Science.gov

Sample records for babcock and wilcox standard reactor

  1. Standard technical specifications: Babcock and Wilcox Plants. Revision 1

    SciTech Connect

    1995-04-01

    This report documents the results of the combined effort of the NRC and the industry to produce improved Standard Technical Specifications (STS), Revision 1 for Babcock & Wilcox Plants. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3 contains the Bases for Sections 3.4--3.9 of the improved STS.

  2. Babcock and Wilcox clean-coal program

    SciTech Connect

    Doyle, J.B. ); Kulig, J.S. ); Rackley, J.M. )

    1989-01-01

    The issue of acid rain is being addressed on a world-wide basis. The major industrial nations are all implementing new laws that are directed at reducing the emissions of gases that are believed to contribute to acid rain. The United States has been a pioneer in this area with a major clean-air bill that became law in the early 1970s and amended in the late 1970s. In the mid-1980s, the U.S. embarked on a program to develop new clean-coal technologies, which would provide a cost-effective means of further reducing gaseous emissions from fossil-fired power facilities. The clean coal program at Babcock and Wilcox is presented.

  3. Shutdown decay heat removal analysis of a Babcock and Wilcox pressurized water reactor: Case study

    SciTech Connect

    Cramond, W.R.; Ericson, D.M. Jr.; Sanders, G.A.

    1987-03-01

    This is one of six case studies for USI A-45 Decay Heat Removal (DHR) Requirements. The purpose of this study is to identify any potential vulnerabilities in the DHR systems of a typical Babcock and Wilcox PWR, to suggest possible modifications to improve the DHR capability, and to assess the value and impact of the most promising alternatives to the existing DHR systems. The systems analysis considered small LOCAs and transient internal initiating events, and seismic, fire, extreme wind, internal and external flood, and lightning external events. A full-scale systems analysis was performed with detailed fault trees and event trees including support system dependencies. The system analysis results were extrapolated into release categories using applicable past PRA phenomenological results and improved containment failure mode probabilities. Public consequences were estimated using site specific CRAC2 calculations. The Value-Impact (VI) analysis of possible alternatives considered both onsite and offsite impacts arriving at several risk measures such as averted population dose out to a 50-mile radius and dollars per person rem averted. Uncertainties in the VI analysis are discussed and the issues of feed and bleed and secondary blowdown are analyzed.

  4. Standard technical specifications - Babcock and Wilcox Plants: Bases (Sections 2.0-3.3). Volume 2, Revision 1

    SciTech Connect

    1995-04-01

    This NUREG contains the improved Standard Technical Specifications (STS) for Babcock and Wilcox (B&W) plants. Revision 1 incorporates the cumulative changes to Revision 0, which was published in September 1992. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, specifically the B&W Owners Group (BWOG), NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993 (58 FR 39132). Licensees are encouraged to upgrade their technical specifications consistent with those criteria and conforming, to the extent practical and consistent with the licensing basis for the facility, to Revision 1 to the improved STS. The Commission continues to place the highest priority on requests for complete conversions to the improved STS. Licensees adopting portions of the improved STS to existing technical specifications should adopt all related requirements, as applicable, to achieve a high degree of standardization and consistency.

  5. Probability of pipe failure in the reactor coolant loops of Babcock and Wilcox PWR plants. Volume 1. Summary report

    SciTech Connect

    Holman, G.S.; Chou, C.K.

    1986-05-01

    As part of its reevaluation of the double-ended guillotine break (DEGB) of reactor coolant piping as a design basis event for nuclear power plants, the US Nuclear Regulatory Commission (NRC) contracted the Lawrence Livermore National Laboratory (LLNL) to estimate the probability of occurrence of a DEGB, and to assess the effect that earthquakes have on DEGB probability. This report describes an evaluation of reactor coolant loop piping in PWR plants having nuclear steam supply systems designed by Babcock and Wilcox. Two causes of pipe break were considered: pipe fracture due to the growth of cracks at welded joints (''direct'' DEGB), and pipe rupture indirectly caused by failure of heavy component supports due to an earthquake (''indirect'' DEGB). Unlike in earlier evaluations of Westinghouse and Combustion Engineering reactor coolant loop piping, in which the probability of direct DEGB had been explicitly estimated using a probabilistic fracture mechanics model, no detailed fracture mechanics calculations were performed. Instead, a comparison of relevant plant data, mainly reactor coolant loop stresses, for one representative B and W plant with equivalent information for Westinghouse and C-E systems inferred that the probability of direct DEGB should be similarly low (less than le-10 per reactor year). The probability of indirect DEGB, on the other hand, was explicitly estimated for two representative plants. The results of this study indicate that the probability of a DEGB form either cause is very low for reactor coolant loop piping in these specific plants and, because of similarity in design, infer that the probability of DEGB is generally very low in B and W reactor coolant loop piping. The NRC should therefore consider eliminating DEGB as a design basis event in favor of more realistic criteria. 13 refs., 9 tabs.

  6. APPLICATIONS ANALYSIS REPORT: BABCOCK AND WILCOX CYCLONE FURNACE

    EPA Science Inventory

    This document is an evaluation of the performance of the Babcock & Wilcox (B&W) Cyclone Furnace Vitrification Technology and its applicability as a treatment technique for soils contaminated with heavy metals, radionuclides, and organics. oth the technical and economic aspects of...

  7. TECHNOLOGY EVALUATION REPORT: BABCOCK AND WILCOX CYCLONE FURNACE VITRIFICATION TECHNOLOGY

    EPA Science Inventory

    The Babcock & Wilcox (B&W) Cyclone Furnace Vitrification Technology is a treatment process for contaminated soils. he process was evaluated to determine its ability to destroy semivolatile organics and to isolate metals and simulated radionuclides into a non-leachable slag materi...

  8. Babcock and Wilcox assessment of the Pratt and Whitney XNR2000

    NASA Technical Reports Server (NTRS)

    Westerman, Kurt O.; Scoles, Stephen W.; Jensen, R. R.; Rodes, J. R.; Ales, M. W.

    1993-01-01

    Babcock & Wilcox performed four subtasks related to the assessment of the Pratt & Whitney XNR2000 nuclear reactor as follows: (1) cermet fuel element fabricability assessment; (2) mechanical design review of the reactor system; (3) neutronic analysis review; and (4) safety assessment. The results of the mechanical and physics reviews have been integrated into the reactor design. The results of the fuel and safety assessments are presented.

  9. Babcock and Wilcox Barberton heating plant CWF conversion

    SciTech Connect

    Zahirsky, R.W.

    1985-08-01

    A Babcock and Wilcox representative describes the company's role in developing and commercializing coal-water fuel (CWF) in a joint venture with Slurrytech Inc. A demonstration production facility will produce enough fuel for a full-scale combustion demonstration for various industrial applications and generate technical and economic data for commercial sized CWF facilities. The company will also apply its combustion expertise in the development of an efficient CWF burner. The author provides specifications and a status report on each area of the project. 3 figures, 2 tables.

  10. Evaluation of operational safety at Babcock and Wilcox Plants: Volume 2, Thermal-hydraulic results

    SciTech Connect

    Wheatley, P.D.; Davis, C.B.; Callow, R.A.; Fletcher, C.D.; Dobbe, C.A.; Beelman, R.J.

    1987-11-01

    The Nuclear Regulatory Commission has initiated a research program to develop a methodology to assess the operational performance of Babcock and Wilcox plants and to apply this methodology on a trial basis. The methodology developed for analyzing Babcock and Wilcox plants integrated methods used in both thermal-hydraulics and human factors and compared results with information used in the assessment of risk. The integrated methodology involved an evaluation of a selected plant for each pressurized water reactor vendor during a limited number of transients. A plant was selected to represent each vendor, and three transients were identified for analysis. The plants were Oconee Unit 1 for Babcock and Wilcox, H.B. Robinson Unit 2 for Westinghouse, and Calvert Cliffs Unit 1 for Combustion Engineering. The three transients were a complete loss of all feedwater, a small-break loss-of-coolant accident, and a steam-generator overfill with auxiliary feedwater. Included in the integrated methodology was an assessment of the thermal-hydraulic behavior, including event timing, of the plants during the three transients. Thermal-hydraulic results are presented in this volume (Volume 2) of the report. 26 refs., 30 figs., 7 tabs.

  11. Probability of pipe failure in the reactor coolant loops of Babcock and Wilcox PWR plants. Volume 2. Guillotine break indirectly induced by earthquakes

    SciTech Connect

    Ravindra, M.K.; Campbell, R.D.; Kipp, T.R.; Sues, R.H.

    1985-07-01

    The requirements to design nuclear power plants for the effects of an instantaneous double-ended guillotine break (DEGB) of the reactor coolant loop (RCL) piping have led to excessive design costs, interference with normal plant operation and maintenance, and unnecessary radiation exposure of plant maintenance personnel. This report describes an aspect of the NRC/Lawrence Livermore National Laboratory sponsored research program aimed at exploring whether the probability of DEGB in RCL Piping of nuclear power plants is acceptably small and the requirements to design for the DEGB effects (e.g., provision of pipe whip restraints) may be removed. This study estimates the probability of indirect DEGB in RCL piping as a consequence of seismic-induced structural failures within the containment of Babcock and Wilcox supplied pressurized water reactor nuclear power plants in the United States. The median probability of indirect DEGB was estimated to range between 6 x 10/sup -11/ and 1 x 10/sup -7/ per year. Using very conservative assumptions, the 90% subjective probability value (confidence) of P/sub DEGB/ was found to be less than 1 x 10/sup -5/ per year. 19 refs., 19 figs., 11 tabs.

  12. Radioactive waste shipments to Hanford retrievable storage from Babcock and Wilcox, Leechburg, Pennsylvania

    SciTech Connect

    Duncan, D.R.

    1994-02-14

    This report characterizes, as far as possible, the solid radioactive wastes generated by Babcock and Wilcox`s Park Township Plutonium Facility near Leechburg, Pennsylvania that were sent to retrievable storage at the Hanford Site. Solid waste as defined in this document is any containerized or self-contained material that has been declared waste. The objective is a description of characteristics of solid wastes that are or will be managed by the Restoration and Upgrades Program; gaseous or liquid effluents are discussed only at a summary level This characterization is of particular interest in the planning of transuranic (TRU) waste retrieval operations, including the Waste Receiving and Processing (WRAP) Facility, because Babcock and Wilcox generated greater than 2.5 percent of the total volume of TRU waste currently stored at the Hanford Site.

  13. TECHNOLOGY DEMONSTRATION SUMMARY. BABCOCK AND WILCOX CYCLONE FURNACE VITRIFICATION TECHNOLOGY (EPA/540/SR-92/017)

    EPA Science Inventory

    A Superfund Innovative Technology Evaluation (SITE) Demonstration of the Babcock & Wilcox Cyclone Furnace Vitrification Technology was conducted in November 1991. This Demonstration occurred at the Babcock & Wilcox (B&W) Alliance Research Center (ARC) in Alliance, OH. The B&W cyc...

  14. Babcock and Wilcox Owners' Group program: Trip reduction and transient response improvement

    SciTech Connect

    O'Connor, W.T.; Mercado, A.L.; Ganthner, R.W.

    1989-01-01

    In 1985, the average trip frequency for the industry was 4.3 trips per plant per year while Babcock Wilcox (B W)-designed plants had 4.5 trips. In early 1986, the B W Owners' Group (B WOG) established goals to reduce trip frequency and improve posttrip transient response. Through the recommendations of the B WOG Trip Reduction and Transient Response Improvement Program (TR/TRIP) and other utility initiatives, the trip frequency for the B WOG plants has been on a progressive downward trend and has been consistently below the industry average since 1986. The successful results in trip reduction for the B WOG plants are shown. The B WOG has implemented several programs that have resulted in fewer trips per plant. This success can be attributed to the following: (1) a comprehensive program to evaluate each trip and transient for root-cause determination, define corrective actions, share information, and peer reviews; (2) a broad program to review systems and components that contribute to trips and transients, identify specific recommendations to correct deficiencies, utility commitment to implementation, conduct internal monitoring and indirectly exert peer pressure; (3) an awareness of the goals at all levels in the organization coupled with strong executive-level involvement; and (4) timely implementation of recommendations.

  15. SITE EMERGING TECHNOLOGIES PROJECT: BABCOCK & WILCOX CYCLONE VITRIFICATION

    EPA Science Inventory

    The Babcock & Wilcox 6 million Btu/hr pilot cyclone furnace was successfully used in a 2-year SITE Emerging Technology project to melt and vitrify an EPA Synthetic Soil Matrix (SSM) spiked with 7,000 ppm lead, 1,000 ppm cadmium, and 1,500 ppm chromium. n advantage of vitrificatio...

  16. DEMONSTRATION BULLETIN: CYCLONE FURNACE SOIL VITRI- FICATION TECHNOLOGY - BABCOCK & WILCOX

    EPA Science Inventory

    Babcock and Wilcox's (B&W) cyclone furnace is an innovative thermal technology which may offer advantages in treating soils containing organics, heavy metals, and/or radionuclide contaminants. The furnace used in the SITE demonstration was a 4- to 6-million Btu/hr pilot system....

  17. BABCOCK & WILCOX CYCLONE VITRIFICATION TECHNOLOGY FOR CONTAMINATED SOIL

    EPA Science Inventory

    The Babcock & Wilcox 6 million Btu/hr pilot cyclone furnace was successfully used in a 2-yr Superfund Innovative Technology Evaluation (SITE) Emerging Technology project to melt and vitrify an EPA Synthetic Soil Matrix (SSM) spiked with 7,000 ppm lead, 1,000 ppm cadmium, and 1,5...

  18. Modeling operator actions during a small break loss-of-coolant accident in a Babcock and Wilcox nuclear power plant

    SciTech Connect

    Ghan, L.S.; Ortiz, M.G.

    1991-12-31

    A small break loss-of-accident (SBLOCA) in a typical Babcock and Wilcox (B&W) nuclear power plant was modeled using RELAP5/MOD3. This work was performed as part of the United States Regulatory Commission`s (USNRC) Code, Scaling, Applicability and Uncertainty (CSAU) study. The break was initiated by severing one high pressure injection (HPI) line at the cold leg. Thus, the small break was further aggravated by reduced HPI flow. Comparisons between scoping runs with minimal operator action, and full operator action, clearly showed that the operator plays a key role in recovering the plant. Operator actions were modeled based on the emergency operating procedures (EOPs) and the Technical Bases Document for the EOPs. The sequence of operator actions modeled here is only one of several possibilities. Different sequences of operator actions are possible for a given accident because of the subjective decisions the operator must make when determining the status of the plant, hence, which branch of the EOP to follow. To assess the credibility of the modeled operator actions, these actions and results of the simulated accident scenario were presented to operator examiners who are familiar with B&W nuclear power plants. They agreed that, in general, the modeled operator actions conform to the requirements set forth in the EOPs and are therefore plausible. This paper presents the method for modeling the operator actions and discusses the simulated accident scenario from the viewpoint of operator actions.

  19. Compact Process Development at Babcock & Wilcox

    SciTech Connect

    Eric Shaber; Jeffrey Phillips

    2012-03-01

    Multiple process approaches have been used historically to manufacture cylindrical nuclear fuel compacts. Scale-up of fuel compacting was required for the Next Generation Nuclear Plant (NGNP) project to achieve an economically viable automated production process capable of providing a minimum of 10 compacts/minute with high production yields. In addition, the scale-up effort was required to achieve matrix density equivalent to baseline historical production processes, and allow compacting at fuel packing fractions up to 46% by volume. The scale-up approach of jet milling, fluid-bed overcoating, and hot-press compacting adopted in the U.S. Advanced Gas Reactor (AGR) Fuel Development Program involves significant paradigm shifts to capitalize on distinct advantages in simplicity, yield, and elimination of mixed waste. A series of compaction trials have been completed to optimize compaction conditions of time, temperature, and forming pressure using natural uranium oxycarbide (NUCO) fuel at packing fractions exceeding 46% by volume. Results from these trials are included. The scale-up effort is nearing completion with the process installed and operable using nuclear fuel materials. Final process testing is in progress to certify the process for manufacture of qualification test fuel compacts in 2012.

  20. Babcock and Wilcox BR-100 100-ton rail/barge spent fuel shipping cask

    SciTech Connect

    1990-02-01

    This Preliminary Design Report (PDR) provides a detailed description of the design, analyses, and testing programs for the BR-100 cask. The BR-100 is a Type B(U) cask designed for transport by rail or barge. This report presents the preliminary analyses and tests which have been performed for the BR-100 and outlines the confirmatory analyses and tests which will be performed.

  1. 75 FR 50009 - Babcock & Wilcox Nuclear Operations Group, Inc.; Establishment of Atomic Safety and Licensing Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ... Board Pursuant to delegation by the Commission dated December 29, 1972 (37 FR 28710), and the Commission...., on February 23, 2010. Pursuant to a Request for Hearing published in the Federal Register (74 FR 75... (72 FR 49139). Issued at Rockville, Maryland, this 6th day of August 2010. E. Roy Hawkens,...

  2. 10 MW(e) prototype testing of LIDS{trademark} as part of the Babcock and Wilcox low emission boiler system

    SciTech Connect

    Madden, D.A.; Musiol, W.F.

    1996-12-31

    Babcock and Wilcox (B and W) is currently developing the Limestone Injection and Dry Scrubbing (LIDS) system to be capable of reducing SO{sub x} and particulate emissions significantly below that allowed under the New Source Performance Standards (NSPS) while addressing the concerns of solid waste generation and air toxics regulation. The work is being performed as an integral part of B and W`s development of an advanced low-emission boiler system in a project entitled, Engineering Development of Advanced Coal-Fired Low Emission Boiler Systems (LEBS). The overall goal of the DOE`s program is to dramatically improve environmental performance and thermal efficiency of conventional, Rankine cycle, coal-fired power plants. The LIDS process is a limestone-based, furnace injection/dry scrubbing SO{sub 2} removal process. The process comprises the cost-effective integration of three commercially proven flue gas cleanup technologies: furnace limestone injection, dry scrubbing, and pulse-jet fabric filtration. This paper highlights the plans for 10 MW, LIDS testing to be performed in B and W`s world-class Clean Environment Development Facility to demonstrate the B and W LEBS project SO{sub 2} removal goal of 98% and particulate emissions goal of less than 0.005 lb/10{sup 6} Btu under cost-effective operating conditions. Air toxics control and solids by-product issues will be addressed. The paper also includes plans for LIDS in the Proof-of-Concept demonstration in Phase 4.

  3. STIRLING BOILER BY BABCOCK & WILCOX CO. (45,000 LB/HR CAPACITY), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    STIRLING BOILER BY BABCOCK & WILCOX CO. (45,000 LB/HR CAPACITY), INSIDE BOILER HOUSE NO. 2. - Pittsburgh Steel Company, Monessen Works, Open Hearth Plant, Donner Avenue, Monessen, Westmoreland County, PA

  4. An aerial radiological survey of the Babcock and Wilcox Nuclear Facilities and surrounding area, Lynchburg, Virginia. Date of survey: July 1988

    SciTech Connect

    Guss, P.P.

    1993-04-01

    An aerial radiological survey was conducted from July 18 through July 25, 1988, over a 41-square-kilometer (16-square-mile) area surrounding the Babcock and Wilcox nuclear facilities located near Lynchburg, Virginia. The survey was conducted at a nominal altitude of 61 meters (200 feet) with line spacings of 91 meters (300 feet). A contour map of the terrestrial gamma exposure rate extrapolated to 1 meter above ground level (AGL) was prepared and overlaid on an aerial photograph. The terrestrial exposure rates varied from 8 to 12 microroentgens per hour ({mu}R/h). A search of the data for man-made radiation sources revealed the presence of three areas of high count rates in the survey area. Spectra accumulated over the main plant showed the presence of cobalt-60 ({sup 60}Co) and cesium-137 ({sup 137}Cs). A second area near the main plant indicated the presence of uranium-235 ({sup 235}U). Protactinium-234m ({sup 234m}Pa) and {sup 60}Co were detected over a building to the east of the main plant. Soil samples and pressurized ion chamber measurements were obtained at four locations within the survey boundaries in support of the aerial data.

  5. Preliminary design report: Babcock and Wilcox BR-100 100-ton rail/barge spent fuel shipping cask

    SciTech Connect

    1990-02-01

    The purpose of this document is to provide information on burnup credit as applied to the preliminary design of the BR-100 shipping cask. There is a brief description of the preliminary basket design and the features used to maintain a critically safe system. Following the basket description is a discussion of various criticality analyses used to evaluate burnup credit. The results from these analyses are then reviewed in the perspective of fuel burnups expected to be shipped to either the final repository or a Monitored Retrievable Storage (MRS) facility. The hurdles to employing burnup credit in the certification of any cask are then outlines and reviewed. the last section gives conclusions reached as to burnup credit for the BR-100 cask, based on our analyses and experience. All information in this study refers to the cask configured to transport PWR fuel. Boiling Water Reactor (BWR) fuel satisfies the criticality requirements so that burnup credit is not needed. All calculations generated in the preparation of this report were based upon the preliminary design which will be optimized during the final design. 8 refs., 19 figs., 16 tabs.

  6. 75 FR 35846 - In the Matter of Babcock & Wilcox Nuclear Operations Group, Inc., Lynchburg, VA; Order Imposing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-23

    ... under 10 CFR 2.315(c), must be filed in accordance with the NRC E-Filing rule (72 FR 49139, August 28... Civil Monetary Penalty I Babcock & Wilcox Nuclear Operations Group, Inc., (Licensee) is the holder of... Civil Penalty (Notice) was served upon the Licensee by letter dated February 23, 2010. The Notice...

  7. 77 FR 67688 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital I&C...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-13

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital I&C... Instrumentation and Control of the Babcock & Wilcox (B&W) mPower reactor. The Subcommittee will hear presentations... participation in ACRS meetings were published in the Federal Register on October 18, 2012, (77 FR...

  8. 60. View from stock bin trestle looking northeast at Babcock ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    60. View from stock bin trestle looking northeast at Babcock & Wilcox type boilers (manufactured by Casey-Hedges Co., Chattanooga, TN) where washed furnace gas is burned with natural gas and coal to generate heat for steam. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  9. Depositional sequences and hydrocarbon exploration in Wilcox Group, South Texas

    SciTech Connect

    Anderson, M.P.; Breyer, J.A.

    1988-01-01

    Five unconformity-bounded depositional sequences are present in the lower and middle Wilcox in south Texas. The sequences are designated A through E, from uppermost to lowermost. Sequences A and B are in the middle Wilcox. Sequences C, D, and E are in the lower Wilcox. Thirty-three gas fields and three oil fields produce from the lower Wilcox in a 1,500 mi/sup 2/ area that includes most of DeWitt County and parts of Gonzales, Karnes, and Lavaca Counties. All but two of the fields are in the Wilcox growth-fault zone. Most of the fields occur in areas with less than 40% sand, downdip from a major sand accumulation. Prospective areas in the growth-fault zone include a strike-trending band across southern DeWitt County in sequence C, an area in central Karnes County and southwestern DeWitt County in sequence D, and a belt extending from Karnes County into DeWitt County in sequence E. Large areas in DeWitt County and Karnes County updip from the growth-fault zone remain undrilled even though 44 fields produce from the shallow Wilcox immediately along strike to the southwest. The shallow Wilcox trend should be explored in northern DeWitt County and northeastern Karnes county.

  10. Lithostratigraphic framework and production history of Wilcox in central Louisiana

    SciTech Connect

    Tye, R.S.; Wheeler, C.W.; Kimbrell, W.C.; Moslow, T.F.

    1988-02-01

    Complex fluvial, deltaic, and marine sedimentary processes active during deposition of the Wilcox Group in central Louisiana created multiple, discontinuous sandstones. Prolific hydrocarbon reservoirs developed in association with positive structural features or where sedimentary characteristics were favorable. Because the Wilcox Group contains numerous complex depocenters, it does not lend itself to easy regional correlation. Therefore, to better delineate the occurrence of hydrocarbon-bearing sediments and to promote further exploration, a five-fold lithostratigraphic framework is proposed for the Wilcox Group in Louisiana.

  11. Lithostratigraphic framework and production history of Wilcox in central Louisiana

    SciTech Connect

    Tye, R.S.; Wheeler, C.W.; Kimbrell, W.C.; Moslow, T.F.

    1988-01-01

    Complex fluvial, deltaic, and marine sedimentary processes active during deposition of the Wilcox Group in central Louisiana created multiple, discontinuous sandstones. Prolific hydrocarbon reservoirs developed in association with positive structural features or where sedimentary characteristics were favorable. Because the Wilcox Group contains numerous complex depocenters, it does not lend itself to easy regional correlation. Therefore, to better delineate the occurrence of hydrocarbon-bearing sediments and to promote further exploration, five-fold lithostratigraphic framework is proposed for the Wilcox Group in Louisiana. Five lithostratigraphic zones were defined on the basis of sedimentary processes and resistivity-log character. Their thickness and sand content were mapped within 21 parishes. These zones vary from 115 to 1,000 ft thick and the sand content in each ranges from 25 to 60%. All zones produce hydrocarbons, although production is geographically variable. Production in the updip Wilcox is by far the greatest in Zone III, whereas Zone I and Zone II are most productive in the downdip deep Wilcox shelf-margin trend, a paleo-shelf margin. Isopach and isolith maps indicate that the Wilcox was sourced from the northeast and northwest. All zoness display a strong north-south isopach grain in the northern two-thirds of the study area. East-west-oriented sand packages are presented southward along the paleo-shelf margin. Regional mapping facilitated the extension of presently existing production from fluvial/deltaic depocenters by following the sand packages to the west and southwest. Where these sandstones are associated with favorable structural/stratigraphic trapping conditions, new and lucrative Wilcox fields should be found.

  12. Advanced reactors transition FY 1997 multi-year work plan WBS 7.3

    SciTech Connect

    Hulvey, R.K.

    1996-09-27

    This document describes in detail the work to be accomplised in FY 1997 and the out-years for the Advanced Reactors Transition (WBS 7.3) under the management of the Babcock & Wilcox Hanford Company. This document also includes specific milestones and funding profiles. Based upon the Fiscal Year 1997 Multi-Year Work Plan, the Department of Energy will provide authorization to perform the work described.

  13. Sequence stratigraphy and sedimentology of a shelf-margin lowstand wedge in the deep Wilcox flexture trend of south Texas

    SciTech Connect

    Snedden, J.W. ); Cooke, J.C. ); Johnson, R.K.; Conrad, K.T. )

    1991-03-01

    An integrated sedimentologic and biostratigraphic study of 15 wells and over 1400 ft (430 m) of core facilitated establishment of a sequence stratigraphic framework for the deep Wilcox Group of south Texas. This analysis also revealed the presence of a dip-restricted, sand-prone sediment wedge that produces hydrocarbons in growth-fault structures. A sequence stratigraphic framework for the Wilcox was constructed via the use of faunal-increase markers, thin intervals present in well cuttings characterized by rises in the relative abundance of planktonic foraminifera. These marine flooding horizons can be utilized to subdivide the Wilcox Group into four depositional sequences termed P(aleogene)-8, P-7, P-4, and P-3, in descending order. Identification of standard sequence-bounding unconformities is hampered by the poor seismic expression of the Wilcox and the structural complexity of the area.

  14. Deep Wilcox structure and stratigraphy in Fandango field area, Zapata County, Texas

    SciTech Connect

    Levin, D.M.

    1983-09-01

    The Fandango field in Zapata County, Texas, is a new deep Wilcox trend extension. The deep Wilcox sands are commonly found at depths of 15,000 to 20,000 ft (4,500 to 6,100 m). Enough well log and seismic control now exists to make an accurate integrated interpretation of regional deep Wilcox structure and stratigraphy. Deep Wilcox structure and stratigraphy are controlled by regionally extensive shale anticlines. These shale uplifts control deep Wilcox sand distribution, create large anticlines, and cause regional growth faults which commonly influence local structure. Each regional uplift presents a new exploration frontier holding the promise of vast reserves in the deep Wilcox. The history of Frio-Vicksburg exploration is an analogy to the deep Wilcox trend today. It took 40 years to expand Frio exploration from shallow stratigraphic tramps down into the enormous reserves in the Gulf of Mexico, because each new fault-block extension was considered to mark the downdip limit of Frio production. This was, of course, not true and is not true in the deep Wilcox today. The deep Wilcox trend remains virtually unexplored and it is the author's belief that continued work will prove the existence of much more deep Wilcox potential than is currently thought to exist.

  15. Deep Wilcox structure and stratigraphy in Fandango field area, Zapata County, Texas

    SciTech Connect

    Levin, D.M.

    1984-04-01

    The Fandango field in Zapata County, Texas, is a new deep Wilcox trend extension. The deep Wilcox sands are commonly found at depths of 15,000-20,000 ft (4500-6100 m). Enough well log and seismic control exists to make an accurate integrated interpretation of regional deep Wilcox structure and stratigraphy. Deep Wilcox structure and stratigraphy are controlled by regionally extensive shale anticlines. These shale uplifts control deep Wilcox sand distribution, create large anticlines, and cause regional growth faults which frequently influence local structure. Each regional uplift presents a new exploration frontier holding the promise of vast reserves in the deep Wilcox. The history of Frio-Vicksburg exploration is analogous to the deep Wilcox trend of today. It took 40 years to expand Frio exploration from shallow stratigraphic traps down into enormous reserves in the Gulf of Mexico, because each new fault block extension was considered to mark the downdip limit of Frio production. This assumption was not true, and is not true in the deep Wilcox today. The deep Wilcox trend remains virtually unexplored, and it is my belief that continued work will prove the existence of much more deep Wilcox potential than is currently thought to exist.

  16. Level 1 transient model for a molybdenum-99 producing aqueous homogeneous reactor and its applicability to the tracy reactor

    SciTech Connect

    Nygaard, E. T.; Williams, M. M. R.; Angelo, P. L.

    2012-07-01

    Babcock and Wilcox Technical Services Group (B and W) has identified aqueous homogeneous reactors (AHRs) as a technology well suited to produce the medical isotope molybdenum 99 (Mo-99). AHRs have never been specifically designed or built for this specialized purpose. However, AHRs have a proven history of being safe research reactors. In fact, in 1958, AHRs had 'a longer history of operation than any other type of research reactor using enriched fuel' and had 'experimentally demonstrated to be among the safest of all various type of research reactor now in use [1].' A 'Level 1' model representing B and W's proposed Medical Isotope Production System (MIPS) reactor has been developed. The Level 1 model couples a series of differential equations representing neutronics, temperature, and voiding. Neutronics are represented by point reactor kinetics while temperature and voiding terms are axially varying (one-dimensional). While this model was developed specifically for the MIPS reactor, its applicability to the Japanese TRACY reactor was assessed. The results from the Level 1 model were in good agreement with TRACY experimental data and found to be conservative over most of the time domains considered. The Level 1 model was used to study the MIPS reactor. An analysis showed the Level 1 model agreed well with a more complex computational model of the MIPS reactor (a FETCH model). Finally, a significant reactivity insertion was simulated with the Level 1 model to study the MIPS reactor's time-dependent response. (authors)

  17. Fluid and thermal mixing in a model cold leg and downcomer with vent-valve flow. [PWR

    SciTech Connect

    Rothe, P.H.; Marscher, W.D.; Block, J.A.

    1982-03-01

    This report describes an experimental program of fluid mixing experiments performed at atmospheric pressure in a 1/5-scale transparent model of the cold leg and downcomer of typical Babcock and Wilcox pressurized water reactors with vent valves. The results include transient data from a grid of thermocouples and extensive flow visualization photographs. Substantial mixing of cold injected water with hot primary coolant occurred during many of the tests.

  18. ASTM Standards for Reactor Dosimetry and Pressure Vessel Surveillance

    SciTech Connect

    GRIFFIN, PATRICK J.

    1999-09-14

    The ASTM standards provide guidance and instruction on how to field and interpret reactor dosimetry. They provide a roadmap towards understanding the current ''state-of-the-art'' in reactor dosimetry, as reflected by the technical community. The consensus basis to the ASTM standards assures the user of an unbiased presentation of technical procedures and interpretations of the measurements. Some insight into the types of standards and the way in which they are organized can assist one in using them in an expeditious manner. Two example are presented to help orient new users to the breadth and interrelationship between the ASTM nuclear metrology standards. One example involves the testing of a new ''widget'' to verify the radiation hardness. The second example involves quantifying the radiation damage at a pressure vessel critical weld location through surveillance dosimetry and calculation.

  19. Sequence stratigraphy and hydrocarbon exploration: updip Wilcox trend in south Texas

    SciTech Connect

    Smith, W.M.; Breyer, J.A.

    1988-02-01

    Five unconformity-bounded depositional sequences occur in the sub-surface lower and middle Wilcox in south Texas. All of the sequences are oil and gas productive in the updip Wilcox trend. Forty-four class D and E oil and gas fields, with a combined cumulative production of over 40 million bbl of oil and 12,000 million ft/sup 3/ of gas, produce from the lower and middle Wilcox in a 4,000-mi/sup 2/ area in the northern part of the Rio Grande embayment. Much of the established production is from sands associated with the basal unconformity of each sequence. Twenty-four of the 38 fields producing from Sequence B produce from the basal sand in the sequence. Most of the fields occur in areas of relatively low sand percent. The low-sand areas occur in different places in different sequences because the locus of sand accumulation shifted during the deposition of the Wilcox Group. The potentially productive low-sand areas are not apparent on a sand percent map for the composite lower and middle Wilcox. The techniques they used to delineate potential productive areas in the updip Wilcox trend in south Texas can be applied throughout much of the Gulf Coast basin and in other petroleum provinces with terrigenous clastic depositional systems as well.

  20. Structural framework and sand genesis of Wilcox group, Travis Ward field, Jim Hogg County, Texas

    SciTech Connect

    Rolf, E.G.

    1987-09-01

    Since its discovery in 1983, there have been eight deep Wilcox and eight Queen City wells drilled in the Travis Ward field area. Of the eight Wilcox wells, four are producing gas from deep sands; three, that are capable of production, have been junked and abandoned, and one produces from the Hinnant sand at the top of the Wilcox. Only five of the eight Queen city wells have been completed; three are considered commercial. Wilcox gas reserve estimates range from 80 to 300 bcf. To date, Wilcox and Queen City production is related to normal faulting associated with a deep salt and/or shale ridge within the Rio Grande interior salt basin. Growth of the ridge has resulted in the Wilcox being as much as 2000 ft structurally higher than the areas immediately north and south of Travis Ward field. Knowledge of the ancestral development of ridge closure prior to faulting may be critical to successful completions at Travis Ward field. Ridge-associated sea floor topography, shelf currents, sediment source proximity, and rate of sedimentation have combined for local development of high quality clean reservoir sands.

  1. Reactor physics and standards in the framework of European collaborations

    SciTech Connect

    Conde, H. ); Rowlands, J.; Salvatores, M. ); Sowerby, M. )

    1992-01-01

    This paper discusses some aspects of the standardization of data within European collaborations on reactors. It is not always possible to use identical standards because national projects often have excellent reasons for not changing, e.g., back compatibility. In such cases, intercomparisons are made. Most recommended standards are based on Joint Evaluated File (JEF) Project evaluations. Because of the key role of integral measurements in the validation of recommended data, intercomparison of integral measurement techniques has also been an important activity. The JEF Project is a collaboration between the member countries of the Nuclear Energy Agency (NEA) Data Bank. The main aim of the project is to provide neutron cross-section libraries for thermal and fast reactor calculations. It has been agreed that the standards for cross-section measurements will be the ENDF/B-VI standards internationally accepted by the Organization for European Cooperation and Development/NEA and the International Atomic Energy Agency nuclear data committees. There are close links with the European Fusion File Project.

  2. Foraminiferal biostratigraphy and paleoecology of Wilcox group (Paleocene-Eocene), central Louisiana

    SciTech Connect

    Nunn, L.L.

    1986-05-01

    The Wilcox Group in east-central and south-central Louisiana consists of 300-1200 m of mostly clastic marine and nonmarine deposits. Detailed micropaleontologic studies of the Wilcox Group in Louisiana are not available because the strata are generally unfossiliferous, especially in the northern, updip part of the study area. However, the present foraminiferal study, done in conjunction with a comprehensive regional investigation, has yielded significant biostratigraphic and paleoenvironmental information. Well cuttings and conventional cores from wells drilled by various oil companies into Wilcox units in Allen, Avoyelles, St. Landry, St. Martin, and Pointe Coupee parishes contain planktonic foraminifera that permit their assignment to established regional and worldwide zonation schemes. The section ranges from the Paleocene to the Eocene, and includes the Globorotalia angulata, G. pusilla, G. pseudomenardii, G. velascoensis, and G. subbotinae zones. Samples from conventional cores drilled through the Wilcox section throughout the study area yield benthic foraminiferal faunas that are dominated by agglutinated species and represent marine environments that range from the inner continental shelf to the continental slope. Core samples of glauconitic sandstones from the uppermost part of the section contain faunas that are dominated by Discocyclina sp. and other species of calcareous larger foraminifera. These faunas indicate shallow-water continental-shelf paleoenvironments. Many of the producing reservoir sandstones in the downdip part of the study area are stratigraphic traps of a marine depositional origin. This foraminiferal study, in conjunction with the ongoing regional Wilcox synthesis, will yield insight to similar producing trends in the downdip parts of the upper Wilcox.

  3. Magnetic flux transport and the sun's dipole moment - New twists to the Babcock-Leighton model

    NASA Technical Reports Server (NTRS)

    Wang, Y.-M.; Sheeley, N. R., Jr.

    1991-01-01

    The mechanisms that give rise to the sun's large-scale poloidal magnetic field are explored in the framework of the Babcock-Leighton (BL) model. It is shown that there are in general two quite distinct contributions to the generation of the 'alpha effect': the first is associated with the axial tilts of the bipolar magnetic regions as they erupt at the surface, while the second arises through the interaction between diffusion and flow as the magnetic flux is dispersed over the surface. The general relationship between flux transport and the BL dynamo is discussed.

  4. Depositional framework and genesis of Wilcox Submarine Canyon systems, Northwest Gulf Coast

    SciTech Connect

    Galloway, W.F.; Dinqus, W.F.; Paige, R.E.

    1988-01-01

    Wilcox (late Paleocene-early Eocene) slope systems of the Texas coastal plain contain two families of paleosubmarine canyons that exhibit distinctly different characteristics and stratigraphic settings: Yoakum and Lavaca type canyons occur as widely separated features within the generally retrogradational middle Wilcox interval. Four such canyons exhibit high length to width ratios, extend far updip of the contemporaneous shelf edge, were excavated deeply into paralic and coastal-plain deposits, and were filled primarily by mud. Fills consist of a lower onlapping unit and capping progradational deposits that are genetically related to deposition of the upper Wilcox fluvial-deltaic sequence. Significantly, the canyon fills correlate with widespread transgressive marine mudstones (the Yoakum shale-Sabinetown Formation and ''Big Shale''). In contrast, Lavaca-type canyons form a system of erosional features created along the rapidly prograding, unstable lower Wilcox continental margin. Comparative analysis of the two canyon system suggests a general process model for submarine canyon formation on prograding basin margins. Key elements are depositional loading of the continental margin creating instability, initiation of a large-scale slump, family of slumps, or listric bedding-plane fault creating a depression or indentation in the margin, and headward and lateral expansion of the depression by slumping and density-underflow erosion. Extent of canyon evolution varies according to time and submerged space available for maturation; short, broad canyons form on narrow shelves of actively prograding margins, and elongate mature canyons form in retrogradational or transgressive settings.

  5. WILCOX COUNTY, ALABAMA--A STUDY OF SOCIAL, ECONOMIC, AND EDUCATIONAL BANKRUPTCY. REPORT OF AN INVESTIGATION.

    ERIC Educational Resources Information Center

    BROADUS, JAMES; AND OTHERS

    THE REQUEST FOR THIS INVESTIGATION BY THE SPECIAL COMMITTEE OF THE NATIONAL EDUCATION ASSOCIATION COMMISSION ON PROFESSIONAL RIGHTS AND RESPONSIBILITIES RESULTED FROM THE FIRING OF NINE NEGRO TEACHERS IN WILCOX COUNTY. THE STUDY ITSELF IS MORE INCLUSIVE, INCORPORATING THE FINDINGS AND CONCLUSIONS OF SEPARATE STUDIES IN POVERTY, SCHOOL FINANCE,…

  6. Safety analysis of B and W Standard PWR using thorium-based fuels

    SciTech Connect

    Uotinen, V.O.; Carroll, W.P.; Jones, H.M.; Toops, E.C.

    1980-06-01

    A study was performed to assess the safety and licenseability of the Babcock and Wilcox standard 205-fuel assembly PWR when it is fueled with three types of thoria-based fuels denatured (/sup 233/U//sup 238/U-Th)O/sub 2/, denatured (/sup 235//U/sup 238/U-Th)O/sub 2/, and (Th-Pu)O/sub 2/. Selected transients were analyzed using typical PWR safety analysis calculational methods. The results support the conclusion that it is feasible from a safety standpoint to utilize either of the denatured urania-thoria fuels in the standard B and W plant. In addition, it appears that the use of thoria-plutonia fuels would probably also be feasible. These tentative conclusions depend on a data that is more limited than that available for UO/sub 2/ fuels.

  7. Carrizo-upper Wilcox depositional systems and their relation to updip oil production in South Texas

    SciTech Connect

    Hamlin, H.S.

    1983-05-01

    In the Rio Grande embayment of S. Texas, the Carrizo-Upper Wilcox interval consists of 2 fluvial- coastal plain depositional systems that grade downdip into several deltaic complexes. The bedload channel system is dominated by laterally coalesced, stacked fluvial channel sandstones. Shales are minor and laterally discontinuous. The mixed alluvial system consists of a more typical suite of coastal plain facies. Channel sandstones tend to be isolated and surrounded by overbank shales. Total-interval isopach patterns, sandstone geometries, and facies distributions indicate that fluvial systems were converging upon the embayment from the west, northwest, and north. Petroleum production in the updip portion of the Carrizo-Upper Wilcox interval is influenced by the distribution of the depositional systems and their component facies. Although most of the traps are structural, the geometries and internal characteristics of the reservoir sandstones are facies-dependent and affect field size and quality.

  8. A case study of the Wilcox (Lobo) trend in Webb and Zapata counties, TX

    SciTech Connect

    Holditch, S.A.; Lee, W.J.

    1986-12-01

    The Wilcox (Lobo) trend of Webb and Zapata counties, TX, is a series of geopressured, low-permeability sands with average depth from 5,000 to 12,000 ft (1525 to 3660). More than 1,000 wells have been drilled in this prolific trend during the last 10 to 12 years. Although actively developed earlier, the trend became even more attractive after its classification by the Federal Energy Regulatory Commission (FERC) as a ''tight'' gas formation. Essentially, development of the Wilcox (Lobo) has been successful because of modern technological advances. This paper presents the results of several years of study involving the geologic history, completion methods, massive-hydraulic-fracture (HF) stimulation treatments, reservoir evaluation and numerical analysis of hydraulically fractured wells in this trend, all of which illustrate the application of this modern technology.

  9. A case study of the Wilcox (Lobo) trend in Webb and Zapata counties, Texas

    SciTech Connect

    Robinson, B.M.; Holditch, S.A.; Lee, W.J.

    1983-03-01

    The Wilcox (Lobo) trend of Webb and Zapata Counties, Texas is a series of geopressured, low permeability sands in which the average depth ranges from 5,000 to 12,000 feet (1525 to 3660 m). Over 700 wells have been drilled in this prolific trend over the last 8 to 10 years. Although actively developed during this time period, this trend has become even more attractive due to its recent classification by the Federal Energy Regulatory Commission (FERC) as a ''tight'' gas formation. In essence, development of the Wilcox (Lobo) has been successful due to advances in modern technology. This paper presents the results of several years of study involving the geologic history, completion methods, massive hydraulic fracture stimulation treatments, reservoir evaluation, and numerical analysis of hydraulically fractured wells in this trend, all of which illustrate the application of this modern technology.

  10. Morphology and evolution of shale-filled paleochannel in Wilcox Group (Paleocene-Eocene), southeast Texas

    SciTech Connect

    Hutchinson, P.J.

    1987-09-01

    Local extensive paleochannels exist within the upper to lower Wilcox Group (Paleocene-Eocene) of the Gulf Coast of North America. Recent reports document the following paleochannels of the Wilcox Group: Bejuco-Lalaja, Chicontepec, DeSoto, Nautla, Ovejas, St. Landry, and Yoakum. An eighth, the Tyler (Hardin) channel, suggests that passive submarine erosional forces shaped the channels prior to any active erosional forces, such as those related to turbidity currents. The north-south-trending Tyler (Hardin) channel is 24 mi (40 km) long, 12 mi (20 km) wide, and displays over 1000 ft (300 m) of shale fill. The channel thalweg bifurcates updip into two meandering steep-walled channels that display numerous side gullies. The channel grew from the youthful to the mature stage through passive erosive mechanisms. During the mature stage, it may have been further enlarged by more active erosional agents, such as turbidity currents. Old age began with increased paralic sedimentation and infilling of the channel with deep-marine shale. Eventually, progradation and eustatic drop in sea level buried the channel, its younger fill, and older adjacent deposits. Paleochannels are salient economic features. The deep-marine shale infill of the channel acts as a source of oil and gas and a seal for adjacent reservoir rock. Upward migration of oil through fractures, faults, and sediments fills reservoirs in overlying structures formed in nearshore deposits of the upper Wilcox. Most of the major oil and gas fields of the Wilcox Group in Tyler and Hardin Counties are localized in structures overlying the channel fill.

  11. Thermal conductivity of Wilcox and Frio sandstones in South Texas (Gulf of Mexico basin)

    SciTech Connect

    McKenna, T.E.; Sharp, J.M. Jr.; Lynch, F.L.

    1996-08-01

    Thermal conductivity and petrographic data are presented for verifying mechanistic models of sandstone thermal conductivity. We measured the thermal conductivity of 83 Wilcox and Frio sandstones from south Texas in the Gulf of Mexico sedimentary basin, and correlated conductivity to petrographic variables. Thermal conductivities of water-saturated sandstones at 20{degrees}C (68{degrees}F) and 3 MPa (435 psi) were measured on core plugs using a divided-bar apparatus. Thermal conductivity ranges from 2.06 to 5.73 W/m/K over a porosity range of 2.4 to 29.6%. Because of a higher quartz content, Wilcox sandstones at a given porosity are more conductive than Frio sandstones. A grain-matrix conductivity of 5.9 W/m/K is estimated for Wilcox sandstones; matrix conductivity is adequately described with an arithmetic mixing model. Thermal conductivities of clean (<25% clay) sandstones can be described by a multilinear function of decreasing thermal conductivity with increasing porosity and increasing thermal conductivity with quartz content. For clean, quartzose (>35% of the solids) sandstones, the dependence on quartz content can be dropped and thermal conductivities can be predicted with a linear decrease in conductivity with increasing porosity. These sandstones appear isotropic with respect to thermal conductivity.

  12. Structural styles of the Wilcox and Frio growth-fault trends in Texas: Constraints on geopressured reservoirs

    SciTech Connect

    Ewing, T.E.

    1986-01-01

    In this report the wide variability in structural styles within the growth-faulted, geopressured trends of the Texas Gulf Coast is illustrated by detailed structural maps of Wilcox and Frio growth-fault trends and quantified by statistical analysis of fault compartment geometries. Within the Frio growth-fault trend the Sarita, Corpus Christi, and Port Arthur areas, together with the previously studied Blessing and Pleasant Bayou prospects, span nearly the entire range of Frio depositional systems. The Frio and Wilcox growth-fault trends show distinct differences. The author concludes that Wilcox sandstones tend to be dip-elongate, whereas fault compartments are highly strike-elongate; the probability of large reservoirs is consequently low. Frio sandstones are of mixed geometry, and fault compartments are larger and more equant, suggesting an increased chance of finding large reservoirs.

  13. Well log and 2D seismic data character of the Wilcox Group in south-central Louisiana

    USGS Publications Warehouse

    Enomoto, Catherine B.

    2014-01-01

    The Wilcox Group is productive in updip areas of Texas and Louisiana from fluvial, deltaic, and near-shore marine shelf sandstones. The reported presence of porous sandstones at 29,000 feet within the Wilcox Group containing about 200 feet of gas in the Davy Jones 1 discovery well in the offshore Louisiana South Marsh Island area illustrates a sand-rich system developed during the Paleocene and early Eocene. This study describes some of the well log and reflection seismic data characteristics of the slope and basin-floor reservoirs with gas-discovery potential that may be in the area between the producing trend onshore Louisiana and the offshore discovery.

  14. Conversion and standardization of US university reactor fuels using LEU, status 1989

    SciTech Connect

    Brown, K.R.; Matos, J.E.; Argonne National Lab., IL )

    1989-01-01

    In 1986, the US Department of Energy initiated a program to change the fuel used in most of the US university research reactors using HEU (93%) to LEU({lt}20{percent}) in order to minimize the risk of theft or diversion of this weapons-useable material. An important consideration in the LEU conversion planning process has been the desire to standardize the fuels that are used and to enhance the performance and utilization of the reactors. This paper describes the current status of this conversion process and the plans and schedules to complete an orderly transition from HEU to LEU fuel in most of these reactors. To date, three university reactors have been converted to LEU fuel, completed safety documentation for three reactors is being evaluated by the USNRC, and work on the safety documentation for six reactors is in progress. 13 refs., 9 tabs.

  15. Conversion and standardization of university reactor fuels using low-enrichment uranium: Plans and schedules

    SciTech Connect

    Young, H.H.; Brown, K.R.; Matos, J.E.

    1986-01-01

    The highly-enriched uranium (HEU) fuel used in twenty United States university reactors can be viewed as contributing to the risk of theft or diversion of weapons-useable material. To minimize this risk, the US Nuclear Regulatory Commission issued its final rule on ''Limiting the Use of Highly Enriched Uranium in Domestically Licensed Research and Test Reactors,'' in February 1986. This paper describes the plans and schedules developed by the US Department of Energy to coordinate an orderly transition from HEU to LEU fuel in most of these reactors. An important element in the planning process has been the desire to standardize the LEU fuels used in US university reactors and to enhance the performance and utilization of a number of these reactors. The program is estimated to cost about $10 million and to last about five years.

  16. The advanced neutron source reactor: An overview

    SciTech Connect

    West, C.D.

    1990-01-01

    The Advanced Neutron Source (ANS) will be a new user facility for all kinds of neutron research, including neutron scattering, materials testing, materials analysis, isotope production and nuclear physics experiments. The centerpiece of the facility is to be the world's highest flux beam reactor. There will be beams of hot, cold and thermal neutrons for more than 40 simultaneous scattering and nuclear physics experiments. In addition, there will be irradiation positions and rabbit tubes for in-pile experiments, testing and isotopes production (including transuranium isotopes). To reduce technical risks and to minimize safety issues, the reactor design is based on technology already employed in existing research reactors. The fuel elements are annular assemblies of aluminum clad involute fuel plates, similar to the design of the High Flux Isotope Reactor (HFIR) at Oak Ridge and the Institut Laue-Langevin (ILL) Reactor in Grenoble. As is common with many other research reactors, the core is cooled, moderated and reflected by heavy water. The preferred fuel is U{sub 3}Si{sub 2} - a high-density fuel form developed by Argonne National Laboratory and Babcock and Wilcox that has been extensively tested in reactors in the United States, Europe and Japan. 7 figs., 2 tabs.

  17. Biology and Genetics of the Strawberry Rootworm, Paria fragariae Wilcox

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The strawberry rootworm, Paria fragariae, is an emergent pest of ornamental nurseries in the southeastern US attacking a widening range of woody ornamentals. Conflicting observations regarding the biology and morphology of this insect have led us to believe that sub-species of Paria may exist in thi...

  18. Nuclear plant-aging research on reactor protection systems

    SciTech Connect

    Meyer, L.C.

    1988-01-01

    This report presents the rsults of a review of the Reactor Trip System (RTS) and the Engineered Safety Feature Actuating System (ESFAS) operating experiences reported in Licensee Event Reports (LER)s, the Nuclear Power Experience data base, Nuclear Plant Reliability Data System, and plant maintenance records. Our purpose is to evaluate the potential significance of aging, including cycling, trips, and testing as contributors to degradation of the RTS and ESFAS. Tables are presented that show the percentage of events for RTS and ESFAS classified by cause, components, and subcomponents for each of the Nuclear Steam Supply System vendors. A representative Babcock and Wilcox plant was selected for detailed study. The US Nuclear Regulatory Commission's Nuclear Plant Aging Research guidelines were followed in performing the detailed study that identified materials susceptible to aging, stressors, environmental factors, and failure modes for the RTS and ESFAS as generic instrumentation and control systems. Functional indicators of degradation are listed, testing requirements evaluated, and regulatory issues discussed.

  19. Babcock-Leighton solar dynamo: the role of downward pumping and the equatorward propagation of activity

    NASA Astrophysics Data System (ADS)

    Karak, Bidya Binay; Cameron, Robert

    2016-05-01

    We investigate the role of downward magnetic pumping near the surface using a kinematic Babcock-Leighton model. We find that the pumping causes the poloidal field to become predominately radial in the near-surface shear layer. This allows the negative radial shear in the near-surface layer to effectively act on the radial field to produce a toroidal field. Consequently, we observe a clear equatorward migration of the toroidal field at low latitudes even when there is no meridional flow in the deep CZ. We show a case where the period of a dynamo wave solution is approximately 11 years. Flux transport models are also shown with periods close to 11 years. Both the dynamo wave and flux transport dynamo are thus able to reproduce some of the observed features of solar cycle. The main difference between the two types of dynamo is the value of $\\alpha$ required to produce dynamo action. In both types of dynamo, the surface meridional flow helps to advect and build the polar field in high latitudes, while in flux transport dynamo the equatorward flow near the bottom of CZ advects toroidal field to cause the equatorward migration in butterfly wings and this advection makes the dynamo easier by transporting strong toroidal field to low latitudes where $\\alpha$ effect works. Another conclusion of our study is that the magnetic pumping suppresses the diffusion of fields through the photospheric surface which helps to achieve the 11-year dynamo cycle at a moderately larger value of magnetic diffusivity than has previously been used.

  20. Conversion and standardization of university reactor fuels using low-enrichment uranium - options and costs

    SciTech Connect

    Harris, D.R.; Matos, J.E.; Young, H.H.

    1985-01-01

    The highly-enriched uranium (HEU) fuel used in twenty United States university reactors can be viewed as contributing to the risk of theft or diversion of weapons-useable material. The US Nuclear Regulatory Commission has issued a policy statement expressing its concern and has published a proposed rule on limiting the use of HEU in NRC-licensed non-power reactors. The fuel options, functional impacts, licensing, and scheduling of conversion and standardization of these reactor fuels to use of low-enrichment uranium (LEU) have been assessed. The university reactors span a wide range in form and function, from medium-power intense neutron sources where HEU fuel may be required, to low-power training and research facilities where HEU fuel is unnecessary. Conversion provides an opportunity to standardize university reactor fuels and improve reactor utilization in some cases. The entire program is estimated to cost about $10 million and to last about five years. Planning for conversion and standardization is facilitated by the US Department of Energy. 20 refs., 1 tab.

  1. On the Meaning of Formative Measurement and How It Differs from Reflective Measurement: Comment on Howell, Breivik, and Wilcox (2007)

    ERIC Educational Resources Information Center

    Bagozzi, Richard P.

    2007-01-01

    D. Howell, E. Breivik, and J. B. Wilcox (2007) have presented an important and interesting analysis of formative measurement and have recommended that researchers abandon such an approach in favor of reflective measurement. The author agrees with their recommendations but disagrees with some of the bases for their conclusions. He suggests that…

  2. Assessement of Codes and Standards Applicable to a Hydrogen Production Plant Coupled to a Nuclear Reactor

    SciTech Connect

    M. J. Russell

    2006-06-01

    This is an assessment of codes and standards applicable to a hydrogen production plant to be coupled to a nuclear reactor. The result of the assessment is a list of codes and standards that are expected to be applicable to the plant during its design and construction.

  3. High Temperature Gas Reactors: Assessment of Applicable Codes and Standards

    SciTech Connect

    McDowell, Bruce K.; Nickolaus, James R.; Mitchell, Mark R.; Swearingen, Gary L.; Pugh, Ray

    2011-10-31

    Current interest expressed by industry in HTGR plants, particularly modular plants with power up to about 600 MW(e) per unit, has prompted NRC to task PNNL with assessing the currently available literature related to codes and standards applicable to HTGR plants, the operating history of past and present HTGR plants, and with evaluating the proposed designs of RPV and associated piping for future plants. Considering these topics in the order they are arranged in the text, first the operational histories of five shut-down and two currently operating HTGR plants are reviewed, leading the authors to conclude that while small, simple prototype HTGR plants operated reliably, some of the larger plants, particularly Fort St. Vrain, had poor availability. Safety and radiological performance of these plants has been considerably better than LWR plants. Petroleum processing plants provide some applicable experience with materials similar to those proposed for HTGR piping and vessels. At least one currently operating plant - HTR-10 - has performed and documented a leak before break analysis that appears to be applicable to proposed future US HTGR designs. Current codes and standards cover some HTGR materials, but not all materials are covered to the high temperatures envisioned for HTGR use. Codes and standards, particularly ASME Codes, are under development for proposed future US HTGR designs. A 'roadmap' document has been prepared for ASME Code development; a new subsection to section III of the ASME Code, ASME BPVC III-5, is scheduled to be published in October 2011. The question of terminology for the cross-duct structure between the RPV and power conversion vessel is discussed, considering the differences in regulatory requirements that apply depending on whether this structure is designated as a 'vessel' or as a 'pipe'. We conclude that designing this component as a 'pipe' is the more appropriate choice, but that the ASME BPVC allows the owner of the facility to select

  4. Lignite occurrence in relation to depositional facies, Eocene Wilcox group, Sabine uplift area, east Texas - regional and local comparative studies

    SciTech Connect

    Ambrose, M.L.; Jackson, M.L.W.; Kaiser, W.R.; Fly, D.J.

    1984-04-01

    Lignite occurrence was related to sandbody geometry in two subsurface studies: a 12-county regional study and a local study of the Trawick gas field area, north-central Nacogdoches County. For both studies, the Wilcox Group was informally divided into lower progradational (deltaic) and upper aggradational (fluvial) units. The local study utilized closely spaced data to investigate a more detailed Wilcox stratigraphy. The most continuous lignite-bearing zone lies at the transition between lower and upper Wilcox strata. Mapping of lignite occurrence in both studies shows this zone to be coincident with distributary channels indicative of delta-plain settings. Lignites and laterally equivalent muds rest on platforms of sandy sediments. Initiation of peat accumulation in interdistributary basins, with upward and subsequent lateral development as blanket peat, is inferred from the local study. Thickness and most laterally extensive seams occur in Shelby and Panola Counties on the flanks of major delta lobes. Thick upper Wilcox lignites (> 5 ft, 1.5 m) occur regionally between major fluvial channel sand belts and cap 30 to 40-ft (9 to 12-m) upward-coarsening sequences (crevasse splays.). These lignites are surface-mined in Panola and Harrison Counties at Martin Lake and Darco. Westward, in northern Cherokee County, our drilling shows thick lignites (up to 11 ft, 3.4 m) have limited lateral extent in channel sand belt areas. Similarly, the local study lies within a major sand belt; small interchannel basins limit lateral continuity of lignites.

  5. Interpretational Confounding Is Due to Misspecification, Not to Type of Indicator: Comment on Howell, Breivik, and Wilcox (2007)

    ERIC Educational Resources Information Center

    Bollen, Kenneth A.

    2007-01-01

    R. D. Howell, E. Breivik, and J. B. Wilcox (2007) have argued that causal (formative) indicators are inherently subject to interpretational confounding. That is, they have argued that using causal (formative) indicators leads the empirical meaning of a latent variable to be other than that assigned to it by a researcher. Their critique of causal…

  6. Compiled reports on the applicability of selected codes and standards to advanced reactors

    SciTech Connect

    Benjamin, E.L.; Hoopingarner, K.R.; Markowski, F.J.; Mitts, T.M.; Nickolaus, J.R.; Vo, T.V.

    1994-08-01

    The following papers were prepared for the Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission under contract DE-AC06-76RLO-1830 NRC FIN L2207. This project, Applicability of Codes and Standards to Advance Reactors, reviewed selected mechanical and electrical codes and standards to determine their applicability to the construction, qualification, and testing of advanced reactors and to develop recommendations as to where it might be useful and practical to revise them to suit the (design certification) needs of the NRC.

  7. Geopressured Geothermal Resource and Recoverable Energy Estimate for the Wilcox and Frio Formations, Texas (Presentation)

    SciTech Connect

    Esposito, A.; Augustine, C.

    2011-10-01

    An estimate of the total and recoverable geopressured geothermal resource of the fairways in the Wilcox and Frio formations is made using the current data available. The flow rate of water and methane for wells located in the geopressured geothermal fairways is simulated over a 20-year period utilizing the TOUGH2 Reservoir Simulator and research data. The model incorporates relative permeability, capillary pressure, rock compressibility, and leakage from the bounding shale layers. The simulations show that permeability, porosity, pressure, sandstone thickness, well spacing, and gas saturation in the sandstone have a significant impact on the percent of energy recovered. The results also predict lower average well production flow rates and a significantly higher production of natural gas relative to water than in previous studies done from 1975 to 1980. Previous studies underestimate the amount of methane produced with hot brine. Based on the work completed in this study, multiphase flow processes and reservoir boundary conditions greatly influence the total quantity of the fluid produced as well as the ratio of gas and water in the produced fluid.

  8. Structural styles of the Wilcox and Frio growth-fault trends in Texas: Constraints on geopressured reservoirs

    SciTech Connect

    Ewing, T.E.

    1986-01-01

    The wide variability in structural styles within the growth-faulted, geopressured trends of the Texas Gulf Coast is illustrated by detailed structural maps of selected areas of the Wilcox and Frio growth-fault trends and quantified by statistical analysis of fault compartment geometries. Structural variability is a key determinant of the size of geopressured aquifers in the deep subsurface. Two major structural styles exist in the Wilcox trend. (1) In southeast and Central Texas, the trend consists of continuous, closely spaced faults that have little associated rollover despite moderate expansion of section; the fault plane flattens little with depth. (2) By contrast, in South Texas a narrow band of growth faults having high expansion and moderate rollover lies above and downdip of a ridge of deformed, overpressured shale but updip of a deep basin formed by withdrawal of overpressured shale. Frio fault systems generally display greater rollover and wider spacing than do Wilcox fault systems; however, the Frio trend displays distinctive features in each study area. Most of the Frio growth faults, however, have a similar geometry, showing substantial rollover, expansion of section, and a moderate flattening of the fault zone with depth, possibly related to a deep decollement surface. The local variability in style is related to the magnitude of Frio sedimentation and progradation and to the presence of thick salt or shale. Finding and developing a large geopressured aquifer require recognition of a favorable combination of sand-body geometry, reservoir quality, and fault compartment size and shape.

  9. Reservoir characterization and preliminary modeling of deltaic facies, lower Wilcox, Concordia Parish, Louisiana

    SciTech Connect

    Schenewerk, P.; Goddard, D.; Echols, J.

    1994-12-31

    The decline in production in several fields in Concordia Parish, Louisiana, has created interest in the economic feasibility of producing the remaining bypassed oil in the lower Wilcox Group. One of these fields, Bee Brake, has been one of the more prolific oil-producing fields in east-central Louisiana. The producing interval, the Minter sandstones, at a depth of about 6,775 ft typically consists of an upper Bee Brake sandstone and a lower Angelina sandstone. A detailed study of a conventional core in the center of the field reveals a 15-ft-thick Minter interval bounded above and below by sealing shales and lignites of lower delta plain marsh facies. The upper 4-ft-thick Bee Brake is a very fine silty sandstone with characteristics of a small overbank or crevasse splay deposit. The lower 3-ft-thick oil-producing Angelina sandstone consists of very fine and fine sandstone of probable overbank or crevasse facies. Cumulative production from the Angelina is about 1.8 million stock-tank barrels of oil. Special core analysis data (capillary pressure, relative permeability, and waterflood recovery) have been used to develop a simulation model of the two reservoirs in the Minter. This model incorporates the geologic and engineering complexities noted during evaluation of the field area. Operators can use the model results in this field to design an optimal development plan for enhanced recovery.

  10. Organic petrology and coalbed gas content, Wilcox Group (Paleocene-Eocene), northern Louisiana

    USGS Publications Warehouse

    Hackley, P.C.; Warwick, P.D.; Breland, F.C., Jr.

    2007-01-01

    Wilcox Group (Paleocene-Eocene) coal and carbonaceous shale samples collected from four coalbed methane test wells in northern Louisiana were characterized through an integrated analytical program. Organic petrographic analyses, gas desorption and adsorption isotherm measurements, and proximate-ultimate analyses were conducted to provide insight into conditions of peat deposition and the relationships between coal composition, rank, and coalbed gas storage characteristics. The results of petrographic analyses indicate that woody precursor materials were more abundant in stratigraphically higher coal zones in one of the CBM wells, consistent with progradation of a deltaic depositional system (Holly Springs delta complex) into the Gulf of Mexico during the Paleocene-Eocene. Comparison of petrographic analyses with gas desorption measurements suggests that there is not a direct relationship between coal type (sensu maceral composition) and coalbed gas storage. Moisture, as a function of coal rank (lignite-subbituminous A), exhibits an inverse relationship with measured gas content. This result may be due to higher moisture content competing for adsorption space with coalbed gas in shallower, lower rank samples. Shallower ( 600??m) coal samples containing less moisture range from under- to oversaturated with respect to their CH4 adsorption capacity.

  11. Obituary: Horace Welcome Babcock, 1912-2003

    NASA Astrophysics Data System (ADS)

    Vaughan, Arthur Harris

    2003-12-01

    sunspot cycles. Until about 1957 this work had been done at the Hale Solar Laboratory on Holladay Road in Pasadena. Improved models of the magnetograph developed by Robert F. Howard, in collaboration with Horace, went into operation in the 150-foot solar tower telescope at Mount Wilson in 1959 and later, and similar instruments are now employed at many other solar observatories. In 1961 Horace proposed an explanation of the Sun's 22-year magnetic cycle that contained many of the features still embodied in contemporary theoretical models of the phenomenon. The advance in our understanding of solar and stellar magnetism brought forth by Horace Babcock is a worthy sequel to the pioneering efforts initiated by George E. Hale early in the twentieth century. Faced with the growing obsolescence of the Carnegie Institution of Washington's facilities at Mount Wilson along with the competition from Caltech's 200-inch telescope, the Carnegie Trustees in 1963 adopted the idea of founding a major observatory in the Southern Hemisphere as its master plan for modernizing the astronomical facilities of the Institution. Upon becoming Director of the Mount Wilson and Palomar Observatories in 1964, Horace Babcock embraced the job of carrying out this plan, although it meant giving up his own science. Beginning in 1963, and with his usual ingenuity, Horace developed apparatus for measuring astronomical ``seeing." In collaboration with John Irwin and others, he carried out site surveys in Chile, Australia and New Zealand with the aim of selecting the best available location for the anticipated array of large telescopes. Some five years of exploration led, in 1968, to the selection and purchase of a 276 square-kilometer tract on Cerro Las Campanas in north central Chile as the site for the new observatory. Babcock and Irwin had first climbed to its summit, on foot, in October 1966. The team Horace assembled to build the observatory and its infrastructure proved equal to the high standards he

  12. The LaSalle Arch and its effect on Wilcox sequence stratigraphy

    SciTech Connect

    Lawless P.N.; Hart, G.F. )

    1990-09-01

    The LaSalle Arch is a southerly trending anticline separating the Louisiana and Mississippi interior salt basins. The structural trend of the Arch is suspended along basement paleo-highs. The paleo-high beneath the Nebo-Hemphill field, as seen on reflection seismic data, is the nose of an Ouachitan thrust fault that was partially rifted during the opening of the Gulf of Mexico. The western limb of the Arch formed owing to differential subsidence expanding the stratigraphic section toward the southwest. The eastern limb of the Arch formed because of regional tilting to the east after deposition of the Claibornian Sparta Formation. Uplift of the LaSalle Arch occurred during the Late Cretaceous Period and is seen as a truncational unconformity within the Tayloran Demopolis Formation. The Wilcox and Midway groups of central Louisiana have been subdivided into three genetic sequences. They are T{sub 1} (the Midway.), T{sub 2} (the Holly Springs), and T{sub 3} (the Carrizo). A genetic sequence is bounded above and below by condensed sections and represents a progradation into the basin followed by transgression. Each sequence represents a potential major migration route for the crude oil. The high stand systems tract of T{sub 1} and T{sub 3} were deposited during falling sea level resulting in similar homogenous sheetlike sand bodies. The paleo-highs subtly controlled the location of depositional environments, but did not prevent progradation to the southwest. The highstand systems tract of T{sub 2} was deposited during rising sea level resulting in heterogenous sediment dominated deltaic deposits that are very different from T{sub 1} and T{sub 3}. Although the stratigraphic section expands to the southwest, giving the impression that the interval thins over the Arch, the LaSalle Arch did not control the location of depositional environments within T{sub 2}.

  13. The simulation of thermohydraulic phenomena in a pressurized water reactor primary loop

    SciTech Connect

    Popp, M

    1987-01-01

    Several important fluid flow and heat transfer phenomena essential to nuclear power reactor safety were investigated. Scaling and modeling laws for pressurized water reactors are reviewed and a new scaling approach focusing on the overall loop behavior is presented. Scaling criteria for one- and two-phase natural circulation are developed, as well as a simplified model describing the first phase of a small break loss of coolant accident. Reactor vessel vent valve effects are included in the analysis of steady one-phase natural circulation flow. Two new dimensionless numbers, which uniquely describe one-phase flow in natural circulation loops, were deduced and are discussed. A scaled model of the primary loop of a typical Babcock and Wilcox reactor was designed, built, and tested. The particular prototype modeled was the TMI unit 2 reactor. The electrically heated, stainless steel model operates at a maximum pressure of 300 psig and has a maximum heat input of 188 kW. The model is about 4 times smaller in height than the prototype reactor, with a nominal volume scale of 1:500. Experiments were conducted establishing subcooled natural circulation in the model loop. Both steady flow and power transients were investigated.

  14. Maturation of organic matter in Paleocene-Eocene Wilcox group south Texas: relationship to clay diagenesis and sandstone cementation

    SciTech Connect

    Jenden, P.D.; Kaplan, I.R.

    1984-04-01

    Thirty-three mudstone core and cuttings samples ranging in depth of 1.6-4.7 km (5200-15,400 ft) and in temperature from 80/sup 0/ to 210/sup 0/C (175-410/sup 0/F) were obtained from wells in south Texas. The results of closed-system pyrolyses and bitumen and kerogen analyses are related to available data on clay mineralogy and sandstone cement. This study examines the diagenesis of Wilcox organic matter, the migration of hydrocarbons, and the importance of organically derived CO/sub 2/ in sandstone cementation. The samples average 1% TOC, contain type 111 kerogen, and generally show bitumen contents less than or equal to about 150 mg/gC. Modeling indicates that primary migration of methane and light hydrocarbons in aqueous solution is capable of producing giant (greater than or equal to 1 tcf) gas and condensate fields. Because hydrocarbon generation does not occur until after the main stage of illitization, smectite accounts for less than 25% of the total water involved. Pyrolysis experiments indicate that as much as 150 mg/gC CO/sub 2/ may be liberated by Wilcox organic matter during diagenesis to present-day temperatures of 100/sup 0/C (212/sup 0/F). The main zone of oil generation occurs at subsurface temperatures of 95..pi..-125/sup 0/C (203/sup 0/-257/sup 0/F). The timing of these processes suggest that CO/sub 2/ could lay an important role in creating secondary sandstones porosity for hydrocarbon migration. The delta/sup 13/C values indicate that 25% of the carbonate cement present in Wilcox sandstones may originate from decomposition and diagenesis of organic matter.

  15. Potentiometric surface, 2013, and water-level differences, 1991-2013, of the Carrizo-Wilcox aquifer in northwest Louisiana

    USGS Publications Warehouse

    Fendick, Robert B., Jr.; Carter, Kayla

    2015-01-01

    This report presents data and maps that illustrate the potentiometric surface of the Carrizo-Wilcox aquifer during March–May 2013 and water-level differences from 1991 to 2013. The potentiometric surface map can be used for determining the direction of groundwater flow, hydraulic gradients, and effects of withdrawals on the groundwater resource. The rate of groundwater movement also can be estimated from the gradient when the hydraulic conductivity is applied. Water-level data collected for this study are stored in the USGS National Water Information System (NWIS) (http://waterdata.usgs.gov/nwis) and are on file at the USGS office in Baton Rouge, La.

  16. Steps towards verification and validation of the Fetch code for Level 2 analysis, design, and optimization of aqueous homogeneous reactors

    SciTech Connect

    Nygaard, E. T.; Pain, C. C.; Eaton, M. D.; Gomes, J. L. M. A.; Goddard, A. J. H.; Gorman, G.; Tollit, B.; Buchan, A. G.; Cooling, C. M.; Angelo, P. L.

    2012-07-01

    Babcock and Wilcox Technical Services Group (B and W) has identified aqueous homogeneous reactors (AHRs) as a technology well suited to produce the medical isotope molybdenum 99 (Mo-99). AHRs have never been specifically designed or built for this specialized purpose. However, AHRs have a proven history of being safe research reactors. In fact, in 1958, AHRs had 'a longer history of operation than any other type of research reactor using enriched fuel' and had 'experimentally demonstrated to be among the safest of all various type of research reactor now in use [1].' While AHRs have been modeled effectively using simplified 'Level 1' tools, the complex interactions between fluids, neutronics, and solid structures are important (but not necessarily safety significant). These interactions require a 'Level 2' modeling tool. Imperial College London (ICL) has developed such a tool: Finite Element Transient Criticality (FETCH). FETCH couples the radiation transport code EVENT with the computational fluid dynamics code (Fluidity), the result is a code capable of modeling sub-critical, critical, and super-critical solutions in both two-and three-dimensions. Using FETCH, ICL researchers and B and W engineers have studied many fissioning solution systems include the Tokaimura criticality accident, the Y12 accident, SILENE, TRACY, and SUPO. These modeling efforts will ultimately be incorporated into FETCH'S extensive automated verification and validation (V and V) test suite expanding FETCH'S area of applicability to include all relevant physics associated with AHRs. These efforts parallel B and W's engineering effort to design and optimize an AHR to produce Mo99. (authors)

  17. An extended conventional fuel cycle for the B and W mPower{sup TM} small modular nuclear reactor

    SciTech Connect

    Scarangella, M. J.

    2012-07-01

    The B and W mPower{sup TM} reactor is a small pressurized water reactor (PWR) with an integral once-through steam generator and a thermal output of about 500 MW; it is intended to replace aging fossil power plants of similar output. The core is composed of 69 reduced-height PWR assemblies with the familiar 17 x 17 fuel rod array. The Babcock and Wilcox Company (B and W) is offering a core loading and cycle management plan for a four-year cycle based on its presumed attractiveness to potential customers. This option is a once-through fuel cycle in which the entire core is discharged and replaced after four years. In addition, a conventional fuel utilization strategy, employing a periodic partial reload and shuffle, was developed as an alternative to the four-year once-through fuel cycle. This study, which was performed using the Studsvik core design code suite, is a typical multi-cycle projection analysis of the type performed by most fuel management organizations such as fuel vendors and utilities. In the industry, the results of such projections are used by the financial arms of these organizations to assist in making long-term decisions. In the case of the B and W mPower reactor, this analysis demonstrates flexibility for customers who consider the once-through fuel cycle unacceptable from a fuel utilization standpoint. As expected, when compared to the once-through concept, reloads of the B and W mPower reactor will achieve higher batch average discharge exposure, will have adequate shut-down margin, and will have a relatively flat hot excess reactivity trend at the expense of slightly increased peaking. (authors)

  18. Coal gasification systems engineering and analysis. Appendix G: Commercial design and technology evaluation

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A technology evaluation of five coal gasifier systems (Koppers-Totzek, Texaco, Babcock and Wilcox, Lurgi and BGC/Lurgi) and procedures and criteria for evaluating competitive commercial coal gasification designs is presented. The technology evaluation is based upon the plant designs and cost estimates developed by the BDM-Mittelhauser team.

  19. Office for Analysis and Evaluation of Operational Data annual report, FY 95: Technical training. Volume 9, Number 3

    SciTech Connect

    1996-09-01

    The Technical Training Center provides initial and continuing technical training for NRC staff and contractors to satisfy training needs defined by formal NRC staff qualification and training programs. Technical training includes reactor technology programs and specialized technical programs. Reactor technology programs include a spectrum of courses, including classroom and simulator instruction, in each of the four Nuclear Steam Supply System vendor designs--General Electric (GE), Westinghouse, Combustion Engineering (CE), and Babcock and Wilcox (B and W). Specialized technical training includes courses in engineering support, probabilistic risk assessment, radiation protection, fuel cycle technology, safeguards, and regulatory skills. The report presents the activities of the Technical Training Center in FY95 in support of the NRC`s mission.

  20. Properties and chemical constituents in ground water from the middle Wilcox aquifer, south-central United States

    USGS Publications Warehouse

    Pettijohn, Robert A.; Busby, John F.; Beckman, Jeffery D.

    1993-01-01

    The Gulf Coast Regional Aquifer-System Analysis is a study of regional aquifers composed of sediments of mostly Cenozoic age that underlie about 230,000 sq mi of the Gulf Coastal Plain. These regional aquifers are part of three aquifer systems: (1) the Mississippi Embayment Aquifer System, (2) the Texas Coastal Uplands Aquifer System, and (3) the Coastal Lowlands Aquifer System. The water chemistry of the Middle Wilcox Aquifer, which is part of the Mississippi Embayment Aquifer System and the Texas Coastal Uplands Aquifer System is presented by a series of maps. These maps show the area1 distribution of (1) the concentration of dissolved solids and temperature, (2) the primary water types and pH, (3) the concentration of major ions and silica, and (4) the milliequivalent ratios of selected ions. Dissolved constituents, pH, temperature, and ratios are based on the median values of all samples in each 100-sq-mi area. The concentration of dissolved solids in water from the Middle Wilcox Aquifer ranges from 26 mg/L in the northern part of the Mississippi Embayment Aquifer System to 125,500 mg/L in a down-dip area in southeastern Texas. The primary water types, which are based on the most frequently observed type in each 100-sq-mi area, are calcium bicarbonate in the outcrop in Missouri, Kentucky, Mississippi, and southern Texas; sodium bicarbonate in the remaining outcrop areas and all areas from outcrop to mid-dip; and sodium chloride in all down-dip areas. The concentrations of major ions in water from the Middle Wilcox Aquifer generally increase from the outcrop area to the down-dip limit of the data. The milliequivalent ratio of magnesium plus calcium to bicarbonate ranges from less than 0.01 to 158 and generally decreases from outcrop to mid-dip and increases from mid-dip to the down-dip limit of the data. From the Sabine Uplift eastward to southwestern Alabama the ratio of bicarbonate to chloride generally decreases from outcrop to down-dip in the area west of

  1. The development and application of k0-standardization method of neutron activation analysis at Es-Salam research reactor

    NASA Astrophysics Data System (ADS)

    Alghem, L.; Ramdhane, M.; Khaled, S.; Akhal, T.

    2006-01-01

    In recent years the k0-NAA method has been applied and developed at the 15 MW Es-Salam research reactor, which includes: (1) the detection efficiency calibration of γ-spectrometer used in k0-NAA, (2) the determination of reactor neutron spectrum parameters such as α and f factors in the irradiation channel, and (3) the validation of the developed k0-NAA procedure by analysing SRM, namely AIEA-Soil7 and CRM, namely IGGE-GSV4. The analysis results obtained by k0-NAA with 27 elements of Soil-7 standard and 14 elements of GSV-4 standard were compared with certified values. The analysis results showed that the deviations between experimental and certified values were mostly less than 10%. The k0-NAA procedure established at Es-Salam research reactor has been regarded as a reliable standardization method of NAA and as available for practical applications.

  2. 78 FR 73898 - Operator Licensing Examination Standards for Power Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-09

    ... COMMISSION Operator Licensing Examination Standards for Power Reactors AGENCY: Nuclear Regulatory Commission... Standards for Power Reactors.'' DATES: Submit comments by February 7, 2014. Comments received after this..., and grading of examinations used for licensing operators at nuclear power plants pursuant to...

  3. Intermediate photovoltaic system application experiment operational performance report. Volume 4. For G. N. Wilcox Memorial Hospital, Kauai, Hawaii for June, July, and August 1982

    SciTech Connect

    Not Available

    1982-12-01

    Presented are the data accumulated during June, July, and August 1982 at the intermediate photovoltaic project at G.N. Wilcox Memorial Hospital, Kauai, Hawaii. Generated energy and environmental (weather) data are presented graphically. Explanations of irregularities not attributable to weater are provided.

  4. Interview with Professor Mark Wilcox.

    PubMed

    Wilcox, Mark

    2016-08-01

    Mark Wilcox speaks to Georgia Patey, Commissioning Editor: Professor Mark Wilcox is a Consultant Microbiologist and Head of Microbiology at the Leeds Teaching Hospitals (Leeds, UK), the Professor of Medical Microbiology at the University of Leeds (Leeds, UK), and is the Lead on Clostridium difficile and the Head of the UK C. difficile Reference Laboratory for Public Health England (PHE). He was the Director of Infection Prevention (4 years), Infection Control Doctor (8 years) and Clinical Director of Pathology (6 years) at the Leeds Teaching Hospitals. He is Chair of PHE's Rapid Review Panel (reviews utility of infection prevention and control products for National Health Service), Deputy Chair of the UK Department of Health's Antimicrobial Resistance and Healthcare Associated Infection Committee and a member of PHE's HCAI/AR Programme Board. He is a member of UK/European/US working groups on C. difficile infection. He has provided clinical advice as part of the FDA/EMA submissions for the approval of multiple novel antimicrobial agents. He heads a healthcare-associated infection research team at University of Leeds, comprising approximately 30 doctors, scientists and nurses; projects include multiple aspects of C. difficile infection, diagnostics, antimicrobial resistance and the clinical development of new antimicrobial agents. He has authored more than 400 publications, and is the coeditor of Antimicrobial Chemotherapy (5th/6th/7th Editions, 15 December 2007). PMID:27494150

  5. Peter Wilcox: A new purple-skin, yellow flesh fresh market potato cultivar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peter Wilcox is a new, medium-maturing, purple-skin, yellow-flesh potato cultivar for fresh market. Peter Wilcox also produces light-colored chips, although it is being released primarily as a fresh market potato because of its skin and flesh colors. Tubers of Peter Wilcox are attractive, smooth, wi...

  6. Numerical simulation of PWR response to a small break LOCA (loss-of-coolant accident) with reactor coolant pumps operating

    SciTech Connect

    Adams, J.P.; Dobbe, C.A.; Bayless, P.D.

    1986-01-01

    Calculations have been made of the response of pressurized water reactors (PWRs) during a small-break, loss-of-coolant accident with the reactor coolant pumps (RCPs) operating. This study was conducted, as part of a comprehensive project, to assess the relationship between measurable RCP parameters, such as motor power or current, and fluid density, both local (at the RCP inlet) and global (average reactor coolant system). Additionally, the efficacy of using these RCP parameters, together with fluid temperature, to identify an off-nominal transient as either a LOCA, a heatup transient, or a cooldown transient and to follow recovery from the transient was assessed. The RELAP4 and RELAP5 computer codes were used with three independent sets of RCP, two-phase degradation multipliers. These multipliers were based on data obtained in two-phase flow conditions for the Semiscale, LOFT, and Creare/Combustion Engineering (CE)/Electric Power Research Institute (EPRI) pumps, respectively. Two reference PWRs were used in this study: Zion, a four-loop, 1100-MWe, Westinghouse plant operated by Commonwealth Edison Co. in Zion, Illinois and Bellefonte, a two-by-four loop, 1213 MWe, Babcock and Wilcox designed plant being built by the Tennessee Valley Authority in Scottsboro, Alabama. The results from this study showed that RCP operation resulted in an approximately homogeneous reactor coolant system and that this result was independent of reference plant, computer code, or two-phase RCP head degradation multiplier used in the calculation.

  7. Altitude of the water table in the alluvial and Wilcox aquifers in the vicinity of Richland and Tehuacana creeks and the Trinity River, Texas, December 1979

    USGS Publications Warehouse

    Garza, Sergio

    1980-01-01

    This map shows the altitude of the water table in the alluvial and Wilcox aquifers in the vicinity of Richland and Tehuacana Creeks and the Trinity River, Tex., in December 1979. The water-table contours were constructed on the basis of water-level control derived from an inventory of shallow wells in the area, topographic maps, and field locations of numerous small springs and seeps. (USGS)

  8. The Advanced Candu reactor annunciation system - Compliance with IEC standard and US NRC guidelines

    SciTech Connect

    Leger, R.; Malcolm, S.; Davey, E.

    2006-07-01

    Annunciation is a key plant information system that alerts Operations staff to important changes in plant processes and systems. Operational experience at nuclear stations worldwide has shown that many annunciation implementations do not provide the support needed by Operations staff in all plant situations. To address utility needs for annunciation improvement in Candu plants, AECL in partnership with Canadian Candu utilities, undertook an annunciation improvement program in the early nineties. The outcome of the research and engineering development program was the development and simulator validation of alarm processing, display, and information presentation techniques that provide practical and effective solutions to key operational deficiencies with earlier annunciation implementations. The improved annunciation capabilities consist of a series of detection, information processing and presentation functions called the Candu Annunciation Message List System (CAMLS). The CAMLS concepts embody alarm processing, presentation and interaction techniques, and strategies and methods for annunciation system configuration to ensure improved annunciation support for all plant situations, especially in upset situations where the alarm generation rate is high. The Advanced Candu Reactor (ACR) project will employ the CAMLS annunciation concepts as the basis for primary annunciation implementations. The primary annunciation systems will be implemented from CAMLS applications hosted on AECL Advanced Control Centre Information System (ACCIS) computing technology. The ACR project has also chosen to implement main control room annunciation aspects in conformance with the following international standard and regulatory review guide for control room annunciation practice: International Electrotechnical Commission (IEC) 62241 - Main Control Room, Alarm Function and Presentation (International standard) US NRC NUREG-0700 - Human-System Interface Design Review Guidelines, Section 4

  9. 3D Babcock-Leighton Solar Dynamo Models

    NASA Astrophysics Data System (ADS)

    Miesch, Mark S.; Hazra, Gopal; Karak, Bidya Binay; Teweldebirhan, Kinfe; Upton, Lisa

    2016-05-01

    We present results from the new STABLE (Surface flux Transport and Babcock Leighton) Dynamo Model. STABLE is a 3D Babcock-Leighton/Flux Transport dynamo model in which the source of poloidal field is the explicit emergence, distortion, and dispersal of bipolar magnetic regions (BMRs). In this talk I will discuss initial results with axisymmetric flow fields, focusing on the operation of the model, the general features of the cyclic solutions, and the challenge of achieving supercritical dynamo solutions using only the Babcock-Leighton source term. Then I will present dynamo simulations that include 3D convective flow fields based on the observed velocity power spectrum inferred from photospheric Dopplergrams. I'll use these simulations to assess how the explicit transport and amplification of fields by surface convection influences the operation of the dynamo. I will also discuss the role of surface magnetic fields in regulating the subsurface toroidal flux budget.

  10. Development and testing of a diagnostic system for intelligen distributed control at EBR-2

    SciTech Connect

    Edwards, R.M.; Ruhl, D.W.; Klevans, E.H.; Robinson, G.E.

    1990-01-01

    A diagnostic system is under development for demonstration of Intelligent Distributed Control at the Experimental Breeder Reactor (EBR--II). In the first phase of the project a diagnostic system is being developed for the EBR-II steam plant based on the DISYS expert systems approach. Current testing uses recorded plant data and data from simulated plant faults. The dynamical simulation of the EBR-II steam plant uses the Babcock and Wilcox (B W) Modular Modeling System (MMS). At EBR-II the diagnostic system operates in the UNIX workstation and receives live plant data from the plant Data Acquisition System (DAS). Future work will seek implementation of the steam plant diagnostic in a distributed manner using UNIX based computers and Bailey microprocessor-based control system. 10 refs., 6 figs.

  11. Study of Channel Morphology and Infill Lithology in the Wilcox Group Central Louisiana Using Seismic Attribute Analysis

    NASA Astrophysics Data System (ADS)

    Chen, Feng

    The fluvial and deltaic Wilcox Group is a major target for hydrocarbon and coal exploration in northern and central Louisiana. However, the characterization and delineation of fluvial systems is a difficult task due to the variability and complexity of fluvial systems and their internal heterogeneities. Seismic geomorphology is studied by recognizing paleogeographic features in seismic stratal slices, which are seismic images of paleo-depositional surfaces. Seismic attributes, which are extracted along seismic stratal slices, can reveal information that is not readily apparent in raw seismic data. The existence and distribution of fluvial channels are recognized by the channel geomorphology in seismic attributes displayed on stratal slices. The lithologies in the channels are indicated by those seismic attributes that are directly related to the physical properties of rocks. Selected attributes utilized herein include similarity, spectral decomposition, sweetness, relative acoustic impedance, root mean square (RMS) amplitude, and curvature. Co-rendering and Red/Green/Blue (RGB) display techniques are also included to better illuminate the channel geometry and lithology distribution. Hydrocarbons may exist in the channel sand-bodies, but are not explicitly identified herein. Future drilling plans for oil and gas exploration may benefit from the identification of the channels and the lithologies that fill them.

  12. Obituary: Horace Welcome Babcock, 1912-2003

    NASA Astrophysics Data System (ADS)

    Vaughan, Arthur Harris

    2003-12-01

    Horace Welcome Babcock died in Santa Barbara, California on 29 August 2003, fifteen days short of his ninety-first birthday. An acclaimed authority on solar and stellar magnetism and the originator of ingenious advances in astronomical instrumentation in his earlier career, he served as Director of Mount Wilson and Palomar (later Hale) Observatories from 1964 until his retirement in 1978. The founding of the Carnegie Institution of Washington's Las Campanas Observatory in Chile was the culmination of his directorship. Horace was born in Pasadena California on 13 September 1912, the only child of Harold Delos Babcock and Mary G. Henderson. His father, an electrical engineer and physicist by training, had been hired by George Ellery Hale to work at the recently founded Mount Wilson Solar Observatory beginning in 1909. Thus Horace spent much of his boyhood on Mount Wilson in the company of astronomers. Horace developed an early interest in astronomy, worked as a volunteer solar observer at Mount Wilson and published his first paper in 1932, with his father. He was fascinated by fine mechanisms and by optical and electrical instruments. After graduating from Caltech with a degree in structural engineering in 1934, he earned his PhD in astronomy at Lick Observatory in 1938. His dissertation provided the first measurement of the rotational velocity curve and a derivation of the mass-to-luminosity ratio for M31; this work is still cited in reviews of the study of ``dark matter." Horace served as a research assistant at Lick Observatory (1938 39) and an Instructor at the University of Chicago's McDonald and Yerkes Observatories (1939--41) under Otto Struve. He undertook radar-related wartime electronics work at the MIT Radiation Laboratory (1941 42) and then worked on aircraft rocket launchers as part of the Caltech Rocket Project (1942 45). This project brought him into contact with Ira S. Bowen, head of the project's Photographic Division. Impressed with his knowledge of

  13. Trap types vs productivity of significant Wilcox gas fields in the south Texas, listric growth fault trend, and the divergent origin of its two largest producers

    SciTech Connect

    Stricklin, F.L. Jr.

    1996-09-01

    Detailed mapping and analysis of 23 Wilcox fields in the subject trend indicates that gas production is related to trap type. Of total cumulative production of 3.4 TCFG, 65% is from upthrown fault blocks implying very effective fault seals due to differential pressure and/or shale smears. NE Thompsonville and Bob West fields have produced 650 and 200 BCFG, respectively, with 400 BCFG remaining reserves in the latter. The field structures are not attributed to listric growth faulting, as is suggested by their trend location. NE Thompsonville is a 9-mile-long turtle structure that originated through depositional loading of an upper slope basin, followed by tilting, and then eventual collapse of a sediment squeeze-up mound due to gravitational instability. These events provide an excellent example of basin evolution through sediment loading accompanied by withdrawal of a salt-shale substrate; the basin flanks are defined by basin-dipping listric faulting that accommodated subsidence and merge beneath its floor. Bob West Field lies along the edge of the Laramide fold belt. The 1-1/2 x 4 mile field anticline adjoins a deep-seated fault that slices over and across a buried structural ridge of probable Cretaceous age. Uplift of the latter, immediately following deposition of 20+ stacked, shelf-bar producing sands, upwarped the fault and resulted in rollover growth of the Wilcox anticline. The fault shows no downward decrease in dip typical of listric faults. NE Thompsonville and Bob West fields both produce upthrown along crestal faults. This analysis indicates that {open_quotes}high-side{close_quotes} closures, irrespective of diverse origins, have achieved head-of-the-class stature as Wilcox gas producers.

  14. FABRICATION PROCESS AND PRODUCT QUALITY IMPROVEMENTS IN ADVANCED GAS REACTOR UCO KERNELS

    SciTech Connect

    Charles M Barnes

    2008-09-01

    A major element of the Advanced Gas Reactor (AGR) program is developing fuel fabrication processes to produce high quality uranium-containing kernels, TRISO-coated particles and fuel compacts needed for planned irradiation tests. The goals of the AGR program also include developing the fabrication technology to mass produce this fuel at low cost. Kernels for the first AGR test (“AGR-1) consisted of uranium oxycarbide (UCO) microspheres that werre produced by an internal gelation process followed by high temperature steps tot convert the UO3 + C “green” microspheres to first UO2 + C and then UO2 + UCx. The high temperature steps also densified the kernels. Babcock and Wilcox (B&W) fabricated UCO kernels for the AGR-1 irradiation experiment, which went into the Advance Test Reactor (ATR) at Idaho National Laboratory in December 2006. An evaluation of the kernel process following AGR-1 kernel production led to several recommendations to improve the fabrication process. These recommendations included testing alternative methods of dispersing carbon during broth preparation, evaluating the method of broth mixing, optimizing the broth chemistry, optimizing sintering conditions, and demonstrating fabrication of larger diameter UCO kernels needed for the second AGR irradiation test. Based on these recommendations and requirements, a test program was defined and performed. Certain portions of the test program were performed by Oak Ridge National Laboratory (ORNL), while tests at larger scale were performed by B&W. The tests at B&W have demonstrated improvements in both kernel properties and process operation. Changes in the form of carbon black used and the method of mixing the carbon prior to forming kernels led to improvements in the phase distribution in the sintered kernels, greater consistency in kernel properties, a reduction in forming run time, and simplifications to the forming process. Process parameter variation tests in both forming and sintering steps led

  15. A Numerical Model of Deuterium and Oxygen-18 Diffusion in the Confined Lower Wilcox Aquifer of the Lower Mississippi Valley (USA)

    NASA Astrophysics Data System (ADS)

    Currens, B. J.; Sawyer, A. H.; Fryar, A. E.; Parris, T. M.; Zhu, J.

    2015-12-01

    Deuterium and oxygen-18 are routinely used with noble gases and radioisotopes (e.g., 2H, 14C, 36Cl) to infer climate during groundwater recharge. However, diffusion of 2H and 18O between a confined aquifer and bounding aquitards could alter total isotope concentrations and the inferred temperature during recharge if groundwater flow is sufficiently slow. Hendry and Schwartz (WRR 24(10), 1988) explained anomalous 2H and 18O enrichment in the Milk River aquifer of Alberta by analytically modeling isotope diffusion between the lower bounding aquitard and the aquifer. Haile (PhD dissertation, U. Kentucky, 2011) inferred the same mechanism to explain 2H and 18O enrichment along a flowpath in the confined Lower Wilcox aquifer of the northern Gulf Coastal Plain in Missouri and Arkansas. Based on the geologic and hydraulic properties of the Lower Wilcox aquifer, a numerical model has been constructed to determine how diffusion may influence 2H and 18O concentrations in regional aquifers with residence times on the order of 104 to 105 years. The model combines solutions for a 1D forward-in-time, finite-difference groundwater flow equation with an explicit-implicit Crank-Nicholson algorithm for advection and diffusion to solve for flow velocity and isotope concentration. Initial results are consistent with the analytical solution of Hendry and Schwartz (1988), indicating diffusion as a means of isotopic enrichment along regional groundwater flowpaths.

  16. Reservoir characteristics of Lower Wilcox Sandstones, Lobo Trend, Webb and Zapata Counties, Texas

    SciTech Connect

    Henke, K.A.

    1985-02-01

    To date, over 340 bcf of gas have been produced from the Lobo sandstones in the Laredo field area at depths of less than 10,000 ft (3050 m). Gas accumulation is controlled by faulting and erosional truncation. The resulting structural complexity has made accurate prediction of reservoir sandstones difficult. Cored sections display repetitive ordered sequences of sedimentary structures and textural and compositional gradations indicative of turbidity-current deposits. The reservoir sandstones were deposited as constructional channels having vertical and lateral variation from channel-fill to channel-margin to overbank deposits. Channel-fill units are 2-10 ft (0.61-3.05 m) thick and composed of AB, AE, and ABE bedsets. Channel-margin units are 1-3 ft (0.31-0.92 m) thick and contain thinner, more complete ABC, ABE and ABCE sequences. Overbank deposits consist of highly bioturbated, thinly interbedded sandstones and shales. Sandstones are feldspathic litharenites that have 15% matrix and 15% calcite cement. Porosities average 16% and permeabilities range from 0.54 to 12 md, decreasing with increased matrix, cement, and bioturbation. The channel-fill sandstones are linear, dip-trending bodies less than 3000 ft (915 m) wide, which bifurcate downdip into distributary channels. High-intensity, small-scale, soft-sediment deformation indicates the sandstones were deposited in an unstable outer-shelf to upper-slope environment. A slumped, dip-trending channel-fill interpretation for the Lobo sandstones provides a mechanism for sediment transport beyond the present downdip limits of the trend.

  17. A proposed standard on medical isotope production in fission reactors

    SciTech Connect

    Schenter, R. E.; Brown, G. J.; Holden, C. S.

    2006-07-01

    Authors Robert E. Sehenter, Garry Brown and Charles S. Holden argue that a Standard for 'Medical Isotope Production' is needed. Medical isotopes are becoming major components of application for the diagnosis and treatment of all the major diseases including all forms of cancer, heart disease, arthritis, Alzheimer's, among others. Current nuclear data to perform calculations is incomplete, dated or imprecise or otherwise flawed for many isotopes that could have significant applications in medicine. Improved data files will assist computational analyses to design means and methods for improved isotope production techniques in the fission reactor systems. Initial focus of the Standard is expected to be on neutron cross section and branching data for both fast and thermal reactor systems. Evaluated and reviewed tables giving thermal capture cross sections and resonance integrals for the major target and product medical isotopes would be the expected 'first start' for the 'Standard Working Group'. (authors)

  18. Dipmeter helps in siting successful Wilcox offsets

    SciTech Connect

    Not Available

    1988-03-01

    Practically used, dipmeter logs or dip logs can be used to more accurately map subsurface stratigraphic traps. After drilling into a seismically defined target in far southwestern Mississippi, R.E. Williams Oil and Gas Co. geologists and their logging advisors were able to site and drill six successful offset locations to a 1984 discovery in a Wilcox point bar sandstone by applying a stratigraphic dipmeter tool. Interpretation steps leaching up to the drilling of each of these wells are reviewed in the following text.

  19. Buoyancy-induced time delays in Babcock-Leighton flux-transport dynamo models

    NASA Astrophysics Data System (ADS)

    Jouve, L.; Proctor, M. R. E.; Lesur, G.

    2010-09-01

    Context. The Sun is a magnetic star whose cyclic activity is thought to be linked to internal dynamo mechanisms. A combination of numerical modelling with various levels of complexity is an efficient and accurate tool to investigate such intricate dynamical processes. Aims: We investigate the role of the magnetic buoyancy process in 2D Babcock-Leighton dynamo models, by modelling more accurately the surface source term for poloidal field. Methods: To do so, we reintroduce in mean-field models the results of full 3D MHD calculations of the non-linear evolution of a rising flux tube in a convective shell. More specifically, the Babcock-Leighton source term is modified to take into account the delay introduced by the rise time of the toroidal structures from the base of the convection zone to the solar surface. Results: We find that the time delays introduced in the equations produce large temporal modulation of the cycle amplitude even when strong and thus rapidly rising flux tubes are considered. Aperiodic modulations of the solar cycle appear after a sequence of period doubling bifurcations typical of non-linear systems. The strong effects introduced even by small delays is found to be due to the dependence of the delays on the magnetic field strength at the base of the convection zone, the modulation being much less when time delays remain constant. We do not find any significant influence on the cycle period except when the delays are made artificially strong. Conclusions: A possible new origin of the solar cycle variability is here revealed. This modulated activity and the resulting butterfly diagram are then more compatible with observations than what the standard Babcock-Leighton model produces.

  20. Coal gasification systems engineering and analysis. Appendix D: Cost and economic studies

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The detailed cost estimate documentation for the designs prepared in this study are presented. The include: (1) Koppers-Totzek, (2) Texaco (3) Babcock and Wilcox, (4) BGC-Lurgi, and (5) Lurgi. The alternate product cost estimates include: (1) Koppers-Totzek and Texaco single product facilities (methane, methanol, gasoline, hydrogen), (2) Kopers-Totzek SNG and MBG, (3) Kopers-Totzek and Texaco SNG and MBG, and (4) Lurgi-methane and Lurgi-methane and methanol.

  1. Properties and chemical constituents in ground water from the lower Wilcox Aquifer, Mississippi Embayment Aquifer System, south-central United States

    USGS Publications Warehouse

    Pettijohn, Robert A.; Busby, John F.; Beckman, Jeffery D.

    1993-01-01

    The Gulf Coast Regional Aquifer-System Analysis is a study of regional aquifers composed of sediments of mostly Cenozoic age that underlie about 230,000 sq mi of the Gulf Coastal Plain. These regional aquifers are part of three aquifer systems: (1) the Mississippi Embayment Aquifer System, (2) the Texas Coastal Uplands Aquifer System, and (3) the Coastal Lowlands Aquifer System. The water chemistry of the Lower Wilcox Aquifer, which is part of the Mississippi Embayment Aquifer System is presented by a series of maps. These maps show the areal distribution of (1) the concentration of dissolved solids and temperature, (2) the primary water types and pH, (3) the concentration of major ions and silica, and (4) the milliequivalent ratios of selected ions. Dissolved constituents, pH, temperature, and ratios are based on the median values of all samples in each 100-sq-mi area. The concentration of dissolved solids in water from the Lower Wilcox Aquifer ranges from 18 mg/L near the outcrop in western Tennessee to 122,000 mg/L in a down-dip area in southern Mississippi. The primary water type is calcium bicarbonate in the outcrop area and sodium bicarbonate in all other areas of the aquifer within the limits of available data. The concentrations of major ions generally increase from the outcrop area to the down-dip limit of the data in the southern part of the aquifer area east of the Mississippi River. The milliequivalent ratio maps of selected ions in water from the Lower Wilcox Aquifer indicate some trends. The milliequivalent ratio of magnesium plus calcium to bicarbonate ranges from less than 0.1 to 40.4 and generally decreases from outcrop to down-dip limit of the data in the southern part of the aquifer area east of the Mississippi River. The milliequivalent ratio of bicarbonate to chloride ranges from 0.01 in southern Mississippi to 52.3 in northwestern Mississippi. This ratio increases from the outcrop toward the Mississippi River and from north to south in the

  2. CONVECTIVE BABCOCK-LEIGHTON DYNAMO MODELS

    SciTech Connect

    Miesch, Mark S.; Brown, Benjamin P.

    2012-02-20

    We present the first global, three-dimensional simulations of solar/stellar convection that take into account the influence of magnetic flux emergence by means of the Babcock-Leighton (BL) mechanism. We have shown that the inclusion of a BL poloidal source term in a convection simulation can promote cyclic activity in an otherwise steady dynamo. Some cycle properties are reminiscent of solar observations, such as the equatorward propagation of toroidal flux near the base of the convection zone. However, the cycle period in this young sun (rotating three times faster than the solar rate) is very short ({approx}6 months) and it is unclear whether much longer cycles may be achieved within this modeling framework, given the high efficiency of field generation and transport by the convection. Even so, the incorporation of mean-field parameterizations in three-dimensional convection simulations to account for elusive processes such as flux emergence may well prove useful in the future modeling of solar and stellar activity cycles.

  3. Azalea's Worst Nightmare: The Strawberry Rootworm, Paria fargariae Wilcox

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The strawberry rootworm (SRW), Paria fargariae Wilcox, is an emergent pest of azaleas in commercial production nurseries in the southeastern US. Larvae feed on roots but do minimal damage. Adults feed at night and make small holes in the foliage. Severe damage has been reported in many nurseries, es...

  4. Ethology of Omniablautus nigronotum (Wilcox) (Diptera: Asilidae) in Wyoming

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In southwest Wyoming, Omniablautus nigronotum (Wilcox), hunted primarily from the surface of the sandy substrate in a greasewood community. Prey, captured in flight, represented four insect orders with Diptera and Hymenoptera predominating. Courtship consisted of the male approaching the female from...

  5. Non-Power Reactor Operator Licensing Examiner Standards. Revision 1

    SciTech Connect

    1995-06-01

    The Non-Power Reactor Operator Licensing Examiner Standards provide policy and guidance to NRC examiners and establish the procedures and practices for examining and licensing of applicants for NRC operator licenses pursuant to Part 55 of Title 10 of the Code of Federal Regulations (10 CFR 55). They are intended to assist NRC examiners and facility licensees to understand the examination process better and to provide for equitable and consistent administration of examinations to all applicants by NRC examiners. These standards are not a substitute for the operator licensing regulations and are subject to revision or other internal operator examination licensing policy changes. As appropriate, these standards will be revised periodically to accommodate comments and reflect new information or experience.

  6. 78 FR 59981 - Proposed Revision to Physical Security-Standard Design Certification and Operating Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ....regulations.gov and search for Docket ID NRC-2013-0225. Address questions about NRC dockets to Carol Gallagher; telephone: 301-287- 3442; email: Carol.Gallagher@nrc.gov . For technical questions, contact the...

  7. Development of ground water from the Carrizo sand and Wilcox group in Dimmit, Zavala, Maverick, Frio, Atacosa, Median, Bexar, Live Oak, McMullen, La Salle, and Webb Counties, Texas

    USGS Publications Warehouse

    Moulder, E.A.

    1957-01-01

    The development of ground water for irrigation from the Carrizo sand south and southwest of San Antonio, Tex., has increased rapidly during the past few years. Declining pumping water levels in irrigation wells, caused by increased withdrawals, have caused considerable concern among the residents of the area. In response, the Nueces River Conservation and Reclamation District entered into a cooperative agreement with the Texas Board of Water Engineers and the United States Geological Survey to determine the extent of development and the rate of withdrawal that has cause the decline. All wells that discharged more than 150 gallons per minute for extended periods of time in 1955 from either the Carrizo sand or sands of the Wilcox group were studied and are shown on [late 1. Estimates were made of the total withdrawals by county and are given in table 2. Similar estimates of withdrawals in some of the counties for the irrigation years 1929-30, 1938-39, 1944-45, and 1947-48 are presented for comparison in table 3. Although the Carrizo sand is the principal source of ground water pumped in the area, estimate of withdrawals of water from the Wilcox were included in this inventory because (1) the formation appears to be hydraulically connected to the Carrizo sand, (2) the quality of water generally is good in the outcrop area of the Wilcox, and (3) appreciable withdrawals are being made from the Wilcox for irrigation in a few areas. The investigation covered an area of about 7,500 square miles and included all or parts of the following counties: Dimmit, Zavala, Maverick, Frio, Atascosa, Medina, Bexar, Live Oak, McMullen, La Salle, and Webb (fig. 1).

  8. Geologic history indicated by the fossiliferous deposits of the Wilcox group (Eocene) at Meridian, Mississippi

    USGS Publications Warehouse

    Berry, Edward Wilber

    1917-01-01

    The presence of erosion intervals at several horizons in the Eocene of the Gulf States has been pointed out in a recent paper, and the evidence of an erosion interval between the period of deposition of the sediments of the Wilcox group (lower Eocene) and that of the Claiborne group (middle Eocene) was reviewed in some detail in a general discussion of the extensive flora of the Wilcox group of that region.

  9. Additions to the flora of the Wilcox group

    USGS Publications Warehouse

    Berry, Edward Wilber

    1923-01-01

    A rather full account of the extensive flora contained in the lower Eocene strata of the Mississippi embayment which are referred to the Wilcox group was published in 1916. At that time it was not possible to obtain sections of the numerous specimens of petrified wood that had been collected from these beds. These woods have since been sectioned and studied, and it seems eminently desirable to place the results of this study on record, for although much of the material had suffered greatly from decay before silicification, some of it is fairly well preserved and shows, among other results, that conifers were individually much more plentiful during Wilcox time than would be inferred from the almost total absence of their foliage in the very large collections of remains of this class that have been studied.

  10. Validation of standardized computer analyses for licensing evaluation/TRITON two-dimensional and three-dimensional models for light water reactor fuel

    SciTech Connect

    Bowman, S. M.; Gill, D. F.

    2006-07-01

    The isotopic depletion capabilities of the new Standardized Computer Analyses for Licensing Evaluation control module TRITON, coupled with ORIGEN-S, were evaluated using spent fuel assays from several commercial light water reactors with both standard and mixed-oxide fuel assemblies. Calculations were performed using the functional modules NEWT and KENO-VI. NEWT is a two-dimensional, arbitrary-geometry, discrete-ordinates transport code, and KENO-VI is a three-dimensional Monte Carlo transport code capable of handling complex three-dimensional geometries. To validate the codes and data used in depletion calculations, numerical predictions were compared with experimental measurements for a total of 29 samples taken from the Calvert Cliffs, Obrigheim, and San Onofre pressurized water reactors and the Gundremmingen boiling water reactor. Similar comparisons have previously been performed at the Oak Ridge National Laboratory for the one-dimensional SAS2H control module. The SAS2H, TRITON/KENO-VI, and TRITON/NEWT results were compared for corresponding samples. All analyses showed that TRITON/KENO-VI and TRITON/NEWT produced typically similar or better results than SAS2H. The calculations performed in this validation study demonstrate that the depletion capabilities of TRITON accurately model spent fuel depletion and decay. (authors)

  11. Seismic stratigraphy of Winedale prospect: updip Wilcox trend, onshore Texas Gulf Coast

    SciTech Connect

    Huckabay, A.

    1984-04-01

    In the central Texas Gulf Coast, the Eocene lower Wilcox Formation consists predominantly of massive sands updip of the Lower Cretaceous shelf margin. In northeast Fayette County, near the town of Winedale, and inflection point was found at the Lower Cretaceous Edwards and Sligo levels on reconnaissance seismic data. There was a corresponding ''wipeout'' of reflectors within the lower Wilcox section above. Prospect-detailing seismic data indicated that the infection point had localized lateral continuity. A flat spot was mapped at lower Wilcox, Edwards, and Sligo levels. A well drilled to test the lower Wilcox ''wipeout'' zone resulted in a lower Wilcox discovery with initial potential of 2.5 MMCFGD and 50 BCPD. Two delineation wells were dry. The producing sand is near, but not in, the seismic ''wipeout'' zone. Genetically indistinguishable from the other lower Wilcox sands, it has a blocky, massive character, decreasing-upward grain size, and is bounded by thin coals. It pinches out updip and is not in the two later wells. An upper delta-plain point-bar depositional model is proposed.

  12. Hydrogeology of the middle Wilcox aquifer system in Mississippi

    SciTech Connect

    Taylor, R.E.; Arthur, J.K. )

    1992-01-01

    A study has been performed to provide water resource planners and managers with hydrogeologic data on the predominantly undeveloped middle Wilcox aquifer system in Mississippi, and to describe its potential as an alternative source of water. The principal source of recharge to the middle Wilcox aquifer system is from precipitation in the outcrop area, a crescent-shaped belt extending from north to east, and dipping west to southwest. Most of the water that percolates into the ground is lost by evapotranspiration or groundwater discharge to local streams. Locally, the rate and direction of groundwater movement is controlled by the hydraulic conductivity of the sand bed and by withdrawal from wells. The potentiometric surface of the aquifer was mapped to represent the approximate altitude of water levels in wells screened in the middle Wilcox aquifer system in 1983. Near some pumping centers in and near the recharge area, water-level declines in recent years have been in the range of about 0.5 to 1.0 ft/yr. The aquifer system is capable of yielding 100-500 gpm from large wells; however, the availability of freshwater at shallower depths has limited the development of this aquifer system farther downdip, and results of aquifer tests are sparse. Groundwater in the outcrop area of the aquifer system generally is of a mixed, calcium-sodium bicarbonate type. There is a general trend of increasing pH values and concentrations of dissolved sodium, bicarbonate, nitrate, and iron with increasing depth. Typically, water in the middle Wilcox aquifer system has concentrations much smaller than the recommended limits for drinking water for nitrate, sulfate, and fluoride. Water from this aquifer system is generally suitable for most uses.

  13. Bob West field: Extending upper Wilcox production in south Texas

    SciTech Connect

    Montgomery, S.L.

    1997-05-01

    Discovered in 1990 near the southern limit of the upper Wilcox gas-producing trend in south Texas, Bob West field is the largest pool to date in this trend, with probable reserves of up to 1 Tcf. The field produces from seven major sandstone {open_quotes}packages,{close_quotes} comprising 27 individual reservoirs and distributed over 3500 productive acres. The sandstones represent either fluvial/deltaic deposits or delta-margin barrier bar and strand-plain sediments. Porosities range up to 20%, but permeabilities are low, commonly less than 1.5 md. Artificial stimulation is therefore required to establish commercial rates of production. Bob West lies on a faulted anticline between two major growth-fault structures, with several stages of structural development evident. Such development has directly affected sandstone thickness. Rates of production are higher at Bob West than at other upper Wilcox fields due to commingling of zones, large-scale fracture treatments, and directional drilling. Discovery at Bob West has significant implications for renewed exploration in this part of the upper Wilcox gas trend.

  14. Voices: A Conversation with Allen J. Wilcox.

    PubMed

    Jukic, Anne Marie Z

    2016-09-01

    Allen James Wilcox was born on 30 September 1946 in Columbus, OH. He studied medicine at the University of Michigan, graduated in 1973, and after a rotating internship, he completed a master's degree in maternal and child health (1976) and a PhD in epidemiology (1979) at the University of North Carolina in Chapel Hill. After graduation, he went to work at the National Institute of Environmental Health Sciences (NIEHS, one of the US National Institutes of Health) in Durham, NC, where he has spent his career. He developed a research program in reproductive and perinatal epidemiology, a relatively unexplored area at the time. His studies include the early pregnancy study, which documented the extent of subclinical pregnancy loss in humans and established the fertile days of a woman's menstrual cycle. He served as the Chief of the Epidemiology Branch from 1991 to 2001, and as Editor-in-Chief of the journal EPIDEMIOLOGY from 2001 to 2014. His textbook, Fertility and Pregnancy-An Epidemiologic Perspective, was published by Oxford University Press in 2010. He was elected to the American Epidemiological Society in 1989, and served as its president in 2003. He also served as president of the Society of Pediatric and Perinatal Epidemiological Research (1996) and the president of the Society of Epidemiological Research (1998). He holds adjunct teaching appointments at the University of North Carolina, Harvard University, and the University of Bergen (Norway), which awarded him an honorary doctoral degree in 2008. PMID:27482869

  15. Diagenetic resetting of Sm-Nd isotope systematics in Wilcox Group sandstones and shales, San Marcos Arch, south-central Texas

    SciTech Connect

    Awwiller, D.N.; Mack, L.E. )

    1989-09-01

    Preliminary Sm-Nd analyses of sandstones and shales from the Wilcox Group (upper Paleocene-lower Eocene) suggest that the whole-rock Sm-Nd signature is changed by diagenesis. Samples are obtained from the San Marcos arch, south-central Texas, at depths ranging from outcrop to 15,000 ft. Samples from above the depth of intense illitization and feldspar reactions (about 10,000 ft) have whole-rock Nd model ages of about 1,500-1,400 Ma, whereas samples buried deeper than 13,000 ft have Nd model ages of about 1,700-1,500 Ma. The similar depositional age of all samples makes change in provenance an unlikely cause of the variation. Diagenetic modification is the only reasonable explanation for the observed differences. Sm and Nd reservoirs within the shale change considerably with progressive diagenesis. Outcrop samples contain subequal concentrations of Sm and Nd in the acid-soluble and silicate fractions. The acid-soluble reservoir in deeper samples contains progressively less Sm and Nd and higher Sm/Nd ratios. In all samples, the acid-soluble Nd is more radiogenic than the Nd in the corresponding silicate fraction; the difference between the two reservoirs increases with depth. Preferential loss of Nd relative to Sm in the silicate reservoir during diagenetic crystallization of illite and albite is the most likely explanation for the observed trend in Nd model age. These data imply that the earlier assumption that no fractionation takes place in the Sm-Nd system during diagenesis is incorrect.

  16. SPACE-R Thermionic Space Nuclear Power System: Design and Technology Demonstration Program

    NASA Astrophysics Data System (ADS)

    1993-05-01

    This semiannual technical progress report summarizes the technical progress and accomplishments for the Thermionic Space Nuclear Power System (TI-SNPS) Design and Technology Demonstration Program of the prime contractor, Space Power Incorporated (SPI), its subcontractors, and supporting national laboratories during the first half of the government fiscal year (GFY) 1993. SPI's subcontractors and supporting national laboratories include: Babcock & Wilcox for the reactor core and externals; Space Systems/Loral for the spacecraft integration; Thermocore for the radiator heat pipes and the heat exchanger; INERTEK of CIS for the TFE, core elements, and nuclear tests; Argonne National Laboratories for nuclear safety, physics, and control verification; and Oak Ridge National laboratories for materials testing. Parametric trade studies are near completion. However, technical input from INERTEK has yet to be provided to determine some of the baseline design configurations. The INERTEK subcontract is expected to be initiated soon. The point design task has been initiated. The thermionic fuel element (TFE) is undergoing several design iterations. The reactor core vessel analysis and design has also been started.

  17. Characteristics of spent fuel, high-level waste, and other radioactive wastes which may require long-term isolation: Appendix 2A, Physical descriptions of LWR (Light-Water Reactor) fuel assemblies

    SciTech Connect

    Not Available

    1987-12-01

    This appendix includes a four-page Physical Description report for each assembly type identified from the current data. Where available, a drawing of an assembly follows the appropriate Physical Description report. If no drawing is available for an assembly, a cross-reference to a similar assembly is provided if possible. For Advanced Nuclear Fuels, Babcock and Wilcox, Combustion Engineering, and Westinghouse assemblies, information was obtained via subcontracts with these fuel vendors. Data for some assembly types are not available. For such assemblies, the information shown in this report was obtained from the open literature and by inference from reload fuels made by other vendors. Efforts to obtain additional information are continuing. Individual Physical Description reports can be generated interactively through the menu-driven LWR Assemblies Data Base system. These reports can be viewed on the screen or directed to a printer. Special reports and compilations of specific data items can be produced on request.

  18. SPACE-R Thermionic Space Nuclear Power System: Design and Technology Demonstration Program. Semiannual technical progress report for period ending March 1993

    SciTech Connect

    Not Available

    1993-05-01

    This Semiannual Technical Progress Report summarizes the technical progress and accomplishments for the Thermionic Space Nuclear Power System (TI-SNPS) Design and Technology Demonstration Program of the Prime Contractor, Space Power Incorporated (SPI), its subcontractors and supporting National Laboratories during the first half of the Government Fiscal Year (GFY) 1993. SPI`s subcontractors and supporting National Laboratories include: Babcock & Wilcox for the reactor core and externals; Space Systems/Loral for the spacecraft integration; Thermocore for the radiator heat pipes and the heat exchanger; INERTEK of CIS for the TFE, core elements and nuclear tests; Argonne National Laboratories for nuclear safety, physics and control verification; and Oak Ridge National laboratories for materials testing. Parametric trade studies are near completion. However, technical input from INERTEK has yet to be provided to determine some of the baseline design configurations. The INERTEK subcontract is expected to be initiated soon. The Point Design task has been initiated. The thermionic fuel element (TFE) is undergoing several design iterations. The reactor core vessel analysis and design has also been started.

  19. Rolling Process Modeling Report. Finite-Element Model Validation and Parametric Study on various Rolling Process parameters

    SciTech Connect

    Soulami, Ayoub; Lavender, Curt A.; Paxton, Dean M.; Burkes, Douglas

    2015-06-15

    Pacific Northwest National Laboratory (PNNL) has been investigating manufacturing processes for the uranium-10% molybdenum alloy plate-type fuel for high-performance research reactors in the United States. This work supports the U.S. Department of Energy National Nuclear Security Administration’s Office of Material Management and Minimization Reactor Conversion Program. This report documents modeling results of PNNL’s efforts to perform finite-element simulations to predict roll-separating forces for various rolling mill geometries for PNNL, Babcock & Wilcox Co., Y-12 National Security Complex, Los Alamos National Laboratory, and Idaho National Laboratory. The model developed and presented in a previous report has been subjected to further validation study using new sets of experimental data generated from a rolling mill at PNNL. Simulation results of both hot rolling and cold rolling of uranium-10% molybdenum coupons have been compared with experimental results. The model was used to predict roll-separating forces at different temperatures and reductions for five rolling mills within the National Nuclear Security Administration Fuel Fabrication Capability project. This report also presents initial results of a finite-element model microstructure-based approach to study the surface roughness at the interface between zirconium and uranium-10% molybdenum.

  20. Revisiting the Integrated Pressurized Thermal Shock Studies of an Aging Pressurized Water Reactor

    SciTech Connect

    Bryson, J.W.; Dickson, T.L.; Malik, S.N.M.; Simonen, F.A.

    1999-08-01

    The Integrated Pressurized Thermal Shock (IPTS) studies were a series of studies performed in the early-mid 1980s as part of an NRC-organized comprehensive research project to confirm the technical bases for the pressurized thermal shock (PTS) rule, and to aid in the development of guidance for licensee plant-specific analyses. The research project consisted of PTS pilot analyses for three PWRs: Oconee Unit 1, designed by Babcock and Wilcox; Calvert Cliffs Unit 1, designed by Combustion Engineering; and H.B. Robinson Unit 2, designed by Westinghouse. The primary objectives of the IPTS studies were (1) to provide for each of the three plants an estimate of the probability of a crack propagating through the wall of a reactor pressure vessel (RPV) due to PTS; (2) to determine the dominant overcooling sequences, plant features, and operator actions and the uncertainty in the plant risk due to PTS; and (3) to evaluate the effectiveness of potential corrective actions. The NRC is currently evaluating the possibility of revising current PTS regulatory guidance. Technical bases must be developed to support any revisions. In the years since the results of IPTS studies were published, the fracture mechanics model, the embrittlement database, embrittlement correlation, inputs for flaw distributions, and the probabilistic fracture mechanics (PFM) computer code have been refined. An ongoing effort is underway to determine the impact of these fracture-technology refinements on the conditional probabilities of vessel failure calculated in the IPTS Studies. This paper discusses the results of these analyses performed for one of these plants.

  1. RESULTS OF TESTS TO DEMONSTRATE A SIX-INCH DIAMETER COATER FOR PRODUCTION OF TRISO-COATED PARTICLES FOR ADVANCED GAS REACTOR EXPERIMENTS

    SciTech Connect

    Douglas W. Marshall

    2008-09-01

    The Next Generation Nuclear Plant (NGNP)/Advanced Gas Reactor (AGR) Fuel Development and Qualification Program includes a series of irradiation experiments in Idaho National Laboratory's (INL's) Advanced Test Reactor. TRISOcoated particles for the first AGR experiment, AGR-1, were produced at Oak Ridge National Laboratory (ORNL) in a twoinch diameter coater. A requirement of the NGNP/AGR Program is to produce coated particles for later experiments in coaters more representative of industrial scale. Toward this end, tests have been performed by Babcock and Wilcox (B&W) in a six-inch diameter coater. These tests are expected to lead to successful fabrication of particles for the second AGR experiment, AGR-2. While a thorough study of how coating parameters affect particle properties was not the goal of these tests, the test data obtained provides insight into process parameter/coated particle property relationships. Most relationships for the six-inch diameter coater followed trends found with the ORNL two-inch coater, in spite of differences in coater design and bed hydrodynamics. For example the key coating parameters affecting pyrocarbon anisotropy were coater temperature, coating gas fraction, total gas flow rate and kernel charge size. Anisotropy of the outer pyrolytic carbon (OPyC) layer also strongly correlates with coater differential pressure. In an effort to reduce the total particle fabrication run time, silicon carbide (SiC) was deposited with methyltrichlorosilane (MTS) concentrations up to 3 mol %. Using only hydrogen as the fluidizing gas, the high concentration MTS tests resulted in particles with lower than desired SiC densities. However when hydrogen was partially replaced with argon, high SiC densities were achieved with the high MTS gas fraction.

  2. RESULTS OF TESTS TO DEMONSTRATE A SIX-INCH-DIAMETER COATER FOR PRODUCTION OF TRISO-COATED PARTICLES FOR ADVANCED GAS REACTOR EXPERIMENTS

    SciTech Connect

    Charles M Barnes

    2008-09-01

    The Next Generation Nuclear Plant (NGNP)/Advanced Gas Reactor (AGR) Fuel Development and Qualification Program includes a series of irradiation experiments in Idaho National Laboratory’s (INL’s) Advanced Test Reactor. TRISOcoated particles for the first AGR experiment, AGR-1, were produced at Oak Ridge National Laboratory (ORNL) in a two inch diameter coater. A requirement of the NGNP/AGR Program is to produce coated particles for later experiments in coaters more representative of industrial scale. Toward this end, tests have been performed by Babcock and Wilcox (B&W) in a six-inch diameter coater. These tests are expected to lead to successful fabrication of particles for the second AGR experiment, AGR-2. While a thorough study of how coating parameters affect particle properties was not the goal of these tests, the test data obtained provides insight into process parameter/coated particle property relationships. Most relationships for the six-inch diameter coater followed trends found with the ORNL two-inch coater, in spite of differences in coater design and bed hydrodynamics. For example the key coating parameters affecting pyrocarbon anisotropy were coater temperature, coating gas fraction, total gas flow rate and kernel charge size. Anisotropy of the outer pyrolytic carbon (OPyC) layer also strongly correlates with coater differential pressure. In an effort to reduce the total particle fabrication run time, silicon carbide (SiC) was deposited with methyltrichlorosilane (MTS) concentrations up to 3 mol %. Using only hydrogen as the fluidizing gas, the high concentration MTS tests resulted in particles with lower than desired SiC densities. However when hydrogen was partially replaced with argon, high SiC densities were achieved with the high MTS gas fraction.

  3. Improving CRDCS through digital technology for pressurized water reactors

    SciTech Connect

    Liddle, P.

    2006-07-01

    This paper describes increased Control Rod Drive Control System (CRDCS) reliability through the use of digital technology. A CRDCS is a non-safety plant system used to control rod motion into and out of the reactor core, which in turn controls the reactivity in the core. The CRDCS also provides the operator with information on the status of the control rods and the components within the system. The Digital CRDCS (DCRDCS) is an upgrade for the Babcock and Wilcox (B and W) pressurized water reactor control rod drive control system. The existing CRDCS was designed using relays, various electromechanical devices, and discrete solid-state components. The DCRDCS provides higher reliability, simplified maintenance, and streamlined system configuration through the use of Triple Modular Redundant (TMR) Controllers that implement the logic and control functions, as well as other design enhancements. A particularly important feature of the DCRDCS is the system's redundancy. With this configuration, no single failure of any DCRDCS component can cause an uncontrolled reaction. Such uncontrolled reactions might include withdrawal of the control rods, causing unwanted, or preventing, reactor trip, the loss of either or both the Absolute Position Indication (API) or Relative Position Indication (RPI), or inhibited rod movement. The DCRDCS is made up of two primary sections: the System Logic Equipment (SLE) and the Motor Control Equipment (MCE). The SLE is the primary component of the system. Signals transmitted to this equipment are processed by its logic, producing output signals that control the rod positions and provide system status information. The MCE receives command signals from the SLE to energize the Control Rod Drive Mechanism motors, producing the actual control rod motions. The DCRDCS is designed as a direct, state-of-the-art replacement for the existing CRDCS. Functionally, the DCRDCS will fulfill, and in some areas, exceed the functionality of the existing

  4. Bob West and Lopeno Fields: Structure and stratigraphy of two significant Upper Wilcox gas fields in South Texas

    SciTech Connect

    Debus, R.W.

    1996-09-01

    Determining pore size and pore geometry relationships in carbonate rocks and relating both to permeability is difficult using traditional logging methods. This problem is further complicated by the presence of abundant microporosity (pore size less than 62 microns) in the Edwards Limestone. The use of Nuclear Magnetic Resonance Imaging (NMR) allows for an alternative approach to evaluating the pore types present by examining the response of hydrogen nuclei contained within the free fluid pore space. By testing the hypothesis that larger pore types exhibit an NMR signal decay much slower than smaller pore types, an estimate of the pore type present, (i.e.) vuggy, interparticle, or micropores, can be inferred. Calibration of the NMR decay curve to known samples with measured petrophysical properties allows for improved predictability of pore types and permeability. The next stage of the analysis involves the application of the calibration technique to the borehole environment using an NMR logging tool to more accurately predict production performance.

  5. Fate of injected CO2 in the Wilcox Group, Louisiana, Gulf Coast Basin: Chemical and isotopic tracers of microbial-brine-rock-CO2 interactions

    USGS Publications Warehouse

    Shelton, Jenna L.; McIntosh, Jennifer C.; Warwick, Peter D.; Lee Zhi Yi, Amelia

    2016-01-01

    The “2800’ sandstone” of the Olla oil field is an oil and gas-producing reservoir in a coal-bearing interval of the Paleocene–Eocene Wilcox Group in north-central Louisiana, USA. In the 1980s, this producing unit was flooded with CO2 in an enhanced oil recovery (EOR) project, leaving ∼30% of the injected CO2 in the 2800’ sandstone post-injection. This study utilizes isotopic and geochemical tracers from co-produced natural gas, oil and brine to determine the fate of the injected CO2, including the possibility of enhanced microbial conversion of CO2 to CH4 via methanogenesis. Stable carbon isotopes of CO2, CH4 and DIC, together with mol% CO2 show that 4 out of 17 wells sampled in the 2800’ sandstone are still producing injected CO2. The dominant fate of the injected CO2appears to be dissolution in formation fluids and gas-phase trapping. There is some isotopic and geochemical evidence for enhanced microbial methanogenesis in 2 samples; however, the CO2 spread unevenly throughout the reservoir, and thus cannot explain the elevated indicators for methanogenesis observed across the entire field. Vertical migration out of the target 2800’ sandstone reservoir is also apparent in 3 samples located stratigraphically above the target sand. Reservoirs comparable to the 2800’ sandstone, located along a 90-km transect, were also sampled to investigate regional trends in gas composition, brine chemistry and microbial activity. Microbial methane, likely sourced from biodegradation of organic substrates within the formation, was found in all oil fields sampled, while indicators of methanogenesis (e.g. high alkalinity, δ13C-CO2 and δ13C-DIC values) and oxidation of propane were greatest in the Olla Field, likely due to its more ideal environmental conditions (i.e. suitable range of pH, temperature, salinity, sulfate and iron concentrations).

  6. Correction to Wilcox et al. (2016).

    PubMed

    2016-05-01

    Reports an error in "How being busy can increase motivation and reduce task completion time" by Keith Wilcox, Juliano Laran, Andrew T. Stephen and Peter P. Zubcsek (Journal of Personality and Social Psychology, 2016[Mar], Vol 110[3], 371-384). In the article, the affiliation of the author Andrew T. Stephen was incorrectly listed in the byline and the author note. The author is affiliated with the University of Oxford. The author note paragraph "Andrew T. Stephen is now at the University of Oxford" should have been omitted. All versions of this article have been corrected. (The following abstract of the original article appeared in record 2016-11945-002.) This research tests the hypothesis that being busy increases motivation and reduces the time it takes to complete tasks for which people miss a deadline. This effect occurs because busy people tend to perceive that they are using their time effectively, which mitigates the sense of failure people have when they miss a task deadline. Studies 1 and 2 show that when people are busy, they are more motivated to complete a task after missing a deadline than those who are not busy, and that the perception that one is using time effectively mediates this effect. Studies 3 and 4 show that this process makes busy people more likely to complete real tasks than people who are not busy. Study 5 uses data from over half a million tasks submitted by thousands of users of a task management software application to show that busy people take less time to complete a task after they miss a deadline for completing it. The findings delineate the conditions under which being busy can mitigate the negative effects of missing a deadline and reduce the time it takes to complete tasks. (PsycINFO Database Record PMID:27176772

  7. Organic geochemistry and petrology of subsurface Paleocene-Eocene Wilcox and Claiborne Group coal beds, Zavala County, Maverick Basin, Texas, USA

    USGS Publications Warehouse

    Hackley, Paul C.; Warwick, Peter; Hook, Robert W.; Alimi, Hossein; Mastalerz, Maria; Swanson, Sharon M.

    2012-01-01

    Coal samples from a coalbed methane exploration well in northern Zavala County, Maverick Basin, Texas, were characterized through an integrated analytical program. The well was drilled in February, 2006 and shut in after coal core desorption indicated negligible gas content. Cuttings samples from two levels in the Eocene Claiborne Group were evaluated by way of petrographic techniques and Rock–Eval pyrolysis. Core samples from the Paleocene–Eocene Indio Formation (Wilcox Group) were characterized via proximate–ultimate analysis in addition to petrography and pyrolysis. Two Indio Formation coal samples were selected for detailed evaluation via gas chromatography, and Fourier transform infrared (FTIR) and 13C CPMAS NMR spectroscopy. Samples are subbituminous rank as determined from multiple thermal maturity parameters. Elevated rank (relative to similar age coal beds elsewhere in the Gulf Coast Basin) in the study area is interpreted to be a result of stratigraphic and/or structural thickening related to Laramide compression and construction of the Sierra Madre Oriental to the southwest. Vitrinite reflectance data, along with extant data, suggest the presence of an erosional unconformity or change in regional heat flow between the Cretaceous and Tertiary sections and erosion of up to >5 km over the Cretaceous. The presence of liptinite-rich coals in the Claiborne at the well site may indicate moderately persistent or recurring coal-forming paleoenvironments, interpreted as perennially submerged peat in shallow ephemeral lakes with herbaceous and/or flotant vegetation. However, significant continuity of individual Eocene coal beds in the subsurface is not suggested. Indio Formation coal samples contain abundant telovitrinite interpreted to be preserved from arborescent, above-ground woody vegetation that developed during the middle portion of mire development in forested swamps. Other petrographic criteria suggest enhanced biological, chemical and physical

  8. Intermediate photovoltaic system application experiment operational performance report for G. N. Wilcox Memorial Hospital, Kauai, Hawaii, for November 1982

    SciTech Connect

    Not Available

    1982-01-01

    The data accumulated during November 1982 at the intermediate photovoltaic project at G.N. Wilcox Memorial Hospital, Kauai, Hawaii, are presented. Generated energy and environmental (weather) data are presented graphically. Explanations of irregularities not attributable to weather are provided.

  9. Three-dimensional analysis of thermal and fluid mixing in cold leg and downcomer of PWR geometries

    SciTech Connect

    Lyczkowski, R.W.; Miao, C.C.; Domanus, H.M.; Hull, J.R.; Sha, W.T.; Schmitt, R.C.

    1983-12-01

    This report describes the three-dimensional transient and steady-state computations using the COMMIX-1A computer code for the analysis of six (6) 1/5-scale thermal and fluid mixing experiments conducted at Creare, Inc. under EPRI sponsorship. The tests chosen for analyses emphasized the effects of vent valve flow, cold leg and high pressure injection (HPI) coolant flow rates, and HPI location and geometry. The COMMIX-1A computations will provide fluid temperatures and velocities in the belt-line region of the downcomer for assessment of boundary conditions for thermal stress analysis in the vessel walls. A realistic prediction for thermal and fluid mixing significantly helps establish what overcooling transients can lead to in pressurized thermal shock (PTS) events. Sample three-dimensional steady-state computations are presented for three (3) generic full-scale pressurized water reactors (PWR's) typical of Westinghouse (W), Combustion Engineering (CE), and Babcock and Wilcox (B and W) configurations as part of the code assessment.

  10. Converting the Audience: A Conversation with Agnes Wilcox

    ERIC Educational Resources Information Center

    Becker, Becky

    2006-01-01

    This article presents a conversation with Agnes Wilcox, Executive Director of Prison Performing Arts in St. Louis, Missouri, about Prison Performing Arts. Although the average person might balk at the notion of interacting with prison inmates, finding it intimidating, worrisome, or self-sacrificial, for Wilcox, Prison Performing Arts is a…

  11. A THREE-DIMENSIONAL BABCOCK-LEIGHTON SOLAR DYNAMO MODEL

    SciTech Connect

    Miesch, Mark S.; Dikpati, Mausumi

    2014-04-10

    We present a three-dimensional (3D) kinematic solar dynamo model in which poloidal field is generated by the emergence and dispersal of tilted sunspot pairs (more generally bipolar magnetic regions, or BMRs). The axisymmetric component of this model functions similarly to previous 2.5 dimensional (2.5D, axisymmetric) Babcock-Leighton (BL) dynamo models that employ a double-ring prescription for poloidal field generation but we generalize this prescription into a 3D flux emergence algorithm that places BMRs on the surface in response to the dynamo-generated toroidal field. In this way, the model can be regarded as a unification of BL dynamo models (2.5D in radius/latitude) and surface flux transport models (2.5D in latitude/longitude) into a more self-consistent framework that builds on the successes of each while capturing the full 3D structure of the evolving magnetic field. The model reproduces some basic features of the solar cycle including an 11 yr periodicity, equatorward migration of toroidal flux in the deep convection zone, and poleward propagation of poloidal flux at the surface. The poleward-propagating surface flux originates as trailing flux in BMRs, migrates poleward in multiple non-axisymmetric streams (made axisymmetric by differential rotation and turbulent diffusion), and eventually reverses the polar field, thus sustaining the dynamo. In this Letter we briefly describe the model, initial results, and future plans.

  12. 75 FR 68009 - Office of New Reactors; Notice of Availability of the Final Staff Guidance Standard Review Plan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-04

    ... COMMISSION Office of New Reactors; Notice of Availability of the Final Staff Guidance Standard Review Plan, Section 13.6.1, Revision 1 on Physical Security--Combined License and Operating Reactors AGENCY: Nuclear Regulatory Commission (NRC). ACTION: Notice of Availability. SUMMARY: The NRC is issuing its Final Revision...

  13. CFB boiler for Southern Illinois University: Planning and design

    SciTech Connect

    Silvey, M.; Roth, N.; Haake, A.

    1995-12-31

    Southern Illinois University (SIU) is in the process of installing a Babcock and Wilcox (B and W) coal fired circulating fluidized bed (CFB) boiler at its Carbondale, Illinois campus. The CFB boiler will be used for cogeneration. Funding for this project was made possible by the State of Illinois Capital Development Board. Illinois coal will be fired in this CFB boiler. This paper provides a description of the planning process and design of the CFB boiler and related equipment with specific emphasis on particulate removal and recirculation. The startup of this new installation is scheduled for the summer of 1996, with commercial operation by fall of 1996.

  14. Neutron behavior, reactor control, and reactor heat transfer. Volume four

    SciTech Connect

    Not Available

    1986-01-01

    Volume four covers neutron behavior (neutron absorption, how big are nuclei, neutron slowing down, neutron losses, the self-sustaining reactor), reactor control (what is controlled in a reactor, controlling neutron population, is it easy to control a reactor, range of reactor control, what happens when the fuel burns up, controlling a PWR, controlling a BWR, inherent safety of reactors), and reactor heat transfer (heat generation in a nuclear reactor, how is heat removed from a reactor core, heat transfer rate, heat transfer properties of the reactor coolant).

  15. Comment on a Wilcox Test Statistic for Comparing Means When Variances Are Unequal.

    ERIC Educational Resources Information Center

    Hsiung, Tung-Hsing; And Others

    1994-01-01

    The alternative proposed by Wilcox (1989) to the James second-order statistic for comparing population means when variances are heterogeneous can sometimes be invalid. The degree to which the procedure is invalid depends on differences in sample size, the expected values of the observations, and population variances. (SLD)

  16. Growing Readers: Wendy Wilcox--West Bloomfield Township Public Library, MI

    ERIC Educational Resources Information Center

    Library Journal, 2005

    2005-01-01

    In 2001 youth services librarian Wendy Wilcox begged her boss for the chance to make West Bloomfield Township Public Library (WBTPL) one of 20 demonstration sites for the Public Library Association (PLA)/Association for Library Service to Children initiative Every Child Ready To Read. While all participating libraries teach parents and caregivers…

  17. Tdp studies and tests for C. A. Energia Electrica de Venezuela (enelven) at planta ramon laguna, units RL-17 and RL-10. Volume 2. Unit RL-10 boiler condition assessment report. Export trade information

    SciTech Connect

    Not Available

    1991-03-28

    The study, conducted by Babcock and Wilcox, was funded by the U.S. Trade and Development agency on behalf of Enelven. In order to maximize generated power output and minimize operating costs at Planta Ramon Laguna, tests were done to evaluate the condition of equipment at the plant. In order to identify any damage and determine the operating output of each unit, assessments were done of the furnaces, boilers, generators and boiler feed pumps being used in the plant. The report presents the results of these tests. This is the second of three volumes and it includes the following section: (1) Condition Assessment of Unit RL-10 Boiler.

  18. GPU v. B and W lawsuit review and its effect on TMI-1 (Docket 50-289)

    SciTech Connect

    Not Available

    1983-09-01

    This report documents a review by the Nuclear Regulatory Commission (NRC) staff of the General Public Utilities Corporation, et al. v. the Babcock and Wilcox Company, et al. (GPU v. B and W) lawsuit record to assess whether any of the staff's previous conclusions or their principal bases presented at the Three Mile Island Unit 1 (TMI-1) restart hearing, supporting restart of TMI-1, should be amended in light of the information contained in the lawsuit record. Details of the lawsuit record are provided in the appendices contained in Volume II of this report.

  19. Guidelines for preparing and reviewing applications for the licensing of non-power reactors: Standard review plan and acceptance criteria. NUREG - 1537, Part 2

    SciTech Connect

    1996-02-01

    NUREG - 1537, Part 2 gives guidance on the conduct of licensing action reviews to NRC staff who review non-power reactor licensing applications. These licensing actions include construction permits and initial operating licenses, license renewals, amendments, conversions from highly enriched uranium to low-enriched uranium, decommissioning, and license termination.

  20. The neutron standard fields at the BR1 reactor at SCK.CEN

    SciTech Connect

    Wagemans, J.; Malambu, E.; Borms, L.

    2011-07-01

    The BR1 research reactor at SCK-CEN is characterized by a wide variety of irradiation possibilities, a large reactor core, and strong flexibility in its operation. A full MCNP model of BR1 has been recently developed in order to complement the results that can be obtained from activation dosimetry. After a general presentation of the reactor, this paper pays particular attention to its standard {sup 235}U(n,f) fast neutron field MARK III. This irradiation field is a useful tool for integral measurements and for detector calibrations. With the support of MCNP calculations, irradiations in MARK III can be directly referred to the pure {sup 235}U(n,f) fast neutron spectrum. (authors)

  1. Shifts of neutrino oscillation parameters in reactor antineutrino experiments with non-standard interactions

    NASA Astrophysics Data System (ADS)

    Li, Yu-Feng; Zhou, Ye-Ling

    2014-11-01

    We discuss reactor antineutrino oscillations with non-standard interactions (NSIs) at the neutrino production and detection processes. The neutrino oscillation probability is calculated with a parametrization of the NSI parameters by splitting them into the averages and differences of the production and detection processes respectively. The average parts induce constant shifts of the neutrino mixing angles from their true values, and the difference parts can generate the energy (and baseline) dependent corrections to the initial mass-squared differences. We stress that only the shifts of mass-squared differences are measurable in reactor antineutrino experiments. Taking Jiangmen Underground Neutrino Observatory (JUNO) as an example, we analyze how NSIs influence the standard neutrino measurements and to what extent we can constrain the NSI parameters. Long baseline reactor antineutrino experiments, such as KamLAND [10,11]. The aim of these experiments is to observe the slow oscillation with Δ21 and measure the corresponding oscillation parameters Δm212 and θ12. Short baseline reactor antineutrino experiments, such as Daya Bay [1-3], Double CHOOZ [4], RENO [5]. They are designed to observe the fast oscillation with Δ31 and Δ32 (or equivalently, Δee[3]) and measure the corresponding oscillation parameters Δmee2, θ13. Medium baseline reactor antineutrino experiments. They stand for the next generation experiments of reactor antineutrinos, with typical representatives of Jiangmen Underground Neutrino Observatory (JUNO) [12] and RENO-50 [13]. They can determine the neutrino mass ordering (m1and slow oscillations and become a bridge between short baseline and long baseline reactor antineutrino experiments. High-dimensional operators originating from new physics can contribute to the neutrino oscillation in the form of non-standard interactions (NSIs) [14

  2. 76 FR 31381 - Office Of New Reactors; Proposed Revision 4 to Standard Review Plan; Section 8.1 on Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-31

    ... Position (BTP) 8-8 on ``Onsite (Emergency Diesel Generators) and Offsite Power Sources Allowed Outage Time... COMMISSION Office Of New Reactors; Proposed Revision 4 to Standard Review Plan; Section 8.1 on Electric Power... Analysis Reports for Nuclear Power Plants,'' on a proposed Revision 4 to Standard Review Plan...

  3. 75 FR 29588 - Office of New Reactors: Proposed NUREG-0800; Standard Review Plan Section 13.6.6, Draft Revision...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-26

    ... COMMISSION Office of New Reactors: Proposed NUREG-0800; Standard Review Plan Section 13.6.6, Draft Revision 0... comment. SUMMARY: The NRC staff is soliciting public comment on NUREG-0800, ``Standard Review Plan for the... guidance into the next revision of NUREG-0800, SRP Section 13.6.6 and Regulatory Guide 1.206,...

  4. The worldwide applicability of B and W`s advanced coal-fired low-emission boiler system

    SciTech Connect

    McDonald, D.K.; Madden, D.A.; Sivy, J.L.

    1996-12-31

    Babcock and Wilcox, under contract to the US Department of Energy (DOE), has been developing an advanced generating plant design in DOE`s Combustion 2000 program entitled, Engineering Development of Advanced Coal-Fired Low Emission Boiler System. The objective of the LEBS program is to develop an advanced pulverized coal (PC) fired power generation system for commercial application by the year 2000. Since concerns over acid rain, air toxics, global climate changes, ozone depletion and solid waste disposal are expected to further tighten regulations for new coal-fired plants, the system must achieve very low emissions and high cycle efficiency at a life cycle cost equivalent to a conventional PC plant meeting New Source Performance Standards (NSPS). B and W has coupled advanced environmental control technologies capable of achieving emissions or NO{sub x}, SO{sub x}, and particulate far below current NSPS with an advanced boiler equipped with improved combustion and heat transfer subsystems to meet this objective. The B and W LEBS plant uses conventional state-of-the-art equipment along with developing new technologies to meet the program goals. This combustion of new and proven technologies allows B and W to meet the current demands in the marketplace. This paper describes B and W`s advanced generating plant design and its relevance to both the foreign and domestic markets.

  5. Intermediate photovoltaic system application experiment operational performance report. Volume 8. For G. N. Wilcox Memorial Hospital, Kauai, Hawaii for December 1982

    SciTech Connect

    Not Available

    1983-03-01

    Presented are the data accumulated during December 1982 at the intermediate photovoltaic project at G. N. Wilcox Memorial Hospital, Kauai, Hawaii. Generated energy and environmental (weather) data are presented graphiclaly. Explanations of irregularities not attributable to weather are provided.

  6. Intermediate photovoltaic system application experiment operational performance report for G. N. Wilcox Memorial Hospital, Kauai, Hawaii for October 1982. Volume VI

    SciTech Connect

    Not Available

    1983-01-01

    Presented are the data accumulated during October 1982 at the intermediate project at G.N. Wilcox Memorial Hospital, Kauai, Hawaii. Generated energy and environmental (weather) data are presented graphically. Explanations of irregularities not attributable to weather are provided.

  7. Intermediate photovoltaic system application experiment operational performance report. Volume 5. For G. N. Wilcox Memorial Hospital, Kauai, Hawaii for September 1982

    SciTech Connect

    Not Available

    1983-01-01

    Presented are the data accumulated during September 1982 at the intermediate photovoltaic project at G.N. Wilcox Memorial Hospital, Kauai, Hawaii. Generated energy and environmental (weather) data are presented graphically. Explanations of irregularities not attributable to weather are provided.

  8. NEUTRONIC REACTOR CONSTRUCTION AND OPERATION

    DOEpatents

    West, J.M.; Weills, J.T.

    1960-03-15

    A method is given for operating a nuclear reactor having a negative coefficient of reactivity to compensate for the change in reactor reactivity due to the burn-up of the xenon peak following start-up of the reactor. When it is desired to start up the reactor within less than 72 hours after shutdown, the temperature of the reactor is lowered prior to start-up, and then gradually raised after start-up.

  9. REACTOR AND NOVEL METHOD

    DOEpatents

    Young, G.J.; Ohlinger, L.A.

    1958-06-24

    A nuclear reactor of the type which uses a liquid fuel and a method of controlling such a reactor are described. The reactor is comprised essentially of a tank for containing the liquid fuel such as a slurry of discrete particles of fissionnble material suspended in a heavy water moderator, and a control means in the form of a disc of neutron absorbirg material disposed below the top surface of the slurry and parallel thereto. The diameter of the disc is slightly smaller than the diameter of the tank and the disc is perforated to permit a flow of the slurry therethrough. The function of the disc is to divide the body of slurry into two separate portions, the lower portion being of a critical size to sustain a nuclear chain reaction and the upper portion between the top surface of the slurry and the top surface of the disc being of a non-critical size. The method of operation is to raise the disc in the reactor until the lower portion of the slurry has reached a critical size when it is desired to initiate the reaction, and to lower the disc in the reactor to reduce the size of the lower active portion the slurry to below criticality when it is desired to stop the reaction.

  10. A critical assembly designed to measure neutronic benchmarks in support of the Space Nuclear Thermal Propulsion program

    NASA Astrophysics Data System (ADS)

    Parma, E. J.; Ball, R. M.; Hoovler, G. S.; Selcow, E. C.; Cerbone, R. J.

    1992-10-01

    A reactor designed to perform criticality experiments in support of the Space Nuclear Thermal Propulsion program is currently in operation at the Sandia National Laboratories' reactor facility. The reactor is a small, water-moderated system that uses highly enriched uranium particle fuel in a 19-element configuration. Its purpose is to obtain neutronic measurements under a variety of experimental conditions that are subsequently used to benchmark reactor-design computer codes. Brookhaven National Laboratory, Babcock & Wilcox, and Sandia National Laboratories participated in determining the reactor's performance requirements, design, follow on experimentation, and in obtaining the licensing approvals. Brookhaven National Laboratory is primarily responsible for the analytical support, Babcock & Wilcox the hardware design, and Sandia National Laboratories the operational safety. All of the team members participate in determining the experimentation requirements, performance, and data reduction. Initial criticality was achieved in October 1989. An over-all description of the reactor is presented along with key design features and safety-related aspects.

  11. Use of ionic concentrations in mapping ground-water flow: Wilcox-Carrizo aquifer system (paleogene), east Texas

    SciTech Connect

    Ambrose, M.L.; Kaiser, W.R.; Fogg, G.E.

    1985-01-01

    Ground water in the Wilcox-Carrizo aquifer system of East Texas interacts with the rock matrix an devolves along the flow path from a Ca-HCO/sub 3/ to a Na-HCO/sub 3/ type. Ionic concentrations were mapped to identify possible regional groundwater flow components and to provide a baseline for evaluating impacts of lignite mining in the Wilcox Group. Hydrochemical mapping complements hydraulic head mapping and helps define recharge and discharge areas. Because the concentrations of major ions are distributed log-normally, log-transformed molar concentrations were mapped, allowing the regional trends to be readily identified.

  12. Tide-dominated delta model for coal-bearing Wilcox strata in south Texas

    SciTech Connect

    Breyer, J.A.

    1984-04-01

    Coal-bearing Wilcox strata near Uvalde in south Texas are the deposits of a tide-dominated delta. The delta of the Klang and Langat Rivers, Malaysia, provides a modern analog for these strata. Five facies have been identified from a study of core and well logs: lignite; underclay; interbedded sand and mud with lenticular, wavy, and flaser bedding; ripple-laminated or cross-bedded sand; and greenish, very strongly bioturbated sand. On the Klang-Langat delta, the modern equivalents of these facies are peat formed in fresh water swamps; root horizons developed beneath the peat; interbedded sand and mud deposited on tidal flats; channel sands; and shallow marine sand and mud. Tidal flat deposits are the most abundant type of sediment on the Klang-Langat delta and in the coal-bearing Wilcox strata. The tidal flats of the modern delta are crossed by small tidal creeks and by larger tidal streams. The tidal channels are cut into tidal flat sediments and separate peat-forming areas. Channel sands in the Wilcox are cut into tidal flat deposits and form washouts in the lignite. Two types of channel-fill sand are present in the Wilcox, sands 5-15 ft (1.5-4.5 m) thick and sands more than 30 ft (9m) thick. The thinner sands, deposits of small tidal creeks, have sharp, erosive bases, fine upward and pass into interbedded sand and mud. The thicker sands have sharp tops as well as sharp bases and show no grain-size trends; they are fills of larger tidal streams.

  13. Shelf-margin sedimentation in Wilcox group, south-central Louisiana

    SciTech Connect

    Lowry, P.; Lemoine, R.C.; Moslow, T.F.

    1986-09-01

    Two well-defined trends of Wilcox oil and gas production occur in Louisiana: an updip dip-oriented trend and a downdip strike-oriented trend. The downdip trend delineates an uppermost Wilcox shelf margin and includes recent discoveries at Lockhart Crossing field and the long-established Fordoche field. This Wilcox shelf margin is adjacent to carbonate reef trends that formed a stable shelf margin throughout central Louisiana during the early Cretaceous. Shelf-margin locations remained essentially unchanged at least through the late Paleocene, by which time Wilcox clastics began to prograde out to and beyond the established margin. The depositional features of this progradational episode reflect the unstable nature of the shelf margin and a high wave-energy environment. Shelf-margin processes were responsible for the formation of a regional syndepositional normal fault system, the incision and subsequent infilling of a major submarine canyon system, and the development of stacked paralic sequences. The submarine canyon system is manifest as a mudstone-filled channel in St. Landry Parish where it reaches a maximum thickness of 1000 ft and is up to 12 mi wide. Lower to middle shoreface facies of the stacked paralic sequences constitute the primary reservoir sandstones for both Lockhart Crossing and Fordoche fields. The major producing intervals of both fields belong to two discrete sandstone bodies that are at least 30-40 mi long, 6-7 mi wide, and 30-40 ft thick, and are analogous to late Quaternary Gulf Coast shelf-margin deltas. The co-occurrence of these laterally continuous thick sandstones, favorable structural trapping mechanisms, and previous performance suggest a high potential for future exploration along this and other Gulf Coast Tertiary shelf-margin trends.

  14. Nuclear Reactors and Technology

    SciTech Connect

    Cason, D.L.; Hicks, S.C.

    1992-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  15. Overview and status of first 25 MW(e) IR-CFB boiler in India

    SciTech Connect

    Kavidass, S.; Bakshi, V.K.; Diwakar, K.K.

    1997-12-31

    The Babcock and Wilcox (B and W) internal recirculation CFB (IR-CFB) boiler is unique in design. Worldwide, B and W offers IR-CFB boilers up to 150 MW(e) both reheat and non-reheat, and is pursuing units up to 300 MW(e). This paper discusses an overview and status of the construction, commissioning, initial start-up operation and milestones of the ongoing 25 MW(e) IR-CFB boiler project at Kanoria Chemicals and Industries Ltd., Renukoot, India. This IR-CFB boiler is designed, supplied and installed by Thermax Babcock and Wilcox Ltd. (TBW), a joint venture company of the B and W and Thermax in India. The boiler parameters are, steam flow of 29.2 kg/s (23,420 lbs/hr), 6.4 MPa (925 psig), and 485 C (905 F) with feedwater temperature of 180 C (356 F). The boiler will utilize high-ash content (> 45%), subbituminous coal with a heating value of 3,500 KCal/kg (6,300 Btu/lb). This paper also discusses the various aspects of the boiler design, performance, auxiliary equipment, advantages and initial start-up operating performance.

  16. Fluvial depositional systems of Carrizo-Upper Wilcox in south Texas

    SciTech Connect

    Hamlin, H.S.

    1983-09-01

    In the Rio Grande embayment of south Texas, the Carrizo-upper Wilcox interval (Eocene) consists of two sand-rich coastal plain fluvial depositional systems that grade basinward into several deltaic complexes. The bedload channel system is dominated by multi-story, multi-lateral, fluvial, channel-fill sandstones. This system is typically > 90% sandstone. Shales are thin and laterally discontinuous, the remnants of abandoned channel fills. Bedload channel sandstones dominate the major fluvial axes and form the depositional framework of the interval. The mixed alluvial system consists of a more typical suite of coastal plain facies. Mixed-load channel-fill sandstones tend to be isolated and surrounded by overbank shales and thin sandstones. Crevasse splay and lacustrine facies occur in the flood-plain area. Total-interval isopach patterns, sandstone geometries, and depositional systems distributions indicate that fluvial sediment input was converging upon the embayment from the west, northwest, and north. Economically, the Carrizo-upper Wilcox of south Texas has a three-fold significance. The updip Carrizo sandstone is a major source of fresh groundwater, includes several large oil fields, and also contains deposits of uranium minerals. The downdip upper Wilcox trend is an area of active hydrocarbon exploration.

  17. New CEM systems measure up to the job

    SciTech Connect

    Bright, R.K.

    1996-11-01

    The Clean Air Act Amendments of 1990 require utilities to face the problem of providing power while ensuring their plants comply with clean air standards. This paper describes a Clean Environment Development Facility (CEM) constructed by Babcock and Wilcox research. The facility is dedicated to finding cleaner and more efficient means of producing power and has incorporated advanced continuous emissions monitoring systems.

  18. TRAC-PF1/MOD1 calculations and data comparisons for MIST (Multi-Loop Integral System Test) small-break loss-of-coolant accidents with scaled 10 cm/sup 2/ and 50 cm/sup 2/ breaks

    SciTech Connect

    Steiner, J.L.; Siebe, D.A.; Boyack, B.E.

    1987-01-01

    Los Alamos National Laboratory is a participant in the Integral System Test (IST) program initiated in June 1983 for the purpose of providing integral system test data on specific issues/phenomena relevant to post-small-break loss-of-coolant accidents (SBLOCAs), loss of feedwater and other transients in Babcock and Wilcox (B and W) plant designs. The Multi-Loop Integral System Test (MIST) facility is the largest single component in the IST program. MIST is a 2 x 4 (2 hot legs and steam generators, 4 cold legs and reactor-coolant pumps) representation of lowered-loop reactor systems of the B and W design. It is a full-height, full-pressure facility with 1/817 power and volume scaling. Two other experimental facilities are included in the IST program: test loops at the University of Maryland, College Park, and at Stanford Research Institute. The objective of the IST tests is to generate high-quality experimental data to be used for assessing thermal-hydraulic safety computer codes. Efforts are underway at Los Alamos to assess TRAC-PF1/MOD1 against data from each of the IST facilities. Calculations and data comparisons for TRAC-PF1/MOD1 assessment have been completed for two transients run in the MIST facility. These are the MIST nominal test. Test 3109AA, a scaled 10 cm/sup 2/ SBLOCA and Test 320201, a scaled 50 cm/sup 2/ SBLOCA. Only MIST assessment results are presented in this paper.

  19. Compaction of Wilcox sandstones to 14,500 feet

    SciTech Connect

    McBride, E.F.; Wilson, J.C.; Diggs, T.N.

    1989-03-01

    Changes in packing and porosity resulting from compaction were studied in 38 Wilcox sandstones from 12 cores. Burial depths, adjusted for erosion in updip areas, range from 1100 to 14,500 ft. Neither quartz (/anti x/ = 5.6%) nor carbonate cement (/anti x/ = 2.9%) were introduced shallow enough or in sufficient abundance in the sandstones to significantly retard compaction. As a result, compaction continued to maximum burial depth and was the main cause of porosity decrease with depth (r = 0.82). As measured by increases in packing indices, sands compacted rapidly to depths of 2500 to 4000 ft (where intergranular volume averages approximately 30%) and more slowly and variably at greater depths. At all depths the amount of porosity lost by grain rearrangement was about twice the porosity lost by ductile grain deformation or by pressure solution. Ductile grain deformation was identified as shallow as 1100 ft (the shallowest sample) and pressure solution as shallow as 1915 ft. At shallow depths, only clay rip-up clasts deformed ductility; at greater depths micaceous rock fragments, micas, and glauconite deformed also. Surprisingly, porosity loss by ductile deformation has only a poor correlation (r = 0.62) with total amount of ductile grains. Quartz is the main mineral that undergoes pressure solution, although feldspar and volcanic rock fragments locally pressolve also.

  20. 76 FR 23630 - Office of New Reactors; Proposed Revision 2 to Standard Review Plan, Section 1.0 on Introduction...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    ... COMMISSION Office of New Reactors; Proposed Revision 2 to Standard Review Plan, Section 1.0 on Introduction...), Section 1.0, ``Introduction and Interfaces'' (Agencywide Documents Access and Management System (ADAMS...: Cindy Bladey, Chief, Rules, Announcements, and Directives Branch (RADB), Office of Administration,...

  1. Lockhart Crossing field: new Wilcox trend in southeastern Louisiana

    SciTech Connect

    Self, G.A.; Breard, S.Q.; Rael, H.P.; Stein, J.A.; Thayer, P.A.; Traugott, M.O.; Eason, W.D.

    1986-05-01

    In 1982, a significant onshore oil discovery in the lower Eocene Wilcox was made at Lockhart Crossing field, illuminating a new oil trend in southeast Louisiana. Twenty-eight producers and nine dry holes were drilled, resulting in development of 3400 productive acres with estimated recoverable reserves of 21 million bbl of oil after secondary recovery. The main field reservoir is a 40 to 80-ft (12 to 24-m) marine sandstone. The dominant facies is an upward-coarsening sequence of very fine to fine-grained glauconitic sandstone deposited as a nearshore marine bar. The associated facies is a younger, upward-fining, channelized sequence of medium to very fine-grained sandstone. Faulting initiated channeling and erosion into the existing nearshore bar facies with subsequent deposition of channel fill. Together these two facies constitute one reservoir. The primary trapping mechanism is structural, in the form of a rollover anticline. This solution gas drive reservoir is normally pressured and displays a concave-downward producing water level that initially masked the true productive limits of the field. 14 figures, 3 tables.

  2. The origin and distribution of HAPs elements in relation to maceral composition of the A1 lignite bed (Paleocene, Calvert Bluff Formation, Wilcox Group), Calvert mine area, east-central Texas

    USGS Publications Warehouse

    Crowley, S.S.; Warwick, P.D.; Ruppert, L.F.; Pontolillo, J.

    1997-01-01

    The origin and distribution of twelve potentially Hazardous Air Pollutants (HAPs; As, Be, Cd, Cr, Co, Hg, Mn, Ni, Pb Sb, Se, and U) identified in the 1990 Clean Air Act Amendments were examined in relation to the maceral composition of the A1 bed (Paleocene, Calvert Bluff Formation, Wilcox Group) of the Calvert mine in east-central Texas. The 3.2 m-thick A1 bed was divided into nine incremental channel samples (7 lignite samples and 2 shaley coal samples) on the basis of megascopic characteristics. Results indicate that As, Cd, Cr, Ni, Pb, Sb, and U are strongly correlated with ash yield and are enriched in the shaley coal samples. We infer that these elements are associated with inorganic constituents in the coal bed and may be derived from a penecontemporaneous stream channel located several kilometers southeast of the mining block. Of the HAPs elements studied, Mn and Hg are the most poorly correlated to ash yield. We infer an organic association for Mn; Hg may be associated with pyrite. The rest of the trace elements (Be, Co, and Se) are weakly correlated with ash yield. Further analytical work is necessary to determine the mode of occurrence for these elements. Overall, concentrations of the HAPs elements are generally similar to or less than those reported in previous studies of lignites of the Wilcox Group, east-central region, Texas. Petrographic analysis indicates the following ranges in composition for the seven lignite samples: liptinites (5-8%), huminites (88-95%), and inertinites (trace amounts to 7%). Samples from the middle portion of the A1 bed contain abundant crypto-eugelinite compared to the rest of the samples; this relationship suggests that the degradation of plant material was an important process during the development of the peat mire. With the exception of Hg and Mn, relatively low levels of the HAPs elements studied are found in the samples containing abundant crypto-eugelinite. We infer that the peat-forming environment for this portion

  3. Nuclear Reactor Kinetics and Control.

    SciTech Connect

    JEFFERY,; LEWINS, D.

    2009-07-27

    Version 00 Dr. J.D. Lewins has now released the following legacy book for free distribution: Nuclear Reactor Kinetics and Control, Pergamon Press, London, 275 pages, 1978. 1. Introductory Review 2. Neutron and Precursor Equations 3. Elementary Solutions of the Kinetics Equations at Low Power 4. Linear Reactor Process Dynamics with Feedback 5. Power Reactor Control Systems 6. Fluctuations and Reactor Noise 7. Safety and Reliability 8. Non Linear Systems; Stability and Control 9. Analogue Computing Addendum: Jay Basken and Jeffery D. Lewins: Power Series Solution of the Reactor Kinetics Equations, Nuclear Science and Engineering: 122, 407-436 (1996) (authorized for distribution with the book: courtesy of the American Nuclear Society)

  4. Comparison of Standard Light Water Reactor Cross-Section Libraries using the United States Nuclear Regulatory Commission Pressurized Water Reactor Standard Core Loading Benchmark Problem

    NASA Astrophysics Data System (ADS)

    Arzu Alpan, F.; Kulesza, Joel A.

    2016-02-01

    This paper compares contemporary and historical light water reactor shielding and pressure vessel dosimetry cross-section libraries for a pressurized water reactor calculational benchmark problem with a standard out-in core loading. The calculational benchmark problem was developed at Brookhaven National Laboratory by the request of the U. S. Nuclear Regulatory Commission and used the Oak Ridge National Laboratory two-dimensional discrete ordinates code DORT and the BUGLE-93 cross-section library for the calculations. In this paper, a Westinghouse three-dimensional discrete ordinates code with parallel processing, the RAPTOR-M3G code was used. A variety of cross section libraries were used with RAPTOR-M3G including the BUGLE-93, BUGLE-96, and BUGLE-B7 cross-section libraries developed at Oak Ridge National Laboratory, and the broad-group ALPAN-VII.0 cross-section library developed at Westinghouse. In comparing the calculation-to-calculation reaction rates using the BUGLE-93 cross-section library at the thermal shield, pressure vessel, and cavity capsules, for eleven dosimetry reaction rates, a maximum relative difference of 5% was observed, with the exception of 65Cu(n,2n) in the pressure vessel capsule that had a 90% relative difference with respect to the reference results. It is thought that the 65Cu(n,2n) reaction rate reported in the reference for the pressure vessel capsule is not correct. In considering the libraries developed after BUGLE-93, a maximum relative difference of 12% was observed in reaction rates, with respect to the reference results, for 237Np(n,f) in the cavity capsule using BUGLE-B7.

  5. Intermediate photovoltaic system application experiment operational performance report. Volume 2 for G. N. Wilcox Memorial Hospital, Kauai, HI

    SciTech Connect

    Not Available

    1982-10-01

    Presented are the data accumulated during April and May 1982 at this intermediate photovoltaic project at G.N. Wilcox Memorial Hospital, Kauai, Hawaii. Generated energy and environmental (weather) data are presented graphically. Explanations of irregularities not attributable to weather are provided.

  6. Intermediate photovoltaic system application experiment operational performance report. Volume 1. For G. N. Wilcox Memorial Hospital, Kauai, Hawaii

    SciTech Connect

    Not Available

    1982-09-01

    Presented are the data accumulated during January, February, and March 1982 at the intermediate photovoltaic project at G.N. Wilcox Memorial Hospital, Kauai, Hawaii. Generated energy and environmental (weather) data are presented graphically. Explanations of irregularities not attributable to weather are provided.

  7. The IRIS network site at the Wilcox Solar Observatory

    NASA Technical Reports Server (NTRS)

    Hoeksema, J. T.; Scherrer, P. H.

    1991-01-01

    The site for the International Research on the Interior of the Sun (IRIS) instrument housed at the Wilcox Solar Observatory at Stanford University (near San Francisco, USA) is described together with the instrument operation procedure. The IRIS instrument, which measures global oscillations of the sun, operates continuously every clear day since it was installed in August 1987.

  8. Looking Southwest at Reactor Box Furnaces With Reactor Boxes and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking Southwest at Reactor Box Furnaces With Reactor Boxes and Repossessed Uranium in Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO

  9. Intermediate photovoltaic system application experiment operational performance report, for G. N. Wilcox Memorial Hospital, Kauai, Hawaii. Vol. 9

    SciTech Connect

    Not Available

    1983-06-01

    This report presents the data accumulated during January 1983 at the intermediate photovoltaic project at G.N. Wilcox Memorial Hospital, Kauai, Hawaii. Generated energy and environmental (weather) data are presented graphically. Explanations of irregularities not attributable to weather are provided.

  10. Occurrence of Pseudophragmina sp. as a possible indication of carbonate bank deposition in Upper Wilcox (Paleocene-Eocene), Pointe Coupee Parish, Louisiana

    SciTech Connect

    Nunn, L.L.; Lemoine, R.C.

    1987-05-01

    Paleontologic and sedimentologic analysis of whole-diameter cores from two upper Wilcox sandstones in south-central Louisiana suggests the presence of carbonate bank deposition during the late Wilcox. The larger foraminifera Pseudophragmina sp. occurs in two stratigraphically unrelated sandstones from the upper Wilcox (Paleocene-Eocene) in Pointe Coupee Parish, Louisiana. In Bayou Fordoche field, Pseudophragmina sp. is dispersed throughout an uppermost Wilcox sandstone, which is a 6-m thick unit found 82-m below the top of the Wilcox. In Fordoche field, which is south and down dip of Bayou Fordoche field, numerous individuals of Pseudophragmina sp. are concentrated in two distinct zones within the W-12 sandstone, a relatively thicker (33 m) sandstone that occurs 320 m below the top of the Wilcox. The down dip W-12 sandstone is stratigraphically unrelated to the updip sandstone; however, the two sandstones are lithologically and faunally similar. The updip sandstone and the Pseudophragmina sp. bearing intervals in the down dip W-12 sandstone are quartzose and glauconitic. In addition to numerous Pseudophragmina sp., they contain globorotalid and globigerinid planktonic foraminifera and smaller benthic foraminifera from such groups as miliolids, lagenids, and nodosarids. Echinoids and mollusks are also present. These fossils are dispersed throughout the updip sandstone and are concentrated in two separate zones within the down dip W-12 sandstone. This Pseudophragmina facies in the upper Wilcox is faunally and lithologically similar to facies that are related to modern submarine carbonate banks in the Gulf of Mexico and to reef facies reported for subsurface Tertiary units in the Gulf Coast.

  11. NTRE extended life feasibility assessment

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Results of a feasibility analysis of a long life, reusable nuclear thermal rocket engine are presented in text and graph form. Two engine/reactor concepts are addressed: the Particle Bed Reactor (PBR) design and the Commonwealth of Independent States (CIS) concept. Engine design, integration, reliability, and safety are addressed by various members of the NTRE team from Aerojet Propulsion Division, Energopool (Russia), and Babcock & Wilcox.

  12. Environmental Assessment: Geothermal Energy Geopressure Subprogram. Gulf Coast Well Drilling and Testing Activity (Frio, Wilcox, and Tuscaloosa Formations, Texas and Louisiana)

    SciTech Connect

    1981-09-01

    The Department of Energy (DOE) has initiated a program to evaluate the feasibility of developing the geothermal-geopressured energy resources of the Louisiana-Texas Gulf Coast. As part of this effort, DOE is contracting for the drilling of design wells to define the nature and extent of the geopressure resource. At each of several sites, one deep well (4000-6400 m) will be drilled and flow tested. One or more shallow wells will also be drilled to dispose of geopressured brines. Each site will require about 2 ha (5 acres) of land. Construction and initial flow testing will take approximately one year. If initial flow testing is successful, a continuous one-year duration flow test will take place at a rate of up to 6400 m{sup 3} (40,000 bbl) per day. Extensive tests will be conducted on the physical and chemical composition of the fluids, on their temperature and flow rate, on fluid disposal techniques, and on the reliability and performance of equipment. Each project will require a maximum of three years to complete drilling, testing, and site restoration.

  13. 76 FR 14437 - Economic Simplified Boiling Water Reactor Standard Design: GE Hitachi Nuclear Energy; Issuance of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-16

    ... From the Federal Register Online via the Government Publishing Office ] NUCLEAR REGULATORY COMMISSION Economic Simplified Boiling Water Reactor Standard Design: GE Hitachi Nuclear Energy; Issuance of Final Design Approval The U.S. Nuclear Regulatory Commission has issued a final design approval (FDA) to GE Hitachi Nuclear Energy (GEH) for...

  14. Wilcox sandstone reservoirs in the deep subsurface along the Texas Gulf Coast: their potential for production of geopressured geothermal energy. Report of Investigations No. 117

    SciTech Connect

    Debout, D.G.; Weise, B.R.; Gregory, A.R.; Edwards, M.B.

    1982-01-01

    Regional studies of the lower Eocene Wilcox Group in Texas were conducted to assess the potential for producing heat energy and solution methane from geopressured fluids in the deep-subsurface growth-faulted zone. However, in addition to assembling the necessary data for the geopressured geothermal project, this study has provided regional information of significance to exploration for other resources such as lignite, uranium, oil, and gas. Because the focus of this study was on the geopressured section, emphasis was placed on correlating and mapping those sandstones and shales occurring deeper than about 10,000 ft. The Wilcox and Midway Groups comprise the oldest thick sandstone/shale sequence of the Tertiary of the Gulf Coast. The Wilcox crops out in a band 10 to 20 mi wide located 100 to 200 mi inland from the present-day coastline. The Wilcox sandstones and shales in the outcrop and updip shallow subsurface were deposited primarily in fluvial environments; downdip in the deep subsurface, on the other hand, the Wilcox sediments were deposited in large deltaic systems, some of which were reworked into barrier-bar and strandplain systems. Growth faults developed within the deltaic systems, where they prograded basinward beyond the older, stable Lower Cretaceous shelf margin onto the less stable basinal muds. Continued displacement along these faults during burial resulted in: (1) entrapment of pore fluids within isolated sandstone and shale sequences, and (2) buildup of pore pressure greater than hydrostatic pressure and development of geopressure.

  15. NEUTRONIC REACTOR CHARGING AND DISCHARGING

    DOEpatents

    Zinn, W.H.

    1959-07-14

    A method and arrangement is presented for removing a fuel element from a neutronic reactor tube through which a liquid coolant is being circulaled. The fuel element is moved into a section of the tube beyond the reactor proper, and then the coolant in the tube between the fuel element and the reactor proper is frozen, so that the fuel element may be removed from the tube without loss of the coolant therein. The method is particularly useful in the case of a liquid metal- cooled reactor.

  16. Plane-polar Fresnel and far-field computations using the Fresnel-Wilcox and Jacobi-Bessel expansions. [for large aperture antennas

    NASA Technical Reports Server (NTRS)

    Rahmat-Samii, Y.; Galindo-Israel, V.

    1981-01-01

    It is pointed out that the computation of the Fresnel fields for large aperture antennas is significant for many applications. The present investigation is concerned with an approach for the effective utilization of the coefficients of the Jacobi-Bessel series for the far-field to obtain an analytically continuous representation of the antenna field which is valid from the Fresnel region into the far field. Attention is given to exact formulations and closed form solutions, Fresnel and Fresnel small angle approximations, aspects of field expansion, the accuracy of the Fresnel and Fresnel small angle approximations, and the Jacobi-Bessel expansion applied to the Fresnel small angle approximation.

  17. Fast quench reactor and method

    DOEpatents

    Detering, B.A.; Donaldson, A.D.; Fincke, J.R.; Kong, P.C.

    1998-05-12

    A fast quench reactor includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This ``freezes`` the desired end product(s) in the heated equilibrium reaction stage. 7 figs.

  18. Alternative approaches to fusion. [reactor design and reactor physics for Tokamak fusion reactors

    NASA Technical Reports Server (NTRS)

    Roth, R. J.

    1976-01-01

    The limitations of the Tokamak fusion reactor concept are discussed and various other fusion reactor concepts are considered that employ the containment of thermonuclear plasmas by magnetic fields (i.e., stellarators). Progress made in the containment of plasmas in toroidal devices is reported. Reactor design concepts are illustrated. The possibility of using fusion reactors as a power source in interplanetary space travel and electric power plants is briefly examined.

  19. REACTOR

    DOEpatents

    Szilard, L.

    1963-09-10

    A breeder reactor is described, including a mass of fissionable material that is less than critical with respect to unmoderated neutrons and greater than critical with respect to neutrons of average energies substantially greater than thermal, a coolant selected from sodium or sodium--potassium alloys, a control liquid selected from lead or lead--bismuth alloys, and means for varying the quantity of control liquid in the reactor. (AEC)

  20. REACTOR

    DOEpatents

    Christy, R.F.

    1961-07-25

    A means is described for co-relating the essential physical requirements of a fission chain reaction in order that practical, compact, and easily controllable reactors can be built. These objects are obtained by employing a composition of fissionsble isotope and moderator in fluid form in which the amount of fissionsble isotcpe present governs the reaction. The size of the reactor is no longer a critical factor, the new criterion being the concentration of the fissionable isotope.

  1. Studies on coal devolatilization and char reactivity under PFBC conditions

    SciTech Connect

    Not Available

    1990-12-01

    A fundamental combustion study was performed at Babcock and Wilcox's Alliance Research Center to characterize the combustion properties of Pittsburgh No. 8 and Texas lignite coals under conditions simulating pressurized fluidized-bed combustion (PFBC) using a bench-scale reactor. Over 400 combustion tests were performed at temperatures ranging from 1425{degree} to 1,725{degree}F, a maximum pressure of 280 psig, maximum superficial gas velocities of approximately 5 ft/sec to 20 ft/sec, and several oxygen concentrations using six coal particle sizes. A database of combustion profiles at PFBC conditions was obtained. A fundamental model of the chemical kinetics of the coal combustion at elevated pressures was developed based on this database. The kinetic models were used to derive the rate constants and activation energies of coal combustion for the two coals. For coal devolatilization, the effects of each test variable on the rate of reaction, the volatile yield, and the reaction order were evaluated. The apparent orders of coal devolatilization for Pittsburgh No. 8 and Texas lignite coals were determined to be less than one and vary with coal properties and test conditions. For char oxidation, the rates were reported as apparent kinetic rates and were derived based on the information which was obtained at the early stage of char oxidation. The kinetic rate constant of Pittsburgh No. 8 coal was found to be insensitive to the tested particle sizes. Increasing temperature, pressure, and superficial gas velocity increased the kinetic rate constant. The kinetic rate constant of Texas lignite coal was found to be approximately 2.5 times that of Pittsburgh No. 8 coal. The kinetic data obtained from this study in the low-temperature range was comparable to those reported by others in the literature. 40 refs., 37 figs., 15 tabs.

  2. Nuclear Reactor Kinetics and Control.

    Energy Science and Technology Software Center (ESTSC)

    2009-07-27

    Version 00 Dr. J.D. Lewins has now released the following legacy book for free distribution: Nuclear Reactor Kinetics and Control, Pergamon Press, London, 275 pages, 1978. 1. Introductory Review 2. Neutron and Precursor Equations 3. Elementary Solutions of the Kinetics Equations at Low Power 4. Linear Reactor Process Dynamics with Feedback 5. Power Reactor Control Systems 6. Fluctuations and Reactor Noise 7. Safety and Reliability 8. Non Linear Systems; Stability and Control 9. Analogue Computingmore » Addendum: Jay Basken and Jeffery D. Lewins: Power Series Solution of the Reactor Kinetics Equations, Nuclear Science and Engineering: 122, 407-436 (1996) (authorized for distribution with the book: courtesy of the American Nuclear Society)« less

  3. Results and Analysis of the Infrastructure Request for Information (DE-SOL-0008318)

    SciTech Connect

    Heidrich, Brenden John

    2015-07-01

    The Department of Energy (DOE) Office of Nuclear Energy (NE) released a request for information (RFI) (DE-SOL-0008318) for “University, National Laboratory, Industry and International Input on Potential Office of Nuclear Energy Infrastructure Investments” on April 13, 2015. DOE-NE solicited information on five specific types of capabilities as well as any others suggested by the community. The RFI proposal period closed on June 19, 2015. From the 26 responses, 34 individual proposals were extracted. Eighteen were associated with a DOE national laboratory, including Argonne National Laboratory (ANL), Brookhaven National Laboratory (BNL), Idaho National Laboratory (INL), Los Alamos National Laboratory (LANL), Pacific Northwest National Laboratory (PNNL) and Sandia National Laboratory (SNL). Oak Ridge National Laboratory (ORNL) was referenced in a proposal as a proposed capability location, although the proposal did not originate with ORNL. Five US universities submitted proposals (Massachusetts Institute of Technology, Pennsylvania State University, Rensselaer Polytechnic Institute, University of Houston and the University of Michigan). Three industrial/commercial institutions submitted proposals (AREVA NP, Babcock and Wilcox (B&W) and the Electric Power Research Institute (EPRI)). Eight major themes emerged from the submissions as areas needing additional capability or support for existing capabilities. Two submissions supported multiple areas. The major themes are: Advanced Manufacturing (AM), High Performance Computing (HPC), Ion Irradiation with X-Ray Diagnostics (IIX), Ion Irradiation with TEM Visualization (IIT), Radiochemistry Laboratories (RCL), Test Reactors, Neutron Sources and Critical Facilities (RX) , Sample Preparation and Post-Irradiation Examination (PIE) and Thermal-Hydraulics Test Facilities (THF).

  4. Standards and Certification. Symposium.

    ERIC Educational Resources Information Center

    2002

    This document contains three papers from a symposium on standards and certification in human resource development (HRD). "Implementing Management Standards in the UK" (Jonathan Winterton, Ruth Winterton) reports on a study that explored the implementation of management standards in 16 organizations and identified 36 key themes and strategic issues…

  5. Fast reactors and nuclear nonproliferation

    SciTech Connect

    Avrorin, E.N.; Rachkov, V.I.; Chebeskov, A.N.

    2013-07-01

    Problems are discussed with regard to nuclear fuel cycle resistance in fast reactors to nuclear proliferation risk due to the potential for use in military programs of the knowledge, technologies and materials gained from peaceful nuclear power applications. Advantages are addressed for fast reactors in the creation of a more reliable mode of nonproliferation in the closed nuclear fuel cycle in comparison with the existing fully open and partially closed fuel cycles of thermal reactors. Advantages and shortcomings are also discussed from the point of view of nonproliferation from the start with fast reactors using plutonium of thermal reactor spent fuel and enriched uranium fuel to the gradual transition using their own plutonium as fuel. (authors)

  6. REACTOR PHYSICS MODELING OF SPENT NUCLEAR RESEARCH REACTOR FUEL FOR SNM ATTRIBUTION AND NUCLEAR FORENSICS

    SciTech Connect

    Sternat, M.; Beals, D.; Webb, R.; Nichols, T.

    2010-06-09

    Nuclear research reactors are the least safeguarded type of reactor; in some cases this may be attributed to low risk and in most cases it is due to difficulty from dynamic operation. Research reactors vary greatly in size, fuel type, enrichment, power and burnup providing a significant challenge to any standardized safeguard system. If a whole fuel assembly was interdicted, based on geometry and other traditional forensics work, one could identify the material's origin fairly accurately. If the material has been dispersed or reprocessed, in-depth reactor physics models may be used to help with the identification. Should there be a need to attribute research reactor fuel material, the Savannah River National Laboratory would perform radiochemical analysis of samples of the material as well as other non-destructive measurements. In depth reactor physics modeling would then be performed to compare to these measured results in an attempt to associate the measured results with various reactor parameters. Several reactor physics codes are being used and considered for this purpose, including: MONTEBURNS/ORIGEN/MCNP5, CINDER/MCNPX and WIMS. In attempt to identify reactor characteristics, such as time since shutdown, burnup, or power, various isotopes are used. Complexities arise when the inherent assumptions embedded in different reactor physics codes handle the isotopes differently and may quantify them to different levels of accuracy. A technical approach to modeling spent research reactor fuel begins at the assembly level upon acquiring detailed information of the reactor to be modeled. A single assembly is run using periodic boundary conditions to simulate an infinite lattice which may be repeatedly burned to produce input fuel isotopic vectors of various burnups for a core level model. A core level model will then be constructed using the assembly level results as inputs for the specific fuel shuffling pattern in an attempt to establish an equilibrium cycle. The

  7. Reactor and method of operation

    DOEpatents

    Wheeler, John A.

    1976-08-10

    A nuclear reactor having a flattened reactor activity curve across the reactor includes fuel extending over a lesser portion of the fuel channels in the central portion of the reactor than in the remainder of the reactor.

  8. REACTOR

    DOEpatents

    Roman, W.G.

    1961-06-27

    A pressurized water reactor in which automatic control is achieved by varying the average density of the liquid moderator-cooiant is patented. Density is controlled by the temperature and power level of the reactor ftself. This control can be effected by the use of either plate, pellet, or tubular fuel elements. The fuel elements are disposed between upper and lower coolant plenum chambers and are designed to permit unrestricted coolant flow. The control chamber has an inlet opening communicating with the lower coolant plenum chamber and a restricted vapor vent communicating with the upper coolant plenum chamber. Thus, a variation in temperature of the fuel elements will cause a variation in the average moderator density in the chamber which directly affects the power level of the reactor.

  9. Fast Reactor Fuel Type and Reactor Safety Performance

    SciTech Connect

    R. Wigeland; J. Cahalan

    2009-09-01

    Fast Reactor Fuel Type and Reactor Safety Performance R. Wigeland , Idaho National Laboratory J. Cahalan, Argonne National Laboratory The sodium-cooled fast neutron reactor is currently being evaluated for the efficient transmutation of the highly-hazardous, long-lived, transuranic elements that are present in spent nuclear fuel. One of the fundamental choices that will be made is the selection of the fuel type for the fast reactor, whether oxide, metal, carbide, nitride, etc. It is likely that a decision on the fuel type will need to be made before many of the related technologies and facilities can be selected, from fuel fabrication to spent fuel reprocessing. A decision on fuel type should consider all impacts on the fast reactor system, including safety. Past work has demonstrated that the choice of fuel type may have a significant impact on the severity of consequences arising from accidents, especially for severe accidents of low probability. In this paper, the response of sodium-cooled fast reactors is discussed for both oxide and metal fuel types, highlighting the similarities and differences in reactor response and accident consequences. Any fast reactor facility must be designed to be able to successfully prevent, mitigate, or accommodate all consequences of potential events, including accidents. This is typically accomplished by using multiple barriers to the release of radiation, including the cladding on the fuel, the intact primary cooling system, and most visibly the reactor containment building. More recently, this has also included the use of ‘inherent safety’ concepts to reduce or eliminate the potential for serious damage in some cases. Past experience with oxide and metal fuel has demonstrated that both fuel types are suitable for use as fuel in a sodium-cooled fast reactor. However, safety analyses for these two fuel types have also shown that there can be substantial differences in accident consequences due to the neutronic and

  10. Louisiana ground-water map no. 8; potentiometric surface, 1991, of the Carrizo-Wilcox Aquifer in northwestern Louisiana

    USGS Publications Warehouse

    Seanor, Ronald C.; Smoot, Charles W.

    1995-01-01

    In northwestern Louisiana, the Carrizo-Wilcox aquifer is the primary source of ground water within six parishes (Bossier, Caddo, De Soto, Natchitoches, Red River, and Sabine) and the secondary source in parts of three other parishes (Bienville, Claiborne, and Webster). Withdrawals from the aquifer increased from 4.7 Mgal/d (million gallons per day) in 1965 to 13.3 Mgal/d in 1990. A map of the potentiometric surface indicates that the altitudes of water levels in the Carrizo-Wilcox aquifer ranged from less than 100 feet to 300 feet above sea level in November and December 1991. The direction of ground-water flow within the aquifer generally is to the southeast and east or west to the Red River Valley.

  11. REACTORS

    DOEpatents

    Spitzer, L. Jr.

    1961-10-01

    Thermonuclear reactors, methods, and apparatus are described for controlling and confining high temperature plasma. Main axial confining coils in combination with helical windings provide a rotational transform that avoids the necessity of a figure-eight shaped reactor tube. The helical windings provide a multipolar helical magnetic field transverse to the axis of the main axial confining coils so as to improve the effectiveness of the confining field by counteracting the tendency of the more central lines of force in the stellarator tube to exchange positions with the magnetic lines of force nearer the walls of the tube. (AEC)

  12. Nuclear Reactors and Technology; (USA)

    SciTech Connect

    Cason, D.L.; Hicks, S.C.

    1991-01-01

    Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

  13. Shale-filled channel system in Wilcox Group (Paleocene-Eocene), north-central south Louisiana

    SciTech Connect

    McCulloh, R.P.; Eversull, L.G.

    1986-09-01

    Anomalously thick shale intervals of limited extent within normally sandy facies of the Wilcox are evident on published regional electric log structure sections through south Louisiana. These intervals were investigated with a series of subregional stratigraphic electric log sections and by mapping. The stratigraphic sections show that in places the shale cuts out nearly 1000 ft (300 m) of adjacent interstratified sandstone and shale section and has lenticular, channel-like, cross-sectional geometry. The sections also indicate that the uppermost parts of the thick shale intervals are stratigraphically equivalent to, or at least contiguous with, a persistent subregional shale marker bed known informally as the Big Shale, but are distinguishable from it in places by more uniform log character. A map of the anomalously thick and uniform shale indicates a south-trending, relatively straight channel with a single bifurcation in southern Avoyelles Parish. The branches probably continue downdip, although they cannot be traced with confidence south of central St. Landry Parish because of the overall shalier Wilcox section and scarcity of adequately deep control wells. The channel shale is analogous to other early Cenozoic subsurface truncational shale masses that have been mostly interpreted as submarine canyon-channel fills. Stratigraphic trapping possibilities are evident from the truncation of bounding permeable units, but the possible continuation of the branches downdip suggests the potential for deep sandy equivalents and deep gas.

  14. 75 FR 33362 - Notice of Opportunity To Request a Hearing and Provide Written Comments on Order Approving...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-11

    ... general requirements in Subpart C of 10 CFR Part 2, as amended on January 14, 2004 (69 FR 2182), any... NRC E-Filing rule (72 FR 49139, August 28, 2007). The E-Filing process requires participants to submit... licensee, Babcock & Wilcox Nuclear Operations Group, Inc. (B&W NOG), pertaining to a proposed...

  15. 75 FR 6413 - Office of New Reactors; Proposed Revision to Standard Review Plan, Section 14.3.12 on Physical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ... Regulations, Part 73, Power Reactor Security Rule (published in the Federal Register (FR) on March 27, 2009 (74 FR 13926)). The previous version of this SRP section was published in March 2007 as an initial... COMMISSION Office of New Reactors; Proposed Revision to Standard Review Plan, Section 14.3.12 on...

  16. Thermal Reactor Code System for Reactor Design and Analysis.

    SciTech Connect

    SUZUKI, TADAKAZU

    2003-04-21

    Version: 00 SRAC95 is a general purpose neutronics code system applicable to core analyses of various types of reactors, including cell calculation with burn up, core calculation for any type of thermal reactor; where core burn up calculation and fuel management were done by an auxiliary code. Since the publication of JAERI-1302 for the revised SRAC in 1986, a number of additions and modifications were made for nuclear data libraries and programs. In this version, many new functions and data are implemented to support nuclear design studies of advanced reactors. SRAC95 can be used for burnup credit analysis within the ORIGEN2 and SWAT (CCC-714) code system.

  17. Fast quench reactor and method

    SciTech Connect

    Detering, Brent A.; Donaldson, Alan D.; Fincke, James R.; Kong, Peter C.

    2002-01-01

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This "freezes" the desired end product(s) in the heated equilibrium reaction stage.

  18. Fast quench reactor and method

    SciTech Connect

    Detering, Brent A.; Donaldson, Alan D.; Fincke, James R.; Kong, Peter C.

    1998-01-01

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This "freezes" the desired end product(s) in the heated equilibrium reaction stage.

  19. Fast quench reactor and method

    SciTech Connect

    Detering, Brent A.; Donaldson, Alan D.; Fincke, James R.; Kong, Peter C.

    2002-09-24

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This "freezes" the desired end product(s) in the heated equilibrium reaction stage.

  20. Standards and Administration.

    ERIC Educational Resources Information Center

    Gross, S. P.

    1978-01-01

    Presents a literature review of water quality standards and administration, covering publications of 1976-77. Consideration is given to municipal facilities, National Pollutant Discharge Elimination Systems, regional and international water quality management, and effluent standards. A list of 99 references is also presented. (HM)

  1. State Standards and Evolution

    ERIC Educational Resources Information Center

    Moore, Randy

    2004-01-01

    Throughout the United States various individuals and groups have tried to subvert science education by removing or weakening the treatment of evolution in state science-education standards. Most states' science-education standards support the teaching of evolution, but many in the general public and some policymakers want science classrooms to…

  2. Coal geology of the Paleocene-Eocene Calvert Bluff Formation (Wilcox Group) and the Eocene Manning Formation (Jackson Group) in east-central Texas; field trip guidebook for the Society for Organic Petrology, Twelfth Annual Meeting, The Woodlands, Texas, August 30, 1995

    USGS Publications Warehouse

    Warwick, Peter D.; Crowley, Sharon S.

    1995-01-01

    The Jackson and Wilcox Groups of eastern Texas (fig. 1) are the major lignite producing intervals in the Gulf Region. Within these groups, the major lignite-producing formations are the Paleocene-Eocene Calvert Bluff Formation (Wilcox) and the Eocene Manning Formation (Jackson). According to the Keystone Coal Industry Manual (Maclean Hunter Publishing Company, 1994), the Gulf Coast basin produces about 57 million short tons of lignite annually. The state of Texas ranks number 6 in coal production in the United States. Most of the lignite is used for electric power generation in mine-mouth power plant facilities. In recent years, particular interest has been given to lignite quality and the distribution and concentration of about a dozen trace elements that have been identified as potential hazardous air pollutants (HAPs) by the 1990 Clean Air Act Amendments. As pointed out by Oman and Finkelman (1994), Gulf Coast lignite deposits have elevated concentrations of many of the HAPs elements (Be, Cd, Co, Cr, Hg, Mn, Se, U) on a as-received gm/mmBtu basis when compared to other United States coal deposits used for fuel in thermo-electric power plants. Although regulations have not yet been established for acceptable emissions of the HAPs elements during coal burning, considerable research effort has been given to the characterization of these elements in coal feed stocks. The general purpose of the present field trip and of the accompanying collection of papers is to investigate how various aspects of east Texas lignite geology might collectively influence the quality of the lignite fuel. We hope that this collection of papers will help future researchers understand the complex, multifaceted interrelations of coal geology, petrology, palynology and coal quality, and that this introduction to the geology of the lignite deposits of east Texas might serve as a stimulus for new ideas to be applied to other coal basins in the U.S. and abroad.

  3. REACTOR

    DOEpatents

    Spitzer, L. Jr.

    1962-01-01

    The system conteraplates ohmically heating a gas to high temperatures such as are useful in thermonuclear reactors of the stellarator class. To this end the gas is ionized and an electric current is applied to the ionized gas ohmically to heat the gas while the ionized gas is confined to a central portion of a reaction chamber. Additionally, means are provided for pumping impurities from the gas and for further heating the gas. (AEC)

  4. A comparison of three self-tuning control algorithms developed for the Bristol-Babcock controller

    SciTech Connect

    Tapp, P.A.

    1992-04-01

    A brief overview of adaptive control methods relating to the design of self-tuning proportional-integral-derivative (PID) controllers is given. The methods discussed include gain scheduling, self-tuning, auto-tuning, and model-reference adaptive control systems. Several process identification and parameter adjustment methods are discussed. Characteristics of the two most common types of self-tuning controllers implemented by industry (i.e., pattern recognition and process identification) are summarized. The substance of the work is a comparison of three self-tuning proportional-plus-integral (STPI) control algorithms developed to work in conjunction with the Bristol-Babcock PID control module. The STPI control algorithms are based on closed-loop cycling theory, pattern recognition theory, and model-based theory. A brief theory of operation of these three STPI control algorithms is given. Details of the process simulations developed to test the STPI algorithms are given, including an integrating process, a first-order system, a second-order system, a system with initial inverse response, and a system with variable time constant and delay. The STPI algorithms' performance with regard to both setpoint changes and load disturbances is evaluated, and their robustness is compared. The dynamic effects of process deadtime and noise are also considered. Finally, the limitations of each of the STPI algorithms is discussed, some conclusions are drawn from the performance comparisons, and a few recommendations are made. 6 refs.

  5. A comparison of three self-tuning control algorithms developed for the Bristol-Babcock controller

    SciTech Connect

    Tapp, P.A.

    1992-04-01

    A brief overview of adaptive control methods relating to the design of self-tuning proportional-integral-derivative (PID) controllers is given. The methods discussed include gain scheduling, self-tuning, auto-tuning, and model-reference adaptive control systems. Several process identification and parameter adjustment methods are discussed. Characteristics of the two most common types of self-tuning controllers implemented by industry (i.e., pattern recognition and process identification) are summarized. The substance of the work is a comparison of three self-tuning proportional-plus-integral (STPI) control algorithms developed to work in conjunction with the Bristol-Babcock PID control module. The STPI control algorithms are based on closed-loop cycling theory, pattern recognition theory, and model-based theory. A brief theory of operation of these three STPI control algorithms is given. Details of the process simulations developed to test the STPI algorithms are given, including an integrating process, a first-order system, a second-order system, a system with initial inverse response, and a system with variable time constant and delay. The STPI algorithms` performance with regard to both setpoint changes and load disturbances is evaluated, and their robustness is compared. The dynamic effects of process deadtime and noise are also considered. Finally, the limitations of each of the STPI algorithms is discussed, some conclusions are drawn from the performance comparisons, and a few recommendations are made. 6 refs.

  6. Component development in support of B and W`s advanced coal-fired low-emissions boiler system

    SciTech Connect

    McDonald, D.K.; Madden, D.A.; Rodgers, L.W.; Sivy, J.L.

    1995-12-31

    Shortly after the year 2000 it is expected that new generating plants will be needed in North America to meet the growing demand for electricity and to replace the aging plants that are nearing the end of their useful service life. If coal is to remain the fuel of choice for this new and replacement power generation, the plants of the future will need to be extremely clean, highly efficient and economical. Continuing concerns over acid rain, air toxics, global climate changes, ozone depletion and solid waste disposal are expected to further tighten regulations for new coal-fired plants. To address the design issues facing new and replacement coal-fired power plants, Babcock and Wilcox (B and W), under contract to the US Department of Energy (DOE), with subcontracts to Physical Sciences Inc. (PSI) and Raytheon Engineers and Constructors (RE and C), has been developing an advanced generating plant design in DOE`s Combustion 2000 program entitled, ``Engineering Development of Advanced Coal-Fired Low-Emission Boiler System`` (LEBS). The project objective is to design a new boiler equipped with improved combustion and heat transfer subsystems and advanced environmental control technologies capable of achieving emissions of sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and particulates far below current New Source Performance Standards (NSPS). In Phase 1, completed in 1994, a thorough review and assessment of potential advanced technologies and techniques for the control of emissions, and a review of boiler design options were performed. In phases 2 and 3 currently underway, research and development continues to resolve design uncertainties at the pilot and subsystem scale. A preliminary design for a Proof-Of-Concept (POC) Demonstration Facility has also been completed. Results of these activities will be presented in this paper.

  7. An example of Ensemble Kalman Filter data assimilation in a Babcock-Leighton solar dynamo model

    NASA Astrophysics Data System (ADS)

    Dikpati, Mausumi; Anderson, Jeffrey L.

    2016-05-01

    Atmospheric and oceanic prediction models have been greatly advanced over the past 40 years by using modern data assimilation techniques. Application of similar techniques in solar models started about 7 years ago. However, acceptance of such techniques by the solar community has been slow to develop. In order to make accurate predictions of solar activity as well as reconstruction of certain model parameters that cannot be directly measured, it will be essential to implement sophisticated data assimilation techniques as used by atmospheric and oceanic models. We will present here an example of parameter reconstruction, namely the time variation in meridional flow-speed, done by assimilating data into a Babcock-Leighton solar dynamo model in the framework of NCAR's Data Assimilation Research Testbed (NCAR-DART). By performing many 'Observing System Simulation Experiments' (OSSEs) we find that an optimally good reconstruction in time series of meridional circulation can be obtained by using 16 ensemble members and assimilating one magnetic observation with less than 40 percent observational error. However, the RMS error in reconstruction reduces with increase in ensemble size, increase in number of observations and decrease in observational error. We also find that assimilation of magnetic field observations taken from low-to-mid latitudes at the surface compared to any other locations produces the best reconstruction. We will close by showing that assimilation cycle of 15 days is optimal; generally a longer assimilation cycle deteriorates the results, but the Dynamo DART system needs a minimum time to develop the dynamics.

  8. Status of phase II subsystem testing in support of B and W`s advanced coal-fired low-emission boiler system

    SciTech Connect

    McDonald, D.K.; DeVault, D.J.

    1996-12-31

    In late 1990, the anticipated need for new generating capacity shortly after the year 2000 and the belief that coal will remain the fuel of choice for much of the domestic power industry motivated the US Department of Energy`s (DOE) Pittsburgh Energy Technology Center (PETC) to begin a two-stage research initiative named Combustion 2000. The nearest term Low-Emission Boiler System (LEBS) program was intended to support development of an advanced pulverized coal (PC)-fired power generation system for commercial application by the year 2000 and the High Performance Power System (HIPPS) program was designed to address technologies which will require more time to be commercially ready. Since 1992, Babcock and Wilcox, under contract to the DOE, with a subcontract to Raytheon Engineers and Constructors (RE and C), has been developing an advanced generating plant design under the LEBS program. Driven by concerns over SO{sub 2}, NO{sub x}, particulate and air toxics emissions as well as solid waste disposal for coal-fired plants, very low emissions and high cycle efficiency goals were established and subsequently tightened as the project progressed. Meanwhile, the life cycle cost target remains at the cost of a conventional PC plant meeting New Source Performance Standards (NSPS). B and W has coupled advanced environmental control technologies, capable of achieving emissions of SO{sub x}, NO{sub x} and particulate far below current NSPS, with an advanced boiler, equipped with improved combustion and heat transfer subsystems, to meet this objective. This paper describes the status of and recent results from the subsystem testing presently in progress at B and W`s Clean Environment Development Facility (CEDF) located at the Alliance Research Center, development of the Commercial Generating Unit design, and provides insight into future plans.

  9. Productive lower Wilcox distributary channel sands of Hallettsville embayment, Lavaca County, Texas

    SciTech Connect

    Chuber, S.; Howell, H.H.

    1986-09-01

    Whole-core petrographic and micropaleontological analyses from four wells and subsurface studies in three new fields of the Hallettsville area define a heretofore unsuspected deltaic suite of facies in the lower Wilcox. Massive distributary channel sands up to 250 ft thick are interbedded with overbank silts and shales as well as marsh, crevasse-splay, and natural levee sediments. Sparse microfauna indicate a restricted marine, shallow neritic, or nonmarine facies with reworked Cretaceous forms. Three channels have been productive to date: the Renger and Golsch (gas bearing) and the Hathaway (oil bearing). Even with dipmeter, whole-core, and abundant seismic data available, the narrow, sinuous channel sands are difficult to locate. Once penetrated, however, the sands produce either oil or condensate-rich gas in copious amounts.

  10. Standard model and beyond

    SciTech Connect

    Marciano, W.J.

    1985-01-01

    The ''standard'' SU(3)/sub C/ x SU(2)/sub L/ x U(1) model of strong and electroweak interactions elegantly incorporates all the proven symmetries and successes of the quark model, quantum electrodynamics, and the Four-Fermi theory. It correctly predicted weak neutral currents as well as the existence and properties of W/sup + -/, Z and gluons. ''Only'' the predicted Higgs scalar boson remains undiscovered. At this time there are no solid experimental results that cannot be accommodated by the standard model (at the 1 or 2 sigma level). Nevertheless, we do anticipate the emergence of new physics, beyond standard model expectations, which will hopefully provide guidance for theoretical advancement. Indeed, hints of some new phenomena may already be starting to appear in the CERN anti pp collider data. Details are discussed. 65 refs.

  11. Coal gasification systems engineering and analysis. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Feasibility analyses and systems engineering studies for a 20,000 tons per day medium Btu (MBG) coal gasification plant to be built by TVA in Northern Alabama were conducted. Major objectives were as follows: (1) provide design and cost data to support the selection of a gasifier technology and other major plant design parameters, (2) provide design and cost data to support alternate product evaluation, (3) prepare a technology development plan to address areas of high technical risk, and (4) develop schedules, PERT charts, and a work breakdown structure to aid in preliminary project planning. Volume one contains a summary of gasification system characterizations. Five gasification technologies were selected for evaluation: Koppers-Totzek, Texaco, Lurgi Dry Ash, Slagging Lurgi, and Babcock and Wilcox. A summary of the trade studies and cost sensitivity analysis is included.

  12. Computerized quantitative petrographic image analysis of Wilcox sandstone, Louisiana Gulf Coast

    SciTech Connect

    Garrison, J.R. Jr.; Gerard, R.E.; Manni, F.M.

    1987-05-01

    Computerized quantitative petrographic image analysis measures first-order parameters such as the abundance, cross-sectional area, length, width, diameter, and perimeter of a pore feature very rapidly and with great accuracy and precision. From these first-order parameters, second-order parameters such as shape factors, aspect ratios, specific surfaces, and pore size and roughness distributions can be calculated. These parameters can then be used to calculate even higher order parameters such as porosity, permeability, and capillary pressure curves. Analyses were performed on 350 samples from nine wells from the Wilcox Formation in southern Louisiana to characterize the two-dimensional rock pore complex of this Gulf Coast reservoir rock. Empirical equations were derived that describe relationships between first- and second-order image analysis parameters and conventional laboratory porosity and permeability measurements from core plugs. Because image analysis represents only a two-dimensional section of the power complex, these equations provide only an index of porosity and permeability which is restricted by the limited relationship of the two-dimensional section to the three-dimensional core plug. Both indices were derived from simplified equations, using parameters such as pore cross-sectional area, pore shape, and pore size. The permeability and porosity indices were correlated to the conventional laboratory permeability and porosity data (r = 0.855 and r = 0.804, respectively). First- and second-order image analysis parameters were also used to calculate mercury injection capillary pressure curves. Such curves were calculated from image analysis data from nine Wilcox samples and were scaled based on their correlation with actual measured brine capillary pressure curves.

  13. Effect of aging upon CE and B and W control rod drives

    SciTech Connect

    Grove, E.; Gunther, W.

    1992-01-01

    The effect of aging upon the Babcock Wilcox (B W) and Combustion Engineering (CE) Control Rod Drive (CRD) systems has been evaluated as part of the US NRC Nuclear Plant Aging Research (NPAR) program. Operating experience data for the 1980--1990 time period was reviewed to identify predominant failure modes, causes, and effects. These results, in conjunction with an assessment of component materials and operating environment, conclude that both systems are susceptible to age degradation. System failures have resulted in significant plant effects, including power reductions, plant shutdowns, scrams, and Engineered Safety Feature (ESF) actuation. Current industry inspection and maintenance practices were assessed. Some of these practices effectively address aging, while others do not.

  14. Effect of aging upon CE and B and W control rod drives

    SciTech Connect

    Grove, E.; Gunther, W.

    1992-05-01

    The effect of aging upon the Babcock & Wilcox (B&W) and Combustion Engineering (CE) Control Rod Drive (CRD) systems has been evaluated as part of the US NRC Nuclear Plant Aging Research (NPAR) program. Operating experience data for the 1980--1990 time period was reviewed to identify predominant failure modes, causes, and effects. These results, in conjunction with an assessment of component materials and operating environment, conclude that both systems are susceptible to age degradation. System failures have resulted in significant plant effects, including power reductions, plant shutdowns, scrams, and Engineered Safety Feature (ESF) actuation. Current industry inspection and maintenance practices were assessed. Some of these practices effectively address aging, while others do not.

  15. Thermal Reactor Code System for Reactor Design and Analysis.

    Energy Science and Technology Software Center (ESTSC)

    2003-04-21

    Version: 00 SRAC95 is a general purpose neutronics code system applicable to core analyses of various types of reactors, including cell calculation with burn up, core calculation for any type of thermal reactor; where core burn up calculation and fuel management were done by an auxiliary code. Since the publication of JAERI-1302 for the revised SRAC in 1986, a number of additions and modifications were made for nuclear data libraries and programs. In this version,more » many new functions and data are implemented to support nuclear design studies of advanced reactors. SRAC95 can be used for burnup credit analysis within the ORIGEN2 and SWAT (CCC-714) code system.« less

  16. Integrated reformer and shift reactor

    SciTech Connect

    Bentley, Jeffrey M.; Clawson, Lawrence G.; Mitchell, William L.; Dorson, Matthew H.

    2006-06-27

    A hydrocarbon fuel reformer for producing diatomic hydrogen gas is disclosed. The reformer includes a first reaction vessel, a shift reactor vessel annularly disposed about the first reaction vessel, including a first shift reactor zone, and a first helical tube disposed within the first shift reactor zone having an inlet end communicating with a water supply source. The water supply source is preferably adapted to supply liquid-phase water to the first helical tube at flow conditions sufficient to ensure discharge of liquid-phase and steam-phase water from an outlet end of the first helical tube. The reformer may further include a first catalyst bed disposed in the first shift reactor zone, having a low-temperature shift catalyst in contact with the first helical tube. The catalyst bed includes a plurality of coil sections disposed in coaxial relation to other coil sections and to the central longitudinal axis of the reformer, each coil section extending between the first and second ends, and each coil section being in direct fluid communication with at least one other coil section.

  17. Telemetry and command standards

    NASA Technical Reports Server (NTRS)

    Hooke, Adrian J.; Macmedan, Mervyn L.; Lenhart, Klaus

    1990-01-01

    The first phase of the international Consultative Committee for Space Data Systems (CCSDS) efforts toward the definition of standards for space telemetry, spacecraft tracking, and command functions has established a set of standard space communications techniques capable of satisfying almost the entire spectrum of space mission user requirements. This was achieved by focusing on the distinctive problems associated with the space/ground data link, and developing the infrastructural system designated the 'Open Systems Interconnection'. The intrinsically international coordination by CCSDS of development efforts ensures highly flexible mutual support activities by the various national space agencies.

  18. A novel sorbent for transport reactors and fluidized bed reactors

    SciTech Connect

    Copeland, R.; Cesario, M.; Gershanovich, Y.; Sibold, J.; Windecker, B.

    1998-12-31

    Coal Fired Gasifier Combined Cycles (GCC) have both high efficiency and very low emissions. GCCs critically need a method of removing the H{sub 2}S produced from the sulfur in the coal from the hot gases. There has been extensive research on hot gas cleanup systems, focused on the use of a zinc oxide based sorbent (e.g., zinc titanate). TDA Research, Inc. (TDA) is developing a novel sorbent with improved attrition resistance for transport reactors and fluidized bed reactors. The authors are testing sorbents at conditions simulating the operating conditions of the Pinon Pine clean coal technology plant. TDA sulfided several different formulations at 538 C and found several that have high sulfur capacity when tested in a fluidized bed reactor. TDA initiated sorbent regeneration at 538 C. The sorbents retained chemical activity with multiple cycles. Additional tests will be conducted to evaluate the best sorbent formulation.

  19. Preservice and Professional Standards.

    ERIC Educational Resources Information Center

    Edelfelt, Roy

    This paper, prepared for the September 5, 1968, National Education Association (NEA) Staff Conference, presents the NEA position, program, and strategy with regard to preservice and inservice teacher education and professional standards. Introductory remarks include a list of seven priorities which form the "framework of context of the NEA…

  20. USA B and W`s IR-CFB coal-fired boiler operating experiences

    SciTech Connect

    Kavidass, S.; Maryamchik, M.; Kanoria, M.; Price, C.S.

    1998-12-31

    This paper updates operating experience of two Babcock and Wilcox (B and W) coal-fired, internal recirculation circulating fluidized-bed (IR-CFB) boilers. The first boiler is located at Southern Illinois University (SIU) in Carbondale, Illinois and is designed for 35 MWt output for cogeneration application, utilizing high sulfur, low ash Illinois coal. The second boiler is located at Kanoria Chemicals and Industries Ltd. (KCIL) in Renukoot, India and is designed for 81 MWt output for captive power requirements, firing high ash, low sulfur coal. This boiler was supplied by Thermax B and W (TBW) Ltd., a joint venture company of B and W and Thermax in India. The CFB technology is selected for these two units based on the fuel and environmental considerations. This paper discusses the various aspects of the two IR-CFB boilers` design features, performance, and operating experience including emissions.

  1. Environment of deposition of downdip Lower Wilcox sandstones, Provident City field, Lavaca County, Texas

    SciTech Connect

    Vest, S.W.

    1990-09-01

    The Lower Wilcox section at Provident City field produces dry gas from thin-bedded, silty sandstones, at depths of 12,500 to 14,100 ft (3,810 to 4,298 m). Cores show that sandstone cosets range 0.1 to 2.7 ft (0.03 to 0.82 m) and average 0.5 8 ft (0. 18 m) in thickness. Sedimentary structures within the cosets range upward from a massive unit (A) to a planar-laminated unit (B) to a ripple-laminated unit (C). The cosets have an average composition of lithic arkose and show textural grading indicative of deposition from turbidity flows. The sandstones lie within the Wilcox fault zone, downdip of the Colorado and Guadalupe deltas of the Rockdale Delta System. Regional stratigraphy and structural trends indicate that the sandstones were deposited in a deep marine environment. A growth fault, having approximately 1000 ft (3048 m) of throw at a depth of 12,300 ft (3750 m), bounds the field to the northwest and largely controls the distribution of lithofacies. Stacked, AB-type, turbidite cosets indicate channel facies. The M Sandstone was deposited as a constructional channel, with abrupt lateral grading to overbank facies, where turbidites of the BC- and C-type are dominant. The S Sandstone was deposited as a series of thin, constructional channels, mostly with turbidites of the AB- and ABC-type that are generally stacked, causing superimposed, dip-trending lobes on an otherwise strike-trending sandstone.

  2. Upper Wilcox Rosita delta system of south Texas: growth-faulted shelf-edge deltas

    SciTech Connect

    Edwards, M.B.

    1981-01-01

    The Rosita delta system, a heretofore unrecognized, major depositional system preserved in the deep upper Wilcox of south Texas, was delineated by detailed correlation of approximately 500 well logs. The Rosita delta system comprises at least three delta complexes, each of which can be traced up to tens of miles along strike and up to approximately 15 mi (24 km) downdip. Basinward, across the growth-fault zone, each delta complex thickens from about 600 ft (180 m) to more than 3000 ft (900 m). The growth faults were activated by progradation of deltas over unstable prodelta-slope muds at the contemporary shelf margin. The three upper Wilcox delta complexes studied in detail are, from oldest to youngest, the Duval, Zapata, and Live Oak deltas, named for the counties in which they are centered. Each complex consists of several lobes, some of which can be traced across the deep zones where the thickness increases by as much as tenfold owing to progradation over active growth faults. Characteristic coarsening-upward progradational units are interpreted from electric log patterns to include prodelta shales, delta-front sandstones, distributary channel and channel-mouth bar sandstones, and interdistributary shales and sandstones. Appreciable variability in sandstone distribution in the deltas may reflect changing importance of fluvial versus marine currents in distributing sediment along the delta front. However, all of the deltas prograded abruptly toward the shelf margin. The gulfward extent of these delta complexes is unknown, and it is concluded that appreciable quantities of sandstone remain to be explored in the deep subsurface of the trend.

  3. The nuclear reactor strategy between fast breeder reactors and advanced pressurized water reactors

    SciTech Connect

    Seifritz, W.

    1983-11-01

    A nuclear reactor strategy between fast breeder reactors (FBRs) and advanced pressurized water reactors (APWRs) is being studied. The principal idea of this strategy is that the discharged plutonium from light water reactors (LWRs) provides the inventories of the FBRs and the high-converter APWRs, whereby the LWRs are installed according to the derivative of a logistical S curve. Special emphasis is given to the dynamics of reaching an asymptotic symbiosis between FBRs and APWRs. The main conclusion is that if a symbiotic APWR-FBR family with an asymptotic total power level in the terawatt range is to exist in about half a century from now, we need a large number of FBRs already in an early phase.

  4. Tdp studies and tests for C. A. Energia Electrica de Venezuela (enelven) at planta ramon laguna, units RL-17 and RL-10. Volume 1. Executive summary, RL-17 test report, and gas conversion proposals. Export trade information

    SciTech Connect

    Not Available

    1991-03-28

    The study, conducted by Babcock and Wilcox, was funded by the U.S. Trade and Development agency on behalf of Enelven. In order to maximize generated power output and minimize operating costs at Planta Ramon Laguna, tests were done to evaluate the condition of equipment at the plant. In order to identify any damage and determine the operating output of each unit, assessments were done of the furnaces, boilers, generators and boiler feed pumps being used in the plant. The report presents the results of these tests. This is the first of three volumes and it is divided into the following sections: (1) Executive Summary; (2) Hydrogen Damage Assessment; (3) RL-17 Gas Conversion Proposal; (4) RL-10 and RL-11 Gas Conversion Proposals.

  5. Tdp studies and tests for C. A. Energia Electrica de Venezuela (enelven) at planta ramon laguna, units RL-17 and RL-10. Volume 3. Unit RL-10 turbine generator condition assessment report and units RL-10 and RL-11 boiler feed pump conditon assessment report. Export trade information

    SciTech Connect

    Not Available

    1991-03-28

    The study, conducted by Babcock and Wilcox, was funded by the U.S. Trade and Development agency on behalf of Enelven. In order to maximize generated power output and minimize operating costs at Planta Ramon Laguna, tests were done to evaluate the condition of equipment at the plant. In order to identify any damage and determine the operating output of each unit, assessments were done of the furnaces, boilers, generators and boiler feed pumps being used in the plant. The report presents the results of these tests. This is the last of three volumes and it is divided into the following sections: (1) Condition Assessment of Unit RL-10 Turbine-Generator; (2) Condition Assessment of Unit RL-10 and RL-11 Boiler Feed Pumps.

  6. Intermediate leak protection/automatic shutdown for B and W helical coil steam generator

    SciTech Connect

    Not Available

    1981-01-01

    The report summarizes a follow-on study to the multi-tiered Intermediate Leak/Automatic Shutdown System report. It makes the automatic shutdown system specific to the Babcock and Wilcox (B and W) helical coil steam generator and to the Large Development LMFBR Plant. Threshold leak criteria specific to this steam generator design are developed, and performance predictions are presented for a multi-tier intermediate leak, automatic shutdown system applied to this unit. Preliminary performance predictions for application to the helical coil steam generator were given in the referenced report; for the most part, these predictions have been confirmed. The importance of including a cover gas hydrogen meter in this unit is demonstrated by calculation of a response time one-fifth that of an in-sodium meter at hot standby and refueling conditions.

  7. Reactor neutrino experiments: θ13 and beyond

    NASA Astrophysics Data System (ADS)

    Qian, Xin; Wang, Wei

    2014-05-01

    We review the current-generation short-baseline reactor neutrino experiments that have firmly established the third neutrino mixing angle θ13 to be nonzero. The relative large value of θ13 (around 9°) has opened many new and exciting opportunities for future neutrino experiments. Daya Bay experiment with the first measurement of Δ m2ee is aiming for a precision measurement of this atmospheric mass-squared splitting with a comparable precision as Δ m2μ μ from accelerator muon neutrino experiments. JUNO, a next-generation reactor neutrino experiment, is targeting to determine the neutrino mass hierarchy (MH) with medium baselines ( 50 km). Beside these opportunities enabled by the large θ13, the current-generation (Daya Bay, Double Chooz, and RENO) and the next-generation (JUNO, RENO-50, and PROSPECT) reactor experiments, with their unprecedented statistics, are also leading the precision era of the three-flavor neutrino oscillation physics as well as constraining new physics beyond the neutrino Standard Model.

  8. AGR-5/6/7 LEUCO Kernel Fabrication Readiness Review

    SciTech Connect

    Marshall, Douglas W.; Bailey, Kirk W.

    2015-02-01

    In preparation for forming low-enriched uranium carbide/oxide (LEUCO) fuel kernels for the Advanced Gas Reactor (AGR) fuel development and qualification program, Idaho National Laboratory conducted an operational readiness review of the Babcock & Wilcox Nuclear Operations Group – Lynchburg (B&W NOG-L) procedures, processes, and equipment from January 14 – January 16, 2015. The readiness review focused on requirements taken from the American Society Mechanical Engineers (ASME) Nuclear Quality Assurance Standard (NQA-1-2008, 1a-2009), a recent occurrence at the B&W NOG-L facility related to preparation of acid-deficient uranyl nitrate solution (ADUN), and a relook at concerns noted in a previous review. Topic areas open for the review were communicated to B&W NOG-L in advance of the on-site visit to facilitate the collection of objective evidences attesting to the state of readiness.

  9. Multiloop integral system test (MIST): Test Group 35, Noncondensibles and venting

    SciTech Connect

    Gloudemans, J.R. . Nuclear Power Div.)

    1989-07-01

    The multiloop integral system test (MIST) was a scaled 2-by-4 (2 hot legs and 4 cold legs) physical model of a Babcock Wilcox (B W), lowered-loop, nuclear steam supply system (NSSS). MIST was designed to operate at typical plant pressures and temperatures. Experimental data obtained from this facility during post-small-break loss-of-coolant accident (SBLOCA) testing are used for computer code benchmarking. The MIST interactions are of intrinsic interest because they may provide insight into expected plant behavior. MIST was necessarily atypical of a plant in certain important respects, however. The MIST interactions therefore are not to be applied directly to a plant. 5 refs., 239 figs., 11 tabs.

  10. The IAEA international conference on fast reactors and related fuel cycles: highlights and main outcomes

    SciTech Connect

    Monti, S.; Toti, A.

    2013-07-01

    The 'International Conference on Fast Reactors and Related Fuel Cycles', which is regularly held every four years, represents the main international event dealing with fast reactors technology and related fuel cycles options. Main topics of the conference were new fast reactor concepts, design and simulation capabilities, safety of fast reactors, fast reactor fuels and innovative fuel cycles, analysis of past experience, fast reactor knowledge management. Particular emphasis was put on safety aspects, considering the current need of developing and harmonizing safety standards for fast reactors at the international level, taking also into account the lessons learned from the accident occurred at the Fukushima- Daiichi nuclear power plant in March 2011. Main advances in the several key areas of technological development were presented through 208 oral presentations during 41 technical sessions which shows the importance taken by fast reactors in the future of nuclear energy.

  11. Process regime variability across growth faults in the Paleogene Lower Wilcox Guadalupe Delta, South Texas Gulf Coast

    NASA Astrophysics Data System (ADS)

    Olariu, Mariana I.; Ambrose, William A.

    2016-07-01

    The Wilcox Group in Texas is a 3000 m thick unit of clastic sediments deposited along the Gulf of Mexico coast during early Paleogene. This study integrates core facies analysis with subsurface well-log correlation to document the sedimentology and stratigraphy of the Lower Wilcox Guadalupe Delta. Core descriptions indicate a transition from wave- and tidally-influenced to wave-dominated deposition. Upward-coarsening facies successions contain current ripples, organic matter, low trace fossil abundance and low diversity, which suggest deposition in a fluvial prodelta to delta front environment. Heterolithic stratification with lenticular, wavy and flaser bedding indicate tidal influence. Pervasively bioturbated sandy mudstones and muddy sandstones with Cruziana ichnofacies and structureless sandstones with Ophiomorpha record deposition in wave-influenced deltas. Tidal channels truncate delta front deposits and display gradational upward-fining facies successions with basal lags and sandy tabular cross-beds passing into heterolithic tidal flats and biologically homogenized mudstones. Growth faults within the lower Wilcox control expanded thickness of sedimentary units (up to 4 times) on the downdip sides of faults. Increased local accommodation due to fault subsidence favors a stronger wave regime on the outer shelf due to unrestricted fetch and water depth. As the shoreline advances during deltaic progradation, successively more sediment is deposited in the downthrown depocenters and reworked along shore by wave processes, resulting in a thick sedimentary unit characterized by repeated stacking of shoreface sequences. Thick and laterally continuous clean sandstone successions in the downthrown compartments represent attractive hydrocarbon reservoirs. As a consequence of the wave dominance and increased accommodation, thick (tens of meters) sandstone-bodies with increased homogeneity and vertical permeability within the stacked shoreface successions are created.

  12. Frequency Standards and Metrology

    NASA Astrophysics Data System (ADS)

    Maleki, Lute

    2009-04-01

    Preface / Lute Maleki -- Symposium history / Jacques Vanier -- Symposium photos -- pt. I. Fundamental physics. Variation of fundamental constants from the big bang to atomic clocks: theory and observations (Invited) / V. V. Flambaum and J. C. Berengut. Alpha-dot or not: comparison of two single atom optical clocks (Invited) / T. Rosenband ... [et al.]. Variation of the fine-structure constant and laser cooling of atomic dysprosium (Invited) / N. A. Leefer ... [et al.]. Measurement of short range forces using cold atoms (Invited) / F. Pereira Dos Santos ... [et al.]. Atom interferometry experiments in fundamental physics (Invited) / S. W. Chiow ... [et al.]. Space science applications of frequency standards and metrology (Invited) / M. Tinto -- pt. II. Frequency & metrology. Quantum metrology with lattice-confined ultracold Sr atoms (Invited) / A. D. Ludlow ... [et al.]. LNE-SYRTE clock ensemble: new [symbol]Rb hyperfine frequency measurement - spectroscopy of [symbol]Hg optical clock transition (Invited) / M. Petersen ... [et al.]. Precise measurements of S-wave scattering phase shifts with a juggling atomic clock (Invited) / S. Gensemer ... [et al.]. Absolute frequency measurement of the [symbol] clock transition (Invited) / M. Chwalla ... [et al.]. The semiclassical stochastic-field/atom interaction problem (Invited) / J. Camparo. Phase and frequency noise metrology (Invited) / E. Rubiola ... [et al.]. Optical spectroscopy of atomic hydrogen for an improved determination of the Rydberg constant / J. L. Flowers ... [et al.] -- pt. III. Clock applications in space. Recent progress on the ACES mission (Invited) / L. Cacciapuoti and C. Salomon. The SAGAS mission (Invited) / P. Wolf. Small mercury microwave ion clock for navigation and radioScience (Invited) / J. D. Prestage ... [et al.]. Astro-comb: revolutionizing precision spectroscopy in astrophysics (Invited) / C. E. Kramer ... [et al.]. High frequency very long baseline interferometry: frequency standards and

  13. Microcomputer Acquisition Standards and Controls.

    ERIC Educational Resources Information Center

    Wold, Geoffrey H.

    1987-01-01

    Increased use of microcomputers in schools can be implemented more effectively when management develops acquisitions standards and controls. Technical standards as well as operational and documentation standards are outlined. (MLF)

  14. Frequency Standards and Metrology

    NASA Astrophysics Data System (ADS)

    Maleki, Lute

    2009-04-01

    Preface / Lute Maleki -- Symposium history / Jacques Vanier -- Symposium photos -- pt. I. Fundamental physics. Variation of fundamental constants from the big bang to atomic clocks: theory and observations (Invited) / V. V. Flambaum and J. C. Berengut. Alpha-dot or not: comparison of two single atom optical clocks (Invited) / T. Rosenband ... [et al.]. Variation of the fine-structure constant and laser cooling of atomic dysprosium (Invited) / N. A. Leefer ... [et al.]. Measurement of short range forces using cold atoms (Invited) / F. Pereira Dos Santos ... [et al.]. Atom interferometry experiments in fundamental physics (Invited) / S. W. Chiow ... [et al.]. Space science applications of frequency standards and metrology (Invited) / M. Tinto -- pt. II. Frequency & metrology. Quantum metrology with lattice-confined ultracold Sr atoms (Invited) / A. D. Ludlow ... [et al.]. LNE-SYRTE clock ensemble: new [symbol]Rb hyperfine frequency measurement - spectroscopy of [symbol]Hg optical clock transition (Invited) / M. Petersen ... [et al.]. Precise measurements of S-wave scattering phase shifts with a juggling atomic clock (Invited) / S. Gensemer ... [et al.]. Absolute frequency measurement of the [symbol] clock transition (Invited) / M. Chwalla ... [et al.]. The semiclassical stochastic-field/atom interaction problem (Invited) / J. Camparo. Phase and frequency noise metrology (Invited) / E. Rubiola ... [et al.]. Optical spectroscopy of atomic hydrogen for an improved determination of the Rydberg constant / J. L. Flowers ... [et al.] -- pt. III. Clock applications in space. Recent progress on the ACES mission (Invited) / L. Cacciapuoti and C. Salomon. The SAGAS mission (Invited) / P. Wolf. Small mercury microwave ion clock for navigation and radioScience (Invited) / J. D. Prestage ... [et al.]. Astro-comb: revolutionizing precision spectroscopy in astrophysics (Invited) / C. E. Kramer ... [et al.]. High frequency very long baseline interferometry: frequency standards and

  15. Yuzhno-sakhalin TET`s-1 modernization study. Volume 1. Export trade information

    SciTech Connect

    1995-05-01

    This study, conducted by Babcock and Wilcox, was funded by the U.S. Trade and Development Agency. The report shows the results of a feasibility study conducted to assess the rehabilitation of the Sakhalin TETs-1 thermal power station. The study includes the complete plant equipment and operations, and recommendation and budgetary pricing to upgrade to present standards. This is Volume 1 of the report and it contains the following sections: (A) Abstract; (B) Technical.

  16. Reactor monitoring and safeguards using antineutrino detectors

    NASA Astrophysics Data System (ADS)

    Bowden, N. S.

    2008-11-01

    Nuclear reactors have served as the antineutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these very weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Measurements made with antineutrino detectors could therefore orer an alternative means for verifying the power history and fissile inventory of a reactors, as part of International Atomic Energy Agency (IAEA) and other reactor safeguards regimes. Several erorts to develop this monitoring technique are underway across the globe.

  17. Reactor

    DOEpatents

    Evans, Robert M.

    1976-10-05

    1. A neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch.

  18. Standards for discharge measurement with standardized nozzles and orifices

    NASA Technical Reports Server (NTRS)

    1940-01-01

    The following standards give the standardized forms for two throttling devices, standard nozzles and standard orifices, and enable them to be used in circular pipes without calibration. The definition of the standards are applicable in principle to the calibration and use of nonstandardized throttling devices, such as the venturi tube. The standards are valid, likewise, as a basis for discharge measurements in the German acceptance standards.

  19. Standards and Bibliographic Data Representation.

    ERIC Educational Resources Information Center

    Tannehill, Robert S. Jr.; Husbands, Charles W.

    1982-01-01

    Reviews use of codes and standards for bibliographic data elements, focusing on efforts of American National Standards Institute and International Organization for Standardization. Identifiers of bibliographic entities; codes for geographic, political, and corporate entities; binary codes; script conversion; and standardization are covered.…

  20. TRAC PF1/MOD1 calculations and data comparisons for mist feed and bleed and steam generator tube rupture experiments

    SciTech Connect

    Siebe, D.A.; Boyack, B.E.; Steiner, J.L.

    1988-01-01

    Los Alamos National Laboratory is a participant in the Integral System Test (IST) program initiated in June 1983 for the purpose of providing integral system test data on specific issues/phenomena relevant to post-small-break loss-of-coolant accidents, loss of feedwater and other transients in Babcock and Wilcox (BandW) plant designs. The Multi-Loop Integral System Test (MIST) facility is the largest single component in the IST program. MIST is a 2 /times/ 4 (two hot legs and steam generators (SGs), four cold legs and reactor coolant pumps) representation of lowered-loop reactor system of the BandW design. It is a full-height, full-pressure facility with 1/817 power and volume scaling. Two other integral experimental facilities are included in the IST program: test loops at the University of Maryland, College Park, and at SRI International (SRI-2). The objective of the IST tests is to generate high-quality experimental data to be used for assessing thermal-hydraulic safety computer codes. Efforts are under way at Los Alamos to assess TRAC-PF1/MOD1 against data from each of the IST facilities. Calculations and data comparisons for TRAC-PF1/MOD1 assessment are presented for two transients run in the MIST facility. These are MIST Test 330302, a feed and bleed test with delayed high-pressure injection; and Test 3404AA, an SG tube-rupture test with the affected SG isolated. Only MIST assessment results are presented in this paper. The TRAC-PF1/MOD1 calculations completed to date for MIST tests are in reasonable agreement with the data from these tests. Reasonable agreement is defined as meaning that major trends are predicted correctly, although TRAC values are frequently outside the range of data uncertainty. We believe that correct conclusions will be reached if the code is used in similar applications despite minor code/model deficiencies. 7 refs., 5 figs., 2 tabs.

  1. Emergency Management Standards and Schools

    ERIC Educational Resources Information Center

    National Clearinghouse for Educational Facilities, 2009

    2009-01-01

    This publication discusses emergency management standards for school use and lists standards recommended by FEMA's National Incident Management System (NIMS). Schools are encouraged to review these standards carefully and to adopt, where applicable, those that meet their needs. The lists of standards, resources, and references contained herein…

  2. OTSG modeling for the analysis of the TMI incident

    SciTech Connect

    Hsu, C.J.; Shier, W.G.; Levine, M.M.

    1980-01-01

    The IRT code is a reactor plant systems code for the analysis of pressurized water reactor (PWR) transients that is being modified by Brookhaven National Laboratory for the Nuclear Regulatory Commission. A significant modification that has recently been implemented is a model for a once-through steam generator (OTSG) to enable simulation of Babcock and Wilcox (B and W) reactor transients. This paper describes the new OTSG modeling and presents the results of an analysis of the initial phase of the TMI incident using this model.

  3. Request for Naval Reactors Comment on Proposed Prometheus Space Flight Nuclear Reactor High Tier Reactor Safety Requirements and for Naval Reactors Approval to Transmit These Requirements to JPL

    SciTech Connect

    D. Kokkinos

    2005-04-28

    The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophy on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory.

  4. Multiloop integral system test (MIST): Test Group 36, Pump operation

    SciTech Connect

    Gloudemans, J.R. . Nuclear Power Div.)

    1989-07-01

    The multiloop integral system test (MIST) was part of a multiphase program started in 1983 to address small-break loss-of-coolant accidents (SBLOCAs) specific to Babcock Wilcox-designed plants. MIST was sponsored by the US Nuclear Regulatory Commission, the Babcock Wilcox Owners Group, the Electric Power Research Institute, and Babcock Wilcox. The unique features of the Babcock Wilcox design, specifically the hot leg U-bends and steam generators, prevented the use of existing integral system data or existing integral system facilities to address the thermal-hydraulic SBLOCA questions. MIST and two other supporting facilities were specifically designed and constructed for this program, and an existing facility -- the once-through integral system (OTIS) -- was also used. Data from MIST and the other facilities will be used to benchmark the adequacy of system codes, such as RELAP-5 and TRAC, for predicting abnormal plant transients. 7 refs., 321 figs., 14 tabs.

  5. Flux and spectrum of reactor antineutrinos

    NASA Astrophysics Data System (ADS)

    Kopeikin, V. I.

    2012-02-01

    In order to perform reactor experiments aimed at studying the nature of the neutrino and measurements in the realms of geo- and astrophysical neutrinos and to meet practical requirements in this field, it is highly desirable to obtain deeper insight into the operation of nuclear reactors as a source of antineutrinos. The fluxes and spectra of neutrinos from a reactor in the on and off modes and from a reservoir intended for storing a spent reactor fuel and situated near the reactor being considered are calculated. Features that are peculiar to the flux and spectrum of reactor antineutrinos and which are of importance for implementing and interpreting experiments, but which were disregarded previously, are analyzed here.

  6. I and C modernization for VVER reactors. [Eastern bloc pressurized water reactors

    SciTech Connect

    Gangloff, W.C.; Werner, C.L. )

    1993-08-01

    Many countries of the former Eastern Bloc are now looking westward for the introduction, absorption, and widespread application of modern technology in many areas. One such area is the nuclear power industry, where an infusion of western technology is desired to improve both plant production economics and long term plant safety. Modern digital I and C systems are sought for upgrading the existing Soviet designed reactor plants to levels of safety and reliability consistent with western standards. This paper describes the functional and physical design of the distributed microprocessor based protection, control and plant information systems to be used in Czechoslovakia for the modernization of the Temelin units (VVER-1,000). The modernization incorporates not only new hardware, but also a new functional design based on a safety analysis performed to western standards. The new systems will reduce the maintenance requirements and costs and provide such enhancements as online testability and automated surveillance testing. The technology is directly applicable to both new reactor designs under construction and to retrofits for the older reactors. It is expected to find many applications in eastern and central Europe as well as in the former Soviet Union for improving the safety and reliability of their vital nuclear power stations.

  7. Plant maintenance and advanced reactors, 2006

    SciTech Connect

    Agnihotri, Newal

    2006-09-15

    The focus of the September-October issue is on plant maintenance and advanced reactors. Major articles/reports in this issue include: Advanced plants to meet rising expectations, by John Cleveland, International Atomic Energy Agency, Vienna; A flexible and economic small reactor, by Mario D. Carelli and Bojan Petrovic, Westinghouse Electric Company; A simple and passively safe reactor, by Yury N. Kuznetsov, Research and Development Institute of Power Engineering (NIKIET), Russia; Gas-cooled reactors, by Jeffrey S. Merrifield, U.S. Nuclear Regulatory Commission; ISI project managment in the PRC, by Chen Chanbing, RINPO, China; and, Fort Calhoun refurbishment, by Sudesh Cambhir, Omaha Public Power District.

  8. Tyrosinase immobilized enzyme reactor: development and evaluation.

    PubMed

    de Oliveira, Karina Bora; Mischiatti, Keylla Lençone; Fontana, José Domingos; de Oliveira, Brás Heleno

    2014-01-15

    Immobilized enzyme reactors of tyrosinase (tyr-IMERs) for use on-line in HPLC system were prepared by different procedures and then compared. The enzyme, obtained from Agaricus bisporus, was immobilized on epoxy-silica which was prepared using different conditions. Enzyme immobilization was conducted by both in situ and in batch techniques. The different procedures were compared in terms of protein and activity retention, IMERs activity, kinetics and stability. The influence of immobilization procedure on enzyme activity and the behavior of the IMERs against a standard inhibitor were also investigated. In situ immobilization on epoxy-silica, synthesized using microwave assistance, provided the best conditions to prepare tyrosinase IMERs. The tyr-IMERs were successfully tested with known and potential inhibitors of tyrosinase, and the results showed that they can be used for the screening of inhibitors of that enzyme. PMID:24317418

  9. Relationship of pressure regressions to secondary porosity development: exploration model for secondary porosity development in deep Wilcox of south Texas

    SciTech Connect

    Painter, J.

    1989-03-01

    In the deep Wilcox, as well as other deep Gulf Coast Tertiary formations, secondary porosity development is very important to reservoir quality. four major Wilcox fields and several abandoned wells were studied with respect to shale pore-pressure gradients to show the relationship between secondary porosity and shale pore-pressure regression. Secondary porosity is the result of chemical leaching and alteration of framework grains and clays in a rock by organic acids, fresh water, and other fluids or gases reacting with the rock constituents. These chemicals, water, and gases are formed in shales adjoining the sandstone reservoir rock and migrate into the adjoining aquifer sandstone, which is then leached. This release of fluids from the shale forms a pore-pressure regression which can be plotted using electric logs. The presence or absence of a pore-pressure regression gives indications of secondary porosity development in the adjoining reservoir rocks. If a regression is documented, the risk of inadequate reservoir porosity of a prospect can be lowered.

  10. BOILING SLURRY REACTOR AND METHOD FO CONTROL

    DOEpatents

    Petrick, M.; Marchaterre, J.F.

    1963-05-01

    The control of a boiling slurry nuclear reactor is described. The reactor consists of a vertical tube having an enlarged portion, a steam drum at the top of the vertical tube, and at least one downcomer connecting the steam drum and the bottom of the vertical tube, the reactor being filled with a slurry of fissionabie material in water of such concentration that the enlarged portion of the vertical tube contains a critical mass. The slurry boils in the vertical tube and circulates upwardly therein and downwardly in the downcomer. To control the reactor by controlling the circulation of the slurry, a gas is introduced into the downcomer. (AEC)

  11. Design and analysis of a nuclear reactor core for innovative small light water reactors

    NASA Astrophysics Data System (ADS)

    Soldatov, Alexey I.

    In order to address the energy needs of developing countries and remote communities, Oregon State University has proposed the Multi-Application Small Light Water Reactor (MASLWR) design. In order to achieve five years of operation without refueling, use of 8% enriched fuel is necessary. This dissertation is focused on core design issues related with increased fuel enrichment (8.0%) and specific MASLWR operational conditions (such as lower operational pressure and temperature, and increased leakage due to small core). Neutron physics calculations are performed with the commercial nuclear industry tools CASMO-4 and SIMULATE-3, developed by Studsvik Scandpower Inc. The first set of results are generated from infinite lattice level calculations with CASMO-4, and focus on evaluation of the principal differences between standard PWR fuel and MASLWR fuel. Chapter 4-1 covers aspects of fuel isotopic composition changes with burnup, evaluation of kinetic parameters and reactivity coefficients. Chapter 4-2 discusses gadolinium self-shielding and shadowing effects, and subsequent impacts on power generation peaking and Reactor Control System shadowing. The second aspect of the research is dedicated to core design issues, such as reflector design (chapter 4-3), burnable absorber distribution and programmed fuel burnup and fuel use strategy (chapter 4-4). This section also includes discussion of the parameters important for safety and evaluation of Reactor Control System options for the proposed core design. An evaluation of the sensitivity of the proposed design to uncertainty in calculated parameters is presented in chapter 4-5. The results presented in this dissertation cover a new area of reactor design and operational parameters, and may be applicable to other small and large pressurized water reactor designs.

  12. Standardization from below: Science and Technology Standards and Educational Software

    ERIC Educational Resources Information Center

    Fleischmann, Kenneth R.

    2007-01-01

    Education in the United States is becoming increasingly standardized, with the standards being initiated at the national level and then trickling down to the state level and finally the local level. Yet, this top-down approach to educational standards carries with it significant limitations, such as loss of local autonomy and restrictions on the…

  13. Instrumentation, Monitoring and NDE for New Fast Reactors

    SciTech Connect

    Bond, Leonard J.; Doctor, Steven; Bunch, Kyle; Good, Morris; Waltar, Alan E.

    2007-07-01

    The Global Nuclear Energy Partnership (GNEP) will require the development of actinide transmutation, which can most effectively be accomplished in a fast-spectrum reactor. To achieve higher standards of safety and reliability, operate with longer intervals between outages, and achieve high operating capacity factors, new instrumentation and on-line monitoring capabilities will be required-- during both fabrication and operation. This paper reports parts of a knowledge capture and technology state-of-the-art assessment for fast-reactor instrumentation and controls, monitoring and diagnostics. (authors)

  14. Energy Codes and Standards: Facilities

    SciTech Connect

    Bartlett, Rosemarie; Halverson, Mark A.; Shankle, Diana L.

    2007-01-01

    Energy codes and standards play a vital role in the marketplace by setting minimum requirements for energy-efficient design and construction. They outline uniform requirements for new buildings as well as additions and renovations. This article covers basic knowledge of codes and standards; development processes of each; adoption, implementation, and enforcement of energy codes and standards; and voluntary energy efficiency programs.

  15. ESDIS Standards Office (ESO): Requirements, Standards and Practices

    NASA Technical Reports Server (NTRS)

    Mitchell, Andrew E.; Mcinerney, Mark Allen; Enloe, Yonsok K.; Conover, Helen T.; Doyle, Allan

    2016-01-01

    The ESDIS Standards Office assists the ESDIS Project in formulating standards policy for NASA Earth Science Data Systems (ESDS), coordinates standards activities within ESDIS, and provides technical expertise and assistance with standards related tasks within the NASA Earth Science Data System Working Groups (ESDSWG). This poster summarizes information found on the earthdata.nasa.gov site that describes the ESO.

  16. Reactor technology assessment and selection utilizing systems engineering approach

    SciTech Connect

    Zolkaffly, Muhammed Zulfakar; Han, Ki-In

    2014-02-12

    The first Nuclear power plant (NPP) deployment in a country is a complex process that needs to consider technical, economic and financial aspects along with other aspects like public acceptance. Increased interest in the deployment of new NPPs, both among newcomer countries and those with expanding programs, necessitates the selection of reactor technology among commercially available technologies. This paper reviews the Systems Decision Process (SDP) of Systems Engineering and applies it in selecting the most appropriate reactor technology for the deployment in Malaysia. The integrated qualitative and quantitative analyses employed in the SDP are explored to perform reactor technology assessment and to select the most feasible technology whose design has also to comply with the IAEA standard requirements and other relevant requirements that have been established in this study. A quick Malaysian case study result suggests that the country reside with PWR (pressurized water reactor) technologies with more detailed study to be performed in the future for the selection of the most appropriate reactor technology for Malaysia. The demonstrated technology assessment also proposes an alternative method to systematically and quantitatively select the most appropriate reactor technology.

  17. Reactor technology assessment and selection utilizing systems engineering approach

    NASA Astrophysics Data System (ADS)

    Zolkaffly, Muhammed Zulfakar; Han, Ki-In

    2014-02-01

    The first Nuclear power plant (NPP) deployment in a country is a complex process that needs to consider technical, economic and financial aspects along with other aspects like public acceptance. Increased interest in the deployment of new NPPs, both among newcomer countries and those with expanding programs, necessitates the selection of reactor technology among commercially available technologies. This paper reviews the Systems Decision Process (SDP) of Systems Engineering and applies it in selecting the most appropriate reactor technology for the deployment in Malaysia. The integrated qualitative and quantitative analyses employed in the SDP are explored to perform reactor technology assessment and to select the most feasible technology whose design has also to comply with the IAEA standard requirements and other relevant requirements that have been established in this study. A quick Malaysian case study result suggests that the country reside with PWR (pressurized water reactor) technologies with more detailed study to be performed in the future for the selection of the most appropriate reactor technology for Malaysia. The demonstrated technology assessment also proposes an alternative method to systematically and quantitatively select the most appropriate reactor technology.

  18. Italian hybrid and fission reactors scenario analysis

    SciTech Connect

    Ciotti, M.; Manzano, J.; Sepielli, M.

    2012-06-19

    Italy is a country where a long tradition of studies both in the fission and fusion field is consolidated; nevertheless a strong public opinion concerned with the destination of the Spent Nuclear Fuel hinders the development of nuclear power. The possibility to a severe reduction of the NSF mass generated from a fleet of nuclear reactors employing an hypothetical fusionfission hybrid reactor has been investigated in the Italian framework. The possibility to produce nuclear fuel for the fission nuclear reactors with the hybrid reactor was analyzed too.

  19. Italian hybrid and fission reactors scenario analysis

    NASA Astrophysics Data System (ADS)

    Ciotti, M.; Manzano, J.; Sepielli, M.

    2012-06-01

    Italy is a country where a long tradition of studies both in the fission and fusion field is consolidated; nevertheless a strong public opinion concerned with the destination of the Spent Nuclear Fuel hinders the development of nuclear power. The possibility to a severe reduction of the NSF mass generated from a fleet of nuclear reactors employing an hypothetical fusionfission hybrid reactor has been investigated in the Italian framework. The possibility to produce nuclear fuel for the fission nuclear reactors with the hybrid reactor was analyzed too.

  20. Calibration of the reactor neutron spectrum for the ko-NAA standardization using several approaches

    NASA Astrophysics Data System (ADS)

    Kučera, J.; Frána, J.; Horák, Z.; Marek, M.; Tomášek, F.; Viereibl, L.

    1999-01-01

    The parameters f and α ( f-thermal/epithermal neutron fluence rate, α—a parameter accounting for the non-ideality of the 1/E epithermal neutron fluence rate distribution) were determined using the following approaches: “Cd-covered multi-monitor” and “Cd-ratio for multimonitor” methods, two versions of the “bare multi-monitor” method, and two neutron dosimetry approaches, namely two-group formalism and reactor spectrum unfolding using the SAND II computer code. It has been found that the determination of α values close to zero is associated with a relatively high uncertainty. On the other hand, it has been demonstrated that under these circumstances the uncertainty of α has only a little effect on the accuracy of results obtained by k0-NAA, especially for elements whose nuclides have a low resonance integral to thermal neutron cross section ratio.

  1. LLL calibration and standards facility

    SciTech Connect

    Campbell, G.W.; Elliott, J.H.

    1980-04-15

    The capabilities of Lawrence Livermore Laboratory's Calibration and Standards Facility are delineated. The facility's ability to provide radiation fields and measurements for a variety of radiation safety applications and the available radiation measurement equipment are described. The need for national laboratory calibration labs to maintain traceability to a national standard are discussed as well as the areas where improved standards and standardization techniques are needed.

  2. Hydrogasification reactor and method of operating same

    DOEpatents

    Hobbs, Raymond; Karner, Donald; Sun, Xiaolei; Boyle, John; Noguchi, Fuyuki

    2013-09-10

    The present invention provides a system and method for evaluating effects of process parameters on hydrogasification processes. The system includes a hydrogasification reactor, a pressurized feed system, a hopper system, a hydrogen gas source, and a carrier gas source. Pressurized carbonaceous material, such as coal, is fed to the reactor using the carrier gas and reacted with hydrogen to produce natural gas.

  3. Standards and Assessment. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1997

    1997-01-01

    This newsletter includes three articles, two of which focus on standards for student evaluation and for admission to higher education. "A Measuring Stick for Standards and TEKS: Meeting the Needs of Second Language Learners" (Laura Chris Green, Adela Solis) examines beliefs embodied in the notion of standards; defines content, performance, and…

  4. Scanning tunneling microscope assembly, reactor, and system

    DOEpatents

    Tao, Feng; Salmeron, Miquel; Somorjai, Gabor A

    2014-11-18

    An embodiment of a scanning tunneling microscope (STM) reactor includes a pressure vessel, an STM assembly, and three spring coupling objects. The pressure vessel includes a sealable port, an interior, and an exterior. An embodiment of an STM system includes a vacuum chamber, an STM reactor, and three springs. The three springs couple the STM reactor to the vacuum chamber and are operable to suspend the scanning tunneling microscope reactor within the interior of the vacuum chamber during operation of the STM reactor. An embodiment of an STM assembly includes a coarse displacement arrangement, a piezoelectric fine displacement scanning tube coupled to the coarse displacement arrangement, and a receiver. The piezoelectric fine displacement scanning tube is coupled to the coarse displacement arrangement. The receiver is coupled to the piezoelectric scanning tube and is operable to receive a tip holder, and the tip holder is operable to receive a tip.

  5. South Harmony Church field, Southwest Louisiana - Further insights on uppermost Wilcox shelf-margin trend

    SciTech Connect

    Belvedere, P.G.

    1988-01-01

    The uppermost Wilcox Group (Eocene) in the South Harmony Church field is a 2,000-ft thick sequence of single and multistory sandstones and shales. Cores of three separate intervals from four different wells display sedimentologic and lithologic features characteristic of inner shelf and shoreface deposition, representing an offshore bar complex. Typical lithofacies assemblages within an interval include, from top to bottom, (1) bioturbated, muddy sandstone--inner shelf, (2) less bioturbated, arenaceous sandstone--mostly inner shelf, (3) structureless to faintly horizontally laminated sandstone--mostly lower shoreface, and (4) horizontal to cross-laminated, and commonly deformed sandstone with shale and siltstone interbeds--lower surface. Sandstones are fine to very fine-grained, poorly to moderately well-sorted sublitharenites. Optimum reservoir quality is observed in the bioturbated, clean sandstones of the self-shoreface transition zone, where porosity ranges from 5 to 23% and permeability from less than 0.01 to 31 md. Porosity is mostly secondary and attributed to the leaching of labile constituents.

  6. TREAT Reactor Control and Protection System

    SciTech Connect

    Lipinski, W.C.; Brookshier, W.K.; Burrows, D.R.; Lenkszus, F.R.; McDowell, W.P.

    1985-01-01

    The main control algorithm of the Transient Reactor Test Facility (TREAT) Automatic Reactor Control System (ARCS) resides in Read Only Memory (ROM) and only experiment specific parameters are input via keyboard entry. Prior to executing an experiment, the software and hardware of the control computer is tested by a closed loop real-time simulation. Two computers with parallel processing are used for the reactor simulation and another computer is used for simulation of the control rod system. A monitor computer, used as a redundant diverse reactor protection channel, uses more conservative setpoints and reduces challenges to the Reactor Trip System (RTS). The RTS consists of triplicated hardwired channels with one out of three logic. The RTS is automatically tested by a digital Dedicated Microprocessor Tester (DMT) prior to the execution of an experiment. 6 refs., 5 figs., 1 tab.

  7. A Note on Standard Deviation and Standard Error

    ERIC Educational Resources Information Center

    Hassani, Hossein; Ghodsi, Mansoureh; Howell, Gareth

    2010-01-01

    Many students confuse the standard deviation and standard error of the mean and are unsure which, if either, to use in presenting data. In this article, we endeavour to address these questions and cover some related ambiguities about these quantities.

  8. [Standardization. Sterilization standards and their impact on hospital services].

    PubMed

    Jakimiak, B; Röhm-Rodowald, E

    1999-01-01

    The European commission produced series of Directives which were aimed at harmonizing the European market whilst maintaining high standards to protect the citizens. Within each directive drafted Essential Requirements which had to be satisfied in order to market throughout Europe. The Medical Device Directive (93/42/EEC) covers the vast majority of medical devices including active non-implantable and non-active implantable medical devices. Demonstration of compliance to harmonized European Standards (EN) was proof of compliance with Essential Requirements of the Directives. The European Standards Body (CEN) created a series of European Standards which would enable to demonstrate compliance with Essential Requirements. The CEN organisation has a pyramidal structure. Standards are produced in the CEN Technical Committees (TC's) composed of representatives from each country's own standards organization. The Technical Committee in turned created a series of Working Groups (WG), who's job it was to actually generate the text of the standards. Two of standards committees are working to generate standards which relate to sterilizers and sterilization: TC102--the standards emanating from this committee are product related, TC 204--the standards relate to sterilization practice. In Poland, the standarisation activity is provide by Polish Committee of Standardisation. From 5th June 1997 operate Problem Commission number 272 for sterilization affairs. The job of the commission consist on translation of European'offs Standards and transform them to Polish Standards. After accede Poland to European Union, Polish hospitals will have to adjust to European Standards. PMID:10402867

  9. Genetic variations in a growth-fault system: Downdip Wilcox trend of South Texas

    SciTech Connect

    Stricklin, F.J. Jr.

    1994-12-31

    Analysis of a 180-mi (290-km) segment of the Wilcox growth-fault of South Texas, based on data from more than 2,000 wells, 16 structural dip sections, and 300 mi (480 km) of seismic lines, has led to in-depth understanding of this complex structural system. Detailed structural mapping on two stratigraphic horizons has revealed an impressive array of tenetic trap types arising from listric growth-fault tectonism. Variations on the general tectonic theme are displayed along the trend as follows: (1) a relatively dip-restricted central segment spanning the South Texas Salt Basin and exhibiting a pronounced influenced of salt tectonisms, (2) an eastern segment characterized by gulfward progradation of faults expanding into successively younger stratigraphic units and terminated downdip by {open_quotes}rollup{close_quotes} shale ridges, and (3) a southern segment similar to the eastern one but bearing a pronounced northeast-tilted overprint due to Laramide uplift in Mexico. In map view, the trend is characterized by multiple sets of crescentic, nested faults with downdip-projecting horns intersecting those of adjoining sets. Such sets probably resulted from sediment {open_quotes}piling up{close_quotes} in depocenters and failing due to gravitational instability along a prograding shelf edge; these sets are visualized as the result of giant, slowly creeping, submarine landslides occurring along the upper slope.

  10. Water saturations in a Wilcox shaly reservoir sandstone, Fordoche field, Point Coupee Parish, Louisiana

    SciTech Connect

    Berg, C.R.; Berg, R.R.

    1996-09-01

    A new equation has been derived for calculation of water saturations in shaly reservoir sandstones. The equation is based on effective medium theory (EMT) and has been used successfully on a wide range of clayey, low-resistivity reservoirs. A further, independent test of saturations calculated by the equation was made for a deep Wilcox shaly reservoir at a depth of 13,176 ft (4016 m) in Fordoche field. The reservoir (W8) has a low, average resistivity of about 2.5 ohm-m and an estimated 18% clay as compared to an average resistivity of 1.5 ohm-m in an underlying water-saturated sandstone (W-10) of similar clay content. For the reservoir, calculated water saturations are in the range of 35 to 50%, increasing downward, and suggest that the shaly sandstone should produce water-free oil. For the underlying wet sandstone, the calculated water saturations range from 55 to 75% and confirm that only water should be produced. Other shaly sand equations generally give water saturations in excess of 50% for the reservoir. Water saturations calculated by the EMT equation agree well with other parameters for sandstones: reported production, core, analysis, and synthetic capillary pressures. The reservoir (W8) had an initial potential of 213 bbl of oil per day, confirming water-free oil production which could have been predicted by the EMT equation.

  11. Advanced PPA Reactor and Process Development

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond; Aske, James; Abney, Morgan B.; Miller, Lee A.; Greenwood, Zachary

    2012-01-01

    Design and development of a second generation Plasma Pyrolysis Assembly (PPA) reactor is currently underway as part of NASA s Atmosphere Revitalization Resource Recovery effort. By recovering up to 75% of the hydrogen currently lost as methane in the Sabatier reactor effluent, the PPA helps to minimize life support resupply costs for extended duration missions. To date, second generation PPA development has demonstrated significant technology advancements over the first generation device by doubling the methane processing rate while, at the same time, more than halving the required power. One development area of particular interest to NASA system engineers is fouling of the PPA reactor with carbonaceous products. As a mitigation plan, NASA MSFC has explored the feasibility of using an oxidative plasma based upon metabolic CO2 to regenerate the reactor window and gas inlet ports. The results and implications of this testing are addressed along with the advanced PPA reactor development work.

  12. [Reactor safety and human failure].

    PubMed

    Smidt, D

    1979-12-01

    Reactor safety is given by the reliable solution of 3 tasks: on-time shutdown, continuous decay-heat removal, safe containment. After describing the general strategy of their solution even under upset conditions the most important engineered safeguards of pressurized water reactors are summarized. The important problem of human failure is discussed in some more detail. For the example Harrisburg some difficulties, but also some technical countermeasures are illustrated. PMID:537639

  13. Standards and Standard Setting and the Post School Curriculum

    ERIC Educational Resources Information Center

    Young, Michael

    2014-01-01

    This paper is concerned with the role of standards and standard setting in shaping the expansion of post school education in highly unequal society. It draws on an account of the debates and policies on standards in the UK from the 1980's to today and the wider lessons that can be learned from them. It argues that relying on any type of…

  14. Techniques for in-service inspection of heat-transfer tubes in steam generators

    SciTech Connect

    McClung, R.W.; Day, R.A.; Neely, H.H.; Powers, T.

    1981-01-01

    A multifaceted development program is in progress in the United States to study techniques for in-service inspection (ISI) of heat transfer tubes in breeder reactor steam generators. Several steam generator designs are involved. Although there are some similarities in the approaches, many of the details of techniques and capabilities are specific to the steam generator design. This paper describes the ultrasonic, eddy-current and penetrating radiation techniques being studied for the various steam generators, including the Large Leak Test Rig, the Clinch River Breeder Reactor design, and alternate steam generators being developed by Westinghouse and Babcock and Wilcox.

  15. Generation III reactors safety requirements and the design solutions

    NASA Astrophysics Data System (ADS)

    Felten, P.

    2009-03-01

    Nuclear energy's public acceptance, and hence its development, depends on its safety. As a reactor designer, we will first briefly remind the basic safety principles of nuclear reactors' design. We will then show how the industry, and in particular Areva with its EPR, made design evolution in the wake of the Three Miles Island accident in 1979. In particular, for this new generation of reactors, severe accidents are taken into account beyond the standard design basis accidents. Today, Areva's EPR meets all so-called "generation III" safety requirements and was licensed by several nuclear safety authorities in the world. Many innovative solutions are integrated in the EPR, some of which will be introduced here.

  16. Generation III reactors safety requirements and the design solutions

    SciTech Connect

    Felten, P.

    2009-03-31

    Nuclear energy's public acceptance, and hence its development, depends on its safety. As a reactor designer, we will first briefly remind the basic safety principles of nuclear reactors' design. We will then show how the industry, and in particular Areva with its EPR, made design evolution in the wake of the Three Miles Island accident in 1979. In particular, for this new generation of reactors, severe accidents are taken into account beyond the standard design basis accidents. Today, Areva's EPR meets all so-called 'generation III' safety requirements and was licensed by several nuclear safety authorities in the world. Many innovative solutions are integrated in the EPR, some of which will be introduced here.

  17. Telecommunications Policy Research Conference. Standards and Standardization Section. Papers.

    ERIC Educational Resources Information Center

    Telecommunications Policy Research Conference, Inc., Washington, DC.

    These three papers consider various models and mechanisms for the achievement of industrial standardization. The first, "Duopoly Compatibility Standards with Partial Cooperation and Standards Leadership" (Sanford V. Berg, University of Florida) presents a model of duopolists producing differentiated substitutes, and considers the equilibrium…

  18. Compact Reactor

    SciTech Connect

    Williams, Pharis E.

    2007-01-30

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date.

  19. Offsite dose calculation manual guidance: Standard radiological effluent controls for pressurized water reactors

    SciTech Connect

    Meinke, W.W.; Essig, T.H.

    1991-04-01

    This report contains guidance which may be voluntarily used by licensees who choose to implement the provision of Generic Letter 89-01, which allows Radiological Effect Technical Specifications (RETS) to be removed from the main body of the Technical Specifications and placed in the Offsite Dose Calculation Manual (ODCM). Guidance is provided for Standard Effluent Controls definitions, Controls for effluent monitoring instrumentation, Controls for effluent releases, Controls for radiological environmental monitoring, and the basis for Controls. Guidance on the formulation of RETS has been available in draft from (NUREG-0471 and -0473) for a number of years; the current effort simply recasts those RETS into Standard Radiological Effluent Controls for application to the ODCM. Also included for completeness are: (1) radiological environmental monitoring program guidance previously which had been available as a Branch Technical Position (Rev. 1, November 1979); (2) existing ODCM guidance; and (3) a reproduction of generic Letter 89-01.

  20. A Babcock-Leighton dynamo with stochastic sources

    NASA Astrophysics Data System (ADS)

    Isik, Emre

    2016-07-01

    We present a flux transport dynamo model with surface sources, whose properties are determined by the observed flux distribution and rising flux tube simulations. The latter provides the emergence latitude and tilt angles, as a function of the initial latitude at the base of the convection zone. This introduces a weak nonlinearity in the model. The emerging flux is non-locally determined by the magnetic flux in the lower convection zone. After finding solutions near the critical dynamo number, we added random scatter on the tilt angle, with normal distributions. These simulations show moderate fluctuations in the cycle amplitude lasting several hundreds of years, during which the dynamo is stable. Our model will be used as a testbed to investigate possible nonlinear saturation mechanisms of the solar dynamo.

  1. Reactor Simulator Integration and Testing

    NASA Technical Reports Server (NTRS)

    Schoenfield, M. P.; Webster, K. L.; Pearson, J. B.

    2013-01-01

    As part of the Nuclear Systems Office Fission Surface Power Technology Demonstration Unit (TDU) project, a reactor simulator (RxSim) test loop was designed and built to perform integrated testing of the TDU components. In particular, the objectives of RxSim testing were to verify the operation of the core simulator, the instrumentation and control system, and the ground support gas and vacuum test equipment. In addition, it was decided to include a thermal test of a cold trap purification design and a pump performance test at pump voltages up to 150 V because the targeted mass flow rate of 1.75 kg/s was not obtained in the RxSim at the originally constrained voltage of 120 V. This Technical Memorandum summarizes RxSim testing. The gas and vacuum ground support test equipment performed effectively in NaK fill, loop pressurization, and NaK drain operations. The instrumentation and control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings. The cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained, which was lower than the predicted 750 K but 156 K higher than the cold temperature, indicating the design provided some heat regeneration. The annular linear induction pump tested was able to produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz.

  2. METHOD AND APPARATUS FOR CONTROLLING DIRECT-CYCLE NEUTRONIC REACTORS

    DOEpatents

    Reed, G.A.

    1961-01-10

    A control arrangement is offered for a boiling-water reactor. Boric acid is maintained in the water in the reactor and the amount in the reactor is controlled by continuously removing a portion of the water from the reactor, concentrating the boric acid by evaporating the water therefrom, returning a controlled amount of the acid to the reactor, and simultaneously controlling the water level by varying the rate of spent steam return to the reactor.

  3. 151. ARAIII Reactor building (ARA608) Details of reactor pit and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    151. ARA-III Reactor building (ARA-608) Details of reactor pit and instrument plan. Aerojet-general 880-area/GCRE-608-T-19. Date: November 1958. Ineel index code no. 063-0608-25-013-102678. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  4. Coupled reactor kinetics and heat transfer model for heat pipe cooled reactors

    NASA Astrophysics Data System (ADS)

    Wright, Steven A.; Houts, Michael

    2001-02-01

    Heat pipes are often proposed as cooling system components for small fission reactors. SAFE-300 and STAR-C are two reactor concepts that use heat pipes as an integral part of the cooling system. Heat pipes have been used in reactors to cool components within radiation tests (Deverall, 1973); however, no reactor has been built or tested that uses heat pipes solely as the primary cooling system. Heat pipe cooled reactors will likely require the development of a test reactor to determine the main differences in operational behavior from forced cooled reactors. The purpose of this paper is to describe the results of a systems code capable of modeling the coupling between the reactor kinetics and heat pipe controlled heat transport. Heat transport in heat pipe reactors is complex and highly system dependent. Nevertheless, in general terms it relies on heat flowing from the fuel pins through the heat pipe, to the heat exchanger, and then ultimately into the power conversion system and heat sink. A system model is described that is capable of modeling coupled reactor kinetics phenomena, heat transfer dynamics within the fuel pins, and the transient behavior of heat pipes (including the melting of the working fluid). This paper focuses primarily on the coupling effects caused by reactor feedback and compares the observations with forced cooled reactors. A number of reactor startup transients have been modeled, and issues such as power peaking, and power-to-flow mismatches, and loading transients were examined, including the possibility of heat flow from the heat exchanger back into the reactor. This system model is envisioned as a tool to be used for screening various heat pipe cooled reactor concepts, for designing and developing test facility requirements, for use in safety evaluations, and for developing test criteria for in-pile and out-of-pile test facilities. .

  5. Comparison of Reactor Technologies and Designs for Lunar/Martian Surface Reactor Applications

    SciTech Connect

    Poston, David I.; Kapernick, Richard J.; Marcille, Thomas F.; Sadasivan, Pratap; Dixon, David D.; Amiri, Benjamin W.

    2006-07-01

    This report summarizes and compares three surface reactor concepts: a pumped- NaK, SS/UO{sub 2} reactor, a K-heat-pipe-cooled, SS/UO{sub 2} reactor, and a pumped-NaK, Hasteloy/UZrH reactor. Each of the reactors is coupled to a 25-kWe Stirling power conversion system, and is designed to a consistent set of design requirements and assumptions. A description of these requirements and assumptions is provided, as well as a listing of design features and parameters. (authors)

  6. Status and Value of International Standards for Nuclear Criticality Safety

    SciTech Connect

    Hopper, Calvin Mitchell

    2011-01-01

    This presentation provides an update to the author's standards report provided at the ICNC-2007 meeting. It includes a discussion about the difference between, and the value of participating in, the development of international 'consensus' standards as opposed to nonconsensus standards. Standards are developed for a myriad of reasons. Generally, standards represent an agreed upon, repeatable way of doing something as defined by an individual or group of people. They come in various types. Examples include personal, family, business, industrial, commercial, and regulatory such as military, community, state, federal, and international standards. Typically, national and international 'consensus' standards are developed by individuals and organizations of diverse backgrounds representing the subject matter users and developers of a service or product and other interested parties or organizations. Within the International Organization for Standardization (ISO), Technical Committee 85 (TC85) on nuclear energy, Subcommittee 5 (SC5) on nuclear fuel technology, there is a Working Group 8 (WG8) on standardization of calculations, procedures, and practices related to criticality safety. WG8 has developed, and is developing, ISO standards within the category of nuclear criticality safety of fissionable materials outside of reactors (i.e., nonreactor fissionable material nuclear fuel cycle facilities). Since the presentation of the ICNC-2007 report, WG8 has issued three new finalized international standards and is developing two more new standards. Nearly all elements of the published WG8 ISO standards have been incorporated into IAEA nonconsensus guides and standards. The progression of consensus standards development among international partners in a collegial environment establishes a synergy of different concepts that broadens the perspectives of the members. This breadth of perspectives benefits the working group members in their considerations of consensus standards

  7. Standards on Ethics and Integrity.

    ERIC Educational Resources Information Center

    Burns, Janet Z.; Dean, Peter J.; Hatcher, Tim; Otte, Fred L.; Preskill, Hallie; Russ-Eft, Darlene

    1999-01-01

    The purpose of the standards described in this article are to provide guidance and a common set of values for human resource development/human performance training (HRD/HPT) professionals. General Standards; Research and Evaluation; Advertising and Other Public Statements; Publication of Work; Privacy and Confidentiality; Teaching and…

  8. NEUTRONIC REACTOR FUEL ELEMENT AND CORE SYSTEM

    DOEpatents

    Moore, W.T.

    1958-09-01

    This patent relates to neutronic reactors and in particular to an improved fuel element and a novel reactor core system for facilitating removal of contaminating fission products, as they are fermed, from association with the flssionable fuel, so as to mitigate the interferent effects of such fission products during reactor operation. The fuel elements are comprised of tubular members impervious to fluid and contatning on their interior surfaces a thin layer of fissionable material providing a central void. The core structure is comprised of a plurality of the tubular fuel elements arranged in parallel and a closed manifold connected to their ends. In the reactor the core structure is dispersed in a water moderator and coolant within a pressure vessel, and a means connected to said manifuld is provided for withdrawing and disposing of mobile fission product contamination from the interior of the feel tubes and manifold.

  9. Standards and Dialects in English.

    ERIC Educational Resources Information Center

    Shopen, Timothy; Williams, Joseph M.

    A collection of essays on linguistic variation in English that distinguishes communities and social groups from one another includes: "Standard English: Biography of a Symbol" (Shirley Brice Heath); "The Rise of Standard English" (Margaret Shaklee); "English Orthography" (Wayne O'Neil); "How Pablo Says 'Love' and 'Stove'" and "An Afterword: How…

  10. Electroweak interaction: Standard and beyond

    SciTech Connect

    Harari, H.

    1987-02-01

    Several important topics within the standard model raise questions which are likely to be answered only by further theoretical understanding which goes beyond the standard model. In these lectures we present a discussion of some of these problems, including the quark masses and angles, the Higgs sector, neutrino masses, W and Z properties and possible deviations from a pointlike structure. 44 refs.

  11. Synergistic Use of IEEE and IEC Nuclear Power Plant Standards

    SciTech Connect

    Johnson, G

    2001-12-19

    Many organizations worldwide develop standards that affect nuclear instrumentation and control (I and C). Two of the primary standards organizations are the US IEEE's Nuclear Power Engineering Committee (NPEC), and the IEC subcommittee on Reactor Instrumentation (SC45A). This paper surveys the contents of the two sets of standards. Opportunities for complementary use of IEEE and IEC standards are discussed. The collections of IEEE. and IEC standards have some overlap, but in many cases cover significantly different topics. For example, IEEE standards go to great depth on environmental qualification of many specific types of components, while IEC covers the topic only at the general level. Conversely, certain IEC standards deal with specific instrumentation and control functions, a topic area where IEEE standards are largely mute. This paper considers how the two sets of standards may be used in a complementary fashion to achieve broader topic coverage than is possible using only one or the other standard suite. To understand the similarities and differences between IEC and IEEE nuclear standards layer diagrams were developed for each set of standards. Another paper [Johnson, 2001] used the same layer diagrams to investigate where coordination between the two sets of standards is most critical.

  12. Developments and Tendencies in Fission Reactor Concepts

    NASA Astrophysics Data System (ADS)

    Adamov, E. O.; Fuji-Ie, Y.

    This chapter describes, in two parts, new-generation nuclear energy systems that are required to be in harmony with nature and to make full use of nuclear resources. The issues of transmutation and containment of radioactive waste will also be addressed. After a short introduction to the first part, Sect. 58.1.2 will detail the requirements these systems must satisfy on the basic premise of peaceful use of nuclear energy. The expected designs themselves are described in Sect. 58.1.3. The subsequent sections discuss various types of advanced reactor systems. Section 58.1.4 deals with the light water reactor (LWR) whose performance is still expected to improve, which would extend its application in the future. The supercritical-water-cooled reactor (SCWR) will also be shortly discussed. Section 58.1.5 is mainly on the high temperature gas-cooled reactor (HTGR), which offers efficient and multipurpose use of nuclear energy. The gas-cooled fast reactor (GFR) is also included. Section 58.1.6 focuses on the sodium-cooled fast reactor (SFR) as a promising concept for advanced nuclear reactors, which may help both to achieve expansion of energy sources and environmental protection thus contributing to the sustainable development of mankind. The molten-salt reactor (MSR) is shortly described in Sect. 58.1.7. The second part of the chapter deals with reactor systems of a new generation, which are now found at the research and development (R&D) stage and in the medium term of 20-30 years can shape up as reliable, economically efficient, and environmentally friendly energy sources. They are viewed as technologies of cardinal importance, capable of resolving the problems of fuel resources, minimizing the quantities of generated radioactive waste and the environmental impacts, and strengthening the regime of nonproliferation of the materials suitable for nuclear weapons production. Particular attention has been given to naturally safe fast reactors with a closed fuel cycle (CFC

  13. A fast and flexible reactor physics model for simulating neutron spectra and depletion in fast reactors

    NASA Astrophysics Data System (ADS)

    Recktenwald, Geoff; Deinert, Mark

    2010-03-01

    Determining the time dependent concentration of isotopes within a nuclear reactor core is central to the analysis of nuclear fuel cycles. We present a fast, flexible tool for determining the time dependent neutron spectrum within fast reactors. The code (VBUDS: visualization, burnup, depletion and spectra) uses a two region, multigroup collision probability model to simulate the energy dependent neutron flux and tracks the buildup and burnout of 24 actinides, as well as fission products. While originally developed for LWR simulations, the model is shown to produce fast reactor spectra that show high degree of fidelity to available fast reactor benchmarks.

  14. FBR and RBR particle bed space reactors

    SciTech Connect

    Powell, J.R.; Botts, T.E.

    1983-01-01

    Compact, high-performance nuclear reactor designs based on High-Temperature Gas Reactors (HTGRs) particulate fuel are investigated. The large surface area available with the small-diameter (approx. 500 microns) particulate fuel allows very high power densities (MW's/liter), small temperature differences between fuel and coolant (approx. 10/sup 0/K), high coolant-outlet temperatures (1500 to 3000/sup 0/K, depending on design), and fast reactor startup (approx. 2 to 3 seconds). Two reactor concepts are developed - the Fixed Bed Reactor (FBR), where the fuel particles are packed into a thin annular bed between two porous cylindrical drums, and the Rotating Bed Reactor (RBR), where the fuel particles are held inside a cold rotating (typically approx. 500 rpm) porous cylindrical drum. The FBR can operate steady-state in the closed-cycle He-cooled mode or in the open-cycle H/sub 2/-cooled mode. The RBR will operate only in the open-cycle H/sub 2/-cooled mode.

  15. Reading Ages and Standardized Scores

    ERIC Educational Resources Information Center

    Bookbinder, G. E.

    1976-01-01

    Discusses the advantages of and objections to testing children's reading ages and recommends that test results be given for both reading age and percentile levels (rather than standardized scores). (JM)

  16. APIC professional and practice standards.

    PubMed

    Bubb, Tania N; Billings, Corrianne; Berriel-Cass, Dorine; Bridges, William; Caffery, Lisa; Cox, Jennifer; Rodriguez, Moraima; Swanson, Jessica; Titus-Hinson, Maureen

    2016-07-01

    Professional and practice standards for IPs have existed since 2008. The expanding, evolving, and increasingly critical role of the profession demanded they be updated. The standards emphasize flexibility and applicability across a multitude of domains and settings and provide the profession with a rigorous, well-defined set of expectations, competencies, and practices. The result is a succinct set of precepts that encapsulates the field of IPC in the present and foreseeable future. PMID:27079245

  17. Reference and Standard Atmosphere Models

    NASA Technical Reports Server (NTRS)

    Johnson, Dale L.; Roberts, Barry C.; Vaughan, William W.; Parker, Nelson C. (Technical Monitor)

    2002-01-01

    This paper describes the development of standard and reference atmosphere models along with the history of their origin and use since the mid 19th century. The first "Standard Atmospheres" were established by international agreement in the 1920's. Later some countries, notably the United States, also developed and published "Standard Atmospheres". The term "Reference Atmospheres" is used to identify atmosphere models for specific geographical locations. Range Reference Atmosphere Models developed first during the 1960's are examples of these descriptions of the atmosphere. This paper discusses the various models, scopes, applications and limitations relative to use in aerospace industry activities.

  18. PV System Performance and Standards

    SciTech Connect

    Osterwald, C. R.

    2005-11-01

    This paper presents a brief overview of the status and accomplishments during fiscal year (FY) 2005 of the Photovoltaic (PV) System Performance and Standards Subtask, which is part of the PV Systems Engineering Project (a joint NREL-Sandia project).

  19. 77 FR 43196 - Minimum Internal Control Standards and Technical Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-24

    ... COMMISSION 25 CFR Parts 543 and 547 Minimum Internal Control Standards and Technical Standards AGENCY... their comments. DATES: The comment period for the proposed rules published June 1, 2012, at 77 FR 32444 and 77 FR 32465, is extended. Comments on the proposed rules must be received on or before August...

  20. Reference Collections and Standards.

    ERIC Educational Resources Information Center

    Winkel, Lois

    1999-01-01

    Reviews six reference materials for young people: "The New York Public Library Kid's Guide to Research"; "National Audubon Society First Field Guide. Mammals"; "Star Wars: The Visual Dictionary"; "Encarta Africana"; "World Fact Book, 1998"; and "Factastic Book of 1001 Lists". Includes ordering information.(AEF)

  1. TRA603. PRECAST CONCRETE PANELS FOR SIDING. STANDARD SIZES AND DETAILS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TRA-603. PRECAST CONCRETE PANELS FOR SIDING. STANDARD SIZES AND DETAILS. NOTE CONSTRUCTION WITH WIRE MESH AND CELLULAR GLASS INSULATION. BLAW-KNOX BKC-3150-803-13, 8/1950. INL INDEX NO. 53-0603-62-098-100572, REV. 7. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  2. CTD Writing and Editing Standards

    SciTech Connect

    Caruthers, C.M.

    1991-03-01

    The Computer and Telecommunication Division (CTD) recognizes that the communication of clear, accurate, reasonably complete information is essential to the success of its Laboratory mission. CTD therefore encourages all Division personnel to adhere to the principles of good writing and to the standards for grammar, usage, style, formats, and publication procedures that are described in CTD Writing and Editing Standards. We encourage CTD personnel to read CTD Writing and Editing Standards and to use it continually as a desktop reference. It will help CTD writers to produce better documents consistent with CTD standards in less time. Applying the principles specified in this document on how to write and organize technical information will speed up the editing, review, and revision processes. CTD Writing and Editing Standards complements the Argonne National Laboratory Technical Publications Guide, which serves as the basic Argonne documentation reference on issues concerning DOE orders and guidelines, NRC directives, and other sponsor requirements. However, this Laboratory-wide document does not address matters of grammar or style. Documents recommended in CTD Writing and Editing Standards are usually available for purchase at the Document Distribution Counter (Building 221, Room A-134) or through the mail (by calling extension 2-5405 and ordering copies).

  3. Voluntary Skill Standards and Certification. Skill Standards: A Primer.

    ERIC Educational Resources Information Center

    Wills, Joan L.

    This document provides basic information about the establishment, mission, and principal tasks of the National Skill Standards Board (NSSB), which was established as a key part of Goals 2000 and charged with the responsibility of creating a national system of voluntary skill standards to be available for use by employers, workers, unions,…

  4. Biases and Standard Errors of Standardized Regression Coefficients

    ERIC Educational Resources Information Center

    Yuan, Ke-Hai; Chan, Wai

    2011-01-01

    The paper obtains consistent standard errors (SE) and biases of order O(1/n) for the sample standardized regression coefficients with both random and given predictors. Analytical results indicate that the formulas for SEs given in popular text books are consistent only when the population value of the regression coefficient is zero. The sample…

  5. Instrumentation, Monitoring and NDE for New Fast Reactors

    SciTech Connect

    Bond, Leonard J.; Doctor, Steven R.; Bunch, Kyle J.; Good, Morris S.; Waltar, Alan E.

    2007-07-28

    The Global Nuclear Energy Partnership (GNEP) has been proposed as a viable system in which to close the fuel cycle in a manner consistent with markedly expanding the global role of nuclear power while significantly reducing proliferation risks. A key part of this system relies on the development of actinide transmutation, which can only be effectively accomplished in a fast-spectrum reactor. The fundamental physics for fast reactors is well established. However, to achieve higher standards of safety and reliability, operate with longer intervals between outages, and achieve high operating capacity factors, new instrumentation and on-line monitoring capabilities will be required--during both fabrication and operation. Since the Fast Flux Test Facility (FFTF) and Experimental Breeder Reactor – II (EBR-II) reactors were operational in the USA, there have been major advances in instrumentation, not the least being the move to digital systems. Some specific capabilities have been developed outside the USA, but new or at least re-established capabilities will be required. In many cases the only available information is in reports and papers. New and improved sensors and instrumentation will be required. Advanced instrumentation has been developed for high-temperature/high-flux conditions in some cases, but most of the original researchers and manufacturers are retired or no longer in business.

  6. A methodology for existing system upgrade to current ASME standards and system lifetime extension

    SciTech Connect

    Burr, T.K.; Dwight, J.E. Jr.; Hawkes, G.L.; Pace, N.E.

    1990-01-01

    In the wake of the Chernobyl events, there has been an increase in the awareness and review of government operated reactors both internationally, and within the United States. Government reactors have recently come under increased and indepth scrutiny. Department of Energy Secretary Hodel committed to a review of the safety of non-commercial reactors and irradiation facilities within the department. The increased attention has been in the areas of accident response, PRA of the facilities, environmental impacts, and the construction and associated standards for the facilities. This paper focuses on the system qualifications to current standards. Specifically, this paper discusses a method used for upgrading an existing high pressure nuclear system to current ASME Code standards and to extend the system's lifetime. This paper reports the methods used in an attempt to qualify components of the Advanced Test Reactor (ATR) located at the Idaho National Engineering Laboratory (INEL) to current ASME Code Section III standards.

  7. 75 FR 42791 - Office of New Reactors; Proposed Revision 1 to Standard Review Plan; Section 13.5.1.1 on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... COMMISSION Office of New Reactors; Proposed Revision 1 to Standard Review Plan; Section 13.5.1.1 on... Review of Safety Analysis Reports for Nuclear Power Plants,'' on a proposed Revision 1 to Standard Review Plan (SRP), Section 13.5.1.1 on ``Administrative Procedures--General,'' (Agencywide Documents...

  8. 76 FR 7235 - Office of New Reactors; Proposed Revision 1 to Standard Review Plan, Section 13.5.1.1 on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-09

    ... COMMISSION Office of New Reactors; Proposed Revision 1 to Standard Review Plan, Section 13.5.1.1 on... Review of Safety Analysis Reports for Nuclear Power Plants,'' on a proposed Revision 1 to Standard Review Plan (SRP), Section 13.5.1.1 on ``Administrative Procedures--General,'' (Agencywide Documents...

  9. 76 FR 9615 - Office of New Reactors; Proposed Revision 1 to Standard Review Plan, Section 13.5.1.1 on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-18

    ... FR 7235, NRC published a document announcing the availability of a proposed Revision 1 to Standard... COMMISSION Office of New Reactors; Proposed Revision 1 to Standard Review Plan, Section 13.5.1.1 on... February 9, 2011, that announced the solicitation for comments of the proposed Revision 1 to...

  10. TREATMENT OF METHANOLIC WASTEWATER BY ANAEROBIC DOWN-FLOW HANGING SPONGE (ANDHS) REACTOR AND UASB REACTOR

    NASA Astrophysics Data System (ADS)

    Sumino, Haruhiko; Wada, Keiji; Syutsubo, Kazuaki; Yamaguchi, Takashi; Harada, Hideki; Ohashi, Akiyoshi

    Anaerobic down-flow hanging sponge (AnDHS) reactor and UASB reactor were operated at 30℃ for over 400 days in order to investigate the process performance and the sludge characteristics of treating methanolic wastewater (2 gCOD/L). The settings OLR of AnDHS reactor and of UASB reactor were 5.0 -10.0 kgCOD/m3/d and 5.0 kgCOD/m3/d. The average of the COD removal demonstrated by both reactors were over 90% throughout the experiment. From the results of methane producing activities and the PCR-DGGE method, most methanol was directly converted to methane in both reactors. The conversion was carried out by different methanogens: one closely related to Methanomethylovorans hollandica in the AnDHS retainted sludge and the other closely related to Methanosarcinaceae and Metanosarciales in the UASB retainted sludge.

  11. Optimally moderated nuclear fission reactor and fuel source therefor

    DOEpatents

    Ougouag, Abderrafi M.; Terry, William K.; Gougar, Hans D.

    2008-07-22

    An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.

  12. Fuels for research and test reactors, status review: July 1982

    SciTech Connect

    Stahl, D.

    1982-12-01

    A thorough review is provided on nuclear fuels for steady-state thermal research and test reactors. The review was conducted to provide a documented data base in support of recent advances in research and test reactor fuel development, manufacture, and demonstration in response to current US policy on availability of enriched uranium. The review covers current fabrication practice, fabrication development efforts, irradiation performance, and properties affecting fuel utilization, including thermal conductivity, specific heat, density, thermal expansion, corrosion, phase stability, mechanical properties, and fission-product release. The emphasis is on US activities, but major work in Europe and elsewhere is included. The standard fuel types discussed are the U-Al alloy, UZrH/sub x/, and UO/sub 2/ rod fuels. Among new fuels, those given major emphasis include H/sub 3/Si-Al dispersion and UO/sub 2/ caramel plate fuels.

  13. MEANS FOR SHIELDING AND COOLING REACTORS

    DOEpatents

    Wigner, E.P.; Ohlinger, L.A.; Young, G.J.; Weinberg, A.M.

    1959-02-10

    Reactors of the water-cooled type and a means for shielding such a rcactor to protect operating personnel from harmful radiation are discussed. In this reactor coolant tubes which contain the fissionable material extend vertically through a mass of moderator. Liquid coolant enters through the bottom of the coolant tubes and passes upwardly over the fissionable material. A shield tank is disposed over the top of the reactor and communicates through its bottom with the upper end of the coolant tubes. A hydrocarbon shielding fluid floats on the coolant within the shield tank. With this arrangements the upper face of the reactor can be opened to the atmosphere through the two superimposed liquid layers. A principal feature of the invention is that in the event radioactive fission products enter thc coolant stream. imposed layer of hydrocarbon reduces the intense radioactivity introduced into the layer over the reactors and permits removal of the offending fuel material by personnel shielded by the uncontaminated hydrocarbon layer.

  14. Nuclear Data Verification and Standardization

    SciTech Connect

    Karam, Lisa R.; Arif, Muhammad; Thompson, Alan K.

    2011-10-01

    The objective of this interagency program is to provide accurate neutron interaction verification and standardization data for the U.S. Department of Energy Division of Nuclear Physics programs which include astrophysics, radioactive beam studies, and heavy-ion reactions. The measurements made in this program are also useful to other programs that indirectly use the unique properties of the neutron for diagnostic and analytical purposes. These include homeland security, personnel health and safety, nuclear waste disposal, treaty verification, national defense, and nuclear based energy production. The work includes the verification of reference standard cross sections and related neutron data employing the unique facilities and capabilities at NIST and other laboratories as required; leadership and participation in international intercomparisons and collaborations; and the preservation of standard reference deposits. An essential element of the program is critical evaluation of neutron interaction data standards including international coordinations. Data testing of critical data for important applications is included. The program is jointly supported by the Department of Energy and the National Institute of Standards and Technology.

  15. Cross-flow electrochemical reactor cells, cross-flow reactors, and use of cross-flow reactors for oxidation reactions

    DOEpatents

    Balachandran, Uthamalingam; Poeppel, Roger B.; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Udovich, Carl A.

    1994-01-01

    This invention discloses cross-flow electrochemical reactor cells containing oxygen permeable materials which have both electron conductivity and oxygen ion conductivity, cross-flow reactors, and electrochemical processes using cross-flow reactor cells having oxygen permeable monolithic cores to control and facilitate transport of oxygen from an oxygen-containing gas stream to oxidation reactions of organic compounds in another gas stream. These cross-flow electrochemical reactors comprise a hollow ceramic blade positioned across a gas stream flow or a stack of crossed hollow ceramic blades containing a channel or channels for flow of gas streams. Each channel has at least one channel wall disposed between a channel and a portion of an outer surface of the ceramic blade, or a common wall with adjacent blades in a stack comprising a gas-impervious mixed metal oxide material of a perovskite structure having electron conductivity and oxygen ion conductivity. The invention includes reactors comprising first and second zones seprated by gas-impervious mixed metal oxide material material having electron conductivity and oxygen ion conductivity. Prefered gas-impervious materials comprise at least one mixed metal oxide having a perovskite structure or perovskite-like structure. The invention includes, also, oxidation processes controlled by using these electrochemical reactors, and these reactions do not require an external source of electrical potential or any external electric circuit for oxidation to proceed.

  16. Open-ended fusion devices and reactors

    SciTech Connect

    Kawabe, T.; Nariai, H.

    1983-12-01

    Conceptual design studies on fusion reactors based upon open-ended confinement schemes, such as the tandem mirror and rf plugged cusp, have been carried out in Japan. These studies may be classified into two categories: near-term devices (Fusion Engineering Test Facility), and long-term fusion power recators. In the first category, a two-component cusp neutron source was proposed. In the second category, the GAMMA-R, a tandem-mirror power reactor, and the RFC-R, an axisymetric mirror and cusp, reactor studies are being conducted at the University of Tsukuba and the Institute of Plasma Physics. Mirror Fusion Engineering Facility parameters and a schematic are shown. The GAMMA-R central-cell design schematic is also shown.

  17. Light water reactor program

    SciTech Connect

    Franks, S.M.

    1994-12-31

    The US Department of Energy`s Light Water Reactor Program is outlined. The scope of the program consists of: design certification of evolutionary plants; design, development, and design certification of simplified passive plants; first-of-a-kind engineering to achieve commercial standardization; plant lifetime improvement; and advanced reactor severe accident program. These program activities of the Office of Nuclear Energy are discussed.

  18. Metadata Standards and Workflow Systems

    NASA Astrophysics Data System (ADS)

    Habermann, T.

    2012-12-01

    All modern workflow systems include mechanisms for recording inputs, outputs and processes. These descriptions can include details required to reproduce the workflows exactly and, in some cases, can include virtual images of the hardware and operating system. There are several on-going and emerging standards for representing these detailed workflows including the Open Provenance Model (OPM) and the W3C PROV. At the same time, ISO metadata standards include a simple provenance or lineage model that includes many important elements of workflows. The ISO model could play a critical role in sharing and discovering workflow information for collections and perhaps in recording some details in granules. In order for this goal to be reached, connections between the detailed standards and ISO must be understood and conventions for using them must be developed.

  19. Safety of evolutionary and innovative nuclear reactors: IAEA activities and world efforts

    SciTech Connect

    Saito, T.; Gasparini, M.

    2004-07-01

    'Defence in Depth' approach constitutes the basis of the IAEA safety standards for nuclear power plants. Lessons learned from the current generation of reactors suggest that, for the next generation of reactor designs, the Defence in Depth philosophy should be retained, and that its implementation should be guided by the probabilistic insights. Recent developments in the area of general safety requirements based on Defence in Depth approach are examined and summarized. Global efforts to harmonize safety requirements for evolutionary nuclear power plants have involved many countries and organizations such as IAEA, US EPRI and European Utility EUR Organization. In recent years, developments of innovative nuclear power plants are also being discussed. The IAEA is currently developing a safety approach specifically for innovative nuclear reactors. This approach will eventually lead to a proposal of safety requirements for innovative reactors. Such activities related to safety requirements of evolutionary and innovative reactors are introduced. Various evolutionary and innovative reactor designs are reported in the world. The safety design features of evolutionary large LWRs, innovative LWRs, Modular High Temperature Gas Reactors and Small Liquid Metal Cooled LMRs are also introduced. Enhanced safety features proposed in such reactors are discussed and summarized according to the levels of Defence in Depth. For future nuclear plants, international cooperation and harmonization, especially in the area of safety, appear to be inevitable. Based on the past experience with many member states, the IAEA believes itself to be the uniquely positioned international organization to play this key role. (authors)

  20. Geoneutrinos and reactor antineutrinos at SNO+

    NASA Astrophysics Data System (ADS)

    Baldoncini, M.; Strati, V.; Wipperfurth, S. A.; Fiorentini, G.; Mantovani, F.; McDonough, W. F.; Ricci, B.

    2016-05-01

    In the heart of the Creighton Mine near Sudbury (Canada), the SNO+ detector is foreseen to observe almost in equal proportion electron antineutrinos produced by U and Th in the Earth and by nuclear reactors. SNO+ will be the first long baseline experiment to measure a reactor signal dominated by CANDU cores (~55% of the total reactor signal), which generally burn natural uranium. Approximately 18% of the total geoneutrino signal is generated by the U and Th present in the rocks of the Huronian Supergroup-Sudbury Basin: the 60% uncertainty on the signal produced by this lithologic unit plays a crucial role on the discrimination power on the mantle signal as well as on the geoneutrino spectral shape reconstruction, which can in principle provide a direct measurement of the Th/U ratio in the Earth.

  1. NEUTRONIC REACTOR SHIELD AND SPACER CONSTRUCTION

    DOEpatents

    Wigner, E.P.; Ohlinger, L.A.

    1958-11-18

    Reactors of the heterogeneous, graphite moderated, fluid cooled type and shielding and spacing plugs for the coolant channels thereof are reported. In this design, the coolant passages extend horizontally through the moderator structure, accommodating the fuel elements in abutting end-to-end relationship, and have access openings through the outer shield at one face of the reactor to facilitate loading of the fuel elements. In the outer ends of the channels which extend through the shields are provided spacers and shielding plugs designed to offer minimal reslstance to coolant fluid flow while preventing emanation of harmful radiation through the access openings when closed between loadings.

  2. Remote safeguards and monitoring of reactors with antineutrinos.

    SciTech Connect

    Reyna, David

    2010-10-01

    The current state-of-the-art in antineutrino detection is such that it is now possible to remotely monitor the operational status, power levels and fissile content of nuclear reactors in real-time. This non-invasive and incorruptible technique has been demonstrated at civilian power reactors in both Russia and the United States and has been of interest to the IAEA Novel Technologies Unit for several years. Expert's meetings were convened at IAEA headquarters in 2003 and again in 2008. The latter produced a report in which antineutrino detection was called a 'highly promising technology for safeguards applications' at nuclear reactors and several near-term goals and suggested developments were identified to facilitate wider applicability. Over the last few years, we have been working to achieve some of these goals and improvements. Specifically, we have already demonstrated the successful operation of non-toxic detectors and most recently, we are testing a transportable, above-ground detector system, which is fully contained within a standard 6 meter ISO container. If successful, such a system could allow easy deployment at any reactor facility around the world. As well, our previously demonstrated ability to remotely monitor the data and respond in real-time to reactor operational changes could allow the verification of operator declarations without the need for costly site-visits. As the global nuclear power industry expands around the world, the burden on maintaining operational histories and safeguarding inventories will increase greatly. Such a system for providing remote data to verify operator's declarations could greatly reduce the need for frequent site inspections while still providing a robust warning of anomalies requiring further investigation.

  3. Remote safeguards and monitoring of reactors with antineutrinos.

    SciTech Connect

    Kiff, Scott D.; Dazeley, Steven; Reyna, David; Cabrera-Palmer, Belkis; Bernstein, Adam; Keefer, Greg; Bowden, Nathaniel S.

    2010-09-01

    The current state-of-the-art in antineutrino detection is such that it is now possible to remotely monitor the operational status, power levels and fissile content of nuclear reactors in real-time. This non-invasive and incorruptible technique has been demonstrated at civilian power reactors in both Russia and the United States and has been of interest to the IAEA Novel Technologies Unit for several years. Expert's meetings were convened at IAEA headquarters in 2003 and again in 2008. The latter produced a report in which antineutrino detection was called a 'highly promising technology for safeguards applications' at nuclear reactors and several near-term goals and suggested developments were identified to facilitate wider applicability. Over the last few years, we have been working to achieve some of these goals and improvements. Specifically, we have already demonstrated the successful operation of non-toxic detectors and most recently, we are testing a transportable, above-ground detector system, which is fully contained within a standard 6 meter ISO container. If successful, such a system could allow easy deployment at any reactor facility around the world. As well, our previously demonstrated ability to remotely monitor the data and respond in real-time to reactor operational changes could allow the verification of operator declarations without the need for costly site-visits. As the global nuclear power industry expands around the world, the burden on maintaining operational histories and safeguarding inventories will increase greatly. Such a system for providing remote data to verify operator's declarations could greatly reduce the need for frequent site inspections while still providing a robust warning of anomalies requiring further investigation.

  4. MELCOR analyses of severe accident scenarios in Oconee, a B&W PWR plant

    SciTech Connect

    Madni, I.K.; Nimnual, S.; Foulds, R.

    1993-03-01

    This paper presents the results and insights gained from MELCOR analyses of two severe accident scenarios, a Loss of Coolant Accident (LOCA) and a Station Blackout (TMLB) in Oconee, a Babcock & Wilcox (B&W) designed PWR with a large dry containment, and comparisons with Source Term Code Package (STCP) calculations of the same sequences. Results include predicted timing of key events, thermal-hydraulic response in the reactor coolant system and containment, and environmental releases of fission products. The paper also explores the impact of varying concrete type, vessel failure temperature, and break location on the accident progression, containment pressurization, and environmental releases of radionuclides.

  5. MELCOR analyses of severe accident scenarios in Oconee, a B W PWR plant

    SciTech Connect

    Madni, I.K.; Nimnual, S. ); Foulds, R. )

    1993-01-01

    This paper presents the results and insights gained from MELCOR analyses of two severe accident scenarios, a Loss of Coolant Accident (LOCA) and a Station Blackout (TMLB) in Oconee, a Babcock Wilcox (B W) designed PWR with a large dry containment, and comparisons with Source Term Code Package (STCP) calculations of the same sequences. Results include predicted timing of key events, thermal-hydraulic response in the reactor coolant system and containment, and environmental releases of fission products. The paper also explores the impact of varying concrete type, vessel failure temperature, and break location on the accident progression, containment pressurization, and environmental releases of radionuclides.

  6. Distributed computing and nuclear reactor analysis

    SciTech Connect

    Brown, F.B.; Derstine, K.L.; Blomquist, R.N.

    1994-03-01

    Large-scale scientific and engineering calculations for nuclear reactor analysis can now be carried out effectively in a distributed computing environment, at costs far lower than for traditional mainframes. The distributed computing environment must include support for traditional system services, such as a queuing system for batch work, reliable filesystem backups, and parallel processing capabilities for large jobs. All ANL computer codes for reactor analysis have been adapted successfully to a distributed system based on workstations and X-terminals. Distributed parallel processing has been demonstrated to be effective for long-running Monte Carlo calculations.

  7. The detection of global convection on the sun by an analysis of line shift data of the John M. Wilcox Solar Observatory at Stanford University

    NASA Technical Reports Server (NTRS)

    Yoshimura, Hirokazu

    1987-01-01

    Signatures of the existence of the global convection in the sun were found in the absorption line shift data of the John M. Wilcox Solar Observatory at Stanford University. The signatures are characterized by persistent periodic time variations in the east-west component of the velocity fields defined by fitting a slope to the line shift data in a certain longitude window at a specified latitude and longitude by a least square method. The variations indicate that the amplitude of the velocity fields is about 100 m/s. It is suggested that several modes of global convection are coexisting in the solar convection zone.

  8. Technology, Safety and Costs of Decommissioning Nuclear Reactors At Multiple-Reactor Stations

    SciTech Connect

    Wittenbrock, N. G.

    1982-01-01

    Safety and cost information is developed for the conceptual decommissioning of large (1175-MWe) pressurized water reactors (PWRs) and large (1155-MWe) boiling water reactors {BWRs) at multiple-reactor stations. Three decommissioning alternatives are studied: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). Safety and costs of decommissioning are estimated by determining the impact of probable features of multiple-reactor-station operation that are considered to be unavailable at a single-reactor station, and applying these estimated impacts to the decommissioning costs and radiation doses estimated in previous PWR and BWR decommissioning studies. The multiple-reactor-station features analyzed are: the use of interim onsite nuclear waste storage with later removal to an offsite nuclear waste disposal facility, the use of permanent onsite nuclear waste disposal, the dedication of the site to nuclear power generation, and the provision of centralized services. Five scenarios for decommissioning reactors at a multiple-reactor station are investigated. The number of reactors on a site is assumed to be either four or ten; nuclear waste disposal is varied between immediate offsite disposal, interim onsite storage, and immediate onsite disposal. It is assumed that the decommissioned reactors are not replaced in one scenario but are replaced in the other scenarios. Centralized service facilities are provided in two scenarios but are not provided in the other three. Decommissioning of a PWR or a BWR at a multiple-reactor station probably will be less costly and result in lower radiation doses than decommissioning an identical reactor at a single-reactor station. Regardless of whether the light water reactor being decommissioned is at a single- or multiple-reactor station: • the estimated occupational radiation dose for decommissioning an LWR is lowest for SAFSTOR and highest for DECON • the estimated

  9. The standard model and colliders

    SciTech Connect

    Hinchliffe, I.

    1987-03-01

    Some topics in the standard model of strong and electroweak interactions are discussed, as well as how these topics are relevant for the high energy colliders which will become operational in the next few years. The radiative corrections in the Glashow-Weinberg-Salam model are discussed, stressing how these corrections may be measured at LEP and the SLC. CP violation is discussed briefly, followed by a discussion of the Higgs boson and the searches which are relevant to hadron colliders are then discussed. Some of the problems which the standard model does not solve are discussed, and the energy ranges accessible to the new colliders are indicated. (LEW)

  10. Castles, Kings...and Standards.

    ERIC Educational Resources Information Center

    Drake, Susan M.

    2001-01-01

    Standards can help integrate a curriculum, as a fourth-grade teacher discovered when implementing a unit on the Middle Ages. Students created a medieval fair that demonstrated their learning in medieval history (social studies), pulleys and gears (science and technology), story telling (language arts), and costume and dance (fine arts). (MLH)

  11. Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors

    SciTech Connect

    D.M. McEligot; K. G. Condie; G. E. McCreery; H. M. McIlroy; R. J. Pink; L.E. Hochreiter; J.D. Jackson; R.H. Pletcher; B.L. Smith; P. Vukoslavcevic; J.M. Wallace; J.Y. Yoo; J.S. Lee; S.T. Ro; S.O. Park

    2005-10-01

    Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean / US / laboratory / university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generation IV program.

  12. Hydrogen and water reactor safety: proceedings

    SciTech Connect

    Not Available

    1982-01-01

    Separate abstracts were prepared for papers presented in the following areas of interest: 1) hydrogen research programs; 2) hydrogen behavior during light water reactor accidents; 3) combustible gas generation; 4) hydrogen transport and mixing; 5) combustion modeling and experiments; 6) accelerated flames and detonations; 7) combustion mitigation and control; and 8) equipment survivability.

  13. The Ampere and Electrical Standards

    PubMed Central

    Elmquist, Randolph E.; Cage, Marvin E.; Tang, Yi-hua; Jeffery, Anne-Marie; Kinard, Joseph R.; Dziuba, Ronald F.; Oldham, Nile M.; Williams, Edwin R.

    2001-01-01

    This paper describes some of the major contributions to metrology and physics made by the NIST Electricity Division, which has existed since 1901. It was one of the six original divisions of the National Bureau of Standards. The Electricity Division provides dc and low-frequency calibrations for industrial, scientific, and research organizations, and conducts research on topics related to electrical metrology and fundamental constants. The early work of the Electricity Division staff included the development of precision standards, such as Rosa and Thomas standard resistors and the ac-dc thermal converter. Research contributions helped define the early international system of measurement units and bring about the transition to absolute units based on fundamental principles and physical and dimensional measurements. NIST research has helped to develop and refine electrical standards using the quantum Hall effect and the Josephson effect, which are both based on quantum physics. Four projects covering a number of voltage and impedance measurements are described in detail. Several other areas of current research at NIST are described, including the use of the Internet for international compatibility in metrology, determination of the fine-structure and Planck constants, and construction of the electronic kilogram. PMID:27500018

  14. The Ampere and Electrical Standards.

    PubMed

    Elmquist, R E; Cage, M E; Tang, Y H; Jeffery, A M; Kinard, J R; Dziuba, R F; Oldham, N M; Williams, E R

    2001-01-01

    This paper describes some of the major contributions to metrology and physics made by the NIST Electricity Division, which has existed since 1901. It was one of the six original divisions of the National Bureau of Standards. The Electricity Division provides dc and low-frequency calibrations for industrial, scientific, and research organizations, and conducts research on topics related to electrical metrology and fundamental constants. The early work of the Electricity Division staff included the development of precision standards, such as Rosa and Thomas standard resistors and the ac-dc thermal converter. Research contributions helped define the early international system of measurement units and bring about the transition to absolute units based on fundamental principles and physical and dimensional measurements. NIST research has helped to develop and refine electrical standards using the quantum Hall effect and the Josephson effect, which are both based on quantum physics. Four projects covering a number of voltage and impedance measurements are described in detail. Several other areas of current research at NIST are described, including the use of the Internet for international compatibility in metrology, determination of the fine-structure and Planck constants, and construction of the electronic kilogram. PMID:27500018

  15. Hospitalwide medication policies and standards.

    PubMed

    Laine, G A; Galt, M A; Langford, J A; Prout, D L; Puckett, W H

    1994-12-01

    The development and composition of a hospitalwide medication policies and standards manual are described. Medication policies and procedures developed independently by individual hospital departments and services at a 789-bed private teaching institution created problems related to consistency, the approval process, accreditation standards, and retrievability. Therefore, a joint nursing-pharmacy task force was formed to create a master document containing medication policies and standards for the entire institution. The manual also contains departmental medication-related procedures, the formulary of approved drugs, and key drug information. Its format allows for periodic updating and ease of use by nurses, pharmacists, physicians, and other health care professionals. It meets the Joint Commission on Accreditation of Healthcare Organizations (JCAHO) requirement of a collaborative framework to ensure optimal medication-use outcomes. All medication-related procedures in individual departments must comply with the new policies and standards. A hospitalwide medication policy manual, created through multidisciplinary collaboration, made the policies and procedures consistent and more accessible and met JCAHO and other regulatory requirements. PMID:7879805

  16. Comparison of Standard Light Water Reactor Cross-Section Libraries using the United States Nuclear Regulatory Commission Boiling Water Reactor Benchmark Problem

    NASA Astrophysics Data System (ADS)

    Kulesza, Joel A.; Arzu Alpan, F.

    2016-02-01

    This paper describes a comparison of contemporary and historical light water reactor shielding and pressure vessel dosimetry cross-section libraries for a boiling water reactor calculational benchmark problem. The calculational benchmark problem was developed at Brookhaven National Laboratory by the request of the U. S. Nuclear Regulatory Commission. The benchmark problem was originally evaluated by Brookhaven National Laboratory using the Oak Ridge National Laboratory discrete ordinates code DORT and the BUGLE-93 cross-section library. In this paper, the Westinghouse RAPTOR-M3G three-dimensional discrete ordinates code was used. A variety of cross-section libraries were used with RAPTOR-M3G including the BUGLE93, BUGLE-96, and BUGLE-B7 cross-section libraries developed at Oak Ridge National Laboratory and ALPAN-VII.0 developed at Westinghouse. In comparing the calculated fast reaction rates using the four aforementioned cross-section libraries in the pressure vessel capsule, for six dosimetry reaction rates, a maximum relative difference of 8% was observed. As such, it is concluded that the results calculated by RAPTOR-M3G are consistent with the benchmark and further that the different vintage BUGLE cross-section libraries investigated are largely self-consistent.

  17. Language Varieties and Standard Language.

    ERIC Educational Resources Information Center

    Quirk, Randolph

    1990-01-01

    Discusses the Kingsman Report (Department of Education and Science, London) on teaching English in Britain, and considers its relevance for teaching English in other countries. The many kinds of English, the labels given to them, and the centrality of the standard language are briefly reviewed. (JL)

  18. Measurements, Standards, and the SI.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1983

    1983-01-01

    Highlights six papers presented at the Seventh Biennial Conference on Chemical Education (Stillwater, Oklahoma 1982). Topics addressed included history, status, and future of SI units, algebra of SI units, periodic table, new standard-state pressure unit, and suggested new names for mole concept ("numerity" and "chemical amount"). (JN)

  19. Skill Standards and Certification Issues.

    ERIC Educational Resources Information Center

    Leslie, Bruce

    America's more than 1,200 community, technical, and junior colleges constitute the largest branch of higher education in the country. Two-year colleges are subjected to rigorous institutional accreditation standards and procedures by regional accrediting bodies. At least 80% of their students are already in the workforce, and they serve the…

  20. MIST facility densitometer comparisons

    SciTech Connect

    Childerson, M.T.

    1987-01-01

    Photon attenuation techniques were used in the Multi-Loop Integral Systems Test (MIST) facility to make void fraction and fluid density measurements. The MIST facility was a scaled physical model of a Babcock and Wilcox lowered loop, nuclear steam supply system. The facility was tested at typical pressurized water reactor fluid conditions. The MIST facility was designed for observing integral system response during a small-break loss-of-coolant accident. The data from the MIST tests are used for improving confidence in safety codes. Dual-beam gamma densitometers provided an indication of the void fraction or mixture density of the fluid at the hot- and cold-leg nozzles.

  1. A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling

    SciTech Connect

    Koch, M.; Kazimi, M.S.

    1991-04-01

    Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed.

  2. The standard model and beyond

    SciTech Connect

    Marciano, W.J.

    1989-05-01

    In these lectures, my aim is to present a status report on the standard model and some key tests of electroweak unification. Within that context, I also discuss how and where hints of new physics may emerge. To accomplish those goals, I have organized my presentation as follows. I survey the standard model parameters with particular emphasis on the gauge coupling constants and vector boson masses. Examples of new physics appendages are also commented on. In addition, I have included an appendix on dimensional regularization and a simple example which employs that technique. I focus on weak charged current phenomenology. Precision tests of the standard model are described and up-to-date values for the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix parameters are presented. Constraints implied by those tests for a 4th generation, extra Z' bosons, and compositeness are discussed. An overview of the physics of tau decays is also included. I discuss weak neutral current phenomenology and the extraction of sin/sup 2//theta/W from experiment. The results presented there are based on a global analysis of all existing data. I have chosen to concentrate that discussion on radiative corrections, the effect of a heavy top quark mass, implications for grand unified theories (GUTS), extra Z' gauge bosons, and atomic parity violation. The potential for further experimental progress is also commented on. Finally, I depart from the narrowest version of the standard model and discuss effects of neutrino masses, mixings, and electromagnetic moments. 32 refs., 3 figs., 5 tabs

  3. Current Abstracts Nuclear Reactors and Technology

    SciTech Connect

    Bales, J.D.; Hicks, S.C.

    1993-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  4. Reactor antineutrino fluxes - Status and challenges

    NASA Astrophysics Data System (ADS)

    Huber, Patrick

    2016-07-01

    In this contribution we describe the current understanding of reactor antineutrino fluxes and point out some recent developments. This is not intended to be a complete review of this vast topic but merely a selection of observations and remarks, which despite their incompleteness, will highlight the status and the challenges of this field.

  5. READING AND WRITING STANDARD ENGLISH.

    ERIC Educational Resources Information Center

    CRAIG, MYRTLE C.

    THE PROBLEM OF HOW TO TEACH PUPILS IN THE ELEMENTARY SCHOOLS TO READ AND WRITE STANDARD ENGLISH IS DISCUSSED. THE VALUE OF ORAL LANGUAGE AS A MEANS OF ATTAINING READING AND WRITING PROFICIENCY IS SUGGESTED. SUCCESS IN THESE AREAS CAN BE ATTAINED IF (1) THE HOME LANGUAGE OF THE CHILD IS ACCEPTED, (2) THE CHILD IS OFFERED MATERIALS ON HIS LEVEL OF…

  6. Five Standards and Student Achievement.

    ERIC Educational Resources Information Center

    Doherty, R. William; Hilberg, R. Soleste; Pinal, America; Tharp, Roland G.

    2003-01-01

    Two studies examine the influence of the Standards for Effective Pedagogy on student achievement gains. Participants were 15 teachers and 266 students (grades 3 to 5) in a public elementary school serving predominantly low-income Latino English Language Learners (ELLs). Implications for teaching practice and research are discussed. (Author/VWL)

  7. Sexuality, Television and Broadcast Standards.

    ERIC Educational Resources Information Center

    Heller, Melvin S.

    This monograph provides a rationale for contemporary guidelines for the television and broadcast network management of sexual content in proposed progam materials. Beginning with a brief outline of the professional practices and responsibilities of broadcast standards editors, it then explores the relationships between sexual development,…

  8. Standard atmosphere - tables and data

    NASA Technical Reports Server (NTRS)

    Diehl, Walter S

    1926-01-01

    Detailed tables of pressures and densities are given for altitudes up to 20,000 meters and to 65,000 feet. In addition to the tables the various data pertaining to the standard atmosphere have been compiled in convenient form for ready reference. This report is an extension of NACA-TR-147.

  9. Status and problems of fusion reactor development.

    PubMed

    Schumacher, U

    2001-03-01

    Thermonuclear fusion of deuterium and tritium constitutes an enormous potential for a safe, environmentally compatible and sustainable energy supply. The fuel source is practically inexhaustible. Further, the safety prospects of a fusion reactor are quite favourable due to the inherently self-limiting fusion process, the limited radiologic toxicity and the passive cooling property. Among a small number of approaches, the concept of toroidal magnetic confinement of fusion plasmas has achieved most impressive scientific and technical progress towards energy release by thermonuclear burn of deuterium-tritium fuels. The status of thermonuclear fusion research activity world-wide is reviewed and present solutions to the complicated physical and technological problems are presented. These problems comprise plasma heating, confinement and exhaust of energy and particles, plasma stability, alpha particle heating, fusion reactor materials, reactor safety and environmental compatibility. The results and the high scientific level of this international research activity provide a sound basis for the realisation of the International Thermonuclear Experimental Reactor (ITER), whose goal is to demonstrate the scientific and technological feasibility of a fusion energy source for peaceful purposes. PMID:11402837

  10. 77 FR 43542 - Cost Accounting Standards: Cost Accounting Standards 412 and 413-Cost Accounting Standards...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-25

    ... Harmonization Rule. The final rule was published at 76 FR 81296 on December 27, 2011. Generally, the technical... Standard (CAS) 412, ``Composition and Measurement of Pension Cost,'' and CAS 413, ``Adjustment and... the final rule that revised Cost Accounting Standard (CAS) 412, ``Composition and Measurement...

  11. Thermal and neutron-physical features of the nuclear reactor for a power pulsation plant for space applications

    NASA Astrophysics Data System (ADS)

    Gordeev, É. G.; Kaminskii, A. S.; Konyukhov, G. V.; Pavshuk, V. A.; Turbina, T. A.

    2012-05-01

    We have explored the possibility of creating small-size reactors with a high power output with the provision of thermal stability and nuclear safety under standard operating conditions and in emergency situations. The neutron-physical features of such a reactor have been considered and variants of its designs preserving the main principles and approaches of nuclear rocket engine technology are presented.

  12. Weld monitor and failure detector for nuclear reactor system

    DOEpatents

    Sutton, Jr., Harry G.

    1987-01-01

    Critical but inaccessible welds in a nuclear reactor system are monitored throughout the life of the reactor by providing small aperture means projecting completely through the reactor vessel wall and also through the weld or welds to be monitored. The aperture means is normally sealed from the atmosphere within the reactor. Any incipient failure or cracking of the weld will cause the environment contained within the reactor to pass into the aperture means and thence to the outer surface of the reactor vessel where its presence is readily detected.

  13. Reactor power system deployment and startup

    NASA Technical Reports Server (NTRS)

    Wetch, J. R.; Nelin, C. J.; Britt, E. J.; Klein, G.

    1985-01-01

    This paper addresses issues that should receive further examination in the near-term as concept selection for development of a U.S. space reactor power system is approached. The issues include: the economics, practicality and system reliability associated with transfer of nuclear spacecraft from low earth shuttle orbits to operational orbits, via chemical propulsion versus nuclear electric propulsion; possible astronaut supervised reactor and nuclear electric propulsion startup in low altitude Shuttle orbit; potential deployment methods for nuclear powered spacecraft from Shuttle; the general public safety of low altitude startup and nuclear safe and disposal orbits; the question of preferred reactor power level; and the question of frozen versus molten alkali metal coolant during launch and deployment. These issues must be considered now because they impact the SP-100 concept selection, power level selection, weight and size limits, use of deployable radiators, reliability requirements, and economics, as well as the degree of need for and the urgency of developing space reactor power systems.

  14. Testing of Gas Reactor Materials and Fuel in the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover

    2004-10-01

    The Advanced Test Reactor (ATR) has long been involved in testing gas reactor materials, and has developed facilities well suited for providing the right conditions and environment for gas reactor tests. This paper discusses the different types of irradiation hardware that have been utilized in past ATR irradiation tests of gas reactor materials. The new Gas Test Loop facility currently being developed for the ATR is discussed and the different approaches being considered in the design of the facility. The different options for an irradiation experiment such as active versus passive temperature control, neutron spectrum tailoring, and different types of lead experiment sweep gas monitors are also discussed. The paper is then concluded with examples of different past and present gas reactor material and fuel irradiations.

  15. TESTING OF GAS REACTOR MATERIALS AND FUEL IN THE ADVANCED TEST REACTOR

    SciTech Connect

    Grover, S.B.

    2004-10-06

    The Advanced Test Reactor (ATR) has long been involved in testing gas reactor materials, and has developed facilities well suited for providing the right conditions and environment for gas reactor tests. This paper discusses the different types of irradiation hardware that have been utilized in past ATR irradiation tests of gas reactor materials. The new Gas Test Loop facility currently being developed for the ATR is discussed and the different approaches being considered in the design of the facility. The different options for an irradiation experiment such as active versus passive temperature control, neutron spectrum tailoring, and different types of lead experiment sweep gas monitors are also discussed. The paper is then concluded with examples of different past and present gas reactor material and fuel irradiations.

  16. Standardized Testing and School Accountability

    ERIC Educational Resources Information Center

    Wiliam, Dylan

    2010-01-01

    This article explores the use of standardized tests to hold schools accountable. The history of testing for accountability is reviewed, and it is shown that currently between-school differences account for less than 10% of the variance in student scores, in part because the progress of individuals is small compared to the spread of achievement…

  17. Software engineering standards and practices

    NASA Technical Reports Server (NTRS)

    Durachka, R. W.

    1981-01-01

    Guidelines are presented for the preparation of a software development plan. The various phases of a software development project are discussed throughout its life cycle including a general description of the software engineering standards and practices to be followed during each phase.

  18. Results and recommendations from the reactor chemistry and corrosion tasks of the reactor materials program

    SciTech Connect

    Baumann, E.W.; Ondrejcin, R.S.

    1990-11-01

    Within the general context of extended service life, the Reactor Materials Program was initiated in 1984. This comprehensive program addressed material performance in SRS reactor tanks and the primary coolant or Process Water System (PWS) piping. Three of the eleven tasks concerned moderator quality and corrosion mitigation. Definition and control of the stainless steel aqueous environment is a key factor in corrosion mitigation. The Reactor Materials Program systematically investigated the SRS environment and its effect on crack initiation and propagation in stainless steel, with the objective of improving this environment. The purpose of this report is to summarize the contributions of Tasks 6, 7 and 10 of the Reactor Materials Program to the understanding and control of moderator quality and its relationship to mitigation of stress corrosion cracking.

  19. Reactor dosimetry and RPV life management

    SciTech Connect

    Belousov, S.; Ilieva, K.; Mitev, M.

    2011-07-01

    Reactor dosimetry (RD) is a tool that provides data for neutron fluence accumulated over the reactor pressure vessel (RPV) during the reactor operation. This information, however, is not sufficient for RPV lifetime assessment. The life management of RPV is a multidisciplinary task. To assess whether the RPV steel properties at the current stage (for actual accumulated neutron fluence) of reactor operation are still 'safe enough,' the dependence of material properties on the fluence must be known; this is a task for material science (MS). Moreover, the mechanical loading over the RPV during normal operation and accidence have to be known, as well, for evaluation, if the RPV material integrity in this loading condition and existing cracks is provided. The crack loading path in terms of stress intensity factor is carried out by structural analyses (SA). Pressure and temperature distribution over RPV used in these analyses are obtained from a thermal hydraulic (TH) calculation. The conjunction of RD and other disciplines in RPV integrity assessment is analyzed in accordance with the FFP (fitness for purpose) approach. It could help to improve the efficiency in multi-disciplinary tasks solutions. (authors)

  20. NEW SOLID FUELS FROM COAL AND BIOMASS WASTE

    SciTech Connect

    Hamid Farzan

    2001-09-24

    Under DOE sponsorship, McDermott Technology, Inc. (MTI), Babcock and Wilcox Company (B and W), and Minergy Corporation developed and evaluated a sludge derived fuel (SDF) made from sewage sludge. Our approach is to dry and agglomerate the sludge, combine it with a fluxing agent, if necessary, and co-fire the resulting fuel with coal in a cyclone boiler to recover the energy and to vitrify mineral matter into a non-leachable product. This product can then be used in the construction industry. A literature search showed that there is significant variability of the sludge fuel properties from a given wastewater plant (seasonal and/or day-to-day changes) or from different wastewater plants. A large sewage sludge sample (30 tons) from a municipal wastewater treatment facility was collected, dried, pelletized and successfully co-fired with coal in a cyclone-equipped pilot. Several sludge particle size distributions were tested. Finer sludge particle size distributions, similar to the standard B and W size distribution for sub-bituminous coal, showed the best combustion and slagging performance. Up to 74.6% and 78.9% sludge was successfully co-fired with pulverized coal and with natural gas, respectively. An economic evaluation on a 25-MW power plant showed the viability of co-firing the optimum SDF in a power generation application. The return on equity was 22 to 31%, adequate to attract investors and allow a full-scale project to proceed. Additional market research and engineering will be required to verify the economic assumptions. Areas to focus on are: plant detail design and detail capital cost estimates, market research into possible project locations, sludge availability at the proposed project locations, market research into electric energy sales and renewable energy sales opportunities at the proposed project location. As a result of this program, wastes that are currently not being used and considered an environmental problem will be processed into a renewable

  1. Status of development and licensing support for advanced liquid metal reactors in the United States

    SciTech Connect

    Pedersen, D.R. ); Gyorey, G. )

    1991-01-01

    The cornerstones of the United States Advanced Liquid Metal Cooled Reactor (ALMR) program sponsored by the Department of Energy are: the ALMR plant design program at General Electric based on the PRISM (Power Reactor Innovative Small Module) concept, and the Integral Fast Reactor program (IFR) at Argonne National Laboratory (ANL). The goal of the US program is to produce a standard, commercial ALMR, including the associated fuel cycle. The paper addresses the status of the IFR program, the ALMR program and the interaction of the ALMR program with the regulatory environment.

  2. Status of development and licensing support for advanced liquid metal reactors in the United States

    SciTech Connect

    Pedersen, D.R.; Gyorey, G.

    1991-12-01

    The cornerstones of the United States Advanced Liquid Metal Cooled Reactor (ALMR) program sponsored by the Department of Energy are: the ALMR plant design program at General Electric based on the PRISM (Power Reactor Innovative Small Module) concept, and the Integral Fast Reactor program (IFR) at Argonne National Laboratory (ANL). The goal of the US program is to produce a standard, commercial ALMR, including the associated fuel cycle. The paper addresses the status of the IFR program, the ALMR program and the interaction of the ALMR program with the regulatory environment.

  3. Research reactor de-fueling and fuel shipment

    SciTech Connect

    Ice, R.D.; Jawdeh, E.; Strydom, J.

    1998-08-01

    Planning for the Georgia Institute of Technology Research Reactor operations during the 1996 Summer Olympic Games began in early 1995. Before any details could be outlined, several preliminary administrative decisions had to be agreed upon by state, city, and university officials. The two major administrative decisions involving the reactor were (1) the security level and requirements and (2) the fuel status of the reactor. The Georgia Tech Research Reactor (GTRR) was a heavy-water moderated and cooled reactor, fueled with high-enriched uranium. The reactor was first licensed in 1964 with an engineered lifetime of thirty years. The reactor was intended for use in research applications and as a teaching facility for nuclear engineering students and reactor operators. Approximately one year prior to the olympics, the Georgia Tech administration decided that the GTRR fuel would be removed. In addition, a heightened, beyond regulatory requirements, security system was to be implemented. This report describes the scheduling, operations, and procedures.

  4. Appliance Standards and Advanced Technologies

    NASA Astrophysics Data System (ADS)

    Desroches, Louis-Benoit

    2011-11-01

    Energy efficiency has long been considered one of the most effective and least costly means of reducing national energy demand. The U.S. Department of Energy runs the appliances and commercial equipment standards program, which sets federal mandatory minimum efficiency levels for many residential appliances, commercial equipment, and lighting products. The Department uses an engineering-economic analysis approach to determine appropriate standard levels that are technologically feasible and economically justified (i.e., a net positive economic benefit to consumers and the nation as a whole). The program has been very successful and has significantly reduced national energy consumption. Efficiency is also a renewable resource, with many new, even more efficient technologies continuously replacing older ones. There are many promising advanced technologies on the horizon today that could dramatically reduce appliance and commercial equipment energy use even further.

  5. RSMASS: A simple model for estimating reactor and shield masses

    SciTech Connect

    Marshall, A.C.; Aragon, J.; Gallup, D.

    1987-01-01

    A simple mathematical model (RSMASS) has been developed to provide rapid estimates of reactor and shield masses for space-based reactor power systems. Approximations are used rather than correlations or detailed calculations to estimate the reactor fuel mass and the masses of the moderator, structure, reflector, pressure vessel, miscellaneous components, and the reactor shield. The fuel mass is determined either by neutronics limits, thermal/hydraulic limits, or fuel damage limits, whichever yields the largest mass. RSMASS requires the reactor power and energy, 24 reactor parameters, and 20 shield parameters to be specified. This parametric approach should be applicable to a very broad range of reactor types. Reactor and shield masses calculated by RSMASS were found to be in good agreement with the masses obtained from detailed calculations.

  6. Reactor Physics Methods and Analysis Capabilities in SCALE

    SciTech Connect

    DeHart, Mark D; Bowman, Stephen M

    2011-01-01

    The TRITON sequence of the SCALE code system provides a powerful, robust, and rigorous approach for performing reactor physics analysis. This paper presents a detailed description of TRITON in terms of its key components used in reactor calculations. The ability to accurately predict the nuclide composition of depleted reactor fuel is important in a wide variety of applications. These applications include, but are not limited to, the design, licensing, and operation of commercial/research reactors and spent-fuel transport/storage systems. New complex design projects such as next-generation power reactors and space reactors require new high-fidelity physics methods, such as those available in SCALE/TRITON, that accurately represent the physics associated with both evolutionary and revolutionary reactor concepts as they depart from traditional and well-understood light water reactor designs.

  7. Reactor Physics Methods and Analysis Capabilities in SCALE

    SciTech Connect

    Mark D. DeHart; Stephen M. Bowman

    2011-05-01

    The TRITON sequence of the SCALE code system provides a powerful, robust, and rigorous approach for performing reactor physics analysis. This paper presents a detailed description of TRITON in terms of its key components used in reactor calculations. The ability to accurately predict the nuclide composition of depleted reactor fuel is important in a wide variety of applications. These applications include, but are not limited to, the design, licensing, and operation of commercial/research reactors and spent-fuel transport/storage systems. New complex design projects such as next-generation power reactors and space reactors require new high-fidelity physics methods, such as those available in SCALE/TRITON, that accurately represent the physics associated with both evolutionary and revolutionary reactor concepts as they depart from traditional and well-understood light water reactor designs.

  8. ANOPP programming and documentation standards document

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Standards defining the requirements for preparing software for the Aircraft Noise Prediction Program (ANOPP) were given. It is the intent of these standards to provide definition, design, coding, and documentation criteria for the achievement of a unity among ANOPP products. These standards apply to all of ANOPP's standard software system. The standards encompass philosophy as well as techniques and conventions.

  9. Temperature and Doppler coefficients of various space nuclear reactors

    SciTech Connect

    Mughabghab, S.F.; Ludewig, H. Schmidt, E.

    1993-10-01

    Temperature and Doppler feedback effects for a Particle Bed Reactor (PBR) designed to operate as a propulsion reactor are investigated. Several moderator types and compositions fuel enrichments and reactor sizes are considered in this study. From this study it could be concluded that a PBR can be configured which has a negative prompt feedback, zero coolant worth, and a small positive to zero moderator worth. This reactor would put the lowest demands on the control system.

  10. AIR DUCTS STAND NEXT TO (AND OUTSIDE OF) REACTOR CABINET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AIR DUCTS STAND NEXT TO (AND OUTSIDE OF) REACTOR CABINET AT THE SOUTHWEST AND NORTHEAST CORNERS OF THE REACTOR'S THERMAL SHIELD. THEY WILL BE ENVELOPED IN BIOLOGICAL CONCRETE SHIELD. IN THE SUB-BASEMENT, THE TWO DUCTS WILL JOIN TOGETHER AND EXIT THE BUILDING TO THE FAN HOUSE. CAMERA FACING NORTH. INL NEGATIVE NO. 1625. Unknown Photographer, 3/6/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  11. Gas Reactor Plant Analyzer and Simulator for Hydrogen Production

    Energy Science and Technology Software Center (ESTSC)

    2004-01-01

    This software is used to study and analyze various configurations of plant equipment for gas cooled nuclear reactor applications. The user of this software would likely be interested in optimizing the economic, safety, and operating performance of this type of reactor. The code provides the capability for the user through his input to configure networks of nuclear reactor components. The components available include turbine, compressor, heat exchanger, reactor core, coolers, bypass valves, and control systems.

  12. The standard model and beyond

    SciTech Connect

    Gaillard, M.K.

    1989-05-01

    The field of elementary particle, or high energy, physics seeks to identify the most elementary constituents of nature and to study the forces that govern their interactions. Increasing the energy of a probe in a laboratory experiment increases its power as an effective microscope for discerning increasingly smaller structures of matter. Thus we have learned that matter is composed of molecules that are in turn composed of atoms, that the atom consists of a nucleus surrounded by a cloud of electrons, and that the atomic nucleus is a collection of protons and neutrons. The more powerful probes provided by high energy particle accelerators have taught us that a nucleon is itself made of objects called quarks. The forces among quarks and electrons are understood within a general theoretical framework called the ''standard model,'' that accounts for all interactions observed in high energy laboratory experiments to date. These are commonly categorized as the ''strong,'' ''weak'' and ''electromagnetic'' interactions. In this lecture I will describe the standard model, and point out some of its limitations. Probing for deeper structures in quarks and electrons defines the present frontier of particle physics. I will discuss some speculative ideas about extensions of the standard model and/or yet more fundamental forces that may underlie our present picture. 11 figs., 1 tab.

  13. JANUS reactor d and d project.

    SciTech Connect

    Fellhauer, C. R.

    1998-02-16

    Argonne National Laboratory (ANL-E) has recently completed the decontamination and decommissioning (D and D) of the JANUS Reactor Facility located in Building 202. The 200 KW reactor operated from August 1963 to March 1992. The facility was used to study the effects of both high and low doses of fission neutrons in animals. There were two exposure rooms on opposite sides of the reactor and the reactor was therefore named after the two-faced Roman god. The High Dose Room was capable of specimen exposure at a dose rate of 3,600 rads per hour. During calendar year 1996 a detailed characterization of the facility was performed by ANL-E Health Physics personnel. ANL-E Analytical Services performed the required sample analysis. An Auditable Safety Analysis and an Environmental Assessment were completed. D and D plans, procedures and procurement documents were prepared and approved. A D and D subcontractor was selected and a firm, fixed price contract awarded for the field work and final survey effort. The D and D subcontractor was mobilized to ANL-E in January 1997. Electrical isolation of all reactor equipment and control panels was accomplished and the equipment removed. A total of 207,230 pounds (94,082 Kg) of lead shielding was removed, surveyed and sampled, and free-released for recycle. All primary and secondary piping was removed, size reduced and packaged for disposal or recycled as appropriate. The reactor vessel was removed, sized reduced and packaged as radioactive waste in April. The activated graphite block reflector was removed next, followed by the bioshield concrete and steel. All of this material was packaged as low level waste. Total low level radioactive waste generation was 4002.1 cubic feet (113.3 cubic meters). Mixed waste generation was 538 cubic feet (15.2 cubic meters). The Final Release Survey was completed in September. The project field work was completed in 38 weeks without any lost-time accidents, personnel contaminations or unplanned

  14. Preliminary evaluation of the coal resources for part of the Wilcox Group (Paleocene through Eocene), central Texas

    USGS Publications Warehouse

    Warwick, Peter D.; Aubourg, Claire E.; Suitt, Stephen E.; Podwysocki, Steven M.; Schultz, Adam C.

    2002-01-01

    The Wilcox Group of central Texas contains shallow (<500 ft) coal deposits that are mined for use in mine-mouth electric power generating plants. These coal deposits range in apparent rank from lignite to sub-bituminous (Tewalt, 1986), and are similar in rank and composition to shallow coal deposits in the northeast and south Texas areas (fig. 1). The coal zones and associated strata in the central Texas study area generally dip to the southeast toward the Gulf of Mexico coastline and basin center. The central Texas resource assessment area includes parts of eight counties (fig. 2). The assessment area was selected to encompass current mining areas and because of the availability of subsurface stratigraphic data in the area. The assessment area is roughly 160 miles long and 5 to 25 miles wide and generally follows the outcrop of the Paleocene - Eocene Wilcox Group in central Texas (figs. 1 and 2). Approximately 1,800 subsurface stratigraphic records from rotary and core drill holes were used to assess the resources of the central Texas assessment area. Of the 1,800 drill holes, only 168 are public data points and are primarily located in the areas that have been permitted for surface mining (fig. 2; Appendix 1). The remaining 1632 drill holes, which are distributed throughout the assessment area, were provided to the U.S. Geological Survey (USGS) on a confidential basis by various coal companies for use in regional studies. Nine coal zones were identified and assessed in the central Texas assessment area. Several other coal zones (as many as 9 unassessed zones) were identified but were not assessed due to the thinness of the coal beds or the lack of deep stratigraphic data (fig. 3). A total of 7.7 billion short tons of coal was identified in this assessment that excluded the resources within current coal mine lease areas (fig. 2). Corresponding maps were constructed to show the overburden, structure contour of the top of the coal zone, and cumulative coal

  15. Testing of Gas Reactor Fuel and Materials in the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover

    2006-10-01

    The recent growth in interest for high temperature gas reactors has resulted in an increased need for materials and fuel testing for this type of reactor. The Advanced Test Reactor (ATR), located at the US Department of Energy’s Idaho National Laboratory, has long been involved in testing gas reactor fuel and materials, and has facilities and capabilities to provide the right environment for gas reactor irradiation experiments. These capabilities include both passive sealed capsule experiments, and instrumented/actively controlled experiments. The instrumented/actively controlled experiments typically contain thermocouples and control the irradiation temperature, but on-line measurements and controls for pressure and gas environment have also been performed in past irradiations. The ATR has an existing automated gas temperature control system that can maintain temperature in an irradiation experiment within very tight bounds, and has developed an on-line fission product monitoring system that is especially well suited for testing gas reactor particle fuel. The ATR’s control system, which consists primarily of vertical cylinders used to rotate neutron poisons/reflectors toward or away from the reactor core, provides a constant vertical flux profile over the duration of each operating cycle. This constant chopped cosine shaped axial flux profile, with a relatively flat peak at the vertical centre of the core, is more desirable for experiments than a constantly moving axial flux peak resulting from a control system of axially positioned control components which are vertically withdrawn from the core.

  16. Plasma Reactor Modeling and Validation Experiments

    NASA Technical Reports Server (NTRS)

    Meyyappan, M.; Bose, D.; Hash, D.; Hwang, H.; Cruden, B.; Sharma, S. P.; Rao, M. V. V. S.; Arnold, Jim (Technical Monitor)

    2001-01-01

    Plasma processing is a key processing stop in integrated circuit manufacturing. Low pressure, high density plum reactors are widely used for etching and deposition. Inductively coupled plasma (ICP) source has become popular recently in many processing applications. In order to accelerate equipment and process design, an understanding of the physics and chemistry, particularly, plasma power coupling, plasma and processing uniformity and mechanism is important. This understanding is facilitated by comprehensive modeling and simulation as well as plasma diagnostics to provide the necessary data for model validation which are addressed in this presentation. We have developed a complete code for simulating an ICP reactor and the model consists of transport of electrons, ions, and neutrals, Poisson's equation, and Maxwell's equation along with gas flow and energy equations. Results will be presented for chlorine and fluorocarbon plasmas and compared with data from Langmuir probe, mass spectrometry and FTIR.

  17. REACTOR CORE SURROUNDED BY BERYLLIUM MODERATOR. CAMERA LOOKS DOWN AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    REACTOR CORE SURROUNDED BY BERYLLIUM MODERATOR. CAMERA LOOKS DOWN AND TOWARD NORTH INTO LOWER GRID CASTING. HOLES OF VARIOUS SIZES ACCOMMODATE COOLANT WATER AND EXPERIMENTAL POSITIONS. INL NEGATIVE NO. 4197. Unknown Photographer, 2/11/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  18. R- AND P- REACTOR BUILDING IN-SITU DECOMISSIONING VISUALIZATION

    SciTech Connect

    Bobbitt, J.; Vrettos, N.; Howard, M.

    2010-06-15

    During the early 1950s, five production reactor facilities were built at the Savannah River Site. These facilities were built to produce materials to support the building of the nation's nuclear weapons stockpile in response to the Cold War. R-Reactor and P-Reactor were the first two facilities completed in 1953 and 1954.

  19. Reactor Coolant Pump seal issues and their applicability to new reactor designs

    SciTech Connect

    Ruger, C.J.; Higgins, J.C.

    1993-11-01

    Reactor Coolant Pumps (RCPs) of various types are used to circulate the primary coolant through the reactor in most reactor designs. RCPs generally contain mechanical seals to limit the leakage of pressurized reactor coolant along the pump drive shaft into the containment. The relatively large number of RCP seal and seal auxiliary system failures experienced at US operating plants during the 1970`s and early 1980`s raised concerns from the US Nuclear Regulatory Commission (NRC) that gross failures may lead to reactor core uncovery and subsequent core damage. Some seal failure events resulted in a loss of primary coolant to the containment at flow rates greater than the normal makeup capacity of Pressurized Water Reactor (PWR) plants. This is an example of RCP seal failures resulting in a small Loss of Coolant Accident (LOCA). This paper discusses observed and potential causes of RCP seal failure and the recommendations for limiting the likelihood of a seal induced small LOCA. Issues arising out of the research supporting these recommendations and subsequent public comments by the utility industry on them, serve as lessons learned, which are applicable to the design of new reactor plants.

  20. Nuclear reactor flow control method and apparatus

    DOEpatents

    Church, John P.

    1993-01-01

    Method and apparatus for improving coolant flow in a nuclear reactor during accident as well as nominal conditions. The reactor has a plurality of fuel elements in sleeves and a plenum above the fuel and through which the sleeves penetrate. Holes are provided in the sleeve so that coolant from the plenum can enter the sleeve and cool the fuel. The number and size of the holes are varied from sleeve to sleeve with the number and size of holes being greater for sleeves toward the center of the core and less for sleeves toward the periphery of the core. Preferably the holes are all the same diameter and arranged in rows and columns, the rows starting from the bottom of every sleeve and fewer rows in peripheral sleeves and more rows in the central sleeves.

  1. Nuclear reactor flow control method and apparatus

    DOEpatents

    Church, J.P.

    1993-03-30

    Method and apparatus for improving coolant flow in a nuclear reactor during accident as well as nominal conditions. The reactor has a plurality of fuel elements in sleeves and a plenum above the fuel and through which the sleeves penetrate. Holes are provided in the sleeve so that coolant from the plenum can enter the sleeve and cool the fuel. The number and size of the holes are varied from sleeve to sleeve with the number and size of holes being greater for sleeves toward the center of the core and less for sleeves toward the periphery of the core. Preferably the holes are all the same diameter and arranged in rows and columns, the rows starting from the bottom of every sleeve and fewer rows in peripheral sleeves and more rows in the central sleeves.

  2. Automatic Processing of Documentation and Standardization

    ERIC Educational Resources Information Center

    Lochard, Jean

    1971-01-01

    The need for standardization, the nature of such standardization, and the work carried out by the Technical Committee on Documentation of the International Organization for Standardization are described. (Author/AB)

  3. Integral reactor system and method for fuel cells

    SciTech Connect

    Fernandes, Neil Edward; Brown, Michael S; Cheekatamarla, Praveen; Deng, Thomas; Dimitrakopoulos, James; Litka, Anthony F

    2013-11-19

    A reactor system is integrated internally within an anode-side cavity of a fuel cell. The reactor system is configured to convert hydrocarbons to smaller species while mitigating the lower production of solid carbon. The reactor system may incorporate one or more of a pre-reforming section, an anode exhaust gas recirculation device, and a reforming section.

  4. Practical Combinations of Light-Water Reactors and Fast-Reactors for Future Actinide Transmutation

    SciTech Connect

    Collins, Emory D; Renier, John-Paul

    2007-01-01

    Multicycle partitioning-transmutation (P-T) studies continue to show that use of existing light-water reactors (LWRs) and new advanced light-water reactors (ALWRs) can effectively transmute transuranic (TRU) actinides, enabling initiation of full actinide recycle much earlier than waiting for the development and deployment of sufficient fast reactor (FR) capacity. The combination of initial P-T cycles using LWRs/ALWRs in parallel with economic improvements to FR usage for electricity production, and a follow-on transition period in which FRs are deployed, is a practical approach to near-term closure of the nuclear fuel cycle with full actinide recycle.

  5. Space reactors - past, present, and future

    SciTech Connect

    Buden, D.; Angelo, J.A.

    1983-08-01

    The successful test flights of the Space Shuttle mark the start of a new era--an era of routine manned access into cislunar space. Human technical development at the start of the next Millenium will be highlighted by the creation of Man's extraterrestrial civilization with off-planet expansion of the human resource base. In the 1990s and beyond, advanced-design nuclear reactors could represent the prime source of both space power and propulsion. Many sophisticated military and civilian space missions of the future will require first kilowatt and then megawatt levels of power. This paper reviews key technology developments that accompanied past US space nuclear power development efforts, describes on-going programs, and then explores reactor technologies that will satisfy megawatt power level needs and beyond.

  6. Plasma generators, reactor systems and related methods

    DOEpatents

    Kong, Peter C.; Pink, Robert J.; Lee, James E.

    2007-06-19

    A plasma generator, reactor and associated systems and methods are provided in accordance with the present invention. A plasma reactor may include multiple sections or modules which are removably coupled together to form a chamber. Associated with each section is an electrode set including three electrodes with each electrode being coupled to a single phase of a three-phase alternating current (AC) power supply. The electrodes are disposed about a longitudinal centerline of the chamber and are arranged to provide and extended arc and generate an extended body of plasma. The electrodes are displaceable relative to the longitudinal centerline of the chamber. A control system may be utilized so as to automatically displace the electrodes and define an electrode gap responsive to measure voltage or current levels of the associated power supply.

  7. Credible Computations: Standard and Uncertainty

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel B.; VanDalsem, William (Technical Monitor)

    1995-01-01

    The discipline of computational fluid dynamics (CFD) is at a crossroad. Most of the significant advances related to computational methods have taken place. The emphasis is now shifting from methods to results. Significant efforts are made in applying CFD to solve design problems. The value of CFD results in design depends on the credibility of computed results for the intended use. The process of establishing credibility requires a standard so that there is a consistency and uniformity in this process and in the interpretation of its outcome. The key element for establishing the credibility is the quantification of uncertainty. This paper presents salient features of a proposed standard and a procedure for determining the uncertainty. A customer of CFD products - computer codes and computed results - expects the following: A computer code in terms of its logic, numerics, and fluid dynamics and the results generated by this code are in compliance with specified requirements. This expectation is fulfilling by verification and validation of these requirements. The verification process assesses whether the problem is solved correctly and the validation process determines whether the right problem is solved. Standards for these processes are recommended. There is always some uncertainty, even if one uses validated models and verified computed results. The value of this uncertainty is important in the design process. This value is obtained by conducting a sensitivity-uncertainty analysis. Sensitivity analysis is generally defined as the procedure for determining the sensitivities of output parameters to input parameters. This analysis is a necessary step in the uncertainty analysis, and the results of this analysis highlight which computed quantities and integrated quantities in computations need to be determined accurately and which quantities do not require such attention. Uncertainty analysis is generally defined as the analysis of the effect of the uncertainties

  8. Space reactor assessment and validation study

    NASA Technical Reports Server (NTRS)

    Gedeon, Stephen; Morey, Dennis

    1987-01-01

    The present difficulties experienced by the United States in launching payloads into space has suggested a number of problems which are associated with the handling of hazardous materials in spacecraft. The question has arisen as to the safety of launching highly radioactive material such as plutonium-238, related to the possibility of its dispersion into the atmosphere during a launch vehicle explosion. An alternative is the use of a small nuclear reactor which is not started until it is in space and contains little or no radioactivity at launch. A first order assessment of six small reactor concepts with power levels up to 100 MWe was performed. Both the nuclear feasibility of these concepts to operate at their rated power levels between 7 and 10 years and the capability of these concepts to remain subcritical both before and during launch and also in the case of water immersion during a potential launch failure or abort were investigated.

  9. Computational mathematics and physics of fusion reactors.

    PubMed

    Garabedian, Paul R

    2003-11-25

    Theory has contributed significantly to recent advances in magnetic fusion research. New configurations have been found for a stellarator experiment by computational methods. Solutions of a free-boundary problem are applied to study the performance of the plasma and look for islands in the magnetic surfaces. Mathematical analysis and numerical calculations have been used to study equilibrium, stability, and transport of optimized fusion reactors. PMID:14614129

  10. Computational mathematics and physics of fusion reactors

    PubMed Central

    Garabedian, Paul R.

    2003-01-01

    Theory has contributed significantly to recent advances in magnetic fusion research. New configurations have been found for a stellarator experiment by computational methods. Solutions of a free-boundary problem are applied to study the performance of the plasma and look for islands in the magnetic surfaces. Mathematical analysis and numerical calculations have been used to study equilibrium, stability, and transport of optimized fusion reactors. PMID:14614129

  11. Nuclear reactors and the nuclear fuel cycle

    SciTech Connect

    Pearlman, H

    1989-11-01

    According to the author, the first sustained nuclear fission chain reaction was not at the University of Chicago, but at the Oklo site in the African country of Gabon. Proof of this phenomenon is provided by mass spectrometric and analytical chemical measurements by French scientists. The U.S. experience in developing power-producing reactors and their related fuel and fuel cycles is discussed.

  12. Reactor building assembly and method of operation

    SciTech Connect

    Fennern, L.E.; Caraway, H.A.; Hsu, Li C.

    1993-06-01

    A reactor building assembly is described comprising: a reactor pressure vessel containing a reactor core for generating heat in the form of steam; a containment vessel enclosing said pressure vessel; a first enclosure surrounding said containment vessel and spaced laterally therefrom to define a first chamber there between, and having a top and a bottom; a second enclosure surrounding said first enclosure and spaced laterally therefrom to define a second chamber there between, and having a top and a bottom; a building inlet for receiving into said second chamber fresh air from outside said second enclosure; a building outlet for discharging stale air from said first chamber; a transfer duct disposed through said first enclosure selectively joining in flow communication said first and second chambers; said building inlet being disposed at said second enclosure top, said building outlet being disposed at said first enclosure top, and said transfer duct being disposed adjacent said first enclosure bottom for allowing said fresh air to flow downwardly by gravity through said second chamber and through said transfer duct into said first chamber for cooling said first chamber, said stale air flowing upwardly by natural buoyancy for discharger from said first chamber through said building outlet; an exhaust stack disposed above said building outlet and in flow communication therewith for channeling upwardly said stale air from said first chamber for discharge into the surrounding environs; and a passive first driving means for increasing flow of said stale air from said building outlet comprising: an isolation pool containing isolation water; an isolation condenser disposed in said isolation pool, and joined in flow communication with said reactor pressure vessel for receiving primary steam therefrom, said primary steam being cooled in said isolation condenser for heating said isolation water to generate secondary steam.

  13. Oklo reactors and implications for nuclear science

    NASA Astrophysics Data System (ADS)

    Davis, E. D.; Gould, C. R.; Sharapov, E. I.

    2014-04-01

    We summarize the nuclear physics interests in the Oklo natural nuclear reactors, focusing particularly on developments over the past two decades. Modeling of the reactors has become increasingly sophisticated, employing Monte Carlo simulations with realistic geometries and materials that can generate both the thermal and epithermal fractions. The water content and the temperatures of the reactors have been uncertain parameters. We discuss recent work pointing to lower temperatures than earlier assumed. Nuclear cross-sections are input to all Oklo modeling and we discuss a parameter, the 175Lu ground state cross-section for thermal neutron capture leading to the isomer 176mLu, that warrants further investigation. Studies of the time dependence of dimensionless fundamental constants have been a driver for much of the recent work on Oklo. We critically review neutron resonance energy shifts and their dependence on the fine structure constant α and the ratio Xq = mq/Λ (where mq is the average of the u and d current quark masses and Λ is the mass scale of quantum chromodynamics (QCD)). We suggest a formula for the combined sensitivity to α and Xq that exhibits the dependence on proton number Z and mass number A, potentially allowing quantum electrodynamic (QED) and QCD effects to be disentangled if a broader range of isotopic abundance data becomes available.

  14. Plant maintenance and advanced reactors, 2007

    SciTech Connect

    Agnihotri, Newal

    2007-09-15

    The focus of the September-October issue is on plant maintenance and advanced reactors. Major articles/reports in this issue include: A new day for energy in America; Committed to success more than ever, by Andy White, GE--Hitachi Nuclear Energy; Competitive technology for decades, by Steve Tritch, Westinghouse Electric Company; Pioneers of positive community relationship, by Exelon Nuclear; A robust design for 60-years, by Ray Ganthner, Areva; Aiming at no evacuation plants, by Kumiaki Moriya, Hitachi-GE Nuclear Energy, Ltd.; and, Desalination and hydrogen economy, by Dr. I. Khamis, International Atomic Energy Agency. Industry innovation articles in this issue are: Reactor vessel closure head project, by Jeff LeClair, Prairie Island Nuclear Generating Plant; and Submersible remote-operated vehicle, by Michael S. Rose, Entergy's Fitzpatrick Nuclear Station.

  15. Nuclear reactor insulation and preheat system

    DOEpatents

    Wampole, Nevin C.

    1978-01-01

    An insulation and preheat system for preselected components of a fluid cooled nuclear reactor. A gas tight barrier or compartment of thermal insulation surrounds the selected components and includes devices to heat the internal atmosphere of the compartment. An external surface of the compartment or enclosure is cooled, such as by a circulating fluid. The heating devices provide for preheating of the components, as well as maintenance of a temperature sufficient to ensure that the reactor coolant fluid will not solidify during shutdown. The external cooling limits the heat transferred to other plant structures, such as supporting concrete and steel. The barrier is spaced far enough from the surrounded components so as to allow access for remote or manual inspection, maintenance, and repair.

  16. NEUTRONIC REACTOR OPERATIONAL METHOD AND CORE SYSTEM

    DOEpatents

    Winters, C.E.; Graham, C.B.; Culver, J.S.; Wilson, R.H.

    1960-07-19

    Homogeneous neutronic reactor systems are described wherein an aqueous fuel solution is continuously circulated through a spherical core tank. The pumped fuel solution-is injected tangentially into the hollow spherical interior, thereby maintaining vigorous rotation of the solution within the tank in the form of a vortex; gaseous radiolytic decomposition products concentrate within the axial vortex cavity. The evolved gas is continuously discharged through a gas- outlet port registering with an extremity of the vortex cavity. and the solution stream is discharged through an annular liquid outlet port concentrically encircling the gas outlet by virtue of which the vortex and its cavity are maintained precisely axially aligned with the gas outlet. A primary heat exchanger extracts useful heat from the hot effluent fuel solution before its recirculation into the core tank. Hollow cylinders and other alternative core- tank configurations defining geometric volumes of revolution about a principal axis are also covered. AEC's Homogeneous Reactor Experiment No. 1 is a preferred embodiment.

  17. NUCLEAR REACTOR AND THERMIONIC FUEL ELEMENT THEREFOR

    DOEpatents

    Rasor, N.S.; Hirsch, R.L.

    1963-12-01

    The patent relates to the direct conversion of fission heat to electricity by use of thermionic plasma diodes having fissionable material cathodes, said diodes arranged to form a critical mass in a nuclear reactor. The patent describes a fuel element comprising a plurality of diodes each having a fissionable material cathode, an anode around said cathode, and an ionizable gas therebetween. Provision is made for flowing the gas and current serially through the diodes. (AEC)

  18. Reports, standards, and safety guides

    SciTech Connect

    Silver, E.G.; Queener, D.S.

    1982-07-01

    This article contains four lists of various safety-related documents as compiled by the editors. These lists are as follows: (1) Foreign Reports, (2) Other Reports (originated by and pertaining to the US nuclear community), (3) Regulatory Guides, and (4) Nuclear Standards. Each lits contains the documents in its category which were published (or became available) during the 2-month period (March-April 1982) covered by this issue of Nuclear Safety. The availability and cost of the documents are noted in most instances.

  19. MELCOR development for existing and advanced reactors

    SciTech Connect

    Summers, R.M.

    1993-12-31

    Recent efforts in MELCOR development to address previously identified deficiencies have resulted in release of MELCOR 1.8.2, a much-improved version of the code. Major new models have been implemented for direct containment heating, ice condensers, debris quenching, lower plenum debris behavior, core materials interactions` and radial relocation of debris. Significant improvements have also been made in the modeling of interfacial momentum exchange and in the modeling of fission product release, condensation/evaporation, and aerosol behavior. Efforts are underway to address two-phase hydrodynamics difficulties, to improve modeling of water condensation on structures and fine-scale natural circulation within the reactor vessel, and to implement CORCON-Mod3. Improvements are also being made to MELCOR`s capability to handle new features of the advanced light water reactor designs, including drainage of water films on connected heat structures, heat transfer from the external surface of the reactor vessel to a flooded cavity, and creep rupture failure of the lower head. Additional development needs in other areas are discussed.

  20. Space reactor system and subsystem investigations: Assessment of technology issues for the reactor and shield subsystem, SP-100 Program

    NASA Astrophysics Data System (ADS)

    Atkins, D. F.; Lillie, A. F.

    1983-06-01

    Preliminary assessment was completed of nuclear technology as it relates to candidate reactor/shield subsystems for the SP-100 Program. The scope of the assessment was confined to the nuclear package (to the reactor and shield subsystems). Nine generic reactor subsystems were addressed for the assessment.

  1. Safety requirements, facility user needs, and reactor concepts for a new Broad Application Test Reactor

    SciTech Connect

    Ryskamp, J.M.; Liebenthal, J.L.; Denison, A.B.; Fletcher, C.D.

    1992-07-01

    This report describes the EG&G Laboratory Directed Research and Development Program (LDRD) Broad Application Test Reactor (BATR) Project that was conducted in fiscal year 1991. The scope of this project was divided into three phases: a project process definition phase, a requirements development phase, and a preconceptual reactor design and evaluation phase. Multidisciplinary teams of experts conducted each phase. This report presents the need for a new test reactor, the project process definition, a set of current and projected regulatory compliance and safety requirements, a set of facility user needs for a broad range of projected testing missions, and descriptions of reactor concepts capable of meeting these requirements. This information can be applied to strategic planning to provide the Department of Energy with management options.

  2. Safety requirements, facility user needs, and reactor concepts for a new Broad Application Test Reactor

    SciTech Connect

    Ryskamp, J.M.; Liebenthal, J.L.; Denison, A.B.; Fletcher, C.D.

    1992-07-01

    This report describes the EG G Laboratory Directed Research and Development Program (LDRD) Broad Application Test Reactor (BATR) Project that was conducted in fiscal year 1991. The scope of this project was divided into three phases: a project process definition phase, a requirements development phase, and a preconceptual reactor design and evaluation phase. Multidisciplinary teams of experts conducted each phase. This report presents the need for a new test reactor, the project process definition, a set of current and projected regulatory compliance and safety requirements, a set of facility user needs for a broad range of projected testing missions, and descriptions of reactor concepts capable of meeting these requirements. This information can be applied to strategic planning to provide the Department of Energy with management options.

  3. Computed Tomography software and standards

    SciTech Connect

    Azevedo, S.G.; Martz, H.E.; Skeate, M.F.; Schneberk, D.J.; Roberson, G.P.

    1990-02-20

    This document establishes the software design, nomenclature, and conventions for industrial Computed Tomography (CT) used in the Nondestructive Evaluation Section at Lawrence Livermore National Laboratory. It is mainly a users guide to the technical use of the CT computer codes, but also presents a proposed standard for describing CT experiments and reconstructions. Each part of this document specifies different aspects of the CT software organization. A set of tables at the end describes the CT parameters of interest in our project. 4 refs., 6 figs., 1 tab.

  4. Very High Temperature Reactor (VHTR) Deep Burn Core and Fuel Analysis -- Complete Design Selection for the Pebble Bed Reactor

    SciTech Connect

    B. Boer; A. M. Ougouag

    2010-09-01

    The Deep-Burn (DB) concept focuses on the destruction of transuranic nuclides from used light water reactor fuel. These transuranic nuclides are incorporated into TRISO coated fuel particles and used in gas-cooled reactors with the aim of a fractional fuel burnup of 60 to 70% in fissions per initial metal atom (FIMA). This high performance is expected through the use of multiple recirculation passes of the fuel in pebble form without any physical or chemical changes between passes. In particular, the concept does not call for reprocessing of the fuel between passes. In principle, the DB pebble bed concept employs the same reactor designs as the presently envisioned low-enriched uranium core designs, such as the 400 MWth Pebble Bed Modular Reactor (PBMR-400). Although it has been shown in the previous Fiscal Year (2009) that a PuO2 fueled pebble bed reactor concept is viable, achieving a high fuel burnup, while remaining within safety-imposed prescribed operational limits for fuel temperature, power peaking and temperature reactivity feedback coefficients for the entire temperature range, is challenging. The presence of the isotopes 239-Pu, 240-Pu and 241-Pu that have resonances in the thermal energy range significantly modifies the neutron thermal energy spectrum as compared to a ”standard,” UO2-fueled core. Therefore, the DB pebble bed core exhibits a relatively hard neutron energy spectrum. However, regions within the pebble bed that are near the graphite reflectors experience a locally softer spectrum. This can lead to power and temperature peaking in these regions. Furthermore, a shift of the thermal energy spectrum with increasing temperature can lead to increased absorption in the resonances of the fissile Pu isotopes. This can lead to a positive temperature reactivity coefficient for the graphite moderator under certain operating conditions. The effort of this task in FY 2010 has focused on the optimization of the core to maximize the pebble discharge

  5. Reactor vessel fluence evaluation and dosimetry

    SciTech Connect

    Lois, L. )

    1992-01-01

    The methodology currently in use for the estimation of the fast neutron fluence to the pressure vessel (inside surface and reactor cavity) is based on discrete ordinates two-dimensional codes such as DOT or its updated version DORT. This methodology assumes a P[sub 3] scattering, an S[sub 8] quadrature approximation, and cross sections based on the ENDF/B-IV file. Associated one-dimensional codes are often used for the cross-section collapsing portion of the calculation. The neutron spectrum at the pressure vessel location of interest is estimated assuming a [sup 235]U, [sup 239]Pu, or [sup 241]Pu source spectrum or an appropriate combination thereof. The two-dimensional codes and associated methodologies were benchmarked in the early eighties using the results of the PCA and PSF Oak Ridge National Laboratory reactor experiments. The benchmarking experiments were estimated to provide an uncertainty of [approx]10%. The results of the calculations applied to a reactor were estimated to have an uncertainty of [approx]20%. This level of uncertainty was assumed in the estimation of the margin term defined in 10CFR50.61

  6. Design and evaluation of experimental ceramic automobile thermal reactors

    NASA Technical Reports Server (NTRS)

    Stone, P. L.; Blankenship, C. P.

    1974-01-01

    The paper summarizes the results obtained in an exploratory evaluation of ceramics for automobile thermal reactors. Candidate ceramic materials were evaluated in several reactor designs using both engine dynamometer and vehicle road tests. Silicon carbide contained in a corrugated metal support structure exhibited the best performance, lasting 1100 hours in engine dynamometer tests and for more than 38,600 kilimeters (24,000 miles) in vehicle road tests. Although reactors containing glass-ceramic components did not perform as well as silicon carbide, the glass-ceramics still offer good potential for reactor use with improved reactor designs.

  7. Design and evaluation of experimental ceramic automobile thermal reactors

    NASA Technical Reports Server (NTRS)

    Stone, P. L.; Blankenship, C. P.

    1974-01-01

    The results obtained in an exploratory evaluation of ceramics for automobile thermal reactors are summarized. Candidate ceramic materials were evaluated in several reactor designs by using both engine-dynamometer and vehicle road tests. Silicon carbide contained in a corrugated-metal support structure exhibited the best performance, lasting 1100 hr in engine-dynamometer tests and more than 38,600 km (24000 miles) in vehicle road tests. Although reactors containing glass-ceramic components did not perform as well as those containing silicon carbide, the glass-ceramics still offer good potential for reactor use with improved reactor designs.

  8. Fluidized bed reactor utilizing a plate support and method of operating the reactor

    SciTech Connect

    Korenberg, J.

    1984-10-09

    A bed support, and a fluidizing bed reactor incorporating the bed support, the bed support including a horizontal support surface with a centrally disposed conduit for removing tramp material and/or agglomerated material from the reactor. The horizontal support surface has fluidizing air source jet nozzles for directing pressurized air toward the area above the conduit. In a first embodiment, the conduit has downwardly diverging walls. In a second embodiment, the horizontal support surface further includes a bar grate having central fluidizing air source jet nozzles positioned within the conduit. The method of operating the fluidized bed reactor includes directing pressurized air at an angle to the horizontal support surface both for fluidizing the bed and for moving the tramp material and/or agglomerated material toward the conduit for removal from the reactor through the conduit.

  9. LBB application in the US operating and advanced reactors

    SciTech Connect

    Wichman, K.; Tsao, J.; Mayfield, M.

    1997-04-01

    The regulatory application of leak before break (LBB) for operating and advanced reactors in the U.S. is described. The U.S. Nuclear Regulatory Commission (NRC) has approved the application of LBB for six piping systems in operating reactors: reactor coolant system primary loop piping, pressurizer surge, safety injection accumulator, residual heat removal, safety injection, and reactor coolant loop bypass. The LBB concept has also been applied in the design of advanced light water reactors. LBB applications, and regulatory considerations, for pressurized water reactors and advanced light water reactors are summarized in this paper. Technology development for LBB performed by the NRC and the International Piping Integrity Research Group is also briefly summarized.

  10. Delayed recombination and standard rulers

    SciTech Connect

    De Bernardis, Francesco; Melchiorri, Alessandro; Bean, Rachel; Galli, Silvia; Silk, Joseph I.; Verde, Licia

    2009-02-15

    Measurements of baryonic acoustic oscillations (BAOs) in galaxy surveys have been recognized as a powerful tool for constraining dark energy. However, this method relies on the knowledge of the size of the acoustic horizon at recombination derived from cosmic microwave background (CMB) anisotropy measurements. This estimate is typically derived assuming a standard recombination scheme; additional radiation sources can delay recombination altering the cosmic ionization history and the cosmological inferences drawn from CMB and BAO data. In this paper we quantify the effect of delayed recombination on the determination of dark energy parameters from future BAO surveys such as the Baryon Oscillation Spectroscopic Survey and the Wide-Field Multi-Object Spectrograph. We find the impact to be small but still not negligible. In particular, if recombination is nonstandard (to a level still allowed by CMB data), but this is ignored, future surveys may incorrectly suggest the presence of a redshift-dependent dark energy component. On the other hand, in the case of delayed recombination, adding to the analysis one extra parameter describing deviations from standard recombination does not significantly degrade the error bars on dark energy parameters and yields unbiased estimates. This is due to the CMB-BAO complementarity.

  11. Estimation of productivity of Lobo 6 sand, Lower Wilcox, Texas, by identifying diagenetic clays with well log data

    SciTech Connect

    Berilgen, B.H.; Sinha, A.K.; Fertl, W.H.

    1988-06-01

    The laminated, structural, and grain-coating primary clays in the Lower Wilcox Sand, Lobo 6, tend to be potassium-bearing illite and some smectite, whereas diagenetic clays, the cause of pore-throat plugging, are largely potassium-deficient kaolinite and chlorite. These diagenetic clays largely control reservoir permeability, depending on the degree of pore-throat plugging. This paper presents different methods for qualitative and quantitative evaluation of these diagenetic clays, which are related to productivity of the Lobo 6 sand. Qualitative evaluation consists of crossplot techniques using natural spectral gamma ray and other log data plus selected computed reservoir parameters. For quantitative evaluation, a sophisticated clay-analysis program that uses log-derived cation exchange capacity (CEC) and hydrogen index (HI) values is used. The average volume of different clay types in the zones of interest is calculated, presented, and correlated with production and core data. This approach was used on eight wells on which production data are available to evaluate the presence of diagenetic clays and to estimate productivity of the Lobo 6 sand. The reliability of the log-derived method applied is verified by the excellent correlation with actual production data.

  12. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Zinn, W.H.; Anderson, H.L.

    1958-09-16

    Means are presenied for increasing the reproduction ratio of a gaphite- moderated neutronic reactor by diminishing the neutron loss due to absorption or capture by gaseous impurities within the reactor. This means comprised of a fluid-tight casing or envelope completely enclosing the reactor and provided with a valve through which the casing, and thereby the reactor, may be evacuated of atmospheric air.

  13. Summary of Architectural Standards and Requirements.

    ERIC Educational Resources Information Center

    Sonoma State Univ., Rohnert Park, CA. California Inst. of Human Services.

    This publication compares five major regulations and standards on architectural accessibility. It provides a comparison summary of 20 areas within (1) the standards of the Architectural and Transportation Barriers Compliance Board (ATBCB), (2) the standards of the American National Standards Institute, (3) the regulations of the Federal General…

  14. Crosswalks: PACESETTER Mathematics and the National Standards.

    ERIC Educational Resources Information Center

    College Board, New York, NY.

    The National Council of Teachers of Mathematics (NCTM) has published three documents that propose standards related to mathematics education called "The Curriculum and Evaluation Standards for School Mathematics" (1989), "The Professional Standards for Teaching Mathematics" (1991), and "The Assessment Standards for School Mathematics" (1995). The…

  15. Standards for Text and Hypermedia Processing.

    ERIC Educational Resources Information Center

    Bryan, Martin

    1993-01-01

    Describes international standards for information technology, including an emerging standard for interchangeable multimedia and hypermedia scripts. Highlights include data interchange standards; HyTime (Hypermedia/Time-Based Structuring Language); DSSSL (Document Style Semantics and Specification Language); SPDL (Standard Page Description…

  16. Standard for Models and Simulations

    NASA Technical Reports Server (NTRS)

    Steele, Martin J.

    2016-01-01

    This NASA Technical Standard establishes uniform practices in modeling and simulation to ensure essential requirements are applied to the design, development, and use of models and simulations (MS), while ensuring acceptance criteria are defined by the program project and approved by the responsible Technical Authority. It also provides an approved set of requirements, recommendations, and criteria with which MS may be developed, accepted, and used in support of NASA activities. As the MS disciplines employed and application areas involved are broad, the common aspects of MS across all NASA activities are addressed. The discipline-specific details of a given MS should be obtained from relevant recommended practices. The primary purpose is to reduce the risks associated with MS-influenced decisions by ensuring the complete communication of the credibility of MS results.

  17. External Standards or Standard Addition? Selecting and Validating a Method of Standardization

    NASA Astrophysics Data System (ADS)

    Harvey, David T.

    2002-05-01

    A common feature of many problem-based laboratories in analytical chemistry is a lengthy independent project involving the analysis of "real-world" samples. Students research the literature, adapting and developing a method suitable for their analyte, sample matrix, and problem scenario. Because these projects encompass the complete analytical process, students must consider issues such as obtaining a representative sample, selecting a method of analysis, developing a suitable standardization, validating results, and implementing appropriate quality assessment/quality control practices. Most textbooks and monographs suitable for an undergraduate course in analytical chemistry, however, provide only limited coverage of these important topics. The need for short laboratory experiments emphasizing important facets of method development, such as selecting a method of standardization, is evident. The experiment reported here, which is suitable for an introductory course in analytical chemistry, illustrates the importance of matrix effects when selecting a method of standardization. Students also learn how a spike recovery is used to validate an analytical method, and obtain a practical experience in the difference between performing an external standardization and a standard addition.

  18. Animal Guts as Ideal Reactors: An Open-Ended Project for a Course in Kinetics and Reactor Design.

    ERIC Educational Resources Information Center

    Carlson, Eric D.; Gast, Alice P.

    1998-01-01

    Presents an open-ended project tailored for a senior kinetics and reactor design course in which basic reactor design equations are used to model the digestive systems of several animals. Describes the assignment as well as the results. (DDR)

  19. (Nuclear reactor surveillance and diagnostics)

    SciTech Connect

    Kryter, R.C.

    1990-11-01

    The International Program Committee for SMORN VI met in Paris to organize the contributed technical papers into sessions and to appoint session chairmen. These objectives were accomplished without controversy. SMORN VI has the makings of successful venture, with 80 papers submitted by authors from 20 countries throughout Europe, Asia, and the Western Hemisphere. For the first time in this symposium series, papers were received from Cuba and the USSR

  20. Evaluation of rotating-cylinder and piston-cylinder reactors for ground-based emulsion polymerization

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; El-Aasser, M. S.

    1987-01-01

    The objectives of this program are to apply ground-based emulsion polymerization reactor technology to improve the production of: monodisperse latex particles for calibration standards, chromatographic separation column packing, and medical research; and commercial latexes such as those used for coatings, foams, and adhesives.

  1. Driver options and burn-cycle selection based on power-reactor considerations

    SciTech Connect

    Ehst, D.A.

    1983-04-01

    Reactor implications for noninductive current drive are presented based on a number of studies. First, the lower hybrid driver for the STARFIRE reactor is discussed and the disadvantages of this driver are reviewed. Next, the results of an extensive search for a better current driver are presented. A large number of alternatives were compared in a common context, the DEMO reactor, in order to examine their suitability on a standard basis. Finally, the methodology of a study, currently in progress, is described. The goals of this last study are to compare tokamak reactor designs optimized for operation under different burn cycles, in order to assess the actual benefits and costs of pulsed versus steady-state operation.

  2. Metal fires and their implications for advanced reactors.

    SciTech Connect

    Nowlen, Steven Patrick; Figueroa, Victor G.; Olivier, Tara Jean; Hewson, John C.; Blanchat, Thomas K.

    2010-10-01

    This report details the primary results of the Laboratory Directed Research and Development project (LDRD 08-0857) Metal Fires and Their Implications for Advance Reactors. Advanced reactors may employ liquid metal coolants, typically sodium, because of their many desirable qualities. This project addressed some of the significant challenges associated with the use of liquid metal coolants, primary among these being the extremely rapid oxidation (combustion) that occurs at the high operating temperatures in reactors. The project has identified a number of areas for which gaps existed in knowledge pertinent to reactor safety analyses. Experimental and analysis capabilities were developed in these areas to varying degrees. In conjunction with team participation in a DOE gap analysis panel, focus was on the oxidation of spilled sodium on thermally massive surfaces. These are spills onto surfaces that substantially cool the sodium during the oxidation process, and they are relevant because standard risk mitigation procedures seek to move spill environments into this regime through rapid draining of spilled sodium. While the spilled sodium is not quenched, the burning mode is different in that there is a transition to a smoldering mode that has not been comprehensively described previously. Prior work has described spilled sodium as a pool fire, but there is a crucial, experimentally-observed transition to a smoldering mode of oxidation. A series of experimental measurements have comprehensively described the thermal evolution of this type of sodium fire for the first time. A new physics-based model has been developed that also predicts the thermal evolution of this type of sodium fire for the first time. The model introduces smoldering oxidation through porous oxide layers to go beyond traditional pool fire analyses that have been carried out previously in order to predict experimentally observed trends. Combined, these developments add significantly to the safety

  3. RAPID-L Highly Automated Fast Reactor Concept Without Any Control Rods (1) Reactor concept and plant dynamics analyses

    SciTech Connect

    Kambe, Mitsuru; Tsunoda, Hirokazu; Mishima, Kaichiro; Iwamura, Takamichi

    2002-07-01

    The 200 kWe uranium-nitride fueled lithium cooled fast reactor concept 'RAPID-L' to achieve highly automated reactor operation has been demonstrated. RAPID-L is designed for Lunar base power system. It is one of the variants of RAPID (Refueling by All Pins Integrated Design), fast reactor concept, which enable quick and simplified refueling. The essential feature of RAPID concept is that the reactor core consists of an integrated fuel assembly instead of conventional fuel subassemblies. In this small size reactor core, 2700 fuel pins are integrated altogether and encased in a fuel cartridge. Refueling is conducted by replacing a fuel cartridge. The reactor can be operated without refueling for up to 10 years. Unique challenges in reactivity control systems design have been attempted in RAPID-L concept. The reactor has no control rod, but involves the following innovative reactivity control systems: Lithium Expansion Modules (LEM) for inherent reactivity feedback, Lithium Injection Modules (LIM) for inherent ultimate shutdown, and Lithium Release Modules (LRM) for automated reactor startup. All these systems adopt lithium-6 as a liquid poison instead of B{sub 4}C rods. In combination with LEMs, LIMs and LRMs, RAPID-L can be operated without operator. This is the first reactor concept ever established in the world. This reactor concept is also applicable to the terrestrial fast reactors. In this paper, RAPID-L reactor concept and its transient characteristics are presented. (authors)

  4. ANL CP-5 decontamination and decommissioning project necessary and sufficient pilot. Report of the standards identification team on the selection of the necessary and sufficient standards set

    SciTech Connect

    1996-05-01

    The CP-5 reactor was a heavy-water moderated and cooled, highly-enriched uranium-fueled thermal reactor designed for supplying neutrons for research. The reactor was operated almost continuously for 25 years until its final shutdown in 1979. It is situated on approximately three acres in the southwestern section of Argonne National Laboratory. In 1980, all nuclear fuel and the heavy water that could be drained from the process systems were shipped off-site, and the CP-5 facility was placed into lay-up pending funding for decommissioning. It was maintained in the lay-up condition with a minimum of maintenance until 1990, when the decontamination and decommissioning (D and D) project began. This D and D project provides for the disassembly and removal of all radioactive components, equipment, and structures that are associated with the CP-5 facility. The experimental area around the CP-5 reactor has been prepared for D and D, and the area outside the facility has been remediated. The reactor primary coolant and support systems have been removed and packaged as waste. The significant remaining tasks are (1) removal of the reactor internals and the biological shield structure; (2) decontamination of the rod storage area; (3) decontamination of the various radioactive material storage and handling facilities, including the fuel pool; and (4) decontamination and dismantlement of the building. This report describes the scope of the project, identification of standards for various aspects of the project, the lessons learned, and consideration for implementation.

  5. BDDR, a new CEA technological and operating reactor database

    SciTech Connect

    Soldevilla, M.; Salmons, S.; Espinosa, B.

    2013-07-01

    The new application BDDR (Reactor database) has been developed at CEA in order to manage nuclear reactors technological and operating data. This application is a knowledge management tool which meets several internal needs: -) to facilitate scenario studies for any set of reactors, e.g. non-proliferation assessments; -) to make core physics studies easier, whatever the reactor design (PWR-Pressurized Water Reactor-, BWR-Boiling Water Reactor-, MAGNOX- Magnesium Oxide reactor-, CANDU - CANada Deuterium Uranium-, FBR - Fast Breeder Reactor -, etc.); -) to preserve the technological data of all reactors (past and present, power generating or experimental, naval propulsion,...) in a unique repository. Within the application database are enclosed location data and operating history data as well as a tree-like structure containing numerous technological data. These data address all kinds of reactors features and components. A few neutronics data are also included (neutrons fluxes). The BDDR application is based on open-source technologies and thin client/server architecture. The software architecture has been made flexible enough to allow for any change. (authors)

  6. Issues in Purchasing and Maintaining Intrinsic Standards

    SciTech Connect

    PETTIT,RICHARD B.; JAEGER,KLAUS; EHRLICH,CHARLES D.

    2000-09-12

    Intrinsic standards are widely used in the metrology community because they realize the best level uncertainty for many metrology parameters. For some intrinsic standards, recommended practices have been developed to assist metrologists in the selection of equipment and the development of appropriate procedures in order to realize the intrinsic standard. As with the addition of any new standard, the metrology laboratory should consider the pros and cons relative to their needs before purchasing the standard so that the laboratory obtains the maximum benefit from setting up and maintaining these standards. While the specific issues that need to be addressed depend upon the specific intrinsic standard and the level of realization, general issues that should be considered include ensuring that the intrinsic standard is compatible with the laboratory environment, that the standard is compatible with the current and future workload, and whether additional support standards will be required in order to properly maintain the intrinsic standard. When intrinsic standards are used to realize the best level of uncertainty for a specific metrology parameter, they usually require critical and important maintenance activities. These activities can including training of staff in the system operation, as well as safety procedures; performing periodic characterization measurements to ensure proper system operation; carrying out periodic intercomparisons with similar intrinsic standards so that proper operation is demonstrated; and maintaining control or trend charts of system performance. This paper has summarized many of these important issues and therefore should be beneficial to any laboratory that is considering the purchase of an intrinsic standard.

  7. External Standards or Standard Additions? Selecting and Validating a Method of Standardization.

    ERIC Educational Resources Information Center

    Harvey, David

    2002-01-01

    Reports an experiment which is suitable for an introductory course in analytical chemistry and which illustrates the importance of matrix effects when selecting a method of standardization. Asserts that students learn how a spike recovery is used to validate an analytical method, and obtain practical experience in the difference between performing…

  8. Diversification and Challenges of Software Engineering Standards

    NASA Technical Reports Server (NTRS)

    Poon, Peter T.

    1994-01-01

    The author poses certain questions in this paper: 'In the future, should there be just one software engineering standards set? If so, how can we work towards that goal? What are the challenges of internationalizing standards?' Based on the author's personal view, the statement of his position is as follows: 'There should NOT be just one set of software engineering standards in the future. At the same time, there should NOT be the proliferation of standards, and the number of sets of standards should be kept to a minimum.It is important to understand the diversification of the areas which are spanned by the software engineering standards.' The author goes on to describe the diversification of processes, the diversification in the national and international character of standards organizations, the diversification of the professional organizations producing standards, the diversification of the types of businesses and industries, and the challenges of internationalizing standards.

  9. New and revised standards for coke production

    SciTech Connect

    G.A. Kotsyuba; M.I. Alpatov; Y.G. Shapoval

    2009-07-15

    The need for new and revised standards for coke production in Ukraine and Russia is outlined. Such standards should address improvements in plant operation, working conditions, environmental protection, energy conservation, fire and explosion safety, and economic indices.

  10. NEUTRONIC REACTOR COUNTER METHOD AND SYSTEM

    DOEpatents

    Graham, C.B.; Spiewak, I.

    1960-05-31

    An improved method is given for controlling the rate of fission in circulating-fuel neutronic reactors in which the fuel is a homogeneous liquid containing fissionable material and a neutron moderator. A change in the rate of flssion is effected by preferentially retaining apart from the circulating fuel a variable amount of either fissionable material or moderator, thereby varying the concentration of fissionable material in the fuel. In the case of an aqueous fuel solution a portion of the water may be continuously vaporized from the circulating solution and the amount of condensate, or condensate plus make-up water, returned to the solution is varied to control the fission rate.

  11. Yuzhno-sakhalin TET`s-1 modernization study. Volume 2. Export trade information

    SciTech Connect

    1995-05-01

    The study, conducted by Babcock and Wilcox, was funded by the U.S. Trade and Development Agency. The report shows the results of a feasibility study conducted to assess the rehabilitation of the Sakhalin TETs-1 thermal power station. The study includes the complete plant equipment and operations, and recommendation and budgetary pricing to upgrade to present standards. This is Volume 2 of the report and it contains the following sections: (B) Technical; (C) Commercial; (D) Socioeconomic Considerations; (E) Conclusions; (F) Survey of Electric Utilities in the Russian Far East.

  12. 78 FR 69139 - Physical Security-Design Certification and Operating Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-18

    ...On September 30, 2013, the U.S. Nuclear Regulatory Commission (NRC) published a request for public comment on draft revision of NUREG-0800, ``Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants,'' LWR Edition: Section 13.6.2, ``Physical Security--Design Certification and Operating Reactors.'' The public comment period was originally scheduled to close on......

  13. 45 CFR 162.910 - Maintenance of standards and adoption of modifications and new standards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Maintenance of standards and adoption of... Transactions § 162.910 Maintenance of standards and adoption of modifications and new standards. (a... of existing standards and adoption of new standards. The Secretary considers a recommendation for...

  14. 45 CFR 162.910 - Maintenance of standards and adoption of modifications and new standards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 1 2011-10-01 2011-10-01 false Maintenance of standards and adoption of... Transactions § 162.910 Maintenance of standards and adoption of modifications and new standards. (a... of existing standards and adoption of new standards. The Secretary considers a recommendation for...

  15. Dynamic reactor modeling with applications to SPR and ZEDNA.

    SciTech Connect

    Suo-Anttila, Ahti Jorma

    2011-12-01

    A dynamic reactor model has been developed for pulse-type reactor applications. The model predicts reactor power, axial and radial fuel expansion, prompt and delayed neutron population, and prompt and delayed gamma population. All model predictions are made as a function of time. The model includes the reactivity effect of fuel expansion on a dynamic timescale as a feedback mechanism for reactor power. All inputs to the model are calculated from first principles, either directly by solving systems of equations, or indirectly from Monte Carlo N-Particle Transport Code (MCNP) derived results. The model does not include any empirical parameters that can be adjusted to match experimental data. Comparisons of model predictions to actual Sandia Pulse Reactor SPR-III pulses show very good agreement for a full range of pulse magnitudes. The model is also applied to Z-pinch externally driven neutron assembly (ZEDNA) type reactor designs to model both normal and off-normal ZEDNA operations.

  16. A shell-and-tube pyrolysis reactor for olefin production

    SciTech Connect

    Heyndericks, G.J.; Froment, G.B. ); Martin, G.H. , 92 - Rueil-Malmaison )

    1992-09-01

    In this paper, a new thermal cracking technology using shell-and-tube type pyrolysis reactors, in which the accent is shifted from radiative to convective heat transfer, is introduced. A smooth temperature distribution can be achieved with the proposed reactor geometry. This lowers the coking rate and increases the run length of the reactor and the lifetime of the tubes. A reactor model accounting in great detail for the reactor geometry and the different heat-transfer mechanisms is combined with a rigorous kinetic model based on radical reaction mechanisms to predict the temperature distribution in the reactor, the heat transfer from flue gas to process gas, and the naphtha conversion, together with the associated product yields for the various tubes.

  17. Terrestrial and Reactor Antineutrinos in Borexino

    NASA Astrophysics Data System (ADS)

    Chen, M. C.; Calaprice, F. P.; Rothschild, C. G.

    1998-10-01

    The Earth is an abundant source of antineutrinos coming from the decay of radioactive elements in the mantle and crust. Detecting these antineutrinos is a challenge due to their small cross section and low energies. The Borexino solar neutrino experiment will also be an excellent detector for barν_e. With 300 tons of ultra-low-background liquid scintillator, surrounded by an efficient muon veto, the inverse-β-decay reaction: barνe + p arrow e^+ + n (Q = 1.8 MeV), can be exploited to detect terrestrial antineutrinos from the uranium and thorium decay chains, with little background. A direct measurement of the total uranium and thorium abundance would establish important geophysical constraints on the heat generation and thermal history of the Earth. Starting with the most recent uranium and thorium distribution and abundance data, and employing a global map of crustal type and thickness, we calculated the antineutrino fluxes for several sites. We estimate a terrestrial antineutrino event rate in Borexino of 10 events per year. This small signal can be distinguished over the neutrino background from the world's nuclear power reactors by measuring the positron energy spectrum from the barνe events. The possibility to perform a long-baseline oscillation experiment, reaching Δ m^2 ≈ 10-6 eV^2, using the nuclear reactors in Europe will also be discussed.

  18. Research reactors - an overview

    SciTech Connect

    West, C.D.

    1997-03-01

    A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs.

  19. Reactor coolant pump monitoring and diagnostic system

    SciTech Connect

    Singer, R.M.; Gross, K.C.; Walsh, M. ); Humenik, K.E. )

    1990-01-01

    In order to reliably and safely operate a nuclear power plant, it is necessary to continuously monitor the performance of numerous subsystems to confirm that the plant state is within its prescribed limits. An important function of a properly designed monitoring system is the detection of incipient faults in all subsystems (with the avoidance of false alarms) coupled with an information system that provides the operators with fault diagnosis, prognosis of fault progression and recommended (either automatic or prescriptive) corrective action. In this paper, such a system is described that has been applied to reactor coolant pumps. This system includes a sensitive pattern-recognition technique based upon the sequential probability ratio test (SPRT) that detects incipient faults from validated signals, an expert system embodying knowledge bases on pump and sensor performance, extensive hypertext files containing operating and emergency procedures as well as pump and sensor information and a graphical interface providing the operator with easily perceived information on the location and character of the fault as well as recommended corrective action. This system is in the prototype stage and is currently being validated utilizing data from a liquid-metal cooled fast reactor (EBR-II). 3 refs., 4 figs.

  20. Cancer Care Ontario Colonoscopy Standards: Standards and evidentiary base

    PubMed Central

    Rabeneck, L; Rumble, RB; Axler, J; Smith, A; Armstrong, D; Vinden, C; Belliveau, P; Rhodes, K; Zwaal, C; Mai, V; Dixon, P

    2007-01-01

    Colorectal cancer (CRC) is the most common cause of non-tobacco-related cancer deaths in Canadian men and women, accounting for 10% of all cancer deaths. An estimated 7800 men and women will be diagnosed with CRC, and 3250 will die from the disease in Ontario in 2007. Given that CRC incidence and mortality rates in Ontario are among the highest in the world, the best opportunity to reduce this burden of disease would be through screening. The present report describes the findings and recommendations of Cancer Care Ontario’s Colonoscopy Standards Expert Panel, which was convened in March 2006 by the Program in Evidence-Based Care. The recommendations will form the basis of the quality assurance program for colonoscopy delivered in support of Ontario’s CRC screening program. PMID:18026582

  1. Making and Measuring the California History Standards

    ERIC Educational Resources Information Center

    Fogo, Bradley

    2011-01-01

    The California history and social science standards-based reform has been touted as the "gold standard" for state history curricula. But the standards, framework, and tests that constitute this reform provide inconsistent and contradictory criteria for teaching and assessing history and social science. An examination of the political process that…

  2. Programmable Automated Welding System (PAWS)

    NASA Technical Reports Server (NTRS)

    Kline, Martin D.

    1994-01-01

    An ambitious project to develop an advanced, automated welding system is being funded as part of the Navy Joining Center with Babcock & Wilcox as the prime integrator. This program, the Programmable Automated Welding System (PAWS), involves the integration of both planning and real-time control activities. Planning functions include the development of a graphical decision support system within a standard, portable environment. Real-time control functions include the development of a modular, intelligent, real-time control system and the integration of a number of welding process sensors. This paper presents each of these components of the PAWS and discusses how they can be utilized to automate the welding operation.

  3. Using thermal balance model to determine optimal reactor volume and insulation material needed in a laboratory-scale composting reactor.

    PubMed

    Wang, Yongjiang; Pang, Li; Liu, Xinyu; Wang, Yuansheng; Zhou, Kexun; Luo, Fei

    2016-04-01

    A comprehensive model of thermal balance and degradation kinetics was developed to determine the optimal reactor volume and insulation material. Biological heat production and five channels of heat loss were considered in the thermal balance model for a representative reactor. Degradation kinetics was developed to make the model applicable to different types of substrates. Simulation of the model showed that the internal energy accumulation of compost was the significant heat loss channel, following by heat loss through reactor wall, and latent heat of water evaporation. Lower proportion of heat loss occurred through the reactor wall when the reactor volume was larger. Insulating materials with low densities and low conductive coefficients were more desirable for building small reactor systems. Model developed could be used to determine the optimal reactor volume and insulation material needed before the fabrication of a lab-scale composting system. PMID:26871299

  4. Aligning Standards and Curriculum for Classroom Success.

    ERIC Educational Resources Information Center

    Perna, Daniel M.; Davis, James R.

    This book provides classroom teachers at every grade level and subject the tools and background to effectively work with standards as a guide in their planning. It explains the process by which educators can rearticulate state standards and align the locally rearticulated standards to their curriculum and student performance. Six chapters include:…

  5. Standards and Criteria for AMS School Accreditation.

    ERIC Educational Resources Information Center

    American Montessori Society, New York, NY.

    This pamphlet lists 15 standards, and criteria to be met to reach those standards, used in accrediting American Montessori Society schools. Part 1, dealing with institutional stability, describes standards and criteria for school organization and administration, financial practices and procedures, physical facilities, enrollment policies, child…

  6. RGG: Reactor geometry (and mesh) generator

    SciTech Connect

    Jain, R.; Tautges, T.

    2012-07-01

    The reactor geometry (and mesh) generator RGG takes advantage of information about repeated structures in both assembly and core lattices to simplify the creation of geometry and mesh. It is released as open source software as a part of the MeshKit mesh generation library. The methodology operates in three stages. First, assembly geometry models of various types are generated by a tool called AssyGen. Next, the assembly model or models are meshed by using MeshKit tools or the CUBIT mesh generation tool-kit, optionally based on a journal file output by AssyGen. After one or more assembly model meshes have been constructed, a tool called CoreGen uses a copy/move/merge process to arrange the model meshes into a core model. In this paper, we present the current state of tools and new features in RGG. We also discuss the parallel-enabled CoreGen, which in several cases achieves super-linear speedups since the problems fit in available RAM at higher processor counts. Several RGG applications - 1/6 VHTR model, 1/4 PWR reactor core, and a full-core model for Monju - are reported. (authors)

  7. Plant maintenance and advanced reactors issue, 2008

    SciTech Connect

    Agnihotri, Newal

    2009-09-15

    The focus of the September-October issue is on plant maintenance and advanced reactors. Major articles/reports in this issue include: Technologies of national importance, by Tsutomu Ohkubo, Japan Atomic Energy Agency, Japan; Modeling and simulation advances brighten future nuclear power, by Hussein Khalil, Argonne National Laboratory, Energy and desalination projects, by Ratan Kumar Sinha, Bhabha Atomic Research Centre, India; A plant with simplified design, by John Higgins, GE Hitachi Nuclear Energy; A forward thinking design, by Ray Ganthner, AREVA; A passively safe design, by Ed Cummins, Westinghouse Electric Company; A market-ready design, by Ken Petrunik, Atomic Energy of Canada Limited, Canada; Generation IV Advanced Nuclear Energy Systems, by Jacques Bouchard, French Commissariat a l'Energie Atomique, France, and Ralph Bennett, Idaho National Laboratory; Innovative reactor designs, a report by IAEA, Vienna, Austria; Guidance for new vendors, by John Nakoski, U.S. Nuclear Regulatory Commission; Road map for future energy, by John Cleveland, International Atomic Energy Agency, Vienna, Austria; and, Vermont's largest source of electricity, by Tyler Lamberts, Entergy Nuclear Operations, Inc. The Industry Innovation article is titled Intelligent monitoring technology, by Chris Demars, Exelon Nuclear.

  8. Metrology and ionospheric observation standards

    NASA Astrophysics Data System (ADS)

    Panshin, Evgeniy; Minligareev, Vladimir; Pronin, Anton

    Accuracy and ionospheric observation validity are urgent trends nowadays. WMO, URSI and national metrological and standardisation services bring forward requirements and descriptions of the ionospheric observation means. Researches in the sphere of metrological and standardisation observation moved to the next level in the Russian Federation. Fedorov Institute of Applied Geophysics (IAG) is in charge of ionospheric observation in the Russian Federation and the National Technical Committee, TC-101 , which was set up on the base of IAG- of the standardisation in the sphere. TC-101 can be the platform for initiation of the core international committee in the network of ISO The new type of the ionosounde “Parus-A” is engineered, which is up to the national requirements. “Parus-A” calibration and test were conducted by National metrological Institute (NMI) -D.I. Mendeleyev Institute for Metrology (VNIIM), signed CIMP MRA in 1991. VNIIM is a basic NMI in the sphere of Space weather (including ionospheric observations), the founder of which was celebrated chemist and metrologist Dmitriy I. Mendeleyev. Tests and calibration were carried out for the 1st time throughout 50-year-history of ionosonde exploitation in Russia. The following metrological characteristics were tested: -measurement range of radiofrequency time delay 0.5-10 ms; -time measurement inaccuracy of radio- frequency pulse ±12mcs; -frequency range of radio impulse 1-20 MHz ; -measurement inaccuracy of radio impulse carrier frequency± 5KHz. For example, the sound impulse simulator that was built-in in the ionosounde was used for measurement range of radiofrequency time delay testing. The number of standards on different levels is developed. - “Ionospheric observation guidance”; - “The Earth ionosphere. Terms and definitions”.

  9. Fluidized bed reactor apparatus and related gasification system

    SciTech Connect

    Fernandez, J.M.; Hoffert, F.D.; Marina, J.M.; Milligan, J.D.

    1982-11-16

    A process and pressurized, gasification reactor apparatus are claimed for converting combustible carbon containing materials such as coal char and other carbonaceous solids or carbonaceous solids/heavy oil combinations to an intermediate heating value fuel gas. The gasification reactor includes an insulated fluidized bed reactor chamber, an upper reactor housing for a freely suspended bayonet bundle type heat exchanger for (A) superheating incoming saturated steam and (B) cooling outgoing high temperature product gas, and a lower reactor housing structure which includes a freefloating, conically-shaped perforated plenum chamber. The superheated steam and oxygen are premixed with the plenum chamber before being pressure directed into the fluidized bed reactor chamber for mixture and combustion with the incoming combustible carbon containing materials such as coal char. After reaction of the superheated steam, oxygen and coal char in the fluidized bed reactor at temperatures ranging from 900/sup 0/ F to 1750/sup 0/ F, the product fuel gases and associated particulate matter are cooled by steam flowing through the bayonet heat exchanger, the steam being superheated by this exchange. After discharge from the heat exchanger, the fuel gas product containing particulate matter is pressure directed into a conventional cyclone separator for (A) separation of the desired product gases and (B) return of the particulate matter for further recycling in the reactor chamber. Undesirable ash clinkers are gravitationally and pressure directed out of the reactor chamber through a central ash withdrawal pipe.

  10. National Agenda for Hydrogen Codes and Standards

    SciTech Connect

    Blake, C.

    2010-05-01

    This paper provides an overview of hydrogen codes and standards with an emphasis on the national effort supported and managed by the U.S. Department of Energy (DOE). With the help and cooperation of standards and model code development organizations, industry, and other interested parties, DOE has established a coordinated national agenda for hydrogen and fuel cell codes and standards. With the adoption of the Research, Development, and Demonstration Roadmap and with its implementation through the Codes and Standards Technical Team, DOE helps strengthen the scientific basis for requirements incorporated in codes and standards that, in turn, will facilitate international market receptivity for hydrogen and fuel cell technologies.

  11. Recent reactor testing and experience with gamma thermometers

    SciTech Connect

    Waring, J.P.; Smith, R.D.

    1983-02-01

    Recent experience with gamma thermometers for light water reactors has primarily been in the Framatome reactors operated by Electricite de France. Other recent testing has taken place at Oak Ridge National Laboratory and the Otto Hahn ship reactor. Earlier experience with gamma thermometers was in heavy water reactors at Savannah River and Halden. This paper presents recent data from the light water reactor (LWR) programs. The principles of design and operation of the Radcal gamma thermometer were presented in ''Gamma Thermometer Developments for Light Water Reactors'', Leyse and Smith/sup 1/. Observations from LWRs confirm the earlier experience from heavy water reactors that the gamma thermometer units give signals which are proportional to the power of surrounding fuel rods and virtually independent of exposure, surrounding poison and other conditions which affect signals of neutron sensitive devices. After 200 sensor-years in EdF reactors, there has been no change in the sensitivity of the devices. Nonetheless, the Radcal units can be recalibrated in-reactor by the introduction of electrical heating via a heater cable imbedded in the device. Algorithms and signal processing software have been developed to interpret and display the gamma thermometer signals. The results of this processing are illustrated here.

  12. Issues and Methods for Standard-Setting.

    ERIC Educational Resources Information Center

    Hambleton, Ronald K.; And Others

    Issues involved in standard setting along with methods for standard setting are reviewed, with specific reference to their relevance for criterion referenced testing. Definitions are given of continuum and state models, and traditional and normative standard setting procedures. Since continuum models are considered more appropriate for criterion…

  13. Inherently safe reactors and a second nuclear era.

    PubMed

    Weinberg, A M; Spiewak, I

    1984-06-29

    The Swedish PIUS reactor and the German-American small modular high-temperature gas-cooled reactor are inherently safe-that is, their safety relies not upon intervention of humans or of electromechanical devices but on immutable principles of physics and chemistry. A second nuclear era may require commercialization and deployment of such inherently safe reactors, even though existing light-water reactors appear to be as safe as other well-accepted sources of central electricity, particularly hydroelectric dams. PMID:17793362

  14. Heat and mass transfer intensification in coaxial reactor

    NASA Astrophysics Data System (ADS)

    Ananyev, D. V.; Halitova, G. R.

    2014-04-01

    The work considers heat and mass transfer in the homophasic polymerization reactor. The reactor is a coaxial channel with internal tube in the form of a channel of confusor-diffuser type. The authors compared the degree of polymer transformation in the intensified coaxial reactor with internal tube of confusor-diffuser type and the reactor with constant rectilinear longitudinal section. It was found that in coaxial channels with internal tube of confusor-diffuser type, it is possible to reach high values of the transformation degree and to improve the quality of the obtained polymer.

  15. Slurry reactor design studies

    SciTech Connect

    Fox, J.M.; Degen, B.D.; Cady, G.; Deslate, F.D.; Summers, R.L. ); Akgerman, A. ); Smith, J.M. )

    1990-06-01

    The objective of these studies was to perform a realistic evaluation of the relative costs of tublar-fixed-bed and slurry reactors for methanol, mixed alcohols and Fischer-Tropsch syntheses under conditions where they would realistically be expected to operate. The slurry Fischer-Tropsch reactor was, therefore, operated at low H{sub 2}/CO ratio on gas directly from a Shell gasifier. The fixed-bed reactor was operated on 2.0 H{sub 2}/CO ratio gas after adjustment by shift and CO{sub 2} removal. Every attempt was made to give each reactor the benefit of its optimum design condition and correlations were developed to extend the models beyond the range of the experimental pilot plant data. For the methanol design, comparisons were made for a recycle plant with high methanol yield, this being the standard design condition. It is recognized that this is not necessarily the optimum application for the slurry reactor, which is being proposed for a once-through operation, coproducing methanol and power. Consideration is also given to the applicability of the slurry reactor to mixed alcohols, based on conditions provided by Lurgi for an Octamix{trademark} plant using their standard tubular-fixed reactor technology. 7 figs., 26 tabs.

  16. Sensitivity Analysis of Reprocessing Cooling Times on Light Water Reactor and Sodium Fast Reactor Fuel Cycles

    SciTech Connect

    R. M. Ferrer; S. Bays; M. Pope

    2008-04-01

    The purpose of this study is to quantify the effects of variations of the Light Water Reactor (LWR) Spent Nuclear Fuel (SNF) and fast reactor reprocessing cooling time on a Sodium Fast Reactor (SFR) assuming a single-tier fuel cycle scenario. The results from this study show the effects of different cooling times on the SFR’s transuranic (TRU) conversion ratio (CR) and transuranic fuel enrichment. Also, the decay heat, gamma heat and neutron emission of the SFR’s fresh fuel charge were evaluated. A 1000 MWth commercial-scale SFR design was selected as the baseline in this study. Both metal and oxide CR=0.50 SFR designs are investigated.

  17. TEST REACTOR AREA PLOT PLAN CA. 1968. MTR AND ETR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TEST REACTOR AREA PLOT PLAN CA. 1968. MTR AND ETR AREAS SOUTH OF PERCH AVENUE. "COLD" SERVICES NORTH OF PERCH. ADVANCED TEST REACTOR IN NEW SECTION WEST OF COLD SERVICES SECTION. NEW PERIMETER FENCE ENCLOSES BETA RAY SPECTROMETER, TRA-669, AN ATR SUPPORT FACILITY, AND ATR STACK. UTM LOCATORS HAVE BEEN DELETED. IDAHO NUCLEAR CORPORATION, FROM A BLAW-KNOX DRAWING, 3/1968. INL INDEX NO. 530-0100-00-400-011646, REV. 0. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  18. Exhaust system with emissions storage device and plasma reactor

    DOEpatents

    Hoard, John W.

    1998-01-01

    An exhaust system for a combustion system, comprising a storage device for collecting NO.sub.x, hydrocarbon, or particulate emissions, or mixture of these emissions, and a plasma reactor for destroying the collected emissions is described. After the emission is collected in by the storage device for a period of time, the emission is then destroyed in a non-thermal plasma generated by the plasma reactor. With respect to the direction of flow of the exhaust stream, the storage device must be located before the terminus of the plasma reactor, and it may be located wholly before, overlap with, or be contained within the plasma reactor.

  19. Modular Code and Data System for Fast Reactor Neutronics Analyses

    SciTech Connect

    RIMPAULT, G.

    2008-06-30

    Version 00. The European Reactor ANalysis Optimized calculation System, ERANOS, has been developed and validated with the aim of providing a suitable basis for reliable neutronic calculations of current as well as advanced fast reactor cores. It consists of data libraries, deterministic codes and calculation procedures which have been developed within the European Collaboration on Fast Reactors over the past 20 years or so, in order to answer the needs of both industrial and R&D organisations. The whole system counts roughly 250 functions and 3000 subroutines totalling 450000 lines of FORTRAN-77 and ESOPE instructions. ERANOS is written using the ALOS software which requires only standard FORTRAN compilers and includes advanced programming features. A modular structure was adopted for easier evolution and incorporation of new functionalities. Blocks of data (SETs) can be created or used by the modules themselves or by the user via the LU control language. Programming, and dynamic memory allocation, are performed by means of the ESOPE language. External temporary storage and permanent storage capabilities are provided by the GEMAT and ARCHIVE functions, respectively. ESOPE, LU, GEMAT and ARCHIVE are all part of the ALOS software. This modular structure allows different modules to be linked together in procedures corresponding to recommended calculation routes ranging from fast-running and moderately-accurate 'routine' procedures to slow-running but highly-accurate 'reference' procedures. The main contents of the ERANOS-2.0 package are: nuclear data libraries (multigroup cross-sections from the JEF-2.2 evaluated nuclear data file, and other specific data files), a cell and lattice code (ECCO), reactor flux solvers (diffusion, Sn transport, nodal variational transport), a burn-up module, various processing modules (material and neutron balance, breeding gains,...), tools related to perturbation theory and sensitivity analysis, core follow-up modules (connected in the

  20. Modular Code and Data System for Fast Reactor Neutronics Analyses

    Energy Science and Technology Software Center (ESTSC)

    2008-06-30

    Version 00. The European Reactor ANalysis Optimized calculation System, ERANOS, has been developed and validated with the aim of providing a suitable basis for reliable neutronic calculations of current as well as advanced fast reactor cores. It consists of data libraries, deterministic codes and calculation procedures which have been developed within the European Collaboration on Fast Reactors over the past 20 years or so, in order to answer the needs of both industrial and R&Dmore » organisations. The whole system counts roughly 250 functions and 3000 subroutines totalling 450000 lines of FORTRAN-77 and ESOPE instructions. ERANOS is written using the ALOS software which requires only standard FORTRAN compilers and includes advanced programming features. A modular structure was adopted for easier evolution and incorporation of new functionalities. Blocks of data (SETs) can be created or used by the modules themselves or by the user via the LU control language. Programming, and dynamic memory allocation, are performed by means of the ESOPE language. External temporary storage and permanent storage capabilities are provided by the GEMAT and ARCHIVE functions, respectively. ESOPE, LU, GEMAT and ARCHIVE are all part of the ALOS software. This modular structure allows different modules to be linked together in procedures corresponding to recommended calculation routes ranging from fast-running and moderately-accurate 'routine' procedures to slow-running but highly-accurate 'reference' procedures. The main contents of the ERANOS-2.0 package are: nuclear data libraries (multigroup cross-sections from the JEF-2.2 evaluated nuclear data file, and other specific data files), a cell and lattice code (ECCO), reactor flux solvers (diffusion, Sn transport, nodal variational transport), a burn-up module, various processing modules (material and neutron balance, breeding gains,...), tools related to perturbation theory and sensitivity analysis, core follow-up modules (connected

  1. Standards for Educational and Psychological Testing.

    ERIC Educational Resources Information Center

    American Educational Research Association, Washington, DC.

    The standards outlined in this book have been developed to provide criteria for the evaluation of tests, testing practices, and the effects of test use. The "Standards" provides a frame of reference to ensure that relevant issues are addressed. The first part of the book, "Test Construction, Evaluation, and Documentation," contains standards for…

  2. Common Core State Standards and Adaptive Teaching

    ERIC Educational Resources Information Center

    Kamil, Michael L.

    2016-01-01

    This article examines the issues of how Common Core State Standards (CCSS) will impact adaptive teaching. It focuses on 2 of the major differences between conventional standards and CCSS: the increased complexity of text and the addition of disciplinary literacy standards to reading instruction. The article argues that adaptive teaching under CCSS…

  3. Standardization and Whiteness: One and the Same?

    ERIC Educational Resources Information Center

    Weilbacher, Gary

    2012-01-01

    The article "There Is No Culturally Responsive Teaching Spoken Here: A Critical Race Perspective" by Cleveland Hayes and Brenda C. Juarez suggests that the current focus on meeting standards incorporates limited thoughtful discussions related to complex notions of diversity. Our response suggests a strong link between standardization and White…

  4. RADIATION DOSIMETRY AT THE BNL HIGH FLUX BEAM REACTOR AND MEDICAL RESEARCH REACTOR.

    SciTech Connect

    HOLDEN,N.E.

    1999-09-10

    RADIATION DOSIMETRY MEASUREMENTS HAVE BEEN PERFORMED OVER A PERIOD OF MANY YEARS AT THE HIGH FLUX BEAM REACTOR (HFBR) AND THE MEDICAL RESEARCH REACTOR (BMRR) AT BROOKHAVEN NATIONAL LABORATORY TO PROVIDE INFORMATION ON THE ENERGY DISTRIBUTION OF THE NEUTRON FLUX, NEUTRON DOSE RATES, GAMMA-RAY FLUXES AND GAMMA-RAY DOSE RATES. THE MCNP PARTICLE TRANSPORT CODE PROVIDED MONTE CARLO RESULTS TO COMPARE WITH VARIOUS DOSIMETRY MEASUREMENTS PERFORMED AT THE EXPERIMENTAL PORTS, AT THE TREATMENT ROOMS AND IN THE THIMBLES AT BOTH HFBR AND BMRR.

  5. Plutonium and minor actinide utilisation in a pebble-bed high temperature reactor

    SciTech Connect

    Petrov, B. Y.; Kuijper, J. C.; Oppe, J.; De Haas, J. B. M.

    2012-07-01

    This paper contains results of the analysis of the pebble-bed high temperature gas-cooled PUMA reactor loaded with plutonium and minor actinide (Pu/MA) fuel. Starting from knowledge and experience gained in the Euratom FP5 projects HTR-N and HTR-N1, this study aims at demonstrating the potential of high temperature reactors to utilize or transmute Pu/MA fuel. The work has been performed within the Euratom FP6 project PUMA. A number of different fuel types and fuel configurations have been analyzed and compared with respect to incineration performance and safety-related reactor parameters. The results show the excellent plutonium and minor actinide burning capabilities of the high temperature reactor. The largest degree of incineration is attained in the case of an HTR fuelled by pure plutonium fuel as it remains critical at very deep burnup of the discharged pebbles. Addition of minor actinides to the fuel leads to decrease of the achievable discharge burnup and therefore smaller fraction of actinides incinerated during reactor operation. The inert-matrix fuel design improves the transmutation performance of the reactor, while the 'wallpaper' fuel does not have advantage over the standard fuel design in this respect. After 100 years of decay following the fuel discharge, the total amount of actinides remains almost unchanged for all of the fuel types considered. Among the plutonium isotopes, only the amount of Pu-241 is reduced significantly due to its relatively short half-life. (authors)

  6. Language Varieties and Standard Language.

    ERIC Educational Resources Information Center

    Quirk, Randolph

    It is argued that viewing learners' errors as evidence for the emergence of new varieties of the English language is dangerously mistaken, particularly where it leads to the abandonment of Standard English as a model for learners. It is shown how this view is mistaken by: (1) citing recent British thinking on the relationship of varieties of…

  7. Standards, Guidance and Practices for Improved Data Quality

    SciTech Connect

    Martin B. Sattison

    2010-06-01

    Since the mid 1980s, the Idaho National Laboratory (INL) has been involved with numerous projects to collect operational reactor data, develop data tools, and trend and analyze that data for the U.S. Nuclear Regulatory Commission (NRC). Because the data are used in subsequent risk analyses, the NRC must have confidence in the quality of the data delivered. The NRC tasked the INL to establish a comprehensive data quality assurance program. A key element of that effort was to establish a set of requirements based on industry and government standards, guidance and good practices. This paper discusses where these were found, the process of extracting the requirements and recommendations from the source materials, and the consolidation of them into a concise set of 22 standards, guidance and practices for technical data quality. While this set was created specifically for the data programs within the NRC’s Office of Research, they have broad application to many high-technology industries.

  8. R- AND P- REACTOR VESSEL IN-SITU DECOMISSIONING VISUALIZATION

    SciTech Connect

    Vrettos, N.; Bobbitt, J.; Howard, M.

    2010-06-07

    The R- & P- Reactor facilities were constructed in the early 1950's in response to Cold War efforts. The mission of the facilities was to produce materials for use in the nation's nuclear weapons stockpile. R-Reactor was removed from service in 1964 when President Johnson announced a slowdown of he nuclear arms race. PReactor continued operation until 1988 until the facility was taken off-line to modernize the facility with new safeguards. Efforts to restart the reactor ended in 1990 at the end of the Cold War. Both facilities have sat idle since their closure and have been identified as the first two reactors for closure at SRS.

  9. Licensed reactor nuclear safety criteria applicable to DOE reactors

    SciTech Connect

    Not Available

    1991-04-01

    The Department of Energy (DOE) Order DOE 5480.6, Safety of Department of Energy-Owned Nuclear Reactors, establishes reactor safety requirements to assure that reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that adequately protects health and safety and is in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. This document identifies nuclear safety criteria applied to NRC (Nuclear Regulatory Commission) licensed reactors. The titles of the chapters and sections of USNRC Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, Rev. 3, are used as the format for compiling the NRC criteria applied to the various areas of nuclear safety addressed in a safety analysis report for a nuclear reactor. In each section the criteria are compiled in four groups: (1) Code of Federal Regulations, (2) US NRC Regulatory Guides, SRP Branch Technical Positions and Appendices, (3) Codes and Standards, and (4) Supplemental Information. The degree of application of these criteria to a DOE-owned reactor, consistent with their application to comparable licensed reactors, must be determined by the DOE and DOE contractor.

  10. Licensed reactor nuclear safety criteria applicable to DOE reactors

    SciTech Connect

    Not Available

    1993-11-01

    This document is a compilation and source list of nuclear safety criteria that the Nuclear Regulatory Commission (NRC) applies to licensed reactors; it can be used by DOE and DOE contractors to identify NRC criteria to be evaluated for application to the DOE reactors under their cognizance. The criteria listed are those that are applied to the areas of nuclear safety addressed in the safety analysis report of a licensed reactor. They are derived from federal regulations, USNRC regulatory guides, Standard Review Plan (SRP) branch technical positions and appendices, and industry codes and standards.

  11. CANDU reactors, their regulation in Canada, and the identification of relevant NRC safety issues

    SciTech Connect

    Charak, I.; Kier, P.H.

    1995-04-01

    Atomic Energy of Canada, Limited (AECL) and its subsidiary in the US, are considering submitting the CANDU 3 design for standard design certification under 10 CFR Part 52. CANDU reactors are pressurized heavy water power reactors. They have some substantially different safety responses and safety systems than the LWRs that the commercial power reactor licensing regulations of the US Nuclear Regulatory Commission (NRC) have been developed to deal with. In this report, the authors discuss the basic design characteristics of CANDU reactors, specifically of the CANDU 3 where possible, and some safety-related consequences of these characteristics. The authors also discuss the Canadian regulatory provisions, and the CANDU safety systems that have evolved to satisfy the Canadian regulatory requirements as of December 1992. Finally, the authors identify NRC regulations, mainly in 10 CFR Parts 50 and 100, with issues for CANDU 3 reactor designs. In all, eleven such regulatory issues are identified. They are: (1) the ATWS rule ({section}50.62); (2) station blackout ({section}50.63); (3) conformance with Standard Review Plan (SRP); (4) appropriateness of the source term ({section}50.34(f) and {section}100.11); (5) applicability of reactor coolant pressure boundary (RCPB) requirements ({section}50.55a, etc); (6) ECCS acceptance criteria ({section}50.46)(b); (7) combustible gas control ({section}50.44, etc); (8) power coefficient of reactivity (GDC 11); (9) seismic design (Part 100); (10) environmental impacts of the fuel cycle ({section}51.51); and (11) (standards {section}50.55a).

  12. RSMASS-D models: An improved method for estimating reactor and shield mass for space reactor applications

    SciTech Connect

    Marshall, A.C.

    1997-10-01

    Three relatively simple mathematical models have been developed to estimate minimum reactor and radiation shield masses for liquid-metal-cooled reactors (LMRs), in-core thermionic fuel element (TFE) reactors, and out-of-core thermionic reactors (OTRs). The approach was based on much of the methodology developed for the Reactor/Shield Mass (RSMASS) model. Like the original RSMASS models, the new RSMASS-derivative (RSMASS-D) models use a combination of simple equations derived from reactor physics and other fundamental considerations, along with tabulations of data from more detailed neutron and gamma transport theory computations. All three models vary basic design parameters within a range specified by the user to achieve a parameter choice that yields a minimum mass for the power level and operational time of interest. The impact of critical mass, fuel damage, and thermal limitations are accounted for to determine the required fuel mass. The effect of thermionic limitations are also taken into account for the thermionic reactor models. All major reactor component masses are estimated, as well as instrumentation and control (I&C), boom, and safety system masses. A new shield model was developed and incorporated into all three reactor concept models. The new shield model is more accurate and simpler to use than the approach used in the original RSMASS model. The estimated reactor and shield masses agree with the mass predictions from separate detailed calculations within 15 percent for all three models.

  13. Measurement and Calculation of Gamma Radiation from HWZPR Reactor

    SciTech Connect

    Jalali, Majid

    2006-07-01

    HWZPR is a research reactor with natural uranium fuel, D{sub 2}O moderator and graphite reflector with maximum power of 100 W. It is a suitable means for theoretical research and heavy water reactor experiments. Neutrons from the core participate in different nuclear reactions by interactions with fuel, moderator, graphite and the concrete around the reactor. The results of these interactions are the production of prompt gammas in the environment. Useful information is gained by the reactor gamma spectrum measurement from point of view of relative quantity and energy distribution of direct and scattered radiations. Reactor gamma ray spectrum has been gathered in different places around the reactor by HPGe detector. In analysis of these spectra, {sup 1}H(n,{gamma}){sup 2}H, {sup 16}O(n,n'{gamma}){sup 16}O, {sup 2}H(n,{gamma}){sup 3}H and {sup 238}U(n,{gamma}){sup 239}U reactions occurring in reactor moderator and fuel, are important. The measured spectrum has been primarily estimated by the MCNP code. There is agreement between the code and the experiments in some points. The scattered gamma rays from {sup 27}Al (n,{gamma}){sup 28}Al reaction in the reactor tank, are the most among the gammas scattered in the reactor environment. Also the dose calculations by MCNP code show that 72% of gamma dose belongs to the energy range 3-11 MeV from reactor gamma spectrum and the danger of exposure from the reactor high-energy photons is serious. (author)

  14. The detection of global convection on the sun by an analysis of line shift data of the John M. Wilcox Solar Observatory at Stanford University

    NASA Technical Reports Server (NTRS)

    Yoshimura, Hirokazu

    1987-01-01

    An analysis of the absorption line shift data of the John M. Wilcox Solar Observatory at Stanford University has yielded signatures of the existence of global convection on the sun. These include persistent periodic time variations in the east-west component of the velocity fields defined by fitting a slope to the line shift data in a certain longitude window at a specified latitude and longitude by the least squares method. The amplitude of the velocity fields estimated from these variations is of the order of 100 m/s. The results of the analysis also suggest that several modes of global convection coexist in the solar convection zone. Details of the analysis are given.

  15. Seminar on building codes and standards

    SciTech Connect

    Not Available

    1980-01-01

    A seminar was conducted for state building code officials and state energy officials to discuss the following: status of the states regulatory activities for energy conservation standards for buildings; the development, administration, and enforcement processes for energy conservation standards affecting new construction; lighting and thermal standards for existing buildings; status of the development and implementation of the Title III Program, Building Energy Performance Standards (BEPS); and current status of the State Energy Conservation Program. The welcoming address was given by John Wenning and the keynote address was delivered by John Millhone. Four papers presented were: Building Energy Performance Standards Development, James Binkley; Lighting Standards in Existing Buildings, Dorothy Cronheim; Implementation of BEPS, Archie Twitchell; Sanctions for Building Energy Performance Standards, Sue Sicherman.

  16. Ultrasonic level and temperature sensor for power reactor applications

    SciTech Connect

    Dress, W.B.: Miller, G.N.

    1983-01-01

    An ultrasonic waveguide employing torsional and extensional acoustic waves has been developed for use as a level and temperature sensor in pressurized and boiling water nuclear power reactors. Features of the device include continuous measurement of level, density, and temperature producing a real-time profile of these parameters along a chosen path through the reactor vessel.

  17. Nuclear Criticality Control and Safety of Plutonium-Uranium Fuel Mixtures Outside Reactors

    SciTech Connect

    Biswas, D; Mennerdahl, D

    2008-06-23

    The ANSI/ANS 8.12 standard was first approved in July 1978. At that time, this edition was applicable to operations with plutonium-uranium oxide (MOX) fuel mixtures outside reactors and was limited to subcritical limits for homogeneous systems. The next major revision, ANSI/ANS-8.12-1987, included the addition of subcritical limits for heterogeneous systems. The standard was subsequently reaffirmed in February 1993. During late 1990s, substantial work was done by the ANS 8.12 Standard Working Group to re-examine the technical data presented in the standard using the latest codes and cross section sets. Calculations performed showed good agreement with the values published in the standard. This effort resulted in the reaffirmation of the standard in March 2002. The standard is currently in a maintenance mode. After 2002, activities included discussions to determine the future direction of the standard and to follow the MOX standard development by the International Standard Organization (ISO). In 2007, the Working Group decided to revise the standard to extend the areas of applicability by providing a wider range of subcritical data. The intent is to cover a wider domain of MOX fuel fabrication and operations. It was also decided to follow the ISO MOX standard specifications (related to MOX density and isotopics) and develop a new set of subcritical limits for homogeneous systems. This has resulted in the submittal (and subsequent approval) of the project initiation notification system form (PINS) in 2007.

  18. Reactor and method for hydrocracking carbonaceous material

    DOEpatents

    Duncan, Dennis A.; Beeson, Justin L.; Oberle, R. Donald; Dirksen, Henry A.

    1980-01-01

    Solid, carbonaceous material is cracked in the presence of hydrogen or other reducing gas to provide aliphatic and aromatic hydrocarbons of lower molecular weight for gaseous and liquid fuels. The carbonaceous material, such as coal, is entrained as finely divided particles in a flow of reducing gas and preheated to near the decomposition temperature of the high molecular weight polymers. Within the reactor, small quantities of oxygen containing gas are injected at a plurality of discrete points to burn corresponding amounts of the hydrogen or other fuel and elevate the mixture to high temperatures sufficient to decompose the high molecular weight, carbonaceous solids. Turbulent mixing at each injection point rapidly quenches the material to a more moderate bulk temperature. Additional quenching after the final injection point can be performed by direct contact with quench gas or oil. The reactions are carried out in the presence of a hydrogen-containing reducing gas at moderate to high pressure which stabilizes the products.

  19. Sodium fast reactor safety and licensing research plan. Volume II.

    SciTech Connect

    Ludewig, H.; Powers, D. A.; Hewson, John C.; LaChance, Jeffrey L.; Wright, A.; Phillips, J.; Zeyen, R.; Clement, B.; Garner, Frank; Walters, Leon; Wright, Steve; Ott, Larry J.; Suo-Anttila, Ahti Jorma; Denning, Richard; Ohshima, Hiroyuki; Ohno, S.; Miyhara, S.; Yacout, Abdellatif; Farmer, M.; Wade, D.; Grandy, C.; Schmidt, R.; Cahalen, J.; Olivier, Tara Jean; Budnitz, R.; Tobita, Yoshiharu; Serre, Frederic; Natesan, Ken; Carbajo, Juan J.; Jeong, Hae-Yong; Wigeland, Roald; Corradini, Michael; Thomas, Justin; Wei, Tom; Sofu, Tanju; Flanagan, George F.; Bari, R.; Porter D.; Lambert, J.; Hayes, S.; Sackett, J.; Denman, Matthew R.

    2012-05-01

    Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

  20. Effects of primary sedimentary processes on reservoir quality of Deep Wilcox (Eocene) sandstones in Fordoche field, Louisiana

    SciTech Connect

    Lemoine, R.C.; Moslow, T.F.; Lowry, P.

    1987-05-01

    The initial discovery and subsequent development of Fordoche field established a Deep Wilcox production trend in south-central Louisiana. Production in the field occurs within five intervals: the W4, W5, W8, W12, and W15 sandstones. The W8 and W12 sandstones are the most prolific. They represent shoreface sequences which formed at or near the shelf margin. Cumulative hydrocarbon production from these sandstones is in excess of 22 million bbl of oil and 151 bcf of gas. Over 1100 ft (335 m) of conventional core from the W8 and W12 sandstones in six wells were analyzed and compared to petrophysical data to effectively characterize reservoir quality. Primary sedimentation patterns (i.e., physical and biogenic sedimentary structures and sequences) are the dominant control on reservoir quality throughout the field. Burrowed to bioturbated (> 75% burrowed) lower shoreface sandstones possess relatively high average porosity values (16.7%); however, permeability values are extremely low (< 0.2 md). Clay-lined burrow walls create numerous permeability barriers which significantly alter fluid flow patterns within this facies. In contrast, massive to burrowed middle shoreface sandstones, although possessing similar average porosity values (19.8%), have substantially higher average permeability values (8.6 md). Within the middle shoreface facies, higher wave energies winnow the fine-grained silts and clays, resulting in the deposition of a clean, well-sorted sandstone. The entire sequence coarsens upward in both grain size and percent sand and is overlain by a thin (3.5 ft; 1.0 m), tightly cemented calcareous sandstone. Average thickness of the middle shoreface facies in Fordoche field is 23 ft (7.0 m) with stacked sequences within the W12 sandstone as thick as 57 ft (17.4 m) of high reservoir quality sandstones.

  1. Cars applications in chemical reactors, combustion and heat transfer

    NASA Astrophysics Data System (ADS)

    Greenhalgh, D. A.; Porter, F. M.

    1986-08-01

    This paper illustrates the use of the CARS technique in the fields of Chemical Reactor engineering, combustion and Heat Transfer. Examples of recent results from a catalytic chemical reactor, an operating production petrol engine and an oil spray furnace are given. The experimentally determined accuracy of CARS nitrogen thermometry for both mean and single pulse measurements is presented.

  2. Advanced Test Reactor Capabilities and Future Irradiation Plans

    SciTech Connect

    Frances M. Marshall

    2006-10-01

    The Advanced Test Reactor (ATR), located at the Idaho National Laboratory (INL), is one of the most versatile operating research reactors in the Untied States. The ATR has a long history of supporting reactor fuel and material research for the US government and other test sponsors. The INL is owned by the US Department of Energy (DOE) and currently operated by Battelle Energy Alliance (BEA). The ATR is the third generation of test reactors built at the Test Reactor Area, now named the Reactor Technology Complex (RTC), whose mission is to study the effects of intense neutron and gamma radiation on reactor materials and fuels. The current experiments in the ATR are for a variety of customers--US DOE, foreign governments and private researchers, and commercial companies that need neutrons. The ATR has several unique features that enable the reactor to perform diverse simultaneous tests for multiple test sponsors. The ATR has been operating since 1967, and is expected to continue operating for several more decades. The remainder of this paper discusses the ATR design features, testing options, previous experiment programs, future plans for the ATR capabilities and experiments, and some introduction to the INL and DOE's expectations for nuclear research in the future.

  3. NEUTRONIC REACTOR AND FUEL ELEMENT THEREFOR

    DOEpatents

    Szilard, L.; Young, G.J.

    1958-03-01

    This patent relates to a reactor design of the type which employs solid fuel elements disposed in channels within the moderator through which channels and around the fuel elements is conveyed a coolant fiuid. The coolant channels are comprised of aluminum tubes extending through a solid moderator such as graphite and the fuel elements are comprised of an elongated solid body of natural uranium jacketed in an aluminum jacket with the ends thereof closed by aluminum caps of substantially greater thickness than the jacket was and in good thermal contact with the fuel material to facilitate the conduction of heat from the central portion of said ends to the coolant surrounding the fuel element to prevent overheating of said central portion.

  4. Standards and Guidelines for Academic Advising.

    ERIC Educational Resources Information Center

    NACADA Journal, 1986

    1986-01-01

    Standards and guidelines for academic advising are presented covering mission, program, organization and administration, human resources, funding, facilities, campus and community relations, and ethics. (MLW)

  5. Austenitic alloy and reactor components made thereof

    DOEpatents

    Bates, John F.; Brager, Howard R.; Korenko, Michael K.

    1986-01-01

    An austenitic stainless steel alloy is disclosed, having excellent fast neutron irradiation swelling resistance and good post irradiation ductility, making it especially useful for liquid metal fast breeder reactor applications. The alloy contains: about 0.04 to 0.09 wt. % carbon; about 1.5 to 2.5 wt. % manganese; about 0.5 to 1.6 wt. % silicon; about 0.030 to 0.08 wt. % phosphorus; about 13.3 to 16.5 wt. % chromium; about 13.7 to 16.0 wt. % nickel; about 1.0 to 3.0 wt. % molybdenum; and about 0.10 to 0.35 wt. % titanium.

  6. METHOD AND APPARATUS FOR CONTROL OF A NUCLEAR REACTOR

    DOEpatents

    Cawley, W.E.

    1962-12-11

    A method and apparatus are described for controlling an overmoderated nuclear reactor containing columns of fuel elements aligned in a plurality of coolant tubes in a stream of coolant water. The invention includes means for adjusting the distance between halves of the fuel element column to vary the relative proportion of fuel and moderator at the center of the reactor. (AEC)

  7. Reactor Physics Scoping and Characterization Study on Implementation of TRIGA Fuel in the Advanced Test Reactor

    SciTech Connect

    Jennifer Lyons; Wade R. Marcum; Mark D. DeHart; Sean R. Morrell

    2014-01-01

    The Advanced Test Reactor (ATR), under the Reduced Enrichment for Research and Test Reactors (RERTR) Program and the Global Threat Reduction Initiative (GTRI), is conducting feasibility studies for the conversion of its fuel from a highly enriched uranium (HEU) composition to a low enriched uranium (LEU) composition. These studies have considered a wide variety of LEU plate-type fuels to replace the current HEU fuel. Continuing to investigate potential alternatives to the present HEU fuel form, this study presents a preliminary analysis of TRIGA® fuel within the current ATR fuel envelopes and compares it to the functional requirements delineated by the Naval Reactors Program, which includes: greater than 4.8E+14 fissions/s/g of 235U, a fast to thermal neutron flux ratio that is less than 5% deviation of its current value, a constant cycle power within the corner lobes, and an operational cycle length of 56 days at 120 MW. Other parameters outside those put forth by the Naval Reactors Program which are investigated herein include axial and radial power profiles, effective delayed neutron fraction, and mean neutron generation time.

  8. The development and application of an improved reactor analysis model for fast reactors

    NASA Astrophysics Data System (ADS)

    Hou, Jia

    Accuracy in neutron cross sections calculation and consistency in reactor physics are fundamental requirements in advanced nuclear reactor design and analysis. The work presented in this dissertation focuses on the development and advanced application of a reactor analysis model with updated cross section libraries that is suitable for online cross section generation for fast reactors. Research has been performed in two areas of interest in reactor physics. The first target of the research is to develop effcient modeling capacity of the 1- D lattice code MICROX-2 for its neutron spectrum calculation based on Collision Probability Method (CPM). Expanded master cross section libraries have been generated based on updated nuclear data and optimized fine-group energy structure to accommodate both thermal and fast reactor spectra as well as to comply with the need for advanced fuel cycle analysis. After verifying the new libraries, the solution methods have been reviewed and updated, including the update of interpolation scheme for resonance self-shielding factors and improvement of spatial self-shielding models for various fuel assembly geometries. The assessment of the updated lattice calculation models has shown that the prediction accuracy of lattice properties represented by the eigenvalue and reaction rate ratios is improved, especially for fast neutron spectrum lattices of which the importance of neutrons in the unresolved energy range is high. The second target of the research is to improve the accuracy of few-group nuclear cross section generation for the reactor core calculation. A 2-D pin-by-pin lattice model has been developed based on embedded CPM within the framework of the Nodal Expansion Method (NEM), which is capable of modeling the heterogeneity of the fuel assembly. Then, an online cross section generation methodology along with discontinuity factors has been developed based on Iterative Diffusion- Diffusion Methodology (IDDM), which can minimize the

  9. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    SciTech Connect

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  10. Reactor Vessel and Reactor Vessel Internals Segmentation at Zion Nuclear Power Station - 13230

    SciTech Connect

    Cooke, Conrad; Spann, Holger

    2013-07-01

    Zion Nuclear Power Station (ZNPS) is a dual-unit Pressurized Water Reactor (PWR) nuclear power plant located on the Lake Michigan shoreline, in the city of Zion, Illinois approximately 64 km (40 miles) north of Chicago, Illinois and 67 km (42 miles) south of Milwaukee, Wisconsin. Each PWR is of the Westinghouse design and had a generation capacity of 1040 MW. Exelon Corporation operated both reactors with the first unit starting production of power in 1973 and the second unit coming on line in 1974. The operation of both reactors ceased in 1996/1997. In 2010 the Nuclear Regulatory Commission approved the transfer of Exelon Corporation's license to ZionSolutions, the Long Term Stewardship subsidiary of EnergySolutions responsible for the decommissioning of ZNPS. In October 2010, ZionSolutions awarded Siempelkamp Nuclear Services, Inc. (SNS) the contract to plan, segment, remove, and package both reactor vessels and their respective internals. This presentation discusses the tools employed by SNS to remove and segment the Reactor Vessel Internals (RVI) and Reactor Vessels (RV) and conveys the recent progress. SNS's mechanical segmentation tooling includes the C-HORCE (Circumferential Hydraulically Operated Cutting Equipment), BMT (Bolt Milling Tool), FaST (Former Attachment Severing Tool) and the VRS (Volume Reduction Station). Thermal segmentation of the reactor vessels will be accomplished using an Oxygen- Propane cutting system. The tools for internals segmentation were designed by SNS using their experience from other successful reactor and large component decommissioning and demolition (D and D) projects in the US. All of the designs allow for the mechanical segmentation of the internals remotely in the water-filled reactor cavities. The C-HORCE is designed to saw seven circumferential cuts through the Core Barrel and Thermal Shield walls with individual thicknesses up to 100 mm (4 inches). The BMT is designed to remove the bolts that fasten the Baffle Plates to

  11. Water and Regolith Shielding for Surface Reactor Missions

    SciTech Connect

    Poston, David I.; Sadasivan, Pratap; Dixon, David D.; Ade, Brian J.; Leichliter, Katrina J.

    2006-01-20

    This paper investigates potential shielding options for surface power fission reactors. The majority of work is focused on a lunar shield that uses a combination of water in stainless-steel cans and lunar regolith. The major advantage of a water-based shield is that development, testing, and deployment should be relatively inexpensive. This shielding approach is used for three surface reactor concepts: (1) a moderated spectrum, NaK cooled, Hastalloy/UZrH reactor, (2) a fast-spectrum, NaK-cooled, SS/UO2 reactor, and (3) a fast-spectrum, K-heat-pipe-cooled, SS/UO2 reactor. For this study, each of these reactors is coupled to a 25-kWt Stirling power system, designed for 5 year life. The shields are designed to limit the dose both to the Stirling alternators and potential astronauts on the surface. The general configuration used is to bury the reactor, but several other options exist as well. Dose calculations are presented as a function of distance from reactor, depth of buried hole, water boron concentration (if any), and regolith repacked density.

  12. Conversion of research and test reactors : status and current plans.

    SciTech Connect

    Roglans, J.; Staples, P.; Butler, N.; Nuclear Engineering Division

    2007-01-01

    The Office of Global Threat Reduction's (GTRI) Conversion Program develops technology necessary to enable the conversion of civilian facilities using high enriched uranium (HEU) to low enriched uranium (LEU) fuels and targets. The Conversion program mission supports the minimization and, to the extent possible, elimination of the use of HEU in civil nuclear applications by working to convert research reactors and radioisotope production processes to the use of LEU fuel and targets throughout the world. During the Program's 27 years of existence, 46 research reactors have been converted from HEU to LEU fuels and processes have been developed for producing the medical isotope Mo-99 with LEU targets. Under GTRI the Conversion Program has accelerated the schedules and plans for conversion of additional research reactors operating with HEU. Also the Program emphasizes the development of advanced high-density LEU fuels to enable further conversions. The Conversion program coordinates with the other program functions of GTRI, most notably the Removal function, which removes fresh and spent HEU fuel from countries around the world. This paper summarizes the current status and plans for conversion of research reactors, in the U.S. and abroad, the supporting fuel development activities, and the development of processes for medical isotope production with LEU targets. Nuclear research and test reactors worldwide have been in operation for over 60 years, supporting nuclear science and technology development, as well as providing an important role as a research tool in scientific fields including medicine, agriculture, industry, and basic research. Over 270 research reactors are currently operating in more than 50 countries. Starting in 1954, many research reactors outside the United States were provided under the Atoms for Peace initiative. Initial research reactors were fueled with low-enriched uranium (LEU) with a content of U235 of less than 20%. More advanced research

  13. Nuclear safety criteria and specifications for space nuclear reactors

    SciTech Connect

    Not Available

    1982-08-01

    The purpose of this document is to define safety criteria which must be met to implement US safety policy for space fission reactors. These criteria provide the bases for decisions on the acceptability of specific mission and reactor design proposals. (JDH)

  14. Unifying process control and optimization

    SciTech Connect

    Makansi, J.

    2005-09-01

    About 40% of US generation is now subject to wholesale competition. To intelligently bid into these new markets, real-time prices must be aligned with real-time costs. It is time to integrate the many advanced applications, sensors, and analyzers used for control, automation, and optimization into a system that reflects process and financial objectives. The paper reports several demonstration projects in the USA revealing what is being done in the area of advanced process optimization (by Alliant Energy, American Electric Power, PacifiCorp, Detroit Edison and Tennessee Valley Authority). In addition to these projects US DOE's NETL has funded the plant environment and cost optimization system, PECOS which combines physical models, neural networks and fuzzy logic control to provide operators with least cost setpoints for controllable variables. At Dynegy Inc's Baldwin station in Illinois the DOE is subsidizing a project where real time, closed-loop IT systems will optimize combustion, soot-blowing and SCR performance as well as unit thermal performance and plant economic performance. Commercial products such as Babcock and Wilcox's Flame Doctor, continuous emissions monitoring systems and various real-time predictive monitoring systems are also available. 4 figs.

  15. Nitrification of industrial and domestic saline wastewaters in moving bed biofilm reactor and sequencing batch reactor.

    PubMed

    Bassin, João P; Dezotti, Marcia; Sant'anna, Geraldo L

    2011-01-15

    Nitrification of saline wastewaters was investigated in bench-scale moving-bed biofilm reactors (MBBR). Wastewater from a chemical industry and domestic sewage, both treated by the activated sludge process, were fed to moving-bed reactors. The industrial wastewater contained 8000 mg Cl(-)/L and the salinity of the treated sewage was gradually increased until that level. Residual substances present in the treated industrial wastewater had a strong inhibitory effect on the nitrification process. Assays to determine inhibitory effects were performed with the industrial wastewater, which was submitted to ozonation and carbon adsorption pretreatments. The latter treatment was effective for dissolved organic carbon (DOC) removal and improved nitrification efficiency. Nitrification percentage of the treated domestic sewage was higher than 90% for all tested chloride concentrations up to 8000 mg/L. Results obtained in a sequencing batch reactor (SBR) were consistent with those attained in the MBBR systems, allowing tertiary nitrification and providing adequate conditions for adaptation of nitrifying microorganisms even under stressing and inhibitory conditions. PMID:20933327

  16. Codes and Standards Technical Team Roadmap

    SciTech Connect

    2013-06-01

    The Hydrogen Codes and Standards Tech Team (CSTT) mission is to enable and facilitate the appropriate research, development, & demonstration (RD&D) for the development of safe, performance-based defensible technical codes and standards that support the technology readiness and are appropriate for widespread consumer use of fuel cells and hydrogen-based technologies with commercialization by 2020. Therefore, it is important that the necessary codes and standards be in place no later than 2015.

  17. Deposition reactors for solar grade silicon: A comparative thermal analysis of a Siemens reactor and a fluidized bed reactor

    NASA Astrophysics Data System (ADS)

    Ramos, A.; Filtvedt, W. O.; Lindholm, D.; Ramachandran, P. A.; Rodríguez, A.; del Cañizo, C.

    2015-12-01

    Polysilicon production costs contribute approximately to 25-33% of the overall cost of the solar panels and a similar fraction of the total energy invested in their fabrication. Understanding the energy losses and the behaviour of process temperature is an essential requirement as one moves forward to design and build large scale polysilicon manufacturing plants. In this paper we present thermal models for two processes for poly production, viz., the Siemens process using trichlorosilane (TCS) as precursor and the fluid bed process using silane (monosilane, MS). We validate the models with some experimental measurements on prototype laboratory reactors relating the temperature profiles to product quality. A model sensitivity analysis is also performed, and the effects of some key parameters such as reactor wall emissivity and gas distributor temperature, on temperature distribution and product quality are examined. The information presented in this paper is useful for further understanding of the strengths and weaknesses of both deposition technologies, and will help in optimal temperature profiling of these systems aiming at lowering production costs without compromising the solar cell quality.

  18. Decommissioning Plan of the Musashi Reactor and Its Progress

    SciTech Connect

    Tanzawa, Tomio

    2008-01-15

    The Musashi Reactor is a TRIGA-II, tank-type research reactor, as shown in Table 1. The reactor had been operated at maximum thermal power level of 100 kW since first critical, January 30, 1963. Reactor operation was shut down due to small leakage of water from the reactor tank on December 21,1989. After shutdown, investigation of the causes, making plan of repair and discussions on restart or decommissioning had been done. Finally, decision of decommissioning was made in May, 2003. The initial plan of the decommissioning was submitted to the competent authority in January, 2004. Now, the reactor is under decommissioning. The plan of decommissioning and its progress are described. In conclusion: considering the status of undertaking plan of the waste disposal facility for the low level radioactive waste from research reactors, the phased decommissioning was selected for the Musashi Reactor. First phase of the decommissioning activities including the actions of permanent shutdown and delivering the spent nuclear fuels to US DOE was completed.

  19. Computing services writing and editing standards

    SciTech Connect

    Caruthers, C.M.; Heiberger, A.A.

    1987-11-01

    Computing Services Writing and Editing Standards explains how to write and organize technical information clearly and concisely; it also establishes Argonne National Laboratory Computing Services standards for grammar, usage, style, formats, and publication procedures. This manual will enable writers to produce better documents consistent with Computing Services standards in less time. Applying the specified principles will also speed up the editing, review, and revision processes.

  20. Reactor design and integration into a nuclear electric spacecraft

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Koenig, D. R.

    1978-01-01

    One of the well-defined applications for nuclear power in space is nuclear electric propulsion (NEP). Mission studies have identified the optimum power level (400 kWe). A single Shuttle launch requirement and science-package integration have added additional constraints to the design. A reactor design which will meet these constraints has been studied. The reactor employs 90 fuel elements, each heat pipe cooled. Reactor control is obtained with BeO/B4C drums in a BeO reflector. The balance of the spacecraft is shielded from the reactor with LiH. Power conditioning and reactor control drum drives are located behind the LiH with the power conditioning. Launch safety, mechanical design and integration with the power conversion subsystem are discussed.