Science.gov

Sample records for b-cell translocation gene

  1. Topoisomerase inhibitors modulate gene expression of B-cell translocation gene 2 and prostate specific antigen in prostate carcinoma cells.

    PubMed

    Chiang, Kun-Chun; Tsui, Ke-Hung; Chung, Li-Chuan; Yeh, Chun-Nan; Chang, Phei-Lang; Chen, Wen-Tsung; Juang, Horng-Heng

    2014-01-01

    Camptothecin (CPT) and doxorubicin (DOX) have been demonstrated to have potent anti-tumor activity. The B-cell translocation gene 2 (BTG2) is involved in the regulation of cell cycle progression. We evaluated the molecular mechanisms of CPT and DOX on cell proliferation and the expressions of BTG2 and prostate specific antigen (PSA) in prostate carcinoma cells. Our results indicated that CPT or DOX treatments induced Go/G1 cell cycle arrest in LNCaP cells and apoptosis at higher dosage. Immunoblot and transient gene expression assay indicated that CPT or DOX treatments induced p53 and BTG2 gene expression, with the later effect dependent on the p53 response element within BTG2 promoter area since mutation of the p53 response element from GGGAAAGTCC to GGAGTCC or from GGCAGAGCCC to GGCACC by site-directed mutagenesis abolished the stimulation of CPT or DOX on the BTG2 promoter activity, which is also supported by our results that cotreatments of pifithrin-α, an inhibitor of p53 dependent transcriptional activation, blocked the induction of CPT or DOX on BTG2 gene expression. CPT or DOX also downregulated the protein expressions of androgen receptor (AR) and PSA. Transient gene expression assays suggested that CPT or DOX's attenuation of PSA promoter activity is dependent on both the androgen and p53 response elements within of the PSA promoter. Our results indicated that CPT and DOX attenuate cell proliferation via upregulation of BTG2 gene expression through the p53-dependent pathway. The CPT and DOX block the PSA gene expression by upregulation of p53 activity and downregulation of androgen receptor activity. PMID:24586533

  2. Topoisomerase Inhibitors Modulate Gene Expression of B-Cell Translocation Gene 2 and Prostate Specific Antigen in Prostate Carcinoma Cells

    PubMed Central

    Chung, Li-Chuan; Yeh, Chun-Nan; Chang, Phei-Lang; Chen, Wen-Tsung; Juang, Horng-Heng

    2014-01-01

    Camptothecin (CPT) and doxorubicin (DOX) have been demonstrated to have potent anti-tumor activity. The B-cell translocation gene 2 (BTG2) is involved in the regulation of cell cycle progression. We evaluated the molecular mechanisms of CPT and DOX on cell proliferation and the expressions of BTG2 and prostate specific antigen (PSA) in prostate carcinoma cells. Our results indicated that CPT or DOX treatments induced Go/G1 cell cycle arrest in LNCaP cells and apoptosis at higher dosage. Immunoblot and transient gene expression assay indicated that CPT or DOX treatments induced p53 and BTG2 gene expression, with the later effect dependent on the p53 response element within BTG2 promoter area since mutation of the p53 response element from GGGAAAGTCC to GGAGTCC or from GGCAGAGCCC to GGCACC by site-directed mutagenesis abolished the stimulation of CPT or DOX on the BTG2 promoter activity, which is also supported by our results that cotreatments of pifithrin-α, an inhibitor of p53 dependent transcriptional activation, blocked the induction of CPT or DOX on BTG2 gene expression. CPT or DOX also downregulated the protein expressions of androgen receptor (AR) and PSA. Transient gene expression assays suggested that CPT or DOX’s attenuation of PSA promoter activity is dependent on both the androgen and p53 response elements within of the PSA promoter. Our results indicated that CPT and DOX attenuate cell proliferation via upregulation of BTG2 gene expression through the p53-dependent pathway. The CPT and DOX block the PSA gene expression by upregulation of p53 activity and downregulation of androgen receptor activity. PMID:24586533

  3. Enhancement of B-cell translocation gene-1 expression by prostaglandin E2 in macrophages and the relationship to proliferation.

    PubMed Central

    Suk, K; Sipes, D G; Erickson, K L

    1997-01-01

    Although prostaglandin (PG) E2 is known to suppress various macrophage functions, the molecular mechanisms by which that occurs are largely unknown. To understand better those mechanisms, differential screening of a cDNA library from PGE2-treated macrophages was performed. Subsequently, the DNA sequence of a differentially expressed cDNA clone was determined and the cDNA was identified as B-cell translocation gene-1 (BTG1), a recently cloned antiproliferative gene. A two-to threefold increase in macrophage BTG1 expression was observed after PGE2 treatment. PGE1 and platelet-activating factor, but not leukotrienes B4, and C4, or lipopolysaccharide, also enhanced BTG1 expression. Furthermore, this effect ws mimicked by dibutyryl cAMP which indicated the involvement of elevated cAMP in the PGE2-mediated enhancement of BTG1. Moreover, there was an inverse correlation between BTG1 mRNA expression and macrophage proliferation; however, BTG1 alteration was not associated with macrophage tumoricidal activation. Thus, BTG1 may play a role in PGE2-mediated inhibition of macrophage proliferation and not activation. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 7 Figure 8 PMID:9203975

  4. Distinct Patterns of Colocalization of the CCND1 and CMYC Genes With Their Potential Translocation Partner IGH at Successive Stages of B-Cell Differentiation.

    PubMed

    Sklyar, Ilya; Iarovaia, Olga V; Gavrilov, Alexey A; Pichugin, Andrey; Germini, Diego; Tsfasman, Tatiana; Caron, Gersende; Fest, Thierry; Lipinski, Marc; Razin, Sergey V; Vassetzky, Yegor S

    2016-07-01

    The immunoglobulin heavy chain (IGH) locus is submitted to intra-chromosomal DNA breakages and rearrangements during normal B cell differentiation that create a risk for illegitimate inter-chromosomal translocations leading to a variety of B-cell malignancies. In most Burkitt's and Mantle Cell lymphomas, specific chromosomal translocations juxtapose the IGH locus with a CMYC or Cyclin D1 (CCND1) gene, respectively. 3D-fluorescence in situ hybridization was performed on normal peripheral B lymphocytes induced to mature in vitro from a naive state to the stage where they undergo somatic hypermutation (SHM) and class switch recombination (CSR). The CCND1 genes were found very close to the IGH locus in naive B cells and further away after maturation. In contrast, the CMYC alleles became localized closer to an IGH locus at the stage of SHM/CSR. The colocalization observed between the two oncogenes and the IGH locus at successive stages of B-cell differentiation occurred in the immediate vicinity of the nucleolus, consistent with the known localization of the RAGs and AID enzymes whose function has been demonstrated in IGH physiological rearrangements. We propose that the chromosomal events leading to Mantle Cell lymphoma and Burkitt's lymphoma are favored by the colocalization of CCND1 and CMYC with IGH at the time the concerned B cells undergo VDJ recombination or SHM/CSR, respectively. J. Cell. Biochem. 117: 1506-1510, 2016. © 2016 Wiley Periodicals, Inc. PMID:26873538

  5. Cisplatin modulates B-cell translocation gene 2 to attenuate cell proliferation of prostate carcinoma cells in both p53-dependent and p53-independent pathways.

    PubMed

    Chiang, Kun-Chun; Tsui, Ke-Hung; Chung, Li-Chuan; Yeh, Chun-Nan; Feng, Tsui-Hsia; Chen, Wen-Tsung; Chang, Phei-Lang; Chiang, Hou-Yu; Juang, Horng-Heng

    2014-01-01

    Cisplatin is a widely used anti-cancer drug. The B-cell translocation gene 2 (BTG2) is involved in the cell cycle transition regulation. We evaluated the cisplatin effects on prostate cancer cell proliferation and the expressions of BTG2, p53, androgen receptor (AR) and prostate specific antigen (PSA) in prostate carcinoma, p53 wild-type LNCaP or p53-null PC-3, cells. Cisplatin treatments attenuated cell prostate cancer cell growth through inducing Go/G1 cell cycle arrest in lower concentration and apoptosis at higher dosage. Cisplatin treatments enhanced p53 and BTG2 expression, repressed AR and PSA expression, and blocked the activation of androgen on the PSA secretion in LNCaP cells. BTG2 knockdown in LNCaP cells attenuated cisplatin-mediated growth inhibition. Cisplatin enhanced BTG2 gene expression dependent on the DNA fragment located within -173 to -82 upstream of BTG2 translation initiation site in prostate cancer cells. Mutation of the p53 response element from GGGCAGAGCCC to GGGCACC or mutation of the NFκB response element from GGAAAGTCC to GGAAAGGAA by site-directed mutagenesis abolished the stimulation of cisplatin on the BTG2 promoter activity in LNCaP or PC-3 cells, respectively. Our results indicated that cisplatin attenuates prostate cancer cell proliferation partly mediated by upregulation of BTG2 through the p53-dependent pathway or p53-independent NFκB pathway. PMID:24981574

  6. Cisplatin modulates B-cell translocation gene 2 to attenuate cell proliferation of prostate carcinoma cells in both p53-dependent and p53-independent pathways

    PubMed Central

    Chiang, Kun-Chun; Tsui, Ke-Hung; Chung, Li-Chuan; Yeh, Chun-Nan; Feng, Tsui-Hsia; Chen, Wen-Tsung; Chang, Phei-Lang; Chiang, Hou-Yu; Juang, Horng-Heng

    2014-01-01

    Cisplatin is a widely used anti-cancer drug. The B-cell translocation gene 2 (BTG2) is involved in the cell cycle transition regulation. We evaluated the cisplatin effects on prostate cancer cell proliferation and the expressions of BTG2, p53, androgen receptor (AR) and prostate specific antigen (PSA) in prostate carcinoma, p53 wild-type LNCaP or p53-null PC-3, cells. Cisplatin treatments attenuated cell prostate cancer cell growth through inducing Go/G1 cell cycle arrest in lower concentration and apoptosis at higher dosage. Cisplatin treatments enhanced p53 and BTG2 expression, repressed AR and PSA expression, and blocked the activation of androgen on the PSA secretion in LNCaP cells. BTG2 knockdown in LNCaP cells attenuated cisplatin-mediated growth inhibition. Cisplatin enhanced BTG2 gene expression dependent on the DNA fragment located within -173 to -82 upstream of BTG2 translation initiation site in prostate cancer cells. Mutation of the p53 response element from GGGCAGAGCCC to GGGCACC or mutation of the NFκB response element from GGAAAGTCC to GGAAAGGAA by site-directed mutagenesis abolished the stimulation of cisplatin on the BTG2 promoter activity in LNCaP or PC-3 cells, respectively. Our results indicated that cisplatin attenuates prostate cancer cell proliferation partly mediated by upregulation of BTG2 through the p53-dependent pathway or p53-independent NFκB pathway. PMID:24981574

  7. Upregulation of B-cell translocation gene 2 by epigallocatechin-3-gallate via p38 and ERK signaling blocks cell proliferation in human oral squamous cell carcinoma cells.

    PubMed

    Lee, Jehn-Chuan; Chung, Li-Chuan; Chen, Yu-Jen; Feng, Tsui-Hsia; Chen, Wen-Tsung; Juang, Horng-Heng

    2015-05-01

    Oral squamous cell carcinoma (OSCC) is a well-known malignancy that accounts for the majority of oral cancers. B-cell translocation gene 2 (BTG2) is an important regulator of cell cycle dynamics in cancer cells. However, the role of BTG2 in OSCC cells and the influences of epigallocatechin-3-gallate (EGCG) on BTG2 gene expressions have not been well evaluated. The objectives of this study were to examine the effect of EGCG-induced BTG2 expression and the potential signal pathways involved. The (3)H-thymidine incorporation and Western-blot assays revealed cell proliferation was attenuated by EGCG via upregulation of BTG2 expression causing cell cycle G1 phase arrest in OSCC cells. BTG2 overexpression decreased tumor cell growth, while BTG2 knockdown illuminated the opposite effect in xenograft animal studies. Overexpressed BTG2 arrested the cell cycle at the G1 phase and downregulated protein expressions of cyclin A, cyclin D, and cyclin E. Western-blot assays indicated that EGCG induced phosphorylation of p38, JNK, and ERK. However, pretreatments with selective mitogen-activated protein kinase (MAPK) inhibitors, SB203580 (p38 inhibitor) and PD0325901 (ERK1/2 inhibitor), significantly suppressed the activation of EGCG on BTG2 expression. Our results indicate that EGCG attenuates cell proliferation of OSCC cells by upregulating BTG2 expression via p38 and ERK pathways. PMID:25721086

  8. Evolution of B-cell malignancy; Pre-B-cell leukemia resulting from MYC activation in a B-cell neoplasm with a rearranged BCL2 gene

    SciTech Connect

    Gauwerky, C.E.; Haluska, F.G.; Tsujimoto, Y.; Nowell, P.C.; Croce, C.M. )

    1988-11-01

    The authors have analyzed the molecular genetics of the breakpoints involved in the t(8;14) and t(14;18) translocations of an acute pre-B-cell leukemia from a patient with a history of follicular lymphoma. In this patient's leukemic cells, the breakpoint of the t(14;18) translocation occurred in the major breakpoint-cluster region of the BCL2 gene and became linked to the J{sub H}4 joining-region gene segment of the immunoglobulin heavy-chain locus on the 14q+ chromosome as previously observed in follicular lymphoma. An N region and heptamer and nonamer signal sequences indicated that this translocation occurred as a mistake in V{sub H}-D{sub H}-J{sub H} joining (where V{sub H} and D{sub H} are the variable and diversity segments). In the t(8;14) translocation, the breakpoint was located immediately 5' of the first exon of the MYC protooncogene, which was juxtaposed with the C{gamma}2 constant gene segment of the second 14q+ chromosome. The finding of repeated sequences typical of switch regions suggested that this translocation occurred during heavy-chain isotype switching, resulting in progression to pre-B-cell leukemia with both the 5(8;14) and the t(14;18) translocations. The terminal deoxynucleotidyltransferase-positive phenotype of the patient's leukemic cells further suggests that the pre-B-cell leukemia was derived from a pre-B cell carrying a t(14;18) translocation in the original follicular lymphoma. The polymerase chain reaction method was then used to identify cancer cells in the bone marrow of the patient.

  9. Genetic errors of the human caspase recruitment domain-B-cell lymphoma 10-mucosa-associated lymphoid tissue lymphoma-translocation gene 1 (CBM) complex: Molecular, immunologic, and clinical heterogeneity.

    PubMed

    Pérez de Diego, Rebeca; Sánchez-Ramón, Silvia; López-Collazo, Eduardo; Martínez-Barricarte, Rubén; Cubillos-Zapata, Carolina; Ferreira Cerdán, Antonio; Casanova, Jean-Laurent; Puel, Anne

    2015-11-01

    Three members of the caspase recruitment domain (CARD) family of adaptors (CARD9, CARD10, and CARD11) are known to form heterotrimers with B-cell lymphoma 10 (BCL10) and mucosa-associated lymphoid tissue lymphoma-translocation gene 1 (MALT1). These 3 CARD-BCL10-MALT1 (CBM) complexes activate nuclear factor κB in both the innate and adaptive arms of immunity. Human inherited defects of the 3 components of the CBM complex, including the 2 adaptors CARD9 and CARD11 and the 2 core components BCL10 and MALT1, have recently been reported. Biallelic loss-of-function mutant alleles underlie several different immunologic and clinical phenotypes, which can be assigned to 2 distinct categories. Isolated invasive fungal infections of unclear cellular basis are associated with CARD9 deficiency, whereas a broad range of clinical manifestations, including those characteristic of T- and B-lymphocyte defects, are associated with CARD11, MALT1, and BCL10 deficiencies. Interestingly, human subjects with these mutations have some features in common with the corresponding knockout mice, but other features are different between human subjects and mice. Moreover, germline and somatic gain-of-function mutations of MALT1, BCL10, and CARD11 have also been found in patients with other lymphoproliferative disorders. This broad range of germline and somatic CBM lesions, including loss-of-function and gain-of-function mutations, highlights the contribution of each of the components of the CBM complex to human immunity. PMID:26277595

  10. In a model of immunoglobulin heavy-chain (IGH)/MYC translocation, the Igh 3' regulatory region induces MYC expression at the immature stage of B cell development.

    PubMed

    Yan, Yi; Park, Sung Sup; Janz, Siegfried; Eckhardt, Laurel A

    2007-10-01

    Reciprocal translocations involving the immunoglobulin loci and the cellular oncogene MYC are hallmark mutations of the human postgerminal center B cell neoplasm, Burkitt's lymphoma. They are occasionally found in other B cell lymphomas, as well. Translocations involving the heavy chain locus (IGH) place the MYC gene either in cis with both the intronic enhancer Emu and the IGH 3' regulatory region (3'RR) or in cis with only the 3'RR. The result is deregulated MYC expression. Recent studies have led to some controversy as to when, during B lymphocyte development, IGH/MYC chromosome translocations take place. A related issue, relevant not only to lymphoma development but also to normal controls on IGH gene expression, is the stage, during B lymphocyte development, at which the 3'RR is capable of activating MYC expression. We have developed mice transgenic for a human MYC (hMYC) gene under control of the four core enhancers from the mouse Igh 3'RR. Unlike other transgenic mouse models where premature and inappropriate MYC expression disrupts normal B cell development, the hMYC transgene in these studies carries a mutation that prohibits MYC protein synthesis. As a result, hMYC expression can be analyzed in all of the normal B cell compartments. Our data show that hMYC is expressed almost exclusively in B-lineage cells and is induced to high levels as soon as bone marrow cells reach the immature B cell stage. PMID:17639584

  11. High resolution copy number analysis of IRF4 translocation-positive diffuse large B-cell and follicular lymphomas.

    PubMed

    Salaverria, Itziar; Martin-Guerrero, Idoia; Burkhardt, Birgit; Kreuz, Markus; Zenz, Thorsten; Oschlies, Ilske; Arnold, Norbert; Baudis, Michael; Bens, Susanne; García-Orad, Africa; Lisfeld, Jasmin; Schwaenen, Carsten; Szczepanowski, Monika; Wessendorf, Swen; Pfreundschuh, Michael; Trümper, Lorenz; Klapper, Wolfram; Siebert, Reiner

    2013-02-01

    Translocations affecting chromosome subband 6p25.3 containing the IRF4 gene have been recently described as characteristic alterations in a molecularly distinct subset of germinal center B-cell-derived lymphomas. Secondary changes have yet only been described in few of these lymphomas. Here, we performed array-comparative genomic hybridization and molecular inversion probe microarray analyses on DNA from 12 formalin-fixed paraffin-embedded and two fresh-frozen IRF4 translocation-positive lymphomas, which together with the previously published data on nine cases allowed the extension of copy number analyses to a total of 23 of these lymphomas. All except one case carried chromosomal imbalances, most frequently gains in Xq28, 11q22.3-qter, and 7q32.1-qter and losses in 6q13-16.1, 15q14-22.31, and 17p. No recurrent copy-neutral losses of heterozygosity were observed. TP53 point mutations were detected in three of six cases with loss of 17p. Overall this study unravels a recurrent pattern of secondary genetic alterations in IRF4 translocation-positive lymphomas. PMID:23073988

  12. Translocation t(2;7)(p11;q21) associated with the CDK6/IGK rearrangement is a rare but recurrent abnormality in B-cell lymphoproliferative malignancies.

    PubMed

    Douet-Guilbert, Nathalie; Tous, Corinne; Le Flahec, Glen; Bovo, Clément; Le Bris, Marie-Josée; Basinko, Audrey; Morel, Frédéric; De Braekeleer, Marc

    2014-03-01

    Structural abnormalities of chromosome 7q have been regularly reported in chronic B-cell lymphoproliferative disorders. They include chromosomal translocations involving 7q21, leading to overexpression of the CDK6 gene. Three different translocations, t(7;14)(q21;q32), t(7;22)(q21;q11), and t(2;7)(p11;q21), leading to the juxtaposition of the CDK6 gene with a immunoglobulin gene enhancer during B-cell differentiation, have been described. In the past 2 years, we identified three patients with lymphoproliferative malignancy associated with a t(2;7)(p11;q21). Fluorescent in situ hybridization using an IGK probe and a library of bacterial artificial chromosome (BAC) clones located in bands 7q21.2 and 7q21.3, containing CDK6, revealed that the telomeric part of the IGK probe was translocated on the der(7) within a 51-kb region upstream of the transcriptional start site of CDK6. A total of 23 patients with indolent B-cell lymphoproliferative disorders and juxtaposition of the IG and CDK6 genes, including 20 with IGK and CDK6 juxtaposition, have been reported thus far. This rearrangement leads to the overexpression of CDK6, which encodes a cyclin-dependent protein kinase involved in cell cycle G1 phase progression and G1/S transition. PMID:24726269

  13. Translocations activating IRF4 identify a subtype of germinal center-derived B-cell lymphoma affecting predominantly children and young adults.

    PubMed

    Salaverria, Itziar; Philipp, Claudia; Oschlies, Ilske; Kohler, Christian W; Kreuz, Markus; Szczepanowski, Monika; Burkhardt, Birgit; Trautmann, Heiko; Gesk, Stefan; Andrusiewicz, Miroslaw; Berger, Hilmar; Fey, Miriam; Harder, Lana; Hasenclever, Dirk; Hummel, Michael; Loeffler, Markus; Mahn, Friederike; Martin-Guerrero, Idoia; Pellissery, Shoji; Pott, Christiane; Pfreundschuh, Michael; Reiter, Alfred; Richter, Julia; Rosolowski, Maciej; Schwaenen, Carsten; Stein, Harald; Trümper, Lorenz; Wessendorf, Swen; Spang, Rainer; Küppers, Ralf; Klapper, Wolfram; Siebert, Reiner

    2011-07-01

    The prognosis of germinal center-derived B-cell (GCB) lymphomas, including follicular lymphoma and diffuse large-B-cell lymphoma (DLBCL), strongly depends on age. Children have a more favorable outcome than adults. It is not known whether this is because of differences in host characteristics, treatment protocols, or tumor biology, including the presence of chromosomal alterations. By screening for novel IGH translocation partners in pediatric and adult lymphomas, we identified chromosomal translocations juxtaposing the IRF4 oncogene next to one of the immunoglobulin (IG) loci as a novel recurrent aberration in mature B-cell lymphoma. FISH revealed 20 of 427 lymphomas to carry an IG/IRF4-fusion. Those were predominantly GCB-type DLBCL or follicular lymphoma grade 3, shared strong expression of IRF4/MUM1 and BCL6, and lacked PRDM1/BLIMP1 expression and t(14;18)/BCL2 breaks. BCL6 aberrations were common. The gene expression profile of IG/IRF4-positive lymphomas differed from other subtypes of DLBCL. A classifier for IG/IRF4 positivity containing 27 genes allowed accurate prediction. IG/IRF4 positivity was associated with young age and a favorable outcome. Our results suggest IRF4 translocations to be primary alterations in a molecularly defined subset of GCB-derived lymphomas. The probability for this subtype of lymphoma significantly decreases with age, suggesting that diversity in tumor biology might contribute to the age-dependent differences in prognosis of lymphoma. PMID:21487109

  14. DNA repair genes are selectively mutated in diffuse large B cell lymphomas

    PubMed Central

    de Miranda, Noel FCC; Peng, Roujun; Georgiou, Konstantinos; Wu, Chenglin; Sörqvist, Elin Falk; Berglund, Mattias; Chen, Longyun; Gao, Zhibo; Lagerstedt, Kristina; Lisboa, Susana; Roos, Fredrik; van Wezel, Tom; Teixeira, Manuel R.; Rosenquist, Richard; Sundström, Christer; Enblad, Gunilla; Nilsson, Mats; Zeng, Yixin; Kipling, David

    2013-01-01

    DNA repair mechanisms are fundamental for B cell development, which relies on the somatic diversification of the immunoglobulin genes by V(D)J recombination, somatic hypermutation, and class switch recombination. Their failure is postulated to promote genomic instability and malignant transformation in B cells. By performing targeted sequencing of 73 key DNA repair genes in 29 B cell lymphoma samples, somatic and germline mutations were identified in various DNA repair pathways, mainly in diffuse large B cell lymphomas (DLBCLs). Mutations in mismatch repair genes (EXO1, MSH2, and MSH6) were associated with microsatellite instability, increased number of somatic insertions/deletions, and altered mutation signatures in tumors. Somatic mutations in nonhomologous end-joining (NHEJ) genes (DCLRE1C/ARTEMIS, PRKDC/DNA-PKcs, XRCC5/KU80, and XRCC6/KU70) were identified in four DLBCL tumors and cytogenetic analyses revealed that translocations involving the immunoglobulin-heavy chain locus occurred exclusively in NHEJ-mutated samples. The novel mutation targets, CHEK2 and PARP1, were further screened in expanded DLBCL cohorts, and somatic as well as novel and rare germline mutations were identified in 8 and 5% of analyzed tumors, respectively. By correlating defects in a subset of DNA damage response and repair genes with genomic instability events in tumors, we propose that these genes play a role in DLBCL lymphomagenesis. PMID:23960188

  15. Isolation and characterization of a novel B cell activation gene

    SciTech Connect

    Hong, J.X.; Wilson, G.L.; Fox, C.H.; Kehrl, J.H. )

    1993-05-01

    Using subtractive cDNA cloning, the authors have isolated a series of cDNA clones that are differentially expressed between B and T lymphocytes. Whereas some of the isolated cDNA are from known B cell-specific genes, many of them represent previously uncharacterized genes. One of these unknown genes was denoted as BL34. Northern blot analysis performed with the BL34 cDNA revealed a 1.6-kb mRNA transcript that was present at low levels in RNA extracted from resting B lymphocytes, but whose expression was markedly increased in RNA prepared from mitogen-activated B cells. Similarly, RNA prepared from several B cell lines treated with phorbol myristate acetate (PMA) contained high levels of BL34 mRNA. In contrast, RNA from purified T cells treated with phytohemagglutinin and PMA had undetectable amounts of BL34 mRNA. In addition, high levels of BL34 mRNA were detected in RNA purified from PBMC of a patient with B cell acute lymphocytic leukemia. Southern blot analysis of human DNA from various tissues and cells lines demonstrated that BL34 is a single-copy gene without evidence of rearrangement. Two full length BL34 cDNA were sequenced, and an open reading frame of 588 bp was identified that was predicted to encode for a 196 amino acid protein. Searches of several protein data bases failed to find any homologous proteins. To directly analyze the expression of BL34 mRNA in lymphoid tissues in situ, hybridization studies with human tonsil tissue sections were performed. BL34 mRNA was detected in a portion of the cells in the germinal center region and adjacent to the mantle region. Further characterization of the BL34 gene and its protein should lead to insights to its role in B cell function and the consequences of its over-expression in acute lymphocytic leukemia. 26 refs., 6 figs., 1 tab.

  16. The CBFA2T3/ACSF3 locus is recurrently involved in IGH chromosomal translocation t(14;16)(q32;q24) in pediatric B-cell lymphoma with germinal center phenotype.

    PubMed

    Salaverria, Itziar; Akasaka, Takashi; Gesk, Stefan; Szczepanowski, Monika; Burkhardt, Birgit; Harder, Lana; Damm-Welk, Christine; Oschlies, Ilske; Klapper, Wolfram; Dyer, Martin J S; Siebert, Reiner

    2012-04-01

    Translocations involving immunoglobulin (IG) loci are the hallmarks of several subtypes of B-cell lymphoma. Common to these translocations is that cellular proto-oncogenes come under the influence of IG regulatory elements leading to deregulated expression. In case of a breakpoint in the IGH switch region, oncogene activation can take place on both derivative chromosomes, which means that in principle one translocation can result in concurrent activation of two genes. By fluorescence in situ hybridization (FISH), we identified a case of leukemic B-cell lymphoma in a child with an IGH break and unknown partner. Subsequent long-distance inverse PCR revealed fusion of IGH Sl in 14q32 and the 50 region of CBFA2T3 in 16q24.3, suggesting presence of the t(14;16)(q32;q24.3). Candidate oncogenes targeted through this translocation are CBFA2T3 and ACSF3, which could be activated on der(16) and der(14), respectively. FISH screening of a population-based cohort of B-cell lymphomas from a prospective trial for the treatment of lymphoma in childhood (BFM-NHL) identified additionally a follicular lymphoma Grade 3/diffuse large B-cell lymphoma with IGH-CBFA2T3/ACSF3 juxtaposition. Both lymphomas shared expression of CD10 and CD20 in the absence of TdT, suggesting a germinal center (GC) B-cell origin. Our data indicate that the CBFA2T3/ACSF3 locus is a novel recurrent oncogenic target of IGH translocations, which might contribute to the pathogenesis of pediatric GC-derived B-cell lymphoma. PMID:22420028

  17. Murine plasmacytomas, carrier of the t(12;15) chromosomal translocation, develop from immature/mature B cells not from differentiated plasma cells.

    PubMed

    Ohno, S; Hayakawa, J; Hashimoto, N; Wiener, F

    1999-04-01

    Dysregulation of the c-myc gene by chromosomal translocation in >95% of murine plasmacytomas (MPCs) is an obligatory requirement for the transformation of B lymphocytes into MPCs. However, it is still unknown whether sIg+ B cells or differentiated plasma cells are the legitimate precursor cells from which MPCs develop. To address this question, C.B-17 scid/scid (SCID) mice were reconstituted with splenic surface Ig-positive (sIg+) B lineage cells originating from BALB/cRb6.15 (B/cRb6.15) or human IL-6 transgene-congenic BALB/cRb8.12 mice (B/cRb8.12 IL-6-Tg). Six of 80 SCID mice reconstituted with B/cRb6.15 sIg+ B cells developed MPCs after pristane (2,6,10,14-tetramethylpentadecane) treatment followed by Abelson murine leukemia virus (A-MuLV) infection (incidence 7.5%) and four of 40 after pristane treatment alone (incidence 10%). Similarly, in 20 SCID mice reconstituted with B/cRb8.12 IL-6-Tg splenic sIg+ B cells the MPC incidence was 10%. Karyotype analysis revealed that all the translocations were of typical t(12;15) type and all tumors carried the Rb6.15 or Rb8.12 marker chromosome, indicating their donor cell origin. In contrast, none of the 48 SCID mice reconstituted with plasma cells obtained from the lymph nodes of B/cRb8.12 IL-6-Tg mice developed MPCs when treated either with pristane plus A-MuLV (20 mice) or with pristane alone (28 mice), although the transferred plasma cells were still functional in the recipient SCID mice 6 months after transfer. The findings indicate that the malignant transformation triggered by Ig/myc juxtaposition occurs more in immature (sIgM+) and/or mature (sIgM+/sIgD+, sIgG+ and sIgA+) B cells than in differentiated G0 or cycling plasma cells. We inferred that immature and/or mature B cells and not differentiated plasma cells are most likely the principal source of precursor cells from which the typical t(12;15) MPCs develop. PMID:10223178

  18. The regulation of the B-cell gene expression programme by Pax5.

    PubMed

    Holmes, Melissa L; Pridans, Clare; Nutt, Stephen L

    2008-01-01

    The activity of the transcription factor paired box gene 5 (Pax5) is essential for many aspects of B lymphopoiesis including the initial commitment to the lineage, immunoglobulin rearrangement, pre-B cell receptor signalling and maintaining cell identity in mature B cells. Deregulated or reduced Pax5 activity has also been implicated in B-cell malignancies both in human disease and mouse models. Candidate gene approaches and biochemical analysis have revealed that Pax5 regulates B lymphopoiesis by concurrently activating B cell-specific gene expression as well as repressing the expression of genes, many of which are associated with non-B cell lineages. These studies have been recently complemented with more exhaustive microarray studies, which have identified and validated a large panel of Pax5 target genes. These target genes reveal a gene regulatory network, with Pax5 at its centre that controls the B-cell gene expression programme. PMID:17998914

  19. Extensive Gene-Specific Translational Reprogramming in a Model of B Cell Differentiation and Abl-Dependent Transformation

    PubMed Central

    Bates, Jamie G.; Salzman, Julia; May, Damon; Garcia, Patty B.; Hogan, Gregory J.; McIntosh, Martin; Schlissel, Mark S.; Brown, Pat O.

    2012-01-01

    To what extent might the regulation of translation contribute to differentiation programs, or to the molecular pathogenesis of cancer? Pre-B cells transformed with the viral oncogene v-Abl are suspended in an immortalized, cycling state that mimics leukemias with a BCR-ABL1 translocation, such as Chronic Myelogenous Leukemia (CML) and Acute Lymphoblastic Leukemia (ALL). Inhibition of the oncogenic Abl kinase with imatinib reverses transformation, allowing progression to the next stage of B cell development. We employed a genome-wide polysome profiling assay called Gradient Encoding to investigate the extent and potential contribution of translational regulation to transformation and differentiation in v-Abl-transformed pre-B cells. Over half of the significantly translationally regulated genes did not change significantly at the level of mRNA abundance, revealing biology that might have been missed by measuring changes in transcript abundance alone. We found extensive, gene-specific changes in translation affecting genes with known roles in B cell signaling and differentiation, cancerous transformation, and cytoskeletal reorganization potentially affecting adhesion. These results highlight a major role for gene-specific translational regulation in remodeling the gene expression program in differentiation and malignant transformation. PMID:22693568

  20. Overexpression of the human BCL-2 gene product results in growth enhancement of Epstein-Barr virus-immortalized B cells

    SciTech Connect

    Tsujimoto, Yoshihide )

    1989-03-01

    The biological activity of the human BCL-2 gene product was analyzed in an Epstein-Barr virus (EBV)-infected human lymphoblastoid B-cell line transfected with BCL-2 sequences driven by the simian virus 40 promoter and enhancer. Overproduction of the BCL-2 protein conferred a selective growth advantage to the EBV-infected B cells as compared with control transfectants in low-serum medium and also after seeding at limiting dilution but did not render the cells tumorigenic in athymic nude mice. This growth enhancement was also seen in cells transfected with the BCL-2 gene with its own promoter juxtaposed to the immunoglobulin heavy chain gene enhancer, which represents the translocated form of the BCL-2 gene observed in follicular lymphomas with the t(14;18) translocation. The growth advantage of EBV-infected B cells overproducing the BCL-2 protein is neither due to the enhanced growth factor production nor due to an enhanced sensitivity of the BCL-2 transfectants to interleukins 1 or 6, although both lymphokines are known to stimulate proliferation of EBV-infected B-cell lines. The growth advantage of EBV-infected B-cell lines. The growth advantage of EBV-infected B cells by overproduction of the BCL-2 protein suggests the direct involvement of the BCL-2 gene product in the pathogenesis of follicular lymphoma.

  1. Axon growth and guidance genes identify T-dependent germinal centre B cells.

    PubMed

    Yu, Di; Cook, Matthew C; Shin, Dong-Mi; Silva, Diego G; Marshall, Jennifer; Toellner, Kai-Michael; Havran, Wendy L; Caroni, Pico; Cooke, Michael P; Morse, Herbert C; MacLennan, Ian C M; Goodnow, Christopher C; Vinuesa, Carola G

    2008-01-01

    Selection of B cells subjected to hypermutation in germinal centres (GC) during T cell-dependent (TD) antibody responses yields memory cells and long-lived plasma cells that produce high affinity antibodies biased to foreign antigens rather than self-antigens. GC also form in T-independent (TI) responses to polysaccharide antigens but failed selection results in GC involution and memory cells are not generated. To date there are no markers that allow phenotypic distinction of T-dependent and TI germinal centre B cells. We compared the global gene expression of GC B cells purified from mice immunized with either TD or TI antigens and identified eighty genes that are differentially expressed in TD GC. Significantly, the largest cluster comprises genes involved in growth and guidance of neuron axons such as Plexin B2, Basp1, Nelf, Shh, Sc4mol and Sult4alpha. This is consistent with formation of long neurite (axon and dendrite)-like structures by mouse and human GC B cells, which may facilitate T:B cell interactions within GC, affinity maturation and B cell memory formation. Expression of BASP1 and PLEXIN B2 protein is very low or undetectable in resting and TI GC B cells, but markedly upregulated in GC B cells induced in the presence of T cell help. Finally we show some of the axon growth genes upregulated in TD-GC B cells including Basp1, Shh, Sult4alpha, Sc4mol are also preferentially expressed in post-GC B cell neoplasms. PMID:17938642

  2. B-cell lymphomas with concurrent MYC and BCL2 abnormalities other than translocations behave similarly to MYC/BCL2 double-hit lymphomas.

    PubMed

    Li, Shaoying; Seegmiller, Adam C; Lin, Pei; Wang, Xuan J; Miranda, Roberto N; Bhagavathi, Sharathkumar; Medeiros, L Jeffrey

    2015-02-01

    Large B-cell lymphomas with IGH@BCL2 and MYC rearrangement, known as double-hit lymphoma (DHL), are clinically aggressive neoplasms with a poor prognosis. Some large B-cell lymphomas have concurrent abnormalities of MYC and BCL2 other than coexistent translocations. Little is known about patients with these lymphomas designated here as atypical DHL. We studied 40 patients of atypical DHL including 21 men and 19 women, with a median age of 60 years. Nine (23%) patients had a history of B-cell non-Hodgkin lymphoma. There were 30 diffuse large B-cell lymphoma (DLBCL), 7 B-cell lymphoma, unclassifiable, with features intermediate between DLBCL and Burkitt lymphoma, and 3 DLBCL with coexistent follicular lymphoma. CD10, BCL2, and MYC were expressed in 28/39 (72%), 33/35 (94%), and 14/20 (70%) cases, respectively. Patients were treated with standard (n=14) or more aggressive chemotherapy regimens (n=17). We compared the atypical DHL group with 76 patients with DHLand 35 patients with DLBCL lacking MYC and BCL2 abnormalities. The clinicopathologic features and therapies were similar between patients with atypical and typical DHL. The overall survival of patients with atypical double-hit lymphoma was similar to that of patients with double-hit lymphoma (P=0.47) and significantly worse than that of patients with DLBCL with normal MYC and BCL2 (P=0.02). There were some minor differences. Cases of atypical double-hit lymphoma more often have DLBCL morphology (P<0.01), less frequently expressed CD10 (P<0.01), and patients less often had an elevated serum lactate dehydrogenase level (P=0.01). In aggregate, these results support expanding the category of MYC/BCL2 DHL to include large B-cell lymphomas with coexistent MYC and BCL2 abnormalities other than concurrent translocations. PMID:25103070

  3. Chromosomal translocations independently predict treatment failure, treatment-free survival and overall survival in B-cell chronic lymphocytic leukemia patients treated with cladribine.

    PubMed

    Van Den Neste, E; Robin, V; Francart, J; Hagemeijer, A; Stul, M; Vandenberghe, P; Delannoy, A; Sonet, A; Deneys, V; Costantini, S; Ferrant, A; Robert, A; Michaux, L

    2007-08-01

    Chromosomal translocations represent an important prognostic indicator in B-cell chronic lymphocytic leukemia (B-CLL). However, their value had been neither determined in homogeneously treated patients nor compared to that of IgV(H) mutational status. Sixty-five B-CLL patients were investigated using cytogenetics, interphase fluorescence in situ hybridization (FISH), analysis of IgV(H) and of TP53 mutational status before treatment with 2-chloro-2'-deoxyadenosine (CdA). Translocations (n=45) were detected in 42% of the patients, including both balanced (n=12) and unbalanced (n=33) types. IgV(H) was mutated in 43% of the patients. Patients with translocations were more heavily pretreated (P=0.05), presented with more complex karyotypes (P<0.001), 17p abnormalities and TP53 mutations, and had a higher failure rate (59 vs 21% in patients without translocations, P=0.004). Patients with unbalanced translocations displayed a shorter median treatment-free survival (TFS, 6.9 vs 35.9 months, log rank 22.72, P<0.001) and overall survival (OS, 13.0 vs 68.0 months, log rank 16.51, P<0.001), as compared to patients without translocation. In multivariate analysis, unbalanced translocations were independently associated with therapeutic failure, short TFS and short OS. IgV(H) mutational status was independently associated with risk of failure and TFS, but not OS. In B-CLL patients treated with CdA, translocations are strong predictors of outcome. PMID:17541398

  4. Targeted gene analysis: increased B-cell lymphoma 6 in preeclamptic placentas.

    PubMed

    Louwen, Frank; Muschol-Steinmetz, Cornelia; Friemel, Alexandra; Kämpf, Anne Kristina; Töttel, Eva; Reinhard, Joscha; Yuan, Juping

    2014-06-01

    Preeclampsia is a leading cause for maternal and perinatal mortality and morbidity. Microarray-based transcriptional profiling has been widely used for identifying genes responsible for preeclampsia. These studies deliver multiple pictures of gene signatures, implying the complicated pathophysiology. In the present work, we designed our own gene array containing genes involved in various signaling transduction pathways and analyzed placental samples from patients with preeclampsia and controls. We verify that genes associated with angiogenesis and migration pathways are mostly altered in preeclamptic placentas. Interestingly, several genes including B-cell lymphoma 6 have been identified to be linked to preeclampsia. Increased expression of B-cell lymphoma 6 is correlated with enhanced FLT1 and LEPTIN, the hallmarks of preeclampsia. Moreover, the protein level of B-cell lymphoma 6 is elevated in preeclamptic placentas and is predominantly localized in the nucleus of villous cytotrophoblasts lying directly underneath the syncytial layer, suggestive of an involvement in the function of villous trophoblasts. Altered B-cell lymphoma 6, a key oncogene in B-cell lymphomagenesis, may be involved in the pathogenesis of preeclampsia, and further investigations are required to decipher the molecular mechanisms. PMID:24767250

  5. Early B-cell factor 1 (EBF1) is critical for transcriptional control of SLAMF1 gene in human B cells.

    PubMed

    Schwartz, Anton M; Putlyaeva, Lidia V; Covich, Milica; Klepikova, Anna V; Akulich, Kseniya A; Vorontsov, Ilya E; Korneev, Kirill V; Dmitriev, Sergey E; Polanovsky, Oleg L; Sidorenko, Svetlana P; Kulakovskiy, Ivan V; Kuprash, Dmitry V

    2016-10-01

    Signaling lymphocytic activation molecule family member 1 (SLAMF1)/CD150 is a co-stimulatory receptor expressed on a variety of hematopoietic cells, in particular on mature lymphocytes activated by specific antigen, costimulation and cytokines. Changes in CD150 expression level have been reported in association with autoimmunity and with B-cell chronic lymphocytic leukemia. We characterized the core promoter for SLAMF1 gene in human B-cell lines and explored binding sites for a number of transcription factors involved in B cell differentiation and activation. Mutations of SP1, STAT6, IRF4, NF-kB, ELF1, TCF3, and SPI1/PU.1 sites resulted in significantly decreased promoter activity of varying magnitude, depending on the cell line tested. The most profound effect on the promoter strength was observed upon mutation of the binding site for Early B-cell factor 1 (EBF1). This mutation produced a 10-20 fold drop in promoter activity and pinpointed EBF1 as the master regulator of human SLAMF1 gene in B cells. We also identified three potent transcriptional enhancers in human SLAMF1 locus, each containing functional EBF1 binding sites. Thus, EBF1 interacts with specific binding sites located both in the promoter and in the enhancer regions of the SLAMF1 gene and is critical for its expression in human B cells. PMID:27424222

  6. Tackling centrosome biology through gene targeting in chicken B cells.

    PubMed

    Chavali, Pavithra L; Gergely, Fanni

    2015-01-01

    The centrosome proteome comprises hundreds of proteins whose function at the organelle and in the cellular context is unknown. Loss-of-function studies present a powerful tool to probe the roles of these individual constituents and hence improve our insight into key questions of centrosome biology such as how centrosomes are built, how they duplicate, and which cellular processes they partake in. In cultured cells ribonucleic acid (RNA) interference remains the most widely used method to achieve protein depletion, but due to the remarkable stability of many centrosome components depletion is often incomplete. In such instances genome editing provides a viable alternative. The exceptionally high homologous recombination rate of chicken DT40 cells makes this lymphocytic cell line ideal for genetic manipulation. Here we describe methods for the design and generation of knockouts and in situ tagging of genes in these cells. Furthermore, we report an optimized technique that allows isolation of centrosomes from DT40 cells for use in in vitro functional assays and proteomic analysis. Gene editing by CRISPR-Cas9 technology is fast replacing RNA interference as a method of choice for loss-of-function studies, but the combination of the fast cell cycle, the robustness in culture and ease of gene targeting, will continue to make DT40 cells a useful model system for studies of vertebrate protein function. PMID:26175435

  7. Identification of co-expressed gene signatures in mouse B1, marginal zone and B2 B-cell populations

    PubMed Central

    Mabbott, Neil A; Gray, David

    2014-01-01

    In mice, three major B-cell subsets have been identified with distinct functionalities: B1 B cells, marginal zone B cells and follicular B2 B cells. Here, we used the growing body of publicly available transcriptomics data to create an expression atlas of 84 gene expression microarray data sets of distinct mouse B-cell subsets. These data were subjected to network-based cluster analysis using BioLayout Express3D. Using this analysis tool, genes with related functions clustered together in discrete regions of the network graph and enabled the identification of transcriptional networks that underpinned the functional activity of distinct cell populations. Some gene clusters were expressed highly by most of the cell populations included in this analysis (such as those with activity related to house-keeping functions). Others contained genes with expression patterns specific to distinct B-cell subsets. While these clusters contained many genes typically associated with the activity of the cells they were specifically expressed in, many novel B-cell-subset-specific candidate genes were identified. A large number of uncharacterized genes were also represented in these B-cell lineage-specific clusters. Further analysis of the activities of these uncharacterized candidate genes will lead to the identification of novel B-cell lineage-specific transcription factors and regulators of B-cell function. We also analysed 36 microarray data sets from distinct human B-cell populations. These data showed that mouse and human germinal centre B cells shared similar transcriptional features, whereas mouse B1 B cells were distinct from proposed human B1 B cells. PMID:24032749

  8. Bach2 represses plasma cell gene regulatory network in B cells to promote antibody class switch

    PubMed Central

    Muto, Akihiko; Ochiai, Kyoko; Kimura, Yoshitaka; Itoh-Nakadai, Ari; Calame, Kathryn L; Ikebe, Dai; Tashiro, Satoshi; Igarashi, Kazuhiko

    2010-01-01

    Two transcription factors, Pax5 and Blimp-1, form a gene regulatory network (GRN) with a double-negative loop, which defines either B-cell (Pax5 high) or plasma cell (Blimp-1 high) status as a binary switch. However, it is unclear how this B-cell GRN registers class switch DNA recombination (CSR), an event that takes place before the terminal differentiation to plasma cells. In the absence of Bach2 encoding a transcription factor required for CSR, mouse splenic B cells more frequently and rapidly expressed Blimp-1 and differentiated to IgM plasma cells as compared with wild-type cells. Genetic loss of Blimp-1 in Bach2−/− B cells was sufficient to restore CSR. These data with mathematical modelling of the GRN indicate that Bach2 achieves a time delay in Blimp-1 induction, which inhibits plasma cell differentiation and promotes CSR (Delay-Driven Diversity model for CSR). Reduction in mature B-cell numbers in Bach2−/− mice was not rescued by Blimp-1 ablation, indicating that Bach2 regulates B-cell differentiation and function through Blimp-1-dependent and -independent GRNs. PMID:20953163

  9. Aberrantly Expressed OTX Homeobox Genes Deregulate B-Cell Differentiation in Hodgkin Lymphoma

    PubMed Central

    Nagel, Stefan; Ehrentraut, Stefan; Meyer, Corinna; Kaufmann, Maren; Drexler, Hans G.; MacLeod, Roderick A. F.

    2015-01-01

    In Hodgkin lymphoma (HL) we recently reported that deregulated homeobox gene MSX1 mediates repression of the B-cell specific transcription factor ZHX2. In this study we investigated regulation of MSX1 in this B-cell malignancy. Accordingly, we analyzed expression and function of OTX homeobox genes which activate MSX1 transcription during embryonal development in the neural plate border region. Our data demonstrate that OTX1 and OTX2 are aberrantly expressed in both HL patients and cell lines. Moreover, both OTX loci are targeted by genomic gains in overexpressing cell lines. Comparative expression profiling and subsequent pathway modulations in HL cell lines indicated that aberrantly enhanced FGF2-signalling activates the expression of OTX2. Downstream analyses of OTX2 demonstrated transcriptional activation of genes encoding transcription factors MSX1, FOXC1 and ZHX1. Interestingly, examination of the physiological expression profile of ZHX1 in normal hematopoietic cells revealed elevated levels in T-cells and reduced expression in B-cells, indicating a discriminatory role in lymphopoiesis. Furthermore, two OTX-negative HL cell lines overexpressed ZHX1 in correlation with genomic amplification of its locus at chromosomal band 8q24, supporting the oncogenic potential of this gene in HL. Taken together, our data demonstrate that deregulated homeobox genes MSX1 and OTX2 respectively impact transcriptional inhibition of (B-cell specific) ZHX2 and activation of (T-cell specific) ZHX1. Thus, we show how reactivation of a specific embryonal gene regulatory network promotes disturbed B-cell differentiation in HL. PMID:26406991

  10. Epigenetic Heterogeneity of B-Cell Lymphoma: DNA Methylation, Gene Expression and Chromatin States.

    PubMed

    Hopp, Lydia; Löffler-Wirth, Henry; Binder, Hans

    2015-01-01

    Mature B-cell lymphoma is a clinically and biologically highly diverse disease. Its diagnosis and prognosis is a challenge due to its molecular heterogeneity and diverse regimes of biological dysfunctions, which are partly driven by epigenetic mechanisms. We here present an integrative analysis of DNA methylation and gene expression data of several lymphoma subtypes. Our study confirms previous results about the role of stemness genes during development and maturation of B-cells and their dysfunction in lymphoma locking in more proliferative or immune-reactive states referring to B-cell functionalities in the dark and light zone of the germinal center and also in plasma cells. These dysfunctions are governed by widespread epigenetic effects altering the promoter methylation of the involved genes, their activity status as moderated by histone modifications and also by chromatin remodeling. We identified four groups of genes showing characteristic expression and methylation signatures among Burkitt's lymphoma, diffuse large B cell lymphoma, follicular lymphoma and multiple myeloma. These signatures are associated with epigenetic effects such as remodeling from transcriptionally inactive into active chromatin states, differential promoter methylation and the enrichment of targets of transcription factors such as EZH2 and SUZ12. PMID:26371046

  11. Epigenetic Heterogeneity of B-Cell Lymphoma: DNA Methylation, Gene Expression and Chromatin States

    PubMed Central

    Hopp, Lydia; Löffler-Wirth, Henry; Binder, Hans

    2015-01-01

    Mature B-cell lymphoma is a clinically and biologically highly diverse disease. Its diagnosis and prognosis is a challenge due to its molecular heterogeneity and diverse regimes of biological dysfunctions, which are partly driven by epigenetic mechanisms. We here present an integrative analysis of DNA methylation and gene expression data of several lymphoma subtypes. Our study confirms previous results about the role of stemness genes during development and maturation of B-cells and their dysfunction in lymphoma locking in more proliferative or immune-reactive states referring to B-cell functionalities in the dark and light zone of the germinal center and also in plasma cells. These dysfunctions are governed by widespread epigenetic effects altering the promoter methylation of the involved genes, their activity status as moderated by histone modifications and also by chromatin remodeling. We identified four groups of genes showing characteristic expression and methylation signatures among Burkitt’s lymphoma, diffuse large B cell lymphoma, follicular lymphoma and multiple myeloma. These signatures are associated with epigenetic effects such as remodeling from transcriptionally inactive into active chromatin states, differential promoter methylation and the enrichment of targets of transcription factors such as EZH2 and SUZ12. PMID:26371046

  12. Fucoidan prevents C{epsilon} germline transcription and NF{kappa}B p52 translocation for IgE production in B cells

    SciTech Connect

    Oomizu, Souichi; Yanase, Yuhki; Suzuki, Hidenori; Kameyoshi, Yoshikazu; Hide, Michihiro . E-mail: mhide@hiroshima-u.ac.jp

    2006-11-24

    Fucoidan, a dietary fiber contained in seaweed, reduces the increase of antigen-specific IgE in mice exposed to ovalbumin. In this study, we investigated the effect of fucoidan on IgE production and intracellular events in B cells in vitro. Fucoidan inhibited the production of IgE and C{epsilon} germline transcription in murine B cells induced by IL-4 (100 ng/ml) and anti-CD40 antibodies (10 {mu}g/ml), whereas it stimulated cell proliferation. A significant effect of fucoidan on IgE production was observed when B cells were stimulated with a higher dose (5 {mu}g/ml) of anti-CD40 antibodies, but not when stimulated with lower doses (1.25, 2.5 {mu}g/ml), regardless of the IL-4 concentrations. Moreover, nuclear translocation of NF{kappa}B p52, but neither that of NF{kappa}B p65, nor the phosphorylation of JAK1 and STAT6 was reduced by fucoidan. These results suggest that fucoidan inhibited IgE production by preventing the NF{kappa}B p52-mediated pathways activated by CD40.

  13. Dynamic Epstein-Barr virus gene expression on the path to B-cell transformation.

    PubMed

    Price, Alexander M; Luftig, Micah A

    2014-01-01

    Epstein-Barr virus (EBV) is an oncogenic human herpesvirus in the γ-herpesvirinae subfamily that contains a 170-180kb double-stranded DNA genome. In vivo, EBV commonly infects B and epithelial cells and persists for the life of the host in a latent state in the memory B-cell compartment of the peripheral blood. EBV can be reactivated from its latent state, leading to increased expression of lytic genes that primarily encode for enzymes necessary to replicate the viral genome and structural components of the virion. Lytic cycle proteins also aid in immune evasion, inhibition of apoptosis, and the modulation of other host responses to infection. In vitro, EBV has the potential to infect primary human B cells and induce cellular proliferation to yield effectively immortalized lymphoblastoid cell lines, or LCLs. EBV immortalization of B cells in vitro serves as a model system for studying EBV-mediated lymphomagenesis. While much is known about the steady-state viral gene expression within EBV-immortalized LCLs and other EBV-positive cell lines, relatively little is known about the early events after primary B-cell infection. It was previously thought that upon latent infection, EBV only expressed the well-characterized latency-associated transcripts found in LCLs. However, recent work has characterized the early, but transient, expression of lytic genes necessary for efficient transformation and delayed responses in the known latency genes. This chapter summarizes these recent findings that show how dynamic and controlled expression of multiple EBV genes can control the activation of B cells, entry into the cell cycle, the inhibition of apoptosis, and innate and adaptive immune responses. PMID:24373315

  14. Dynamic Epstein-Barr Virus Gene Expression on the Path to B-Cell Transformation

    PubMed Central

    Price, Alexander M.; Luftig, Micah A.

    2016-01-01

    Epstein-Barr Virus is an oncogenic human herpesvirus in the γ-herpesvirinae sub-family that contains a 170–180 kb double stranded DNA genome. In vivo, EBV commonly infects B and epithelial cells and persists for the life of the host in a latent state in the memory B cell compartment of the peripheral blood. EBV can be reactivated from its latent state leading to increased expression of lytic genes that primarily encode for enzymes necessary to replicate the viral genome as well as structural components of the virion. Lytic cycle proteins also aid in immune evasion, inhibition of apoptosis, and the modulation of other host responses to infection. In vitro, EBV has the potential to infect primary human B cells and induce cellular proliferation to yield effectively immortalized lymphoblastoid cell lines, or LCLs. EBV immortalization of B cells in vitro serves as a model system for studying EBV-mediated lymphomagenesis. While much is known about the steady state viral gene expression within EBV immortalized LCLs and other EBV-positive cell lines, relatively little is known about the early events after primary B-cell infection. It was previously thought that upon latent infection EBV only expressed the well-characterized latency associated transcripts found in LCLs. However, recent work has characterized the early, but transient, expression of lytic genes necessary for efficient transformation as well as delayed responses in the known latency genes. This review summarizes these recent findings that show how dynamic and controlled expression of multiple EBV genes can control the activation of B cells, entry into the cell cycle, inhibition of apoptosis, and control of innate and adaptive immune responses. PMID:24373315

  15. Harnessing Gene Conversion in Chicken B Cells to Create a Human Antibody Sequence Repertoire

    PubMed Central

    Schusser, Benjamin; Yi, Henry; Collarini, Ellen J.; Izquierdo, Shelley Mettler; Harriman, William D.; Etches, Robert J.; Leighton, Philip A.

    2013-01-01

    Transgenic chickens expressing human sequence antibodies would be a powerful tool to access human targets and epitopes that have been intractable in mammalian hosts because of tolerance to conserved proteins. To foster the development of the chicken platform, it is beneficial to validate transgene constructs using a rapid, cell culture-based method prior to generating fully transgenic birds. We describe a method for the expression of human immunoglobulin variable regions in the chicken DT40 B cell line and the further diversification of these genes by gene conversion. Chicken VL and VH loci were knocked out in DT40 cells and replaced with human VK and VH genes. To achieve gene conversion of human genes in chicken B cells, synthetic human pseudogene arrays were inserted upstream of the functional human VK and VH regions. Proper expression of chimeric IgM comprised of human variable regions and chicken constant regions is shown. Most importantly, sequencing of DT40 genetic variants confirmed that the human pseudogene arrays contributed to the generation of diversity through gene conversion at both the Igl and Igh loci. These data show that engineered pseudogene arrays produce a diverse pool of human antibody sequences in chicken B cells, and suggest that these constructs will express a functional repertoire of chimeric antibodies in transgenic chickens. PMID:24278246

  16. Immunoglobulin heavy chain variable region gene utilization by B cell hybridomas derived from rheumatoid synovial tissue.

    PubMed

    Brown, C M; Longhurst, C; Haynes, G; Plater-Zyberk, C; Malcolm, A; Maini, R N

    1992-08-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease that primarily affects synovial joints. Activated B lymphocytes and plasma cells are present in the synovial tissue and are thought to contribute to the immunopathology of the rheumatoid joint. To investigate rheumatoid synovial B lymphocytes, we have generated B cell hybridomas from synovial tissue of an RA patient. Here we describe the immunoglobulin VH gene repertoire of eight IgM- and 10 IgG-secreting synovial-derived hybridomas. The VH4 gene family is highly represented (38.5%) in this panel of hybridomas compared with the frequency of VH4 gene expression in circulating B lymphocytes reported previously (19-22%) and with the VH4 gene frequency we observed in a panel of hybridomas derived in the same manner from the spleen and tonsil of normal individuals (19%). The increased frequency of VH4 gene expression was not due to the expansion of a single B cell clone in vivo as none of these hybridomas was clonally related. Two synovial-derived hybridomas secreted autoantibodies; one (VH3+) secreted an IgM-rheumatoid factor (RF) and the other (VH4+) secreted IgM with polyreactive binding to cytoskeletal proteins and cardiolipin. The antibodies secreted by the remaining synovial-derived hybridomas were not reactive with the autoantigens tested. The VH gene usage in a proportion (5/17) of synovial-derived hybridomas that expressed CD5 antigen provided preliminary evidence that CD5+ B cells in RA synovium have a similar increase of VH4 gene expression reported for CD5+ B cells from normal individuals and patients with chronic lymphocytic leukaemia. PMID:1379132

  17. Immunoglobulin gene translocations in chronic lymphocytic leukemia: A report of 35 patients and review of the literature

    PubMed Central

    DE BRAEKELEER, MARC; TOUS, CORINE; GUÉGANIC, NADIA; LE BRIS, MARIE-JOSÉE; BASINKO, AUDREY; MOREL, FRÉDÉRIC; DOUET-GUILBERT, NATHALIE

    2016-01-01

    Chronic lymphocytic leukemia (CLL) represents the most common hematological malignancy in Western countries, with a highly heterogeneous clinical course and prognosis. Translocations involving the immunoglobulin (IG) genes are regularly identified. From 2000 to 2014, we identified an IG gene translocation in 18 of the 396 patients investigated at diagnosis (4.6%) and in 17 of the 275 analyzed during follow-up (6.2%). A total of 4 patients in whom the IG translocation was identified at follow-up did not carry the translocation at diagnosis. The IG heavy locus (IGH) was involved in 27 translocations (77.1%), the IG κ locus (IGK) in 1 (2.9%) and the IG λ locus (IGL) in 7 (20.0%). The chromosome band partners of the IG translocations were 18q21 in 16 cases (45.7%), 11q13 and 19q13 in 4 cases each (11.4% each), 8q24 in 3 cases (8.6%), 7q21 in 2 cases (5.7%), whereas 6 other bands were involved once (2.9% each). At present, 35 partner chromosomal bands have been described, but the partner gene has solely been identified in 10 translocations. CLL associated with IG gene translocations is characterized by atypical cell morphology, including plasmacytoid characteristics, and the propensity of being enriched in prolymphocytes. The IG heavy chain variable region (IGHV) mutational status varies between translocations, those with unmutated IGHV presumably involving cells at an earlier stage of B-cell lineage. All the partner genes thus far identified are involved in the control of cell proliferation and/or apoptosis. The translocated partner gene becomes transcriptionally deregulated as a consequence of its transposition into the IG locus. With the exception of t(14;18)(q32;q21) and its variants, prognosis appears to be poor for the other translocations. Therefore, searching for translocations involving not only IGH, but also IGL and IGK, by banding and molecular cytogenetics is required. Furthermore, it is important to identify the partner gene to ensure the patients receive

  18. Gene expression-based risk score in diffuse large B-cell lymphoma.

    PubMed

    Bret, Caroline; Klein, Bernard; Moreaux, Jérôme

    2012-12-01

    Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma and displays heterogeneous clinical and molecular characteristics. In this study, high throughput gene expression profiling of DLBCL tumor samples was used to design a 12-gene expression-based risk score (GERS) predictive for patient's overall survival. GERS allowed identifying a high-risk group comprising 46,4% of the DLBCL patients in two independent cohorts (n=414 and n=69). GERS was shown to be an independent predictor of survival when compared to the previously published prognostic factors, including the International Prognostic Index (IPI). GERS displayed a prognostic value in germinal-center B-cell-like subgroup (GCB) and activated B cell-like (ABC) molecular subgroups of patients as well as in DLBCL patients treated with cyclophosphamide, doxorubicin, vincristine and prednisone (CHOP) or rituximab-CHOP (R-CHOP) regimens. Combination of GERS and IPI lead to a potent prognostic classification of DLBCL patients. Finally, a genomic instability gene signature was highlighted in gene expression profiles of patients belonging to the high-risk GERS-defined group. PMID:23482333

  19. Acute leukemias of different lineages have similar MLL gene fusions encoding related chimeric proteins resulting from chromosomal translocation

    SciTech Connect

    Corral, J.; Forster, A.; Thompson, S.; Rabbitts, T.H. ); Lampert, F. ); Kaneko, Y. ); Slater, R.; Kroes, W.G. ); Van Der Schoot, C.E. ); Ludwig, W.D. ); Karpas, A. ); Pocock, C.; Cotter, F. )

    1993-09-15

    The MLL gene, on human chromosome 11q23, undergoes chromosomal translocation in acute leukemias, resulting in gene fusion with AF4 (chromosome 4) and ENL (chromosome 19). The authors report here translocation of MLL with nine different chromosomes and two paracentric chromosome 11 deletions in early B cell, B- or T-cell lineage, or nonlymphocytic acute leukemias. The mRNA translocation junction from 22t(4;11) patients, including six adult leukemias, and nine t(11;19) tumors reveals a remarkable conservation of breakpoints within MLL, AF4, or ENL genes, irrespective of tumor phenotype. Typically, the breakpoints are upstream of the zinc-finger region of MLL, and deletion of this region can accompany translocation, supporting the der(11) chromosome as the important component in leukemogenesis. Partial sequence of a fusion between MLL and the AFX1 gene from chromosome X shows the latter to be rich in Ser/Pro codons, like the ENL mRNA. These data suggest that the heterogeneous 11q23 abnormalities might cause attachment of Ser/Pro-rich segments to the NH[sub 2] terminus of MLL, lacking the zinc-finger region, and that translocation occurs in early hematopoietic cells, before commitment to distinct lineages. 36 refs., 2 figs.

  20. Absence of missense mutations in activated c-myc genes in avian leukosis virus-induced B-cell lymphomas

    SciTech Connect

    Hahn, M.; Hayward, W.S.

    1988-06-01

    The authors determined the nucleotide sequences of two independent DNA clones which contained the activated c-myc genes from avian leukosis virus-induced B-cell lymphomas. Neither of these c-myce genes contained missense mutations. This strongly supports the notion that the c-myc photo-oncogene in avian leukosis virus-induced B-cell lymphomas can be oncogenically activated by altered expression of the gene without a change in the primary structure of the gene product.

  1. Human Immunoglobulin (Ig)M+IgD+ Peripheral Blood B Cells Expressing the CD27 Cell Surface Antigen Carry Somatically Mutated Variable Region Genes: CD27 as a General Marker for Somatically Mutated (Memory) B Cells

    PubMed Central

    Klein, Ulf; Rajewsky, Klaus; Küppers, Ralf

    1998-01-01

    Immunoglobulin (Ig)M+IgD+ B cells are generally assumed to represent antigen-inexperienced, naive B cells expressing variable (V) region genes without somatic mutations. We report here that human IgM+IgD+ peripheral blood (PB) B cells expressing the CD27 cell surface antigen carry mutated V genes, in contrast to CD27-negative IgM+IgD+ B cells. IgM+IgD+CD27+ B cells resemble class-switched and IgM-only memory cells in terms of cell phenotype, and comprise ∼15% of PB B lymphocytes in healthy adults. Moreover, a very small population (<1% of PB B cells) of highly mutated IgD-only B cells was detected, which likely represent the PB counterpart of IgD-only tonsillar germinal center and plasma cells. Overall, the B cell pool in the PB of adults consists of ∼40% mutated memory B cells and 60% unmutated, naive IgD+CD27− B cells (including CD5+ B cells). In the somatically mutated B cells, VH region genes carry a two- to threefold higher load of somatic mutation than rearranged Vκ genes. This might be due to an intrinsically lower mutation rate in κ light chain genes compared with heavy chain genes and/or result from κ light chain gene rearrangements in GC B cells. A common feature of the somatically mutated B cell subsets is the expression of the CD27 cell surface antigen which therefore may represent a general marker for memory B cells in humans. PMID:9802980

  2. Expression of essential B cell genes and immunoglobulin isotypes suggests active development and gene recombination during equine gestation.

    PubMed

    Tallmadge, Rebecca L; McLaughlin, Kristin; Secor, Erica; Ruano, Diana; Matychak, Mary Beth; Flaminio, M Julia B F

    2009-09-01

    Many features of the equine immune system develop during fetal life, yet the naïve or immature immune state of the neonate renders the foal uniquely susceptible to particular pathogens. RT-PCR and immunohistochemical experiments investigated the progressive expression of developmental B cell markers and immunoglobulins in lymphoid tissues from equine fetus, pre-suckle neonate, foal, and adult horses. Serum IgM, IgG isotype, and IgA concentrations were also quantified in pre-suckle foals and adult horses. The expression of essential B cell genes suggests active development and gene recombination during equine gestation, including immunoglobulin isotype switching. The corresponding production of IgM and IgG proteins is detectable in a limited scale at birth. Although the equine neonate humoral response seems competent, B cell activation factors derived from antigen presenting cells and T cells may control critical developmental regulation and immunoglobulin production during the initial months of life. PMID:19442687

  3. B-cell lymphoma gene regulatory networks: biological consistency among inference methods

    PubMed Central

    de Matos Simoes, Ricardo; Dehmer, Matthias; Emmert-Streib, Frank

    2013-01-01

    Despite the development of numerous gene regulatory network (GRN) inference methods in the last years, their application, usage and the biological significance of the resulting GRN remains unclear for our general understanding of large-scale gene expression data in routine practice. In our study, we conduct a structural and a functional analysis of B-cell lymphoma GRNs that were inferred using 3 mutual information-based GRN inference methods: C3Net, BC3Net and Aracne. From a comparative analysis on the global level, we find that the inferred B-cell lymphoma GRNs show major differences. However, on the edge-level and the functional-level—that are more important for our biological understanding—the B-cell lymphoma GRNs were highly similar among each other. Also, the ranks of the degree centrality values and major hub genes in the inferred networks are highly conserved as well. Interestingly, the major hub genes of all GRNs are associated with the G-protein-coupled receptor pathway, cell-cell signaling and cell cycle. This implies that hub genes of the GRNs can be highly consistently inferred with C3Net, BC3Net, and Aracne, representing prominent targets for signaling pathways. Finally, we describe the functional and structural relationship between C3Net, BC3Net and Aracne gene regulatory networks. Our study shows that these GRNs that are inferred from large-scale gene expression data are promising for the identification of novel candidate interactions and pathways that play a key role in the underlying mechanisms driving cancer hallmarks. Overall, our comparative analysis reveals that these GRNs inferred with considerably different inference methods contain large amounts of consistent, method independent, biological information. PMID:24379827

  4. NODAL DIFFUSE LARGE B-CELL LYMPHOMAS IN CHILDREN AND ADOLESCENTS: IMMUNOHISTOCHEMICAL EXPRESSION PATTERNS AND C-MYC TRANSLOCATION IN RELATION TO CLINICAL OUTCOME

    PubMed Central

    Gualco, Gabriela; Weiss, Lawrence M.; Harrington, William J.; Bacchi, Carlos E.

    2009-01-01

    Diffuse large B-cell lymphoma (DLBCL) is a very infrequent neoplasm in the pediatric age group; therefore there are very few studies on the immunophenotype or genetics of these cases. We studied a series of 16 patients with nodal DLBCL occurring in patients between 10 and 18 years of age. The cases were classified according to the 2008 World Health Organization classification criteria, with application of immunohistochemistry for the detection of CD10, BCL-6 and MUM1 proteins to divide the lymphomas into germinal center and non-germinal center types. In addition, TCL1, BCL-2 expression, and the Ki-67 proliferation index were evaluated by immunohistochemistry, and c-MYC and BCL-2 translocations were evaluated by FISH. All these parameters were correlated with clinical features and outcome. Our study revealed that centroblastic morphology and the germinal center type of DLBCL are more prevalent in these young patients (63%), with 37% containing a c-MYC translocation. Only one case showed a BCL-2 translocation, reflecting a double-hit case with features intermediate between DLBCL and Burkitt lymphoma. We found a higher frequency of BCL-2 expression than previously reported, with no direct influence on the outcome of the disease in univariate or multivariate analysis. The expression of TCL1 has not been specifically studied in nodal pediatric DLBCL before; we found a 31% incidence of TCL1 expression. MUM1 expression was observed in 44% of the cases and these positive cases showed a significant negative impact on clinical outcome. TCL1 is directly and significantly associated with the presence of c-MYC and a high proliferative index. The germinal center and non-germinal center subtypes showed significant differences for both overall survival and disease-free interval. C-MYC translocation was found in 37% of patients, and had a favorable impact on clinical outcome. We conclude that nodal pediatric and adolescent DLBCL are mainly of the germinal center type, with a

  5. Global gene expression changes of in vitro stimulated human transformed germinal centre B cells as surrogate for oncogenic pathway activation in individual aggressive B cell lymphomas

    PubMed Central

    2012-01-01

    Background Aggressive Non-Hodgkin lymphomas (NHL) are a group of lymphomas derived from germinal centre B cells which display a heterogeneous pattern of oncogenic pathway activation. We postulate that specific immune response associated signalling, affecting gene transcription networks, may be associated with the activation of different oncogenic pathways in aggressive Non-Hodgkin lymphomas (NHL). Methodology The B cell receptor (BCR), CD40, B-cell activating factor (BAFF)-receptors and Interleukin (IL) 21 receptor and Toll like receptor 4 (TLR4) were stimulated in human transformed germinal centre B cells by treatment with anti IgM F(ab)2-fragments, CD40L, BAFF, IL21 and LPS respectively. The changes in gene expression following the activation of Jak/STAT, NF-кB, MAPK, Ca2+ and PI3K signalling triggered by these stimuli was assessed using microarray analysis. The expression of top 100 genes which had a change in gene expression following stimulation was investigated in gene expression profiles of patients with Aggressive non-Hodgkin Lymphoma (NHL). Results αIgM stimulation led to the largest number of changes in gene expression, affecting overall 6596 genes. While CD40L stimulation changed the expression of 1194 genes and IL21 stimulation affected 902 genes, only 283 and 129 genes were modulated by lipopolysaccharide or BAFF receptor stimulation, respectively. Interestingly, genes associated with a Burkitt-like phenotype, such as MYC, BCL6 or LEF1, were affected by αIgM. Unique and shared gene expression was delineated. NHL-patients were sorted according to their similarity in the expression of TOP100 affected genes to stimulated transformed germinal centre B cells The αIgM gene module discriminated individual DLBCL in a similar manner to CD40L or IL21 gene modules. DLBCLs with low module activation often carry chromosomal MYC aberrations. DLBCLs with high module activation show strong expression of genes involved in cell-cell communication, immune responses

  6. Gene expression signatures and outcome prediction in mature B-cell malignancies.

    PubMed

    Dave, Sandeep S

    2006-07-01

    Non-Hodgkin's lymphomas comprise a diverse group of diseases that are subclassified by the state of differentiation of the malignant B cells, presence of specific cytogenetic abnormalities, and characteristic morphology. Gene expression profiling has revealed that within each category of non-Hodgkin's lymphoma, there exists a significant molecular heterogeneity that can be reflected in differences in tumor behavior and patient outcome. Appreciation of gene expression signatures that are associated with patient outcome will allow better prognostication of disease course and aid the application of molecularly selective patients to improve patient outcome. PMID:16916486

  7. E mu/S mu transposition into Myc is sometimes a precursor for T(12;15) translocation in mouse B cells.

    PubMed

    Kovalchuk, Alexander L; Kim, Joong Su; Janz, Siegfried

    2003-05-01

    Misguided immunoglobulin (Ig) class switch recombination (CSR) has been implicated in the origin of Myc-activating chromosomal translocations, T(12;15), in BALB/c mouse plasmacytomas (PCTs). CSR has also been involved in the progression of T(12;15); for example, the approximation of Myc to the 3'-C alpha enhancer. This study provides evidence for an additional mechanism by which aberrant CSR may facilitate T(12;15): transposition of Ig heavy-chain (IgH) sequences to Myc. Five IgH transposons containing the intronic heavy-chain enhancer, E mu, and a truncated switch mu region, S mu, were found in the first intron of Myc in lymph node cells of IL-6 transgenic BALB/c mice. In two cases E mu/S mu transposition primed Myc to get involved in apparent trans-chromosomal CSR to C gamma 1, presumably leading to T(12;15). Translocations preceded by E mu/S mu transposition can sometimes be distinguished from de novo translocations by molecular fingerprints in translocation breakpoint regions (Ig switch region [S] inversions and unusual gene orders in composite S regions). The presence of such fingerprints in some PCTs suggests that the tumors sometimes evolve from transposition-bearing precursors. We propose that E mu/S mu transposition to Myc may facilitate plasmacytomagenesis by sensitizing Myc to undergo T(12;15) translocation. T(12;15), in turn, juxtaposes Myc to the 3'-C alpha enhancer, which appears to be required for deregulating Myc in a manner that is conducive to PCT development. PMID:12743607

  8. Using gene therapy to manipulate the immune system in the fight against B cell leukemias

    PubMed Central

    Bouhassira, Diana CG; Thompson, Joshua J; Davila, Marco L

    2015-01-01

    Introduction Over 20 years ago, chimeric antigen receptors (CARs) were created to endow T-cells with new antigen-specificity and create a therapy that could eradicate cancer and provide life-long protection against recurrence. Steady progress has led to significant improvements with CAR design and CAR T-cell production, allowing evaluation of CAR T-cells in patients. The initial trials have targeted CD19, which is expressed on normal and malignant B-cells. Areas covered We review data from trials for patients with chronic lymphocytic leukemia (CLL) and B-cell acute lymphoblastic leukemia (B-ALL). In addition, we discuss the on-target toxicities, B-cell aplasia and cytokine release syndrome (CRS), which is uniquely associated with T-cell immunotherapies. Expert Opinion We compare the results when targeting the same antigen in CLL or B-ALL and speculate on reasons for outcome differences and future directions to enhance outcomes. Furthermore, the dramatic results targeting B-ALL require further analysis in Phase II trials, and we discuss important components of these future trials. We also suggest a management scheme for CRS. The next several years will be critical and may lead to the first clinical indication of a gene-engineered cell therapy for cancer. PMID:25666545

  9. Conserved cryptic recombination signals in Vκ gene segments are cleaved in small pre-B cells

    PubMed Central

    Lieberman, Anne E; Kuraoka, Masayuki; Davila, Marco; Kelsoe, Garnett; Cowell, Lindsay G

    2009-01-01

    Background The cleavage of recombination signals (RS) at the boundaries of immunoglobulin V, D, and J gene segments initiates the somatic generation of the antigen receptor genes expressed by B lymphocytes. RS contain a conserved heptamer and nonamer motif separated by non-conserved spacers of 12 or 23 nucleotides. Under physiologic conditions, V(D)J recombination follows the "12/23 rule" to assemble functional antigen-receptor genes, i.e., cleavage and recombination occur only between RS with dissimilar spacer types. Functional, cryptic RS (cRS) have been identified in VH gene segments; these VH cRS were hypothesized to facilitate self-tolerance by mediating VH → VHDJH replacements. At the Igκ locus, however, secondary, de novo rearrangements can delete autoreactive VκJκ joins. Thus, under the hypothesis that V-embedded cRS are conserved to facilitate self-tolerance by mediating V-replacement rearrangements, there would be little selection for Vκ cRS. Recent studies have demonstrated that VH cRS cleavage is only modestly more efficient than V(D)J recombination in violation of the 12/23 rule and first occurs in pro-B cells unable to interact with exogenous antigens. These results are inconsistent with a model of cRS cleavage during autoreactivity-induced VH gene replacement. Results To test the hypothesis that cRS are absent from Vκ gene segments, a corollary of the hypothesis that the need for tolerizing VH replacements is responsible for the selection pressure to maintain VH cRS, we searched for cRS in mouse Vκ gene segments using a statistical model of RS. Scans of 135 mouse Vκ gene segments revealed highly conserved cRS that were shown to be cleaved in the 103/BCL2 cell line and mouse bone marrow B cells. Analogous to results for VH cRS, we find that Vκ cRS are conserved at multiple locations in Vκ gene segments and are cleaved in pre-B cells. Conclusion Our results, together with those for VH cRS, support a model of cRS cleavage in which cleavage is

  10. B-cell reconstitution after lentiviral vector–mediated gene therapy in patients with Wiskott-Aldrich syndrome

    PubMed Central

    Castiello, Maria Carmina; Scaramuzza, Samantha; Pala, Francesca; Ferrua, Francesca; Uva, Paolo; Brigida, Immacolata; Sereni, Lucia; van der Burg, Mirjam; Ottaviano, Giorgio; Albert, Michael H.; Grazia Roncarolo, Maria; Naldini, Luigi; Aiuti, Alessandro; Villa, Anna; Bosticardo, Marita

    2015-01-01

    Background Wiskott-Aldrich syndrome (WAS) is a severe X-linked immunodeficiency characterized by microthrombocytopenia, eczema, recurrent infections, and susceptibility to autoimmunity and lymphomas. Hematopoietic stem cell transplantation is the treatment of choice; however, administration of WAS gene–corrected autologous hematopoietic stem cells has been demonstrated as a feasible alternative therapeutic approach. Objective Because B-cell homeostasis is perturbed in patients with WAS and restoration of immune competence is one of the main therapeutic goals, we have evaluated reconstitution of the B-cell compartment in 4 patients who received autologous hematopoietic stem cells transduced with lentiviral vector after a reduced-intensity conditioning regimen combined with anti-CD20 administration. Methods We evaluated B-cell counts, B-cell subset distribution, B cell–activating factor and immunoglobulin levels, and autoantibody production before and after gene therapy (GT). WAS gene transfer in B cells was assessed by measuring vector copy numbers and expression of Wiskott-Aldrich syndrome protein. Results After lentiviral vector-mediated GT, the number of transduced B cells progressively increased in the peripheral blood of all patients. Lentiviral vector-transduced progenitor cells were able to repopulate the B-cell compartment with a normal distribution of B-cell subsets both in bone marrow and the periphery, showing a WAS protein expression profile similar to that of healthy donors. In addition, after GT, we observed a normalized frequency of autoimmune-associated CD19+CD21−CD35− and CD21low B cells and a reduction in B cell–activating factor levels. Immunoglobulin serum levels and autoantibody production improved in all treated patients. Conclusions We provide evidence that lentiviral vector-mediated GT induces transgene expression in the B-cell compartment, resulting in ameliorated B-cell development and functionality and contributing to immunologic

  11. Compositions and methods for detecting gene rearrangements and translocations

    DOEpatents

    Rowley, Janet D.; Diaz, Manuel O.

    2000-01-01

    Disclosed is a series of nucleic acid probes for use in diagnosing and monitoring certain types of leukemia using, e.g., Southern and Northern blot analyses and fluorescence in situ hybridization (FISH). These probes detect rearrangements, such as translocations involving chromosome band 11q23 with other chromosomes bands, including 4q21, 6q27, 9p22, 19p13.3, in both dividing leukemic cells and interphase nuclei. The breakpoints in all such translocations are clustered within an 8.3 kb BamHI genomic region of the MLL gene. A novel 0.7 kb BamH1 cDNA fragment derived from this gene detects rearrangements on Southern blot analysis with a single BamHI restriction digest in all patients with the common 11q23 translocations and in patients with other 11q23 anomalies. Northern blot analyses are presented demonstrating that the MLL gene has multiple transcripts and that transcript size differentiates leukemic cells from normal cells. Also disclosed are MLL fusion proteins, MLL protein domains and anti-MLL antibodies.

  12. HMGN proteins modulate chromatin regulatory sites and gene expression during activation of naïve B cells

    PubMed Central

    Zhang, Shaofei; Zhu, Iris; Deng, Tao; Furusawa, Takashi; Rochman, Mark; Vacchio, Melanie S.; Bosselut, Remy; Yamane, Arito; Casellas, Rafael; Landsman, David; Bustin, Michael

    2016-01-01

    The activation of naïve B lymphocyte involves rapid and major changes in chromatin organization and gene expression; however, the complete repertoire of nuclear factors affecting these genomic changes is not known. We report that HMGN proteins, which bind to nucleosomes and affect chromatin structure and function, co-localize with, and maintain the intensity of DNase I hypersensitive sites genome wide, in resting but not in activated B cells. Transcription analyses of resting and activated B cells from wild-type and Hmgn−/− mice, show that loss of HMGNs dampens the magnitude of the transcriptional response and alters the pattern of gene expression during the course of B-cell activation; defense response genes are most affected at the onset of activation. Our study provides insights into the biological function of the ubiquitous HMGN chromatin binding proteins and into epigenetic processes that affect the fidelity of the transcriptional response during the activation of B cell lymphocytes. PMID:27112571

  13. MicroRNA and gene networks in human diffuse large B-cell lymphoma.

    PubMed

    Wang, Kunhao; Xu, Zhiwen; Wang, Ning; Xu, Ting; Zhu, Minghui

    2014-11-01

    Molecular biologists have collected considerable data regarding the involvement of genes and microRNAs (miRNAs) in cancer. However the underlying mechanisms of cancer with regard to genes and miRNAs remain unclear. The aim of the present study was to evaluate diffuse large B-cell lymphoma (DLBCL) and construct regulatory networks of genes and miRNAs to gradually reveal the underlying mechanisms of DLBCL development. The first differential expression network that is presented is an experimentally validated network of miRNAs and genes. This network presents known biological regulatory associations among miRNAs and genes in the human body. The second network is a DLBCL differential expression network. Differentially expressed gene and miRNA data regarding DLBCL were collected and, based on the first network and the differentially expressed data, the second network was inferred, which demonstrates the irregular regulatory associations that may lead to the occurrence of DLBCL. The third network is a DLBCL-associated network. This network is comprised of non-differentially expressed genes and miRNAs that contribute to numerous DLBCL processes. The similarities and differences among the three networks were extracted and compared to distinguish key regulatory associations; furthermore, important signaling pathways in DLBCL were identified. The present study partially clarified the pathogenesis of DLBCL and provided an improved understanding of the underlying molecular mechanisms, as well as a potential treatment for DLBCL. PMID:25289101

  14. Harnessing RNAi-based nanomedicines for therapeutic gene silencing in B-cell malignancies

    PubMed Central

    Weinstein, Shiri; Toker, Itai A.; Emmanuel, Rafi; Ramishetti, Srinivas; Hazan-Halevy, Inbal; Rosenblum, Daniel; Goldsmith, Meir; Abraham, Avigdor; Benjamini, Ohad; Bairey, Osnat; Raanani, Pia; Nagler, Arnon; Lieberman, Judy

    2016-01-01

    Despite progress in systemic small interfering RNA (siRNA) delivery to the liver and to solid tumors, systemic siRNA delivery to leukocytes remains challenging. The ability to silence gene expression in leukocytes has great potential for identifying drug targets and for RNAi-based therapy for leukocyte diseases. However, both normal and malignant leukocytes are among the most difficult targets for siRNA delivery as they are resistant to conventional transfection reagents and are dispersed in the body. We used mantle cell lymphoma (MCL) as a prototypic blood cancer for validating a novel siRNA delivery strategy. MCL is an aggressive B-cell lymphoma that overexpresses cyclin D1 with relatively poor prognosis. Down-regulation of cyclin D1 using RNA interference (RNAi) is a potential therapeutic approach to this malignancy. Here, we designed lipid-based nanoparticles (LNPs) coated with anti-CD38 monoclonal antibodies that are specifically taken up by human MCL cells in the bone marrow of xenografted mice. When loaded with siRNAs against cyclin D1, CD38-targeted LNPs induced gene silencing in MCL cells and prolonged survival of tumor-bearing mice with no observed adverse effects. These results highlight the therapeutic potential of cyclin D1 therapy in MCL and present a novel RNAi delivery system that opens new therapeutic opportunities for treating MCL and other B-cell malignancies. PMID:26699502

  15. Harnessing RNAi-based nanomedicines for therapeutic gene silencing in B-cell malignancies.

    PubMed

    Weinstein, Shiri; Toker, Itai A; Emmanuel, Rafi; Ramishetti, Srinivas; Hazan-Halevy, Inbal; Rosenblum, Daniel; Goldsmith, Meir; Abraham, Avigdor; Benjamini, Ohad; Bairey, Osnat; Raanani, Pia; Nagler, Arnon; Lieberman, Judy; Peer, Dan

    2016-01-01

    Despite progress in systemic small interfering RNA (siRNA) delivery to the liver and to solid tumors, systemic siRNA delivery to leukocytes remains challenging. The ability to silence gene expression in leukocytes has great potential for identifying drug targets and for RNAi-based therapy for leukocyte diseases. However, both normal and malignant leukocytes are among the most difficult targets for siRNA delivery as they are resistant to conventional transfection reagents and are dispersed in the body. We used mantle cell lymphoma (MCL) as a prototypic blood cancer for validating a novel siRNA delivery strategy. MCL is an aggressive B-cell lymphoma that overexpresses cyclin D1 with relatively poor prognosis. Down-regulation of cyclin D1 using RNA interference (RNAi) is a potential therapeutic approach to this malignancy. Here, we designed lipid-based nanoparticles (LNPs) coated with anti-CD38 monoclonal antibodies that are specifically taken up by human MCL cells in the bone marrow of xenografted mice. When loaded with siRNAs against cyclin D1, CD38-targeted LNPs induced gene silencing in MCL cells and prolonged survival of tumor-bearing mice with no observed adverse effects. These results highlight the therapeutic potential of cyclin D1 therapy in MCL and present a novel RNAi delivery system that opens new therapeutic opportunities for treating MCL and other B-cell malignancies. PMID:26699502

  16. The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development

    PubMed Central

    Ortega-Molina, Ana; Boss, Isaac W.; Canela, Andres; Pan, Heng; Jiang, Yanwen; Zhao, Chunying; Jiang, Man; Hu, Deqing; Agirre, Xabier; Niesvizky, Itamar; Lee, Ji-Eun; Chen, Hua-Tang; Ennishi, Daisuke; Scott, David W.; Mottok, Anja; Hother, Christoffer; Liu, Shichong; Cao, Xing-Jun; Tam, Wayne; Shaknovich, Rita; Garcia, Benjamin A.; Gascoyne, Randy D.; Ge, Kai; Shilatifard, Ali; Elemento, Olivier; Nussenzweig, Andre; Melnick, Ari M.; Wendel, Hans-Guido

    2015-01-01

    The lysine-specific histone methyltransferase KMT2D has emerged as one of the most frequently mutated genes in follicular lymphoma (FL) and diffuse large B cell lymphoma (DLBCL). However, the biological consequences of KMT2D mutations on lymphoma development are not known. Here we show that KMT2D functions as a bona fide tumor suppressor and that its genetic ablation in B cells promotes lymphoma development in mice. KMT2D deficiency also delays germinal center (GC) involution, impedes B cell differentiation and class switch recombination (CSR). Integrative genomic analyses indicate that KMT2D affects H3K4 methylation and expression of a specific set of genes including those in the CD40, JAK-STAT, Toll-like receptor, and B cell receptor pathways. Notably, other KMT2D target genes include frequently mutated tumor suppressor genes such as TNFAIP3, SOCS3, and TNFRSF14. Therefore, KMT2D mutations may promote malignant outgrowth by perturbing the expression of tumor suppressor genes that control B cell activating pathways. PMID:26366710

  17. Pre-B cell colony enhancing factor induces Nampt-dependent translocation of the insulin receptor out of lipid microdomains in A549 lung epithelial cells.

    PubMed

    Peng, Qianyi; Jia, Song Hui; Parodo, Jean; Ai, Yuhang; Marshall, John C

    2015-02-15

    Pre-B cell colony-enhancing factor (PBEF) is a highly conserved pleiotropic protein reported to be an alternate ligand for the insulin receptor (IR). We sought to clarify the relationship between PBEF and insulin signaling by evaluating the effects of PBEF on the localization of the IRβ chain to lipid rafts in A549 epithelial cells. We isolated lipid rafts from A549 cells and detected the IR by immunoprecipitation from raft fractions or whole cell lysates. Cells were treated with rPBEF, its enzymatic product nicotinamide adenine dinucleotide (NAD), or the Nampt inhibitor daporinad to study the effect of PBEF on IRβ movement. We used coimmunoprecipitation studies in cells transfected with PBEF and IRβ constructs to detect interactions between PBEF, the IRβ, and caveolin-1 (Cav-1). PBEF was present in both lipid raft and nonraft fractions, whereas the IR was found only in lipid raft fractions of resting A549 cells. The IR-, PBEF-, and Cav-1-coimmunoprecipitated rPBEF treatment resulted in the movement of IRβ- and tyrosine-phosphorylated Cav-1 from lipid rafts to nonrafts, an effect that could be blocked by daporinad, suggesting that this effect was facilitated by the Nampt activity of PBEF. The addition of PBEF to insulin-treated cells resulted in reduced Akt phosphorylation of both Ser⁴⁷³ and Thr³⁰⁸. We conclude that PBEF can inhibit insulin signaling through the IR by Nampt-dependent promotion of IR translocation into the nonraft domains of A549 epithelial cells. PBEF-induced alterations in the spatial geometry of the IR provide a mechanistic explanation for insulin resistance in inflammatory states associated with upregulation of PBEF. PMID:25516545

  18. Active suppression of major histocompatibility complex class II gene expression during differentiation from B cells to plasma cells.

    PubMed Central

    Latron, F; Jotterand-Bellomo, M; Maffei, A; Scarpellino, L; Bernard, M; Strominger, J L; Accolla, R S

    1988-01-01

    Constitutive expression of major histocompatibility complex class II genes is acquired very early in B-cell ontogeny and is maintained up to the B-cell blast stage. Terminal differentiation in plasma cells is, however, accompanied by a loss of class II gene expression. In B cells this gene system is under the control of several loci encoding transacting factors with activator function, one of which, the aIr-1 gene product, operates across species barriers. In this report human class II gene expression is shown to be extinguished in somatic cell hybrids between the human class II-positive B-cell line Raji and the mouse class II-negative plasmacytoma cell line P3-U1. Since all murine chromosomes are retained in these hybrids and no preferential segregation of a specific human chromosome is observed, the results are compatible with the presence of suppressor factors of mouse origin, operating across species barriers and inhibiting class II gene expression. Suppression seems to act at the level of transcription or accumulation of class II-specific mRNA, since no human, and very few murine, class II transcripts are detectable in the hybrids. Images PMID:3127829

  19. Molecular cloning and nucleotide sequence of a transforming gene detected by transfection of chicken B-cell lymphoma DNA

    NASA Astrophysics Data System (ADS)

    Goubin, Gerard; Goldman, Debra S.; Luce, Judith; Neiman, Paul E.; Cooper, Geoffrey M.

    1983-03-01

    A transforming gene detected by transfection of chicken B-cell lymphoma DNA has been isolated by molecular cloning. It is homologous to a conserved family of sequences present in normal chicken and human DNAs but is not related to transforming genes of acutely transforming retroviruses. The nucleotide sequence of the cloned transforming gene suggests that it encodes a protein that is partially homologous to the amino terminus of transferrin and related proteins although only about one tenth the size of transferrin.

  20. Novel Cryptic Rearrangements in Adult B-Cell Precursor Acute Lymphoblastic Leukemia Involving the MLL Gene.

    PubMed

    Othman, Moneeb A K; Grygalewicz, Beata; Pienkowska-Grela, Barbara; Rincic, Martina; Rittscher, Katharina; Melo, Joana B; Carreira, Isabel M; Meyer, Britta; Marzena, Watek; Liehr, Thomas

    2015-05-01

    MLL (mixed-lineage-leukemia) gene rearrangements are typical for acute leukemia and are associated with an aggressive course of disease, with a worse outcome than comparable case, and thus require intensified treatment. Here we describe a 69-year-old female with adult B cell precursor acute lymphoblastic leukemia (BCP-ALL) with hyperleukocytosis and immunophenotype CD10- and CD19+ with cryptic MLL rearrangements. G-banding at the time of diagnosis showed a normal karyotype: 46,XX. Molecular cytogenetics using multitude multicolor banding (mMCB) revealed a complex rearrangement of the two copies of chromosome 11. However, a locus-specific probe additionally identified that the MLL gene at 11q23.3 was disrupted, and that the 5' region was inserted into the chromosomal sub-band 4q21; thus the aberration involved three chromosomes and five break events. Unfortunately, the patient died six months after the initial diagnosis from serious infections and severe complications. Overall, the present findings confirm that, by far not all MLL aberrations are seen by routine chromosome banding techniques and that fluorescence in situ hybridization (FISH) should be regarded as standard tool to access MLL rearrangements in patients with BCP-ALL. PMID:25699572

  1. Novel prognostic genes of diffuse large B-cell lymphoma revealed by survival analysis of gene expression data

    PubMed Central

    Li, Chenglong; Zhu, Biao; Chen, Jiao; Huang, Xiaobing

    2015-01-01

    Objective This study aimed to identify prognostic genes for diffuse large B-cell lymphoma (DLBCL), using bioinformatic methods. Methods Five gene expression data sets were downloaded from the Gene Expression Omnibus database. Significance analysis of microarrays algorithm was used to identify differentially expressed genes (DEGs) from two data sets. Functional enrichment analysis was performed for the DEGs with the Database for Annotation, Visualization and Integration Discovery (DAVID). Survival analysis was performed with the Kaplan–Meier method using function survfit from package survival of R for the other three data sets. Cox univariate regression analysis was used to further screen out prognostic genes. Results Thirty-one common DEGs were identified in the two data sets, mainly enriched in the regulation of lymphocyte activation, immune response, and interleukin-mediated signaling pathway. Combined with 47 DLBCL-related genes acquired by literature retrieval, a total of 78 potential prognostic genes were obtained. Cases from the other three data sets were used in hierarchical clustering, and the 78 genes could cluster them into several subtypes with significant differences in survival curves. Cox univariate regression analysis revealed 45, 33, and eleven prognostic genes in the three data sets, respectively. Five common prognostic genes were revealed, including LCP2, TNFRSF9, FUT8, IRF4, and TLE1, among which LCP2, FUT8, and TLE1 were novel prognostic genes. Conclusion Five prognostic genes of DLBCL were identified in this study. They could not only be used for molecular subtyping of DLBCL but also be potential targets for treatment. PMID:26604798

  2. Defining origins of malignant B cells: a new circulating normal human IgM(+)D(+) B-cell subset lacking CD27 expression and displaying somatically mutated IGHV genes as a relevant memory population.

    PubMed

    Weston-Bell, N; Townsend, M; Di Genova, G; Forconi, F; Sahota, S S

    2009-11-01

    In probing the cell of origin in malignant B cells, an imprint of somatic hypermutation (SHM) in immunoglobulin (Ig) variable (V) region genes delineates antigen encounter, and identifying the precise pathway generating SHM in the normal B-cell counterpart becomes relevant. SHM remains the definitive memory imprint in normal human B cells, but CD27 expression also delineates memory. Recently, dye extrusion adenosine triphosphate-binding transporter assays identified circulating isotype-switched memory B cells that lacked CD27, yet exhibited low levels of SHM. To extend findings, we report a pre-switched CD27(-ve) circulating memory B-cell population in normal blood using comparable assays, and isolated CD19(+)IgM(+)D(+)CD27(-ve) cells (>99% purity) for the analysis of IGHV5/IGHV3-IGHM transcripts. Of these (n=334), approximately 78% were germ line and naive B cell derived. Strikingly, 21.9% of the transcripts were mutated. They showed 3-5 mutations (13.5% of sequences) and >5 mutations (8.4% of sequences) per transcript. Accrual of mutations in a subset of CD19(+)IgM(+)D(+)CD27(-ve) cells define a new circulating pre-switched memory B-cell pool, present in substantial numbers in the population harboring naive B cells. These CD19(+)IgM(+)D(+)CD27(-ve) memory B cells may have a distinct lineage and function, and seem relevant to understanding origins of malignant B cells, in particular those of hairy cell leukemia cells, which display mutated V genes yet lack CD27 expression. PMID:19776762

  3. Genetic and Physical Interaction of the B-Cell SLE-Associated Genes BANK1 and BLK

    PubMed Central

    Castillejo-López, Casimiro; Delgado-Vega, Angélica M.; Wojcik, Jerome; Kozyrev, Sergey V.; Thavathiru, Elangovan; Wu, Ying-Yu; Sánchez, Elena; Pöllmann, David; López-Egido, Juan R.; Fineschi, Serena; Domínguez, Nicolás; Lu, Rufei; James, Judith A.; Merrill, Joan T.; Kelly, Jennifer A.; Kaufman, Kenneth M.; Moser, Kathy; Gilkeson, Gary; Frostegård, Johan; Pons-Estel, Bernardo A.; D’Alfonso, Sandra; Witte, Torsten; Callejas, José Luis; Harley, John B.; Gaffney, Patrick; Martin, Javier; Guthridge, Joel M.; Alarcón-Riquelme, Marta E.

    2012-01-01

    Objectives Altered signaling in B-cells is a predominant feature of systemic lupus erythematosus (SLE). The genes BANK1 and BLK were recently described as associated with SLE. BANK1 codes for a B-cell-specific cytoplasmic protein involved in B-cell receptor signaling and BLK codes for an Src tyrosine kinase with important roles in B-cell development. To characterize the role of BANK1 and BLK in SLE, we performed a genetic interaction analysis hypothesizing that genetic interactions could reveal functional pathways relevant to disease pathogenesis. Methods We Used the method GPAT16 to analyze the gene-gene interactions of BANK1 and BLK. Confocal microscopy was used to investigate co-localization, and immunoprecipitation was used to verify the physical interaction of BANK1 and BLK. Results Epistatic interactions between BANK1 and BLK polymorphisms associated with SLE were observed in a discovery set of 279 patients and 515 controls from Northern Europe. A meta-analysis with 4399 European individuals confirmed the genetic interactions between BANK1 and BLK. As BANK1 was identified as a binding partner of the Src tyrosine kinase LYN, we tested the possibility that BANK1 and BLK could also show a protein-protein interaction. We demonstrated co-immunoprecipitation and co-localization of BLK and BANK1. In a Daudi cell line and primary naïve B-cells the endogenous binding was enhanced upon B-cell receptor stimulation using anti-IgM antibodies. Conclusions Here, we show a genetic interaction between BANK1 and BLK, and demonstrate that these molecules interact physically. Our results have important consequences for the understanding of SLE and other autoimmune diseases and identify a potential new signaling pathway. PMID:21978998

  4. Age-Dependent Defects of Regulatory B Cells in Wiskott-Aldrich Syndrome Gene Knockout Mice

    PubMed Central

    Yokoyama, Tadafumi; Yoshizaki, Ayumi; Simon, Karen L.; Kirby, Martha R.; Anderson, Stacie M.; Candotti, Fabio

    2015-01-01

    The Wiskott-Aldrich syndrome (WAS) is a rare X-linked primary immunodeficiency characterized by recurrent infections, thrombocytopenia, eczema, and high incidence of malignancy and autoimmunity. The cellular mechanisms underlying autoimmune complications in WAS have been extensively studied; however, they remain incompletely defined. We investigated the characteristics of IL-10-producing CD19+CD1dhighCD5+ B cells (CD1dhighCD5+ Breg) obtained from Was gene knockout (WKO) mice and found that their numbers were significantly lower in these mice compared to wild type (WT) controls. Moreover, we found a significant age-dependent reduction of the percentage of IL-10-expressing cells in WKO CD1dhighCD5+ Breg cells as compared to age-matched WT control mice. CD1dhighCD5+ Breg cells from older WKO mice did not suppress the in vitro production of inflammatory cytokines from activated CD4+ T cells. Interestingly, CD1dhighCD5+ Breg cells from older WKO mice displayed a basal activated phenotype which may prevent normal cellular responses, among which is the expression of IL-10. These defects may contribute to the susceptibility to autoimmunity with age in patients with WAS. PMID:26448644

  5. Immunoglobulin VH Gene Mutational Analysis Suggests that Primary Effusion Lymphomas Derive from Different Stages of B Cell Maturation

    PubMed Central

    Matolcsy, András; Nádor, Roland G.; Cesarman, Ethel; Knowles, Daniel M.

    1998-01-01

    Primary effusion lymphoma (PEL) is a recently described distinct subtype of non-Hodgkin’s lymphoma associated with infection by the Kaposi’s sarcoma-associated herpesvirus, also called human herpesvirus-8. Most cases of PEL are also associated with the Epstein-Barr virus (EBV). In order to better characterize the cellular origin of PEL, we investigated the immunoglobulin (Ig) heavy chain variable region (VH) genes expressed by tumor cells of the BC-1 and BC-3 cell lines derived from PELs and five original PEL specimens. In the six EBV-positive PELs examined, including the BC-1 cell line, the expressed VH gene sequences showed numerous point mutations relative to the putative germline VH gene sequences. In addition, the VH segment of one of these cases showed intraclonal sequence heterogeneity, indicating ongoing somatic mutation. In five cases, the distribution and type of mutations indicated that tumor cells had been selected by antigen. Because somatically mutated Ig genes are expressed by B cells that have reached a germinal center/post-germinal center stage of development, these findings suggest that the PEL cell of origin is a germinal center or post-germinal center B cell in most cases. In contrast, the VH gene segment expressed by tumor cells of the BC-3 cell line, which was originated from an EBV-negative PEL obtained from an HIV-negative patient, was unmutated, suggesting a pre-germinal center B cell origin for tumor cells of this particular PEL cell line. Taken together, these findings suggest that development of PELs may not be restricted to one stage of B cell differentiation and may represent transformation of B cells at different stages of ontogeny. PMID:9811353

  6. Coexistent rearrangements of c-MYC, BCL2, and BCL6 genes in a diffuse large B-cell lymphoma.

    PubMed

    Ueda, Chiyoko; Nishikori, Momoko; Kitawaki, Toshio; Uchiyama, Takashi; Ohno, Hitoshi

    2004-01-01

    We present a patient with stage III de novo diffuse large B-cell lymphoma. The lymphoma cells showed mature B-cell immunophenotype but lacked surface immunoglobulin (Ig) expression. Long-distance and long-distance inverse polymerase chain reaction assays to detect the oncogene/Ig gene rearrangement revealed that the cells carried 3 independent fusion genes, namely, c-MYC/Ig heavy chain gene (IgH), BCL2/IgH, and Ig lambda light chain gene/BCL6. Thus, the lymphoma cells concurrently carried t(8;14)(q24;q32), t(14;18)(q32;q21), and t(3;22)(q27;q11), which developed in association with class switching, V/D/J recombination, and somatic hypermutation, respectively. The lymphoma responded to chemoradiotherapy, and the patient has been well for 2 years, suggesting that multiple oncogene rearrangements may not necessarily be associated with poor clinical outcome. PMID:14979479

  7. B Cell Function in Severe Combined Immunodeficiency after Stem Cell or Gene Therapy: A Review

    PubMed Central

    Buckley, Rebecca H.

    2010-01-01

    While bone marrow transplantation has resulted in life-saving T cell reconstitution in infants with severe combined immunodeficiency (SCID), correction of B cell function has been more problematic. This review examines B cell reconstitution results presented in 19 reports from the United States and Europe on post-transplantation immune reconstitution in SCID over the past two decades. The analysis considered whether pre-transplantation conditioning regimens were used, the overall survival rate, the percentage with donor B cell chimerism, the percentage with B cell function, and the percentage of survivors requiring immunoglobulin (IG) replacement. The survival rates were higher at those Centers that did not use pre-transplant conditioning or post-transplantation graft-versus-host disease prophylaxis. The percentage of survivors with B cell chimerism and/or function was higher and the percentage requiring IG replacement was lower at those Centers that used pre-transplant conditioning. However there were substantial numbers of patients requiring IG replacement at all Centers. Thus, pre-transplant conditioning does not guarantee that B cell function will develop. Since most infants with SCID either present with serious infections or are diagnosed as newborns, one must decide whether there is justification for using agents that compromise innate immunity and have intrinsic toxicities to gain B cell immune reconstitution. PMID:20371393

  8. Reconstruction of canine diffuse large B-cell lymphoma gene regulatory network: detection of functional modules and hub genes.

    PubMed

    Zamani-Ahmadmahmudi, M; Najafi, A; Nassiri, S M

    2015-01-01

    Lymphoma is one of the most common malignancies in dogs. Canine lymphoma is similar to human non-Hodgkin's lymphoma (NHL) with shared clinical presentation and histopathological features. This study reports the construction of a comprehensive gene regulatory network (GRN) for canine diffuse large B-cell lymphoma (DLBCL), the most common type of canine lymphoma, and performs analysis for detection of major functional modules and hub genes (the most important genes in a GRN). The canine DLBCL GRN was reconstructed from gene expression data (NCBI GEO dataset: GSE30881) using the STRING and MiMI interaction databases. Reconstructed GRNs were then assessed, using various bioinformatics programmes, in order to analyze network topology and identify major pathways and hub genes. The resultant network from both interaction databases had a logically scale-free pattern. Gene ontology (GO) analysis revealed cell activation, cell cycle phase, immune effector process, immune system development, immune system process, integrin-mediated signalling pathway, intracellular protein kinase cascade, intracellular signal transduction, leucocyte activation and differentiation, lymphocyte activation and differentiation as major GO terms in the biological processes of the networks. Moreover, bioinformatics analysis showed E2F1, E2F4, PTEN, CDKN1A, PCNA, DKC1, MNAT1, NDUFB4, ATP5J, PRKDC, BRCA1, MYCN, RFC4 and POLA1 as the most important hub genes. The phosphatidyl inositol signalling system, P53 signalling pathway, Rac CycD pathway, G1/S checkpoint, chemokine signalling pathway and telomere maintenance were the main signalling pathways in which the protein products of the hub genes are involved. PMID:25678421

  9. Detailed gene dose analysis reveals recurrent focal gene deletions in pediatric B-cell precursor acute lymphoblastic leukemia.

    PubMed

    Ivanov Öfverholm, Ingegerd; Tran, Anh Nhi; Olsson, Linda; Zachariadis, Vasilios; Heyman, Mats; Rudd, Eva; Syk Lundberg, Elisabeth; Nordenskjöld, Magnus; Johansson, Bertil; Nordgren, Ann; Barbany, Gisela

    2016-09-01

    To identify copy number alterations (CNAs) in pediatric B-cell precursor acute lymphoblastic leukemia (BCP ALL), array comparative genomic hybridization was performed on 50 cases; detected CNAs were validated in a cohort of 191 cases analyzed by single nucleotide polymorphism arrays. Apart from CNAs involving leukemia-associated genes, recurrent deletions targeting genes not previously implicated in BCP ALL, e.g. INIP, IRF1 and PDE4B, were identified. Deletions of the DNA repair gene INIP were exclusively found in cases with t(12;21), and deletions of SH2B3 were associated with intrachromosomal amplification of chromosome 21 (p < 0.001). A majority of BTLA deletions (7/11; 64%) affected samples with gain of 21q chromosome material, suggesting that BTLA deletions are associated with both germline and somatic gain of chromosome 21. In cases without known risk-associated cytogenetic markers, CNAs associated with adverse prognosis were identified in 50% (10/20), indicating that a majority of these cases could be assigned to distinct genetic subtypes. PMID:27090575

  10. Genomic Uracil Homeostasis during Normal B Cell Maturation and Loss of This Balance during B Cell Cancer Development

    PubMed Central

    Shalhout, Sophia; Haddad, Dania; Sosin, Angela; Holland, Thomas C.; Al-Katib, Ayad; Martin, Alberto

    2014-01-01

    Activation-induced deaminase (AID) converts DNA cytosines to uracils in immunoglobulin genes, creating antibody diversification. It also causes mutations and translocations that promote cancer. We examined the interplay between uracil creation by AID and its removal by UNG2 glycosylase in splenocytes undergoing maturation and in B cell cancers. The genomic uracil levels remain unchanged in normal stimulated B cells, demonstrating a balance between uracil generation and removal. In stimulated UNG−/− cells, uracil levels increase by 11- to 60-fold during the first 3 days. In wild-type B cells, UNG2 gene expression and enzymatic activity rise and fall with AID levels, suggesting that UNG2 expression is coordinated with uracil creation by AID. Remarkably, a murine lymphoma cell line, several human B cell cancer lines, and human B cell tumors expressing AID at high levels have genomic uracils comparable to those seen with stimulated UNG−/−splenocytes. However, cancer cells express UNG2 gene at levels similar to or higher than those seen with peripheral B cells and have nuclear uracil excision activity comparable to that seen with stimulated wild-type B cells. We propose that more uracils are created during B cell cancer development than are removed from the genome but that the uracil creation/excision balance is restored during establishment of cell lines, fixing the genomic uracil load at high levels. PMID:25154417

  11. AID-induced remodeling of immunoglobulin genes and B cell fate

    PubMed Central

    Laffleur, Brice; Denis-Lagache, Nicolas; Péron, Sophie; Sirac, Christophe; Moreau, Jeanne; Cogné, Michel

    2014-01-01

    Survival and phenotype of normal and malignant B lymphocytes are critically dependent on constitutive signals by the B cell receptor (BCR) for antigen. In addition, either antigen ligation of the BCR or various mitogenic stimuli result in B cell activation and induction of activation-induced deaminase (AID). AID activity can in turn mediate somatic hypermutation (SHM) of immunoglobulin (Ig) V regions and also deeply remodel the Ig heavy chain locus through class switch recombination (CSR) or locus suicide recombination (LSR). In addition to changes linked to affinity for antigen, modifying the class/isotype (i.e. the structure and function) of the BCR or suddenly deleting BCR expression also modulates the fate of antigen-experienced B cells. PMID:24851241

  12. Histone deacetylase inhibitor abexinostat affects chromatin organization and gene transcription in normal B cells and in mantle cell lymphoma.

    PubMed

    Markozashvili, Diana; Pichugin, Andrei; Barat, Ana; Camara-Clayette, Valerie; Vasilyeva, Natalia V; Lelièvre, Hélène; Kraus-Berthier, Laurence; Depil, Stéphane; Ribrag, Vincent; Vassetzky, Yegor

    2016-04-15

    Mantle cell lymphoma (MCL) is a rare lymphoma caused by the t(11:14) juxtaposing the cyclin D1 (CCND1) locus on chromosome 11 and the immunoglobulin heavy chain (IgH) locus on chromosome 14. Several new treatments are proposed for MCL, including histone deacetylase inhibitors (HDACi). We have studied gene expression and chromatin organization in the translocated 11q13 locus in MCL cells as compared to lymphoblastoid cell lines as well as the effect of HDACi abexinostat on chromatin organization and gene expression in the 11q13 locus. We have identified a cluster of genes overexpressed in the translocation region on chromosome 11 in MCL cells. Abexinostat provokes a genome-wide disaggregation of heterochromatin. The genes upregulated after the t(11;14) translocation react to the HDACi treatment by increasing their expression, but their gene promoters do not show significant alterations in H3K9Ac and H3K9me2 levels in abexinostat-treated cells. PMID:26774800

  13. Genetic manipulation of an exogenous non-immunoglobulin protein by gene conversion machinery in a chicken B cell line

    PubMed Central

    Kanayama, Naoki; Todo, Kagefumi; Takahashi, Satoko; Magari, Masaki; Ohmori, Hitoshi

    2006-01-01

    During culture, a chicken B cell line DT40 spontaneously mutates immunoglobulin (Ig) genes by gene conversion, which involves activation-induced cytidine deaminase (AID)-dependent homologous recombination of the variable (V) region gene with upstream pseudo-V genes. To explore whether this mutation mechanism can target exogenous non-Ig genes, we generated DT40 lines that bears a gene conversion substrate comprising the green fluorescent protein (GFP) gene as a donor and the blue fluorescent protein (BFP) gene as an acceptor. A few percent of the initially BFP-expressing cells converted their fluorescence from blue to green after culture for 2–3 weeks when the substrate construct was integrated in the Ig light chain locus, but not in the ovalbumin locus. This was the result of AID-dependent and the GFP gene-templated gene conversion of the BFP gene, thereby leading to the introduction of various sizes of GFP-derived gene segment into the BFP gene. Thus, G/B construct may be used to visualize gene conversion events. After switching off AID expression in DT40 cells, the mutant clones were isolated stably and maintained with their mutations being fixed. Thus, the gene conversion machinery in DT40 cells will be a useful means to engineer non-Ig proteins by a type of DNA shuffling. PMID:16421270

  14. Validation and implementation of a method for microarray gene expression profiling of minor B-cell subpopulations in man

    PubMed Central

    2014-01-01

    Background This report describes a method for the generation of global gene expression profiles from low frequent B-cell subsets by using fluorescence-activated cell sorting and RNA amplification. However, some of the differentiating compartments involve a low number of cells and therefore it is important to optimize and validate each step in the procedure. Methods Normal lymphoid tissues from blood, tonsils, thymus and bone marrow were immunophenotyped by the 8-colour Euroflow panel using multiparametric flow cytometry. Subsets of B-cells containing cell numbers ranging from 800 to 33,000 and with frequencies varying between 0.1 and 10 percent were sorted, subjected to mRNA purification, amplified by the NuGEN protocol and finally analysed by the Affymetrix platform. Results Following a step by step strategy, each step in the workflow was validated and the sorting/storage conditions optimized as described in this report. First, an analysis of four cancer cell lines on Affymetrix arrays, using either 100 ng RNA labelled with the Ambion standard protocol or 1 ng RNA amplified and labelled by the NuGEN protocol, revealed a significant correlation of gene expressions (r ≥ 0.9 for all). Comparison of qPCR data in samples with or without amplification for 8 genes showed that a relative difference between six cell lines was preserved (r ≥ 0.9). Second, a comparison of cells sorted into PrepProtect, RNAlater or directly into lysis/binding buffer showed a higher yield of purified mRNA following storage in lysis/binding buffer (p < 0.001). Third, the identity of the B-cell subsets validated by the cluster of differentiation (CD) membrane profile was highly concordant with the transcriptional gene expression (p-values <0.001). Finally, in normal bone marrow and tonsil samples, eight evaluated genes were expressed in accordance with the biology of lymphopoiesis (p-values < 0.001), which enabled the generation of a gene-specific B-cell atlas. Conclusion A

  15. Primary high-grade B-cell lymphoma of the breast with concurrent IGH-BCL2 and MYC-IGL translocations in an adolescent patient.

    PubMed

    Liang, Xiayuan; Jones, Ashley; Giller, Roger H; Swisshelm, Karen; McGavran, Loris; Meltesen, Lynne; Carstens, Billie; McGranahan, Amy N; Albano, Edythe A

    2011-01-01

    BCL2 and MYC are oncogenes often deregulated in lymphomas. Concurrent IGH-BCL2 and MYC translocations result in a highly aggressive behavior of these tumors. Both primary breast lymphoma and lymphoma with concurrent BCL2-IGH and MYC translocations are rare and are primarily seen in adult patients. As a result of limited clinician experience and the condition's rarity, it poses a great challenge to pediatric pathologists and oncologists in terms of making an accurate diagnosis and choosing better treatment regimens. In this article, we report a case of an adolescent patient who presented with high-grade breast lymphoma with concurrent BCL2-IGH and MYC-IGL translocations, and we review the clinical, pathological, and genetic features; management strategies; and outcomes associated with this unusual neoplasm. PMID:21491965

  16. Wnt signaling induces transcription, spatial proximity, and translocation of fusion gene partners in human hematopoietic cells.

    PubMed

    Ugarte, Giorgia D; Vargas, Macarena F; Medina, Matías A; León, Pablo; Necuñir, David; Elorza, Alvaro A; Gutiérrez, Soraya E; Moon, Randall T; Loyola, Alejandra; De Ferrari, Giancarlo V

    2015-10-01

    Chromosomal translocations are frequently associated with a wide variety of cancers, particularly hematologic malignancies. A recurrent chromosomal abnormality in acute myeloid leukemia is the reciprocal translocation t(8;21) that fuses RUNX1 and ETO genes. We report here that Wnt/β-catenin signaling increases the expression of ETO and RUNX1 genes in human hematopoietic progenitors. We found that β-catenin is rapidly recruited into RNA polymerase II transcription factories (RNAPII-Ser5) and that ETO and RUNX1 genes are brought into close spatial proximity upon Wnt3a induction. Notably, long-term treatment of cells with Wnt3a induces the generation a frequent RUNX1-ETO translocation event. Thus, Wnt/β-catenin signaling induces transcription and translocation of RUNX1 and ETO fusion gene partners, opening a novel window to understand the onset/development of leukemia. PMID:26333776

  17. Prediction of survival of diffuse large B-cell lymphoma patients via the expression of three inflammatory genes.

    PubMed

    Zhao, Shuangtao; Bai, Nan; Cui, Jianlin; Xiang, Rong; Li, Na

    2016-08-01

    Currently, several gene-expression signatures that were used to predict survival of diffuse large B-cell lymphoma (DLBCL) patients, showed a restriction on the practical work for lack of convenient operation. In this study, we screened inflammatory genes whose expression correlated with survival of DLBCL and established a predictive model including IL6, IL1A and CSF3 through multivariate Cox regression based on the expression of these three genes. We validated the model at protein level in our clinical serum cohort composed of 101 patients of DLBCL and 50 healthy controls and 534 DLBCL patients at mRNA level from three independent Gene Expression Omnibus (GEO) data sets. We found our model to be independent of the International Prognostic Index (IPI), moreover, it can augment the predictive power of IPI. In summary, our three-gene model is sufficient to predict survival of DLBCL patients via measuring the concentration of three inflammatory cytokines in peripheral blood. PMID:27394196

  18. Lymphomagenesis-related gene expression in B cells from sustained virological responders with occult hepatitis C virus infection.

    PubMed

    Roque Cuéllar, M C; García-Lozano, J R; Sánchez, B; Praena-Fernández, J M; Martínez Sierra, C; Núñez-Roldán, A; Aguilar-Reina, J

    2016-08-01

    The expression of activation-induced cytidine deaminase, B-aggressive lymphoma, cyclin D1 and serine/threonine kinase 15 genes, among others, is increased in B cells from patients with chronic hepatitis C virus (HCV) infection. It is unknown whether the level of expression of these genes in B cells is increased in patients with hepatitis C who have achieved a sustained virological response (SVR) but who have persistent, detectable HCV RNA, so-called occult infection. Eighty-three patients who achieved and SVR, 27 with detectable HCV and 56 without detectable HCV RNA, 28 chronic hepatitis C patients and 32 healthy controls were studied. RNA was extracted from B cells, and gene expression levels were measured by RT-PCR. Patients with chronic HCV and those who achieved an SVR (with and without persistent low-level HCV RNA) showed a statistically significant higher expression compared to healthy controls, of activation-induced cytidine deaminase (P = 0.004, P < 0.001 and P = 0.002, respectively), B-aggressive lymphoma (P < 0.001, P = 0.001 and P = 0.006) and cyclin D1 (P = 0.026, P = 0.001; P = 0.038). For activation-induced cytidine deaminase patients with an SVR and 'occult infection' had a statistically significantly higher expression level than patients with and SVR without 'occult infection' (P = 0.014). The higher expression levels found for activation-induced cytidine deaminase, together with other genes indicates that these B lymphomagenesis-related genes are upregulated following HCV therapy and this is more marked when HCV can be detected in PBMCs. PMID:26946048

  19. Machine learning-based classification of diffuse large B-cell lymphoma patients by eight gene expression profiles.

    PubMed

    Zhao, Shuangtao; Dong, Xiaoli; Shen, Wenzhi; Ye, Zhen; Xiang, Rong

    2016-05-01

    Gene expression profiling (GEP) had divided the diffuse large B-cell lymphoma (DLBCL) into molecular subgroups: germinal center B-cell like (GCB), activated B-cell like (ABC), and unclassified (UC) subtype. However, this classification with prognostic significance was not applied into clinical practice since there were more than 1000 genes to detect and interpreting was difficult. To classify cancer samples validly, eight significant genes (MYBL1, LMO2, BCL6, MME, IRF4, NFKBIZ, PDE4B, and SLA) were selected in 414 patients treated with CHOP/R-CHOP chemotherapy from Gene Expression Omnibus (GEO) data sets. Cutoffs for each gene were obtained using receiver-operating characteristic curves (ROC) new model based on the support vector machine (SVM) estimated the probability of membership into one of two subgroups: GCB and Non-GCB (ABC and UC). Furtherly, multivariate analysis validated the model in another two cohorts including 855 cases in all. As a result, patients in the training and validated cohorts were stratified into two subgroups with 94.0%, 91.0%, and 94.4% concordance with GEP, respectively. Patients with Non-GCB subtype had significantly poorer outcomes than that with GCB subtype, which agreed with the prognostic power of GEP classification. Moreover, the similar prognosis received in the low (0-2) and high (3-5) IPI scores group demonstrated that the new model was independent of IPI as well as GEP method. In conclusion, our new model could stratify DLBCL patients with CHOP/R-CHOP regimen matching GEP subtypes effectively. PMID:26869285

  20. Gene Mutation Profiles in Primary Diffuse Large B Cell Lymphoma of Central Nervous System: Next Generation Sequencing Analyses

    PubMed Central

    Todorovic Balint, Milena; Jelicic, Jelena; Mihaljevic, Biljana; Kostic, Jelena; Stanic, Bojana; Balint, Bela; Pejanovic, Nadja; Lucic, Bojana; Tosic, Natasa; Marjanovic, Irena; Stojiljkovic, Maja; Karan-Djurasevic, Teodora; Perisic, Ognjen; Rakocevic, Goran; Popovic, Milos; Raicevic, Sava; Bila, Jelena; Antic, Darko; Andjelic, Bosko; Pavlovic, Sonja

    2016-01-01

    The existence of a potential primary central nervous system lymphoma-specific genomic signature that differs from the systemic form of diffuse large B cell lymphoma (DLBCL) has been suggested, but is still controversial. We investigated 19 patients with primary DLBCL of central nervous system (DLBCL CNS) using the TruSeq Amplicon Cancer Panel (TSACP) for 48 cancer-related genes. Next generation sequencing (NGS) analyses have revealed that over 80% of potentially protein-changing mutations were located in eight genes (CTNNB1, PIK3CA, PTEN, ATM, KRAS, PTPN11, TP53 and JAK3), pointing to the potential role of these genes in lymphomagenesis. TP53 was the only gene harboring mutations in all 19 patients. In addition, the presence of mutated TP53 and ATM genes correlated with a higher total number of mutations in other analyzed genes. Furthermore, the presence of mutated ATM correlated with poorer event-free survival (EFS) (p = 0.036). The presence of the mutated SMO gene correlated with earlier disease relapse (p = 0.023), inferior event-free survival (p = 0.011) and overall survival (OS) (p = 0.017), while mutations in the PTEN gene were associated with inferior OS (p = 0.048). Our findings suggest that the TP53 and ATM genes could be involved in the molecular pathophysiology of primary DLBCL CNS, whereas mutations in the PTEN and SMO genes could affect survival regardless of the initial treatment approach. PMID:27164089

  1. Gene Mutation Profiles in Primary Diffuse Large B Cell Lymphoma of Central Nervous System: Next Generation Sequencing Analyses.

    PubMed

    Todorovic Balint, Milena; Jelicic, Jelena; Mihaljevic, Biljana; Kostic, Jelena; Stanic, Bojana; Balint, Bela; Pejanovic, Nadja; Lucic, Bojana; Tosic, Natasa; Marjanovic, Irena; Stojiljkovic, Maja; Karan-Djurasevic, Teodora; Perisic, Ognjen; Rakocevic, Goran; Popovic, Milos; Raicevic, Sava; Bila, Jelena; Antic, Darko; Andjelic, Bosko; Pavlovic, Sonja

    2016-01-01

    The existence of a potential primary central nervous system lymphoma-specific genomic signature that differs from the systemic form of diffuse large B cell lymphoma (DLBCL) has been suggested, but is still controversial. We investigated 19 patients with primary DLBCL of central nervous system (DLBCL CNS) using the TruSeq Amplicon Cancer Panel (TSACP) for 48 cancer-related genes. Next generation sequencing (NGS) analyses have revealed that over 80% of potentially protein-changing mutations were located in eight genes (CTNNB1, PIK3CA, PTEN, ATM, KRAS, PTPN11, TP53 and JAK3), pointing to the potential role of these genes in lymphomagenesis. TP53 was the only gene harboring mutations in all 19 patients. In addition, the presence of mutated TP53 and ATM genes correlated with a higher total number of mutations in other analyzed genes. Furthermore, the presence of mutated ATM correlated with poorer event-free survival (EFS) (p = 0.036). The presence of the mutated SMO gene correlated with earlier disease relapse (p = 0.023), inferior event-free survival (p = 0.011) and overall survival (OS) (p = 0.017), while mutations in the PTEN gene were associated with inferior OS (p = 0.048). Our findings suggest that the TP53 and ATM genes could be involved in the molecular pathophysiology of primary DLBCL CNS, whereas mutations in the PTEN and SMO genes could affect survival regardless of the initial treatment approach. PMID:27164089

  2. Prognostic impact of concurrent MYC and BCL6 rearrangements and expression in de novo diffuse large B-cell lymphoma

    PubMed Central

    Deng, Lijuan; Wang, Xiaoxiao; Manyam, Ganiraju C.; Visco, Carlo; Montes-Moreno, Santiago; Zhang, Li; Dybkær, Karen; Chiu, April; Orazi, Attilio; Zu, Youli; Bhagat, Govind; Richards, Kristy L.; Hsi, Eric D.; Choi, William W.L.; van Krieken, J. Han; Huh, Jooryung; Ponzoni, Maurilio; Ferreri, Andrés J.M.; Parsons, Ben M.; Møller, Michael B.; Piris, Miguel A.; Winter, Jane N.; Medeiros, L. Jeffrey; Hu, Shimin; Young, Ken H.

    2016-01-01

    Double-hit B-cell lymphoma is a common designation for a group of tumors characterized by concurrent translocations of MYC and BCL2, BCL6, or other genes. The prognosis of concurrent MYC and BCL6 translocations is not well known. In this study, we assessed rearrangements and expression of MYC, BCL2 and BCL6 in 898 patients with de novo diffuse large B-cell lymphoma treated with standard chemotherapy (cyclophosphamide, doxorubicin, vincristine, and prednisone plus rituximab). Neither BCL6 translocation alone (more frequent in activated B-cell like diffuse large B-cell lymphoma) nor in combination with MYC translocation (observed in 2.0% of diffuse large B-cell lymphoma) predicted poorer survival in diffuse large B-cell lymphoma patients. Diffuse large B-cell lymphoma patients with MYC/BCL6 co-expression did have significantly poorer survival, however, MYC/BCL6 co-expression had no effect on prognosis in the absence of MYC/BCL2 co-expression, and had no additive impact in MYC+/BCL2+ cases. The isolated MYC+/BCL6+/BCL2− subset, more frequent in germinal center B-cell like diffuse large B-cell lymphoma, had significantly better survival compared with the isolated MYC+/BCL2+/BCL6− subset (more frequent in activated B-cell like diffuse large B-cell lymphoma). In summary, diffuse large B-cell lymphoma patients with either MYC/BCL6 rearrangements or MYC/BCL6 co-expression did not always have poorer prognosis; MYC expression levels should be evaluated simultaneously; and double-hit B-cell lymphoma needs to be refined based on the specific genetic abnormalities present in these tumors. PMID:26573234

  3. TBL1XR1/TP63: a novel recurrent gene fusion in B-cell non-Hodgkin lymphoma | Office of Cancer Genomics

    Cancer.gov

    Recently, the landscape of single base mutations in diffuse large B-cell lymphoma (DLBCL) was described. Here we report the discovery of a gene fusion between TBL1XR1 and TP63, the only recurrent somatic novel gene fusion identified in our analysis of transcriptome data from 96 DLBCL cases. Based on this cohort and a further 157 DLBCL cases analyzed by FISH, the incidence in de novo germinal center B cell-like (GCB) DLBCL is 5% (6 of 115).

  4. A Strategy for Full Interrogation of Prognostic Gene Expression Patterns: Exploring the Biology of Diffuse Large B Cell Lymphoma

    PubMed Central

    Rimsza, Lisa M.; Unger, Joseph M.; Tome, Margaret E.; LeBlanc, Michael L.

    2011-01-01

    Background Gene expression profiling yields quantitative data on gene expression used to create prognostic models that accurately predict patient outcome in diffuse large B cell lymphoma (DLBCL). Often, data are analyzed with genes classified by whether they fall above or below the median expression level. We sought to determine whether examining multiple cut-points might be a more powerful technique to investigate the association of gene expression with outcome. Methodology/Principal Findings We explored gene expression profiling data using variable cut-point analysis for 36 genes with reported prognostic value in DLBCL. We plotted two-group survival logrank test statistics against corresponding cut-points of the gene expression levels and smooth estimates of the hazard ratio of death versus gene expression levels. To facilitate comparisons we also standardized the expression of each of the genes by the fraction of patients that would be identified by any cut-point. A multiple comparison adjusted permutation p-value identified 3 different patterns of significance: 1) genes with significant cut-point points below the median, whose loss is associated with poor outcome (e.g. HLA-DR); 2) genes with significant cut-points above the median, whose over-expression is associated with poor outcome (e.g. CCND2); and 3) genes with significant cut-points on either side of the median, (e.g. extracellular molecules such as FN1). Conclusions/Significance Variable cut-point analysis with permutation p-value calculation can be used to identify significant genes that would not otherwise be identified with median cut-points and may suggest biological patterns of gene effects. PMID:21829609

  5. Distinct isoform of FABP7 revealed by screening for retroelement-activated genes in diffuse large B-cell lymphoma.

    PubMed

    Lock, Frances E; Rebollo, Rita; Miceli-Royer, Katharine; Gagnier, Liane; Kuah, Sabrina; Babaian, Artem; Sistiaga-Poveda, Maialen; Lai, C Benjamin; Nemirovsky, Oksana; Serrano, Isabel; Steidl, Christian; Karimi, Mohammad M; Mager, Dixie L

    2014-08-26

    Remnants of ancient transposable elements (TEs) are abundant in mammalian genomes. These sequences harbor multiple regulatory motifs and hence are capable of influencing expression of host genes. In response to environmental changes, TEs are known to be released from epigenetic repression and to become transcriptionally active. Such activation could also lead to lineage-inappropriate activation of oncogenes, as one study described in Hodgkin lymphoma. However, little further evidence for this mechanism in other cancers has been reported. Here, we reanalyzed whole transcriptome data from a large cohort of patients with diffuse large B-cell lymphoma (DLBCL) compared with normal B-cell centroblasts to detect genes ectopically expressed through activation of TE promoters. We have identified 98 such TE-gene chimeric transcripts that were exclusively expressed in primary DLBCL cases and confirmed several in DLBCL-derived cell lines. We further characterized a TE-gene chimeric transcript involving a fatty acid-binding protein gene (LTR2-FABP7), normally expressed in brain, that was ectopically expressed in a subset of DLBCL patients through the use of an endogenous retroviral LTR promoter of the LTR2 family. The LTR2-FABP7 chimeric transcript encodes a novel chimeric isoform of the protein with characteristics distinct from native FABP7. In vitro studies reveal a dependency for DLBCL cell line proliferation and growth on LTR2-FABP7 chimeric protein expression. Taken together, these data demonstrate the significance of TEs as regulators of aberrant gene expression in cancer and suggest that LTR2-FABP7 may contribute to the pathogenesis of DLBCL in a subgroup of patients. PMID:25114248

  6. Distinct isoform of FABP7 revealed by screening for retroelement-activated genes in diffuse large B-cell lymphoma

    PubMed Central

    Lock, Frances E.; Rebollo, Rita; Miceli-Royer, Katharine; Gagnier, Liane; Kuah, Sabrina; Babaian, Artem; Sistiaga-Poveda, Maialen; Lai, C. Benjamin; Nemirovsky, Oksana; Serrano, Isabel; Steidl, Christian; Karimi, Mohammad M.; Mager, Dixie L.

    2014-01-01

    Remnants of ancient transposable elements (TEs) are abundant in mammalian genomes. These sequences harbor multiple regulatory motifs and hence are capable of influencing expression of host genes. In response to environmental changes, TEs are known to be released from epigenetic repression and to become transcriptionally active. Such activation could also lead to lineage-inappropriate activation of oncogenes, as one study described in Hodgkin lymphoma. However, little further evidence for this mechanism in other cancers has been reported. Here, we reanalyzed whole transcriptome data from a large cohort of patients with diffuse large B-cell lymphoma (DLBCL) compared with normal B-cell centroblasts to detect genes ectopically expressed through activation of TE promoters. We have identified 98 such TE-gene chimeric transcripts that were exclusively expressed in primary DLBCL cases and confirmed several in DLBCL-derived cell lines. We further characterized a TE-gene chimeric transcript involving a fatty acid-binding protein gene (LTR2-FABP7), normally expressed in brain, that was ectopically expressed in a subset of DLBCL patients through the use of an endogenous retroviral LTR promoter of the LTR2 family. The LTR2-FABP7 chimeric transcript encodes a novel chimeric isoform of the protein with characteristics distinct from native FABP7. In vitro studies reveal a dependency for DLBCL cell line proliferation and growth on LTR2-FABP7 chimeric protein expression. Taken together, these data demonstrate the significance of TEs as regulators of aberrant gene expression in cancer and suggest that LTR2-FABP7 may contribute to the pathogenesis of DLBCL in a subgroup of patients. PMID:25114248

  7. Small noncleaved B cell Burkitt-like lymphoma with chromosome t(8;14) translocation and Epstein-Barr virus nuclear-associated antigen in a homosexual man with acquired immune deficiency syndrome.

    PubMed

    Petersen, J M; Tubbs, R R; Savage, R A; Calabrese, L C; Proffitt, M R; Manolova, Y; Manolov, G; Shumaker, A; Tatsumi, E; McClain, K

    1985-01-01

    This case report describes new manifestations of the acquired immune deficiency syndrome (AIDS) in a promiscuous homosexual man. Investigation of upper gastrointestinal bleeding in the patient lead to discovery of a high-grade, small, noncleaved cell (Burkitt-like) gastroduodenal lymphoma with visceral and extralymphatic extension. Specific phenotyping of the lymphoma revealed that it was a monoclonal B cell lymphoma of mu kappa isotype. An in vitro cell line was established that was Epstein-Barr virus nuclear-associated antigen-positive. The lymphoma cells displayed a t(8;14) translocation similar to endemic African Burkitt lymphoma. Epstein-Barr virus genomes were identified in the lymphoma and an axillary lymph node biopsy specimen by molecular hybridization. These data strongly suggest that Epstein-Barr virus actively infected this patient. However, he showed normal Epstein-Barr virus-specific serologic responses, indicating an immune defect against the virus. PMID:2981469

  8. Targeted Chromosomal Translocations and Essential Gene Knockout Using CRISPR/Cas9 Technology in Caenorhabditis elegans.

    PubMed

    Chen, Xiangyang; Li, Mu; Feng, Xuezhu; Guang, Shouhong

    2015-12-01

    Many genes play essential roles in development and fertility; their disruption leads to growth arrest or sterility. Genetic balancers have been widely used to study essential genes in many organisms. However, it is technically challenging and laborious to generate and maintain the loss-of-function mutations of essential genes. The CRISPR/Cas9 technology has been successfully applied for gene editing and chromosome engineering. Here, we have developed a method to induce chromosomal translocations and produce genetic balancers using the CRISPR/Cas9 technology and have applied this approach to edit essential genes in Caenorhabditis elegans. The co-injection of dual small guide RNA targeting genes on different chromosomes resulted in reciprocal translocation between nonhomologous chromosomes. These animals with chromosomal translocations were subsequently crossed with animals that contain normal sets of chromosomes. The F1 progeny were subjected to a second round of Cas9-mediated gene editing. Through this method, we successfully produced nematode strains with specified chromosomal translocations and generated a number of loss-of-function alleles of two essential genes (csr-1 and mes-6). Therefore, our method provides an easy and efficient approach to generate and maintain loss-of-function alleles of essential genes with detailed genetic background information. PMID:26482793

  9. The promiscuous MLL gene links chromosomal translocations to cellular differentiation and tumour tropism.

    PubMed

    Collins, Emma C; Rabbitts, Terence H

    2002-09-01

    MLL is a promiscuous gene involved in a diversity of chromosomal fusions in haematological malignancies, usually resulting from chromosomal translocations. MLL-associated chromosomal rearrangements usually occur in tumours of specific haematological lineages, suggesting a crucial role for the MLL fusion partner in determining disease phenotype (or tumour tropism). The MLL gene is homologous to Drosophila trithorax, and is likewise involved in embryo pattern formation. Common themes linking several of the MLL partners include a possible involvement in embryo patterning via Hox gene regulation and chromatin remodelling. These findings reinforce the link between developmental regulation and chromosomal translocations, and indicate the role of chromosomal translocation in activating genes capable of determining tumour phenotype in leukaemias and sarcomas. PMID:12223315

  10. Spt5 accumulation at variable genes distinguishes somatic hypermutation in germinal center B cells from ex vivo–activated cells

    PubMed Central

    Maul, Robert W.; Cao, Zheng; Venkataraman, Lakshmi; Giorgetti, Carol A.; Press, Joan L.; Denizot, Yves; Du, Hansen; Sen, Ranjan

    2014-01-01

    Variable (V) genes of immunoglobulins undergo somatic hypermutation by activation-induced deaminase (AID) to generate amino acid substitutions that encode antibodies with increased affinity for antigen. Hypermutation is restricted to germinal center B cells and cannot be recapitulated in ex vivo–activated splenic cells, even though the latter express high levels of AID. This suggests that there is a specific feature of antigen activation in germinal centers that recruits AID to V genes which is absent in mitogen-activated cultured cells. Using two Igh knock-in mouse models, we found that RNA polymerase II accumulates in V regions in B cells after both types of stimulation for an extended distance of 1.2 kb from the TATA box. The paused polymerases generate abundant single-strand DNA targets for AID. However, there is a distinct accumulation of the initiating form of polymerase, along with the transcription cofactor Spt5 and AID, in the V region from germinal center cells, which is totally absent in cultured cells. These data support a model where mutations are prevalent in germinal center cells, but not in ex vivo cells, because the initiating form of polymerase is retained, which affects Spt5 and AID recruitment. PMID:25288395

  11. Aberrant expression of the CHFR prophase checkpoint gene in human B-cell non-Hodgkin lymphoma.

    PubMed

    Song, Aiqin; Ye, Junli; Zhang, Kunpeng; Yu, Hongsheng; Gao, Yanhua; Wang, Hongfang; Sun, Lirong; Xing, Xiaoming; Yang, Kun; Zhao, Min

    2015-05-01

    Checkpoint with FHA and Ring Finger (CHFR) is a checkpoint protein that reportedly initiates a cell cycle delay in response to microtubule stress during prophase in mitosis, which has become an interesting target for understanding cancer pathogenesis. Recently, aberrant methylation of the CHFR gene associated with gene silencing has been reported in several cancers. In the present study, we examined the expression of CHFR in B-cell non-Hodgkin lymphoma (B-NHL) in vitro and in vivo. Our results showed that the expression level of CHFR mRNA and protein was reduced in B-NHL tissue samples and B cell lines. Furthermore, CHFR methylation was detected in 39 of 122 B-NHL patients, which was not found in noncancerous reactive hyperplasia of lymph node (RH) tissues. CHFR methylation correlated with the reduced expression of CHFR, high International Prognostic Index (IPI) scores and later pathologic Ann Arbor stages of B-NHL. Treatment with demethylation reagent, 5-Aza-dC, could eliminate the hypermethylation of CHFR, enhance CHFR expression and cell apoptosis and inhibit the cell proliferation of Raji cells, which could be induced by high expression of CHFR in Raji cells. Our results indicated that aberrant methylation of CHFR may be associated with the pathogenesis, progression for B-NHL, which might be a novel molecular marker as prognosis and treatment for B-NHL. PMID:25798877

  12. The effect of alterations in myc gene expression on B cell development in the bursa of Fabricius.

    PubMed

    Thompson, C B; Humphries, E H; Carlson, L M; Chen, C L; Neiman, P E

    1987-11-01

    Infection of 18-day embryonic bursal lymphocytes with a v-myc-containing retrovirus leads directly to a polyclonal proliferation of surface immunoglobulin-positive (slg+) cells in the bursa of Fabricius detected four weeks after hatching. These v-myc-expressing bursal cells repopulate the follicles of chemically ablated bursae more efficiently than total normal 18-day embryonic bursal cells. In contrast, comparable normal bursal cells lose the ability to repopulate follicles by four weeks. Bursal lymphocytes expressing either a retroviral v-myc or a c-myc gene deregulated by adjacent retroviral integration retain the ability of embryonic bursal lymphocytes to diversify their immunoglobulin light chain genes. These results suggest that retroviral deregulation of myc expression during avian B cell development induces outgrowth of a population of cells with the cardinal phenotypic characteristics of bursal stem cells. PMID:3499231

  13. Different spectra of recurrent gene mutations in subsets of chronic lymphocytic leukemia harboring stereotyped B-cell receptors

    PubMed Central

    Sutton, Lesley-Ann; Young, Emma; Baliakas, Panagiotis; Hadzidimitriou, Anastasia; Moysiadis, Theodoros; Plevova, Karla; Rossi, Davide; Kminkova, Jana; Stalika, Evangelia; Pedersen, Lone Bredo; Malcikova, Jitka; Agathangelidis, Andreas; Davis, Zadie; Mansouri, Larry; Scarfò, Lydia; Boudjoghra, Myriam; Navarro, Alba; Muggen, Alice F.; Yan, Xiao-Jie; Nguyen-Khac, Florence; Larrayoz, Marta; Panagiotidis, Panagiotis; Chiorazzi, Nicholas; Niemann, Carsten Utoft; Belessi, Chrysoula; Campo, Elias; Strefford, Jonathan C.; Langerak, Anton W.; Oscier, David; Gaidano, Gianluca; Pospisilova, Sarka; Davi, Frederic; Ghia, Paolo; Stamatopoulos, Kostas; Rosenquist, Richard

    2016-01-01

    We report on markedly different frequencies of genetic lesions within subsets of chronic lymphocytic leukemia patients carrying mutated or unmutated stereotyped B-cell receptor immunoglobulins in the largest cohort (n=565) studied for this purpose. By combining data on recurrent gene mutations (BIRC3, MYD88, NOTCH1, SF3B1 and TP53) and cytogenetic aberrations, we reveal a subset-biased acquisition of gene mutations. More specifically, the frequency of NOTCH1 mutations was found to be enriched in subsets expressing unmutated immunoglobulin genes, i.e. #1, #6, #8 and #59 (22–34%), often in association with trisomy 12, and was significantly different (P<0.001) to the frequency observed in subset #2 (4%, aggressive disease, variable somatic hypermutation status) and subset #4 (1%, indolent disease, mutated immunoglobulin genes). Interestingly, subsets harboring a high frequency of NOTCH1 mutations were found to carry few (if any) SF3B1 mutations. This starkly contrasts with subsets #2 and #3 where, despite their immunogenetic differences, SF3B1 mutations occurred in 45% and 46% of cases, respectively. In addition, mutations within TP53, whilst enriched in subset #1 (16%), were rare in subsets #2 and #8 (both 2%), despite all being clinically aggressive. All subsets were negative for MYD88 mutations, whereas BIRC3 mutations were infrequent. Collectively, this striking bias and skewed distribution of mutations and cytogenetic aberrations within specific chronic lymphocytic leukemia subsets implies that the mechanisms underlying clinical aggressiveness are not uniform, but rather support the existence of distinct genetic pathways of clonal evolution governed by a particular stereotyped B-cell receptor selecting a certain molecular lesion(s). PMID:27198719

  14. Analysis of the Plastidic phosphate translocator Gene Family in Arabidopsis and Identification of New phosphate translocator-Homologous Transporters, Classified by Their Putative Substrate-Binding Site1

    PubMed Central

    Knappe, Silke; Flügge, Ulf-Ingo; Fischer, Karsten

    2003-01-01

    Analysis of the Arabidopsis genome revealed the complete set of plastidic phosphate translocator (pPT) genes. The Arabidopsis genome contains 16 pPT genes: single copies of genes coding for the triose phosphate/phosphate translocator and the xylulose phosphate/phosphate translocator, and two genes coding for each the phosphoenolpyruvate/phosphate translocator and the glucose-6-phosphate/phosphate translocator. A relatively high number of truncated phosphoenolpyruvate/phosphate translocator genes (six) and glucose-6-phosphate/phosphate translocator genes (four) could be detected with almost conserved intron/exon structures as compared with the functional genes. In addition, a variety of PT-homologous (PTh) genes could be identified in Arabidopsis and other organisms. They all belong to the drug/metabolite transporter superfamily showing significant similarities to nucleotide sugar transporters (NSTs). The pPT, PTh, and NST proteins all possess six to eight transmembrane helices. According to the analysis of conserved motifs in these proteins, the PTh proteins can be divided into (a) the lysine (Lys)/arginine group comprising only non-plant proteins, (b) the Lys-valine/alanine/glycine group of Arabidopsis proteins, (c) the Lys/asparagine group of Arabidopsis proteins, and (d) the Lys/threonine group of plant and non-plant proteins. None of these proteins have been characterized so far. The analysis of the putative substrate-binding sites of the pPT, PTh, and NST proteins led to the suggestion that all these proteins share common substrate-binding sites on either side of the membrane each of which contain a conserved Lys residue. PMID:12644669

  15. High concordance of gene expression profiling-correlated immunohistochemistry algorithms in diffuse large B-cell lymphoma, not otherwise specified.

    PubMed

    Hwang, Hee Sang; Park, Chan-Sik; Yoon, Dok Hyun; Suh, Cheolwon; Huh, Jooryung

    2014-08-01

    Diffuse large B-cell lymphoma (DLBCL) is classified into prognostically distinct germinal center B-cell (GCB) and activated B-cell subtypes by gene expression profiling (GEP). Recent reports suggest the role of GEP subtypes in targeted therapy. Immunohistochemistry (IHC) algorithms have been proposed as surrogates of GEP, but their utility remains controversial. Using microarray, we examined the concordance of 4 GEP-correlated and 2 non-GEP-correlated IHC algorithms in 381 DLBCLs, not otherwise specified. Subtypes and variants of DLBCL were excluded to minimize the possible confounding effect on prognosis and phenotype. Survival was analyzed in 138 cyclophosphamide, adriamycin, vincristine, and prednisone (CHOP)-treated and 147 rituximab plus CHOP (R-CHOP)-treated patients. Of the GEP-correlated algorithms, high concordance was observed among Hans, Choi, and Visco-Young algorithms (total concordance, 87.1%; κ score: 0.726 to 0.889), whereas Tally algorithm exhibited slightly lower concordance (total concordance 77.4%; κ score: 0.502 to 0.643). Two non-GEP-correlated algorithms (Muris and Nyman) exhibited poor concordance. Compared with the Western data, incidence of the non-GCB subtype was higher in all algorithms. Univariate analysis showed prognostic significance for Hans, Choi, and Visco-Young algorithms and BCL6, GCET1, LMO2, and BCL2 in CHOP-treated patients. On multivariate analysis, Hans algorithm retained its prognostic significance. By contrast, neither the algorithms nor individual antigens predicted survival in R-CHOP treatment. The high concordance among GEP-correlated algorithms suggests their usefulness as reliable discriminators of molecular subtype in DLBCL, not otherwise specified. Our study also indicates that prognostic significance of IHC algorithms may be limited in R-CHOP-treated Asian patients because of the predominance of the non-GCB type. PMID:24705314

  16. Immunophenotypic and gene expression analysis of monoclonal B-cell lymphocytosis shows biologic characteristics associated with good prognosis CLL.

    PubMed

    Lanasa, M C; Allgood, S D; Slager, S L; Dave, S S; Love, C; Marti, G E; Kay, N E; Hanson, C A; Rabe, K G; Achenbach, S J; Goldin, L R; Camp, N J; Goodman, B K; Vachon, C M; Spector, L G; Rassenti, L Z; Leis, J F; Gockerman, J P; Strom, S S; Call, T G; Glenn, M; Cerhan, J R; Levesque, M C; Weinberg, J B; Caporaso, N E

    2011-09-01

    Monoclonal B-cell lymphocytosis (MBL) is a hematologic condition wherein small B-cell clones can be detected in the blood of asymptomatic individuals. Most MBL have an immunophenotype similar to chronic lymphocytic leukemia (CLL), and 'CLL-like' MBL is a precursor to CLL. We used flow cytometry to identify MBL from unaffected members of CLL kindreds. We identified 101 MBL cases from 622 study subjects; of these, 82 individuals with MBL were further characterized. In all, 91 unique MBL clones were detected: 73 CLL-like MBL (CD5(+)CD20(dim)sIg(dim)), 11 atypical MBL (CD5(+)CD20(+)sIg(+)) and 7 CD5(neg) MBL (CD5(neg)CD20(+)sIg(neg)). Extended immunophenotypic characterization of these MBL subtypes was performed, and significant differences in cell surface expression of CD23, CD49d, CD79b and FMC-7 were observed among the groups. Markers of risk in CLL such as CD38, ZAP70 and CD49d were infrequently expressed in CLL-like MBL, but were expressed in the majority of atypical MBL. Interphase cytogenetics was performed in 35 MBL cases, and del 13q14 was most common (22/30 CLL-like MBL cases). Gene expression analysis using oligonucleotide arrays was performed on seven CLL-like MBL, and showed activation of B-cell receptor associated pathways. Our findings underscore the diversity of MBL subtypes and further clarify the relationship between MBL and other lymphoproliferative disorders. PMID:21617698

  17. Gene expression profiles in acute myeloid leukemia with common translocations using SAGE

    PubMed Central

    Lee, Sanggyu; Chen, Jianjun; Zhou, Guolin; Shi, Run Zhang; Bouffard, Gerard G.; Kocherginsky, Masha; Ge, Xijin; Sun, Miao; Jayathilaka, Nimanthi; Kim, Yeong Cheol; Emmanuel, Neelmini; Bohlander, Stefan K.; Minden, Mark; Kline, Justin; Ozer, Ozden; Larson, Richard A.; LeBeau, Michelle M.; Green, Eric D.; Trent, Jeffery; Karrison, Theodore; Liu, Piu Paul; Wang, San Ming; Rowley, Janet D.

    2006-01-01

    Identification of the specific cytogenetic abnormality is one of the critical steps for classification of acute myeloblastic leukemia (AML) which influences the selection of appropriate therapy and provides information about disease prognosis. However at present, the genetic complexity of AML is only partially understood. To obtain a comprehensive, unbiased, quantitative measure, we performed serial analysis of gene expression (SAGE) on CD15+ myeloid progenitor cells from 22 AML patients who had four of the most common translocations, namely t(8;21), t(15;17), t(9;11), and inv(16). The quantitative data provide clear evidence that the major change in all these translocation-carrying leukemias is a decrease in expression of the majority of transcripts compared with normal CD15+ cells. From a total of 1,247,535 SAGE tags, we identified 2,604 transcripts whose expression was significantly altered in these leukemias compared with normal myeloid progenitor cells. The gene ontology of the 1,110 transcripts that matched known genes revealed that each translocation had a uniquely altered profile in various functional categories including regulation of transcription, cell cycle, protein synthesis, and apoptosis. Our global analysis of gene expression of common translocations in AML can focus attention on the function of the genes with altered expression for future biological studies as well as highlight genes/pathways for more specifically targeted therapy. PMID:16418266

  18. Comparative RNA-Seq and microarray analysis of gene expression changes in B-cell lymphomas of Canis familiaris.

    PubMed

    Mooney, Marie; Bond, Jeffrey; Monks, Noel; Eugster, Emily; Cherba, David; Berlinski, Pamela; Kamerling, Steve; Marotti, Keith; Simpson, Heather; Rusk, Tony; Tembe, Waibhav; Legendre, Christophe; Benson, Hollie; Liang, Winnie; Webb, Craig Paul

    2013-01-01

    Comparative oncology is a developing research discipline that is being used to assist our understanding of human neoplastic diseases. Companion canines are a preferred animal oncology model due to spontaneous tumor development and similarity to human disease at the pathophysiological level. We use a paired RNA sequencing (RNA-Seq)/microarray analysis of a set of four normal canine lymph nodes and ten canine lymphoma fine needle aspirates to identify technical biases and variation between the technologies and convergence on biological disease pathways. Surrogate Variable Analysis (SVA) provides a formal multivariate analysis of the combined RNA-Seq/microarray data set. Applying SVA to the data allows us to decompose variation into contributions associated with transcript abundance, differences between the technology, and latent variation within each technology. A substantial and highly statistically significant component of the variation reflects transcript abundance, and RNA-Seq appeared more sensitive for detection of transcripts expressed at low levels. Latent random variation among RNA-Seq samples is also distinct in character from that impacting microarray samples. In particular, we observed variation between RNA-Seq samples that reflects transcript GC content. Platform-independent variable decomposition without a priori knowledge of the sources of variation using SVA represents a generalizable method for accomplishing cross-platform data analysis. We identified genes differentially expressed between normal lymph nodes of disease free dogs and a subset of the diseased dogs diagnosed with B-cell lymphoma using each technology. There is statistically significant overlap between the RNA-Seq and microarray sets of differentially expressed genes. Analysis of overlapping genes in the context of biological systems suggests elevated expression and activity of PI3K signaling in B-cell lymphoma biopsies compared with normal biopsies, consistent with literature describing

  19. Application of HSVtk suicide gene to X-SCID gene therapy: Ganciclovir treatment offsets gene corrected X-SCID B cells

    SciTech Connect

    Uchiyama, Toru; Kumaki, Satoru . E-mail: kumakis@idac.tohoku.ac.jp; Ishikawa, Yoshinori; Onodera, Masafumi; Sato, Miki; Du, Wei; Sasahara, Yoji; Tanaka, Nobuyuki; Sugamura, Kazuo; Tsuchiya, Shigeru

    2006-03-10

    Recently, a serious adverse effect of uncontrolled clonal T cell proliferation due to insertional mutagenesis of retroviral vector was reported in X-SCID gene therapy clinical trial. To offset the side effect, we have incorporated a suicide gene into therapeutic retroviral vector for selective elimination of transduced cells. In this study, B-cell lines from two X-SCID patients were transduced with bicistronic retroviral vector carrying human {gamma}c chain cDNA and Herpes simplex virus thymidine kinase gene. After confirmation of functional reconstitution of the {gamma}c chain, the cells were treated with ganciclovir (GCV). The {gamma}c chain positive cells were eliminated under low concentration without cytotoxicity on untransduced cells and have not reappeared at least for 5 months. Furthermore, the {gamma}c chain transduced cells were still sensitive to GCV after five months. These results demonstrated the efficacy of the suicide gene therapy although further in vivo studies are required to assess feasibility of this approach in clinical trial.

  20. Cloning and sequencing of the gene for alpha antigen from Mycobacterium avium and mapping of B-cell epitopes.

    PubMed Central

    Ohara, N; Matsuo, K; Yamaguchi, R; Yamazaki, A; Tasaka, H; Yamada, T

    1993-01-01

    The complete nucleotide sequence of alpha antigen secreted from Mycobacterium avium (A-alpha) was determined. The gene encodes 330 amino acids, including 40 amino acids for the signal peptide, followed by 290 amino acids for the mature protein with a molecular mass of 30,811 Da. This is the first sequence of A-alpha. Comparisons between A-alpha and alpha antigens of Mycobacterium leprae, Mycobacterium bovis BCG, and Mycobacterium kansasii showed highly homologous regions which suggested a conserved functional domain and two less-homologous regions. Serological analysis of recombinant A-alpha, expressed by a series of deletion constructs, indicated the possibility that A-alpha carries at least six B-cell epitopes. The three antigenic determinants were common to Mycobacterium tuberculosis, M. kansasii, and M. avium. The results also suggested the possibility that there are three species-specific epitopes. Images PMID:7681039

  1. Genomic Hallmarks of Genes Involved in Chromosomal Translocations in Hematological Cancer

    PubMed Central

    Shugay, Mikhail; Ortiz de Mendíbil, Iñigo; Vizmanos, José L.; Novo, Francisco J.

    2012-01-01

    Reciprocal chromosomal translocations (RCTs) leading to the formation of fusion genes are important drivers of hematological cancers. Although the general requirements for breakage and fusion are fairly well understood, quantitative support for a general mechanism of RCT formation is still lacking. The aim of this paper is to analyze available high-throughput datasets with computational and robust statistical methods, in order to identify genomic hallmarks of translocation partner genes (TPGs). Our results show that fusion genes are generally overexpressed due to increased promoter activity of 5′ TPGs and to more stable 3′-UTR regions of 3′ TPGs. Furthermore, expression profiling of 5′ TPGs and of interaction partners of 3′ TPGs indicates that these features can help to explain tissue specificity of hematological translocations. Analysis of protein domains retained in fusion proteins shows that the co-occurrence of specific domain combinations is non-random and that distinct functional classes of fusion proteins tend to be associated with different components of the gene fusion network. This indicates that the configuration of fusion proteins plays an important role in determining which 5′ and 3′ TPGs will combine in specific fusion genes. It is generally accepted that chromosomal proximity in the nucleus can explain the specific pairing of 5′ and 3′ TPGS and the recurrence of hematological translocations. Using recently available data for chromosomal contact probabilities (Hi-C) we show that TPGs are preferentially located in early replicated regions and occupy distinct clusters in the nucleus. However, our data suggest that, in general, nuclear position of TPGs in hematological cancers explains neither TPG pairing nor clinical frequency. Taken together, our results support a model in which genomic features related to regulation of expression and replication timing determine the set of candidate genes more likely to be translocated in

  2. Germline variation in complement genes and event-free survival in follicular and diffuse large B-cell lymphoma.

    PubMed

    Charbonneau, Bridget; Maurer, Matthew J; Fredericksen, Zachary S; Zent, Clive S; Link, Brian K; Novak, Anne J; Ansell, Stephen M; Weiner, George J; Wang, Alice H; Witzig, Thomas E; Dogan, Ahmet; Slager, Susan L; Habermann, Thomas M; Cerhan, James R

    2012-09-01

    The complement pathway plays a central role in innate immunity, and also functions as a regulator of the overall immune response. We evaluated whether polymorphisms in complement genes are associated with event-free survival (EFS) in follicular lymphoma (FL) and diffuse large B-cell (DLBCL) lymphoma. We genotyped 167 single nucleotide polymorphisms (SNPs) from 30 complement pathway genes in a prospective cohort study of newly diagnosed FL (N = 107) and DLBCL (N = 82) patients enrolled at the Mayo Clinic from 2002 to 2005. Cox regression was used to estimate hazard ratios (HRs) for individual SNPs with EFS, adjusting for FLIPI or IPI and treatment. For gene-level analyses, we used a principal components based gene-level test. In gene-level analyses for FL EFS, CFH (P = 0.009), CD55 (P = 0.006), CFHR5 (P = 0.01), C9 (P = 0.02), CFHR1 (P = 0.03), and CD46 (P = 0.03) were significant at P < 0.05, and these genes remained noteworthy after accounting for multiple testing (q < 0.15). SNPs in CFH, CFHR1, and CFHR5 showed stronger associations among patients receiving any rituximab, while SNPs from CD55 and CD46 showed stronger associations among patients who were observed. For DLBCL, only CLU (P = 0.001) and C7 (P = 0.03) were associated with EFS, but did not remain noteworthy after accounting for multiple testing (q>0.15). Genes from the regulators of complement activation (CFH, CD55, CFHR1, CFHR5, CD46) at 1q32-q32.1, along with C9, were associated with FL EFS after adjusting for clinical variables, and if replicated, these findings add further support for the role of host innate immunity in FL prognosis. PMID:22718493

  3. ZBTB32 is an early repressor of the class II transactivator and MHC class II gene expression during B cell differentiation to plasma cells1

    PubMed Central

    Yoon, Hyesuk; Scharer, Christopher D.; Majumder, Parimal; Davis, Carl W.; Butler, Royce; Zinzow-Kramer, Wendy; Skountzou, Ioanna; Koutsonanos, Dimitrios G.; Ahmed, Rafi; Boss, Jeremy M.

    2012-01-01

    The MHC class II transactivator (CIITA) and MHC class II expression is silenced during the differentiation of B cells to plasma cells. When B cell differentiation is carried out ex vivo, CIITA silencing occurs rapidly but the factors contributing to this event are not known. ZBTB32, also known as repressor of GATA3, was identified as an early repressor of CIITA in an ex vivo plasma cell differentiation model. ZBTB32 activity occurred at a time when Blimp-1, the regulator of plasma cell fate and suppressor of CIITA, was minimally induced. Ectopic expression of ZBTB32 suppressed CIITA and I-A gene expression in B cells. ShRNA depletion of ZBTB32 in a plasma cell line resulted in reexpression of CIITA and I-A. Compared to conditional Blimp-1 knock out and wild-type B cells, B cells from ZBTB32/ROG-knock out mice displayed delayed kinetics in silencing CIITA during ex vivo plasma cell differentiation. ZBTB32 was found to bind to the CIITA gene, suggesting that ZBTB32 directly regulates CIITA. Lastly, ZBTB32 and Blimp-1 coimmunoprecipitated, suggesting that the two repressors may ultimately function together to silence CIITA expression. These results introduce ZBTB32 as a novel regulator of MHC-II gene expression and a potential regulatory partner of Blimp-1 in repressing gene expression. PMID:22851713

  4. Rearrangements and deletions of immunoglobulin heavy chain genes in the double-producing B cell lymphoma I.29.

    PubMed Central

    Stavnezer, J; Marcu, K B; Sirlin, S; Alhadeff, B; Hammerling, U

    1982-01-01

    The B cell lymphoma I.29 consists of a mixture of cells expressing membrane-bound immunoglobulin M (IgM) (lambda) and IgA (lambda) of identical idiotypes. Whereas most of the cells express either IgM or IgA alone, 1 to 5% of the cells in this tumor express IgM and IgA simultaneously within the cytoplasm and on the cell membrane (R. Sitia et al., J. Immunol. 127:1388-1394, 1981; R. Sitia, unpublished data). When IgM+ cells are purified from the lymphoma and passaged in mice or cultured, a portion of the cells convert to IgA+. These properties suggest that some cells of the I.29 lymphoma may undergo immunoglobulin heavy chain switching, although it is also possible that the mixed population was derived by a prior switching event in a clone of cells. We performed Southern blotting experiments on genomic DNAs isolated from populations of I.29 cells containing variable proportions of IgM+ and IgA+ cells and on a number of cell lines derived from the lymphoma. The results were consistent with the deletion model for heavy chain switching, as the IgM+ cells contained rearranged mu genes and alpha genes in the germ line configuration on both the expressed and nonexpressed heavy chain chromosomes, whereas the IgA+ cells had deleted both mu genes and contained one rearranged and one germ line alpha gene. In addition, segments of DNA located within the intervening sequence 5' to the mu gene, near the site of switch recombination, were deleted from both the expressed and the nonexpressed chromosomes. Although mu genes were deleted from both chromosomes in the IgA+ cells, the sites of DNA recombination differed on the two chromosomes. On the expressed chromosome, Smu sequences were recombined with S alpha sequences, whereas on the nonexpressed chromosome, Smu sequences were recombined with S gamma 3 sequences. Images PMID:6290869

  5. Immunoglobulin heavy chain variable region gene repertoire and B-cell receptor stereotypes in Indian patients with chronic lymphocytic leukemia.

    PubMed

    Rani, Lata; Mathur, Nitin; Gogia, Ajay; Vishnubhatla, Sreenivas; Kumar, Lalit; Sharma, Atul; Dube, Divya; Kaur, Punit; Gupta, Ritu

    2016-10-01

    In chronic lymphocytic leukemia (CLL), the geographical bias in immunoglobulin heavy-chain variable (IGHV) gene usage lead us to analyze IGHV gene usage and B-cell receptor stereotypy in 195 patients from India. IGHV3, IGHV4, and IGHV1 families were the most frequently used. 20.5% sequences had stereotyped BCR and were clustered in 12 pre-defined and 6 novel subsets. Unmutated IGHV was significantly associated with reduced time to first treatment (p < 0.033) and poor overall survival (OS; p = 0.01). We observed a significant difference in OS between IGHV1, IGHV3, and IGHV4 family cases (p = 0.045) in early stage patients. Regarding subfamily usage, only IGHV1-69 expression was found to have statistically significant poor outcome (p = 0.017). Our results from the analysis of various molecular and clinical features suggest that the expression of specific IGHV gene influences the outcome in early stage CLL, and hence its assessment may be added to the clinical leukemia laboratory armamentarium. PMID:26942309

  6. Detection of Critical Genes Associated with Overall Survival (OS) and Progression-Free Survival (PFS) in Reconstructed Canine B-Cell Lymphoma Gene Regulatory Network (GRN).

    PubMed

    Zamani-Ahmadmahmudi, Mohamad; Najafi, Ali; Nassiri, Seyed Mahdi

    2016-01-01

    Canine B-cell lymphoma GRN was reconstructed from gene expression data in the STRING and MiMI databases. Critical genes of networks were identified and correlations of critical genes with overall survival (OS) and progression-free survival (PFS) were evaluated. Significant changes were detected in the expressions of GLUL, CD44, CD79A, ARF3, FOS, BLOC1S1, FYN, GZMB, GALNT3, IFI44, CD3G, GNG2, ESRP1, and CCND1 in the STRING network and of PECAM1, GLUL, CD44, GDI1, E2F4, TLE1, CD79A, UCP2, CCND1, FYN, RHOQ, BIN1, and A2M in the MiMI network. Final survival analysis highlighted CCND1 and FOS as genes with significant correlations with OS and PFS. PMID:26818715

  7. Epithelioid hemangioendotheliomas with TFE3 gene translocations are compossible with CAMTA1 gene rearrangements

    PubMed Central

    Lee, Seok Joo; Yang, Woo Ick; Chung, Woo-Suk; Kim, Sang Kyum

    2016-01-01

    Epithelioid hemangioendotheliomas (EHEs) are vascular tumors of intermediate malignancy that can undergo high-grade malignant transformations. EHEs have been characterized by tumor-specific WW domain-containing transcription regulator 1(WWTR1)-calmodulin-binding transcription activator 1 (CAMTA1) translocations, and recently, a novel Yes-associated protein 1 (YAP1)-transcription factor E3 (TFE3) gene fusion was identified in EHEs. In this study, we examined the expression levels of TFE3 and CAMTA1 via immunohistochemical staining and identified chromosomal alterations using fluorescence in situ hybridization (FISH) assays and RT-PCR tests. Although all of the EHEs were CAMTA1-positive in immunohistochemical staining, only five out of 18 EHEs (27.78%) positively expressed nuclear TFE3. The five TFE3-positive EHEs exhibited TFE3 gene break-apart in FISH assays. YAP1-TFE3 gene fusions were confirmed by RT-PCR. Interestingly, we observed CAMTA1 gene break-apart in all of the five TFE3-positive EHEs via FISH assays, and four out of the five TFE3-positive EHEs exhibited WWTR1-CAMTA1 gene fusions via RT-PCR. These results indicate that these two chromosomal alterations are not mutually exclusive but compossible in EHEs. Finally, primary tumor sites in TFE3-positive EHEs consistently contained single masses (P = 0.0359) with larger sizes (P = 0.0550) compared to TFE3-negative EHEs. Similar to previous reports, we observed well-formed vessels more frequently in TFE3-positive EHEs than in TFE3-negative EHEs (P = 0.0441). In addition, TFE3-positive EHEs tended to more frequently demonstrate high-grade nuclear atypia (P = 0.0654) and hypercellularity (P=0.0987) than TFE3-negative EHEs. Thus, we have now established two clinically distinct subgroups of EHEs: TFE3-positive and TFE3-negative EHEs. PMID:26840265

  8. Lack of Intraclonal Diversification in Ig Heavy and Light Chain V Region Genes Expressed by CD5+IgM+ Chronic Lymphocytic Leukemia B Cells: A Multiple Time Point Analysis1

    PubMed Central

    Schettino, Edward W.; Cerutti, Andrea; Chiorazzi, Nicholas; Casali, Paolo

    2015-01-01

    To analyze the modalities of clonal expansion of chronic lymphocytic leukemia (CLL) cells, we sequenced at multiple time points the V(D)J genes expressed by CD5+IgM+CLL B cells in three patients. All three V(D)J gene sequences were found to be point mutated. The mutation frequency in the Ig VH (3.96 × 10−2 and 2.41 × 10−2 change/bp) and Vκ and Vλ (6.67 × 10−2 and 1.74 × 10−2 change/bp) genes of two CLLs (1.19 and 1.32, respectively) was similar, and higher than that in the corresponding gene segments of the third CLL (1.69; 3.4 × 10−3 and 6.67 × 10−3 change/bp). In all three CLLs, there was no preferential representation of nucleotide changes yielding amino acid replacement (R mutations), nor was there any preferential segregation of R mutations within the Ig V gene complementarity-determining regions. In all three CLLs, the somatic mutations were all identical in multiple Ig VHDJH transcripts at any given time point, and were all conserved at multiple time points throughout a 2-yr period. The lack of concentration of R mutations in the complementarity-determining regions and the lack of intraclonal heterogeneity suggest that Ag may no longer be able to play a significant role in the clonal expansion of these cells. This conclusion would be strengthened further by the germline configuration of the bcl-1 and bcl-2 proto-oncogenes that are translocated in neoplastic B cells that display significant traces of intraclonal diversification and Ag-dependent selection, such as B-prolymphocytic leukemia and low grade follicular non-Hodgkin lymphoma. PMID:9551917

  9. Cooperation of six and eya in activation of their target genes through nuclear translocation of Eya.

    PubMed

    Ohto, H; Kamada, S; Tago, K; Tominaga, S I; Ozaki, H; Sato, S; Kawakami, K

    1999-10-01

    Drosophila sine oculis and eyes absent genes synergize in compound-eye formation. The murine homologues of these genes, Six and Eya, respectively, show overlapping expression patterns during development. We hypothesized that Six and Eya proteins cooperate to regulate their target genes. Cotransfection assays were performed with various combinations of Six and Eya to assess their effects on a potential natural target, myogenin promoter, and on a synthetic promoter, the thymidine kinase gene promoter fused to multimerized Six4 binding sites. A clear synergistic activation of these promoters was observed in certain combinations of Six and Eya. To investigate the molecular basis for the cooperation, we first examined the intracellular distribution of Six and Eya proteins in transfected COS7 cells. Coexpression of Six2, Six4, or Six5 induced nuclear translocation of Eya1, Eya2, and Eya3, which were otherwise distributed in the cytoplasm. In contrast, coexpression of Six3 did not result in nuclear localization of any Eya proteins. Six and Eya proteins were coimmunoprecipitated from nuclear extracts prepared from cotransfected COS7 cells and from rat liver. Six domain and homeodomain, two evolutionarily conserved domains among various Six proteins, were necessary and sufficient for the nuclear translocation of Eya. In contrast, the Eya domain, a conserved domain among Eya proteins, was not sufficient for the translocation. A specific interaction between the Six domain and homeodomain of Six4 and Eya2 was observed by yeast two-hybrid analysis. Our results suggest that transcription regulation of certain target genes by Six proteins requires cooperative interaction with Eya proteins: complex formation through direct interaction and nuclear translocation of Eya proteins. This implies that the synergistic action of Six and Eya is conserved in the mouse and is mediated through cooperative activation of their target genes. PMID:10490620

  10. X-linked intellectual disability related genes disrupted by balanced X-autosome translocations.

    PubMed

    Moysés-Oliveira, Mariana; Guilherme, Roberta Santos; Meloni, Vera Ayres; Di Battista, Adriana; de Mello, Claudia Berlim; Bragagnolo, Silvia; Moretti-Ferreira, Danilo; Kosyakova, Nadezda; Liehr, Thomas; Carvalheira, Gianna Maria; Melaragno, Maria Isabel

    2015-12-01

    Detailed molecular characterization of chromosomal rearrangements involving X-chromosome has been a key strategy in identifying X-linked intellectual disability-causing genes. We fine-mapped the breakpoints in four women with balanced X-autosome translocations and variable phenotypes, in order to investigate the corresponding genetic contribution to intellectual disability. We addressed the impact of the gene interruptions in transcription and discussed the consequences of their functional impairment in neurodevelopment. Three patients presented with cognitive impairment, reinforcing the association between the disrupted genes (TSPAN7-MRX58, KIAA2022-MRX98, and IL1RAPL1-MRX21/34) and intellectual disability. While gene expression analysis showed absence of TSPAN7 and KIAA2022 expression in the patients, the unexpected expression of IL1RAPL1 suggested a fusion transcript ZNF611-IL1RAPL1 under the control of the ZNF611 promoter, gene disrupted at the autosomal breakpoint. The X-chromosomal breakpoint definition in the fourth patient, a woman with normal intellectual abilities, revealed disruption of the ZDHHC15 gene (MRX91). The expression assays did not detect ZDHHC15 gene expression in the patient, thus questioning its involvement in intellectual disability. Revealing the disruption of an X-linked intellectual disability-related gene in patients with balanced X-autosome translocation is a useful tool for a better characterization of critical genes in neurodevelopment. © 2015 Wiley Periodicals, Inc. PMID:26290131

  11. Temporal gene expression profile of human precursor B leukemia cells induced by adhesion receptor: identification of pathways regulating B-cell survival.

    PubMed

    Astier, Anne Laurence; Xu, Ronghui; Svoboda, Marek; Hinds, Esther; Munoz, Olivier; de Beaumont, Rosalie; Crean, Colin Daniel; Gabig, Theodore; Freedman, Arnold Stephen

    2003-02-01

    The physical interactions between B cells and stromal cells from the lymphoid tissue microenvironment are critical to the survival of normal and malignant B cells. They are principally mediated by integrins expressed on B cells and counterreceptors on stromal cells. Specifically, alpha4beta1 integrin engagement rescues B cells from physiological or drug-induced apoptosis. Therefore, in order to understand the mechanisms by which integrins prevent apoptosis in leukemia B cells, we compared the temporal gene expression profiles induced by beta1-integrin ligation with fibronectin (Fn) or adhesion by poly-L-Lysine in serum-starved precursor B leukemia cells. Among the 38 selected differentially expressed genes, 6 genes involved in adhesion (VAV2, EPB41L1, CORO1A), proliferation (FRAP1, CCT4), and intercellular communication (GJB3) were validated by real-time quantitative polymerase chain reaction (RT-Q-PCR). Gene expression modulation could also be validated at the protein level for 5 other genes. We show that integrin stimulation up-regulated FBI-1 expression but inhibited CD79a, Requiem, c-Fos, and caspase 7 induction when the cells underwent apoptosis. We further demonstrate that Fn stimulation also inhibits caspase 3 activation but increases XIAP and survivin expression. Moreover, integrin stimulation also prevents caspase activation induced by doxorubicin. Therefore, we identified genes modulated by adhesion of human precursor B leukemia cells that regulate proliferation and apoptosis, highlighting new pathways that might provide insights into future therapy aiming at targeting apoptosis of leukemia cells. PMID:12393420

  12. Ectopic T Cell Receptor-α Locus Control Region Activity in B Cells Is Suppressed by Direct Linkage to Two Flanking Genes at Once

    PubMed Central

    Andino, Blanca E.; Harrow, Faith; Erhard, Karl F.; Kovalovsky, Damian; Sant'Angelo, Derek B.; Ortiz, Benjamin D.

    2010-01-01

    The molecular mechanisms regulating the activity of the TCRα gene are required for the production of the circulating T cell repertoire. Elements of the mouse TCRα locus control region (LCR) play a role in these processes. We previously reported that TCRα LCR DNA supports a gene expression pattern that mimics proper thymus-stage, TCRα gene-like developmental regulation. It also produces transcription of linked reporter genes in peripheral T cells. However, TCRα LCR-driven transgenes display ectopic transcription in B cells in multiple reporter gene systems. The reasons for this important deviation from the normal TCRα gene regulation pattern are unclear. In its natural locus, two genes flank the TCRα LCR, TCRα (upstream) and Dad1 (downstream). We investigated the significance of this gene arrangement to TCRα LCR activity by examining transgenic mice bearing a construct where the LCR was flanked by two separate reporter genes. Surprisingly, the presence of a second, distinct, reporter gene downstream of the LCR virtually eliminated the ectopic B cell expression of the upstream reporter observed in earlier studies. Downstream reporter gene activity was unaffected by the presence of a second gene upstream of the LCR. Our findings indicate that a gene arrangement in which the TCRα LCR is flanked by two distinct transcription units helps to restrict its activity, selectively, on its 5′-flanking gene, the natural TCRα gene position with respect to the LCR. Consistent with these findings, a TCRα/Dad1 locus bacterial artificial chromosome dual-reporter construct did not display the ectopic upstream (TCRα) reporter expression in B cells previously reported for single TCRα transgenes. PMID:21124935

  13. Expression of human {beta}-defensin-2 gene induced by CpG-DNA in human B cells

    SciTech Connect

    Han, Su Ho; Kim, Young-Eun; Park, Jeong-A; Park, Jae-Bong; Kim, Yong-Sun; Lee, Younghee; Choi, Ihn-Geun; Kwon, Hyung-Joo

    2009-11-20

    Defensins have a broad range of antimicrobial activity against bacteria, fungi, and viruses. The expression of human {beta}-defensin-2 (hBD-2) is prevalently observed in epithelial cells and is induced by bacterial infection. Here, we have shown that the expression of the hBD-2 gene and release of hBD-2 protein into the medium is up-regulated in response to CpG-DNA in human B cell line RPMI 8226. The induction of hBD-2 was dependent on CG sequence and phosphorothioate backbone-modification. This was also confirmed in primary human lymphocytes. To shed light on the molecular mechanism involved in hBD-2 induction by CpG-DNA, we examined the contribution of the NF-{kappa}B signaling pathway in RPMI 8226 cells. Suppression of MyD88 function and inhibition of NF-{kappa}B nuclear localization blocked hBD-2 induction. The NF-{kappa}B pathway inhibitors also abolished hBD-2 induction. These results may contribute to a better understanding on the therapeutic effects of CpG-DNA against infectious diseases.

  14. Genes within the Idd5 and Idd9/11 Diabetes Susceptibility Loci affect the Pathogenic Activity of B-cells in NOD mice1

    PubMed Central

    Silveira, Pablo A.; Chapman, Harold D.; Stolp, Jessica; Johnson, Ellis; Cox, S. Lewis; Hunter, Kara; Wicker, Linda S.; Serreze, David V.

    2010-01-01

    Autoreactive T-cells clearly mediate the pancreatic β cell destruction causing Type 1 diabetes (T1D)2. However, studies in NOD mice indicate that B-cells also contribute to pathogenesis since their ablation by introduction of an Igμnull mutation elicits T1D resistance. T1D susceptibility is restored in NOD.Igμnull mice that are irradiated and reconstituted with syngeneic bone marrow (SBM) plus NOD B-cells, but not SBM alone. Thus, we hypothesized some non-MHC T1D susceptibility (Idd) genes contribute to disease by allowing development of pathogenic B-cells. Supporting this hypothesis was the finding, that unlike those from NOD donors, engraftment with B-cells from H2g7 MHC matched, but T1D-resistant, NOR mice failed to restore full disease susceptibility in NOD.Igμnull recipients. T1D resistance in NOR mice is mainly encoded within the Idd13, Idd5.2 and Idd9/11 loci. B-cells from NOD congenic stocks containing Idd9/11 or Idd5.1/5.2 resistance loci respectively derived from the NOR or C57BL/10 strains were characterized by suppressed diabetogenic activity. Immature autoreactive B-cells in NOD mice have an impaired ability to be rendered anergic upon antigen engagement. Interestingly, both Idd5.1/5.2 and Idd9/11 resistance loci were found to normalize this B-cell tolerogenic process, which may represent a mechanism contributing to the inhibition of T1D. PMID:17082619

  15. Pretransplant Mobilization with Granulocyte Colony-Stimulating Factor Improves B-Cell Reconstitution by Lentiviral Vector Gene Therapy in SCID-X1 Mice

    PubMed Central

    Huston, Marshall W.; Riegman, Adriaan R.A.; Yadak, Rana; van Helsdingen, Yvette; de Boer, Helen; van Til, Niek P.

    2014-01-01

    Abstract Hematopoietic stem cell (HSC) gene therapy is a demonstrated effective treatment for X-linked severe combined immunodeficiency (SCID-X1), but B-cell reconstitution and function has been deficient in many of the gene therapy treated patients. Cytoreductive preconditioning is known to improve HSC engraftment, but in general it is not considered for SCID-X1 since the poor health of most of these patients at diagnosis and the risk of toxicity preclude the conditioning used in standard bone marrow stem cell transplantation. We hypothesized that mobilization of HSC by granulocyte colony-stimulating factor (G-CSF) should create temporary space in bone marrow niches to improve engraftment and thereby B-cell reconstitution. In the present pilot study supplementing our earlier preclinical evaluation (Huston et al., 2011), Il2rg−/− mice pretreated with G-CSF were transplanted with wild-type lineage negative (Lin−) cells or Il2rg−/− Lin− cells transduced with therapeutic IL2RG lentiviral vectors. Mice were monitored for reconstitution of lymphocyte populations, level of donor cell chimerism, and antibody responses as compared to 2 Gy total body irradiation (TBI), previously found effective in promoting B-cell reconstitution. The results demonstrate that G-CSF promotes B-cell reconstitution similar to low-dose TBI and provides proof of principle for an alternative approach to improve efficacy of gene therapy in SCID patients without adverse effects associated with cytoreductive conditioning. PMID:25222508

  16. Colorimetric In Situ Hybridization Identifies MYC Gene Signal Clusters Correlating With Increased Copy Number, mRNA, and Protein in Diffuse Large B-cell Lymphoma

    PubMed Central

    Valentino, Carlo; Kendrick, Samantha; Johnson, Nathalie; Gascoyne, Randy; Chan, Wing C.; Weisenburger, Dennis; Braziel, Rita; Cook, James R.; Tubbs, Raymond; Campo, Elias; Rosenwald, Andreas; Ott, German; Delabie, Jan; Jaffe, Elaine; Zhang, Wenjun; Brunhoeber, Patrick; Nitta, Hiro; Grogan, Tom; Rimsza, Lisa

    2014-01-01

    Abnormalities of the MYC oncogene on chromosome 8 are characteristic of Burkitt lymphoma and other aggressive B-cell lymphomas, including diffuse large B-cell lymphoma (DLBCL). We recently described a colorimetric in situ hybridization (CISH) method for detecting extra copies of the MYC gene in DLBCL and the frequent occurrence of excess copies of discrete MYC signals in the context of diploidy or polyploidy of chromosome 8, which correlated with increased mRNA signals. We further observed enlarged MYC signals, which were counted as a single gene copy but, by their dimension and unusual shape, likely consisted of “clusters” of MYC genes. In this study, we sought to further characterize these clusters of MYC signals by determining whether the presence of these correlated with other genetic features, mRNA levels, protein, and overall survival. We found that MYC clusters correlated with an abnormal MYC locus and with increased mRNA. MYC mRNA correlated with protein levels, and both increased mRNA and protein correlated with poorer overall survival. MYC clusters were seen in both the germinal center and activated B-cell subtypes of DLBCL. Clusters of MYC signals may be an underappreciated, but clinically important, feature of aggressive B-cell lymphomas with potential prognostic and therapeutic relevance. PMID:23355209

  17. Pretransplant mobilization with granulocyte colony-stimulating factor improves B-cell reconstitution by lentiviral vector gene therapy in SCID-X1 mice.

    PubMed

    Huston, Marshall W; Riegman, Adriaan R A; Yadak, Rana; van Helsdingen, Yvette; de Boer, Helen; van Til, Niek P; Wagemaker, Gerard

    2014-10-01

    Hematopoietic stem cell (HSC) gene therapy is a demonstrated effective treatment for X-linked severe combined immunodeficiency (SCID-X1), but B-cell reconstitution and function has been deficient in many of the gene therapy treated patients. Cytoreductive preconditioning is known to improve HSC engraftment, but in general it is not considered for SCID-X1 since the poor health of most of these patients at diagnosis and the risk of toxicity preclude the conditioning used in standard bone marrow stem cell transplantation. We hypothesized that mobilization of HSC by granulocyte colony-stimulating factor (G-CSF) should create temporary space in bone marrow niches to improve engraftment and thereby B-cell reconstitution. In the present pilot study supplementing our earlier preclinical evaluation (Huston et al., 2011), Il2rg(-/-) mice pretreated with G-CSF were transplanted with wild-type lineage negative (Lin(-)) cells or Il2rg(-/-) Lin(-) cells transduced with therapeutic IL2RG lentiviral vectors. Mice were monitored for reconstitution of lymphocyte populations, level of donor cell chimerism, and antibody responses as compared to 2 Gy total body irradiation (TBI), previously found effective in promoting B-cell reconstitution. The results demonstrate that G-CSF promotes B-cell reconstitution similar to low-dose TBI and provides proof of principle for an alternative approach to improve efficacy of gene therapy in SCID patients without adverse effects associated with cytoreductive conditioning. PMID:25222508

  18. Next-Generation Sequencing of Apoptotic DNA Breakpoints Reveals Association with Actively Transcribed Genes and Gene Translocations

    PubMed Central

    Fullwood, Melissa J.; Lee, Joanne; Lin, Lifang; Li, Guoliang; Huss, Mikael; Ng, Patrick; Sung, Wing-Kin; Shenolikar, Shirish

    2011-01-01

    DNA fragmentation is a well-recognized hallmark of apoptosis. However, the precise DNA sequences cleaved during apoptosis triggered by distinct mechanisms remain unclear. We used next-generation sequencing of DNA fragments generated in Actinomycin D-treated human HL-60 leukemic cells to generate a high-throughput, global map of apoptotic DNA breakpoints. These data highlighted that DNA breaks are non-random and show a significant association with active genes and open chromatin regions. We noted that transcription factor binding sites were also enriched within a fraction of the apoptotic breakpoints. Interestingly, extensive apoptotic cleavage was noted within genes that are frequently translocated in human cancers. We speculate that the non-random fragmentation of DNA during apoptosis may contribute to gene translocations and the development of human cancers. PMID:22087219

  19. MOZ regulates B-cell progenitors and, consequently, Moz haploinsufficiency dramatically retards MYC-induced lymphoma development.

    PubMed

    Sheikh, Bilal N; Lee, Stanley C W; El-Saafin, Farrah; Vanyai, Hannah K; Hu, Yifang; Pang, Swee Heng Milon; Grabow, Stephanie; Strasser, Andreas; Nutt, Stephen L; Alexander, Warren S; Smyth, Gordon K; Voss, Anne K; Thomas, Tim

    2015-03-19

    The histone acetyltransferase MOZ (MYST3, KAT6A) is the target of recurrent chromosomal translocations fusing the MOZ gene to CBP, p300, NCOA3, or TIF2 in particularly aggressive cases of acute myeloid leukemia. In this study, we report the role of wild-type MOZ in regulating B-cell progenitor proliferation and hematopoietic malignancy. In the Eμ-Myc model of aggressive pre-B/B-cell lymphoma, the loss of just one allele of Moz increased the median survival of mice by 3.9-fold. MOZ was required to maintain the proliferative capacity of B-cell progenitors, even in the presence of c-MYC overexpression, by directly maintaining the transcriptional activity of genes required for normal B-cell development. Hence, B-cell progenitor numbers were significantly reduced in Moz haploinsufficient animals. Interestingly, we find a significant overlap in genes regulated by MOZ, mixed lineage leukemia 1, and mixed lineage leukemia 1 cofactor menin. This includes Meis1, a TALE class homeobox transcription factor required for B-cell development, characteristically upregulated as a result of MLL1 translocations in leukemia. We demonstrate that MOZ localizes to the Meis1 locus in pre-B-cells and maintains Meis1 expression. Our results suggest that even partial inhibition of MOZ may reduce the proliferative capacity of MEIS1, and HOX-driven lymphoma and leukemia cells. PMID:25605372

  20. Genes Translocated into the Plastid Inverted Repeat Show Decelerated Substitution Rates and Elevated GC Content.

    PubMed

    Li, Fay-Wei; Kuo, Li-Yaung; Pryer, Kathleen M; Rothfels, Carl J

    2016-01-01

    Plant chloroplast genomes (plastomes) are characterized by an inverted repeat (IR) region and two larger single copy (SC) regions. Patterns of molecular evolution in the IR and SC regions differ, most notably by a reduced rate of nucleotide substitution in the IR compared to the SC region. In addition, the organization and structure of plastomes is fluid, and rearrangements through time have repeatedly shuffled genes into and out of the IR, providing recurrent natural experiments on how chloroplast genome structure can impact rates and patterns of molecular evolution. Here we examine four loci (psbA, ycf2, rps7, and rps12 exon 2-3) that were translocated from the SC into the IR during fern evolution. We use a model-based method, within a phylogenetic context, to test for substitution rate shifts. All four loci show a significant, 2- to 3-fold deceleration in their substitution rate following translocation into the IR, a phenomenon not observed in any other, nontranslocated plastid genes. Also, we show that after translocation, the GC content of the third codon position and of the noncoding regions is significantly increased, implying that gene conversion within the IR is GC-biased. Taken together, our results suggest that the IR region not only reduces substitution rates, but also impacts nucleotide composition. This finding highlights a potential vulnerability of correlating substitution rate heterogeneity with organismal life history traits without knowledge of the underlying genome structure. PMID:27401175

  1. Genes Translocated into the Plastid Inverted Repeat Show Decelerated Substitution Rates and Elevated GC Content

    PubMed Central

    Li, Fay-Wei; Kuo, Li-Yaung; Pryer, Kathleen M.; Rothfels, Carl J.

    2016-01-01

    Plant chloroplast genomes (plastomes) are characterized by an inverted repeat (IR) region and two larger single copy (SC) regions. Patterns of molecular evolution in the IR and SC regions differ, most notably by a reduced rate of nucleotide substitution in the IR compared to the SC region. In addition, the organization and structure of plastomes is fluid, and rearrangements through time have repeatedly shuffled genes into and out of the IR, providing recurrent natural experiments on how chloroplast genome structure can impact rates and patterns of molecular evolution. Here we examine four loci (psbA, ycf2, rps7, and rps12 exon 2–3) that were translocated from the SC into the IR during fern evolution. We use a model-based method, within a phylogenetic context, to test for substitution rate shifts. All four loci show a significant, 2- to 3-fold deceleration in their substitution rate following translocation into the IR, a phenomenon not observed in any other, nontranslocated plastid genes. Also, we show that after translocation, the GC content of the third codon position and of the noncoding regions is significantly increased, implying that gene conversion within the IR is GC-biased. Taken together, our results suggest that the IR region not only reduces substitution rates, but also impacts nucleotide composition. This finding highlights a potential vulnerability of correlating substitution rate heterogeneity with organismal life history traits without knowledge of the underlying genome structure. PMID:27401175

  2. Variant translocation of the bcl-2 gene to immunoglobulin. lambda. light chain gene in chronic lymphocytic leukemia

    SciTech Connect

    Adachi, M.; Cossman, J.; Longo, D.; Croce, C.M.; Tsujimoto, Y. )

    1989-04-01

    The bcl-2 gene has been identified as a gene directly involved in the consistent chromosome translocation t(14;18), which is found in {approx} 90% of human follicular lymphoma cases, and is a prime candidate for the oncogene playing a crucial role in follicular lymphomagenesis. In this paper, the authors describe a case of chronic lymphocytic leukemia showing the juxtaposition of the bcl-2 gene on chromosome 18 to immunoglobulin {lambda} light chain (Ig{lambda}) gene on chromosome 22 in a head-to-head configuration. Sequencing analysis of the joining site of the bcl-2 gene and Ig{lambda} gene has shown that the breakpoint is within the 5{prime} flanking region of the bcl-2 gene and about 2.2 kilobases 5{prime} to the joining segment of Ig{lambda} locus in a germ-line configuration. The extranucleotide, commonly appearing at the joining site of the t(14;18) translocation involving the IgH locus, is absent from the joining site of bcl-2 and Ig{lambda}. The lack of extranucleotide suggests that the juxtaposition of the bcl-2 and Ig{lambda} genes occurred during physiological rearrangement of the Ig{lambda} gene since it has been shown that the rearrangement of the Ig{lambda} locus is not accompanied by extranucleotides.

  3. Inactivation of p16INK4a/CDKN2A gene may be a diagnostic feature of large B cell lymphoma leg type among cutaneous B cell lymphomas.

    PubMed

    Belaud-Rotureau, Marc-Antoine; Marietta, Virginie; Vergier, Beatrice; Mainhaguiet, Guillaume; Turmo, Michelle; Idrissi, Yamina; Ferrer, Jacky; Beylot-Barry, Marie; Dubus, Pierre; Merlio, Jean-Philippe

    2008-06-01

    The World Health Organization-European Organization for Research and Treatment of Cancer has individualized three main categories among the primary cutaneous B cell lymphoma (PCBCL): leg-type primary cutaneous large B cell lymphoma (PCLBCL leg type), primary cutaneous follicle center lymphoma (PCFCL), and primary cutaneous marginal zone lymphoma (PCMZL). The genetic features of 21 PCBCL cases (six PCLBCL leg type four PCFCL large cells, seven PCFCL small cells, and four PCMZL) were investigated by comparative genomic hybridization (CGH array). Fluorescent in situ hybridization (FISH) analysis was performed to confirm CGH array data and to detect lymphoma-associated gene rearrangements. p14(ARF)/p16(INK4a) CDKN2A gene quantification, methylation analysis, and immunohistochemical detection were also performed. CGH array showed a higher number of recurrent genetic imbalances in PCLBCL leg type (mean 62) than in PCFCL large cells (mean 34). PCFCL small cells and PCMZL exhibited fewer chromosomal alterations (mean 24 and 9). FISH analysis provided concordant results with CGH array data in 97% (98 of 101) assays and demonstrated a t(8;14)(q24;q32) in two of six PCLBCL leg type. Recurrent deletions in 9p21 (p14(ARF)/p16(INK4a)CDKN2A) were a constant finding in PCLBCL leg type (six of six). Conversely, PCFCL large cells exhibited recurrent 1p36 deletions (four of four) without deletion in 9p21 (zero of four). The diagnostic and prognostic impact of the p16(INK4a)CDKN2A gene status in PCBCL should therefore be confirmed on a larger series. PMID:18311490

  4. Fixed nuclei as alternative template of BIOMED-2 multiplex polymerase chain reaction for immunoglobulin gene clonality testing in B-cell malignancies

    PubMed Central

    Tang, Yuan; Chen, Jie; Wang, Jianchao; Zheng, Ke; Liao, Dianying; Liao, Xiaomei; Liu, Weiping; Wang, Lin

    2015-01-01

    Evaluation of immunoglobulin (Ig) gene rearrangements with BIOMED-2 multiplex PCR has become a standard detection of clonality in mature B cell malignancies. Conventionally, this method is relatively labor-intensive and time-consuming, as it requires DNA isolation from bone marrow aspirates (BM) or peripheral blood (PB) in patients with BM or PB involvement. On the other hand, fluorescence in situ hybridization (FISH) is routinely used as genetic screening in B cell malignancies, but the surplus fixed nuclei initially prepared for FISH usually turn useless afterwards. We sought to use these surplus nuclei after FISH as a template to perform PCR-based Ig gene clonality testing. Templates of 12 patients with mature B cell malignancies, which consisted of both DNA isolated with commercial DNA isolation kit from fresh BM or PB (DNA group) and the fixed nuclei initially prepared for FISH (nuclei group) from the same individuals, were subjected to PCR with BIOMED-2 primer sets for immunoglobulin heavy chain and kappa light chain under recommended conditions. Our result, for the first time, showed a high consistency between the two groups in detecting B cell clonality, which indicates that nuclei for FISH can function as a reliable template comparable to fresh tissue-isolated DNA in PCR based Ig clonality testing. This offers a simple, rapid and more economical alternative to standard Ig testing based on regular DNA. PMID:27069754

  5. Early gene expression changes by Epstein-Barr virus infection of B-cells indicate CDKs and survivin as therapeutic targets for post-transplant lymphoproliferative diseases.

    PubMed

    Bernasconi, Michele; Ueda, Seigo; Krukowski, Patricia; Bornhauser, Beat C; Ladell, Kristin; Dorner, Marcus; Sigrist, Juerg A; Campidelli, Cristina; Aslandogmus, Roberta; Alessi, Davide; Berger, Christoph; Pileri, Stefano A; Speck, Roberto F; Nadal, David

    2013-11-15

    Lymphoproliferative diseases (LPDs) associated with Epstein-Barr virus (EBV) infection cause significant morbidity and mortality in bone marrow and solid organ transplant recipients. To gain insight into LPD pathogenesis and to identify potential effective therapeutic approaches, we investigated early molecular events leading to B-cell transformation by gene expression profiling of EBV-infected B-cells from tonsils by Affymetrix microarray 72 hr postinfection when the B-cells hyperproliferation phase starts. Cell cycle and apoptosis were the most significantly affected pathways and enriched gene sets. In particular, we found significantly increased expression of cyclin-dependent kinase (CDK)1 and CCNB1 (cyclin B1) and of one of their downstream targets BIRC5 (survivin). Importantly, the strong upregulation of the antiapoptotic protein survivin was confirmed in lymphoblastoid cell lines (LCLs) and 71% of EBV-positive post-transplant EBV-LPD lesions scored positive for survivin. The validity of early transforming events for the identification of therapeutic targets for EBV-LPD was confirmed by the marked antiproliferative effect of the CDK inhibitor flavopiridol on LCLs and by the strong induction of apoptosis by survivin inhibition with YM155 or terameprocol. Our results suggest that targeting of CDKs and/or survivin in post-transplant EBV-LPD by specific inhibitors might be an important approach to control and eliminate EBV-transformed B-cells that should be further considered. PMID:23640782

  6. Identification and validation of a two-gene expression index for subtype classification and prognosis in Diffuse Large B-Cell Lymphoma.

    PubMed

    Xu, Qinghua; Tan, Cong; Ni, Shujuan; Wang, Qifeng; Wu, Fei; Liu, Fang; Ye, Xun; Meng, Xia; Sheng, Weiqi; Du, Xiang

    2015-01-01

    The division of diffuse large B-cell lymphoma (DLBCL) into germinal center B-cell-like (GCB) and activated B-cell-like (ABC) subtypes based on gene expression profiling has proved to be a landmark in understanding the pathogenesis of the disease. This study aims to identify a novel biomarker to facilitate the translation of research into clinical practice. Using a training set of 350 patients, we identified a two-gene expression signature, "LIMD1-MYBL1 Index", which is significantly associated with cell-of-origin subtypes and clinical outcome. This two-gene index was further validated in two additional dataset. Tested against the gold standard method, the LIMD1-MYBL1 Index achieved 81% sensitivity, 89% specificity for ABC group and 81% sensitivity, 87% specificity for GCB group. The ABC group had significantly worse overall survival than the GCB group (hazard ratio = 3.5, P = 0.01). Furthermore, the performance of LIMD1-MYBL1 Index was satisfactory compared with common immunohistochemical algorithms. Thus, the LIMD1-MYBL1 Index had considerable clinical value for DLBCL subtype classification and prognosis. Our results might prompt the further development of this two-gene index to a simple assay amenable to routine clinical practice. PMID:25940947

  7. A novel heterozygous point mutation in the p63 gene in a patient with ectodermal dysplasia associated with B-cell leukemia.

    PubMed

    Cabanillas, Miguel; Torrelo, Antonio; Monteagudo, Benigno; Suárez-Amor, Oscar; Ramírez-Santos, Aquilina; González-Vilas, Daniel; de las Heras, Cristina

    2011-01-01

    We report a 7-year-old boy with a past medical history of B-cell leukemia with dysmorphic features, including cleft palate, hypotrichosis with trichorrhexis nodosa, hypohidrosis, oligodontia, and ridging of nails. A heterozygous germline mutation, Ala111Thr, in the p63 gene was detected in the boy and in his mother, who had no clinical expression. This case emphasizes the spectrum of different phenotypical manifestations of mutations in the p63 gene and underlines the possible role of this gene as a tumor suppressor. PMID:21906144

  8. Characterization and functional studies of forkhead box protein 3(-) lymphocyte activation gene 3(+) CD4(+) regulatory T cells induced by mucosal B cells.

    PubMed

    Chu, K-H; Chiang, B-L

    2015-05-01

    The induction of mucosal tolerance has been demonstrated to be an effective therapeutic approach for the treatment of allergic diseases. Our previous study demonstrated that Peyer's patch B cells could convert naive T cells into regulatory T cells (so-called Treg -of-B(P) cells); however, it is important to characterize this particular subset of Treg -of-B cells for future applications. This study aimed to investigate the role of lymphocyte activating gene 3 (LAG3) in mediating the regulatory function of Treg -of-B(P) cells induced by mucosal follicular B (FOB) cells. Microarray analysis and real-time polymerase chain reaction (PCR) were used to assess the gene expression pattern of Treg -of-B(P) cells. To evaluate the role of LAG3, the in-vitro suppressive function and the alleviation of airway inflammation in a murine model of asthma was assessed. Our data indicated that FOB cells isolated from Peyer's patches had the ability to generate more suppressive Treg -of-B cells with LAG3 expression, compared with CD23(lo) CD21(lo) B cells. LAG3 is not only a marker for Treg -of-B(P) cells, but also participate in the suppressive ability. Moreover, CCR4 and CCR6 could be detected on the LAG3(+) , not LAG3(-) , Treg -of-B(P) cells and would help cells homing to allergic lung. In the murine model of asthma, the adoptive transfer of LAG3(+) Treg -of-B(P) cells was able to sufficiently suppress T helper type 2 (Th2) cytokine production, eosinophil infiltration and alleviate asthmatic symptoms. LAG3 was expressed in Treg -of-B(P) cells and was also involved in the function of Treg -of-B(P) cells. In the future, this particular subset of Treg -of-B cells might be used to alleviate allergic symptoms. PMID:25581421

  9. ZPLD1 gene is disrupted in a patient with balanced translocation that exhibits cerebral cavernous malformations.

    PubMed

    Gianfrancesco, F; Esposito, T; Penco, S; Maglione, V; Liquori, C L; Patrosso, M C; Zuffardi, O; Ciccodicola, A; Marchuk, D A; Squitieri, F

    2008-08-13

    The past few years have seen rapid advances in our understanding of the genetics and molecular biology of cerebral cavernous malformations (CCM) with the identification of the CCM1, CCM2, and CCM3 genes. Recently, we have recruited a patient with an X/3 balanced translocation that exhibits CCM. By fluorescent in situ hybridization analysis, sequence analysis tools and database mining procedures, we refined the critical region to an interval of 200-kb and identified the interrupted ZPLD1 gene. We detected that the mRNA expression level of ZPLD1 gene is consistently decreased 2.5-fold versus control (P=0.0006) with allelic loss of gene expression suggesting that this protein may be part of the complex signaling pathway implicated in CCM formation. PMID:18632209

  10. Stimulation of kappa light-chain gene rearrangement by the immunoglobulin mu heavy chain in a pre-B-cell line.

    PubMed Central

    Shapiro, A M; Schlissel, M S; Baltimore, D; DeFranco, A L

    1993-01-01

    B-lymphocyte development exhibits a characteristic order of immunoglobulin gene rearrangements. Previous work has led to the hypothesis that expression of the immunoglobulin mu heavy chain induces rearrangement activity at the kappa light-chain locus. To examine this issue in more detail, we isolated five matched pairs of mu- and endogenously rearranged mu+ cell lines from the Abelson murine leukemia virus-transformed pro-B-cell line K.40. In four of the five mu+ cell lines, substantial expression of mu protein on the cell surface was observed, and this correlated with an enhanced frequency of kappa immunoglobulin gene rearrangement compared with that in the matched mu- cell lines. This increased kappa gene rearrangement frequency was not due to a general increase in the amount of V(D)J recombinase activity in the mu+ cells. Consistently, introduction of a functionally rearranged mu gene into one of the mu- pre-B-cell lines resulted in a fivefold increase in kappa gene rearrangements. In three of the four clonally matched pairs with increased kappa gene rearrangements, the increase in rearrangement frequency was not accompanied by a significant increase in germ line transcripts from the C kappa locus. However, in the fourth pair, K.40D, we observed an increase in germ line transcription of the kappa locus after expression of mu protein encoded by either an endogenously rearranged or a transfected functional heavy-chain allele. In these cells, the amount of the germ line C kappa transcript correlated with the measured frequency of rearranged kappa genes. These results support a regulated model of B-cell development in which mu protein expression in some way targets the V(D)J recombinase to the kappa gene locus. Images PMID:8355709

  11. HACE1 is a putative tumor suppressor gene in B-cell lymphomagenesis and is down-regulated by both deletion and epigenetic alterations.

    PubMed

    Bouzelfen, Abdelilah; Alcantara, Marion; Kora, Hafid; Picquenot, Jean-Michel; Bertrand, Philippe; Cornic, Marie; Mareschal, Sylvain; Bohers, Elodie; Maingonnat, Catherine; Ruminy, Philippe; Adriouch, Sahil; Boyer, Olivier; Dubois, Sydney; Bastard, Christian; Tilly, Hervé; Latouche, Jean-Baptiste; Jardin, Fabrice

    2016-06-01

    HECT domain and ankyrin repeat containing E3 ubiquitin protein ligase 1, HACE1, located on chromosome 6q, encodes an E3 ubiquitin ligase and is downregulated in many human tumors. Here, we report HACE1 as a candidate tumor suppressor gene down-regulated by a combination of deletion and epigenetic mechanisms. HACE1 deletions were observed in 40% of B-cell lymphoma tumors. Hypermethylation of the HACE1 promoter CpG177 island was found in 60% (68/111) of cases and in all tested B-cell lymphoma lines. Using HDAC inhibitors, we observed predominantly inactive chromatin conformation (methylated H3 histones H3K9me2) in HACE1 gene promoter region. We demonstrated in Ramos and Raji cells that down-regulation of HACE1 expression was associated with a significant decrease in apoptosis and an accumulation of cells in the S and G2/M phases. Our experiments indicate that HACE1 can act as a haploinsufficient tumor suppressor gene in most B-cell lymphomas and can be downregulated by deacetylation of its promoter region chromatin, which makes HACE1 a potential target for HDAC inhibitors. PMID:27107267

  12. Characterization of a gene which is disrupted by a balanced translocation in a meningioma

    SciTech Connect

    Zwarthoff, E.C.; Riegman, P.H.J.; Groen, N.A.

    1994-09-01

    Meningiomas are tumors of the central nervous system in which loss of heterozygosity for markers on the long arm of chromosome 22 is a frequent event. We have previously described a balanced t(4;22)(p16;q11), which was observed in meningioma 32. We have cloned a gene (MN1), which is disrupted by the translocation breakpoint. The gene spans about 70 kb on chromosome 22q11. A total of 7.5 kb of overlapping cDNA clones were isolated. A comparison of the cDNA clones with the genomic cosmid contig from this region shows that the MN1 gene consists of at least two large exons of approximately 4.7 kb and 2.8 kb. Sequence analysis of the MN1 cDNA revealed two open reading frames (ORFs) of 1 and 2.3 kb which are separated by a region of approximately 1 kb with stop codons in all reading frames. The second ORF is disrupted by the t(4;22) translocation. In the region between the ORFs 2 CAG repeats have been found. These repeats do not display length variation in meningiomas. There is no obvious homology in the nucleotide and putative amino acid sequences with other known genes. The MN1 gene is highly conserved in evolution. The approximately 8 kb MN1 mRNA is ubiquitously expressed with an alternative 4.5 kb transcript in skeletal muscle. In meningiomas the expression pattern is very variable and a 6.5 kb transcript is sometimes also observed. Some, including meningioma 32, show no expression suggesting that the gene could function as a tumor suppressor gene for meningeal cells. Paradoxically, however, a very high expression is sometimes also observed in meningiomas.

  13. Rgs13 Constrains Early B Cell Responses and Limits Germinal Center Sizes

    PubMed Central

    Hwang, Il-Young; Hwang, Kyung-Sun; Park, Chung; Harrison, Kathleen A.; Kehrl, John H.

    2013-01-01

    Germinal centers (GCs) are microanatomic structures that develop in secondary lymphoid organs in response to antigenic stimulation. Within GCs B cells clonally expand and their immunoglobulin genes undergo class switch recombination and somatic hypermutation. Transcriptional profiling has identified a number of genes that are prominently expressed in GC B cells. Among them is Rgs13, which encodes an RGS protein with a dual function. Its canonical function is to accelerate the intrinsic GTPase activity of heterotrimeric G-protein α subunits at the plasma membrane, thereby limiting heterotrimeric G-protein signaling. A unique, non-canonical function of RGS13 occurs following translocation to the nucleus, where it represses CREB transcriptional activity. The functional role of RGS13 in GC B cells is unknown. To create a surrogate marker for Rgs13 expression and a loss of function mutation, we inserted a GFP coding region into the Rgs13 genomic locus. Following immunization GFP expression rapidly increased in activated B cells, persisted in GC B cells, but declined in newly generated memory B and plasma cells. Intravital microscopy of the inguinal lymph node (LN) of immunized mice revealed the rapid appearance of GFP+ cells at LN interfollicular regions and along the T/B cell borders, and eventually within GCs. Analysis of WT, knock-in, and mixed chimeric mice indicated that RGS13 constrains extra-follicular plasma cell generation, GC size, and GC B cell numbers. Analysis of select cell cycle and GC specific genes disclosed an aberrant gene expression profile in the Rgs13 deficient GC B cells. These results indicate that RGS13, likely acting at cell membranes and in nuclei, helps coordinate key decision points during the expansion and differentiation of naive B cells. PMID:23533672

  14. Characterization of a new V gene replacement in the absence of activation-induced cytidine deaminase and its contribution to human B-cell receptor diversity

    PubMed Central

    Ouled-Haddou, Hakim; Ghamlouch, Hussein; Regnier, Aline; Trudel, Stephanie; Herent, Didier; Lefranc, Marie-Paule; Marolleau, Jean Pierre; Gubler, Brigitte

    2014-01-01

    In B cells, B-cell receptor (BCR) immunoglobulin revision is a common route for modifying unwanted antibody specificities via a mechanism called VH replacement. This in vivo process, mostly affecting heavy-chain rearrangement, involves the replacement of all or part of a previously rearranged IGHV gene with another germline IGHV gene located upstream. Two different mechanisms of IGHV replacement have been reported: type 1, involving the recombination activating genes complex and requiring a framework region 3 internal recombination signal; and type 2, involving an unidentified mechanism different from that of type 1. In the case of light-chain loci, BCR immunoglobulin editing ensures that a second V-J rearrangement occurs. This helps to maintain tolerance, by generating a novel BCR with a new antigenic specificity. We report that human B cells can, surprisingly, undergo type 2 replacement associated with κ light-chain rearrangements. The de novo IGKV-IGKJ products result from the partial replacement of a previously rearranged IGKV gene by a new germline IGKV gene, in-frame and without deletion or addition of nucleotides. There are wrcy/rgyw motifs at the ‘IGKV donor–IGKV recipient chimera junction’ as described for type 2 IGHV replacement, but activation-induced cytidine deaminase (AID) expression was not detected. This unusual mechanism of homologous recombination seems to be a variant of gene conversion-like recombination, which does not require AID. The recombination phenomenon described here provides new insight into immunoglobulin locus recombination and BCR immunoglobulin repertoire diversity. PMID:24134819

  15. Noncoding RNA transcription targets AID to divergently transcribed loci in B cells

    PubMed Central

    Pefanis, Evangelos; Wang, Jiguang; Rothschild, Gerson; Lim, Junghyun; Chao, Jaime; Rabadan, Raul; Economides, Aris N.; Basu, Uttiya

    2015-01-01

    The vast majority of the mammalian genome has the potential to expressnoncoding RNA (ncRNA). The 11-subunit RNA exosome complex is the main source of cellular 3′–5′ exoribonucleolytic activity and potentially regulates the mammalian noncoding transcriptome1. Here we generated a mouse model in which the essential subunit Exosc3 of the RNA exosome complex can be conditionally deleted. Exosc3-deficient B cells lack the ability to undergo normal levels of class switch recombination and somatic hypermutation, two mutagenic DNA processes used to generate antibody diversity via the B-cell mutator protein activation-induced cytidine deaminase (AID)2,3. The transcriptome of Exosc3-deficient B cells has revealed the presence of many novel RNA exosome substrate ncRNAs. RNA exosome substrate RNAs include xTSS-RNAs, transcription start site (TSS)-associated antisense transcripts that can exceed 500 base pairs in length and are transcribed divergently from cognate coding gene transcripts. xTSS-RNAs are most strongly expressed at genes that accumulate AID-mediated somatic mutations and/or are frequent translocation partners of DNA double-strand breaks generated at Igh in B cells4,5. Strikingly, translocations near TSSs or within gene bodies occur over regions of RNA exosome substrate ncRNA expression. These RNA exosome-regulated, antisense-transcribed regions of the B-cell genome recruit AID and accumulate single-strand DNA structures containing RNA–DNA hybrids. We propose that RNA exosome regulation of ncRNA recruits AID to single-strand DNA-forming sites of antisense and divergent transcription in the B-cell genome, thereby creating a link between ncRNA transcription and overall maintenance of B-cell genomic integrity. PMID:25119026

  16. Mutations, kataegis, and translocations in B lymphocytes: towards a mechanistic understanding of AID promiscuous activity

    PubMed Central

    Casellas, Rafael; Basu, Uttiya; Yewdell, William T.; Chaudhuri, Jayanta; Robbiani, Davide F.; Di Noia, Javier M.

    2016-01-01

    As B cells engage in the immune response they express the deaminase AID to initiate the hypermutation and recombination of immunoglobulin genes, which are crucial processes for the efficient recognition and disposal of pathogens, However, AID must be tightly controlled in B cells to minimize off-targeting mutations, which can drive chromosomal translocations and the development of B cell malignancies, such as lymphomas. Recent genomic and biochemical analyses have begun to unravel the crucial question of how AID-mediated deamination is targeted outside immunoglobulin genes. Here, we discuss the transcriptional and topological features that are emerging as key drivers of AID promiscuous activity. PMID:26898111

  17. Rac-mediated Stimulation of Phospholipase Cγ2 Amplifies B Cell Receptor-induced Calcium Signaling.

    PubMed

    Walliser, Claudia; Tron, Kyrylo; Clauss, Karen; Gutman, Orit; Kobitski, Andrei Yu; Retlich, Michael; Schade, Anja; Röcker, Carlheinz; Henis, Yoav I; Nienhaus, G Ulrich; Gierschik, Peter

    2015-07-10

    The Rho GTPase Rac is crucially involved in controlling multiple B cell functions, including those regulated by the B cell receptor (BCR) through increased cytosolic Ca(2+). The underlying molecular mechanisms and their relevance to the functions of intact B cells have thus far remained unknown. We have previously shown that the activity of phospholipase Cγ2 (PLCγ2), a key constituent of the BCR signalosome, is stimulated by activated Rac through direct protein-protein interaction. Here, we use a Rac-resistant mutant of PLCγ2 to functionally reconstitute cultured PLCγ2-deficient DT40 B cells and to examine the effects of the Rac-PLCγ2 interaction on BCR-mediated changes of intracellular Ca(2+) and regulation of Ca(2+)-regulated and nuclear-factor-of-activated-T-cell-regulated gene transcription at the level of single, intact B cells. The results show that the functional Rac-PLCγ2 interaction causes marked increases in the following: (i) sensitivity of B cells to BCR ligation; (ii) BCR-mediated Ca(2+) release from intracellular stores; (iii) Ca(2+) entry from the extracellular compartment; and (iv) nuclear translocation of the Ca(2+)-regulated nuclear factor of activated T cells. Hence, Rac-mediated stimulation of PLCγ2 activity serves to amplify B cell receptor-induced Ca(2+) signaling. PMID:25903139

  18. Potential role for concurrent abnormalities of the cyclin D1, p16CDKN2 and p15CDKN2B genes in certain B cell non-Hodgkin's lymphomas. Functional studies in a cell line (Granta 519).

    PubMed

    Jadayel, D M; Lukas, J; Nacheva, E; Bartkova, J; Stranks, G; De Schouwer, P J; Lens, D; Bartek, J; Dyer, M J; Kruger, A R; Catovsky, D

    1997-01-01

    Abnormalities of several cell-cycle regulatory genes including cyclin D1, p16CDKN2 and p15CDKN2B have been described in B cell non-Hodgkin's lymphoma (B-NHL). We describe a new B-NHL cell line (Granta 519), with concurrent abnormalities of the cyclin D1, pl6CDKN2 and pl5CDKN2B genes. An independent clinical case of mantle cell NHL (Mc-NHL) with concomitant overexpression of cyclin D1, and deletion of the p16CDKN2 gene was also identified, suggesting that this combination of oncogenic aberration is a pathophysiologic contribution to a subset of NHL cases. More in-depth functional studies of this concept were facilitated by the availability of the cell line Granta 519 which was derived from a case of high-grade NHL and has a mature B cell immunophenotype. Cytogenetic analysis identified translocation t(11;14)(q13;q32) and complex rearrangements involving chromosomes 9p22, 13p21, 17pl1, and 18q21. Molecular analysis identified overexpression of cyclin D1 mRNA and biallelic deletion of the p16CDKN2 and p15CDKN2B genes. To elucidate the effect of these genetic abnormalities on the G1 control of Granta 519 cells, the level and function of the major components of the cyclinD/retinoblastoma (RB) pathway were investigated. Cyclin D1 was dominant among the D-type cyclins, formed abundant complexes with cyclin-dependent kinase (Cdk) Cdk4 rather than Cdk6, and the immunoprecipitated cyclin D1/Cdk4 holoenzyme was active as a pRB kinase. Electroporation of wild-type pl6CDKN2 arrested the Granta 519 cells in G1, consistent with the p16CDKN2 loss as a biologically relevant event during multistep evolution of the tumor, and with the expression of functional pRB. Direct cooperation of these distinct abnormalities to cell-cycle, deregulation in NHL cells was suggested by G1 acceleration upon inducible overexpression of cyclin D1 in a control breast cancer cell line lacking p16CDKN2, an effect which could be prevented by ectopic expression of p16CDKN2. Taken together, these data

  19. Deregulation of the carbohydrate (chondroitin 4) sulfotransferase 11 (CHST11) gene in a B-cell chronic lymphocytic leukemia with a t(12;14)(q23;q32).

    PubMed

    Schmidt, Helmut H; Dyomin, Vadim G; Palanisamy, Nallasivam; Itoyama, Takahiro; Nanjangud, Gouri; Pirc-Danoewinata, Hendrati; Haas, Oskar A; Chaganti, R S K

    2004-09-01

    The t(12;14)(q23;q32) breakpoints in a case of B-cell chronic lymphocytic leukemia (B-CLL) were mapped by fluorescence in situ hybridization (FISH) and Southern blot analysis and cloned using an IGH switch-gamma probe. The translocation affected a productively rearranged IGH allele and the carbohydrate (chondroitin 4) sulfotransferase 11 (CHST11) locus at 12q23, with a reciprocal break in intron 2 of the CHST11 gene. CHST11 belongs to the HNK1 family of Golgi-associated sulfotransferases, a group of glycosaminoglycan-modifying enzymes, and is expressed mainly in the hematopoietic lineage. Northern Blot analysis of tumor RNA using CHST11-specific probes showed expression of two CHST11 forms of abnormal size. 5'- and 3'-Rapid Amplification of cDNA Ends (RACE) revealed IGH/CHST11 as well as CHST11/IGH fusion RNAs expressed from the der(14) and der(12) chromosomes. Both fusion species contained open reading frames making possible the translation of two truncated forms of CHST11 protein. The biological consequence of t(12;14)(q23;q32) in this case presumably is a disturbance of the cellular distribution of CHST11 leading to deregulation of a chondroitin-sulfate-dependent pathway specific to the hematopoietic lineage. PMID:15273723

  20. Comparative Gene Expression Profiling Identifies Common Molecular Signatures of NF-κB Activation in Canine and Human Diffuse Large B Cell Lymphoma (DLBCL)

    PubMed Central

    Mudaliar, Manikhandan A. V.; Haggart, Ross D.; Miele, Gino; Sellar, Grant; Tan, Karen A. L.; Goodlad, John R.; Milne, Elspeth; Vail, David M.; Kurzman, Ilene

    2013-01-01

    We present the first comparison of global transcriptional changes in canine and human diffuse large B-cell lymphoma (DLBCL), with particular reference to the nuclear factor-kappa B (NF-κB) pathway. Microarray data generated from canine DLBCL and normal lymph nodes were used for differential expression, co-expression and pathway analyses, and compared with analysis of microarray data from human healthy and DLBCL lymph nodes. The comparisons at gene level were performed by mapping the probesets in canine microarrays to orthologous genes in humans and vice versa. A considerable number of differentially expressed genes between canine lymphoma and healthy lymph node samples were also found differentially expressed between human DLBCL and healthy lymph node samples. Principal component analysis using a literature-derived NF-κB target gene set mapped to orthologous canine array probesets and human array probesets clearly separated the healthy and cancer samples in both datasets. The analysis demonstrated that for both human and canine DLBCL there is activation of the NF-κB/p65 canonical pathway, indicating that canine lymphoma could be used as a model to study NF-κB-targeted therapeutics for human lymphoma. To validate this, tissue arrays were generated for canine and human NHL and immunohistochemistry was employed to assess NF-κB activation status. In addition, human and canine B-cell lymphoma lines were assessed for NF-κB activity and the effects of NF-κB inhibition. PMID:24023754

  1. Tet2 facilitates the de-repression of myeloid target genes during C/EBPa induced transdifferentiation of pre-B cells

    PubMed Central

    Kallin, Eric M.; Rodríguez-Ubreva, Javier; Christensen, J esper; Cimmino, Luisa; Aifantis, Iannis; Helin, Kristian; Ballestar, Esteban; Graf, Thomas

    2013-01-01

    SUMMARY The methylcytosine hydroxylase Tet2 has been implicated in hematopoietic differentiation and the formation of myeloid malignancies when mutated. An ideal system to study the role of Tet2 in myelopoeisis is C/EBPa induced transdifferentiation of pre-B cells into macrophages. Here we found that C/EBPa binds to upstream regions of Tet2 and that the gene becomes activated. Tet2 knockdowns impaired the upregulation of macrophage markers as well as phagocytic capacity, suggesting that the enzyme is required for both early and late stage myeloid differentiation. A slightly weaker effect was seen in primary cells with a Tet2 ablation. Expression arrays of transdifferentiating cells with Tet2 knockdowns permitted the identification of a small subset of myeloid genes whose upregulation was blunted. Activation of these target genes was accompanied by rapid increases of promoter hydroxy-methylation. Our observations indicate that Tet2 helps C/EBPa rapidly de-repress myeloid genes during the conversion of pre-B cells into macrophages. PMID:22981865

  2. Sequence and analysis of the human ABL gene, the BCR gene, and regions involved in the Philadelphia chromosomal translocation

    SciTech Connect

    Burian, D.; Clifton, S.W.; Crabtree, J.

    1995-05-01

    The complete human BCR gene (152j-141 nt) on chromosome 22 and greater than 80% of the human ABL gene (179-512 nt) on chromosome 9 have been sequenced from mapped cosmid and plasmid clones via a shotgun strategy. Because these two chromosomes are translocated with breakpoints within the BCR and ABL genes in Philadelphia chromosome-positive leukemias, knowledge of these sequences also might provide insight into the validity of various theories of chromosomal rearrangements. Comparison of these genes with their cDNA sequences reveal the positions of 23 BCR exons and putative alternative BCR first and second exons, as well as the common ABL exons 2-11, respectively. Additionally, these regions include the alternative ABL first exons 1b and 1a, a new gene 5` to the first ABL exon, and an open reading frame with homology to an EST within the BCR fourth intron. Further analysis reveals an Alu homology of 38.83 and 39.35% for the BCR and ABL genes, respectively, with other repeat elements present to a lesser extent. Four new Philadelphia chromosome translocation breakpoints from chronic myelogenous leukemia patients also were sequenced, and the positions of these and several other previously sequenced breakpoints now have been mapped precisely, although no consistent breakpoint features immediately were apparent. Comparative analysis of genomic sequences encompassing the murine homologues to the human ABL exons 1b and 1a, as well as regions encompassing the ABL exons 2 and 3, reveals that although there is a high degree of homology in their corresponding exons and promoter regions, these two vertebrate species show a striking lack of homology outside these regions. 122 refs., 5 figs., 4 tabs.

  3. Molecular cloning and chromosomal mapping of bone marrow stromal cell surface gene, BST2, that may be involved in pre-B-cell growth

    SciTech Connect

    Ishikawa, Jun; Kaisho, Tsuneyasu; Tomizawa, Hitoshi

    1995-04-10

    Bone marrow stromal cells regulate B-cell growth and development through their surface molecules and cytokines. In this study, we generated a mAb, RS38, that recognized a novel human membrane protein, BST-2, expressed on bone marrow stromal cell lines and synovial cell lines. We cloned a cDNA encoding BST-2 from a rheumatoid arthritis-derived synovial cell line. BST-2 is a 30- to 36-kDa type II transmembrane protein, consisting of 180 amino acids. The BST-2 gene (HGMW-approved symbol BST2) is located on chromosome 19p13.2. BST-2 is expressed not only on certain bone marrow stromal cell lines but also on various normal tissues, although its expression pattern is different from that of another bone marrow stromal cell surface molecule, BST-1. BST-2 surface expression on fibroblast cell lines facilitated the stromal cell-dependent growth of a murine bone marrow-derived pre-B-cell line, DW34. The results suggest that BST-2 may be involved in pre-B-cell growth. 45 refs., 7 figs., 2 tabs.

  4. A cohort of balanced reciprocal translocations associated with dyslexia: identification of two putative candidate genes at DYX1.

    PubMed

    Buonincontri, Roberta; Bache, Iben; Silahtaroglu, Asli; Elbro, Carsten; Nielsen, Anne-Mette Veber; Ullmann, Reinhard; Arkesteijn, Ger; Tommerup, Niels

    2011-01-01

    Dyslexia is one of the most common neurodevelopmental disorders where likely many genes are involved in the pathogenesis. So far six candidate dyslexia genes have been proposed, and two of these were identified by rare chromosomal translocations in affected individuals. By systematic re-examination of all translocation carriers in Denmark, we have identified 16 different translocations associated with dyslexia. In four families, where the translocation co-segregated with the phenotype, one of the breakpoints concurred (at the cytogenetic level) with either a known dyslexia linkage region--at 15q21 (DYX1), 2p13 (DYX3) and 1p36 (DYX8)--or an unpublished linkage region at 19q13. As a first exploitation of this unique cohort, we identify three novel candidate dyslexia genes, ZNF280D and TCF12 at 15q21, and PDE7B at 6q23.3, by molecular mapping of the familial translocation with the 15q21 breakpoint. PMID:20798984

  5. A t(6;12)(q23;p13) results in the fusion of ETV6 to a novel gene, STL, in a B-cell ALL cell line.

    PubMed

    Suto, Y; Sato, Y; Smith, S D; Rowley, J D; Bohlander, S K

    1997-04-01

    ETV6 (TEL) is rearranged in various types of hematologic malignancies. The B-cell precursor acute lymphoblastic leukemia (ALL) cell line SUP-B2 has a t(6;12)(q23;p13) involving ETV6 at 12p13 and a submicroscopic deletion of the other ETV6 allele. The reciprocal translocation results in the fusion of ETV6 to a previously unknown gene at 6q23, which we named STL (six-twelve leukemia gene). Both reciprocal fusion transcripts can be detected: On the der(6) chromosome, the ETV6/STL mRNA shows an apparently out of frame fusion of ETV6 at nucleotide 187 to STL, which would result in the addition of 14 amino acids to the first 54 amino acids of ETV6. On the der(12) chromosome three different variants of the STL/ETV6 fusion mRNA could be detected; variable size segments were inserted at the breakpoint between STL and ETV6 exon 3. One of these variants could give rise to a protein in which the first 54 amino acids of ETV6 are replaced by 12 amino acids from one of the STL short open reading frames. Sequence analysis of a 1.4 kb STL cDNA clone from a skeletal muscle library revealed no long open reading frames. This cell line will be very useful in studying the different mechanisms by which alterations of ETV6 contribute to leukemogenesis and in testing the hypothesis that ETV6 might act as a tumor suppressor gene. PMID:9087565

  6. EBNA2 Drives Formation of New Chromosome Binding Sites and Target Genes for B-Cell Master Regulatory Transcription Factors RBP-jκ and EBF1

    PubMed Central

    Lu, Fang; Chen, Horng-Shen; Kossenkov, Andrew V.; DeWispeleare, Karen; Won, Kyoung-Jae; Lieberman, Paul M.

    2016-01-01

    Epstein-Barr Virus (EBV) transforms resting B-lymphocytes into proliferating lymphoblasts to establish latent infections that can give rise to malignancies. We show here that EBV-encoded transcriptional regulator EBNA2 drives the cooperative and combinatorial genome-wide binding of two master regulators of B-cell fate, namely EBF1 and RBP-jκ. Previous studies suggest that these B-cell factors are statically bound to target gene promoters. In contrast, we found that EBNA2 induces the formation of new binding for both RBP-jκ and EBF1, many of which are in close physical proximity in the cellular and viral genome. These newly induced binding sites co-occupied by EBNA2-EBF1-RBP-jκ correlate strongly with transcriptional activation of linked genes that are important for B-lymphoblast function. Conditional expression or repression of EBNA2 leads to a rapid alteration in RBP-jκ and EBF1 binding. Biochemical and shRNA depletion studies provide evidence for cooperative assembly at co-occupied sites. These findings reveal that EBNA2 facilitate combinatorial interactions to induce new patterns of transcription factor occupancy and gene programming necessary to drive B-lymphoblast growth and survival. PMID:26752713

  7. EBNA2 Drives Formation of New Chromosome Binding Sites and Target Genes for B-Cell Master Regulatory Transcription Factors RBP-jκ and EBF1.

    PubMed

    Lu, Fang; Chen, Horng-Shen; Kossenkov, Andrew V; DeWispeleare, Karen; Won, Kyoung-Jae; Lieberman, Paul M

    2016-01-01

    Epstein-Barr Virus (EBV) transforms resting B-lymphocytes into proliferating lymphoblasts to establish latent infections that can give rise to malignancies. We show here that EBV-encoded transcriptional regulator EBNA2 drives the cooperative and combinatorial genome-wide binding of two master regulators of B-cell fate, namely EBF1 and RBP-jκ. Previous studies suggest that these B-cell factors are statically bound to target gene promoters. In contrast, we found that EBNA2 induces the formation of new binding for both RBP-jκ and EBF1, many of which are in close physical proximity in the cellular and viral genome. These newly induced binding sites co-occupied by EBNA2-EBF1-RBP-jκ correlate strongly with transcriptional activation of linked genes that are important for B-lymphoblast function. Conditional expression or repression of EBNA2 leads to a rapid alteration in RBP-jκ and EBF1 binding. Biochemical and shRNA depletion studies provide evidence for cooperative assembly at co-occupied sites. These findings reveal that EBNA2 facilitate combinatorial interactions to induce new patterns of transcription factor occupancy and gene programming necessary to drive B-lymphoblast growth and survival. PMID:26752713

  8. Characterization and expression analysis of B Cell receptor accessory molecule CD79 gene in humphead snapper ( Lutjanus sanguineus)

    NASA Astrophysics Data System (ADS)

    Huang, Yucong; Yan, Xiuying; Cai, Shuanghu; Cai, Jia; Jian, Jichang; Lu, Yishan; Tang, Jufen; Wu, Zaohe

    2016-04-01

    CD79, a key component of the B cell antigen receptor complex, is composed of CD79α(Igα) and CD79β(Igβ) encoded by mb-1 and B29 respectively, and plays an important role in B cell signaling. In this study, we isolated and characterized mb-1 and B29 from humphead snapper ( Lutjanus sanguineus). Their tissue distribution and expression profiles after stimulations in vitro and in vivo were also investigated. The humphead snapper mb-1 and B29 contain open reading frames of 684 bp and 606 bp, encoding 227 amino acids and 201 amino acids, respectively. Both CD79α and CD79β possess signal peptide, extracellular Ig domain, transmembrane region and immunoreceptor tyrosine kinase activation motif (ITAM). Mb-1 is highly expressed in lymphoid organs (thymus, posterior kidney and spleen) and mucosal-associated lymphoid tissues (gill and intestine), while B29 is mainly detected in posterior kidney, spleen, gill and skin. Furthermore, transcription of mb-1 and B29 in head kidney leucocytes was up-regulated following lipopolysaccharide (LPS), pokeweed mitogen (PWM), and polyinosinic-polycytidylic acid (PolyI:C) stimulation, respectively, and their expression level in anterior kidney and spleen was also increased after challenged with formalin-inactived Vibrio harveyi. These results indicated that humphead snapper CD79 molecule might play an important role in immune response to pathogen infection.

  9. High Throughput Sequencing Analysis of the Immunoglobulin Heavy Chain Gene from Flow-Sorted B Cell Sub-Populations Define the Dynamics of Follicular Lymphoma Clonal Evolution

    PubMed Central

    Carlotti, Emanuela; Wrench, David; Rosignoli, Guglielmo; Marzec, Jacek; Sangaralingam, Ajanthah; Hazanov, Lena; Michaeli, Miri; Hallam, Simon; Chaplin, Tracy; Iqbal, Sameena; Calaminici, Maria; Young, Bryan; Mehr, Ramit; Campbell, Peter; Fitzgibbon, Jude; Gribben, John G.

    2015-01-01

    Understanding the dynamics of evolution of Follicular Lymphoma (FL) clones during disease progression is important for monitoring and targeting this tumor effectively. Genetic profiling of serial FL biopsies and examples of FL transmission following bone marrow transplant suggest that this disease may evolve by divergent evolution from a common ancestor cell. However where this ancestor cell resides and how it evolves is still unclear. The analysis of the pattern of somatic hypermutation of the immunoglobulin gene (Ig) is traditionally used for tracking the physiological clonal evolution of B cells within the germinal center and allows to discriminate those cells that have just entered the germinal center and display features of ancestor cells from those B cells that keep re-circulating across different lymphoid organs. Here we investigated the pattern of somatic hypermutation of the heavy chain of the immunoglobulin gene (IgH-VH) in 4 flow-sorted B cells subpopulations belonging to different stages of differentiation, from sequential lymph node biopsies of cases displaying diverse patterns of evolution, using the GS-FLX Titanium sequencing platform. We observed an unexpectedly high level of clonality, with hundreds of distinct tumor subclones in the different subpopulations from the same sample, the majority detected at a frequency <10−2. By using a lineage trees analysis we observed in all our FL and t-FL cases that the oligoclonal FL population was trapped in a narrow intermediate stage of maturation that maintains the capacity to undergo SHM, but was unable to further differentiate. The presence of such a complex architecture highlights challenges currently encountered in finding a cure for this disease. PMID:26325507

  10. High Throughput Sequencing Analysis of the Immunoglobulin Heavy Chain Gene from Flow-Sorted B Cell Sub-Populations Define the Dynamics of Follicular Lymphoma Clonal Evolution.

    PubMed

    Carlotti, Emanuela; Wrench, David; Rosignoli, Guglielmo; Marzec, Jacek; Sangaralingam, Ajanthah; Hazanov, Lena; Michaeli, Miri; Hallam, Simon; Chaplin, Tracy; Iqbal, Sameena; Calaminici, Maria; Young, Bryan; Mehr, Ramit; Campbell, Peter; Fitzgibbon, Jude; Gribben, John G

    2015-01-01

    Understanding the dynamics of evolution of Follicular Lymphoma (FL) clones during disease progression is important for monitoring and targeting this tumor effectively. Genetic profiling of serial FL biopsies and examples of FL transmission following bone marrow transplant suggest that this disease may evolve by divergent evolution from a common ancestor cell. However where this ancestor cell resides and how it evolves is still unclear. The analysis of the pattern of somatic hypermutation of the immunoglobulin gene (Ig) is traditionally used for tracking the physiological clonal evolution of B cells within the germinal center and allows to discriminate those cells that have just entered the germinal center and display features of ancestor cells from those B cells that keep re-circulating across different lymphoid organs. Here we investigated the pattern of somatic hypermutation of the heavy chain of the immunoglobulin gene (IgH-VH) in 4 flow-sorted B cells subpopulations belonging to different stages of differentiation, from sequential lymph node biopsies of cases displaying diverse patterns of evolution, using the GS-FLX Titanium sequencing platform. We observed an unexpectedly high level of clonality, with hundreds of distinct tumor subclones in the different subpopulations from the same sample, the majority detected at a frequency <10-2. By using a lineage trees analysis we observed in all our FL and t-FL cases that the oligoclonal FL population was trapped in a narrow intermediate stage of maturation that maintains the capacity to undergo SHM, but was unable to further differentiate. The presence of such a complex architecture highlights challenges currently encountered in finding a cure for this disease. PMID:26325507

  11. Integrated copy number and gene expression profiling analysis of Epstein-Barr virus-positive diffuse large B-cell lymphoma.

    PubMed

    Yoon, Heejei; Park, Sanghui; Ju, Hyunjeong; Ha, Sang Yun; Sohn, InSuk; Jo, Jisuk; Do, In-Gu; Min, Sookee; Kim, Seok Jin; Kim, Won Seog; Yoo, Hae Yong; Ko, Young Hyeh

    2015-06-01

    Viral oncogenes and host immunosenescence have been suggested as causes of Epstein-Barr virus-positive diffuse large B-cell lymphoma (EBV + DLBCL) of the elderly. To investigate the molecular genetic basis of immune evasion and tumor outgrowth, we analyzed copy number alterations (CNAs) and gene expression profiles in EBV + DLBCL samples compared with EBV - DLBCL. There were relatively few genomic alterations in EBV + DLBCL compared with those detected in EBV-negative DLBCL. The most frequent CNAs (>30%) in EBV + DLBCLs were gains at 1q23.2-23.3, 1q23.3, 1q32.1, 5p15.3, 8q22.3, 8q24.1-24.2, and 9p24.1; losses at 6q27, 7q11.2, and 7q36.2-36.3 were also recurrent. A gene expression profile analysis identified the host immune response as a key molecular signature in EBV + DLBCL. Antiviral response genes, proinflammatory cytokines, and chemokines associated with the innate immune response were overexpressed, indicating the presence of a virusinduced inflammatory microenvironment. Genes associated with the B-cell receptor signaling pathway were downregulated. An integrated analysis indicated that SLAMF1 and PDL2 were key targets of the gains detected at 1q23.2-23.3 and 9p24.1. The chromosomal gain at 9p24.1 was associated with poor overall survival. Taken together, our results led to the identification of recurrent copy number alterations and distinct gene expression associated with the host immune response in EBV + DLBCL. We suggest that the upregulation of PDL2 on 9p24.1 promotes immune evasion and is associated with poor prognosis in EBV + DLBCL. PMID:25832818

  12. Fine mapping of the EDA gene: a translocation breakpoint is associated with a CpG island that is transcribed.

    PubMed Central

    Srivastava, A. K.; Montonen, O.; Saarialho-Kere, U.; Chen, E.; Baybayan, P.; Pispa, J.; Limon, J.; Schlessinger, D.; Kere, J.

    1996-01-01

    In order to identify the gene for human X-linked anhidrotic ectodermal dysplasia (EDA), a translocation breakpoint in a female with t(X;1)(q13.1;p36.3) and EDA (patient AK) was finely mapped. The EDA region contains five groups of rare-cutter restriction sites that define CpG islands. The two more centromeric of these islands are associated with transcripts of 3.5 kb and 1.8 kb. The third CpG island maps within <1 kb of the translocation breakpoint in patient AK, as indicated by a genomic rearrangement, and approximately 100 kb centromeric from another previously mapped translocation breakpoint (patient AnLy). Northern analysis with a probe from this CpG island detected an approximately 6-kb mRNA in several fetal tissues tested. An extended YAC contig of 1,200 kb with an average of fivefold coverage was constructed. The two most telomeric CpG islands map 350 kb telomeric of the two translocations. Taken together, the results suggest that the CpG island just proximal of the AK translocation breakpoint lies at the 5' end of a candidate gene for EDA. Images Figure 2 Figure 3 Figure 4 PMID:8554048

  13. Effect of wheat NAM genes on remobilization of Fe and Zn and translocation of minerals to grain during grain fill

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We are interested in understanding mineral translocation to seeds to improve their nutritional value. We compared a transgenic wheat (NAM RNAi knock-down) that exhibits low grain Fe and Zn concentrations with its isogenic control to quantify the effects of NAM genes on mineral remobilization from v...

  14. Disruption of genes in the retinoid cascade may explain the microscopic neuroblastoma in a fetus with de novo unbalanced translocation

    SciTech Connect

    Goodman, A.B.

    1995-03-13

    The microscopic neuroblastoma in a fetus with de novo unbalanced translocation (3;10)(q21;q26) may be explained as the disruption of genes in the retinoid cascade, rather than simply a two-hit hypothesis for the development of tumor cells. 5 refs.

  15. The phosphoenolpyruvate/phosphate translocator is required for phenolic metabolism, palisade cell development, and plastid-dependent nuclear gene expression.

    PubMed Central

    Streatfield, S J; Weber, A; Kinsman, E A; Häusler, R E; Li, J; Post-Beittenmiller, D; Kaiser, W M; Pyke, K A; Flügge, U I; Chory, J

    1999-01-01

    The Arabidopsis chlorophyll a/b binding protein (CAB) gene underexpressed 1 (cue1) mutant underexpresses light-regulated nuclear genes encoding chloroplast-localized proteins. cue1 also exhibits mesophyll-specific chloroplast and cellular defects, resulting in reticulate leaves. Both the gene underexpression and the leaf cell morphology phenotypes are dependent on light intensity. In this study, we determine that CUE1 encodes the plastid inner envelope phosphoenolpyruvate/phosphate translocator (PPT) and define amino acid residues that are critical for translocator function. The biosynthesis of aromatics is compromised in cue1, and the reticulate phenotype can be rescued by feeding aromatic amino acids. Determining that CUE1 encodes PPT indicates the in vivo role of the translocator in metabolic partitioning and reveals a mesophyll cell-specific requirement for the translocator in Arabidopsis leaves. The nuclear gene expression defects in cue1 suggest that a light intensity-dependent interorganellar signal is modulated through metabolites dependent on a plastid supply of phosphoenolpyruvate. PMID:10488230

  16. Restricted isotype, distinct variable gene usage, and high rate of gp120 specificity of HIV-1 envelope-specific B cells in colostrum compared with those in blood of HIV-1-infected, lactating African women.

    PubMed

    Sacha, C R; Vandergrift, N; Jeffries, T L; McGuire, E; Fouda, G G; Liebl, B; Marshall, D J; Gurley, T C; Stiegel, L; Whitesides, J F; Friedman, J; Badiabo, A; Foulger, A; Yates, N L; Tomaras, G D; Kepler, T B; Liao, H X; Haynes, B F; Moody, M A; Permar, S R

    2015-03-01

    A successful HIV-1 vaccine must elicit immune responses that impede mucosal virus transmission, though functional roles of protective HIV-1 Envelope (Env)-specific mucosal antibodies remain unclear. Colostrum is a rich source of readily accessible mucosal B cells that may help define the mucosal antibody response contributing to prevention of postnatal HIV-1 transmission. To examine the HIV-1 Env-specific colostrum B-cell repertoire, single B cells were isolated from 17 chronically HIV-infected, lactating women, producing 51 blood and 39 colostrum HIV-1 Env-specific B-cell antibodies. All HIV-1 Env-specific colostrum-derived antibodies were immunoglobulin (Ig)G1 isotype and had mean heavy chain complementarity-determining region 3 (CDR3) lengths and mutation frequencies similar to those isolated from blood. However, variable heavy chain (VH) gene subfamily 1(∼)69 usage was higher among colostrum than blood HIV-1 Env-reactive antibodies (49% vs. 20%, P=0.006, Fisher's exact test). Additionally, more HIV-1 Env-specific colostrum antibodies were gp120 specific than those isolated from blood (44% vs. 16%, P=0.005, Fisher's exact test). One cross-compartment HIV-1 Env-specific clonal B-cell lineage was identified. These unique characteristics of colostrum B-cell antibodies suggest selective homing of HIV-1-specific IgG1-secreting memory B cells to the mammary gland and have implications for targeting mucosal B-cell populations by vaccination. PMID:25100291

  17. A Williams syndrome patient with a familial t(6;7) translocation and deletion of the elastin gene

    SciTech Connect

    Pober, B.R.; Gibson, L.H.; Yang-Feng, T.L.

    1994-09-01

    Discovery of a {open_quotes}balanced{close_quotes} reciprocal translocation [46,XX,t(6;7)(q11.2;q11.23)] on routine amniocentesis prompted clinical and cytogenetic study of additional family members. The same t(6;7) translocation was found in the clincally normal father and in a sibling with Williams syndrome (WS). WS had been diagnosed previously according to clinical criteria including distinctive facial features, supravalvar aortic stenosis requiring surgical repair, dental abnormalties and developmental delay. A clinically normal female was delivered and the translocation was confirmed with a cord blood specimen. Hemizygosity for the gene, elastin, (which has been mapped to the chromosome 7 translocation breakpoint, 7q11.23, in this family) appears to be a cause of WS. We therefore investigated whether the t(6;7) in the phenotypically normal father represented more than a simple reciprocal translocation. FISH using a chromosome 7 specific library revealed no differences between the cytogenetically identical, yet phenotypically distinct, father and son. Hybridization with a cosmid MR127D4 containing elastin sequence showed that the WS patient was missing one allele from the derivative chromosome 7 whereas both his mother and father had two copies of the elastin gene. This family indicates that the de novo loss of one copy of the elastin gene produces the recognizable phenotype of Williams syndrome. Molecular characterization (with additional probes) of the extent of this de novo deletion near the translocation breakpoint is in progress. This information will be valuable for defining the WS-critical region and will lead to a better understanding of the molecular basis for WS.

  18. Charged Amino Acid-rich Leucine Zipper-1 (Crlz-1) as a Target of Wnt Signaling Pathway Controls Pre-B Cell Proliferation by Affecting Runx/CBFβ-targeted VpreB and λ5 Genes.

    PubMed

    Choi, Seung-Young; Park, Sung-Kyun; Yoo, Han-Woong; Pi, Joo-Hyun; Kang, Chang-Joong

    2016-07-15

    The proliferation of pre-B cells is known to further increase the clonal diversity of B cells at the stage of pre-B cells by allowing the same rearranged heavy chains to combine with differently rearranged light chains in a subsequent developmental stage. Crlz-1 (charged amino acid-rich leucine zipper-1) was found to control this proliferation of pre-B cells by working as a Wnt (wingless-related mouse mammary tumor virus integration site) target gene in these cells. Mechanistically, Crlz-1 protein functioned by mobilizing cytoplasmic CBFβ (core binding factor β) into the nucleus to allow Runx (runt-related transcription factor)/CBFβ heterodimerization. Runx/CBFβ then turned on its target genes such as EBF (early B cell factor), VpreB, and λ5 and thereby pre-B cell receptor signaling, leading to the expression of cyclins D2 and D3 Actually, the proliferative function of Crlz-1 was demonstrated by not only Crlz-1 or β-catenin knockdown but also Crlz-1 overexpression. Furthermore, the mechanistic view that the proliferative function of Crlz-1 is caused by relaying Wnt/β-catenin to pre-B cell receptor signaling pathways through the regulation of Runx/CBFβ heterodimerization was also verified by employing niclosamide, XAV939, and LiCl as Wnt inhibitors and activator, respectively. PMID:27226553

  19. Recurrent mutations of the exportin 1 gene (XPO1) and their impact on selective inhibitor of nuclear export compounds sensitivity in primary mediastinal B-cell lymphoma.

    PubMed

    Jardin, Fabrice; Pujals, Anais; Pelletier, Laura; Bohers, Elodie; Camus, Vincent; Mareschal, Sylvain; Dubois, Sydney; Sola, Brigitte; Ochmann, Marlène; Lemonnier, François; Viailly, Pierre-Julien; Bertrand, Philippe; Maingonnat, Catherine; Traverse-Glehen, Alexandra; Gaulard, Philippe; Damotte, Diane; Delarue, Richard; Haioun, Corinne; Argueta, Christian; Landesman, Yosef; Salles, Gilles; Jais, Jean-Philippe; Figeac, Martin; Copie-Bergman, Christiane; Molina, Thierry Jo; Picquenot, Jean Michel; Cornic, Marie; Fest, Thierry; Milpied, Noel; Lemasle, Emilie; Stamatoullas, Aspasia; Moeller, Peter; Dyer, Martin J S; Sundstrom, Christer; Bastard, Christian; Tilly, Hervé; Leroy, Karen

    2016-09-01

    Primary mediastinal B-cell lymphoma (PMBL) is an entity of B-cell lymphoma distinct from the other molecular subtypes of diffuse large B-cell lymphoma (DLBCL). We investigated the prevalence, specificity, and clinical relevance of mutations of XPO1, which encodes a member of the karyopherin-β nuclear transporters, in a large cohort of PMBL. PMBL cases defined histologically or by gene expression profiling (GEP) were sequenced and the XPO1 mutational status was correlated to genetic and clinical characteristics. The XPO1 mutational status was also assessed in DLBCL, Hodgkin lymphoma (HL) and mediastinal gray-zone lymphoma (MGZL).The biological impact of the mutation on Selective Inhibitor of Nuclear Export (SINE) compounds (KPT-185/330) sensitivity was investigated in vitro. XPO1 mutations were present in 28/117 (24%) PMBL cases and in 5/19 (26%) HL cases but absent/rare in MGZL (0/20) or DLBCL (3/197). A higher prevalence (50%) of the recurrent codon 571 variant (p.E571K) was observed in GEP-defined PMBL and was associated with shorter PFS. Age, International Prognostic Index and bulky mass were similar in XPO1 mutant and wild-type cases. KPT-185 induced a dose-dependent decrease in cell proliferation and increased cell-death in PMBL cell lines harboring wild type or XPO1 E571K mutant alleles. Experiments in transfected U2OS cells further confirmed that the XPO1 E571K mutation does not have a drastic impact on KPT-330 binding. To conclude the XPO1 E571K mutation represents a genetic hallmark of the PMBL subtype and serves as a new relevant PMBL biomarker. SINE compounds appear active for both mutated and wild-type protein. Am. J. Hematol. 91:923-930, 2016. © 2016 Wiley Periodicals, Inc. PMID:27312795

  20. Identifying Gene Disruptions in Novel Balanced de novo Constitutional Translocations in Childhood Cancer Patients by Whole Genome Sequencing

    PubMed Central

    Ritter, Deborah I.; Haines, Katherine; Cheung, Hannah; Davis, Caleb F.; Lau, Ching C.; Berg, Jonathan S.; Brown, Chester W.; Thompson, Patrick A.; Gibbs, Richard; Wheeler, David A.; Plon, Sharon E.

    2014-01-01

    Purpose We applied whole genome sequencing to children diagnosed with neoplasms and found to carry apparently balanced constitutional translocations, to discover novel genic disruptions. Methods We applied SV calling programs CREST, Break Dancer, SV-STAT and CGAP-CNV, and developed an annotative filtering strategy to achieve nucleotide resolution at the translocations. Results We identified the breakpoints for t(6;12) (p21.1;q24.31) disrupting HNF1A in a patient diagnosed with hepatic adenomas and Maturity Onset Diabetes of the Young (MODY). Translocation as the disruptive event of HNF1A, a gene known to be involved in MODY3, has not been previously reported. In a subject with Hodgkin’s lymphoma and subsequent low-grade glioma, we identified t(5;18) (q35.1;q21.2), disrupting both SLIT3 and DCC, genes previously implicated in both glioma and lymphoma. Conclusions These examples suggest that implementing clinical whole genome sequencing in the diagnostic work-up of patients with novel but apparently balanced translocations may reveal unanticipated disruption of disease-associated genes and aid in prediction of the clinical phenotype. PMID:25569436

  1. Deficiency in the mouse mitochondrial adenine nucleotide translocator isoform 2 gene is associated with cardiac noncompaction.

    PubMed

    Kokoszka, Jason E; Waymire, Katrina G; Flierl, Adrian; Sweeney, Katelyn M; Angelin, Alessia; MacGregor, Grant R; Wallace, Douglas C

    2016-08-01

    The mouse fetal and adult hearts express two adenine nucleotide translocator (ANT) isoform genes. The predominant isoform is the heart-muscle-brain ANT-isoform gene 1 (Ant1) while the other is the systemic Ant2 gene. Genetic inactivation of the Ant1 gene does not impair fetal development but results in hypertrophic cardiomyopathy in postnatal mice. Using a knockin X-linked Ant2 allele in which exons 3 and 4 are flanked by loxP sites combined in males with a protamine 1 promoter driven Cre recombinase we created females heterozygous for a null Ant2 allele. Crossing the heterozygous females with the Ant2(fl), PrmCre(+) males resulted in male and female ANT2-null embryos. These fetuses proved to be embryonic lethal by day E14.5 in association with cardiac developmental failure, immature cardiomyocytes having swollen mitochondria, cardiomyocyte hyperproliferation, and cardiac failure due to hypertrabeculation/noncompaction. ANTs have two main functions, mitochondrial-cytosol ATP/ADP exchange and modulation of the mitochondrial permeability transition pore (mtPTP). Previous studies imply that ANT2 biases the mtPTP toward closed while ANT1 biases the mtPTP toward open. It has been reported that immature cardiomyocytes have a constitutively opened mtPTP, the closure of which signals the maturation of cardiomyocytes. Therefore, we hypothesize that the developmental toxicity of the Ant2 null mutation may be the result of biasing the cardiomyocyte mtPTP to remain open thus impairing cardiomyocyte maturation and resulting in cardiomyocyte hyperproliferation and failure of trabecular maturation. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:27048932

  2. Molecular cloning and characterization of genes for antibodies generated by orbital tissue-infiltrating B-cells in Graves` ophthalmopathy

    SciTech Connect

    Jaume, J.C.; Portolano, S.; Prummel, M.F.; McLachlan, S.M.; Rapoport, B.

    1994-02-01

    Graves` ophthalmopathy is a distressing autoimmune disease of unknown etiology. Analysis of the genes for antibodies secreted by orbital tissue-infiltrating plasma cells might provide insight into the pathogenesis of this disease. The authors, therefore, constructed an immunoglobulin heavy (H) chain and an immunoglobulin k light (L) chain cDNA library from the orbital tissue of a patient with active Graves` ophthalmopathy. Analysis of 15 H (IgG1) and 15 L (k) chains revealed a restricted spectrum of variable region genes. Fourteen of 15 variable k genes were about 94% homologous to the closest known germline gene, KL012. Thirteen of 15 H chain genes were 91% and 90% homologous to the closest germline genes, DP10 and hv1263, respectively. Remarkably, these germline genes also code for other autoantibodies to striated muscle (KL012) and thyroid peridase (KL012 and hv1263). These studies raise the possibility that particular germline genes may be associated with autoimmunity in humans. Further, the present study opens the way to identifying ocular autoantigens that may be the target of an humoral immune response. 29 refs., 4 figs., 1 tab.

  3. Bortezomib induces nuclear translocation of IκBα resulting in gene-specific suppression of NF-κB--dependent transcription and induction of apoptosis in CTCL.

    PubMed

    Juvekar, Ashish; Manna, Subrata; Ramaswami, Sitharam; Chang, Tzu-Pei; Vu, Hai-Yen; Ghosh, Chandra C; Celiker, Mahmut Y; Vancurova, Ivana

    2011-02-01

    Cutaneous T-cell lymphoma (CTCL) is characterized by constitutive activation of nuclear factor κB (NF-κB), which plays a crucial role in the survival of CTCL cells and their resistance to apoptosis. NF-κB activity in CTCL is inhibited by the proteasome inhibitor bortezomib; however, the mechanisms remained unknown. In this study, we investigated mechanisms by which bortezomib suppresses NF-κB activity in CTCL Hut-78 cells. We demonstrate that bortezomib and MG132 suppress NF-κB activity in Hut-78 cells by a novel mechanism that consists of inducing nuclear translocation and accumulation of IκBα (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha), which then associates with NF-κB p65 and p50 in the nucleus and inhibits NF-κB DNA binding activity. Surprisingly, however, while expression of NF-κB-dependent antiapoptotic genes cIAP1 and cIAP2 is inhibited by bortezomib, expression of Bcl-2 is not suppressed. Chromatin immunoprecipitation indicated that cIAP1 and cIAP2 promoters are occupied by NF-κB p65/50 heterodimers, whereas Bcl-2 promoter is occupied predominantly by p50/50 homodimers. Collectively, our data reveal a novel mechanism of bortezomib function in CTCL and suggest that the inhibition of NF-κB-dependent gene expression by bortezomib is gene specific and depends on the subunit composition of NF-κB dimers recruited to NF-κB-responsive promoters. PMID:21224428

  4. Profiling gene mutations, translocations, and multidrug resistance in pediatric acute lymphoblastic leukemia: a step forward to personalizing medicine.

    PubMed

    Rose-James, Alphy; Shiji, R; Kusumakumary, P; Nair, Manjusha; George, Suraj K; Sreelekha, T T

    2016-09-01

    Precise risk stratification and tailored therapy in acute lymphoblastic leukemia (ALL) can lead to enhanced survival rates among children. Translocations and mutations along with multidrug resistance markers are important factors that determine therapeutic efficacy. Gene mutation profiling of patients at the time of diagnosis can offer accurate clinical decision-making. Multiplex PCR was used to screen for various translocations, mutations, and P-glycoprotein (P-gp) status in pediatric ALL samples. The roles of P-gp were analyzed at the transcriptional and translational levels by using real-time PCR and immunoblotting, respectively. ALL specific cell line Jurkat was used to validate the functional role of P-gp in imparting drug resistance by siRNA knockdown studies. Co-occurrence of translocations and mutations contributes to cellular drug resistance. Presence of any translocation in addition to FLT3/ITD hints for overactive P-gp. Co-occurrence of E2A/PBX and TEL/AML has also been positively correlated with P-gp status. Multiplex PCR provides a rapid and cost effective technique for profiling translocations, mutations, and multidrug resistance status that determines what therapy patients could be administered. Mutation profiling in patients for analyzing genetic lesions along with drug resistance profiling will help improve risk stratification and personalized medicine, thereby increasing the treatment success rates among pediatric patients with leukemia. PMID:27449773

  5. The impact of FcγRIIa and FcγRIIIa gene polymorphisms on responses to RCHOP chemotherapy in diffuse large B-cell lymphoma patients

    PubMed Central

    ROŽMAN, SAMO; NOVAKOVIĆ, SRDJAN; GRABNAR, IZTOK; CERKOVNIK, PETRA; NOVAKOVIĆ, BARBARA JEZERŠEK

    2016-01-01

    Rituximab is a monoclonal antibody routinely used in the treatment of B-cell non-Hodgkin lymphomas. It mediates antibody-dependent cellular cytotoxicity of B lymphocytes by bridging them with Fcγ receptors (FcγR) on effector cells. Several polymorphisms in the FcγR genes have been identified to influence rituximab binding to FcγR, thus altering its antitumor effect in indolent lymphomas. In the present study, the impact of FcγRIIa and FcγRIIIa polymorphisms on the survival and response to immunochemotherapy consisting of rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone was evaluated in diffuse large B-cell lymphoma (DLBCL) patients. A total of 29 Slovenian DLBCL patients were studied. Genotyping was conducted for FcγRIIa-27, FcγRIIa-131, FcγRIIIa-48 and FcγRIIIa-158 polymorphisms. The median follow-up time was 29.7 months (range, 9.7–45.4 months). No significant impact of the genotypes was observed on the treatment response, progression-free or overall survival of DLBCL patients. There was a non-significant trend of an improved response to chemotherapy without additional irradiation in patients homozygous for Val at FCγIIIa-158 compared to Phe carriers. The findings of the present study indicate that FcγR polymorphisms have no influence on the survival of DLBCL patients. PMID:27123112

  6. The JNK/AP-1 pathway upregulates expression of the recycling endosome rab11a gene in B cells transformed by Theileria.

    PubMed

    Lizundia, Regina; Chaussepied, Marie; Naissant, Bernina; Masse, Guillemette X; Quevillon, Emmanuel; Michel, Fréderique; Monier, Solange; Weitzman, Jonathan B; Langsley, Gordon

    2007-08-01

    Lymphocyte transformation induced by Theileria parasites involves constitutive activation of c-Jun N-terminal kinase (JNK) and the AP-1 transcription factor. We found that JNK/AP-1 activation is associated with elevated levels of Rab11 protein in Theileria-transformed B cells. We show that AP-1 regulates rab11a promoter activity in B cells and that the induction of c-Jun activity in mouse fibroblasts also leads to increased transcription of the endogenous rab11a gene, consistent with it being an AP-1 target. Pharmacological inhibition of the JNK pathway reduced Rab11 protein levels and endosome recycling of transferrin receptor (TfR) and siRNA knockdown of JNK1 and Rab11A levels also reduced TfR surface expression. We propose a model, where activation of the JNK/AP-1 pathway during cell transformation might assure that the regulation of recycling endosomes is co-ordinated with cell-cycle progression. This might be achieved via the simultaneous upregulation of the cell cycle machinery (e.g. cyclin D1) and the recycling endosome regulators (e.g. Rab11A). PMID:17388783

  7. Isoforms of Pax5 and co-regulation of T- and B-cells associated genes influence phenotypic traits of ascetic cells causing Dalton's lymphoma.

    PubMed

    Bharti, Brij; Mishra, Rajnikant

    2011-12-01

    The Pax5 and its isoforms influence proliferation of B- and T-cells, during development and oncogenesis but molecular mechanism and host-tumor relationship is not clear. This report describes status of Pax5 isoforms and co-regulation of molecular markers of ascite cells causing Dalton's lymphoma in murine. Higher expressions of Pax5, CD19, CD3, Ras and Raf were observed in DLA cells. The levels of transcripts as well as p53 protein were also higher in DLA cells. The transcript of p53 from DLA cells was a variant of p53 having deletion of 50bp as compared to control. On annotation, it reflects transformation related protein p53 pseudogene mRNA. Lower level of superoxide dismutase (SOD) indicates oxidative stress and higher level of LDH5 in DLA cells reflects hypoxia in cancerous condition. The expression of Pax5d/e isoforms in DLA cells suggests presence of resting B-cells. Thus, isoforms of Pax5 and co-regulation of T- and B-cells associated genes influence phenotypic traits of ascetic cells causing Dalton's lymphoma. PMID:21854813

  8. Automated analysis of high-throughput B-cell sequencing data reveals a high frequency of novel immunoglobulin V gene segment alleles

    PubMed Central

    Gadala-Maria, Daniel; Yaari, Gur; Uduman, Mohamed; Kleinstein, Steven H.

    2015-01-01

    Individual variation in germline and expressed B-cell immunoglobulin (Ig) repertoires has been associated with aging, disease susceptibility, and differential response to infection and vaccination. Repertoire properties can now be studied at large-scale through next-generation sequencing of rearranged Ig genes. Accurate analysis of these repertoire-sequencing (Rep-Seq) data requires identifying the germline variable (V), diversity (D), and joining (J) gene segments used by each Ig sequence. Current V(D)J assignment methods work by aligning sequences to a database of known germline V(D)J segment alleles. However, existing databases are likely to be incomplete and novel polymorphisms are hard to differentiate from the frequent occurrence of somatic hypermutations in Ig sequences. Here we develop a Tool for Ig Genotype Elucidation via Rep-Seq (TIgGER). TIgGER analyzes mutation patterns in Rep-Seq data to identify novel V segment alleles, and also constructs a personalized germline database containing the specific set of alleles carried by a subject. This information is then used to improve the initial V segment assignments from existing tools, like IMGT/HighV-QUEST. The application of TIgGER to Rep-Seq data from seven subjects identified 11 novel V segment alleles, including at least one in every subject examined. These novel alleles constituted 13% of the total number of unique alleles in these subjects, and impacted 3% of V(D)J segment assignments. These results reinforce the highly polymorphic nature of human Ig V genes, and suggest that many novel alleles remain to be discovered. The integration of TIgGER into Rep-Seq processing pipelines will increase the accuracy of V segment assignments, thus improving B-cell repertoire analyses. PMID:25675496

  9. Generation of Recombination Activating Gene-1-Deficient Neonatal Piglets: A Model of T and B Cell Deficient Severe Combined Immune Deficiency

    PubMed Central

    Ito, Tetsuya; Sendai, Yutaka; Yamazaki, Satoshi; Seki-Soma, Marie; Hirose, Kensuke; Watanabe, Motoo; Fukawa, Kazuo; Nakauchi, Hiromitsu

    2014-01-01

    Although severe combined immune deficiency (SCID) is a very important research model for mice and SCID mice are widely used, there are only few reports describing the SCID pig models. Therefore, additional research in this area is needed. In this study, we describe the generation of Recombination activating gene-1 (Rag-1)-deficient neonatal piglets in Duroc breed using somatic cell nuclear transfer (SCNT) with gene targeting and analysis using fluorescence-activated cell sorting (FACS) and histology. We constructed porcine Rag-1 gene targeting vectors for the Exon 2 region and obtained heterozygous/homozygous Rag-1 knockout cell colonies using SCNT. We generated two Rag-1-deficient neonatal piglets and compared them with wild-type neonatal piglets. FACS analysis showed that Rag-1 disruption causes a lack of Immunoglobulin M-positive B cells and CD3-positive T cells in peripheral blood mononuclear cells. Consistent with FACS analysis, histological analysis revealed structural defects and an absence of mature lymphocytes in the spleen, mesenteric lymph node (MLNs), and thymus in Rag-1-deficient piglets. These results confirm that Rag-1 is necessary for the generation of lymphocytes in pigs, and Rag-1-deficient piglets exhibit a T and B cell deficient SCID (T-B-SCID) phenotype similar to that of rodents and humans. The T-B-SCID pigs with Rag-1 deficiency generated in this study could be a suitably versatile model for laboratory, translational, and biomedical research, including the development of a humanized model and assessment of pluripotent stem cells. PMID:25437445

  10. Molecular evolution of a central region containing B cell epitopes in the gene encoding the p67 sporozoite antigen within a field population of Theileria parva.

    PubMed

    Obara, Isaiah; Ulrike, Seitzer; Musoke, Tony; Spooner, Paul R; Jabbar, Ahmed; Odongo, David; Kemp, Stephen; Silva, Joana C; Bishop, Richard P

    2015-05-01

    Protective immunity induced by the infective sporozoite stage of Theileria parva indicates a potential role for antibodies directed against conserved serologically reactive regions of the major sporozoite surface antigen p67 in vaccination to control the parasite. We have examined the allelic variation and determined the extent of B cell epitope polymorphism of the gene encoding p67 among field isolates originating from cattle exposed to infected ticks in the Marula area of the rift valley in central Kenya where the African cape buffalo (Syncerus caffer) and cattle co-graze. In the first of two closely juxtaposed epitope sequences in the central region of the p67 protein, an in-frame deletion of a seven-amino acid segment results in a truncation that was observed in parasites derived from cattle that co-grazed with buffalo. In contrast, the variation in the second epitope was primarily due to nonsynonymous substitutions, resulting in relatively low overall amino acid conservation in this segment of the protein. We also observed polymorphism in the region of the protein adjacent to the two defined epitopes, but this was not sufficient to provide statistically significant evidence for positive selection. The data indicates that B cell epitopes previously identified within the p67 gene are polymorphic within the Marula field isolates. Given the complete sequence identity of the p67 gene in all previously characterized T. parva isolates that are transmissible between cattle by ticks, the diversity observed in p67 from the Marula isolates in combination with the clinical reaction of the infected cattle is consistent with them originating from ticks that had acquired T. parva from buffalo. PMID:25673078

  11. Clonal Progression during the T Cell-Dependent B Cell Antibody Response Depends on the Immunoglobulin DH Gene Segment Repertoire

    PubMed Central

    Trad, Ahmad; Tanasa, Radu Iulian; Lange, Hans; Zemlin, Michael; Schroeder, Harry W.; Lemke, Hilmar

    2014-01-01

    The diversity of the third complementarity determining region of the IgH chain is constrained by natural selection of immunoglobulin diversity (DH) sequence. To test the functional significance of this constraint in the context of thymus-dependent (TD) immune responses, we immunized BALB/c mice with WT or altered DH sequence with 2-phenyloxazolone-coupled chicken serum albumin (phOx-CSA). We chose this antigen because studies of the humoral immune response to the hapten phOx were instrumental in the development of the current theoretical framework on which our understanding of the forces driving TD responses is based. To allow direct comparison, we used the classic approach of generating monoclonal Ab (mAb) from various stages of the immune response to phOx to assess the effect of changing the sequence of the DH on clonal expansion, class switching, and affinity maturation, which are hallmarks of TD responses. Compared to WT, TD-induced humoral IgM as well as IgG antibody production in the D-altered ΔD-DμFS and ΔD-iD strains were significantly reduced. An increased prevalence of IgM-producing hybridomas from late primary, secondary, and tertiary memory responses suggested either impaired class switch recombination (CSR) or impaired clonal expansion of class switched B cells with phOx reactivity. Neither of the D-altered strains demonstrated the restriction in the VH/VL repertoire, the elimination of VH1 family-encoded antibodies, the focusing of the distribution of CDR-H3 lengths, or the selection for the normally dominant Ox1 clonotype, which all are hallmarks of the anti-phOx response in WT mice. These changes in clonal selection and expansion, as well as CSR indicate that the genetic constitution of the DH locus, which has been selected by evolution, can strongly influence the functional outcome of a TD humoral response. PMID:25157256

  12. Clonal Progression during the T Cell-Dependent B Cell Antibody Response Depends on the Immunoglobulin DH Gene Segment Repertoire.

    PubMed

    Trad, Ahmad; Tanasa, Radu Iulian; Lange, Hans; Zemlin, Michael; Schroeder, Harry W; Lemke, Hilmar

    2014-01-01

    The diversity of the third complementarity determining region of the IgH chain is constrained by natural selection of immunoglobulin diversity (DH) sequence. To test the functional significance of this constraint in the context of thymus-dependent (TD) immune responses, we immunized BALB/c mice with WT or altered DH sequence with 2-phenyloxazolone-coupled chicken serum albumin (phOx-CSA). We chose this antigen because studies of the humoral immune response to the hapten phOx were instrumental in the development of the current theoretical framework on which our understanding of the forces driving TD responses is based. To allow direct comparison, we used the classic approach of generating monoclonal Ab (mAb) from various stages of the immune response to phOx to assess the effect of changing the sequence of the DH on clonal expansion, class switching, and affinity maturation, which are hallmarks of TD responses. Compared to WT, TD-induced humoral IgM as well as IgG antibody production in the D-altered ΔD-DμFS and ΔD-iD strains were significantly reduced. An increased prevalence of IgM-producing hybridomas from late primary, secondary, and tertiary memory responses suggested either impaired class switch recombination (CSR) or impaired clonal expansion of class switched B cells with phOx reactivity. Neither of the D-altered strains demonstrated the restriction in the VH/VL repertoire, the elimination of VH1 family-encoded antibodies, the focusing of the distribution of CDR-H3 lengths, or the selection for the normally dominant Ox1 clonotype, which all are hallmarks of the anti-phOx response in WT mice. These changes in clonal selection and expansion, as well as CSR indicate that the genetic constitution of the DH locus, which has been selected by evolution, can strongly influence the functional outcome of a TD humoral response. PMID:25157256

  13. Epigenetic Control of B Cell Development and B-Cell-Related Immune Disorders.

    PubMed

    Bao, Yan; Cao, Xuetao

    2016-06-01

    B lymphocytes are generally recognized as the essential component of humoral immunity and also a regulator of innate immunity. The development of B cells is precisely regulated by a variety of factors via different mechanisms, including cytokine/cytokine receptors, signal transduction molecules, and transcription factors. Recent findings suggest that epigenetic factors, such as DNA methylation, histone modification, and non-coding RNA, play critical roles in establishing B cell lineage-specific gene expression profiles to define and sustain B cell identity and function. Epigenetic modifications are also sensitive to external stimuli and might bridge genetic and environmental factors in the pathogenesis or control of B-cell-related immune disorders, such as autoimmune diseases, lymphoma, and leukemia. Better understanding of the epigenetic mechanisms for regulating B cell development and involving B cell abnormal differentiation and function will shed light on the design of new therapeutic approaches to B-cell-related diseases, and potential candidates of epigenetic modulators may be identified to target epigenetic pathways to prevent or treat B cell disorders. We summarize the relevance of epigenetic marks and landscapes in the stages of B cell development, discuss the interaction of the transcriptional networks and epigenetic changes, and review the involvement of epigenetic risk in the pathogenesis of B-cell-related diseases. Understanding how specific epigenetic alterations contribute to the development of B-cell-related autoimmunity and malignancies is instrumental to control B cell disorders. PMID:26066671

  14. EBNA3C Directs Recruitment of RBPJ (CBF1) to Chromatin during the Process of Gene Repression in EBV Infected B Cells

    PubMed Central

    Kalchschmidt, Jens S.; Gillman, Adam C. T.; Paschos, Kostas; Bazot, Quentin; Kempkes, Bettina; Allday, Martin J.

    2016-01-01

    It is well established that Epstein-Barr virus nuclear antigen 3C (EBNA3C) can act as a potent repressor of gene expression, but little is known about the sequence of events occurring during the repression process. To explore further the role of EBNA3C in gene repression–particularly in relation to histone modifications and cell factors involved–the three host genes previously reported as most robustly repressed by EBNA3C were investigated. COBLL1, a gene of unknown function, is regulated by EBNA3C alone and the two co-regulated disintegrin/metalloproteases, ADAM28 and ADAMDEC1 have been described previously as targets of both EBNA3A and EBNA3C. For the first time, EBNA3C was here shown to be the main regulator of all three genes early after infection of primary B cells. Using various EBV-recombinants, repression over orders of magnitude was seen only when EBNA3C was expressed. Unexpectedly, full repression was not achieved until 30 days after infection. This was accurately reproduced in established LCLs carrying EBV-recombinants conditional for EBNA3C function, demonstrating the utility of the conditional system to replicate events early after infection. Using this system, detailed chromatin immunoprecipitation analysis revealed that the initial repression was associated with loss of activation-associated histone modifications (H3K9ac, H3K27ac and H3K4me3) and was independent of recruitment of polycomb proteins and deposition of the repressive H3K27me3 modification, which were only observed later in repression. Most remarkable, and in contrast to current models of RBPJ in repression, was the observation that this DNA-binding factor accumulated at the EBNA3C-binding sites only when EBNA3C was functional. Transient reporter assays indicated that repression of these genes was dependent on the interaction between EBNA3C and RBPJ. This was confirmed with a novel EBV-recombinant encoding a mutant of EBNA3C unable to bind RBPJ, by showing this virus was incapable of

  15. EBNA3C Directs Recruitment of RBPJ (CBF1) to Chromatin during the Process of Gene Repression in EBV Infected B Cells.

    PubMed

    Kalchschmidt, Jens S; Gillman, Adam C T; Paschos, Kostas; Bazot, Quentin; Kempkes, Bettina; Allday, Martin J

    2016-01-01

    It is well established that Epstein-Barr virus nuclear antigen 3C (EBNA3C) can act as a potent repressor of gene expression, but little is known about the sequence of events occurring during the repression process. To explore further the role of EBNA3C in gene repression-particularly in relation to histone modifications and cell factors involved-the three host genes previously reported as most robustly repressed by EBNA3C were investigated. COBLL1, a gene of unknown function, is regulated by EBNA3C alone and the two co-regulated disintegrin/metalloproteases, ADAM28 and ADAMDEC1 have been described previously as targets of both EBNA3A and EBNA3C. For the first time, EBNA3C was here shown to be the main regulator of all three genes early after infection of primary B cells. Using various EBV-recombinants, repression over orders of magnitude was seen only when EBNA3C was expressed. Unexpectedly, full repression was not achieved until 30 days after infection. This was accurately reproduced in established LCLs carrying EBV-recombinants conditional for EBNA3C function, demonstrating the utility of the conditional system to replicate events early after infection. Using this system, detailed chromatin immunoprecipitation analysis revealed that the initial repression was associated with loss of activation-associated histone modifications (H3K9ac, H3K27ac and H3K4me3) and was independent of recruitment of polycomb proteins and deposition of the repressive H3K27me3 modification, which were only observed later in repression. Most remarkable, and in contrast to current models of RBPJ in repression, was the observation that this DNA-binding factor accumulated at the EBNA3C-binding sites only when EBNA3C was functional. Transient reporter assays indicated that repression of these genes was dependent on the interaction between EBNA3C and RBPJ. This was confirmed with a novel EBV-recombinant encoding a mutant of EBNA3C unable to bind RBPJ, by showing this virus was incapable of

  16. Mechanism of fragility at BCL2 gene minor breakpoint cluster region during t(14;18) chromosomal translocation.

    PubMed

    Nambiar, Mridula; Raghavan, Sathees C

    2012-03-16

    The t(14;18) translocation in follicular lymphoma is one of the most common chromosomal translocations. Breaks in chromosome 18 are localized at the 3'-UTR of BCL2 gene or downstream and are mainly clustered in either the major breakpoint region or the minor breakpoint cluster region (mcr). The recombination activating gene (RAG) complex induces breaks at IgH locus of chromosome 14, whereas the mechanism of fragility at BCL2 mcr remains unclear. Here, for the first time, we show that RAGs can nick mcr; however, the mechanism is unique. Three independent nicks of equal efficiency are generated, when both Mg(2+) and Mn(2+) are present, unlike a single nick during V(D)J recombination. Further, we demonstrate that RAG binding and nicking at the mcr are independent of nonamer, whereas a CCACCTCT motif plays a critical role in its fragility, as shown by sequential mutagenesis. More importantly, we recapitulate the BCL2 mcr translocation and find that mcr can undergo synapsis with a standard recombination signal sequence within the cells, in a RAG-dependent manner. Further, mutation to the CCACCTCT motif abolishes recombination within the cells, indicating its vital role. Hence, our data suggest a novel, physiologically relevant, nonamer-independent mechanism of RAG nicking at mcr, which may be important for generation of chromosomal translocations in humans. PMID:22275374

  17. FCGR2C Polymorphisms Associated with HIV-1 Vaccine Protection Are Linked to Altered Gene Expression of Fc-γ Receptors in Human B Cells

    PubMed Central

    Peng, Xinxia; Li, Shuying S.; Gilbert, Peter B.; Geraghty, Daniel E.; Katze, Michael G.

    2016-01-01

    The phase III Thai RV144 vaccine trial showed an estimated vaccine efficacy (VE) to prevent HIV-1 infection of 31.2%, which has motivated the search for immune correlates of vaccine protection. In a recent report, several single nucleotide polymorphisms (SNPs) in FCGR2C were identified to associate with the level of VE in the RV144 trial. To investigate the functional significance of these SNPs, we utilized a large scale B cell RNA sequencing database of 462 individuals from the 1000 Genomes Project to examine associations between FCGR2C SNPs and gene expression. We found that the FCGR2C SNPs that associated with vaccine efficacy in RV144 also strongly associated with the expression of FCGR2A/C and one of them also associated with the expression of Fc receptor-like A (FCRLA), another Fc-γ receptor (FcγR) gene that was not examined in the previous report. These results suggest that the expression of FcγR genes is influenced by these SNPs either directly or in linkage with other causal variants. More importantly, these results motivate further investigations into the potential for a causal association of expression and alternative splicing of FCGR2C and other FcγR genes with the HIV-1 vaccine protection in the RV144 trial and other similar studies. PMID:27015273

  18. FCGR2C Polymorphisms Associated with HIV-1 Vaccine Protection Are Linked to Altered Gene Expression of Fc-γ Receptors in Human B Cells.

    PubMed

    Peng, Xinxia; Li, Shuying S; Gilbert, Peter B; Geraghty, Daniel E; Katze, Michael G

    2016-01-01

    The phase III Thai RV144 vaccine trial showed an estimated vaccine efficacy (VE) to prevent HIV-1 infection of 31.2%, which has motivated the search for immune correlates of vaccine protection. In a recent report, several single nucleotide polymorphisms (SNPs) in FCGR2C were identified to associate with the level of VE in the RV144 trial. To investigate the functional significance of these SNPs, we utilized a large scale B cell RNA sequencing database of 462 individuals from the 1000 Genomes Project to examine associations between FCGR2C SNPs and gene expression. We found that the FCGR2C SNPs that associated with vaccine efficacy in RV144 also strongly associated with the expression of FCGR2A/C and one of them also associated with the expression of Fc receptor-like A (FCRLA), another Fc-γ receptor (FcγR) gene that was not examined in the previous report. These results suggest that the expression of FcγR genes is influenced by these SNPs either directly or in linkage with other causal variants. More importantly, these results motivate further investigations into the potential for a causal association of expression and alternative splicing of FCGR2C and other FcγR genes with the HIV-1 vaccine protection in the RV144 trial and other similar studies. PMID:27015273

  19. Influence of genes encoding proton-translocating enzymes on suppression of Salmonella typhimurium growth and colonization.

    PubMed

    Zhang-Barber, L; Turner, A K; Martin, G; Frankel, G; Dougan, G; Barrow, P A

    1997-11-01

    Twenty-four-hour-old, aerobically grown, Luria-Bertani broth cultures of Salmonella typhimurium F98 suppressed the growth of a spectinomycin-resistant (Spcr) derivative of the same strain inoculated at 10(3) CFU ml(-1). This growth suppression is genus specific and RpoS independent, and it is not solely a result of nutrient depletion (P. A. Barrow, M. A. Lovell, and L. Zhang-Barber, J. Bacteriol. 178:3072-3076, 1996). Mutations in three genes are shown here to significantly reduce growth suppression under these conditions. The mutations were located in the nuo, cyd, and unc operons, which code for the NADH dehydrogenase I, cytochrome d oxidase, and F0F1 proton-translocating ATPase complexes, respectively. When cultures were grown under strictly anaerobic conditions, only the unc mutant did not suppress growth. Prior colonization of the alimentary tract of newly hatched chickens with the S. typhimurium F98 wild type or nuo or cyd mutants suppressed colonization by an S. typhimurium F98 Spcr derivative inoculated 24 h later. In contrast, the S. typhimurium unc mutant did not suppress colonization. The nuo and unc mutants showed poorer growth on certain carbon sources. The data support the hypothesis that growth suppression operates because of the absence of a utilizable carbon source or electron acceptor. PMID:9371470

  20. GenomicScape: an easy-to-use web tool for gene expression data analysis. Application to investigate the molecular events in the differentiation of B cells into plasma cells.

    PubMed

    Kassambara, Alboukadel; Rème, Thierry; Jourdan, Michel; Fest, Thierry; Hose, Dirk; Tarte, Karin; Klein, Bernard

    2015-01-01

    DNA microarrays have considerably helped to improve the understanding of biological processes and diseases. Large amounts of publicly available microarray data are accumulating, but are poorly exploited due to a lack of easy-to-use bioinformatics resources. The aim of this study is to build a free and convenient data-mining web site (www.genomicscape.com). GenomicScape allows mining dataset from various microarray platforms, identifying genes differentially expressed between populations, clustering populations, visualizing expression profiles of large sets of genes, and exporting results and figures. We show how easily GenomicScape makes it possible to construct a molecular atlas of the B cell differentiation using publicly available transcriptome data of naïve B cells, centroblasts, centrocytes, memory B cells, preplasmablasts, plasmablasts, early plasma cells and bone marrow plasma cells. Genes overexpressed in each population and the pathways encoded by these genes are provided as well as how the populations cluster together. All the analyses, tables and figures can be easily done and exported using GenomicScape and this B cell to plasma cell atlas is freely available online. Beyond this B cell to plasma cell atlas, the molecular characteristics of any biological process can be easily and freely investigated by uploading the corresponding transcriptome files into GenomicScape. PMID:25633866

  1. Chronic TCDD exposure results in the dysregulation of gene expression in splenic B-lymphocytes and in the impairments in T-cell and B-cell differentiation in mouse model.

    PubMed

    Feng, Yu; Tian, Jijing; Krylova, Irina; Xu, Tuan; Xie, Heidi Qunhui; Guo, Tai L; Zhao, Bin

    2016-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) exposure in humans is associated with marked immune suppressions and increased incidence of lymphoblastic diseases. To elucidate mechanisms of impairments in humoral immune responses, we used a murine model. Following a 20-week administration of low doses of TCDD, we observed severely reduced antibody titers, dramatically decreased number of splenic Th1 and Th2 cells and an increase in CD19(+) B cells. Transcriptional profiling of CD19(+) B cells showed that markers of pre-B cells were significantly elevated, indicating delayed B cell maturation. These changes in B cells were accompanied by decreases of T helper cell numbers and reduced IgM and IgG titers. A transcriptome analysis of splenic B cells followed by Ingenuity Pathway Analysis (IPA) revealed a set of differentially expressed genes known to play roles in tumorigenesis, cell-proliferation and cell-migration. The most up-regulated transcript gene was Eph receptor A2 (EphA2), a known oncogene, and the most down-regulated transcript was ZBTB16 that codes for a negative transcriptional regulator important in epigenetic chromatin remodeling. IPA identified cAMP-responsive element modulator (CREM) and cAMP-responsive element binding protein 1 (CREB1) as top upstream regulators. Consistently, a MAPPER promoter database analysis showed that all top dysregulated genes had CREM and/or CREB1 binding sites in their promoter regions. In summary, our data showed that chronic TCDD exposure in mice caused suppressed humoral immunity accompanied with profound dysregulation of gene expression in splenic B-lymphocytes, likely through cAMP-dependent pathways. This dysregulation resulted in impairments in T-cell and B-cell differentiation and activation of the tumorigenic transcription program. PMID:26899660

  2. 1,25-dihydroxyvitamin D{sub 3} impairs NF-{kappa}B activation in human naive B cells

    SciTech Connect

    Geldmeyer-Hilt, Kerstin; Heine, Guido; Hartmann, Bjoern; Baumgrass, Ria; Radbruch, Andreas; Worm, Margitta

    2011-04-22

    Highlights: {yields} In naive B cells, VDR activation by calcitriol results in reduced NF-{kappa}B p105 and p50 protein expression. {yields} Ligating the VDR with calcitriol causes reduced nuclear translocation of NF-{kappa}B p65. {yields} Reduced nuclear amount of p65 after calcitriol incubation results in reduced binding of p65 on the p105 promoter. {yields} Thus, vitamin D receptor signaling may reduce or prevent activation of B cells and unwanted immune responses, e.g. in IgE dependent diseases such as allergic asthma. -- Abstract: 1{alpha},25-dihydroxyvitamin D{sub 3} (calcitriol), the bioactive metabolite of vitamin D, modulates the activation and inhibits IgE production of anti-CD40 and IL-4 stimulated human peripheral B cells. Engagement of CD40 results in NF-{kappa}B p50 activation, which is essential for the class switch to IgE. Herein, we investigated by which mechanism calcitriol modulates NF-{kappa}B mediated activation of human naive B cells. Naive B cells were predominantly targeted by calcitriol in comparison with memory B cells as shown by pronounced induction of the VDR target gene cyp24a1. Vitamin D receptor activation resulted in a strongly reduced p105/p50 protein and mRNA expression in human naive B cells. This effect is mediated by impaired nuclear translocation of p65 and consequently reduced binding of p65 to its binding site in the p105 promoter. Our data indicate that the vitamin D receptor reduces NF-{kappa}B activation by interference with NF-{kappa}B p65 and p105. Thus, the vitamin D receptor inhibits costimulatory signal transduction in naive B cells, namely by reducing CD40 signaling.

  3. Rac-mediated Stimulation of Phospholipase Cγ2 Amplifies B Cell Receptor-induced Calcium Signaling*♦

    PubMed Central

    Walliser, Claudia; Tron, Kyrylo; Clauss, Karen; Gutman, Orit; Kobitski, Andrei Yu.; Retlich, Michael; Schade, Anja; Röcker, Carlheinz; Henis, Yoav I.; Nienhaus, G. Ulrich; Gierschik, Peter

    2015-01-01

    The Rho GTPase Rac is crucially involved in controlling multiple B cell functions, including those regulated by the B cell receptor (BCR) through increased cytosolic Ca2+. The underlying molecular mechanisms and their relevance to the functions of intact B cells have thus far remained unknown. We have previously shown that the activity of phospholipase Cγ2 (PLCγ2), a key constituent of the BCR signalosome, is stimulated by activated Rac through direct protein-protein interaction. Here, we use a Rac-resistant mutant of PLCγ2 to functionally reconstitute cultured PLCγ2-deficient DT40 B cells and to examine the effects of the Rac-PLCγ2 interaction on BCR-mediated changes of intracellular Ca2+ and regulation of Ca2+-regulated and nuclear-factor-of-activated-T-cell-regulated gene transcription at the level of single, intact B cells. The results show that the functional Rac-PLCγ2 interaction causes marked increases in the following: (i) sensitivity of B cells to BCR ligation; (ii) BCR-mediated Ca2+ release from intracellular stores; (iii) Ca2+ entry from the extracellular compartment; and (iv) nuclear translocation of the Ca2+-regulated nuclear factor of activated T cells. Hence, Rac-mediated stimulation of PLCγ2 activity serves to amplify B cell receptor-induced Ca2+ signaling. PMID:25903139

  4. Curcumin regulates gene expression of insulin like growth factor, B-cell CLL/lymphoma 2 and antioxidant enzymes in streptozotocin induced diabetic rats

    PubMed Central

    2013-01-01

    Background The effects of curcumin on the activities and gene expression of antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione-S-transferase (G-ST), B-cell CLL/lymphoma 2 (Bcl-2) and insulin like growth factor-1 (IGF-1) in diabetic rats were studied. Methods Twenty four rats were assigned to three groups (8 rats for each). Rats of first group were non diabetic and rats of the second group were rendered diabetic by streptozotocin (STZ). Both groups received vehicle, corn oil only (5 ml/kg body weight) and served as negative and positive controls, respectively. Rats of the third group were rendered diabetic and received oral curcumin dissolved in corn oil at a dose of 15 mg/5 ml/kg body weight for 6 weeks. Results Diabetic rats showed significant increase of blood glucose, thiobarbituric acid reactive substances (TBARS) and activities of all antioxidant enzymes with significant reduction of reduced glutathione (GSH) compare to the control non diabetic group. Gene expression of Bcl2, SOD, CAT, GPX and GST was increased significantly in diabetic untreated rats compare to the control non diabetic group. The administration of curcumin to diabetic rats normalized significantly their blood sugar level and TBARS values and increased the activities of all antioxidant enzymes and GSH concentration. In addition, curcumin treated rats showed significant increase in gene expression of IGF-1, Bcl2, SOD and GST compare to non diabetic and diabetic untreated rats. Conclusion Curcumin was antidiabetic therapy, induced hypoglycemia by up-regulation of IGF-1 gene and ameliorate the diabetes induced oxidative stress via increasing the availability of GSH, increasing the activities and gene expression of antioxidant enzymes and Bcl2. Further studies are required to investigate the actual mechanism of action of curcumin regarding the up regulation of gene expression of examined parameters. PMID:24364912

  5. Disruption of the APC gene by t(5;7) translocation in a Turcot family.

    PubMed

    Sahnane, Nora; Bernasconi, Barbara; Carnevali, Ileana; Furlan, Daniela; Viel, Alessandra; Sessa, Fausto; Tibiletti, Maria Grazia

    2016-03-01

    Turcot syndrome (TS) refers to the combination of colorectal polyps and primary tumours of the central nervous system. TS is a heterogeneous genetic condition due to APC and/or mismatch repair germline mutations. When APC is involved the vast majority of mutations are truncating, but in approximately 20%-30% of patients with familial polyposis no germline mutation can be found. A 30-year-old Caucasian woman with a positive pedigree for TS was referred to our Genetic Counselling Service. She was negative for APC and MUTYH but showed a reciprocal balanced translocation t(5;7)(q22;p15) at chromosome analysis. FISH analysis using specific BAC probes demonstrated that 5q22 breakpoint disrupted the APC gene. Transcript analysis by MLPA and digital PCR revealed that the cytogenetic rearrangement involving the 3' end of the APC gene caused a defective expression of a truncated transcript. This result allowed cytogenetic analysis to be offered to all the other family members and segregation analysis clearly demonstrated that all the carriers were affected, whereas non-carriers did not have the polyposis. A cytogenetic approach permitted the identification of the mutation-causing disease in this family, and the segregation analysis together with the transcript study supported the pathogenetic role of this mutation. Karyotype analysis was used as a predictive test in all members of this family. This family suggests that clinically positive TS and FAP cases, which test negative with standard molecular analysis, could be easily and cost-effectively resolved by a classical and molecular cytogenetic approach. PMID:26797314

  6. B cells in transplantation

    PubMed Central

    Dijke, Esme I.; Platt, Jeffrey L.; Blair, Paul; Clatworthy, Menna R.; Patel, Jignesh K.; Kfoury, A.G.; Cascalho, Marilia

    2016-01-01

    B cell responses underlie the most vexing immunological barriers to organ transplantation. Much has been learned about the molecular mechanisms of B cell responses to antigen and new therapeutic agents that specifically target B cells or suppress their functions are available. Yet, despite recent advances, there remains an incomplete understanding about how B cell functions determine the fate of organ transplants and how, whether or when potent new therapeutics should optimally be used. This gap in understanding reflects in part the realization that besides producing antibodies, B cells can also regulate cellular immunity, contribute to the genesis of tolerance and induce accommodation. Whether non-specific depletion of B cells, their progeny or suppression of their functions would undermine these non-cognate functions and whether graft outcome would suffer as a result is unknown. These questions were discussed at a symposium on “B cells in transplantation” at the 2015 ISHLT annual meeting. Those discussions are summarized here and a new perspective is offered. PMID:26996930

  7. Plasmodium Infection Promotes Genomic Instability and AID Dependent B Cell Lymphoma

    PubMed Central

    Robbiani, Davide F.; Deroubaix, Stephanie; Feldhahn, Niklas; Oliveira, Thiago Y.; Callen, Elsa; Wang, Qiao; Jankovic, Mila; Silva, Israel T.; Rommel, Philipp C.; Bosque, David; Eisenreich, Tom; Nussenzweig, André; Nussenzweig, Michel C.

    2015-01-01

    Summary Chronic infection with Plasmodium falciparum was epidemiologically associated with endemic Burkitt’s lymphoma, a mature B cell cancer characterized by chromosome translocation between the c-myc oncogene and Igh, over 50 years ago. Whether infection promotes B cell lymphoma, and if so by what mechanism remains unknown. To investigate the relationship between parasitic disease and lymphomagenesis we used Plasmodium chabaudi (Pc) to produce chronic malaria infection in mice. Pc induces prolonged expansion of germinal centers (GCs), unique compartments where B cells undergo rapid clonal expansion and express activation-induced cytidine deaminase (AID), a DNA mutator. GC B cells elicited during Pc infection suffer widespread DNA damage leading to chromosome translocations. Although infection does not change the overall rate, it modifies lymphomagenesis to favor mature B cell lymphomas that are AID dependent and show chromosome translocations. Thus, malaria infection favors mature B cell cancers by eliciting protracted AID expression in GC B cells. PMID:26276629

  8. The gene encoding the mouse contactin-1 axonal glycoprotein is regulated by the collier/Olf1/EBF family early B-Cell factor 2 transcription factor.

    PubMed

    Bizzoca, Antonella; Picocci, Sabrina; Corsi, Patrizia; Arbia, Stefania; Croci, Laura; Consalez, G Giacomo; Gennarini, Gianfranco

    2015-12-01

    The Contactin-1 axonal glycoprotein (formerly F3/Contactin) plays a relevant role in cerebellar ontogenesis, as shown in Contactin-1 KO-mice and in transgenic mice misexpressing the corresponding cDNA from a heterologous promoter. Likewise, null mutant mice for the Collier/Olf1/Early B-cell family transcription factor EBF2, in which Purkinje neuron development is primarily affected, exhibit abnormalities in cerebellar corticogenesis. Here, to evaluate the contribution to the Ebf2 null phenotype of changes in the profile of Contactin-1, we study its expression in Ebf2 null mice. In addition, we explore the activation profile of the Cntn1 gene promoter upon transferring the Ebf2 mutation to transgenic mice expressing an enhanced green fluorescent protein reporter under control of Cntn1 gene regulatory sequences. In Ebf2 null mice, Contactin-1 protein expression and Cntn1 gene promoter activity are both downregulated during embryonic and early postnatal cerebellar development, both in the rostral and caudal folia, while in the latter an upregulation is observed at postnatal day 8. In vitro, vectors driving EBF1,2,3 transcription factors from a cytomegalovirus (CMV) promoter transactivate a Cntn1-Choline acetyltransferse (CAT) promoter-reporter construct in cotransfection assays and, accordingly, by chromatin immunoprecipitation, we show that the Cntn1 gene 5' flanking region is bound by the EBF2 transcription factor, consistent with the evidence that this region bears the cognate deoxyribonucleic acid (DNA) consensus sequences. These data indicate that Contactin-1 expression is dependent upon EBF factors, suggesting that the Cntn1 gene belongs to the expanding regulatory cascade driven by these transcriptional regulators so that changes in its activation may contribute to the phenotype of Ebf2 null mutant mice. PMID:25820347

  9. Cotton Leaf Curl Multan Betasatellite DNA as a Tool to Deliver and Express the Human B-Cell Lymphoma 2 (Bcl-2) Gene in Plants.

    PubMed

    Kharazmi, Sara; Ataie Kachoie, Elham; Behjatnia, Seyed Ali Akbar

    2016-05-01

    The betasatellite DNA associated with Cotton leaf curl Multan virus (CLCuMB) contains a single complementary-sense ORF, βC1, which is a pathogenicity determinant. CLCuMB was able to replicate in plants in the presence of diverse helper geminiviruses, including Tomato leaf curl virus-Australia (TLCV-Au), Iranian isolate of Tomato yellow leaf curl virus (TYLCV-[Ab]), and Beet curly top virus (BCTV-Svr), and can be used as a plant gene delivery vector. To test the hypothesis that CLCuMB has the potential to act as an animal gene delivery vector, a specific insertion construct was produced by the introduction of a human B-cell lymphoma 2 (Bcl-2) cDNA into a mutant DNA of CLCuMB in which the βC1 was deleted (β∆C1). The recombinant βΔC1-Bcl-2 construct was successfully replicated in tomato and tobacco plants in the presence of TLCV-Au, BCTV-Svr and TYLCV-[Ab]. Real-time PCR and Western blot analyses of plants containing the replicative forms of recombinant βΔC1-Bcl-2 DNA showed that Bcl-2 gene was expressed in an acceptable level in these plants, indicating that β∆C1 can be used as a tool to deliver and express animal genes in plants. This CLCuMB-based system, having its own promoter activity, offers the possibility of production of animal recombinant proteins in plants. PMID:27041273

  10. QuantiGene Plex Represents a Promising Diagnostic Tool for Cell-of-Origin Subtyping of Diffuse Large B-Cell Lymphoma.

    PubMed

    Hall, John S; Usher, Suzanne; Byers, Richard J; Higgins, Rebekah C; Memon, Danish; Radford, John A; Linton, Kim M

    2015-07-01

    Emerging therapies targeting the molecularly distinct GCB and non-GCB/ABC subtypes of diffuse large B-cell lymphoma (DLBCL) have created the need to develop an accurate subtyping assay for routine use. We investigated the potential of QuantiGene Plex (QGP)-branched DNA signal amplification assay-for DLBCL subtyping. We performed in silico analysis of public DLBCL datasets to develop and validate a naïve Bayes classifier, and migrated the resulting 21-gene classifier to QGP and real-time quantitative PCR (qPCR) assays. Forty DLBCL formalin-fixed, paraffin-embedded tumors of known subtype (20 per subtype by gene expression profiling of paired fresh-frozen tissues) were reclassified, and results for QGP (on 38/40 for 21/21 targets) and qPCR (on 40/40 samples for 19/21 targets) compared for recapitulation of microarray data and classification accuracy. The 21-gene bayesian classifier achieved mean area under the curve values >0.9 on independent validation. QGP showed a higher correlation with microarray data (mean R(2) = 0.66 ± 0.05 versus 0.34 ± 0.07; P < 0.0001) and classification accuracy (92.1% versus 78.9%). The proportion of validated targets was also higher for QGP (85.7% versus 47.4%). The QGP protocol was rapid and simple to perform, at a cost similar to qPCR. These promising preliminary results strongly support ongoing work to develop a QGP companion diagnostic assay for DLBCL subtyping. PMID:25982535

  11. Host immune gene polymorphisms in combination with clinical and demographic factors predict late survival in diffuse large B-cell lymphoma patients in the pre-rituximab era

    PubMed Central

    Habermann, Thomas M.; Wang, Sophia S.; Maurer, Matthew J.; Morton, Lindsay M.; Lynch, Charles F.; Ansell, Stephen M.; Hartge, Patricia; Severson, Richard K.; Rothman, Nathaniel; Davis, Scott; Geyer, Susan M.; Cozen, Wendy; Chanock, Stephen J.

    2008-01-01

    To evaluate the hypothesis that host germ line variation in immune genes is associated with overall survival in diffuse large B-cell lymphoma (DLBCL), we genotyped 73 single nucleotide polymorphisms (SNPs) from 44 candidate genes in 365 DLBCL patients diagnosed from 1998 to 2000. We estimated hazard ratios (HRs) and 95% confidence intervals (CIs) for the association of SNPs with survival after adjusting for clinical factors. During follow-up, 96 (26%) patients died, and the median follow-up was 57 months for surviving patients. The observed survival of this cohort was consistent with population-based estimates conditioned on surviving 12 months. An IL10 haplotype (global P = .03) and SNPs in IL8RB (rs1126580; HRAG/GG = 2.11; CI, 1.28-3.50), IL1A (rs1800587; HRCT/TT = 1.90; CI, 1.26-2.87), TNF (rs1800629; HRAG/GG = 1.44; CI, 0.95-2.18), and IL4R (rs2107356; HRCC/CT = 1.97; CI, 1.01-3.83) were the strongest predictors of overall survival. A risk score that combined the latter 4 SNPs with clinical factors was strongly associated with survival in a Cox model (P = 6.0 × 10−11). Kaplan-Meier 5-year survival estimates for low, intermediate-low, intermediate-high, and high-risk patients were 94%, 79%, 60%, and 48%, respectively. These data support a role for germ line variation in immune genes, particularly genes associated with a proinflammatory state, as predictors of late survival in DLBCL. PMID:18633131

  12. Evaluation of the NOD/SCID xenograft model for glucocorticoid-regulated gene expression in childhood B-cell precursor acute lymphoblastic leukemia

    PubMed Central

    2011-01-01

    Background Glucocorticoids such as prednisolone and dexamethasone are critical drugs used in multi-agent chemotherapy protocols used to treat acute lymphoblastic leukemia (ALL), and response to glucocorticoids is highly predictive of outcome. The NOD/SCID xenograft mouse model of ALL is a clinically relevant model in which the mice develop a systemic leukemia which retains the fundamental biological characteristics of the original disease. Here we report a study evaluating the NOD/SCID xenograft mouse model to investigate glucocorticoid-induced gene expression. Cells from a glucocorticoid-sensitive xenograft derived from a child with B-cell precursor ALL were inoculated into NOD/SCID mice. When highly engrafted the mice were randomized into groups of 4 to receive dexamethasone 15 mg/kg by intraperitoneal injection or vehicle control. Leukemia cells were harvested from mice spleens at 0, 8, 24 or 48 hours thereafter, and gene expression analyzed on Illumina WG-6_V3 chips, comparing all groups to time 0 hours. Results The 8 hour dexamethasone-treated timepoint had the highest number of significantly differentially expressed genes, with fewer observed at the 24 and 48 hour timepoints, and with minimal changes seen across the time-matched controls. When compared to publicly available datasets of glucocorticoid-induced gene expression from an in vitro cell line study and from an in vivo study of patients with ALL, at the level of pathways, expression changes in the 8 hour xenograft samples showed a similar response to patients treated with glucocorticoids. Replicate analysis revealed that at the 8 hour timepoint, a dataset with high signal and differential expression, using data from 3 replicates instead of 4 resulted in excellent recovery scores of > 0.9. However at other timepoints with less signal very poor recovery scores were obtained with 3 replicates. Conclusions The NOD/SCID xenograft mouse model provides a reproducible experimental system in which to

  13. Aquaporin-mediated long-distance polyphosphate translocation directed towards the host in arbuscular mycorrhizal symbiosis: application of virus-induced gene silencing.

    PubMed

    Kikuchi, Yusuke; Hijikata, Nowaki; Ohtomo, Ryo; Handa, Yoshihiro; Kawaguchi, Masayoshi; Saito, Katsuharu; Masuta, Chikara; Ezawa, Tatsuhiro

    2016-09-01

    Arbuscular mycorrhizal fungi translocate polyphosphate through hyphae over a long distance to deliver to the host. More than three decades ago, suppression of host transpiration was found to decelerate phosphate delivery of the fungal symbiont, leading us to hypothesize that transpiration provides a primary driving force for polyphosphate translocation, probably via creating hyphal water flow in which fungal aquaporin(s) may be involved. The impact of transpiration suppression on polyphosphate translocation through hyphae of Rhizophagus clarus was evaluated. An aquaporin gene expressed in intraradical mycelia was characterized and knocked down by virus-induced gene silencing to investigate the involvement of the gene in polyphosphate translocation. Rhizophagus clarus aquaporin 3 (RcAQP3) that was most highly expressed in intraradical mycelia encodes an aquaglyceroporin responsible for water transport across the plasma membrane. Knockdown of RcAQP3 as well as the suppression of host transpiration decelerated polyphosphate translocation in proportion to the levels of knockdown and suppression, respectively. These results provide the first insight into the mechanism underlying long-distance polyphosphate translocation in mycorrhizal associations at the molecular level, in which host transpiration and the fungal aquaporin play key roles. A hypothetical model of the translocation is proposed for further elucidation of the mechanism. PMID:27136716

  14. A B-Cell Superantigen Induces the Apoptosis of Murine and Human Malignant B Cells.

    PubMed

    Lorenzo, Daniela; Duarte, Alejandra; Mundiñano, Juliana; Berguer, Paula; Nepomnaschy, Irene; Piazzon, Isabel

    2016-01-01

    B-cell superantigens (Sags) bind to conserved sites of the VH or VL regions of immunoglobulin molecules outside their complementarity-determining regions causing the apoptosis of normal cognate B cells. No attempts to investigate whether B-cell Sags are able to induce the apoptosis of cognate malignant B cells were reported. In the present study we show that protein L (PpL), secreted by Finegoldia magna, a B-cell Sag which interacts with κ+ bearing cells, induces the apoptosis of murine and human κ+ lymphoma B cells both in vitro and in vivo. Apoptosis was not altered by caspase-8 inhibitor. No alterations in the levels of Bid, Fas and Fas-L were found suggesting that PpL does not activate the extrinsic pathway of apoptosis. The involvement of the intrinsic pathway was clearly indicated by: i) alterations in mitochondrial membrane potential (ΔΨm) both in murine and human lymphoma cells exposed to PpL; ii) decreased levels of apoptosis in the presence of caspase-9 inhibitor; iii) significant increases of Bim and Bax protein levels and downregulation of Bcl-2; iv) the translocation from the cytoplasm to the mitochondria of Bax and Bim pro-apoptotic proteins and its inhibition by caspase-9 inhibitor but not by caspase-8 inhibitor and v) the translocation of Bcl-2 protein from the mitochondria to the cytosol and its inhibition by caspase-9 inhibitor but not by caspase-8 inhibitor. The possibility of a therapeutic use of Sags in lymphoma/leukemia B cell malignancies is discussed. PMID:27603942

  15. The tumor microenvironment shapes hallmarks of mature B-cell malignancies.

    PubMed

    Shain, K H; Dalton, W S; Tao, J

    2015-09-01

    B-cell tumorigenesis results from a host of known and unknown genetic anomalies, including non-random translocations of genes that normally function as determinants of cell proliferation or cell survival to regions juxtaposed to active immunoglobulin heavy chain enhancer elements, chromosomal aneuploidy, somatic mutations that further affect oncogenic signaling and loss of heterozygosity of tumor-suppressor genes. However, it is critical to recognize that even in the setting of a genetic disease, the B-cell/plasma cell tumor microenvironment (TME) contributes significantly to malignant transformation and pathogenesis. Over a decade ago, we proposed the concept of cell adhesion-mediated drug resistance to delineate a form of TME-mediated drug resistance that protects hematopoietic tumor cells from the initial effect of diverse therapies. In the interim, it has been increasingly appreciated that TME also contributes to tumor initiation and progression through sustained growth/proliferation, self-renewal capacity, immune evasion, migration and invasion as well as resistance to cell death in a host of B-cell malignancies, including mantle cell lymphoma, diffuse large B-cell lymphoma, Waldenstroms macroglobulinemia, chronic lymphocytic leukemia and multiple myeloma. Within this review, we propose that TME and the tumor co-evolve as a consequence of bidirectional signaling networks. As such, TME represents an important target and should be considered integral to tumor progression and drug response. PMID:25639873

  16. Analysis of Host Gene Expression Changes Reveals Distinct Roles for the Cytoplasmic Domain of the Epstein-Barr Virus Receptor/CD21 in B-Cell Maturation, Activation, and Initiation of Virus Infection

    PubMed Central

    Arredouani, Mohamed S.; Bhasin, Manoj K.; Sage, David R.; Dunn, Laura K.; Gill, Michael B.; Agnani, Deep; Libermann, Towia A.

    2014-01-01

    ABSTRACT Epstein-Barr virus (EBV) attachment to human CD21 on the B-cell surface initiates infection. Whether CD21 is a simple tether or conveys vital information to the cell interior for production of host factors that promote infection of primary B cells is controversial, as the cytoplasmic fragment of CD21 is short, though highly conserved. The ubiquity of CD21 on normal B cells, the diversity of this population, and the well-known resistance of primary B cells to gene transfer technologies have all impeded resolution of this question. To uncover the role(s) of the CD21 cytoplasmic domain during infection initiation, the full-length receptor (CD21 = CR), a mutant lacking the entire cytoplasmic tail (CT), and a control vector (NEO) were stably expressed in two pre-B-cell lines that lack endogenous receptor. Genome-wide transcriptional analysis demonstrated that stable CD21 surface expression alone (either CR or CT) produced multiple independent changes in gene expression, though both dramatically decreased class I melanoma-associated antigen (MAGE) family RNAs and upregulated genes associated with B-cell differentiation (e.g., C2TA, HLA-II, IL21R, MIC2, CD48, and PTPRCAP/CD45-associated protein). Temporal analysis spanning 72 h revealed that not only CR- but also CT-expressing lines initiated latency. In spite of this, the number and spectrum of transcripts altered in CR- compared with CT-bearing lines at 1 h after infection further diverged. Differential modulation of immediate early cellular transcripts (e.g., c-Jun and multiple histones), both novel and previously linked to CD21-initiated signaling, as well as distinct results from pathway analyses support a separate role for the cytoplasmic domain in initiation of intracellular signals. IMPORTANCE Membrane proteins that mediate virus attachment tether virus particles to the cell surface, initiating infection. In addition, upon virus interaction such proteins may transmit signals to the interior of the cell

  17. A novel IGH@ gene rearrangement associated with CDKN2A/B deletion in young adult B-cell acute lymphoblastic leukemia

    PubMed Central

    OTHMAN, MONEEB A.K.; GRYGALEWICZ, BEATA; PIENKOWSKA-GRELA, BARBARA; RYGIER, JOLANTA; EJDUK, ANNA; RINCIC, MARTINA; MELO, JOANA B.; CARREIRA, ISABEL M.; MEYER, BRITTA; LIEHR, THOMAS

    2016-01-01

    Acquired copy number changes are common in acute leukemia. They are reported as recurrent amplifications or deletions (del), and may be indicative of involvement of oncogenes or tumor suppressor genes in acquired disease, as well as serving as potential biomarkers for prognosis or as targets for molecular therapy. The present study reported a gain of copy number of 14q13 to 14q32, leading to immunoglobulin heavy chain locus splitting in a young adult female. To the best of our knowledge, this rearrangement has not been previously reported in B-cell acute lymphoblastic leukemia (ALL). Low resolution banding cytogenetics performed at the time of diagnosis revealed a normal karyotype. However, retrospective application of fluorescence in situ hybridization (FISH) banding and locus-specific FISH probes, as well as multiplex ligation-dependent probe amplification and high resolution array-comparative genomic hybridization, revealed previously hidden aberrations. Overall, a karyotype of 46, XX, del(9) (p21.3 p21.3),derivative(14) (pter-> q32.33:: q32.33-> q13 ::q32.33-> qter) was determined. The patient was treated according to the Polish Adult Leukemia Group protocol and achieved complete remission. The results of the present study indicate that a favorable prognosis is associated with these aberrations when the aforementioned treatment is administered. PMID:26998132

  18. Increased Thymic B Cells but Maintenance of Thymic Structure, T Cell Differentiation and Negative Selection in Lymphotoxin-α and TNF Gene-Targeted Mice

    PubMed Central

    Grech, Adrian P.; Riminton, D. Sean; Gabor, Melinda J.; Hardy, Charles L.; Sedgwick, Jonathon D.

    2000-01-01

    TNF, lymphotoxin (LT) and their receptors are expressed constitutively in the thymus. It remains unclear whether these cytokines play a role in normal thymic structure or function. We have investigated thymocyte differentiation, selection and thymic organogenesis in gene targeted mice lacking LTα, TNF, or both (TNF/LTα-/-). The thymus was normal in TNF/LTα-/- mice with regard to cell yields and stromal architecture. Detailed analysis of αβ and γδ T cell-lineage thymocyte subsets revealed no abnormalities, implying that neither TNF nor LT play an essential role in T cell differentiation or positive selection. The number and distribution of thymic CD11c+ dendritic cells was also normal in the absence of both TNF and LTα. A three-fold increase in B cell numbers was observed consistently in the TNF/LTα-/- thymus. This phenotype was due entirely to the LTα deficiency and associated with changes in the hemopoietic compartment, rather than the thymic stromal compartment of LTα-/- mice. Finally, specific Vβ8+ T cell deletion within the thymus following intrathymic injection of staphylococcal enterotoxin B (SEB) was TNF/LT independent. Thus, despite the presence of these cytokines and their receptors in the normal thymus, there appears no essential role for either TNF or LT in development of organ structure or for those processes associated with T cell repertoire selection. PMID:11293812

  19. Orphan Nuclear Receptor NR4A1 Binds a Novel Protein Interaction Site on Anti-apoptotic B Cell Lymphoma Gene 2 Family Proteins.

    PubMed

    Godoi, Paulo H C; Wilkie-Grantham, Rachel P; Hishiki, Asami; Sano, Renata; Matsuzawa, Yasuko; Yanagi, Hiroko; Munte, Claudia E; Chen, Ya; Yao, Yong; Marassi, Francesca M; Kalbitzer, Hans R; Matsuzawa, Shu-Ichi; Reed, John C

    2016-07-01

    B cell lymphoma gene 2 (Bcl-2) family proteins are key regulators of programmed cell death and important targets for drug discovery. Pro-apoptotic and anti-apoptotic Bcl-2 family proteins reciprocally modulate their activities in large part through protein interactions involving a motif known as BH3 (Bcl-2 homology 3). Nur77 is an orphan member of the nuclear receptor family that lacks a BH3 domain but nevertheless binds certain anti-apoptotic Bcl-2 family proteins (Bcl-2, Bfl-1, and Bcl-B), modulating their effects on apoptosis and autophagy. We used a combination of NMR spectroscopy-based methods, mutagenesis, and functional studies to define the interaction site of a Nur77 peptide on anti-apoptotic Bcl-2 family proteins and reveal a novel interaction surface. Nur77 binds adjacent to the BH3 peptide-binding crevice, suggesting the possibility of cross-talk between these discrete binding sites. Mutagenesis of residues lining the identified interaction site on Bcl-B negated the interaction with Nur77 protein in cells and prevented Nur77-mediated modulation of apoptosis and autophagy. The findings establish a new protein interaction site with the potential to modulate the apoptosis and autophagy mechanisms governed by Bcl-2 family proteins. PMID:27129202

  20. Origin of the autoreactive anti-type II collagen response. II. Specificities, antibody isotypes and usage of V gene families of anti-type II collagen B cells.

    PubMed

    Holmdahl, R; Bailey, C; Enander, I; Mayer, R; Klareskog, L; Moran, T; Bona, C

    1989-03-15

    Autoantibodies play an important role in the pathogenesis of type II collagen-induced arthritis in mice. We have earlier reported a high frequency of cells producing anti-CII autoantibodies and a low frequency of cells producing multispecific antibodies, in regional lymph nodes 9 to 11 days after primary immunization with CII. It is shown here that anti-CII antibodies produced during primary immune response are IgG-antibodies mainly of IgG2a, IgG1 and IgG2b subclasses while IgM antibodies dominate primary responses elicited by OVA and denatured CII as analyzed with a large panel of hybridomas. Anti-CII antibodies generated during the primary response recognize at least five different epitopes on the CII molecule. The specificities of these antibodies for various epitopes result from combinational association of products encoded by genes derived from various VH and VK families and/or by the occurrence of somatic mutations. It is suggested that the primary anti-CII autoantibody response involves activation of memory B cells and is in this aspect different from the origin of "natural" autoantibodies. PMID:2493500

  1. Effects of cytotoxin-associated gene A (CagA) positive Helicobacter pylori infection on anti-platelet glycoprotein antibody producing B cells in patients with primary idiopathic thrombocytopenic purpura (ITP)

    PubMed Central

    Cheng, Yuan-Shan; Kuang, Li-Ping; Zhuang, Chun-Lan; Jiang, Jia-Dian; Shi, Man

    2015-01-01

    Objective: To explore the effects of cytotoxin-associated gene A (CagA) positive Helicobacter pylori (H. pylori or HP) infection on circulating B cells producing specific platelet glycoprotein antibodies and the association between therapeutic outcomes in primary idiopathic thrombocytopenic purpura (ITP) patients. Methods: A total of 76 newly diagnosed primary ITP patients were included in the study which was conducted at the first affiliated hospital of Shantou University Medical college, in Shantou city China, between January 2013 and January 2014. These patients were tested for H. pylori infection by 13C urea breath test and for anti-CagA antibody in H. pylori positive cases by enzyme-linked immunosorbent assay (ELISA) method. Anti-GPIb and anti-GPIIb/IIIa antibody-producing B cells were measured using an enzyme-linked immunospot (ELISPOT) assay in all ITP patients and 30 controls. Anti-nuclear antibody (ANA) was also detected in ITP patients. Results: The numbers of anti-GPIIb/IIIa antibody-producing B cells in HP+CagA+ patients were higher than in HP+CagA- or HP- patients. However, anti-GPIb antibody-producing B cells were found higher in HP- patients. Analysis of treatment outcomes showed that a therapeutic response was more likely in patients presenting anti-GPIIb/IIIa B cells, but the poor response was found to be associated with anti-GPIb B cells and ANA presences. Conclusion: CagA antigen of H. pylori may induce anti-GPIIb/IIIa antibodies production by a molecular mimicry mechanism. Anti-GPIIb/IIIa and anti-GPIb antibody producing B Cells detection is useful for predicting treatment effects of primary ITP. PMID:25878627

  2. Reciprocal translocations

    SciTech Connect

    1993-12-31

    Chapter 26, describes reciprocal translocations of chromosomes: their occurrence, breakpoints, and multiple rearrangements. In addition, phenotypes of balanced and unbalanced translocation carriers and fetal death are discussed. Examples of translocation families are given. Meiosis and genetic risk in translocation carriers is presented. Finally, sperm chromosomes in meiotic segregation analysis is mentioned. 39 refs., 3 figs., 1 tab.

  3. Expression of ribosomal RNA genes in lines of barley with a standard karyotype and with a translocated nucleolar organizer

    SciTech Connect

    Karag'ozov, L.K.; Ananiev, E.D.; Mateeva, Z.E.; Khadzhiolov, A.A.

    1986-10-01

    The authors have investigated the rRNA synthesis and the sensitivity of rRNA genes to the action of DNAase I in developing embryos of two forms of barley. The Frigga variety has a standard karyotype and the T/sub 506/ line is characterized by translocation of the nucleolar organizer, which leads to a reduction in the number of nucleoli observed in the telophase. The results of the investigation of rRNA synthesis in vivo and of the activity of RNA polymerase I in isolated nuclei revealed the absence of differences between the two barley forms. They have established that the genes of ribosomal RNAs possess greater sensitivity to digestion by DNAase the authors compared to that of the total nuclear DNA. They conclude that the translocation of one of the nucleolar organizers causes a delay in the appearance of its activity during the telophase, this not changing the expression of the rRNA genes in the subsequent stages of cell development.

  4. The t(8;9)(p22;p24) translocation in atypical chronic myeloid leukaemia yields a new PCM1-JAK2 fusion gene.

    PubMed

    Bousquet, Marina; Quelen, Cathy; De Mas, Véronique; Duchayne, Eliane; Roquefeuil, Blandine; Delsol, Georges; Laurent, Guy; Dastugue, Nicole; Brousset, Pierre

    2005-11-01

    Several tyrosine kinase genes are involved in chromosomal translocations in chronic myeloproliferative disorders, but there are still uncharacterized translocations in some cases. We report two such cases corresponding to atypical chronic myeloid leukaemia with a t(8;9)(p22;p24) translocation. By fluorescence in situ hybridisation (FISH) on the corresponding metaphases with a bacterial artificial chromosome probe encompassing the janus kinase 2 (JAK2) gene at 9p24, we observed a split for both patients, suggesting that this gene was rearranged. The locus at 8p22 contains different candidate genes including the pericentriolar material 1 gene (PCM1), already implicated in reciprocal translocations. The rearrangement of the PCM1 gene was demonstrated by FISH, for both patients. By RT-PCR, we confirmed the fusion of 3' part of JAK2 with the 5' part of PCM1. Sequence analysis of the chimeric PCM1-JAK2 mRNA suggests that the putative protein displays the coiled-coil domains of PCM1 and the tyrosine kinase domain of JAK2. This new translocation identifies JAK2 as a possible therapeutic target for compounds with anti-tyrosine kinase activity. PMID:16091753

  5. Integrative Gene Expression Profiling Reveals G6PD-Mediated Resistance to RNA-Directed Nucleoside Analogues in B-Cell Neoplasms

    PubMed Central

    McBrayer, Samuel K.; Yarrington, Michael; Qian, Jun; Feng, Gang; Shanmugam, Mala; Gandhi, Varsha; Krett, Nancy L.; Rosen, Steven T.

    2012-01-01

    antagonizes the cytotoxicity of 8-substituted adenosine analogues and suggests that administration of these agents to patients with B-cell malignancies exhibiting normal levels of G6PD expression may be particularly efficacious. PMID:22848499

  6. A recurrent chromosome translocation breakpoint in breast and pancreatic cancer cell lines targets the neuregulin/NRG1 gene.

    PubMed

    Adélaïde, José; Huang, Huai-En; Murati, Anne; Alsop, Amber E; Orsetti, Béatrice; Mozziconacci, Marie-Joëlle; Popovici, Cornel; Ginestier, Christophe; Letessier, Anne; Basset, Céline; Courtay-Cahen, Céline; Jacquemier, Jocelyne; Theillet, Charles; Birnbaum, Daniel; Edwards, Paul A W; Chaffanet, Max

    2003-08-01

    The 8p11-21 region is a frequent target of alterations in breast cancer and other carcinomas. We surveyed 34 breast tumor cell lines and 9 pancreatic cancer cell lines for alterations of this region by use of multicolor fluorescence in situ hybridization (M-FISH) and BAC-specific FISH. We describe a recurrent chromosome translocation breakpoint that targets the NRG1 gene on 8p12. NRG1 encodes growth factors of the neuregulin/heregulin-1 family that are ligands for tyrosine kinase receptors of the ERBB family. Breakpoints within the NRG1 gene were found in four of the breast tumor cell lines: ZR-75-1, in a dic(8;11); HCC1937, in a t(8;10)(p12;p12.1); SUM-52, in an hsr(8)(p12); UACC-812, in a t(3;8); and in two of the pancreatic cancer cell lines: PaTu I, in a der(8)t(4;8); and SUIT-2, in a del(8)(p). Mapping by two-color FISH showed that the breaks were scattered over 1.1 Mb within the NRG1 gene. It is already known that the MDA-MB-175 breast tumor cell line has a dic(8;11), with a breakpoint in NRG1 that fuses NRG1 to the DOC4 gene on 11q13. Thus, we have found a total of seven breakpoints, in two types of cancer cell lines, that target the NRG1 gene. This suggests that the NRG1 locus is a recurring target of translocations in carcinomas. PCR analysis of reverse-transcribed cell line RNAs revealed an extensive complexity of the NRG1 transcripts but failed to detect a consistent pattern of mRNA isoforms in the cell lines with NRG1 breakpoint. PMID:12800145

  7. Lymphocyte-activation gene 3(+) (LAG3(+)) forkhead box protein 3(-) (FOXP3(-)) regulatory T cells induced by B cells alleviates joint inflammation in collagen-induced arthritis.

    PubMed

    Chen, Szu-Ying; Hsu, Wan-Tseng; Chen, Yi-Lien; Chien, Chien-Hui; Chiang, Bor-Luen

    2016-04-01

    Rheumatoid arthritis (RA) is an autoimmune disease in which dysregulated immune cells primarily target synovial joints. Despite recent advances in the treatment of RA, including the introduction of biologic therapies and employment of combination disease-modifying antirheumatic drug strategies, remission rates remain suboptimal. Previous studies have demonstrated that the adoptive transfer of induced regulatory T cells (iTregs) was effective in treating a murine model of collagen-induced arthritis (CIA). The objective of this study was to develop optimal potential iTreg-based therapy for CIA by adoptively transferring LAG3(+) Treg-of-B cells. B-cell-induced Treg-of-B cells expressed LAG3 but not Foxp3 (designated LAG3(+) Treg-of-B), and secreted IL-4, IL-10, and TGF-β. Furthermore, LAG3(+) Treg-of-B cells suppressed the proliferation of CD4(+)CD25(-) responder T cells through both LAG3 and IL-10 production. In the murine CIA model, adoptive transfer of LAG3(+) Treg-of-B cells alleviated the joint severity as well as local and systemic inflammation. Treatment with LAG3(+) Treg-of-B cells also promoted IL-10 production in lymphocytes isolated from the spleen and draining lymph nodes. Moreover, mice receiving LAG3(+) Treg-of-B cell treatment showed significantly less pronounced osteolysis in the hind footpads, which correlated with the downregulation of tartrate-resistant acid phosphatase expression. In conclusion, we identified a novel subset of Tregs for CIA treatment. This insight may facilitate exploring novel regulatory T-cell-based therapies for human autoimmune diseases. PMID:26908164

  8. IRF4 Is a Critical Gene in Retinoic Acid-Mediated Plasma Cell Formation and Is Deregulated in Common Variable Immunodeficiency-Derived B Cells.

    PubMed

    Indrevær, Randi L; Moskaug, Jan Ø; Paur, Ingvild; Bøhn, Siv K; Jørgensen, Silje F; Blomhoff, Rune; Aukrust, Pål; Fevang, Børre; Blomhoff, Heidi K

    2015-09-15

    In the present study, we aimed at identifying the mechanisms whereby the vitamin A metabolite all-trans retinoic acid (RA) promotes the formation of plasma cells upon stimulation of B cells via the innate immunity receptors TLR9 and RP105. Most often, differentiation of B cells involves the sequential events of class switch recombination and somatic hypermutations characteristic of germinal center reactions, followed by plasma cell formation. By studying the regulatory networks known to drive these reactions, we revealed that RA enhances the expression of the plasma cell-generating transcription factors IFN regulatory factor (IRF)4 and Blimp1, and paradoxically also activation-induced deaminase (AID) involved in somatic hypermutations/class switch recombination, in primary human B cells. IRF4 was identified as a particularly important protein involved in the RA-mediated production of IgG in TLR9/RP105-stimulated B cells. Based on kinetic studies, we present a model suggesting that the initial induction of IRF4 by RA favors AID expression. According to this model, the higher level of IRF4 that eventually arises results in sustained elevated levels of Blimp1. Regarded as a master regulator of plasma cell development, Blimp1 will in turn suppress AID expression and drive the formation of IgG-secreting plasma cells. Notably, we demonstrated IRF4 to be deregulated in B cells from common variable immunodeficiency patients, contributing to the observed aberrant expression of AID in these patients. Taken together, the present study both provides new insight into the mechanisms whereby RA induces differentiation of B cells and identifies IRF4 as a key to understand the defective functions of B cells in common variable immunodeficiency patients. PMID:26276871

  9. Activation-induced Cytidine Deaminase in B Cell Immunity and Cancers

    PubMed Central

    2012-01-01

    Activation-induced cytidine deaminase (AID) is an enzyme that is predominantly expressed in germinal center B cells and plays a pivotal role in immunoglobulin class switch recombination and somatic hypermutation for antibody (Ab) maturation. These two genetic processes endow Abs with protective functions against a multitude of antigens (pathogens) during humoral immune responses. In B cells, AID expression is regulated at the level of either transcriptional activation on AID gene loci or post-transcriptional suppression of AID mRNA. Furthermore, AID stabilization and targeting are determined by post-translational modifications and interactions with other cellular/nuclear factors. On the other hand, aberrant expression of AID causes B cell leukemias and lymphomas, including Burkitt's lymphoma caused by c-myc/IgH translocation. AID is also ectopically expressed in T cells and non-immune cells, and triggers point mutations in relevant DNA loci, resulting in tumorigenesis. Here, I review the recent literatures on the function of AID, regulation of AID expression, stability and targeting in B cells, and AID-related tumor formation. PMID:23396757

  10. An unbalanced translocation unmasks a recessive mutation in the follicle-stimulating hormone receptor (FSHR) gene and causes FSH resistance

    PubMed Central

    Kuechler, Amla; Hauffa, Berthold P; Köninger, Angela; Kleinau, Gunnar; Albrecht, Beate; Horsthemke, Bernhard; Gromoll, Jörg

    2010-01-01

    Follicle-stimulating hormone (FSH) mediated by its receptor (FSHR) is pivotal for normal gametogenesis. Inactivating FSHR mutations are known to cause hypergonadotropic hypogonadism with disturbed follicular maturation in females. So far, only very few recessive point mutations have been described. We report on a 17-year-old female with primary amenorrhea, hypergonadotropic hypogonadism and disturbed folliculogenesis. Chromosome analysis detected a seemingly balanced translocation 46,XX,t(2;8)(p16.3or21;p23.1)mat. FSHR sequence analysis revealed a novel non-synonymous point mutation in exon 10 (c.1760C>A, p.Pro587His), but no wild-type allele. The mutation was also found in the father, but not in the mother. Furthermore, molecular-cytogenetic analyses of the breakpoint region on chromosome 2 showed the translocation to be unbalanced, containing a deletion with one breakpoint within the FSHR gene. The deletion size was narrowed down by array analysis to approximately 163 kb, involving exons 9 and 10 of the FSHR gene. Functional studies of the mutation revealed the complete lack of signal transduction presumably caused by a changed conformational structure of transmembrane helix 6. To our knowledge, this is the first description of a compound heterozygosity of an inactivating FSHR point mutation unmasked by a partial deletion. This coincidence of two rare changes caused clinical signs consistent with FSH resistance. PMID:20087398

  11. Variant complex translocations involving chromosomes 1, 9, 9, 15 and 17 in acute promyelocytic leukemia without RAR alpha/PML gene fusion rearrangement.

    PubMed

    Gogineni, S K; Shah, H O; Chester, M; Lin, J H; Garrison, M; Alidina, A; Bayani, E; Verma, R S

    1997-04-01

    Acute promyelocytic leukemia (APL;M3) is specifically characterized by a predominance of malignant promyelocytes having atypical reciprocal translocation involving chromosome 15 and 17 [t(15;17)(q22;q11)] resulting in the fusion of retinoic acid receptor alpha (RAR alpha) on chromosome 17 and the putative transcription factor gene PML, ie the translocation generates two fusion transcripts, PML/RAR alpha and RAR alpha/PML. We describe a patient with clinical and morphologic characteristics of atypical APL but with a previously undescribed variant translocation. A 35-year-old Hispanic having atypical APL was referred for cytogenetic evaluation. The cytogenetic findings with GTG-banding coupled with FISH analysis revealed the following karyotype: 46,XX,der(9)t(1;9)(q25;q34)der(9)t(9;?)(q34;?), t(15;17)(q22;q11)ish. der(9)t(1;9)(q25;q34)(WCP1+,WCP9+),t(9;17;15)(q34;q11;q22) (WCP9+,WCP15+,PML+;WCP17+,RAR alpha +;WCP15+,WCP17+,PML-)[20]/46,XX[5]. The chromosome 17q was translocated to the chromosome 15q. However, chromosome 15q including the PML gene normally translocating to 17q and creating the RAR alpha/PML fusion gene, translocated to chromosome 9q. Does this patient have another subset of APL? Or is the genetics of APL different in cases with variant translocations as opposed to those with atypical t(15;17) translocation, though in the majority of the cases their clinical presentation remains the same. PMID:9096691

  12. A Constitutional Translocation t(1;17)(p36.2;q11.2) in a Neuroblastoma Patient Disrupts the Human NBPF1 and ACCN1 Genes

    PubMed Central

    Staes, Katrien; Vandesompele, Jo; Laureys, Geneviève; De Smet, Els; Berx, Geert; Speleman, Frank; van Roy, Frans

    2008-01-01

    The human 1p36 region is deleted in many different types of tumors, and so it probably harbors one or more tumor suppressor genes. In a Belgian neuroblastoma patient, a constitutional balanced translocation t(1;17)(p36.2;q11.2) may have led to the development of the tumor by disrupting or activating a gene. Here, we report the cloning of both translocation breakpoints and the identification of a novel gene that is disrupted by this translocation. This gene, named NBPF1 for Neuroblastoma BreakPoint Family member 1, belongs to a recently described gene family encoding highly similar proteins, the functions of which are unknown. The translocation truncates NBPF1 and gives rise to two chimeric transcripts of NBPF1 sequences fused to sequences derived from chromosome 17. On chromosome 17, the translocation disrupts one of the isoforms of ACCN1, a potential glioma tumor suppressor gene. Expression of the NBPF family in neuroblastoma cell lines is highly variable, but it is decreased in cell lines that have a deletion of chromosome 1p. More importantly, expression profiling of the NBPF1 gene showed that its expression is significantly lower in cell lines with heterozygous NBPF1 loss than in cell lines with a normal 1p chromosome. Meta-analysis of the expression of NBPF and ACCN1 in neuroblastoma tumors indicates a role for the NBPF genes and for ACCN1 in tumor aggressiveness. Additionally, DLD1 cells with inducible NBPF1 expression showed a marked decrease of clonal growth in a soft agar assay. The disruption of both NBPF1 and ACCN1 genes in this neuroblastoma patient indicates that these genes might suppress development of neuroblastoma and possibly other tumor types. PMID:18493581

  13. Increased expression of six ZIP family genes by zinc (Zn) deficiency is associated with enhanced uptake and root-to-shoot translocation of Zn in barley (Hordeum vulgare).

    PubMed

    Tiong, Jingwen; McDonald, Glenn; Genc, Yusuf; Shirley, Neil; Langridge, Peter; Huang, Chun Y

    2015-09-01

    Low zinc (Zn) in soils reduces yield and grain Zn content. Regulation of ZRT/IRT-like protein (ZIP) family genes is a major mechanism in plant adaptation to low and fluctuating Zn in soil. Although several Zn deficiency-inducible ZIP genes are identified in cereals, there has been no systematic study on the association of Zn deficiency-induced uptake and root-to-shoot translocation with expression of ZIP family genes. We measured Zn deficiency-induced uptake and root-to-shoot translocation of Zn in barley (Hordeum vulgare) plants by resupplying 0.5 μM Zn, and quantified the transcripts of thirteen HvZIP genes. Subcellular localization and tissue-specific expression were also determined for Zn deficiency-inducible HvZIP genes. Zn deficiency enhanced the capacity of uptake and root-to-shoot translocation of Zn, and sustained the enhanced capacity for 6 d after Zn resupply. Six HvZIP genes were highly induced in roots of Zn-deficient plants, and their proteins were localized in the plasma membrane. Tissue-specific expression in roots supports their roles in uptake and root-to-shoot translocation of Zn under low Zn conditions. Our results provide a comprehensive view on the physiological roles of ZIP genes in plant adaptation to low and fluctuating Zn in soil, and pave the way for development of new strategies to improve Zn-deficiency tolerance and biofortification in cereals. PMID:25904503

  14. Cloning of the anhidrotic ectodermal dysplasia gene: Identification of cDNAs associated with CpG islands mapped near translocation breakpoint in two female patients

    SciTech Connect

    Srivastava, A.K.; Schlessinger, D.; Kere, J.

    1994-09-01

    The gene for the X chromosomal developmental disorder anhidrotic ectodermal dysplasia (EDA) has been mapped to Xq12-q13 by linkage analysis and is expressed in a few females with chromosomal translocations involving band Xq12-q13. A yeast artificial chromosome (YAC) contig (2.0 Mb) spanning two translocation breakpoints has been assembled by sequence-tagged site (STS)-based chromosomal walking. The two translocation breakpoints (X:autosome translocations from the affected female patients) have been mapped less than 60 kb apart within a YAC contig. Unique probes and intragenic STSs (mapped between the two translocations) have been developed and a somatic cell hybrid carrying the translocated X chromosome from the AK patient has been analyzed by isolating unique probes that span the breakpoint. Several STSs made from intragenic sequences have been found to be conserved in mouse, hamster and monkey, but we have detected no mRNAs in a number of tissues tested. However, a probe and STS developed from the DNA spanning the AK breakpoint is conserved in mouse, hamster and monkey, and we have detected expressed sequences in skin cells and cDNA libraries. In addition, unique sequences have been obtained from two CpG islands in the region that maps proximal to the breakpoints. cDNAs containing these sequences are being studied as candidates for the gene affected in the etiology of EDA.

  15. The murine VpreB1 and VpreB2 genes both encode a protein of the surrogate light chain and are co-expressed during B cell development.

    PubMed

    Dul, J L; Argon, Y; Winkler, T; ten Boekel, E; Melchers, F; Mårtensson, I L

    1996-04-01

    The surrogate light chain is composed of two polypeptides, VpreB and lambda 5. In the mouse there are two VpreB genes which are 99% identical within the coding regions. Extensive restriction enzyme mapping and sequencing of these two genes showed that only the coding region and immediate 5' and 3' flanking sequences exhibited such high homology. More distal sequences have diverged considerably. The region 5' of the respective gene directed transcription of a reporter gene in a pre-B cell line, indicating that it contained promoter, and perhaps enhancer function. The VpreB2 gene is functional, as it directed the production in COS cells of a 16-kDa protein that assembled with lambda 5 and was recognized by a VpreB-specific monoclonal antibody. Using transfected COS cells expressing either VpreB1 or VpreB2, a PCR assay was developed to examine the steady state level of transcripts from each gene. When this assay was applied to a number of cell lines representing early stages of B cell differentiation, co-expression of the two genes was observed in every case. VpreB1 and VpreB2 were co-expressed in the fetal liver of CB17 mice, where peak expression of each gene occurred at days 16-17 of gestation. Similarly, adult bone marrow from several strains of mice expressed both genes. In sorted bone marrow cells expression of both VpreB genes was detected in pro-B/pre-BI and large pre-BII cells, while the RNA steady state levels were at least 100-fold lower in small pre-BII and immature/mature B cells. Finally, single-cell reverse transcriptase-polymerase chain reaction on such sorted bone marrow cells detected VpreB1 and VpreB2 expression in at least 30% of all pro-B/pre-BI cells and large Ig heavy chain, surrogate light chain (pre-B receptor) expressing pre-BII cells. These results demonstrate that the control of expression of the two VpreB genes overlaps during development. They suggest that both VpreB1 and VpreB2 polypeptides can assemble with lambda 5 and mu to form pre-B

  16. The Flavones Apigenin and Luteolin Induce FOXO1 Translocation but Inhibit Gluconeogenic and Lipogenic Gene Expression in Human Cells

    PubMed Central

    Bumke-Vogt, Christiane; Osterhoff, Martin A.; Borchert, Andrea; Guzman-Perez, Valentina; Sarem, Zeinab; Birkenfeld, Andreas L.; Bähr, Volker; Pfeiffer, Andreas F. H.

    2014-01-01

    The flavones apigenin (4′,5,7,-trihydroxyflavone) and luteolin (3′,4′,5,7,-tetrahydroxyflavone) are plant secondary metabolites with antioxidant, antiinflammatory, and anticancer activities. We evaluated their impact on cell signaling pathways related to insulin-resistance and type 2 diabetes. Apigenin and luteolin were identified in our U-2 OS (human osteosarcoma) cell screening assay for micronutrients triggering rapid intracellular translocation of the forkhead box transcription factor O1 (FOXO1), an important mediator of insulin signal transduction. Insulin reversed the translocation of FOXO1 as shown by live cell imaging. The impact on the expression of target genes was evaluated in HepG2 (human hepatoma) cells. The mRNA-expression of the gluconeogenic enzymes phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pc), the lipogenic enzymes fatty-acid synthase (FASN) and acetyl-CoA-carboxylase (ACC) were down-regulated by both flavones with smaller effective dosages of apigenin than for luteolin. PKB/AKT-, PRAS40-, p70S6K-, and S6-phosphorylation was reduced by apigenin and luteolin but not that of the insulin-like growth factor receptor IGF-1R by apigenin indicating a direct inhibition of the PKB/AKT-signaling pathway distal to the IGF-1 receptor. N-acetyl-L-cysteine did not prevent FOXO1 nuclear translocation induced by apigenin and luteolin, suggesting that these flavones do not act via oxidative stress. The roles of FOXO1, FOXO3a, AKT, sirtuin1 (SIRT1), and nuclear factor (erythroid-derived2)-like2 (NRF2), investigated by siRNA knockdown, showed differential patterns of signal pathways involved and a role of NRF2 in the inhibition of gluconeogenic enzyme expression. We conclude that these flavones show an antidiabetic potential due to reduction of gluconeogenic and lipogenic capacity despite inhibition of the PKB/AKT pathway which justifies detailed investigation in vivo. PMID:25136826

  17. B Cell Super-Enhancers and Regulatory Clusters Recruit AID Tumorigenic Activity

    PubMed Central

    Qian, Jason; Wang, Qiao; Dose, Marei; Pruett, Nathanael; Kieffer-Kwon, Kyong-Rim; Resch, Wolfgang; Liang, Genqing; Tang, Zhonghui; Mathé, Ewy; Benner, Christopher; Dubois, Wendy; Nelson, Steevenson; Vian, Laura; Oliveira, Thiago Y.; Jankovic, Mila; Hakim, Ofir; Gazumyan, Anna; Pavri, Rushad; Awasthi, Parirokh; Song, Bin; Liu, Geng; Chen, Longyun; Zhu, Shida; Feigenbaum, Lionel; Staudt, Louis; Murre, Cornelis; Ruan, Yijun; Robbiani, Davide F.; Pan-Hammarström, Qiang; Nussenzweig, Michel C.; Casellas, Rafael

    2014-01-01

    SUMMARY The antibody gene mutator activation-induced cytidine deaminase (AID) promiscuously damages oncogenes, leading to chromosomal translocations and tumorigenesis. Why nonimmunoglobulin loci are susceptible to AID activity is unknown. Here, we study AID-mediated lesions in the context of nuclear architecture and the B cell regulome. We show that AID targets are not randomly distributed across the genome but are predominantly grouped within super-enhancers and regulatory clusters. Unexpectedly, in these domains, AID deaminates active promoters and eRNA+ enhancers interconnected in some instances over megabases of linear chromatin. Using genome editing, we demonstrate that 3D-linked targets cooperate to recruit AID-mediated breaks. Furthermore, a comparison of hypermutation in mouse B cells, AID-induced kataegis in human lymphomas, and translocations in MEFs reveals that AID damages different genes in different cell types. Yet, in all cases, the targets are predominantly associated with topological complex, highly transcribed super-enhancers, demonstrating that these compartments are key mediators of AID recruitment. PMID:25483777

  18. B cells and immunological tolerance.

    PubMed

    Manjarrez-Orduño, Nataly; Quách, Tâm D; Sanz, Iñaki

    2009-02-01

    Work from multiple groups continues to provide additional evidence for the powerful and highly diverse roles, both protective and pathogenic, that B cells play in autoimmune diseases. Similarly, it has become abundantly clear that antibody-independent functions may account for the opposing influences that B cells exercise over other arms of the immune response and ultimately over autoimmunity itself. Finally, it is becoming apparent that the clinical impact of B-cell depletion therapy may be, to a large extent, determined by the functional balance between different B-cell subsets that may be generated by this therapeutic intervention. In this review, we postulate that our perspective of B-cell tolerance and our experimental approach to its understanding are fundamentally changed by this view of B cells. Accordingly, we first discuss current knowledge of B-cell tolerance conventionally defined as the censoring of autoantibody-producing B cells (with an emphasis on human B cells). Therefore, we discuss a different model that contemplates B cells not only as targets of tolerance but also as mediators of tolerance. This model is based on the notion that the onset of clinical autoimmune disease may require a B-cell gain-of-pathogenic function (or a B-cell loss-of-regulatory-function) and that accordingly, disease remission may depend on the restoration of the physiological balance between B-cell pathogenic and protective functions. PMID:19148217

  19. B Cells, Antibodies, and More.

    PubMed

    Hoffman, William; Lakkis, Fadi G; Chalasani, Geetha

    2016-01-01

    B cells play a central role in the immunopathogenesis of glomerulonephritides and transplant rejection. B cells secrete antibodies that contribute to tissue injury via multiple mechanisms. In addition, B cells contribute to disease pathogenesis in autoimmunity and alloimmunity by presenting antigens as well as providing costimulation and cytokines to T cells. B cells also play an immunomodulatory role in regulating the immune response by secreting cytokines that inhibit disease onset and/or progression. B cell-targeted approaches for treating immune diseases of the kidney and other organs have gained significant momentum. However, much remains to be understood about B-cell biology in order to determine the timing, duration, and context of optimal therapeutic response to B cell-targeted approaches. In this review, we discuss the multifaceted roles of B cells as enhancers and regulators of immunity with relevance to kidney disease and transplantation. PMID:26700440

  20. Driven by the same Ig enhancer and SV40 T promoter ras induced lung adenomatous tumors, myc induced pre-B cell lymphomas and SV40 large T gene a variety of tumors in transgenic mice.

    PubMed Central

    Suda, Y; Aizawa, S; Hirai, S; Inoue, T; Furuta, Y; Suzuki, M; Hirohashi, S; Ikawa, Y

    1987-01-01

    Different types of tumors developed in transgenic mice following the introduction of the entire coding region of ras, myc or SV40 large T gene (T) linked to the same regulatory unit, consisting of a human immunoglobulin gene enhancer (Ig) and SV40 early gene promoter (Tp) with a 21-bp repeat. All the 12 transgenic mice harboring the intact T gene developed a variety of tumors including choroid plexus tumor, B cell lymphoma, histiocytic lymphoma, thymoma and others. This suggests that the Ig/Tp regulatory unit has transcriptional activity in these heterologous tissues. With this regulatory unit, myc gene induced solely pre-B cell lymphomas (five out of nine mice). Contrary to our expectation, however, the mutated ras gene induced lung adenomatous tumors in six out of eight transgenic mice over the 10-month observation period; the tumors are histologically comparable to adenocarcinomas in man. The tumors developed as early as 4 weeks after birth and the introduced ras gene was as efficiently expressed in both normal and neoplastic bronchioloalveolar epithelial cells as in normal lymphoid cells. An unidentified secondary event thus appears to be necessary for these ras-expressing cells to become neoplastic, as observed for myc (Leder et al., 1986). In a variety of tumors induced by Ig/Tp-T, on the other hand, T gene was expressed only in the tumor cells, but not in normal cells. Thus, derepression of T gene in normal cells appears to be closely related to their malignant change as observed in development of pancreatic acinar cell tumors by the T gene (Ornitz et al., 1985). These results suggest that ras and myc oncogenes penetrate differentially specific types of cells, while the SV40 T gene is tumorigenic in a variety of cell types. Images Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. PMID:2832150

  1. Identification of COL3A1 and RAB2A as novel translocation partner genes of PLAG1 in lipoblastoma.

    PubMed

    Yoshida, Hideki; Miyachi, Mitsuru; Ouchi, Kazutaka; Kuwahara, Yasumichi; Tsuchiya, Kunihiko; Iehara, Tomoko; Konishi, Eiichi; Yanagisawa, Akio; Hosoi, Hajime

    2014-07-01

    Lipoblastoma is a rapidly growing, benign neoplasm in children. Surgical excision is usually curative, with a recurrence rate of about 20%. Because the histology of lipoblastoma is heterogeneous and overlaps with other lipomatous tumors, some lipoblastoma cases have been difficult to diagnose. The detection of PLAG1 gene rearrangement is useful for the diagnosis of lipoblastoma. Three fusion partner genes are known in relation to PLAG1 in lipoblastoma HAS2 at 8q24.1, COL1A2 at 7q22, and RAD51L1 at 14q24. Herein, we describe another two novel fusion genes in lipoblastoma tumor specimens. We checked six tumors for the presence of two known fusion genes, HAS2-PLAG1 and COL1A2-PLAG1. Only HAS2-PLAG1 was found in one of the cases. Next, we attempted to identify potential PLAG1 fusion partners using 5'RACE. Sequence analysis revealed two novel fusion genes, COL3A1-PLAG1 in three cases and RAB2A-PLAG1 in one case, respectively. As a result of the translocations, the constitutively active promoter of the partner gene drives the ectopic expression of PLAG1. We also evaluated whether a high level of PLAG1 expression can be used to help differentiate lipomatous tumors. PLAG1 expression was evaluated by real-time PCR in five lipoblastoma tumor specimens. The expressions were 70-150 times higher in lipoblastomas than in human adipocytes. However, PLAG1 expression was low in one case of lipoma. These results demonstrate that PLAG1 overexpression is a potential marker of lipoblastoma. Our findings, in agreement with previous studies, show that lipoblastoma is a group of lipomatous tumors with PLAG1 rearrangement and overexpression. © 2014 Wiley Periodicals, Inc. PMID:24700772

  2. Macrophage colony-stimulating factor receptor marks and regulates a fetal myeloid-primed B-cell progenitor in mice

    PubMed Central

    Zriwil, Alya; Böiers, Charlotta; Wittmann, Lilian; Green, Joanna C. A.; Woll, Petter S.; Jacobsen, Sten Eirik W.

    2016-01-01

    Although it is well established that unique B-cell lineages develop through distinct regulatory mechanisms during embryonic development, much less is understood about the differences between embryonic and adult B-cell progenitor cells, likely to underpin the genetics and biology of infant and childhood PreB acute lymphoblastic leukemia (PreB-ALL), initiated by distinct leukemia-initiating translocations during embryonic development. Herein, we establish that a distinct subset of the earliest CD19+ B-cell progenitors emerging in the E13.5 mouse fetal liver express the colony-stimulating factor-1 receptor (CSF1R), previously thought to be expressed, and play a lineage-restricted role in development of myeloid lineages, and macrophages in particular. These early embryonic CSF1R+CD19+ ProB cells also express multiple other myeloid genes and, in line with this, possess residual myeloid as well as B-cell, but not T-cell lineage potential. Notably, these CSF1R+ myeloid-primed ProB cells are uniquely present in a narrow window of embryonic fetal liver hematopoiesis and do not persist in adult bone marrow. Moreover, analysis of CSF1R-deficient mice establishes a distinct role of CSF1R in fetal B-lymphopoiesis. CSF1R+ myeloid-primed embryonic ProB cells are relevant for infant and childhood PreB-ALLs, which frequently have a bi-phenotypic B-myeloid phenotype, and in which CSF1R-rearrangements have recently been reported. PMID:27207794

  3. Macrophage colony-stimulating factor receptor marks and regulates a fetal myeloid-primed B-cell progenitor in mice.

    PubMed

    Zriwil, Alya; Böiers, Charlotta; Wittmann, Lilian; Green, Joanna C A; Woll, Petter S; Jacobsen, Sten Eirik W; Sitnicka, Ewa

    2016-07-14

    Although it is well established that unique B-cell lineages develop through distinct regulatory mechanisms during embryonic development, much less is understood about the differences between embryonic and adult B-cell progenitor cells, likely to underpin the genetics and biology of infant and childhood PreB acute lymphoblastic leukemia (PreB-ALL), initiated by distinct leukemia-initiating translocations during embryonic development. Herein, we establish that a distinct subset of the earliest CD19(+) B-cell progenitors emerging in the E13.5 mouse fetal liver express the colony-stimulating factor-1 receptor (CSF1R), previously thought to be expressed, and play a lineage-restricted role in development of myeloid lineages, and macrophages in particular. These early embryonic CSF1R(+)CD19(+) ProB cells also express multiple other myeloid genes and, in line with this, possess residual myeloid as well as B-cell, but not T-cell lineage potential. Notably, these CSF1R(+) myeloid-primed ProB cells are uniquely present in a narrow window of embryonic fetal liver hematopoiesis and do not persist in adult bone marrow. Moreover, analysis of CSF1R-deficient mice establishes a distinct role of CSF1R in fetal B-lymphopoiesis. CSF1R(+) myeloid-primed embryonic ProB cells are relevant for infant and childhood PreB-ALLs, which frequently have a bi-phenotypic B-myeloid phenotype, and in which CSF1R-rearrangements have recently been reported. PMID:27207794

  4. Molecular mapping of greenbug resistance genes Gb2 and Gb6 in T1AL.1RS wheat-rye translocations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The greenbug, Schizaphis graminum (Rondani), is an important aphid pest of wheat worldwide. Two greenbug resistance genes Gb2 and Gb6 derived from the same donor rye line ‘Insave’, are presented in wheat germplasm lines ‘Amigo’ and ‘GRS1201’ respectively as 1AL.1RS wheat-rye translocations. The alle...

  5. Transcriptional Gene Silencing Mediated by a Plastid Inner Envelope Phosphoenolpyruvate/Phosphate Translocator CUE1 in Arabidopsis1[OA

    PubMed Central

    Shen, Jie; Ren, Xiaozhi; Cao, Rui; Liu, Jun; Gong, Zhizhong

    2009-01-01

    Mutations in REPRESSOR OF SILENCING1 (ROS1) lead to the transcriptional gene silencing (TGS) of ProRD29A:LUC (LUCIFERASE) and Pro35S:NPTII (Neomycin Phosphotransferase II) reporter genes. We performed a genetic screen to find suppressors of ros1 that identified two mutant alleles in the Arabidopsis (Arabidopsis thaliana) CHLOROPHYLL A/B BINDING PROTEIN UNDEREXPRESSED1 (CUE1) gene, which encodes a plastid inner envelope phosphoenolpyruvate/phosphate translocator. The cue1 mutations released the TGS of Pro35S:NPTII and the transcriptionally silent endogenous locus TRANSCRIPTIONAL SILENCING INFORMATION in a manner that was independent of DNA methylation but dependent on chromatin modification. The cue1 mutations did not affect the TGS of ProRD29A:LUC in ros1, which was dependent on RNA-directed DNA methylation. It is possible that signals from chloroplasts help to regulate the epigenetic status of a subset of genomic loci in the nucleus. PMID:19515789

  6. C/EBPα poises B cells for rapid reprogramming into induced pluripotent stem cells.

    PubMed

    Di Stefano, Bruno; Sardina, Jose Luis; van Oevelen, Chris; Collombet, Samuel; Kallin, Eric M; Vicent, Guillermo P; Lu, Jun; Thieffry, Denis; Beato, Miguel; Graf, Thomas

    2014-02-13

    CCAAT/enhancer binding protein-α (C/EBPα) induces transdifferentiation of B cells into macrophages at high efficiencies and enhances reprogramming into induced pluripotent stem (iPS) cells when co-expressed with the transcription factors Oct4 (Pou5f1), Sox2, Klf4 and Myc (hereafter called OSKM). However, how C/EBPα accomplishes these effects is unclear. Here we find that in mouse primary B cells transient C/EBPα expression followed by OSKM activation induces a 100-fold increase in iPS cell reprogramming efficiency, involving 95% of the population. During this conversion, pluripotency and epithelial-mesenchymal transition genes become markedly upregulated, and 60% of the cells express Oct4 within 2 days. C/EBPα acts as a 'path-breaker' as it transiently makes the chromatin of pluripotency genes more accessible to DNase I. C/EBPα also induces the expression of the dioxygenase Tet2 and promotes its translocation to the nucleus where it binds to regulatory regions of pluripotency genes that become demethylated after OSKM induction. In line with these findings, overexpression of Tet2 enhances OSKM-induced B-cell reprogramming. Because the enzyme is also required for efficient C/EBPα-induced immune cell conversion, our data indicate that Tet2 provides a mechanistic link between iPS cell reprogramming and B-cell transdifferentiation. The rapid iPS reprogramming approach described here should help to fully elucidate the process and has potential clinical applications. PMID:24336202

  7. A cryptic wheat–Aegilops triuncialis translocation with leaf rust resistance gene Lr58

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genes transferred to crop plants from wild species are often associated with deleterious traits. Using molecular markers, we detected a cryptic introgression with a leaf rust resistance gene transferred from Aegilops triuncialis L. into common wheat (Triticum aestivum L.). One agronomically desirabl...

  8. Lymphomagenic CARD11/BCL10/MALT1 signaling drives malignant B-cell proliferation via cooperative NF-κB and JNK activation

    PubMed Central

    Knies, Nathalie; Alankus, Begüm; Weilemann, Andre; Tzankov, Alexandar; Brunner, Kristina; Ruff, Tanja; Kremer, Marcus; Keller, Ulrich B.; Lenz, Georg; Ruland, Jürgen

    2015-01-01

    The aggressive activated B cell-like subtype of diffuse large B-cell lymphoma is characterized by aberrant B-cell receptor (BCR) signaling and constitutive nuclear factor kappa-B (NF-κB) activation, which is required for tumor cell survival. BCR-induced NF-κB activation requires caspase recruitment domain-containing protein 11 (CARD11), and CARD11 gain-of-function mutations are recurrently detected in human diffuse large B-cell lymphoma (DLBCL). To investigate the consequences of dysregulated CARD11 signaling in vivo, we generated mice that conditionally express the human DLBCL-derived CARD11(L225LI) mutant. Surprisingly, CARD11(L225LI) was sufficient to trigger aggressive B-cell lymphoproliferation, leading to early postnatal lethality. CARD11(L225LI) constitutively associated with B-cell CLL/lymphoma 10 (BCL10) and mucosa-associated lymphoid tissue lymphoma translocation gene 1 (MALT1) to simultaneously activate the NF-κB and c-Jun N-terminal kinase (JNK) signaling cascades. Genetic deficiencies of either BCL10 or MALT1 completely rescued the phenotype, and pharmacological inhibition of JNK was, similar to NF-κB blockage, toxic to autonomously proliferating CARD11(L225LI)-expressing B cells. Moreover, constitutive JNK activity was observed in primary human activated B cell-like (ABC)-DLBCL specimens, and human ABC-DLBCL cells were also sensitive to JNK inhibitors. Thus, our results demonstrate that enforced activation of CARD11/BCL10/MALT1 signaling is sufficient to drive transformed B-cell expansion in vivo and identify the JNK pathway as a therapeutic target for ABC-DLBCL. PMID:26668357

  9. The location and translocation of ndh genes of chloroplast origin in the Orchidaceae family.

    PubMed

    Lin, Choun-Sea; Chen, Jeremy J W; Huang, Yao-Ting; Chan, Ming-Tsair; Daniell, Henry; Chang, Wan-Jung; Hsu, Chen-Tran; Liao, De-Chih; Wu, Fu-Huei; Lin, Sheng-Yi; Liao, Chen-Fu; Deyholos, Michael K; Wong, Gane Ka-Shu; Albert, Victor A; Chou, Ming-Lun; Chen, Chun-Yi; Shih, Ming-Che

    2015-01-01

    The NAD(P)H dehydrogenase complex is encoded by 11 ndh genes in plant chloroplast (cp) genomes. However, ndh genes are truncated or deleted in some autotrophic Epidendroideae orchid cp genomes. To determine the evolutionary timing of the gene deletions and the genomic locations of the various ndh genes in orchids, the cp genomes of Vanilla planifolia, Paphiopedilum armeniacum, Paphiopedilum niveum, Cypripedium formosanum, Habenaria longidenticulata, Goodyera fumata and Masdevallia picturata were sequenced; these genomes represent Vanilloideae, Cypripedioideae, Orchidoideae and Epidendroideae subfamilies. Four orchid cp genome sequences were found to contain a complete set of ndh genes. In other genomes, ndh deletions did not correlate to known taxonomic or evolutionary relationships and deletions occurred independently after the orchid family split into different subfamilies. In orchids lacking cp encoded ndh genes, non cp localized ndh sequences were identified. In Erycina pusilla, at least 10 truncated ndh gene fragments were found transferred to the mitochondrial (mt) genome. The phenomenon of orchid ndh transfer to the mt genome existed in ndh-deleted orchids and also in ndh containing species. PMID:25761566

  10. Chromosomal translocations deregulating c-myc are associated with normal immune responses.

    PubMed

    Roschke, V; Kopantzev, E; Dertzbaugh, M; Rudikoff, S

    1997-06-26

    Plasmacytomas induced in BALB/c mice by pristane consistently evidence chromosomal translocations involving the c-myc gene and one of the Ig loci. This observation has lead to the suggestion that c-myc deregulation is a critical event in the generation of such tumors. However, it is not clear whether c-myc translocation is related to pristane treatment or occurs in normal lymphocyte populations nor whether such translocations occur normally, and at similar frequencies, in strains genetically resistant to plasmacytoma development, such as DBA/2. In order to address these questions, a Long Distance PCR assay with single copy sensitivity was employed to assess the frequency of c-myc/IgA translocations in normal and immunized mice of both plasmacytoma resistant and susceptible lineages in the absence of pristane treatment. Our data demonstrate that spontaneous translocations occur in normal DBA/2 and BALB/c mice with no significant differences in frequency. A 3-5-fold increase in translocation frequency was observed in mice immunized with cholera toxin, a strong stimulator of IgA responses. We conclude that c-myc deregulation by chromosomal translocation is associated with normal physiological processes of B-cell differentiation and, as such, can not be the determining factor leading to malignancy. PMID:9223664

  11. The G1138A mutation rate in the fibroblast growth factor receptor 3 (FGFR3) gene is increased in cells carrying the t (4; 14) translocation.

    PubMed

    Reddy, P L; Grewal, R P

    2009-01-01

    Spontaneous mutations are a common phenomenon, occurring in both germ-line and somatic genomes. They may have deleterious consequences including the development of genetic disorders or, when occurring in somatic tissues, may participate in the process of carcinogenesis. Similar to many mutational hotspots, the G1138A mutation in the fibroblast growth factor receptor 3 (FGFR3) gene occurs at a CpG site. In germ-line tissues, the G1138A mutation results in achondroplasia and has one of the highest spontaneous mutation rates in the human genome. Although not at the G1138A site, there are increased rates of other somatic mutations in the FGFR3 gene that have been reported in multiple myeloma cases associated with a translocation, t (4; 14). The chromosome-4 break points in this translocation are clustered in a 70-kb region centromeric to the FGFR3 gene. We hypothesized that this translocation may impact the mutation rate at the G1138A site. We employed a semi-quantitative polymerase chain reaction-based assay to measure the frequency of this mutation in multiple myeloma cell lines carrying t (4; 14) translocation. Analysis of these cell lines varied from no change to a 10-fold increase in the mutation frequency compared with normal controls. In general, there was an increase in the G1138A mutational frequency suggesting that chromosomal rearrangement can affect the stability of the CpG hotspots. PMID:19551630

  12. B Cells, Antibodies, and More

    PubMed Central

    Hoffman, William; Lakkis, Fadi G.

    2016-01-01

    B cells play a central role in the immunopathogenesis of glomerulonephritides and transplant rejection. B cells secrete antibodies that contribute to tissue injury via multiple mechanisms. In addition, B cells contribute to disease pathogenesis in autoimmunity and alloimmunity by presenting antigens as well as providing costimulation and cytokines to T cells. B cells also play an immunomodulatory role in regulating the immune response by secreting cytokines that inhibit disease onset and/or progression. B cell–targeted approaches for treating immune diseases of the kidney and other organs have gained significant momentum. However, much remains to be understood about B-cell biology in order to determine the timing, duration, and context of optimal therapeutic response to B cell–targeted approaches. In this review, we discuss the multifaceted roles of B cells as enhancers and regulators of immunity with relevance to kidney disease and transplantation. PMID:26700440

  13. Ibrutinib for B cell malignancies

    PubMed Central

    2014-01-01

    Research over the role of Bruton’s agammaglobulinemia tyrosine kinase (BTK) in B-lymphocyte development, differentiation, signaling and survival has led to better understanding of the pathogenesis of B-cell malignancies. Down-regulation of BTK activity is an attractive novel strategy for treating patients with B-cell malignancies. Ibrutinib (PCI-32765), a potent inhibitor of BTK induces impressive responses in B-cell malignancies through irreversible bond with cysteine-481 in the active site of BTK (TH/SH1 domain) and inhibits BTK phosphorylation on Tyr223. This review discussed in details the role of BTK in B-cell signaling, molecular interactions between B cell lymphoma/leukemia cells and their microenvironment. Clinical trials of the novel BTK inhibitor, ibrutinib (PCI-32765), in B cell malignancies were summarized. PMID:24472371

  14. Expression of specific genes involved in Cd uptake, translocation, vacuolar compartmentalisation and recycling in Populus alba Villafranca clone.

    PubMed

    Romè, Chiara; Huang, Xin-Yuan; Danku, John; Salt, David E; Sebastiani, Luca

    2016-09-01

    Cadmium (Cd) is a heavy metal toxic to humans and its occurrence in soils represents a significant environmental problem. Poplar trees may provide one possible option to help remove Cd contamination from soil. However, before this is practicable, the ability of poplar to accumulate Cd needs to be enhanced. A better understanding of the genes involved in Cd accumulation in poplar would help to achieve this goal. Here, we monitored the expression of genes known to be involved in Cd uptake, accumulation and translocation from other species, in order to provide information on their potential role in Cd accumulation in poplar. Cd concentration in poplar was significantly higher in roots than in stem and leaves in Cd treated plants. Expression of the poplar homologues of IRT1, NRAMP and OPT3 was initially increased after exposure to Cd but reduced after longer term Cd exposure. Exposure to Cd also influenced the accumulation of Fe, Ca, Cu, Mg and Mn in poplar. In particular, Cd treated plants had a higher concentration of Fe, Ca, Cu, and Mg in leaves and stem compared to control plants after one day and one week of experiment; while in roots after one month Cd treated plants had a lower concentration of Mn, Fe, Cu, Co, and Mg. PMID:27467553

  15. ATMIN is required for maintenance of genomic stability and suppression of B cell lymphoma.

    PubMed

    Loizou, Joanna I; Sancho, Rocio; Kanu, Nnennaya; Bolland, Daniel J; Yang, Fengtang; Rada, Cristina; Corcoran, Anne E; Behrens, Axel

    2011-05-17

    Defective V(D)J rearrangement of immunoglobulin heavy or light chain (IgH or IgL) or class switch recombination (CSR) can initiate chromosomal translocations. The DNA-damage kinase ATM is required for the suppression of chromosomal translocations but ATM regulation is incompletely understood. Here, we show that mice lacking the ATM cofactor ATMIN in B cells (ATMIN(ΔB/ΔB)) have impaired ATM signaling and develop B cell lymphomas. Notably, ATMIN(ΔB/ΔB) cells exhibited defective peripheral V(D)J rearrangement and CSR, resulting in translocations involving the Igh and Igl loci, indicating that ATMIN is required for efficient repair of DNA breaks generated during somatic recombination. Thus, our results identify a role for ATMIN in regulating the maintenance of genomic stability and tumor suppression in B cells. PMID:21575860

  16. Characterization of 8p21.3 chromosomal deletions in B-cell lymphoma: TRAIL-R1 and TRAIL-R2 as candidate dosage-dependent tumor suppressor genes.

    PubMed

    Rubio-Moscardo, Fanny; Blesa, David; Mestre, Cinta; Siebert, Reiner; Balasas, Theo; Benito, Adalberto; Rosenwald, Andreas; Climent, Joan; Martinez, Jose I; Schilhabel, Markus; Karran, E Lorraine; Gesk, Stefan; Esteller, Manel; deLeeuw, Ronald; Staudt, Louis M; Fernandez-Luna, Jose Luis; Pinkel, Daniel; Dyer, Martin J S; Martinez-Climent, Jose A

    2005-11-01

    Deletions of chromosome 8p are a recurrent event in B-cell non-Hodgkin lymphoma (B-NHL), suggesting the presence of a tumor suppressor gene. We have characterized these deletions using comparative genomic hybridization to microarrays, fluorescence in situ hybridization (FISH) mapping, DNA sequencing, and functional studies. A minimal deleted region (MDR) of 600 kb was defined in chromosome 8p21.3, with one mantle cell lymphoma cell line (Z138) exhibiting monoallelic deletion of 650 kb. The MDR extended from bacterial artificial chromosome (BAC) clones RP11-382J24 and RP11-109B10 and included the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor gene loci. Sequence analysis of the individual expressed genes within the MDR and DNA sequencing of the entire MDR in Z138 did not reveal any mutation. Gene expression analysis and quantitative reverse transcriptase-polymerase chain reaction (QRT-PCR) showed down-regulation of TRAIL-R1 and TRAIL-R2 receptor genes as a consistent event in B-NHL with 8p21.3 loss. Epigenetic inactivation was excluded via promoter methylation analysis. In vitro studies showed that TRAIL-induced apoptosis was dependent on TRAIL-R1 and/or -R2 dosage in most tumors. Resistance to apoptosis of cell lines with 8p21.3 deletion was reversed by restoration of TRAIL-R1 or TRAIL-R2 expression by gene transfection. Our data suggest that TRAIL-R1 and TRAIL-R2 act as dosage-dependent tumor suppressor genes whose monoallelic deletion can impair TRAIL-induced apoptosis in B-cell lymphoma. PMID:16051735

  17. MYC protein expression and genetic alterations have prognostic impact in patients with diffuse large B-cell lymphoma treated with immunochemotherapy

    PubMed Central

    Valera, Alexandra; López-Guillermo, Armando; Cardesa-Salzmann, Teresa; Climent, Fina; González-Barca, Eva; Mercadal, Santiago; Espinosa, Íñigo; Novelli, Silvana; Briones, Javier; Mate, José L.; Salamero, Olga; Sancho, Juan M.; Arenillas, Leonor; Serrano, Sergi; Erill, Nadina; Martínez, Daniel; Castillo, Paola; Rovira, Jordina; Martínez, Antonio; Campo, Elias; Colomo, Luis

    2013-01-01

    MYC alterations influence the survival of patients with diffuse large B-cell lymphoma. Most studies have focused on MYC translocations but there is little information regarding the impact of numerical alterations and protein expression. We analyzed the genetic alterations and protein expression of MYC, BCL2, BCL6, and MALT1 in 219 cases of diffuse large B-cell lymphoma. MYC rearrangement occurred as the sole abnormality (MYC single-hit) in 3% of cases, MYC and concurrent BCL2 and/or BCL6 rearrangements (MYC double/triple-hit) in 4%, MYC amplifications in 2% and MYC gains in 19%. MYC single-hit, MYC double/triple-hit and MYC amplifications, but not MYC gains or other gene rearrangements, were associated with unfavorable progression-free survival and overall survival. MYC protein expression, evaluated using computerized image analysis, captured the unfavorable prognosis of MYC translocations/amplifications and identified an additional subset of patients without gene alterations but with similar poor prognosis. Patients with tumors expressing both MYC/BCL2 had the worst prognosis, whereas those with double-negative tumors had the best outcome. High MYC expression was associated with shorter overall survival irrespectively of the International Prognostic Index and BCL2 expression. In conclusion, MYC protein expression identifies a subset of diffuse large B-cell lymphoma with very poor prognosis independently of gene alterations and other prognostic parameters. PMID:23716551

  18. Role of B Cells in Vaccine-Induced Immunity against Coccidioidomycosis

    PubMed Central

    Magee, D. Mitchell; Friedberg, Rhonda L.; Woitaske, Melanie D.; Johnston, Stephen Albert; Cox, Rebecca A.

    2005-01-01

    We investigated secondary immunity against coccidioidomycosis by using gene expression microarrays. Surprisingly, a high percentage of B-cell-related genes were associated with protective immunity. A functional confirmation of the importance of B cells against coccidioidomycosis was achieved by demonstrating that vaccination was not fully protective in B-cell-deficient MuMT mice. PMID:16177382

  19. Combined point mutation in KRAS or EGFR genes and EML4-ALK translocation in lung cancer patients.

    PubMed

    Jürgens, Jessica; Engel-Riedel, Walburga; Prickartz, Alexander; Ludwig, Corinna; Schildgen, Oliver; Tillmann, Ramona-Liza; Stoelben, Erich; Brockmann, Michael; Schildgen, Verena

    2014-03-01

    A total of three cases with novel constellations regarding mutation patterns in non-small-cell lung cancer (NSCLC) are reported. The mutation patterns that are observed are novel and unexpected. First, a combined simultaneous KRAS mutation and EML4-ALK translocation, both in the main tumor and a bone metastasis, were observed, these mutations are assumed to mutually exclude each other. A further two cases include a father and a daughter, both of whom are suffering from NSCLC with different EGFR mutation patterns. A common cause was assumed; however, could not be deduced to mutations in the KRAS, BRAF and EGFR genes. The aforementioned cases are important, as it must be taken into account that mutations previously assumed to be exclusive can occur in combination, may influence the clinical outcome and may require different therapy compared with single mutated tumors. It has to be discussed whether diagnostic algorithms need to be adapted. The cases of father and daughter show that further unknown factors can influence development of NSCLC. PMID:24754584

  20. Genetic features of B-cell chronic lymphocytic leukemia.

    PubMed

    Stilgenbauer, S; Lichter, P; Döhner, H

    2000-03-01

    The genetic features of B-cell chronic lymphocytic leukemia (CLL) are currently being reassessed by molecular cytogenetic techniques such as fluorescence in situ hybridization (FISH). Conventional cytogenetic studies by chromosome banding are difficult in CLL mainly because of the low in vitro mitotic activity of the tumor cells, which leads to poor quantity and quality of metaphase spreads. Molecular genetic analyses are limited because candidate genes are known for only a few chromosomal aberrations that are observed in CLL. FISH was found to be a powerful tool for the genetic analysis of CLL as it overcomes both the low mitotic activity of the CLL cells and the lack of suitable candidate genes for analysis. Using FISH, the detection of chromosomal aberrations can be performed at the single cell level in both dividing and non-dividing cells, thus circumventing the need of metaphase preparations from tumor cells. Probes for the detection of trisomies, deletions and translocation breakpoints can be applied to the regions of interest with the growing number of clones available from genome-wide libraries. Using the interphase cytogenetic FISH approach with a disease specific set of probes, chromosome aberrations can be found in more than 80% of CLL cases. The most frequently observed abnormalities are losses of chromosomal material, with deletions in band 13q14 being the most common, followed by deletions in 11q22-q23, deletions in 17p13 and deletions in 6q21. The most common gains of chromosomal material are trisomies 12q, 8q and 3q. Translocation breakpoints, in particular involving the immunoglobulin heavy chain locus at 14q32, which are frequently observed in other types of non-Hodgkin's lymphoma, are rare events in CLL. Genes affected by common chromosome aberrations in CLL appear to be p53 in cases with 17p deletion and ataxia telangiectasia mutated (ATM), which is mutated in a subset of cases with 11q22-q23 aberrations. However, for the other frequently

  1. Extra Copies of der(21)t(12;21) plus Deletion of ETV6 Gene due to dic(12;18) in B-Cell Precursor ALL with Poor Outcome

    PubMed Central

    Hernandes, Marina Araújo Fonzar; Marques-Salles, Terezinha de Jesus; Mkrtchyan, Hasmik; Soares-Ventura, Eliane Maria; Leite, Edinalva Pereira; Muniz, Maria Tereza Cartaxo; Cornélio, Maria Teresa Marquim Nogueira; Liehr, Thomas; Santos, Neide; Silva, Maria Luiza Macedo

    2012-01-01

    Acute lymphoblastic leukemia (ALL), CD10+ B-cell precursor, represents the most frequent type of childhood ALL from 3 to 6 years of age. The t(12;21)(p13;q22) occurs in 25% of cases of B-cell precursor ALL, it is rare in children less than 24 months and have been related to good prognosis. Some relapse cases and unfavorable prognosis in ALL CD10+ are associated with t(12;21) bearing additional aberrations as extra copies of chromosome 21 and ETV6 gene loss. This report describes the case of a 15 month-year old girl, who displayed a karyotype with addition on chromosome 12p plus trisomy 10 and tetrasomy of chromosome 21. Molecular cytogenetic studies revealed two extra copies of the der(21) t(12;21), trisomy 10 and deletion of the second ETV6 gene due to the dic(12;18). These findings show the great importance of molecular cytogenetic studies to clarify complex karyotypes, to define prognostic, to carry out risk group stratification and to support correctly disease treatment in childhood acute lymphoblastic leukemia. PMID:23074685

  2. Analysis of the Ten-Eleven Translocation 2 (TET2) gene mutation in myeloproliferative neoplasms.

    PubMed

    Ha, Jung-Sook; Jeon, Dong-Seok; Kim, Jae-Ryong; Ryoo, Nam-Hee; Suh, Jang-Soo

    2014-01-01

    Loss-of-function mutations in the putative tumor suppressor gene, Ten-Eleven Ttranslocation 2(TET2), have been identified recently in myeloproliferative neoplasms (MPNs). The present study analyzed the TET2 gene in 99 MPNs patients. The overall TET2 mutational frequency was 12.1% (22.2% in polycythemia vera (PV), 9.7% in essential thrombocythemia (ET), 18.2% in primary myelofibrosis (PMF,) and 0% in unclassified MPNs), and 11 mutations (p.Lys95Asnfs*18, p.Gln967Asnfs*40, p.Lys1022Glufs*4, p.Asp1314Metfs*49, p.Gln1534Alafs*43, p.Tyr1618Leufs*4, p.Leu1609Glufs*45, p.Gly1735*, Q599R, c.3409+1G>T, c.4044+2insT) were identified. All the patients with TET2 mutation were accompanied by the JAK2 V617F mutation. The existence of the TET2 mutation was not related to the patient's age, hematologic indices, JAK2 V617F allele burden, frequencies of organomegaly, marrow fibrosis, or thrombotic/hemorrhagic complications in entire MPN patients. However, tendencies toward higher JAK2 V617F allele burdens (88.0±4.3% vs. 19.1±28.7%, P=0.034) and higher Hct (47.4±5.4% vs. 25.5±6.2%, P=0.037) were detected in PMF patients harboring TET2 mutations. Moreover, a significantly higher frequency of organomegaly was identified in ET patients harboring the TET2 mutation (50% vs. 19.6%, P=0.018). The TET2 mutation most likely contributes to clinical phenotypes and shows a high accompanying rate with JAK2 V617F; larger scale studies involving more MPN patients are needed. PMID:24795056

  3. The Ah receptor nuclear translocator gene (ARNT) is located on q21 of human chromosome 1 and on mouse chromosome 3 near Cf-3

    SciTech Connect

    Johnson, B.; Brooks, B.A.; Heinzmann, C. ); Mohandas, T. )

    1993-09-01

    The authors have mapped the Ah (aryl hydrocarbon) receptor nuclear translocator (ARNT) gene to a conserved linkage group located on mouse chromosome 3 and human chromosome 1. EcoRi-digested DNA from a panel of 17 human x mouse somatic cell hybrids was probed with a cDNA fragment of the human ARNT gene. Six of the 17 independent mouse x human hybrids were positive for human bands. Human chromosome 1 showed complete cosegregation with the gene, whereas discordant segregation was observed for all other human chromosomes. The human gene was localized to 1q21 by using DNA from mouse x human hybrid clones that retain translocations involving human chromosome 1, by segregation analysis in nine informative CEPH families, and by in situ hybridization. The mouse homologue was mapped to mouse chromosome 3 using a panel of 16 hamster x mouse somatic cell hybrids. Six of 16 mouse x hamster hybrids were positive for mouse bands, showing complete concordance with mouse chromosome 3. The mouse Arnt gene was regionally mapped on chromosome 3, using linkage analysis in an interspecific backcross. The results indicate that the mouse gene resides about 40 cM from the centromere and about 10 cM proximal to Cf-3, the gene for tissue factor. 41 refs., 4 figs., 5 tabs.

  4. The (6;9) chromosome translocation, associated with a specific subtype of acute nonlymphocytic leukemia, leads to aberrant transcription of a target gene on 9q34.

    PubMed Central

    von Lindern, M; Poustka, A; Lerach, H; Grosveld, G

    1990-01-01

    The specific (6;9)(p23;q34) chromosomal translocation is associated with a defined subtype of acute nonlymphocytic leukemia (ANLL). The 9q34 breakpoint is located at the telomeric side of the c-abl gene. Through a combination of chromosome jumping, long-range mapping, and chromosome walking, the chromosome 9 breakpoints of several t(6;9) ANLL patients were localized within a defined region of 8 kilobases (kb), 360 kb telomeric of c-abl. Subsequent cDNA cloning revealed that this region represented an intron in the middle of a gene, called Cain (can), encoding a 7.5-kb transcript. Disruption of the can gene by the translocation resulted in the expression of a new 5.5-kb can mRNA from the 6p- chromosome. Isolation of chromosome 6 sequences showed that breakpoints on 6p23 also clustered within a limited stretch of DNA. These data strongly suggest a direct involvement of the translocation in the leukemic process of t(6;9) ANLL. Images PMID:2370860

  5. Fusion of platelet-derived growth receptor {beta} to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation

    SciTech Connect

    Golub, T.; Barker, G.; Gilliland, D.G.

    1994-09-01

    Chronic myelomonocytic leukemia (CMML) is a myelodysplastic syndrome characterized by abnormal clonal myeloid proliferation, and by progression to acute myelogenous leukemia (AML). A recently recognized subgroup of CMML has a t(5;12) (q33;p13) balanced translocation. Fluorescence in situ hybridization (FISH) localized the translocation breakpoint near the CSF1 receptor (CSF1R) locus on chromosome 5q. Pulsed-field gel electrophoresis confirmed rearrangements near CSF1R, but involvement of CSF1R itself was excluded. Southern blotting showed a rearrangement within the closely linked PDGF receptor {beta} (PDGFR{beta}) gene. Ribonuclease protection assays localized the translocation breakpoint to nucleotide 1766 in PDGFR{beta} RNA. Anchored PCR was used to identify the chromosome 12 fusion partner, a novel ets-like protein, tel. Tel contains a highly conserved carboxy terminal ets-like DNA-binding domain, and an amino terminal domain with a predicted helix-loop-helix (HLH) secondary structure. The consequence of the t(5;12) translocation is fusion of the tel HLH domain to the PDGFR{beta} transmembrane and tyrosine kinase domains. The tel HLH domain may contribute a dimerization motif which serves to constitutively activate PDGFR{beta} tyrosine kinase activity. The tel-PDGFR{beta} fusion demonstrates the oncogenic potential of PDGFR{beta}, and may provide a paradigm for early events in the pathogenesis of AML.

  6. Molecular and cytogenetic characterization of expanded B-cell clones from multiclonal versus monoclonal B-cell chronic lymphoproliferative disorders

    PubMed Central

    Henriques, Ana; Rodríguez-Caballero, Arancha; Criado, Ignacio; Langerak, Anton W.; Nieto, Wendy G.; Lécrevisse, Quentin; González, Marcos; Cortesão, Emília; Paiva, Artur; Almeida, Julia; Orfao, Alberto

    2014-01-01

    Chronic antigen-stimulation has been recurrently involved in the earlier stages of monoclonal B-cell lymphocytosis, chronic lymphocytic leukemia and other B-cell chronic lymphoproliferative disorders. The expansion of two or more B-cell clones has frequently been reported in individuals with these conditions; potentially, such coexisting clones have a greater probability of interaction with common immunological determinants. Here, we analyzed the B-cell receptor repertoire and molecular profile, as well as the phenotypic, cytogenetic and hematologic features, of 228 chronic lymphocytic leukemia-like and non-chronic lymphocytic leukemia-like clones comparing multiclonal (n=85 clones from 41 cases) versus monoclonal (n=143 clones) monoclonal B-cell lymphocytosis, chronic lymphocytic leukemia and other B-cell chronic lymphoproliferative disorders. The B-cell receptor of B-cell clones from multiclonal cases showed a slightly higher degree of HCDR3 homology than B-cell clones from mono clonal cases, in association with unique hematologic (e.g. lower B-lymphocyte counts) and cytogenetic (e.g. lower frequency of cytogenetically altered clones) features usually related to earlier stages of the disease. Moreover, a subgroup of coexisting B-cell clones from individual multiclonal cases which were found to be phylogenetically related showed unique molecular and cytogenetic features: they more frequently shared IGHV3 gene usage, shorter HCDR3 sequences with a greater proportion of IGHV mutations and del(13q14.3), than other unrelated B-cell clones. These results would support the antigen-driven nature of such multiclonal B-cell expansions, with potential involvement of multiple antigens/epitopes. PMID:24488564

  7. Entropic effects in formation of chromosome territories: towards understanding of radiation-induced gene translocation frequency

    NASA Astrophysics Data System (ADS)

    Gudowska-Nowak, Ewa; Ritter, Sylvia; Durante, Marco; Deperas-Standylo, Joanna; Ciesla, Michal

    2012-07-01

    A detailed understanding of structural organization of biological target, such as geometry of an inter-phase chromosome, is an essential prerequisite for gaining deeper insight into relationship between radiation track structure and radiation-induced biological damage [1]. In particular, coupling of biophysical models aimed to describe architecture of chromosomes and their positioning in a cell nucleus [2-4] with models of local distribution of ionizations caused by passing projectiles, are expected to result in more accurate estimates of aberration induction caused by radiation. There is abundant experimental evidence indicating that arrangements of chromosomes in eukaryotic cell nucleus is non-random and has been evolutionary conserved in specific cell types. Moreover, the radial position of a given chromosome territory (CT) within the cell nucleus has been shown to correlate with its size and gene density. Usually it is assumed that chromosomal geometry and positioning result from the action of specific forces acting locally, such as hydrogen bonds, electrostatic, Van der Waals or hydrophobic interactions operating between nucleosomes and within their interiors. However, it is both desirable and instructive to learn to what extend organization of inter-phase chromosomes is affected by nonspecific entropic forces. In this study we report results of a coarse-grained analysis of a chromatin structure modeled by two distinct approaches. In the first method, we adhere to purely statistical analysis of chromatin packing within a chromosome territory. On the basis of the polymer theory, the chromatin fiber of diameter 30nm is approximated by a chain of spheres, each corresponding to about 30 kbp. Random positioning of the center of the domain is repeated for 1000 spherical nuclei. Configuration of the domain is determined by a random packing of a polymer (a string of identical beads) in estimated fraction of space occupied by a chromosome of a given length and mass

  8. Climate-Driven Reshuffling of Species and Genes: Potential Conservation Roles for Species Translocations and Recombinant Hybrid Genotypes.

    PubMed

    Scriber, Jon Mark

    2013-01-01

    Comprising 50%-75% of the world's fauna, insects are a prominent part of biodiversity in communities and ecosystems globally. Biodiversity across all levels of biological classifications is fundamentally based on genetic diversity. However, the integration of genomics and phylogenetics into conservation management may not be as rapid as climate change. The genetics of hybrid introgression as a source of novel variation for ecological divergence and evolutionary speciation (and resilience) may generate adaptive potential and diversity fast enough to respond to locally-altered environmental conditions. Major plant and herbivore hybrid zones with associated communities deserve conservation consideration. This review addresses functional genetics across multi-trophic-level interactions including "invasive species" in various ecosystems as they may become disrupted in different ways by rapid climate change. "Invasive genes" (into new species and populations) need to be recognized for their positive creative potential and addressed in conservation programs. "Genetic rescue" via hybrid translocations may provide needed adaptive flexibility for rapid adaptation to environmental change. While concerns persist for some conservationists, this review emphasizes the positive aspects of hybrids and hybridization. Specific implications of natural genetic introgression are addressed with a few examples from butterflies, including transgressive phenotypes and climate-driven homoploid recombinant hybrid speciation. Some specific examples illustrate these points using the swallowtail butterflies (Papilionidae) with their long-term historical data base (phylogeographical diversity changes) and recent (3-decade) climate-driven temporal and genetic divergence in recombinant homoploid hybrids and relatively recent hybrid speciation of Papilio appalachiensis in North America. Climate-induced "reshuffling" (recombinations) of species composition, genotypes, and genomes may become

  9. Transcription-associated processes cause DNA double-strand breaks and translocations in neural stem/progenitor cells

    PubMed Central

    Schwer, Bjoern; Wei, Pei-Chi; Chang, Amelia N.; Kao, Jennifer; Du, Zhou; Meyers, Robin M.; Alt, Frederick W.

    2016-01-01

    High-throughput, genome-wide translocation sequencing (HTGTS) studies of activated B cells have revealed that DNA double-strand breaks (DSBs) capable of translocating to defined bait DSBs are enriched around the transcription start sites (TSSs) of active genes. We used the HTGTS approach to investigate whether a similar phenomenon occurs in primary neural stem/progenitor cells (NSPCs). We report that breakpoint junctions indeed are enriched around TSSs that were determined to be active by global run-on sequencing analyses of NSPCs. Comparative analyses of transcription profiles in NSPCs and B cells revealed that the great majority of TSS-proximal junctions occurred in genes commonly expressed in both cell types, possibly because this common set has higher transcription levels on average than genes transcribed in only one or the other cell type. In the latter context, among all actively transcribed genes containing translocation junctions in NSPCs, those with junctions located within 2 kb of the TSS show a significantly higher transcription rate on average than genes with junctions in the gene body located at distances greater than 2 kb from the TSS. Finally, analysis of repair junction signatures of TSS-associated translocations in wild-type versus classical nonhomologous end-joining (C-NHEJ)–deficient NSPCs reveals that both C-NHEJ and alternative end-joining pathways can generate translocations by joining TSS-proximal DSBs to DSBs on other chromosomes. Our studies show that the generation of transcription-associated DSBs is conserved across divergent cell types. PMID:26873106

  10. Two cases of histiocytic sarcoma with BCL2 translocations and occult or subsequent follicular lymphoma.

    PubMed

    Fernandez-Pol, Sebastian; Bangs, Charles D; Cherry, Athena; Arber, Daniel A; Gratzinger, Dita

    2016-09-01

    Histiocytic sarcoma is rare and difficult to distinguish from histologic mimics such as myeloid sarcoma due to its relatively nonspecific immunoprofile. A subset of histiocytic sarcomas are clonally related to synchronous or metachronous follicular lymphomas. Interestingly, the histiocytic tumor component has been shown to harbor BCL2 gene translocations that are identical to those found in the lymphoma. We present one case of histiocytic sarcoma and initially occult follicular lymphoma in which detection of a BCL2 gene translocation helped support the diagnosis. We also provide follow-up regarding a previously published case of histiocytic sarcoma with IGH/BCL2 fusion gene in which the patient subsequently developed follicular lymphoma and, later, diffuse large B-cell lymphoma. Our findings suggest that BCL2 gene translocations are a recurrent feature of a distinct subset of histiocytic sarcomas that are associated with follicular lymphoma; the follicular lymphoma component may be clinically occult at the time of diagnosis. Testing for an IGH/BCL2 translocation should be considered in the diagnostic workup of difficult-to-characterize neoplasms with histiocytic/monocytic morphology and immunoprofile. PMID:27134111

  11. B-cell-activating factor inhibits CD20-mediated and B-cell receptor-mediated apoptosis in human B cells

    PubMed Central

    Saito, Yohei; Miyagawa, Yoshitaka; Onda, Keiko; Nakajima, Hideki; Sato, Ban; Horiuchi, Yasuomi; Okita, Hajime; Katagiri, Yohko U; Saito, Masahiro; Shimizu, Toshiaki; Fujimoto, Junichiro; Kiyokawa, Nobutaka

    2008-01-01

    B-cell-activating factor (BAFF) is a survival and maturation factor for B cells belonging to the tumour necrosis factor superfamily. Among three identified functional receptors, the BAFF receptor (BAFF-R) is thought to be responsible for the effect of BAFF on B cells though details of how remain unclear. We determined that a hairy-cell leukaemia line, MLMA, expressed a relatively high level of BAFF-R and was susceptible to apoptosis mediated by either CD20 or B-cell antigen receptor (BCR). Using MLMA cells as an in vitro model of mature B cells, we found that treatment with BAFF could inhibit apoptosis mediated by both CD20 and BCR. We also observed, using immunoblot analysis and microarray analysis, that BAFF treatment induced activation of nuclear factor-κB2 following elevation of the expression level of Bcl-2, which may be involved in the molecular mechanism of BAFF-mediated inhibition of apoptosis. Interestingly, BAFF treatment was also found to induce the expression of a series of genes, such as that for CD40, related to cell survival, suggesting the involvement of a multiple mechanism in the BAFF-mediated anti-apoptotic effect. MLMA cells should provide a model for investigating the molecular basis of the effect of BAFF on B cells in vitro and will help to elucidate how B cells survive in the immune system in which BAFF-mediated signalling is involved. PMID:18540961

  12. [B-cell neoplasms with plasmacellular and plasmablastic differentiation].

    PubMed

    Fend, F; Quintanilla-Martínez, L

    2013-05-01

    Plasma cell malignancies are tumors of terminally differentiated B-cells in which the neoplastic plasma cells are the dominant and proliferating tumor cell component. Plasma cell myeloma (PCM) is one of the most common hematological neoplasms and typically does not cause diagnostic problems. A morphologically and immunophenotypically detectable plasmacellular orplasmablastic differentiation is, however, commonly observed in a wide range of mature B-cell lymphomas. A confident separation of the distinct entities requires the integration of clinical and morphological findings as well as an adequate phenotyping of both the plasma cell and the B-cell component if present. Detection of lymphotropic viruses, specific translocations and novel molecular markers, such as the MYD88 L265P mutation occurring in the vast majority of lymphoplasmacytic lymphomas complement our diagnostic repertoire. In this review we describe the most commonly observed diagnostic problems in separating small B-cell lymphomas from PCM and high-grade B-cell non-Hodgkin lymphoma (B-NHL) with plasmablastic differentiation from extramedullary spread of aggressive PCM and provide helpful criteria for routine diagnostics. PMID:23462793

  13. t(15;21) translocations leading to the concurrent downregulation of RUNX1 and its transcription factor partner genes SIN3A and TCF12 in myeloid disorders.

    PubMed

    L'Abbate, Alberto; Tolomeo, Doron; De Astis, Francesca; Lonoce, Angelo; Lo Cunsolo, Crocifissa; Mühlematter, Dominique; Schoumans, Jacqueline; Vandenberghe, Peter; Van Hoof, Achilles; Palumbo, Orazio; Carella, Massimo; Mazza, Tommaso; Storlazzi, Clelia Tiziana

    2015-01-01

    Through a combined approach integrating RNA-Seq, SNP-array, FISH and PCR techniques, we identified two novel t(15;21) translocations leading to the inactivation of RUNX1 and its partners SIN3A and TCF12. One is a complex t(15;21)(q24;q22), with both breakpoints mapped at the nucleotide level, joining RUNX1 to SIN3A and UBL7-AS1 in a patient with myelodysplasia. The other is a recurrent t(15;21)(q21;q22), juxtaposing RUNX1 and TCF12, with an opposite transcriptional orientation, in three myeloid leukemia cases. Since our transcriptome analysis indicated a significant number of differentially expressed genes associated with both translocations, we speculate an important pathogenetic role for these alterations involving RUNX1. PMID:26671595

  14. Smith-Lemli-Opitz syndrome in a female with a de novo, balanced translocation involving 7q32: Probable disruption of an SLOS gene

    SciTech Connect

    Wallace, M.; Zori, R.T.; Alley, T.; Whidden, E.; Gray, B.A.; Williams, C.A.

    1994-05-01

    A 3-month-old infant girl had manifestations of the Smith-Lemli-Opitz syndrome (SLOS) including typical positional anomalies of the limbs, apparent Hirschsprung disease, cataracts, ptosis, anteverted nares, cleft of the posterior palate, small tongue, broad maxillary alveolar ridges, and abnormally low serum cholesterol levels. Chromosomal analysis showed a de novo balanced translocation interpreted as 46,XX,t(7;20)(q32.1;q13.2). We hypothesize that the translocation breakpoint in this case interrupts one SLOS allele and that the other allele at the same locus has a more subtle mutation that was inherited from the other parent. This case, as well as cytogenetic observations in other SLOS cases, suggests that SLOS could be due to autosomal recessive mutation at a gene in 7q32. 33 refs., 3 figs., 1 tab.

  15. T-cell leukemia 1 expression in nodal Epstein-Barr virus-negative diffuse large B-cell lymphoma and primary mediastinal B-cell lymphoma.

    PubMed

    Gualco, Gabriela; Weiss, Lawrence M; Barber, Glen N; Bacchi, Carlos E

    2010-09-01

    The physiologic expression of the product of the proto-oncogene TCL1 (T-cell leukemia 1) is primarily restricted to early embryonic cells. In nonneoplastic B cells, the expression of TCL1 is determined by the differentiation step with silencing at the germinal center stage. TCL1 protein is overexpressed in a wide variety of human diseases. It has been shown that TCL1 is a powerful B-cell oncogene, which has been implicated in the pathogenesis of various types of mature B-cell lymphomas. There is no comparative information in the literature addressing the expression of TCL1 in pediatric and adult nodal diffuse large B-cell lymphoma or primary mediastinal large B-cell lymphoma. We studied 55 cases of adult and pediatric diffuse large B-cell lymphoma and primary mediastinal large B-cell lymphoma to analyze the phenotypic profile of these lymphomas, including TCL1 expression, and its relationship with clinical outcome in different age groups. The cases were analyzed by immunohistochemistry for the expression of TCL1, CD10, BCL-2, BCL-6, and MUM1. We also evaluated c-MYC translocation by fluorescence in situ hybridization. TCL1 was observed in 11 cases, 5 pediatric and 6 adult cases, all but one diffuse large B-cell lymphoma. Pediatric cases showed a significant association between TCL1 expression, high proliferative index, and presence of c-MYC translocation. TCL1 positivity was predominantly found in germinal center phenotype diffuse large B-cell lymphoma. Overall survival was worse in adult TCL1-positive cases than pediatric ones. Primary mediastinal large B-cell lymphomas infrequently expressed TCL1 in both age groups. PMID:20382409

  16. YY1 Is Required for Germinal Center B Cell Development

    PubMed Central

    Vuyyuru, Raja; Jha, Vibha; Hodewadekar, Suchita; Manser, Tim; Atchison, Michael L.

    2016-01-01

    YY1 has been implicated as a master regulator of germinal center B cell development as YY1 binding sites are frequently present in promoters of germinal center-expressed genes. YY1 is known to be important for other stages of B cell development including the pro-B and pre-B cells stages. To determine if YY1 plays a critical role in germinal center development, we evaluated YY1 expression during B cell development, and used a YY1 conditional knock-out approach for deletion of YY1 in germinal center B cells (CRE driven by the immunoglobulin heavy chain γ1 switch region promoter; γ1-CRE). We found that YY1 is most highly expressed in germinal center B cells and is increased 3 fold in splenic B cells activated by treatment with anti-IgM and anti-CD40. In addition, deletion of the yy1 gene by action of γ1-CRE recombinase resulted in significant loss of GC cells in both un-immunized and immunized contexts with corresponding loss of serum IgG1. Our results show a crucial role for YY1 in the germinal center reaction. PMID:27167731

  17. Expression of HOXB genes is significantly different in acute myeloid leukemia with a partial tandem duplication of MLL vs. a MLL translocation: a cross-laboratory study.

    PubMed

    Liu, Hsi-Che; Shih, Lee-Yung; May Chen, Mei-Ju; Wang, Chien-Chih; Yeh, Ting-Chi; Lin, Tung-Huei; Chen, Chien-Yu; Lin, Chih-Jen; Liang, Der-Cherng

    2011-05-01

    In acute myeloid leukemia (AML), the mixed lineage leukemia (MLL) gene may be rearranged to generate a partial tandem duplication (PTD), or fused to partner genes through a chromosomal translocation (tMLL). In this study, we first explored the differentially expressed genes between MLL-PTD and tMLL using gene expression profiling of our cohort (15 MLL-PTD and 10 tMLL) and one published data set. The top 250 probes were chosen from each set, resulting in 29 common probes (21 unique genes) to both sets. The selected genes include four HOXB genes, HOXB2, B3, B5, and B6. The expression values of these HOXB genes significantly differ between MLL-PTD and tMLL cases. Clustering and classification analyses were thoroughly conducted to support our gene selection results. Second, as MLL-PTD, FLT3-ITD, and NPM1 mutations are identified in AML with normal karyotypes, we briefly studied their impact on the HOXB genes. Another contribution of this study is to demonstrate that using public data from other studies enriches samples for analysis and yields more conclusive results. PMID:21665178

  18. Cytoplasmic H2O2 prevents translocation of NPR1 to the nucleus and inhibits the induction of PR genes in Arabidopsis

    PubMed Central

    Peleg-Grossman, Smadar; Melamed-Book, Naomi; Cohen, Gil

    2010-01-01

    Plants activate a number of defense reactions in response to pathogen attack. One of the major pathways involves biosynthesis of Salicylic acid (SA), which acts as a signaling molecule that regulates local defense reaction at the infection site and in induction of systemic acquired resistance (SAR). SA is sensed and transduced by NPR1 protein, which is a redox sensitive protein that acts as a central transcription activator of many pathogenesis related and defense related genes. In its uninduced state NPR1 exists as an oligomer in the cytoplasm. Following pathogen attack and SAR induction, cells undergo a biphasic change in cellular redox, resulting in reduction of NPR1 to a monomeric form, which moves to the nucleus. Recently, it was shown that pathogen attack or SA treatment cause S-nitrosylation of NPR1, promoting NPR1 oligomerization and restricting it in the cytoplasm. We used A. thaliana mutants in cytosolic ASCORBATE PEROXIDASE, apx1 and plants expressing antisense CATALASE gene, as well as the CATALASE inhibitor 3-amino-1,2,4-triazole, to examine the effect of H2O2 on the pathogen-triggered translocation of the NPR1 to the nucleus. Our results show that the pathogen-triggered or SA-induced nuclear translocation is prevented by accumulation of H2O2 in the cytosol. Moreover, we show that increased accumulation of cytoplasmic ROS in apx1 mutants reduced the NPR1-dependent gene expression. We suggest that H2O2 has a signaling role in pathogenesis, acting as a negative regulator of NPR1 translocation to the nucleus, limiting the NPR1-dependent gene expression. PMID:21051935

  19. ZFP521 contributes to pre-B-cell lymphomagenesis through modulation of the pre-B-cell receptor signaling pathway.

    PubMed

    Hiratsuka, T; Takei, Y; Ohmori, R; Imai, Y; Ozeki, M; Tamaki, K; Haga, H; Nakamura, T; Tsuruyama, T

    2016-06-23

    ZFP521 was previously identified as a putative gene involved in induction of B-cell lymphomagenesis. However, the contribution of ZFP521 to lymphomagenesis has not been confirmed. In this study, we sought to elucidate the role of ZFP521 in B-cell lymphomagenesis. To this end, we used a retroviral insertion method to show that ZFP521 was a target of mutagenesis in pre-B-lymphoblastic lymphoma cells. The pre-B-cell receptor (pre-BCR) signaling molecules BLNK, BTK and BANK1 were positively regulated by the ZFP521 gene, leading to enhancement of the pre-BCR signaling pathway. In addition, c-myc and c-jun were upregulated following activation of ZFP521. Stimulation of pre-BCR signaling using anti-Vpreb antibodies caused aberrant upregulation of c-myc and c-jun and of Ccnd3, which encodes cyclin D3, thereby inducing the growth of pre-B cells. Stimulation with Vpreb affected the growth of pre-B cells, and addition of interleukin (IL)-7 receptor exerted competitive effects on pre-B-cell growth. Knockdown of BTK and BANK1, targets of ZFP521, suppressed the effects of Vpreb stimulation on cell growth. Furthermore, in human lymphoblastic lymphoma, analogous to pre-B-cell lymphoma in mice, the expression of ZNF521, the homolog of ZFP521 in humans, was upregulated. In conclusion, our data showed that the ZFP521 gene comprehensively induced pre-B-cell lymphomagenesis by modulating the pre-B-cell receptor signaling pathway. PMID:26522721

  20. The complex translocation (9;14;14) involving IGH and CEBPE genes suggests a new subgroup in B-lineage acute lymphoblastic leukemia.

    PubMed

    Zerrouki, Rachid; Benhassine, Traki; Bensaada, Mustapha; Lauzon, Patricia; Trabzi, Anissa

    2016-03-01

    Many subtypes of acute lymphoblastic leukemia (ALL) are associated with specific chromosomal rearrangements. The complex translocation t(9;14;14), a variant of the translocation (14;14)(q11;q32), is a rare but recurrent chromosomal abnormality involving the immunoglobulin heavy-chain (IGH) and CCAAT enhancer-binding protein (CEBPE) genes in B-lineage ALL (B-ALL) and may represent a new B-ALL subgroup. We report here the case of a 5-year-old girl with B-ALL, positive for CD19, CD38 and HLA-DR. A direct technique and G-banding were used for chromosomal analysis and fluorescentin situ hybridization (FISH) with BAC probes was used to investigate a possible rearrangement of the IGH andCEBPE genes. The karyotype exhibit the chromosomal aberration 46,XX,del(9)(p21),t(14;14)(q11;q32). FISH with dual-color break-apartIGH-specific and CEPBE-specific bacterial artificial chromosome (BAC) probes showed a complex t(9;14;14) associated with a deletion of cyclin-dependent kinase inhibitor 2A (CDKN2A) and paired box gene 5 (PAX5) at 9p21-13 and duplication of the fusion gene IGH-CEBPE. PMID:27007892

  1. The complex translocation (9;14;14) involving IGH and CEBPE genes suggests a new subgroup in B-lineage acute lymphoblastic leukemia

    PubMed Central

    Zerrouki, Rachid; Benhassine, Traki; Bensaada, Mustapha; Lauzon, Patricia; Trabzi, Anissa

    2016-01-01

    Abstract Many subtypes of acute lymphoblastic leukemia (ALL) are associated with specific chromosomal rearrangements. The complex translocation t(9;14;14), a variant of the translocation (14;14)(q11;q32), is a rare but recurrent chromosomal abnormality involving the immunoglobulin heavy-chain (IGH) and CCAAT enhancer-binding protein (CEBPE) genes in B-lineage ALL (B-ALL) and may represent a new B-ALL subgroup. We report here the case of a 5-year-old girl with B-ALL, positive for CD19, CD38 and HLA-DR. A direct technique and G-banding were used for chromosomal analysis and fluorescentin situ hybridization (FISH) with BAC probes was used to investigate a possible rearrangement of the IGH andCEBPE genes. The karyotype exhibit the chromosomal aberration 46,XX,del(9)(p21),t(14;14)(q11;q32). FISH with dual-color break-apartIGH-specific and CEPBE-specific bacterial artificial chromosome (BAC) probes showed a complex t(9;14;14) associated with a deletion of cyclin-dependent kinase inhibitor 2A (CDKN2A) and paired box gene 5 (PAX5) at 9p21-13 and duplication of the fusion gene IGH-CEBPE. PMID:27007892

  2. Separation of the PROX1 gene from upstream conserved elements in a complex inversion/translocation patient with hypoplastic left heart.

    PubMed

    Gill, Harinder K; Parsons, Sian R; Spalluto, Cosma; Davies, Angela F; Knorz, Victoria J; Burlinson, Clare E G; Ng, Bee Ling; Carter, Nigel P; Ogilvie, Caroline Mackie; Wilson, David I; Roberts, Roland G

    2009-11-01

    Hypoplastic left heart (HLH) occurs in at least 1 in 10 000 live births but may be more common in utero. Its causes are poorly understood but a number of affected cases are associated with chromosomal abnormalities. We set out to localize the breakpoints in a patient with sporadic HLH and a de novo translocation. Initial studies showed that the apparently simple 1q41;3q27.1 translocation was actually combined with a 4-Mb inversion, also de novo, of material within 1q41. We therefore localized all four breakpoints and found that no known transcription units were disrupted. However we present a case, based on functional considerations, synteny and position of highly conserved non-coding sequence elements, and the heterozygous Prox1(+/-) mouse phenotype (ventricular hypoplasia), for the involvement of dysregulation of the PROX1 gene in the aetiology of HLH in this case. Accordingly, we show that the spatial expression pattern of PROX1 in the developing human heart is consistent with a role in cardiac development. We suggest that dysregulation of PROX1 gene expression due to separation from its conserved upstream elements is likely to have caused the heart defects observed in this patient, and that PROX1 should be considered as a potential candidate gene for other cases of HLH. The relevance of another breakpoint separating the cardiac gene ESRRG from a conserved downstream element is also discussed. PMID:19471316

  3. Ancestral Y-linked genes were maintained by translocation to the X and Y chromosomes fused to an autosomal pair in the Okinawa spiny rat Tokudaia muenninki.

    PubMed

    Murata, Chie; Kuroki, Yoko; Imoto, Issei; Kuroiwa, Asato

    2016-09-01

    Two species of the genus Tokudaia lack the Y chromosome and SRY, but several Y-linked genes have been rescued by translocation or transposition to other chromosomes. Tokudaia muenninki is the only species in the genus that maintains the Y owing to sex chromosome-autosome fusions. According to previous studies, many SRY pseudocopies and other Y-linked genes have evolved by excess duplication in this species. Using RNA-seq and RT-PCR, we found that ZFY, EIF2S3Y, TSPY, UTY, DDX3Y, USP9Y, and RBMY, but not UBA1Y, had high deduced amino acid sequence similarity and similar expression patterns with other rodents, suggesting that these genes were functional. Based on FISH and quantitative real-time PCR, all of the genes except for UTY and DDX3Y were amplified on the X and Y chromosomes with approximately 10-66 copies in the male genome. In a comparative analysis of the 372.4-kb BAC sequence and Y-linked gene transcripts from T. muenninki with the mouse Y genomic sequence, we observed that multiple-copy genes in the ancestral Y genome were nonfunctional, indicating that the gene functions were assumed by amplified copies. We also found a LTR sequence at the distal end of a SRY duplication unit, suggesting that unequal sister chromatid exchange mediated by retrotransposable elements could have been involved in SRY amplification. Our results revealed that the Y-linked genes were rescued from degeneration via translocations to other sex chromosomal regions and amplification events in T. muenninki. PMID:27333765

  4. Evolution of B Cell Immunity

    PubMed Central

    Sunyer, J. Oriol

    2013-01-01

    Two types of adaptive immune strategies are known to have evolved in vertebrates: the VLR-based system, which is present in jawless organisms and is mediated by VLRA and VLRB lymphocytes, and the BCR/TCR-based system, which is present in jawed species and is provided by B and T cell receptors expressed on B and T cells, respectively. Here we summarize features of B cells and their predecessors in the different animal phyla, focusing the review on B cells from jawed vertebrates. We point out the critical role of nonclassical species and comparative immunology studies in the understanding of B cell immunity. Because nonclassical models include species relevant to veterinary medicine, basic science research performed in these animals contributes to the knowledge required for the development of more efficacious vaccines against emerging pathogens. PMID:25340015

  5. Association between gene and miRNA expression profiles and stereotyped subset #4 B-cell receptor in chronic lymphocytic leukemia.

    PubMed

    Maura, Francesco; Cutrona, Giovanna; Mosca, Laura; Matis, Serena; Lionetti, Marta; Fabris, Sonia; Agnelli, Luca; Colombo, Monica; Massucco, Carlotta; Ferracin, Manuela; Zagatti, Barbara; Reverberi, Daniele; Gentile, Massimo; Recchia, Anna Grazia; Bossio, Sabrina; Rossi, Davide; Gaidano, Gianluca; Molica, Stefano; Cortelezzi, Agostino; Di Raimondo, Francesco; Negrini, Massimo; Tassone, Pierfrancesco; Morabito, Fortunato; Ferrarini, Manlio; Neri, Antonino

    2015-01-01

    In this study we investigated specific biological and clinical features associated with chronic lymphocytic leukemia (CLL) patients carrying stereotyped BCR subset #4 (IGHV4-34) among a prospective cohort of 462 CLL/MBL patients in early stage (Binet A). All subset #4 patients (n = 16) were characterized by the IGHV mutated gene configuration, and absence of unfavorable cytogenetic lesions, NOTCH1 or SF3B1 mutations. Gene and miRNA expression profiling evidenced that the leukemic cells of subset #4 cases showed significant downregulation of WDFY4, MF2A and upregulation of PDGFA, FGFR1 and TFEC gene transcripts, as well as the upregulation of miR-497 and miR-29c. The transfection of miR-497 mimic in primary leukemic CLL cells induced a downregulation of BCL2, a known validated target of this miRNA. Our data identify biological characteristics associated with subset #4 patients, providing further evidence for the putative role of BCR in shaping the features of the tumor cells in CLL. PMID:25860243

  6. Regulation of normal B-cell differentiation and malignant B-cell survival by OCT2.

    PubMed

    Hodson, Daniel J; Shaffer, Arthur L; Xiao, Wenming; Wright, George W; Schmitz, Roland; Phelan, James D; Yang, Yandan; Webster, Daniel E; Rui, Lixin; Kohlhammer, Holger; Nakagawa, Masao; Waldmann, Thomas A; Staudt, Louis M

    2016-04-01

    The requirement for the B-cell transcription factor OCT2 (octamer-binding protein 2, encoded by Pou2f2) in germinal center B cells has proved controversial. Here, we report that germinal center B cells are formed normally after depletion of OCT2 in a conditional knockout mouse, but their proliferation is reduced and in vivo differentiation to antibody-secreting plasma cells is blocked. This finding led us to examine the role of OCT2 in germinal center-derived lymphomas. shRNA knockdown showed that almost all diffuse large B-cell lymphoma (DLBCL) cell lines are addicted to the expression of OCT2 and its coactivator OCA-B. Genome-wide chromatin immunoprecipitation (ChIP) analysis and gene-expression profiling revealed the broad transcriptional program regulated by OCT2 that includes the expression of STAT3, IL-10, ELL2, XBP1, MYC, TERT, and ADA. Importantly, genetic alteration of OCT2 is not a requirement for cellular addiction in DLBCL. However, we detected amplifications of the POU2F2 locus in DLBCL tumor biopsies and a recurrent mutation of threonine 223 in the DNA-binding domain of OCT2. This neomorphic mutation subtly alters the DNA-binding preference of OCT2, leading to the transactivation of noncanonical target genes including HIF1a and FCRL3 Finally, by introducing mutations designed to disrupt the OCT2-OCA-B interface, we reveal a requirement for this protein-protein interface that ultimately might be exploited therapeutically. Our findings, combined with the predominantly B-cell-restricted expression of OCT2 and the absence of a systemic phenotype in our knockout mice, suggest that an OCT2-targeted therapeutic strategy would be efficacious in both major subtypes of DLBCL while avoiding systemic toxicity. PMID:26993806

  7. Genome-wide profiling identifies a DNA methylation signature that associates with TET2 mutations in diffuse large B-cell lymphoma.

    PubMed

    Asmar, Fazila; Punj, Vasu; Christensen, Jesper; Pedersen, Marianne T; Pedersen, Anja; Nielsen, Anders B; Hother, Christoffer; Ralfkiaer, Ulrik; Brown, Peter; Ralfkiaer, Elisabeth; Helin, Kristian; Grønbæk, Kirsten

    2013-12-01

    The discovery that the Ten-Eleven Translocation (TET) hydroxylases cause DNA demethylation has fundamentally changed the notion of how DNA methylation is regulated. Clonal analysis of the hematopoetic stem cell compartment suggests that TET2 mutations can be early events in hematologic cancers and recent investigations have shown TET2 mutations in diffuse large B-cell lymphoma. However, the detection rates and the types of TET2 mutations vary, and the relation to global methylation patterns has not been investigated. Here, we show TET2 mutations in 12 of 100 diffuse large B-cell lymphomas with 7% carrying loss-of-function and 5% carrying missense mutations. Genome-wide methylation profiling using 450K Illumina arrays identified 315 differentially methylated genes between TET2 mutated and TET2 wild-type cases. TET2 mutations are primarily associated with hypermethylation within CpG islands (70%; P<0.0001), and at CpG-rich promoters (60%; P<0.0001) of genes involved in hematopoietic differentiation and cellular development. Hypermethylated loci in TET2 mutated samples overlap with the bivalent (H3K27me3/H3K4me3) silencing mark in human embryonic stem cells (P=1.5×10(-30)). Surprisingly, gene expression profiling showed that only 11% of the hypermethylated genes were down-regulated, among which there were several genes previously suggested to be tumor suppressors. A meta-analysis suggested that the 35 hypermethylated and down-regulated genes are associated with the activated B-cell-like type of diffuse large B-cell lymphoma in other studies. In conclusion, our data suggest that TET2 mutations may cause aberrant methylation mainly of genes involved in hematopoietic development, which are silenced but poised for activation in human embryonic stem cells. PMID:23831920

  8. Identification of genes coding for B cell antigens of Mycoplasma mycoides subsp. mycoides Small Colony (MmmSC) by using phage display

    PubMed Central

    2009-01-01

    Background Contagious bovine pleuropneumonia (CBPP) is a mycoplasmal disease caused by Mycoplasma mycoides subsp. mycoides SC (MmmSC). Since the disease is a serious problem that can affect cattle production in parts of Africa, there is a need for an effective and economical vaccine. Identifying which of the causative agent's proteins trigger potentially protective immune responses is an important step towards developing a subunit vaccine. Accordingly, the purpose of this study was to determine whether phage display combined with bioinformatics could be used to narrow the search for genes that code for potentially immunogenic proteins of MmmSC. Since the production of IgG2 and IgA are associated with a Th1 cellular immune response which is implicated in protection against CBPP, antigens which elicit these immunoglobulin subclasses may be useful in developing a subunit vaccine. Results A filamentous phage library displaying a repertoire of peptides expressed by fragments of the genome of MmmSC was constructed. It was subjected to selection using antibodies from naturally- and experimentally-infected cattle. Mycoplasmal genes were identified by matching the nucleotide sequences of DNA from immunoselected phage particles with the mycoplasmal genome. This allowed a catalogue of genes coding for the proteins that elicited an immune response to be compiled. Using this method together with computer algorithms designed to score parameters that influence surface accessibility and hence potential antigenicity, five genes (abc, gapN, glpO, lppB and ptsG) were chosen to be expressed in Escherichia coli. After appropriate site-directed mutagenesis, polypeptides representing portions of each of these proteins were tested for immunoreactivity. Of these five, polypeptides representing expression products of abc and lppB were recognised on immunoblots by sera obtained from cattle during a natural outbreak of the disease. Conclusion Since phage display physically couples phenotype

  9. Isoniazid prevents Nrf2 translocation by inhibiting ERK1 phosphorylation and induces oxidative stress and apoptosis

    PubMed Central

    Verma, Ajeet Kumar; Yadav, Arti; Dewangan, Jayant; Singh, Sarvendra Vikram; Mishra, Manisha; Singh, Pradhyumna Kumar; Rath, Srikanta Kumar

    2015-01-01

    Isoniazid is used either alone or in combination with other drugs for the treatment of tuberculosis. It is also used for the prevention of tuberculosis. Chronic treatment of Isoniazid may cause severe liver damage leading to acute liver failure. The mechanism through which Isoniazid causes liver damage is investigated. Isoniazid treatment generates reactive oxygen species and induces apoptosis in Hep3B cells. It induces antioxidative and apoptotic genes leading to increase in mRNA expression and protein levels in Hep3B cells. Whole genome expression analysis of Hep3B cells treated with Isoniazid has resulted in differential expression of various genes playing prime role in regulation of apoptotic, antioxidative, DNA damage, cell signaling, cell proliferation and differentiation pathways. Isoniazid increased cytosolic Nrf2 protein level while decreased nuclear Nrf2 protein level. It also decreased ERK1 phosphorylation and treatment of Hep3B cells with ERK inhibitor followed by Isoniazid resulting in increased apoptosis in these cells. Two dimensional gel electrophoresis results have also shown differential expression of various protein species including heat shock proteins, proteins playing important role in oxidative stress, DNA damage, apoptosis, cell proliferation and differentiation. Results suggest that Isoniazid induces apoptosis through oxidative stress and also prevents Nrf2 translocation into the nucleus by reducing ERK1 phosphorylation thus preventing cytoprotective effect. PMID:26202867

  10. Polymorphisms in B Cell Co-Stimulatory Genes Are Associated with IgG Antibody Responses against Blood–Stage Proteins of Plasmodium vivax

    PubMed Central

    Cassiano, Gustavo C.; Furini, Adriana A. C.; Capobianco, Marcela P.; Storti-Melo, Luciane M.; Cunha, Maristela G.; Kano, Flora S.; Carvalho, Luzia H.; Soares, Irene S.; Santos, Sidney E.; Póvoa, Marinete M.; Machado, Ricardo L. D.

    2016-01-01

    The development of an effective immune response can help decrease mortality from malaria and its clinical symptoms. However, this mechanism is complex and has significant inter-individual variation, most likely owing to the genetic contribution of the human host. Therefore, this study aimed to investigate the influence of polymorphisms in genes involved in the costimulation of B-lymphocytes in the naturally acquired humoral immune response against proteins of the asexual stage of Plasmodium vivax. A total of 319 individuals living in an area of malaria transmission in the Brazilian Amazon were genotyped for four SNPs in the genes CD40, CD40L, BLYS and CD86. In addition, IgG antibodies against P. vivax apical membrane antigen 1 (PvAMA–1), Duffy binding protein (PvDBP) and merozoite surface protein 1 (PvMSP–119) were detected by ELISA. The SNP BLYS –871C>T was associated with the frequency of IgG responders to PvAMA–1 and PvMSP–119. The SNP CD40 –1C>T was associated with the IgG response against PvDBP, whereas IgG antibody titers against PvMSP–119 were influenced by the polymorphism CD86 +1057G>A. These data may help to elucidate the immunological aspects of vivax malaria and consequently assist in the design of malaria vaccines. PMID:26901523

  11. Polymorphisms in B Cell Co-Stimulatory Genes Are Associated with IgG Antibody Responses against Blood-Stage Proteins of Plasmodium vivax.

    PubMed

    Cassiano, Gustavo C; Furini, Adriana A C; Capobianco, Marcela P; Storti-Melo, Luciane M; Cunha, Maristela G; Kano, Flora S; Carvalho, Luzia H; Soares, Irene S; Santos, Sidney E; Póvoa, Marinete M; Machado, Ricardo L D

    2016-01-01

    The development of an effective immune response can help decrease mortality from malaria and its clinical symptoms. However, this mechanism is complex and has significant inter-individual variation, most likely owing to the genetic contribution of the human host. Therefore, this study aimed to investigate the influence of polymorphisms in genes involved in the costimulation of B-lymphocytes in the naturally acquired humoral immune response against proteins of the asexual stage of Plasmodium vivax. A total of 319 individuals living in an area of malaria transmission in the Brazilian Amazon were genotyped for four SNPs in the genes CD40, CD40L, BLYS and CD86. In addition, IgG antibodies against P. vivax apical membrane antigen 1 (PvAMA-1), Duffy binding protein (PvDBP) and merozoite surface protein 1 (PvMSP-119) were detected by ELISA. The SNP BLYS -871C>T was associated with the frequency of IgG responders to PvAMA-1 and PvMSP-119. The SNP CD40 -1C>T was associated with the IgG response against PvDBP, whereas IgG antibody titers against PvMSP-119 were influenced by the polymorphism CD86 +1057G>A. These data may help to elucidate the immunological aspects of vivax malaria and consequently assist in the design of malaria vaccines. PMID:26901523

  12. Genomic Comparison of Translocating and Non-Translocating Escherichia coli

    PubMed Central

    Bachmann, Nathan L.; Katouli, Mohammad; Polkinghorne, Adam

    2015-01-01

    Translocation of E. coli across the gut epithelium can result in fatal sepsis in post-surgical patients. In vitro and in vivo experiments have identified the existence of a novel pathotype of translocating E. coli (TEC) that employs an unknown mechanism for translocating across epithelial cells to the mesenteric lymph nodes and the blood stream in both humans and animal models. In this study the genomes of four TEC strains isolated from the mesenteric lymph nodes of a fatal case of hospitalised patient (HMLN-1), blood of pigs after experimental shock (PC-1) and after non-lethal haemorrhage in rats (KIC-1 and KIC-2) were sequenced in order to identify the genes associated with their adhesion and/or translocation. To facilitate the comparison, the genomes of a non-adhering, non-translocating E. coli (46–4) and adhering but non-translocating E. coli (73–89) were also sequenced and compared. Whole genome comparison revealed that three (HMLN-1, PC-1 and KIC-2) of the four TEC strains carried a genomic island that encodes a Type 6 Secretion System that may contribute to adhesion of the bacteria to gut epithelial cells. The human TEC strain HMLN-1 also carried the invasion ibeA gene, which was absent in the animal TEC strains and is likely to be associated with host-specific translocation. Phylogenetic analysis revealed that the four TEC strains were distributed amongst three distinct E. coli phylogroups, which was supported by the presence of phylogroup specific fimbriae gene clusters. The genomic comparison has identified potential genes that can be targeted with knock-out experiments to further characterise the mechanisms of E. coli translocation. PMID:26317913

  13. A homozygous balanced reciprocal translocation suggests LINC00237 as a candidate gene for MOMO (macrosomia, obesity, macrocephaly, and ocular abnormalities) syndrome.

    PubMed

    Vu, Phi Yen; Toutain, Jérôme; Cappellen, David; Delrue, Marie-Ange; Daoud, Hussein; El Moneim, Azza Abd; Barat, Pascal; Montaubin, Orianne; Bonnet, Françoise; Dai, Zong Qi; Philippe, Christophe; Tran, Cong Toai; Rooryck, Caroline; Arveiler, Benoît; Saura, Robert; Briault, Sylvain; Lacombe, Didier; Taine, Laurence

    2012-11-01

    Macrosomia, obesity, macrocephaly, and ocular abnormalities syndrome (MOMO syndrome) has been reported in only four patients to date. In these sporadic cases, no chromosomal or molecular abnormality has been identified thus far. Here, we report on the clinical, cytogenetic, and molecular findings in a child of healthy consanguineous parents suffering from MOMO syndrome. Conventional karyotyping revealed an inherited homozygous balanced reciprocal translocation (16;20)(q21;p11.2). Uniparental disomy testing showed bi-parental inheritance for both derivative chromosomes 16 and 20. The patient's oligonucleotide array-comparative genomic hybridization profile revealed no abnormality. From the homozygous balanced reciprocal translocation (16;20)(q21;p11.2), a positional cloning strategy, designed to narrow 16q21 and 20p11.2 breakpoints, revealed the disruption of a novel gene located at 20p11.23. This gene is now named LINC00237, according to the HUGO (Human Genome Organization) nomenclature. The gene apparently leads to the production of a non-coding RNA. We established that LINC00237 was expressed in lymphocytes of control individuals while normal transcripts were absent in lymphocytes of our MOMO patient. LINC00237 was not ubiquitously expressed in control tissues, but it was notably highly expressed in the brain. Our results suggested autosomal recessive inheritance of MOMO syndrome. LINC00237 could play a role in the pathogenesis of this syndrome and could provide new insights into hyperphagia-related obesity and intellectual disability. PMID:23034868

  14. Specific translocations characterize Burkitt's-like lymphoma of homosexual men with the acquired immunodeficiency syndrome.

    PubMed

    Chaganti, R S; Jhanwar, S C; Koziner, B; Arlin, Z; Mertelsmann, R; Clarkson, B D

    1983-06-01

    A Burkitt's-like B-cell lymphoma (BLL) has recently been shown to be associated with the acquired immunodeficiency syndrome (AIDS), which affects homosexual men. We report cytogenetic studies of two BLL tumors in homosexual men. Both tumors had chromosome translocations characteristic of Burkitt's lymphoma (BL), one the t(8;14) and the other the t(8;22). The pathway of lymphomagenesis in this disorder is discussed in the light of recent data on chromosome change and localization of immunoglobulin genes and oncogenes. PMID:6839024

  15. Activation-induced necroptosis contributes to B-cell lymphopenia in active systemic lupus erythematosus

    PubMed Central

    Fan, H; Liu, F; Dong, G; Ren, D; Xu, Y; Dou, J; Wang, T; Sun, L; Hou, Y

    2014-01-01

    B-cell abnormality including excessive activation and lymphopenia is a central feature of systemic lupus erythematosus (SLE). Although activation threshold, auto-reaction and death of B cells can be affected by intrinsical and/or external signaling, the underlying mechanisms are unclear. Herein, we demonstrate that co-activation of Toll-like receptor 7 (TLR7) and B-cell receptor (BCR) pathways is a core event for the survival/dead states of B cells in SLE. We found that the mortalities of CD19+CD27- and CD19+IgM+ B-cell subsets were increased in the peripheral blood mononuclear cells (PBMCs) of SLE patients. The gene microarray analysis of CD19+ B cells from active SLE patients showed that the differentially expressed genes were closely correlated to TLR7, BCR, apoptosis, necroptosis and immune pathways. We also found that co-activation of TLR7 and BCR could trigger normal B cells to take on SLE-like B-cell characters including the elevated viability, activation and proliferation in the first 3 days and necroptosis in the later days. Moreover, the necroptotic B cells exhibited mitochondrial dysfunction and hypoxia, along with the elevated expression of necroptosis-related genes, consistent with that in both SLE B-cell microarray and real-time PCR verification. Expectedly, pretreatment with the receptor-interacting protein kinase 1 (RIPK1) inhibitor Necrostatin-1, and not the apoptosis inhibitor zVAD, suppressed B-cell death. Importantly, B cells from additional SLE patients also significantly displayed high expression levels of necroptosis-related genes compared with those from healthy donors. These data indicate that co-activation of TLR7 and BCR pathways can promote B cells to hyperactivation and ultimately necroptosis. Our finding provides a new explanation on B-cell lymphopenia in active SLE patients. These data suggest that extrinsic factors may increase the intrinsical abnormality of B cells in SLE patients. PMID:25210799

  16. BTK Signaling in B Cell Differentiation and Autoimmunity.

    PubMed

    Corneth, Odilia B J; Klein Wolterink, Roel G J; Hendriks, Rudi W

    2016-01-01

    Since the original identification of Bruton's tyrosine kinase (BTK) as the gene defective in the primary immunodeficiency X-linked agammaglobulinemia (XLA) in 1993, our knowledge on the physiological function of BTK has expanded impressively. In this review, we focus on the role of BTK during B cell differentiation in vivo, both in the regulation of expansion and in the developmental progression of pre-B cells in the bone marrow and as a crucial signal transducer of signals downstream of the IgM or IgG B cell antigen receptor (BCR) in mature B cells governing proliferation, survival, and differentiation. In particular, we highlight BTK function in B cells in the context of host defense and autoimmunity. Small-molecule inhibitors of BTK have very recently shown impressive anti-tumor activity in clinical studies in patients with various B cell malignancies. Since promising effects of BTK inhibition were also seen in experimental animal models for lupus and rheumatoid arthritis, BTK may be a good target for controlling autoreactive B cells in patients with systemic autoimmune disease. PMID:26341110

  17. Fc Receptor-Like Proteins in Pathophysiology of B-cell Disorder

    PubMed Central

    Capone, Mollie; Bryant, John Matthew; Sutkowski, Natalie; Haque, Azizul

    2016-01-01

    Members of the family of Fc receptor-like (FcRL) proteins, homologous to FcγRI, have been identified by multiple research groups. Consequently, they have been described using multiple nomenclatures including Fc receptor homologs (FcRH), immunoglobulin superfamily receptor translocation-associated genes (IRTA), immunoglobulin-Fc-gp42-related genes (IFGP), Src homology 2 domain-containing phosphatase anchor proteins (SPAP), and B cell cross-linked by anti-immunoglobulin M-activating sequences (BXMAS). They are now referred to under a unified nomenclature as FCRL. Eight different human FCRL genes have been identified, all of which appear to be related to the genes of the immunoglobulin superfamily (IgSF) of cellular adhesion molecules. These type 1 transmembrane glycoproteins are composed of different combinations of 5 types of immunoglobulin-like domains, with each protein consisting of 3 to 9 domains, and no individual domain type conserved throughout all of the FCRL proteins. Ligands for the majority of the FCRLs remain unknown. In general, FCRL expression is restricted to lymphocytes and is primarily expressed in B-lymphocytes, supporting FCRL’s involvement in a variety of immune disorders. Most FCRLs functionally repress B-cell activation; however, they might have dual roles in lymphocyte functions as these proteins often possess immunoreceptor tyrosine activation (ITAM) and inhibitory (ITIM) motif elements. The biological functions of these newly recognized FCRL proteins are just beginning to emerge, and might provide the insight necessary for understanding pathophysiology of lymphocyte disorders and treating different immune diseases. PMID:27446638

  18. IgVH genes mutation and usage, ZAP-70 and CD38 expression provide new insights on B-cell prolymphocytic leukemia (B-PLL).

    PubMed

    Del Giudice, I; Davis, Z; Matutes, E; Osuji, N; Parry-Jones, N; Morilla, A; Brito-Babapulle, V; Oscier, D; Catovsky, D

    2006-07-01

    B-prolymphocytic leukemia (B-PLL) is a rare disease with poor prognosis. To further characterize the biological features of this disease, we analyzed immunoglobulin heavy chain (IgVH) mutations, ZAP-70 and CD38 in 19 cases with de novo B-PLL. Immunoglobulin heavy chain genes analysis showed an unmutated pattern (>98% homology to germ line) in 9/17 cases (53%), with 100% homology in eight. In the remaining, it ranged from 90 to 97.4%, with three cases slightly mutated (98-95%) and five heavily mutated (<95%). All B-PLL utilized members of VH3 (11/17) and VH4 (6/17) families, with V3-23, V4-59 and V4-34 gene accounting for more than half of them, regardless of mutational status. ZAP-70, assessed by flow cytometry, ranged from 1 to 91% cells, being > or =20% in 57% of cases. CD38 ranged from 1 to 99% (median 21%). There was no correlation between IgVH status and ZAP-70 or CD38 expression, but male gender and del(17p) were more common in the unmutated group. Neither IgVH mutations, CD38 expression nor del(17p) influenced patients' outcome. Unexpectedly, ZAP-70+ B-PLL patients survived longer (40 months) than ZAP-70- B-PLL (8 months). B-PLL appears biologically heterogeneous regarding IgVH mutations, ZAP-70 and CD38 expression, showing a pattern distinct from that of other lymphoproliferative disorders. PMID:16642047

  19. Dysfunctional B-cell activation in cirrhosis due to hepatitis C infection associated with disappearance of CD27+ B-cell population

    PubMed Central

    Doi, Hiroyoshi; Iyer, Tara K.; Carpenter, Erica; Li, Hong; Chang, Kyong-Mi; Vonderheide, Robert H.; Kaplan, David E.

    2011-01-01

    Background Chronic hepatitis C virus infection is a leading cause of cirrhosis and hepatocellular carcinoma. Both advanced solid tumors and hepatitis C have previously been associated with memory B-cell dysfunction. In this study we sought to dissect the impact of viral infection, cirrhosis and liver cancer on memory B-cell frequency and function in the spectrum of HCV disease. Methods Peripheral blood from healthy donors, HCV-infected patients with F1–F2 liver fibrosis, HCV-infected patients with cirrhosis, patients with HCV-related hepatocellular carcinoma and non-HCV-infected cirrhotics were assessed for B-cell phenotype by flow cytometry. Isolated B-cells were stimulated with anti-CD40 antibodies and TLR9 agonist for assessment of costimulation marker expression, cytokine production, immunoglobulin production and CD4+ T-cell allostimulatory capacity. Results CD27+ memory B-cells, and more specifically CD27+IgM+ B-cells, were markedly less frequent in cirrhotic patients independent of HCV infection. Circulating B-cells in cirrhotics were hyporesponsive to CD40/TLR9 activation as characterized by CD70 upregulation, TNFβ secretion, IgG production and T-cell allostimulation. Lastly, blockade of TLR4 and TLR9 signaling abrogated the activation of normal donor B-cells by cirrhotic plasma suggesting a role for bacterial translocation in driving B-cell changes in cirrhosis. Conclusion Profound abnormalities in B-cell phenotype and function occur in cirrhosis independent of hepatitis C viral infection. These B-cell defects may explain in part the vaccine hyporesponsiveness and susceptibility to bacterial infection in this population. PMID:21932384

  20. Downregulation of FOXP1 is required during germinal center B-cell function

    PubMed Central

    Sagardoy, Ainara; Martinez-Ferrandis, Jose I.; Roa, Sergio; Bunting, Karen L.; Aznar, María Angela; Elemento, Olivier; Shaknovich, Rita; Fontán, Lorena; Fresquet, Vicente; Perez-Roger, Ignacio; Robles, Eloy F.; De Smedt, Linde; Sagaert, Xavier

    2013-01-01

    B-cell maturation and germinal center (GC) formation are dependent on the interplay between BCL6 and other transcriptional regulators. FOXP1 is a transcription factor that regulates early B-cell development, but whether it plays a role in mature B cells is unknown. Analysis of human tonsillar B-cell subpopulations revealed that FOXP1 shows the opposite expression pattern to BCL6, suggesting that FOXP1 regulates the transition from resting follicular B cell to activated GC B cell. Chromatin immunoprecipitation-on-chip and gene expression assays on B cells indicated that FOXP1 acts as a transcriptional activator and repressor of genes involved in the GC reaction, half of which are also BCL6 targets. To study FOXP1 function in vivo, we developed transgenic mice expressing human FOXP1 in lymphoid cells. These mice exhibited irregular formation of splenic GCs, showing a modest increase in naïve and marginal-zone B cells and a significant decrease in GC B cells. Furthermore, aberrant expression of FOXP1 impaired transcription of noncoding γ1 germline transcripts and inhibited efficient class switching to the immunoglobulin G1 isotype. These studies show that FOXP1 is physiologically downregulated in GC B cells and that aberrant expression of FOXP1 impairs mechanisms triggered by B-cell activation, potentially contributing to B-cell lymphomagenesis. PMID:23580662

  1. Chemokine-mediated B cell trafficking during early rabbit GALT development

    PubMed Central

    Zhai, Shi-Kang; Volgina, Veronica V.; Sethupathi, Periannan; Knight, Katherine L.; Lanning, Dennis K.

    2014-01-01

    Microbial and host cell interactions stimulate rabbit B cells to diversify the primary antibody repertoire in gut-associated lymphoid tissues (GALT). B cells at the base of appendix follicles begin proliferating and diversifying their V-(D)-J genes around 1 week of age, ∼5 days after B cells first begin entering appendix follicles, To gain insight into the microbial and host cell interactions that stimulate B cells to diversify the primary antibody repertoire, we analyzed B cell trafficking within follicles during the first week of life. We visualized B cells, as well as chemokines that mediate B cell homing in lymphoid tissues, by in situ hybridization, and examined B cell chemokine receptor expression by flow cytometry. We found that B cells were activated, and began downregulating their BCRs, well before a detectable B cell proliferative region appeared at the follicle base. The proliferative region was similar to germinal center dark zones, in that it exhibited elevated CXCL12 mRNA expression, and B cells that upregulated CXCR4 mRNA in response to signals acquired from select intestinal commensals localized in this region. Our results suggest that, after entering appendix follicles, B cells home sequentially to the FAE, the FDC network, the B cell:T cell boundary and, ultimately, the base of the follicle, where they enter a proliferative program and diversify the primary antibody repertoire. PMID:25385821

  2. Establishment of a human cell line (SKI-DLCL-1) with a t(1;14)(q21;q32) translocation from the ascites of a patient with diffuse large cell lymphoma.

    PubMed

    Goy, A; Gilles, F; Remache, Y; Filippa, D; Portlock, C S; Jhanwar, S C; Zelenetz, A D

    2001-01-01

    Cytogenetic abnormalities at chromosome 1q21 are among the most common second genetic events observed in Non-Hodgkin's Lymphomas and have prognostic significance. Recently, BCL9 has been cloned from a pre-B-cell lymphoblastic leukemia cell line, which carried a t(1:14)(q21;q32). However, among a panel of 39 B-cell malignancies with 1q21 translocation, only two cases showed rearrangement for the BCL9 gene. We report the establishment of a new lymphoma cell line from a patient with relapsed diffuse large cell lymphoma. This cell line SKI-DLCL-1 showed cell surface antigens identical to the original tumor and demonstrated the profile of a mature B-cell phenotype: CD19 and CD20 positive, CD5 and C10 negative. It carried a t(1;14)(q21;q32) translocation identical to the original tumor. Although the clinical presentation was an isolated effusion lymphoma, studies for HIV-1, HHV8 and EBV were all negative. Southern blot analysis demonstrated that BCL9 was not rearranged in the SKI-DLCL-1 cell line. In addition, the BCL9 gene was not over-expressed in SKI-DLCL-1 cell line. The identification of a new locus at 1q21 will help clarify the pathogenesis of B-cell malignancies with a translocation involving this locus. PMID:11426565

  3. The human fetal lymphocyte lineage: identification by CD27 and LIN28B expression in B cell progenitors

    PubMed Central

    McWilliams, Laurie; Su, Kuei-Ying; Liang, Xiaoe; Liao, Dongmei; Floyd, Serina; Amos, Joshua; Moody, M. Anthony; Kelsoe, Garnett; Kuraoka, Masayuki

    2013-01-01

    CD27, a member of the TNFR superfamily, is used to identify human memory B cells. Nonetheless, CD27+ B cells are present in patients with HIGM1 syndrome who are unable to generate GCs or memory B cells. CD27+IgD+ fetal B cells are present in umbilical cord blood, and CD27 may also be a marker of the human B1-like B cells. To define the origin of naïve CD27+IgD+ human B cells, we studied B cell development in both fetal and adult tissues. In human FL, most CD19+ cells coexpressed CD10, a marker of human developing B cells. Some CD19+CD10+ B cells expressed CD27, and these fetal CD27+ cells were present in the pro-B, pre-B, and immature/transitional B cell compartments. Lower frequencies of phenotypically identical cells were also identified in adult BM. CD27+ pro-B, pre-B, and immature/transitional B cells expressed recombination activating gene-1, terminal deoxynucleotidyl transferase and Vpre-B mRNA comparably to their CD27− counterparts. CD27+ and CD27− developing B cells showed similar Ig heavy chain gene usage with low levels of mutations, suggesting that CD27+ developing B cells are distinct from mutated memory B cells. Despite these similarities, CD27+ developing B cells differed from CD27− developing B cells by their increased expression of LIN28B, a transcription factor associated with the fetal lymphoid lineages of mice. Furthermore, CD27+ pro-B cells efficiently generated IgM+IgD+ immature/transitional B cells in vitro. Our observations suggest that CD27 expression during B cell development identifies a physiologic state or lineage for human B cell development distinct from the memory B cell compartment. PMID:23901121

  4. MYC protein expression is associated with poor prognosis in primary diffuse large B-cell lymphoma of the central nervous system.

    PubMed

    Tapia, Gustavo; Baptista, Maria-Joao; Muñoz-Marmol, Ana-Maria; Gaafar, Ayman; Puente-Pomposo, Maria; Garcia, Olga; Marginet-Flinch, Ruth; Sanz, Carolina; Navarro, Jose-Tomas; Sancho, Juan-Manuel; Ribera, Josep-Maria; Ariza, Aurelio; Mate, Jose-Luis

    2015-07-01

    MYC and BCL2 gene translocations and protein expression have recently demonstrated to be of prognostic significance in systemic diffuse large B-cell lymphoma (DLBCL). However, their role in primary central nervous system DLBCL (CNS-DLBCL) prognosis has been scarcely analyzed. We studied the immunophenotype, the status of the MYC, BCL2, and BCL6 genes and the clinical features of a series of 42 CNS-DLBCL and evaluated their prognostic significance. We found high MYC protein expression in 43% of cases, and this was associated with lower overall survival (OS). Cases with concurrent expression of MYC and BCL2 showed a lower OS, although the difference did not reach statistical significance. Translocations involving the MYC or BCL2 genes were not detected. The BCL6 gene was frequently translocated, but was unrelated to survival. We conclude that MYC protein expression detected by immunohistochemistry identifies a CNS-DLBCL subset with worse prognosis and may contribute to a more accurate risk stratification of CNS-DLBCL patients. PMID:26010683

  5. PAX5 promotes pre-B cell proliferation by regulating the expression of pre-B cell receptor and its downstream signaling.

    PubMed

    Xue, Kai; Song, Jiazhe; Yang, Yan; Li, Zhi; Wu, Chunhua; Jin, Jinhua; Li, Wenzhe

    2016-05-01

    PAX5 is indispensable for the commitment of early lymphoid progenitors to the B cell lineage as well as for the development of B cells. Although previous studies have indicated that the Pax5-conditional-knockout mouse exhibited dedifferentiation of mature B cell and the development of aggressive lymphomas, the changes of Pax5 gene expressions in pre-B cells have not been analyzed. To understand the functional importance of Pax5 gene in the proliferation and survival of pre-B cells, we established a Pax5-knockdown model using 70Z/3 pre-B cell line. Pax5 knockdown 70Z/3 cells (70Z/3-KD cells) showed down-regulations of pre-BCR compounds such as CD19, BLNK, Id2 and λ5. The signaling via pre-BCRs was significantly diminished in the 70Z/3-KD cells, and this alteration was normalized by restored Pax5 gene expression. Loss of PAX5 reduced the growth rates in the 70Z/3-KD cells, compared to the mock cells. Meanwhile, the proliferation of pre-B cells was reduced by the knockdown of Pax5 gene. Moreover, further examinations showed that PAX5 was also activated in B cell acute lymphoblastic leukemia (B-ALL) as a cell proliferation enhancer. These findings suggested that pax5 is critically important for the proliferation and survival of pre-B cells. PMID:27016671

  6. [Investigation of Protein Translocation Sec-System with Heterologous Gene Expression in Shewanella oneidensis MR-1 Bacterium Cells].

    PubMed

    Mordkovich, N N; Okorokova, N A; Veiko, V P

    2015-01-01

    A comparison of the primary structures of the protein translocation Sec-system proteins in the Shewanella oneidensis MR-1 and Escherichia coli bacteria was carried out. The process of translocation of recombinant pro-enteroxins (SEB and SEH) from Staphylococcus aureus and pro-streptavidin (SAV) from Streptomyces avidinii in the S. oneidensis MR-1 and E. coli cell periplasm was studied. It was demonstrated that these marker proteins are transferred into the periplasmic space of the S. oneidensis MR-1 transformant strain cells. The identity of N-terminal amino acid sequences of mature recombinant SEB, SEH, and SAV proteins (generated during post-translation proteolysis of leader peptide by the Sec-system both in E. coli and S. oneidensis MR-1) was established. PMID:26204774

  7. Robertsonian translocations

    SciTech Connect

    1993-12-31

    Chapter 27, describes the occurrence of Robertsonian translocations (RTs), which refer to the recombination of whole chromosome arms, in both monocentric and dicentric chromosomes. The nonrandom participation of acrocentric chromosomes in RTs is documented by various methods, including unbiased ascertainment and ascertainment through trisomy, infertility, unspecified mental retardation, and Prader-Willi syndrome. Causes of nonrandom participation of chromosomes in RTs is presented, as are the following topics: segregation in carriers of RTs and segregation in sperm cells of RT carriers, interchromosomal effects and conclusions. 48 refs., 3 figs., 2 tabs.

  8. Transcription of the Tollip gene is elevated in intestinal epithelial cells through impaired O-GlcNAcylation-dependent nuclear translocation of the negative regulator Elf-1

    SciTech Connect

    Sugi, Yutaka; Takahashi, Kyoko; Nakano, Kou; Hosono, Akira; Kaminogawa, Shuichi

    2011-09-09

    Highlights: {yields} Transcriptional activation of the Tollitip gene is higher in IECs than in monocytes. {yields} Nt -194/-186 region acts as a cis-element and is recognized by Elf-1. {yields} Elf-1 suppresses Tollip gene transcription in monocytes but not in IECs. {yields} O-GlcNAc modification is necessary for nuclear translocation of Elf-1. {yields} O-GlcNAcylation-dependent nuclear translocation of Elf-1 is impaired in IECs. -- Abstract: Intestinal epithelial cells (IECs) must be tolerant of the large number of commensal bacteria inhabiting the intestinal tract to avoid excessive inflammatory reactions. Toll-interacting protein (Tollip), a negative regulator of Toll-like receptor signaling, is known to be expressed at high levels in IECs, and to thereby contribute to the hyporesponsiveness of IECs to commensals. In this study, we analyzed the underlying mechanisms for elevated transcription of the Tollip gene in IECs using a human IEC line, Caco-2, and a human monocyte line, THP-1, as a control. Elf-1 was identified as a transcription factor that negatively regulates Tollip gene expression. The transcription factor Elf-1 was localized in the nucleus by O-linked N-acetylglucosamine (O-GlcNAc) modification, whereas the unmodified form was detected only in the cytoplasm. Comparison of Caco-2 and THP-1 cells revealed that O-GlcNAc modification of Elf-1 was significantly lower in IECs than in monocytes. Collectively, the results indicate that insufficient O-GlcNAc modification prevents Elf-1-mediated transcriptional repression and thereby upregulates Tollip gene expression in IECs.

  9. Association of germline genetic variants in RFC, IL15 and VDR genes with minimal residual disease in pediatric B-cell precursor ALL.

    PubMed

    Dawidowska, Małgorzata; Kosmalska, Maria; Sędek, Łukasz; Szczepankiewicz, Aleksandra; Twardoch, Magdalena; Sonsala, Alicja; Szarzyńska-Zawadzka, Bronisława; Derwich, Katarzyna; Lejman, Monika; Pawelec, Katarzyna; Obitko-Płudowska, Agnieszka; Pawińska-Wąsikowska, Katarzyna; Kwiecińska, Kinga; Kołtan, Andrzej; Dyla, Agnieszka; Grzeszczak, Władysław; Kowalczyk, Jerzy R; Szczepański, Tomasz; Ziętkiewicz, Ewa; Witt, Michał

    2016-01-01

    Minimal residual disease (MRD) enables reliable assessment of risk in acute lymphoblastic leukemia (ALL). However, little is known on association between MRD status and germline genetic variation. We examined 159 Caucasian (Slavic) patients with pediatric ALL, treated according to ALL-IC-BFM 2002/2009 protocols, in search for association between 23 germline polymorphisms and MRD status at day 15, day 33 and week 12, with adjustment for MRD-associated clinical covariates. Three variants were significantly associated with MRD: rs1544410 in VDR (MRD-day15); rs1051266 in RFC (MRD-day33, MRD-week12), independently and in an additive effect with rs10519613 in IL15 (MRD-day33). The risk alleles for MRD-positivity were: A allele of VDR (OR = 2.37, 95%CI = 1.07-5.21, P = 0.03, MRD-day15); A of RFC (OR = 1.93, 95%CI = 1.05-3.52, P = 0.03, MRD-day33 and MRD-week12, P < 0.01); A of IL15 (OR = 2.30, 95%CI = 1.02-5.18, P = 0.04, MRD-day33). The risk for MRD-day33-positive status was higher in patients with risk alleles in both RFC and IL15 loci than in patients with risk alleles in one locus or no risk alleles: 2 vs. 1 (OR = 3.94, 95% CI = 1.28-12.11, P = 0.024), 2 vs. 0 (OR = 6.75, 95% CI = 1.61-28.39, P = 0.012). Germline variation in genes related to pharmacokinetics/pharmacodynamics of anti-leukemic drugs and to anti-tumor immunity of the host is associated with MRD status and might help improve risk assessment in ALL. PMID:27427275

  10. Association of germline genetic variants in RFC, IL15 and VDR genes with minimal residual disease in pediatric B-cell precursor ALL

    PubMed Central

    Dawidowska, Małgorzata; Kosmalska, Maria; Sędek, Łukasz; Szczepankiewicz, Aleksandra; Twardoch, Magdalena; Sonsala, Alicja; Szarzyńska-Zawadzka, Bronisława; Derwich, Katarzyna; Lejman, Monika; Pawelec, Katarzyna; Obitko-Płudowska, Agnieszka; Pawińska-Wąsikowska, Katarzyna; Kwiecińska, Kinga; Kołtan, Andrzej; Dyla, Agnieszka; Grzeszczak, Władysław; Kowalczyk, Jerzy R.; Szczepański, Tomasz; Ziętkiewicz, Ewa; Witt, Michał

    2016-01-01

    Minimal residual disease (MRD) enables reliable assessment of risk in acute lymphoblastic leukemia (ALL). However, little is known on association between MRD status and germline genetic variation. We examined 159 Caucasian (Slavic) patients with pediatric ALL, treated according to ALL-IC-BFM 2002/2009 protocols, in search for association between 23 germline polymorphisms and MRD status at day 15, day 33 and week 12, with adjustment for MRD-associated clinical covariates. Three variants were significantly associated with MRD: rs1544410 in VDR (MRD-day15); rs1051266 in RFC (MRD-day33, MRD-week12), independently and in an additive effect with rs10519613 in IL15 (MRD-day33). The risk alleles for MRD-positivity were: A allele of VDR (OR = 2.37, 95%CI = 1.07–5.21, P = 0.03, MRD-day15); A of RFC (OR = 1.93, 95%CI = 1.05–3.52, P = 0.03, MRD-day33 and MRD-week12, P < 0.01); A of IL15 (OR = 2.30, 95%CI = 1.02–5.18, P = 0.04, MRD-day33). The risk for MRD-day33-positive status was higher in patients with risk alleles in both RFC and IL15 loci than in patients with risk alleles in one locus or no risk alleles: 2 vs. 1 (OR = 3.94, 95% CI = 1.28–12.11, P = 0.024), 2 vs. 0 (OR = 6.75, 95% CI = 1.61–28.39, P = 0.012). Germline variation in genes related to pharmacokinetics/pharmacodynamics of anti-leukemic drugs and to anti-tumor immunity of the host is associated with MRD status and might help improve risk assessment in ALL. PMID:27427275

  11. Monoclonal B-Cell Lymphocytosis

    PubMed Central

    D’Arena, G.; Musto, P.

    2014-01-01

    Monoclonal B-cell lymphocytosis (MBL) is an asymptomatic hematologic condition defined by the presence of a small (<5 x 109/L) clonal B-cell population in the peripheral blood in the absence of lymph-node enlargement, cytopenias or autoimmune diseases. It is found in approximately 3-12% of normal persons depending on the accuracy of analytical techniques applied. According to the immunophenotypic profile of clonal B-cells, the majority of MBL cases (75%) are classified as chronic lymphocytic leukemia (CLL)-like. This form may progress into CLL at a rate of 1–2% per year. It is thought that CLL is always preceded by MBL. The remaining MBL cases are defined as atypical CLL-like (CD5+/CD20bright) and CD5- MBL. The MBL clone size is quite heterogenous. Accordingly, two forms of MBL are identified: i) high-count, or ‘clinical’ MBL, in which an evidence of lymphocytosis (<5 x 109/L clonal B-cells) is seen, and ii) a low-count MBL, in which a normal leukocyte count is found and that is identified only in population-screening studies. Both forms of MBL may carry the cytogenetic abnormalities that are the hallmark of CLL, including 13q-, 17p- and trisomy 12. Consistent with the indolent phenotype of this condition, genetic lesions, such as TP53, ATM, NOTCH1 and SF3B1 mutations, usually associated with high-risk CLL, are rarely seen. Overall, no prognostic indicator of evolution of MBL to overt CLL has been found at present time. However, taking into account this possibility, a clinical and lab monitoring (at least annually), is recommended. PMID:24779000

  12. HIV-associated memory B cell perturbations

    PubMed Central

    Hu, Zhiliang; Luo, Zhenwu; Wan, Zhuang; Wu, Hao; Li, Wei; Zhang, Tong; Jiang, Wei

    2015-01-01

    Memory B-cell depletion, hyperimmunoglobulinemia, and impaired vaccine responses are the hallmark of B cell perturbations inhuman immunodeficiency virus (HIV) disease. Although B cells are not the targets for HIV infection, there is evidence for B cell, especially memory B cell dysfunction in HIV disease mediated by other cells or HIV itself. This review will focus on HIV-associated phenotypic and functional alterations in memory B cells. Additionally, we will discuss the mechanism underlying these perturbations and the effect of anti-retroviral therapy (ART) on these perturbations. PMID:25887082

  13. MSH6- or PMS2-deficiency causes re-replication in DT40 B cells, but it has little effect on immunoglobulin gene conversion or on repair of AID-generated uracils

    PubMed Central

    Campo, Vanina A.; Patenaude, Anne-Marie; Kaden, Svenja; Horb, Lori; Firka, Daniel; Jiricny, Josef; Di Noia, Javier M.

    2013-01-01

    The mammalian antibody repertoire is shaped by somatic hypermutation (SHM) and class switch recombination (CSR) of the immunoglobulin (Ig) loci of B lymphocytes. SHM and CSR are triggered by non-canonical, error-prone processing of G/U mismatches generated by activation-induced deaminase (AID). In birds, AID does not trigger SHM, but it triggers Ig gene conversion (GC), a ‘homeologous’ recombination process involving the Ig variable region and proximal pseudogenes. Because recombination fidelity is controlled by the mismatch repair (MMR) system, we investigated whether MMR affects GC in the chicken B cell line DT40. We show here that Msh6−/− and Pms2−/− DT40 cells display cell cycle defects, including genomic re-replication. However, although IgVλ GC tracts in MMR-deficient cells were slightly longer than in normal cells, Ig GC frequency, donor choice or the number of mutations per sequence remained unaltered. The finding that the avian MMR system, unlike that of mammals, does not seem to contribute towards the processing of G/U mismatches in vitro could explain why MMR is unable to initiate Ig GC in this species, despite initiating SHM and CSR in mammalian cells. Moreover, as MMR does not counteract or govern Ig GC, we report a rare example of ‘homeologous’ recombination insensitive to MMR. PMID:23314153

  14. Light-Activated Nuclear Translocation of Adeno-Associated Virus Nanoparticles Using Phytochrome B for Enhanced, Tunable, and Spatially Programmable Gene Delivery.

    PubMed

    Gomez, Eric J; Gerhardt, Karl; Judd, Justin; Tabor, Jeffrey J; Suh, Junghae

    2016-01-26

    Gene delivery vectors that are activated by external stimuli may allow improved control over the location and the degree of gene expression in target populations of cells. Light is an attractive stimulus because it does not cross-react with cellular signaling networks, has negligible toxicity, is noninvasive, and can be applied in space and time with unparalleled precision. We used the previously engineered red (R)/far-red (FR) light-switchable protein phytochrome B (PhyB) and its R light dependent interaction partner phytochrome interacting factor 6 (PIF6) from Arabidopsis thaliana to engineer an adeno-associated virus (AAV) platform whose gene delivery efficiency is controlled by light. Upon exposure to R light, AAV engineered to display PIF6 motifs on the capsid bind to PhyB tagged with a nuclear localization sequence (NLS), resulting in significantly increased translocation of viruses into the host cell nucleus and overall gene delivery efficiency. By modulating the ratio of R to FR light, the gene delivery efficiency can be tuned to as little as 35% or over 600% of the unengineered AAV. We also demonstrate spatial control of gene delivery using projected patterns of codelivered R and FR light. Overall, our successful use of light-switchable proteins in virus capsid engineering extends these important optogenetic tools into the adjacent realm of nucleic acid delivery and enables enhanced, tunable, and spatially controllable regulation of viral gene delivery. Our current light-triggered viral gene delivery prototype may be broadly useful for genetic manipulation of cells ex vivo or in vivo in transgenic model organisms, with the ultimate prospect of achieving dose- and site-specific gene expression profiles for either therapeutic (e.g., regenerative medicine) or fundamental discovery research efforts. PMID:26618393

  15. A giant novel gene undergoing extensive alternative splicing is severed by a Cornelia de Lange-associated translocation breakpoint at 3q26.3

    PubMed Central

    Tonkin, Emma T.; Smith, Melanie; Eichhorn, Piet; Jones, Sandie; Imamwerdi, Burhan; Lindsay, Susan; Jackson, Mike; Wang, Tzu-Jou; Ireland, Maggie; Burn, John; Krantz, Ian D.; Carr, Philippa

    2016-01-01

    Cornelia de Lange syndrome (CdLS) is a rare developmental malformation syndrome characterised by mental handicap, growth retardation, distinctive facial features and limb reduction defects. The vast majority of CdLS cases are sporadic. We carried out a high density bacterial artificial chromosome (BAC) microarray comparative genome hybridisation screen but no evidence was found for a consistent pattern of microdeletion/micro-duplication. As an alternative, we focused on identifying chromosomal regions spanning associated translocation breakpoints. We prioritised the distal 3q region because of the occurrence, in a classical CdLS patient, of a de novo balanced translocation with a breakpoint at 3q26.3 and of reports of phenotypic overlap between cases of mild CdLS and individuals trisomic for the 3q26-q27 region. We show that the 3q26.3 breakpoint severs a previously uncharacterised giant gene, NAALADL2, containing at least 32 exons spanning 1.37 Mb. Northern blot analysis identified up to six different transcripts in the 1–10 kb range with strongest expression in kidney and placenta; embryonic expression was largely confined to duodenal and stomach endoderm, mesonephros, metanephros and pancreas. Transcript analysis identified extensive alternative splicing leading to multiple 5′ and 3′ untranslated regions and variable coding sequences. Multiple protein isoforms were defined by different N-terminal regions (with at least four alternative initiating methionine codons), and by differential protein truncation/use of alternative C-terminal sequences attributable to alternative splicing/polyadenylation. Outside the N-terminal regions, the predicted proteins showed significant homology to N-acetylated alpha-linked acidic dipeptidase and transferrin receptors. Mutation screening of NAALADL2 in a panel of CdLS patient DNA samples failed to identify patient-specific mutations. We discuss the possibility that the 3q26.3 translocation could nevertheless contribute to

  16. Integrating understanding of epidemiology and genomics in B-cell non-Hodgkin lymphoma as a pathway to novel management strategies.

    PubMed

    Glass, Samantha; Phan, Anh; Williams, Jessica N; Flowers, Christopher R; Koff, Jean L

    2016-03-01

    Non-Hodgkin lymphomas include a biologically and clinically heterogeneous group of cancers distinguished by genetics, histology, and treatment outcomes. New discoveries regarding the genomic alterations and epidemiological exposures associated with these lymphomas have enhanced our understanding of factors that contribute to lymphomagenesis for specific subtypes. We explore the impact of normal B-cell biology engineered for recognizing a wide variety of antigens on the development of specific lymphoma subtypes, review lymphoma genetics, and examine the epidemiology of B-cell NHLs including recent investigations of risk factors for particular lymphoma subtypes based on large pooled analyses. Burkitt lymphoma, an aggressive form of B-cell NHL involving translocation of the MYC gene and an immunoglobulin gene has been associated with a history of eczema, hepatitis C, and occupation as a cleaner. Increased risk of diffuse large B-cell lymphoma has been associated with increased young adult body mass index, history of B-cell-activating autoimmune diseases, hepatitis C, and several single nucleotide variants involving the human leukocyte antigen (HLA) region of chromosome 6 and non-HLA loci near EXOC2, PVT1, MYC, and NCOA1. Tumor sequencing studies suggest that multiple pathways are involved in the development of DLBCL. Additional studies of epidemiological exposures, genome wide associations, and tumor sequencing in follicular, lymphoplasmacytic, marginal zone, and mantle cell lymphoma demonstrate overlapping areas of increased risk factors and unique factors for specific subtypes. Integrating these findings is important for constructing comprehensive models of NHL pathogenesis, which could yield novel targets for therapy and strategies for lymphoma prevention in certain populations. PMID:27115168

  17. The complete mitochondrial genome sequence of Cynoglossus abbreviatus (Pleuronectiformes: Cynoglossidae) with control region translocation and tRNA-Gln gene inversion.

    PubMed

    Shi, Wei; Gong, Li; Kong, Xiao-Yu

    2016-05-01

    Cynoglossus abbreviatus (Cynoglossidae, Soleoidei) is characterized by a bilaterally asymmetrical with both eyes on the left side. In this study, the complete mitogenome of this tongue sole has been reported for the first time. The gene order in C. abbreviatus mitogenome possesses a novel rearrangement like other tonguefish. The tRNA-Gln gene moves from the light strand to the heavy strand, accompanied by tRNA-Ile gene shuffling, leaving a large non-coding region (88 bp) between these two tRNAs. Additionally, the control region translocates to the place between ND1 and tRNA-Gln genes. The total length is 16,417 bp, with 30.9%, 29.5%, 24.9% and 14.7% for A, T, C and G, respectively (60.4% for AT content). These molecular data will provide useful information about the mechanism of gene reorganization in Cynoglossidae mitogenome and further phylogenetic study on Pleuronectiformes. PMID:25427811

  18. Acute megakaryoblastic leukemia with a four-way variant translocation originating the RBM15-MKL1 fusion gene.

    PubMed

    Torres, Lurdes; Lisboa, Susana; Vieira, Joana; Cerveira, Nuno; Santos, Joana; Pinheiro, Manuela; Correia, Cecília; Bizarro, Susana; Almeida, Marta; Teixeira, Manuel R

    2011-05-01

    Acute megakaryoblastic leukemia (AMKL) with t(1;22)(p13;q13) is a subset of acute myeloid leukemia (AML) representing <1% of all cases and about 70% of pediatric AMKL in the first year of life. We present a case of a 7-month-old female in whom the bone marrow karyotype showed the derivative chromosome der(22)t(1;22)(p13;q13). The RBM15-MKL1 fusion transcript was detected by RT-PCR and confirmed by sequencing analyses. FISH analyses revealed the presence of the four-way translocation t(1;22;17;18)(p13;q13;q22;q12). PMID:21370421

  19. B-cell development and functions and therapeutic options in adenosine deaminase–deficient patients

    PubMed Central

    Brigida, Immacolata; Sauer, Aisha V.; Ferrua, Francesca; Giannelli, Stefania; Scaramuzza, Samantha; Pistoia, Valentina; Castiello, Maria Carmina; Barendregt, Barbara H.; Cicalese, Maria Pia; Casiraghi, Miriam; Brombin, Chiara; Puck, Jennifer; Müller, Klaus; Notarangelo, Lucia Dora; Montin, Davide; van Montfrans, Joris M.; Roncarolo, Maria Grazia; Traggiai, Elisabetta; van Dongen, Jacques J. M.; van der Burg, Mirjam; Aiuti, Alessandro

    2015-01-01

    Background Adenosine deaminase (ADA) deficiency causes severe cellular and humoral immune defects and dysregulation because of metabolic toxicity. Alterations in B-cell development and function have been poorly studied. Enzyme replacement therapy (ERT) and hematopoietic stem cell (HSC) gene therapy (GT) are therapeutic options for patients lacking a suitable bone marrow (BM) transplant donor. Objective We sought to study alterations in B-cell development in ADA-deficient patients and investigate the ability of ERT and HSC-GT to restore normal B-cell differentiation and function. Methods Flow cytometry was used to characterize B-cell development in BM and the periphery. The percentage of gene-corrected B cells was measured by using quantitative PCR. B cells were assessed for their capacity to proliferate and release IgM after stimulation. Results Despite the severe peripheral B-cell lymphopenia, patients with ADA-deficient severe combined immunodeficiency showed a partial block in central BM development. Treatment with ERT or HSC-GT reverted most BM alterations, but ERT led to immature B-cell expansion. In the periphery transitional B cells accumulated under ERT, and the defect in maturation persisted long-term. HSC-GT led to a progressive improvement in B-cell numbers and development, along with increased levels of gene correction. The strongest selective advantage for ADA-transduced cells occurred at the transition from immature to naive cells. B-cell proliferative responses and differentiation to immunoglobulin secreting IgM after B-cell receptor and Toll-like receptor triggering were severely impaired after ERT and improved significantly after HSC-GT. Conclusions ADA-deficient patients show specific defects in B-cell development and functions that are differently corrected after ERT and HSC-GT. PMID:24506932

  20. Expression pattern of the most J[sub H]-proximal human V[sub H] gene segment (V[sub H]6) in the B cell and antibody repertoire suggests a role of V[sub H]6-encoded IgM antibodies in early ontogeny

    SciTech Connect

    Van Es, J.H.; Tol, M.J.D. van; Gmelig Meyling, F.H.J.; Logtenberg, T. ); Raaphorst, F.M. )

    1993-01-01

    The authors have developed a mAb (JE-6) that recognizes an Id encoded by the most J[sub H]-proximal human V[sub H] gene segment (V[sub H]6) in or near germ-line configuration. This mAb was used to determine the frequency of Id JE6[sup +] B cells in large collections of monoclonal EBV-transformed and short term B cell lines derived from fetal, neonatal, and adult lymphoid tissues. Moreover, they investigated the presence of Id JE-6[sup +] lg in sera from neonates and adults and determined the (auto)antigen binding properties of V[sub H]6-encoded IgM mAb. They detected a fivefold overrepresentation of V[sub H]6-expression IgM producing B cells in fetal tissues, cord blood, and adult bone marrow relative to adult blood. In cord blood, but not in adult blood sera, germ-line V[sub H]6-encoded IgM molecules were readily detectable. IgM secreted by V[sub H]6-expressing B cell clones displayed highly conserved and virtually identical autoantigen binding properties, independent of the length and composition of the IgH chain CDR3 region and L chain isotype. Collectively, these results suggest that the V[sub H]6 gene and the antibodies it encodes play an important role in early human ontogeny. 31 refs., 3 figs., 2 tabs.

  1. Memory B cells in mouse models.

    PubMed

    Bergmann, B; Grimsholm, O; Thorarinsdottir, K; Ren, W; Jirholt, P; Gjertsson, I; Mårtensson, I-L

    2013-08-01

    One of the principles behind vaccination, as shown by Edward Jenner in 1796, and host protection is immunological memory, and one of the cells central to this is the antigen-experienced memory B cell that responds rapidly upon re-exposure to the initiating antigen. Classically, memory B cells have been defined as progenies of germinal centre (GC) B cells expressing isotype-switched and substantially mutated B cell receptors (BCRs), that is, membrane-bound antibodies. However, it has become apparent over the last decade that this is not the only pathway to B cell memory. Here, we will discuss memory B cells in mice, as defined by (1) cell surface markers; (2) multiple layers; (3) formation in a T cell-dependent and either GC-dependent or GC-independent manner; (4) formation in a T cell-independent fashion. Lastly, we will touch upon memory B cells in; (5) mouse models of autoimmune diseases. PMID:23679222

  2. Hematopoietic stem cell transplantation for pediatric mature B-cell acute lymphoblastic leukemia with non-L3 morphology and MLL-AF9 gene fusion: three case reports and review of the literature.

    PubMed

    Sarashina, Takeo; Iwabuchi, Haruko; Miyagawa, Naoyuki; Sekimizu, Masahiro; Yokosuka, Tomoko; Fukuda, Kunio; Hamanoue, Satoshi; Iwasaki, Fuminori; Goto, Shoko; Shiomi, Masae; Imai, Chihaya; Goto, Hiroaki

    2016-07-01

    Mature B-cell acute lymphoblastic leukemia (B-ALL) is typically associated with French-American-British (FAB)-L3 morphology and MYC gene rearrangement. However, rare cases of mature B-ALL with non-L3 morphology and MLL-AF9 fusion have been reported, and such cases are characterized by a rapid and aggressive clinical course. We here report three such cases of pediatric mature B-ALL in female patients respectively aged 15 months, 4 years, and 4 months. Bone marrow smears at diagnosis showed FAB-L1 morphology in all patients. Immunophenotypically, they were positive for cluster of differentiation (CD)10, CD19, CD20 (or CD22), Human Leukocyte Antigen-DR, and surface immunoglobulin λ. No evidence of MYC rearrangement was detected in any of the cases by fluorescent in situ hybridization (FISH) analysis. However, MLL rearrangement was detected by FISH, and MLL-AF9 fusion was confirmed by reverse transcriptase-polymerase chain reaction. All patients achieved complete remission after conventional chemotherapy and subsequently underwent hematopoietic stem cell transplantation as high-risk ALL; patient 3 for infantile ALL with MLL rearrangement and the others for ALL with MLL rearrangement and hyperleukocytosis (white blood cell count at diagnosis >50 × 10(9)/L). At the latest follow-up for each case (12-98 months post-transplantation), complete remission was maintained. Moreover, we discuss the clinical, genetic, and immunophenotypic features of this rare disease. PMID:27084248

  3. Changes in Caspase-3, B Cell Leukemia/Lymphoma-2, Interleukin-6, Tumor Necrosis Factor-α and Vascular Endothelial Growth Factor Gene Expression after Human Umbilical Cord Blood Derived Mesenchymal Stem Cells Transfusion in Pulmonary Hypertension Rat Models

    PubMed Central

    Kim, Kwan Chang; Lee, Jae Chul; Lee, Hyeryon; Cho, Min-Sun; Choi, Soo Jin

    2016-01-01

    Background and Objectives Failure of vascular smooth muscle apoptosis and inflammatory response in pulmonary arterial hypertension (PAH) is a current research focus. The goals of this study were to determine changes in select gene expressions in monocrotaline (MCT)-induced PAH rat models after human umbilical cord blood derived mesenchymal stem cells (hUCB-MSCs) transfusion. Materials and Methods The rats were separated into 3 groups i.e., control group (C group), M group (MCT 60 mg/kg), and U group (hUCB-MSCs transfusion) a week after MCT injection. Results TUNEL assay showed that the U group had significantly lowered positive apoptotic cells in the lung tissues, as compared with the M group. mRNA of caspase-3, B cell leukemia/lymphoma (Bcl)-2, interleukin (IL)-6, tumor necrosis factor (TNF)-α and vascular endothelial growth factor (VEGF) in the lung tissues were greatly reduced at week 4 in the U group. Immunohistochemical staining of the lung tissues also demonstrated a similar pattern, with the exception of IL-6. The protein expression of caspase-3, Bcl-2 VEGF, IL-6, TNF-α and brain natriuretic peptide in the heart tissues were significantly lower in the U group, as compared with the M group at week 2. Furthermore, the protein expression of VEGF, IL-6 and BNP in the heart tissues were significantly lower in the U group at week 4. Collagen content in the heart tissues was significantly lower in the U group, as compared with M group at weeks 2 and 4, respectively. Conclusion hUCB-MSCs could prevent inflammation, apoptosis and remodeling in MCT-induced PAH rat models. PMID:26798389

  4. Interphase cytogenetic analysis of lymphoma-associated chromosomal breakpoints in primary diffuse large B-cell lymphomas of the central nervous system.

    PubMed

    Montesinos-Rongen, Manuel; Zühlke-Jenisch, Reina; Gesk, Stefan; Martín-Subero, José Ignacio; Schaller, Carlo; Van Roost, Dirk; Wiestler, Otmar D; Deckert, Martina; Siebert, Reiner

    2002-10-01

    Primary central nervous system lymphomas (PCNSLs) are germinal center-derived diffuse large B-cell lymphomas (DLBCLs) arising in and remaining confined to the brain, the pathogenesis of which is poorly understood. We investigated 13 PCNSLs from immunocompetent patients by means of interphase cytogenetics on cryopreserved cells derived from stereotactic biopsies. Interphase fluorescence in situ hybridization (FISH) was performed for the detection of structural alterations affecting the IGH (14q32), IGK (2p12), IGL (22q11), BCL6 (3q27), MYC (8q24), CCND1 (11q13), MLT, and BCL2 (both 18q21) loci. Signal constellations indicating breakpoints within the IGH and IGK locus were detected in 5 and 1 PCNSLs, respectively. There was no evidence for a t(8;14), t(11;14), or t(14;18) in this series of tumors. Breakpoints in the BCL6 locus were observed in 3 of the 13 cases, and nuclear Bcl-6 protein expression was detected in 6 of 9 PCNSLs, including those with genomic alterations of the encoding locus. Gains of 18q21 represented the most frequent imbalances present in more than one third of all cases. Interestingly, these gains included the MLT gene. Thus, this study provides the first evidence for recurrent chromosomal translocations in PCNSLs. While they share similarities with extracerebral DLBCL with respect to the presence of IGH translocations, they appear to differ in the usage of translocation partner genes, which remain to be identified. PMID:12387458

  5. Microbes and B cell development.

    PubMed

    Wesemann, Duane R

    2015-01-01

    Animals and many of their chronic microbial inhabitants form relationships of symbiotic mutualism, which occurs when coexisting life-forms derive mutual benefit from stable associations. While microorganisms receive a secure habitat and constant food source from vertebrate hosts, they are required for optimal immune system development and occupy niches otherwise abused by pathogens. Microbes have also been shown to provide vertebrate hosts with metabolic capabilities that enhance energy and nutrient uptake from the diet. The immune system plays a central role in the establishment and maintenance of host-microbe homeostasis, and B lineage cells play a key role in this regulation. Here, I reviewed the structure and function of the microbiota and the known mechanisms of how nonpathogenic microbes influence B cell biology and immunoglobulin repertoire development early in life. I also discuss what is known about how B lineage cells contribute to the process of shaping the composition of commensal/mutualistic microbe membership. PMID:25591467

  6. Complex Chromosomal Rearrangements in B-Cell Lymphoma: Evidence of Chromoanagenesis? A Case Report

    PubMed Central

    Ortega, Veronica; Chaubey, Alka; Mendiola, Christina; Ehman, William; Vadlamudi, Kumari; Dupont, Barbara; Velagaleti, Gopalrao

    2016-01-01

    Genomic instability is a well-known hallmark of cancer. Recent genome sequencing studies have led to the identification of novel phenomena called chromothripsis and chromoanasynthesis in which complex genomic rearrangements are thought to be derived from a single catastrophic event rather than by several incremental steps. A new term chromoanagenesis or chromosomal rebirth was coined recently to group these two one-step catastrophic events together. These phenomena suggest an evolutionary modality for cancer cells to circumvent individual mutational events with one simultaneous shattering of chromosomes resulting in the random reassembling of segmented genetic material to form complex derivative chromosomes. We report a case of possible chromoanagenesis in a patient with diffuse large B-cell lymphoma. Chromosome analysis from the biopsy showed a complex karyotype with multiple numerical and structural rearrangements including a translocation of chromosomes 3 and 7 involving the BCL6 gene region, with the derivative chromosome further rearranging with chromosomes 14, 7, and 22 with involvement of the IGH gene region. Fluorescence in situ hybridization studies confirmed these findings. Chromosomal microarray studies showed multiple complex copy number variations including a chromosome 12 abnormality, the complexity of which appears to suggest the phenomenon of chromoanagenesis. Our case further illustrates that lymphomagenesis can be complex and may arise from a catastrophic event resulting in multiple complex chromosome rearrangements. PMID:27108385

  7. Complex Chromosomal Rearrangements in B-Cell Lymphoma: Evidence of Chromoanagenesis? A Case Report.

    PubMed

    Ortega, Veronica; Chaubey, Alka; Mendiola, Christina; Ehman, William; Vadlamudi, Kumari; Dupont, Barbara; Velagaleti, Gopalrao

    2016-04-01

    Genomic instability is a well-known hallmark of cancer. Recent genome sequencing studies have led to the identification of novel phenomena called chromothripsis and chromoanasynthesis in which complex genomic rearrangements are thought to be derived from a single catastrophic event rather than by several incremental steps. A new term chromoanagenesis or chromosomal rebirth was coined recently to group these two one-step catastrophic events together. These phenomena suggest an evolutionary modality for cancer cells to circumvent individual mutational events with one simultaneous shattering of chromosomes resulting in the random reassembling of segmented genetic material to form complex derivative chromosomes. We report a case of possible chromoanagenesis in a patient with diffuse large B-cell lymphoma. Chromosome analysis from the biopsy showed a complex karyotype with multiple numerical and structural rearrangements including a translocation of chromosomes 3 and 7 involving the BCL6 gene region, with the derivative chromosome further rearranging with chromosomes 14, 7, and 22 with involvement of the IGH gene region. Fluorescence in situ hybridization studies confirmed these findings. Chromosomal microarray studies showed multiple complex copy number variations including a chromosome 12 abnormality, the complexity of which appears to suggest the phenomenon of chromoanagenesis. Our case further illustrates that lymphomagenesis can be complex and may arise from a catastrophic event resulting in multiple complex chromosome rearrangements. PMID:27108385

  8. Inferring processes underlying B-cell repertoire diversity.

    PubMed

    Elhanati, Yuval; Sethna, Zachary; Marcou, Quentin; Callan, Curtis G; Mora, Thierry; Walczak, Aleksandra M

    2015-09-01

    We quantify the VDJ recombination and somatic hypermutation processes in human B cells using probabilistic inference methods on high-throughput DNA sequence repertoires of human B-cell receptor heavy chains. Our analysis captures the statistical properties of the naive repertoire, first after its initial generation via VDJ recombination and then after selection for functionality. We also infer statistical properties of the somatic hypermutation machinery (exclusive of subsequent effects of selection). Our main results are the following: the B-cell repertoire is substantially more diverse than T-cell repertoires, owing to longer junctional insertions; sequences that pass initial selection are distinguished by having a higher probability of being generated in a VDJ recombination event; somatic hypermutations have a non-uniform distribution along the V gene that is well explained by an independent site model for the sequence context around the hypermutation site. PMID:26194757

  9. Inferring processes underlying B-cell repertoire diversity

    PubMed Central

    Elhanati, Yuval; Sethna, Zachary; Marcou, Quentin; Callan, Curtis G.; Mora, Thierry; Walczak, Aleksandra M.

    2015-01-01

    We quantify the VDJ recombination and somatic hypermutation processes in human B cells using probabilistic inference methods on high-throughput DNA sequence repertoires of human B-cell receptor heavy chains. Our analysis captures the statistical properties of the naive repertoire, first after its initial generation via VDJ recombination and then after selection for functionality. We also infer statistical properties of the somatic hypermutation machinery (exclusive of subsequent effects of selection). Our main results are the following: the B-cell repertoire is substantially more diverse than T-cell repertoires, owing to longer junctional insertions; sequences that pass initial selection are distinguished by having a higher probability of being generated in a VDJ recombination event; somatic hypermutations have a non-uniform distribution along the V gene that is well explained by an independent site model for the sequence context around the hypermutation site. PMID:26194757

  10. Epstein-Barr virus latent membrane protein 2A is a B-cell receptor mimic and essential for B-cell survival

    PubMed Central

    Mancao, Christoph

    2007-01-01

    Many cells latently infected with Epstein-Barr virus (EBV), including certain virus-associated tumors, express latent membrane protein 2A (LMP2A), suggesting an important role for this protein in viral latency and oncogenesis. LMP2A mimics B-cell receptor signaling but can also act as a decoy receptor blocking B-cell receptor (BCR) activation. Studies of peripheral B cells have not resolved this apparent contradiction because LMP2A seems to be dispensable for EBV-induced transformation of these B cells in vitro. We show here that LMP2A is essential for growth transformation of germinal center B cells, which do not express the genuine BCR because of deleterious somatic hypermutations in their immunoglobulin genes. BCR-positive (BCR+) and BCR-negative (BCR−) B cells are readily transformed with a recombinant EBV encoding a conditional, floxed LMP2A allele, but the survival and continued proliferation of both BCR+ and BCR− B cells is strictly dependent on LMP2A. These findings indicate that LMP2A has potent, distinct antiapoptotic and/or transforming characteristics and point to its role as an indispensable BCR mimic in certain B cells from which human B-cell tumors such as Hodgkin lymphoma originate. PMID:17682125

  11. Long noncoding RNAs in B-cell development and activation

    PubMed Central

    Brazão, Tiago F.; Johnson, Jethro S.; Müller, Jennifer; Heger, Andreas; Ponting, Chris P.

    2016-01-01

    Long noncoding RNAs (lncRNAs) are potentially important regulators of cell differentiation and development, but little is known about their roles in B lymphocytes. Using RNA-seq and de novo transcript assembly, we identified 4516 lncRNAs expressed in 11 stages of B-cell development and activation. Most of these lncRNAs have not been previously detected, even in the closely related T-cell lineage. Comparison with lncRNAs previously described in human B cells identified 185 mouse lncRNAs that have human orthologs. Using chromatin immunoprecipitation-seq, we classified 20% of the lncRNAs as either enhancer-associated (eRNA) or promoter-associated RNAs. We identified 126 eRNAs whose expression closely correlated with the nearest coding gene, thereby indicating the likely location of numerous enhancers active in the B-cell lineage. Furthermore, using this catalog of newly discovered lncRNAs, we show that PAX5, a transcription factor required to specify the B-cell lineage, bound to and regulated the expression of 109 lncRNAs in pro-B and mature B cells and 184 lncRNAs in acute lymphoblastic leukemia. PMID:27381906

  12. Long noncoding RNAs in B-cell development and activation.

    PubMed

    Brazão, Tiago F; Johnson, Jethro S; Müller, Jennifer; Heger, Andreas; Ponting, Chris P; Tybulewicz, Victor L J

    2016-08-18

    Long noncoding RNAs (lncRNAs) are potentially important regulators of cell differentiation and development, but little is known about their roles in B lymphocytes. Using RNA-seq and de novo transcript assembly, we identified 4516 lncRNAs expressed in 11 stages of B-cell development and activation. Most of these lncRNAs have not been previously detected, even in the closely related T-cell lineage. Comparison with lncRNAs previously described in human B cells identified 185 mouse lncRNAs that have human orthologs. Using chromatin immunoprecipitation-seq, we classified 20% of the lncRNAs as either enhancer-associated (eRNA) or promoter-associated RNAs. We identified 126 eRNAs whose expression closely correlated with the nearest coding gene, thereby indicating the likely location of numerous enhancers active in the B-cell lineage. Furthermore, using this catalog of newly discovered lncRNAs, we show that PAX5, a transcription factor required to specify the B-cell lineage, bound to and regulated the expression of 109 lncRNAs in pro-B and mature B cells and 184 lncRNAs in acute lymphoblastic leukemia. PMID:27381906

  13. Neurotrophins and B-cell malignancies.

    PubMed

    Hillis, Jennifer; O'Dwyer, Michael; Gorman, Adrienne M

    2016-01-01

    Neurotrophins and their receptors act as important proliferative and pro-survival factors in a variety of cell types. Neurotrophins are produced by multiple cell types in both pro- and mature forms, and can act in an autocrine or paracrine fashion. The p75(NTR) and Trk receptors can elicit signalling in response to the presence or absence of their corresponding neurotrophin ligands. This signalling, along with neurotrophin and receptor expression, varies between different cell types. Neurotrophins and their receptors have been shown to be expressed by and elicit signalling in B lymphocytes. In general, most neurotrophins are expressed by activated B-cells and memory B-cells. Likewise, the TrkB95 receptor is seen on activated B-cells, while TrkA and p75(NTR) are expressed by both resting and active B-cells as well as memory B-cells. Nerve growth factor stimulates B-cell proliferation, memory B-cell survival, antibody production and CD40 expression. Brain-derived neurotrophic factor is involved in B-cell maturation in the bone marrow through TrkB95. Overall neurotrophins and their receptors have been shown to be involved in B-cell proliferation, development, differentiation, antibody secretion and survival. As well as expression and activity in healthy B-cells, the neurotrophins and their receptors can contribute to B-cell malignancies including acute lymphoblastic leukaemia, diffuse large B-cell lymphoma, Burkitt's lymphoma and multiple myeloma. They are involved in B-cell malignancy survival and potentially in drug resistance. PMID:26399960

  14. B-Cell Dysregulation in Crohn's Disease Is Partially Restored with Infliximab Therapy

    PubMed Central

    Timmermans, Wilhelmina M. C.; van Laar, Jan A. M.; van der Houwen, Tim B.; Kamphuis, Lieke S. J.; Bartol, Sophinus J. W.; Lam, King H.; Ouwendijk, Rob J.; Sparrow, Miles P.; Gibson, Peter R.; van Hagen, P. Martin

    2016-01-01

    Background B-cell depletion can improve a variety of chronic inflammatory diseases, but does not appear beneficial for patients with Crohn’s disease. Objective To elucidate the involvement of B cells in Crohn’s disease, we here performed an ‘in depth’ analysis of intestinal and blood B-cells in this chronic inflammatory disease. Methods Patients with Crohn’s disease were recruited to study B-cell infiltrates in intestinal biopsies (n = 5), serum immunoglobulin levels and the phenotype and molecular characteristics of blood B-cell subsets (n = 21). The effects of infliximab treatment were studied in 9 patients. Results Granulomatous tissue showed infiltrates of B lymphocytes rather than Ig-secreting plasma cells. Circulating transitional B cells and CD21low B cells were elevated. IgM memory B cells were reduced and natural effector cells showed decreased replication histories and somatic hypermutation (SHM) levels. In contrast, IgG and IgA memory B cells were normally present and their Ig gene transcripts carried increased SHM levels. The numbers of transitional and natural effector cells were normal in patients who responded clinically well to infliximab. Conclusions B cells in patients with Crohn’s disease showed signs of chronic stimulation with localization to granulomatous tissue and increased molecular maturation of IgA and IgG. Therapy with TNFα-blockers restored the defect in IgM memory B-cell generation and normalized transitional B-cell levels, making these subsets candidate markers for treatment monitoring. Together, these results suggest a chronic, aberrant B-cell response in patients with Crohn’s disease, which could be targeted with new therapeutics that specifically regulate B-cell function. PMID:27468085

  15. Germinal center reentries of BCL2-overexpressing B cells drive follicular lymphoma progression

    PubMed Central

    Sungalee, Stéphanie; Mamessier, Emilie; Morgado, Ester; Grégoire, Emilie; Brohawn, Philip Z.; Morehouse, Christopher A.; Jouve, Nathalie; Monvoisin, Céline; Menard, Cédric; Debroas, Guilhaume; Faroudi, Mustapha; Mechin, Violaine; Navarro, Jean-Marc; Drevet, Charlotte; Eberle, Franziska C.; Chasson, Lionel; Baudimont, Fannie; Mancini, Stéphane J.; Tellier, Julie; Picquenot, Jean-Michel; Kelly, Rachel; Vineis, Paolo; Ruminy, Philippe; Chetaille, Bruno; Jaffe, Elaine S.; Schiff, Claudine; Hardwigsen, Jean; Tice, David A.; Higgs, Brandon W.; Tarte, Karin; Nadel, Bertrand; Roulland, Sandrine

    2014-01-01

    It has recently been demonstrated that memory B cells can reenter and reengage germinal center (GC) reactions, opening the possibility that multi-hit lymphomagenesis gradually occurs throughout life during successive immunological challenges. Here, we investigated this scenario in follicular lymphoma (FL), an indolent GC-derived malignancy. We developed a mouse model that recapitulates the FL hallmark t(14;18) translocation, which results in constitutive activation of antiapoptotic protein B cell lymphoma 2 (BCL2) in a subset of B cells, and applied a combination of molecular and immunofluorescence approaches to track normal and t(14;18)+ memory B cells in human and BCL2-overexpressing B cells in murine lymphoid tissues. BCL2-overexpressing B cells required multiple GC transits before acquiring FL-associated developmental arrest and presenting as GC B cells with constitutive activation–induced cytidine deaminase (AID) mutator activity. Moreover, multiple reentries into the GC were necessary for the progression to advanced precursor stages of FL. Together, our results demonstrate that protracted subversion of immune dynamics contributes to early dissemination and progression of t(14;18)+ precursors and shapes the systemic presentation of FL patients. PMID:25384217

  16. Receptor Editing Occurs Frequently during Normal B Cell Development

    PubMed Central

    Retter, Marc W.; Nemazee, David

    1998-01-01

    Allelic exclusion is established in development through a feedback mechanism in which the assembled immunoglobulin (Ig) suppresses further V(D)J rearrangement. But Ig expression sometimes fails to prevent further rearrangement. In autoantibody transgenic mice, reactivity of immature B cells with autoantigen can induce receptor editing, in which allelic exclusion is transiently prevented or reversed through nested light chain gene rearrangement, often resulting in altered B cell receptor specificity. To determine the extent of receptor editing in a normal, non-Ig transgenic immune system, we took advantage of the fact that λ light chain genes usually rearrange after κ genes. This allowed us to analyze κ loci in IgMλ+ cells to determine how frequently in-frame κ genes fail to suppress λ gene rearrangements. To do this, we analyzed recombined VκJκ genes inactivated by subsequent recombining sequence (RS) rearrangement. RS rearrangements delete portions of the κ locus by a V(D)J recombinase-dependent mechanism, suggesting that they play a role in receptor editing. We show that RS recombination is frequently induced by, and inactivates, functionally rearranged κ loci, as nearly half (47%) of the RS-inactivated VκJκ joins were in-frame. These findings suggest that receptor editing occurs at a surprisingly high frequency in normal B cells. PMID:9763602

  17. DHA down-regulates phenobarbital-induced cytochrome P450 2B1 gene expression in rat primary hepatocytes by attenuating CAR translocation

    SciTech Connect

    Li, C.-C.; Lii, C.-K.; Liu, K.-L.; Yang, J.-J.; Chen, H.-W.

    2007-12-15

    The constitutive androstane receptor (CAR) plays an important role in regulating the expression of detoxifying enzymes, including cytochrome P450 2B (CYP 2B). Phenobarbital (PB) induction of human CYP 2B6 and mouse CYP 2b10 has been shown to be mediated by CAR. Our previous study showed that PB-induced CYP 2B1 expression in rat primary hepatocytes is down-regulated by both n-6 and n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA); however, the mechanism for this down-regulation by DHA was previously unknown. The objective of the present study was to determine whether change in CAR translocation is involved in the down-regulation by n-6 and n-3 PUFAs of PB-induced CYP 2B1 expression in rat primary hepatocytes. We used 100 {mu}M arachidonic acid, linoleic acid, eicosapentaenoic acid, and DHA to test this hypothesis. PB triggered the translocation of CAR from the cytosol into the nucleus in a dose-dependent and time-dependent manner in our hepatocyte system, and the CAR distribution in rat primary hepatocytes was significantly affected by DHA. DHA treatment decreased PB-inducible accumulation of CAR in the nuclear fraction and increased it in the cytosolic fraction in a dose-dependent manner. The down-regulation of CYP 2B1 expression by DHA occurred in a dose-dependent manner, and a similar pattern was found for the nuclear accumulation of CAR. The results of immunoprecipitation showed a CAR/RXR heterodimer bound to nuclear receptor binding site 1 (NR-1) of the PB-responsive enhancer module (PBREM) of the CYP 2B1gene. The EMSA results showed that PB-induced CAR binding to NR-1 was attenuated by DHA. Taken together, these results suggest that attenuation of CAR translocation and decreased subsequent binding to NR-1 are involved in DHA's down-regulation of PB-induced CYP 2B1 expression.

  18. Clostridium butyricum in combination with specific immunotherapy converts antigen-specific B cells to regulatory B cells in asthmatic patients

    PubMed Central

    Liao, Hong-Ying; Tao, Li; Zhao, Jian; Qin, Jie; Zeng, Gu-Cheng; Cai, Song-Wang; Li, Yun; Zhang, Jian; Chen, Hui-Guo

    2016-01-01

    The effect of antigen specific immunotherapy (SIT) on asthma is supposed to be improved. Published data indicate that administration of probiotics alleviates allergic diseases. B cells play important roles in the pathogenesis of allergic diseases. This study aims to modulate antigen specific B cell property by the administration of Clostridium butyrate (CB) in combination with SIT. The results showed that after a 3-month treatment, the total asthma clinical score and serum specific IgE were improved in the patients treated with SIT, which was further improved in those treated with both SIT and CB, but not in those treated with CB alone. Treatment with SIT and CB increased p300 and STAT3 activation, up regulated the IL-10 gene transcription and increased the frequency of peripheral antigen specific B cells. In conclusion, administration with SIT in combination with CB converts Der p 1 specific B cells to regulatory B cells in asthma patients allergic to Der p 1. The data suggest a potential therapeutic remedy in the treatment of allergic diseases. PMID:26857726

  19. Reprogramming of primary human Philadelphia chromosome-positive B cell acute lymphoblastic leukemia cells into nonleukemic macrophages.

    PubMed

    McClellan, James Scott; Dove, Christopher; Gentles, Andrew J; Ryan, Christine E; Majeti, Ravindra

    2015-03-31

    BCR-ABL1(+) precursor B-cell acute lymphoblastic leukemia (BCR-ABL1(+) B-ALL) is an aggressive hematopoietic neoplasm characterized by a block in differentiation due in part to the somatic loss of transcription factors required for B-cell development. We hypothesized that overcoming this differentiation block by forcing cells to reprogram to the myeloid lineage would reduce the leukemogenicity of these cells. We found that primary human BCR-ABL1(+) B-ALL cells could be induced to reprogram into macrophage-like cells by exposure to myeloid differentiation-promoting cytokines in vitro or by transient expression of the myeloid transcription factor C/EBPα or PU.1. The resultant cells were clonally related to the primary leukemic blasts but resembled normal macrophages in appearance, immunophenotype, gene expression, and function. Most importantly, these macrophage-like cells were unable to establish disease in xenograft hosts, indicating that lineage reprogramming eliminates the leukemogenicity of BCR-ABL1(+) B-ALL cells, and suggesting a previously unidentified therapeutic strategy for this disease. Finally, we determined that myeloid reprogramming may occur to some degree in human patients by identifying primary CD14(+) monocytes/macrophages in BCR-ABL1(+) B-ALL patient samples that possess the BCR-ABL1(+) translocation and clonally recombined VDJ regions. PMID:25775523

  20. Climate-Driven Reshuffling of Species and Genes: Potential Conservation Roles for Species Translocations and Recombinant Hybrid Genotypes

    PubMed Central

    Scriber, Jon Mark

    2013-01-01

    Comprising 50%–75% of the world’s fauna, insects are a prominent part of biodiversity in communities and ecosystems globally. Biodiversity across all levels of biological classifications is fundamentally based on genetic diversity. However, the integration of genomics and phylogenetics into conservation management may not be as rapid as climate change. The genetics of hybrid introgression as a source of novel variation for ecological divergence and evolutionary speciation (and resilience) may generate adaptive potential and diversity fast enough to respond to locally-altered environmental conditions. Major plant and herbivore hybrid zones with associated communities deserve conservation consideration. This review addresses functional genetics across multi-trophic-level interactions including “invasive species” in various ecosystems as they may become disrupted in different ways by rapid climate change. “Invasive genes” (into new species and populations) need to be recognized for their positive creative potential and addressed in conservation programs. “Genetic rescue” via hybrid translocations may provide needed adaptive flexibility for rapid adaptation to environmental change. While concerns persist for some conservationists, this review emphasizes the positive aspects of hybrids and hybridization. Specific implications of natural genetic introgression are addressed with a few examples from butterflies, including transgressive phenotypes and climate-driven homoploid recombinant hybrid speciation. Some specific examples illustrate these points using the swallowtail butterflies (Papilionidae) with their long-term historical data base (phylogeographical diversity changes) and recent (3-decade) climate-driven temporal and genetic divergence in recombinant homoploid hybrids and relatively recent hybrid speciation of Papilio appalachiensis in North America. Climate-induced “reshuffling” (recombinations) of species composition, genotypes, and genomes

  1. B-Cell Hematologic Malignancy Vaccination Registry

    ClinicalTrials.gov

    2015-09-15

    Monoclonal Gammopathy of Undetermined Significance; Multiple Myeloma; Waldenstrom Macroglobulinemia; Lymphocytosis; Lymphoma, Non-Hodgkin; B-Cell Chronic Lymphocytic Leukemia; Hematological Malignancies

  2. B cell conducts the lymphocyte orchestra.

    PubMed

    Youinou, Pierre

    2007-01-01

    The interest for B cells has recently been revived. They normally play a role in the development, the regulation, as well as the activation of lymphoid architecture: they regulate dendritic cells and T-cell subsets function through cytokine production. Receptor editing is also essential in B cells and aids in preventing autoimmunity. Both abnormalities in the distribution of B-cell subsets and clinical benefit response to B-cell depletion in autoimmune states illustrate their importance. A new area has thus been reached, whereby B lymphocytes return as a significant contributor to autoimmune disorders. PMID:17363215

  3. An Integrated Genomic Analysis of Aryl Hydrocarbon Receptor-Mediated Inhibition of B-Cell Differentiation

    PubMed Central

    De Abrew, K. Nadira; Kaminski, Norbert E.; Thomas, Russell S.

    2010-01-01

    The aryl hydrocarbon receptor (AHR) agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) alters differentiation of B cells and suppresses antibody production. A combination of whole-genome, microarray-based chromatin immunoprecipitation (ChIP-on-chip), and time course gene expression microarray analysis was performed on the mouse B-cell line CH12.LX following exposure to lipopolysaccharide (LPS) or LPS and TCDD to identify the primary and downstream transcriptional elements of B-cell differentiation that are altered by the AHR. ChIP-on-chip analysis identified 1893 regions with a significant increase in AHR binding with TCDD treatment. Transcription factor binding site analysis on the ChIP-on-chip data showed enrichment in AHR response elements. Other transcription factors showed significant coenrichment with AHR response elements. When ChIP-on-chip regions were compared with gene expression changes at the early time points, 78 genes were identified as potential direct targets of the AHR. AHR binding and expression changes were confirmed for a subset of genes in primary mouse B cells. Network analysis examining connections between the 78 potential AHR target genes and three transcription factors known to regulate B-cell differentiation indicated multiple paths for potential regulation by the AHR. Enrichment analysis on the differentially expressed genes at each time point evaluated the downstream impact of AHR-regulated gene expression changes on B-cell–related processes. AHR-mediated impairment of B-cell differentiation occurred at multiple nodes of the B-cell differentiation network and potentially through multiple mechanisms including direct cis-acting effects on key regulators of B-cell differentiation, indirect regulation of B-cell differentiation–related pathways, and transcriptional coregulation of target genes by AHR and other transcription factors. PMID:20819909

  4. Production of RANKL by Memory B Cells

    PubMed Central

    Meednu, Nida; Zhang, Hengwei; Owen, Teresa; Sun, Wen; Wang, Victor; Cistrone, Christopher; Rangel-Moreno, Javier; Xing, Lianping; Anolik, Jennifer H.

    2016-01-01

    Objective Rheumatoid arthritis (RA) is a systemic autoimmune disease that often leads to joint damage. The mechanisms of bone damage in RA are complex, involving activation of bone-resorbing osteoclasts (OCs) by synoviocytes and Th17 cells. This study was undertaken to investigate whether B cells play a direct role in osteoclastogenesis through the production of RANKL, the essential cytokine for OC development. Methods RANKL production by total B cells or sorted B cell subpopulations in the peripheral blood and synovial tissue from healthy donors or anti–cyclic citrullinated peptide–positive patients with RA was examined by flow cytometry, real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and immunohistochemical analysis. To define direct effects on osteoclastogenesis, B cells were cocultured with CD14+ monocytes, and OCs were enumerated by tartrate-resistant acid phosphatase staining. Results Healthy donor peripheral blood B cells were capable of expressing RANKL upon stimulation, with switched memory B cells (CD27+IgD−) having the highest propensity for RANKL production. Notably, switched memory B cells in the peripheral blood from RA patients expressed significantly more RANKL compared to healthy controls. In RA synovial fluid and tissue, memory B cells were enriched and spontaneously expressed RANKL, with some of these cells visualized adjacent to RANK+ OC precursors. Critically, B cells supported OC differentiation in vitro in a RANKL-dependent manner, and the number of OCs was higher in cultures with RA B cells than in those derived from healthy controls. Conclusion These findings reveal the critical importance of B cells in bone homeostasis and their likely contribution to joint destruction in RA. PMID:26554541

  5. A novel Robertsonian translocation event leads to transfer of a stem rust resistance gene (Sr52) effective against race Ug99 from Dasypyrum villosum into bread wheat.

    PubMed

    Qi, L L; Pumphrey, M O; Friebe, Bernd; Zhang, P; Qian, C; Bowden, R L; Rouse, M N; Jin, Y; Gill, B S

    2011-06-01

    Stem rust (Puccinia graminis f. sp. tritici Eriks. & E. Henn.) (the causal agent of wheat stem rust) race Ug99 (also designated TTKSK) and its derivatives have defeated several important stem rust resistance genes widely used in wheat (Triticum aestivum L.) production, rendering much of the worldwide wheat acreage susceptible. In order to identify new resistance sources, a large collection of wheat relatives and genetic stocks maintained at the Wheat Genetic and Genomic Resources Center was screened. The results revealed that most accessions of the diploid relative Dasypyrum villosum (L.) Candargy were highly resistant. The screening of a set of wheat-D. villosum chromosome addition lines revealed that the wheat-D. villosum disomic addition line DA6V#3 was moderately resistant to race Ug99. The objective of the present study was to produce and characterize compensating wheat-D. villosum whole arm Robertsonian translocations (RobTs) involving chromosomes 6D of wheat and 6V#3 of D. villosum through the mechanism of centric breakage-fusion. Seven 6V#3-specific EST-STS markers were developed for screening F(2) progeny derived from plants double-monosomic for chromosomes 6D and 6V#3. Surprisingly, although 6D was the target chromosome, all recovered RobTs involved chromosome 6A implying a novel mechanism for the origin of RobTs. Homozygous translocations (T6AS·6V#3L and T6AL·6V#3S) with good plant vigor and full fertility were selected from F(3) families. A stem rust resistance gene was mapped to the long arm 6V#3L in T6AS·6V#3L and was designated as Sr52. Sr52 is temperature-sensitive and is most effective at 16°C, partially effective at 24°C, and ineffective at 28°C. The T6AS·6V#3L stock is a new source of resistance to Ug99, is cytogenetically stable, and may be useful in wheat improvement. PMID:21437597

  6. Intrafollicular Epstein-Barr virus-positive large B cell lymphoma. A variant of "germinotropic" lymphoproliferative disorder.

    PubMed

    Lorenzi, Luisa; Lonardi, Silvia; Essatari, Murad H M; Pellegrini, Vilma; Fisogni, Simona; Gazzola, Anna; Agostinelli, Claudio; Vermi, William; Rossi, Giuseppe; Massarelli, Giovannino; Pileri, Stefano A; Facchetti, Fabio

    2016-04-01

    Germinotropic lymphoproliferative disorders were previously described as localized disorders associated with coinfection by human herpes virus 8 and Epstein-Barr virus and characterized by good clinical outcome. We report the clinical, morphological, phenotypical, and molecular features of three cases of a hitherto unreported variant of Epstein-Barr virus (EBV)-positive, human herpes virus 8 (HHV8)-negative large B cell lymphoma with exclusive intrafollicular localization. All cases occurred in elderly individuals (63, 77, and 65 years old; one male, two females) without obvious immunedeficiency, who presented with high stage disease. Lymph nodes showed an effaced nodular architecture with abnormal B follicles colonized by EBV+ large, pleomorphic atypical cells, including Reed-Sternberg-like cells, showing an activated B cell phenotype (CD10-FOXP1-Bcl6-IRF4+ or CD10-FOXP1+Bcl6+IRF4+) and intense expression of CD30. No monoclonal light-chain restriction was detected by immunohistochemistry or in situ hybridization, and IGH rearrangement was polyclonal; notably, EBV clonality was detectable in one case. Lymphoma cells in all cases showed diffuse expression of the c-Myc protein, while Bcl2 was dim or negative; moreover, the strong expression of phosphorylated-STAT3 in tumor cell nuclei suggested activation of the JAK-STAT pathway. FISH analysis was performed in two cases and showed no translocations of BCL2, BCL6, MYC, and PAX5 genes. Response to treatment was poor in 2/3 patients: one died after 18 months, one is alive with disease after 12 months. The intrafollicular EBV-positive large B cell lymphoma expands the spectrum of EBV-associated lymphoproliferative disorders in immunocompetent individuals. PMID:26762526

  7. Common chromosomal fragile site FRA16D sequence: identification of the FOR gene spanning FRA16D and homozygous deletions and translocation breakpoints in cancer cells.

    PubMed

    Ried, K; Finnis, M; Hobson, L; Mangelsdorf, M; Dayan, S; Nancarrow, J K; Woollatt, E; Kremmidiotis, G; Gardner, A; Venter, D; Baker, E; Richards, R I

    2000-07-01

    Fluorescence in situ hybridization of a tile path of DNA subclones has previously enabled the cyto-genetic definition of the minimal DNA sequence which spans the FRA16D common chromosomal fragile site, located at 16q23.2. Homozygous deletion of the FRA16D locus has been reported in adenocarcinomas of stomach, colon, lung and ovary. We have sequenced the 270 kb containing the FRA16D fragile site and the minimal homozygously deleted region in tumour cells. This sequence enabled localization of some of the tumour cell breakpoints to regions which contain AT-rich secondary structures similar to those associated with the FRA10B and FRA16B rare fragile sites. The FRA16D DNA sequence also led to the identification of an alternatively spliced gene, named FOR (fragile site FRA16D oxidoreductase), exons of which span both the fragile site and the minimal region of homozygous deletion. In addition, the complete DNA sequence of the FRA16D-containing FOR intron reveals no evidence of additional authentic transcripts. Alternatively spliced FOR transcripts (FOR I, FOR II and FOR III) encode proteins which share N-terminal WW domains and differ at their C-terminus, with FOR III having a truncated oxidoreductase domain. FRA16D-associated deletions selectively affect the FOR gene transcripts. Three out of five previously mapped translocation breakpoints in multiple myeloma are also located within the FOR gene. FOR is therefore the principle genetic target for DNA instability at 16q23.2 and perturbation of FOR function is likely to contribute to the biological consequences of DNA instability at FRA16D in cancer cells. PMID:10861292

  8. MRI phenotypes with high neurodegeneration are associated with peripheral blood B-cell changes.

    PubMed

    Comabella, Manuel; Cantó, Ester; Nurtdinov, Ramil; Río, Jordi; Villar, Luisa M; Picón, Carmen; Castilló, Joaquín; Fissolo, Nicolás; Aymerich, Xavier; Auger, Cristina; Rovira, Alex; Montalban, Xavier

    2016-01-15

    Little is known about the mechanisms leading to neurodegeneration in multiple sclerosis (MS) and the role of peripheral blood cells in this neurodegenerative component. We aimed to correlate brain radiological phenotypes defined by high and low neurodegeneration with gene expression profiling of peripheral blood mononuclear cells (PBMC) from MS patients. Magnetic resonance imaging (MRI) scans from 64 patients with relapsing-remitting MS (RRMS) were classified into radiological phenotypes characterized by low (N = 27) and high (N = 37) neurodegeneration according to the number of contrast-enhancing lesions, the relative volume of non-enhancing black holes on T1-weighted images, and the brain parenchymal fraction. Gene expression profiling was determined in PBMC using microarrays, and validation of selected genes was performed by polymerase chain reaction (PCR). B-cell immunophenotyping was conducted by flow cytometry. Microarray analysis revealed the B-cell specific genes FCRL1, FCRL2, FCRL5 (Fc receptor-like 1, 2 and 5 respectively), and CD22 as the top differentially expressed genes between patients with high and low neurodegeneration. Levels for these genes were significantly down-regulated in PBMC from patients with MRI phenotypes characterized by high neurodegeneration and microarray findings were validated by PCR. In patients with high neurodegeneration, immunophenotyping showed a significant increase in the expression of the B-cell activation markers CD80 in naïve B cells (CD45+/CD19+/CD27-/IgD+), unswitched memory B cells (CD45+/CD19+/CD27+/IgD+), and switched memory B cells (CD45+/CD19+/CD27+/IgD-), and CD86 in naïve and switched memory B cells. These results suggest that RRMS patients with radiological phenotypes showing high neurodegeneration have changes in B cells characterized by down-regulation of B-cell-specific genes and increased activation status. PMID:26604134

  9. Evolution of a pentameral body plan was not linked to translocation of anterior Hox genes: the echinoderm HOX cluster revisited.

    PubMed

    Byrne, Maria; Martinez, Pedro; Morris, Valerie

    2016-01-01

    Echinodermata is a large phylum of marine invertebrates characterized by an adult, pentameral body plan. This morphology is clearly derived as all members of Deuterostomia (the superphylum to which they belong) have a bilateral body plan. The origin of the pentameral plan has been the subject of intense debate. It is clear that the ancestor of Echinodermata had a bilateral plan but how this ancestor transformed its body "architecture" in such a drastic manner is not clear. Data from the fossil record and ontogeny are sparse and, so far, not very informative. The sequencing of the sea urchin genome a decade ago opened the possibility that the pentameral body plan was a consequence of a broken Hox cluster and a series of papers dwelt on the putative relationship between Hox gene arrangements in the chromosomes and the origin of pentamery. This relationship, sound as it was, is challenged by the revelation that the sea star HOX cluster is, in fact, intact, thus falsifying the hypothesis of a direct relationship between HOX cluster arrangement and the origin of the pentameral body plan. Here, we explore the relationship between Hox gene arrangements and echinoderm body "architecture," the expression of Hox genes in development and alternative scenarios for the origin of pentamery, with putative roles for signaling centers in generating multiple axes. PMID:26763653

  10. YY1 plays an essential role at all stages of B-cell differentiation.

    PubMed

    Kleiman, Eden; Jia, Haiqun; Loguercio, Salvatore; Su, Andrew I; Feeney, Ann J

    2016-07-01

    Ying Yang 1 (YY1) is a ubiquitously expressed transcription factor shown to be essential for pro-B-cell development. However, the role of YY1 in other B-cell populations has never been investigated. Recent bioinformatics analysis data have implicated YY1 in the germinal center (GC) B-cell transcriptional program. In accord with this prediction, we demonstrated that deletion of YY1 by Cγ1-Cre completely prevented differentiation of GC B cells and plasma cells. To determine if YY1 was also required for the differentiation of other B-cell populations, we deleted YY1 with CD19-Cre and found that all peripheral B-cell subsets, including B1 B cells, require YY1 for their differentiation. Transitional 1 (T1) B cells were the most dependent upon YY1, being sensitive to even a half-dosage of YY1 and also to short-term YY1 deletion by tamoxifen-induced Cre. We show that YY1 exerts its effects, in part, by promoting B-cell survival and proliferation. ChIP-sequencing shows that YY1 predominantly binds to promoters, and pathway analysis of the genes that bind YY1 show enrichment in ribosomal functions, mitochondrial functions such as bioenergetics, and functions related to transcription such as mRNA splicing. By RNA-sequencing analysis of differentially expressed genes, we demonstrated that YY1 normally activates genes involved in mitochondrial bioenergetics, whereas it normally down-regulates genes involved in transcription, mRNA splicing, NF-κB signaling pathways, the AP-1 transcription factor network, chromatin remodeling, cytokine signaling pathways, cell adhesion, and cell proliferation. Our results show the crucial role that YY1 plays in regulating broad general processes throughout all stages of B-cell differentiation. PMID:27335461

  11. Translocation of DNA across bacterial membranes.

    PubMed Central

    Dreiseikelmann, B

    1994-01-01

    DNA translocation across bacterial membranes occurs during the biological processes of infection by bacteriophages, conjugative DNA transfer of plasmids, T-DNA transfer, and genetic transformation. The mechanism of DNA translocation in these systems is not fully understood, but during the last few years extensive data about genes and gene products involved in the translocation processes have accumulated. One reason for the increasing interest in this topic is the discussion about horizontal gene transfer and transkingdom sex. Analyses of genes and gene products involved in DNA transfer suggest that DNA is transferred through a protein channel spanning the bacterial envelope. No common model exists for DNA translocation during phage infection. Perhaps various mechanisms are necessary as a result of the different morphologies of bacteriophages. The DNA translocation processes during conjugation, T-DNA transfer, and transformation are more consistent and may even be compared to the excretion of some proteins. On the basis of analogies and homologies between the proteins involved in DNA translocation and protein secretion, a common basic model for these processes is presented. PMID:7968916

  12. A new 17p13.3 microduplication including the PAFAH1B1 and YWHAE genes resulting from an unbalanced X;17 translocation.

    PubMed

    Hyon, Capucine; Marlin, Sandrine; Chantot-Bastaraud, Sandra; Mabboux, Philippe; Beaujard, Marie-Paule; Al Ageeli, Essam; Vazquez, Marie-Paule; Picard, Arnaud; Siffroi, Jean-Pierre; Portnoï, Marie-France

    2011-01-01

    Submicroscopic duplications of the genomic interval deleted in Miller-Dieker syndrome (MDS) were recently identified by array-based comparative genomic hybridization (a-CGH) studies, describing new genomic disorders in the MDS locus. These rearrangements of varying size, from 59-88 kb to 4 Mb, were non-recurrent, and appear to result from diverse molecular mechanisms. Only five patients had overlapping 17p13.3 duplications including the entire MDS critical region. We describe here a 13-year-old girl with a novel microduplication of the MDS critical region, involving the PAFAH1B1 and YWHAE genes. She presented with moderate psychomotor retardation, speech delay, behavioral problems, and bilateral cleft lip and palate, a previously unreported manifestation. Initially diagnosed as having an apparently simple terminal Xq26 deletion on standard cytogenetic analysis, she was found to have an associated terminal 4.2 Mb 17p13.3 submicroscopic duplication, identified by subtelomere FISH analysis, further characterized by high-resolution array CGH, resulting from an unbalanced X;17 translocation. Phenotypic comparison with the 5 other patients previously described, revealed common phenotypic features, such as hypotonia, mild to moderate developmental delay/mental retardation, speech abnormalities, behavioral problems, recurrent infections, relatively increase of body weight, discrete facial dysmorphism including downslanting palpebral fissures, broad midface, pointed chin, contributing to further delineate this new 17p13.3 microduplication syndrome. PMID:21195811

  13. Antibody repertoire deep sequencing reveals antigen-independent selection in maturing B cells

    PubMed Central

    Kaplinsky, Joseph; Li, Anthony; Sun, Amy; Coffre, Maryaline; Koralov, Sergei B.; Arnaout, Ramy

    2014-01-01

    Antibody repertoires are known to be shaped by selection for antigen binding. Unexpectedly, we now show that selection also acts on a non–antigen-binding antibody region: the heavy-chain variable (VH)–encoded “elbow” between variable and constant domains. By sequencing 2.8 million recombined heavy-chain genes from immature and mature B-cell subsets in mice, we demonstrate a striking gradient in VH gene use as pre-B cells mature into follicular and then into marginal zone B cells. Cells whose antibodies use VH genes that encode a more flexible elbow are more likely to mature. This effect is distinct from, and exceeds in magnitude, previously described maturation-associated changes in heavy-chain complementarity determining region 3, a key antigen-binding region, which arise from junctional diversity rather than differential VH gene use. Thus, deep sequencing reveals a previously unidentified mode of B-cell selection. PMID:24927543

  14. Nbs1 ChIP-Seq Identifies Off-Target DNA Double-Strand Breaks Induced by AID in Activated Splenic B Cells

    PubMed Central

    Linehan, Erin K.; Schrader, Carol E.; Stavnezer, Janet

    2015-01-01

    Activation-induced cytidine deaminase (AID) is required for initiation of Ig class switch recombination (CSR) and somatic hypermutation (SHM) of antibody genes during immune responses. AID has also been shown to induce chromosomal translocations, mutations, and DNA double-strand breaks (DSBs) involving non-Ig genes in activated B cells. To determine what makes a DNA site a target for AID-induced DSBs, we identify off-target DSBs induced by AID by performing chromatin immunoprecipitation (ChIP) for Nbs1, a protein that binds DSBs, followed by deep sequencing (ChIP-Seq). We detect and characterize hundreds of off-target AID-dependent DSBs. Two types of tandem repeats are highly enriched within the Nbs1-binding sites: long CA repeats, which can form Z-DNA, and tandem pentamers containing the AID target hotspot WGCW. These tandem repeats are not nearly as enriched at AID-independent DSBs, which we also identified. Msh2, a component of the mismatch repair pathway and important for genome stability, increases off-target DSBs, similar to its effect on Ig switch region DSBs, which are required intermediates during CSR. Most of the off-target DSBs are two-ended, consistent with generation during G1 phase, similar to DSBs in Ig switch regions. However, a minority are one-ended, presumably due to conversion of single-strand breaks to DSBs during replication. One-ended DSBs are repaired by processes involving homologous recombination, including break-induced replication repair, which can lead to genome instability. Off-target DSBs, especially those present during S phase, can lead to chromosomal translocations, deletions and gene amplifications, resulting in the high frequency of B cell lymphomas derived from cells that express or have expressed AID. PMID:26263206

  15. Transcriptional profiling of antigen-dependent murine B cell differentiation and memory formation.

    PubMed

    Bhattacharya, Deepta; Cheah, Ming T; Franco, Christopher B; Hosen, Naoki; Pin, Christopher L; Sha, William C; Weissman, Irving L

    2007-11-15

    Humoral immunity is characterized by the generation of Ab-secreting plasma cells and memory B cells that can more rapidly generate specific Abs upon Ag exposure than their naive counterparts. To determine the intrinsic differences that distinguish naive and memory B cells and to identify pathways that allow germinal center B cells to differentiate into memory B cells, we compared the transcriptional profiles of highly purified populations of these three cell types along with plasma cells isolated from mice immunized with a T-dependent Ag. The transcriptional profile of memory B cells is similar to that of naive B cells, yet displays several important differences, including increased expression of activation-induced deaminase and several antiapoptotic genes, chemotactic receptors, and costimulatory molecules. Retroviral expression of either Klf2 or Ski, two transcriptional regulators specifically enriched in memory B cells relative to their germinal center precursors, imparted a competitive advantage to Ag receptor and CD40-engaged B cells in vitro. These data suggest that humoral recall responses are more rapid than primary responses due to the expression of a unique transcriptional program by memory B cells that allows them to both be maintained at high frequencies and to detect and rapidly respond to antigenic re-exposure. PMID:17982071

  16. Carabin deficiency in B cells increases BCR-TLR9 costimulation-induced autoimmunity

    PubMed Central

    Schickel, Jean-Nicolas; Pasquali, Jean-Louis; Soley, Anne; Knapp, Anne-Marie; Decossas, Marion; Kern, Aurélie; Fauny, Jean-Daniel; Marcellin, Luc; Korganow, Anne-Sophie; Martin, Thierry; Soulas-Sprauel, Pauline

    2012-01-01

    The mechanisms behind flares of human autoimmune diseases in general, and of systemic lupus in particular, are poorly understood. The present scenario proposes that predisposing gene defects favour clinical flares under the influence of external stimuli. Here, we show that Carabin is low in B cells of (NZB × NZW) F1 mice (murine SLE model) long before the disease onset, and is low in B cells of lupus patients during the inactive phases of the disease. Using knock-out and B-cell-conditional knock-out murine models, we identify Carabin as a new negative regulator of B-cell function, whose deficiency in B cells speeds up early B-cell responses and makes the mice more susceptible to anti-dsDNA production and renal lupus flare after stimulation with a Toll-like Receptor 9 agonist, CpG-DNA. Finally, in vitro analysis of NFκB activation and Erk phosphorylation in TLR9- and B-cell receptor (BCR)-stimulated Carabin-deficient B cells strongly suggests how the internal defect synergizes with the external stimulus and proposes Carabin as a natural inhibitor of the potentially dangerous crosstalk between BCR and TLR9 pathways in self-reactive B cells. PMID:23109291

  17. Liver Fibrosis Occurs Through Dysregulation of MyD88-dependent Innate B cell Activity

    PubMed Central

    Thapa, Manoj; Chinnadurai, Raghavan; Velazquez, Victoria M.; Tedesco, Dana; Elrod, Elizabeth; Han, Jin-Hwan; Sharma, Prachi; Ibegbu, Chris; Gewirtz, Andrew; Anania, Frank; Pulendran, Bali; Suthar, Mehul S.; Grakoui, Arash

    2015-01-01

    Chronic liver disease mediated by activation of hepatic stellate cells (HSCs) leads to liver fibrosis. Here, we postulated that the immune regulatory properties of HSCs might promote the profibrogenic activity of B cells. Fibrosis is completely attenuated in carbon tetrachloride (CCl4)-treated B cell deficient μMT mice showing that B cells are required. The retinoic acid produced by HSCs augmented B cell survival, plasma cell marker CD138 expression, and IgG production. These activities were reversed following the addition of the retinoic acid inhibitor, LE540. Transcriptional profiling of fibrotic liver B cells revealed an increased expression of genes related to NF-κB activation, proinflammatory cytokine production and CD40 signaling suggesting that these B cells are activated and may be acting as inflammatory cells. Biological validation experiments also revealed increased activation (CD44 and CD86 expressions), constitutive IgG production and secretion of the proinflammatory cytokines TNF-α, MCP-1 and MIP1-α. Likewise targeted deletion of B-cell-intrinsic MyD88 signaling, an innate adaptor with involvement in RA signaling, resulted in reduced infiltration of migratory CD11c+ dendritic cells and Ly6C++ monocytes, and hence reduced liver pathology. Conclusion Our findings demonstrate that liver fibrosis occurs through a mechanism of HSC-mediated augmentation of innate B cell activity and highlight B cells as an important ‘first responders’ of the intrahepatic immune environment. PMID:25711908

  18. PI3K Signaling in Normal B Cells and Chronic Lymphocytic Leukemia (CLL)

    PubMed Central

    Okkenhaug, Klaus; Burger, Jan A.

    2016-01-01

    B cells provide immunity to extracellular pathogens by secreting a diverse repertoire of antibodies with high affinity and specificity for exposed antigens. The B cell receptor (BCR) is a transmembrane antibody, which facilitates the clonal selection of B cells producing secreted antibodies of the same specificity. The diverse antibody repertoire is generated by V(D)J recombination of heavy and light chain genes, whereas affinity maturation is mediated by activation-induced cytidine deaminase (AID)-mediated mutagenesis. These processes, which are essential for the generation of adaptive humoral immunity, also render B cells susceptible to chromosomal rearrangements and point mutations that in some cases lead to cancer. In this chapter, we will review the central role of PI3Ks in mediating signals from the B cell receptor that not only facilitate the development of functional B cell repertoire, but also support the growth and survival of neoplastic B cells, focusing on chronic lymphocytic leukemia (CLL) B cells. Perhaps because of the central role played by PI3K in BCR signaling, B cell leukemia and lymphomas are the first diseases for which a PI3K inhibitor has been approved for clinical use. PMID:26350103

  19. Role of Calcium Signaling in B Cell Activation and Biology.

    PubMed

    Baba, Yoshihiro; Kurosaki, Tomohiro

    2016-01-01

    Increase in intracellular levels of calcium ions (Ca2+) is one of the key triggering signals for the development of B cell response to the antigen. The diverse Ca2+ signals finely controlled by multiple factors participate in the regulation of gene expression, B cell development, and effector functions. B cell receptor (BCR)-initiated Ca2+ mobilization is sourced from two pathways: one is the release of Ca2+ from the intracellular stores, endoplasmic reticulum (ER), and other is the prolonged influx of extracellular Ca2+ induced by depleting the stores via store-operated calcium entry (SOCE) and calcium release-activated calcium (CRAC) channels. The identification of stromal interaction molecule 1(STIM1), the ER Ca2+ sensor, and Orai1, a key subunit of the CRAC channel pore, has now provided the tools to understand the mode of Ca2+ influx regulation and physiological relevance. Herein, we discuss our current understanding of the molecular mechanisms underlying BCR-triggered Ca2+ signaling as well as its contribution to the B cell biological processes and diseases. PMID:26369772

  20. B Cells and Autoantibodies in Multiple Sclerosis

    PubMed Central

    Pröbstel, Anne-Katrin; Sanderson, Nicholas S. R.; Derfuss, Tobias

    2015-01-01

    While over the past decades T cells have been considered key players in the pathogenesis of multiple sclerosis (MS), it has only recently become evident that B cells have a major contributing role. Our understanding of the role of B cells has evolved substantially following the clinical success of B cell-targeting therapies and increasing experimental evidence for significant B cell involvement. Rather than mere antibody-producing cells, it is becoming clear that they are team players with the capacity to prime and regulate T cells, and function both as pro- and anti-inflammatory mediators. However, despite tremendous efforts, the target antigen(s) of B cells in MS have yet to be identified. The first part of this review summarizes the clinical evidence and results from animal studies pointing to the relevance of B cells in the pathogenesis of MS. The second part gives an overview of the currently known potential autoantigen targets. The third part recapitulates and critically appraises the currently available B cell-directed therapies. PMID:26197319

  1. Rescue of “crippled” germinal center B cells from apoptosis by Epstein-Barr virus

    PubMed Central

    Mancao, Christoph; Altmann, Markus; Jungnickel, Berit; Hammerschmidt, Wolfgang

    2005-01-01

    Epstein-Barr virus (EBV) is associated with B-cell lymphomas such as Hodgkin lymphoma, Burkitt lymphoma, and post-transplantation lymphoma, which originate from clonal germinal center (GC) B cells. During the process of somatic hypermutation, GC B cells can acquire deleterious or nonsense mutations in the heavy and light immunoglobulin genes. Such mutations abrogate the cell surface expression of the B-cell receptor (BCR), which results in the elimination of these nonfunctional B cells by immediate apoptosis. EBV encodes several latent genes, among them latent membrane protein 1 (LMP1) and LMP2A, which are regularly expressed in EBV-positive Hodgkin lymphoma and posttransplantation lymphomas. Since LMP1 and LMP2A mimic the function of 2 key receptors on B cells, CD40 and BCR, respectively, we wanted to learn whether EBV infection can rescue proapoptotic GC B cells with crippling mutations in the heavy chain immunoglobulin locus from apoptosis. We show here that BCR-negative GC B cells readily enter the cell cycle upon infection with EBV in vitro and yield clonal lymphoblastoid cell lines that are incapable of expressing a functional BCR because the rearranged and formerly functional heavy chain immunoglobulin alleles carry deleterious mutations. Our findings imply an important role for EBV in the process of lymphomagenesis in certain cases of Hodgkin lymphoma and posttransplantation lymphomas. PMID:16076866

  2. PDK1 regulates VDJ recombination, cell-cycle exit and survival during B-cell development.

    PubMed

    Venigalla, Ram K C; McGuire, Victoria A; Clarke, Rosemary; Patterson-Kane, Janet C; Najafov, Ayaz; Toth, Rachel; McCarthy, Pierre C; Simeons, Frederick; Stojanovski, Laste; Arthur, J Simon C

    2013-04-01

    Phosphoinositide-dependent kinase-1 (PDK1) controls the activation of a subset of AGC kinases. Using a conditional knockout of PDK1 in haematopoietic cells, we demonstrate that PDK1 is essential for B cell development. B-cell progenitors lacking PDK1 arrested at the transition of pro-B to pre-B cells, due to a cell autonomous defect. Loss of PDK1 decreased the expression of the IgH chain in pro-B cells due to impaired recombination of the IgH distal variable segments, a process coordinated by the transcription factor Pax5. The expression of Pax5 in pre-B cells was decreased in PDK1 knockouts, which correlated with reduced expression of the Pax5 target genes IRF4, IRF8 and Aiolos. As a result, Ccnd3 is upregulated in PDK1 knockout pre-B cells and they have an impaired ability to undergo cell-cycle arrest, a necessary event for Ig light chain rearrangement. Instead, these cells underwent apoptosis that correlated with diminished expression of the pro-survival gene Bcl2A1. Reintroduction of both Pax5 and Bcl2A1 together into PDK1 knockout pro-B cells restored their ability to differentiate in vitro into mature B cells. PMID:23463102

  3. Identification of a negative regulatory role for spi-C in the murine B cell lineage.

    PubMed

    Li, Stephen K H; Solomon, Lauren A; Fulkerson, Patricia C; DeKoter, Rodney P

    2015-04-15

    Spi-C is an E26 transformation-specific family transcription factor that is highly related to PU.1 and Spi-B. Spi-C is expressed in developing B cells, but its function in B cell development and function is not well characterized. To determine whether Spi-C functions as a negative regulator of Spi-B (encoded by Spib), mice were generated that were germline knockout for Spib and heterozygous for Spic (Spib(-/-)Spic(+/-)). Interestingly, loss of one Spic allele substantially rescued B cell frequencies and absolute numbers in Spib(-/-) mouse spleens. Spib(-/-)Spic(+/-) B cells had restored proliferation compared with Spib(-/-) B cells in response to anti-IgM or LPS stimulation. Investigation of a potential mechanism for the Spib(-/-)Spic(+/-) phenotype revealed that steady-state levels of Nfkb1, encoding p50, were elevated in Spib(-/-)Spic(+/-) B cells compared with Spib(-/-) B cells. Spi-B was shown to directly activate the Nfkb1 gene, whereas Spi-C was shown to repress this gene. These results indicate a novel role for Spi-C as a negative regulator of B cell development and function. PMID:25769919

  4. Human regulatory B cells combine phenotypic and genetic hallmarks with a distinct differentiation fate.

    PubMed

    Lin, Wenyu; Cerny, Daniela; Chua, Edmond; Duan, Kaibo; Yi, June Tai Jing; Shadan, Nurhidaya Binte; Lum, Josephine; Maho-Vaillant, Maud; Zolezzi, Francesca; Wong, Siew Cheng; Larbi, Anis; Fink, Katja; Musette, Philippe; Poidinger, Michael; Calbo, Sébastien

    2014-09-01

    Regulatory B cells (B-reg) produce IL-10 and suppress inflammation in both mice and humans, but limited data on the phenotype and function of these cells have precluded detailed assessment of their contribution to host immunity. In this article, we report that human B-reg cannot be defined based on a phenotype composed of conventional B cell markers, and that IL-10 production can be elicited in both the CD27(+) memory population and naive B cell subset after only a brief stimulation in vitro. We therefore sought to obtain a better definition of IL-10-producing human B-regs using a multiparameter analysis of B cell phenotype, function, and gene expression profile. Exposure to CpG and anti-Ig are the most potent stimuli for IL-10 secretion in human B cells, but microarray analysis revealed that human B cells cotreated with these reagents resulted in only ∼0.7% of genes being differentially expressed between IL-10(+) and IL-10(-) cells. Instead, connectivity map analysis revealed that IL-10-secreting B cells are those undergoing specific differentiation toward a germinal center fate, and we identified a CD11c(+) B cell subset that was not capable of producing IL-10 even under optimal conditions. Our findings will assist in the identification of a broader range of human pro-B-reg populations that may represent novel targets for immunotherapy. PMID:25080484

  5. Proteomic Changes during B Cell Maturation: 2D-DIGE Approach

    PubMed Central

    Salonen, Johanna; Rönnholm, Gunilla; Kalkkinen, Nisse; Vihinen, Mauno

    2013-01-01

    B cells play a pivotal role in adaptive immune system, since they maintain a delicate balance between recognition and clearance of foreign pathogens and tolerance to self. During maturation, B cells progress through a series of developmental stages defined by specific phenotypic surface markers and the rearrangement and expression of immunoglobulin (Ig) genes. To get insight into B cell proteome during the maturation pathway, we studied differential protein expression in eight human cell lines, which cover four distinctive developmental stages; early pre-B, pre-B, plasma cell and immature B cell upon anti-IgM stimulation. Our two-dimensional differential gel electrophoresis (2D-DIGE) and mass spectrometry based proteomic study indicates the involvement of large number of proteins with various functions. Notably, proteins related to cytoskeleton were relatively highly expressed in early pre-B and pre-B cells, whereas plasma cell proteome contained endoplasmic reticulum and Golgi system proteins. Our long time series analysis in anti-IgM stimulated Ramos B cells revealed the dynamic regulation of cytoskeleton organization, gene expression and metabolic pathways, among others. The findings are related to cellular processes in B cells and are discussed in relation to experimental information for the proteins and pathways they are involved in. Representative 2D-DIGE maps of different B cell maturation stages are available online at http://structure.bmc.lu.se/BcellProteome/. PMID:24205016

  6. Ikaros limits follicular B cell activation by regulating B cell receptor signaling pathways.

    PubMed

    Heizmann, Beate; Sellars, MacLean; Macias-Garcia, Alejandra; Chan, Susan; Kastner, Philippe

    2016-02-12

    The Ikaros transcription factor is essential for early B cell development, but its effect on mature B cells is debated. We show that Ikaros is required to limit the response of naive splenic B cells to B cell receptor signals. Ikaros deficient follicular B cells grow larger and enter cell cycle faster after anti-IgM stimulation. Unstimulated mutant B cells show deregulation of positive and negative regulators of signal transduction at the mRNA level, and constitutive phosphorylation of ERK, p38, SYK, BTK, AKT and LYN. Stimulation results in enhanced and prolonged ERK and p38 phosphorylation, followed by hyper-proliferation. Pharmacological inhibition of ERK and p38 abrogates the increased proliferative response of Ikaros deficient cells. These results suggest that Ikaros functions as a negative regulator of follicular B cell activation. PMID:26775846

  7. Cernunnos influences human immunoglobulin class switch recombination and may be associated with B cell lymphomagenesis.

    PubMed

    Du, Likun; Peng, Roujun; Björkman, Andrea; Filipe de Miranda, Noel; Rosner, Cornelia; Kotnis, Ashwin; Berglund, Mattias; Liu, Chonghai; Rosenquist, Richard; Enblad, Gunilla; Sundström, Christer; Hojjat-Farsangi, Mohammad; Rabbani, Hodjattallah; Teixeira, Manuel R; Revy, Patrick; Durandy, Anne; Zeng, Yixin; Gennery, Andrew R; de Villartay, Jean-Pierre; Pan-Hammarström, Qiang

    2012-02-13

    Cernunnos is involved in the nonhomologous end-joining (NHEJ) process during DNA double-strand break (DSB) repair. Here, we studied immunoglobulin (Ig) class switch recombination (CSR), a physiological process which relies on proper repair of the DSBs, in B cells from Cernunnos-deficient patients. The pattern of in vivo generated CSR junctions is altered in these cells, with unusually long microhomologies and a lack of direct end-joining. The CSR junctions from Cernunnos-deficient patients largely resemble those from patients lacking DNA ligase IV, Artemis, or ATM, suggesting that these factors are involved in the same end-joining pathway during CSR. By screening 269 mature B cell lymphoma biopsies, we also identified a somatic missense Cernunnos mutation in a diffuse large B cell lymphoma sample. This mutation has a dominant-negative effect on joining of a subset of DNA ends in an in vitro NHEJ assay. Translocations involving both Ig heavy chain loci and clonal-like, dynamic IgA switching activities were observed in this tumor. Collectively, our results suggest a link between defects in the Cernunnos-dependent NHEJ pathway and aberrant CSR or switch translocations during the development of B cell malignancies. PMID:22312109

  8. Germline antibody V regions as determinants of clonal persistence and malignant growth in the B cell compartment.

    PubMed Central

    Förster, I; Gu, H; Rajewsky, K

    1988-01-01

    Antibody V gene expression was studied in a subpopulation of murine B cells (Ly1 B) which was enriched by cell transfer and had earlier been shown to persist in the immune system over long periods of time. Among 17 hybridomas derived from Ly1 B cells of two different mice, eight were progeny of only three different B cell precursors which apparently had expanded to clones of large size, in the absence of detectable somatic mutation of their antibody V regions. Furthermore, several clonally independent cells expressed identical, unmutated V genes. These data define a novel pathway of B cell development in which cells expressing a selected set of germline antibodies are continuously propagated in the organism. A Ly1 B cell leukemia derived from a similar transfer experiment expressed a VH gene that had been isolated in three independent Ly1 B cell hybridomas, suggesting that the leukemic cells had been equally selected in this pathway. Images PMID:3264787

  9. Expression of immunoglobulin receptors with distinctive features indicating antigen selection by marginal zone B cells from human spleen.

    PubMed

    Colombo, Monica; Cutrona, Giovanna; Reverberi, Daniele; Bruno, Silvia; Ghiotto, Fabio; Tenca, Claudya; Stamatopoulos, Kostas; Hadzidimitriou, Anastasia; Ceccarelli, Jenny; Salvi, Sandra; Boccardo, Simona; Calevo, Maria Grazia; De Santanna, Amleto; Truini, Mauro; Fais, Franco; Ferrarini, Manlio

    2013-01-01

    Marginal zone (MZ) B cells, identified as surface (s)IgM(high)sIgD(low)CD23(low/-)CD21(+)CD38(-) B cells, were purified from human spleens, and the features of their V(D)J gene rearrangements were investigated and compared with those of germinal center (GC), follicular mantle (FM) and switched memory (SM) B cells. Most MZ B cells were CD27(+) and exhibited somatic hypermutations (SHM), although to a lower extent than SM B cells. Moreover, among MZ B-cell rearrangements, recurrent sequences were observed, some of which displayed intraclonal diversification. The same diversifying sequences were detected in very low numbers in GC and FM B cells and only when a highly sensitive, gene-specific polymerase chain reaction was used. This result indicates that MZ B cells could expand and diversify in situ and also suggested the presence of a number of activation-induced cytidine deaminase (AID)-expressing B cells in the MZ. The notion of antigen-driven expansion/selection in situ is further supported by the VH CDR3 features of MZ B cells with highly conserved amino acids at specific positions and by the finding of shared ("stereotyped") sequences in two different spleens. Collectively, the data are consistent with the notion that MZ B cells are a special subset selected by in situ antigenic stimuli. PMID:23877718

  10. Expression of chloroplast protein genes during the cell cycle of Chlamydomonas reinhardtii: evidence for transcriptional and translocational control

    SciTech Connect

    Herrin, D.L.

    1986-01-01

    Chlamydomonas reinhardtii cells, growing synchronously under a repeating 12 h light:12 h dark cycle, were used to investigate the synthesis and regulation of chloroplast proteins. The cells accumulate chlorophyll, the major thylakoid membrane proteins, and ribulose-1,5-bisphosphate carboxylase (RuBPCase) during the light (G1) period of the cell cycle. Pulse-labeling in vivo with (/sup 3/H)arginine, and analysis of the protein synthetic capacity of thylakoid-bound polysomes in vitro, shows that these proteins are synthesized de novo during the light. Specific antibody and cloned DNA probes were obtained and used to estimate translatable and/or steady-state mRNA levels for light-harvesting (LHCII) and reaction center (D-1 and D-2) polypeptides of photosystem II, a light-harvesting polypeptide of photosystem I (LHCI), and the large (LS) and small (SS) subunits of RuBPCase. Levels of mRNA for the nuclear-encoded LHCI, LHCII and SS correlated with the synthesis of these polypeptides in vivo; they were higher in the light period and several-folded lower or absent during the dark period. The results suggest that synthesis of nuclear-encoded chloroplast proteins are regulated primarily by the level of mRNA. In contrast, regulation of chloroplast-encoded genes is achieved by controlling the translation of mRNA that is constitutively present, and by transcriptional mechanisms during light induction.

  11. Cloning of the gene encoding the. delta. subunit of the human T-cell receptor reveals its physical organization within the. alpha. -subunit locus and its involvement in chromosome translocations in T-cell malignancy

    SciTech Connect

    Isobe, M.; Russo, G.; Haluska, F.G.; Croce, C.M. )

    1988-06-01

    By taking advantage of chromosomal walking techniques, the authors have obtained clones that encompass the T-cell receptor (TCR) {delta}-chain gene. They analyzed clones spanning the entire J{sub {alpha}} region extending 115 kilobases 5{prime} of the TCR {alpha}-chain constant region and have shown that the TCR {delta}-chain gene is located over 80 kilobases 5{prime} of C{sub {alpha}}. TCR {delta}-chain gene is rearranged in the {gamma}/{delta}-expressing T-cell line Peer and is deleted in {alpha}/{beta}-expressing T-cell lines. Sequence analysis of portions of this genomic region demonstrates its identity with previously described cDNA clones corresponding to the C{sub {delta}} and J{sub {delta}} segments. Furthermore, they have analyzed a t(8;14)-(q24;q11) chromosome translocation from a T-cell leukemia and have shown that the J{sub {delta}} segment is rearranged in cells deriving from this tumor and probably directly involved in the translocation. Thus, the newly clones TCR {delta} chain is implicated in the genesis of chromosome translocations in T-cell malignancies carrying cytogenetic abnormalities of band 14q11.

  12. Identification of disrupted AUTS2 and EPHA6 genes by array painting in a patient carrying a de novo balanced translocation t(3;7) with intellectual disability and neurodevelopment disorder.

    PubMed

    Schneider, Anouck; Puechberty, Jacques; Ng, Bee Ling; Coubes, Christine; Gatinois, Vincent; Tournaire, Magali; Girard, Manon; Dumont, Bruno; Bouret, Pauline; Magnetto, Julia; Baghdadli, Amaria; Pellestor, Franck; Geneviève, David

    2015-12-01

    Intellectual disability (ID) is a frequent feature but is highly clinically and genetically heterogeneous. The establishment of the precise diagnosis in patients with ID is challenging due to this heterogeneity but crucial for genetic counseling and appropriate care for the patients. Among the etiologies of patients with ID, apparently balanced de novo rearrangements represent 0.6%. Several mechanisms explain the ID in patients with apparently balanced de novo rearrangement. Among them, disruption of a disease gene at the breakpoint, is frequently evoked. In this context, technologies recently developed are used to characterize precisely such chromosomal rearrangements. Here, we report the case of a boy with ID, facial features and autistic behavior who is carrying a de novo balanced reciprocal translocation t(3;7)(q11.2;q11.22)dn. Using microarray analysis, array painting (AP) technology combined with molecular study, we have identified the interruption of the autism susceptibility candidate 2 gene (AUTS2) and EPH receptor A6 gene (EPHA6). We consider that the disruption of AUTS2 explains the phenotype of the patient; the exact role of EPHA6 in human pathology is not well defined. Based on the observation of recurrent germinal and somatic translocations involving AUTS2 and the molecular environment content, we put forward the hypothesis that the likely chromosomal mechanism responsible for the translocation could be due either to replicative stress or to recombination-based mechanisms. PMID:26333717

  13. Investigational Immunotherapeutics for B-Cell Malignancies

    PubMed Central

    Quintás-Cardama, Alfonso; Wierda, William; O'Brien, Susan

    2010-01-01

    The use of rituximab-based chemoimmunotherapy regimens has remarkably improved the response rates, long-term outcomes, and quality of life of patients with B-cell malignancies. However, a substantial number of patients exhibit either primary or acquired resistance to rituximab, which suggests that novel immunotherapeutics with distinct mechanisms of action are necessary. A series of monoclonal antibodies with specificity against different surface antigens expressed on malignant B cells (eg, CD22, CD23, CD40, CD70) and novel immunotherapeutics (eg, bispecific monoclonal antibodies, small-modular immunopharmaceuticals, T-cell engagers) are currently in clinical or final preclinical stages of development. Although these agents offer reason for optimism, considerable challenges lie ahead in establishing their real clinical value, as well as in integrating them into current therapeutic algorithms for patients with B-cell malignancies. This review describes some of the most promising investigational immunotherapeutics for the treatment of B-cell malignancies. PMID:20048186

  14. Clonal relationships in recurrent B-cell lymphomas.

    PubMed

    Lee, Seung Eun; Kang, So Young; Yoo, Hae Yong; Kim, Seok Jin; Kim, Won Seog; Ko, Young Hyeh

    2016-03-15

    Immunoglobulin (Ig) gene rearrangements remain largely unmodified during the clonal expansion of neoplastic cells. We investigated the clonal relationships between lymphoma components at diagnosis and at relapse by analyzing Ig gene rearrangements. A BIOMED-2 multiplex polymerase chain reaction (PCR) assay was performed in 27 patients using formalin-fixed paraffin embedded tissues, with subsequent cloning and sequencing of the amplified Ig genes in 17 patients. All 27 cases of primary and corresponding relapsed tumors showed monoclonal rearrangements of the Ig genes by BIOMED-2 PCR. Whereas IgVH or IgVK fragment lengths were identical in 8/27 pairs (30%), fragment lengths differed in 19/27 pairs (70%). In 17 cases analyzed by sequencing, an identical VDJ gene rearrangement was confirmed in 4/4 pairs (100%) with the same fragment lengths and in 10/13 pairs (77%) with different fragment lengths. Four of 17 primary lymphomas had multiple VDJ rearrangements, and three of them showed an unrelated relapse. Unrelated relapse was observed in 1/8 mantle cell lymphomas, 1/5 diffuse large B-cell lymphomas, and a large B cell lymphoma developed in a patient with a small lymphocytic lymphoma. Unrelated relapses developed after a longer disease-free interval and tended to show poorer outcome compared with related relapse. In summary, relapse of a lymphoma from an unrelated clone is uncommon, but can occur in B-cell lymphomas. Clonal relationships should be determined by sequencing of the Ig genes, and not just by comparing the PCR product size. PMID:26848863

  15. Clonal relationships in recurrent B-cell lymphomas

    PubMed Central

    Lee, Seung Eun; Kang, So Young; Yoo, Hae Yong; Kim, Seok Jin; Kim, Won Seog; Ko, Young Hyeh

    2016-01-01

    Immunoglobulin (Ig) gene rearrangements remain largely unmodified during the clonal expansion of neoplastic cells. We investigated the clonal relationships between lymphoma components at diagnosis and at relapse by analyzing Ig gene rearrangements. A BIOMED-2 multiplex polymerase chain reaction (PCR) assay was performed in 27 patients using formalin-fixed paraffin embedded tissues, with subsequent cloning and sequencing of the amplified Ig genes in 17 patients. All 27 cases of primary and corresponding relapsed tumors showed monoclonal rearrangements of the Ig genes by BIOMED-2 PCR. Whereas IgVH or IgVK fragment lengths were identical in 8/27 pairs (30%), fragment lengths differed in 19/27 pairs (70%). In 17 cases analyzed by sequencing, an identical VDJ gene rearrangement was confirmed in 4/4 pairs (100%) with the same fragment lengths and in 10/13 pairs (77%) with different fragment lengths. Four of 17 primary lymphomas had multiple VDJ rearrangements, and three of them showed an unrelated relapse. Unrelated relapse was observed in 1/8 mantle cell lymphomas, 1/5 diffuse large B-cell lymphomas, and a large B cell lymphoma developed in a patient with a small lymphocytic lymphoma. Unrelated relapses developed after a longer disease-free interval and tended to show poorer outcome compared with related relapse. In summary, relapse of a lymphoma from an unrelated clone is uncommon, but can occur in B-cell lymphomas. Clonal relationships should be determined by sequencing of the Ig genes, and not just by comparing the PCR product size. PMID:26848863

  16. Essential control of early B-cell development by Mef2 transcription factors.

    PubMed

    Herglotz, Julia; Unrau, Ludmilla; Hauschildt, Friderike; Fischer, Meike; Kriebitzsch, Neele; Alawi, Malik; Indenbirken, Daniela; Spohn, Michael; Müller, Ursula; Ziegler, Marion; Schuh, Wolfgang; Jäck, Hans-Martin; Stocking, Carol

    2016-02-01

    The sequential activation of distinct developmental gene networks governs the ultimate identity of a cell, but the mechanisms involved in initiating downstream programs are incompletely understood. The pre-B-cell receptor (pre-BCR) is an important checkpoint of B-cell development and is essential for a pre-B cell to traverse into an immature B cell. Here, we show that activation of myocyte enhancer factor 2 (Mef2) transcription factors (TFs) by the pre-BCR is necessary for initiating the subsequent genetic network. We demonstrate that B-cell development is blocked at the pre-B-cell stage in mice deficient for Mef2c and Mef2d TFs and that pre-BCR signaling enhances the transcriptional activity of Mef2c/d through phosphorylation by the Erk5 mitogen-activating kinase. This activation is instrumental in inducing Krüppel-like factor 2 and several immediate early genes of the AP1 and Egr family. Finally, we show that Mef2 proteins cooperate with the products of their target genes (Irf4 and Egr2) to induce secondary waves of transcriptional regulation. Our findings uncover a novel role for Mef2c/d in coordinating the transcriptional network that promotes early B-cell development. PMID:26660426

  17. Regulated selection of germinal-center cells into the memory B cell compartment.

    PubMed

    Shinnakasu, Ryo; Inoue, Takeshi; Kometani, Kohei; Moriyama, Saya; Adachi, Yu; Nakayama, Manabu; Takahashi, Yoshimasa; Fukuyama, Hidehiro; Okada, Takaharu; Kurosaki, Tomohiro

    2016-07-01

    Despite the importance of memory B cells in protection from reinfection, how such memory cells are selected and generated during germinal-center (GC) reactions remains unclear. We found here that light-zone (LZ) GC B cells with B cell antigen receptors (BCRs) of lower affinity were prone to enter the memory B cell pool. Mechanistically, cells in this memory-prone fraction had higher expression of the transcriptional repressor Bach2 than that of their counterparts with BCRs of higher affinity. Haploinsufficiency of Bach2 resulted in reduced generation of memory B cells, independently of suppression of the gene encoding the transcription factor Blimp-1. Bach2 expression in GC cells was inversely correlated with the strength of help provided by T cells. Thus, we propose an instructive model in which weak help from T cells maintains relatively high expression of Bach2, which predisposes GC cells to enter the memory pool. PMID:27158841

  18. Clinical Severity of PGK1 Deficiency Due To a Novel p.E120K Substitution Is Exacerbated by Co-inheritance of a Subclinical Translocation t(3;14)(q26.33;q12), Disrupting NUBPL Gene.

    PubMed

    David, Dezső; Almeida, Lígia S; Maggi, Maristella; Araújo, Carlos; Imreh, Stefan; Valentini, Giovanna; Fekete, György; Haltrich, Irén

    2015-01-01

    Carriers of cytogenetically similar, apparently balanced familial chromosome translocations not always exhibit the putative translocation-associated disease phenotype. Additional genetic defects, such as genomic imbalance at breakpoint regions or elsewhere in the genome, have been reported as the most plausible explanation.By means of comprehensive molecular and functional analyses, additional to careful dissection of the t(3;14)(q26.33;q12) breakpoints, we unveil a novel X-linked PGK1 mutation and examine the contribution of these to the extremely severe clinical phenotype characterized by hemolytic anemia and neuromyopathy.The 3q26.33 breakpoint is 40 kb from the 5' region of tetratricopeptide repeat domain 14 gene (TTC14), whereas the 14q12 breakpoint is within IVS6 of nucleotide-binding protein-like gene (NUBPL) that encodes a mitochondrial complex I assembly factor. Disruption of NUBPL in translocation carriers leads to a decrease in the corresponding mRNA accompanied by a decrease in protein level. Exclusion of pathogenic genomic imbalance and reassessment of familial clinical history indicate the existence of an additional causal genetic defect. Consequently, by WES a novel mutation, c.358G>A, p.E120K, in the X-linked phosphoglycerate kinase 1 (PGK1) was identified that segregates with the phenotype. Specific activity, kinetic properties, and thermal stability of this enzyme variant were severely affected. The novel PGK1 mutation is the primary genetic alteration underlying the reported phenotype as the translocation per se only results in a subclinical phenotype. Nevertheless, its co-inheritance presumably exacerbates PGK1-deficient phenotype, most likely due to a synergistic interaction of the affected genes both involved in cell energy supply. PMID:25814383

  19. Germinal Center B-Cell-Associated Nuclear Protein (GANP) Involved in RNA Metabolism for B Cell Maturation.

    PubMed

    Sakaguchi, N; Maeda, K

    2016-01-01

    Germinal center B-cell-associated nuclear protein (GANP) is upregulated in germinal center B cells against T-cell-dependent antigens in mice and humans. In mice, GANP depletion in B cells impairs antibody affinity maturation. Conversely, its transgenic overexpression augments the generation of high-affinity antigen-specific B cells. GANP associates with AID in the cytoplasm, shepherds AID into the nucleus, and augments its access to the rearranged immunoglobulin (Ig) variable (V) region of the genome in B cells, thereby precipitating the somatic hypermutation of V region genes. GANP is also upregulated in human CD4(+) T cells and is associated with APOBEC3G (A3G). GANP interacts with A3G and escorts it to the virion cores to potentiate its antiretroviral activity by inactivating HIV-1 genomic cDNA. Thus, GANP is characterized as a cofactor associated with AID/APOBEC cytidine deaminase family molecules in generating diversity of the IgV region of the genome and genetic alterations of exogenously introduced viral targets. GANP, encoded by human chromosome 21, as well as its mouse equivalent on chromosome 10, contains a region homologous to Saccharomyces Sac3 that was characterized as a component of the transcription/export 2 (TREX-2) complex and was predicted to be involved in RNA export and metabolism in mammalian cells. The metabolism of RNA during its maturation, from the transcription site at the chromosome within the nucleus to the cytoplasmic translation apparatus, needs to be elaborated with regard to acquired and innate immunity. In this review, we summarize the current knowledge on GANP as a component of TREX-2 in mammalian cells. PMID:27235683

  20. Dynamic Contrast-Enhanced CT Characterization of Xp11.2 Translocation/TFE3 Gene Fusions versus Papillary Renal Cell Carcinomas

    PubMed Central

    He, Jian; Zhou, Kefeng; Zhu, Bin; Zhang, Gutian; Li, Xiaogong; Guo, Hongqian; Gan, Weidong; Zhou, Zhengyang; Liu, Tian

    2015-01-01

    Purpose. To compare the differences of CT characteristics between renal cell carcinomas (RCCs) associated with Xp11.2 translocation/TFE3 gene fusions (Xp11.2 RCCs) and papillary cell renal cell carcinomas (PRCCs). Methods. CT images and clinical records of 64 patients (25 Xp11.2 RCCs, 15 type 1 and 24 type 2 PRCCs) were analyzed and compared retrospectively. Results. Xp11.2 RCC more frequently affected young (30.7 ± 8.7 years) women (16/25, 64%) with gross hematuria (12/25, 48%), while PRCC more frequently involved middle-aged (54.8 ± 11.1 years) men (28/39, 71.8%) asymptomatically. Xp11.2 RCC tended to be heterogeneous density with some showing circular calcification. Lesion sizes of Xp11.2 RCC (5.4 ± 2.2 cm) and type 2 PRCC (5.7 ± 2.5 cm) were significantly larger than that of type 1 PRCC (3.8 ± 1.8 cm). Xp11.2 RCC contained more cystic components (22/25, 88%) than type 1 PRCC (all solid) and type 2 PRCC (9/24, 36.0%). Type 1 PRCC (13/15, 86.7%) and Xp11.2 RCC (21/25, 84.0%) showed more clear boundary than type 2 PRCC (12/24, 50.0%). Conclusion. CT features including diameter, boundary, attenuation, nature, and circular calcification of the tumor, combined with demographic information and symptoms, may be useful to differentiate Xp11.2 RCC from different subtypes of PRCC. PMID:26636097

  1. MDCT findings of renal cell carcinoma associated with Xp11.2 translocation and TFE3 gene fusion and papillary renal cell carcinoma.

    PubMed

    Woo, Sungmin; Kim, Sang Youn; Lee, Myoung Seok; Moon, Kyung Chul; Kim, See Hyung; Cho, Jeong Yeon; Kim, Seung Hyup

    2015-03-01

    OBJECTIVE. The purpose of this study was to compare the MDCT features of renal cell carcinoma (RCC) associated with Xp11.2 translocation and TFE3 gene fusion (Xp11 RCC) and papillary RCC. MATERIALS AND METHODS. The study included 19 and 39 patients with histologically proven Xp11 RCC and papillary RCC, respectively, who underwent multiphase renal MDCT before nephrectomy. CT findings were compared between Xp11 RCC and papillary RCC using the Student t test and chi-square test. Subgroup analyses of small (< 4 cm) renal masses for these features were performed. RESULTS. Patients with Xp11 RCC were younger (p < 0.001), and it was more prevalent in women (p = 0.007). Tumor size was greater in Xp11 RCC (p = 0.004) and more common in cystic change (p < 0.001). Calcification and unenhanced high-attenuating areas were more frequent in Xp11 RCC (p = 0.001 and 0.026, respectively). Xp11 RCCs were more prevalent in lymph node and distant metastasis (p < 0.001 and p = 0.031, respectively). Xp11 RCC and papillary RCC showed no significant difference in epicenter, margin, and venous and collecting duct invasion (p = 0.403-1.000). Although Xp11 RCC and papillary RCC had lower attenuation than the renal cortex on corticomedullary and early excretory phases (p < 0.001), only Xp11 RCCs were hyperattenuating to the cortex on the unenhanced phase (p < 0.001). Xp11 RCCs had significantly higher attenuation compared with papillary RCCs on all phases (p ≤ 0.02). Regarding small masses, cystic change, calcification, and lymph node metastasis were still more frequent in Xp11 RCCs (p ≤ 0.016). CONCLUSION. Greater size, more cystic change, calcification, high-attenuating areas on unenhanced imaging, and lymph node and distant metastasis were helpful for differentiating Xp11 RCC from papillary RCC. PMID:25714283

  2. Vitamin A and immune function: retinoic acid modulates population dynamics in antigen receptor and CD38-stimulated splenic B cells.

    PubMed

    Chen, Qiuyan; Ross, A Catharine

    2005-10-01

    Vitamin A and its active metabolite, all-trans retinoic acid (RA), regulate the antibody response in vivo, although the underlying mechanisms are not well understood. We have investigated the regulation by RA of B cell population dynamics and Ig gene expression in purified splenic mouse B cells stimulated through the B cell antigen receptor (BCR) and/or CD38, a BCR coreceptor. After ligation of the BCR and/or CD38, B cells became more heterogeneous in size. RA substantially restrained this change, concomitant with inhibition of cell proliferation. To examine B cell heterogeneity more closely, we categorized stimulated B cells by size (forward angle light scatter) and determined cell division dynamics, germ-line Ig heavy chain gene transcription and surface IgG1 (sIgG1) expression. Flow cytometric analysis of carboxyfluorescein diacetate succinimidyl ester-labeled B cells costained for sIgG1 showed that the more proliferative groups of B cells were smaller, whereas cells expressing more sIgG1 were larger. RA enriched the latter population, whereas cell division frequency in general and the number of smaller B cells that had undergone division cycles were reduced. Although RA significantly inhibited Ig germ-line transcript levels in the total B cell population, CD19(-)IgG1(+) B cells, which represent a more differentiated phenotype, were enriched. Furthermore, pax-5 mRNA was decreased and activation-induced cytidine deaminase mRNA was increased in RA-treated stimulated B cells. Thus, RA regulated factors known to be required for Ig class switch recombination and modulated the population dynamics of ligation-stimulated B cells, while promoting the progression of a fraction of B cells into differentiated sIgG-expressing cells. PMID:16093312

  3. Lack of glucocorticoid-induced leucine zipper (GILZ) deregulates B-cell survival and results in B-cell lymphocytosis in mice

    PubMed Central

    Bruscoli, Stefano; Biagioli, Michele; Sorcini, Daniele; Frammartino, Tiziana; Cimino, Monica; Sportoletti, Paolo; Mazzon, Emanuela; Bereshchenko, Oxana

    2015-01-01

    Glucocorticoids (GC) are widely used as antiinflammatory/immunosuppressive drugs and antitumor agents in several types of lymphoma and leukemia. Therapeutic doses of GC induce growth-suppressive and cytotoxic effects on various leukocytes including B cells. Molecular mechanisms of GC action include induction of GC target genes. Glucocorticoid-induced leucine zipper (GILZ) is a rapidly, potently, and invariably GC-induced gene. It mediates a number of GC effects, such as control of cell proliferation, differentiation, and apoptosis. Here we show that deletion of GILZ in mice leads to an accumulation of B lymphocytes in the bone marrow, blood, and lymphoid tissues. Gilz knockout (KO) mice develop a progressive nonlethal B lymphocytosis, with expansion of B220+ cells in the bone marrow and in the periphery, dependent on increased B-cell survival. Decreased B-cell apoptosis in mice lacking GILZ correlates with increased NF-κB transcriptional activity and Bcl-2 expression. B cell–specific gilz KO mice confirmed that the effect of GILZ deletion is B-cell self-intrinsic. These results establish GILZ as an important regulator of B-cell survival and suggest that the deregulation of GILZ expression could be implicated in the pathogenesis of B-cell disorders. PMID:26276664

  4. Autophagy is dispensable for B-cell development but essential for humoral autoimmune responses.

    PubMed

    Arnold, J; Murera, D; Arbogast, F; Fauny, J-D; Muller, S; Gros, F

    2016-05-01

    To gain new insight into the role of B-cell autophagy, we generated two novel mouse models deficient for the autophagy-related gene (Atg)5, one from the outset pro-B cell stage (Atg5(f/-) Mb1 cre) and the other in mature B cells only (Atg5(f/-) CD21 cre). We show that autophagy is dispensable for pro- to pre-B cell transition, but necessary at a basal level to maintain normal numbers of peripheral B cells. It appears non-essential for B-cell activation under B-cell receptor stimulation but required for their survival after lipopolysaccharide stimulation that drives plasmablast differentiation and for specific IgM production after immunization. Results obtained using Atg5(f/-) CD21 cre × C57BL/6(lpr/lpr) autoimmune-prone mice show that B-cell autophagy is involved in the maintenance of anti-nuclear antibody secretion, elevated number of long-lived plasma cells, and sustains IgG deposits in the kidneys. Thus, treatments specifically targeting autophagy might be beneficial in systemic autoimmune diseases. PMID:26586568

  5. A novel selection system for chromosome translocations in Saccharomyces cerevisiae.

    PubMed Central

    Tennyson, Rachel B; Ebran, Nathalie; Herrera, Anissa E; Lindsley, Janet E

    2002-01-01

    Chromosomal translocations are common genetic abnormalities found in both leukemias and solid tumors. While much has been learned about the effects of specific translocations on cell proliferation, much less is known about what causes these chromosome rearrangements. This article describes the development and use of a system that genetically selects for rare translocation events using the yeast Saccharomyces cerevisiae. A translocation YAC was created that contains the breakpoint cluster region from the human MLL gene, a gene frequently involved in translocations in leukemia patients, flanked by positive and negative selection markers. A translocation between the YAC and a yeast chromosome, whose breakpoint falls within the MLL DNA, physically separates the markers and forms the basis for the selection. When RAD52 is deleted, essentially all of the selected and screened cells contain simple translocations. The detectable translocation rates are the same in haploids and diploids, although the mechanisms involved and true translocation rates may be distinct. A unique double-strand break induced within the MLL sequences increases the number of detectable translocation events 100- to 1000-fold. This novel system provides a tractable assay for answering basic mechanistic questions about the development of chromosomal translocations. PMID:11973293

  6. APE/Ref-1 makes fine-tuning of CD40-induced B cell proliferation

    PubMed Central

    Merluzzi, Sonia; Gri, Giorgia; Gattei, Valter; Pagano, Michele; Pucillo, Carlo

    2009-01-01

    Apurinic/apyrimidinic endonuclease-1/Redox factor-1, a multifunctional DNA base excision repair and redox regulation enzyme, plays an important role in oxidative signalling, transcription factor regulation, and cell cycle control. Recently, we have demonstrated that following the triggering of CD40 on B cells, APE/Ref-1 translocates from the cytoplasm to the nucleus and regulates the activity of B cell-specific transcription factors. In the present paper we investigate whether APE/Ref-1 plays a role in controlling CD40-mediated B cell proliferation too. We demonstrate a concurrent increase in proliferation and decrease in apoptosis of primary mouse B cells activated by CD40 cross-linking and transfected with functional APE/Ref-1 antisense oligonucleotide. Moreover, we provide evidence that a redox-mediated signalling mechanism is involved in this process and we propose that APE/Ref-1, controlling the intracellular redox state, may also affect the cell cycle by inducing nucleus-cytoplasm redistribution of p21. Together, these findings suggest that APE/Ref-1 could act as a negative regulator in an adaptive response to elevated ROS levels following CD40 cross-linking. Considering the important role of ROS and APE/Ref-1 in CD40-mediated B cell proliferation, our data will contribute to understand the mechanisms of tumor escape and suggest APE/Ref-1 as a novel target for tumor therapeutic approaches. PMID:18617267

  7. Functionally Responsive Self-Reactive B Cells of Low-Affinity Express Reduced Levels of Surface IgM1

    PubMed Central

    Kirchenbaum, Greg A.; St. Clair, James B.; Detanico, Thiago; Aviszus, Katja; Wysocki, Lawrence J.

    2014-01-01

    SUMMARY Somatic gene rearrangement generates a diverse repertoire of B cells, including B cell receptors (BCR) possessing a range of affinities for self-Ag. Newly generated B cells express high and relatively uniform amounts of surface IgM (sIgM), while follicular (FO) B cells express sIgM at widely varying levels. It is plausible, therefore, that down-modulation of sIgM serves as a mechanism to maintain weakly self-reactive B cells in a responsive state by decreasing their avidity for self-Ag. We tested this hypothesis by performing comparative functional tests with FO IgMhi and IgMlo B cells from the unrestricted repertoire of wildtype (WT) mice. We found that FO IgMlo B cells mobilized Ca2+ equivalently to IgMhi B cells when the same number of sIgM molecules was engaged. In agreement, FO IgMlo B cells were functionally competent to produce an antibody response following adoptive transfer. The FO IgMlo cell population had elevated levels of Nur77 transcript, and was enriched with nuclear-reactive specificities. Hybridoma sampling revealed that these BCR were of low affinity. Collectively, these results suggest that sIgM down-modulation by low-affinity, self-reactive B cells preserves their immunocompetence and circumvents classical peripheral tolerance mechanisms that would otherwise reduce diversity within the B cell compartment. PMID:24375379

  8. Distinct TLR-mediated cytokine production and immunoglobulin secretion in human newborn naïve B cells.

    PubMed

    Pettengill, Matthew A; van Haren, Simon D; Li, Ning; Dowling, David J; Bergelson, Ilana; Jans, Jop; Ferwerda, Gerben; Levy, Ofer

    2016-08-01

    Neonatal innate immunity is distinct from that of adults, which may contribute to increased susceptibility to infection and limit vaccine responses. B cells play critical roles in protection from infection and detect PAMPs via TLRs, that, when co-activated with CD40, can drive B-cell proliferation and Ab production. We characterized the expression of TLRs in circulating B cells from newborns and adults, and evaluated TLR- and CD40-mediated naïve B-cell class-switch recombination (CSR) and cytokine production. Gene expression levels of most TLRs was similar between newborn and adult B cells, except that newborn naïve B cells expressed more TLR9 than adult naïve B cells. Neonatal naïve B cells demonstrated impaired TLR2- and TLR7- but enhanced TLR9-mediated cytokine production. Significantly fewer newborn naïve B cells underwent CSR to produce IgG, an impairment also noted with IL-21 stimulation. Additionally, co-stimulation via CD40 and TLRs induced greater cytokine production in adult B cells. Thus, while newborn naïve B cells demonstrate adult-level expression of TLRs and CD40, the responses to stimulation of these receptors are distinct. Relatively high expression of TLR9 and impaired CD40-mediated Ig secretion contributes to distinct innate and adaptive immunity of human newborns and may inform novel approaches to early-life immunization. PMID:27252169

  9. Pro-B-cell-specific transcription and proapoptotic function of protein kinase Ceta.

    PubMed

    Morrow, T A; Muljo, S A; Zhang, J; Hardwick, J M; Schlissel, M S

    1999-08-01

    Using a subtractive cloning scheme on cDNA prepared from primary pro-B and pre-B cells, we identified several genes whose products regulate apoptosis. We further characterized one of these genes, encoding protein kinase Ceta (PKCeta). PKCeta transcripts were readily detected in pro-B cells but were absent in pre-B cells. Although both a full-length and a truncated form of PKCeta were detectable in bone marrow pro-B cells, transition to the pre-B-cell stage was associated with increased relative levels of truncated PKCeta. We found that PKCeta is proteolyzed in apoptotic lymphocytes, generating a kinase-active fragment identical to the truncated form which is capable of inducing apoptosis when expressed in a pro-B cell line. Caspase-3 can generate an identical PKCeta cleavage product in vitro, and caspase inhibitors prevent the generation of this product during apoptosis in transfected cell lines. Inducible overexpression of either the full-length or truncated form of PKCeta results in cell cycle arrest at the G(1)/S transition. These results suggest that the expression and proteolytic activation of PKCeta play an important role in the regulation of cell division and cell death during early B-cell development. PMID:10409750

  10. A recurrent dominant negative E47 mutation causes agammaglobulinemia and BCR(-) B cells.

    PubMed

    Boisson, Bertrand; Wang, Yong-Dong; Bosompem, Amma; Ma, Cindy S; Lim, Annick; Kochetkov, Tatiana; Tangye, Stuart G; Casanova, Jean-Laurent; Conley, Mary Ellen

    2013-11-01

    Approximately 90% of patients with isolated agammaglobulinemia and failure of B cell development have mutations in genes required for signaling through the pre–B cell and B cell receptors. The nature of the gene defect in the majority of remaining patients is unknown. We recently identified 4 patients with agammaglobulinemia and markedly decreased numbers of peripheral B cells. The B cells that could be detected had an unusual phenotype characterized by the increased expression of CD19 but the absence of a B cell receptor. Genetic studies demonstrated that all 4 patients had the exact same de novo mutation in the broadly expressed transcription factor E47. The mutant protein (E555K) was stable in patient-derived EBV-transformed cell lines and cell lines transfected with expression vectors. E555K in the transfected cells localized normally to the nucleus and resulted in a dominant negative effect when bound to DNA as a homodimer with wild-type E47. Mutant E47 did permit DNA binding by a tissue-specific heterodimeric DNA-binding partner, myogenic differentiation 1 (MYOD). These findings document a mutational hot-spot in E47 and represent an autosomal dominant form of agammaglobulinemia. Further, they indicate that E47 plays a critical role in enforcing the block in development of B cell precursors that lack functional antigen receptors. PMID:24216514

  11. Human norovirus culture in B cells.

    PubMed

    Jones, Melissa K; Grau, Katrina R; Costantini, Veronica; Kolawole, Abimbola O; de Graaf, Miranda; Freiden, Pamela; Graves, Christina L; Koopmans, Marion; Wallet, Shannon M; Tibbetts, Scott A; Schultz-Cherry, Stacey; Wobus, Christiane E; Vinjé, Jan; Karst, Stephanie M

    2015-12-01

    Human noroviruses (HuNoVs) are a leading cause of foodborne disease and severe childhood diarrhea, and they cause a majority of the gastroenteritis outbreaks worldwide. However, the development of effective and long-lasting HuNoV vaccines and therapeutics has been greatly hindered by their uncultivability. We recently demonstrated that a HuNoV replicates in human B cells, and that commensal bacteria serve as a cofactor for this infection. In this protocol, we provide detailed methods for culturing the GII.4-Sydney HuNoV strain directly in human B cells, and in a coculture system in which the virus must cross a confluent epithelial barrier to access underlying B cells. We also describe methods for bacterial stimulation of HuNoV B cell infection and for measuring viral attachment to the surface of B cells. Finally, we highlight variables that contribute to the efficiency of viral replication in this system. Infection assays require 3 d and attachment assays require 3 h. Analysis of infection or attachment samples, including RNA extraction and RT-qPCR, requires ∼6 h. PMID:26513671

  12. Human norovirus culture in B cells

    PubMed Central

    Jones, Melissa K; Grau, Katrina R; Costantini, Veronica; Kolawole, Abimbola O; de Graaf, Miranda; Freiden, Pamela; Graves, Christina L; Koopmans, Marion; Wallet, Shannon M; Tibbetts, Scott A; Schultz-Cherry, Stacey; Wobus, Christiane E; Vinjé, Jan; Karst, Stephanie M

    2015-01-01

    Human noroviruses (HunoVs) are a leading cause of foodborne disease and severe childhood diarrhea, and they cause a majority of the gastroenteritis outbreaks worldwide. However, the development of effective and long-lasting HunoV vaccines and therapeutics has been greatly hindered by their uncultivability. We recently demonstrated that a HunoV replicates in human B cells, and that commensal bacteria serve as a cofactor for this infection. In this protocol, we provide detailed methods for culturing the GII.4-sydney HunoV strain directly in human B cells, and in a coculture system in which the virus must cross a confluent epithelial barrier to access underlying B cells. We also describe methods for bacterial stimulation of HunoV B cell infection and for measuring viral attachment to the surface of B cells. Finally, we highlight variables that contribute to the efficiency of viral replication in this system. Infection assays require 3 d and attachment assays require 3 h. analysis of infection or attachment samples, including rna extraction and rt-qpcr, requires ~6 h. PMID:26513671

  13. MK5 activates Rag transcription via Foxo1 in developing B cells

    PubMed Central

    Chow, Kwan T.; Timblin, Greg A.; McWhirter, Sarah M.

    2013-01-01

    Foxo1 is a critical, direct regulator of Rag (recombination activating gene) transcription during B cell development and is thus essential for the generation of a diverse repertoire of antigen receptors. Although Foxo1 regulation has been widely studied in many cell types, pathways regulating Foxo1 in B cells have not been fully elucidated. By screening a panel of Foxo1 mutants, we identified serine 215 on Foxo1 as a novel phosphorylation site that is essential for the activation of Rag transcription. Mutation of S215 strongly attenuated transactivation of Rag but did not affect most other Foxo1 target genes. We show that MK5, a MAPK-activated protein kinase, is a previously unidentified upstream regulator of Foxo1. MK5 was necessary and sufficient to activate Rag transcription in transformed and primary pro–B cells. Together, our experiments show that MK5 positively regulates Rag transcription via phosphorylation of Foxo1 in developing B cells. PMID:23878308

  14. Nonrandon X chromosome inactivation in B cells from carriers of X chromosome-linked severe combined immunodeficiency

    SciTech Connect

    Conley, M.E.; Lavoie, A.; Briggs, C.; Brown, P.; Guerra, C.; Puck, J.M.

    1988-05-01

    X chromosome-linked sever combined immunodeficiency (XSCID) is characterized by markedly reduced numbers of T cells, the absence of proliferative responses to mitogens, and hypogammaglobulinemia but normal or elevated number of B cells. To determine if the failure of the B cells to produce immunoglobulin might be due to expression of the XSCID gene defect in B-lineage cells as well as T cells, the authors analyzed patterns of X chromosome inactivation in B cells from nine obligate carriers of this disorder. A series of somatic cell hybrids that selectively retained the active X chromosome was produced from Epstein-Barr virus-stimulated B cells from each woman. To distinguish between the two X chromosome, the hybrids from each woman were analyzed using an X-linked restriction fragment length polymorphism for which the woman in question was heterozygous. In all obligate carriers of XSCID, the B-cell hybrids demonstrated preferential use of a single X chromosome, the nonmutant X, as the active X. To determine if the small number of B-cell hybrids that contained the mutant X were derived from an immature subset of B cells, lymphocytes from three carriers were separated into surface IgM positive and surface IgM negative B cells prior to exposure to Epstein-Barr virus and production of B-cell hybrids. The results demonstrated normal random X chromosome inactivation in B-cell hybrids derived from the less mature surface IgM positive B cells. These results suggest that the XSCID gene product has a direct effect on B cells as well as T cells and is required during B-cell maturation.

  15. Distinct Transcriptomic Features are Associated with Transitional and Mature B-Cell Populations in the Mouse Spleen

    PubMed Central

    Kleiman, Eden; Salyakina, Daria; De Heusch, Magali; Hoek, Kristen L.; Llanes, Joan M.; Castro, Iris; Wright, Jacqueline A.; Clark, Emily S.; Dykxhoorn, Derek M.; Capobianco, Enrico; Takeda, Akiko; McCormack, Ryan M.; Podack, Eckhard R.; Renauld, Jean-Christophe; Khan, Wasif N.

    2015-01-01

    Splenic transitional B-cells (T1 and T2) are selected to avoid self-reactivity and to safeguard against autoimmunity, then differentiate into mature follicular (FO-I and FO-II) and marginal zone (MZ) subsets. Transcriptomic analysis by RNA-seq of the five B-cell subsets revealed T1 cell signature genes included RAG suggesting a potential for receptor revision. T1 to T2 B-cell differentiation was marked by a switch from Myb to Myc, increased expression of the PI3K adapter DAP10 and MHC class II. FO-II may be an intermediate in FO-I differentiation and may also become MZ B-cells as suggested by principle component analysis. MZ B-cells possessed the most distinct transcriptome including down-regulation of CD45 phosphatase-associated protein (CD45-AP/PTPRC-AP), as well as upregulation of IL-9R and innate molecules TLR3, TLR7, and bactericidal Perforin-2 (MPEG1). Among the endosomal TLRs, stimulation via TLR3 further enhanced Perforin-2 expression exclusively in MZ B-cells. Using gene-deleted and overexpressing transgenic mice we show that IL-9/IL-9R interaction resulted in rapid activation of STAT1, 3, and 5, primarily in MZ B-cells. Importantly, CD45-AP mutant mice had reduced transitional and increased mature MZ and FO B-cells, suggesting that it prevents premature entry of transitional B-cells to the mature B-cell pool or their survival and proliferation. Together, these findings suggest, developmental plasticity among splenic B-cell subsets, potential for receptor revision in peripheral tolerance whereas enhanced metabolism coincides with T2 to mature B-cell differentiation. Further, unique core transcriptional signatures in MZ B-cells may control their innate features. PMID:25717326

  16. APOBEC3 enzymes restrict marginal zone B cells

    PubMed Central

    Beck-Engeser, Gabriele B.; Winkelmann, Rebecca; Wheeler, Matthew L.; Shansab, Maryam; Yu, Philipp; Wünsche, Sarah; Walchhütter, Anja; Metzner, Mirjam; Vettermann, Christian; Eilat, Dan; DeFranco, Anthony; Jäck, Hans-Martin; Wabl, Matthias

    2016-01-01

    In general, a long-lasting immune response to viruses is achieved when they are infectious and replication-competent. In the mouse, the neutralizing antibody response to Friend murine leukemia virus is contributed by an allelic form of the enzyme Apobec3 (abbreviated A3). This is counterintuitive, because A3 directly controls viremia before the onset of adaptive anti-viral immune responses. It suggests that A3 also affects the antibody response directly. Here we studied the relative size of cell populations of the adaptive immune system as a function of A3 activity. We created a transgenic mouse that expresses all seven human A3 enzymes (hA3) and compared it to wild-type and mouse A3 (mA3)-deficient mice. A3 enzymes decreased the number of marginal zone (MZ) B cells, but not the number of follicular B or T cells. When mA3 was knocked out, the retroelement hitchhiker-1 and sialyl transferases encoded by genes close to it were overexpressed three and two orders of magnitude, respectively. We suggest that A3 shifts the balance, from the fast antibody response mediated by MZ B cells with little affinity maturation, to a more sustained germinal center B-cell response, which drives affinity maturation and, thereby, a better neutralizing response. PMID:25501566

  17. 11q23 Translocations split the [open quotes]AT-hook[close quotes] cruciform DNA-binding region and the transcriptional repression domain from the activation domain of the mixed-lineage leukemia (MLL) gene

    SciTech Connect

    Zeleznik-Le, N.J.; Harden, A.M.; Rowley, J.D. )

    1994-10-25

    Translocations involving chromosome band 11q23, found in acute lymphoid and myeloid leukemias, disrupt the MLL gene. This gene encodes a putative transcription factor with homology to the zinc fingers and other domains of the Drosophila trithorax gene product and to the [open quotes]AT-hook[close quotes] motif of high mobility group proteins. To map potential transcriptional activation or repression domains of the MLL protein, yeast GAL4 DNA-binding domain and MLL hybrid protein-expressing plasmids were cotransfected with chloramphenicol acetyltransferase reporter plasmids in a transient transfection system. We found that MLL contains a strong activation domain and a repression domain. The former, located telomeric (3[prime]) to the breakpoint region, activated transcription 18-fold to >200-fold, depending on the promoter and cell line used for transfection. A repression domain that repressed transcription 4-fold was located centromeric (5[prime]) to the breakpoint region of MLL. The MLL AT-hook domain protein was expressed in bacteria and was utilized in a gel mobility shift assay to assess DNA-binding activity. The MLL AT-hook domain could bind cruciform DNA, recognizing structure rather than sequence of the target DNA. In translocations involving MLL, loss of an activation domain with retention of a repression domain and a DNA-binding domain on the der(11) chromosome could alter the expression of downstream target genes, suggesting a potential mechanism of action for MLL in leukemia. 35 refs., 5 figs., 1 tab.

  18. Physiology in conservation translocations

    PubMed Central

    Tarszisz, Esther; Dickman, Christopher R.; Munn, Adam J.

    2014-01-01

    Conservation translocations aim to restore species to their indigenous ranges, protect populations from threats and/or reinstate ecosystem functions. They are particularly important for the conservation and management of rare and threatened species. Despite tremendous efforts and advancement in recent years, animal conservation translocations generally have variable success, and the reasons for this are often uncertain. We suggest that when little is known about the physiology and wellbeing of individuals either before or after release, it will be difficult to determine their likelihood of survival, and this could limit advancements in the science of translocations for conservation. In this regard, we argue that physiology offers novel approaches that could substantially improve translocations and associated practices. As a discipline, it is apparent that physiology may be undervalued, perhaps because of the invasive nature of some physiological measurement techniques (e.g. sampling body fluids, surgical implantation). We examined 232 publications that dealt with translocations of terrestrial vertebrates and aquatic mammals and, defining ‘success’ as high or low, determined how many of these studies explicitly incorporated physiological aspects into their protocols and monitoring. From this review, it is apparent that physiological evaluation before and after animal releases could progress and improve translocation/reintroduction successes. We propose a suite of physiological measures, in addition to animal health indices, for assisting conservation translocations over the short term and also for longer term post-release monitoring. Perhaps most importantly, we argue that the incorporation of physiological assessments of animals at all stages of translocation can have important welfare implications by helping to reduce the total number of animals used. Physiological indicators can also help to refine conservation translocation methods. These approaches fall

  19. Epstein-Barr virus-positive diffuse large B-cell lymphoma in children: a disease reminiscent of Epstein-Barr virus-positive diffuse large B-cell lymphoma of the elderly.

    PubMed

    Uccini, Stefania; Al-Jadiry, Mazin F; Scarpino, Stefania; Ferraro, Daniela; Alsaadawi, Adel R; Al-Darraji, Amir F; Moleti, Maria Luisa; Testi, Anna Maria; Al-Hadad, Salma A; Ruco, Luigi

    2015-05-01

    Pediatric Epstein-Barr virus (EBV)-positive diffuse large B-cell lymphoma (EBV+ DLBCL) is a rare disease in nonimmunocompromised hosts. In a review of 231 cases of malignant lymphoma (87 Hodgkin lymphoma and 144 non-Hodgkin lymphoma) occurring in Iraqi children, 7 cases (5% of NHLs) were classified as EBV+ DLBCL. Six children presented with nodal disease, and 1 presented with extranodal localization (bone). In all cases, the disease was at an advanced clinical stage (III/IV). Evidence of immunodeficiency (Evans syndrome and selective IgA deficiency) was observed in a single case. Two cases were "monomorphic" with immunoblastic histology, and 5 cases were "polymorphic" with histologic aspects reminiscent of nodular lymphocyte-predominant Hodgkin lymphoma (2 cases) and of CD30+ classical Hodgkin lymphoma (3 cases). In all cases, tumor cells were EBV infected (EBER+/LMP-1+), were medium-large B-cells (CD20+/CD79a+/PAX-5+/BOB-1+/OCT-2+) of non-germinal center (non-GC) origin (CD10-/MUM-1+), and had high proliferative activity (50%-70%). Chromosomal translocations involving BCL2, MYC, and IGH genes were not observed. IGH monoclonality could be demonstrated in 3 of 3 investigated cases. Six cases of EBV-negative DLBCL (4% of NHL) were present in the same series. All had monomorphic histology with centroblastic/immunoblastic morphology; 3 cases were of GC type and 3 of non-GC type. Our findings indicate that in Iraq, DLBCLs are 9% of NHLs. Moreover, 2 different types of the disease do exist; the EBV-positive cases, with strong histologic and immunohistochemical resemblance with EBV+ DLBCL of the elderly, and the EBV-negative cases, which are similar to the pediatric DLBCL usually observed in Western populations. PMID:25704629

  20. Assembly and Function of the Precursor B-Cell Receptor.

    PubMed

    Übelhart, Rudolf; Werner, Markus; Jumaa, Hassan

    2016-01-01

    During early stages of development, precursor B lymphocytes express a characteristic type of antigen receptor known as the pre-B-cell receptor (pre-BCR). This receptor differs from conventional BCRs in that it possesses a germ line-encoded surrogate light chain (SLC), which is associated with the signal transduction machinery via heavy chain (HC) proteins that have been generated by productive rearrangement of the immunoglobulin HC genes. The pre-BCR marks a key step of B-cell commitment, as it activates the B-cell-specific signaling cascade and mediates the selection, expansion, and differentiation of cells expressing a productively rearranged HC protein. Another difference between the pre-BCR and conventional BCR might be the initial event that triggers receptor activation, as the pre-BCR is activated in the absence of external ligands, while conventional BCRs require antigen for activation. Nonetheless, the pre-BCR downstream signaling cascade is largely similar to that of the BCR suggesting that the characteristic LC of the pre-BCR mediates important receptor interactions thereby providing distinctive, germ line-encoded features to the pre-BCR. In fact, the SLC enables the pre-BCR to act as a surrogate autoreactive receptor. Here, we outline the structure and function of the pre-BCR and how the autonomous signaling capacity might be a direct consequence of pre-BCR assembly. In addition to its role in early B-cell development, we discuss how the ordered activation of downstream signaling cascades enables the pre-BCR to activate seemingly opposing cellular programs such as proliferation and differentiation. PMID:26415650

  1. Repetitive hypoxic preconditioning induces an immunosuppressed B cell phenotype during endogenous protection from stroke

    PubMed Central

    2014-01-01

    Background Repetitive hypoxic preconditioning (RHP) creates an anti-inflammatory phenotype that protects from stroke-induced injury for months after a 2-week treatment. The mechanisms underlying long-term tolerance are unknown, though one exposure to hypoxia significantly increased peripheral B cell representation. For this study, we sought to determine if RHP specifically recruited B cells into the protected ischemic hemisphere, and whether RHP could phenotypically alter B cells prior to stroke onset. Methods Adult, male SW/ND4 mice received RHP (nine exposures over 2 weeks; 8 to 11 % O2; 2 to 4 hours) or identical exposures to 21 % O2 as control. Two weeks following RHP, a 60-minute transient middle cerebral artery occlusion was induced. Standard techniques quantified CXCL13 mRNA and protein expression. Two days after stroke, leukocytes were isolated from brain tissue (70:30 discontinuous Percoll gradient) and profiled on a BD-FACS Aria flow cytometer. In a separate cohort without stroke, sorted splenic CD19+ B cells were isolated 2 weeks after RHP and analyzed on an Illumina MouseWG-6 V2 Bead Chip. Final gene pathways were determined using Ingenuity Pathway Analysis. Student’s t-test or one-way analysis of variance determined significance (P < 0.05). Results CXCL13, a B cell-specific chemokine, was upregulated in post-stroke cortical vessels of both groups. In the ischemic hemisphere, RHP increased B cell representation by attenuating the diapedesis of monocyte, macrophage, neutrophil and T cells, to quantities indistinguishable from the uninjured, contralateral hemisphere. Pre-stroke splenic B cells isolated from RHP-treated mice had >1,900 genes differentially expressed by microarray analysis. Genes related to B-T cell interactions, including antigen presentation, B cell differentiation and antibody production, were profoundly downregulated. Maturation and activation were arrested in a cohort of B cells from pre-stroke RHP-treated mice while

  2. Laboratory and Data Analysis Methods for Characterization of Human B Cell Repertoires by High-Throughput DNA Sequencing.

    PubMed

    Wang, Chen; Liu, Yi; Roskin, Krishna M; Jackson, Katherine J L; Boyd, Scott D

    2015-01-01

    High-throughput DNA sequencing techniques have greatly accelerated the pace of research into the repertoires of antibody and T cell receptor gene rearrangements that confer antigen specificity to adaptive immune responses. Studies of aging-related changes in human B cell repertoires have benefited from the ability to detect and quantify thousands to millions of B cell clones in human samples, and study the mutational lineages and isotype switching relationships within each clonal lineage. Correlation of repertoire analysis with antibody gene data from antigen-specific B cells is poised to give much greater insight into clinically relevant B cell responses and memory storage. Here, we describe strategies for preparing and analyzing human antibody gene libraries for studying B cell repertoires. PMID:26420720

  3. Genomic Landscape of Primary Mediastinal B-Cell Lymphoma Cell Lines

    PubMed Central

    Nagel, Stefan; Eberth, Sonja; Pommerenke, Claudia; Dirks, Wilhelm G.; Geffers, Robert; Kalavalapalli, Srilaxmi; Kaufmann, Maren; Meyer, Corrina; Faehnrich, Silke; Chen, Suning; Drexler, Hans G.; MacLeod, Roderick A. F.

    2015-01-01

    Primary mediastinal B-Cell lymphoma (PMBL) is a recently defined entity comprising ~2–10% non-Hodgkin lymphomas (NHL). Unlike most NHL subtypes, PMBL lacks recurrent gene rearrangements to serve as biomarkers or betray target genes. While druggable, late chemotherapeutic complications warrant the search for new targets and models. Well characterized tumor cell lines provide unlimited material to serve as preclinical resources for verifiable analyses directed at the discovery of new biomarkers and pathological targets using high throughput microarray technologies. The same cells may then be used to seek intelligent therapies directed at clinically validated targets. Four cell lines have emerged as potential PMBL models: FARAGE, KARPAS-1106P, MEDB-1 and U-2940. Transcriptionally, PMBL cell lines cluster near c(lassical)-HL and B-NHL examples showing they are related but separate entities. Here we document genomic alterations therein, by cytogenetics and high density oligonucleotide/SNP microarrays and parse their impact by integrated global expression profiling. PMBL cell lines were distinguished by moderate chromosome rearrangement levels undercutting cHL, while lacking oncogene translocations seen in B-NHL. In total 61 deletions were shared by two or more cell lines, together with 12 amplifications (≥4x) and 72 homozygous regions. Integrated genomic and transcriptional profiling showed deletions to be the most important class of chromosome rearrangement. Lesions were mapped to several loci associated with PMBL, e.g. 2p15 (REL/COMMD1), 9p24 (JAK2, CD274), 16p13 (SOCS1, LITAF, CIITA); plus new or tenuously associated loci: 2p16 (MSH6), 6q23 (TNFAIP3), 9p22 (CDKN2A/B), 20p12 (PTPN1). Discrete homozygous regions sometimes substituted focal deletions accompanied by gene silencing implying a role for epigenetic or mutational inactivation. Genomic amplifications increasing gene expression or gene-activating rearrangements were respectively rare or absent. Our findings

  4. Overexpression of Fkbp11, a feature of lupus B cells, leads to B cell tolerance breakdown and initiates plasma cell differentiation

    PubMed Central

    Ruer-Laventie, Julie; Simoni, Léa; Schickel, Jean-Nicolas; Soley, Anne; Duval, Monique; Knapp, Anne-Marie; Marcellin, Luc; Lamon, Delphine; Korganow, Anne-Sophie; Martin, Thierry; Pasquali, Jean-Louis; Soulas-Sprauel, Pauline

    2015-01-01

    Systemic Lupus Erythematosus (SLE) is a severe systemic autoimmune disease, characterized by multi-organ damages, triggered by an autoantibody-mediated inflammation, and with a complex genetic influence. It is today accepted that adult SLE arises from the building up of many subtle gene variations, each one adding a new brick on the SLE susceptibility and contributing to a phenotypic trait to the disease. One of the ways to find these gene variations consists in comprehensive analysis of gene expression variation in a precise cell type, which can constitute a good complementary strategy to genome wide association studies. Using this strategy, and considering the central role of B cells in SLE, we analyzed the B cell transcriptome of quiescent SLE patients, and identified an overexpression of FKBP11, coding for a cytoplasmic putative peptidyl-prolyl cis/trans isomerase and chaperone enzyme. To understand the consequences of FKBP11 overexpression on B cell function and on autoimmunity's development, we created lentiviral transgenic mice reproducing this gene expression variation. We showed that high expression of Fkbp11 reproduces by itself two phenotypic traits of SLE in mice: breakdown of B cell tolerance against DNA and initiation of plasma cell differentiation by acting upstream of Pax5 master regulator gene. PMID:26417441

  5. Overexpression of Fkbp11, a feature of lupus B cells, leads to B cell tolerance breakdown and initiates plasma cell differentiation.

    PubMed

    Ruer-Laventie, Julie; Simoni, Léa; Schickel, Jean-Nicolas; Soley, Anne; Duval, Monique; Knapp, Anne-Marie; Marcellin, Luc; Lamon, Delphine; Korganow, Anne-Sophie; Martin, Thierry; Pasquali, Jean-Louis; Soulas-Sprauel, Pauline

    2015-09-01

    Systemic Lupus Erythematosus (SLE) is a severe systemic autoimmune disease, characterized by multi-organ damages, triggered by an autoantibody-mediated inflammation, and with a complex genetic influence. It is today accepted that adult SLE arises from the building up of many subtle gene variations, each one adding a new brick on the SLE susceptibility and contributing to a phenotypic trait to the disease. One of the ways to find these gene variations consists in comprehensive analysis of gene expression variation in a precise cell type, which can constitute a good complementary strategy to genome wide association studies. Using this strategy, and considering the central role of B cells in SLE, we analyzed the B cell transcriptome of quiescent SLE patients, and identified an overexpression of FKBP11, coding for a cytoplasmic putative peptidyl-prolyl cis/trans isomerase and chaperone enzyme. To understand the consequences of FKBP11 overexpression on B cell function and on autoimmunity's development, we created lentiviral transgenic mice reproducing this gene expression variation. We showed that high expression of Fkbp11 reproduces by itself two phenotypic traits of SLE in mice: breakdown of B cell tolerance against DNA and initiation of plasma cell differentiation by acting upstream of Pax5 master regulator gene. PMID:26417441

  6. [Chronic B-cell lymphoproliferative disorders with hairy cells].

    PubMed

    Troussard, Xavier; Cornet, Édouard

    2015-01-01

    The standardized blood smear examination is the first step in the diagnosis of a B-cell chronic lymphoproliferative disorder and can guide further investigations. In the laboratory, the identification of hairy cells on blood smear is a matter of daily practice. Hairy cell proliferations represent heterogeneous entities and their respective diagnoses can be difficult. If hairy cell leukemia (HCL) and splenic marginal zone lymphoma (SMZL) represent separate entities, the variant form of HCL (HCLv) and splenic diffuse red pulp small B-cell lymphoma (SDRPL) remain provisional entities in the 2008 WHO classification. We discuss the main clinical and biological characteristics of these four entities and appropriate means to characterize, identify and distinguish from each other; standardized blood smear examination, multiparameter flow cytometry analysis, analysis of the repertoire of immunoglobulins heavy chains genes and their mutational status (mutated or unmutated profile), molecular analyses: BRAF gene V600E mutation in HCL and MAP2K1 gene mutations in HCLv. We also discuss the main therapeutic aspects with emphasis on the new targeted drugs that enter into force in the therapeutic arsenal. PMID:25858127

  7. B Cells and Humoral Immunity in Atherosclerosis

    PubMed Central

    Tsiantoulas, Dimitrios; Diehl, Cody J.; Witztum, Joseph L.; Binder, Christoph J.

    2014-01-01

    Insights into the important contribution of inflammation and immune functions in the development and progression of atherosclerosis have greatly improved our understanding of this disease. Although the role of T cells has been extensively studied for decades, only recently has the role of B cells gained more attention. Recent studies have identified differential effects of different B-cell subsets and helped to clarify the still poorly understood mechanisms by which these act. B1 cells have been shown to prevent lesion formation, whereas B2 cells have been suggested to promote it. Natural IgM antibodies, mainly derived from B1 cells, have been shown to mediate atheroprotective effects, but the functional role of other immunoglobulin classes, particularly IgG, still remains elusive. In this review, we will focus on recent insights on the role of B cells and various immunoglobulin classes and how these may mediate their effects in atherosclerotic lesion formation. Moreover, we will highlight potential therapeutic approaches focusing on B-cell depletion that could be used to translate experimental evidence to human disease. PMID:24855199

  8. Applied Protein and Molecular Techniques for Characterization of B Cell Neoplasms in Horses

    PubMed Central

    Badial, Peres R.; Tallmadge, Rebecca L.; Miller, Steven; Stokol, Tracy; Richards, Kristy; Borges, Alexandre S.

    2015-01-01

    Mature B cell neoplasms cover a spectrum of diseases involving lymphoid tissues (lymphoma) or blood (leukemia), with an overlap between these two presentations. Previous studies describing equine lymphoid neoplasias have not included analyses of clonality using molecular techniques. The objective of this study was to use molecular techniques to advance the classification of B cell lymphoproliferative diseases in five adult equine patients with a rare condition of monoclonal gammopathy, B cell leukemia, and concurrent lymphadenopathy (lymphoma/leukemia). The B cell neoplasms were phenotypically characterized by gene and cell surface molecule expression, secreted immunoglobulin (Ig) isotype concentrations, Ig heavy-chain variable (IGHV) region domain sequencing, and spectratyping. All five patients had hyperglobulinemia due to IgG1 or IgG4/7 monoclonal gammopathy. Peripheral blood leukocyte immunophenotyping revealed high proportions of IgG1- or IgG4/7-positive cells and relative T cell lymphopenia. Most leukemic cells lacked the surface B cell markers CD19 and CD21. IGHG1 or IGHG4/7 gene expression was consistent with surface protein expression, and secreted isotype and Ig spectratyping revealed one dominant monoclonal peak. The mRNA expression of the B cell-associated developmental genes EBF1, PAX5, and CD19 was high compared to that of the plasma cell-associated marker CD38. Sequence analysis of the IGHV domain of leukemic cells revealed mutated Igs. In conclusion, the protein and molecular techniques used in this study identified neoplastic cells compatible with a developmental transition between B cell and plasma cell stages, and they can be used for the classification of equine B cell lymphoproliferative disease. PMID:26311245

  9. New case of trichorinophalangeal syndrome-like phenotype with a de novo t(2;8)(p16.1;q23.3) translocation which does not disrupt the TRPS1 gene

    PubMed Central

    2014-01-01

    Background Trichorhinophalangeal syndrome (TRPS) is a rare autosomal dominant genetic disorder characterised by distinctive craniofacial and skeletal abnormalities. TRPS is generally associated with mutations in the TRPS1 gene at 8q23.3 or microdeletions of the 8q23.3-q24.11 region. However, three deletions affecting the same chromosome region and a familial translocation t(8;13) co-segregating with TRPS, which do not encompass or disrupt the TRPS1 gene, have been reported. A deregulated expression of TRPS1 has been hypothesised as cause of the TRPS phenotype of these patients. Case presentation We report the clinical and molecular characterisation of a 57-year-old Caucasian woman carrying the t(2;8)(p16.1;q23.3) de novo balanced translocation. The proband presented with peculiar clinical features (severe craniofacial dysmorphism, alopecia universalis, severe scoliosis, mitral valve prolapse, mild mental impairment and normal growth parameters) that partially overlap with TRPS I. Mutational and array CGH analyses ruled out any genetic defect affecting TRPS1 or genomic alteration at the translocation breakpoint or elsewhere in the genome. Breakpoint mapping excluded disruption of TRPS1, and revealed that the chromosome 8q23.3 breakpoint was located within the IVS10 of the long intergenic non-coding RNA LINC00536, at approximately 300 kb from the TRPS1 5’ end. Conversely, the 2p16.1 breakpoint mapped within a LINE sequence, in a region that lacks transcriptional regulatory elements. As a result of the translocation, nucleotide base pair additions and deletions were detected at both breakpoint junction fragments, and an evolutionarily conserved VISTA enhancer element from 2p16.1 was relocated at approximately 325 kb from the TRPS1 promoter. Conclusions We suggest that the disruption of the genomic architecture of cis regulatory elements downstream the TRPS1 5′ region, combined with the translocation of a novel enhancer element nearby TRPS1, might be the

  10. Dual role of B cells in mediating innate and acquired immunity to herpes simplex virus infections.

    PubMed

    Deshpande, S P; Kumaraguru, U; Rouse, B T

    2000-06-15

    mu-immunoglobulin chain gene targeted B-cell-deficient mice of susceptible BALB/c strain and resistant C57B1/6 strain are up to 100- to 1000-fold more susceptible to cutaneous infection by herpes simplex virus (HSV) than the respective control wild type mice. The effect of the lack of B cells on immunity to HSV infections was analyzed and B cells were found to play a dual role in affecting both innate and acquired immune responses. Natural antibodies (IgM isotype), reactive with HSV have an anti-viral effect in the innate control of primary cutaneous HSV infection. B cells can also function as antigen-presenting cells for the stimulation of HSV-specific CD4+ T-cell responses. Consequently, CD4+ T cells and interferon-gamma responses were found to be significantly impaired in HSV-infected B-cell-deficient mice compared to that seen in control mice. No significant differences were found in natural-killer-cell- or HSV-specific CD8+ T-cell activity between control and B-cell-deficient mice. Our results imply a role for B cell in mediating innate and CD4+ T-cell-specific immunity in determining susceptibility to primary HSV infections. PMID:10896767

  11. Identification of a new transmembrane adaptor protein that constitutively binds Grb2 in B cells

    PubMed Central

    Liu, Yan; Zhang, Weiguo

    2008-01-01

    Transmembrane adaptor proteins couple antigen receptor engagement to downstream signaling cascades in lymphocytes. One example of these proteins is the linker for activation of T cells (LAT), which plays an indispensable role in T cell activation and development. Here, we report identification of a new transmembrane adaptor molecule, namely growth factor receptor-bound protein 2 (Grb2)-binding adaptor protein, transmembrane (GAPT), which is expressed in B cells and myeloid cells. Similar to LAT, GAPT has an extracellular domain, a transmembrane domain, and a cytoplasmic tail with multiple Grb2-binding motifs. In contrast to other transmembrane adaptor proteins, GAPT is not phosphorylated upon BCR ligation but associates with Grb2 constitutively through its proline-rich region. Targeted disruption of the gapt gene in mice affects neither B cell development nor a nitrophenylacetyl-specific antibody response. However, in the absence of GAPT, B cell proliferation after BCR cross-linking is enhanced. In aged GAPT−/− mice, the number of marginal zone (MZ) B cells is increased, and other B cell subsets are normal. The serum concentrations of IgM, IgG2b, and IgG3 are also elevated in these mice. These data indicate that GAPT might play an important role in control of B cell activation and proper maintenance of MZ B cells. PMID:18559951

  12. De novo t(12;17)(p13.3;q21.3) translocation with a breakpoint near the 5' end of the HOXB gene cluster in a patient with developmental delay and skeletal malformations.

    PubMed

    Yue, Ying; Farcas, Ruxandra; Thiel, Gundula; Bommer, Christiane; Grossmann, Bärbel; Galetzka, Danuta; Kelbova, Christina; Küpferling, Peter; Daser, Angelika; Zechner, Ulrich; Haaf, Thomas

    2007-05-01

    A boy with severe mental retardation, funnel chest, bell-shaped thorax, and hexadactyly of both feet was found to have a balanced de novo t(12;17)(p13.3;q21.3) translocation. FISH with BAC clones and long-range PCR products assessed in the human genome sequence localized the breakpoint on chromosome 17q21.3 to a 21-kb segment that lies <30 kb upstream of the HOXB gene cluster and immediately adjacent to the 3' end of the TTLL6 gene. The breakpoint on chromosome 12 occurred within telomeric hexamer repeats and, therefore, is not likely to affect gene function directly. We propose that juxtaposition of the HOXB cluster to a repetitive DNA domain and/or separation from required cis-regulatory elements gave rise to a position effect. PMID:17327879

  13. Genomic instability in B-cells and diversity of recombinations that activate c-myc.

    PubMed

    Janz, S; Jones, G M; Müller, J R; Potter, M

    1995-01-01

    Genetic rearrangements activating the proto-oncogene c-myc comprise a mandatory oncogenic step in plasma cell tumor development in BALB/cAnPt mice. In the majority of plasmacytomas, c-myc activating rearrangements take the form of reciprocal chromosomal translocations t(12;15) that juxtapose c-myc to the immunoglobulin heavy chain alpha locus (IgH alpha) in particular the switch alpha region (S alpha). The genetic basis for the prevalence of S alpha/c-myc recombinations in BALB/cAnPt plasmacytomas is not known but may be related to a hypothetical regional genomic instability of the c-myc and IgH alpha loci in BALB/cAnPt mice. We wished to test whether the genomic instability of both loci might be revealed by the diversity of genetic recombinations that can be observed in IgH alpha and c-myc. We employed PCR methods to detect new recombinations of c-myc and IgH alpha in the preneoplastic stage of plasma cell tumor development and found that c-myc can be joined to more genes or genomic regions than known before. This is indicative but does not formally prove a particular genomic instability of c-myc and IgH alpha in BALB/cAnPt B cells. Since defective DNA repair provides a mechanistic explanation for genomic instability, we measured the efficiency of repair in IgH alpha and c-myc using an assay that quantitates the removal of UV-induced pyrimidine dimers within specific genomic regions. We used plasmacytoma XRPC 24 as a model system and found that both IgH alpha and c-myc were poorly repaired, whereas c-abl, a proto-oncogene not related to conventional pristane-induced plasmacytoma-genesis, was efficiently repaired. PMID:7895512

  14. Functional screening identifies CRLF2 in precursor B-cell acute lymphoblastic leukemia.

    PubMed

    Yoda, Akinori; Yoda, Yuka; Chiaretti, Sabina; Bar-Natan, Michal; Mani, Kartik; Rodig, Scott J; West, Nathan; Xiao, Yun; Brown, Jennifer R; Mitsiades, Constantine; Sattler, Martin; Kutok, Jeffrey L; DeAngelo, Daniel J; Wadleigh, Martha; Piciocchi, Alfonso; Dal Cin, Paola; Bradner, James E; Griffin, James D; Anderson, Kenneth C; Stone, Richard M; Ritz, Jerome; Foà, Robin; Aster, Jon C; Frank, David A; Weinstock, David M

    2010-01-01

    The prognosis for adults with precursor B-cell acute lymphoblastic leukemia (B-ALL) remains poor, in part from a lack of therapeutic targets. We identified the type I cytokine receptor subunit CRLF2 in a functional screen for B-ALL-derived mRNA transcripts that can substitute for IL3 signaling. We demonstrate that CRLF2 is overexpressed in approximately 15% of adult and high-risk pediatric B-ALL that lack MLL, TCF3, TEL, and BCR/ABL rearrangements, but not in B-ALL with these rearrangements or other lymphoid malignancies. CRLF2 overexpression can result from translocation with the IGH locus or intrachromosomal deletion and is associated with poor outcome. CRLF2 overexpressing B-ALLs share a transcriptional signature that significantly overlaps with a BCR/ABL signature, and is enriched for genes involved in cytokine receptor and JAK-STAT signaling. In a subset of cases, CRLF2 harbors a Phe232Cys gain-of-function mutation that promotes constitutive dimerization and cytokine independent growth. A mutually exclusive subset harbors activating mutations in JAK2. In fact, all 22 B-ALLs with mutant JAK2 that we analyzed overexpress CRLF2, distinguishing CRLF2 as the key scaffold for mutant JAK2 signaling in B-ALL. Expression of WT CRLF2 with mutant JAK2 also promotes cytokine independent growth that, unlike CRLF2 Phe232Cys or ligand-induced signaling by WT CRLF2, is accompanied by JAK2 phosphorylation. Finally, cells dependent on CRLF2 signaling are sensitive to small molecule inhibitors of either JAKs or protein kinase C family kinases. Together, these findings implicate CRLF2 as an important factor in B-ALL with diagnostic, prognostic, and therapeutic implications. PMID:20018760

  15. Resistance to TGF-β1 correlates with aberrant expression of TGF-β receptor II in human B-cell lymphoma cell lines

    PubMed Central

    Chen, Gang; Osawa, Hiroshi; Sasaki, Carl Y.; Rezanka, Louis; Yang, Jiandong; O'Farrell, Thomas J.; Longo, Dan L.

    2007-01-01

    Resistance to transforming growth factor (TGF)–β1–mediated growth suppression in tumor cells is often associated with the functional loss of TGF-β receptors. Here we describe two B-cell lymphoma cell lines (DB and RL) that differ in their sensitivity to TGF-β1–mediated growth suppression. The TGF-β1–resistant cell line DB lacked functional TGF-β receptor II (TβRII) in contrast to the TGF-β–responsive cell line RL, whereas both cell lines had comparable levels of receptor I (TβRI). Lack of functional TβRII was correlated with the lack of TGF-β1–induced nuclear translocation of phospho-Smad3 and phospho-Smad2, the lack of nuclear expression of p21Cip1/WAF1, and the down-regulation of c-Myc in DB cells. Transfection of wild-type, but not a C-terminal–truncated, form of TβRII rendered the DB cell line responsive to TGF-β1–mediated growth suppression. Analysis of the TβRII gene in DB cells revealed the absence of TβRII message, which was reversed upon 5′-azacytidine treatment, indicating that the promoter methylation might be the cause of gene silencing. Promoter analysis revealed CpG methylations at −25 and −140 that correlated with the gene silencing. These data suggest that promoter methylation plays an important role in TβRII gene silencing and subsequent development of a TGF-β1–resistant phenotype by some B-cell lymphoma cells. PMID:17339425

  16. A monoclonal antibody that recognizes B cells and B cell precursors in mice

    SciTech Connect

    Coffman, R.L.; Weissman, I.L.

    1981-02-01

    The monoclonal antibody, RA3-2C2, appears to be specific for cells within the B cell lineage. This antibody does not recognize thymocytes, peripheral T cells, or nonlymphoid hematopoietic cells in the spleen or bone marrow. Nor does it recognize the pluripotent hematopoietic stem cells, the spleen colony-forming unit, All sIg+ B cells and most plasma cells are RA3-2C2+. In addition, approximately 20% of nucleated bone marrow cells are RA3-2C2+ but sIg-. This population contains B cell precursors that can give rise to sIg+ cells within 2 d in vitro.

  17. Defining chromosomal translocation risks in cancer.

    PubMed

    Hogenbirk, Marc A; Heideman, Marinus R; de Rink, Iris; Velds, Arno; Kerkhoven, Ron M; Wessels, Lodewyk F A; Jacobs, Heinz

    2016-06-28

    Chromosomal translocations are a hallmark of cancer. Unraveling the molecular mechanism of these rare genetic events requires a clear distinction between correlative and causative risk-determinants, where technical and analytical issues can be excluded. To meet this goal, we performed in-depth analyses of publicly available genome-wide datasets. In contrast to several recent reports, we demonstrate that chromosomal translocation risk is causally unrelated to promoter stalling (Spt5), transcriptional activity, or off-targeting activity of the activation-induced cytidine deaminase. Rather, an open chromatin configuration, which is not promoter-specific, explained the elevated translocation risk of promoter regions. Furthermore, the fact that gene size directly correlates with the translocation risk in mice and human cancers further demonstrated the general irrelevance of promoter-specific activities. Interestingly, a subset of translocations observed in cancer patients likely initiates from double-strand breaks induced by an access-independent process. Together, these unexpected and novel insights are fundamental in understanding the origin of chromosome translocations and, consequently, cancer. PMID:27303044

  18. Defining chromosomal translocation risks in cancer

    PubMed Central

    Hogenbirk, Marc A.; Heideman, Marinus R.; de Rink, Iris; Velds, Arno; Kerkhoven, Ron M.; Wessels, Lodewyk F. A.; Jacobs, Heinz

    2016-01-01

    Chromosomal translocations are a hallmark of cancer. Unraveling the molecular mechanism of these rare genetic events requires a clear distinction between correlative and causative risk-determinants, where technical and analytical issues can be excluded. To meet this goal, we performed in-depth analyses of publicly available genome-wide datasets. In contrast to several recent reports, we demonstrate that chromosomal translocation risk is causally unrelated to promoter stalling (Spt5), transcriptional activity, or off-targeting activity of the activation-induced cytidine deaminase. Rather, an open chromatin configuration, which is not promoter-specific, explained the elevated translocation risk of promoter regions. Furthermore, the fact that gene size directly correlates with the translocation risk in mice and human cancers further demonstrated the general irrelevance of promoter-specific activities. Interestingly, a subset of translocations observed in cancer patients likely initiates from double-strand breaks induced by an access-independent process. Together, these unexpected and novel insights are fundamental in understanding the origin of chromosome translocations and, consequently, cancer. PMID:27303044

  19. E4BP4 expression is regulated by the t(17;19)-associated oncoprotein E2A-HLF in pro-B cells.

    PubMed

    Yeung, Jenny; O'Sullivan, Elaine; Hubank, Mike; Brady, Hugh J M

    2004-06-01

    The E4BP4 basic leucine zipper (bZIP) transcription factor is regulated by interleukin-3 (IL-3) in pro-B cells and has been reported to promote survival of the murine IL-3-dependent pro-B cell lines, FL5.12 and Baf-3. The E2A-HLF oncoprotein arises from a t(17;19) translocation in childhood pro-B cell acute lymphoblastic leukaemia and acts as an anti-apoptotic factor in FL5.12 and Baf-3 cells. To assess the functions of E2A-HLF and E4BP4 in cell survival, a tetracycline-inducible system was established in Baf-3 cells to express E4BP4 or E2A-HLF. Upon IL-3 withdrawal, expression of E2A-HLF conferred resistance to apoptosis whereas overexpression of E4BP4 did not. E4BP4 and E2A-HLF both recognized the same DNA sequence in reporter gene assays, but had opposite effects on transcription. E2A-HLF acts as a transcriptional activator and E4BP4 as a transcriptional repressor. Furthermore, E4BP4 is a downstream transcriptional target of E2A-HLF. Our data suggests that the overexpression of E4BP4 is unable to block apoptosis induced by IL-3 withdrawal and that the expression of E2A-HLF does not replace the function of E4BP4 in mediating survival. PMID:15147370

  20. Rituximab does not reset defective early B cell tolerance checkpoints

    PubMed Central

    Chamberlain, Nicolas; Massad, Christopher; Oe, Tyler; Cantaert, Tineke; Herold, Kevan C.; Meffre, Eric

    2015-01-01

    Type 1 diabetes (T1D) patients show abnormalities in early B cell tolerance checkpoints, resulting in the accumulation of large numbers of autoreactive B cells in their blood. Treatment with rituximab, an anti-CD20 mAb that depletes B cells, has been shown to preserve β cell function in T1D patients and improve other autoimmune diseases, including rheumatoid arthritis and multiple sclerosis. However, it remains largely unknown how anti–B cell therapy thwarts autoimmunity in these pathologies. Here, we analyzed the reactivity of Abs expressed by single, mature naive B cells from 4 patients with T1D before and 52 weeks after treatment to determine whether rituximab resets early B cell tolerance checkpoints. We found that anti–B cell therapy did not alter the frequencies of autoreactive and polyreactive B cells, which remained elevated in the blood of all patients after rituximab treatment. Moreover, the limited proliferative history of autoreactive B cells after treatment revealed that these clones were newly generated B cells and not self-reactive B cells that had escaped depletion and repopulated the periphery through homeostatic expansion. We conclude that anti–B cell therapy may provide a temporary dampening of autoimmune processes through B cell depletion. However, repletion with autoreactive B cells may explain the relapse that occurs in many autoimmune patients after anti–B cell therapy. PMID:26642366

  1. Survival of Igα-Deficient Mature B Cells Requires BAFF-R Function.

    PubMed

    Levit-Zerdoun, Ella; Becker, Martin; Pohlmeyer, Roland; Wilhelm, Isabel; Maity, Palash Chandra; Rajewsky, Klaus; Reth, Michael; Hobeika, Elias

    2016-03-01

    Expression of a functional BCR is essential for the development of mature B cells and has been invoked in the control of their maintenance. To test this maintenance function in a new experimental setting, we used the tamoxifen-inducible mb1-CreER(T2) mouse strain to delete or truncate either the mb-1 gene encoding the BCR signaling subunit Igα or the VDJ segment of the IgH (H chain [HC]). In this system, Cre-mediated deletion of the mb-1 gene is accompanied by expression of a GFP reporter. We found that, although the Igα-deficient mature B cells survive for >20 d in vivo, the HC-deficient or Igα tail-truncated B cell population is short-lived, with the HC-deficient cells displaying signs of an unfolded protein response. We also show that Igα-deficient B cells still respond to the prosurvival factor BAFF in culture and require BAFF-R signaling for their in vivo maintenance. These results suggest that, under certain conditions, the loss of the BCR can be tolerated by mature B cells for some time, whereas HC-deficient B cells, potentially generated by aberrant somatic mutations in the germinal center, are rapidly eliminated. PMID:26843325

  2. IgH sequences in common variable immune deficiency reveal altered B cell development and selection**

    PubMed Central

    Roskin, Krishna M.; Simchoni, Noa; Liu, Yi; Lee, Ji-Yeun; Seo, Katie; Hoh, Ramona A.; Pham, Tho; Park, Joon H.; Furman, David; Dekker, Cornelia L.; Davis, Mark M.; James, Judith A.; Nadeau, Kari C.; Cunningham-Rundles, Charlotte; Boyd, Scott D.

    2015-01-01

    Common variable immune deficiency (CVID) is the most common symptomatic primary immune deficiency, affecting ∼1 in 25,000 persons. These patients suffer from impaired antibody responses, autoimmunity, and susceptibility to lymphoid cancers. To explore the cellular basis for these clinical phenotypes, we conducted high-throughput DNA sequencing of immunoglobulin heavy chain gene rearrangements from 93 CVID patients and 105 control subjects and sorted naïve and memory B cells from 13 of the CVID patients and 10 of the control subjects. CVID patients showed abnormal VDJ rearrangement and abnormal formation of complementarity determining region 3 (CDR3). We observed decreased selection against antibodies with long CDR3 regions in memory repertoires and decreased V gene replacement, offering possible mechanisms for increased patient autoreactivity. Our data indicate that patient immunodeficiency might derive both from decreased diversity of the naïve B cell pool and decreased somatic hypermutation in memory repertoires. CVID patients also exhibited abnormal clonal expansion of unmutated B cells relative to controls. Although impaired B cell germinal center activation is commonly viewed as causative in CVID, these data indicate that CVID B cells diverge from controls as early as the pro-B cell stage and suggest possible explanations for the increased incidence of autoimmunity, immunodeficiency, and lymphoma CVID patients. PMID:26311730

  3. Polyclonal B-cell lymphocytosis with binucleated lymphocytes (PPBL).

    PubMed

    Troussard, Xavier; Cornet, Edouard; Lesesve, Jean-François; Kourel, Carine; Mossafa, Hossein

    2008-01-01

    Persistent polyclonal B-cell lymphocytosis (PPBL) is a rare and recently described entity. The review of the literature show PPBL is diagnosed predominantly but not exclusively in women, usually smokers. PPBL is recognized by a moderate, chronic and absolute lymphocytosis (>4 × 10(9)/l) in the peripheral blood. In 10% of cases without lymphocytosis, the PPBL diagnosis has to be suggested by peripheral blood examination showing in all cases atypical binucleated lymphocytes. A polyclonal serum IgM is also associated and HLA-DR7 expression is present in most cases. Contrary to B-cell chronic lymphoproliferative disorders (B-CLPD), peripheral B cells are polyclonal with kappa and lambda light-chain expression and no clonal rearrangement of immunoglobulin heavy chain genes is usually demonstrated. The detection of an extra isochromosome for the long arm of chromosome 3 +i(3)(q10) has to be considered as a specific marker of PPBL. We performed conventional cytogenetic analysis (CCA) in 111 patients with typical PPBL we followed-up more than 4 years. +i(3q) was detected in 34% (33/98), PCC in 8% (8/98) and both abnormalities in 31% (30/98). CCA showed neither +i(3q) nor PCC in 28% (27/98). Fluorescence in situ hybridization (FISH) was also performed in 84 cases and +i(3q) was detected in 71% (60/84). When combining both procedures in 84 patients, +i(3q) was detected in 17 patients with negative CCA and was confirmed in 43 patients with positive CCA. CCA and FISH were both negative in 24 cases. Whether patients with PPBL are at increased risk of hematological malignancy remains unclear. After a median follow-up of 4.4 years, most PPBL patients presented a stable clinical and biological course. Six patients died from pulmonary cancer, myocardial infarction, cerebral aneurysm rupture or diffuse large B-cell lymphoma. Two patients had IgM monoclonal gammopathy of undetermined significance (MGUS) at the time of PPBL diagnosis and two other patients developed IgM MGUS

  4. Genetic immunization converts the trypanosoma cruzi B-Cell mitogen proline racemase to an effective immunogen.

    PubMed

    Bryan, Marianne A; Norris, Karen A

    2010-02-01

    Trypanosoma cruzi is the etiologic agent of Chagas' disease. Acute T. cruzi infection results in polyclonal B-cell activation and delayed specific humoral immunity. T. cruzi proline racemase (TcPRAC), a T. cruzi B-cell mitogen, may contribute to this dysfunctional humoral response. Stimulation of murine splenocytes with recombinant protein (rTcPRAC) induced B-cell proliferation, antibody secretion, interleukin-10 (IL-10) production, and upregulation of CD69 and CD86 on B cells. Marginal zone (MZ) B cells are more responsive to T-cell-independent (TI) rTcPRAC stimulation than are follicular mature (FM) B cells in terms of proliferation, antibody secretion, and IL-10 production. During experimental T. cruzi infection, TcPRAC-specific IgG remained undetectable when responses to other T. cruzi antigens developed. Conversely, intradermal genetic immunization via gene gun (GG) delivered TcPRAC as an immunogen, generating high-titer TcPRAC-specific IgG without B-cell dysfunction. TcPRAC GG immunization led to antigen-specific splenic memory B-cell and bone marrow plasma cell formation. TcPRAC-specific IgG bound mitogenic rTcPRAC, decreasing subsequent B-cell activation. GG immunization with rTcPRAC DNA was nonmitogenic and did not affect the generation of specific IgG to another T. cruzi antigen, complement regulatory protein (CRP). These data demonstrate the utility of genetic immunization for the conversion of a protein mitogen to an effective antigen. Furthermore, coimmunization of TcPRAC with another T. cruzi antigen indicates the usefulness of this approach for multivalent vaccine development. PMID:19917711

  5. Reprogramming human B cells into induced pluripotent stem cells and its enhancement by C/EBPα.

    PubMed

    Bueno, C; Sardina, J L; Di Stefano, B; Romero-Moya, D; Muñoz-López, A; Ariza, L; Chillón, M C; Balanzategui, A; Castaño, J; Herreros, A; Fraga, M F; Fernández, A; Granada, I; Quintana-Bustamante, O; Segovia, J C; Nishimura, K; Ohtaka, M; Nakanishi, M; Graf, T; Menendez, P

    2016-03-01

    B cells have been shown to be refractory to reprogramming and B-cell-derived induced pluripotent stem cells (iPSC) have only been generated from murine B cells engineered to carry doxycycline-inducible Oct4, Sox2, Klf4 and Myc (OSKM) cassette in every tissue and from EBV/SV40LT-immortalized lymphoblastoid cell lines. Here, we show for the first time that freshly isolated non-cultured human cord blood (CB)- and peripheral blood (PB)-derived CD19+CD20+ B cells can be reprogrammed to iPSCs carrying complete VDJH immunoglobulin (Ig) gene monoclonal rearrangements using non-integrative tetracistronic, but not monocistronic, OSKM-expressing Sendai Virus. Co-expression of C/EBPα with OSKM facilitates iPSC generation from both CB- and PB-derived B cells. We also demonstrate that myeloid cells are much easier to reprogram than B and T lymphocytes. Differentiation potential back into the cell type of their origin of B-cell-, T-cell-, myeloid- and fibroblast-iPSCs is not skewed, suggesting that their differentiation does not seem influenced by 'epigenetic memory'. Our data reflect the actual cell-autonomous reprogramming capacity of human primary B cells because biased reprogramming was avoided by using freshly isolated primary cells, not exposed to cytokine cocktails favoring proliferation, differentiation or survival. The ability to reprogram CB/PB-derived primary human B cells offers an unprecedented opportunity for studying developmental B lymphopoiesis and modeling B-cell malignancies. PMID:26500142

  6. [B-cell pseudolymphoma caused by aluminium hydroxide following hyposensitization therapy].

    PubMed

    Hernández, I; Sanmartín, O; Cardá, C; Góme, S; Alfaro, A

    2008-04-01

    Aluminium hydroxide is used as an adjuvant in vaccines. We describe the case of a patient who presented a persistent adverse local reaction to aluminium hydroxide due to hyposensitization therapy to dust mites. Multiple painful and pruriginous subcutaneous nodules were observed in both arms, along with hypertrichosis at the injection site. Histology revealed a pseudolymphomatous B cell reaction predominantly involving cells that were CD20 positive, did not express bcl-2, and did not display the t(14-18) translocation. The cells also exhibited polyclonal rearrangement of the immunoglobulin heavy chains. X-ray spectral microanalysis revealed deposits of inorganic aluminium in the granular histiocytes among the germinal centers. The patient was diagnosed with cutaneous B-cell pseudolymphoma due to aluminium hydroxide as a result of immunotherapy. PMID:18358197

  7. B cells are required for lupus nephritis in the polygenic, Fas-intact MRL model of systemic autoimmunity.

    PubMed

    Chan, O T; Madaio, M P; Shlomchik, M J

    1999-10-01

    B cells are required for both the expression of lupus nephritis and spontaneous T cell activation/memory cell accumulation in MRL-Faslpr mice (MRL/lpr). Autoimmunity in the MRL/lpr strain is the result of Fas-deficiency and multiple background genes; however, the precise roles of background genes vs Fas-deficiency have not been fully defined. Fas-deficiency (i.e., the lpr defect) is required in B cells for optimal autoantibody expression, raising the possibility that the central role for B cells in MRL/lpr mice may not extend to MRL/+ mice and, thus, to lupus models that do not depend on Fas-deficiency ("polygenic lupus"). To address this issue, B cell-deficient, Fas-intact MRL/+ mice (JHd-MRL/) were created; and disease was evaluated in aged animals (>9 mo). The JHd-MRL/+ animals did not develop nephritis or vasculitis at a time when the B cell-intact littermates had severe disease. In addition, while activated/memory CD4+ and CD8+ T cells accumulated in B cell-intact mice, such accumulation was substantially inhibited in the absence of B cells. This effect appeared to be restricted to the MRL strain because it was not seen in B cell-deficient BALB/c mice (JHd-BALB) of similar ages. The results indicate that B cells are essential in promoting systemic autoimmunity in a Fas-independent model. Therefore, B cells have an important role in pathogenesis, generalizable to lupus models that depend on multiple genes even when Fas expression is intact. The results provide further rationale for B cell suppression as therapy for systemic lupus erythematosus. PMID:10490951

  8. Regulation of follicular B cell differentiation by the related E26 transformation-specific transcription factors PU.1, Spi-B, and Spi-C.

    PubMed

    DeKoter, Rodney P; Geadah, Marc; Khoosal, Sonam; Xu, Li S; Thillainadesan, Gobi; Torchia, Joseph; Chin, Shu Shien; Garrett-Sinha, Lee Ann

    2010-12-15

    Splenic B-2 cells can be divided into two major subsets: follicular (FO) and marginal zone (MZ) B cells. FO and MZ B cells are generated from immature transitional B cells. Few transcription factors have been identified that regulate FO B cell differentiation. The highly related proteins PU.1, Spi-B, and Spi-C are transcription factors of the E26-transformation-specific family and are important for B cell differentiation and function. To determine whether these proteins play a role in the differentiation of FO B cells, we performed a detailed analysis of splenic B cells in mice with inactivating mutations in the genes encoding PU.1 (Sfpi1) or Spi-B (Spib). Sfpi1(+/-) Spib(-/-) (PUB) mice had a 9-fold reduction in the frequency of CD23(+) FO B cells compared with that of wild-type mice. In contrast, PUB mice had a 2-fold increase in the frequency of MZ B cells that was confirmed by immunofluorescence staining. Expression of Spi-C in Eμ-Spi-C transgenic PUB mice partially rescued frequencies of CD23(+) B cells. Gene expression analysis, in vitro reporter assays, and chromatin immunoprecipitation experiments showed that transcription of the Fcer2a gene encoding CD23 is activated by PU.1, Spi-B, and Spi-C. These results demonstrate that FO B cell differentiation is regulated by the E26-transformation-specific transcription factors PU.1, Spi-B, and Spi-C. PMID:21057087

  9. Switched-memory B cells remodel B cell receptors within secondary germinal centers

    PubMed Central

    Okitsu, Shinji L.; McHeyzer-Williams, Michael G.

    2015-01-01

    Effective vaccines induce high-affinity memory B cells and durable antibody responses through accelerated mechanisms of natural selection. Secondary changes in antibody repertoires after vaccine boosts suggest progressive B cell receptor (BCR) re-diversification, but underlying mechanisms remain unresolved. Here integrated specificity and function of individual memory B cell progeny reveal ongoing evolution of polyclonal antibody specificities through germinal center (GC) specific transcriptional activity. At the clonal and sub-clonal levels, single cell expression of Cd83 and Pol□ segregates the secondary GC transcriptional program into 4 stages that regulate divergent mechanisms of memory BCR evolution. These studies demonstrate that vaccine boosts re-activate a cyclic program of GC function in switched-memory B cells to remodel existing antibody specificities and enhance durable immune protection. PMID:25642821

  10. Progesterone receptor-NFκB complex formation is required for progesterone-induced NFκB nuclear translocation and binding onto the p53 promoter.

    PubMed

    Hsu, Sung-Po; Yang, Ho-Ching; Kuo, Chun-Ting; Wen, Heng-Ching; Chen, Li-Ching; Huo, Yen-Nien; Lee, Wen-Sen

    2015-01-01

    We previously demonstrated that progesterone (P4) up-regulates p53 expression in human umbilical venous endothelial cells (HUVECs) through P4 receptor (PR) activation of extranuclear signaling pathways. However, the involvement of nuclear PR in P4-increased p53 expression is still unclear. Here, the molecular mechanism underlying PR-regulated p53 expression in HUVECs was investigated. Treatment with P4 increased nuclear factor of κ light polypeptide gene enhancer in B-cells inhibitor, α phosphorylation (IκBα and nuclear factor-κB (NFκB) nuclear translocation. Interestingly, P4 also increased PR-A, but not PR-B, nuclear translocation in HUVECs. Immunoprecipitation assay illustrated that P4 increased the formation of PR-A-NFκB complex in both the cytosol and the nucleus of HUVEC. Chromatin immunoprecipitation assay showed an interaction between PR and the NFκB binding motif on the p53 promoter. Ablation of the NFκB binding motif in the p53 promoter completely abolished P4-increased p53 promoter activity. In the absence of P4, overexpression of NFκB did not increase NFκB nuclear translocation. In contrast, treatment of NFκB-overexpressing HUVECs with P4 for only 4 hours, which is much shorter than the time (21.5 h) required for P4-induced IκBα phosphorylation, increased NFκB nuclear translocation. Blockade of PR activity abolished this effect. Taken together, these results uncover a novel role of PR for P4-induced NFκB nuclear translocation and suggest that PR-A-NFκB complex formation is required for NFκB nuclear translocation and binding onto the p53 promoter in HUVECs. Our data indicate that both nuclear and extranuclear signaling pathways of PR are involved in P4-regulated p53 expression in HUVECs. PMID:25353185

  11. Advances in Human B Cell Phenotypic Profiling

    PubMed Central

    Kaminski, Denise A.; Wei, Chungwen; Qian, Yu; Rosenberg, Alexander F.; Sanz, Ignacio

    2012-01-01

    To advance our understanding and treatment of disease, research immunologists have been called-upon to place more centralized emphasis on impactful human studies. Such endeavors will inevitably require large-scale study execution and data management regulation (“Big Biology”), necessitating standardized and reliable metrics of immune status and function. A well-known example setting this large-scale effort in-motion is identifying correlations between eventual disease outcome and T lymphocyte phenotype in large HIV-patient cohorts using multiparameter flow cytometry. However, infection, immunodeficiency, and autoimmunity are also characterized by correlative and functional contributions of B lymphocytes, which to-date have received much less attention in the human Big Biology enterprise. Here, we review progress in human B cell phenotyping, analysis, and bioinformatics tools that constitute valuable resources for the B cell research community to effectively join in this effort. PMID:23087687

  12. Impaired regulatory B cells in myasthenia gravis.

    PubMed

    Sheng, Jian Rong; Rezania, Kourosh; Soliven, Betty

    2016-08-15

    Regulatory B cells (Bregs) attenuate the severity of experimental autoimmune myasthenia gravis (EAMG) in an interleukin-10 (IL-10)-dependent manner. The goal of this study was to investigate the role of human Bregs in MG focusing on CD19(+)CD1d(hi) CD5(+) and CD19(+)CD24(hi)CD38(hi) subsets. We found that MG patients exhibited a decrease in the frequency of both Breg subsets and IL-10 producing B cells within each subset, which correlated with disease severity. In addition, there was impaired suppression of Th1 polarization in MG. These findings, taken together with EAMG data, indicate that Bregs play an important role in regulating the severity of MG. PMID:27397074

  13. Polyclonal B cell activation in ankylosing spondylitis.

    PubMed Central

    Barbieri, P; Olivieri, I; Benedettini, G; Marelli, P; Ciompi, M L; Pasero, G; Campa, M

    1990-01-01

    The peripheral blood lymphocyte response of patients with ankylosing spondylitis (AS) to several polyclonal B cell activators was investigated. No differences were found in the reactivity to pokeweed mitogen and protein A between patients and controls; in contrast, the peripheral blood lymphocyte response to Staphylococcus aureus strain Cowan I (SAC) was significantly higher in patients with AS than in controls. This responsiveness was not influenced either by the presence of the HLA-B27 antigen or by environmental factors or associated diseases, and it was higher in patients with active AS than in those with inactive disease. The percentage of circulating B cells was normal. The responses to T cell mitogens and the percentages of T cell subpopulations were similar in patients and in controls. The peripheral blood lymphocyte hyperactivity of patients with AS to SAC was associated with an increased in vitro production of immunoglobulins. PMID:2383063

  14. Identification and characterization of OSTL (RNF217) encoding a RING-IBR-RING protein adjacent to a translocation breakpoint involving ETV6 in childhood ALL

    PubMed Central

    Fontanari Krause, Luciana M.; Japp, Anna Sophia; Krause, Alexandre; Mooster, Jana; Chopra, Martin; Müschen, Markus; Bohlander, Stefan K.

    2014-01-01

    Genomic aberrations involving ETV6 on band 12p13 are amongst the most common chromosomal abnormalities in human leukemia. The translocation t(6;12)(q23;13) in a childhood B-cell acute lymphoblastic leukemia (ALL) cell line fuses ETV6 with the putative long non-coding RNA gene STL. Linking STL properties to leukemia has so far been difficult. Here, we describe a novel gene, OSTL (annotated as RNF217 in Genbank), which shares the first exon and a CpG island with STL but is transcribed in the opposite direction. Human RNF217 codes for a highly conserved RING finger protein and is mainly expressed in testis and skeletal muscle with different splice variants. RNF217 shows regulated splicing in B cell development, and is expressed in a number of human B cell leukemia cell lines, primary human chronic myeloid leukemia, acute myeloid leukemia with normal karyotype and acute T-ALL samples. Using a yeast two-hybrid screen, we identified the anti-apoptotic protein HAX1 to interact with RNF217. This interaction could be mapped to the C-terminal RING finger motif of RNF217. We propose that some of the recurring aberrations involving 6q might deregulate the expression of RNF217 and result in imbalanced apoptosis signalling via HAX1, promoting leukemia development. PMID:25298122

  15. The contribution of HGAL/GCET2 in immunohistological algorithms: a comparative study in 424 cases of nodal diffuse large B-cell lymphoma.

    PubMed

    Gualco, Gabriela; Bacchi, Lívia M; Domeny-Duarte, Pollyanna; Natkunam, Yasodha; Bacchi, Carlos E

    2012-11-01

    Diffuse large B-cell lymphoma can be subclassified into at least two molecular subgroups by gene expression profiling: germinal center B-cell like and activated B-cell like diffuse large B-cell lymphoma. Several immunohistological algorithms have been proposed as surrogates to gene expression profiling at the level of protein expression, but their reliability has been an issue of controversy. Furthermore, the proportion of misclassified cases of germinal center B-cell subgroup by immunohistochemistry, in all reported algorithms, is higher compared with germinal center B-cell cases defined by gene expression profiling. We analyzed 424 cases of nodal diffuse large B-cell lymphoma with the panel of markers included in the three previously described algorithms: Hans, Choi, and Tally. To test whether the sensitivity of detecting germinal center B-cell cases could be improved, the germinal center B-cell marker HGAL/GCET2 was also added to all three algorithms. Our results show that the inclusion of HGAL/GCET2 significantly increased the detection of germinal center B-cell cases in all three algorithms (P<0.001). The proportions of germinal center B-cell cases in the original algorithms were 27%, 34%, and 19% for Hans, Choi, and Tally, respectively. In the modified algorithms, with the inclusion of HGAL/GCET2, the frequencies of germinal center B-cell cases were increased to 38%, 48%, and 35%, respectively. Therefore, HGAL/GCET2 protein expression may function as a marker for germinal center B-cell type diffuse large B-cell lymphoma. Consideration should be given to the inclusion of HGAL/GCET2 analysis in algorithms to better predict the cell of origin. These findings bear further validation, from comparison to gene expression profiles and from clinical/therapeutic data. PMID:22743653

  16. B Cells and Antibodies in Transplantation.

    PubMed

    Koenig, Alice; Mariat, Christophe; Mousson, Christiane; Wood, Kathryn J; Rifle, Gérard; Thaunat, Olivier

    2016-07-01

    Overlooked for decades, the humoral alloimmune response is increasingly recognized as a leading cause of graft loss after transplantation. However, improvement in the diagnosis of antibody-mediated rejection has not yet translated into better outcomes for transplanted patients. After an update on B cell physiology and antibody generation, the 2015 Beaune Seminar in Transplant Research challenged the conventional view of antibody-mediated rejection pathophysiology and discussed the latest promising therapeutic approaches. PMID:26845305

  17. B Cell Lymphoma mimicking Rheumatoid Arthritis.

    PubMed

    Cosatti, M A; Pisoni, C N; Altuve, J L; Lorente, C

    2016-01-01

    Non Hodking´s lymphoma (NHL) may involve bones but synovial involvement is uncommon. We describe a patient who presented with polyarthritis, sicca symptoms and rash suggestive of rheumatoid arthritis. An atypical skin rash prompted skin and synovial biopsies. A diagnosis of synovial and skin malignant large B-cell lymphoma anaplastic subtype was performed. Chemotherapy with dexamethasone, vincristine and rituximab was started. Following treatment the patient had complete resolution of cutaneous and articular lymphoma manifestations. PMID:27419896

  18. Germinal center B cells and mixed leukocyte reactions

    SciTech Connect

    Monfalcone, A.P.; Kosco, M.H.; Szakal, A.K.; Tew, J.G. )

    1989-09-01

    The present study was undertaken to determine if germinal center (GC) B cells are sufficiently activated to stimulate mixed leukocyte reactions (MLR). Percoll density fractionation and a panning technique with peanut agglutinin (PNA) were used to isolate GC B cells from the lymph nodes of immune mice. The GC B cells were treated with mitomycin C or irradiation and used to stimulate allogeneic or syngeneic splenic T cells in the MLR. Controls included high-density (HD) B cells prepared from spleens of the same mice and HD B cells activated with lipopolysaccharide (LPS) and dextran sulfate. GC B cells bound high amount sof PNA (i.e., PNAhi). Similarly, the LPS-dextran sulfate-activated B cells were PNAhi. Treatment with neuraminidase rendered the PNAlo HD B cells PNAhi. GC B cells and the LPS-dextran sulfate-activated HD B cells stimulated a potent MLR, while the untreated HD B cells did not. However, following neuraminidase treatment, the resulting PNAhi HD B cell population was able to induce an MLR. The PNA marker appeared to be an indicator of stimulatory activity, but incubating the cells with PNA to bind the cell surface ligand did not interfere with the MLR. GC B cells were also capable of stimulating a syngeneic MLR in most experiments although this was not consistently obtained. It appears that germinal centers represent a unique in vivo microenvironment that provides the necessary signals for B cells to become highly effective antigen-presenting cells.

  19. What are genome-wide association studies telling us about B-cell tumor development?

    PubMed Central

    Sherborne, Amy L; Houlston, Richard S

    2010-01-01

    It has long been speculated that common genetic variation influences the development of B-cell malignancy, however until recently evidence for this assertion was lacking. The advent of genome-wide association studies (GWAS) has allowed the search for this class of susceptibility allele to be conducted on a genome-wide basis. Recent GWAS of chronic lymphocytic leukemia (CLL) and acute lymphoblastic leukemia (ALL) have identified novel disease genes for CLL and ALL and underscore the importance of polymorphic variation in B-cell development genes as determinants of leukemia risk. PMID:21307401

  20. Ulnar ray defect in an infant with a 6q21;7q31.2 translocation: Further evidence of the existence of a limb defect gene in 6q21

    SciTech Connect

    Gurrieri, F.; Genuardi, M.; Pomponi, M.G.

    1995-01-30

    Ectrodactyly is a developmental defect of the distal limbs characterized by marked clinical variability and genetic heterogeneity, also reflected in the observation of different chromosome abnormalities nonrandomly associated with longitudinal postaxial limb deficiencies. The one most frequently found in patients with split hand-split foot (SHSF) involves chromosome band 7q22. Recently, structural anomalies of chromosome 6q21 have been reported in 2 unrelated patients with SHSF, suggesting that this region may also contain genes responsible for limb development. We report on a third patient who had a de novo, apparently balanced t(6;7)(q21;q31.2) translocation and bilateral ulnar aplasia with postaxial oligodactyly. In spite of the different phenotypic effects observed in these 3 patients, we consider our case as further evidence that genes in 6q21 may play a role in distal limb development. 8 refs., 3 figs.

  1. Clonal evolution of B cells in transformation from low- to high-grade lymphoma

    PubMed Central

    Matolcsy, András; Schattner, Elaine J.; Knowles, Daniel M.; Casali, Paolo

    2015-01-01

    An outcome of low-grade B cell non-Hodgkins's lymphomas is the transformation to high-grade diffuse large B cell lymphomas (DLBL). To investigate the mechanisms of clonal evolution in the transformation to DLBL, we performed longitudinal molecular analyses of immunoglobulin (Ig), VHDJH gene sequences expressed in cases of chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma (SLL), and follicular lymphoma (FL) that transformed to DLBL. Among the neoplastic CLL and SLL cells and their respective high-grade transformants, there was no evidence for a clonotypic shift or acquired mutations in the expressed Ig VHDJH gene segments, as further confirmed by a specific and sensitive PCR-single strand polymorphism analysis. In contrast, among the FL cells there was a high degree of intraclonal diversification with highly divergent VHDJH gene sequences. Despite this intraclonal heterogeneity, the related DLBL expressed a collinear but unique VHDJH gene sequence. The intraclonal genealogical tree for the FL case demonstrated that the DLBL emerged in association with unique VHDJH gene mutational events. Among the intraclonal FL and related DLBL transformants, the nature and distribution of the Ig VHDJH gene mutations were consistent with antigenic selection. Thus, clonal evolution in the transformation from low- to high-grade B cell lymphoma may involve distinct pathways which vary according to the cellular origin and the type of the progenitor B cell tumor. PMID:10229093

  2. High-level DNA amplifications are common genetic aberrations in B-cell neoplasms.

    PubMed Central

    Werner, C. A.; Döhner, H.; Joos, S.; Trümper, L. H.; Baudis, M.; Barth, T. F.; Ott, G.; Möller, P.; Lichter, P.; Bentz, M.

    1997-01-01

    Gene amplification is one of the molecular mechanisms resulting in the up-regulation of gene expression. In non-Hodgkin's lymphomas, such gene amplifications have been identified rarely. Using comparative genomic hybridization, a technique that has proven to be very sensitive for the detection of high-level DNA amplifications, we analyzed 108 cases of B-cell neoplasms (42 chronic B-cell leukemias, 5 mantle cell lymphomas, and 61 aggressive B-cell lymphomas). Twenty-four high-level amplifications were identified in 13% of the patients and mapped to 15 different genomic regions. Regions most frequently amplified were bands Xq26-28, 2p23-24, and 2p14-16 as well as 18q21 (three times each). Amplification of several proto-oncogenes and a cell cycle control gene (N-MYC (two cases), BCL2, CCND2, and GLI) located within the amplified regions was demonstrated by Southern blot analysis or fluorescence in situ hybridization to interphase nuclei of tumor cells. These data demonstrate that gene amplifications in B-cell neoplasms are much more frequent than previously assumed. The identification of highly amplified DNA regions and genes included in the amplicons provides important information for further analyses of genetic events involved in lymphomagenesis. Images Figure 2 Figure 3 PMID:9250147

  3. Enforced Expression of the Transcriptional Coactivator OBF1 Impairs B Cell Differentiation at the Earliest Stage of Development

    PubMed Central

    Du Roure, Camille; Bartholdy, Boris; Kohler, Hubertus; Matthias, Gabriele; Rolink, Antonius G.; Matthias, Patrick

    2008-01-01

    OBF1, also known as Bob.1 or OCA-B, is a B lymphocyte-specific transcription factor which coactivates Oct1 and Oct2 on B cell specific promoters. So far, the function of OBF1 has been mainly identified in late stage B cell populations. The central defect of OBF1 deficient mice is a severely reduced immune response to T cell-dependent antigens and a lack of germinal center formation in the spleen. Relatively little is known about a potential function of OBF1 in developing B cells. Here we have generated transgenic mice overexpressing OBF1 in B cells under the control of the immunoglobulin heavy chain promoter and enhancer. Surprisingly, these mice have greatly reduced numbers of follicular B cells in the periphery and have a compromised immune response. Furthermore, B cell differentiation is impaired at an early stage in the bone marrow: a first block is observed during B cell commitment and a second differentiation block is seen at the large preB2 cell stage. The cells that succeed to escape the block and to differentiate into mature B cells have post-translationally downregulated the expression of transgene, indicating that expression of OBF1 beyond the normal level early in B cell development is deleterious. Transcriptome analysis identified genes deregulated in these mice and Id2 and Id3, two known negative regulators of B cell differentiation, were found to be upregulated in the EPLM and preB cells of the transgenic mice. Furthermore, the Id2 and Id3 promoters contain octamer-like sites, to which OBF1 can bind. These results provide evidence that tight regulation of OBF1 expression in early B cells is essential to allow efficient B lymphocyte differentiation. PMID:19104664

  4. Activation of V(D)J Recombination Induces the Formation of Interlocus Joints and Hybrid Joints in scid Pre-B-Cell Lines

    PubMed Central

    Lew, Sandra; Franco, Daniel; Chang, Yung

    2000-01-01

    V(D)J recombination is the mechanism by which antigen receptor genes are assembled. The site-specific cleavage mediated by RAG1 and RAG2 proteins generates two types of double-strand DNA breaks: blunt signal ends and covalently sealed hairpin coding ends. Although these DNA breaks are mainly resolved into coding joints and signal joints, they can participate in a nonstandard joining process, forming hybrid and open/shut joints that link coding ends to signal ends. In addition, the broken DNA molecules excised from different receptor gene loci could potentially be joined to generate interlocus joints. The interlocus recombination process may contribute to the translocation between antigen receptor genes and oncogenes, leading to malignant transformation of lymphocytes. To investigate the underlying mechanisms of these nonstandard recombination events, we took advantage of recombination-inducible cell lines derived from scid homozygous (s/s) and scid heterozygous (s/+) mice by transforming B-cell precursors with a temperature-sensitive Abelson murine leukemia virus mutant (ts-Ab-MLV). We can manipulate the level of recombination cleavage and end resolution by altering the cell culture temperature. By analyzing various recombination products in scid and s/+ ts-Ab-MLV transformants, we report in this study that scid cells make higher levels of interlocus and hybrid joints than their normal counterparts. These joints arise concurrently with the formation of intralocus joints, as well as with the appearance of opened coding ends. The junctions of these joining products exhibit excessive nucleotide deletions, a characteristic of scid coding joints. These data suggest that an inability of scid cells to promptly resolve their recombination ends exposes the ends to a random joining process, which can conceivably lead to chromosomal translocations. PMID:10982833

  5. PMA/IONO affects diffuse large B-cell lymphoma cell growth through upregulation of A20 expression.

    PubMed

    Yang, Wenxiu; Li, Yi; Li, Pinhao; Wang, Lingling

    2016-08-01

    Diffuse large B-cell lymphoma (DLBCL) is a common non-Hodgkin lymphoma. A20 and mucosa-associated lymphoid tissue lymphoma translocation gene 1 (MALT1) are known to be related to DLBCL pathogenesis and progression. This study aimed to assess the effects of phorbol myristate acetate/ionomycin (PMA/IONO) on the growth and apoptosis of the DLBCL cell line OCI-LY1, and their associations with A20, MALT1 and survivin levels. Cell viability was assessed by MTT assay. Cell cycle distribution and apoptosis were evaluated using flow cytometry after incubation with Annexin V-FITC/propidium iodide (PI) and RNase/PI, respectively. Gene and protein expression levels were determined by quantitative real-time PCR and western blotting, respectively. To further determine the role of A20, this gene was silenced in the OCI-LY1 cell line by specific siRNA transfection. A20 protein levels were higher in the OCI-LY1 cells treated with PMA/IONO compared with the controls, and were positively correlated with the concentration and treatment time of IONO, but not with changes of PMA and MALT1. Meanwhile, survivin expression was reduced in the OCI-LY1 cells after PMA/IONO treatment. In addition, OCI-LY1 proliferation was markedly inhibited, with a negative correlation between cell viability and IONO concentration. In concordance, apoptosis rates were higher in the OCI-LY1 cells after PMA + IONO treatment. Cell cycle distribution differed between the OCI-LY1 cells with and without PMA/IONO treatment only at 24 h, with increased cells in the G0/G1 stage after PMA/IONO treatment. These findings indicate that PMA/IONO promotes the apoptosis and inhibits the growth of DLBCL cells, in association with A20 upregulation. Thus, A20 may be a potential therapeutic target for DLBCL. PMID:27349720

  6. Ups and Downs of Poised RNA Polymerase II in B-Cells

    PubMed Central

    Nelson, Steevenson; Levens, David; Przytycka, Teresa M.

    2016-01-01

    Recent genome-wide analyses have uncovered a high accumulation of RNA polymerase II (Pol II) at the 5′ end of genes. This elevated Pol II presence at promoters, referred to here as Poll II poising, is mainly (but not exclusively) attributed to temporal pausing of transcription during early elongation which, in turn, has been proposed to be a regulatory step for processes that need to be activated “on demand”. Yet, the full genome-wide regulatory role of Pol II poising is yet to be delineated. To elucidate the role of Pol II poising in B cell activation, we compared Pol II profiles in resting and activated B cells. We found that while Pol II poised genes generally overlap functionally among different B cell states and correspond to the functional groups previously identified for other cell types, non-poised genes are B cell state specific. Focusing on the changes in transcription activity upon B cell activation, we found that the majority of such changes were from poised to non-poised state. The genes showing this type of transition were functionally enriched in translation, RNA processing and mRNA metabolic process. Interestingly, we also observed a transition from non-poised to poised state. Within this set of genes we identified several Immediate Early Genes (IEG), which were highly expressed in resting B cell and shifted from non-poised to poised state after B cell activation. Thus Pol II poising does not only mark genes for rapid expression in the future, but it is also associated with genes that are silenced after a burst of their expression. Finally, we performed comparative analysis of the presence of G4 motifs in the context of poised versus non-poised but active genes. Interestingly we observed a differential enrichment of these motifs upstream versus downstream of TSS depending on poising status. The enrichment of G4 sequence motifs upstream of TSS of non-poised active genes suggests a potential role of quadruplexes in expression regulation. PMID

  7. Ups and Downs of Poised RNA Polymerase II in B-Cells.

    PubMed

    Dao, Phuong; Wojtowicz, Damian; Nelson, Steevenson; Levens, David; Przytycka, Teresa M

    2016-04-01

    Recent genome-wide analyses have uncovered a high accumulation of RNA polymerase II (Pol II) at the 5' end of genes. This elevated Pol II presence at promoters, referred to here as Poll II poising, is mainly (but not exclusively) attributed to temporal pausing of transcription during early elongation which, in turn, has been proposed to be a regulatory step for processes that need to be activated "on demand". Yet, the full genome-wide regulatory role of Pol II poising is yet to be delineated. To elucidate the role of Pol II poising in B cell activation, we compared Pol II profiles in resting and activated B cells. We found that while Pol II poised genes generally overlap functionally among different B cell states and correspond to the functional groups previously identified for other cell types, non-poised genes are B cell state specific. Focusing on the changes in transcription activity upon B cell activation, we found that the majority of such changes were from poised to non-poised state. The genes showing this type of transition were functionally enriched in translation, RNA processing and mRNA metabolic process. Interestingly, we also observed a transition from non-poised to poised state. Within this set of genes we identified several Immediate Early Genes (IEG), which were highly expressed in resting B cell and shifted from non-poised to poised state after B cell activation. Thus Pol II poising does not only mark genes for rapid expression in the future, but it is also associated with genes that are silenced after a burst of their expression. Finally, we performed comparative analysis of the presence of G4 motifs in the context of poised versus non-poised but active genes. Interestingly we observed a differential enrichment of these motifs upstream versus downstream of TSS depending on poising status. The enrichment of G4 sequence motifs upstream of TSS of non-poised active genes suggests a potential role of quadruplexes in expression regulation. PMID:27078128

  8. Germinal center B cells govern their own fate via antibody feedback

    PubMed Central

    Zhang, Yang; Meyer-Hermann, Michael; George, Laura A.; Figge, Marc Thilo; Khan, Mahmood; Goodall, Margaret; Young, Stephen P.; Reynolds, Adam; Falciani, Francesco; Waisman, Ari; Notley, Clare A.; Ehrenstein, Michael R.; Kosco-Vilbois, Marie

    2013-01-01

    Affinity maturation of B cells in germinal centers (GCs) is a process of evolution, involving random mutation of immunoglobulin genes followed by natural selection by T cells. Only B cells that have acquired antigen are able to interact with T cells. Antigen acquisition is dependent on the interaction of B cells with immune complexes inside GCs. It is not clear how efficient selection of B cells is maintained while their affinity matures. Here we show that the B cells’ own secreted products, antibodies, regulate GC selection by limiting antigen access. By manipulating the GC response with monoclonal antibodies of defined affinities, we show that antibodies in GCs are in affinity-dependent equilibrium with antibodies produced outside and that restriction of antigen access influences B cell selection, seen as variations in apoptosis, plasma cell output, T cell interaction, and antibody affinity. Feedback through antibodies produced by GC-derived plasma cells can explain how GCs maintain an adequate directional selection pressure over a large range of affinities throughout the course of an immune response, accelerating the emergence of B cells of highest affinities. Furthermore, this mechanism may explain how spatially separated GCs communicate and how the GC reaction terminates. PMID:23420879

  9. B-cell lymphoma mutations: improving diagnostics and enabling targeted therapies

    PubMed Central

    Vaqué, José P.; Martínez, Nerea; Batlle-López, Ana; Pérez, Cristina; Montes-Moreno, Santiago; Sánchez-Beato, Margarita; Piris, Miguel A.

    2014-01-01

    B-cell lymphomas comprise an increasing number of clinicopathological entities whose characterization has historically been based mainly on histopathological features. In recent decades, the analysis of chromosomal aberrations as well as gene and miRNA expression profile studies have helped distinguish particular tumor types and also enabled the detection of a number of targets with therapeutic implications, such as those activated downstream of the B-cell receptor. Our ability to identify the mechanisms involved in B-cell lymphoma pathogenesis has been boosted recently through the use of Next Generation Sequencing techniques in the analysis of human cancer. This work summarizes the recent findings in the molecular pathogenesis of B-cell neoplasms with special focus on those clinically relevant somatic mutations with the potential to be explored as candidates for the development of new targeted therapies. Our work includes a comparison between the mutational indexes and ranges observed in B-cell lymphomas and also with other solid tumors and describes the most striking mutational data for the major B-cell neoplasms. This review describes a highly dynamic field that currently offers many opportunities for personalized therapy, although there is still much to be gained from the further molecular characterization of these clinicopathological entities. PMID:24497559

  10. Human Chromosomal Translocations at CpG Sites and a Theoretical Basis for their Lineage and Stage Specificity

    PubMed Central

    Tsai, Albert G.; Lu, Haihui; Raghavan, Sathees C.; Muschen, Markus; Hsieh, Chih-Lin; Lieber, Michael R.

    2008-01-01

    SUMMARY We have assembled, annotated, and analyzed a database of over 1700 breakpoints from the most common chromosomal rearrangements in human leukemias and lymphomas. Using t