellite systems are now a fundamental requirement for understanding the climate system and for managing the consequences of climate change. Following the Paris Agreement of COP21 this need is only greater. Not only will satellites have to continue to provide data for modelling and predicting climate change but also for a much wider range of actions relating to climate. These include better information on loss and damage, resilience, improved adaptation to change, and on mitigation including information on greenhouse gas emissions. In addition there is an emerging need for indicators of the risks associated with future climate change which need to be better quantified, allowing policy makers both to understand what decisions need to be taken, and to see the consequences of their actions. The presentation will set out some of the ways in which satellite data are important in all aspects of understanding, managing and predicting climate change and how they may be used to support future decisions by those responsible for policy related to managing climate change and its consequences.

  19. Effect of and satisfaction with www.elearnSCI.org for training of nurse students: a submodule pilot study.

    PubMed

    Liu, N; Li, X W; Zhou, M W; Krassioukov, A V; Biering-Sørensen, F

    2014-10-01

    Interventional training session. To investigate the effect and satisfaction with didactic training using printed text of a submodule of www.elearnSCI.org for nurse students and to assess the answers of each question. A Peking University teaching hospital. Twenty-eight nurse students in two groups (14 in each) were involved. Only group A received a translated print-out of the slides from the 'Nursing management' submodule in www.elearnSCI.org for 1-h self-study before the class. At the beginning of class, both groups were tested using the self assessment questions. Then, a lecture according to the content of this submodule was carried out and afterwards both groups answered the self assessment questions again. Finally, both groups filled in a training course satisfaction questionnaire. At the beginning of the class, the mean score (max 9) of the self assessment in group A was 7.1 ± 1.1, which was significantly higher than that in group B (4.9 ± 1.7, P = 0.001). After the lecture, the mean score of the self assessment in group A had insignificantly increased to 7.4 ± 1.3, whereas in group B it increased significantly to 6.9 ± 0.8 (P < 0.001). The mean score (max 50) of the training course satisfaction questionnaire was 42.8 ± 5.2. Sixty-four percentage of the students indicated that they were very satisfied (overall score ⩾ 42) with the training and no students were unsatisfied (overall score < 30). Self-study and lecture presentation are effective methods for training the content of www.elearnSCI.org to nurse students. The training satisfaction of this submodule within the www.elearnSCI.org is favorable.

  20. On climate prediction: how much can we expect from climate memory?

    NASA Astrophysics Data System (ADS)

    Yuan, Naiming; Huang, Yan; Duan, Jianping; Zhu, Congwen; Xoplaki, Elena; Luterbacher, Jürg

    2018-03-01

    Slowing variability in climate system is an important source of climate predictability. However, it is still challenging for current dynamical models to fully capture the variability as well as its impacts on future climate. In this study, instead of simulating the internal multi-scale oscillations in dynamical models, we discussed the effects of internal variability in terms of climate memory. By decomposing climate state x(t) at a certain time point t into memory part M(t) and non-memory part ɛ (t) , climate memory effects from the past 30 years on climate prediction are quantified. For variables with strong climate memory, high variance (over 20% ) in x(t) is explained by the memory part M(t), and the effects of climate memory are non-negligible for most climate variables, but the precipitation. Regarding of multi-steps climate prediction, a power law decay of the explained variance was found, indicating long-lasting climate memory effects. The explained variances by climate memory can remain to be higher than 10% for more than 10 time steps. Accordingly, past climate conditions can affect both short (monthly) and long-term (interannual, decadal, or even multidecadal) climate predictions. With the memory part M(t) precisely calculated from Fractional Integral Statistical Model, one only needs to focus on the non-memory part ɛ (t) , which is an important quantity that determines climate predictive skills.

  1. Serious Simulation Role-Playing Games for Transformative Climate Change Education: "World Climate" and "Future Climate"

    NASA Astrophysics Data System (ADS)

    Rooney-Varga, J. N.; Sterman, J.; Sawin, E.; Jones, A.; Merhi, H.; Hunt, C.

    2012-12-01

    results of the earlier decisions, as simulated by C-ROADS. Preliminary evaluations show that both exercises have the potential to provide powerful learning experiences. University students who played World Climate in a climate change course cited it as one of the course activities "promoting the most learning." Students' responses on anonymous surveys and open-ended questions revealed that the experience affected them at visceral, as well as intellectual levels. All of the students recommended that the exercise be continued in future years and many felt that it was the most important learning experience of the semester. Similarly, understanding of climate change and the dynamics of the climate improved for the majority of Future Climate participants, and 90% of participants stated that they were more likely to take action to address climate change on a personal level because of their experience.

  2. Interactions of Mean Climate Change and Climate Variability on Food Security Extremes

    NASA Technical Reports Server (NTRS)

    Ruane, Alexander C.; McDermid, Sonali; Mavromatis, Theodoros; Hudson, Nicholas; Morales, Monica; Simmons, John; Prabodha, Agalawatte; Ahmad, Ashfaq; Ahmad, Shakeel; Ahuja, Laj R.

    2015-01-01

    Recognizing that climate change will affect agricultural systems both through mean changes and through shifts in climate variability and associated extreme events, we present preliminary analyses of climate impacts from a network of 1137 crop modeling sites contributed to the AgMIP Coordinated Climate-Crop Modeling Project (C3MP). At each site sensitivity tests were run according to a common protocol, which enables the fitting of crop model emulators across a range of carbon dioxide, temperature, and water (CTW) changes. C3MP can elucidate several aspects of these changes and quantify crop responses across a wide diversity of farming systems. Here we test the hypothesis that climate change and variability interact in three main ways. First, mean climate changes can affect yields across an entire time period. Second, extreme events (when they do occur) may be more sensitive to climate changes than a year with normal climate. Third, mean climate changes can alter the likelihood of climate extremes, leading to more frequent seasons with anomalies outside of the expected conditions for which management was designed. In this way, shifts in climate variability can result in an increase or reduction of mean yield, as extreme climate events tend to have lower yield than years with normal climate.C3MP maize simulations across 126 farms reveal a clear indication and quantification (as response functions) of mean climate impacts on mean yield and clearly show that mean climate changes will directly affect the variability of yield. Yield reductions from increased climate variability are not as clear as crop models tend to be less sensitive to dangers on the cool and wet extremes of climate variability, likely underestimating losses from water-logging, floods, and frosts.

  3. Assessing the capability of high resolution climatic model experiments to simulate Mediterranean cyclonic tracks

    NASA Astrophysics Data System (ADS)

    Hatzaki, M.; Flocas, H. A.; Giannakopoulos, C.; Kostopoulou, E.; Kouroutzoglou, I.; Keay, K.; Simmonds, I.

    2010-09-01

    In this study, a comparison of a reanalysis driven simulation to a GCM driven simulation of a regional climate model is performed in order to assess the model's ability to capture the climatic characteristics of cyclonic tracks in the Mediterranean in the present climate. The ultimate scope of the study will be to perform a future climate projection related to cyclonic tracks in order to better understand and assess climate change in the Mediterranean. The climatology of the cyclonic tracks includes inter-monthly variations, classification of tracks according to their origin domain, dynamic and kinematic characteristics, as well as trend analysis. For this purpose, the ENEA model is employed based on PROTHEUS system composed of the RegCM atmospheric regional model and the MITgcm ocean model, coupled through the OASIS3 flux coupler. These model data became available through the EU Project CIRCE which aims to perform, for the first time, climate change projections with a realistic representation of the Mediterranean Sea. Two experiments are employed; a) the ERA402 with lateral Boundary conditions from ERA40 for the 43-year period 1958-2000, and b) the EH5OM_20C3M where the lateral boundary conditions for the atmosphere (1951-2000) are taken from the ECHAM5-MPIOM 20c3m global simulation (run3) included in the IPCC-AR4. The identification and tracking of cyclones is performed with the aid of the Melbourne University algorithm (MS algorithm), according to the Lagrangian perspective. MS algorithm characterizes a cyclone only if a vorticity maximum could be connected with a local pressure minimum. This approach is considered to be crucial, since open lows are also incorporated into the storm life-cycle, preventing possible inappropriate time series breaks, if a temporary weakening to an open-low state occurs. The model experiments verify that considerable inter-monthly variations of track density occur in the Mediterranean region, consistent with previous studies. The

  4. Continuity of Climate Data Records derived from Microwave Observations

    NASA Astrophysics Data System (ADS)

    Mears, C. A.; Wentz, F. J.; Brewer, M.; Meissner, T.; Ricciardulli, L.

    2017-12-01

    Remote Sensing Systems (www.remss.com) has been producing and distributing microwave climate data products from microwave imagers (SSMI, TMI, AMSR, WindSat, GMI, Aquarius, SMAP) over the global oceans since the launch of the first SSMI in 1987. Interest in these data products has been significant as researchers around the world have downloaded the approximate equivalent of 1 million satellite years of processed data. Users, including NASA, NOAA, US National Laboratories, US Navy, UK Met, ECMWF, JAXA, JMA, CMC, the Australian Bureau of Meteorology, as well as many hundreds of other agencies and universities routinely access these microwave data products. The quality of these data records has increased as more observations have become available and inter-calibration techniques have improved. The impending end of missions for WindSat, AMSR-2, and the remaining SSMIs will have significant impact on the quality and continuity of long term microwave climate data records. In addition to the problem of reduced numbers of observations, there is a real danger of losing overlapping observations. Simultaneous operation of satellites, especially when the observations are at similar local crossing times, provides a significant benefit in the effort to inter-calibrate satellites to yield accurate and stable long-term records. The end of WindSat and AMSR-2 will leave us without microwave SSTs in cold water, as there will be no microwave imagers with C-band channels. Microwave SSTs have a crucial advantage over IR SSTs, which is not able to measure SST in clouds or if aerosols are present. The gap in ocean wind vectors will be somewhat mitigated as the European ASCAT C-band scatterometer mission on MetOp is continuing. Nonetheless, the anticipated cease of several microwave satellite radiometers retrieving ocean winds in the coming years will lead to a significant gap in temporal coverage. Atmospheric water vapor, cloud liquid water, and rain rate are all important climate

  5. Youth Climate Summits: Empowering & Engaging Youth to Lead on Climate Change

    NASA Astrophysics Data System (ADS)

    Kretser, J.

    2017-12-01

    The Wild Center's Youth Climate Summits is a program that engages youth in climate literacy from knowledge and understanding to developing action in their schools and communities. Each Youth Climate Summit is a one to three day event that brings students and teachers together to learn about climate change science, impacts and solutions at a global and local level. Through speakers, workshops and activities, the Summit culminates in a student-driven Climate Action Plan that can be brought back to schools and communities. The summits have been found to be powerful vehicles for inspiration, learning, community engagement and youth leadership development. Climate literacy with a focus on local climate impacts and solutions is a key component of the Youth Climate Summit. The project-based learning surrounding the creation of a unique, student driven, sustainability and Climate Action Plan promotes leadership skills applicable and the tools necessary for a 21st Century workforce. Student driven projects range from school gardens and school energy audits to working with NYS officials to commit to going 100% renewable electricty at the three state-owned downhill ski facilities. The summit model has been scaled and replicated in other communities in New York State, Vermont, Ohio, Michigan and Washington states as well as internationally in Finland, Germany and Sri Lanka.

  6. Evaluating the Relevance, Reliability, and Applicability of CMIP5 Climate Projections for Water Resources and Environmental Planning

    NASA Astrophysics Data System (ADS)

    Brekke, L. D.; Scott, J.; Ferguson, I. M.; Arnold, J.; Raff, D. A.; Webb, R. S.

    2012-12-01

    discussions around the world, with evaluation results being served through a web-portal similar to that developed by NOAA/CIRES to serve CMIP3 information on future climate extremes (http://www.esrl.noaa.gov/psd/ipcc/extremes/). The framework concludes with an applicability discussion informed by relevance and reliability results. The goal is to observe the discussion process and identify features, choice points, and challenges that might be summarized and shared with other resource management groups facing applicability questions. This presentation will discuss the project framework and preliminary results. In addition to considering CMIP5 21st century projection information, the framework is being developed to support evaluation of CMIP5 decadal predictability experiment simulations and reconcile those simulations with 21st century projections. The presentation will also discuss implications of considering the applicability of bias-corrected and downscaled information within this framework.

  7. EDITORIAL: Siberia Integrated Regional Study: multidisciplinary investigations of the dynamic relationship between the Siberian environment and global climate change

    NASA Astrophysics Data System (ADS)

    Gordov, E. P.; Vaganov, E. A.

    2010-03-01

    databases, models and analytical tools for on-line use and visualization, designed primarily for atmospheric physics and chemistry (http://risks.scert.ru/)3 [12, 14]. These powerful tools have already promoted understanding of the interactions between Siberian ecosystems, the atmosphere and human dynamics, under the impact of global climate change. For example, the climate site of the Enviro-RISKS portal (http://climate.risks.scert.ru/) processes unique data sets, from monitoring and modeling regional meteorology, atmospheric pollution transformation/transport and climate, all of which are significant for dynamic regional assessments. This is a user-friendly, interactive web system that can be used for regional climate change assessment and visualization based upon standard meteorological data. All major reanalysis and climatic characteristics are provided (surface air temperature, pressure, humidity, precipitation, soil moisture, and geopotential height), and the users can (but do not need to) access the data files directly but freely receive the results of their analyses through the Grid Analysis and Display System (GrADS; www.iges.org/grads/) or Interactive Data Language (IDL; www.ittvis.com/idl/). Specific spatial and temporal domains can be selected, as well as a wide range of statistical analyses, data manipulations, and visualization tools (including animation) that may be required for global, continental, and regional climate change assessments. The SIRS infrastructure has become an indispensable tool, providing researchers with an open platform (portal plus tools) that may be used, adapted, enriched or altered on the basis of the specific scientific applications in regions of Siberia, the Russian Federation, and the northern exatropics. SIRS capacity building/young scientists' education/training The SIRS educational capacity building programme includes ENVIROMIS biannual Multidisciplinary Conference, CITES (Computational and Information Technologies for

  8. Beyond equilibrium climate sensitivity

    NASA Astrophysics Data System (ADS)

    Knutti, Reto; Rugenstein, Maria A. A.; Hegerl, Gabriele C.

    2017-10-01

    Equilibrium climate sensitivity characterizes the Earth's long-term global temperature response to increased atmospheric CO2 concentration. It has reached almost iconic status as the single number that describes how severe climate change will be. The consensus on the 'likely' range for climate sensitivity of 1.5 °C to 4.5 °C today is the same as given by Jule Charney in 1979, but now it is based on quantitative evidence from across the climate system and throughout climate history. The quest to constrain climate sensitivity has revealed important insights into the timescales of the climate system response, natural variability and limitations in observations and climate models, but also concerns about the simple concepts underlying climate sensitivity and radiative forcing, which opens avenues to better understand and constrain the climate response to forcing. Estimates of the transient climate response are better constrained by observed warming and are more relevant for predicting warming over the next decades. Newer metrics relating global warming directly to the total emitted CO2 show that in order to keep warming to within 2 °C, future CO2 emissions have to remain strongly limited, irrespective of climate sensitivity being at the high or low end.

  9. A new scenario framework for climate change research: The concept of Shared Climate Policy Assumptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kriegler, Elmar; Edmonds, James A.; Hallegatte, Stephane

    2014-04-01

    The paper presents the concept of shared climate policy assumptions as an important element of the new scenario framework. Shared climate policy assumptions capture key climate policy dimensions such as the type and scale of mitigation and adaptation measures. They are not specified in the socio-economic reference pathways, and therefore introduce an important third dimension to the scenario matrix architecture. Climate policy assumptions will have to be made in any climate policy scenario, and can have a significant impact on the scenario description. We conclude that a meaningful set of shared climate policy assumptions is useful for grouping individual climatemore » policy analyses and facilitating their comparison. Shared climate policy assumptions should be designed to be policy relevant, and as a set to be broad enough to allow a comprehensive exploration of the climate change scenario space.« less

  10. Stardial -- an autonomous astronomical camera on the WWW

    NASA Astrophysics Data System (ADS)

    McCullough, P. R.; Thakkar, U.

    1997-05-01

    The use of an autonomous electronic camera, called ``Stardial,'' for undergraduate instruction is described. Stardial delivers images of the night sky nearly in real-time to the world wide web (www.astro.uiuc.edu/stardial/). The remote instrumentation of Stardial is robust, inexpensive, and accomodates many students asynchronously with respect to the instructor(s). The guiding philosophy of the curriculum is to provide students with authentic astronomical data so that they may learn about science by doing it themselves on the internet. Students respond favorably to the opportunity to learn from their own experiences with genuine data, complete with its irregularities and its surprises. Perhaps surprisingly, 9 of 10 self-selected student volunteers in our pilot project were female. Stardial's instrumentation is similar to that of Gaustad et al., and to that of Richmond, Droege, et al. (both at this same meeting). Stardial has benefitted from contributions from students, especially Lawrence Tan, Troy Klyber, Jim Pulokas, Jim Waldemer, and Diana Lopez, and from a number of professionals, especially G.T. Becker, Mike Newberry, John Dolby, Tom Droege, Bob Mutel, Mike Richmond, John Thorstensen, and Rick White. Stardial is funded by the University of Illinois, primarily from the office of the Vice President for Academic Affairs. We welcome participation from amateur astronomers and other educators.

  11. Climate Matters: Increasing Climate Literacy Through Broadcast Meteorologists

    NASA Astrophysics Data System (ADS)

    Sanford, T. J.; Placky, B. W.

    2015-12-01

    Broadcast meteorologists are among the most trusted members of the media landscape and they have a unique opportunity to reach the broad public with information about climate change. A recent survey by Maibach, et al. (2015) has shown that more than 90% of TV weathercasters think that their audience is at least somewhat interested in learning about the local impacts of climate change and 7 in 10 think that it is appropriate for them to report the science of climate change to their audience. But about half of these TV weathercasters have experienced obstacles to reporting climate change - citing lack of time to research and produce material, in addition to lack of access to appropriate visuals/graphics and access to trusted scientific information. Climate Matters is an NSF funded program that partners with broadcast meteorologists to deliver scientifically sound climate change information to the public that is local and relevant. A team of climate scientists, meteorologists, data analysts, journalists, and multimedia artists analyze and prepare content on a weekly basis so that it may be readily included in a broadcast weather segment, online or during community outreach. The program started as a pilot project with just one meteorologist in 2010 before Climate Central launched a full-time, nationwide program in 2012. Since then, Climate Matters has grown to include over 250 meteorologists strong and in more than 100 markets across the country, including Spanish language TV stations.

  12. Using climate derivatives for assessment of meteorological parameter relationships in RCM and observations

    NASA Astrophysics Data System (ADS)

    Timuhins, Andrejs; Bethers, Uldis; Bethers, Peteris; Klints, Ilze; Sennikovs, Juris; Frishfelds, Vilnis

    2017-04-01

    In a changing climate it is essential to estimate its impacts on different economic fields. In our study we tried to create a framework for climate change assessment and climate change impact estimation for the territory of Latvia and to create results which are also understandable for non-scientists (stakeholder, media and public). This approach allowed us to more carefully assess the presentation and interpretation of results and their validation, for public viewing. For the presentation of our work a website was created (www.modlab.lv/klimats) containing two types of documents in a unified framework, meteorological parameter analysis of different easily interpretable derivative values. Both of these include analysis of the current situation as well as illustrate the projection for future time periods. Derivate values are calculated using two data sources: the bias corrected regional climate data and meteorological observation data. Derivative documents contain description of derived value, some interesting facts and conclusions. Additionally, all results may be viewed in temporal and spatial graphs and maps, for different time periods as well as different seasons. Bias correction (Sennikovs and Bethers, 2009) for the control period 1961-1990 is applied to RCM data series. Meteorological observation data of the Latvian Environment, Geology, and Meteorology Agency and ENSEMBLES project daily data of 13 RCM runs for the period 1960-2100 are used. All the documents are prepared in python notebooks, which allow for flexible changes. At the moment following derivative values have been published: forest fire risk index, wind energy, phenology (Degree days), road condition (friction, ice conditions), daily minimal meteorological visibility, headache occurrence rate, firs snow date and meteorological parameter analysis: temperature, precipitation, wind speed, relative humidity, and cloudiness. While creating these products RCM ability to represent the actual climate was

  13. Evaluation of co-benefits from combined climate change and air pollution reduction strategies

    NASA Astrophysics Data System (ADS)

    Leitao, Joana; Van Dingenen, Rita; Dentener, Frank; Rao, Shilpa

    2014-05-01

    The connection of climate change and air pollution is becoming more relevant in the process of policy making and implementation of emission control strategies because of resulting co-benefits and trade-offs. Some sectors, such as fossil fuel combustion, are sources of both pollutants (NOx and PM) as well as greenhouse gas (CO2). Additionally, the use of wood burning as biofuel to reduce climate impact may in fact deteriorate air quality. Furthermore, several air pollutants are important radiative forcers and regulating their emissions impacts on climate. It is evident that both problems need to be undertaken with a common strategy and the existence of cross-policy with co-benefits may encourage their implementation. The LIMITS FP7 project (http://www.feem-project.net/limits/index.html) was designed with the main goal of assessing strategies for reduction of GHG emissions so that the 2°C target can be achieved. The work developed focus on the evaluation of the implementation of strategies analysing several aspects of different scenarios, namely: the feasibility of low carbon scenarios in terms of available technologies and infrastructure, the required financial mechanisms, and also the co-benefits regarding energy security, economic development and air pollution. For the latter, five integrated assessment models (IAMs) provided greenhouse gases and pollutant emission values for several scenarios. These were based on air pollution scenarios defined according to stringency and implementation of future global legislation. They which were also combined with 2 climate policy scenarios (no climate policy and 2.8 W/m2 target). The former are mostly focused on non-climate policies and technical control measures for emissions of air pollutants, such as PM2.5, NOx and SO2, with their emission factors harmonized between the IAMs. With the global air quality source-receptor model TM5-FASST the impact of the resulting emissions was analysed and the co-benefits of combined

  14. Deriving user-informed climate information from climate model ensemble results

    NASA Astrophysics Data System (ADS)

    Huebener, Heike; Hoffmann, Peter; Keuler, Klaus; Pfeifer, Susanne; Ramthun, Hans; Spekat, Arne; Steger, Christian; Warrach-Sagi, Kirsten

    2017-07-01

    Communication between providers and users of climate model simulation results still needs to be improved. In the German regional climate modeling project ReKliEs-De a midterm user workshop was conducted to allow the intended users of the project results to assess the preliminary results and to streamline the final project results to their needs. The user feedback highlighted, in particular, the still considerable gap between climate research output and user-tailored input for climate impact research. Two major requests from the user community addressed the selection of sub-ensembles and some condensed, easy to understand information on the strengths and weaknesses of the climate models involved in the project.

  15. Understanding the Impacts of Climate and Hydrologic Extremes on Diarrheal Diseases in Southwestern Amazon

    NASA Astrophysics Data System (ADS)

    Fonseca, P. A. M.

    2015-12-01

    Bacterial diarrheal diseases have a high incidence rate during and after flooding episodes. In the Brazilian Amazon, flood extreme events have become more frequent, leading to high incidence rates for infant diarrhea. In this study we aimed to find a statistical association between rainfall, river levels and diarrheal diseases in children under 5, in the river Acre basin, in the State of Acre (Brazil). We also aimed to identify the time-lag and annual season of extreme rainfall and flooding in different cities in the water basin. The results using Tropical Rainfall Measuring Mission (TRMM) Satellite rainfall data show robustness of these estimates against observational stations on-ground. The Pearson coefficient correlation results (highest 0.35) indicate a time-lag, up to 4 days in three of the cities in the water-basin. In addition, a correlation was also tested between monthly accumulated rainfall and the diarrheal incidence during the rainy season (DJF). Correlation results were higher, especially in Acrelândia (0.7) and Brasiléia and Epitaciolândia (0.5). The correlation between water level monthly averages and diarrheal diseases incidence was 0.3 and 0.5 in Brasiléia and Epitaciolândia. The time-lag evidence found in this paper is critical to inform stakeholders, local populations and civil defense authorities about the time available for preventive and adaptation measures between extreme rainfall and flooding events in vulnerable cities. This study was part of a pilot application in the state of Acre of the PULSE-Brazil project (http://www.pulse-brasil.org/tool/), an interface of climate, environmental and health data to support climate adaptation. The next step of this research is to expand the analysis to other climate variables on diarrheal diseases across the whole Brazilian Amazon Basin and estimate the relative risk (RR) of a child getting sick. A statistical model will estimate RR based on the observed values and seasonal forecasts (higher

  16. Climate change. Climate in Medieval time.

    PubMed

    Bradley, Raymond S; Hughes, Malcolm K; Diaz, Henry F

    2003-10-17

    Many papers have referred to a "Medieval Warm Period." But how well defined is climate in this period, and was it as warm as or warmer than it is today? In their Perspective, Bradley et al. review the evidence and conclude that although the High Medieval (1100 to 1200 A.D.) was warmer than subsequent centuries, it was not warmer than the late 20th century. Moreover, the warmest Medieval temperatures were not synchronous around the globe. Large changes in precipitation patterns are a particular characteristic of "High Medieval" time. The underlying mechanisms for such changes must be elucidated further to inform the ongoing debate on natural climate variability and anthropogenic climate change.

  17. Climate change impact on the management of water resources in the Seine River basin, France

    NASA Astrophysics Data System (ADS)

    Dorchies, David; Thirel, Guillaume; Chauveau, Mathilde; Jay-Allemand, Maxime; Perrin, Charles; Dehay, Florine

    2013-04-01

    annual flows were assessed under natural condition (i.e. without the inclusion of the reservoirs in the models). Then, the impact of reservoirs and their management were accounted for in the modeling chain. Results will be discussed relatively to future hydro-climatic conditions and current mitigation objectives within the basin. Reference: Pagé, C., L. Terray et J. Boé, 2009: dsclim: A software package to downscale climate scenarios at regional scale using a weather-typing based statistical methodology. Technical Report TR/CMGC/09/21, SUC au CERFACS, URA CERFACS/CNRS No1875, Toulouse, France. Link : http://www.cerfacs.fr/~page/dsclim/dsclim_doc-latest.pdf

  18. Integrating Climate Information and Decision Processes for Regional Climate Resilience

    NASA Astrophysics Data System (ADS)

    Buizer, James; Goddard, Lisa; Guido, Zackry

    2015-04-01

    An integrated multi-disciplinary team of researchers from the University of Arizona and the International Research Institute for Climate and Society at Columbia University have joined forces with communities and institutions in the Caribbean, South Asia and West Africa to develop relevant, usable climate information and connect it to real decisions and development challenges. The overall objective of the "Integrating Climate Information and Decision Processes for Regional Climate Resilience" program is to build community resilience to negative impacts of climate variability and change. We produce and provide science-based climate tools and information to vulnerable peoples and the public, private, and civil society organizations that serve them. We face significant institutional challenges because of the geographical and cultural distance between the locale of climate tool-makers and the locale of climate tool-users and because of the complicated, often-inefficient networks that link them. To use an accepted metaphor, there is great institutional difficulty in coordinating the supply of and the demand for useful climate products that can be put to the task of building local resilience and reducing climate vulnerability. Our program is designed to reduce the information constraint and to initiate a linkage that is more demand driven, and which provides a set of priorities for further climate tool generation. A demand-driven approach to the co-production of appropriate and relevant climate tools seeks to meet the direct needs of vulnerable peoples as these needs have been canvassed empirically and as the benefits of application have been adequately evaluated. We first investigate how climate variability and climate change affect the livelihoods of vulnerable peoples. In so doing we assess the complex institutional web within which these peoples live -- the public agencies that serve them, their forms of access to necessary information, the structural constraints

  19. Engaging All Americans: Innovative Strategies for Reaching the Public with Climate and Environmental Information

    NASA Astrophysics Data System (ADS)

    Espinoza, S.

    2014-12-01

    From extensive drought and heat waves to floods, tornadoes and Superstorm Sandy, extreme weather and climate events provide teachable moments to help communities prepare for and respond to related environmental, economic and health impacts. The National Environmental Education Foundation (www.neefusa.org) works with the American Meteorological Society, the media and other trusted messengers to provide weather, climate and environmental information to the public in accessible and widely used formats, whether via TV, radio or social media. NEEF will provide an overview of innovative partnerships and projects that are engaging Americans in understanding and using climate and environmental information to make the best choices in their daily lives and improve the health of their communities, including: Assessing knowledge, attitudes and behaviors: NEEF will share results from its national survey research and targeted focus groups on current attitudes and practices relating to our nation's environment. Simplifying and amplifying key messages: NEEF provides a national network of more than 350 meteorologists, radio broadcasters and journalists with the science-based information and resources they need to present climate and environmental topics to their viewers on-air, online and in community outreach. Engaging television viewers in citizen science: Eyes on Central PA, a pilot project of NEEF, Project Noah and WTAJ-TV, harnesses Project Noah's citizen science platform to collect and display photos of wildlife from WTAJ-TV viewers. NEEF and WTAJ provide regular blogs and on-air stories that highlight viewers' photos and link them to local weather conditions and climate trends. Expanding the conversation: NEEF's multimedia strategy in the Mid-Atlantic U.S. is reaching Spanish-speaking audiences with climate and environmental information through regular radio and television broadcasts. We are also exploring ways to reach other non-traditional audiences, including faith

  20. America's Climate Choices: Informing an Effective Response to Climate Change (Invited)

    NASA Astrophysics Data System (ADS)

    Liverman, D. M.; McConnell, M. C.; Raven, P.

    2010-12-01

    At the request of Congress, the National Academy of Sciences convened a series of coordinated activities to provide advice on actions and strategies that the nation can take to respond to climate change. As part of this suite of activities, this study examines information needs and recommends ways the federal government can better inform responses by enhancing climate change and greenhouse gas information and reporting systems and by improving climate communication and education. Demand for better information to support climate-related decisions has grown rapidly as people, organizations, and governments have moved ahead with plans and actions to reduce greenhouse gas emissions and to adapt to the impacts of climate change. To meet this demand, good information systems and services are needed. Without such systems, decision makers cannot evaluate whether particular policies and actions are achieving their goals or should be modified. Although the many non-federal efforts to reduce emissions and/or adapt to future climate changes carry considerable potential to reduce risks related to climate change, there is currently no comprehensive way to assess the effectiveness of those efforts. In addition, the diverse climate change responses to date have resulted in a patchwork of regional, state, and local policies that has prompted many state and business leaders to call for the development of a more predictable and coherent policy environment at the federal level. This report demonstrates that the nation lacks comprehensive, robust, and credible information and reporting systems to inform climate choices and evaluate their effectiveness. This report also argues that decision makers can benefit from a systematic and iterative framework for responding to climate change, in which decisions and policies can be revised in light of new information and experience and that improved information and reporting systems allow for ongoing evaluation of responses to climate risks. The

  1. The FORBIO Climate data set for climate analyses

    NASA Astrophysics Data System (ADS)

    Delvaux, C.; Journée, M.; Bertrand, C.

    2015-06-01

    In the framework of the interdisciplinary FORBIO Climate research project, the Royal Meteorological Institute of Belgium is in charge of providing high resolution gridded past climate data (i.e. temperature and precipitation). This climate data set will be linked to the measurements on seedlings, saplings and mature trees to assess the effects of climate variation on tree performance. This paper explains how the gridded daily temperature (minimum and maximum) data set was generated from a consistent station network between 1980 and 2013. After station selection, data quality control procedures were developed and applied to the station records to ensure that only valid measurements will be involved in the gridding process. Thereafter, the set of unevenly distributed validated temperature data was interpolated on a 4 km × 4 km regular grid over Belgium. The performance of different interpolation methods has been assessed. The method of kriging with external drift using correlation between temperature and altitude gave the most relevant results.

  2. The climate4impact platform: Providing, tailoring and facilitating climate model data access

    NASA Astrophysics Data System (ADS)

    Pagé, Christian; Pagani, Andrea; Plieger, Maarten; Som de Cerff, Wim; Mihajlovski, Andrej; de Vreede, Ernst; Spinuso, Alessandro; Hutjes, Ronald; de Jong, Fokke; Bärring, Lars; Vega, Manuel; Cofiño, Antonio; d'Anca, Alessandro; Fiore, Sandro; Kolax, Michael

    2017-04-01

    One of the main objectives of climate4impact is to provide standardized web services and tools that are reusable in other portals. These services include web processing services, web coverage services and web mapping services (WPS, WCS and WMS). Tailored portals can be targeted to specific communities and/or countries/regions while making use of those services. Easier access to climate data is very important for the climate change impact communities. To fulfill this objective, the climate4impact (http://climate4impact.eu/) web portal and services has been developed, targeting climate change impact modellers, impact and adaptation consultants, as well as other experts using climate change data. It provides to users harmonized access to climate model data through tailored services. It features static and dynamic documentation, Use Cases and best practice examples, an advanced search interface, an integrated authentication and authorization system with the Earth System Grid Federation (ESGF), a visualization interface with ADAGUC web mapping tools. In the latest version, statistical downscaling services, provided by the Santander Meteorology Group Downscaling Portal, were integrated. An innovative interface to integrate statistical downscaling services will be released in the upcoming version. The latter will be a big step in bridging the gap between climate scientists and the climate change impact communities. The climate4impact portal builds on the infrastructure of an international distributed database that has been set to disseminate the results from the global climate model results of the Coupled Model Intercomparison project Phase 5 (CMIP5). This database, the ESGF, is an international collaboration that develops, deploys and maintains software infrastructure for the management, dissemination, and analysis of climate model data. The European FP7 project IS-ENES, Infrastructure for the European Network for Earth System modelling, supports the European

  3. Bias and robustness of uncertainty components estimates in transient climate projections

    NASA Astrophysics Data System (ADS)

    Hingray, Benoit; Blanchet, Juliette; Jean-Philippe, Vidal

    2016-04-01

    A critical issue in climate change studies is the estimation of uncertainties in projections along with the contribution of the different uncertainty sources, including scenario uncertainty, the different components of model uncertainty and internal variability. Quantifying the different uncertainty sources faces actually different problems. For instance and for the sake of simplicity, an estimate of model uncertainty is classically obtained from the empirical variance of the climate responses obtained for the different modeling chains. These estimates are however biased. Another difficulty arises from the limited number of members that are classically available for most modeling chains. In this case, the climate response of one given chain and the effect of its internal variability may be actually difficult if not impossible to separate. The estimate of scenario uncertainty, model uncertainty and internal variability components are thus likely to be not really robust. We explore the importance of the bias and the robustness of the estimates for two classical Analysis of Variance (ANOVA) approaches: a Single Time approach (STANOVA), based on the only data available for the considered projection lead time and a time series based approach (QEANOVA), which assumes quasi-ergodicity of climate outputs over the whole available climate simulation period (Hingray and Saïd, 2014). We explore both issues for a simple but classical configuration where uncertainties in projections are composed of two single sources: model uncertainty and internal climate variability. The bias in model uncertainty estimates is explored from theoretical expressions of unbiased estimators developed for both ANOVA approaches. The robustness of uncertainty estimates is explored for multiple synthetic ensembles of time series projections generated with MonteCarlo simulations. For both ANOVA approaches, when the empirical variance of climate responses is used to estimate model uncertainty, the bias

  4. A new climate modeling framework for convection-resolving simulation at continental scale

    NASA Astrophysics Data System (ADS)

    Charpilloz, Christophe; di Girolamo, Salvatore; Arteaga, Andrea; Fuhrer, Oliver; Hoefler, Torsten; Schulthess, Thomas; Schär, Christoph

    2017-04-01

    Major uncertainties remain in our understanding of the processes that govern the water cycle in a changing climate and their representation in weather and climate models. Of particular concern are heavy precipitation events of convective origin (thunderstorms and rain showers). The aim of the crCLIM project [1] is to propose a new climate modeling framework that alleviates the I/O-bottleneck in large-scale, convection-resolving climate simulations and thus to enable new analysis techniques for climate scientists. Due to the large computational costs, convection-resolving simulations are currently restricted to small computational domains or very short time scales, unless the largest available supercomputers system such as hybrid CPU-GPU architectures are used [3]. Hence, the COSMO model has been adapted to run on these architectures for research and production purposes [2]. However, the amount of generated data also increases and storing this data becomes infeasible making the analysis of simulations results impractical. To circumvent this problem and enable high-resolution models in climate we propose a data-virtualization layer (DVL) that re-runs simulations on demand and transparently manages the data for the analysis, that means we trade off computational effort (time) for storage (space). This approach also requires a bit-reproducible version of the COSMO model that produces identical results on different architectures (CPUs and GPUs) [4] that will be coupled with a performance model in order enable optimal re-runs depending on requirements of the re-run and available resources. In this contribution, we discuss the strategy to develop the DVL, a first performance model, the challenge of bit-reproducibility and the first results of the crCLIM project. [1] http://www.c2sm.ethz.ch/research/crCLIM.html [2] O. Fuhrer, C. Osuna, X. Lapillonne, T. Gysi, M. Bianco, and T. Schulthess. "Towards gpu-accelerated operational weather forecasting." In The GPU Technology

  5. Being Human Beings: The Domains and a Human Realm

    DTIC Science & Technology

    2013-03-01

    evolutionary step to highlight the human component in conflict. As Francis Bacon said, “It would be an unused fancy and self-contradictory to expect that...Special Operations Command, Special Operations White Paper, 1. 50 Francis Bacon , “The New Organon or True Directions Concerning the Interpretation of...Nature,” 1620, http://www.constitution.org/ bacon /nov_org.htm, (accessed February 24, 2013). 51 Mark E. Redden and Michael P. Hughes, “Global

  6. Simple but accurate GCM-free approach for quantifying anthropogenic climate change

    NASA Astrophysics Data System (ADS)

    Lovejoy, S.

    2014-12-01

    We are so used to analysing the climate with the help of giant computer models (GCM's) that it is easy to get the impression that they are indispensable. Yet anthropogenic warming is so large (roughly 0.9oC) that it turns out that it is straightforward to quantify it with more empirically based methodologies that can be readily understood by the layperson. The key is to use the CO2 forcing as a linear surrogate for all the anthropogenic effects from 1880 to the present (implicitly including all effects due to Greenhouse Gases, aerosols and land use changes). To a good approximation, double the economic activity, double the effects. The relationship between the forcing and global mean temperature is extremely linear as can be seen graphically and understood without fancy statistics, [Lovejoy, 2014a] (see the attached figure and http://www.physics.mcgill.ca/~gang/Lovejoy.htm). To an excellent approximation, the deviations from the linear forcing - temperature relation can be interpreted as the natural variability. For example, this direct - yet accurate approach makes it graphically obvious that the "pause" or "hiatus" in the warming since 1998 is simply a natural cooling event that has roughly offset the anthropogenic warming [Lovejoy, 2014b]. Rather than trying to prove that the warming is anthropogenic, with a little extra work (and some nonlinear geophysics theory and pre-industrial multiproxies) we can disprove the competing theory that it is natural. This approach leads to the estimate that the probability of the industrial scale warming being a giant natural fluctuation is ≈0.1%: it can be dismissed. This destroys the last climate skeptic argument - that the models are wrong and the warming is natural. It finally allows for a closure of the debate. In this talk we argue that this new, direct, simple, intuitive approach provides an indispensable tool for communicating - and convincing - the public of both the reality and the amplitude of anthropogenic warming

  7. Challenges of coordinating global climate observations - Role of satellites in climate monitoring

    NASA Astrophysics Data System (ADS)

    Richter, C.

    2017-12-01

    Global observation of the Earth's atmosphere, ocean and land is essential for identifying climate variability and change, and for understanding their causes. Observation also provides data that are fundamental for evaluating, refining and initializing the models that predict how the climate system will vary over the months and seasons ahead, and that project how climate will change in the longer term under different assumptions concerning greenhouse gas emissions and other human influences. Long-term observational records have enabled the Intergovernmental Panel on Climate Change to deliver the message that warming of the global climate system is unequivocal. As the Earth's climate enters a new era, in which it is forced by human activities, as well as natural processes, it is critically important to sustain an observing system capable of detecting and documenting global climate variability and change over long periods of time. High-quality climate observations are required to assess the present state of the ocean, cryosphere, atmosphere and land and place them in context with the past. The global observing system for climate is not a single, centrally managed observing system. Rather, it is a composite "system of systems" comprising a set of climate-relevant observing, data-management, product-generation and data-distribution systems. Data from satellites underpin many of the Essential Climate Variables(ECVs), and their historic and contemporary archives are a key part of the global climate observing system. In general, the ECVs will be provided in the form of climate data records that are created by processing and archiving time series of satellite and in situ measurements. Early satellite data records are very valuable because they provide unique observations in many regions which were not otherwise observed during the 1970s and which can be assimilated in atmospheric reanalyses and so extend the satellite climate data records back in time.

  8. Internet (WWW) based system of ultrasonic image processing tools for remote image analysis.

    PubMed

    Zeng, Hong; Fei, Ding-Yu; Fu, Cai-Ting; Kraft, Kenneth A

    2003-07-01

    Ultrasonic Doppler color imaging can provide anatomic information and simultaneously render flow information within blood vessels for diagnostic purpose. Many researchers are currently developing ultrasound image processing algorithms in order to provide physicians with accurate clinical parameters from the images. Because researchers use a variety of computer languages and work on different computer platforms to implement their algorithms, it is difficult for other researchers and physicians to access those programs. A system has been developed using World Wide Web (WWW) technologies and HTTP communication protocols to publish our ultrasonic Angle Independent Doppler Color Image (AIDCI) processing algorithm and several general measurement tools on the Internet, where authorized researchers and physicians can easily access the program using web browsers to carry out remote analysis of their local ultrasonic images or images provided from the database. In order to overcome potential incompatibility between programs and users' computer platforms, ActiveX technology was used in this project. The technique developed may also be used for other research fields.

  9. Is journalism failing on climate?

    NASA Astrophysics Data System (ADS)

    Rahmstorf, Stefan

    2012-12-01

    year likened those who accept the facts of global warming to mass murderers (Hickman 2012). Yet the public also needs to understand the background story about where the 'climate sceptics' claims originate and who finances their dissemination. Let us hope that the study by Painter and Ashe will help to initiate a critical discussion on climate science coverage in the media, particularly in 'Anglo-Saxon' countries, and help to improve it in future. There are so many science journalists out there who work hard every day, striving for quality under most difficult working conditions. Their efforts should not be in vain. References Anderegg W R L et al 2010 Expert credibility in climate change Proc. Natl Acad. Sci. USA 107 12107-9 Boykoff M T and Boykoff J M 2004 Balance as bias: global warming and the US prestige press Glob. Environ. Change—Human Policy Dimen. 14 125-36 Doran P and Kendall Zimmerman M 2009 Examining the scientific consensus on climate change EOS Trans. Am. Geophys. Union 90 22 Gerlach T 2011 Volcanic versus anthropogenic carbon dioxide EOS Trans. Am. Geophys. Union 92 201-8 Hickman L 2012 Heartland Institute compares belief in global warming to mass murder Guardian (www.guardian.co.uk/environment/blog/2012/may/04/heartland-institute-global-warming-murder) Leiserowitz A et al 2011 Global Warming's Six Americas, May 2011 (New Haven, CT: Yale University and George Mason University) p 57(http:/environment.yale.edu/climate/files/SixAmericasMay2011.pdf) Oreskes N 2004 Beyond the ivory tower—the scientific consensus on climate change Science 306 1686 Painter J and Ashe T 2012 Cross-national comparison of the presence of climate scepticism in the print media in six countries, 2007-10 Environ. Res. Lett. 7 044005 Rahmstorf S 2004 The climate skeptics Weather Catastrophes and Climate Change—Is There Still Hope for Us? ed Re Munich (Munich: Munich Re) pp 76-83 Wikipedia 2012 The Great Global Warming Swindle (http

  10. Climate Change, Climate Justice, and Environmental Health: Implications for the Nursing Profession.

    PubMed

    Nicholas, Patrice K; Breakey, Suellen

    2017-11-01

    Climate change is an emerging challenge linked to negative outcomes for the environment and human health. Since the 1960s, there has been a growing recognition of the need to address climate change and the impact of greenhouse gas emissions implicated in the warming of our planet. There are also deleterious health outcomes linked to complex climate changes that are emerging in the 21st century. This article addresses the social justice issues associated with climate change and human health and discussion of climate justice. Discussion paper. A literature search of electronic databases was conducted for articles, texts, and documents related to climate change, climate justice, and human health. The literature suggests that those who contribute least to global warming are those who will disproportionately be affected by the negative health outcomes of climate change. The concept of climate justice and the role of the Mary Robinson Foundation-Climate Justice are discussed within a framework of nursing's professional responsibility and the importance of social justice for the world's people. The nursing profession must take a leadership role in engaging in policy and advocacy discussions in addressing the looming problems associated with climate change. Nursing organizations have adopted resolutions and engaged in leadership roles to address climate change at the local, regional, national, and global level. It is essential that nurses embrace concepts related to social justice and engage in the policy debate regarding the deleterious effects on human health related to global warming and climate change. Nursing's commitment to social justice offers an opportunity to offer significant global leadership in addressing the health implications related to climate change. Recognizing the negative impacts of climate change on well-being and the underlying socioeconomic reasons for their disproportionate and inequitable distribution can expand and optimize the profession's role

  11. GEOSS AIP-2 Climate Change and Biodiversity Use Scenarios: Interoperability Infrastructures (Invited)

    NASA Astrophysics Data System (ADS)

    Nativi, S.; Santoro, M.

    2009-12-01

    Transaction server: this component publishes the model outputs. The framework was successfully tested in two use scenarios of the GEOSS AIP-2 Climate Change and Biodiversity WG aiming to predict species distribution changes due to Climate Change factors, with the scientific patronage of the University of Colorado and the University of Alaska. The first scenario dealt with the Pikas specie regional distribution in the Great Basin area (North America). While, the second one concerned the modeling of the Arctic Food Chain species in the North Pole area -the relationships between different environmental parameters and Polar Bears distribution was analyzed. Results are published in the GEOSS AIP-2 web site: http://www.ogcnetwork.net/AIP2develop .

  12. System's flips in climate-related energy (CRE) systems

    NASA Astrophysics Data System (ADS)

    Ramos, Maria-Helena; Creutin, Jean-Dominique; Engeland, Kolbjørn; François, Baptiste; Renard, Benjamin

    2014-05-01

    Several modern environmental questions invite to explore the complex relationships between natural phenomena and human behaviour at a range of space and time scales. This usually involves a number of cause-effect (causal) relationships, linking actions and events. In lay terms, 'effect' can be defined as 'what happened' and 'cause', 'why something happened.' In a changing world or merely moving from one scale to another, shifts in perspective are expected, bringing some phenomena into the foreground and putting others to the background. Systems can thus flip from one set of causal structures to another in response to environmental perturbations and human innovations or behaviors, for instance, as space-time signatures are modified. The identification of these flips helps in better understanding and predicting how societies and stakeholders react to a shift in perspective. In this study, our motivation is to investigate possible consequences of the shift to a low carbon economy in terms of socio-technico systems' flips. The focus is on the regional production of Climate-Related Energy (CRE) (hydro-, wind- and solar-power). We search for information on historic shifts that may help defining the forcing conditions of abrupt changes and extreme situations. We identify and present a series of examples in which we try to distinguish the various tipping points, thresholds, breakpoints and regime shifts that are characteristic of complex systems in the CRE production domain. We expect that with these examples our comprehension of the question will be enriched, providing us the elements needed to better validate modeling attempts, to predict and manage flips of complex CRE production systems. The work presented is part of the FP7 project COMPLEX (Knowledge based climate mitigation systems for a low carbon economy; http://www.complex.ac.uk/).

  13. Motivational Climate, Staff and Members' Behaviors, and Members' Psychological Well-Being at a National Fitness Franchise

    ERIC Educational Resources Information Center

    Brown, Theresa C.; Fry, Mary D.

    2014-01-01

    Purpose: The purpose of this study was to examine the association between members' perceptions of staff's behaviors, motivational climate, their own behaviors, commitment to future exercise, and life satisfaction in a group-fitness setting. The theory-driven hypothesized mediating role of perceptions of the climate was also tested.…

  14. Historical greenhouse gas concentrations for climate modelling (CMIP6)

    NASA Astrophysics Data System (ADS)

    Meinshausen, Malte; Vogel, Elisabeth; Nauels, Alexander; Lorbacher, Katja; Meinshausen, Nicolai; Etheridge, David M.; Fraser, Paul J.; Montzka, Stephen A.; Rayner, Peter J.; Trudinger, Cathy M.; Krummel, Paul B.; Beyerle, Urs; Canadell, Josep G.; Daniel, John S.; Enting, Ian G.; Law, Rachel M.; Lunder, Chris R.; O'Doherty, Simon; Prinn, Ron G.; Reimann, Stefan; Rubino, Mauro; Velders, Guus J. M.; Vollmer, Martin K.; Wang, Ray H. J.; Weiss, Ray

    2017-05-01

    Atmospheric greenhouse gas (GHG) concentrations are at unprecedented, record-high levels compared to the last 800 000 years. Those elevated GHG concentrations warm the planet and - partially offset by net cooling effects by aerosols - are largely responsible for the observed warming over the past 150 years. An accurate representation of GHG concentrations is hence important to understand and model recent climate change. So far, community efforts to create composite datasets of GHG concentrations with seasonal and latitudinal information have focused on marine boundary layer conditions and recent trends since the 1980s. Here, we provide consolidated datasets of historical atmospheric concentrations (mole fractions) of 43 GHGs to be used in the Climate Model Intercomparison Project - Phase 6 (CMIP6) experiments. The presented datasets are based on AGAGE and NOAA networks, firn and ice core data, and archived air data, and a large set of published studies. In contrast to previous intercomparisons, the new datasets are latitudinally resolved and include seasonality. We focus on the period 1850-2014 for historical CMIP6 runs, but data are also provided for the last 2000 years. We provide consolidated datasets in various spatiotemporal resolutions for carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), as well as 40 other GHGs, namely 17 ozone-depleting substances, 11 hydrofluorocarbons (HFCs), 9 perfluorocarbons (PFCs), sulfur hexafluoride (SF6), nitrogen trifluoride (NF3) and sulfuryl fluoride (SO2F2). In addition, we provide three equivalence species that aggregate concentrations of GHGs other than CO2, CH4 and N2O, weighted by their radiative forcing efficiencies. For the year 1850, which is used for pre-industrial control runs, we estimate annual global-mean surface concentrations of CO2 at 284.3 ppm, CH4 at 808.2 ppb and N2O at 273.0 ppb. The data are available at

  15. Climate change and climate variability: personal motivation for adaptation and mitigation

    PubMed Central

    2011-01-01

    Background Global climate change impacts on human and natural systems are predicted to be severe, far reaching, and to affect the most physically and economically vulnerable disproportionately. Society can respond to these threats through two strategies: mitigation and adaptation. Industry, commerce, and government play indispensable roles in these actions but so do individuals, if they are receptive to behavior change. We explored whether the health frame can be used as a context to motivate behavioral reductions of greenhouse gas emissions and adaptation measures. Methods In 2008, we conducted a cross-sectional survey in the United States using random digit dialing. Personal relevance of climate change from health threats was explored with the Health Belief Model (HBM) as a conceptual frame and analyzed through logistic regressions and path analysis. Results Of 771 individuals surveyed, 81% (n = 622) acknowledged that climate change was occurring, and were aware of the associated ecologic and human health risks. Respondents reported reduced energy consumption if they believed climate change could affect their way of life (perceived susceptibility), Odds Ratio (OR) = 2.4 (95% Confidence Interval (CI): 1.4 - 4.0), endanger their life (perceived severity), OR = 1.9 (95% CI: 1.1 - 3.1), or saw serious barriers to protecting themselves from climate change, OR = 2.1 (95% CI: 1.2 - 3.5). Perceived susceptibility had the strongest effect on reduced energy consumption, either directly or indirectly via perceived severity. Those that reported having the necessary information to prepare for climate change impacts were more likely to have an emergency kit OR = 2.1 (95% CI: 1.4 - 3.1) or plan, OR = 2.2 (95% CI: 1.5 -3.2) for their household, but also saw serious barriers to protecting themselves from climate change or climate variability, either by having an emergency kit OR = 1.6 (95% CI: 1.1 - 2.4) or an emergency plan OR = 1.5 (95%CI: 1.0 - 2.2). Conclusions Motivation for

  16. Climate change and climate variability: personal motivation for adaptation and mitigation.

    PubMed

    Semenza, Jan C; Ploubidis, George B; George, Linda A

    2011-05-21

    Global climate change impacts on human and natural systems are predicted to be severe, far reaching, and to affect the most physically and economically vulnerable disproportionately. Society can respond to these threats through two strategies: mitigation and adaptation. Industry, commerce, and government play indispensable roles in these actions but so do individuals, if they are receptive to behavior change. We explored whether the health frame can be used as a context to motivate behavioral reductions of greenhouse gas emissions and adaptation measures. In 2008, we conducted a cross-sectional survey in the United States using random digit dialing. Personal relevance of climate change from health threats was explored with the Health Belief Model (HBM) as a conceptual frame and analyzed through logistic regressions and path analysis. Of 771 individuals surveyed, 81% (n = 622) acknowledged that climate change was occurring, and were aware of the associated ecologic and human health risks. Respondents reported reduced energy consumption if they believed climate change could affect their way of life (perceived susceptibility), Odds Ratio (OR) = 2.4 (95% Confidence Interval (CI): 1.4-4.0), endanger their life (perceived severity), OR = 1.9 (95% CI: 1.1-3.1), or saw serious barriers to protecting themselves from climate change, OR = 2.1 (95% CI: 1.2-3.5). Perceived susceptibility had the strongest effect on reduced energy consumption, either directly or indirectly via perceived severity. Those that reported having the necessary information to prepare for climate change impacts were more likely to have an emergency kit OR = 2.1 (95% CI: 1.4-3.1) or plan, OR = 2.2 (95% CI: 1.5-3.2) for their household, but also saw serious barriers to protecting themselves from climate change or climate variability, either by having an emergency kit OR = 1.6 (95% CI: 1.1-2.4) or an emergency plan OR = 1.5 (95%CI: 1.0-2.2). Motivation for voluntary mitigation is mostly dependent on

  17. Designing ecological climate change impact assessments to reflect key climatic drivers

    USGS Publications Warehouse

    Sofaer, Helen R.; Barsugli, Joseph J.; Jarnevich, Catherine S.; Abatzoglou, John T.; Talbert, Marian; Miller, Brian W.; Morisette, Jeffrey T.

    2017-01-01

    Identifying the climatic drivers of an ecological system is a key step in assessing its vulnerability to climate change. The climatic dimensions to which a species or system is most sensitive – such as means or extremes – can guide methodological decisions for projections of ecological impacts and vulnerabilities. However, scientific workflows for combining climate projections with ecological models have received little explicit attention. We review Global Climate Model (GCM) performance along different dimensions of change and compare frameworks for integrating GCM output into ecological models. In systems sensitive to climatological means, it is straightforward to base ecological impact assessments on mean projected changes from several GCMs. Ecological systems sensitive to climatic extremes may benefit from what we term the ‘model space’ approach: a comparison of ecological projections based on simulated climate from historical and future time periods. This approach leverages the experimental framework used in climate modeling, in which historical climate simulations serve as controls for future projections. Moreover, it can capture projected changes in the intensity and frequency of climatic extremes, rather than assuming that future means will determine future extremes. Given the recent emphasis on the ecological impacts of climatic extremes, the strategies we describe will be applicable across species and systems. We also highlight practical considerations for the selection of climate models and data products, emphasizing that the spatial resolution of the climate change signal is generally coarser than the grid cell size of downscaled climate model output. Our review illustrates how an understanding of how climate model outputs are derived and downscaled can improve the selection and application of climatic data used in ecological modeling.

  18. Designing ecological climate change impact assessments to reflect key climatic drivers.

    PubMed

    Sofaer, Helen R; Barsugli, Joseph J; Jarnevich, Catherine S; Abatzoglou, John T; Talbert, Marian K; Miller, Brian W; Morisette, Jeffrey T

    2017-07-01

    Identifying the climatic drivers of an ecological system is a key step in assessing its vulnerability to climate change. The climatic dimensions to which a species or system is most sensitive - such as means or extremes - can guide methodological decisions for projections of ecological impacts and vulnerabilities. However, scientific workflows for combining climate projections with ecological models have received little explicit attention. We review Global Climate Model (GCM) performance along different dimensions of change and compare frameworks for integrating GCM output into ecological models. In systems sensitive to climatological means, it is straightforward to base ecological impact assessments on mean projected changes from several GCMs. Ecological systems sensitive to climatic extremes may benefit from what we term the 'model space' approach: a comparison of ecological projections based on simulated climate from historical and future time periods. This approach leverages the experimental framework used in climate modeling, in which historical climate simulations serve as controls for future projections. Moreover, it can capture projected changes in the intensity and frequency of climatic extremes, rather than assuming that future means will determine future extremes. Given the recent emphasis on the ecological impacts of climatic extremes, the strategies we describe will be applicable across species and systems. We also highlight practical considerations for the selection of climate models and data products, emphasizing that the spatial resolution of the climate change signal is generally coarser than the grid cell size of downscaled climate model output. Our review illustrates how an understanding of how climate model outputs are derived and downscaled can improve the selection and application of climatic data used in ecological modeling. © 2017 John Wiley & Sons Ltd.

  19. Using Citizen Science Data to Model the Distributions of Common Songbirds of Turkey Under Different Global Climatic Change Scenarios

    PubMed Central

    Abolafya, Moris; Onmuş, Ortaç; Şekercioğlu, Çağan H.; Bilgin, Raşit

    2013-01-01

    In this study, we evaluated the potential impact of climate change on the distributions of Turkey’s songbirds in the 21st century by modelling future distributions of 20 resident and nine migratory species under two global climate change scenarios. We combined verified data from an ornithological citizen science initiative (www.kusbank.org) with maximum entropy modeling and eight bioclimatic variables to estimate species distributions and projections for future time periods. Model predictions for resident and migratory species showed high variability, with some species projected to lose and others projected to gain suitable habitat. Our study helps improve the understanding of the current and potential future distributions of Turkey’s songbirds and their responses to climate change, highlights effective strategies to maximize avian conservation efforts in the study region, and provides a model for using citizen science data for biodiversity research in a large developing country with few professional field biologists. Our results demonstrate that climate change will not affect every species equally in Turkey. Expected range reductions in some breeding species will increase the risk of local extinction, whereas others are likely to expand their ranges. PMID:23844151

  20. Using citizen science data to model the distributions of common songbirds of Turkey under different global climatic change scenarios.

    PubMed

    Abolafya, Moris; Onmuş, Ortaç; Şekercioğlu, Çağan H; Bilgin, Raşit

    2013-01-01

    In this study, we evaluated the potential impact of climate change on the distributions of Turkey's songbirds in the 21st century by modelling future distributions of 20 resident and nine migratory species under two global climate change scenarios. We combined verified data from an ornithological citizen science initiative (www.kusbank.org) with maximum entropy modeling and eight bioclimatic variables to estimate species distributions and projections for future time periods. Model predictions for resident and migratory species showed high variability, with some species projected to lose and others projected to gain suitable habitat. Our study helps improve the understanding of the current and potential future distributions of Turkey's songbirds and their responses to climate change, highlights effective strategies to maximize avian conservation efforts in the study region, and provides a model for using citizen science data for biodiversity research in a large developing country with few professional field biologists. Our results demonstrate that climate change will not affect every species equally in Turkey. Expected range reductions in some breeding species will increase the risk of local extinction, whereas others are likely to expand their ranges.

  1. Non-climatic thermal adaptation: implications for species' responses to climate warming.

    PubMed

    Marshall, David J; McQuaid, Christopher D; Williams, Gray A

    2010-10-23

    There is considerable interest in understanding how ectothermic animals may physiologically and behaviourally buffer the effects of climate warming. Much less consideration is being given to how organisms might adapt to non-climatic heat sources in ways that could confound predictions for responses of species and communities to climate warming. Although adaptation to non-climatic heat sources (solar and geothermal) seems likely in some marine species, climate warming predictions for marine ectotherms are largely based on adaptation to climatically relevant heat sources (air or surface sea water temperature). Here, we show that non-climatic solar heating underlies thermal resistance adaptation in a rocky-eulittoral-fringe snail. Comparisons of the maximum temperatures of the air, the snail's body and the rock substratum with solar irradiance and physiological performance show that the highest body temperature is primarily controlled by solar heating and re-radiation, and that the snail's upper lethal temperature exceeds the highest climatically relevant regional air temperature by approximately 22°C. Non-climatic thermal adaptation probably features widely among marine and terrestrial ectotherms and because it could enable species to tolerate climatic rises in air temperature, it deserves more consideration in general and for inclusion into climate warming models.

  2. Interglacial climate dynamics and advanced time series analysis

    NASA Astrophysics Data System (ADS)

    Mudelsee, Manfred; Bermejo, Miguel; Köhler, Peter; Lohmann, Gerrit

    2013-04-01

    , Fischer H, Joos F, Knutti R, Lohmann G, Masson-Delmotte V (2010) What caused Earth's temperature variations during the last 800,000 years? Data-based evidence on radiative forcing and constraints on climate sensitivity. Quaternary Science Reviews 29:129. Loulergue L, Schilt A, Spahni R, Masson-Delmotte V, Blunier T, Lemieux B, Barnola J-M, Raynaud D, Stocker TF, Chappellaz J (2008) Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453:383. L¨ü thi D, Le Floch M, Bereiter B, Blunier T, Barnola J-M, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K, Stocker TF (2008) High-resolution carbon dioxide concentration record 650,000-800,000 years before present. Nature 453:379. Mudelsee M (2000) Ramp function regression: A tool for quantifying climate transitions. Computers and Geosciences 26:293. Mudelsee M (2002) TAUEST: A computer program for estimating persistence in unevenly spaced weather/climate time series. Computers and Geosciences 28:69. Mudelsee M (2010) Climate Time Series Analysis: Classical Statistical and Bootstrap Methods. Springer, Dordrecht, 474 pp. [www.manfredmudelsee.com/book] Siegenthaler U, Stocker TF, Monnin E, L¨ü thi D, Schwander J, Stauffer B, Raynaud D, Barnola J-M, Fischer H, Masson-Delmotte V, Jouzel J (2005) Stable carbon cycle-climate relationship during the late Pleistocene. Science 310:1313.

  3. Leveraging the Novel Climates of Arboreta to Understand Tree Responses to Climate Change

    NASA Astrophysics Data System (ADS)

    Ettinger, A.; Wolkovich, E. M.; Joly, S.

    2016-12-01

    Rising global temperatures are expected to cause large-scale changes to forests, including altered mortality and recruitment rates, and dramatic changes in species composition, but exactly how tree growth will be affected by climate change is uncertain. Studies to date suggest that temperate and boreal tree responses to warming range from growing faster, slower, or at unchanged rates. Here we present an approach and preliminary findings that will improve predictions of tree responses to climate change by studying how tree traits, including phenology (e.g. the timing of leaf-out), wood density, leaf mass area, and height, relate to climate sensitivity (i.e. growth responses to annual changes in climate, Figure 1). We demonstrate how arboreta can be used to understand tree responses to climate change using 500 individuals across 65 tree species growing at the Arnold Arboretum, Boston, Massachusetts. Arboretum provide a unique opportunities for understanding temperate tree responses to climate change: they provide large collections of woody species growing together that enable traits to be studied across diverse species in a phylogenetic context. Furthermore, many species in arboreta are nonnative and have been exposed to "novel" climates that may resemble future conditions in their native distributions. We use a phylogenetic approach to understand how annual growth and climate sensitivity relate to focal traits, and asses what these findings may tell us about tree responses to climate change.

  4. For Me It Was When I Saw a Simple Chart: Former Climate Contrarians Recount What Changed Their Minds

    NASA Astrophysics Data System (ADS)

    Kirk, K. B.

    2017-12-01

    Efforts to advance climate policy in the US have been hindered by a sector of the public that is reluctant to accept the science of anthropogenic climate change. Climate educators, advocates, and policymakers seek to resolve this roadblock through educational efforts and strategic messaging, while social science research strives to understand the causes of resistance on climate change. A discussion on the social media platform, AskReddit, offered a surprising source of insight when a tantalizing question was posed, "Former climate deniers, what changed your mind?" Responses to the query offered a rare glimpse into the process of how people switched camps, outgrew their parents' values, had transformative experiences, or were worn down by mounting scientific evidence. The posts contained 66 examples of people who were initially uncertain or dismissive of climate change, but came to accept the mainstream science. The commenters provided insightful narratives describing the origins of their skeptical beliefs, the rationales for their changing opinions, and the events that caused them to reverse course. Analysis of the comments revealed the primary reasons that influenced people to change their minds. Those were: science and evidence (cited as a factor in 47% of the comments); stewardship for the Earth and concerns about pollution (29%); unusual weather events (21%); and the untrustworthiness of the messengers who claim that climate change is false (17%). Note that several commenters pointed to more than one factor that contributed to their evolving views. While neither the setting nor the sample size allow a robust scientific analysis, these anecdotal accounts offer useful insights on a vexing problem. Learning about the circumstances that lead people to update their thinking can help us improve efforts to communicate the science and policy around climate change. This work is the topic of an article at Yale Climate Connections, https://www

  5. Negotiating the Paris Agreement with the C-Learn Climate Simulator in an Interdisciplinary Undergraduate Climate Change Course

    NASA Astrophysics Data System (ADS)

    Straub, K. H.

    2016-12-01

    I teach an interdisciplinary course on modern climate change that attracts students from a variety of academic backgrounds. The class size is typically 20-25 students. The final exercise of the semester is an in-class simulation of the Paris Agreement negotiations, which integrates all of the topics the students have studied throughout the semester (science, politics, skeptic arguments, ethics, economics, etc.). For this exercise, we use the free online C-Learn climate simulator (https://www.climateinteractive.org/tools/c-learn/), but with several modifications from the suggested negotiation methodology. All but two students were assigned an individual country to represent within the larger groups "Developed," (e.g., US, EU, Australia), "Developing A" (e.g., China, India, Indonesia), and "Developing B" (e.g., Maldives, Haiti, Botswana). The remaining two students were assigned the roles of "Exxon Mobil" and "Greenpeace," to represent external lobbyists. Prior to the in-class negotiation, students completed an assignment on their individual role that required them to research their country's actual INDC and the projected impacts of a 2 degree C rise in average global temperature, as well as create "behavior rules" for their country to follow during the simulation. Lobbyists were given modified assignments. To make the simulation more complex and realistic, I assigned each actor an initial sum of money and created rules about the cost of emissions reductions. The goal of the simulation was to create an affordable timeline of emissions that kept the global temperature rise to less than 2 degrees C. Suggested emissions timelines were entered into the C-Learn online simulator during the activity to check progress toward the goal. Student feedback about the simulation was very positive. I had planned only one class period for the negotiations but students were so engaged that they asked for it to be extended into a second period. This exercise could easily be adapted to

  6. Climate-driven vital rates do not always mean climate-driven population.

    PubMed

    Tavecchia, Giacomo; Tenan, Simone; Pradel, Roger; Igual, José-Manuel; Genovart, Meritxell; Oro, Daniel

    2016-12-01

    Current climatic changes have increased the need to forecast population responses to climate variability. A common approach to address this question is through models that project current population state using the functional relationship between demographic rates and climatic variables. We argue that this approach can lead to erroneous conclusions when interpopulation dispersal is not considered. We found that immigration can release the population from climate-driven trajectories even when local vital rates are climate dependent. We illustrated this using individual-based data on a trans-equatorial migratory seabird, the Scopoli's shearwater Calonectris diomedea, in which the variation of vital rates has been associated with large-scale climatic indices. We compared the population annual growth rate λ i , estimated using local climate-driven parameters with ρ i , a population growth rate directly estimated from individual information and that accounts for immigration. While λ i varied as a function of climatic variables, reflecting the climate-dependent parameters, ρ i did not, indicating that dispersal decouples the relationship between population growth and climate variables from that between climatic variables and vital rates. Our results suggest caution when assessing demographic effects of climatic variability especially in open populations for very mobile organisms such as fish, marine mammals, bats, or birds. When a population model cannot be validated or it is not detailed enough, ignoring immigration might lead to misleading climate-driven projections. © 2016 John Wiley & Sons Ltd.

  7. Climate change and skin disease.

    PubMed

    Lundgren, Ashley D

    2018-04-01

    Despite commanding essentially universal scientific consensus, climate change remains a divisive and poorly understood topic in the United States. Familiarity with this subject is not just for climate scientists. The impact of climate change on human morbidity and mortality may be considerable; thus, physicians also should be knowledgeable in this realm. Climate change science can seem opaque and inferential, creating fertile ground for political polemics and undoubtedly contributing to confusion among the general public. This puts physicians in a pivotal position to facilitate a practical understanding of climate change in the public sphere by discussing changes in disease patterns and their possible relationship to a changing climate. This article provides a background on climate change for dermatologists and highlights how climate change may impact the management of skin disease across the United States.

  8. Greenhouse gas observations from space: The GHG-CCI project of ESA's Climate Change Initiative

    NASA Astrophysics Data System (ADS)

    Buchwitz, Michael; Noël, Stefan; Bergamaschi, Peter; Boesch, Hartmut; Bovensmann, Heinrich; Notholt, Justus; Schneising, Oliver; Hasekamp, Otto; Reuter, Maximilian; Parker, Robert; Dils, Bart; Chevallier, Frederic; Zehner, Claus; Burrows, John

    2012-07-01

    The GHG-CCI project (http://www.esa-ghg-cci.org) is one of several projects of ESA's Climate Change Initiative (CCI), which will deliver various Essential Climate Variables (ECVs). The goal of GHG-CCI is to deliver global satellite-derived data sets of the two most important anthropogenic greenhouse gases (GHGs) carbon dioxide (CO2) and methane (CH4) suitable to obtain information on regional CO2 and CH4 surface sources and sinks as needed for better climate prediction. The GHG-CCI core ECV data products are column-averaged mole fractions of CO2 and CH4, XCO2 and XCH4, retrieved from SCIAMACHY on ENVISAT and TANSO on GOSAT. Other satellite instruments will be used to provide constraints in upper layers such as IASI, MIPAS, and ACE-FTS. Which of the advanced algorithms, which are under development, will be the best for a given data product still needs to be determined. For each of the 4 GHG-CCI core data products - XCO2 and XCH4 from SCIAMACHY and GOSAT - several algorithms are being further developed and the corresponding data products are inter-compared to identify which data product is the most appropriate. This includes comparisons with corresponding data products generated elsewhere, most notably with the operational data products of GOSAT generated at NIES and the NASA/ACOS GOSAT XCO2 product. This activity, the so-called "Round Robin exercise", will be performed in the first two years of this project. At the end of the 2 year Round Robin phase (end of August 2012) a decision will be made which of the algorithms performs best. The selected algorithms will be used to generate the first version of the ECV GHG. In the last six months of this 3 year project the resulting data products will be validated and made available to all interested users. In the presentation and overview about this project will be given focussing on the latest results.

  9. How much will be economic impact of climate change on water resources? A Meta-Analytic Review of previous literature

    NASA Astrophysics Data System (ADS)

    Yoshikawa, S.; Iseri, Y.; Kanae, S.

    2016-12-01

    Water resources is vital in social and economic activities. Total global water use is increasing, mainly due to economic and population growth in developing countries. It has one of risk with high agreement and robust evidence that freshwater-related risks of climate change increase significantly with increasing greenhouse gas concentrations. It is difficult to compare the risk with other field risk (e.g. agriculture, forestry, sea level rise) for considering both adaptation and mitigation policy with the level of decision makers and public servants. Economic impacts of climate change on water scarcity has been estimated by economic researchers. We have no certainty at all about integration between hydrological and economical fields on global scale. In this study, we highlight key concerns about conventional estimations of economic impact on water resources through meta-analysis. The economic impact on water resource in same base year using consumer price index is shown with increase in the global mean temperature. We clarified four concerns which are involved in 1) classification of economic mechanism, 2) estimated items of economic impact, 3) difference in estimating equations, and 4) definition of parameters related with economic impact of climate change. This study would be essential to next challenge as transdisciplinary research between hydrologic and economic fields.

  10. The essential interactions between understanding climate variability and climate change

    NASA Astrophysics Data System (ADS)

    Neelin, J. D.

    2017-12-01

    Global change is sometimes perceived as a field separate from other aspects of atmospheric and oceanic sciences. Despite the long history of communication between the scientific communities studying global change and those studying interannual variability and weather, increasing specialization and conflicting societal demands on the fields can put these interactions at risk. At the same time, current trajectories for greenhouse gas emissions imply substantial adaptation to climate change will be necessary. Instead of simply projecting effects to be avoided, the field is increasingly being asked to provide regional-level information for specific adaptation strategies—with associated requirements for increased precision on projections. For extreme events, challenges include validating models for rare events, especially for events that are unprecedented in the historical record. These factors will be illustrated with examples of information transfer to climate change from work on fundamental climate processes aimed originally at timescales from hours to interannual. Work to understand the effects that control probability distributions of moisture, temperature and precipitation in historical weather can yield new factors to examine for the changes in the extremes of these distributions under climate change. Surprisingly simple process models can give insights into the behavior of vastly more complex climate models. Observation systems and model ensembles aimed at weather and interannual variations prove valuable for global change and vice versa. Work on teleconnections in the climate system, such as the remote impacts of El Niño, is informing analysis of projected regional rainfall change over California. Young scientists need to prepare to work across the full spectrum of climate variability and change, and to communicate their findings, as they and our society head for future that is more interesting than optimal.

  11. Carbon Climate Feedbacks and Climate Sensitivity (Invited)

    NASA Astrophysics Data System (ADS)

    Fung, I.

    2009-12-01

    The Charney report (22 pages including bibliography and appendices) was written when atmospheric CO2 was 334 ppmv (1979). It estimates a climate sensitivity of 3 +/- 1.5C for a doubling of CO2, and points out the warming delay due to the slow penetration of heat into intermediate depths in the oceans and the decreasing capacity of the oceans to serve a CO2 sink. “We may not be given a warning until the CO2 loading is such that an appreciable climate change is inevitable. The equilibrium warming will eventually occur; it will merely have been postponed.” CO2 exceeded 385 ppmv in 2008, and the warning signs are now abundantly evident. One of the “slow” feedbacks not included in the Charney Report involves the interaction between the land carbon cycle and climate change. The carbon cycle on land is coupled to the water and energy cycles. This paper reviews positive and negative carbon-climate feedbacks associated with changes in the function and distribution of land ecosystems. These feedbacks, once in gear, will magnify climate sensitivity and accelerate global warming.

  12. Climate change and nutrition: creating a climate for nutrition security.

    PubMed

    Tirado, M C; Crahay, P; Mahy, L; Zanev, C; Neira, M; Msangi, S; Brown, R; Scaramella, C; Costa Coitinho, D; Müller, A

    2013-12-01

    Climate change further exacerbates the enormous existing burden of undernutrition. It affects food and nutrition security and undermines current efforts to reduce hunger and promote nutrition. Undernutrition in turn undermines climate resilience and the coping strategies of vulnerable populations. The objectives of this paper are to identify and undertake a cross-sectoral analysis of the impacts of climate change on nutrition security and the existing mechanisms, strategies, and policies to address them. A cross-sectoral analysis of the impacts of climate change on nutrition security and the mechanisms and policies to address them was guided by an analytical framework focused on the three 'underlying causes' of undernutrition: 1) household food access, 2) maternal and child care and feeding practices, 3) environmental health and health access. The analytical framework includes the interactions of the three underlying causes of undernutrition with climate change,vulnerability, adaptation and mitigation. Within broad efforts on climate change mitigation and adaptation and climate-resilient development, a combination of nutrition-sensitive adaptation and mitigation measures, climate-resilient and nutrition-sensitive agricultural development, social protection, improved maternal and child care and health, nutrition-sensitive risk reduction and management, community development measures, nutrition-smart investments, increased policy coherence, and institutional and cross-sectoral collaboration are proposed as a means to address the impacts of climate change to food and nutrition security. This paper proposes policy directions to address nutrition in the climate change agenda and recommendations for consideration by the UN Framework Convention on Climate Change (UNFCCC). Nutrition and health stakeholders need to be engaged in key climate change adaptation and mitigation initiatives, including science-based assessment by the Intergovernmental Panel on Climate Change (IPCC

  13. Health risk in the context of climate change and adaptation - Concept and mapping as an integrated approach

    NASA Astrophysics Data System (ADS)

    Kienberger, S.; Notenbaert, A.; Zeil, P.; Bett, B.; Hagenlocher, M.; Omolo, A.

    2012-04-01

    Climate change has been stated as being one of the greatest challenges to global health in the current century. Climate change impacts on human health and the socio-economic and related poverty consequences are however still poorly understood. While epidemiological issues are strongly coupled with environmental and climatic parameters, the social and economic circumstances of populations might be of equal or even greater importance when trying to identify vulnerable populations and design appropriate and well-targeted adaptation measures. The inter-linkage between climate change, human health risk and socio-economic impacts remains an important - but largely outstanding - research field. We present an overview on how risk is traditionally being conceptualised in the human health domain and reflect critically on integrated approaches as being currently used in the climate change context. The presentation will also review existing approaches, and how they can be integrated towards adaptation tools. Following this review, an integrated risk concept is being presented, which has been currently adapted under the EC FP7 research project (HEALTHY FUTURES; http://www.healthyfutures.eu/). In this approach, health risk is not only defined through the disease itself (as hazard) but also by the inherent vulnerability of the system, population or region under study. It is in fact the interaction of environment and society that leads to the development of diseases and the subsequent risk of being negatively affected by it. In this conceptual framework vulnerability is being attributed to domains of lack of resilience as well as underlying preconditions determining susceptibilities. To fulfil a holistic picture vulnerability can be associated to social, economic, environmental, institutional, cultural and physical dimensions. The proposed framework also establishes the important nexus to adaptation and how different measures can be related to avoid disease outbreaks, reduce

  14. The GHG-CCI Project to Deliver the Essential Climate Variable Greenhouse Gases: Current status

    NASA Astrophysics Data System (ADS)

    Buchwitz, M.; Boesch, H.; Reuter, M.

    2012-04-01

    The GHG-CCI project (http://www.esa-ghg-cci.org) is one of several projects of ESA's Climate Change Initiative (CCI), which will deliver various Essential Climate Variables (ECVs). The goal of GHG-CCI is to deliver global satellite-derived data sets of the two most important anthropogenic greenhouse gases (GHGs) carbon dioxide (CO2) and methane (CH4) suitable to obtain information on regional CO2 and CH4 surface sources and sinks as needed for better climate prediction. The GHG-CCI core ECV data products are column-averaged mole fractions of CO2 and CH4, XCO2 and XCH4, retrieved from SCIAMACHY on ENVISAT and TANSO on GOSAT. Other satellite instruments will be used to provide constraints in upper layers such as IASI, MIPAS, and ACE-FTS. Which of the advanced algorithms, which are under development, will be the best for a given data product still needs to be determined. For each of the 4 GHG-CCI core data products - XCO2 and XCH4 from SCIAMACHY and GOSAT - several algorithms are bing further developed and the corresponding data products are inter-compared to identify which data product is the most appropriate. This includes comparisons with corresponding data products generated elsewhere, most notably with the operational data products of GOSAT generated at NIES and the NASA/ACOS GOSAT XCO2 product. This activity, the so-called "Round Robin exercise", will be performed in the first two years of this project. At the end of the 2 year Round Robin phase (end of August 2012) a decision will be made which of the algorithms performs best. The selected algorithms will be used to generate the first version of the ECV GHG. In the last six months of this 3 year project the resulting data products will be validated and made available to all interested users. In the presentation and overview about this project will be given focussing on the latest results.

  15. Data Mashups: Linking Human Health and Wellbeing with Weather, Climate and the Environment

    NASA Astrophysics Data System (ADS)

    Fleming, L. E.; Sarran, C.; Golding, B.; Haines, A.; Kessel, A.; Djennad, M.; Hajat, S.; Nichols, G.; Gordon Brown, H.; Depledge, M.

    2016-12-01

    A large part of the global disease burden can be linked to environmental factors, underpinned by unhealthy behaviours. Research into these linkages suffers from lack of common tools and databases for investigations across many different scientific disciplines to explore these complex associations. The MEDMI (Medical and Environmental Data-a Mash-up Infrastructure) Partnership brings together leading organisations and researchers in climate, weather, environment, and human health. We have created a proof-of-concept central data and analysis system with the UK Met Office and Public Health England data as the internet-based MEDMI Platform (www.data-mashup.org.uk) to serve as a common resource for researchers to link and analyse complex meteorological, environmental and epidemiological data in the UK. The Platform is hosted on its own dedicated server, with secure internet and in-person access with appropriate safeguards for ethical, copyright, security, preservation, and data sharing issues. Via the Platform, there is a demonstration Browser Application with access to user-selected subsets of the data for: a) analyses using time series (e.g. mortality/environmental variables), and b) data visualizations (e.g. infectious diseases/environmental variables). One demonstration project is linking climate change, harmful algal blooms and oceanographic modelling building on the hydrodynamic-biogeochemical coupled models; in situ and satellite observations as well as UK HAB data and hospital episode statistics data are being used for model verification and future forecasting. The MEDMI Project provides a demonstration of the potential, barriers and challenges, of these "data mashups" of environment and health data. Although there remain many challenges to creating and sustaining such a shared resource, these activities and resources are essential to truly explore the complex interactions between climate and other environmental change and health at the local and global scale.

  16. Climate targets and cost-effective climate stabilization pathways

    NASA Astrophysics Data System (ADS)

    Held, H.

    2015-08-01

    Climate economics has developed two main tools to derive an economically adequate response to the climate problem. Cost benefit analysis weighs in any available information on mitigation costs and benefits and thereby derives an "optimal" global mean temperature. Quite the contrary, cost effectiveness analysis allows deriving costs of potential policy targets and the corresponding cost- minimizing investment paths. The article highlights pros and cons of both approaches and then focusses on the implications of a policy that strives at limiting global warming to 2 °C compared to pre-industrial values. The related mitigation costs and changes in the energy sector are summarized according to the IPCC report of 2014. The article then points to conceptual difficulties when internalizing uncertainty in these types of analyses and suggests pragmatic solutions. Key statements on mitigation economics remain valid under uncertainty when being given the adequate interpretation. Furthermore, the expected economic value of perfect climate information is found to be on the order of hundreds of billions of Euro per year if a 2°-policy were requested. Finally, the prospects of climate policy are sketched.

  17. Climate Services for Development Planning and Implementation: A Framework for Assessing and Valuing Climate Services

    NASA Astrophysics Data System (ADS)

    Anderson, G.

    2012-04-01

    Climate Services for Development Planning and Implementation: A Framework for Assessing and Valuing Climate Services Anderson, Glen D. While weather forecasting products have been available globally for decades, the full suite of climate services - including historical and real time observational meteorological data, daily, weekly, and seasonal forecasts, and longer-term climate projections - has only been under development in the last 15 to 20 years. Climate services have been developed and implemented quite quickly in developed countries for public and private sector users. However, diffusion of these tools in developing countries has been slower for several reasons related to 1) lack of awareness of the opportunities and benefits of climate services; 2) spotty record of managing local weather and climate data; and 3) limited resources to build and sustain capacity in providing climate services. The Climate Services Partnership (CSP) was formed during the International Conference on Climate Services (ICCS) in October 2011. The CSP seeks to improve the provision and development of climate services worldwide. During the ICCS, three working groups were formed to carry out the work program of the CSP leading up to the second ICCS in Berlin in September 2012. The Economic Valuation of Climate Services Working Group, chaired by John Zillman and myself, is collaborating on several activities to demonstrate the benefits of climate services and help providers prioritize opportunities for expanding the use of climate services. The proposed paper will provide an overview of the Working Group's activities leading up to the next ICCS and describe specific work that is underway and expected to be completed prior to the EGU meetings. The focal point of the Working Group's activities is the development of matrix to help identify and value the best opportunities for using climate services. Different categories of climate services will be listed in rows and potential users of

  18. Climate's Role in Terroir

    NASA Astrophysics Data System (ADS)

    Jones, G. V.

    2012-12-01

    The marriage between a given winegrape cultivar planted in its ideal climate, over favorable topography and physical soil characteristics, combine to create the potential to produce fine wine. The French term terroir embodies this potential as a holistic concept that relates to both environmental and cultural factors that together influence the grape growing to wine production continuum. While the landscape, geology, soil, and climate strongly interact to influence the vine's balance of nutrients and water, climate is clearly of prevailing importance in that it limits where grapes can be grown at both the global and site scale. This talk will review the nature of climate's role in terroir through a discussion of the structure of climate in wine regions globally and how this structure influences cultivar suitability. Furthermore, the talk will use two of the most commonly planted red wine cultivars as examples - Pinot Noir and Cabernet Sauvignon - providing details on the historic, current, and future climate structure of wine regions growing these cultivars. In general the examination reveals that cool climate cultivars tend to have a narrower climate niche for high quality wine production, than do warmer climate cultivars, with less range of adaptation. Furthermore, the range of the climate suitability of these two cultivars shows that potentially new terroirs for each are waiting to be found.

  19. Customized rating assessment of climate suitability (CRACS): climate satisfaction evaluation based on subjective perception.

    PubMed

    Lin, Tzu-Ping; Yang, Shing-Ru; Matzarakis, Andreas

    2015-12-01

    Climate not only influences the behavior of people in urban environments but also affects people's schedules and travel plans. Therefore, providing people with appropriate long-term climate evaluation information is crucial. Therefore, we developed an innovative climate assessment system based on field investigations conducted in three cities located in Northern, Central, and Southern Taiwan. The field investigations included the questionnaire surveys and climate data collection. We first analyzed the relationship between the participants and climate parameters comprising physiologically equivalent temperature, air temperature, humidity, wind speed, solar radiation, cloud cover, and precipitation. Second, we established the neutral value, comfort range, and dissatisfied range of each parameter. Third, after verifying that the subjects' perception toward the climate parameters vary based on individual preferences, we developed the customized rating assessment of climate suitability (CRACS) approach, which featured functions such as personalized and default climate suitability information to be used by users exhibiting varying demands. Finally, we performed calculations using the climate conditions of two cities during the past 10 years to demonstrate the performance of the CRACS approach. The results can be used as a reference when planning activities in the city or when organizing future travel plans. The flexibility of the assessment system enables it to be adjusted for varying regions and usage characteristics.

  20. Customized rating assessment of climate suitability (CRACS): climate satisfaction evaluation based on subjective perception

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-Ping; Yang, Shing-Ru; Matzarakis, Andreas

    2015-12-01

    Climate not only influences the behavior of people in urban environments but also affects people's schedules and travel plans. Therefore, providing people with appropriate long-term climate evaluation information is crucial. Therefore, we developed an innovative climate assessment system based on field investigations conducted in three cities located in Northern, Central, and Southern Taiwan. The field investigations included the questionnaire surveys and climate data collection. We first analyzed the relationship between the participants and climate parameters comprising physiologically equivalent temperature, air temperature, humidity, wind speed, solar radiation, cloud cover, and precipitation. Second, we established the neutral value, comfort range, and dissatisfied range of each parameter. Third, after verifying that the subjects' perception toward the climate parameters vary based on individual preferences, we developed the customized rating assessment of climate suitability (CRACS) approach, which featured functions such as personalized and default climate suitability information to be used by users exhibiting varying demands. Finally, we performed calculations using the climate conditions of two cities during the past 10 years to demonstrate the performance of the CRACS approach. The results can be used as a reference when planning activities in the city or when organizing future travel plans. The flexibility of the assessment system enables it to be adjusted for varying regions and usage characteristics.

  1. Hands-on approach to teaching Earth system sciences using a information-computational web-GIS portal "Climate"

    NASA Astrophysics Data System (ADS)

    Gordova, Yulia; Gorbatenko, Valentina; Martynova, Yulia; Shulgina, Tamara

    2014-05-01

    A problem of making education relevant to the workplace tasks is a key problem of higher education because old-school training programs are not keeping pace with the rapidly changing situation in the professional field of environmental sciences. A joint group of specialists from Tomsk State University and Siberian center for Environmental research and Training/IMCES SB RAS developed several new courses for students of "Climatology" and "Meteorology" specialties, which comprises theoretical knowledge from up-to-date environmental sciences with practical tasks. To organize the educational process we use an open-source course management system Moodle (www.moodle.org). It gave us an opportunity to combine text and multimedia in a theoretical part of educational courses. The hands-on approach is realized through development of innovative trainings which are performed within the information-computational platform "Climate" (http://climate.scert.ru/) using web GIS tools. These trainings contain practical tasks on climate modeling and climate changes assessment and analysis and should be performed using typical tools which are usually used by scientists performing such kind of research. Thus, students are engaged in n the use of modern tools of the geophysical data analysis and it cultivates dynamic of their professional learning. The hands-on approach can help us to fill in this gap because it is the only approach that offers experience, increases students involvement, advance the use of modern information and communication tools. The courses are implemented at Tomsk State University and help forming modern curriculum in Earth system science area. This work is partially supported by SB RAS project VIII.80.2.1, RFBR grants numbers 13-05-12034 and 14-05-00502.

  2. European climate reconstructed for the past 500 years based on documentary and instrumental evidence

    NASA Astrophysics Data System (ADS)

    Wheeler, Dennis; Brazdil, Rudolf; Pfister, Christian

    2010-05-01

    European climate reconstructed for the past 500 years based on documentary and instrumental evidence Dennis Wheeler, Rudolf Brázdil, Christian Pfister and the Millennium project SG1 team The paper summarises the results of historical-climatological research conducted as part of the EU-funded 6th FP project MILLENNIUM the principal focus of which was the investigation of European climate during the past one thousand years (http://www.millenniumproject.net/). This project represents a major advance in bringing together, for the first time on such a scale, historical climatologists with other palaeoclimatological communities and climate modellers from many European countries. As part of MILLENNIUM, a sub-group (SG1) of historical climatologists from ten countries had the responsibility of collating and comprehensively analysing evidence from instrumental and documentary archives. This paper presents the main results of this undertaking but confines its attention to the study of the climate of the past 500 years and represents a summary of 10 themed papers submitted for a special issue of Climatic Change. They range across a variety of topics including newly-studied documentary data sources (e.g. early instrumental records, opening of the Stockholm harbour, ship log book data), temperature reconstructions for Central Europe, the Stockholm area and Mediterranean based on different types of documentary evidence, the application of standard paleoclimatological approaches to reconstructions based on index series derived from the documentary data, the influence of circulation dynamics on January-April climate , a comparison of reconstructions based on documentary data with the model runs (ECHO-G), a study of the quality of instrumental data in climate reconstructions, a 500-year flood chronology in Europe, and selected disastrous European windstorms and their reflection in documentary evidence and human memory. Finally, perspectives of historical-climatological research

  3. Climate Vulnerability of Hydro-power infrastructure in the Eastern African Power Pool

    NASA Astrophysics Data System (ADS)

    Sridharan, Vignesh

    2017-04-01

    ," World Electric Power Plants Database. [Online]. Available: http://www.platts.com/Products/worldelectricpowerplantsdatabase. [Accessed: 01-Mar-2016]. [2] Brent Boehlert, Kenneth M. Strzepek, David Groves, and Bruce Hewitson, Chris Jack, "Climate Change Projections in Africa-Chapter 3," in Enhancing the Climate Resilience of Africa's Infrastructure : The Power and Water Sectors, Washington DC: The World Bank, 2016, p. 219.

  4. Cybersecurity, massive data processing, community interaction, and other developments at WWW-based computational X-ray Server

    NASA Astrophysics Data System (ADS)

    Stepanov, Sergey

    2013-03-01

    X-Ray Server (x-server.gmca.aps.anl.gov) is a WWW-based computational server for modeling of X-ray diffraction, reflection and scattering data. The modeling software operates directly on the server and can be accessed remotely either from web browsers or from user software. In the later case the server can be deployed as a software library or a data fitting engine. As the server recently surpassed the milestones of 15 years online and 1.5 million calculations, it accumulated a number of technical solutions that are discussed in this paper. The developed approaches to detecting physical model limits and user calculations failures, solutions to spam and firewall problems, ways to involve the community in replenishing databases and methods to teach users automated access to the server programs may be helpful for X-ray researchers interested in using the server or sharing their own software online.

  5. An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change

    PubMed Central

    Casajus, Nicolas; Périé, Catherine; Logan, Travis; Lambert, Marie-Claude; de Blois, Sylvie; Berteaux, Dominique

    2016-01-01

    An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one. PMID:27015274

  6. An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change.

    PubMed

    Casajus, Nicolas; Périé, Catherine; Logan, Travis; Lambert, Marie-Claude; de Blois, Sylvie; Berteaux, Dominique

    2016-01-01

    An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one.

  7. A new Geoengineering Model Intercomparison Project (GeoMIP) experiment designed for climate and chemistry models

    DOE PAGES

    Tilmes, S.; Mills, Mike; Niemeier, Ulrike; ...

    2015-01-15

    A new Geoengineering Model Intercomparison Project (GeoMIP) experiment "G4 specified stratospheric aerosols" (short name: G4SSA) is proposed to investigate the impact of stratospheric aerosol geoengineering on atmosphere, chemistry, dynamics, climate, and the environment. In contrast to the earlier G4 GeoMIP experiment, which requires an emission of sulfur dioxide (SO₂) into the model, a prescribed aerosol forcing file is provided to the community, to be consistently applied to future model experiments between 2020 and 2100. This stratospheric aerosol distribution, with a total burden of about 2 Tg S has been derived using the ECHAM5-HAM microphysical model, based on a continuous annualmore » tropical emission of 8 Tg SO₂ yr⁻¹. A ramp-up of geoengineering in 2020 and a ramp-down in 2070 over a period of 2 years are included in the distribution, while a background aerosol burden should be used for the last 3 decades of the experiment. The performance of this experiment using climate and chemistry models in a multi-model comparison framework will allow us to better understand the impact of geoengineering and its abrupt termination after 50 years in a changing environment. The zonal and monthly mean stratospheric aerosol input data set is available at https://www2.acd.ucar.edu/gcm/geomip-g4-specified-stratospheric-aerosol-data-set.« less

  8. Vegetation zones in changing climate

    NASA Astrophysics Data System (ADS)

    Belda, Michal; Holtanova, Eva; Halenka, Tomas; Kalvova, Jaroslava

    2017-04-01

    Climate patterns analysis can be performed for individual climate variables separately or the data can be aggregated using e.g. some kind of climate classification. These classifications usually correspond to vegetation distribution in the sense that each climate type is dominated by one vegetation zone or eco-region. Thus, the Köppen-Trewartha classification provides integrated assessment of temperature and precipitation together with their annual cycle as well. This way climate classifications also can be used as a convenient tool for the assessment and validation of climate models and for the analysis of simulated future climate changes. The Köppen-Trewartha classification is applied on full CMIP5 family of more than 40 GCM simulations and CRU dataset for comparison. This evaluation provides insight on the GCM performance and errors for simulations of the 20th century climate. Common regions are identified, such as Australia or Amazonia, where many state-of-the-art models perform inadequately. Moreover, the analysis of the CMIP5 ensemble for future under RCP 4.5 and RCP 8.5 is performed to assess the climate change for future. There are significant changes for some types in most models e.g. increase of savanna and decrease of tundra for the future climate. For some types significant shifts in latitude can be seen when studying their geographical location in selected continental areas, e.g. toward higher latitudes for boreal climate. Quite significant uncertainty can be seen for some types. For Europe, EuroCORDEX results for both 0.11 and 0.44 degree resolution are validated using Köppen-Trewartha types in comparison to E-OBS based classification. ERA-Interim driven simulations are compared to both present conditions of CMIP5 models as well as their downscaling by EuroCORDEX RCMs. Finally, the climate change signal assessment is provided using the individual climate types. In addition to the changes assessed similarly as for GCMs analysis in terms of the area

  9. 75 FR 19348 - Notice of Funding Availability (NOFA): Section 515 Rural Rental Housing Program for New...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-14

    ... this program will be equitably distributed across the country, and applied to all Five (5) Climate Zones within the U.S. as defined by the Department of Energy. A map of the 5 climate zones can be found at: http://www.eia.doe.gov/emeu/recs/climate_zone.html . The four highest scoring applications in...

  10. Climate change and forest diseases

    Treesearch

    R.N. Sturrock; Susan Frankel; A. V. Brown; Paul Hennon; J. T. Kliejunas; K. J. Lewis; J. J. Worrall; A. J. Woods

    2011-01-01

    As climate changes, the effects of forest diseases on forest ecosystems will change. We review knowledge of relationships between climate variables and several forest diseases, as well as current evidence of how climate, host and pathogen interactions are responding or might respond to climate change. Many forests can be managed to both adapt to climate change and...

  11. Do cosmogenic nuclides (10Be, 14C , 21Ne, 26Al) track late Quaternary climate changes on the Altiplano?

    NASA Astrophysics Data System (ADS)

    Hippe, K.; Kober, F.; Zeilinger, G.; Ivy-Ochs, S.; Kubik, P.; Maden, C.; Wieler, R.

    2010-12-01

    The high Altiplano plateau is the most prominent element of the Central Andes, separating the Andean Cordilleras between 15° to 22° S. It represents a tectonically quiet, intramontane basin with arid to semi-arid climate, low relief and internal drainage. Throughout the late Quaternary regional climate on the Altiplano repeatedly changed between wet and dry conditions [1]. The influence of climate on the plateau evolution during the Pleistocene/Holocene is unclear, however, as data on erosion processes and rates on the Altiplano are sparse. Here, we present a multiple-nuclide study investigating surface denudation at the eastern Altiplano of Bolivia (16°-17° S) on millennial and longer timescales. The aim is a better understanding of the complex feedback between climate, tectonics and geomorphology on the topographic evolution of the Andes. Catchment-wide denudation (CWD) rates are provided for a 150 km NW-SE transect along the Altiplano edge based on the analyses of cosmogenic 10Be, 26Al, 21Ne and in-situ 14C in river-borne sediment. Single nuclide CWD rates obtained for 10Be, 26Al and 21Ne are similar for all three nuclides and on the order of 3-37 mm/ka. Thus, the calculated denudation rates provide an averaged denudation history dating back at least to the middle Pleistocene. Denudation rates correlate positively with the mean basin hillslope, which is mainly controlled by basin lithology. For most catchments both, the 26Al/10Be ratios and the 21Ne/10Be ratios indicate a complex erosion/exposure history with probably several periods of sediment storage and burial/shielding totalling ~0.5 - 1.2 Ma. Local geomorphology featuring low slopes and low relief, small terraces and local floodplains also suggests that sediment transport might have been periodically ineffective. Concentrations of in-situ produced short-lived 14C are significantly lower than expected from the concentrations of the long-lived and stable cosmogenic nuclides. This would indicate a 30

  12. The Climate Literacy and Energy Awareness Network (clean) Pathway: Integrating Science and Solutions

    NASA Astrophysics Data System (ADS)

    Ledley, T. S.; McCaffrey, M. S.; Buhr, S.; Manduca, C. A.; Fox, S.; Niepold, F.; Gold, A. U.

    2010-12-01

    Changes in the climate system are underway, largely due to human impacts, and it is essential that citizens understand what these changes are, what is causing them, and the potential implications in order for them to make responsible decisions for themselves, their communities and society. The Climate Literacy Network (CLN) comprised of a broad spectrum of ~200 stakeholders, has virtual meetings weekly (since January 2008) to provide a forum to share information and leverage efforts to address the complex issues involved in making climate and energy literacy real in formal and informal educational contexts as well as for all citizens. The discussions of the CLN have led to 1) coordinated efforts to support the implementation of the Climate Literacy Essential Principles of Climate Science (CLEP, http://www.climatescience.gov/Library/Literacy/), 2) the establishment of the CLEAN Pathway collection (http://cleanet.org) of reviewed resources that directly support the CLEP, and 3) the development of a model for CLEAN-Regional Networks that facilitate increasing climate and energy literacy at the local level. In this presentation we will describe the ongoing activities of the CLN and provide an overview of the new and recently launched CLEAN Pathway collection. The CLEAN Pathway is a project to steward an on-line collection of digital teaching materials that directly address the CLEP as well as a set of energy awareness principles. All teaching materials are aligned with the NAAEE Guidelines for Excellence in Environmental Education, the AAAS Project 2061 Benchmarks for Science Literacy, and the National Science Education Standards. With a goal of vetting ~500 educational materials at the 6-16 grade levels, we have just completed our first round of identifying, reviewing and annotating ~100 excellent teaching activities. We will demonstrate the current capabilities of the CLEAN Pathway portal, describe plans for additional functionality, and provide a vision for others

  13. Trust in climate scientists

    NASA Astrophysics Data System (ADS)

    Gauchat, Gordon

    2018-06-01

    Those who distrust climate scientists are more likely to be skeptical of climate change and reluctant to support mitigation policies. Now research shows that scientific interest in early adolescence is associated with increased trust in climate scientists in adulthood irrespective of political ideology.

  14. Climate Literacy Ambassadors

    NASA Astrophysics Data System (ADS)

    Ackerman, S. A.; Mooney, M. E.

    2011-12-01

    The Climate Literacy Ambassadors program is a collaborative effort to advance climate literacy led by the Cooperative Institute of Meteorological Satellite Studies (CIMSS) at the University of Wisconsin-Madison. With support from NASA, CIMSS is coordinating a three-tiered program to train G6-12 teachers to be Ambassadors of Climate Literacy in their schools and communities. The complete training involves participation at a teacher workshop combined with web-based professional development content around Global and Regional Climate Change. The on-line course utilizes e-learning technology to clarify graphs and concepts from the 2007 Intergovernmental Panel on Climate Change Summary for Policy Makers with content intricately linked to the Climate Literacy: The Essential Principles of Climate Science. Educators who take the course for credit can develop lesson plans or opt for a project of their choosing. This session will showcase select lesson plans and projects, ranging from a district-wide action plan that engaged dozens of teachers to Ambassadors volunteering at the Aldo Leopold Climate Change Nature Center to a teacher who tested a GLOBE Student Climate Research Campaign (SCRC) learning project with plans to participate in the SCRC program. Along with sharing successes from the CIMSS Climate Literacy Ambassadors project, we will share lessons learned related to the challenges of sustaining on-line virtual educator communities.

  15. Climate Physics

    ERIC Educational Resources Information Center

    Space, William

    2007-01-01

    Numerous connections exist between climate science and topics normally covered in physics and physical science courses. For instance, lessons on heat and light can be used to introduce basic climate science, and the study of electric circuits provides a context for studying the relationship between electricity consumption and carbon pollution. To…

  16. The interactive roles of mastery climate and performance climate in predicting intrinsic motivation.

    PubMed

    Buch, R; Nerstad, C G L; Säfvenbom, R

    2017-02-01

    This study examined the interplay between perceived mastery and performance climates in predicting increased intrinsic motivation. The results of a two-wave longitudinal study comprising of 141 individuals from three military academies revealed a positive relationship between a perceived mastery climate and increased intrinsic motivation only for individuals who perceived a low performance climate. This finding suggests a positive relationship between a perceived mastery climate and increased intrinsic motivation only when combined with low perceptions of a performance climate. Hence, introducing a performance climate in addition to a mastery climate can be an undermining motivational strategy, as it attenuates the positive relationship between a mastery climate and increased intrinsic motivation. Implications for future research and practice are discussed. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Climate in Earth history

    NASA Technical Reports Server (NTRS)

    Berger, W. H.; Crowell, J. C.

    1982-01-01

    Complex atmosphere-ocean-land interactions govern the climate system and its variations. During the course of Earth history, nature has performed a large number of experiments involving climatic change; the geologic record contains much information regarding these experiments. This information should result in an increased understanding of the climate system, including climatic stability and factors that perturb climate. In addition, the paleoclimatic record has been demonstrated to be useful in interpreting the origin of important resources-petroleum, natural gas, coal, phosphate deposits, and many others.

  18. Climate Variability, Climate Change and Social Vulnerability in the Semi-arid Tropics

    NASA Astrophysics Data System (ADS)

    Ribot, Jesse C.; Rocha Magalhaes, Antonio; Panagides, Stahis

    1996-06-01

    Climate changes can trigger events that lead to mass migration, hunger, and even famine. Rather than focus on the impacts that result from climatic fluctuations, the authors look at the underlying conditions that cause social vulnerability. Once we understand why individuals, households, nations, and regions are vulnerable, and how they have buffered themselves against climatic and environmental shifts, then present and future vulnerability can be redressed. By using case studies from across the globe, the authors explore past experiences with climate variability, and the likely effects of--and the possible policy responses to--the types of climatic events that global warming might bring.

  19. The Pacific Northwest's Climate Impacts Group: Climate Science in the Public Interest

    NASA Astrophysics Data System (ADS)

    Mantua, N.; Snover, A.

    2006-12-01

    Since its inception in 1995, the University of Washington's Climate Impacts Group (CIG) (funded under NOAA's Regional Integrated Science and Assessments (RISA) Program) has become the leader in exploring the impacts of climate variability and climate change on natural and human systems in the U.S. Pacific Northwest (PNW), specifically climate impacts on water, forest, fish and coastal resource systems. The CIG's research provides PNW planners, decision makers, resource managers, local media, and the general public with valuable knowledge of ways in which the region's key natural resources are vulnerable to changes in climate, and how this vulnerability can be reduced. The CIG engages in climate science in the public interest, conducting original research on the causes and consequences of climate variability and change for the PNW and developing forecasts and decision support tools to support the use of this information in federal, state, local, tribal, and private sector resource management decisions. The CIG's focus on the intersection of climate science and public policy has placed the CIG nationally at the forefront of regional climate impacts assessment and integrated analysis.

  20. Abrupt climate change: can society cope?

    PubMed

    Hulme, Mike

    2003-09-15

    Consideration of abrupt climate change has generally been incorporated neither in analyses of climate-change impacts nor in the design of climate adaptation strategies. Yet the possibility of abrupt climate change triggered by human perturbation of the climate system is used to support the position of both those who urge stronger and earlier mitigative action than is currently being contemplated and those who argue that the unknowns in the Earth system are too large to justify such early action. This paper explores the question of abrupt climate change in terms of its potential implications for society, focusing on the UK and northwest Europe in particular. The nature of abrupt climate change and the different ways in which it has been defined and perceived are examined. Using the example of the collapse of the thermohaline circulation (THC), the suggested implications for society of abrupt climate change are reviewed; previous work has been largely speculative and has generally considered the implications only from economic and ecological perspectives. Some observations about the implications from a more social and behavioural science perspective are made. If abrupt climate change simply implies changes in the occurrence or intensity of extreme weather events, or an accelerated unidirectional change in climate, the design of adaptation to climate change can proceed within the existing paradigm, with appropriate adjustments. Limits to adaptation in some sectors or regions may be reached, and the costs of appropriate adaptive behaviour may be large, but strategy can develop on the basis of a predicted long-term unidirectional change in climate. It would be more challenging, however, if abrupt climate change implied a directional change in climate, as, for example, may well occur in northwest Europe following a collapse of the THC. There are two fundamental problems for society associated with such an outcome: first, the future changes in climate currently being

  1. ClimateImpactsOnline: A web platform for regional climate impacts

    NASA Astrophysics Data System (ADS)

    Nocke, Thomas

    2013-04-01

    Climate change is widely known but there is often uncertainty about the specific effects. One of the key tasks is - beyond discussing climate change and its impacts in specialist groups - to present these to a wider audience. In that respect, decision-makers in the public sector as well as directly affected professional groups require to obtain easy-to-understand information. These groups are not made up of specialist scientists. This gives rise to two challenges: (1) the complex information must be presented such that it is commonly understood, and (2) access to the information must be easy. Interested parties do not have time to familiarize themselves over a lengthy period, but rather want to immediately work with the information. Beside providing climate information globally, regional information become of increasing interest for local decision making regarding awareness building and adaptation options. In addition, current web portals mainly focus on climate information, considering climate impacts on different sectors only implicitly. As solution, Potsdam Institute for Climate Impact Research and WetterOnline have jointly developed an Internet portal that is easy to use, groups together interesting information about climate impacts and offers it in a directly usable form. This new web portal ClimateImpactsOnline.com provides detailed information, combining multiple sectors for the test case of Germany. For this region, numerous individual studies on climate change have been prepared by various institutions. These studies differ in terms of their aim, region and time period of interest. Thus, the goal of ClimateImpactsOnline.com is to present a synthesized view on regional impacts of global climate change on hydrology, agriculture, forest, energy, tourism and health sector. The climate and impact variables are available on a decadal time resolution for the period from 1901-2100, combining observed data and future projections. Detailed information are presented

  2. Climate forcings and feedbacks

    NASA Technical Reports Server (NTRS)

    Hansen, James

    1993-01-01

    Global temperature has increased significantly during the past century. Understanding the causes of observed global temperature change is impossible in the absence of adequate monitoring of changes in global climate forcings and radiative feedbacks. Climate forcings are changes imposed on the planet's energy balance, such as change of incoming sunlight or a human-induced change of surface properties due to deforestation. Radiative feedbacks are radiative changes induced by climate change, such as alteration of cloud properties or the extent of sea ice. Monitoring of global climate forcings and feedbacks, if sufficiently precise and long-term, can provide a very strong constraint on interpretation of observed temperature change. Such monitoring is essential to eliminate uncertainties about the relative importance of various climate change mechanisms including tropospheric sulfate aerosols from burning of coal and oil smoke from slash and burn agriculture, changes of solar irradiance changes of several greenhouse gases, and many other mechanisms. The considerable variability of observed temperature, together with evidence that a substantial portion of this variability is unforced indicates that observations of climate forcings and feedbacks must be continued for decades. Since the climate system responds to the time integral of the forcing, a further requirement is that the observations be carried out continuously. However, precise observations of forcings and feedbacks will also be able to provide valuable conclusions on shorter time scales. For example, knowledge of the climate forcing by increasing CFC's relative to the forcing by changing ozone is important to policymakers, as is information on the forcing by CO2 relative to the forcing by sulfate aerosols. It will also be possible to obtain valuable tests of climate models on short time scales, if there is precise monitoring of all forcings and feedbacks during and after events such as a large volcanic eruption

  3. Integrated Research on the Development of Global Climate Risk Management Strategies - Framework and Initial Results of the Research Project ICA-RUS

    NASA Astrophysics Data System (ADS)

    Emori, Seita; Takahashi, Kiyoshi; Yamagata, Yoshiki; Oki, Taikan; Mori, Shunsuke; Fujigaki, Yuko

    2013-04-01

    With the aim of proposing strategies of global climate risk management, we have launched a five-year research project called ICA-RUS (Integrated Climate Assessment - Risks, Uncertainties and Society). In this project with the phrase "risk management" in its title, we aspire for a comprehensive assessment of climate change risks, explicit consideration of uncertainties, utilization of best available information, and consideration of every possible conditions and options. We also regard the problem as one of decision-making at the human level, which involves social value judgments and adapts to future changes in circumstances. The ICA-RUS project consists of the following five themes: 1) Synthesis of global climate risk management strategies, 2) Optimization of land, water and ecosystem uses for climate risk management, 3) Identification and analysis of critical climate risks, 4) Evaluation of climate risk management options under technological, social and economic uncertainties and 5) Interactions between scientific and social rationalities in climate risk management (see also: http://www.nies.go.jp/ica-rus/en/). For the integration of quantitative knowledge of climate change risks and responses, we apply a tool named AIM/Impact [Policy], which consists of an energy-economic model, a simplified climate model and impact projection modules. At the same time, in order to make use of qualitative knowledge as well, we hold monthly project meetings for the discussion of risk management strategies and publish annual reports based on the quantitative and qualitative information. To enhance the comprehensiveness of the analyses, we maintain an inventory of risks and risk management options. The inventory is revised iteratively through interactive meetings with stakeholders such as policymakers, government officials and industrial representatives.

  4. Building climate resilience into perennial agroecosystems for adaptation to climate change

    USDA-ARS?s Scientific Manuscript database

    Adapting to future climate changes will require resilient agricultural systems. Resiliency can be thought of as the ability of an ecosystem to bounce back and persist after a disturbance or shock. Stressors or perturbations may be more severe in the future because of human-induced climate change. On...

  5. Can air temperature be used to project influences of climate change on stream temperature?

    Treesearch

    Ivan Arismendi; Mohammad Safeeq; Jason B Dunham; Sherri L Johnson

    2014-01-01

    Worldwide, lack of data on stream temperature has motivated the use of regression-based statistical models to predict stream temperatures based on more widely available data on air temperatures. Such models have been widely applied to project responses of stream temperatures under climate change, but the performance of these models has not been fully evaluated. To...

  6. Could be the future climate change an opportunity for the winegrowers? The case study of Aglianico wine in southern Italy.

    NASA Astrophysics Data System (ADS)

    Bonfante, Antonello; Basile, Angelo; Dragonetti, Giovanna; De Lorenzi, Francesca; De Mascellis, Roberto; Gambuti, Angelita; Giorio, Pasquale; Guida, Giampiero; Manna, Piero; Minieri, Luciana; Oliva, Marco; Orefice, Nadia; Terribile, Fabio

    2015-04-01

    Water deficit is a limiting factor to yield production and crop adaptation to future climate conditions. This is true for crops addressed mainly for biomass production (e.g. maize, wheat, etc.) but not for those where the quality is relevant. Specifically, in grapevine water stress (mid or limited) - occurring during specific phenological phases - is a factor to produce good quality wines. It induces for example the production of anthocyanins and aroma precursors. Therefore, the water stress, due to the future increase of temperature and the rainfall decrease, could represent an opportunity to increase winegrowers' incomes. The study was carried out in Campania region (Southern Italy), in an area vocated to high quality wines production (ZOVISA project: Viticultural zoning at farm scale) The study was realized in two different soils (calcisol and cambisol), under the same climate, on Aglianico cultivar, standard clone population on 1103 Paulsen rootstocks placed along a slope of 90 m length with 11% of gradient. The agro-hydrological model SWAP was calibrated and applied to estimate soil-plant water status at the various crop phenological phases for three vintages (2011-2013). Crop water stress index (CWSI) - estimated by the model - was related to physiological measurements (e.g leaf water potential), grape bunches measurements (e.g. sugar content) and wine quality (e.g. tannins). For both soils, the correlation between measurements and CWSI were high (e.g. -0.97** with sugar; 0.895* with anthocyanins in the skins). Then, the model was applied to future climate condition (2021-2051) obtained from statistical downscaling of GCM in order to estimate the effect of the climate on CWSI and hence on vine quality. The results show that the effects of the climate change on the vine quality is dependent by the soil, being relevant to the cambisol and less pronounced to the calcisol, with an expected improvement of wine quality in the cambisol.

  7. Extracting climate memory using Fractional Integrated Statistical Model: A new perspective on climate prediction

    PubMed Central

    Yuan, Naiming; Fu, Zuntao; Liu, Shida

    2014-01-01

    Long term memory (LTM) in climate variability is studied by means of fractional integral techniques. By using a recently developed model, Fractional Integral Statistical Model (FISM), we in this report proposed a new method, with which one can estimate the long-lasting influences of historical climate states on the present time quantitatively, and further extract the influence as climate memory signals. To show the usability of this method, two examples, the Northern Hemisphere monthly Temperature Anomalies (NHTA) and the Pacific Decadal Oscillation index (PDO), are analyzed in this study. We find the climate memory signals indeed can be extracted and the whole variations can be further decomposed into two parts: the cumulative climate memory (CCM) and the weather-scale excitation (WSE). The stronger LTM is, the larger proportion the climate memory signals will account for in the whole variations. With the climate memory signals extracted, one can at least determine on what basis the considered time series will continue to change. Therefore, this report provides a new perspective on climate prediction. PMID:25300777

  8. The EUMETSAT sea ice concentration climate data record

    NASA Astrophysics Data System (ADS)

    Tonboe, Rasmus T.; Eastwood, Steinar; Lavergne, Thomas; Sørensen, Atle M.; Rathmann, Nicholas; Dybkjær, Gorm; Toudal Pedersen, Leif; Høyer, Jacob L.; Kern, Stefan

    2016-09-01

    An Arctic and Antarctic sea ice area and extent dataset has been generated by EUMETSAT's Ocean and Sea Ice Satellite Application Facility (OSISAF) using the record of microwave radiometer data from NASA's Nimbus 7 Scanning Multichannel Microwave radiometer (SMMR) and the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I) and Special Sensor Microwave Imager and Sounder (SSMIS) satellite sensors. The dataset covers the period from October 1978 to April 2015 and updates and further developments are planned for the next phase of the project. The methodology for computing the sea ice concentration uses (1) numerical weather prediction (NWP) data input to a radiative transfer model for reduction of the impact of weather conditions on the measured brightness temperatures; (2) dynamical algorithm tie points to mitigate trends in residual atmospheric, sea ice, and water emission characteristics and inter-sensor differences/biases; and (3) a hybrid sea ice concentration algorithm using the Bristol algorithm over ice and the Bootstrap algorithm in frequency mode over open water. A new sea ice concentration uncertainty algorithm has been developed to estimate the spatial and temporal variability in sea ice concentration retrieval accuracy. A comparison to US National Ice Center sea ice charts from the Arctic and the Antarctic shows that ice concentrations are higher in the ice charts than estimated from the radiometer data at intermediate sea ice concentrations between open water and 100 % ice. The sea ice concentration climate data record is available for download at www.osi-saf.org"target="_blank">www.osi-saf.org, including documentation.

  9. Do Leadership Style, Unit Climate, and Safety Climate Contribute to Safe Medication Practices?

    PubMed

    Farag, Amany; Tullai-McGuinness, Susan; Anthony, Mary K; Burant, Christopher

    2017-01-01

    This study aims at: examining if leadership style and unit climate predict safety climate; and testing the direct, indirect, and total effect of leadership style, unit climate, and safety climate on nurses' safe medication practices. The Institute of Medicine and nursing scholars propose that safety climate is a prerequisite to safety practices. However, there is limited empirical evidence about factors contributing to the development of safety climate and about the association with nurses' safe medication practices. This cross-sectional study used survey data from 246 RNs working in a Magnet® hospital. Leadership style and unit climate predicted 20% to 50% of variance on all safety climate dimensions. Model testing revealed the indirect impact of leadership style and unit climate on nurses' safe medication practices. Our hypothesized model explained small amount of the variance on nurses' safe medication practices. This finding suggests that nurses' safe medication practices are influenced by multiple contextual and personal factors that should be further examined.

  10. Shifts in climate suitability for wine production as a result of climate change in a temperate climate wine region of Romania

    NASA Astrophysics Data System (ADS)

    Irimia, Liviu Mihai; Patriche, Cristian Valeriu; Quenol, Hervé; Sfîcă, Lucian; Foss, Chris

    2018-02-01

    Climate change is causing important shifts in the suitability of regions for wine production. Fine scale mapping of these shifts helps us to understand the evolution of vineyard climates, and to find solutions through viticultural adaptation. The aim of this study is to identify and map the structural and spatial shifts that occurred in the climatic suitability for wine production of the Cotnari wine growing region (Romania) between 1961 and 2013. Discontinuities in trends of temperature were identified, and the averages and trends of 13 climatic parameters for the 1961 to 1980 and 1981 to 2013 time periods were analysed. Using the averages of these climatic parameters, climate suitability for wine production was calculated at a resolution of 30 m and mapped for each time period, and the changes analysed. The results indicate shifts in the area's historic climatic profile, due to an increase of heliothermal resources and precipitation constancy. The area's climate suitability for wine production was modified by the loss of climate suitability for white table wines, sparkling wines and wine for distillates; shifts in suitability to higher altitudes by about 67 m, and a 48.6% decrease in the area suitable for quality white wines; and the occurrence of suitable climates for red wines at lower altitudes. The study showed that climate suitability for wine production has a multi-level spatial structure, with classes requiring a cooler climate being located at a higher altitude than those requiring a warmer climate. Climate change has therefore resulted in the shift of climate suitability classes for wine production to higher altitudes.

  11. Smart climate ensemble exploring approaches: the example of climate impacts on air pollution in Europe.

    NASA Astrophysics Data System (ADS)

    Lemaire, Vincent; Colette, Augustin; Menut, Laurent

    2016-04-01

    Because of its sensitivity to weather patterns, climate change will have an impact on air pollution so that, in the future, a climate penalty could jeopardize the expected efficiency of air pollution mitigation measures. A common method to assess the impact of climate on air quality consists in implementing chemistry-transport models forced by climate projections. However, at present, such impact assessment lack multi-model ensemble approaches to address uncertainties because of the substantial computing cost. Therefore, as a preliminary step towards exploring large climate ensembles with air quality models, we developed an ensemble exploration technique in order to point out the climate models that should be investigated in priority. By using a training dataset from a deterministic projection of climate and air quality over Europe, we identified the main meteorological drivers of air quality for 8 regions in Europe and developed statistical models that could be used to estimate future air pollutant concentrations. Applying this statistical model to the whole EuroCordex ensemble of climate projection, we find a climate penalty for six subregions out of eight (Eastern Europe, France, Iberian Peninsula, Mid Europe and Northern Italy). On the contrary, a climate benefit for PM2.5 was identified for three regions (Eastern Europe, Mid Europe and Northern Italy). The uncertainty of this statistical model challenges limits however the confidence we can attribute to associated quantitative projections. This technique allows however selecting a subset of relevant regional climate model members that should be used in priority for future deterministic projections to propose an adequate coverage of uncertainties. We are thereby proposing a smart ensemble exploration strategy that can also be used for other impacts studies beyond air quality.

  12. Do We Need Better Climate Predictions to Adapt to a Changing Climate? (Invited)

    NASA Astrophysics Data System (ADS)

    Dessai, S.; Hulme, M.; Lempert, R.; Pielke, R., Jr.

    2009-12-01

    Based on a series of international scientific assessments, climate change has been presented to society as a major problem that needs urgently to be tackled. The science that underpins these assessments has been pre-dominantly from the realm of the natural sciences and central to this framing have been ‘projections’ of future climate change (and its impacts on environment and society) under various greenhouse gas emissions scenarios and using a variety of climate model predictions with embedded assumptions. Central to much of the discussion surrounding adaptation to climate change is the claim - explicit or implicit - that decision makers need accurate and increasingly precise assessments of future impacts of climate change in order to adapt successfully. If true, this claim places a high premium on accurate and precise climate predictions at a range of geographical and temporal scales; such predictions therefore become indispensable, and indeed a prerequisite for, effective adaptation decision-making. But is effective adaptation tied to the ability of the scientific enterprise to predict future climate with accuracy and precision? If so, this may impose a serious and intractable limit on adaptation. This paper proceeds in three sections. It first gathers evidence of claims that climate prediction is necessary for adaptation decision-making. This evidence is drawn from peer-reviewed literature and from published science funding strategies and government policy in a number of different countries. The second part discusses the challenges of climate prediction and why science will consistently be unable to provide accurate and precise predictions of future climate relevant for adaptation (usually at the local/regional level). Section three discusses whether these limits to future foresight represent a limit to adaptation, arguing that effective adaptation need not be limited by a general inability to predict future climate. Given the deep uncertainties involved in

  13. Modeling human-climate interaction

    NASA Astrophysics Data System (ADS)

    Jacoby, Henry D.

    If policymakers and the public are to be adequately informed about the climate change threat, climate modeling needs to include components far outside its conventional boundaries. An integration of climate chemistry and meteorology, oceanography, and terrestrial biology has been achieved over the past few decades. More recently the scope of these studies has been expanded to include the human systems that influence the planet, the social and ecological consequences of potential change, and the political processes that lead to attempts at mitigation and adaptation. For example, key issues—like the relative seriousness of climate change risk, the choice of long-term goals for policy, and the analysis of today's decisions when uncertainty may be reduced tomorrow—cannot be correctly understood without joint application of the natural science of the climate system and social and behavioral science aspects of human response. Though integration efforts have made significant contributions to understanding of the climate issue, daunting intellectual and institutional barriers stand in the way of needed progress. Deciding appropriate policies will be a continuing task over the long term, however, so efforts to extend the boundaries of climate modeling and assessment merit long-term attention as well. Components of the effort include development of a variety of approaches to analysis, the maintenance of a clear a division between close-in decision support and science/policy research, and the development of funding institutions that can sustain integrated research over the long haul.

  14. Influence of the management strategy model on estimating water system performance under climate change

    NASA Astrophysics Data System (ADS)

    Francois, Baptiste; Hingray, Benoit; Creutin, Jean-Dominique; Hendrickx, Frederic

    2015-04-01

    The performance of water systems used worldwide for the management of water resources is expected to be influenced by future changes in regional climates and water uses. Anticipating possible performance changes of a given system requires a modeling chain simulating its management. Operational management is usually not trivial especially when several conflicting objectives have to be accounted for. Management models are therefore often a crude representation of the real system and they only approximate its performance. Estimated performance changes are expected to depend on the management model used, but this is often not assessed. This communication analyzes the influence of the management strategy representation on the performance of an Alpine reservoir (Serre-Ponçon, South-East of France) for which irrigation supply, hydropower generation and recreational activities are the main objectives. We consider three ways to construct the strategy named as clear-, short- and far-sighted management. They are based on different forecastability degrees of seasonal inflows into the reservoir. The strategies are optimized using a Dynamic Programming algorithm (deterministic for clear-sighted and implicit stochastic for short- and far-sighted). System performance is estimated for an ensemble of future hydro-meteorological projections obtained in the RIWER2030 research project (http://www.lthe.fr/RIWER2030/) from a suite of climate experiments from the EU - ENSEMBLES research project. Our results show that changes in system performance is much more influenced by changes in hydro-meteorological variables than by the choice of strategy modeling. They also show that a simple strategy representation (i.e. clear-sighted management) leads to similar estimates of performance modifications than those obtained with a representation supposedly closer to real world (i.e. the far-sighted management). The Short-Sighted management approach lead to significantly different results, especially

  15. Climate-smart management of biodiversity

    USGS Publications Warehouse

    Nadeau, Christopher P.; Fuller, Angela K.; Rosenblatt, Daniel L.

    2015-01-01

    Determining where biodiversity is likely to be most vulnerable to climate change and methods to reduce that vulnerability are necessary first steps to incorporate climate change into biodiversity management plans. Here, we use a spatial climate change vulnerability assessment to (1) map the potential vulnerability of terrestrial biodiversity to climate change in the northeastern United States and (2) provide guidance on how and where management actions for biodiversity could provide long-term benefits under climate change (i.e., climate-smart management considerations). Our model suggests that biodiversity will be most vulnerable in Delaware, Maryland, and the District of Columbia due to the combination of high climate change velocity, high landscape resistance, and high topoclimate homogeneity. Biodiversity is predicted to be least vulnerable in Vermont, Maine, and New Hampshire because large portions of these states have low landscape resistance, low climate change velocity, and low topoclimate homogeneity. Our spatial climate-smart management considerations suggest that: (1) high topoclimate diversity could moderate the effects of climate change across 50% of the region; (2) decreasing local landscape resistance in conjunction with other management actions could increase the benefit of those actions across 17% of the region; and (3) management actions across 24% of the region could provide long-term benefits by promoting short-term population persistence that provides a source population capable of moving in the future. The guidance and framework we provide here should allow conservation organizations to incorporate our climate-smart management considerations into management plans without drastically changing their approach to biodiversity conservation.

  16. Use of the Seasons and Biomes Project in Climate Change Education

    NASA Astrophysics Data System (ADS)

    Sparrow, E. B.; Morris, K.; . Jaroensutasinee, M.; Jaroensutasinee, K.; Yule, S.; Boger, R.; Gordon, L. S.; Yoshikawa, K.; Kopplin, M. R.; Verbyla, D. L.

    2009-04-01

    The Seasons and Biomes Project is an inquiry- and project- based initiative that monitors seasons, specifically their interannual variability, with the goal of increasing primary and secondary students' understanding of the earth system, and engaging them in research as a way of learning science, understanding climate change, contributing to climate change studies and participating in the fourth International Polar Year. International professional development workshops have been conducted in the United States, S. Africa, Germany and most recently in Thailand. Primary and secondary teachers and teacher trainers as well as scientists from Argentina, Bahrain, Cameroon, Canada, Czech Republic, Estonia, Germany, Greenland, India, Peru, Paraguay, Mongolia, Norway, Saudi Arabia, South Africa, Switzerland, Thailand and the United States have participated in the training workshops and are working with students. Available to the Seasons and Biomes participants are the rich array of scientific protocols for investigations on atmosphere/weather, hydrology, soils, land cover biology, and phenology as well as learning activities which have been developed by the Global Learning and Observations to Benefit the Environment program (GLOBE) program (www.globe.gov). GLOBE is an international (109 countries involved) earth/environmental science and education program that brings together scientists, teachers, students and parents in inquiry-based studies and in monitoring the Earth, increasing awareness of and care of the environment, and increasing student achievement across the curriculum. Students conduct their studies at or close to their schools and submit the data they have collected to the Data Archive on the GLOBE website. Seasons and Biomes has developed additional learning activities and measurement protocols such as freshwater ice phenology protocols (freeze-up and break-up) and a frost tube (depth of freezing in soils) protocol that are being used in schools. A mosquito

  17. Safety climate as a mediator between foundation climates and occupational accidents: a group-level investigation.

    PubMed

    Wallace, J Craig; Popp, Eric; Mondore, Scott

    2006-05-01

    Building on recent work in occupational safety and climate, the authors examined 2 organizational foundation climates thought to be antecedents of specific safety climate and the relationships among these climates and occupational accidents. It is believed that both foundation climates (i.e., management-employee relations and organizational support) will predict safety climate, which will in turn mediate the relationship between occupational accidents and these 2 distal foundation climates. Using a sample of 9,429 transportation workers in 253 work groups, the authors tested the proposed relationships at the group level. Results supported all hypotheses. Overall it appears that different climates have direct and indirect effects on occupational accidents.

  18. Climate Museum and Garden

    NASA Astrophysics Data System (ADS)

    Gregg, Jay; Bille, Dorthe

    2017-04-01

    The Climate Museum and Garden is conceived as a cross-disciplinary experience, where the arts and sciences link together to increase understanding of the Earth's climate and its relevance to our fate as a species. This would be a place of inspiration. The Climate Museum and Garden would merge concepts of modern art museums and modern science museums, with exhibitions, live music and theater performances, visitor interaction, unique discoveries and reflection. It would be a place where visitors are immersed in experiences, lingering indoors and out in quiet consideration and gratitude for our planet's atmosphere. The story of climate change is compelling in its own right; theories of the greenhouse effect go back over century and climate policy has stretched back a few decades. Whereas scientific researchers have been contributing to understanding the mechanisms and impacts of climate change for many decades; whereas researchers have participated in climate summits and informed policy makers; whereas researchers have taught classes of gifted students; in all of this, the public has mostly missed out. This public relations gap has been unfortunately filled by those that would seek to politicize and mislead the public, leading to an engagement gap among the general public. Now we stand on a precipice. Therefore we see a ripe opportunity to reach out and inspire the population. We build off of current pedagogic research that shows that experienced-based learning is more impactful when it engages the senses and elicits an emotional response. People understand what they experience, what they feel, and this serves as the basis for personal reflection. In this sense the visitor experience is generative, in that it promotes further personal investigation and interaction. The Climate Museum and Garden would be a start. In the future, we envisage a future network of climate museums in all major cities. It would be a flagship attraction for any city, along with their art

  19. Eucalypts face increasing climate stress

    PubMed Central

    Butt, Nathalie; Pollock, Laura J; McAlpine, Clive A

    2013-01-01

    Global climate change is already impacting species and ecosystems across the planet. Trees, although long-lived, are sensitive to changes in climate, including climate extremes. Shifts in tree species' distributions will influence biodiversity and ecosystem function at scales ranging from local to landscape; dry and hot regions will be especially vulnerable. The Australian continent has been especially susceptible to climate change with extreme heat waves, droughts, and flooding in recent years, and this climate trajectory is expected to continue. We sought to understand how climate change may impact Australian ecosystems by modeling distributional changes in eucalypt species, which dominate or codominate most forested ecosystems across Australia. We modeled a representative sample of Eucalyptus and Corymbia species (n = 108, or 14% of all species) using newly available Representative Concentration Pathway (RCP) scenarios developed for the 5th Assessment Report of the IPCC, and bioclimatic and substrate predictor variables. We compared current, 2025, 2055, and 2085 distributions. Overall, Eucalyptus and Corymbia species in the central desert and open woodland regions will be the most affected, losing 20% of their climate space under the mid-range climate scenario and twice that under the extreme scenario. The least affected species, in eastern Australia, are likely to lose 10% of their climate space under the mid-range climate scenario and twice that under the extreme scenario. Range shifts will be lateral as well as polewards, and these east–west transitions will be more significant, reflecting the strong influence of precipitation rather than temperature changes in subtropical and midlatitudes. These net losses, and the direction of shifts and contractions in range, suggest that many species in the eastern and southern seaboards will be pushed toward the continental limit and that large tracts of currently treed landscapes, especially in the continental

  20. How can streamflow and climate-landscape data be used to estimate baseflow mean response time?

    NASA Astrophysics Data System (ADS)

    Zhang, Runrun; Chen, Xi; Zhang, Zhicai; Soulsby, Chris; Gao, Man

    2018-02-01

    Mean response time (MRT) is a metric describing the propagation of catchment hydraulic behavior that reflects both hydro-climatic conditions and catchment characteristics. To provide a comprehensive understanding of catchment response over a longer-time scale for hydraulic processes, the MRT function for baseflow generation was derived using an instantaneous unit hydrograph (IUH) model that describes the subsurface response to effective rainfall inputs. IUH parameters were estimated based on the "match test" between the autocorrelation function (ACFs) derived from the filtered base flow time series and from the IUH parameters, under the GLUE framework. Regionalization of MRT was conducted using estimates and hydroclimate-landscape indices in 22 sub-basins of the Jinghe River Basin (JRB) in the Loess Plateau of northwest China. Results indicate there is strong equifinality in determination of the best parameter sets but the median values of the MRT estimates are relatively stable in the acceptable range of the parameters. MRTs vary markedly over the studied sub-basins, ranging from tens of days to more than a year. Climate, topography and geomorphology were identified as three first-order controls on recharge-baseflow response processes. Human activities involving the cultivation of permanent crops may elongate the baseflow MRT and hence increase the dynamic storage. Cross validation suggests the model can be used to estimate MRTs in ungauged catchments in similar regions of throughout the Loess Plateau. The proposed method provides a systematic approach for MRT estimation and regionalization in terms of hydroclimate and catchment characteristics, which is helpful in the sustainable water resources utilization and ecological protection in the Loess Plateau.

  1. Biotic and Climatic Velocity Identify Contrasting Areas of Vulnerability to Climate Change.

    PubMed

    Carroll, Carlos; Lawler, Joshua J; Roberts, David R; Hamann, Andreas

    2015-01-01

    Metrics that synthesize the complex effects of climate change are essential tools for mapping future threats to biodiversity and predicting which species are likely to adapt in place to new climatic conditions, disperse and establish in areas with newly suitable climate, or face the prospect of extirpation. The most commonly used of such metrics is the velocity of climate change, which estimates the speed at which species must migrate over the earth's surface to maintain constant climatic conditions. However, "analog-based" velocities, which represent the actual distance to where analogous climates will be found in the future, may provide contrasting results to the more common form of velocity based on local climate gradients. Additionally, whereas climatic velocity reflects the exposure of organisms to climate change, resultant biotic effects are dependent on the sensitivity of individual species as reflected in part by their climatic niche width. This has motivated development of biotic velocity, a metric which uses data on projected species range shifts to estimate the velocity at which species must move to track their climatic niche. We calculated climatic and biotic velocity for the Western Hemisphere for 1961-2100, and applied the results to example ecological and conservation planning questions, to demonstrate the potential of such analog-based metrics to provide information on broad-scale patterns of exposure and sensitivity. Geographic patterns of biotic velocity for 2954 species of birds, mammals, and amphibians differed from climatic velocity in north temperate and boreal regions. However, both biotic and climatic velocities were greatest at low latitudes, implying that threats to equatorial species arise from both the future magnitude of climatic velocities and the narrow climatic tolerances of species in these regions, which currently experience low seasonal and interannual climatic variability. Biotic and climatic velocity, by approximating lower and

  2. Biotic and Climatic Velocity Identify Contrasting Areas of Vulnerability to Climate Change

    PubMed Central

    Carroll, Carlos; Lawler, Joshua J.; Roberts, David R.; Hamann, Andreas

    2015-01-01

    Metrics that synthesize the complex effects of climate change are essential tools for mapping future threats to biodiversity and predicting which species are likely to adapt in place to new climatic conditions, disperse and establish in areas with newly suitable climate, or face the prospect of extirpation. The most commonly used of such metrics is the velocity of climate change, which estimates the speed at which species must migrate over the earth’s surface to maintain constant climatic conditions. However, “analog-based” velocities, which represent the actual distance to where analogous climates will be found in the future, may provide contrasting results to the more common form of velocity based on local climate gradients. Additionally, whereas climatic velocity reflects the exposure of organisms to climate change, resultant biotic effects are dependent on the sensitivity of individual species as reflected in part by their climatic niche width. This has motivated development of biotic velocity, a metric which uses data on projected species range shifts to estimate the velocity at which species must move to track their climatic niche. We calculated climatic and biotic velocity for the Western Hemisphere for 1961–2100, and applied the results to example ecological and conservation planning questions, to demonstrate the potential of such analog-based metrics to provide information on broad-scale patterns of exposure and sensitivity. Geographic patterns of biotic velocity for 2954 species of birds, mammals, and amphibians differed from climatic velocity in north temperate and boreal regions. However, both biotic and climatic velocities were greatest at low latitudes, implying that threats to equatorial species arise from both the future magnitude of climatic velocities and the narrow climatic tolerances of species in these regions, which currently experience low seasonal and interannual climatic variability. Biotic and climatic velocity, by approximating

  3. Transferability of optimally-selected climate models in the quantification of climate change impacts on hydrology

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Brissette, François P.; Lucas-Picher, Philippe

    2016-11-01

    Given the ever increasing number of climate change simulations being carried out, it has become impractical to use all of them to cover the uncertainty of climate change impacts. Various methods have been proposed to optimally select subsets of a large ensemble of climate simulations for impact studies. However, the behaviour of optimally-selected subsets of climate simulations for climate change impacts is unknown, since the transfer process from climate projections to the impact study world is usually highly non-linear. Consequently, this study investigates the transferability of optimally-selected subsets of climate simulations in the case of hydrological impacts. Two different methods were used for the optimal selection of subsets of climate scenarios, and both were found to be capable of adequately representing the spread of selected climate model variables contained in the original large ensemble. However, in both cases, the optimal subsets had limited transferability to hydrological impacts. To capture a similar variability in the impact model world, many more simulations have to be used than those that are needed to simply cover variability from the climate model variables' perspective. Overall, both optimal subset selection methods were better than random selection when small subsets were selected from a large ensemble for impact studies. However, as the number of selected simulations increased, random selection often performed better than the two optimal methods. To ensure adequate uncertainty coverage, the results of this study imply that selecting as many climate change simulations as possible is the best avenue. Where this was not possible, the two optimal methods were found to perform adequately.

  4. Climate change projections for Greek viticulture as simulated by a regional climate model

    NASA Astrophysics Data System (ADS)

    Lazoglou, Georgia; Anagnostopoulou, Christina; Koundouras, Stefanos

    2017-07-01

    Viticulture represents an important economic activity for Greek agriculture. Winegrapes are cultivated in many areas covering the whole Greek territory, due to the favorable soil and climatic conditions. Given the dependence of viticulture on climate, the vitivinicultural sector is expected to be affected by possible climatic changes. The present study is set out to investigate the impacts of climatic change in Greek viticulture, using nine bioclimatic indices for the period 1981-2100. For this purpose, reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF) and data from the regional climatic model Regional Climate Model Version 3 (RegCM3) are used. It was found that the examined regional climate model estimates satisfactorily these bioclimatic indices. The results of the study show that the increasing trend of temperature and drought will affect all wine-producing regions in Greece. In vineyards in mountainous regions, the impact is positive, while in islands and coastal regions, it is negative. Overall, it should be highlighted that for the first time that Greece is classified into common climatic characteristic categories, according to the international Geoviticulture Multicriteria Climatic Classification System (MCC system). According to the proposed classification, Greek viticulture regions are estimated to have similar climatic characteristics with the warmer wine-producing regions of the world up to the end of twenty-first century. Wine growers and winemakers should take the findings of the study under consideration in order to take measures for Greek wine sector adaptation and the continuation of high-quality wine production.

  5. Pliocene climate

    USGS Publications Warehouse

    Dowsett, Harry J.; Caballero-Gill, R. P.

    2010-01-01

    The Pliocene Epoch, 5.3 Ma to 1.8 Ma, was a time when paleoclimate conditions ranged from very warm, equable climates (on a global scale), rhythmically varying every 40,000 years, to high-amplitude glacial-interglacial cycles that led to the “Ice Ages” of the Pleistocene. Evidence for paleoclimate conditions comes from fossils, geochemical data, and the integration of these data with sophisticated numerical models. The Pliocene exhibited a range in atmospheric CO2 concentrations with highs estimated to be at most ~425 ppm in the early Pliocene followed by overall decrease toward preindustrial levels by the close of the Pliocene Epoch (Pagani et al. 2010). Sea levels were estimated to be 25m higher than present day and the size and position of ice sheets in Greenland and Antarctica were decidedly different from today. On the other hand, by the mid-Pliocene, the majority of fauna and flora as well as continental configurations were basically the same as today. Man’s ability to adapt to or mitigate the effects of future climate require a deep understanding of the rates and magnitude of future climate change on an ever finer scale. Since conditions projected for the end of this century are not in the human experience, we depend upon a combination of numerical climate models and comparison to analogous conditions in the geologic past. The Pliocene contains what might be the closest analog to climate conditions expected in the near future, and therefore understanding the Pliocene is not only of academic interest but essential for human adaptation.

  6. Influence of long-range atmospheric transport pathways and climate teleconnection patterns on the variability of surface 210Pb and 7Be concentrations in southwestern Europe.

    PubMed

    Grossi, C; Ballester, J; Serrano, I; Galmarini, S; Camacho, A; Curcoll, R; Morguí, J A; Rodò, X; Duch, M A

    2016-12-01

    The variability of the atmospheric concentration of the 7 Be and 210 Pb radionuclides is strongly linked to the origin of air masses, the strength of their sources and the processes of wet and dry deposition. It has been shown how these processes and their variability are strongly affected by climate change. Thus, a deeper knowledge of the relationship between the atmospheric radionuclides variability measured close to the ground and these atmospheric processes could help in the analysis of climate scenarios. In the present study, we analyze the atmospheric variability of a 14-year time series of 7 Be and 210 Pb in a Mediterranean coastal city using a synergy of different indicators and tools such as: the local meteorological conditions, global and regional climate indexes and a lagrangian atmospheric transport model. We particularly focus on the relationships between the main pathways of air masses and sun spots occurrence, the variability of the local relative humidity and temperature conditions, and the main modes of regional climate variability, such as the North Atlantic Oscillation (NAO) and the Western Mediterranean Oscillation (WeMO). The variability of the observed atmospheric concentrations of both 7 Be and 210 Pb radionuclides was found to be mainly positively associated to the local climate conditions of temperature and to the pathways of air masses arriving at the station. Measured radionuclide concentrations significantly increase when air masses travel at low tropospheric levels from central Europe and the western part of the Iberian Peninsula, while low concentrations are associated with westerly air masses. We found a significant negative correlation between the WeMO index and the atmospheric variability of both radionuclides and no significant association was observed for the NAO index. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Connecting today's climates to future climate analogs to facilitate movement of species under climate change.

    PubMed

    Littlefield, Caitlin E; McRae, Brad H; Michalak, Julia L; Lawler, Joshua J; Carroll, Carlos

    2017-12-01

    Increasing connectivity is an important strategy for facilitating species range shifts and maintaining biodiversity in the face of climate change. To date, however, few researchers have included future climate projections in efforts to prioritize areas for increasing connectivity. We identified key areas likely to facilitate climate-induced species' movement across western North America. Using historical climate data sets and future climate projections, we mapped potential species' movement routes that link current climate conditions to analogous climate conditions in the future (i.e., future climate analogs) with a novel moving-window analysis based on electrical circuit theory. In addition to tracing shifting climates, the approach accounted for landscape permeability and empirically derived species' dispersal capabilities. We compared connectivity maps generated with our climate-change-informed approach with maps of connectivity based solely on the degree of human modification of the landscape. Including future climate projections in connectivity models substantially shifted and constrained priority areas for movement to a smaller proportion of the landscape than when climate projections were not considered. Potential movement, measured as current flow, decreased in all ecoregions when climate projections were included, particularly when dispersal was limited, which made climate analogs inaccessible. Many areas emerged as important for connectivity only when climate change was modeled in 2 time steps rather than in a single time step. Our results illustrate that movement routes needed to track changing climatic conditions may differ from those that connect present-day landscapes. Incorporating future climate projections into connectivity modeling is an important step toward facilitating successful species movement and population persistence in a changing climate. © 2017 Society for Conservation Biology.

  8. Increasing the Chances of Implementing NGSS by Bolstering High School Teacher Knowledge and Views about Climate Change, a NICE NASA Example

    NASA Astrophysics Data System (ADS)

    Bleicher, R. E.

    2013-12-01

    Purpose of Presentation This paper will highlight how the results of this initial study foreshadow possibilities of NGSS (NGSS, 2013) playing out in high school classrooms in the near future. Research findings from a three-year NASA-funded project, Promoting Educational Leadership in Climate Science (PEL) will be presented. Objectives and Research Questions PEL aims to increase climate science literacy in high school teachers and students through scientific argumentation using authentic NASA data. This initial study focuses on the following questions: 1. Are teachers increasing their climate science knowledge? 2. Are there changes in teachers' views about climate change? 3. What resources and are provided to assist teachers to develop their students' scientific argumentation skills? Theoretical Framework Because of the changing nature of climate science knowledge and its relevance to societal issues, teachers must be able to understand the basic concepts and remain up-to-date on scientific issues. The need for a more thorough understanding of the concepts of climate change are highlighted by recent studies on the public perceptions and attitudes on the subject (Leiserowitz et al., 2013). Teachers need to understand the difference between skepticism as a characteristic of the nature of science and denial of climate change (Sommervillle & Hasol, 2011). Teachers need to understand the natural and human-induced factors affecting climate, and the potential consequences, and ways to mitigate and adapt to climate change. Generally, when teachers learn about a subject, they demonstrate more self-efficacy to teach about it (Bleicher & Lindgren, 2005). Analytic Strategy Data were analyzed using paired-samples t-tests, independent t -tests, and ANOVA. Latent class analysis was employed to analyze the Six America's Survey data. Correlational studies were conducted to examine possible relationships among variables. Findings in Brief Teachers' content knowledge increased

  9. Climate risk index for Italy

    NASA Astrophysics Data System (ADS)

    Mysiak, Jaroslav; Torresan, Silvia; Bosello, Francesco; Mistry, Malcolm; Amadio, Mattia; Marzi, Sepehr; Furlan, Elisa; Sperotto, Anna

    2018-06-01

    We describe a climate risk index that has been developed to inform national climate adaptation planning in Italy and that is further elaborated in this paper. The index supports national authorities in designing adaptation policies and plans, guides the initial problem formulation phase, and identifies administrative areas with higher propensity to being adversely affected by climate change. The index combines (i) climate change-amplified hazards; (ii) high-resolution indicators of exposure of chosen economic, social, natural and built- or manufactured capital (MC) assets and (iii) vulnerability, which comprises both present sensitivity to climate-induced hazards and adaptive capacity. We use standardized anomalies of selected extreme climate indices derived from high-resolution regional climate model simulations of the EURO-CORDEX initiative as proxies of climate change-altered weather and climate-related hazards. The exposure and sensitivity assessment is based on indicators of manufactured, natural, social and economic capital assets exposed to and adversely affected by climate-related hazards. The MC refers to material goods or fixed assets which support the production process (e.g. industrial machines and buildings); Natural Capital comprises natural resources and processes (renewable and non-renewable) producing goods and services for well-being; Social Capital (SC) addressed factors at the individual (people's health, knowledge, skills) and collective (institutional) level (e.g. families, communities, organizations and schools); and Economic Capital (EC) includes owned and traded goods and services. The results of the climate risk analysis are used to rank the subnational administrative and statistical units according to the climate risk challenges, and possibly for financial resource allocation for climate adaptation. This article is part of the theme issue `Advances in risk assessment for climate change adaptation policy'.

  10. Pleistocene climate, phylogeny, and climate envelope models: an integrative approach to better understand species' response to climate change.

    PubMed

    Lawing, A Michelle; Polly, P David

    2011-01-01

    Mean annual temperature reported by the Intergovernmental Panel on Climate Change increases at least 1.1°C to 6.4°C over the next 90 years. In context, a change in climate of 6°C is approximately the difference between the mean annual temperature of the Last Glacial Maximum (LGM) and our current warm interglacial. Species have been responding to changing climate throughout Earth's history and their previous biological responses can inform our expectations for future climate change. Here we synthesize geological evidence in the form of stable oxygen isotopes, general circulation paleoclimate models, species' evolutionary relatedness, and species' geographic distributions. We use the stable oxygen isotope record to develop a series of temporally high-resolution paleoclimate reconstructions spanning the Middle Pleistocene to Recent, which we use to map ancestral climatic envelope reconstructions for North American rattlesnakes. A simple linear interpolation between current climate and a general circulation paleoclimate model of the LGM using stable oxygen isotope ratios provides good estimates of paleoclimate at other time periods. We use geologically informed rates of change derived from these reconstructions to predict magnitudes and rates of change in species' suitable habitat over the next century. Our approach to modeling the past suitable habitat of species is general and can be adopted by others. We use multiple lines of evidence of past climate (isotopes and climate models), phylogenetic topology (to correct the models for long-term changes in the suitable habitat of a species), and the fossil record, however sparse, to cross check the models. Our models indicate the annual rate of displacement in a clade of rattlesnakes over the next century will be 2 to 3 orders of magnitude greater (430-2,420 m/yr) than it has been on average for the past 320 ky (2.3 m/yr).

  11. Pleistocene Climate, Phylogeny, and Climate Envelope Models: An Integrative Approach to Better Understand Species' Response to Climate Change

    PubMed Central

    Lawing, A. Michelle; Polly, P. David

    2011-01-01

    Mean annual temperature reported by the Intergovernmental Panel on Climate Change increases at least 1.1°C to 6.4°C over the next 90 years. In context, a change in climate of 6°C is approximately the difference between the mean annual temperature of the Last Glacial Maximum (LGM) and our current warm interglacial. Species have been responding to changing climate throughout Earth's history and their previous biological responses can inform our expectations for future climate change. Here we synthesize geological evidence in the form of stable oxygen isotopes, general circulation paleoclimate models, species' evolutionary relatedness, and species' geographic distributions. We use the stable oxygen isotope record to develop a series of temporally high-resolution paleoclimate reconstructions spanning the Middle Pleistocene to Recent, which we use to map ancestral climatic envelope reconstructions for North American rattlesnakes. A simple linear interpolation between current climate and a general circulation paleoclimate model of the LGM using stable oxygen isotope ratios provides good estimates of paleoclimate at other time periods. We use geologically informed rates of change derived from these reconstructions to predict magnitudes and rates of change in species' suitable habitat over the next century. Our approach to modeling the past suitable habitat of species is general and can be adopted by others. We use multiple lines of evidence of past climate (isotopes and climate models), phylogenetic topology (to correct the models for long-term changes in the suitable habitat of a species), and the fossil record, however sparse, to cross check the models. Our models indicate the annual rate of displacement in a clade of rattlesnakes over the next century will be 2 to 3 orders of magnitude greater (430-2,420 m/yr) than it has been on average for the past 320 ky (2.3 m/yr). PMID:22164305

  12. Climate variability in China during the last millennium based on reconstructions and simulations

    NASA Astrophysics Data System (ADS)

    García-Bustamante, E.; Luterbacher, J.; Xoplaki, E.; Werner, J. P.; Jungclaus, J.; Zorita, E.; González-Rouco, J. F.; Fernández-Donado, L.; Hegerl, G.; Ge, Q.; Hao, Z.; Wagner, S.

    2012-04-01

    interesting aspect and of relevance for the assessment of forced climatic responses in China. The comparison between reconstructions and simulations from climate models show that, apart from the 20th century warming trend, the variance of the reconstructed mean China temperature lies in the envelope (uncertainty range) spanned by the temperature simulations. The uncertainty arises from the internal (multi-member ensembles) and the inter-model variability. Centennial variations tend to be broadly synchronous in the reconstructions and the simulations. However, the simulations show a delay of the warm period 1000-1300 AD. This warm medieval period both in the simulations and the reconstructions is followed by cooling till 1800 AD. Based on the simulations, the recent warming is not unprecedented and is comparable to the medieval warming. Further steps of this study will address the individual contribution of anthropogenic and natural forcings on climate variability and change during the last millennium in China. We will make use of of models that provide runs including single forcings (fingerprints) for the attribution of climate variations from decadal to multi-centennial time scales. With this aim, we will implement statistical techniques for the detection of optimal signal-to-noise-ratio between external forcings and internal variability of reconstructed temperatures and precipitation. To apply these approaches the uncertainties associated with both reconstructions and simulations will be estimated. The latter will shed some light into the mechanisms behind current climate evolution and will help to constrain uncertainties in the sensitivity of model simulations to increasing CO2 scenarios of future climate change. This work will also contribute to the overall aims of the PAGES 2k initiative in Asia (http://www.pages.unibe.ch/workinggroups/2k-network)

  13. Empowering America's Communities to Prepare for the Effects of Climate Change: Developing Actionable Climate Science Under the President's Climate Action Plan

    NASA Astrophysics Data System (ADS)

    Duffy, P. B.; Colohan, P.; Driggers, R.; Herring, D.; Laurier, F.; Petes, L.; Ruffo, S.; Tilmes, C.; Venkataraman, B.; Weaver, C. P.

    2014-12-01

    Effective adaptation to impacts of climate change requires best-available information. To be most useful, this information should be easily found, well-documented, and translated into tools that decision-makers use and trust. To meet these needs, the President's Climate Action Plan includes efforts to develop "actionable climate science". The Climate Data Initiative (CDI) leverages the Federal Government's extensive, open data resources to stimulate innovation and private-sector entrepreneurship in support of actions to prepare for climate change. The Initiative forges commitments and partnerships from the private, NGO, academic, and public sectors to create data-driven tools. Open data from Federal agencies to support this innovation is available on Climate.Data.gov, initially focusing on coastal flooding but soon to expand to topics including food, energy, water, energy, transportation, and health. The Climate Resilience Toolkit (CRT) will facilitate access to data-driven resilience tools, services, and best practices, including those accessible through the CDI. The CRT will also include access to training and tutorials, case studies, engagement forums, and other information sources. The Climate Action Plan also calls for a public-private partnership on extreme weather risk, with the goal of generating improved assessments of risk from different types of extreme weather events, using methods and data that are transparent and accessible. Finally, the U.S. Global Change Research Program and associated agencies work to advance the science necessary to inform decisions and sustain assessments. Collectively, these efforts represent increased emphasis across the Federal Government on the importance of information to support climate resilience.

  14. Climate negotiators' and scientists' assessments of the climate negotiations

    NASA Astrophysics Data System (ADS)

    Dannenberg, Astrid; Zitzelsberger, Sonja; Tavoni, Alessandro

    2017-06-01

    Climate negotiation outcomes are difficult to evaluate objectively because there are no clear reference scenarios. Subjective assessments from those directly involved in the negotiations are particularly important, as this may influence strategy and future negotiation participation. Here we analyse the perceived success of the climate negotiations in a sample of 656 experts involved in international climate policy. Respondents were pessimistic when asked for specific assessments of the current approach centred on voluntary pledges, but were more optimistic when asked for general assessments of the outcomes and usefulness of the climate negotiations. Individuals who were more involved in the negotiation process tended to be more optimistic, especially in terms of general assessments. Our results indicate that two reinforcing effects are at work: a high degree of involvement changes individuals' perceptions and more optimistic individuals are more inclined to remain involved in the negotiations.

  15. Conflict in a changing climate

    NASA Astrophysics Data System (ADS)

    Carleton, T.; Hsiang, S. M.; Burke, M.

    2016-05-01

    A growing body of research illuminates the role that changes in climate have had on violent conflict and social instability in the recent past. Across a diversity of contexts, high temperatures and irregular rainfall have been causally linked to a range of conflict outcomes. These findings can be paired with climate model output to generate projections of the impact future climate change may have on conflicts such as crime and civil war. However, there are large degrees of uncertainty in such projections, arising from (i) the statistical uncertainty involved in regression analysis, (ii) divergent climate model predictions, and (iii) the unknown ability of human societies to adapt to future climate change. In this article, we review the empirical evidence of the climate-conflict relationship, provide insight into the likely extent and feasibility of adaptation to climate change as it pertains to human conflict, and discuss new methods that can be used to provide projections that capture these three sources of uncertainty.

  16. Invasive species: an increasing threat to marine ecosystems under climate change?

    NASA Astrophysics Data System (ADS)

    Artioli, Yuri; Galienne, Chris; Holt, Jason; Wakelin, Sarah; Butenschön, Momme; Schrum, Corinna; Daewel, Ute; Pushpadas, Dhania; Cannaby, Heather; Salihoglu, Baris; Zavatarelli, Marco; Clementi, Emanuela; Olenin, Sergej; Allen, Icarus

    2013-04-01

    Planktonic Non-Indigenous Species (NIS) are a potential threat to marine ecosystems: a successful invasion of such organisms can alter significantly the ecosystem structure with shift in species composition that can affect different levels of the trophic network and also with local extinction of native species in the more extreme cases. Such changes will also impact some ecosystem functions like primary and secondary production or nutrient cycling, and services, like fishery, aquaculture or carbon sequestration. Understanding how climate change influences the susceptibility of a marine ecosystem to invasion is challenging as the success and the impact of an invasion depend on many different factors all tightly interconnected (e.g. time of the invasion, location, state of the ecosystem…). Here we present DivERSEM, a new version of the biogeochemical model ERSEM modified in order to account for phytoplankton diversity. With such a model, we are able to simulate invasion from phytoplankton NIS, to assess the likelihood of success of such an invasion and to estimate the potential impact on ecosystem structure, using indicator like the Biopollution index. In the MEECE project (www.meece.eu), the model has been coupled to a 1D water column model (GOTM) in two different climate scenarios (present day and the IPCC SRES A1B scenario for 2100) in 4 different European shelf seas (North Sea, Baltic Sea, Black Sea and Adriatic Sea). The model has been forced with atmospheric data coming from the IPSL climate model, and nutrient concentration extracted from a set of 3D biogeochemical models running under the same climate scenario. The response of the ecosystem susceptibility to invasion to climate change has been analysed comparing the successfulness of invasions in the two time slices and its impact on community structure and ecosystem functions. At the same time, the comparison among the different basins allowed to highlight some of the characteristics that make the

  17. Why should health be a central argument in climate negotiations? Can a MOOC help to bring the message across?

    PubMed

    Sauerborn, Rainer

    There are four key messages from health for climate negotiations. Two positive ones include (i) health as a motivator for action and policy and (ii) huge health co-benefits to be included in the cost-benefit trade-offs of climate negotiations. Two warning messages: (iii) there are health-based absolute limits of adaptations and (iv) hotter average temperatures will cut work productivity of farmers and other outdoor workers as well as workers in non-air conditioned factories in poor countries. This paper will examine how massive open online courses (MOOCs) have been used in the run-up to this COP to disseminate these four messages to the audience of high-level policy-makers. This required a departure from the classic MOOC format in several ways: duration, focus on decision-making rationale, policy-relevant messages presented in big brush, leaving "traceable accounts" to evidence in two layers of resources provided: essential and "deep dive".

  18. Evaluating climate models: Should we use weather or climate observations?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oglesby, Robert J; Erickson III, David J

    2009-12-01

    Calling the numerical models that we use for simulations of climate change 'climate models' is a bit of a misnomer. These 'general circulation models' (GCMs, AKA global climate models) and their cousins the 'regional climate models' (RCMs) are actually physically-based weather simulators. That is, these models simulate, either globally or locally, daily weather patterns in response to some change in forcing or boundary condition. These simulated weather patterns are then aggregated into climate statistics, very much as we aggregate observations into 'real climate statistics'. Traditionally, the output of GCMs has been evaluated using climate statistics, as opposed to their abilitymore » to simulate realistic daily weather observations. At the coarse global scale this may be a reasonable approach, however, as RCM's downscale to increasingly higher resolutions, the conjunction between weather and climate becomes more problematic. We present results from a series of present-day climate simulations using the WRF ARW for domains that cover North America, much of Latin America, and South Asia. The basic domains are at a 12 km resolution, but several inner domains at 4 km have also been simulated. These include regions of complex topography in Mexico, Colombia, Peru, and Sri Lanka, as well as a region of low topography and fairly homogeneous land surface type (the U.S. Great Plains). Model evaluations are performed using standard climate analyses (e.g., reanalyses; NCDC data) but also using time series of daily station observations. Preliminary results suggest little difference in the assessment of long-term mean quantities, but the variability on seasonal and interannual timescales is better described. Furthermore, the value-added by using daily weather observations as an evaluation tool increases with the model resolution.« less

  19. Assessing effects of variation in global climate data sets on spatial predictions from climate envelope models

    USGS Publications Warehouse

    Romañach, Stephanie; Watling, James I.; Fletcher, Robert J.; Speroterra, Carolina; Bucklin, David N.; Brandt, Laura A.; Pearlstine, Leonard G.; Escribano, Yesenia; Mazzotti, Frank J.

    2014-01-01

    Climate change poses new challenges for natural resource managers. Predictive modeling of species–environment relationships using climate envelope models can enhance our understanding of climate change effects on biodiversity, assist in assessment of invasion risk by exotic organisms, and inform life-history understanding of individual species. While increasing interest has focused on the role of uncertainty in future conditions on model predictions, models also may be sensitive to the initial conditions on which they are trained. Although climate envelope models are usually trained using data on contemporary climate, we lack systematic comparisons of model performance and predictions across alternative climate data sets available for model training. Here, we seek to fill that gap by comparing variability in predictions between two contemporary climate data sets to variability in spatial predictions among three alternative projections of future climate. Overall, correlations between monthly temperature and precipitation variables were very high for both contemporary and future data. Model performance varied across algorithms, but not between two alternative contemporary climate data sets. Spatial predictions varied more among alternative general-circulation models describing future climate conditions than between contemporary climate data sets. However, we did find that climate envelope models with low Cohen's kappa scores made more discrepant spatial predictions between climate data sets for the contemporary period than did models with high Cohen's kappa scores. We suggest conservation planners evaluate multiple performance metrics and be aware of the importance of differences in initial conditions for spatial predictions from climate envelope models.

  20. Informing Decisions with a Climate Synthesis Product: Implications for Regional Climate Services

    NASA Astrophysics Data System (ADS)

    Guido, Z.; Hill, D.; Crimmins, M.; Ferguson, D. B.

    2012-12-01

    The demand for regional climate information is increasing and spurring efforts to provide a broad slate of climate services that inform policy and resource management and elevate general knowledge. Routine syntheses of existing climate-related information may be an effective strategy for connecting climate information to decision making, but few studies have formally assessed their contribution to informing decisions. During the 2010-2011 winter, drought conditions expanded and intensified in Arizona and New Mexico, creating an opportunity to develop and evaluate a pithy, monthly regional climate communication product—La Niña Drought Tracker—that synthesized and interpreted drought and climate information. Six issues were published and subsequently evaluated through an online survey. On average, 417 people consulted the publication each month. Many of the survey respondents indicated that they made at least one drought-related decision, and the product at least moderately influenced the majority of those decisions, some of which helped mitigate economic losses and reduce climate vulnerability. The product also improved understanding of climate and drought for more than 90 percent of the respondents and helped the majority of them better prepare for drought. These, and other results demonstrate that routine interpretation and synthesis of existing climate information can help enhance access to and understanding and use of climate information in decision-making. Moreover, developing regional, contextual knowledge within climate service programs can facilitate the implementation of activities like the Tracker that enhance the use of climate information without engaging in time-consuming collaborative processes that can prevent the timely production of the services. We present results from the case study of the Tracker and place it within the context of the challenges and opportunities associated with providing climate services, particularly those services that

  1. Arctic climate tipping points.

    PubMed

    Lenton, Timothy M

    2012-02-01

    There is widespread concern that anthropogenic global warming will trigger Arctic climate tipping points. The Arctic has a long history of natural, abrupt climate changes, which together with current observations and model projections, can help us to identify which parts of the Arctic climate system might pass future tipping points. Here the climate tipping points are defined, noting that not all of them involve bifurcations leading to irreversible change. Past abrupt climate changes in the Arctic are briefly reviewed. Then, the current behaviour of a range of Arctic systems is summarised. Looking ahead, a range of potential tipping phenomena are described. This leads to a revised and expanded list of potential Arctic climate tipping elements, whose likelihood is assessed, in terms of how much warming will be required to tip them. Finally, the available responses are considered, especially the prospects for avoiding Arctic climate tipping points.

  2. Climate change hotspots in the CMIP5 global climate model ensemble.

    PubMed

    Diffenbaugh, Noah S; Giorgi, Filippo

    2012-01-10

    We use a statistical metric of multi-dimensional climate change to quantify the emergence of global climate change hotspots in the CMIP5 climate model ensemble. Our hotspot metric extends previous work through the inclusion of extreme seasonal temperature and precipitation, which exert critical influence on climate change impacts. The results identify areas of the Amazon, the Sahel and tropical West Africa, Indonesia, and the Tibetan Plateau as persistent regional climate change hotspots throughout the 21 st century of the RCP8.5 and RCP4.5 forcing pathways. In addition, areas of southern Africa, the Mediterranean, the Arctic, and Central America/western North America also emerge as prominent regional climate change hotspots in response to intermediate and high levels of forcing. Comparisons of different periods of the two forcing pathways suggest that the pattern of aggregate change is fairly robust to the level of global warming below approximately 2°C of global warming (relative to the late-20 th -century baseline), but not at the higher levels of global warming that occur in the late-21 st -century period of the RCP8.5 pathway, with areas of southern Africa, the Mediterranean, and the Arctic exhibiting particular intensification of relative aggregate climate change in response to high levels of forcing. Although specific impacts will clearly be shaped by the interaction of climate change with human and biological vulnerabilities, our identification of climate change hotspots can help to inform mitigation and adaptation decisions by quantifying the rate, magnitude and causes of the aggregate climate response in different parts of the world.

  3. Climate, Companies, and Public Policy: How Transparent Is the Private Sector in Reporting Climate Policy Influence?

    NASA Astrophysics Data System (ADS)

    Goldman, G. T.; Carlson, C.

    2014-12-01

    To enact effective policies to address climate change, decision makers need both scientific and political support. One major barrier to U.S. climate policy enactment has been the opposition of private sector actors to proposed policies and to climate science itself. Increasingly, the public and investors are holding companies accountable for their actions around climate change—including political activies, affiliations with trade groups, and involvement with climate science. However, this accountability is inhibited by the prominent role that trade associations have played in climate policy debates in recent years. The opaque nature of such groups is problematic, as it inhibits the public from understanding who is obstructing progress on addressing climate change, and in some cases, impedes the public's climate literacy. Voluntary climate reporting can yield some information on companies' climate engagement and demonstrates the need for greater transparency in corporate political activities around climate change. We analyze CDP climate reporting data from 1,824 companies to assess the degree to which corporate actors disclosed their political influence on climate policies through their trade associations. Results demonstrate the limitations of voluntary reporting and the extent to which companies utilize their trade associations to influence climate change policy debates without being held accountable for these positions. Notably, many companies failed to acknowledge their board seat on trade groups with significant climate policy engagement. Of those that did acknowledge their board membership, some claimed not to agree with their trade associations' positions on climate change. These results raise questions about who trade groups are representing when they challenge the science or obstruct policies to address climate change. Recommendations for overcoming this barrier to informed decision making to address climate change will be discussed.

  4. Regional climate response collaboratives: Multi-institutional support for climate resilience

    USGS Publications Warehouse

    Averyt, Kristen; Derner, Justin D.; Dilling, Lisa; Guerrero, Rafael; Joyce, Linda A.; McNeeley, Shannon; McNie, Elizabeth; Morisette, Jeffrey T.; Ojima, Dennis; O'Malley, Robin; Peck, Dannele; Ray, Andrea J.; Reeves, Matt; Travis, William

    2018-01-01

    Federal investments by U.S. agencies to enhance climate resilience at regional scales grew over the past decade (2010s). To maximize efficiency and effectiveness in serving multiple sectors and scales, it has become critical to leverage existing agency-specific research, infrastructure, and capacity while avoiding redundancy. We discuss lessons learned from a multi-institutional “regional climate response collaborative” that comprises three different federally-supported climate service entities in the Rocky Mountain west and northern plains region. These lessons include leveraging different strengths of each partner, creating deliberate mechanisms to increase cross-entity communication and joint ownership of projects, and placing a common priority on stakeholder-relevant research and outcomes. We share the conditions that fostered successful collaboration, which can be transferred elsewhere, and suggest mechanisms for overcoming potential barriers. Synergies are essential for producing actionable research that informs climate-related decisions for stakeholders and ultimately enhances climate resilience at regional scales.

  5. Climate Project Screening Tool

    Treesearch

    Forest Service U.S. Department of Agriculture

    2011-01-01

    Climate change poses a challenge for resource managers as they review current management practices. Adaptation is a critical means of addressing climate change in the near future because, due to inherent time lags in climate impacts, the effects of increased atmospheric greenhouse gases will be felt for decades even if effective mitigation begins now. To address the...

  6. The Roadmap to Climate Stability Based on IPCC Fifth Assessment Climate Accounting Protocols

    NASA Astrophysics Data System (ADS)

    Schultz, T.

    2016-12-01

    The Climate Stabilization Council recognizes the severe impact consequences of a rapidly warming climate and the challenging mitigation requirements of reaching the COP21 aspirational goal of +1.5°C. To address this challenge, we have used the IPCC Fifth Assessment Report which presents new methods for projecting increases in average global temperature and new metrics to update global climate accounting protocols. The updated protocols allow us to assess the full spectrum of climate mitigation projects available and identify the ability of specific projects to achieve various climate warming targets at different points in time. This assessment demonstrates the need to continue focusing on reducing and removing the major sources of overall excess heat linked to CO2, methane, black carbon, and tropospheric ozone. These findings also highlight the importance of solar radiation management (SRM) and earth radiation management (ERM) to achieve climate stabilization in the near-term. By integrating advanced life-cycle assessment (LCA) into the protocols, unintended environmental or human health impact trade-offs that may be associated with deployment of specific mitigation options can be identified. These protocols have also been introduced for standardization to the international ISO 14000 process. We conclude by describing the Climate Stabilization Council's role in establishing a platform for the scientific research, evaluation, and implementation of the identified climate mitigation projects.

  7. Developing a WWW Resource Centre for Acquiring and Accessing Open Learning Materials on Research Methods (ReMOTE).

    ERIC Educational Resources Information Center

    Newton, Robert; Marcella, Rita; Middleton, Iain; McConnell, Michael

    This paper reports on ReMOTE (Research Methods Online Teaching Environment), a Robert Gordon University (Scotland) project focusing on the development of a World Wide Web (WWW) site devoted to the teaching of research methods. The aim of ReMOTE is to provide an infrastructure that allows direct links to specialist sources in order to enable the…

  8. Climate Cases: Learning about Student Conceptualizations of Global Climate Change

    ERIC Educational Resources Information Center

    Tierney, Benjamin P.

    2013-01-01

    The complex topic of global climate change continues to be a challenging yet important topic among science educators and researchers. This mixed methods study adds to the growing research by investigating student conceptions of climate change from a system theory perspective (Von Bertalanffy, 1968) by asking the question, "How do differences…

  9. Teaching Climate Social Science and Its Practices: A Two-Pronged Approach to Climate Literacy

    NASA Astrophysics Data System (ADS)

    Shwom, R.; Isenhour, C.; McCright, A.; Robinson, J.; Jordan, R.

    2014-12-01

    with suggestions on how the identified social science insights could be integrated into climate literacy efforts.

  10. [Energy policy rather than climate policy].

    PubMed

    Kroonenberg, Salomon B

    2009-01-01

    Energy policy and climate policy are two different issues and should not be treated as if they were the same. Whether the climate gets warmer or colder, saving energy and developing sustainable forms of energy production remain of paramount importance because fossil hydrocarbons are likely to be exhausted soon. But climate policy is a fallacy: it is human arrogance to think we can control the climate by reducing emissions and by storing CO2 underground. In spite of rising CO2 levels, the climate has cooled down slightly over the past decade. Since the International Panel on Climate Change (IPCC) did not predict this, it is questionable whether they can reliably predict warming. Other factors such as solar activity are probably more important for climate than greenhouse gases. The danger of coupling energy policy to climate policy is evident: if the climate cools down, people will lose belief in the greenhouse effect and therefore also lose interest in saving energy.

  11. NASA Climate Days: Promoting Climate Literacy One Ambassador and One Event at a Time

    NASA Astrophysics Data System (ADS)

    Weir, H. M.; Lewis, P. M.; Chambers, L. H.; Millham, R. A.; Richardson, A.

    2012-12-01

    With so many informal outreach and education venues across the world, leveraging them for climate education allows vast amounts of information to be translated to the public in a familiar setting through trusted local sources. One of the challenges is the development of an effective process for training informal educators and providing them with adequate support materials. The 'NASA Climate Day Kit', and its related training strategy for Earth Ambassadors, is designed to address some of these issues. The purpose of the NASA Climate Day project is to collect existing NASA climate education materials, assemble a cadre of informal educators, and provide professional development on the subject of climate change. This training is accomplished through a series of exercises, games, science talks and place-based training. After their training and immersion in climate-related content, participants develop and implement a climate event at their local informal education venue. Throughout their training the Earth Ambassadors are exposed to a wide array of climate related exercises and background content. Some of these include one-on-one science content talks with NASA scientists who study climate on a daily basis. This allows the Ambassador to have direct access to new cutting edge data and information. To complement the science talks, participants explore activities and games that can engage all ages at their climate event. During their training, they also explore the 'Climate Day Kit'. This Kit is an assemblage of climate-related materials created by various NASA groups. Key components of this Kit include data visualizations, articles, electronic reference material, science talks, NASA Education and Public Outreach (E/PO) climate materials, and examples of Climate Day events that have been conducted in the past. As an on-going resource and to use for their own climate event, each group of Earth Ambassadors has access to a dynamic website that hosts all of the science

  12. Climate risk index for Italy.

    PubMed

    Mysiak, Jaroslav; Torresan, Silvia; Bosello, Francesco; Mistry, Malcolm; Amadio, Mattia; Marzi, Sepehr; Furlan, Elisa; Sperotto, Anna

    2018-06-13

    We describe a climate risk index that has been developed to inform national climate adaptation planning in Italy and that is further elaborated in this paper. The index supports national authorities in designing adaptation policies and plans, guides the initial problem formulation phase, and identifies administrative areas with higher propensity to being adversely affected by climate change. The index combines (i) climate change-amplified hazards; (ii) high-resolution indicators of exposure of chosen economic, social, natural and built- or manufactured capital (MC) assets and (iii) vulnerability, which comprises both present sensitivity to climate-induced hazards and adaptive capacity. We use standardized anomalies of selected extreme climate indices derived from high-resolution regional climate model simulations of the EURO-CORDEX initiative as proxies of climate change-altered weather and climate-related hazards. The exposure and sensitivity assessment is based on indicators of manufactured, natural, social and economic capital assets exposed to and adversely affected by climate-related hazards. The MC refers to material goods or fixed assets which support the production process (e.g. industrial machines and buildings); Natural Capital comprises natural resources and processes (renewable and non-renewable) producing goods and services for well-being; Social Capital (SC) addressed factors at the individual (people's health, knowledge, skills) and collective (institutional) level (e.g. families, communities, organizations and schools); and Economic Capital (EC) includes owned and traded goods and services. The results of the climate risk analysis are used to rank the subnational administrative and statistical units according to the climate risk challenges, and possibly for financial resource allocation for climate adaptation.This article is part of the theme issue 'Advances in risk assessment for climate change adaptation policy'. © 2018 The Authors.

  13. Climate risk index for Italy

    PubMed Central

    Torresan, Silvia; Bosello, Francesco; Mistry, Malcolm; Amadio, Mattia; Marzi, Sepehr; Furlan, Elisa; Sperotto, Anna

    2018-01-01

    We describe a climate risk index that has been developed to inform national climate adaptation planning in Italy and that is further elaborated in this paper. The index supports national authorities in designing adaptation policies and plans, guides the initial problem formulation phase, and identifies administrative areas with higher propensity to being adversely affected by climate change. The index combines (i) climate change-amplified hazards; (ii) high-resolution indicators of exposure of chosen economic, social, natural and built- or manufactured capital (MC) assets and (iii) vulnerability, which comprises both present sensitivity to climate-induced hazards and adaptive capacity. We use standardized anomalies of selected extreme climate indices derived from high-resolution regional climate model simulations of the EURO-CORDEX initiative as proxies of climate change-altered weather and climate-related hazards. The exposure and sensitivity assessment is based on indicators of manufactured, natural, social and economic capital assets exposed to and adversely affected by climate-related hazards. The MC refers to material goods or fixed assets which support the production process (e.g. industrial machines and buildings); Natural Capital comprises natural resources and processes (renewable and non-renewable) producing goods and services for well-being; Social Capital (SC) addressed factors at the individual (people's health, knowledge, skills) and collective (institutional) level (e.g. families, communities, organizations and schools); and Economic Capital (EC) includes owned and traded goods and services. The results of the climate risk analysis are used to rank the subnational administrative and statistical units according to the climate risk challenges, and possibly for financial resource allocation for climate adaptation. This article is part of the theme issue ‘Advances in risk assessment for climate change adaptation policy’. PMID:29712797

  14. Climate Models

    NASA Technical Reports Server (NTRS)

    Druyan, Leonard M.

    2012-01-01

    Climate models is a very broad topic, so a single volume can only offer a small sampling of relevant research activities. This volume of 14 chapters includes descriptions of a variety of modeling studies for a variety of geographic regions by an international roster of authors. The climate research community generally uses the rubric climate models to refer to organized sets of computer instructions that produce simulations of climate evolution. The code is based on physical relationships that describe the shared variability of meteorological parameters such as temperature, humidity, precipitation rate, circulation, radiation fluxes, etc. Three-dimensional climate models are integrated over time in order to compute the temporal and spatial variations of these parameters. Model domains can be global or regional and the horizontal and vertical resolutions of the computational grid vary from model to model. Considering the entire climate system requires accounting for interactions between solar insolation, atmospheric, oceanic and continental processes, the latter including land hydrology and vegetation. Model simulations may concentrate on one or more of these components, but the most sophisticated models will estimate the mutual interactions of all of these environments. Advances in computer technology have prompted investments in more complex model configurations that consider more phenomena interactions than were possible with yesterday s computers. However, not every attempt to add to the computational layers is rewarded by better model performance. Extensive research is required to test and document any advantages gained by greater sophistication in model formulation. One purpose for publishing climate model research results is to present purported advances for evaluation by the scientific community.

  15. The Climate Services Partnership (CSP): Working Together to Improve Climate Services Worldwide

    NASA Astrophysics Data System (ADS)

    Zebiak, S.; Brasseur, G.; Members of the CSP Coordinating Group

    2012-04-01

    Throughout the world, climate services are required to address urgent needs for climate-informed decision-making, policy and planning. These needs were explored in detail at the first International Conference on Climate Services (ICCS), held in New York in October 2011. After lengthy discussions of needs and capabilities, the conference culminated in the creation of the Climate Services Partnership (CSP). The CSP is an informal interdisciplinary network of climate information users, providers, donors and researchers interested in improving the provision and development of climate services worldwide. Members of the Climate Services Partnership work together to share knowledge, accelerate learning, develop new capacities, and establish good practices. These collaborative efforts will inform and support the evolution and implementation of the Global Framework for Climate Services. The Climate Services Partnership focuses its efforts on three levels. These include: 1. encouraging and sustaining connections between climate information providers, users, donors, and researchers 2. gathering, synthesizing and disseminating current knowledge on climate services by way of an online knowledge management platform 3. generating new knowledge on critical topics in climate service development and provision, through the creation of focused working groups on specific topics To date, the Climate Services Partnership has made progress on all three fronts. Connections have been fostered through outreach at major international conferences and professional societies. The CSP also maintains a website and a monthly newsletter, which serves as a resource for those interested in climate services. The second International Conference on Climate Services (ICCS2) will be held in Berlin in September. The CSP has also created a knowledge capture system that gathers and disseminates a wide range of information related to the development and provision of climate services. This includes an online

  16. The relationship between patient safety climate and occupational safety climate in healthcare - A multi-level investigation.

    PubMed

    Pousette, Anders; Larsman, Pernilla; Eklöf, Mats; Törner, Marianne

    2017-06-01

    Patient safety climate/culture is attracting increasing research interest, but there is little research on its relation with organizational climates regarding other target domains. The aim of this study was to investigate the relationship between patient safety climate and occupational safety climate in healthcare. The climates were assessed using two questionnaires: Hospital Survey on Patient Safety Culture and Nordic Occupational Safety Climate Questionnaire. The final sample consisted of 1154 nurses, 886 assistant nurses, and 324 physicians, organized in 150 work units, within hospitals (117units), primary healthcare (5units) and elderly care (28units) in western Sweden, which represented 56% of the original sample contacted. Within each type of safety climate, two global dimensions were confirmed in a higher order factor analysis; one with an external focus relative the own unit, and one with an internal focus. Two methods were used to estimate the covariation between the global climate dimensions, in order to minimize the influence of bias from common method variance. First multilevel analysis was used for partitioning variances and covariances in a within unit part (individual level) and a between unit part (unit level). Second, a split sample technique was used to calculate unit level correlations based on aggregated observations from different respondents. Both methods showed associations similar in strength between the patient safety climate and the occupational safety climate domains. The results indicated that patient safety climate and occupational safety climate are strongly positively related at the unit level, and that the same organizational processes may be important for the development of both types of organizational climate. Safety improvement interventions should not be separated in different organizational processes, but be planned so that both patient safety and staff safety are considered concomitantly. Copyright © 2017 National Safety

  17. Climate negotiators’ and scientists’ assessments of the climate negotiations

    PubMed Central

    Dannenberg, Astrid; Zitzelsberger, Sonja; Tavoni, Alessandro

    2017-01-01

    Climate negotiation outcomes are difficult to evaluate objectively because there are no clear reference scenarios. Subjective assessments from those directly involved in the negotiations are particularly important, as this may influence strategy and future negotiation participation. Here we analyze the perceived success of the climate negotiations in a sample of more than 600 experts involved in international climate policy. Respondents were pessimistic when asked for specific assessments of the current approach centered on voluntary pledges, but were more optimistic when asked for general assessments of the outcomes and usefulness of the climate negotiations. Individuals who are more involved in the negotiation process tended to be more optimistic, especially in terms of general assessments. Our results indicate that two reinforcing effects are at work: a high degree of involvement changes individuals’ perceptions and more optimistic individuals are more inclined to remain involved in the negotiations. PMID:28603558

  18. Resilience and Adaptation of Cultural Heritage to Climate Change; International Workshop in Ravello (Italy) 18-19 May 2017

    NASA Astrophysics Data System (ADS)

    Lefèvre, Roger-Alexandre

    2017-04-01

    Impacts of Climate Change on Cultural Heritage thanks to important projects funded by the European Commission among them: Noah's Ark (2003-2007) and Climate for Culture (2009-2014). The time is arrived focusing on the Resilience and Adaptation of Cultural Heritage to Climate Change. Italy and France already have National Adaptation Plan to Climate Change where Cultural Heritage is taken into account. Other national and international bodies are involved in this field, including European Commission (Horizon 2020 Programme, JPI Cultural Heritage), Council of Europe, UNESCO, ICOMOS… The organisation in Ravello in 2017 of the 2nd International Workshop on "Resilience and Adaptation of Cultural Heritage to Climate Change" should be an opportunity to give the word to scientists, teachers, curators, conservators, restorers, politicians, decision-makers and stake-holders…for reviewing the current state of this urgent problematic and of this scarcely explored area of research (www.univeur.org ).

  19. Using Games To Explore The Nexus of Climate, Energy, and Water

    NASA Astrophysics Data System (ADS)

    Hall, M. K.; Mayhew, M. A.

    2012-12-01

    We have developed a set of card games to teach teens and adults about the interdependency of energy demand, water consumption, and climate change, which we term the nexus of energy, water, and climate. The latest game challenges players to construct arguments around issues related to the nexus, such as the benefits of carbon sequestration or the negative impacts of consuming corn biofuel. The game has been through several rounds of playtesting, both with teens and adults, and in formal and informal learning environments, such as our ongoing teen Cafe Scientifique program (www.cafenm.org). The card game consists of two types of cards, "Challenge" and "Policy." Each round, one player acting as the Judge draws a Challenge card and reads the adjective—for example, dangerous, clean, catastrophic, awesome— and its definition displayed on the card. The other players hold Policy cards containing 3 or 4 facts related to nexus concepts. For example, the Algae bio-diesel fuel policy card contains the fact, "Algae can produce 100 times more fuel per acre that any other biofuel crop". A fact on the Tight shale gas policy card reads, "Chemicals used in 'fracking' can contaminate water supplies." Using the facts on a single Policy card, each player constructs an argument aligned with the adjective—and presents it to the Judge. This requires players to synthesize the given facts and any prior knowledge about the topic into a coherent argument. As players make their arguments, everyone is challenged to think about the nuances and implications of the myriad choices we have in balancing the needs for water and energy resources with the challenge of minimizing climate change. The Judge decides which player makes the policy argument that best aligns with the adjective, and that player wins the round. Players take turns being the Judge. The first player to win three rounds wins the game. The game has been well received by both teen and adult audiences. It is a highly social game

  20. Improving Climate Projections Using "Intelligent" Ensembles

    NASA Technical Reports Server (NTRS)

    Baker, Noel C.; Taylor, Patrick C.

    2015-01-01

    Recent changes in the climate system have led to growing concern, especially in communities which are highly vulnerable to resource shortages and weather extremes. There is an urgent need for better climate information to develop solutions and strategies for adapting to a changing climate. Climate models provide excellent tools for studying the current state of climate and making future projections. However, these models are subject to biases created by structural uncertainties. Performance metrics-or the systematic determination of model biases-succinctly quantify aspects of climate model behavior. Efforts to standardize climate model experiments and collect simulation data-such as the Coupled Model Intercomparison Project (CMIP)-provide the means to directly compare and assess model performance. Performance metrics have been used to show that some models reproduce present-day climate better than others. Simulation data from multiple models are often used to add value to projections by creating a consensus projection from the model ensemble, in which each model is given an equal weight. It has been shown that the ensemble mean generally outperforms any single model. It is possible to use unequal weights to produce ensemble means, in which models are weighted based on performance (called "intelligent" ensembles). Can performance metrics be used to improve climate projections? Previous work introduced a framework for comparing the utility of model performance metrics, showing that the best metrics are related to the variance of top-of-atmosphere outgoing longwave radiation. These metrics improve present-day climate simulations of Earth's energy budget using the "intelligent" ensemble method. The current project identifies several approaches for testing whether performance metrics can be applied to future simulations to create "intelligent" ensemble-mean climate projections. It is shown that certain performance metrics test key climate processes in the models, and

  1. Games That Teach Concepts Around the Nexus of Energy, Water, and Climate

    NASA Astrophysics Data System (ADS)

    Mayhew, M. A.; Hall, M.; Balaban, S.

    2013-12-01

    the game. The second game, Challenge and Persuade, is as simple as Thirst for Power is complex. It involves two card decks, the first containing a set of adjectives, the second having cards containing a series of facts, each in some way related to the inter-dependency of energy, water, and climate. Players take turns being the 'Judge,' who calls out the adjective on a drawn card. Other players must make up an argument based on information in three drawn 'fact' cards and using the adjective. The player with the best argument as determined by the Judge wins the round. The first player to win three rounds wins the game. This game can become quite riotous. Teenage players have called the nexus games 'informative, intellectual, and fun.' The games can be played in a variety of settings, from play at home on family game night to use in the classroom as an adjunct to an Earth and Environmental Science, Geography, or Government course. The games are being commercially distributed. For further information about them go to http://www.isenm.org/games.

  2. Potential relocation of climatic environments suggests high rates of climate displacement within the North American protection network.

    PubMed

    Batllori, Enric; Parisien, Marc-André; Parks, Sean A; Moritz, Max A; Miller, Carol

    2017-08-01

    Ongoing climate change may undermine the effectiveness of protected area networks in preserving the set of biotic components and ecological processes they harbor, thereby jeopardizing their conservation capacity into the future. Metrics of climate change, particularly rates and spatial patterns of climatic alteration, can help assess potential threats. Here, we perform a continent-wide climate change vulnerability assessment whereby we compare the baseline climate of the protected area network in North America (Canada, United States, México-NAM) to the projected end-of-century climate (2071-2100). We estimated the projected pace at which climatic conditions may redistribute across NAM (i.e., climate velocity), and identified future nearest climate analogs to quantify patterns of climate relocation within, among, and outside protected areas. Also, we interpret climatic relocation patterns in terms of associated land-cover types. Our analysis suggests that the conservation capacity of the NAM protection network is likely to be severely compromised by a changing climate. The majority of protected areas (~80%) might be exposed to high rates of climate displacement that could promote important shifts in species abundance or distribution. A small fraction of protected areas (<10%) could be critical for future conservation plans, as they will host climates that represent analogs of conditions currently characterizing almost a fifth of the protected areas across NAM. However, the majority of nearest climatic analogs for protected areas are in nonprotected locations. Therefore, unprotected landscapes could pose additional threats, beyond climate forcing itself, as sensitive biota may have to migrate farther than what is prescribed by the climate velocity to reach a protected area destination. To mitigate future threats to the conservation capacity of the NAM protected area network, conservation plans will need to capitalize on opportunities provided by the existing

  3. The new WegenerNet climate station network web portal - A gateway to over 10 years of high-resolution precipitation data

    NASA Astrophysics Data System (ADS)

    Fuchsberger, Jürgen; Kirchengast, Gottfried; Bichler, Christoph; Kabas, Thomas; Lenz, Gunther; Leuprecht, Armin

    2017-04-01

    The Feldbach region in southeast Austria, characteristic for experiencing a rich variety of weather and climate patterns, has been selected as the focus area for a pioneering weather and climate observation network at very high resolution: The WegenerNet comprises 153 meteorological stations measuring temperature, humidity, precipitation, and other parameters, in a tightly spaced grid within an area of about 20 km × 15 km centered near the city of Feldbach (46.93°N, 15.90°E). With its stations about every 2 km2, each with 5-min time sampling, the network provides regular measurements since January 2007. Detailed information is available in the recent description by Kirchengast et al. (2014) and via www.wegcenter.at/wegenernet. As a smaller "sister network" of the WegenerNet Feldbach region, the WegenerNet Johnsbachtal consists of eleven meteorological stations (complemented by one hydrographic station at the Johnsbach creek), measuring temperature, humidity, precipitation, radiation, wind, and other parameters in an alpine setting at altitudes ranging from below 700 m to over 2100 m. Data are available partly since 2007, partly since more recent dates and have a temporal resolution of 10 minutes. The networks are set to serve as a long-term monitoring and validation facility for weather and climate research and applications. Uses include validation of nonhydrostatic models operated at 1-km-scale resolution and of statistical downscaling techniques (in particular for precipitation), validation of radar and satellite data, study of orography-climate relationships, and many others. Quality-controlled station time series and gridded field data (spacing 200 m × 200 m) are available in near-real time (data latency less than 1-2 h) for visualization and download via a data portal (www.wegenernet.org). This data portal has been undergoing a complete renewal over the last year, and now serves as a modern gateway to the WegenerNet's more than 10 years of high

  4. Comparing Planning Hydrologic Ensembles associated with Paleoclimate, Projected Climate, and blended Climate Information Sets

    NASA Astrophysics Data System (ADS)

    Brekke, L. D.; Prairie, J.; Pruitt, T.; Rajagopalan, B.; Woodhouse, C.

    2008-12-01

    Water resources adaptation planning under climate change involves making assumptions about probabilistic water supply conditions, which are linked to a given climate context (e.g., instrument records, paleoclimate indicators, projected climate data, or blend of these). Methods have been demonstrated to associate water supply assumptions with any of these climate information types. Additionally, demonstrations have been offered that represent these information types in a scenario-rich (ensemble) planning framework, either via ensembles (e.g., survey of many climate projections) or stochastic modeling (e.g., based on instrument records or paleoclimate indicators). If the planning goal involves using a hydrologic ensemble that jointly reflects paleoclimate (e.g., lower- frequency variations) and projected climate information (e.g., monthly to annual trends), methods are required to guide how these information types might be translated into water supply assumptions. However, even if such a method exists, there is lack of understanding on how such a hydrologic ensemble might differ from ensembles developed relative to paleoclimate or projected climate information alone. This research explores two questions: (1) how might paleoclimate and projected climate information be blended into an planning hydrologic ensemble, and (2) how does a planning hydrologic ensemble differ when associated with the individual climate information types (i.e. instrumental records, paleoclimate, projected climate, or blend of the latter two). Case study basins include the Gunnison River Basin in Colorado and the Missouri River Basin above Toston in Montana. Presentation will highlight ensemble development methods by information type, and comparison of ensemble results.

  5. Selecting climate change scenarios for regional hydrologic impact studies based on climate extremes indices

    NASA Astrophysics Data System (ADS)

    Seo, Seung Beom; Kim, Young-Oh; Kim, Youngil; Eum, Hyung-Il

    2018-04-01

    When selecting a subset of climate change scenarios (GCM models), the priority is to ensure that the subset reflects the comprehensive range of possible model results for all variables concerned. Though many studies have attempted to improve the scenario selection, there is a lack of studies that discuss methods to ensure that the results from a subset of climate models contain the same range of uncertainty in hydrologic variables as when all models are considered. We applied the Katsavounidis-Kuo-Zhang (KKZ) algorithm to select a subset of climate change scenarios and demonstrated its ability to reduce the number of GCM models in an ensemble, while the ranges of multiple climate extremes indices were preserved. First, we analyzed the role of 27 ETCCDI climate extremes indices for scenario selection and selected the representative climate extreme indices. Before the selection of a subset, we excluded a few deficient GCM models that could not represent the observed climate regime. Subsequently, we discovered that a subset of GCM models selected by the KKZ algorithm with the representative climate extreme indices could not capture the full potential range of changes in hydrologic extremes (e.g., 3-day peak flow and 7-day low flow) in some regional case studies. However, the application of the KKZ algorithm with a different set of climate indices, which are correlated to the hydrologic extremes, enabled the overcoming of this limitation. Key climate indices, dependent on the hydrologic extremes to be projected, must therefore be determined prior to the selection of a subset of GCM models.

  6. NOAA's State Climate Summaries for the National Climate Assessment: A Sustained Assessment Product

    NASA Astrophysics Data System (ADS)

    Kunkel, K.; Champion, S.; Frankson, R.; Easterling, D. R.; Griffin, J.; Runkle, J. D.; Stevens, L. E.; Stewart, B. C.; Sun, L.; Veasey, S.

    2016-12-01

    A set of State Climate Summaries have been produced for all 50 U.S. states as part of the National Climate Assessment Sustained Assessment and represent a NOAA contribution to this process. Each summary includes information on observed and projected climate change conditions and impacts associated with future greenhouse gas emissions pathways. The summaries focus on the physical climate and coastal issues as a part of NOAA's mission. Core climate data and simulations used to produce these summaries have been previously published, and have been analyzed to represent a targeted synthesis of historical and plausible future climate conditions. As these are intended to be supplemental to major climate assessment development, the scope of the content remains true to a "summary" style document. Each state's Climate Summary includes its climatology and projections of future temperatures and precipitation, which are presented in order to provide a context for the assessment of future impacts. The climatological component focuses on temperature, precipitation, and noteworthy weather events specific to each state and relevant to the climate change discussion. Future climate scenarios are also briefly discussed, using well-known and consistent sets of climate model simulations based on two possible futures of greenhouse gas emissions. These future scenarios present an internally consistent climate picture for every state and are intended to inform the potential impacts of climate change. These 50 State Climate Summaries were produced by NOAA's National Centers for Environmental Information (NCEI) and the North Carolina State University Cooperative Institute for Climate and Satellites - NC (CICS-NC) with additional input provided by climate experts, including the NOAA Regional Climate Centers and State Climatologists. Each summary document also underwent a comprehensive and anonymous peer review. Each summary contains text, figures, and an interactive web presentation. A full

  7. Abrupt climate change and extinction events

    NASA Technical Reports Server (NTRS)

    Crowley, Thomas J.

    1988-01-01

    There is a growing body of theoretical and empirical support for the concept of instabilities in the climate system, and indications that abrupt climate change may in some cases contribute to abrupt extinctions. Theoretical indications of instabilities can be found in a broad spectrum of climate models (energy balance models, a thermohaline model of deep-water circulation, atmospheric general circulation models, and coupled ocean-atmosphere models). Abrupt transitions can be of several types and affect the environment in different ways. There is increasing evidence for abrupt climate change in the geologic record and involves both interglacial-glacial scale transitions and the longer-term evolution of climate over the last 100 million years. Records from the Cenozoic clearly show that the long-term trend is characterized by numerous abrupt steps where the system appears to be rapidly moving to a new equilibrium state. The long-term trend probably is due to changes associated with plate tectonic processes, but the abrupt steps most likely reflect instabilities in the climate system as the slowly changing boundary conditions caused the climate to reach some threshold critical point. A more detailed analysis of abrupt steps comes from high-resolution studies of glacial-interglacial fluctuations in the Pleistocene. Comparison of climate transitions with the extinction record indicates that many climate and biotic transitions coincide. The Cretaceous-Tertiary extinction is not a candidate for an extinction event due to instabilities in the climate system. It is quite possible that more detailed comparisons and analysis will indicate some flaws in the climate instability-extinction hypothesis, but at present it appears to be a viable candidate as an alternate mechanism for causing abrupt environmental changes and extinctions.

  8. The role of internal climate variability for interpreting climate change scenarios

    NASA Astrophysics Data System (ADS)

    Maraun, Douglas

    2013-04-01

    When communicating information on climate change, the use of multi-model ensembles has been advocated to sample uncertainties over a range as wide as possible. To meet the demand for easily accessible results, the ensemble is often summarised by its multi-model mean signal. In rare cases, additional uncertainty measures are given to avoid loosing all information on the ensemble spread, e.g., the highest and lowest projected values. Such approaches, however, disregard the fundamentally different nature of the different types of uncertainties and might cause wrong interpretations and subsequently wrong decisions for adaptation. Whereas scenario and climate model uncertainties are of epistemic nature, i.e., caused by an in principle reducible lack of knowledge, uncertainties due to internal climate variability are aleatory, i.e., inherently stochastic and irreducible. As wisely stated in the proverb "climate is what you expect, weather is what you get", a specific region will experience one stochastic realisation of the climate system, but never exactly the expected climate change signal as given by a multi model mean. Depending on the meteorological variable, region and lead time, the signal might be strong or weak compared to the stochastic component. In cases of a low signal-to-noise ratio, even if the climate change signal is a well defined trend, no trends or even opposite trends might be experienced. Here I propose to use the time of emergence (TOE) to quantify and communicate when climate change trends will exceed the internal variability. The TOE provides a useful measure for end users to assess the time horizon for implementing adaptation measures. Furthermore, internal variability is scale dependent - the more local the scale, the stronger the influence of internal climate variability. Thus investigating the TOE as a function of spatial scale could help to assess the required spatial scale for implementing adaptation measures. I exemplify this proposal with

  9. The dilemma of saving water or being cool: What determines the stomatal response under a changing climate?

    NASA Astrophysics Data System (ADS)

    Haghighi, Erfan; Kirchner, James W.; Entekhabi, Dara

    2017-04-01

    Stomata play a critical role in terrestrial water and carbon cycles, regulating the trade-off between photosynthetic carbon gain and water loss in leaves. They adjust their aperture in response to a number of physiological and environmental factors, yet the mechanisms driving this response, particularly under climate extremes, remain poorly understood. Partial or complete stomatal closure reduces plant water stress under water-limited or high atmospheric evaporative demand conditions, but at the cost of reduced productivity, elevated heat, leaf shedding, and mortality. A proper account of such complex stomatal behavior is of particular importance for current ecosystem models that poorly capture observed vegetation responses in the context of climate change which is predicted to cause more frequent and intense temperature extremes along with an increase in the frequency of drought in many regions in the future. This study seeks to explore stomatal responses to environmental change accounted for by a varying soil-plant resistance under different atmospheric and soil moisture conditions. To this end, we developed a physically based transpiration model that couples stomatal control of leaf gas exchange to the leaf surface energy balance and the entire plant hydraulic system by considering the interdependence of the guard cell water potential (or turgor pressure) and transpiration rates. Model simulations of diurnal variations in transpiration rates were in good agreement with field observations, and facilitated quantitative prediction of stomatal and xylem flow regulation under a wide range of environmental conditions. Preliminary results demonstrate how soil and plant hydraulic conductances regulating stomatal opening and closure can help mitigate climatic water deficit (e.g., at midday) by boosting evaporative cooling. Our results are expected to advance physical understanding of the water cycle in the soil-plant-atmosphere continuum, and shed light on observed

  10. Exercise, character strengths, well-being, and learning climate in the prediction of performance over a 6-month period at a call center.

    PubMed

    Moradi, Saleh; Nima, Ali A; Rapp Ricciardi, Max; Archer, Trevor; Garcia, Danilo

    2014-01-01

    Performance monitoring might have an adverse influence on call center agents' well-being. We investigate how performance, over a 6-month period, is related to agents' perceptions of their learning climate, character strengths, well-being (subjective and psychological), and physical activity. Agents (N = 135) self-reported perception of the learning climate (Learning Climate Questionnaire), character strengths (Values In Action Inventory Short Version), well-being (Positive Affect, Negative Affect Schedule, Satisfaction With Life Scale, Psychological Well-Being Scales Short Version), and how often/intensively they engaged in physical activity. Performance, "time on the phone," was monitored for 6 consecutive months by the same system handling the calls. Performance was positively related to having opportunities to develop, the character strengths clusters of Wisdom and Knowledge (e.g., curiosity for learning, perspective) and Temperance (e.g., having self-control, being prudent, humble, and modest), and exercise frequency. Performance was negatively related to the sense of autonomy and responsibility, contentedness, the character strengths clusters of Humanity and Love (e.g., helping others, cooperation) and Justice (e.g., affiliation, fairness, leadership), positive affect, life satisfaction and exercise Intensity. Call centers may need to create opportunities to develop to increase agents' performance and focus on individual differences in the recruitment and selection of agents to prevent future shortcomings or worker dissatisfaction. Nevertheless, performance measurement in call centers may need to include other aspects that are more attuned with different character strengths. After all, allowing individuals to put their strengths at work should empower the individual and at the end the organization itself. Finally, physical activity enhancement programs might offer considerable positive work outcomes.

  11. Exercise, character strengths, well-being, and learning climate in the prediction of performance over a 6-month period at a call center

    PubMed Central

    Moradi, Saleh; Nima, Ali A.; Rapp Ricciardi, Max; Archer, Trevor; Garcia, Danilo

    2014-01-01

    Background: Performance monitoring might have an adverse influence on call center agents' well-being. We investigate how performance, over a 6-month period, is related to agents' perceptions of their learning climate, character strengths, well-being (subjective and psychological), and physical activity. Method: Agents (N = 135) self-reported perception of the learning climate (Learning Climate Questionnaire), character strengths (Values In Action Inventory Short Version), well-being (Positive Affect, Negative Affect Schedule, Satisfaction With Life Scale, Psychological Well-Being Scales Short Version), and how often/intensively they engaged in physical activity. Performance, “time on the phone,” was monitored for 6 consecutive months by the same system handling the calls. Results: Performance was positively related to having opportunities to develop, the character strengths clusters of Wisdom and Knowledge (e.g., curiosity for learning, perspective) and Temperance (e.g., having self-control, being prudent, humble, and modest), and exercise frequency. Performance was negatively related to the sense of autonomy and responsibility, contentedness, the character strengths clusters of Humanity and Love (e.g., helping others, cooperation) and Justice (e.g., affiliation, fairness, leadership), positive affect, life satisfaction and exercise Intensity. Conclusion: Call centers may need to create opportunities to develop to increase agents' performance and focus on individual differences in the recruitment and selection of agents to prevent future shortcomings or worker dissatisfaction. Nevertheless, performance measurement in call centers may need to include other aspects that are more attuned with different character strengths. After all, allowing individuals to put their strengths at work should empower the individual and at the end the organization itself. Finally, physical activity enhancement programs might offer considerable positive work outcomes. PMID:25002853

  12. Hydro-climatic control of stream water dissolved organic carbon (DOC) across northern catchments within the North-Watch program

    NASA Astrophysics Data System (ADS)

    Laudon, Hjalmar; Tetzlaff, Doerthe; Seibert, Jan; Soulsby, Chris; Carey, Sean; Buttle, Jim; McDonnell, Jeff; McGuire, Kevin; Caissie, Daniel; Shanley, Jamie

    2010-05-01

    There has been an increasing interest in understanding the regulating mechanisms of surface water dissolved organic carbon (DOC) the last decade. A majority of this recent work has been based on individual well characterized research catchments or on regional synoptic datasets combined with readily available landscape and climatic variables. However, as the production and transport of DOC primarily is a function of hydro-climatic conditions a better description of catchment hydrological functioning across large geographic regions would be favorable for moving the mechanistic understanding forward. To do this we report from a first assessment of catchment DOC within the international inter-catchment comparison program North-Watch (http://www.abdn.ac.uk/northwatch/). North-Watch includes long-term research catchments ranging from northern temperate regions to the boreal and sub-arctic biomes with the aim to better understand the variable hydrological and biogeochemical responses in Northern catchments to climate change. The North-Watch catchments are located in Sweden (Krycklan), Scotland (Mharcaidh, Girnock and Strontian), the US (Sleepers River and HJ Andrews) and Canada (Catamaran, Dorset and Wolf Creek). The annual average DOC concentration in the nine catchments investigated were directly linked to hydro-climatic influences (e.g. temperature, water storage) and landscape configuration. In general, the DOC concentration followed a parabolic shape with temperature, where the highest concentrations were found in the boreal and near boreal sites and with the lowest concentrations in the temperate and sub-arctic catchments. The between catchment variability in DOC concentration could also be explained by catchment water storage and amount of wetlands in the catchment. Whereas there is a mechanistic link between long-term climatic conditions and the areal coverage of wetlands, the total catchment storage of water is more strongly linked to topography, parent material

  13. A Longitudinal Examination of Coach and Peer Motivational Climates in Youth Sport: Implications for Moral Attitudes, Well-Being, and Behavioral Investment

    ERIC Educational Resources Information Center

    Ntoumanis, Nikos; Taylor, Ian M.; Thogersen-Ntoumani, Cecilie

    2012-01-01

    Embedded in achievement goal theory (Ames, 1992; Meece, Anderman, & Anderman, 2006), this study examined how perceptions of coach and peer motivational climate in youth sport predicted moral attitudes, emotional well-being, and indices of behavioral investment in a sample of British adolescents competing in regional leagues. We adopted a…

  14. Integrating a distributed hydrological model and SEEA-Water for improving water account and water allocation management under a climate change context.

    NASA Astrophysics Data System (ADS)

    Jauch, Eduardo; Almeida, Carina; Simionesei, Lucian; Ramos, Tiago; Neves, Ramiro

    2015-04-01

    The crescent demand and situations of water scarcity and droughts are a difficult problem to solve by water managers, with big repercussions in the entire society. The complexity of this question is increased by trans-boundary river issues and the environmental impacts of the usual adopted solutions to store water, like reservoirs. To be able to answer to the society requirements regarding water allocation in a sustainable way, the managers must have a complete and clear picture of the present situation, as well as being able to understand the changes in the water dynamics both in the short and long time period. One of the available tools for the managers is the System of Environmental-Economic Accounts for Water (SEEA-Water), a subsystem of SEEA with focus on water accounts, developed by the United Nations Statistical Division (UNSD) in collaboration with the London Group on Environmental Accounting, This system provides, between other things, with a set of tables and accounts for water and water related emissions, organizing statistical data making possible the derivation of indicators that can be used to assess the relations between economy and environment. One of the main issues with the SEEA-Water framework seems to be the requirement of large amounts of data, including field measurements of water availability in rivers/lakes/reservoirs, soil and groundwater, as also precipitation, irrigation and other water sources and uses. While this is an incentive to collecting and using data, it diminishes the usefulness of the system on countries where this data is not yet available or is incomplete, as it can lead to a poor understanding of the water availability and uses. Distributed hydrological models can be used to fill missing data required by the SEEA-Water framework. They also make it easier to assess different scenarios (usually soil use, water demand and climate changes) for a better planning of water allocation. In the context of the DURERO project (www

  15. Evolving the US Climate Resilience Toolkit to Support a Climate-Smart Nation

    NASA Astrophysics Data System (ADS)

    Tilmes, C.; Niepold, F., III; Fox, J. F.; Herring, D.; Dahlman, L. E.; Hall, N.; Gardiner, N.

    2015-12-01

    Communities, businesses, resource managers, and decision-makers at all levels of government need information to understand and ameliorate climate-related risks. Likewise, climate information can expose latent opportunities. Moving from climate science to social and economic decisions raises complex questions about how to communicate the causes and impacts of climate variability and change; how to characterize and quantify vulnerabilities, risks, and opportunities faced by communities and businesses; and how to make and implement "win-win" adaptation plans at local, regional, and national scales. A broad coalition of federal agencies launched the U.S. Climate Resilience Toolkit (toolkit.climate.gov) in November 2014 to help our nation build resilience to climate-related extreme events. The site's primary audience is planners and decision makers in business, resource management, and government (at all levels) who seek science-based climate information and tools to help them in their near- and long-term planning. The Executive Office of the President assembled a task force of dozens of subject experts from across the 13 agencies of the U.S. Global Change Research Program to guide the site's development. The site's ongoing evolution is driven by feedback from the target audience. For example, based on feedback, climate projections will soon play a more prominent role in the site's "Climate Explorer" tool and case studies. The site's five-step adaptation planning process is being improved to better facilitate people getting started and to provide clear benchmarks for evaluating progress along the way. In this session, we will share lessons learned from a series of user engagements around the nation and evidence that the Toolkit couples climate information with actionable decision-making processes in ways that are helping Americans build resilience to climate-related stressors.

  16. When climate science became climate politics: British media representations of climate change in 1988.

    PubMed

    Jaspal, Rusi; Nerlich, Brigitte

    2014-02-01

    Climate change has become a pressing environmental concern for scientists, social commentators and politicians. Previous social science research has explored media representations of climate change in various temporal and geographical contexts. Through the lens of Social Representations Theory, this article provides a detailed qualitative thematic analysis of media representations of climate change in the 1988 British broadsheet press, given that this year constitutes an important juncture in this transition of climate change from the domain of science to that of the socio-political sphere. The following themes are outlined: (i) "Climate change: a multi-faceted threat"; (ii) "Collectivisation of threat"; (iii) "Climate change and the attribution of blame"; and (iv) "Speculative solutions to a complex socio-environmental problem." The article provides detailed empirical insights into the "starting-point" for present-day disputes concerning climate change and lays the theoretical foundations for tracking the continuities and discontinuities characterising social representations of climate change in the future.

  17. Health information for young people where and when they most want it: a case study of www.teenagehealthfreak.org.

    PubMed

    McPherson, Ann; Macfarlane, Aidan

    2007-08-01

    The Internet is an exciting resource for providing immediately available, evidence-based, health information for young people in an age-appropriate form on a 24 hours/day, 7 days/week basis. www.teenagehealthfreak.org is a United Kingdom-based Web site designed to take advantage of this. The content of the site, which is the leading teenage health Web site on a Google search, contains both the diary of a hypochondriac 15-year-old boy and a virtual doctor's surgery. It also allows for young people to e-mail health-related questions and receive relevant answers from a health expert. Analysis of the content of these e-mails indicates the unmet health needs and concerns of young people. Future developments of the site include linking the site www.youthhealthtalk.org, a Web site that contains videotaped interviews with young people who have a variety other health concerns.

  18. NPOESS, Essential Climates Variables and Climate Change

    NASA Astrophysics Data System (ADS)

    Forsythe-Newell, S. P.; Bates, J. J.; Barkstrom, B. R.; Privette, J. L.; Kearns, E. J.

    2008-12-01

    Advancement in understanding, predicting and mitigating against climate change implies collaboration, close monitoring of Essential Climate Variable (ECV)s through development of Climate Data Record (CDR)s and effective action with specific thematic focus on human and environmental impacts. Towards this end, NCDC's Scientific Data Stewardship (SDS) Program Office developed Climate Long-term Information and Observation system (CLIO) for satellite data identification, characterization and use interrogation. This "proof-of-concept" online tool provides the ability to visualize global CDR information gaps and overlaps with options to temporally zoom-in from satellite instruments to climate products, data sets, data set versions and files. CLIO provides an intuitive one-stop web site that displays past, current and planned launches of environmental satellites in conjunction with associated imagery and detailed information. This tool is also capable of accepting and displaying Web-based input from Subject Matter Expert (SME)s providing a global to sub-regional scale perspective of all ECV's and their impacts upon climate studies. SME's can access and interact with temporal data from the past and present, or for future planning of products, datasets/dataset versions, instruments, platforms and networks. CLIO offers quantifiable prioritization of ECV/CDR impacts that effectively deal with climate change issues, their associated impacts upon climate, and this offers an intuitively objective collaboration and consensus building tool. NCDC's latest tool empowers decision makers and the scientific community to rapidly identify weaknesses and strengths in climate change monitoring strategies and significantly enhances climate change collaboration and awareness.

  19. Using Weather Data and Climate Model Output in Economic Analyses of Climate Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auffhammer, M.; Hsiang, S. M.; Schlenker, W.

    2013-06-28

    Economists are increasingly using weather data and climate model output in analyses of the economic impacts of climate change. This article introduces a set of weather data sets and climate models that are frequently used, discusses the most common mistakes economists make in using these products, and identifies ways to avoid these pitfalls. We first provide an introduction to weather data, including a summary of the types of datasets available, and then discuss five common pitfalls that empirical researchers should be aware of when using historical weather data as explanatory variables in econometric applications. We then provide a brief overviewmore » of climate models and discuss two common and significant errors often made by economists when climate model output is used to simulate the future impacts of climate change on an economic outcome of interest.« less

  20. Examining the potential impacts of climate change on international security: EU-Africa partnership on climate change.

    PubMed

    Dodo, Mahamat K

    2014-01-01

    Climate Change like many global problems nowadays is recognized as a threat to the international security and cooperation. In theoretical terms, it is being securitized and included in the traditional security studies. Climate change and its accompanying environmental degradation are perceived to be a threat that can have incalculable consequences on the international community. The consequences are said to have more effects in small island developing nations and Africa where many States are fragile and overwhelmed with mounting challenges. In recent years, the security implications of the climate change are being addressed from national, regional and multilateral level. Against this backdrop, this paper intends to contribute to the debate on climate change and international security and present a broader perspective on the discussion. The paper will draw from the EU-Africa partnership on climate change and is structured as follows: the first part introduces the background of the international climate change policy and its securitization, the second part covers the EU-Africa relations and EU-Africa partnership on climate change, and the third part discusses the Congo Basin Forest Partnership as a concrete example of EU-Africa Partnership on Climate Change. Lastly, the paper concludes by drawing some conclusions and offers some policy perspectives and recommendations. Q54; 055; 052; 01;