Science.gov

Sample records for backbone metal cyclization

  1. Efficient backbone cyclization of linear peptides by a recombinant asparaginyl endopeptidase.

    PubMed

    Harris, Karen S; Durek, Thomas; Kaas, Quentin; Poth, Aaron G; Gilding, Edward K; Conlan, Brendon F; Saska, Ivana; Daly, Norelle L; van der Weerden, Nicole L; Craik, David J; Anderson, Marilyn A

    2015-01-01

    Cyclotides are diverse plant backbone cyclized peptides that have attracted interest as pharmaceutical scaffolds, but fundamentals of their biosynthetic origin remain elusive. Backbone cyclization is a key enzyme-mediated step of cyclotide biosynthesis and confers a measure of stability on the resultant cyclotide. Furthermore, cyclization would be desirable for engineered peptides. Here we report the identification of four asparaginyl endopeptidases (AEPs), proteases implicated in cyclization, from the cyclotide-producing plant Oldenlandia affinis. We recombinantly express OaAEP1b and find it functions preferably as a cyclase by coupling C-terminal cleavage of propeptide substrates with backbone cyclization. Interestingly, OaAEP1b cannot cleave at the N-terminal site of O. affinis cyclotide precursors, implicating additional proteases in cyclotide biosynthesis. Finally, we demonstrate the broad utility of this enzyme by cyclization of peptides unrelated to cyclotides. We propose that recombinant OaAEP1b is a powerful tool for use in peptide engineering applications where increased stability of peptide products is desired. PMID:26680698

  2. Efficient backbone cyclization of linear peptides by a recombinant asparaginyl endopeptidase

    PubMed Central

    Harris, Karen S.; Durek, Thomas; Kaas, Quentin; Poth, Aaron G.; Gilding, Edward K.; Conlan, Brendon F.; Saska, Ivana; Daly, Norelle L.; van der Weerden, Nicole L.; Craik, David J.; Anderson, Marilyn A.

    2015-01-01

    Cyclotides are diverse plant backbone cyclized peptides that have attracted interest as pharmaceutical scaffolds, but fundamentals of their biosynthetic origin remain elusive. Backbone cyclization is a key enzyme-mediated step of cyclotide biosynthesis and confers a measure of stability on the resultant cyclotide. Furthermore, cyclization would be desirable for engineered peptides. Here we report the identification of four asparaginyl endopeptidases (AEPs), proteases implicated in cyclization, from the cyclotide-producing plant Oldenlandia affinis. We recombinantly express OaAEP1b and find it functions preferably as a cyclase by coupling C-terminal cleavage of propeptide substrates with backbone cyclization. Interestingly, OaAEP1b cannot cleave at the N-terminal site of O. affinis cyclotide precursors, implicating additional proteases in cyclotide biosynthesis. Finally, we demonstrate the broad utility of this enzyme by cyclization of peptides unrelated to cyclotides. We propose that recombinant OaAEP1b is a powerful tool for use in peptide engineering applications where increased stability of peptide products is desired. PMID:26680698

  3. Changing the topology of protein backbone: the effect of backbone cyclization on the structure and dynamics of a SH3 domain

    PubMed Central

    Schumann, Frank H.; Varadan, Ranjani; Tayakuniyil, Praveen P.; Grossman, Jennifer H.; Camarero, Julio A.; Fushman, David

    2015-01-01

    Understanding of the effects of the backbone cyclization on the structure and dynamics of a protein is essential for using protein topology engineering to alter protein stability and function. Here we have determined, for the first time, the structure and dynamics of the linear and various circular constructs of the N-SH3 domain from protein c-Crk. These constructs differ in the length and amino acid composition of the cyclization region. The backbone cyclization was carried out using intein-mediated intramolecular chemical ligation between the juxtaposed N- and the C-termini. The structure and backbone dynamics studies were performed using solution NMR. Our data suggest that the backbone cyclization has little effect on the overall three-dimensional structure of the SH3 domain: besides the termini, only minor structural changes were found in the proximity of the cyclization region. In contrast to the structure, backbone dynamics are significantly affected by the cyclization. On the subnanosecond time scale, the backbone of all circular constructs on average appears more rigid than that of the linear SH3 domain; this effect is observed over the entire backbone and is not limited to the cyclization site. The backbone mobility of the circular constructs becomes less restricted with increasing length of the circularization loop. In addition, significant conformational exchange motions (on the sub-millisecond time scale) were found in the N-Src loop and in the adjacent β-strands in all circular constructs studied in this work. These effects of backbone cyclization on protein dynamics have potential implications for the stability of the protein fold and for ligand binding. PMID:25905098

  4. Bismuth-catalyzed synthesis of polycyclic aromatic hydrocarbons (PAHs) with a phenanthrene backbone via cyclization and aromatization of 2-(2-arylphenyl)vinyl ethers.

    PubMed

    Murai, Masahito; Hosokawa, Naoki; Roy, David; Takai, Kazuhiko

    2014-08-15

    The reaction of 2-(2-arylphenyl)vinyl ethers in the presence of a catalytic amount of bismuth(III) triflate gave substituted phenanthrenes in excellent yields under mild reaction conditions. The reaction was also applied to the construction of other polycyclic aromatic hydrocarbons (PAHs), such as chrysene, helicene, and pyrene having a phenanthrene backbone, via regioselective cyclization. This method has the advantages of easy availability of the cyclization precursors, operational simplicity, and high reaction efficiency. PMID:25076204

  5. Robust, chiral, and porous BINAP-based metal-organic frameworks for highly enantioselective cyclization reactions.

    PubMed

    Sawano, Takahiro; Thacker, Nathan C; Lin, Zekai; McIsaac, Alexandra R; Lin, Wenbin

    2015-09-30

    We report here the design of BINAP-based metal-organic frameworks and their postsynthetic metalation with Rh complexes to afford highly active and enantioselective single-site solid catalysts for the asymmetric cyclization reactions of 1,6-enynes. Robust, chiral, and porous Zr-MOFs of UiO topology, BINAP-MOF (I) or BINAP-dMOF (II), were prepared using purely BINAP-derived dicarboxylate linkers or by mixing BINAP-derived linkers with unfunctionalized dicarboxylate linkers, respectively. Upon metalation with Rh(nbd)2BF4 and [Rh(nbd)Cl]2/AgSbF6, the MOF precatalysts I·Rh(BF4) and I·Rh(SbF6) efficiently catalyzed highly enantioselective (up to 99% ee) reductive cyclization and Alder-ene cycloisomerization of 1,6-enynes, respectively. I·Rh catalysts afforded cyclization products at comparable enantiomeric excesses (ee's) and 4-7 times higher catalytic activity than the homogeneous controls, likely a result of catalytic site isolation in the MOF which prevents bimolecular catalyst deactivation pathways. However, I·Rh is inactive in the more sterically encumbered Pauson-Khand reactions between 1,6-enynes and carbon monoxide. In contrast, with a more open structure, Rh-functionalized BINAP-dMOF, II·Rh, effectively catalyzed Pauson-Khand cyclization reactions between 1,6-enynes and carbon monoxide at 10 times higher activity than the homogeneous control. II·Rh was readily recovered and used three times in Pauson-Khand cyclization reactions without deterioration of yields or ee's. Our work has expanded the scope of MOF-catalyzed asymmetric reactions and showed that the mixed linker strategy can effectively enlarge the open space around the catalytic active site to accommodate highly sterically demanding polycyclic metallocycle transition states/intermediates in asymmetric intramolecular cyclization reactions. PMID:26335305

  6. Growth versus cyclization in the early stages of the polycondensation of metal alkoxides.

    PubMed

    In, Martin; Sanchez, Clément

    2005-12-22

    The early steps of the polycondensation of transition metal alkoxide have been studied from the chemical and structural points of view. Polyoxoalkoxides are described like macromolecules by the composition of the repeating unit, the degree of polymerization (N), and the radius of gyration (R). The fraction p of binding sites of the coordination sphere of the metal centers occupied by terminal ligands determines N as follows: N proportional, variant pdf (dA-df), where df is the fractal dimension and dA is defined by Np proportional, variant RdA. This approach addresses difficulties raised by both coordinative unsaturation and cyclization in the modelization of the polycondensation of metal alkoxides. The coordinative unsaturation is accounted for by a particularly small value of dA= 1 in the very early steps, while the cyclization frequency is measured by the difference dA-df. This difference is not constant along the polycondensation process, and its dependence on the extent of reaction provides clues for understanding the high apparent kinetics order of gelation often reported in the literature. PMID:16375372

  7. Visible-light initiated oxidative cyclization of phenyl propiolates with sulfinic acids to coumarin derivatives under metal-free conditions.

    PubMed

    Yang, Wenchao; Yang, Shuai; Li, Pinhua; Wang, Lei

    2015-05-01

    A visible-light initiated oxidative cyclization of phenyl propiolates with sulfinic acids has been developed. The arylsulfonylation of alkynes was performed at room temperature under metal-free conditions to generate coumarin derivatives with wide functional group tolerance, good yields and high regioselectivity. PMID:25838160

  8. Metal-Catalyzed Cyclization Reactions of 2,3,4-Trien-1-ols: A Joint Experimental-Computational Study.

    PubMed

    Alcaide, Benito; Almendros, Pedro; Cembellín, Sara; Fernández, Israel; Martínez Del Campo, Teresa

    2016-08-01

    Controlled preparation of tri- and tetrasubstituted furans, as well as carbazoles has been achieved through chemo- and regioselective metal-catalyzed cyclization reactions of cumulenic alcohols. The gold- and palladium-catalyzed cycloisomerization reactions of cumulenols, including indole-tethered 2,3,4-trien-1-ols, to trisubstituted furans was effective, due to a 5-endo-dig oxycyclization by attack of the hydroxy group onto the central cumulene double bond. In contrast, palladium-catalyzed heterocyclization/coupling reactions with 3-bromoprop-1-enes furnished tetrasubstituted furans. Also studied was the palladium-catalyzed cyclization/coupling sequence involving protected indole-tethered 2,3,4-trien-1-ols and 3-bromoprop-1-enes that exclusively generated trisubstituted carbazole derivatives. These results could be explained through a selective 6-endo-dig cumulenic hydroarylation, followed by aromatization. DFT calculations were carried out to understand this difference in reactivity. PMID:27383332

  9. A Fluorination/Aryl Migration/Cyclization Cascade for the Metal-Free Synthesis of Fluoro-Benzoxazepines.

    PubMed

    Ulmer, Anna; Brunner, Christoph; Arnold, Andreas M; Pöthig, Alexander; Gulder, Tanja

    2016-03-01

    Fluorinated organic molecules are of high interest for many applications across chemical and medical disciplines. Efficient methods for the synthesis of such compounds are thus needed. Within this work, application of the bench-stable cyclic hypervalent iodine(III) fluoro reagent 1 facilitated the development of an efficient, metal-free method for the preparation of the novel class of 4-fluoro-1,3-benzoxazepines starting from readily available styrenes. The efficacy and broad applicability of this concept is demonstrated by the synthesis of 20 structurally diverse congeners in high yields, regio-, and diastereoselectivities. The presented method provides complementary chemoselectivity when compared to the common, commercially available electrophilic fluorination reagents, such as selectfluor. First mechanistic investigations with isotopically labeled substrates reveal a complex reaction mechanism, proceeding via an unusual fluorination/1,2-aryl migration/cyclization cascade. PMID:26641801

  10. The Construction of Metal-Organic Framework with Active Backbones by the Utilization of Reticular Chemistry

    NASA Astrophysics Data System (ADS)

    Choi, Eunwoo

    With the principles of reticular chemistry, metal-organic frameworks with ultra-high porosity, chiral-recognition unit as a chiral stationary phase, metalloporhyrins for enhanced hydrogen adsorption and an intrinsic conductivity to form porous conductors, have been prepared. This dissertation presents how the principles of reticular chemistry were utilized to achieve in the preparations of metal-organic frameworks with a large surface area and active backbones. Through the simple isoreticular (having the same framework topology) expansion from MOF-177 composed with 1,3,5-tris(4'-carboxyphenyl-)benzene (BTB3-) as the strut; MOF-200 was prepared with 4,4',4"-(benzene-1,3,5-triyl-tris(benzene-4,1-diy1))tribenzoic acid an extension from BTB3- by a phenylene unit to yield one of the most porous MOFs with a Langmuir surface area of 10,400 m2. and the lowest density of 0.22 cm3.g-1. A successful thermal polymerization reaction at 325 °C inside of the pores of highly porous MOF, MOF-177, was performed and verified the integrity of the MOF structure even after the thermal reaction. 1,4-Diphenylbutadiyne that is known to polymerize upon heating to form a conjugated backbone was impregnated via solution-diffusion into MOF-177 and then subsequently polymerized by heat to form polymer impregnated MOF-177. Characterization was carried out using powder X-ray diffraction and volumetric sorption analyzer. MOF-1020 with a linear quaterphenyl dicarboxylate-based strut was designed to contain a chiral bisbinaphthyl crown-ether moiety for alkyl ammonium resolution was precisely placed into a Zn4O(CO2)6-based cubic MOF structure. Unfortunately, the chiral resolution was not achieved due to the sensitivity and the pore environment of MOF-1020. However, an interesting phenomenon was observed, where the loss of crystallinity occurs upon solvent removal while the crystallites remain shiny and crystalline, but it readily is restored upon re-solvation of the crystallites. This rare

  11. NIS-catalyzed oxidative cyclization of alcohols with amidines: a simple and efficient transition-metal free method for the synthesis of 1,3,5-triazines.

    PubMed

    Tiwari, Abhishek R; T, Akash; Bhanage, Bhalchandra M

    2015-12-01

    An efficient method for the synthesis of 1,3,5-triazines by NIS-catalyzed oxidative cyclization of alcohols with amidines has been developed. The reaction works smoothly under transition-metal free and phosphine-free conditions to afford a wide range of 1,3,5-triazine derivatives in moderate to good yields. The synthetic methodology was achieved via in situ oxidation of alcohols to aldehydes. PMID:26477749

  12. Comparative experimental investigation on the actuation mechanisms of ionic polymer–metal composites with different backbones and water contents

    SciTech Connect

    Zhu, Zicai; Chang, Longfei; Wang, Yanjie; Chen, Hualing; Asaka, Kinji; Zhao, Hongxia; Li, Dichen

    2014-03-28

    Water-based ionic polymer–metal composites (IPMCs) exhibit complex deformation properties, especially when the water content changes. To explore the general actuation mechanisms, both Nafion and Flemion membranes are used as the polymer backbones. IPMC deformation includes three stages: fast anode deformation, relaxation deformation, and slow anode deformation, which is mainly dependent on the water content and the backbone. When the water content decreases from 21 to 14 wt. %, Nafion–IPMC exhibits a large negative relaxation deformation, zero deformation, a positive relaxation deformation, and a positive steady deformation without relaxation in sequence. Despite the slow anode deformation, Flemion–IPMC also shows a slight relaxation deformation, which disappears when the water content is less than 13 wt. %. The different water states are investigated at different water contents using nuclear magnetic resonance spectroscopy. The free water, which decreases rapidly at the beginning through evaporation, is proven to be critical for relaxation deformation. For the backbone, indirect evidence from the steady current response is correlated with the slow anode deformation of Flemion-IPMC. The latter is explained by the secondary dissociation of the weak acid group –COOH. Finally, we thoroughly explain not only the three deformations by swelling but also their evolvement with decreasing water content. A fitting model is also presented based on a multi-diffusion equation to reveal the deformation processes more clearly, the results from which are in good agreement with the experimental results.

  13. Cr(3+) Binding to DNA Backbone Phosphate and Bases: Slow Ligand Exchange Rates and Metal Hydrolysis.

    PubMed

    Zhou, Wenhu; Yu, Tianmeng; Vazin, Mahsa; Ding, Jinsong; Liu, Juewen

    2016-08-15

    The interaction between chromium ions and DNA is of great interest in inorganic chemistry, toxicology, and analytical chemistry. Most previous studies focused on in situ reduction of Cr(VI), producing Cr(3+) for DNA binding. Recently, Cr(3+) was reported to activate the Ce13d DNAzyme for RNA cleavage. Herein, the Ce13d is used to study two types of Cr(3+) and DNA interactions. First, Cr(3+) binds to the DNA phosphate backbone weakly through reversible electrostatic interactions, which is weakened by adding competing inorganic phosphate. However, Cr(3+) coordinates with DNA nucleobases forming stable cross-links that can survive denaturing gel electrophoresis condition. The binding of Cr(3+) to different nucleobases was further studied in terms of binding kinetics and affinity by exploiting carboxyfluorescein-labeled DNA homopolymers. Once binding takes place, the stable Cr(3+)/DNA complex cannot be dissociated by EDTA, attributable to the ultraslow ligand exchange rate of Cr(3+). The binding rate follows the order of G > C > T ≈ A. Finally, Cr(3+) gradually loses its DNA binding ability after being stored at neutral or high pH, attributable to hydrolysis. This hydrolysis can be reversed by lowering the pH. This work provides a deeper insight into the bioinorganic chemistry of Cr(3+) coordination with DNA, clarifies some inconsistency in the previous literature, and offers practically useful information for generating reproducible results. PMID:27478904

  14. Visible-Light-Mediated Generation of Nitrogen-Centered Radicals: Metal-Free Hydroimination and Iminohydroxylation Cyclization Reactions

    PubMed Central

    Davies, Jacob; Booth, Samuel G; Essafi, Stephanie; Dryfe, Robert A W; Leonori, Daniele

    2015-01-01

    The formation and use of iminyl radicals in novel and divergent hydroimination and iminohydroxylation cyclization reactions has been accomplished through the design of a new class of reactive O-aryl oximes. Owing to their low reduction potentials, the inexpensive organic dye eosin Y could be used as the photocatalyst of the organocatalytic hydroimination reaction. Furthermore, reaction conditions for a unique iminohydroxylation were identified; visible-light-mediated electron transfer from novel electron donor–acceptor complexes of the oximes and Et3N was proposed as a key step of this process. PMID:26412046

  15. Enantioselective polyene cyclizations.

    PubMed

    Ungarean, Chad N; Southgate, Emma H; Sarlah, David

    2016-06-28

    The cyclization of polyolefins represents a powerful tool for the rapid generation of molecular complexity. Within the last decade, significant discoveries have been made in the development of methods for converting prochiral polyene substrates into the corresponding polycyclic products with high levels of enantiocontrol. This review highlights advances in the area of enantioselective polyene cyclizations and their use in the synthesis of complex secondary metabolites. PMID:27143099

  16. Allene ether Nazarov cyclization.

    PubMed

    Tius, Marcus A

    2014-05-01

    The ease of synthesis and the exceptional reactivity of alkoxyallenes has led to their use in a large number of highly diverse applications. This Report describes their use in various versions of the allene ether Nazarov cyclization. Following a brief introduction to the Nazarov cyclization (Section 1), the oxidative cyclization of vinyl alkoxyallenes is discussed first (Section 2). Nazarov cyclizations of α-alkoxyallenyl vinyl ketones and of α-alkoxyallenyl vinyl tertiary carbinols are covered (Section 3). The discovery and the subsequent rational design of acetals that serve as chiral auxiliaries on the allene in highly enantioselective Nazarov cyclizations is explained (Section 4). Interrupted Nazarov cyclizations of alkoxyallenes that are generated in situ from the isomerization of propargyl ethers on solid supports are discussed, including the evolution of a highly diastereoselective, chiral auxiliary controlled version of the reaction. Some applications of the methodology to natural products total synthesis have been included so as to provide the reader with benchmarks with which to judge the utility of the methodology. PMID:24196585

  17. Acceptorless Dehydrogenative Cyclization of o-Aminobenzyl Alcohols with Ketones to Quinolines in Water Catalyzed by Water-Soluble Metal-Ligand Bifunctional Catalyst [Cp*(6,6'-(OH)2bpy)(H2O)][OTf]2.

    PubMed

    Wang, Rongzhou; Fan, Hongjun; Zhao, Wei; Li, Feng

    2016-08-01

    The strategy for acceptorless dehydrogenative cyclization of o-aminobenzyl alcohols with ketones to quinolines in water has been accomplished. In the presence of [Cp*Ir(6,6'-(OH)2bpy)(H2O)][OTf]2, a series of desirable products were obtained in high yields. Notably, this research exhibits the potential for the construction of heterocycles via acceptorless dehydrogenative reactions in water catalyzed by water-soluble metal-ligand bifunctional catalysts. PMID:27400132

  18. Stereoselective Electrophilic Cyclization.

    PubMed

    Sakakura, Akira; Ishihara, Kazuaki

    2015-08-01

    Electrophilic cyclizations of unactivated alkenes play highly important roles in the synthesis of useful building blocks. This account describes our contributions to the rational design of monofunctionalized chiral Lewis base catalysts for enantioselective iodo- and protocyclizations. For the stereoselective promotion of electrophilic bromocyclizations, nucleophilic phosphite-urea cooperative catalysts have been designed. PMID:26147781

  19. [Formula: see text]-mediated amination/cyclization of ketones with 2-aminopyridines under high-speed ball milling: solvent- and metal-free synthesis of 2,3-substituted imidazo[1,2-a]pyridines and zolimidine.

    PubMed

    Wang, Fang-Jian; Xu, Hui; Xin, Ming; Zhang, Ze

    2016-08-01

    Under solvent-free high-speed ball milling, an I[Formula: see text]-promoted condensation/cyclization of easily available methyl ketones or 1,3-dicarbonyl compounds with 2-aminopyridines has been developed, which allows the quick assembly of 2,3-substituted imidazo[1,2-a]pyridines (IPs) with broad molecular diversity, including the antiulcer drug zolimidine. The advantages of high yields, good functional group compatibility, short reaction time (within 90 min), free use of heating, solvent and metal, employment of cheap starting materials, and simple work-up procedure make this protocol a very efficient alternative to traditional synthesis of IPs. PMID:26975201

  20. Metal cocatalyzed tandem alkynylative cyclization reaction of in situ formed N-iminoisoquinolinium ylides with bromoalkynes via C-H bond activation.

    PubMed

    Huang, Ping; Yang, Qin; Chen, Zhiyuan; Ding, Qiuping; Xu, Jingshi; Peng, Yiyuan

    2012-09-21

    Silver triflate and copper(I) iodide cocatalyzed direct alkynylation and cyclization reaction of in situ formed N-iminoisoquinolinium ylides with bromoalkynes is described. The reaction proceeds efficiently through a combination of C-H activation and subsequent tandem reaction in one pot, leading to diverse H-pyrazolo[5,1-a]isoquinolines in good yields under mild reaction conditions. PMID:22946742

  1. Oxidative Dearomatization of 4,5,6,7-Tetrahydro-1H-indoles Obtained by Metal- and Solvent-Free Thermal 5-endo-dig Cyclization: The Route to Erythrina and Lycorine Alkaloids.

    PubMed

    Andreev, Ivan A; Ratmanova, Nina K; Novoselov, Anton M; Belov, Dmitry S; Seregina, Irina F; Kurkin, Alexander V

    2016-05-17

    A facile one-pot approach based on a thermally induced metal- and solvent-free 5-endo-dig cyclization reaction of the amino propargylic alcohols in combination with Dess-Martin periodinane-promoted oxidative dearomatization of 4,5,6,7-tetrahydroindole intermediates provides an efficient and robust access to 5,6-dihydro-1H-indol-2(4H)ones. Green, relatively mild and operationally simple characteristics of the synthetic sequence are the major advantages, which greatly amplify the developed methodology. The utility of obtained indolones as unified key precursors is demonstrated by the application of these products to the formal total syntheses of a whole pleiad of Erythrina- and Lycorine-type alkaloids, namely (±)-erysotramidine, (±)-erysotrine, (±)-erythravine, (±)-γ-lycorane, and abnormal erythrinanes (±)-coccoline and (±)-coccuvinine. PMID:27076115

  2. Knorr cyclizations and distonic superelectrophiles.

    PubMed

    Sai, Kiran Kumar Solingapuram; Gilbert, Thomas M; Klumpp, Douglas A

    2007-12-01

    The acid-catalyzed Knorr cyclization has been studied by experimental and theoretical methods. The results of these studies indicate that beta-ketoamides such as acetoacetanilide undergo diprotonation at the two carbonyl oxygen atoms to form distonic superelectrophiles. Direct observation of a dicationic superelectrophile was achieved by low-temperature 1H, 15N, and 13C NMR from FSO3H-SbF5-SO2ClF solutions. In synthetic studies, the Brønsted superacid CF3SO3H is found to be an effective acid catalyst for the Knorr cyclization. PMID:17999519

  3. Recent Progress on Nazarov Cyclizations: The Use of Iron Salts as Catalysts in Ionic Liquid Solvent Systems.

    PubMed

    Itoh, Toshiyuki; Nokami, Toshiki; Kawatsura, Motoi

    2016-06-01

    Nazarov cyclization is an important and versatile method for the synthesis of five-membered carbocycles, and extensive studies have been conducted to optimize the reaction. Among recent studies, several trends are recognized. One is the combination of different reactions with Nazarov cyclization in a one-pot reaction system which enables the preparation of unique cyclization products. The second is the use of a transition-metal catalyst, though Lewis or Brønsted acids have generally been used for the reaction. The third is the realization of the asymmetric Nazarov cyclization. The fourth is the base-catalyzed Nazarov cyclization. Furthermore, several useful protocols for realizing Nazarov cyclization have also been developed. The recent progress on Nazarov cyclizations is summarized in Section 2. Section 3 is our chronicle in this field. We focused on the use of iron as the catalyst in Nazarov cyclizations and ionic liquids as solvents: Nazarov cyclization of thiophene derivatives using FeCl3 as the catalyst was accomplished and we succeeded in demonstrating the first example of an iron-catalyzed asymmetric Nazarov reaction. We next established Nazarov cyclization of pyrrole or indole derivatives using Fe(ClO4 )3 ·Al2 O3 as the catalyst with high trans selectivities in excellent yields. Since the cyclized product was reacted with a vinyl ketone in the presence of the same iron salt, the system allowed realization of the sequential type of Nazarov/Michael reaction of pyrrole derivatives. Furthermore, we demonstrated the recyclable use of the iron catalyst and obtained the desired Nazarov/Michael reaction products in good yields for five repetitions of the reactions without any addition of the catalyst using an ionic liquid, [bmim][NTf2 ], as the solvent. We expect that the iron-catalyzed Nazarov cyclization, in particular, in an ionic liquid solvent might become a useful method to synthesize functional molecules that include cycloalkene moieties. PMID:27219324

  4. SpyRing interrogation: analyzing how enzyme resilience can be achieved with phytase and distinct cyclization chemistries

    PubMed Central

    Schoene, Christopher; Bennett, S. Paul; Howarth, Mark

    2016-01-01

    Enzymes catalyze reactions with exceptional selectivity and rate acceleration but are often limited by instability. Towards a generic route to thermo-resilience, we established the SpyRing approach, cyclizing enzymes by sandwiching between SpyTag and SpyCatcher (peptide and protein partners which lock together via a spontaneous isopeptide bond). Here we first investigated the basis for this resilience, comparing alternative reactive peptide/protein pairs we engineered from Gram-positive bacteria. Both SnoopRing and PilinRing cyclization gave dramatic enzyme resilience, but SpyRing cyclization was the best. Differential scanning calorimetry for each ring showed that cyclization did not inhibit unfolding of the inserted β-lactamase. Cyclization conferred resilience even at 100 °C, where the cyclizing domains themselves were unfolded. Phytases hydrolyze phytic acid and improve dietary absorption of phosphate and essential metal ions, important for agriculture and with potential against human malnutrition. SpyRing phytase (PhyC) resisted aggregation and retained catalytic activity even following heating at 100 °C. In addition, SpyRing cyclization made it possible to purify phytase simply by heating the cell lysate, to drive aggregation of non-cyclized proteins. Cyclization via domains forming spontaneous isopeptide bonds is a general strategy to generate resilient enzymes and may extend the range of conditions for isolation and application of enzymes. PMID:26861173

  5. SpyRing interrogation: analyzing how enzyme resilience can be achieved with phytase and distinct cyclization chemistries.

    PubMed

    Schoene, Christopher; Bennett, S Paul; Howarth, Mark

    2016-01-01

    Enzymes catalyze reactions with exceptional selectivity and rate acceleration but are often limited by instability. Towards a generic route to thermo-resilience, we established the SpyRing approach, cyclizing enzymes by sandwiching between SpyTag and SpyCatcher (peptide and protein partners which lock together via a spontaneous isopeptide bond). Here we first investigated the basis for this resilience, comparing alternative reactive peptide/protein pairs we engineered from Gram-positive bacteria. Both SnoopRing and PilinRing cyclization gave dramatic enzyme resilience, but SpyRing cyclization was the best. Differential scanning calorimetry for each ring showed that cyclization did not inhibit unfolding of the inserted β-lactamase. Cyclization conferred resilience even at 100 °C, where the cyclizing domains themselves were unfolded. Phytases hydrolyze phytic acid and improve dietary absorption of phosphate and essential metal ions, important for agriculture and with potential against human malnutrition. SpyRing phytase (PhyC) resisted aggregation and retained catalytic activity even following heating at 100 °C. In addition, SpyRing cyclization made it possible to purify phytase simply by heating the cell lysate, to drive aggregation of non-cyclized proteins. Cyclization via domains forming spontaneous isopeptide bonds is a general strategy to generate resilient enzymes and may extend the range of conditions for isolation and application of enzymes. PMID:26861173

  6. Biosynthetic Mechanism of Lanosterol: Cyclization.

    PubMed

    Chen, Nanhao; Wang, Shenglong; Smentek, Lidia; Hess, B Andes; Wu, Ruibo

    2015-07-20

    The remarkable cyclization mechanism of the formation of the 6-6-6-5 tetracyclic lanosterol (a key triterpenoid intermediate in the biosynthesis of cholesterol) from the acyclic 2,3-oxidosqualene catalyzed by oxidosqualene cyclase (OSC) has stimulated the interest of chemists and biologists for over a half century. Herein, the elaborate, state-of-the-art two-dimensional (2D) QM/MM MD simulations have clearly shown that the cyclization of the A-C rings involves a nearly concerted, but highly asynchronous cyclization, to yield a stable intermediate with "6-6-5" rings followed by the ring expansion of the C-ring concomitant with the formation of the D-ring to yield the "6-6-6-5" protosterol cation. The calculated reaction barrier of the rate-limiting step (≈22 kcal mol(-1)) is comparable to the experimental kinetic results. Furthermore all previous experimental mutagenic evidence is highly consistent with the identified reaction mechanism. PMID:26069216

  7. Isocyano Enones: Addition-Cyclization Cascade to Oxazoles.

    PubMed

    Chao, Allen; Lujan-Montelongo, J Armando; Fleming, Fraser F

    2016-07-01

    Copper iodide catalyzes the conjugate addition of organometallic and heteroatom nucleophiles to isocyano enones to afford oxazoles. A range of enolates, metalated nitriles, amines, and thiols undergo catalyzed conjugate addition to cyclic and acyclic oxoalkene isocyanides. Mechanistic studies suggest that copper complexation facilitates the nucleophilic attack on the isocyano enone to generate an enolate that cyclizes onto the isocyanide leading to a variety of substituted acyclic or ring-fused oxazoles. PMID:27282173

  8. Salen Promoted Enantioselective Nazarov Cyclizations of Activated and Unactivated Dienones

    PubMed Central

    2013-01-01

    A novel class of chiral 5,5′-di(2,4,6-trialkyl)aryl salen-metal complexes have been developed and shown to catalyze highly enantioselective Nazarov cyclization reactions, giving rise to cyclopentenoids in 90:10–98:2 er. Significantly, the catalysts also promote, for the first time, highly enantioselective Nazarov reactions of “unactivated” dienones, producing hydrindenone products having in place three contiguous chiral centers. PMID:23506509

  9. A Reductive Cyclization Approach to Attenol A

    PubMed Central

    La Cruz, Thomas E.; Rychnovsky, Scott D.

    2008-01-01

    A reductive cyclization strategy was applied to the synthesis of attenol A. This non-traditional approach to the spiroacetal structure illustrated several advantages of the reductive cyclization methodology. The attenol A core was formed in a carbon-carbon bond coupling that gave rise to a previously inaccessible spiroacetal epimer, a new method to synthesize thioketene acetals from a phenyl sulfone was realized, and the configurational stability of a non-anomeric spiroacetal was evaluated. A minor by-product in the reductive cyclization reaction was identified that for the first time allowed direct evaluation of the stereoselectivity in a reductive cyclization of a dialkyloxy alkyllithium reagent. PMID:17346087

  10. Cyanide-catalyzed cyclizations via aldimine coupling.

    PubMed

    Reich, B Jesse E; Justice, Aaron K; Beckstead, Brittany T; Reibenspies, Joseph H; Miller, Stephen A

    2004-02-20

    Aldimine coupling (AIC) is the nitrogen analogue of the benzoin condensation and has been applied to dialdimines, providing the first examples of cyclizations effected by cyanide-catalyzed AIC. Sodium cyanide promoted the facile, intramolecular cyclization of several dialdimines in N,N-dimethylformamide, methanol, or methylene chloride/water (phase-transfer conditions) yielding a variety of six-membered heterocycles. Under aerobic conditions, an oxidative cyclization occurs to provide the diimine heterocycle. Oligomerization was observed with rigid dialdimines for which cyclization was precluded. PMID:14961691

  11. A metal-catalyzed enyne-cyclization step for the synthesis of bi- and tricyclic scaffolds amenable to molecular library production.

    PubMed

    Wu, Peng; Petersen, Michael Åxman; Cohrt, A Emil; Petersen, Rico; Morgentin, Rémy; Lemoine, Hugues; Roche, Carine; Willaume, Anthony; Clausen, Mads H; Nielsen, Thomas E

    2016-08-01

    A facile metal-catalyzed diversification step for the synthesis of novel bi- and tricyclic scaffolds from enyne substrates is reported in this study. From a single starting material, topologically diverse scaffolds for library synthesis can be generated and decorated in a few steps. The methodology was used to produce a library of 490 compounds within the European Lead Factory (ELF) Consortium. PMID:27356738

  12. Triflic Acid-Catalyzed Enynes Cyclization: A New Strategy beyond Electrophilic π-Activation.

    PubMed

    Yu, Zhunzhun; Liu, Lu; Zhang, Junliang

    2016-06-13

    The cyclization of enynes, catalyzed by a transition metal, represents a powerful tool to construct an array of cyclic compounds through electrophilic π-activation. In this paper, we disclose a new and efficient strategy for enynes cyclization catalyzed by triflic acid. The salient features of this transformation includes a broad substrate scope, metal free synthesis, open flask and mild conditions, good yields, ease of operation, low catalyst loading, and easy scale-up to gram scale. A preliminary mechanism study demonstrated that the activation model of the reaction was σ-activation, which is different from the transition-metal-catalyzed enynes cyclization. Our strategy affords a complementary method to the traditional strategies, which use transition-metal catalysts. PMID:27124814

  13. Dimethyl Sulfoxide and N-Iodosuccinimide Promoted 5-exo-dig Oxidative Cyclization of Yne-Tethered Ynamide: Access to Pyrrolidones and Spiro-pyrrolidones.

    PubMed

    Prabagar, B; Nayak, Sanatan; Prasad, Rangu; Sahoo, Akhila K

    2016-07-01

    An unprecedented metal-free dimethyl sulfoxide (DMSO) and N-iodosuccinimide mediated regioselective 5-exo-dig oxidative cyclization of an in situ generated enol equivalent of amides from ynamides bearing internal alkynes is demonstrated. The reaction allows easy access to functionalized pyrrolidone skeletons. Pyrrolidones having 3-o-biaryl motifs successfully undergo intramolecular electrophilic cyclization with the α,β-unsaturated olefin, furnishing spiro-pyrrolidone motifs. A one-pot sequential 5-exo-dig cyclization of the yne-tethered ynamides, followed by electrophilic cyclization of the pyrrolidone, is presented. The role of DMSO in the transformation is clarified, and a tentative reaction pathway is proposed. PMID:27332985

  14. Single Molecule Characterization of Conjugated Oligomers Formed through Radical Cyclization at a Surface

    NASA Astrophysics Data System (ADS)

    Tsai, Hsin-Zon; Riss, Alexander; Wickenburg, Sebastian; Tan, Liang; Gorman, Patrick; Oteyza, Dimas; Chen, Yen-Chia; Bradley, Aaron; Ugeda, Miguel; Etkin, Grisha; Louie, Steven; Fischer, Felix; Crommie, Michael

    2014-03-01

    Conjugated polymers have gained considerable attention due to their potential industrial applications and interesting fundamental properties. Real-space imaging their chemical bonds and understanding their electronic structures at the nanoscale could lead to enhanced control in the synthesis of these polymers for the potential applications in the nanoelectronics. Here, we present the synthesis and characterization of poly-acetylene derivatives resulting from cyclizations of enediyne molecules on an Au(111) surface. We performed non-contact atomic force microscopy (nc-AFM) with sub-molecular resolution to determine the precise chemical structure of cyclized monomers and chemically linked molecular chains. Additionally, STM measurements provide insight into the corresponding electronic structure and reveal a 1D conducting channel along the backbone of the conjugated oligomers, consistent with theoretical predictions. This work demonstrates the unique insight that can be gained by combining nc-AFM and STM to study the chemical and electronic structure of molecular assemblies at surfaces.

  15. The "universal polymer backbone" concept

    NASA Astrophysics Data System (ADS)

    Pollino, Joel Matthew

    This thesis begins with a brief analysis of the synthetic methodologies utilized in polymer science. A conclusion is drawn inferring that upper limits in molecular design are inevitable, arising as a direct consequence of the predominance of covalent strategies in the field. To address these concerns, the 'universal polymer backbone' (UPB) concept has been hypothesized. A UPB has been defined as any copolymer, side-chain functionalized with multiple recognition elements that are individually capable of forming strong, directional, and reversible non-covalent bonds. Non-covalent functionalization of these scaffolds can lead to the formation of a multitude of new polymer structures, each stemming from a single parent or 'universal polymer backbone'. To prepare such a UPB, isomerically pure exo-norbornene esters containing either a PdII SCS pincer complex or a diaminopyridine residue were synthesized, polymerized, and copolymerized via ROMP. All polymerizations were living under mild reaction conditions. Kinetic studies showed that the kp values are highly dependent upon the isomeric purity but completely independent of the terminal recognition units. Non-covalent functionalization of these copolymers was accomplished via (1) directed self-assembly, (2) multi-step self-assembly , and (3) one-step orthogonal self-assembly. This system shows complete specificity of each recognition motif for its complementary unit with no observable changes in the association constant upon functionalization. To explore potential applications of this UPB concept, random terpolymers possessing high concentrations of pendant alkyl chains and small amounts of recognition units were synthesized. Non-covalent crosslinking using a directed functionalization strategy resulted in dramatic increases in solution viscosities for metal crosslinked polymers with only minor changes in viscosity for hydrogen bonding motifs. The crosslinked materials were further functionalized via self-assembly by

  16. Reversible Bergman cyclization by atomic manipulation

    NASA Astrophysics Data System (ADS)

    Schuler, Bruno; Fatayer, Shadi; Mohn, Fabian; Moll, Nikolaj; Pavliček, Niko; Meyer, Gerhard; Peña, Diego; Gross, Leo

    2016-03-01

    The Bergman cyclization is one of the most fascinating rearrangements in chemistry, with important implications in organic synthesis and pharmacology. Here we demonstrate a reversible Bergman cyclization for the first time. We induced the on-surface transformation of an individual aromatic diradical into a highly strained ten-membered diyne using atomic manipulation and verified the products by non-contact atomic force microscopy with atomic resolution. The diyne and diradical were stabilized by using an ultrathin NaCl film as the substrate, and the diyne could be transformed back into the diradical. Importantly, the diradical and the diyne exhibit different reactivity, electronic, magnetic and optical properties associated with the changes in the bond topology, and spin multiplicity. With this reversible, triggered Bergman cyclization we demonstrated switching on demand between the two reactive intermediates by means of selective C-C bond formation or cleavage, which opens up the field of radical chemistry for on-surface reactions by atomic manipulation.

  17. Practical Radical Cyclizations with Arylboronic Acids and Trifluoroborates

    PubMed Central

    Lockner, Jonathan W.; Dixon, Darryl D.; Risgaard, Rune; Baran, Phil S.

    2011-01-01

    Practical radical cyclizations using organoboronic acids and trifluoroborates take place in water, open to air, and in a scalable fashion employing catalytic silver nitrate and stoichiometric potassium persulfate. Both Pschorr-type cyclizations and tandem radical cyclization/trap cascades are described, illustrating the utility of these mild conditions for the generation of polycyclic scaffolds. PMID:21923108

  18. Simulation of Ames Backbone Network

    NASA Technical Reports Server (NTRS)

    Shahnasser, Hamid

    1998-01-01

    The networking demands of Ames Research Center are dramatically increasing. More and more workstations are requested to run video and audio applications on the network. These applications require a much greater bandwidth than data applications. The existing ARCLAN 2000 network bandwidth is insufficient, due to the use of FDDI as its backbone, for accommodating video applications. Operating at a maximum of 100 Mbps, FDDI can handle only a few workstations running multimedia applications. The ideal solution is to replace the current ARCLAN 2000 FDDI backbone with an ATM backbone. ATM has the capability to handle the increasing traffic loads on the ARCLAN 2000 that results from these new applications. As it can be seen from Figure 1, ARCLAN 2000 have a total of 32 routers (5 being core routers) each connected to the FDDI backbone via a 100 Mbps link. This network serves 34 different locations by using 34 hubs that are connected to secondary routers. End users are connected to the secondary routers with 10 Mbps links.

  19. ANSS Backbone Station Quality Assessment

    NASA Astrophysics Data System (ADS)

    Leeds, A.; McNamara, D.; Benz, H.; Gee, L.

    2006-12-01

    In this study we assess the ambient noise levels of the broadband seismic stations within the United States Geological Survey's (USGS) Advanced National Seismic System (ANSS) backbone network. The backbone consists of stations operated by the USGS as well as several regional network stations operated by universities. We also assess the improved detection capability of the network due to the installation of 13 additional backbone stations and the upgrade of 26 existing stations funded by the Earthscope initiative. This assessment makes use of probability density functions (PDF) of power spectral densities (PSD) (after McNamara and Buland, 2004) computed by a continuous noise monitoring system developed by the USGS- ANSS and the Incorporated Research Institutions in Seismology (IRIS) Data Management Center (DMC). We compute the median and mode of the PDF distribution and rank the stations relative to the Peterson Low noise model (LNM) (Peterson, 1993) for 11 different period bands. The power of the method lies in the fact that there is no need to screen the data for system transients, earthquakes or general data artifacts since they map into a background probability level. Previous studies have shown that most regional stations, instrumented with short period or extended short period instruments, have a higher noise level in all period bands while stations in the US network have lower noise levels at short periods (0.0625-8.0 seconds), high frequencies (8.0- 0.125Hz). The overall network is evaluated with respect to accomplishing the design goals set for the USArray/ANSS backbone project which were intended to increase broadband performance for the national monitoring network.

  20. Backbone upgrades and DEC equipment replacement

    NASA Technical Reports Server (NTRS)

    Vancamp, Warren

    1991-01-01

    The NASA Science Internet (NSI) dual protocol backbone is outlined. It includes DECnet link upgrades to match TCP/IP link performance. It also includes the integration of backbone resources and central management. The phase 1 transition process is outlined.

  1. The backbone of a city

    NASA Astrophysics Data System (ADS)

    Scellato, S.; Cardillo, A.; Latora, V.; Porta, S.

    2006-03-01

    Recent studies have revealed the importance of centrality measures to analyze various spatial factors affecting human life in cities. Here we show how it is possible to extract the backbone of a city by deriving spanning trees based on edge betweenness and edge information. By using as sample cases the cities of Bologna and San Francisco, we show how the obtained trees are radically different from those based on edge lengths, and allow an extended comprehension of the “skeleton” of most important routes that so much affects pedestrian/vehicular flows, retail commerce vitality, land-use separation, urban crime and collective dynamical behaviours.

  2. Multicomponent Coupling Cyclization Access to Cinnolines via in Situ Generated Diazene with Arynes, and α-Bromo Ketones.

    PubMed

    Shu, Wen-Ming; Ma, Jun-Rui; Zheng, Kai-Lu; Wu, An-Xin

    2016-01-15

    A transition-metal-free multicomponent coupling cyclization reaction was explored involving arynes, tosylhydrazine, and α-bromo ketones. The reaction proceeds via a formal [2 + 2 + 2] cycloaddition, giving access to cinnoline derivatives in moderate yields under mild conditions. Three chemical bonds were formed-two C-N bonds and one C-C bond-in a single step. PMID:26700265

  3. Thermally induced formal [3+2] cyclization of ortho-aminoaryl-tethered alkylidenecyclopropanes: facile synthesis of furoquinoline and thienoquinoline derivatives.

    PubMed

    Yu, Liu-Zhu; Hu, Xu-Bo; Xu, Qin; Shi, Min

    2016-02-14

    We have developed a facile synthetic method to access furoquinoline and thienoquinoline derivatives via a thermally induced ring-opening and cyclization reaction from ortho-aminoaryl-tethered alkylidenecyclopropanes with the in situ generation of isocyanates or isothiocyanates. These reactions exhibited excellent yields and functional group tolerance under metal-free conditions. PMID:26756044

  4. Cyclization of farnesyl pyrophosphate to the sesquiterpene olefins humulene and caryophyllene by an enzyme system from sage (Salvia officinalis)

    SciTech Connect

    Croteau, R.; Gundy, A.

    1984-09-01

    A soluble enzyme preparation obtained from sage (Salvia officinalis) leaves was shown to catalyze the divalent metal-ion dependent cyclization of trans, trans-farnesyl pyrophosphate to the macrocyclic sesquiterpene olefins humulene and caryophyllene. The identities of the biosynthetic products were confirmed by radiochromatographic analysis and by preparation of crystalline derivatives, and the specificity of labeling in the cyclization reaction was established by chemical degradation of the olefins derived enzymatically from (1-3H2)farnesyl pyrophosphate. These results constitute the first report on the cyclization of farnesyl pyrophosphate to humulene and caryophyllene, two of the most common sesquiterpenes in nature, and the first description of a soluble sesquiterpene cyclase to be isolated from leaves of a higher plant.

  5. Development of a Backbone Cyclic Peptide Library as Potential Antiparasitic Therapeutics Using Microwave Irradiation.

    PubMed

    Qvit, Nir; Kornfeld, Opher S

    2016-01-01

    Protein-protein interactions (PPIs) are intimately involved in almost all biological processes and are linked to many human diseases. Therefore, there is a major effort to target PPIs in basic research and in the pharmaceutical industry. Protein-protein interfaces are usually large, flat, and often lack pockets, complicating the discovery of small molecules that target such sites. Alternative targeting approaches using antibodies have limitations due to poor oral bioavailability, low cell-permeability, and production inefficiency. Using peptides to target PPI interfaces has several advantages. Peptides have higher conformational flexibility, increased selectivity, and are generally inexpensive. However, peptides have their own limitations including poor stability and inefficiency crossing cell membranes. To overcome such limitations, peptide cyclization can be performed. Cyclization has been demonstrated to improve peptide selectivity, metabolic stability, and bioavailability. However, predicting the bioactive conformation of a cyclic peptide is not trivial. To overcome this challenge, one attractive approach it to screen a focused library to screen in which all backbone cyclic peptides have the same primary sequence, but differ in parameters that influence their conformation, such as ring size and position. We describe a detailed protocol for synthesizing a library of backbone cyclic peptides targeting specific parasite PPIs. Using a rational design approach, we developed peptides derived from the scaffold protein Leishmania receptor for activated C-kinase (LACK). We hypothesized that sequences in LACK that are conserved in parasites, but not in the mammalian host homolog, may represent interaction sites for proteins that are critical for the parasites' viability. The cyclic peptides were synthesized using microwave irradiation to reduce reaction times and increase efficiency. Developing a library of backbone cyclic peptides with different ring sizes facilitates a

  6. [2+2+1] cyclization of allenes.

    PubMed

    Kitagaki, S; Inagaki, F; Mukai, C

    2014-05-01

    The [2+2+1] cyclization of an alkyne, an alkene and carbon monoxide, i.e., the Pauson-Khand reaction, is one of the most powerful tools for constructing a five-membered ring. In place of the alkene or alkyne part, the use of an allene functionality has proven to make this reaction more valuable for organic synthesis. This review focuses on the origin and progress of the allenic [2+2+1] cyclocarbonylation, including the chirality transfer of the allene and its synthetic applications. PMID:24514744

  7. Asymmetric, stereodivergent synthesis of (-)-clusianone utilizing a biomimetic cationic cyclization.

    PubMed

    Boyce, Jonathan H; Porco, John A

    2014-07-21

    We report a stereodivergent, asymmetric total synthesis of (-)-clusianone in six steps from commercial materials. We implement a challenging cationic cyclization forging a bond between two sterically encumbered quaternary carbon atoms. Mechanistic studies point to the unique ability of formic acid to mediate the cyclization forming the clusianone framework. PMID:24916169

  8. Oxidative Folding and N-terminal Cyclization of Onconase+

    PubMed Central

    Welker, Ervin; Hathaway, Laura; Xu, Guoqiang; Narayan, Mahesh; Pradeep, Lovy; Shin, Hang-Cheol; Scheraga, Harold A.

    2008-01-01

    Cyclization of the N-terminal glutamine residue to pyroglutamic acid in onconase, an anti-cancer chemotherapeutic agent, increases the activity and stability of the protein. Here, we examine the correlated effects of the folding/unfolding process and the formation of this N-terminal pyroglutamic acid. The results in this study indicate that cyclization of the N-terminal glutamine has no significant effect on the rate of either reductive unfolding or oxidative folding of the protein. Both the cyclized and uncyclized proteins seem to follow the same oxidative folding pathways; however, cyclization altered the relative flux of the protein in these two pathways by increasing the rate of formation of a kinetically trapped intermediate. Glutaminyl cyclase (QC) catalyzed the cyclization of the unfolded, reduced protein, but had no effect on the disulfide-intact, uncyclized, folded protein. The structured intermediates of uncyclized onconase were also resistant to QC-catalysis, consistent with their having a native-like fold. These observations suggest that, in vivo, cyclization takes place during the initial stages of oxidative folding, specifically, before the formation of structured intermediates. The competition between oxidative folding and QC-mediated cyclization suggests that QC-catalyzed cyclization of the N-terminal glutamine in onconase occurs in the endoplasmic reticulum, probably co-translationally. PMID:17439243

  9. Spin-state control of thermal and photochemical Bergman cyclization.

    PubMed

    Boerner, Leigh J K; Pink, Maren; Park, Hyunsoo; LeSueur, Amanda; Zaleski, Jeffrey M

    2013-03-14

    Thermal Bergman cyclization of Pt(II) dialkynylporphyrins reveals a marked reduction in the cyclization temperature relative to the free base and Zn(II) derivatives. In contrast, photogenerated (3)ππ* population produces no detectable Bergman photocyclization, suggesting that the photoreactivities of the related free base and Zn(II) derivatives occurs via the (1)ππ* state. PMID:23388700

  10. Flexible backbone aromatic polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.; St.clair, Terry L.

    1988-01-01

    Continuing research at Langley Research Center on the synthesis and development of new inexpensive flexible aromatic polyimides as adhesives has resulted in a material identified as LARC-F-SO2 with similarities to polyimidesulfone, PISO2, and other flexible backbone polyimides recently reported by Progar and St. Clair. Also prepared and evaluated was an endcapped version of PISO2. These two polymers were compared with LARC-TPI and LARC-STPI, polyimides research in our laboratory and reported in the literature. The adhesive evaluation, primarily based on lap shear strength (LSS) tests at RT, 177 C and 204 C, involved preparing adhesive tapes, conducting bonding studies and exposing lap shear specimens to 204 C air for up to 1000 hrs and to a 72-hour water boil. The type of adhesive failure as well as the Tg was determined for the fractured specimens. The results indicate that LARC-TPI provides the highest LSSs. LARC-F-SO2, LARC-TPI and LARC-STPI all retain their strengths after thermal exposure for 1000 hrs and PISO2 retains greater than 80 percent of its control strengths. After a 72-hr water boil exposure, most of the four adhesive systems showed reduced strengths for all test temperatures although still retaining a high percentage of their original strength (greater than 60 percent) except for one case. The predominant failure type was cohesive with no significant change in the Tgs.

  11. Flexible backbone aromatic polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.; St. Clair, Terry L.

    1989-01-01

    Continuing research at Langley Research Center on the synthesis and development of new inexpensive flexible aromatic polyimides as adhesives has resulted in a material identified as LARC-F-SO2 with similarities to polyimidesulfone, PISO2, and other flexible backbone polyimides recently reported by Progar and St. Clair. Also prepared and evaluated was an endcapped version of PISO2. These two polymers were compared with LARC-TPI and LARC-STPI, polyimides research in our laboratory and reported in the literature. The adhesive evaluation, primarily based on lap shear strength (LSS) tests at RT, 177 C and 204 C, involved preparing adhesive tapes, conducting bonding studies and exposing lap shear specimens to 204 C air for up to 1000 hrs and to a 72-hour water boil. The type of adhesive failure as well as the Tg was determined for the fractured specimens. The results indicate that LARC-TPI provides the highest LSSs. LARC-F-SO2, LARC-TPI and LARC-STPI all retain their strengths after thermal exposure for 1000 hrs and PISO2 retains greater than 80 percent of its control strengths. After a 72-hr water boil exposure, most of the four adhesive systems showed reduced strengths for all test temperatures although still retaining a high percentage of their original strength (greater than 60 percent) except for one case. The predominant failure type was cohesive with no significant change in the Tgs.

  12. Ruthenium-Catalyzed Hydroalkynylative Cyclization of 1,6-Enynes Induced by Substituent Effects.

    PubMed

    Liu, Rui; Ni, Zhenjie; Giordano, Laurent; Tenaglia, Alphonse

    2016-08-19

    The ruthenium-catalyzed 1,6-enyne cyclization in the presence of bulky substituted terminal alkyne proceeds smoothly at room temperature to afford highly substituted five-membered cyclic compounds featuring a 1,5-enyne motif. Deuterium-labeling experiments showed that the key ruthenacyclopentene intermediate undergoes cleavage of metal-carbon bonds through the metal-assisted σ-bond metathesis reaction, thus leading to the formation of C(sp(2))-H and C(sp(3))-C(sp) bonds. PMID:27504966

  13. Sequence Affects the Cyclization of DNA Minicircles.

    PubMed

    Wang, Qian; Pettitt, B Montgomery

    2016-03-17

    Understanding how the sequence of a DNA molecule affects its dynamic properties is a central problem affecting biochemistry and biotechnology. The process of cyclizing short DNA, as a critical step in molecular cloning, lacks a comprehensive picture of the kinetic process containing sequence information. We have elucidated this process by using coarse-grained simulations, enhanced sampling methods, and recent theoretical advances. We are able to identify the types and positions of structural defects during the looping process at a base-pair level. Correlations along a DNA molecule dictate critical sequence positions that can affect the looping rate. Structural defects change the bending elasticity of the DNA molecule from a harmonic to subharmonic potential with respect to bending angles. We explore the subelastic chain as a possible model in loop formation kinetics. A sequence-dependent model is developed to qualitatively predict the relative loop formation time as a function of DNA sequence. PMID:26938490

  14. External Tank - The Structure Backbone

    NASA Technical Reports Server (NTRS)

    Welzyn, Kenneth; Pilet, Jeffrey C.; Diecidue-Conners, Dawn; Worden, Michelle; Guillot, Michelle

    2011-01-01

    The External Tank forms the structural backbone of the Space Shuttle in the launch configuration. Because the tank flies to orbital velocity with the Space Shuttle Orbiter, minimization of weight is mandatory, to maximize payload performance. Choice of lightweight materials both for structure and thermal conditioning was necessary. The tank is large, and unique manufacturing facilities, tooling, handling, and transportation operations were required. Weld processes and tooling evolved with the design as it matured through several block changes, to reduce weight. Non Destructive Evaluation methods were used to assure integrity of welds and thermal protection system materials. The aluminum-lithium alloy was used near the end of the program and weld processes and weld repair techniques had to be refined. Development and implementation of friction stir welding was a substantial technology development incorporated during the Program. Automated thermal protection system application processes were developed for the majority of the tank surface. Material obsolescence was an issue throughout the 40 year program. The final configuration and tank weight enabled international space station assembly in a high inclination orbit allowing international cooperation with the Russian Federal Space Agency. Numerous process controls were implemented to assure product quality, and innovative proof testing was accomplished prior to delivery. Process controls were implemented to assure cleanliness in the production environment, to control contaminants, and to preclude corrosion. Each tank was accepted via rigorous inspections, including non-destructive evaluation techniques, proof testing, and all systems testing. In the post STS-107 era, the project focused on ascent debris risk reduction. This was accomplished via stringent process controls, post flight assessment using substantially improved imagery, and selective redesigns. These efforts were supported with a number of test programs to

  15. "Click"-cyclized (68)Ga-labeled peptides for molecular imaging and therapy: synthesis and preliminary in vitro and in vivo evaluation in a melanoma model system.

    PubMed

    Martin, Molly E; Sue O'Dorisio, M; Leverich, Whitney M; Kloepping, Kyle C; Walsh, Susan A; Schultz, Michael K

    2013-01-01

    Cyclization techniques are used often to impart higher in vivo stability and binding affinity to peptide targeting vectors for molecular imaging and therapy. The two most often used techniques to impart these qualities are lactam bridge construction and disulfide bond formation. While these techniques have been demonstrated to be effective, orthogonal protection/deprotection steps can limit achievable product yields. In the work described in this chapter, new α-melanocyte stimulating hormone (α-MSH) peptide analogs were synthesized and cyclized by copper-catalyzed terminal azide-alkyne cycloaddition "click" chemistry techniques. The α-MSH peptide and its cognate receptor (melanocortin receptor subtype 1, MC1R) represent a well-characterized model system to examine the effect of the triazole linkage for peptide cyclization on receptor binding in vitro and in vivo. Four new DOTA-conjugated α-MSH analogs were cyclized and evaluated by in vitro competitive binding assays, serum stability testing, and in vivo imaging by positron emission tomography (PET) of tumor-bearing mice. These new DOTA-conjugated click-cyclized analogs exhibited selective high binding affinity (<2 nM) for MC1R on melanoma cells in vitro, high stability in human serum, and produced high-contrast PET/CT images of tumor xenografts. (68)Ga-labeled DOTA bioconjugates displayed rapid pharmacokinetics with receptor-mediated tumor accumulation of up to 16 ± 5% ID/g. The results indicate that the triazole ring is an effective bioisosteric replacement for the standard lactam bridge assemblage for peptide cyclization. Radiolabeling results confirm that Cu catalyst is sufficiently removed prior to DOTA chelator addition to enable insertion of radio metals or stable metals for molecular imaging and therapy. Thus, these click-chemistry-cyclized variants show promise as agents for melanocortin receptor-targeted imaging and radionuclide therapy. PMID:22918759

  16. Structural determinants of reductive terpene cyclization in iridoid biosynthesis.

    PubMed

    Kries, Hajo; Caputi, Lorenzo; Stevenson, Clare E M; Kamileen, Mohammed O; Sherden, Nathaniel H; Geu-Flores, Fernando; Lawson, David M; O'Connor, Sarah E

    2016-01-01

    The carbon skeleton of ecologically and pharmacologically important iridoid monoterpenes is formed in a reductive cyclization reaction unrelated to canonical terpene cyclization. Here we report the crystal structure of the recently discovered iridoid cyclase (from Catharanthus roseus) bound to a mechanism-inspired inhibitor that illuminates substrate binding and catalytic function of the enzyme. Key features that distinguish iridoid synthase from its close homolog progesterone 5β-reductase are highlighted. PMID:26551396

  17. Enantioselective Nazarov Cyclization Catalyzed by a Cinchona Alkaloid Derivative

    PubMed Central

    Huang, Yu-Wen; Frontier, Alison J.

    2015-01-01

    Nucleophilic catalysts for a 1,6 addition/Nazarov cyclization/elimination sequence were evaluated for their ability to induce enantioselectivity in the electrocyclization step. Of the tertiary amines examined, it was found that a cinchona alkaloid derivative was able to generate substituted 5-hydroxy γ-methylene cyclopentenones with excellent enantioselectivity. The study results suggest that successful cyclization depends upon the ability of the dienyl diketone substrate to readily adopt an s-cis conformation. PMID:26085696

  18. Oxidative cyclization of alkenols with Oxone using a miniflow reactor

    PubMed Central

    Yamada, Yoichi M A; Torii, Kaoru

    2009-01-01

    Summary A miniflow system for oxidative cyclization of alkenols with Oxone was developed. Thus, the oxidative cyclization of (Z)- and (E)-alkenols in i-PrOH with an aqueous solution of Oxone proceeded smoothly and safely in a PTFE tube without any exogenous catalytic species, and was subsequently quenched in a flow-reaction manner to afford the corresponding furanyl and pyranyl carbinols quantitatively within 5 or 10 min of residence time. PMID:19513188

  19. Structural determinants of reductive terpene cyclization in iridoid biosynthesis

    PubMed Central

    Stevenson, Clare E. M.; Kamileen, Mohammed O.; Sherden, Nathaniel H.; Geu-Flores, Fernando; Lawson, David M.; O’Connor, Sarah E.

    2015-01-01

    The carbon skeleton of ecologically and pharmacologically important iridoid monoterpenes is formed in a reductive cyclization reaction unrelated to canonical terpene cyclization. Here we report the crystal structure of the recently discovered iridoid cyclase (Catharanthus roseus) bound to a mechanism-inspired inhibitor that illuminates substrate binding and catalytic function of the enzyme. Key features that distinguish iridoid synthase from its close homologue, progesterone 5β-reductase, are highlighted. PMID:26551396

  20. Cetalox and analogues: synthesis via acid-mediated polyene cyclizations.

    PubMed

    Snowden, Roger L

    2008-06-01

    Using a novel, acid-mediated cyclization methodology, a direct access to Cetalox ((+/-)-1; a commercially important ambergris-type odorant) and various structurally related didehydro (i.e., 19, 26, and 30) and tetradehydro (i.e., 28 and 37/38) analogues is described. Treatment of either (E,E)-14 or (E)-15 with an excess of FSO(3)H in 2-nitropropane at -90 degrees stereospecifically afforded (+/-)-1 in 40 and 42% yield, respectively. Under similar conditions, cyclization of (E)-18 or 20 furnished 19 in 60 and 64% yield, respectively. Analogously, using an excess of ClSO(3)H in CH(2)Cl(2) at -80 degrees, 26 is formed with high stereoselectivity by cyclization of either (E)-24 or (Z)-25 (52 and 31% yield, resp.); in the same manner, 28 was prepared from 27 (22% yield). The same principle was applied to the synthesis of racemic Superambrox (30), via cyclization of 35, but only with poor selectivity (22%) and low yield (7%). Another approach via cyclization of (E)-40 under solvolysis conditions (excess TFA in CH(2)Cl(2) at -10 degrees) gave a higher yield (15%) with improved selectivity (43%). Finally, cyclization of 34 (1:1 diastereoisomer mixture) afforded 37/38 (10:1) in 27% yield. The qualitative organoleptic properties of 19, 26, 28, 30, and 37/38 (10:1) are briefly discussed. PMID:18618391

  1. Utilizing redox-mediated Bergman cyclization toward the development of dual-action metalloenediyne therapeutics.

    PubMed

    Lindahl, Sarah E; Park, Hyunsoo; Pink, Maren; Zaleski, Jeffrey M

    2013-03-13

    Reaction of 2 equiv of 1,2-bis((diphenylphosphino)ethynyl)benzene (dppeb, 1) with Pt(cod)Cl2 followed by treatment with N2H4 yields the reduced Pt(0) metalloenediyne, Pt(dppeb)2, 2. This complex is stable to both air oxidation and metal-mediated Bergman cyclization under ambient conditions due to the nearly idealized tetrahedral geometry. Reaction of 2 with 1 equiv of I2 in the presence of excess 1,4-cyclohexadiene (1,4-CHD) radical trap rapidly and near-quantitatively generates the cis-Bergman-cyclized, diiodo product 3 ((31)P: δ = 41 ppm, J(Pt-P) = 3346 Hz) with concomitant loss of 1 equiv of uncyclized phosphine chelate ((31)P: δ = -33 ppm). In contrast, addition of 2 equiv of I2 in the absence of additional radical trap instantaneously forms a metastable Pt(dppeb)2(2+) intermediate species, 4, that is characterized by δ = 51 ppm in the (31)P NMR (J(Pt-P) = 3171 Hz) and ν(C≡C) = 2169 cm(-1) in the Raman profile, indicating that it is an uncyclized, bis-ligated complex. Over 24 h, 4 undergoes ligand exchange to form a neutral, square planar complex that spontaneously Bergman cyclizes at ambient temperature to give the crystalline product Pt(dppnap-I2)I2 (dppnap-I2 = (1,4-diiodonaphthalene-2,3-diyl)bis(diphenylphosphine)), 5, in 52% isolated yield. Computational analysis of the oxidation reaction proposes two plausible flattened tetrahedral structures for intermediate 4: one where the phosphine core has migrated to a trans-spanning chelate geometry, and a second, higher energy structure (3.3 kcal/mol) with two cis-chelating phosphine ligands (41° dihedral angle) via a restricted alkyne-terminal starting point. While the energies are disparate, the common theme in both structures is the elongated Pt-P bond lengths (>2.4 Å), indicating that nucleophilic ligand substitution by I(-) is on the reaction trajectory to the cyclized product 5. The efficiency of the redox-mediated Bergman cyclization reaction of this stable Pt(0) metalloenediyne prodrug and

  2. Thermal stabilization of an endoglucanase by cyclization.

    PubMed

    van Lieshout, Johan F T; Pérez Gutiérrez, Odette N; Vroom, Wietse; Planas, Antoni; de Vos, Willem M; van der Oost, John; Koutsopoulos, Sotirios

    2012-08-01

    An intein-driven protein splicing approach allowed for the covalent linkage between the N- and C-termini of a polypeptide chain to create circular variants of the endo-β-1,3-1,4-glucanase, LicA, from Bacillus licheniformis. Two circular variants, LicA-C1 and LicA-C2, which have connecting loops of 20 and 14 amino acids, respectively, showed catalytic activities that are approximately two and three times higher, respectively, compared to that of the linear LicA (LicA-L1). The thermal stability of the circular variants was significantly increased compared to the linear form. Whereas the linear glucanase lost half of its activity after 3 min at 65 °C, the two circular variants have 6-fold (LicA-C1) and 16-fold (LicA-C2) increased half-life time of inactivation. In agreement with this, fluorescence spectroscopy and differential scanning calorimetry studies revealed that circular enzymes undergo structural changes at higher temperatures compared to that of the linear form. The effect of calcium on the conformational stability and function of the circular LicAs was also investigated, and we observed that the presence of calcium ions results in increased thermal stability. The impact of the length of the designed loops on thermal stability of the circular proteins is discussed, and it is suggested that cyclization may be an efficient strategy for the increased stability of proteins. PMID:22653681

  3. Conformation Dependence of Backbone Geometry in Proteins

    PubMed Central

    Berkholz, Donald S.; Shapovalov, Maxim V.; Dunbrack, Roland L.; Karplus, P. Andrew

    2009-01-01

    Summary Protein structure determination and predictive modeling have long been guided by the paradigm that the peptide backbone has a single, context-independent ideal geometry. Both quantum-mechanics calculations and empirical analyses have shown this is an incorrect simplification in that backbone covalent geometry actually varies systematically as a function of the Φ and Ψ backbone dihedral angles. Here, we use a nonredundant set of ultrahigh-resolution protein structures to define these conformation-dependent variations. The trends have a rational, structural basis that can be explained by avoidance of atomic clashes or optimization of favorable electrostatic interactions. To facilitate adoption of this new paradigm, we have created a conformation-dependent library of covalent bond lengths and bond angles and shown that it has improved accuracy over existing methods without any additional variables to optimize. Protein structures derived both from crystallographic refinement and predictive modeling both stand to benefit from incorporation of the new paradigm. PMID:19836332

  4. Discovery of cyclotides in the fabaceae plant family provides new insights into the cyclization, evolution, and distribution of circular proteins.

    PubMed

    Poth, Aaron G; Colgrave, Michelle L; Philip, Reynold; Kerenga, Bomai; Daly, Norelle L; Anderson, Marilyn A; Craik, David J

    2011-04-15

    Cyclotides are plant proteins whose defining structural features are a head-to-tail cyclized backbone and three interlocking disulfide bonds, which in combination are known as a cyclic cystine knot. This unique structural motif confers cyclotides with exceptional resistance to proteolysis. Their endogenous function is thought to be as plant defense agents, associated with their insecticidal and larval growth-inhibitory properties. However, in addition, an array of pharmaceutically relevant biological activities has been ascribed to cyclotides, including anti-HIV, anthelmintic, uterotonic, and antimicrobial effects. So far, >150 cyclotides have been elucidated from members of the Rubiaceae, Violaceae, and Cucurbitaceae plant families, but their wider distribution among other plant families remains unclear. Clitoria ternatea (Butterfly pea) is a member of plant family Fabaceae and through its usage in traditional medicine to aid childbirth bears similarity to Oldenlandia affinis, from which many cyclotides have been isolated. Using a combination of nanospray and matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) analyses, we examined seed extracts of C. ternatea and discovered cyclotides in the Fabaceae, the third-largest family of flowering plants. We characterized 12 novel cyclotides, thus expanding knowledge of cyclotide distribution and evolution within the plant kingdom. The discovery of cyclotides containing novel sequence motifs near the in planta cyclization site has provided new insights into cyclotide biosynthesis. In particular, MS analyses of the novel cyclotides from C. ternatea suggest that Asn to Asp variants at the cyclization site are more common than previously recognized. Moreover, this study provides impetus for the examination of other economically and agriculturally significant species within Fabaceae, now the largest plant family from which cyclotides have been described. PMID:21194241

  5. Protein-protein docking with backbone flexibility.

    PubMed

    Wang, Chu; Bradley, Philip; Baker, David

    2007-10-19

    Computational protein-protein docking methods currently can create models with atomic accuracy for protein complexes provided that the conformational changes upon association are restricted to the side chains. However, it remains very challenging to account for backbone conformational changes during docking, and most current methods inherently keep monomer backbones rigid for algorithmic simplicity and computational efficiency. Here we present a reformulation of the Rosetta docking method that incorporates explicit backbone flexibility in protein-protein docking. The new method is based on a "fold-tree" representation of the molecular system, which seamlessly integrates internal torsional degrees of freedom and rigid-body degrees of freedom. Problems with internal flexible regions ranging from one or more loops or hinge regions to all of one or both partners can be readily treated using appropriately constructed fold trees. The explicit treatment of backbone flexibility improves both sampling in the vicinity of the native docked conformation and the energetic discrimination between near-native and incorrect models. PMID:17825317

  6. Terpene cyclization catalysed inside a self-assembled cavity

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Tiefenbacher, K.

    2015-03-01

    In nature, complex terpene natural products are formed by the so-called tail-to-head terpene (THT) cyclization. The cationic reaction cascade is promoted efficiently in complex enzyme pockets, in which cationic intermediates and transition states are stabilized. In solution, the reaction is hard to control and man-made catalysts able to perform selective THT cyclizations are lacking. We herein report the first example of a successful THT cyclization inside a supramolecular structure. The basic mode of operation in cyclase enzymes was mimicked successfully and a catalytic non-stop THT was achieved with geranyl acetate as the substrate. The results presented have implications for the postulated reaction mechanism in cyclase enzymes. Evidence indicates that the direct isomerization of a geranyl cation to the cisoid isomer, which so far was considered unlikely, is feasible.

  7. WDM backbone network with guaranteed performance planning

    NASA Astrophysics Data System (ADS)

    Liang, Peng; Sheng, Wang; Zhong, Xusi; Li, Lemin

    2005-11-01

    Wavelength-Division multiplexing (WDM), which allows a single fibre to carry multiple signals simultaneously, has been widely used to increase link capacity and is a promising technology in backbone transport network. But designing such WDM backbone network is hard for two reasons, one is the uncertainty of future traffic demand, the other is difficulty of planning of the backup resource for failure conditions. As a result, enormous amount of link capacity for the network has to be provided for the network. Recently, a new approach called Valiant Load-Balanced Scheme (VLBS) has been proposed to design the WDM backbone network. The network planned by Valiant Load-Balanced Scheme is insensitive to the traffic and continues to guarantee performance under a user defined number of link or node failures. In this paper, the Valiant Load-Balanced Scheme (VLBS) for backbone network planning has been studied and a new Valiant Load-Balanced Scheme has been proposed. Compared with the early work, the new Valiant Load-Balanced Scheme is much more general and can be used for the computation of the link capacity of both homogeneous and heterogeneous networks. The abbreviation for the general Valiant Load-Balanced Scheme is GVLBS. After a brief description of the VLBS, we will give the detail derivation of the GVLBS. The central concept of the derivation of GVLBS is transforming the heterogeneous network into a homogeneous network, and taking advantage of VLBS to get GVLBS. Such transformation process is described and the derivation and analysis of GVLBS for link capacity under normal and failure conditions is also given. The numerical results show that GVLBS can compute the minimum link capacity required for the heterogeneous backbone network under different conditions (normal or failure).

  8. The cyclization of arabinosyladenine-5-prime-phosphorimidazolide

    NASA Technical Reports Server (NTRS)

    Harada, Kazuo; Orgel, Leslie E.

    1991-01-01

    When arabinosyladenine-5-prime-phosphorimidazolide is allowed to decompose in aqueous solution at room temperature and pH 7.2, depending on the buffer, 5-24 percent is converted to the 2-prime,5-prime-cyclic phosphate (V). Although the extent of cyclization is much greater than for adenosine-5-prime-phosphorimidazolide, cyclization is less efficient than hydrolysis and so would not substantially decrease the efficiency of condensation reactions in aqueous solution. The significance of this result for prebiotic chemistry is discussed.

  9. Iridium-Catalyzed Reductive Nitro-Mannich Cyclization

    PubMed Central

    Gregory, Alex W; Chambers, Alan; Hawkins, Alison; Jakubec, Pavol; Dixon, Darren J

    2015-01-01

    A new chemoselective reductive nitro-Mannich cyclization reaction sequence of nitroalkyl-tethered lactams has been developed. Relying on the rapid and chemoselective iridium(I)-catalyzed reduction of lactams to the corresponding enamine, subsequent nitro-Mannich cyclization of tethered nitroalkyl functionality provides direct access to important alkaloid natural-product-like structures in yields up to 81 % and in diastereoselectivities that are typically good to excellent. An in-depth understanding of the reaction mechanism has been gained through NMR studies and characterization of reaction intermediates. The new methodology has been applied to the total synthesis of (±)-epi-epiquinamide in four steps. PMID:25399919

  10. The role of structural parameters in DNA cyclization

    DOE PAGESBeta

    Alexandrov, Ludmil B.; Bishop, Alan R.; Rasmussen, Kim O.; Alexandrov, Boian S.

    2016-02-04

    The intrinsic bendability of DNA plays an important role with relevance for myriad of essential cellular mechanisms. The flexibility of a DNA fragment can be experimentally and computationally examined by its propensity for cyclization, quantified by the Jacobson-Stockmayer J factor. In this paper, we use a well-established coarse-grained three-dimensional model of DNA and seven distinct sets of experimentally and computationally derived conformational parameters of the double helix to evaluate the role of structural parameters in calculating DNA cyclization.

  11. Cyclic Graft Copolymer Unimolecular Micelles: Effects of Cyclization on Particle Morphology and Thermoresponsive Behavior

    PubMed Central

    2016-01-01

    The synthesis of cyclic amphiphilic graft copolymers with a hydrophobic polycarbonate backbone and hydrophilic poly(N-acryloylmorpholine) (PNAM) side arms via a combination of ring-opening polymerization (ROP), cyclization via copper-catalyzed azide–alkyne cycloaddition (CuAAC), and reversible addition–fragmentation chain transfer (RAFT) polymerization is reported. The ability of these cyclic graft copolymers to form unimolecular micelles in water is explored using a combination of light scattering, small-angle X-ray scattering (SAXS), and cryogenic transmission electron microscopy (cryoTEM) analyses, where particle size was found to increase with increasing PNAM arm length. Further analysis revealed differences in the solution conformations, loading capabilities, and morphologies of the cyclic graft copolymers in comparison to equivalent linear graft copolymer unimolecular micelle analogues. Furthermore, the cyclic and linear graft copolymers were found to exhibit significantly different cloud point temperatures. This study highlights how subtle changes in polymer architecture (linear graft copolymer versus cyclic graft copolymer) can dramatically influence a polymer’s nanostructure and its properties. PMID:27175037

  12. Catalytic Control in Cyclizations: From Computational Mechanistic Understanding to Selectivity Prediction.

    PubMed

    Peng, Qian; Paton, Robert S

    2016-05-17

    catalyst structures for enantioselective cycloisomerizations. Calculations have revealed that stepwise C-C bond formation and proton transfer dictate the exclusive endo diastereoselectivity of the intramolecular Michael addition to form 2-azabicyclo[3.3.1]nonane skeletons catalyzed by primary amines. These insights have led to development of a highly enantioselective catalyst with higher atom economy than previous generations. This Account also explores transition-metal-catalyzed cycloisomerizations, where our theoretical investigations have uncovered an unexpected reaction pathway in the [5 + 2] cycloisomerization of ynamides. This has led to the design of new phosphoramidite ligands to enable double-stereodifferentiating cycloisomerizations in both matched and mismatched catalyst-substrate settings. Computational understanding of the factors responsible for the regio-, enantio-, and diasterocontrol is shown to generate tangible predictions leading to an acceleration of catalyst development for selective cyclizations. PMID:27137131

  13. ANSS Backbone Station Installation and Site Characterization

    NASA Astrophysics Data System (ADS)

    Meremonte, M.; Leeds, A.; Overturf, D.; McMillian, J.; Allen, J.; McNamara, D.

    2004-12-01

    During 2004 several new broadband seismic stations have been deployed as a part of the USGS's Advanced National Seismic System (ANSS) backbone and regional networks. New stations include: ERPA, MNTX, OGLA, AMTX, NATX, KCCO, BMO, MARC, TZTN, LAO, DGMT, REDW, KSU1, MOOW, TPAW, LOHW, RAMW. Permanent station locations were chosen to minimize the local noise conditions by recording continuous data and using a quantitative analysis of the statistical distribution of noise power estimates. For each one-hour segment of continuous data, a power spectral density (PSD) is estimated and smoothed in full octave averages at 1/8 octave intervals. Powers for each 1/8 period interval were then accumulated in one dB power bins. A statistical analysis of power bins yields probability density functions (PDFs) as a function of noise power for each of the octave bands at each station and component. Examination of earthquake signal, artifacts related to station operation and episodic cultural noise in the PDFs allow us to estimate both the overall station quality and the level of earth noise at each potential backbone site. The main function of a seismic network, such as the ANSS, is to provide high quality data for earthquake monitoring, source studies, and Earth structure research. The utility of seismic data is greatly increased when noise levels are reduced. A good quantification and understanding of seismic noise is a first step at reducing noise levels in seismic data and improving overall data quality from the ANSS backbone network.

  14. Backbone cyclised peptides from plants show molluscicidal activity against the rice pest Pomacea canaliculata (golden apple snail).

    PubMed

    Plan, Manuel Rey R; Saska, Ivana; Cagauan, Arsenia G; Craik, David J

    2008-07-01

    Golden apple snails ( Pomacea canaliculata) are serious pests of rice in South East Asia. Cyclotides are backbone cyclized peptides produced by plants from Rubiaceae and Violaceae. In this study, we investigated the molluscicidal activity of cyclotides against golden apple snails. Crude cyclotide extracts from both Oldenlandia affinis and Viola odorata plants showed molluscicidal activity comparable to the synthetic molluscicide metaldehyde. Individual cyclotides from each extract demonstrated a range of molluscicidal activities. The cyclotides cycloviolacin O1, kalata B1, and kalata B2 were more toxic to golden apple snails than metaldehyde, while kalata B7 and kalata B8 did not cause significant mortality. The toxicity of the cyclotide kalata B2 on a nontarget species, the Nile tilapia ( Oreochromis niloticus), was three times lower than the common piscicide rotenone. Our findings suggest that the existing diversity of cyclotides in plants could be used to develop natural molluscicides. PMID:18557620

  15. Palladium(II) Catalyzed Cyclization-Carbonylation-Cyclization Coupling Reaction of (ortho-Alkynyl Phenyl) (Methoxymethyl) Sulfides Using Molecular Oxygen as the Terminal Oxidant.

    PubMed

    Shen, Rong; Kusakabe, Taichi; Yatsu, Tomofumi; Kanno, Yuichiro; Takahashi, Keisuke; Nemoto, Kiyomitsu; Kato, Keisuke

    2016-01-01

    An efficient Pd(II)/Pd⁰-p-benzoquinone/hydroquinone-CuCl₂/CuCl catalyst system was developed that uses environmentally friendly molecular oxygen as the terminal oxidant to catalyze the cyclization-carbonylation-cyclization coupling reaction (CCC-coupling reaction) of (o-alkynyl phenyl) (methoxymethyl) sulfides. PMID:27607997

  16. Backbone Dynamics Of Intracellular Lipid Binding Proteins

    NASA Astrophysics Data System (ADS)

    Gutiérrez-González, Luis H.

    2005-04-01

    The family of intracellular lipid binding proteins (iLBPs) comprises a group of homologous 14-15 kDa proteins that specifically bind and facilitate the transport of fatty acids, bile acids, retinoids or eicosanoids. Members of this family include several types of fatty acid binding proteins (FABPs), ileal lipid binding protein, cellular retinoic acid binding proteins and cellular retinoid binding proteins. As a contribution to understanding the structure-function relationship in this protein family, the solution structure and backbone dynamics of human epidermal-type FABP (E-FABP) determined by NMR spectroscopy are reported. Moreover, hydrogen/deuterium exchange experiments indicated a direct correlation between the stability of the hydrogen-bonding network in the β-sheet structure and the conformational exchange in the millisecond-to-microsecond time range. The features of E-FABP backbone dynamics discussed in the present study are compared with those obtained for other phylogenetically related proteins. A strong interdependence with the overall protein stability and possibly also with the ligand-binding affinity for members of the lipid-binding protein family is shown.

  17. Cyclization enhances function of linear anti-arthritic peptides.

    PubMed

    Ali, Marina; Amon, Michael; Bender, Vera; Bolte, Andrea; Separovic, Frances; Benson, Heather; Manolios, Nicholas

    2014-01-01

    This study describes the biophysical and immunomodulatory features of a cyclic peptide termed C1 which consists of alternating d-, l-amino acids and is capable of inhibiting IL-2 production in vitro and reducing the induction and extent of T-cell mediated inflammation in animal models. Solid-state nuclear magnetic resonance demonstrates that the peptide orders the lipid bilayer, suggesting a transmembrane orientation, and this is supported by surface plasmon resonance indicating strong binding affinity of C1 to model membranes. In vitro cell viability and proliferation assays show that C1 does not disrupt the integrity of cell surface membranes. Permeation studies of C1 and analogs across human epidermis cells show that the stability and skin permeability are enhanced by cyclization. Treatment with C1 in an asthma and in an arthritis animal model resulted in a suppressed immune response. Cyclization may be a useful means of enhancing biological linear peptide activity and improving delivery. PMID:24207019

  18. Cyclization of peptoids by formation of boronate esters

    PubMed Central

    Chirayil, Sara; Luebke, Kevin J.

    2011-01-01

    Introduction of conformational constraints into peptoids (N-substituted oligoglycines) will enable new applications in molecular recognition and self-assembly. Peptoids that contain both a phenylboronic acid side chain and a vicinal diol cyclize by intramolecular condensation to form boronate esters. A fluorescent indicator of free boronic acid was used to assay esterification. A galactose moiety 2 to 5 monomer units away from a boronic acid side chain in a peptoid reacts with the boronic acid in competition with the indicator. The intramolecular reaction predominates in each case, with 80–90% of the peptoid cyclized. When the diol is a simple 2,3-dihydroxypropyl group, esterification is less favored but still appreciable. PMID:22611292

  19. Functionalization, cyclization and antiviral activity of A-secotriterpenoids.

    PubMed

    Grishko, Victoria V; Galaiko, Natalia V; Tolmacheva, Irina A; Kucherov, Igor I; Eremin, Vladimir F; Boreko, Eugene I; Savinova, Olga V; Slepukhin, Pavel A

    2014-08-18

    Triterpene derivatives with an α,β-alkenenitrile moiety in the five-membered ring A have been synthesized by nitrile anion cyclizations of 1-cyano-2,3-secotriterpenoids. Oxime-containing precursors, 2,3-secointermediates and five-membered ring A products of cyclizations were screened for in vitro antiviral activity against enveloped viruses - influenza A virus and human immunodeficiency virus type I (HIV-1). Lupane ketoxime and the 2,3-secolupane C-3 aldoxime which possess antiviral activities against both influenza A virus (EC50 12.9-18.2 μM) and HIV-1 (EC50 0.06 μM) were the most promising compounds. PMID:24997292

  20. A one-pot multistep cyclization yielding thiadiazoloimidazole derivatives

    PubMed Central

    Rana, Anup; Bats, Jan W

    2014-01-01

    Summary A versatile synthetic procedure is described to prepare the benzimidazole-fused 1,2,4-thiadiazoles 2a–c via a methanesulfonyl chloride initiated multistep cyclization involving the intramolecular reaction of an in-situ generated carbodiimide with a thiourea unit. The structure of the intricate heterocycle 2a was confirmed by single-crystal X-ray analysis and its mechanism of formation supported by DFT computations. PMID:25670969

  1. Tissue-Specific Expression of Head-to-Tail Cyclized Miniproteins in Violaceae and Structure Determination of the Root Cyclotide Viola hederacea root cyclotide1W⃞

    PubMed Central

    Trabi, Manuela; Craik, David J.

    2004-01-01

    The plant cyclotides are a family of 28 to 37 amino acid miniproteins characterized by their head-to-tail cyclized peptide backbone and six absolutely conserved Cys residues arranged in a cystine knot motif: two disulfide bonds and the connecting backbone segments form a loop that is penetrated by the third disulfide bond. This knotted disulfide arrangement, together with the cyclic peptide backbone, renders the cyclotides extremely stable against enzymatic digest as well as thermal degradation, making them interesting targets for both pharmaceutical and agrochemical applications. We have examined the expression patterns of these fascinating peptides in various Viola species (Violaceae). All tissue types examined contained complex mixtures of cyclotides, with individual profiles differing significantly. We provide evidence for at least 57 novel cyclotides present in a single Viola species (Viola hederacea). Furthermore, we have isolated one cyclotide expressed only in underground parts of V. hederacea and characterized its primary and three-dimensional structure. We propose that cyclotides constitute a new family of plant defense peptides, which might constitute an even larger and, in their biological function, more diverse family than the well-known plant defensins. PMID:15295104

  2. Synthesis of 1,2,4-Triazolo[4,3-a]pyridines and Related Heterocycles by Sequential Condensation and Iodine-Mediated Oxidative Cyclization.

    PubMed

    Li, Ertong; Hu, Zhiyuan; Song, Lina; Yu, Wenquan; Chang, Junbiao

    2016-07-25

    A facile and efficient approach to access 1,2,4-triazolo[4,3-a]pyridines and related heterocycles has been accomplished through condensation of readily available aryl hydrazines with corresponding aldehydes followed by iodine-mediated oxidative cyclization. This transition-metal-free synthetic process is broadly applicable to a variety of aromatic, aliphatic, and α,β-unsaturated aldehydes, and can be conveniently conducted on the gram scale. PMID:27355559

  3. Copper-Mediated [3 + 2] Oxidative Cyclization Reaction of N-Tosylhydrazones and β-Ketoesters: Synthesis of 2,3,5-Trisubstituted Furans.

    PubMed

    Huang, Yubing; Li, Xianwei; Yu, Yue; Zhu, Chuanle; Wu, Wanqing; Jiang, Huanfeng

    2016-06-17

    The first attempt at utilizing N-tosylhydrazones as two-carbon synthons has been successfully achieved, which underwent a copper-mediated [3 + 2] oxidative cyclization reaction to afford 2,3,5-trisubstituted furans in moderate to good yields. The features of this method include inexpensive metal catalyst, readily available substrates, high regioselectivity, and convenient operation. The studies provide important approaches for further exploration of the powerful and diverse reaction abilities of N-tosylhydrazones. PMID:27227374

  4. Stereoselectivity in N-Iminium Ion Cyclization: Development of an Efficient Synthesis of (±)-Cephalotaxine.

    PubMed

    Liu, Hao; Yu, Jing; Li, Xinyu; Yan, Rui; Xiao, Ji-Chang; Hong, Ran

    2015-09-18

    A stereoselective N-iminium ion cyclization with allylsilane to construct vicinal quaternary-tertiary carbon centers was developed for the concise synthesis of (±)-cephalotaxine. The current strategy features a TiCl4-promoted cyclization and ring-closure metathesis to furnish the spiro-ring system. The stereochemical outcome in the N-acyliminium ion cyclization was rationalized by the stereoelectronic effect of the Z- or E-allylsilane. Two diastereomers arising from the cyclization were merged into the formal synthesis of (±)-cephalotaxine. PMID:26332648

  5. TMAO influence on the backbone of proteins: an oligoglycine model

    PubMed Central

    Hu, Char Y.; Lynch, Gillian C.; Kokubo, Hironori; Pettitt, B. Montgomery

    2009-01-01

    The study of organic osmolytes has been pivotal in demonstrating the role of solvent effects on the protein backbone in the folding process. Whereas a thermodynamic description of the interactions between the protein backbone and osmolyte has been well defined, the structural analysis of the effect of osmolyte on the protein backbone has been incomplete. Therefore, we have carried out simulations of a peptide backbone model, glycine15 in protecting osmolyte TMAO solution in order to determine the effect of the solution structure on the conformation of the peptide backbone. We demonstrate that the models chosen show that the ensemble of backbone structures shifts towards a more collapsed state in TMAO solution as compared to pure water solution. The collapse is consistent with preferential exclusion of the osmolyte caused by unfavorable interactions between osmolyte and peptide backbone. The exclusion is due to strong triplet correlations of osmolyte, water, and peptide backbone. This provides a clear mechanism demonstrating that even a modest concentration of TMAO forces the protein backbone to adopt a more collapsed structure in the absence of sidechain effects. PMID:19790265

  6. NET amyloidogenic backbone in human activated neutrophils.

    PubMed

    Pulze, L; Bassani, B; Gini, E; D'Antona, P; Grimaldi, A; Luini, A; Marino, F; Noonan, D M; Tettamanti, G; Valvassori, R; de Eguileor, M

    2016-03-01

    Activated human neutrophils produce a fibrillar DNA network [neutrophil extracellular traps (NETs)] for entrapping and killing bacteria, fungi, protozoa and viruses. Our results suggest that the neutrophil extracellular traps show a resistant amyloidogenic backbone utilized for addressing reputed proteins and DNA against the non-self. The formation of amyloid fibrils in neutrophils is regulated by the imbalance of reactive oxygen species (ROS) in the cytoplasm. The intensity and source of the ROS signal is determinant for promoting stress-associated responses such as amyloidogenesis and closely related events: autophagy, exosome release, activation of the adrenocorticotrophin hormone/α-melanocyte-stimulating hormone (ACTH/α-MSH) loop and synthesis of specific cytokines. These interconnected responses in human activated neutrophils, that have been evaluated from a morphofunctional and quantitative viewpoint, represent primitive, but potent, innate defence mechanisms. In invertebrates, circulating phagocytic immune cells, when activated, show responses similar to those described previously for activated human neutrophils. Invertebrate cells within endoplasmic reticulum cisternae produce a fibrillar material which is then assembled into an amyloidogenic scaffold utilized to convey melanin close to the invader. These findings, in consideration to the critical role played by NET in the development of several pathologies, could explain the structural resistance of these scaffolds and could provide the basis for developing new diagnostic and therapeutic approaches in immunomediated diseases in which the innate branch of the immune system has a pivotal role. PMID:26462606

  7. Extracting the Information Backbone in Online System

    PubMed Central

    Zhang, Qian-Ming; Zeng, An; Shang, Ming-Sheng

    2013-01-01

    Information overload is a serious problem in modern society and many solutions such as recommender system have been proposed to filter out irrelevant information. In the literature, researchers have been mainly dedicated to improving the recommendation performance (accuracy and diversity) of the algorithms while they have overlooked the influence of topology of the online user-object bipartite networks. In this paper, we find that some information provided by the bipartite networks is not only redundant but also misleading. With such “less can be more” feature, we design some algorithms to improve the recommendation performance by eliminating some links from the original networks. Moreover, we propose a hybrid method combining the time-aware and topology-aware link removal algorithms to extract the backbone which contains the essential information for the recommender systems. From the practical point of view, our method can improve the performance and reduce the computational time of the recommendation system, thus improving both of their effectiveness and efficiency. PMID:23690946

  8. Toward future IP optical backbone networks

    NASA Astrophysics Data System (ADS)

    Urushidani, Shigeo

    2005-11-01

    The rapid and aggressive penetration of broadband access services such as fiber to the home (FTTH) has been accelerating the increase in IP traffic volume and new networking technologies are required in order to accommodate future traffic in a cost-effective manner. This paper overviews the advanced IP optical network architecture and technologies for very-large-scale IP backbone networks. These technologies are the key to accommodate the huge volumes of IP traffic expected and control network resources in an effective and dynamic manner. We describe advanced IP optical networking technologies which accommodate multiple service networks using multi-instance technologies, and enable multi-layer traffic engineering using virtual network topology technologies. The migration scenario is described from the existing networks to GMPLS networks; reference is made to the advanced Path Computation Element (PCE) which enables multi-layer traffic engineering and MPLS/GMPLS migration. New network concepts such as Layer 1 Virtual Private Network (L1VPN) and GMPLS interoperability issues, which are being discussed in IETF, are also described.

  9. Free backbone carbonyls mediate rhodopsin activation.

    PubMed

    Kimata, Naoki; Pope, Andreyah; Sanchez-Reyes, Omar B; Eilers, Markus; Opefi, Chikwado A; Ziliox, Martine; Reeves, Philip J; Smith, Steven O

    2016-08-01

    Conserved prolines in the transmembrane helices of G-protein-coupled receptors (GPCRs) are often considered to function as hinges that divide the helix into two segments capable of independent motion. Depending on their potential to hydrogen-bond, the free C=O groups associated with these prolines can facilitate conformational flexibility, conformational switching or stabilization of the receptor structure. To address the role of conserved prolines in family A GPCRs through solid-state NMR spectroscopy, we focus on bovine rhodopsin, a GPCR in the visual receptor subfamily. The free backbone C=O groups on helices H5 and H7 stabilize the inactive rhodopsin structure through hydrogen-bonds to residues on adjacent helices. In response to light-induced isomerization of the retinal chromophore, hydrogen-bonding interactions involving these C=O groups are released, thus facilitating repacking of H5 and H7 onto the transmembrane core of the receptor. These results provide insights into the multiple structural and functional roles of prolines in membrane proteins. PMID:27376589

  10. Extracting the information backbone in online system.

    PubMed

    Zhang, Qian-Ming; Zeng, An; Shang, Ming-Sheng

    2013-01-01

    Information overload is a serious problem in modern society and many solutions such as recommender system have been proposed to filter out irrelevant information. In the literature, researchers have been mainly dedicated to improving the recommendation performance (accuracy and diversity) of the algorithms while they have overlooked the influence of topology of the online user-object bipartite networks. In this paper, we find that some information provided by the bipartite networks is not only redundant but also misleading. With such "less can be more" feature, we design some algorithms to improve the recommendation performance by eliminating some links from the original networks. Moreover, we propose a hybrid method combining the time-aware and topology-aware link removal algorithms to extract the backbone which contains the essential information for the recommender systems. From the practical point of view, our method can improve the performance and reduce the computational time of the recommendation system, thus improving both of their effectiveness and efficiency. PMID:23690946

  11. Microwave-Assisted Copper-Catalyzed Oxidative Cyclization of Acrylamides with Non-Activated Ketones.

    PubMed

    Zhao, Yaping; Sharma, Nandini; Sharma, Upendra K; Li, Zhenghua; Song, Gonghua; Van der Eycken, Erik V

    2016-04-18

    An operationally simple and efficient microwave-assisted protocol for the oxidative cyclization of acrylamide derivatives with non-activated ketones to generate 3,3-disubstituted oxindoles is described. The reaction proceeds by a copper-catalyzed tandem radical addition/cyclization strategy and tolerates a series of functional groups with moderate to excellent yields. PMID:26868308

  12. Unprecedented synergistic effects between weak Lewis and Brønsted acids in Prins cyclization.

    PubMed

    Borkar, Prashant; van de Weghe, Pierre; Reddy, B V Subba; Yadav, J S; Grée, René

    2012-09-25

    Novel synergistic effects between Lewis and Brønsted acids in Prins cyclization are reported. Non-reactive Lewis acids and non-reactive Brønsted acids, which failed to perform Prins cyclization when used alone, have shown remarkable synergistic effects when used in combination to perform the reaction successfully. PMID:22885680

  13. Synthesis and intramolecular cyclization of methylenediphosphorus bisalkylamides containing one or two 4-coordinate phosphorus atoms

    SciTech Connect

    Novikova, Z.S.; Monin, E.A.; Kabachnik, M.M.; Lutsenko, I.F.

    1987-10-10

    We have previously reported on the synthesis of methylenediphosphorus bisalkylamides containing two 3-coordinate phosphorus atoms and their intramolecular cyclization into 1,2,4-azadiphosphetidines. In this work we have synthesized methylenediphosphorus bisalkylamides containing one or two 4-coordinate phosphorus atoms and have studied their intramolecular cyclization. The bisalkylamides were characterized in ether solution by their /sup 31/ NMR spectra.

  14. Ultrasonic-assisted synthesis of flavones by oxidative cyclization of 2'-hydroxychalcones using iodine monochloride.

    PubMed

    Lahyani, Achraf; Trabelsi, Mahmoud

    2016-07-01

    This paper presents an efficient methodology for the synthesis of flavones via the oxidative cyclization of 2'-hydroxychalcones in the presence of iodine monochloride with DMSO under ultrasound irradiation. Ultrasonic irradiation enhances the cyclization reaction and leads to reduced reaction time at lower reaction temperatures while generating flavones with high yields. PMID:26964989

  15. Efficient access to cis-decalinol frameworks: copper(i)-catalyzed borylative cyclization of allene cyclohexanediones.

    PubMed

    Zhao, Yi-Shuang; Tang, Xiao-Qi; Tao, Jing-Chao; Tian, Ping; Lin, Guo-Qiang

    2016-05-11

    Cu-catalyzed borylative cyclization of allene cyclohexanediones has been described through a tandem β-borylation and intramolecular allylic addition process, affording borylated cis-decalinols with excellent yields and diastereoselectivities. A good enantioselectivity is also achieved in the asymmetric version. The hemiboronate group in the cyclization products could be subjected to several useful transformations. PMID:27116376

  16. Ruthenium-catalyzed cyclization of N-carbamoyl indolines with alkynes: an efficient route to pyrroloquinolinones.

    PubMed

    Manoharan, Ramasamy; Jeganmohan, Masilamani

    2015-09-21

    A regioselective synthesis of substituted pyrroloquinolinones via a ruthenium-catalyzed oxidative cyclization of substituted N-carbamoyl indolines with alkynes is described. The cyclization reaction was compatible with various symmetrical and unsymmetrical alkynes including substituted propiolates. Later, we performed the aromatization of pyrroloquinolinones into indole derivatives in the presence of 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ). PMID:26228840

  17. Asymmetric, Stereodivergent Synthesis of (−)-Clusianone Utilizing a Biomimetic Cationic Cyclization **

    PubMed Central

    Boyce, Jonathan H.

    2014-01-01

    We report a stereodivergent, asymmetric total synthesis of (−)-clusianone in six steps from commercial materials. We implement a challenging cationic cyclization forging a bond between two sterically encumbered quaternary carbons. Mechanistic studies point to the unique ability of formic acid to bring about successful cyclization to the clusianone framework. PMID:24916169

  18. Structural Studies of Geosmin Synthase, a Bifunctional Sesquiterpene Synthase with αα Domain Architecture That Catalyzes a Unique Cyclization-Fragmentation Reaction Sequence.

    PubMed

    Harris, Golda G; Lombardi, Patrick M; Pemberton, Travis A; Matsui, Tsutomu; Weiss, Thomas M; Cole, Kathryn E; Köksal, Mustafa; Murphy, Frank V; Vedula, L Sangeetha; Chou, Wayne K W; Cane, David E; Christianson, David W

    2015-12-01

    Geosmin synthase from Streptomyces coelicolor (ScGS) catalyzes an unusual, metal-dependent terpenoid cyclization and fragmentation reaction sequence. Two distinct active sites are required for catalysis: the N-terminal domain catalyzes the ionization and cyclization of farnesyl diphosphate to form germacradienol and inorganic pyrophosphate (PPi), and the C-terminal domain catalyzes the protonation, cyclization, and fragmentation of germacradienol to form geosmin and acetone through a retro-Prins reaction. A unique αα domain architecture is predicted for ScGS based on amino acid sequence: each domain contains the metal-binding motifs typical of a class I terpenoid cyclase, and each domain requires Mg(2+) for catalysis. Here, we report the X-ray crystal structure of the unliganded N-terminal domain of ScGS and the structure of its complex with three Mg(2+) ions and alendronate. These structures highlight conformational changes required for active site closure and catalysis. Although neither full-length ScGS nor constructs of the C-terminal domain could be crystallized, homology models of the C-terminal domain were constructed on the basis of ∼36% sequence identity with the N-terminal domain. Small-angle X-ray scattering experiments yield low-resolution molecular envelopes into which the N-terminal domain crystal structure and the C-terminal domain homology model were fit, suggesting possible αα domain architectures as frameworks for bifunctional catalysis. PMID:26598179

  19. Highly enantioselective reductive cyclization of acetylenic aldehydes via rhodium catalyzed asymmetric hydrogenation.

    PubMed

    Rhee, Jong Uk; Krische, Michael J

    2006-08-23

    Catalytic hydrogenation of acetylenic aldehydes 1a-12a using chirally modified cationic rhodium catalysts enables highly enantioselective reductive cyclization to afford cyclic allylic alcohols 1b-12b. Using an achiral hydrogenation catalyst, the chiral racemic acetylenic aldehydes 13a-15a engage in highly syn-diastereoselective reductive cyclizations to afford cyclic allylic alcohols 13b-15b. Ozonolysis of cyclization products 7b and 9b allows access to optically enriched alpha-hydroxy ketones 7c and 9c. Reductive cyclization of enyne 7a under a deuterium atmosphere provides the monodeuterated product deuterio-7b, consistent with a catalytic mechanism involving alkyne-carbonyl oxidative coupling followed by hydrogenolytic cleavage of the resulting oxametallacycle. These hydrogen-mediated transformations represent the first examples of the enantioselective reductive cyclization of acetylenic aldehydes. PMID:16910650

  20. 40 CFR 721.990 - 1,4-Benzedicarboxylic acid, dimethyl ester, polymer with 1,4 - butanediol, cyclized.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ester, polymer with 1,4 - butanediol, cyclized. 721.990 Section 721.990 Protection of Environment..., dimethyl ester, polymer with 1,4 - butanediol, cyclized. (a) Chemical substance and significant new uses..., polymer with 1,4 - butanediol, cyclized (PMN P-00-0789; CAS No. 263244-54-8) is subject to reporting...

  1. 40 CFR 721.990 - 1,4-Benzedicarboxylic acid, dimethyl ester, polymer with 1,4 - butanediol, cyclized.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ester, polymer with 1,4 - butanediol, cyclized. 721.990 Section 721.990 Protection of Environment..., dimethyl ester, polymer with 1,4 - butanediol, cyclized. (a) Chemical substance and significant new uses..., polymer with 1,4 - butanediol, cyclized (PMN P-00-0789; CAS No. 263244-54-8) is subject to reporting...

  2. 40 CFR 721.990 - 1,4-Benzedicarboxylic acid, dimethyl ester, polymer with 1,4 - butanediol, cyclized.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ester, polymer with 1,4 - butanediol, cyclized. 721.990 Section 721.990 Protection of Environment..., dimethyl ester, polymer with 1,4 - butanediol, cyclized. (a) Chemical substance and significant new uses..., polymer with 1,4 - butanediol, cyclized (PMN P-00-0789; CAS No. 263244-54-8) is subject to reporting...

  3. 40 CFR 721.990 - 1,4-Benzedicarboxylic acid, dimethyl ester, polymer with 1,4 - butanediol, cyclized.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ester, polymer with 1,4 - butanediol, cyclized. 721.990 Section 721.990 Protection of Environment..., dimethyl ester, polymer with 1,4 - butanediol, cyclized. (a) Chemical substance and significant new uses..., polymer with 1,4 - butanediol, cyclized (PMN P-00-0789; CAS No. 263244-54-8) is subject to reporting...

  4. 40 CFR 721.990 - 1,4-Benzedicarboxylic acid, dimethyl ester, polymer with 1,4 - butanediol, cyclized.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ester, polymer with 1,4 - butanediol, cyclized. 721.990 Section 721.990 Protection of Environment..., dimethyl ester, polymer with 1,4 - butanediol, cyclized. (a) Chemical substance and significant new uses..., polymer with 1,4 - butanediol, cyclized (PMN P-00-0789; CAS No. 263244-54-8) is subject to reporting...

  5. A Dioxane Template for Highly Selective Epoxy Alcohol Cyclizations

    PubMed Central

    Mousseau, James J.; Morten, Christopher J.

    2013-01-01

    Ladder polyether natural products are a class of natural products denoted by their high functional group density and large number of well-defined stereocenters. They comprise the toxic component of harmful algal blooms (HABs), having significant negative economic and environmental ramifications. However, their mode of action, namely blocking various cellular ion channels, also denotes their promise as potential anticancer agents. Understanding their potential mode of biosynthesis will not only help with developing ways to limit the damage of HABs, but would also facilitate the synthesis of a range of analogues with interesting biological activity. 1,3-Dioxan-5-ol substrates display remarkable ‘enhanced template effects’ in water-promoted epoxide cyclization processes en route to the synthesis of these ladder polyether natural products. In many cases they provide near complete endo to exo selectivity in the cyclization of epoxy alcohols, thereby strongly favouring the formation of tetrahydropyran (THP) over tetrahydrofuran (THF) rings. The effects of various Brønsted and Lewis acidic and basic conditions are explored to demonstrate the superior selectivity of the template over the previously reported THP-based epoxy alcohols. In addition, the consideration of other synthetic routes are also considered with the goal of gaining rapid access to a plethora of potential starting materials applicable towards the synthesis of ladder polyethers. Finally, cascade sequences with polyepoxides are investigated, further demonstrating the versatility of this new reaction template. PMID:23775936

  6. Solution Structure and Backbone Dynamics of Streptopain

    PubMed Central

    Wang, Chih-Chieh; Houng, Hsiang-Chee; Chen, Chun-Liang; Wang, Pei-Ju; Kuo, Chih-Feng; Lin, Yee-Shin; Wu, Jiunn-Jong; Lin, Ming T.; Liu, Ching-Chuan; Huang, Wenya; Chuang, Woei-Jer

    2009-01-01

    Streptococcal pyrogenic exotoxin B (SPE B) is a cysteine protease expressed by Streptococcus pyogenes. The D9N, G163S, G163S/A172S, and G239D mutant proteins were expressed to study the effect of the allelic variants on their protease activity. In contrast to other mutants, the G239D mutant was ∼12-fold less active. The Gly-239 residue is located within the C-terminal S230-G239 region, which cannot be observed in the x-ray structure. The three-dimensional structure and backbone dynamics of the 28-kDa mature SPE B (mSPE B) were determined. Unlike the x-ray structure of the 40-kDa zymogen SPE B (proSPE B), we observed the interactions between the C-terminal loop and the active site residues in mSPE B. The structural differences between mSPE B and proSPE B were the conformation of the C-terminal loop and the orientation of the catalytic His-195 residue, suggesting that activation and inactivation of SPE B is involved in the His-195 side-chain rotation. Dynamics analysis of mSPE B and the mSPE B/inhibitor complexes showed that the catalytic and C-terminal loops were the most flexible regions with low order parameter values of 0.5 to 0.8 and exhibited the motion on the ps/ns timescale. These findings suggest that the flexible C-terminal loop of SPE B may play an important role in controlling the substrate binding, resulting in its broad substrate specificity. PMID:19237546

  7. Radiation safety system (RSS) backbones: Design, engineering, fabrication and installation

    SciTech Connect

    Wilmarth, J.E.; Sturrock, J.C.; Gallegos, F.R.

    1998-12-01

    The Radiation Safety System (RSS) Backbones are part of an electrical/electronic/mechanical system insuring safe access and exclusion of personnel to areas at the Los Alamos Neutron Science Center (LANSCE) accelerator. The RSS Backbones control the safety fusible beam plugs which terminate transmission of accelerated ion beams in response to predefined conditions. Any beam or access fault of the backbone inputs will cause insertion of the beam plugs in the low energy beam transport. The Backbones serve the function of tying the beam plugs to the access control systems, beam spill monitoring systems and current-level limiting systems. In some ways the Backbones may be thought of as a spinal column with beam plugs at the head and nerve centers along the spinal column. The two Linac Backbone segments and experimental area segments form a continuous cable plant over 3,500 feet from beam plugs to the tip on the longest tail. The Backbones were installed in compliance with current safety standards, such as installation of the two segments in separate conduits or tray. Monitoring for ground-faults and input wiring verification was an added enhancement to the system. The system has the capability to be tested remotely.

  8. Radiation Safety System (RSS) backbones: Design, engineering, fabrication, and installation

    SciTech Connect

    Wilmarth, J. E.; Sturrock, J. C.; Gallegos, F. R.

    1998-12-10

    The Radiation Safety System (RSS) backbones are part of an electrical/electronic/mechanical system ensuring safe access and exclusion of personnel to areas at the Los Alamos Neutron Science Center (LANSCE) accelerator. The RSS backbones control the safety-fusible beam plugs which terminate transmission of accelerated ion beams in response to predefined conditions. Any beam or access fault of the backbone inputs will cause insertion of the beam plugs in the low-energy beam transport. The backbones serve the function of tying the beam plugs to the access control systems, beam spill monitoring systems and current-level limiting systems. In some ways the backbones may be thought of as a spinal column with beam plugs at the head and nerve centers along the spinal column. The two linac backbone segments and the experimental area segments form a continuous cable plant over 3500 feet from the beam plugs to the tip on the longest tail. The backbones were installed in compliance with current safety standards, such as installation of the two segments in separate conduits or tray. Monitoring for ground-faults and input wiring verification was an added enhancement to the system. The system has the capability to be tested remotely.

  9. Radiation Safety System (RSS) backbones: Design, engineering, fabrication, and installation

    NASA Astrophysics Data System (ADS)

    Wilmarth, J. E.; Sturrock, J. C.; Gallegos, F. R.

    1998-12-01

    The Radiation Safety System (RSS) backbones are part of an electrical/electronic/mechanical system ensuring safe access and exclusion of personnel to areas at the Los Alamos Neutron Science Center (LANSCE) accelerator. The RSS backbones control the safety-fusible beam plugs which terminate transmission of accelerated ion beams in response to predefined conditions. Any beam or access fault of the backbone inputs will cause insertion of the beam plugs in the low-energy beam transport. The backbones serve the function of tying the beam plugs to the access control systems, beam spill monitoring systems and current-level limiting systems. In some ways the backbones may be thought of as a spinal column with beam plugs at the head and nerve centers along the spinal column. The two linac backbone segments and the experimental area segments form a continuous cable plant over 3500 feet from the beam plugs to the tip on the longest tail. The backbones were installed in compliance with current safety standards, such as installation of the two segments in separate conduits or tray. Monitoring for ground-faults and input wiring verification was an added enhancement to the system. The system has the capability to be tested remotely.

  10. Radiation Safety System (RSS) backbones: Design, engineering, fabrication, and installation

    SciTech Connect

    Wilmarth, J.E.; Sturrock, J.C.; Gallegos, F.R.

    1998-12-01

    The Radiation Safety System (RSS) backbones are part of an electrical/electronic/mechanical system ensuring safe access and exclusion of personnel to areas at the Los Alamos Neutron Science Center (LANSCE) accelerator. The RSS backbones control the safety-fusible beam plugs which terminate transmission of accelerated ion beams in response to predefined conditions. Any beam or access fault of the backbone inputs will cause insertion of the beam plugs in the low-energy beam transport. The backbones serve the function of tying the beam plugs to the access control systems, beam spill monitoring systems and current-level limiting systems. In some ways the backbones may be thought of as a spinal column with beam plugs at the head and nerve centers along the spinal column. The two linac backbone segments and the experimental area segments form a continuous cable plant over 3500 feet from the beam plugs to the tip on the longest tail. The backbones were installed in compliance with current safety standards, such as installation of the two segments in separate conduits or tray. Monitoring for ground-faults and input wiring verification was an added enhancement to the system. The system has the capability to be tested remotely. {copyright} {ital 1998 American Institute of Physics.}

  11. Motif-directed flexible backbone design of functional interactions

    PubMed Central

    Havranek, James J; Baker, David

    2009-01-01

    Computational protein design relies on a number of approximations to efficiently search the huge sequence space available to proteins. The fixed backbone and rotamer approximations in particular are important for formulating protein design as a discrete combinatorial optimization problem. However, the resulting coarse-grained sampling of possible side-chain terminal positions is problematic for the design of protein function, which depends on precise positioning of side-chain atoms. Although backbone flexibility can greatly increase the conformation freedom of side-chain functional groups, it is not obvious which backbone movements will generate the critical constellation of atoms responsible for protein function. Here, we report an automated method for identifying protein backbone movements that can give rise to any specified set of desired side-chain atomic placements and interactions, using protein–DNA interfaces as a model system. We use a library of previously observed protein–DNA interactions (motifs) and a rotamer-based description of side-chain conformation freedom to identify placements for the protein backbone that can give rise to a favorable side-chain interaction with DNA. We describe a tree-search algorithm for identifying those combinations of interactions from the library that can be realized with minimal perturbation of the protein backbone. We compare the efficiency of this method with the alternative approach of building and screening alternate backbone conformations. PMID:19472357

  12. Oxidative cyclizations in orthosomycin biosynthesis expand the known chemistry of an oxygenase superfamily

    PubMed Central

    McCulloch, Kathryn M.; McCranie, Emilianne K.; Smith, Jarrod A.; Sarwar, Maruf; Mathieu, Jeannette L.; Gitschlag, Bryan L.; Du, Yu; Bachmann, Brian O.; Iverson, T. M.

    2015-01-01

    Orthosomycins are oligosaccharide antibiotics that include avilamycin, everninomicin, and hygromycin B and are hallmarked by a rigidifying interglycosidic spirocyclic ortho-δ-lactone (orthoester) linkage between at least one pair of carbohydrates. A subset of orthosomycins additionally contain a carbohydrate capped by a methylenedioxy bridge. The orthoester linkage is necessary for antibiotic activity but rarely observed in natural products. Orthoester linkage and methylenedioxy bridge biosynthesis require similar oxidative cyclizations adjacent to a sugar ring. We have identified a conserved group of nonheme iron, α-ketoglutarate–dependent oxygenases likely responsible for this chemistry. High-resolution crystal structures of the EvdO1 and EvdO2 oxygenases of everninomicin biosynthesis, the AviO1 oxygenase of avilamycin biosynthesis, and HygX of hygromycin B biosynthesis show how these enzymes accommodate large substrates, a challenge that requires a variation in metal coordination in HygX. Excitingly, the ternary complex of HygX with cosubstrate α-ketoglutarate and putative product hygromycin B identified an orientation of one glycosidic linkage of hygromycin B consistent with metal-catalyzed hydrogen atom abstraction from substrate. These structural results are complemented by gene disruption of the oxygenases evdO1 and evdMO1 from the everninomicin biosynthetic cluster, which demonstrate that functional oxygenase activity is critical for antibiotic production. Our data therefore support a role for these enzymes in the production of key features of the orthosomycin antibiotics. PMID:26240321

  13. Sortase A as a tool for high-yield histatin cyclization.

    PubMed

    Bolscher, Jan G M; Oudhoff, Menno J; Nazmi, Kamran; Antos, John M; Guimaraes, Carla P; Spooner, Eric; Haney, Evan F; Garcia Vallejo, Juan J; Vogel, Hans J; van't Hof, Wim; Ploegh, Hidde L; Veerman, Enno C I

    2011-08-01

    Cyclic peptides are highly valued tools in biomedical research. In many cases, they show higher receptor affinity, enhanced biological activity, and improved serum stability. Technical difficulties in producing cyclic peptides, especially larger ones, in appreciable yields have precluded a prolific use in biomedical research. Here, we describe a novel and efficient cyclization method that uses the peptidyl-transferase activity of the Staphylococcus aureus enzyme sortase A to cyclize linear synthetic precursor peptides. As a model, we used histatin 1, a 38-mer salivary peptide with motogenic activity. Chemical cyclization of histatin 1 resulted in ≤ 3% yields, whereas sortase-mediated cyclization provided a yield of >90%. The sortase-cyclized peptide displayed a maximum wound closure activity at 10 nM, whereas the linear peptide displayed maximal activity at 10 μM. Circular dichroism and NMR spectroscopic analysis of the linear and cyclic peptide in solution showed no evidence for conformational changes, suggesting that structural differences due to cyclization only became manifest when these peptides were located in the binding domain of the receptor. The sortase-based cyclization technology provides a general method for easy and efficient manufacturing of large cyclic peptides. PMID:21525488

  14. Engineering Short Preorganized Peptide Sequences for Metal Ion Coordination: Copper(II) a Case Study.

    PubMed

    Lima, L M P; Iranzo, O

    2016-01-01

    Peptides are multidentate chiral ligands capable of coordinating different metal ions. Nowadays, they can be obtained with high yield and purity, thanks to the advances on peptide/protein chemistry as well as in equipment (peptide synthesizers). Based on the identity and length of their amino acid sequences, peptides can present different degrees of flexibility and folding. Although short peptide sequences (<20 amino acids) usually lack structure in solution, different levels of structural preorganization can be induced by introducing conformational constraints, such as β-turn/loop template sequences and backbone cyclization. For all these reasons, and the fact that one is not restricted to use proteinogenic amino acids, small peptidic scaffolds constitute a simple and versatile platform for the development of inorganic systems with tailor-made properties and functions. Here we outline a general approach to the design of short preorganized peptide sequences (10-16 amino acids) for metal ion coordination. Based on our experience, we present a general scheme for the design, synthesis, and characterization of these peptidic scaffolds and provide protocols for the study of their metal ion coordination properties. PMID:27586340

  15. A sampling approach for protein backbone fragment conformations.

    PubMed

    Yu, J Y; Zhang, W

    2013-01-01

    In protein structure prediction, backbone fragment bias information can narrow down the conformational space of the whole polypeptide chain significantly. Unlike existing methods that use fragments as building blocks, the paper presents a probabilistic sampling approach for protein backbone torsion angles by modelling angular correlation of (phi, psi) with a directional statistics distribution. Given a protein sequence and secondary structure information, this method samples backbone fragments conformations by using a backtrack sampling algorithm for the hidden Markov model with multiple inputs and a single output. The proposed approach is applied to a fragment library, and some well-known structural motifs are sampled very well on the optimal path. Computational results show that the method can help to obtain native-like backbone fragments conformations. PMID:23777175

  16. Lithium Bromide/Water as Additives in Dearomatizing Samarium-Ketyl (Hetero)Arene Cyclizations.

    PubMed

    Rao, Chintada Nageswara; Bentz, Christoph; Reissig, Hans-Ulrich

    2015-11-01

    New conditions for dearomatizing samarium-ketyl (hetero)arene cyclizations are reported. In many examples of these samarium diiodide-mediated reactions, lithium bromide and water can be used as additives instead of the carcinogenic and mutagenic hexamethylphosphoramide (HMPA). The best results were obtained for the cyclizations of N-acylated indole derivatives delivering the expected indolines in good yields and excellent diastereoselectivities. A new type of cyclization delivering indolyl-substituted allene derivatives is also described. The scope and limitations of the lithium bromide/water system are discussed. PMID:26368916

  17. Constructing optimal backbone segments for joining fixed DNA base pairs.

    PubMed Central

    Mazur, J; Jernigan, R L; Sarai, A

    1996-01-01

    A method is presented to link a sequence of space-fixed base pairs by the sugar-phosphate segments of single nucleotides and to evaluate the effects in the backbone caused by this positioning of the bases. The entire computational unit comprises several nucleotides that are energy-minimized, subject to constraints imposed by the sugar-phosphate backbone segments being anchored to space-fixed base pairs. The minimization schemes are based on two stages, a conjugate gradient method followed by a Newton-Raphson algorithm. Because our purpose is to examine the response, or relaxation, of an artificially stressed backbone, it is essential to be able to obtain, as closely as possible, a lowest minimum energy conformation of the backbone segment in conformational space. For this purpose, an algorithm is developed that leads to the generation of an assembly of many local energy minima. From these sets of local minima, one conformation corresponding to the one with the lowest minimum is then selected and designated to represent the backbone segment at its minimum. The effective electrostatic potential of mean force is expressed in terms of adjustable parameters that incorporate solvent screening action in the Coulombic interactions between charged backbone atoms; these parameters are adjusted to obtain the best fit of the nearest-neighbor phosphorous atoms in an x-ray structure. PMID:8874023

  18. Large-scale measurement and modeling of backbone Internet traffic

    NASA Astrophysics Data System (ADS)

    Roughan, Matthew; Gottlieb, Joel

    2002-07-01

    There is a brewing controversy in the traffic modeling community concerning how to model backbone traffic. The fundamental work on self-similarity in data traffic appears to be contradicted by recent findings that suggest that backbone traffic is smooth. The traffic analysis work to date has focused on high-quality but limited-scope packet trace measurements; this limits its applicability to high-speed backbone traffic. This paper uses more than one year's worth of SNMP traffic data covering an entire Tier 1 ISP backbone to address the question of how backbone network traffic should be modeled. Although the limitations of SNMP measurements do not permit us to comment on the fine timescale behavior of the traffic, careful analysis of the data suggests that irrespective of the variation at fine timescales, we can construct a simple traffic model that captures key features of the observed traffic. Furthermore, the model's parameters are measurable using existing network infrastructure, making this model practical in a present-day operational network. In addition to its practicality, the model verifies basic statistical multiplexing results, and thus sheds deep insight into how smooth backbone traffic really is.

  19. Enantioselective cyclization of enamide-ynes and application to the synthesis of the kopsifoline core

    PubMed Central

    Corkey, Britton K.; Heller, Stephen T.; Wang, Yi-Ming

    2013-01-01

    We report the palladium-catalyzed enantioselective cyclization of 1,6-enamidynes to form spirocyclic ring systems. We applied this methodology to the concise synthesis of the skeletal core of the kopsifoline alkaloids. PMID:23772095

  20. Total Synthesis of (±)–Rocaglamide via Oxidation-Initiated Nazarov Cyclization

    PubMed Central

    Malona, John A.; Cariou, Kevin; Spencer, William T.

    2012-01-01

    This article describes the evolution of a Nazarov cyclization-based synthetic strategy targeting the anticancer, antiinflammatory, and insecticidal natural product (±)–rocaglamide. Initial pursuit of a polarized heteroaromatic Nazarov cyclization to construct the congested cyclopentane core revealed an unanticipated electronic bias in the pentadienyl cation. This reactivity was harnessed in a successful second-generation approach using an oxidation-initiated Nazarov cyclization of a heteroaryl alkoxyallene. Full details of these two approaches are given, as well as the characterization of undesired reaction pathways available to the Nazarov cyclization product. A sequence of experiments that led to an understanding of the unexpected reactivity of this key intermediate is described, which culminated in the successful total synthesis of (+)-rocaglamide. PMID:22283818

  1. Palladium-catalyzed asymmetric 6-endo cyclization of dienamides with substituent-driven activation.

    PubMed

    Tsuchikawa, Hiroshi; Maekawa, Yuya; Katsumura, Shigeo

    2012-05-01

    Chiral 2-piperidinone compounds with various C-6 substituents were successfully synthesized via a Pd-catalyzed asymmetric 6-endo cyclization of dienamides, which were evidently activated by both N-p-toluenesulfonyl and C-3 ester substituents. PMID:22530559

  2. Cascade Cyclizations of Acyclic and Macrocyclic Alkynones: Studies toward the Synthesis of Phomactin A

    PubMed Central

    Ciesielski, Jennifer; Gandon, Vincent; Frontier, Alison J.

    2013-01-01

    A study of the reactivity and diastereoselectivity of the Lewis acid-promoted cascade cyclizations of both acyclic and macrocyclic alkynones is described. In these reactions, a β-iodoallenolate intermediate is generated via conjugate addition of iodide to an alkynone, followed by an intramolecular aldol reaction with a tethered aldehyde to afford a cyclohexenyl alcohol. The Lewis acid magnesium iodide (MgI2) was found to promote irreversible ring closure, while cyclizations using BF3·OEt2 as promoter occurred reversibly. For both acyclic and macrocyclic ynones, high diastereoselectivity was observed in the intramolecular aldol reaction. The MgI2 protocol for cyclization was applied to the synthesis of advanced intermediates relevant to the synthesis of phomactin natural products, during which a novel transannular cation-olefin cyclization was observed. DFT calculations were conducted to analyze the mechanism of this unusual MgI2-promoted process. PMID:23724905

  3. Iminoboronate-Based Peptide Cyclization That Responds to pH, Oxidation, and Small Molecule Modulators.

    PubMed

    Bandyopadhyay, Anupam; Gao, Jianmin

    2016-02-24

    As a rich source of therapeutic agents, peptide natural products usually adopt a cyclic or multicyclic scaffold that minimizes structural flexibility to favor target binding. Inspired by nature, chemists have been interested in developing synthetic cyclic and multicyclic peptides that serve as biological probes and potential therapeutics. Herein we describe a novel strategy for peptide cyclization in which intramolecular iminoboronate formation allows spontaneous cyclization under physiologic conditions to yield monocyclic and bicyclic peptides. Importantly the iminoboronate-based cyclization can be rapidly reversed in response to multiple stimuli, including pH, oxidation, and small molecules. This highly versatile strategy for peptide cyclization should find applications in many areas of chemical biology. PMID:26859098

  4. Peptide Amphiphile Nanofibers with Conjugated Polydiacetylene Backbones in Their Core

    PubMed Central

    Hsu, Lorraine; Cvetanovich, Gregory L.; Stupp, Samuel I.

    2008-01-01

    The coupling of electronic and biological functionality through self-assembly is an interesting target in supramolecular chemistry. We report here on a set of diacetylene-derivatized peptide amphiphiles (PAs) that react to form conjugated polydiacetylene backbones following self-assembly into cylindrical nanofibers. The polymerization reaction yields highly conjugated backbones when the peptidic segment of the PAs has a linear, as opposed to a branched, architecture. Given the topotactic nature of the polymerization, these results suggest that a high degree of internal order exists in the supramolecular nanofibers formed by the linear PA. On the basis of microscopy, the formation of a polydiacetylene backbone to covalently connect the β-sheets that help form the fibers does not disrupt the fiber shape. Interestingly, we observe the appearance of a polydiacetylene (PDA) circular dichroism band at 547 nm in linear PA nanofibers suggesting the conjugated backbone in the core of the nanostructures is twisted. We believe this CD signal is due to chiral induction by the β-sheets, which are normally twisted in helical fashion. Heating and cooling shows simultaneous changes in β-sheet and conjugated backbone structure, indicating they are both correlated. At the same time, poor polymerization in nanofibers formed by branched PAs indicates that less internal order exists in these nanostructures and, as expected, then a circular dichroism signal is not observed for the conjugated backbone. The general variety of materials investigated here has the obvious potential to couple electronic properties and in vitro bioactivity. Furthermore, the polymerization of monomers in peptide amphiphile assemblies by a rigid conjugated backbone also leads to mechanical robustness and insolubility, two properties that may be important for the patterning of these materials at the cellular scale. PMID:18314978

  5. Cyclization of Alkyne-Azide with Isonitrile/CO via Self-Relay Rhodium Catalysis.

    PubMed

    Zhang, Zhen; Xiao, Fan; Huang, Baoliang; Hu, Jincheng; Fu, Bin; Zhang, Zhenhua

    2016-03-01

    A self-relay rhodium(I)-catalyzed cyclization of alkyne-azides with two σ-donor/π-acceptor ligands (isonitriles and CO) to form sequentially multiple-fused heterocycle systems via tandem nitrene transformation and aza-Pauson-Khand cyclization has been developed. In this approach, an intriguing chemoselective insertion process of isonitriles superior to CO was observed. This reaction provides an alternative strategy to synthesize functionalized pyrrolo[2,3-b]indole scaffolds. PMID:26907671

  6. Adding Diverse Noncanonical Backbones to Rosetta: Enabling Peptidomimetic Design

    PubMed Central

    Craven, Timothy W.; Butterfoss, Glenn L.; Chou, Fang-Chieh; Lyskov, Sergey; Bullock, Brooke N.; Watkins, Andrew; Labonte, Jason W.; Pacella, Michael; Kilambi, Krishna Praneeth; Leaver-Fay, Andrew; Kuhlman, Brian; Gray, Jeffrey J.; Bradley, Philip; Kirshenbaum, Kent; Arora, Paramjit S.; Das, Rhiju; Bonneau, Richard

    2013-01-01

    Peptidomimetics are classes of molecules that mimic structural and functional attributes of polypeptides. Peptidomimetic oligomers can frequently be synthesized using efficient solid phase synthesis procedures similar to peptide synthesis. Conformationally ordered peptidomimetic oligomers are finding broad applications for molecular recognition and for inhibiting protein-protein interactions. One critical limitation is the limited set of design tools for identifying oligomer sequences that can adopt desired conformations. Here, we present expansions to the ROSETTA platform that enable structure prediction and design of five non-peptidic oligomer scaffolds (noncanonical backbones), oligooxopiperazines, oligo-peptoids, -peptides, hydrogen bond surrogate helices and oligosaccharides. This work is complementary to prior additions to model noncanonical protein side chains in ROSETTA. The main purpose of our manuscript is to give a detailed description to current and future developers of how each of these noncanonical backbones was implemented. Furthermore, we provide a general outline for implementation of new backbone types not discussed here. To illustrate the utility of this approach, we describe the first tests of the ROSETTA molecular mechanics energy function in the context of oligooxopiperazines, using quantum mechanical calculations as comparison points, scanning through backbone and side chain torsion angles for a model peptidomimetic. Finally, as an example of a novel design application, we describe the automated design of an oligooxopiperazine that inhibits the p53-MDM2 protein-protein interaction. For the general biological and bioengineering community, several noncanonical backbones have been incorporated into web applications that allow users to freely and rapidly test the presented protocols (http://rosie.rosettacommons.org). This work helps address the peptidomimetic community's need for an automated and expandable modeling tool for noncanonical

  7. Silver(I)-Mediated Phosphorylation/Cyclization Cascade of N-Cyanamide Alkenes for Divergent Access to Quinazolinones and Dihydroisoquinolinones.

    PubMed

    Zheng, Jing; Zhang, Yan; Wang, Dahai; Cui, Sunliang

    2016-04-15

    A silver(I)-mediated phosphorylation/cyclization radical cascade of N-cyanamide alkenes has been developed. The addition of in situ generated phosphorus radical to N-cyanamide alkenes triggers the cascade, resulting in late-stage cyclization toward divergent access to 4-quinazolinones and dihydroisoquinolinones. Both terminal and internal N-cyanamide alkenes are applicable in this protocol, and the cyclizations are consistent with Baldwin's rule. PMID:27026261

  8. Gold-Catalyzed Cyclization Processes: Pivotal Avenues for Organic Synthesis.

    PubMed

    Kumar, Amit; Singh, Sukhdev; Sharma, Sunil K; Parmar, Virinder S; Van der Eycken, Erik V

    2016-02-01

    Over the years, gold catalysis has materialized as an incredible synthetic approach among the scientific community. Due to the trivial reaction conditions and great functional compatibility, these progressions are synthetically expedient, because practitioners can implement them to build intricate architectures from readily amassed building blocks with high bond forming indices. The incendiary growth of gold catalysts in organic synthesis has been demonstrated as one of the most prevailing soft Lewis acids for electrophilic activation of carbon-carbon multiple bonds towards a great assortment of nucleophiles. Nowadays, organic chemists consistently employ gold catalysts to carry out a diverse array of organic transformations to build unprecedented molecular architectures. Despite all these achievements and a plethora of reports, many vital challenges remain. In this account, we describe the reactivity of various gold catalysts towards cyclization processes developed over the years. These protocols give access to a wide scope of polyheterocyclic structures, containing different medium-sized ring skeletons. This is interesting, as the quest for highly selective reactions to assemble diversely functionalized products has attracted much attention. We envisage that these newly developed chemo-, regio-, and diastereoselective protocols could provide an expedient route to architecturally cumbersome heterocycles of importance for the pharmaceutical industry. PMID:26554536

  9. The Graphical Representation of the Digital Astronaut Physiology Backbone

    NASA Technical Reports Server (NTRS)

    Briers, Demarcus

    2010-01-01

    This report summarizes my internship project with the NASA Digital Astronaut Project to analyze the Digital Astronaut (DA) physiology backbone model. The Digital Astronaut Project (DAP) applies integrated physiology models to support space biomedical operations, and to assist NASA researchers in closing knowledge gaps related to human physiologic responses to space flight. The DA physiology backbone is a set of integrated physiological equations and functions that model the interacting systems of the human body. The current release of the model is HumMod (Human Model) version 1.5 and was developed over forty years at the University of Mississippi Medical Center (UMMC). The physiology equations and functions are scripted in an XML schema specifically designed for physiology modeling by Dr. Thomas G. Coleman at UMMC. Currently it is difficult to examine the physiology backbone without being knowledgeable of the XML schema. While investigating and documenting the tags and algorithms used in the XML schema, I proposed a standard methodology for a graphical representation. This standard methodology may be used to transcribe graphical representations from the DA physiology backbone. In turn, the graphical representations can allow examination of the physiological functions and equations without the need to be familiar with the computer programming languages or markup languages used by DA modeling software.

  10. Determination of backbone chain direction of PDA using FFM

    NASA Astrophysics Data System (ADS)

    Jo, Sadaharu; Okamoto, Kentaro; Takenaga, Mitsuru

    2010-01-01

    The effect of backbone chains on friction force was investigated on both Langmuir-Blodgett (LB) films of 10,12-heptacosadiynoic acid and the (0 1 0) surfaces of single crystals of 2,4-hexadiene-1,6-diol using friction force microscopy (FFM). It was observed that friction force decreased when the scanning direction was parallel to the [0 0 1] direction in both samples. Moreover, friction force decreased when the scanning direction was parallel to the crystallographic [1 0 2], [1 0 1], [1 0 0] and [1 0 1¯] directions in only the single crystals. For the LB films, the [0 0 1] direction corresponds to the backbone chain direction of 10,12-heptacosadiynoic acid. For the single crystals, both the [0 0 1] and [1 0 1] directions correspond to the backbone chain direction, and the [1 0 2], [1 0 0] and [1 0 1¯] directions correspond to the low-index crystallographic direction. In both the LB films and single crystals, the friction force was minimized when the directions of scanning and the backbone chain were parallel.

  11. Increasing protein production by directed vector backbone evolution

    PubMed Central

    2013-01-01

    Recombinant protein production in prokaryotic and eukaryotic organisms was a key enabling technology for the rapid development of industrial and molecular biotechnology. However, despite all progress the improvement of protein production is an ongoing challenge and of high importance for cost-effective enzyme production. With the epMEGAWHOP mutagenesis protocol for vector backbone optimization we report a novel directed evolution based approach to increase protein production levels by randomly introducing mutations in the vector backbone. In the current study we validate the epMEGAWHOP mutagenesis protocol for three different expression systems. The latter demonstrated the general applicability of the epMEGAWHOP method. Cellulase and lipase production was doubled in one round of directed evolution by random mutagenesis of pET28a(+) and pET22b(+) vector backbones. Protease production using the vector pHY300PLK was increased ~4-times with an average of ~1.25 mutations per kb vector backbone. The epMEGAWHOP does not require any rational understanding of the expression machinery and can generally be applied to enzymes, expression vectors and related hosts. epMEGAWHOP is therefore from our point of view a robust, rapid and straight forward alternative for increasing protein production in general and for biotechnological applications. PMID:23890095

  12. Protein-Backbone Thermodynamics across the Membrane Interface.

    PubMed

    Bereau, Tristan; Kremer, Kurt

    2016-07-01

    The thermodynamics of insertion of a protein in a membrane depends on the fine interplay between backbone and side-chain contributions interacting with the lipid environment. Using computer simulations, we probe how different descriptions of the backbone glycyl unit affect the thermodynamics of insertion of individual residues, dipeptides, and entire transmembrane helices. Due to the lack of reference data, we first introduce an efficient methodology to estimate atomistic potential of mean force (PMF) curves from a series of representative and uncorrelated coarse-grained (CG) snapshots. We find strong discrepancies between two CG models, Martini and PLUM, against reference atomistic PMFs and experiments. Atomistic simulations suggest a weak free energy of insertion between water and a POPC membrane for the glycyl unit, in overall agreement with experimental results despite severe assumptions in our calculations. We show that refining the backbone contribution in PLUM significantly improves the PMF of insertion of the WALP16 transmembrane peptide. An improper balance between the glycyl backbone and the attached side chain will lead to energetic artifacts, rationalizing Martini's overstabilization of WALP's adsorbed interfacial state. It illustrates difficulties associated with free-energy-based parametrizations of single-residue models, as the relevant free energy of partitioning used for force-field parametrization does not arise from the entire residue but rather the solvent-accessible chemical groups. PMID:27138459

  13. Impact of template backbone heterogeneity on RNA polymerase II transcription

    PubMed Central

    Xu, Liang; Wang, Wei; Zhang, Lu; Chong, Jenny; Huang, Xuhui; Wang, Dong

    2015-01-01

    Variations in the sugar component (ribose or deoxyribose) and the nature of the phosphodiester linkage (3′-5′ or 2′-5′ orientation) have been a challenge for genetic information transfer from the very beginning of evolution. RNA polymerase II (pol II) governs the transcription of DNA into precursor mRNA in all eukaryotic cells. How pol II recognizes DNA template backbone (phosphodiester linkage and sugar) and whether it tolerates the backbone heterogeneity remain elusive. Such knowledge is not only important for elucidating the chemical basis of transcriptional fidelity but also provides new insights into molecular evolution. In this study, we systematically and quantitatively investigated pol II transcriptional behaviors through different template backbone variants. We revealed that pol II can well tolerate and bypass sugar heterogeneity sites at the template but stalls at phosphodiester linkage heterogeneity sites. The distinct impacts of these two backbone components on pol II transcription reveal the molecular basis of template recognition during pol II transcription and provide the evolutionary insight from the RNA world to the contemporary ‘imperfect’ DNA world. In addition, our results also reveal the transcriptional consequences from ribose-containing genomic DNA. PMID:25662224

  14. Backbone additivity in the transfer model of protein solvation

    PubMed Central

    Hu, Char Y; Kokubo, Hironori; Lynch, Gillian C; Bolen, D Wayne; Pettitt, B Montgomery

    2010-01-01

    The transfer model implying additivity of the peptide backbone free energy of transfer is computationally tested. Molecular dynamics simulations are used to determine the extent of change in transfer free energy (ΔGtr) with increase in chain length of oligoglycine with capped end groups. Solvation free energies of oligoglycine models of varying lengths in pure water and in the osmolyte solutions, 2M urea and 2M trimethylamine N-oxide (TMAO), were calculated from simulations of all atom models, and ΔGtr values for peptide backbone transfer from water to the osmolyte solutions were determined. The results show that the transfer free energies change linearly with increasing chain length, demonstrating the principle of additivity, and provide values in reasonable agreement with experiment. The peptide backbone transfer free energy contributions arise from van der Waals interactions in the case of transfer to urea, but from electrostatics on transfer to TMAO solution. The simulations used here allow for the calculation of the solvation and transfer free energy of longer oligoglycine models to be evaluated than is currently possible through experiment. The peptide backbone unit computed transfer free energy of −54 cal/mol/M compares quite favorably with −43 cal/mol/M determined experimentally. PMID:20306490

  15. Cooperative UAV-Based Communications Backbone for Sensor Networks

    SciTech Connect

    Roberts, R S

    2001-10-07

    The objective of this project is to investigate the use of unmanned air vehicles (UAVs) as mobile, adaptive communications backbones for ground-based sensor networks. In this type of network, the UAVs provide communication connectivity to sensors that cannot communicate with each other because of terrain, distance, or other geographical constraints. In these situations, UAVs provide a vertical communication path for the sensors, thereby mitigating geographic obstacles often imposed on networks. With the proper use of UAVs, connectivity to a widely disbursed sensor network in rugged terrain is readily achieved. Our investigation has focused on networks where multiple cooperating UAVs are used to form a network backbone. The advantage of using multiple UAVs to form the network backbone is parallelization of sensor connectivity. Many widely spaced or isolated sensors can be connected to the network at once using this approach. In these networks, the UAVs logically partition the sensor network into sub-networks (subnets), with one UAV assigned per subnet. Partitioning the network into subnets allows the UAVs to service sensors in parallel thereby decreasing the sensor-to-network connectivity. A UAV services sensors in its subnet by flying a route (path) through the subnet, uplinking data collected by the sensors, and forwarding the data to a ground station. An additional advantage of using multiple UAVs in the network is that they provide redundancy in the communications backbone, so that the failure of a single UAV does not necessarily imply the loss of the network.

  16. Backbone Additivity in the Transfer Model of Protein Solvation

    SciTech Connect

    Hu, Char Y.; Kokubo, Hironori; Lynch, Gillian C.; Bolen, D Wayne; Pettitt, Bernard M.

    2010-05-01

    The transfer model implying additivity of the peptide backbone free energy of transfer is computationally tested. Molecular dynamics simulations are used to determine the extent of change in transfer free energy (ΔGtr) with increase in chain length of oligoglycine with capped end groups. Solvation free energies of oligoglycine models of varying lengths in pure water and in the osmolyte solutions, 2M urea and 2M trimethylamine N-oxide (TMAO), were calculated from simulations of all atom models, and ΔGtr values for peptide backbone transfer from water to the osmolyte solutions were determined. The results show that the transfer free energies change linearly with increasing chain length, demonstrating the principle of additivity, and provide values in reasonable agreement with experiment. The peptide backbone transfer free energy contributions arise from van der Waals interactions in the case of transfer to urea, but from electrostatics on transfer to TMAO solution. The simulations used here allow for the calculation of the solvation and transfer free energy of longer oligoglycine models to be evaluated than is currently possible through experiment. The peptide backbone unit computed transfer free energy of –54 cal/mol/Mcompares quite favorably with –43 cal/mol/M determined experimentally.

  17. Two-dimensional NMR spectroscopy reveals cation-triggered backbone degradation in polysulfone-based anion exchange membranes.

    PubMed

    Arges, Christopher G; Ramani, Vijay

    2013-02-12

    Anion exchange membranes (AEMs) find widespread applications as an electrolyte and/or electrode binder in fuel cells, electrodialysis stacks, flow and metal-air batteries, and electrolyzers. AEMs exhibit poor stability in alkaline media; their degradation is induced by the hydroxide ion, a potent nucleophile. We have used 2D NMR techniques to investigate polymer backbone stability (as opposed to cation stability) of the AEM in alkaline media. We report the mechanism behind a peculiar, often-observed phenomenon, wherein a demonstrably stable polysulfone backbone degrades rapidly in alkaline solutions upon derivatization with alkaline stable fixed cation groups. Using COSY and heteronuclear multiple quantum correlation spectroscopy (2D NMR), we unequivocally demonstrate that the added cation group triggers degradation of the polymer backbone in alkaline via quaternary carbon hydrolysis and ether hydrolysis, leading to rapid failure. This finding challenges the existing perception that having a stable cation moiety is sufficient to yield a stable AEM and emphasizes the importance of the often ignored issue of backbone stability. PMID:23335629

  18. Two-dimensional NMR spectroscopy reveals cation-triggered backbone degradation in polysulfone-based anion exchange membranes

    PubMed Central

    Arges, Christopher G.; Ramani, Vijay

    2013-01-01

    Anion exchange membranes (AEMs) find widespread applications as an electrolyte and/or electrode binder in fuel cells, electrodialysis stacks, flow and metal-air batteries, and electrolyzers. AEMs exhibit poor stability in alkaline media; their degradation is induced by the hydroxide ion, a potent nucleophile. We have used 2D NMR techniques to investigate polymer backbone stability (as opposed to cation stability) of the AEM in alkaline media. We report the mechanism behind a peculiar, often-observed phenomenon, wherein a demonstrably stable polysulfone backbone degrades rapidly in alkaline solutions upon derivatization with alkaline stable fixed cation groups. Using COSY and heteronuclear multiple quantum correlation spectroscopy (2D NMR), we unequivocally demonstrate that the added cation group triggers degradation of the polymer backbone in alkaline via quaternary carbon hydrolysis and ether hydrolysis, leading to rapid failure. This finding challenges the existing perception that having a stable cation moiety is sufficient to yield a stable AEM and emphasizes the importance of the often ignored issue of backbone stability. PMID:23335629

  19. Structure of Epi-Isozizaene Synthase from Streptomyces coelicolor A3(2), a Platform for New Terpenoid Cyclization Templates

    SciTech Connect

    Aaron, Julie A.; Lin, Xin; Cane, David E.; Christianson, David W.

    2010-06-21

    The X-ray crystal structure of recombinant epi-isozizaene synthase (EIZS), a sesquiterpene cyclase from Streptomyces coelicolor A3(2), has been determined at 1.60 {angstrom} resolution. Specifically, the structure of wild-type EIZS is that of its closed conformation in complex with three Mg{sup 2+} ions, inorganic pyrophosphate (PP{sub i}), and the benzyltriethylammonium cation (BTAC). Additionally, the structure of D99N EIZS has been determined in an open, ligand-free conformation at 1.90 {angstrom} resolution. Comparison of these two structures provides the first view of conformational changes required for substrate binding and catalysis in a bacterial terpenoid cyclase. Moreover, the binding interactions of BTAC may mimic those of a carbocation intermediate in catalysis. Accordingly, the aromatic rings of F95, F96, and F198 appear to be well-oriented to stabilize carbocation intermediates in the cyclization cascade through cation-{pi} interactions. Mutagenesis of aromatic residues in the enzyme active site results in the production of alternative sesquiterpene product arrays due to altered modes of stabilization of carbocation intermediates as well as altered templates for the cyclization of farnesyl diphosphate. Accordingly, the 1.64 {angstrom} resolution crystal structure of F198A EIZS in a complex with three Mg{sup 2+} ions, PP{sub i}, and BTAC reveals an alternative binding orientation of BTAC; alternative binding orientations of a carbocation intermediate could lead to the formation of alternative products. Finally, the crystal structure of wild-type EIZS in a complex with four Hg{sup 2+} ions has been determined at 1.90 {angstrom} resolution, showing that metal binding triggers a significant conformational change of helix G to cap the active site.

  20. Cyclization strategies of meditopes: affinity and diffraction studies of meditope-Fab complexes.

    PubMed

    Bzymek, Krzysztof P; Ma, Yuelong; Avery, Kendra A; Horne, David A; Williams, John C

    2016-06-01

    Recently, a unique binding site for a cyclic 12-residue peptide was discovered within a cavity formed by the light and heavy chains of the cetuximab Fab domain. In order to better understand the interactions that drive this unique complex, a number of variants including the residues within the meditope peptide and the antibody, as well as the cyclization region of the meditope peptide, were created. Here, multiple crystal structures of meditope peptides incorporating different cyclization strategies bound to the central cavity of the cetuximab Fab domain are presented. The affinity of each cyclic derivative for the Fab was determined by surface plasmon resonance and correlated to structural differences. Overall, it was observed that the disulfide bond used to cyclize the peptide favorably packs against a hydrophobic `pocket' and that amidation and acetylation of the original disulfide meditope increased the overall affinity ∼2.3-fold. Conversely, replacing the terminal cysteines with serines and thus creating a linear peptide reduced the affinity over 50-fold, with much of this difference being reflected in a decrease in the on-rate. Other cyclization methods, including the formation of a lactam, reduced the affinity but not to the extent of the linear peptide. Collectively, the structural and kinetic data presented here indicate that small perturbations introduced by different cyclization strategies can significantly affect the affinity of the meditope-Fab complex. PMID:27303895

  1. Cyclization strategies of meditopes: affinity and diffraction studies of meditope–Fab complexes

    PubMed Central

    Bzymek, Krzysztof P.; Ma, Yuelong; Avery, Kendra A.; Horne, David A.; Williams, John C.

    2016-01-01

    Recently, a unique binding site for a cyclic 12-residue peptide was discovered within a cavity formed by the light and heavy chains of the cetuximab Fab domain. In order to better understand the interactions that drive this unique complex, a number of variants including the residues within the meditope peptide and the antibody, as well as the cyclization region of the meditope peptide, were created. Here, multiple crystal structures of meditope peptides incorporating different cyclization strategies bound to the central cavity of the cetuximab Fab domain are presented. The affinity of each cyclic derivative for the Fab was determined by surface plasmon resonance and correlated to structural differences. Overall, it was observed that the disulfide bond used to cyclize the peptide favorably packs against a hydrophobic ‘pocket’ and that amidation and acetylation of the original disulfide meditope increased the overall affinity ∼2.3-fold. Conversely, replacing the terminal cysteines with serines and thus creating a linear peptide reduced the affinity over 50-fold, with much of this difference being reflected in a decrease in the on-rate. Other cyclization methods, including the formation of a lactam, reduced the affinity but not to the extent of the linear peptide. Collectively, the structural and kinetic data presented here indicate that small perturbations introduced by different cyclization strategies can significantly affect the affinity of the meditope–Fab complex. PMID:27303895

  2. An Iodine-Vapor-Induced Cyclization in a Crystalline Molecular Flask.

    PubMed

    Knichal, Jane V; Shepherd, Helena J; Wilson, Chick C; Raithby, Paul R; Gee, William J; Burrows, Andrew D

    2016-05-10

    A vapor-induced cyclization has been observed in the host environment of a crystalline molecular flask (CMF), within which 1,8-bis(2-phenylethynyl)naphthalene (bpen), a diarenynyl system primed for cyclization, was exposed to iodine vapor to yield the corresponding indeno[2,1-α]phenalene species. The cyclization process, unique in its vapor-induced, solvent-free nature, was followed spectroscopically, and found to occur concurrently with the displacement of lattice solvent for molecular iodine in CMF⋅0.75 bpen⋅2.25 CHCl3 ⋅H2 O. The cyclization occurred under mild conditions and without the need to suspend the crystals in solvent. The ability of CMFs to host purely gas-induced reactions is further highlighted by the subsequent sequential oxidation reaction of cyclized 7-iodo-12-phenylindeno[2,1-α]phenalene (ipp) with molecular oxygen derived from air, yielding 12-hydroxy-7-iodo-2-phenylindeno[2,1-α]phenalen-1(12H)-one (hipp). PMID:27060377

  3. Fates of imine intermediates in radical cyclizations of N-sulfonylindoles and ene-sulfonamides

    PubMed Central

    Zhang, Hanmo; Hay, E Ben; Geib, Stephen J

    2015-01-01

    Summary Two new fates of imine intermediates formed on radical cyclizations of ene-sulfonamides have been identified, reduction and hydration/fragmentation. Tin hydride-mediated cyclizations of 2-halo-N-(3-methyl-N-sulfonylindole)anilines provide spiro[indoline-3,3'-indolones] or spiro-3,3'-biindolines (derived from imine reduction), depending on the indole C2 substituent. Cyclizations of 2-haloanilide derivatives of 3-carboxy-N-sulfonyl-2,3-dihydropyrroles also presumably form spiro-imines as primary products. However, the lactam carbonyl group facilitates the ring-opening of these cyclic imines by a new pathway of hydration and retro-Claisen-type reaction, providing rearranged 2-(2'-formamidoethyl)oxindoles. PMID:26664585

  4. Total Synthesis of (+)-Sieboldine A: Evolution of A Pinacol-Terminated Cyclization Strategy

    PubMed Central

    Canham, Stephen M.; France, David J.; Overman, Larry E.

    2013-01-01

    This article describes synthetic studies that culminated in the first total synthesis of the Lycopodium alkaloid sieboldine A. During this study a number of pinacol-terminated cationic cyclizations were examined to form the cis-hydrindanone core of sieboldine A. Of these, a mild Au(I)-promoted 1,6-enyne cyclization that was terminated by a semipinacol rearrangement proved to be most efficient. Fashioning the unprecedented N-hydroxyazacyclononane ring embedded within the bicyclo[5.2.1]decane-N,O-acetal moiety of sieboldine A was a formidable challenge. Ultimately, the enantioselective total synthesis of (+)-sieboldine A was completed by forming this ring in good yield by cyclization of a protected-hydroxylamine thioglycoside precursor. PMID:22734821

  5. Utility of Ligand Effect in Homogenous Gold Catalysis: Enabling Regiodivergent π-Bond-Activated Cyclization.

    PubMed

    Ding, Dong; Mou, Tao; Feng, Minghao; Jiang, Xuefeng

    2016-04-27

    Comprehensive utilization of both electronic and steric properties of ligands in homogeneous gold catalysis is achieved in the regiodivergent intramolecular hydroarylation of alkynes. A flexible electron-deficient phosphite ligand, combined with the readily transformable directing group methoxyl amide, is attached to a cationic Au(I) center in three-coordinate mode, affording sterically hindered ortho-position cyclization. Meanwhile, para-position cyclization is exclusively achieved with the assistance of a rigid electron-abundant phosphine ligand-based Au(I) catalyst, in which ligands manifest the compensating effect for cyclization through steric hindrance and electronic properties. By combining gold with silver catalysts, tetrahydropyrroloquinolinones possessing a congested tricyclic structure are obtained via a proven Au/Ag relay catalytic process. PMID:27058740

  6. Inhibition of monoterpene cyclases by sulfonium analogs of presumptive carbocationic intermediates of the cyclization reaction.

    PubMed

    Croteau, R; Wheeler, C J; Aksela, R; Oehlschlager, A C

    1986-06-01

    The enzymatic cyclization of geranyl pyrophosphate to monoterpenes is thought to proceed through a series of carbocation-pyrophosphate anion paired intermediates. Sulfonium analogs of two putative carbocationic intermediates of the cyclization sequence were shown to be inhibitors of the conversion of the acyclic precursor to the bicyclic monoterpenes (+)-alpha-pinene and (+)-bornyl pyrophosphate by partially purified cyclase preparations from sage (Salvia officinalis). The sulfonium analog of the tertiary allylic, linalyl, intermediate (i.e. methyl-(4-methylpent-3-en-1-yl)vinyl-sulfonium perchlorate) provided respective Ki values of 2.5 microM and 3.0 microM against the cyclization to alpha-pinene and bornyl pyrophosphate at a substrate concentration of 5 microM, whereas the sulfonium analog of the monocyclic, alpha-terpinyl, intermediate (i.e. dimethyl-(4-methylcyclohex-3-en-1-yl) sulfonium iodide) exhibited respective Ki values of 3.4 microM and 3.9 microM against the same two cyclizations. The potency of inhibition in all cases increased with increasing substrate concentration, indicating that the affinity of the enzymes for the sulfonium analogs was increased by the presence of the pyrophosphate ester. Inorganic pyrophosphate at a concentration of 50 microM, which alone had little influence on the cyclizations, increased the effectiveness of inhibition of the sulfonium analogs severalfold, and the apparent Ki for inorganic pyrophosphate was reduced manyfold by the presence of either analog at 5 microM. That the combination of sulfonium analog and pyrophosphate provided synergistic inhibition of the electrophilic cyclizations indicated that the cyclases bind the paired species more tightly than either partner alone. Specificity studies suggested that inhibition by the above sulfonium ion:pyrophosphate pairs was due to both electronic and structural resemblance to intermediates of the reaction. PMID:3011779

  7. Mechanistic Studies on Garratt-Braverman Cyclization: The Diradical-Cycloaddition Puzzle.

    PubMed

    Das, Joyee; Bag, Subhendu Sekhar; Basak, Amit

    2016-06-01

    In this work, we present the results of extensive multiprong studies involving the fate of deuterium-labeled substrates, EPR, trapping experiments, and LA-LDI mass spectrometry to sort out the controversies relating to the mechanism of Garratt-Braverman cyclization in two systems, namely bis-propargyl sulfones and ethers. The results are in conformity with a diradical mechamism for the sulfone, while for the ether, the anionic [4 + 2] appears to be the preferred pathway. This shows that the mechanistic pathway toward GB cyclization is dependent upon the nature of heteroatom (O or S in sulfone) bridging the propargyl arms. PMID:27116541

  8. “Cation-Stitching Cascade”: exquisite control of terpene cyclization in cyclooctatin biosynthesis

    NASA Astrophysics Data System (ADS)

    Sato, Hajime; Teramoto, Kazuya; Masumoto, Yui; Tezuka, Noriyuki; Sakai, Kenta; Ueda, Shota; Totsuka, Yusuke; Shinada, Tetsuro; Nishiyama, Makoto; Wang, Chao; Kuzuyama, Tomohisa; Uchiyama, Masanobu

    2015-12-01

    Terpene cyclization is orchestrated by terpene cyclases, which are involved in the biosynthesis of various cyclic natural products, but understanding the origin and mechanism of the selectivity of terpene cyclization is challenging. In this work, we describe an in-depth mechanistic study on cyclooctatin biosynthesis by means of theoretical calculations combined with experimental methods. We show that the main framework of cyclooctatin is formed through domino-type carbocation transportation along the terpene chain, which we call a “cation-stitching cascade”, including multiple hydrogen-shifts and a ring rearrangement that elegantly determine the stereoselectivity.

  9. Tandem dinucleophilic cyclization of cyclohexane-1,3-diones with pyridinium salts

    PubMed Central

    Kiamehr, Mostafa; Mkrtchyan, Satenik; Semeniuchenko, Volodymyr; Supe, Linda; Villinger, Alexander

    2013-01-01

    Summary The cyclization of cyclohexane-1,3-diones with various substituted pyridinium salts afforded functionalized 8-oxa-10-aza-tricyclo[7.3.1.02,7]trideca-2(7),11-dienes. The reaction proceeds by regioselective attack of the central carbon atom of the 1,3-dicarbonyl unit to 4-position of the pyridinium salt and subsequent cyclization by base-assisted proton migration and nucleophilic addition of the oxygen atom to the 2-position, as was elucidated by DFT computations. Fairly extensive screening of bases and additives revealed that the presence of potassium cations is essential for formation of the product. PMID:23843903

  10. Tandem Electrocyclic Ring Opening/Radical Cyclization: Application to the Total Synthesis of Cribrostatin 6

    PubMed Central

    Knueppel, Daniel; Martin, Stephen F.

    2011-01-01

    A concise total synthesis ofcribrostatin 6 (1), an antimicrobial and antineoplastic agent,was accomplished using a tandem electrocyclic ring opening/radical cyclization sequence. Specifically, intermediate4 underwent a 4π-electrocyclic ring opening, radical cyclization, and homolytic aromatic substitution sequence followed by an oxidation to afford the natural product1in one pot. Owing to the rapid buildup of complexity in the key step, 1 could be synthesized from commercially available starting materials in only four linear steps. Application of this chemistry to the concise syntheses of analogs of cribrostatin 6 (1) is also reported. PMID:22125344

  11. Unciaphenol, an Oxygenated Analogue of the Bergman Cyclization Product of Uncialamycin Exhibits Anti-HIV Activity.

    PubMed

    Williams, David E; Bottriell, Helen; Davies, Julian; Tietjen, Ian; Brockman, Mark A; Andersen, Raymond J

    2015-11-01

    Unciaphenol (2), an oxygenated analogue of the Bergman cyclization product of the enediyne uncialamycin (1), has been isolated along with 1 from cultures of the actinomycete Streptomyces uncialis. It is proposed that the C-22 OH substituent in 2 might arise from the attack of a nucleophilic oxygen species on the p-benzyne diradical intermediate IA in the Bergman cyclization of 1. 2 shows in vitro anti-HIV activity against viral strains that are resistant to clinically utilized anti-retroviral therapies. PMID:26465962

  12. A novel C,D-spirodioxene taxoid synthesized through an unexpected Pd-mediated ring cyclization.

    PubMed

    Wang, Shao-Rong; Sánchez-Murcia, Pedro A; Gago, Federico; Fang, Wei-Shuo

    2016-01-01

    A novel C,D-spirodioxene taxoid (6) was prepared from paclitaxel (1a), with the key steps including an unexpected Pd-mediated ring cyclization. The anti-tubulin activity of 6 was decreased relative to that of 1a and a previously reported C,D-spirolactone taxane (5). These observations could be rationalized on the basis of molecular modeling results. To the best of our knowledge, this is the first example indicating that 1,4-dioxenes can be synthesized from a mono-allyl vicinal diol through a Wacker-type cyclization. This strategy may be applicable to the synthesis of other C,D-spiro taxoids. PMID:26603551

  13. Conversion of Substrate Analogs Suggests a Michael Cyclization in Iridoid Biosynthesis

    PubMed Central

    Lindner, Stephanie; Geu-Flores, Fernando; Bräse, Stefan; Sherden, Nathaniel H.; O’Connor, Sarah E.

    2014-01-01

    Summary The core structure of the iridoid monoterpenes is formed by a unique cyclization reaction. The enzyme that catalyzes this reaction, iridoid synthase, is mechanistically distinct from other terpene cyclases. Here we describe the synthesis of two substrate analogs to probe the mechanism of iridoid synthase. Enzymatic assay of these substrate analogs along with clues from the product profile of the native substrate strongly suggest that iridoid synthase utilizes a Michael reaction to achieve cyclization. This improved mechanistic understanding will facilitate the exploitation of the potential of iridoid synthase to synthesize new cyclic compounds from nonnatural substrates. PMID:25444551

  14. Determination of backbone nitrogen-nitrogen J correlations in proteins.

    PubMed

    Theis, K; Dingley, A J; Hoffmann, A; Omichinski, J G; Grzesiek, S

    1997-12-01

    Recently, a quantitative J correlation technique has been presented which makes use of homonuclear Hartmann-Hahn cross-polarization (TOCSY) to measure (3)J(C)'(C)' in proteins isotopically enriched with (13)C [Grzesiek, S. and Bax, A. (1997) J. Biomol. NMR, 9, 207-211]. Since homonuclear Hartmann-Hahn is twice as fast as conventional COSY transfer, this method is much less sensitive to transverse relaxation, which is the principal limiting factor in achieving long-range J-coupling correlations in macromolecules. Here we describe a similar experiment which is used to measure(3) J(NN) coupling constants between sequential amide(15) N nuclei in the backbone of ubiquitin. As expected from the low magnetic moment of (15)N, the (3)J(NN) coupling constants are exceedingly small, with values between 0.14 and 0.36 Hz for residues in β-conformations and values below 0.15 Hz for residues in α-conformations. In contrast to what is expected from a Karplus-type dependence on the backbone angle ψ, large differences in the values of(3) J(NN) are observed for a number of residues with very similar backbone ψ angles. A quantitative description of statistical and systematic errors, in particular of relaxation effects during the TOCSY transfer, shows that these differences are highly significant. PMID:20859784

  15. Radiofluorinated rhenium cyclized α-MSH analogues for PET imaging of melanocortin receptor 1.

    PubMed

    Ren, Gang; Liu, Shuanlong; Liu, Hongguang; Miao, Zheng; Cheng, Zhen

    2010-12-15

    In order to accomplish in vivo molecular imaging of melanoma biomarker melanocortin 1 receptor (MC1R), several α-melanocyte-stimulating hormone (α-MSH) analogues have been labeled with N-succinimidyl-4-¹⁸F-fluorobenzoate (¹⁸)F-SFB) and studied as positron emission tomography (PET) probes in our recent studies. To further pursue a radiofluorinated α-MSH peptide with high clinical translation potential, we utilized 4-nitrophenyl 2-¹⁸F-fluoropropionate (¹⁸F-NFP) to radiofluorinate the transition metal rhenium cyclized α-MSH metallopeptides for PET imaging of MC1R positive malignant melanoma. Metallopeptides Ac-d,Lys-ReCCMSH(Arg¹¹) (two isomers, namely RMSH-1 and RMSH-2) were synthesized using conventional solid phase peptide synthesis chemistry and rhenium cyclization reaction. The two isomers were then conjugated with ¹⁹F-NFP or ¹⁸F-NFP. The resulting cold or radiofluorinated metallopeptides, (¹⁸/¹⁹)F-FP-RMSH-1 and (¹⁸/¹⁹)F-FP-RMSH-2, were further evaluated for their in vitro receptor binding affinities, in vivo biodistribution, and small-animal PET imaging properties. The binding affinities of ¹⁹F-FP-RMSH-1 and ¹⁹F-FP-RMSH-2 were determined to be within low nanomolar range. In vivo studies revealed that both F-labeled metallopeptides possessed good tumor uptake in the B16F10 murine model with high MC1R expression, while possessing much lower uptake in A375M human melanoma xenografts. Moreover, ¹⁸F-FP-RMSH-1 displayed more favorable in vivo performance in terms of higher tumor uptake and much lower accumulation in the kidney and liver, when compared to that of ¹⁸F-FP-RMSH-2 at 2 h postinjection (p.i.). ¹⁸F-FP-RMSH-1 also displayed lower liver and lung uptake when compared with that of the same peptide labeled with ¹⁸F-SFB (named as ¹⁸F-FB-RMSH-1). Small animal PET imaging of ¹⁸F-FP-RMSH-1 in mice bearing B16F10 tumors at 1 and 2 h showed good tumor imaging quality. As expected, much lower tumor uptake and

  16. Solvent-free cyclization of linear dienes using olefin metathesis and the Thorpe-Ingold effect

    SciTech Connect

    Forbees, M.D.E.; Myers, T.L.; Maynard, H.D.; Schulz, G.R. ); Patton, J.T.; Smith, D.W. Jr.; Wagener, K.B. )

    1992-12-30

    The olefin metathesis reaction is of great synthetic utility in polymer chemistry. The recent development of ring-opening (ROMP) and acyclic diene (ADMET) metathesis polymerization reactions has opened new avenues for the synthesis of novel polymeric materials. Recently the authors used ADMET to synthesize several photochemically active poly(keto olefins) using the catalyst Mo(CHCMe[sub 2]Ph)(NAr)(OCMe(CF[sub 3])[sub 2])[sub 2] (Ar = 2,6-diisopropylphenyl) (1) developed by Schrock and co-workers in 1990. In the course of that work, they discovered that neat samples of highly substituted dienes will cyclize quantitatively via metathesis to give difunctional five- and seven-membered rings instead of the expected linear polymer. Examples of substituted diene cyclizations by metathesis even in the presence of a solvent are rare. Their systematic exploitation in organic synthesis has therefore been limited to two recent studies by Fu and Grubbs, who cyclized several substituted diene ethers, amines, and amides to unsaturated oxygen and nitrogen heterocycles. Cyclization of unsubstituted dienes in various solvents has been reported, but complete conversion occurred in only a few cases. Formation of cyclic alkene oligomers from back-biting during the ROMP reaction is also known. The reactions reported here are unusual in that they are intermolecular between catalyst and substrate, yet can give 100% yield of product solely from the monomer in the absence of solvent. 13 refs.

  17. Kinetically Controlled Chemoselective Cyclization Simplifies the Access to Cyclic and Branched Peptides.

    PubMed

    Boll, Emmanuelle; Drobecq, Hervé; Lissy, Elizabeth; Cantrelle, François-Xavier; Melnyk, Oleg

    2016-08-01

    A bis(2-sulfanylethyl)amido group reacts significantly faster with cysteinyl peptides when installed on the C-terminal end of a peptide in comparison with the side-chain of Asp and Glu. This property enabled the design of a kinetically controlled chemoselective peptide cyclization reaction, giving straightforward access to cyclic and branched peptides in one pot. PMID:27398649

  18. Catalytic Cyclization of o-Alkynyl Phenethylamines via Osmacyclopropene Intermediates: Direct Access to Dopaminergic 3-Benzazepines.

    PubMed

    Álvarez-Pérez, Andrea; González-Rodríguez, Carlos; García-Yebra, Cristina; Varela, Jesús A; Oñate, Enrique; Esteruelas, Miguel A; Saá, Carlos

    2015-11-01

    A novel osmium-catalyzed cyclization of o-alkynyl phenethylamines to give 3-benzazepines is reported. The procedure allows the straightforward preparation of a broad range of dopaminergic 3-benzazepine derivatives. Mechanistic investigations revealed that the process takes place via osmacyclopropene intermediates, which were isolated and characterized by X-ray crystallography. PMID:26368394

  19. Aryl-Allene Cyclization via a Hg(OTf)2-Catalytic Pathway.

    PubMed

    Yamamoto, Hirofumi; Ueda, Maho; Yamasaki, Naoto; Fujii, Akiyoshi; Sasaki, Ikuo; Igawa, Kazunobu; Kasai, Yusuke; Imagawa, Hiroshi; Nishizawa, Mugio

    2016-06-17

    Hg(OTf)2-catalyzed aryl-allene cyclization accompanied by formation of a quaternary carbon center has been realized. Deuterium-labeling experiments and computational modeling were used to propose a novel catalytic pathway involving direct H-transfer from the aromatic ring to the vinyl mercury moiety followed by mercury 1,2-migration. PMID:27232158

  20. Silver-Catalyzed 7-exo-dig Cyclization of Silylenolether-ynesulfonamides.

    PubMed

    Heinrich, Clément F; Fabre, Indira; Miesch, Laurence

    2016-04-18

    Cyclization of silylenolether-ynesulfonamides proceeds at ambient temperature under mild reaction conditions under silver catalysis. Bridged compounds were obtained exclusively through 7-exo-dig reactions. The protocol is applicable to a wide range of substrates, thus leading to azabicyclic frameworks. PMID:27000724

  1. Cyclization of fungal nonribosomal peptides by a terminal condensation-like domain.

    PubMed

    Gao, Xue; Haynes, Stuart W; Ames, Brian D; Wang, Peng; Vien, Linda P; Walsh, Christopher T; Tang, Yi

    2012-10-01

    Cyclization of linear peptidyl precursors produced by nonribosomal peptide synthetases (NRPSs) is an important step in the biosynthesis of bioactive cyclic peptides. Whereas bacterial NRPSs use thioesterase domains to perform the cyclization, fungal NRPSs have apparently evolved to use a different enzymatic route. In verified fungal NRPSs that produce macrocyclic peptides, each megasynthetase terminates with a condensation-like (C(T)) domain that may perform the macrocyclization reaction. To probe the role of such a C(T) domain, we reconstituted the activities of the Penicillium aethiopicum trimodular NPRS TqaA in Saccharomyces cerevisiae and in vitro. Together with the reconstituted bimodular NRPS AnaPS, we dissected the cyclization steps of TqaA in transforming the linear anthranilate-D-tryptophan-L-alanyl tripeptide into fumiquinazoline F. Extensive biochemical and mutational studies confirmed the essential role of the C(T) domain in catalyzing cyclization in a thiolation domain-dependent fashion. Our work provides evidence of a likely universal macrocyclization strategy used by fungal NRPSs. PMID:22902615

  2. Axially Chiral Enamides: Substituent Effects, Rotation Barriers, and Implications for their Cyclization Reactions.

    PubMed

    Clark, Andrew J; Curran, Dennis P; Fox, David J; Ghelfi, Franco; Guy, Collette S; Hay, Benjamin; James, Natalie; Phillips, Jessica M; Roncaglia, Fabrizio; Sellars, Philip B; Wilson, Paul; Zhang, Hanmo

    2016-07-01

    The barrier to rotation around the N-alkenyl bond of 38 N-alkenyl-N-alkylacetamide derivatives was measured (ΔG(⧧) rotation varied between <8.0 and 31.0 kcal mol(-1)). The most important factor in controlling the rate of rotation was the level of alkene substitution, followed by the size of the nitrogen substituent and, finally, the size of the acyl substituent. Tertiary enamides with four alkenyl substituents exhibited half-lives for rotation between 5.5 days and 99 years at 298 K, sufficient to isolate enantiomerically enriched atropisomers. The radical cyclizations of a subset of N-alkenyl-N-benzyl-α-haloacetamides exhibiting relatively high barriers to rotation round the N-alkenyl bond (ΔG(⧧) rotation >20 kcal mol(-1)) were studied to determine the regiochemistry of cyclization. Those with high barriers (>27 kcal mol(-1)) did not lead to cyclization, but those with lower values produced highly functionalized γ-lactams via a 5-endo-trig radical-polar crossover process that was terminated by reduction, an unusual cyclopropanation sequence, or trapping with H2O, depending upon the reaction conditions. Because elevated temperatures were necessary for cyclization, this precluded study of the asymmetric transfer in the reaction of individual atropisomers. However, enantiomerically enriched atropsiomeric enamides should be regarded as potential asymmetric building blocks for reactions that can be accomplished at room temperature. PMID:27267662

  3. Synthesis of the gymnodimine tetrahydrofuran core through a Ueno-Stork radical cyclization.

    PubMed

    Toumieux, Sylvestre; Beniazza, Redouane; Desvergnes, Valérie; Aráoz, Rómulo; Molgó, Jordi; Landais, Yannick

    2011-05-21

    A straightforward access to the C10-C20 skeleton of gymnodimine, incorporating a tetrahydrofuran fragment, is described. The elaboration of the THF moiety is based on a stereocontrolled Ueno-Stork cyclization. A Lewis-acid mediated allylation of the resulting acetal at C13 and a Horner-Wadsworth-Emmons olefination on the ketone at C17 complete the synthesis. PMID:21472158

  4. Genome-Based Discovery of an Unprecedented Cyclization Mode in Fungal Sesterterpenoid Biosynthesis.

    PubMed

    Okada, Masahiro; Matsuda, Yudai; Mitsuhashi, Takaaki; Hoshino, Shotaro; Mori, Takahiro; Nakagawa, Kazuya; Quan, Zhiyang; Qin, Bin; Zhang, Huiping; Hayashi, Fumiaki; Kawaide, Hiroshi; Abe, Ikuro

    2016-08-10

    Sesterterpenoids are a group of terpenoid natural products that are primarily biosynthesized via cyclization of the C25 linear substrate geranylfarnesyl pyrophosphate (GFPP). Although the long carbon chain of GFPP in theory allows for many different cyclization patterns, sesterterpenoids are relatively rare species among terpenoids, suggesting that many intriguing sesterterpenoid scaffolds have been overlooked. Meanwhile, the recent identification of the first sesterterpene synthase has allowed the discovery of new sesterterpenoids by the genome mining approach. In this study, we characterized the unusual fungal sesterterpene synthase EvQS and successfully obtained the sesterterpene quiannulatene (1) with a novel and unique highly congested carbon skeleton, which is further oxidized to quiannulatic acid (2) by the cytochrome P450 Qnn-P450. A mechanistic study of its cyclization from GFPP indicated that the biosynthesis employs an unprecedented cyclization mode, which involves three rounds of hydride shifts and two successive C-C bond migrations to construct the 5-6-5-5-5 fused ring system of 1. PMID:27447198

  5. Palladium-catalyzed synthesis of dibenzophosphole oxides via intramolecular dehydrogenative cyclization.

    PubMed

    Kuninobu, Yoichiro; Yoshida, Takuya; Takai, Kazuhiko

    2011-09-16

    Dibenzophosphole oxides were obtained from secondary hydrophosphine oxides with a biphenyl group by dehydrogenation via phosphine-hydrogen and carbon-hydrogen bond cleavage in the presence of a catalytic amount of palladium(II) acetate, Pd(OAc)(2). By using this reaction, a ladder-type dibenzophosphole oxide could also be synthesized by double intramolecular dehydrogenative cyclization. PMID:21819045

  6. Synthesis of multiply substituted 1,6-dihydropyridines through Cu(I)-catalyzed 6-endo cyclization.

    PubMed

    Mizoguchi, Haruki; Watanabe, Ryo; Minami, Shintaro; Oikawa, Hideaki; Oguri, Hiroki

    2015-06-01

    Copper-catalyzed 6-endo cyclization of N-propargylic β-enaminocarbonyls was developed for the synthesis of oxidation-labile 1,6-dihydropyridines. This synthetic method allows flexible and regio-defined assembly of various substituents at the N1, C2, C3, C4, and C6 positions of 1,6-dihydropyridines under mild conditions. PMID:25927165

  7. Diverse N-Heterocyclic Ring Systems via Aza-Heck Cyclizations of N-(Pentafluorobenzoyloxy)sulfonamides.

    PubMed

    Hazelden, Ian R; Ma, Xiaofeng; Langer, Thomas; Bower, John F

    2016-09-01

    Aza-Heck cyclizations initiated by oxidative addition of Pd(0) -catalysts into the N-O bond of N-(pentafluoro-benzoyloxy)sulfonamides are described. These studies, which encompass only the second class of aza-Heck reaction developed to date, provide direct access to diverse N-heterocyclic ring systems. PMID:27460965

  8. Preparation of Dibenzo[e,g]isoindol-1-ones via Scholl-Type Oxidative Cyclization Reactions

    PubMed Central

    2015-01-01

    A flexible synthesis of dibenzo[e,g]isoindol-1-ones has been developed. Dibenzo[e,g]isoindol-1-ones represent simplified benzenoid analogues of biological indolo[2,3-a]pyrrolo[3,4-c]carbazol-5-ones (indolocarbazoles), compounds that have demonstrated a wide range of biological activity. The synthesis of the title compounds involved tetramic acid sulfonates. Different aryl groups were introduced at C4 of the heterocyclic ring via Suzuki–Miyaura cross-coupling reactions. Finally, mild Scholl-type oxidative cyclizations mediated by phenyliodine(III) bis(trifluoroacetate) (PIFA) converted some of the latter compounds into the corresponding dibenzo[e,g]isoindol-1-ones. A systematic study of the oxidative cyclization revealed the following reactivity trend: 3,4-dimethoxyphenyl ≫ 3-methoxyphenyl > 3,4,5-trimethoxyphenyl > 4-methoxyphenyl ≈ phenyl. Overall, the oxidative cyclization required at least two methoxy groups distributed in the aromatic rings, at least one of which had to be located para to the site of the cyclization. PMID:25138638

  9. SpyRings Declassified: A Blueprint for Using Isopeptide-Mediated Cyclization to Enhance Enzyme Thermal Resilience.

    PubMed

    Schoene, C; Bennett, S P; Howarth, M

    2016-01-01

    Enzymes often have marginal stability, with unfolding typically leading to irreversible denaturation. This sensitivity is a major barrier, both for de novo enzyme development and for expanding enzyme impact beyond the laboratory. Seeking an approach to enhance resilience to denaturation that could be applied to a range of different enzymes, we developed SpyRing cyclization. SpyRings contain genetically encoded SpyTag (13 amino acids) on the N-terminus and SpyCatcher (12kDa) on the C-terminus of the enzyme, so that the Spy partners spontaneously react together through an irreversible isopeptide bond. SpyRing cyclization gave major increases in thermal resilience, including on a model for enzyme evolution, β-lactamase, and an industrially important enzyme in agriculture and nutrition, phytase. We outline the SpyRing rationale, including comparison of SpyRing cyclization to other cyclization strategies. The cloning strategy is presented for the simple insertion of enzyme genes for recombinant expression. We discuss structure-based approaches to select suitable enzyme cyclization targets. Approaches to evaluate the cyclization reaction and its effect on enzyme resilience are described. We also highlight the use of differential scanning calorimetry to understand how SpyRing cyclization promotes enzyme refolding. Efficiently searching sequence space will continue to be important for enzyme improvement, but the SpyRing platform may be a valuable rational adjunct for conferring resilience. PMID:27586332

  10. Tuning the reactivity of oxygen/sulfur by acidity of the catalyst in Prins cyclization: oxa- versus thia-selectivity.

    PubMed

    Reddy, B V Subba; Venkateswarlu, A; Borkar, Prashant; Yadav, J S; Sridhar, B; Grée, René

    2014-03-21

    An unprecedented oxa- versus thia-selectivity has been observed in Prins cyclization of 6-mercaptohex-3-en-1-ol with aldehydes. In the presence of a stoichiometric amount of strong Lewis or Brønsted acids, the reaction provides the hexahydro-2H-thieno[3,2-c]pyran skeleton predominantly via oxonium-Prins cyclization. In contrast, a catalytic amount of weak Lewis or Brønsted acids provides the hexahydro-2H-thiopyrano[4,3-b]furan preferentially through thionium-Prins cyclization. PMID:24564269

  11. Robust identification of backbone curves using control-based continuation

    NASA Astrophysics Data System (ADS)

    Renson, L.; Gonzalez-Buelga, A.; Barton, D. A. W.; Neild, S. A.

    2016-04-01

    Control-based continuation is a recently developed approach for testing nonlinear dynamic systems in a controlled manner and exploring their dynamic features as system parameters are varied. In this paper, control-based continuation is adapted to follow the locus where system response and excitation are in quadrature, extracting the backbone curve of the underlying conservative system. The method is applied to a single-degree-of-freedom oscillator under base excitation, and the results are compared with the standard resonant-decay method.

  12. Scientific Laser Market Still The Backbone Of The Industry

    NASA Astrophysics Data System (ADS)

    Tomkins, Jon

    1988-06-01

    Good morning. I would like to thank Gary Forrest and Laser Focus for giving me the opportunity to participate in this seminar. After listening to Moe Levitt's overview of the industry outlook for 1988, it is a pleasure for me to represent one of the 'hot' sectors in the market - the old research market. My mission today is to provide a perspective of this market to you as one of the healthier parts of the industry, as one of the backbones of our industry.

  13. Electron-impact total ionization cross sections of DNA sugar-phosphate backbone and an additivity principle

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Dateo, Christopher E.

    2005-01-01

    The improved binary-encounter dipole (iBED) model [W.M. Huo, Phys. Rev. A64, 042719-1 (2001)l is used to study the total ionization cross sections of the DNA sugar-phosphate backbone by electron impact. Calculations using neutral fragments found that the total ionization cross sections of C3' - and C5', -deoxyribose-phospate, two conformers of the sugar-phosphate backbone, are close to each other. Furthermore, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3' - and C5" -deoxyribose-phospate cross sections, differing by less than 10%. The result implies that certain properties of the-DNA, like the total singly ionization cross section, are localized properties and a building-up or additivity principle may apply. This allows us to obtain accurate properties of larger molecular systems built up from the results of smaller subsystem fragments. Calculations are underway using a negatively charged sugar-phosphate backbone with a metal counter-ion.

  14. Melanoma Therapy with Rhenium-Cyclized Alpha Melanocyte Stimulating Hormone Peptide Analogs

    SciTech Connect

    Thomas P Quinn

    2005-11-22

    Malignant melanoma is the 6th most commonly diagnosed cancer with increasing incidence in the United States. It is estimated that 54,200 cases of malignant melanoma will be newly diagnosed and 7,600 cases of death will occur in the United States in the year 2003 (1). At the present time, more than 1.3% of Americans will develop malignant melanoma during their lifetime (2). The average survival for patients with metastatic melanoma is about 6-9 months (3). Moreover, metastatic melanoma deposits are resistant to conventional chemotherapy and external beam radiation therapy (3). Systematic chemotherapy is the primary therapeutic approach to treat patients with metastatic melanoma. Dacarbazine is the only single chemotherapy agent approved by FDA for metastatic melanoma treatment (5). However, the response rate to Dacarbazine is only approximately 20% (6). Therefore, there is a great need to develop novel treatment approaches for metastatic melanoma. The global goal of this research program is the rational design, characterization and validation of melanoma imaging and therapeutic radiopharmaceuticals. Significant progress has been made in the design and characterization of metal-cyclized radiolabeled alpha-melanocyte stimulating hormone peptides. Therapy studies with {sup 188}Re-CCMSH demonstrated the therapeutic efficacy of the receptor-targeted treatment in murine and human melanoma bearing mice (previous progress report). Dosimetry calculations, based on biodistribution data, indicated that a significant dose was delivered to the tumor. However, {sup 188}Re is a very energetic beta-particle emitter. The longer-range beta-particles theoretically would be better for larger tumors. In the treatment of melanoma, the larger primary tumor is usually surgically removed leaving metastatic disease as the focus of targeted radiotherapy. Isotopes with lower beta-energies and/or shorter particle lengths should be better suited for targeting metastases. The {sup 177}Lu

  15. A phylogenetic backbone for Bivalvia: an RNA-seq approach

    PubMed Central

    González, Vanessa L.; Andrade, Sónia C. S.; Bieler, Rüdiger; Collins, Timothy M.; Dunn, Casey W.; Mikkelsen, Paula M.; Taylor, John D.; Giribet, Gonzalo

    2015-01-01

    Bivalves are an ancient and ubiquitous group of aquatic invertebrates with an estimated 10 000–20 000 living species. They are economically significant as a human food source, and ecologically important given their biomass and effects on communities. Their phylogenetic relationships have been studied for decades, and their unparalleled fossil record extends from the Cambrian to the Recent. Nevertheless, a robustly supported phylogeny of the deepest nodes, needed to fully exploit the bivalves as a model for testing macroevolutionary theories, is lacking. Here, we present the first phylogenomic approach for this important group of molluscs, including novel transcriptomic data for 31 bivalves obtained through an RNA-seq approach, and analyse these data with published genomes and transcriptomes of other bivalves plus outgroups. Our results provide a well-resolved, robust phylogenetic backbone for Bivalvia with all major lineages delineated, addressing long-standing questions about the monophyly of Protobranchia and Heterodonta, and resolving the position of particular groups such as Palaeoheterodonta, Archiheterodonta and Anomalodesmata. This now fully resolved backbone demonstrates that genomic approaches using hundreds of genes are feasible for resolving phylogenetic questions in bivalves and other animals. PMID:25589608

  16. Characterizing Aciniform Silk Repetitive Domain Backbone Dynamics and Hydrodynamic Modularity.

    PubMed

    Tremblay, Marie-Laurence; Xu, Lingling; Sarker, Muzaddid; Liu, Xiang-Qin; Rainey, Jan K

    2016-01-01

    Spider aciniform (wrapping) silk is a remarkable fibrillar biomaterial with outstanding mechanical properties. It is a modular protein consisting, in Argiope trifasciata, of a core repetitive domain of 200 amino acid units (W units). In solution, the W units comprise a globular folded core, with five α-helices, and disordered tails that are linked to form a ~63-residue intrinsically disordered linker in concatemers. Herein, we present nuclear magnetic resonance (NMR) spectroscopy-based (15)N spin relaxation analysis, allowing characterization of backbone dynamics as a function of residue on the ps-ns timescale in the context of the single W unit (W₁) and the two unit concatemer (W₂). Unambiguous mapping of backbone dynamics throughout W₂ was made possible by segmental NMR active isotope-enrichment through split intein-mediated trans-splicing. Spectral density mapping for W₁ and W₂ reveals a striking disparity in dynamics between the folded core and the disordered linker and tail regions. These data are also consistent with rotational diffusion behaviour where each globular domain tumbles almost independently of its neighbour. At a localized level, helix 5 exhibits elevated high frequency dynamics relative to the proximal helix 4, supporting a model of fibrillogenesis where this helix unfolds as part of the transition to a mixed α-helix/β-sheet fibre. PMID:27517921

  17. Long-term forecasting of internet backbone traffic.

    PubMed

    Papagiannaki, Konstantina; Taft, Nina; Zhang, Zhi-Li; Diot, Christophe

    2005-09-01

    We introduce a methodology to predict when and where link additions/upgrades have to take place in an Internet protocol (IP) backbone network. Using simple network management protocol (SNMP) statistics, collected continuously since 1999, we compute aggregate demand between any two adjacent points of presence (PoPs) and look at its evolution at time scales larger than 1 h. We show that IP backbone traffic exhibits visible long term trends, strong periodicities, and variability at multiple time scales. Our methodology relies on the wavelet multiresolution analysis (MRA) and linear time series models. Using wavelet MRA, we smooth the collected measurements until we identify the overall long-term trend. The fluctuations around the obtained trend are further analyzed at multiple time scales. We show that the largest amount of variability in the original signal is due to its fluctuations at the 12-h time scale. We model inter-PoP aggregate demand as a multiple linear regression model, consisting of the two identified components. We show that this model accounts for 98% of the total energy in the original signal, while explaining 90% of its variance. Weekly approximations of those components can be accurately modeled with low-order autoregressive integrated moving average (ARIMA) models. We show that forecasting the long term trend and the fluctuations of the traffic at the 12-h time scale yields accurate estimates for at least 6 months in the future. PMID:16252820

  18. Characterizing Aciniform Silk Repetitive Domain Backbone Dynamics and Hydrodynamic Modularity

    PubMed Central

    Tremblay, Marie-Laurence; Xu, Lingling; Sarker, Muzaddid; Liu, Xiang-Qin; Rainey, Jan K.

    2016-01-01

    Spider aciniform (wrapping) silk is a remarkable fibrillar biomaterial with outstanding mechanical properties. It is a modular protein consisting, in Argiope trifasciata, of a core repetitive domain of 200 amino acid units (W units). In solution, the W units comprise a globular folded core, with five α-helices, and disordered tails that are linked to form a ~63-residue intrinsically disordered linker in concatemers. Herein, we present nuclear magnetic resonance (NMR) spectroscopy-based 15N spin relaxation analysis, allowing characterization of backbone dynamics as a function of residue on the ps–ns timescale in the context of the single W unit (W1) and the two unit concatemer (W2). Unambiguous mapping of backbone dynamics throughout W2 was made possible by segmental NMR active isotope-enrichment through split intein-mediated trans-splicing. Spectral density mapping for W1 and W2 reveals a striking disparity in dynamics between the folded core and the disordered linker and tail regions. These data are also consistent with rotational diffusion behaviour where each globular domain tumbles almost independently of its neighbour. At a localized level, helix 5 exhibits elevated high frequency dynamics relative to the proximal helix 4, supporting a model of fibrillogenesis where this helix unfolds as part of the transition to a mixed α-helix/β-sheet fibre. PMID:27517921

  19. A phylogenetic backbone for Bivalvia: an RNA-seq approach.

    PubMed

    González, Vanessa L; Andrade, Sónia C S; Bieler, Rüdiger; Collins, Timothy M; Dunn, Casey W; Mikkelsen, Paula M; Taylor, John D; Giribet, Gonzalo

    2015-02-22

    Bivalves are an ancient and ubiquitous group of aquatic invertebrates with an estimated 10 000-20 000 living species. They are economically significant as a human food source, and ecologically important given their biomass and effects on communities. Their phylogenetic relationships have been studied for decades, and their unparalleled fossil record extends from the Cambrian to the Recent. Nevertheless, a robustly supported phylogeny of the deepest nodes, needed to fully exploit the bivalves as a model for testing macroevolutionary theories, is lacking. Here, we present the first phylogenomic approach for this important group of molluscs, including novel transcriptomic data for 31 bivalves obtained through an RNA-seq approach, and analyse these data with published genomes and transcriptomes of other bivalves plus outgroups. Our results provide a well-resolved, robust phylogenetic backbone for Bivalvia with all major lineages delineated, addressing long-standing questions about the monophyly of Protobranchia and Heterodonta, and resolving the position of particular groups such as Palaeoheterodonta, Archiheterodonta and Anomalodesmata. This now fully resolved backbone demonstrates that genomic approaches using hundreds of genes are feasible for resolving phylogenetic questions in bivalves and other animals. PMID:25589608

  20. Higher-order cyclization reactions of alkenyl Fischer carbene complexes: a new selective all-carbon [8 + 2] cyclization with 8-methoxyheptafulvene and computational mechanistic analysis.

    PubMed

    García-Rodríguez, Jaime; González, Jairo; Santamaría, Javier; Suárez-Sobrino, Ángel L; Rodríguez, Miguel A

    2016-07-28

    A new higher-order cyclization reaction of alkenyl Fischer carbene complexes is described. Chromium and tungsten alkenyl Fischer carbene complexes react toward 8-methoxyheptafulvene through an all-carbon formal [8 + 2] cycloaddition reaction with complete regio- and stereoselectivity. Tetrahydroazulene compounds bearing four consecutive stereocenters are generated. The reaction mechanism is rationalized based on computational calculations. It was found that this transformation proceeds through a concerted process. The nature of the observed stereo- and regioselectivity can be attributed to both steric and electronic factors. PMID:27333539

  1. Rhodium- and iridium-catalyzed dehydrogenative cyclization through double C-H bond cleavages to produce fluorene derivatives.

    PubMed

    Itoh, Masaki; Hirano, Koji; Satoh, Tetsuya; Shibata, Yu; Tanaka, Ken; Miura, Masahiro

    2013-02-15

    The rhodium-catalyzed cyclization of a series of 2,2-diarylalkanoic acids in the presence of copper acetate as an oxidant smoothly proceeded through double C-H bond cleavages and subsequent decarboxylation to produce the corresponding fluorene derivatives. The direct cyclization of triarylmethanols also took place efficiently by using an iridium catalyst in place of the rhodium, while the hydroxy function was still intact. PMID:23360206

  2. Backbone dynamics of barstar: a (15)N NMR relaxation study.

    PubMed

    Sahu, S C; Bhuyan, A K; Majumdar, A; Udgaonkar, J B

    2000-12-01

    Backbone dynamics of uniformly (15)N-labeled barstar have been studied at 32 degrees C, pH 6.7, by using (15)N relaxation data obtained from proton-detected 2D (1)H-(15)N NMR spectroscopy. (15)N spin-lattice relaxation rate constants (R(1)), spin-spin relaxation rate constants (R(2)), and steady-state heteronuclear (1)H-(15)N NOEs have been determined for 69 of the 86 (excluding two prolines and the N-terminal residue) backbone amide (15)N at a magnetic field strength of 14.1 Tesla. The primary relaxation data have been analyzed by using the model-free formalism of molecular dynamics, using both isotropic and axially symmetric diffusion of the molecule, to determine the overall rotational correlation time (tau(m)), the generalized order parameter (S(2)), the effective correlation time for internal motions (tau(e)), and NH exchange broadening contributions (R(ex)) for each residue. As per the axially symmetric diffusion, the ratio of diffusion rates about the unique and perpendicular axes (D( parallel)/D( perpendicular)) is 0.82 +/- 0.03. The two results have only marginal differences. The relaxation data have also been used to map reduced spectral densities for the NH vectors of these residues at three frequencies: 0, omega(H), and omega(N), where omega(H),(N) are proton and nitrogen Larmor frequencies. The value of tau(m) obtained from model-free analysis of the relaxation data is 5.2 ns. The reduced spectral density analysis, however, yields a value of 5.7 ns. The tau(m) determined here is different from that calculated previously from time-resolved fluorescence data (4.1 ns). The order parameter ranges from 0.68 to 0.98, with an average value of 0.85 +/- 0.02. A comparison of the order parameters with the X-ray B-factors for the backbone nitrogens of wild-type barstar does not show any considerable correlation. Model-free analysis of the relaxation data for seven residues required the inclusion of an exchange broadening term, the magnitude of which ranges from 2

  3. New Insights on the Mechanism of Cyclization in Chromophore Maturation of Wild-Type Green Fluorescence Protein: A Computational Study.

    PubMed

    Ma, Yingying; Zhang, Hao; Sun, Qiao; Smith, Sean C

    2016-06-23

    Cyclization is the first step in the chromophore maturation process of the green fluorescent protein (GFP). In our previous paper [J. Phys. Chem. B 2012, 116, 1426-1436], the results of molecular dynamics simulation suggested the possibility that the amide nitrogen atom of Gly67 attacks the carbonyl carbon of Ser65 directly to complete the cyclization process (one-step mechanism). In this paper, density functional theory (DFT) and quantum mechanical/molecular mechanical (QM/MM) calculations were undertaken to study this step reaction in detail. Three cluster model systems (model A, model B, and model C) and large protein system were set up to investigate the cyclization process. Our results indicate that the one-step mechanism only exists in the two minimum models. However, in model C and the large protein system, the cyclization mechanism involves two steps: the first step is proton of Gly67 amide nitrogen transferring to carbonyl oxygen of Ser65, generating protonated amide, which is stabilized by a hydrogen bond interaction with a crystallographic water molecule, and the second step is Gly67 amide nitrogen attacking the carbonyl carbon of Ser65. Arg96 plays an important role in promoting the cyclization. The energy of cyclized product relative to reactant is about 10.0 kcal/mol endothermic, which is in line with the experimental results. PMID:27232642

  4. A strategy for sequence control in vinyl polymers via iterative controlled radical cyclization.

    PubMed

    Hibi, Yusuke; Ouchi, Makoto; Sawamoto, Mitsuo

    2016-01-01

    There is a growing interest in sequence-controlled polymers toward advanced functional materials. However, control of side-chain order for vinyl polymers has been lacking feasibility in the field of polymer synthesis because of the inherent feature of chain-growth propagation. Here we show a general and versatile strategy to control sequence in vinyl polymers through iterative radical cyclization with orthogonally cleavable and renewable bonds. The proposed methodology employs a repetitive and iterative intramolecular cyclization via a radical intermediate in a one-time template with a radical-generating site at one end and an alkene end at the other, each of which is connected to a linker via independently cleavable and renewable bonds. The unique design specifically allowed control of radical addition reaction although inherent chain-growth intermediate (radical species) was used, as well as the iterative cycle and functionalization for resultant side chains, to lead to sequence-controlled vinyl polymers (or oligomers). PMID:26996881

  5. A strategy for sequence control in vinyl polymers via iterative controlled radical cyclization

    PubMed Central

    Hibi, Yusuke; Ouchi, Makoto; Sawamoto, Mitsuo

    2016-01-01

    There is a growing interest in sequence-controlled polymers toward advanced functional materials. However, control of side-chain order for vinyl polymers has been lacking feasibility in the field of polymer synthesis because of the inherent feature of chain-growth propagation. Here we show a general and versatile strategy to control sequence in vinyl polymers through iterative radical cyclization with orthogonally cleavable and renewable bonds. The proposed methodology employs a repetitive and iterative intramolecular cyclization via a radical intermediate in a one-time template with a radical-generating site at one end and an alkene end at the other, each of which is connected to a linker via independently cleavable and renewable bonds. The unique design specifically allowed control of radical addition reaction although inherent chain-growth intermediate (radical species) was used, as well as the iterative cycle and functionalization for resultant side chains, to lead to sequence-controlled vinyl polymers (or oligomers). PMID:26996881

  6. A strategy for sequence control in vinyl polymers via iterative controlled radical cyclization

    NASA Astrophysics Data System (ADS)

    Hibi, Yusuke; Ouchi, Makoto; Sawamoto, Mitsuo

    2016-03-01

    There is a growing interest in sequence-controlled polymers toward advanced functional materials. However, control of side-chain order for vinyl polymers has been lacking feasibility in the field of polymer synthesis because of the inherent feature of chain-growth propagation. Here we show a general and versatile strategy to control sequence in vinyl polymers through iterative radical cyclization with orthogonally cleavable and renewable bonds. The proposed methodology employs a repetitive and iterative intramolecular cyclization via a radical intermediate in a one-time template with a radical-generating site at one end and an alkene end at the other, each of which is connected to a linker via independently cleavable and renewable bonds. The unique design specifically allowed control of radical addition reaction although inherent chain-growth intermediate (radical species) was used, as well as the iterative cycle and functionalization for resultant side chains, to lead to sequence-controlled vinyl polymers (or oligomers).

  7. Carbon backbone topology of the metabolome of a cell.

    PubMed

    Bingol, Kerem; Zhang, Fengli; Bruschweiler-Li, Lei; Brüschweiler, Rafael

    2012-05-30

    The complex metabolic makeup of a biological system, such as a cell, is a key determinant of its biological state providing unique insights into its function. Here we characterize the metabolome of a cell by a novel homonuclear (13)C 2D NMR approach applied to a nonfractionated uniformly (13)C-enriched lysate of E. coli cells and determine de novo their carbon backbone topologies that constitute the "topolome". A protocol was developed, which first identifies traces in a constant-time (13)C-(13)C TOCSY NMR spectrum that are unique for individual mixture components and then assembles for each trace the corresponding carbon-bond topology network by consensus clustering. This led to the determination of 112 topologies of unique metabolites from a single sample. The topolome is dominated by carbon topologies of carbohydrates (34.8%) and amino acids (45.5%) that can constitute building blocks of more complex structures. PMID:22540339

  8. A Native to Amyloidogenic Transition Regulated by a Backbone Trigger

    SciTech Connect

    Eakin,C.; Berman, A.; Miranker, A.

    2006-01-01

    Many polypeptides can self-associate into linear, aggregated assemblies termed amyloid fibers. High-resolution structural insights into the mechanism of fibrillogenesis are elusive owing to the transient and mixed oligomeric nature of assembly intermediates. Here, we report the conformational changes that initiate fiber formation by beta-2-microglobulin (beta2m) in dialysis-related amyloidosis. Access of beta2m to amyloidogenic conformations is catalyzed by selective binding of divalent cations. The chemical basis of this process was determined to be backbone isomerization of a conserved proline. On the basis of this finding, we designed a beta2m variant that closely adopts this intermediate state. The variant has kinetic, thermodynamic and catalytic properties consistent with its being a fibrillogenic intermediate of wild-type beta2m. Furthermore, it is stable and folded, enabling us to unambiguously determine the initiating conformational changes for amyloid assembly at atomic resolution.

  9. Efficient synthesis of longer Aβ peptides via removable backbone modification.

    PubMed

    Zuo, Chao; Tang, Shan; Si, Yan-Yan; Wang, Zhipeng A; Tian, Chang-Lin; Zheng, Ji-Shen

    2016-06-14

    Longer amyloid-beta (Aβ) peptides (43 to 49 amino acids) play essential roles in the pathology of Alzheimer's disease (AD). The difficulty in the preparation of longer Aβ peptides is still an obstacle to elucidate their roles in AD. Herein we report a robust and efficient strategy for the chemical synthesis of longer Aβ peptides (Aβ48 and Aβ49). A key feature of this method is the installation of removable Arg4-tagged backbone modification groups into the hydrophobic region of Aβ. This modification can improve the handling properties of the purification, ligation and mass characterization of longer Aβ peptides. The practicability of the new method has been demonstrated by the successful synthesis of Aβ48 and Aβ49 peptides. PMID:27188564

  10. Transforming plastic surfaces with electrophilic backbones from hydrophobic to hydrophilic.

    PubMed

    Kim, Samuel; Bowen, Raffick A R; Zare, Richard N

    2015-01-28

    We demonstrate a simple nonaqueous reaction scheme for transforming the surface of plastics from hydrophobic to hydrophilic. The chemical modification is achieved by base-catalyzed trans-esterification with polyols. It is permanent, does not release contaminants, and causes no optical or mechanical distortion of the plastic. We present contact angle measurements to show successful modification of several types of plastics including poly(ethylene terephthalate) (PET) and polycarbonate (PC). Its applicability to blood analysis is explored using chemically modified PET blood collection tubes and found to be quite satisfactory. We expect this approach will reduce the cost of manufacturing plastic devices with optimized wettability and can be generalized to other types of plastic materials having an electrophilic linkage as its backbone. PMID:25565370

  11. Hydroxyl-Substituted Ladder Polyethers via Selective Tandem Epoxidation/Cyclization Sequence

    PubMed Central

    Czabaniuk, Lara C.; Jamison, Timothy F.

    2015-01-01

    A new and highly selective method for the synthesis of hydroxyl-substituted tetrahydropyrans is described. This method utilizes titanium(IV) iso-propoxide and diethyl tartrate to perform a diastereoselective epoxidation followed by in situ epoxide activation and highly selective endo-cyclization to form the desired tetrahydropyran ring. The HIJ ring fragment of the marine ladder polyether yessotoxin was synthesized using this two-stage tactic that proceeds with high efficiency and excellent regioselectivity. PMID:25647091

  12. Total Synthesis of Phenanthroindolizidine Alkaloids by Combining Iodoaminocyclization with Free Radical Cyclization.

    PubMed

    Liu, Gong-Qing; Reimann, Marcel; Opatz, Till

    2016-07-15

    A concise and modular synthesis of phenanthroindolizidine alkaloids was achieved by combining iodoaminocylization with a free radical cyclization approach. The route described allowed the preparation of (±)-tylophorine, (±)-antofine, and (±)-deoxypergularinine in six steps. When commercially available l-prolinol was used as a chiral building block, (S)-(+)-tylophorine was also synthesized in 49% yield and >99% ee over five linear steps. PMID:27314476

  13. Total Synthesis of (+)-Minfiensine: Construction of the Tetracyclic Core Structure by an Asymmetric Cascade Cyclization.

    PubMed

    Zhang, Ze-Xin; Chen, Si-Cong; Jiao, Lei

    2016-07-01

    A new method for one-step construction of the tetracyclic core structure of the indole alkaloid (+)-minfiensine was developed utilizing a palladium-catalyzed asymmetric indole dearomatization/iminium cyclization cascade. An efficient total synthesis of (+)-minfiensine was realized using this strategy. The present method enables access to the common core structure of a series of monoterpene indole alkaloids, such as vincorine, echitamine, and aspidosphylline A. PMID:27172972

  14. Formal homo-Nazarov and other cyclization reactions of activated cyclopropanes.

    PubMed

    De Simone, Filippo; Saget, Tanguy; Benfatti, Fides; Almeida, Sofia; Waser, Jérôme

    2011-12-16

    The Nazarov cyclization of divinyl ketones gives access to cyclopentenones. Replacing one of the vinyl groups by a cyclopropane leads to a formal homo-Nazarov process for the synthesis of cyclohexenones. In contrast to the Nazarov reaction, the cyclization of vinyl-cyclopropyl ketones is a stepwise process, often requiring harsh conditions. Herein, we describe two different approaches for further polarization of the three-membered ring of vinyl-cyclopropyl ketones to allow the formal homo-Nazarov reaction under mild catalytic conditions. In the first approach, the introduction of an ester group α to the carbonyl on the cyclopropane gave a more than tenfold increase in reaction rate, allowing us to extend the scope of the reaction to non-electron-rich aryl donor substituents in the β position to the carbonyl on the cyclopropane. In this case, a proof of principle for asymmetric induction could be achieved using chiral Lewis acid catalysts. In the second approach, heteroatoms, especially nitrogen, were introduced β to the carbonyl on the cyclopropane. In this case, the reaction was especially successful when the vinyl group was replaced by an indole heterocycle. With a free indole, the formal homo-Nazarov cyclization on the C3 position of indole was observed using a copper catalyst. In contrast, a new cyclization reaction on the N1 position was observed with Brønsted acid catalysts. Both reactions were applied to the synthesis of natural alkaloids. Preliminary investigations on the rationalization of the observed regioselectivity are also reported. PMID:22113928

  15. Carbazole Annulation via Cascade Nucleophilic Addition-Cyclization Involving 2-(Silyloxy)pentadienyl Cation.

    PubMed

    Stepherson, Jacob R; Ayala, Caitlan E; Tugwell, Thomas H; Henry, Jeffrey L; Fronczek, Frank R; Kartika, Rendy

    2016-06-17

    We report a new strategy toward the synthesis of highly functionalized carbazoles via 2-(silyloxy)pentadienyl cation intermediates, which were generated upon ionization of vinyl-substituted α-hydroxy silyl enol ethers under Brønsted acid catalysis. These electrophilic species were found to readily undergo cascade reactions with substituted indoles to generate carbazole molecular scaffolds in good yields via a sequence of regioselective nucleophilic addition, followed by intramolecular dehydrative cyclization. PMID:27265237

  16. Synthesis of an ABCD-Type Phthalocyanine by Intramolecular Cyclization Reaction.

    PubMed

    Chow, Sun Y S; Ng, Dennis K P

    2016-07-01

    Unsymmetrical phthalocyanines with a low symmetry can exhibit unique and intriguing properties that can facilitate their applications in certain disciplines. The synthesis of these compounds, however, has posed a great difficulty. A novel and unprecedented approach for phthalocyanine synthesis is reported that involves intramolecular cyclization of prelinked tetrakisphthalonitriles. By using this strategy, the first ABCD-type phthalocyanine has been prepared in 7.2% yield. PMID:27309120

  17. Templated assembly of medium cyclic ethers via exo-trig nucleophilic cyclization of cyclopropenes.

    PubMed

    Alnasleh, Bassam K; Rubina, Marina; Rubin, Michael

    2016-06-14

    A novel method for the assembly of medium heterocycles via an intramolecular nucleophilic addition to cyclopropenes generated in situ from the corresponding bromocyclopropanes is described. The exo-trig nucleophilic cyclizations were shown to proceed very efficiently and in a highly diastereoselective fashion affording cis-fused bicyclic products possessing 7 to 10-membered medium rings; starting from a diastereomeric mixtures of bromocyclopropanes. PMID:27210442

  18. Effects of phosphorylation on the intrinsic propensity of backbone conformations of serine/threonine.

    PubMed

    He, Erbin; Yan, Guanghui; Zhang, Jian; Wang, Jun; Li, Wenfei

    2016-03-01

    Each amino acid has its intrinsic propensity for certain local backbone conformations, which can be further modulated by the physicochemical environment and post-translational modifications. In this work, we study the effects of phosphorylation on the intrinsic propensity for different local backbone conformations of serine/threonine by molecular dynamics simulations. We showed that phosphorylation has very different effects on the intrinsic propensity for certain local backbone conformations for the serine and threonine. The phosphorylation of serine increases the propensity of forming polyproline II, whereas that of threonine has the opposite effect. Detailed analysis showed that such different responses to phosphorylation mainly arise from their different perturbations to the backbone hydration and the geometrical constraints by forming side-chain-backbone hydrogen bonds due to phosphorylation. Such an effect of phosphorylation on backbone conformations can be crucial for understanding the molecular mechanism of phosphorylation-regulated protein structures/dynamics and functions. PMID:26759163

  19. Theoretical study of the regioselective cyclization of enaminones in the construction of benzofurans and indoles.

    PubMed

    Herrera, Rafael; Méndez, Francisco; Jiménez, Fabiola; Cruz, M Carmen; Tamariz, Joaquín

    2016-05-01

    A theoretical study was undertaken regarding the regioselective Lewis acid-promoted intramolecular cyclization of novel enaminones 1-3 leading to the corresponding benzofurans 4-5 and indoles 6. The density functional theory (DFT) and hard and soft acids and bases (HSAB) principle provided data to describe the electronic effects of the substituents in the reactivity of the benzene ring and the enaminone moiety. The condensed and local Fukui functions for nucleophilic and electrophilic attacks of the reactants accounted for the experimentally observed preference, in regard to precursors 1-3, of the cyclization between the C6' carbon (rather than the C2' carbon) of the benzene ring and the C3 center of the enaminone moiety. Graphical Abstract A theoretical study (DFT/HSAB) describes the electronic effects of the substituents in the reactivity of the benzene ring and the enaminone moiety of enaminones I to explain their Lewis acid-promoted regioselective intramolecular cyclization, which exclusively leads to the corresponding benzofurans and indoles II. PMID:27132239

  20. Oxidative Cyclizations in a Nonpolar Solvent Using Molecular Oxygen and Studies on the Stereochemistry of Oxypalladation

    PubMed Central

    Trend, Raissa M.; Ramtohul, Yeeman K.; Stoltz., Brian M.

    2008-01-01

    Oxidative cyclizations of a variety of heteroatom nucleophiles onto unactivated olefins are catalyzed by palladium(II) and pyridine in the presence of molecular oxygen as the sole stoichiometric oxidant in a nonpolar solvent (toluene). Reactivity studies of a number of N-ligated palladium complexes show that chelating ligands slow the reaction. Nearly identical conditions are applicable to five different types of nucleophiles: phenols, primary alcohols, carboxylic acids, a vinylogous acid, and amides. Electron-rich phenols are excellent substrates, and multiple olefin substitution patterns are tolerated. Primary alcohols undergo oxidative cyclization without significant oxidation to the aldehyde, a fact that illustrates the range of reactivity available from various Pd(II) salts under differing conditions. Alcohols can form both fused and spirocyclic ring systems, depending on the position of the olefin relative to the tethered alcohol; the same is true of the acid derivatives. The racemic conditions served as a platform for the development of an enantioselective reaction. Experiments with stereospecifically deuterated primary alcohol substrates rule out a “Wacker-type” mechanism involving anti oxypalladation and suggest that the reaction proceeds by syn oxypalladation for both mono- and bidentate ligands. In contrast, cyclizations of deuterium-labeled carboxylic acid substrates undergo anti oxypalladation. PMID:16351107

  1. Intramolecular Cyclization of Thiophene-Based [7]Helicenes to Quasi-[8]Circulenes

    SciTech Connect

    Rajca, Andrzej; Miyasaka, Makoto; Xiao, Shuzhang; Boratynski, Przemystaw J.; Pink, Maren; Rajca, Suchada

    2009-12-08

    Intramolecular cyclization in a series of thiophene-based dibromo[7]helicenes (4-6) with different helix structures is investigated by vacuum pyrolysis, tin- and palladium-mediated C-C bond forming reactions. The product with the cyclic structure of the annelated aromatic rings, which resembles [8]circulene devoid of an atom linkage, is referred to as quasi-[8]circulene. Vacuum pyrolysis of 4 gives insoluble, unidentified products, while 5 and 6 yield the corresponding quasi-[8]circulenes under similar conditions. Thermogravimetry (TG) and differential scanning calorimetry (DSC) analyses for 4 indicate complex reaction pathways, while those for 5 and 6 show a single process corresponding to a loss of 1 equiv of Br2 at about 330 C. Pd-mediated reductive cyclization provides quasi-[8]circulenes for all three [7]helicenes, though only 4 gives a good isolated yield. Tributyltin hydride-mediated radical cyclization of 4-6 provides quasi-[8]circulenes in excellent yields, and it is practically insensitive to the helix structure. Experimental and calculated UV-vis absorption spectra for quasi-[8]circulenes and [8]circulenes are reported. The results suggest that the lack of atom linkage in quasi-[8]circulene does not significantly affect properties and conformation, compared to those for the corresponding [8]circulenes.

  2. Role of Heavy Atom Tunneling in Myers-Saito Cyclization of Cyclic Enyne-Cumulene Systems.

    PubMed

    Karmakar, Sharmistha; Datta, Ayan

    2016-02-11

    Direct dynamics calculation using canonical variational transtition state theory (CVT) inclusive of small curvature tunneling (SCT) reveals heavy atom tunneling in Myers-Saito cyclization of 10- and 9-membered cyclic enyne-cumulene systems like 1,6-didehydro[10]annulene and derivative of neocarzinostatin, respectively. The pure density functional theory functional, BLYP at a 6-31+G (d,p) basis set reproduce the observed reaction energies and barriers within 1.0 kcal/mol. The calculated rate constants of cyclization inclusive of heavy atom tunneling (k(CVT+SCT) = 3.26 × 10(-4) s(-1) at 222 K; t1/2 = 35 min) are in excellent agreement with experiments (t1/2 ∼ 21-31 min). Both primary and secondary kinetic isotope effect (KIE) become enhanced significantly upon inclusion of quantum mechanical tunneling. An Arrhenius plot of KIE shows measurable curvature at the experimental temperature of 222 K. The translation vector for the cyclization reactions in the transition-states (TS) show significant motion of primary and secondary carbon atoms explaining the origin of large KIE. PMID:26785136

  3. Mechanics and Chemistry: Sinle Molecule Bond Rupture Forces Correlate with Molecular Backbone Structure

    SciTech Connect

    Frei, M.; Hybertsen, M.; Aradhya, S.V.; Koentopp, M.; Venkataraman, L.

    2011-03-02

    We simultaneously measure conductance and force across nanoscale junctions. A new, two-dimensional histogram technique is introduced to statistically extract bond rupture forces from a large data set of individual junction elongation traces. For the case of Au point contacts, we find a rupture force of 1.4 {+-} 0.2 nN, which is in good agreement with previous measurements. We then study systematic trends for single gold metal-molecule-metal junctions for a series of molecules terminated with amine and pyridine linkers. For all molecules studied, single molecule junctions rupture at the Au-N bond. Selective binding of the linker group allows us to correlate the N-Au bond-rupture force to the molecular backbone. We find that the rupture force ranges from 0.8 nN for 4,4' bipyridine to 0.5 nN in 1,4 diaminobenzene. These experimental results are in excellent quantitative agreement with density functional theory based adiabatic molecular junction elongation and rupture calculations.

  4. Thin Films Formed from Conjugated Polymers with Ionic, Water-Soluble Backbones.

    PubMed

    Voortman, Thomas P; Chiechi, Ryan C

    2015-12-30

    This paper compares the morphologies of films of conjugated polymers in which the backbone (main chain) and pendant groups are varied between ionic/hydrophilic and aliphatic/hydrophobic. We observe that conjugated polymers in which the pendant groups and backbone are matched, either ionic-ionic or hydrophobic-hydrophobic, form smooth, structured, homogeneous films from water (ionic) or tetrahydrofuran (hydrophobic). Mismatched conjugated polymers, by contrast, form inhomogeneous films with rough topologies. The polymers with ionic backbone chains are conjugated polyions (conjugated polymers with closed-shell charges in the backbone), which are semiconducting materials with tunable bad-gaps, not unlike uncharged conjugated polymers. PMID:25723354

  5. Trimethylamine Ν-oxide Influence on the Backbone of Proteins: An Oligoglycine Model

    SciTech Connect

    Hu, Char Y.; Lynch, Gillian C.; Kokubo, Hironori; Pettitt, Bernard M.

    2010-02-15

    The study of organic osmolytes has been pivotal in demonstrating the role of solvent effects on the protein backbone in the folding process. Although a thermodynamic description of the interactions between the protein backbone and osmolyte has been well defined, the structural analysis of the effect of osmolyte on the protein backbone has been incomplete. Therefore, we have performed simulations of a peptide backbone model, glycine₁₅, in protecting osmolyte trimethylamine Ν-oxide (TMAO) solution, in order to determine the effect of the solution structure on the conformation of the peptide backbone. We show that the models chosen show that the ensemble of backbone structures shifts toward a more collapsed state in TMAO solution as compared with pure water solution. The collapse is consistent with preferential exclusion of the osmolyte caused by unfavorable interactions between osmolyte and peptide backbone. The exclusion is caused by strong triplet correlations of osmolyte, water, and peptide backbone. This provides a clear mechanism showing that even a modest concentration of TMAO forces the protein backbone to adopt a more collapsed structure in the absence of side chain effects.

  6. Pendant Dynamics of Ethylene-Oxide Containing Polymers with Diverse Backbones

    NASA Astrophysics Data System (ADS)

    Bartels, Joshua; Wang, Jing-Han Helen; Chen, Quan; Runt, James; Colby, Ralph

    In the last twenty years, a wide variety of ion conducting polymers have used ether oxygens to facilitate ion conduction, and it is therefore important to understand the dynamics of ether oxygens (EOs) when attached to different polymer backbones. Four different EO-containing polymer architectures are studied by dielectric spectroscopy to understand the backbone effect on the EO dipoles. Polysiloxanes, polyphosphazenes, polymethylmethacrylates, and a polyester ether are compared, with different EO pendant lengths for the siloxane and methylmethacrylate backbones. The flexible polysiloxanes and polyphosphazene backbones impart superior segmental mobility with a glass transition temperature 15 K lower than that of the organic backbone polymers. Short EO pendants are found to impart a lower static dielectric constant at comparable EO content as compared to longer EO pendants of either inorganic or organic backbones. The long-pendant polymethylmethacrylate polymers show two relaxations corresponding to fast EOs near the pendant tail end and slow EOs close to the slower backbone, whereas the long-pendant polysiloxane shows a single relaxation due to the siloxane backbone relaxing faster than the EO pendant. Supported by the NSF Division of Materials Research Polymers Program through Grants DMR-1404586 (RHC) and DMR-1505953 (JR).

  7. Live-attenuated influenza A virus vaccines using a B virus backbone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The currently FDA-licensed live attenuated influenza virus vaccine contains a trivalent mixture of types A (H1N1 and H3N2) and B vaccine viruses. The two A virus vaccines have the backbone of a cold-adapted influenza A virus and the B virus vaccine has the six backbone segments derived from a cold-...

  8. A New Secondary Structure Assignment Algorithm Using Cα Backbone Fragments.

    PubMed

    Cao, Chen; Wang, Guishen; Liu, An; Xu, Shutan; Wang, Lincong; Zou, Shuxue

    2016-01-01

    The assignment of secondary structure elements in proteins is a key step in the analysis of their structures and functions. We have developed an algorithm, SACF (secondary structure assignment based on Cα fragments), for secondary structure element (SSE) assignment based on the alignment of Cα backbone fragments with central poses derived by clustering known SSE fragments. The assignment algorithm consists of three steps: First, the outlier fragments on known SSEs are detected. Next, the remaining fragments are clustered to obtain the central fragments for each cluster. Finally, the central fragments are used as a template to make assignments. Following a large-scale comparison of 11 secondary structure assignment methods, SACF, KAKSI and PROSS are found to have similar agreement with DSSP, while PCASSO agrees with DSSP best. SACF and PCASSO show preference to reducing residues in N and C cap regions, whereas KAKSI, P-SEA and SEGNO tend to add residues to the terminals when DSSP assignment is taken as standard. Moreover, our algorithm is able to assign subtle helices (310-helix, π-helix and left-handed helix) and make uniform assignments, as well as to detect rare SSEs in β-sheets or long helices as outlier fragments from other programs. The structural uniformity should be useful for protein structure classification and prediction, while outlier fragments underlie the structure-function relationship. PMID:26978354

  9. Bond distances in polypeptide backbones depend on the local conformation.

    PubMed

    Improta, Roberto; Vitagliano, Luigi; Esposito, Luciana

    2015-06-01

    By combining quantum-mechanical analysis of small model peptides and statistical surveys of high-resolution protein structures, a systematic conformational dependence of bond lengths in polypeptide backbones has been unveiled which involves both the peptide bond (C-O and C-N) and those bonds centred on the C(α) atom. All of these bond lengths indeed display a systematic variability in the ψ angle according to both calculations and surveys of protein structures. The overall agreement between the computed and the statistical data suggests that these trends are essentially driven by local effects. The dependence of C(α) distances on ψ is governed by interactions between the σ system of the C(α) moiety and the C-O π system of the peptide bond. Maximum and minimum values for each bond distance are found for conformations with the specific bond perpendicular and parallel to the adjacent CONH peptide plane, respectively. On the other hand, the variability of the C-O and C-N distances is related to the strength of the interactions between the lone pair of the N atom and the C-O π* system, which is modulated by the ψ angle. The C-O and C-N distances are related but their trends are not strictly connected to peptide-bond planarity, although a correlation amongst all of these parameters is expected on the basis of the classical resonance model. PMID:26057667

  10. Quantitative Analysis of PMLA Nanoconjugate Components after Backbone Cleavage

    PubMed Central

    Ding, Hui; Patil, Rameshwar; Portilla-Arias, Jose; Black, Keith L.; Ljubimova, Julia Y.; Holler, Eggehard

    2015-01-01

    Multifunctional polymer nanoconjugates containing multiple components show great promise in cancer therapy, but in most cases complete analysis of each component is difficult. Polymalic acid (PMLA) based nanoconjugates have demonstrated successful brain and breast cancer treatment. They consist of multiple components including targeting antibodies, Morpholino antisense oligonucleotides (AONs), and endosome escape moieties. The component analysis of PMLA nanoconjugates is extremely difficult using conventional spectrometry and HPLC method. Taking advantage of the nature of polyester of PMLA, which can be cleaved by ammonium hydroxide, we describe a method to analyze the content of antibody and AON within nanoconjugates simultaneously using SEC-HPLC by selectively cleaving the PMLA backbone. The selected cleavage conditions only degrade PMLA without affecting the integrity and biological activity of the antibody. Although the amount of antibody could also be determined using the bicinchoninic acid (BCA) method, our selective cleavage method gives more reliable results and is more powerful. Our approach provides a new direction for the component analysis of polymer nanoconjugates and nanoparticles. PMID:25894227

  11. Backbones of evolutionary history test biodiversity theory for microbes

    PubMed Central

    O’Dwyer, James P.; Kembel, Steven W.; Sharpton, Thomas J.

    2015-01-01

    Identifying the ecological and evolutionary mechanisms that determine biological diversity is a central question in ecology. In microbial ecology, phylogenetic diversity is an increasingly common and relevant means of quantifying community diversity, particularly given the challenges in defining unambiguous species units from environmental sequence data. We explore patterns of phylogenetic diversity across multiple bacterial communities drawn from different habitats and compare these data to evolutionary trees generated using theoretical models of biodiversity. We have two central findings. First, although on finer scales the empirical trees are highly idiosyncratic, on coarse scales the backbone of these trees is simple and robust, consistent across habitats, and displays bursts of diversification dotted throughout. Second, we find that these data demonstrate a clear departure from the predictions of standard neutral theories of biodiversity and that an alternative family of generalized models provides a qualitatively better description. Together, these results lay the groundwork for a theoretical framework to connect ecological mechanisms to observed phylogenetic patterns in microbial communities. PMID:26106159

  12. Thermogelling Biodegradable Polymers with Hydrophilic Backbones: PEG-g-PLGA

    SciTech Connect

    Jeong, Byeongmoon; Kibbey, Merinda R.; Birnbaum, Jerome C.; Won, You-Yeong; Gutowska, Anna

    2000-10-31

    The aqueous solutions of poly(ethylene glycol)grafted with poly(lactic acid-co-glycolic acid) flow freely at room temperature but form gels at higher temperature. The existence of micelles in water at low polymer concentration was confirmed by Cro-transmission electron microscopy and dye solubilization studies. The micellar diameter and critical micelle concentration are about 9 nm and 0.47 wt.% respectively. The critical gel concentration, above which a gel phase appears was 16 wt.% and sol-to-gel transition temperature was slightly affected by the concentration in the range of 16 {approx} 25 wt.%. At sol-to-gel transition, viscosity increased abruptly and C-NMR showed molecular motion of hydrophilic poly(lactic acid-co-glycolic acid) side-chains increased. The hydrogel of PEG-g-PLGA with hydrophilic backbones was transparent during degradation and remained a gel for one week, suggesting a promising material for short-term drug delivery.

  13. Backbone Assignment of the MALT1 Paracaspase by Solution NMR

    PubMed Central

    Unnerståle, Sofia; Nowakowski, Michal; Baraznenok, Vera; Stenberg, Gun; Lindberg, Jimmy; Mayzel, Maxim; Orekhov, Vladislav; Agback, Tatiana

    2016-01-01

    Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is a unique paracaspase protein whose protease activity mediates oncogenic NF-κB signalling in activated B cell-like diffuse large B cell lymphomas (ABC-DLBCLs). ABC-DLBCLs are aggressive lymphomas with high resistance to current chemotherapies. Low survival rate among patients emphasizes the urgent need for alternative treatment options. The characterization of the MALT1 will be an essential tool for developing new target-directed drugs against MALT1 dependent disorders. As the first step in the atomic-level NMR studies of the system, here we report, the 15N/13C/1H backbone assignment of the apo form of the MALT1 paracaspase region together with the third immunoglobulin-like (Ig3) domain, 44 kDa, by high resolution NMR. In addition, the non-uniform sampling (NUS) based targeted acquisition procedure is evaluated as a mean of decreasing acquisition and analysis time for larger proteins. PMID:26788853

  14. A New Secondary Structure Assignment Algorithm Using Cα Backbone Fragments

    PubMed Central

    Cao, Chen; Wang, Guishen; Liu, An; Xu, Shutan; Wang, Lincong; Zou, Shuxue

    2016-01-01

    The assignment of secondary structure elements in proteins is a key step in the analysis of their structures and functions. We have developed an algorithm, SACF (secondary structure assignment based on Cα fragments), for secondary structure element (SSE) assignment based on the alignment of Cα backbone fragments with central poses derived by clustering known SSE fragments. The assignment algorithm consists of three steps: First, the outlier fragments on known SSEs are detected. Next, the remaining fragments are clustered to obtain the central fragments for each cluster. Finally, the central fragments are used as a template to make assignments. Following a large-scale comparison of 11 secondary structure assignment methods, SACF, KAKSI and PROSS are found to have similar agreement with DSSP, while PCASSO agrees with DSSP best. SACF and PCASSO show preference to reducing residues in N and C cap regions, whereas KAKSI, P-SEA and SEGNO tend to add residues to the terminals when DSSP assignment is taken as standard. Moreover, our algorithm is able to assign subtle helices (310-helix, π-helix and left-handed helix) and make uniform assignments, as well as to detect rare SSEs in β-sheets or long helices as outlier fragments from other programs. The structural uniformity should be useful for protein structure classification and prediction, while outlier fragments underlie the structure–function relationship. PMID:26978354

  15. Solid state radiation chemistry of the DNA backbone

    SciTech Connect

    Bernhard, W.A.

    1989-09-01

    The long term goal of this program is to determine the fundamental rules needed to predict the type and yield of damage produced in DNA due to direct effects of ionizing radiation. The focus is on damage to the sugar-phosphate backbone, damage that would lead to strand breaks. Model systems have been chosen that permit various aspects of this problem to be investigated. The emphasis will be on single crystals of monosaccharides, nucleosides, and nucleotides but will also include some powder work on polynucleotides. In these model systems, free radical products and reactions are observed by electron spin resonance (ESR) and electron nuclear double resonance (ENDOR) techniques. The information thus gained is used in constructing rules that predict what primary free radicals are formed in single crystals of model compounds and the reactions stemming from the primary radicals. The formulation of a set of rules that work in model systems will represent a major advance toward formulating a set of rules that predict the direct damage in DNA itself. In a broader context this program is part of the effort to understand and predict the effects of exposure to ionizing radiation received at low dose rates over long periods of time. Assessment of low dose effects requires a basic understanding of the action of radiation at the molecular level. By contributing to that basic understanding, this program will help solve the problems of risk assessment under low dose conditions. 5 refs., 3 figs.

  16. Backbone of complex networks of corporations: the flow of control.

    PubMed

    Glattfelder, J B; Battiston, S

    2009-09-01

    We present a methodology to extract the backbone of complex networks based on the weight and direction of links, as well as on nontopological properties of nodes. We show how the methodology can be applied in general to networks in which mass or energy is flowing along the links. In particular, the procedure enables us to address important questions in economics, namely, how control and wealth are structured and concentrated across national markets. We report on the first cross-country investigation of ownership networks, focusing on the stock markets of 48 countries around the world. On the one hand, our analysis confirms results expected on the basis of the literature on corporate control, namely, that in Anglo-Saxon countries control tends to be dispersed among numerous shareholders. On the other hand, it also reveals that in the same countries, control is found to be highly concentrated at the global level, namely, lying in the hands of very few important shareholders. Interestingly, the exact opposite is observed for European countries. These results have previously not been reported as they are not observable without the kind of network analysis developed here. PMID:19905177

  17. Backbone of complex networks of corporations: The flow of control

    NASA Astrophysics Data System (ADS)

    Glattfelder, J. B.; Battiston, S.

    2009-09-01

    We present a methodology to extract the backbone of complex networks based on the weight and direction of links, as well as on nontopological properties of nodes. We show how the methodology can be applied in general to networks in which mass or energy is flowing along the links. In particular, the procedure enables us to address important questions in economics, namely, how control and wealth are structured and concentrated across national markets. We report on the first cross-country investigation of ownership networks, focusing on the stock markets of 48 countries around the world. On the one hand, our analysis confirms results expected on the basis of the literature on corporate control, namely, that in Anglo-Saxon countries control tends to be dispersed among numerous shareholders. On the other hand, it also reveals that in the same countries, control is found to be highly concentrated at the global level, namely, lying in the hands of very few important shareholders. Interestingly, the exact opposite is observed for European countries. These results have previously not been reported as they are not observable without the kind of network analysis developed here.

  18. Structure of Epi-Isozizaene Synthase from Streptomyces coelicolor A3(2), a Platform for New Terpenoid Cyclization Templates†,‡

    PubMed Central

    Aaron, Julie A.; Lin, Xin; Cane, David E.; Christianson, David W.

    2010-01-01

    The X-ray crystal structure of recombinant epi-isozizaene synthase (EIZS), a sesquiterpene cyclase from Streptomyces coelicolor A3(2), has been determined at 1.60 Å resolution. Specifically, the structure of wild-type EIZS is that of its closed conformation in complex with 3 Mg2+ ions, inorganic pyrophosphate (PPi), and the benzyltriethylammonium cation (BTAC). Additionally, the structure of D99N EIZS has been determined in an open, ligand-free conformation at 1.90 Å resolution. Comparison of these two structures provides the first view of conformational changes required for substrate binding and catalysis in a bacterial terpenoid cyclase. Moreover, the binding interactions of BTAC may mimic those of a carbocation intermediate in catalysis. Accordingly, the aromatic rings of F95, F96, and F198 appear well-oriented to stabilize carbocation intermediates in the cyclization cascade through cation-π interactions. Mutagenesis of aromatic residues in the enzyme active site results in the production of alternative sesquiterpene product arrays due to altered modes of stabilization of carbocation intermediates as well as altered templates for the cyclization of farnesyl diphosphate. Accordingly, the 1.64 Å resolution crystal structure of F198A EIZS complexed with 3 Mg2+ ions, PPi, and BTAC reveals an alternative binding orientation of BTAC; alternative binding orientations of a carbocation intermediate could lead to the formation of alternative products. Finally, the crystal structure of wild-type EIZS complexed with 4 Hg2+ ions has been determined at 1.90 Å resolution, showing that metal binding triggers a significant conformational change of helix G to cap the active site. PMID:20131801

  19. Preparation of new catalysts by the immobilization of palladium(II) species onto silica: an investigation of their catalytic activity for the cyclization of aminoalkynes.

    PubMed

    Richmond, M K; Scott, S L; Alper, H

    2001-10-31

    Silica-immobilized palladium catalysts are readily prepared by treating partially dehydroxylated silica with solutions of the palladium(II) complexes, cis-[PdMeXL2] (X = Me, L2 = dmpe; X = Cl, L2 = dmpe, dppe, phen, bipy, 2PMe3), trans-[PdMeXL2] (X = Cl, NO3, OTf, L = PMe3; X = Cl, L = PPh3), or [PdPh(OH)L]2 (L = PPh3, PCy3), at room temperature. A chemisorption reaction is presumed to occur on the surface Si-OH groups, with elimination of 1 equiv of methane, benzene, or water and the initial formation of a covalent Pd-O bond to the silica surface. The amount of chemisorbed material is strongly dependent on the nature of the complex employed, and the Pd content of the materials, determined by ICP analysis, was found to vary widely (from 1.47 to 0.021 wt %). It appears that the complexes stabilized by more basic ligands undergo a more facile reaction with the surface. The catalytic activity of the materials was first tested in the cyclization of 6-aminohex-1-yne. Higher conversions were found for those catalysts containing more basic ligands, due to the higher loadings, and for those complexes containing more weakly coordinating anions. Silica/trans-[PdMe(NO3)(PMe3)2] was identified as the best catalyst and was used to test the generality of the catalytic cyclization method with two other alkynes, namely, 5-phenyl-4-pentyn-1-amine and 6-phenyl-5-hexyn-1-amine. The catalysts prepared here show rates comparable to, or greater than, those found for homogeneous late transition metal complexes, including their molecular precursors. Furthermore, the supported catalysts are only slightly air-sensitive and can be recycled, after filtration in air, with only moderate loss of activity. PMID:11673983

  20. Oxidation and cyclization of casbene in the biosynthesis of Euphorbia factors from mature seeds of Euphorbia lathyris L.

    PubMed

    Luo, Dan; Callari, Roberta; Hamberger, Britta; Wubshet, Sileshi Gizachew; Nielsen, Morten T; Andersen-Ranberg, Johan; Hallström, Björn M; Cozzi, Federico; Heider, Harald; Lindberg Møller, Birger; Staerk, Dan; Hamberger, Björn

    2016-08-23

    The seed oil of Euphorbia lathyris L. contains a series of macrocyclic diterpenoids known as Euphorbia factors. They are the current industrial source of ingenol mebutate, which is approved for the treatment of actinic keratosis, a precancerous skin condition. Here, we report an alcohol dehydrogenase-mediated cyclization step in the biosynthetic pathway of Euphorbia factors, illustrating the origin of the intramolecular carbon-carbon bonds present in lathyrane and ingenane diterpenoids. This unconventional cyclization describes the ring closure of the macrocyclic diterpene casbene. Through transcriptomic analysis of E. lathyris L. mature seeds and in planta functional characterization, we identified three enzymes involved in the cyclization route from casbene to jolkinol C, a lathyrane diterpene. These enzymes include two cytochromes P450 from the CYP71 clan and an alcohol dehydrogenase (ADH). CYP71D445 and CYP726A27 catalyze regio-specific 9-oxidation and 5-oxidation of casbene, respectively. When coupled with these P450-catalyzed monooxygenations, E. lathyris ADH1 catalyzes dehydrogenation of the hydroxyl groups, leading to the subsequent rearrangement and cyclization. The discovery of this nonconventional cyclization may provide the key link to complete elucidation of the biosynthetic pathways of ingenol mebutate and other bioactive macrocyclic diterpenoids. PMID:27506796

  1. Stereospecific cyclization strategies for α,ε-dihydroxy-β-amino esters: asymmetric syntheses of imino and amino sugars.

    PubMed

    Davies, Stephen G; Foster, Emma M; Lee, James A; Roberts, Paul M; Thomson, James E

    2014-10-17

    A range of biologically significant imino and amino sugars [1,4-dideoxy-1,4-imino-D-allitol, 3,6-dideoxy-3,6-imino-L-allonic acid, (3R,4S)-3,4-dihydroxy-L-proline, 1,5-anhydro-4-deoxy-4-amino-D-glucitol, and 1,5-anhydro-4-deoxy-4-amino-L-iditol] has been prepared via stereospecific cyclization of α,ε-dihydroxy-β-amino esters. These substrates are readily prepared via conjugate addition of lithium (S)-N-benzyl-N-(α-methylbenzyl)amide to enantiopure α,β-unsaturated esters (β-substituted with cis- and trans-dioxolane units) coupled with in situ enolate oxidation with camphorsulfonyloxaziridine (CSO). Activation of the ε-hydroxyl group allowed cyclization to either the corresponding pyrrolidine or the tetrahydropyran scaffold, with the course of the cyclization process being dictated by the relative configuration of the dioxolane unit. When the α,ε-dihydroxy-β-amino ester bears a cis-dioxolane unit, cyclization occurs upon attack of the β-amino substituent to give the corresponding pyrrolidine after in situ N-debenzylation. In contrast, when the α,ε-dihydroxy-β-amino ester bears a trans-dioxolane unit, cyclization occurs upon attack of the α-hydroxyl substituent to give the corresponding tetrahydropyran. PMID:25203863

  2. Oxidation and cyclization of casbene in the biosynthesis of Euphorbia factors from mature seeds of Euphorbia lathyris L.

    PubMed Central

    Luo, Dan; Callari, Roberta; Hamberger, Britta; Wubshet, Sileshi Gizachew; Nielsen, Morten T.; Andersen-Ranberg, Johan; Hallström, Björn M.; Cozzi, Federico; Lindberg Møller, Birger; Hamberger, Björn

    2016-01-01

    The seed oil of Euphorbia lathyris L. contains a series of macrocyclic diterpenoids known as Euphorbia factors. They are the current industrial source of ingenol mebutate, which is approved for the treatment of actinic keratosis, a precancerous skin condition. Here, we report an alcohol dehydrogenase-mediated cyclization step in the biosynthetic pathway of Euphorbia factors, illustrating the origin of the intramolecular carbon–carbon bonds present in lathyrane and ingenane diterpenoids. This unconventional cyclization describes the ring closure of the macrocyclic diterpene casbene. Through transcriptomic analysis of E. lathyris L. mature seeds and in planta functional characterization, we identified three enzymes involved in the cyclization route from casbene to jolkinol C, a lathyrane diterpene. These enzymes include two cytochromes P450 from the CYP71 clan and an alcohol dehydrogenase (ADH). CYP71D445 and CYP726A27 catalyze regio-specific 9-oxidation and 5-oxidation of casbene, respectively. When coupled with these P450-catalyzed monooxygenations, E. lathyris ADH1 catalyzes dehydrogenation of the hydroxyl groups, leading to the subsequent rearrangement and cyclization. The discovery of this nonconventional cyclization may provide the key link to complete elucidation of the biosynthetic pathways of ingenol mebutate and other bioactive macrocyclic diterpenoids. PMID:27506796

  3. Copper-catalyzed synthesis of benzoxazoles via tandem cyclization of 2-halophenols with amidines.

    PubMed

    Tiwari, Abhishek R; Bhanage, Bhalchandra M

    2016-08-16

    This work reports a simple, efficient and alternative synthetic route for the preparation of benzoxazoles via tandem cyclization of 2-halophenols with amidines. The developed methodology is free from ligands and uses inexpensive and easily available CuCl as a catalyst. This protocol avoids the use of any oxidant or inorganic acids. Various benzoxazole derivatives were synthesized in good to excellent yields. To the best of our knowledge, this is the first time that the synthesis of benzoxazoles from 2-halophenols with both aromatic and aliphatic amidines is reported. Owing to the simplicity of this protocol, the preparation of benzoxazoles could be achieved at a gram scale level. PMID:27480248

  4. Raman spectroscopic approach to monitor the in vitro cyclization of creatine → creatinine

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Debraj; Sharma, Poornima; Singh, Sachin Kumar; Singh, Pushkar; Tarcea, Nicolae; Deckert, Volker; Popp, Jürgen; Singh, Ranjan K.

    2015-01-01

    The creatine → creatinine cyclization, an important metabolic phenomenon has been initiated in vitro at acidic pH and studied through Raman spectroscopic and DFT approach. The equilibrium composition of neutral, zwitterionic and protonated microspecies of creatine has been monitored with time as the reaction proceeds. Time series Raman spectra show clear signature of creatinine formation at pH 3 after ∼240 min at room temperature and reaction is faster at higher temperature. The spectra at pH 1 and pH 5 do not show such signature up to 270 min implying faster reaction rate at pH 3.

  5. Synthesis of benzofuranyl and indolyl methyl azides by tandem silver-catalyzed cyclization and azidation.

    PubMed

    Ranjith Kumar, Gadi; Kiran Kumar, Yalla; Kant, Ruchir; Sridhar Reddy, Maddi

    2016-04-26

    Ag(i)-catalyzed synthesis of 2-azidomethyl benzofurans/indoles from linear and readily available hydroxyl/amino-phenyl propargyl alcohols is described via a highly regioselective C-O and C-N bond formation. Control experiments reveal that the reaction involves the sequential Ag(i)-catalyzed 5-exo-dig cyclization and a catalyst free γ-allylic azidation. The synthetic utility of this method has been demonstrated by using the azidomethyl unit of the above synthesized heterocycles as the base for a variety of other functionalizations, such as triazole-, tetrazole-, amide-, amine-, and pyrido-derivatives. PMID:27064507

  6. Synthesis of Substituted Quinolines by the Electrophilic Cyclization of N-(2-Alkynyl)anilines

    PubMed Central

    Zhang, Xiaoxia; Yao, Tuanli; Campo, Marino A.; Larock, Richard C.

    2010-01-01

    A wide variety of substituted quinolines are readily synthesized under mild reaction conditions by the 6-endo-dig electrophilic cyclization of N-(2-alkynyl)anilines by ICl, I2, Br2, PhSeBr and p-O2NC6H4SCl. The reaction affords 3-halogen-, selenium- and sulfur-containing quinolines in moderate to good yields in the presence of various functional groups. Analogous quinolines bearing a hydrogen in the 3-position have been synthesized by the Hg(OTf)2-catalyzed ring closure of these same alkynylanilines. PMID:20161633

  7. Gold-Catalyzed Intramolecular Tandem Cyclization of Indole-Ynamides: Diastereoselective Synthesis of Spirocyclic Pyrrolidinoindolines.

    PubMed

    Zheng, Nan; Chang, Yuan-Yuan; Zhang, Li-Jie; Gong, Jian-Xian; Yang, Zhen

    2016-02-01

    A gold-catalyzed intramolecular tandem cyclization of indole-ynamide affords tetracyclic spirocyclic pyrrolidinoindoline bearing an all-carbon quaternary stereocentre in a single step; however, when the reaction was carried out in the presence of BF3 ⋅Et2 O, the corresponding tricyclic spirocyclic pyrrolidinoindoline-based enones are produced through a key 1,5-hydride shift. The developed chemistry provides a diastereoselective and straightforward entry to structurally diverse polycylic pyrrolidinoindolines from indole-ynamides in one-pot reactions under mild conditions. PMID:26374716

  8. Improvement of Dry Etching Resistance of Cyclized Polybutadiene Negative Resist by Vacuum Baking

    NASA Astrophysics Data System (ADS)

    Shimizu, Toshio; Cornu, Vanessa

    1992-12-01

    The dry etching resistance of cyclized polybutadiene negative resist, baked both in air and in vacuum, was investigated. After postbaking in air at above 160°C, the resist etching rate sharply rises. It was clarified by differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FT-IR, RAS method) and X-ray photoelectron spectroscopy (XPS) that the resist oxidation decreases dry etching resistance. On the other hand, the highest resistance was obtained by baking the resist in vacuum at 200°C. The postbaking technique was confirmed as a method for increasing-dry etching resistance.

  9. Synthesis of Substituted Pyrroles via Copper-Catalyzed Cyclization of Ethyl Allenoates with Activated Isocyanides.

    PubMed

    Lu, Kui; Ding, Fang; Qin, Long; Jia, Xiaoliang; Xu, Chuanming; Zhao, Xia; Yao, Qingwei; Yu, Peng

    2016-08-01

    A new method for the synthesis of di- and trisubstituted pyrroles via copper-catalyzed cyclization of ethyl allenoates with activated isocyanides has been developed. In contrast to related annulation reactions previously reported, this new process features a skeletal rearrangement in which the aryl sulfonyl moiety, which functions as the electron-withdrawing group in the α-carbon of the isocyanide, was found to migrate to the γ-carbon of the starting allenoate in the final product for the first time. PMID:27348611

  10. Stereocontrolled synthesis of rosuvastatin calcium via iodine chloride-induced intramolecular cyclization.

    PubMed

    Xiong, Fangjun; Wang, Haifeng; Yan, Lingjie; Han, Sheng; Tao, Yuan; Wu, Yan; Chen, Fener

    2016-01-28

    A novel, stereoselective approach towards rosuvastatin calcium from the known (S)-homoallylic alcohol has been developed. The synthesis is highlighted by a regio- and stereocontrolled ICl-induced intramolecular cyclization of chiral homoallylic carbonate to deliver the C6-formyl statin side chain with a syn-1,3-diol moiety. An improved synthesis of the rosuvastatin pyrimidine core moiety is also included. Moreover, this methodology is useful in the asymmetric synthesis of structural variants of statins such as pitavastatin calcium and atorvastatin calcium and their related analogs. PMID:26659808

  11. Heterologous Production of Fungal Maleidrides Reveals the Cryptic Cyclization Involved in their Biosynthesis.

    PubMed

    Williams, Katherine; Szwalbe, Agnieszka J; Mulholland, Nicholas P; Vincent, Jason L; Bailey, Andrew M; Willis, Christine L; Simpson, Thomas J; Cox, Russell J

    2016-06-01

    Fungal maleidrides are an important family of bioactive secondary metabolites that consist of 7, 8, or 9-membered carbocycles with one or two fused maleic anhydride moieties. The biosynthesis of byssochlamic acid (a nonadride) and agnestadride A (a heptadride) was investigated through gene disruption and heterologous expression experiments. The results reveal that the precursors for cyclization are formed by an iterative highly reducing fungal polyketide synthase supported by a hydrolase, together with two citrate-processing enzymes. The enigmatic ring formation is catalyzed by two proteins with homology to ketosteroid isomerases, and assisted by two proteins with homology to phosphatidylethanolamine-binding proteins. PMID:27099957

  12. Heterologous Production of Fungal Maleidrides Reveals the Cryptic Cyclization Involved in their Biosynthesis

    PubMed Central

    Szwalbe, Agnieszka J.; Mulholland, Nicholas P.; Vincent, Jason L.; Bailey, Andrew M.; Willis, Christine L.; Simpson, Thomas J.

    2016-01-01

    Abstract Fungal maleidrides are an important family of bioactive secondary metabolites that consist of 7, 8, or 9‐membered carbocycles with one or two fused maleic anhydride moieties. The biosynthesis of byssochlamic acid (a nonadride) and agnestadride A (a heptadride) was investigated through gene disruption and heterologous expression experiments. The results reveal that the precursors for cyclization are formed by an iterative highly reducing fungal polyketide synthase supported by a hydrolase, together with two citrate‐processing enzymes. The enigmatic ring formation is catalyzed by two proteins with homology to ketosteroid isomerases, and assisted by two proteins with homology to phosphatidylethanolamine‐binding proteins. PMID:27099957

  13. Copper-catalyzed intramolecular cyclization of N-propargyl-adenine: synthesis of purine-fused tricyclics.

    PubMed

    Li, Ren-Long; Liang, Lei; Xie, Ming-Sheng; Qu, Gui-Rong; Niu, Hong-Ying; Guo, Hai-Ming

    2014-04-18

    A novel protocol to construct fluorescent purine-fused tricyclic products via intramolecular cyclization of N-propargyl-adenine has been developed. With CuBr as the catalyst, a series of purine-fused tricyclic products were obtained in good to excellent yields (19 examples, 75-89% yields). When R2 was a hydrogen atom in N-propargyl-adenines, the reactions only afforded the endocyclic double bond products. When R2 was an aryl group, the electron-donating groups favored the endocyclic double bond products, while the electron-withdrawing groups favored the exocyclic double bond products. PMID:24678722

  14. 5-Exo-cyclizations of pentenyliminyl radicals: inversion of the gem-dimethyl effect.

    PubMed

    Portela-Cubillo, Fernando; Alonso-Ruiz, Rafael; Sampedro, Diego; Walton, John C

    2009-09-17

    This paper describes how the rates of 5-exo-ring closures of unsaturated iminyl radicals to pyrrolomethyl radicals respond to substituents in the pentenyl chain and at the C=N bond. Benzyl- and acyl oxime esters, as well as dioxime oxalates, were identified as suitable iminyl radical sources for electron paramagnetic resonance (EPR) spectroscopy. Pentenyliminyl radicals with aryl substituents at their C=N bonds, and one with an alkyl substituent at its C=N bond, were studied in solution by steady-state continuous wave EPR spectroscopy. All the pentenyliminyls selectively ring closed in the 5-exo-mode rather than the 6-endo-mode. EPR monitoring of the decay of the 2,2-dimethyl-1-phenylpent-4-enyliminyl radical showed that it underwent bimolecular combination at about the diffusion controlled limit (2kt approximately 3 x 10(8) M(-1) s(-1) at 245 K). The rate constant for 5-exo-ring closure of phenylpentenyliminyl (8.8 x 10(3) s(-1) at 300 K) was a factor of 25 smaller than the rate constant for hex-5-enyl radical cyclization. The rate of cyclization was slower for an iminyl having a Me group at the site of 5-exo-cyclization but faster for an iminyl with an Et substituent at the terminus of the C=C double bond. Surprisingly, the 2,2-dimethyl-1-phenylpent-4-enyliminyl radical, with a bismethyl group in its pentenyl chain, ring closed more slowly than the unsubstituted analogue. DFT computations were in accord with this inverse gem-dimethyl effect and suggested it resulted from steric interaction of the Ph and bis-Me groups which forced the aromatic ring out of the plane of the imine moiety. To check on the role of the Ph substituent, pentenyliminyls lacking this group were sought. A pentenyliminyl radical with an alkyl group in place of the Ph group, and a single Me group in its pentenyl chain, was generated by means of an unsymmetrical dioxime oxalate precursor. The k(c) for this species was a factor of 2.5 larger than k(c) for the original pentenyliminyl, suggesting

  15. 5-Exo-Cyclizations of Pentenyliminyl Radicals: Inversion of the gem-Dimethyl Effect

    NASA Astrophysics Data System (ADS)

    Portela-Cubillo, Fernando; Alonso-Ruiz, Rafael; Sampedro, Diego; Walton, John C.

    2009-08-01

    This paper describes how the rates of 5-exo-ring closures of unsaturated iminyl radicals to pyrrolomethyl radicals respond to substituents in the pentenyl chain and at the C═N bond. Benzyl- and acyl oxime esters, as well as dioxime oxalates, were identified as suitable iminyl radical sources for electron paramagnetic resonance (EPR) spectroscopy. Pentenyliminyl radicals with aryl substituents at their C═N bonds, and one with an alkyl substituent at its C═N bond, were studied in solution by steady-state continuous wave EPR spectroscopy. All the pentenyliminyls selectively ring closed in the 5-exo-mode rather than the 6-endo-mode. EPR monitoring of the decay of the 2,2-dimethyl-1-phenylpent-4-enyliminyl radical showed that it underwent bimolecular combination at about the diffusion controlled limit (2kt ˜ 3 × 108 M-1 s-1 at 245 K). The rate constant for 5-exo-ring closure of phenylpentenyliminyl (8.8 × 103 s-1 at 300 K) was a factor of 25 smaller than the rate constant for hex-5-enyl radical cyclization. The rate of cyclization was slower for an iminyl having a Me group at the site of 5-exo-cyclization but faster for an iminyl with an Et substituent at the terminus of the C═C double bond. Surprisingly, the 2,2-dimethyl-1-phenylpent-4-enyliminyl radical, with a bismethyl group in its pentenyl chain, ring closed more slowly than the unsubstituted analogue. DFT computations were in accord with this inverse gem-dimethyl effect and suggested it resulted from steric interaction of the Ph and bis-Me groups which forced the aromatic ring out of the plane of the imine moiety. To check on the role of the Ph substituent, pentenyliminyls lacking this group were sought. A pentenyliminyl radical with an alkyl group in place of the Ph group, and a single Me group in its pentenyl chain, was generated by means of an unsymmetrical dioxime oxalate precursor. The kc for this species was a factor of 2.5 larger than kc for the original pentenyliminyl, suggesting that the normal

  16. Base-Controlled Cu-Catalyzed Tandem Cyclization/Alkynylation for the Synthesis of Indolizines.

    PubMed

    Oh, Kyung Hwan; Kim, Seong Min; Park, Sun Young; Park, Jin Kyoon

    2016-05-01

    A base-controlled Cu-catalyzed tandem cyclization/alkynylation of propargylic amines provides rapid access to functionalized indolizine derivatives under mild reaction conditions. The reaction first proceeded via a 5-endo-dig aminocupration, followed by a coupling between the copper-bound intermediate and alkynyl bromide, to afford the products in good to excellent yields. The successful tandem reaction is attributed to the unique property of the bases, DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) and MTBD (7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene used). PMID:27097044

  17. Synthesis of phytuberin. 4-endo-tet acid-catalyzed cyclization of alpha-hydroxy epoxides.

    PubMed

    Prangé, Thierry; Rodríguez, María S; Suárez, Ernesto

    2003-05-30

    The total synthesis of phytuberin, a phytoalexin of the Solanum genus, from (-)-alpha-santonin is reported. The key steps include (a) reductive cleavage of the C-O bond of the gamma-lactone with concomitant protection of the C1 double bond, (b) Sharpless stereocontrolled hydroxy-assisted epoxidation of allylic alcohol 6 and simultaneous deprotection of the C1 double bond, (c) a rare 4-endo-tet acid-catalyzed cyclization of an alpha-hydroxy epoxide, and (d) an unprecedented 4-exo selenocyclization of a homoallylic alcohol. PMID:12762747

  18. Resistance issues with new nucleoside/nucleotide backbone options.

    PubMed

    Wainberg, Mark A; Turner, Dan

    2004-09-01

    The nucleoside and nucleotide reverse transcriptase inhibitors (NRTIs/NtRTIs) remain an enduring feature of combination therapy. As NRTI/NtRTI options continue to expand, questions arise about how best to combine these agents to create effective dual NRTI/NtRTI backbones in antiretroviral regimens while avoiding treatment-emergent drug resistance. Clinicians must consider how NRTIs/NtRTIs such as tenofovir DF (TDF), abacavir (ABC), and emtricitabine (FTC), as well as new once-daily and coformulated NRTIs/NtRTIs, interact with older agents when combined in novel regimens and how sequencing the new NRTIs can preserve future treatment options. Resistance data from clinical trials have revealed important information on the patterns, prevalence, and effects of resistance seen among patients experiencing virologic failure. In recent years, the prevalence of some mutations such as M184V and Q151M has remained relatively constant, while the L74V mutation, the 69 insertions, and thymidine analogue mutations have decreased in prevalence. Other mutations such as K65R and Y115F, while still relatively uncommon, are increasing in prevalence. This increase may be due to the use of new treatment combinations that select for these mutations at a higher rate. Clinical trials suggest that new regimens containing TDF or ABC select for K65R and that this mutation is observed more frequently with TDF; in contrast, L74V is observed more frequently in ABC-containing regimens but is not commonly selected by TDF-containing regimens. Several lines of evidence are converging to suggest that the presence of zidovudine may decrease the risk of L74V and K65R in ABC- or TDF-containing regimens. This review summarizes the clinical implications of resistance profiles associated with new NRTI/NtRTI regimens in current use and in advanced clinical studies. PMID:15319668

  19. GDNF Gene Delivery via a 2-(Dimethylamino)ethyl Methacrylate Based Cyclized Knot Polymer for Neuronal Cell Applications

    PubMed Central

    2013-01-01

    Nonviral genetic therapeutic intervention strategies for neurological disorders hold great promise, but a lack of vector efficacy, coupled with vector toxicity, continue to hinder progress. Here we report the application of a newly developed class of polymer, distinctly different from conventional branched polymers, as a transfection agent for the delivery of glial cell line derived neurotrophic factor (GDNF) encoding gene. This new 2-(dimethylamino)ethyl methacrylate (DMAEMA) based cyclized knot polymer was studied for neuronal cell transfection applications, in comparison to branched polyethyleneimine (PEI). While showing a similar transfection profile over multiple cell types, the cyclized knot polymer showed far lower toxicity. In addition, transfection of Neu7 astrocytes with the GDNF encoding gene was able to cause neurite outgrowth when cocultured with dorsal root ganglia (DRGs). The cyclized knot polymer assessed here (PD-E 8%PEG), synthesized via a simple one-pot reaction, was shown to have great potential for neuronal gene therapy applications. PMID:23391146

  20. Rh(I) -Catalyzed Cyclizative Addition Reaction of 1,6-Enyne and Sulfonyl Chloride by Carbophilic Activation.

    PubMed

    Dang, Mengyao; Hou, Longlei; Tong, Xiaofeng

    2016-06-01

    The π-acid-catalyzed cyclizations of 1,n-enynes by carbophilic activation have been extensively studied and appear as highly attractive processes, yet the cases within a catalytic cycle based on redox principle are rare. Herein, we report the cyclizative addition reactions of 1,6-enynes and sulfonyl chlorides by using a [Rh(cod)Cl/dppf] (dppf=1,1'-bis(diphenylphosphino)ferrocene) catalyst system. The process features the involvement of oxidative addition of sulfonyl chloride to Rh(I) catalyst, which generates [(dppf)(RSO2 )RhCl2 ] as a π-acid species to trigger cyclizative addition in a 6-endo-dig manner by carbophilic activation. Moreover, the catalytic protocol is also applicable to 1,6-diene analogues. PMID:27016845

  1. The importance of chain conformational mobility during 5-exo-cyclizations of C-, N- and O-centred radicals.

    PubMed

    Walton, John C

    2014-10-28

    The reaction coordinates of an archetypical set of 5-exo cyclizations of C-, N- and O-centred radicals were investigated by computational methods. G4 theory, and DFT with the um062x functional, were able to rationalise counterintuitive factors such as the 'normal' order of rate constants being: N-centred < C-centred < O-centred radicals. The access angle between the radical centre and the double bond was identified as a key factor. Examination of its evolution during ring closure implied that rigidity at the N-ends of the chains, and the consequent extra energy needed to attain chair-like transition states, might be the reason for slow aminyl cyclizations. A novel linear correlation between cyclization activation energies and the access angles was discovered. The preference for cis-1,2-disubstituted product formation was also accounted for in terms of interaction between the hyperconjugatively delocalized SOMO and the alkene π* orbital. PMID:25179567

  2. Cyclization of a cell-penetrating peptide via click-chemistry increases proteolytic resistance and improves drug delivery.

    PubMed

    Reichart, Florian; Horn, Mareike; Neundorf, Ines

    2016-06-01

    In this work we report synthesis and biological evaluation of a cell-penetrating peptide (CPP), that is partly cyclized via a triazole bridge. Recently, beneficious properties have been reported for cyclized peptides concerning their metabolic stability and intracellular uptake. A CPP based on human calcitonin was used in this study, and side chain cyclization was achieved via copper catalyzed alkyne-azide click reaction. Cell viability studies in several cell-lines revealed no cytotoxic effects. Furthermore, efficient uptake in breast cancer MCF-7 cells could be determined. Moreover, preliminary studies using this novel peptide as drug transporter for daunorubicin were performed. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. PMID:27197760

  3. Synthesis of 2,1-benzisoxazole-3(1H)-ones by base-mediated photochemical N–O bond-forming cyclization of 2-azidobenzoic acids

    PubMed Central

    Dzhons, Daria Yu

    2016-01-01

    Summary The base-mediated photochemical cyclization of 2-azidobenzoic acids with the formation of 2,1-benzisoxazole-3(1H)-ones is reported. The optimization and scope of this cyclization reaction is discussed. It is shown that an essential step of the ring closure of 2-azidobenzoic acids is the formation and photolysis of 2-azidobenzoate anions. PMID:27340478

  4. Copper-catalyzed cascade cyclization of 1,7-enynes with aromatic sulfonyl chlorides toward selective assembly of benzo[j]phenanthridin-6(5H)-ones.

    PubMed

    Liu, Yu; Zhang, Jia-Ling; Zhou, Ming-Bo; Song, Ren-Jie; Li, Jin-Heng

    2014-11-28

    A step-economical method for the cascade cyclization of 1,7-enynes with aromatic sulfonyl chlorides by using a low-cost and more abundant Cu catalyst is presented. This method allows access to benzo[j]phenanthridin-6(5H)-ones and represents a new Cu-catalyzed cascade cyclization of 1,n-enynes. PMID:25300349

  5. Visible light-induced intramolecular dearomative cyclization of α-bromo-N-benzyl-alkylamides: efficient construction of 2-azaspiro[4.5]decanes.

    PubMed

    Hu, Bei; Li, Yuyuan; Dong, Wuheng; Ren, Kai; Xie, Xiaomin; Wan, Jun; Zhang, Zhaoguo

    2016-03-01

    An efficient intramolecular dearomative cyclization via visible light-induced photoredox catalysis allows for a highly regioselective dearomative cyclization of α-bromo-N-benzyl-alkylamides to construct 2-azaspiro[4.5]decanes in the presence of an iridium catalyst. PMID:26865333

  6. Biosynthesis of monoterpenes: Stereochemistry of the coupled isomerization and cyclization of geranyl pyrophosphate to camphane and isocamphane monoterpenes

    SciTech Connect

    Croteau, R.; Gershenzon, J.; Wheeler, C.J.; Satterwhite, D.M. )

    1990-03-01

    The conversion of geranyl pyrophosphate to (+)-bornyl pyrophosphate and (+)-camphene is considered to proceed by the initial isomerization of the substrate to (-)-(3R)-linalyl pyrophosphate and the subsequent cyclization of this bound intermediate. In the case of (-)-bornyl pyrophosphate and (-)-camphene, isomerization of the substrate to the (+)-(3S)-linalyl intermediate precedes cyclization. The geranyl and linalyl precursors were shown to be mutually competitive substrates (inhibitors) of the relevant cyclization enzymes isolated from Salvia officinalis (sage) and Tanacetum vulgare (tansy) by the mixed substrate analysis method, demonstrating that isomerization and cyclization take place at the same active site. Incubation of partially purified enzyme preparations with (3R)-(1Z-3H)linalyl pyrophosphate plus (1-14C)geranyl pyrophosphate gave rise to double-labeled (+)-bornyl pyrophosphate and (+)-camphene, whereas incubation of enzyme preparations catalyzing the antipodal cyclizations with (3S)-(1Z-3H)-linalyl pyrophosphate plus (1-14C)geranyl pyrophosphate yielded double-labeled (-)-bornyl pyrophosphate and (-)-camphene. Each product was then transformed to the corresponding (+)- or (-)-camphor without change in the 3H:14C isotope ratio, and the location of the tritium label was deduced in each case by stereoselective, base-catalyzed exchange of the exo-alpha-hydrogen of the derived ketone. The finding that the 1Z-3H of the linalyl precursor was positioned at the endo-alpha-hydrogen of the corresponding camphor in all cases, coupled to the previously demonstrated retention of configuration at C1 of the geranyl substrate in these transformations, confirmed the syn-isomerization of geranyl pyrophosphate to linalyl pyrophosphate and the cyclization of the latter via the anti,endo- conformer.

  7. MCBT: Multi-Hop Cluster Based Stable Backbone Trees for Data Collection and Dissemination in WSNs.

    PubMed

    Shin, Inyoung; Kim, Moonseong; Mutka, Matt W; Choo, Hyunseung; Lee, Tae-Jin

    2009-01-01

    We propose a stable backbone tree construction algorithm using multi-hop clusters for wireless sensor networks (WSNs). The hierarchical cluster structure has advantages in data fusion and aggregation. Energy consumption can be decreased by managing nodes with cluster heads. Backbone nodes, which are responsible for performing and managing multi-hop communication, can reduce the communication overhead such as control traffic and minimize the number of active nodes. Previous backbone construction algorithms, such as Hierarchical Cluster-based Data Dissemination (HCDD) and Multicluster, Mobile, Multimedia radio network (MMM), consume energy quickly. They are designed without regard to appropriate factors such as residual energy and degree (the number of connections or edges to other nodes) of a node for WSNs. Thus, the network is quickly disconnected or has to reconstruct a backbone. We propose a distributed algorithm to create a stable backbone by selecting the nodes with higher energy or degree as the cluster heads. This increases the overall network lifetime. Moreover, the proposed method balances energy consumption by distributing the traffic load among nodes around the cluster head. In the simulation, the proposed scheme outperforms previous clustering schemes in terms of the average and the standard deviation of residual energy or degree of backbone nodes, the average residual energy of backbone nodes after disseminating the sensed data, and the network lifetime. PMID:22454570

  8. Catalytic mechanism of RNA backbone cleavage by ribonuclease H from quantum mechanics/molecular mechanics simulations.

    PubMed

    Rosta, Edina; Nowotny, Marcin; Yang, Wei; Hummer, Gerhard

    2011-06-15

    We use quantum mechanics/molecular mechanics simulations to study the cleavage of the ribonucleic acid (RNA) backbone catalyzed by ribonuclease H. This protein is a prototypical member of a large family of enzymes that use two-metal catalysis to process nucleic acids. By combining Hamiltonian replica exchange with a finite-temperature string method, we calculate the free energy surface underlying the RNA-cleavage reaction and characterize its mechanism. We find that the reaction proceeds in two steps. In a first step, catalyzed primarily by magnesium ion A and its ligands, a water molecule attacks the scissile phosphate. Consistent with thiol-substitution experiments, a water proton is transferred to the downstream phosphate group. The transient phosphorane formed as a result of this nucleophilic attack decays by breaking the bond between the phosphate and the ribose oxygen. In the resulting intermediate, the dissociated but unprotonated leaving group forms an alkoxide coordinated to magnesium ion B. In a second step, the reaction is completed by protonation of the leaving group, with a neutral Asp132 as a likely proton donor. The overall reaction barrier of ∼15 kcal mol(-1), encountered in the first step, together with the cost of protonating Asp132, is consistent with the slow measured rate of ∼1-100/min. The two-step mechanism is also consistent with the bell-shaped pH dependence of the reaction rate. The nonmonotonic relative motion of the magnesium ions along the reaction pathway agrees with X-ray crystal structures. Proton-transfer reactions and changes in the metal ion coordination emerge as central factors in the RNA-cleavage reaction. PMID:21539371

  9. Catalytic Mechanism of RNA Backbone Cleavage by Ribonuclease H from QM/MM Simulations

    PubMed Central

    Rosta, Edina; Nowotny, Marcin; Yang, Wei; Hummer, Gerhard

    2011-01-01

    We use quantum mechanics/molecular mechanics (QM/MM) simulations to study the cleavage of the ribonucleic acid (RNA) backbone catalyzed by ribonuclease H. This protein is a prototypical member of a large family of enzymes that use two-metal catalysis to process nucleic acids. By combining Hamiltonian replica exchange with a finite-temperature string method, we calculate the free energy surface underlying the RNA cleavage reaction and characterize its mechanism. We find that the reaction proceeds in two steps. In a first step, catalyzed primarily by magnesium ion A and its ligands, a water molecule attacks the scissile phosphate. Consistent with thiol-substitution experiments, a water proton is transferred to the downstream phosphate group. The transient phosphorane formed as a result of this nucleophilic attack decays by breaking the bond between the phosphate and the ribose oxygen. In the resulting intermediate, the dissociated but unprotonated leaving group forms an alkoxide coordinated to magnesium ion B. In a second step, the reaction is completed by protonation of the leaving group, with a neutral Asp132 as a likely proton donor. The overall reaction barrier of ~15 kcal mol−1, encountered in the first step, together with the cost of protonating Asp132, is consistent with the slow measured rate of ~1–100/min. The two-step mechanism is also consistent with the bell-shaped pH dependence of the reaction rate. The non-monotonic relative motion of the magnesium ions along the reaction pathway agrees with X-ray crystal structures. Proton transfer reactions and changes in the metal ion coordination emerge as central factors in the RNA cleavage reaction. PMID:21539371

  10. Computation-Guided Backbone Grafting of a Discontinuous Motif onto a Protein Scaffold

    SciTech Connect

    Azoitei, Mihai L.; Correia, Bruno E.; Ban, Yih-En Andrew; Carrico, Chris; Kalyuzhniy, Oleksandr; Chen, Lei; Schroeter, Alexandria; Huang, Po-Ssu; McLellan, Jason S.; Kwong, Peter D.; Baker, David; Strong, Roland K.; Schief, William R.

    2012-02-07

    The manipulation of protein backbone structure to control interaction and function is a challenge for protein engineering. We integrated computational design with experimental selection for grafting the backbone and side chains of a two-segment HIV gp120 epitope, targeted by the cross-neutralizing antibody b12, onto an unrelated scaffold protein. The final scaffolds bound b12 with high specificity and with affinity similar to that of gp120, and crystallographic analysis of a scaffold bound to b12 revealed high structural mimicry of the gp120-b12 complex structure. The method can be generalized to design other functional proteins through backbone grafting.

  11. Uganda's National Transmission Backbone Infrastructure Project: Technical Challenges and the Way Forward

    NASA Astrophysics Data System (ADS)

    Bulega, T.; Kyeyune, A.; Onek, P.; Sseguya, R.; Mbabazi, D.; Katwiremu, E.

    2011-10-01

    Several publications have identified technical challenges facing Uganda's National Transmission Backbone Infrastructure project. This research addresses the technical limitations of the National Transmission Backbone Infrastructure project, evaluates the goals of the project, and compares the results against the technical capability of the backbone. The findings of the study indicate a bandwidth deficit, which will be addressed by using dense wave division multiplexing repeaters, leasing bandwidth from private companies. Microwave links for redundancy, a Network Operation Center for operation and maintenance, and deployment of wireless interoperability for microwave access as a last-mile solution are also suggested.

  12. Enzyme-Like Catalysis of the Nazarov Cyclization by Supramolecular Encapsulation

    SciTech Connect

    Hastings, Courtney; Pluth, Michael; Bergman, Robert; Raymond, Kenneth

    2010-03-29

    A primary goal in the design and synthesis of molecular hosts has been the selective recognition and binding of a variety of guests using non-covalent interactions. Supramolecular catalysis, which is the application of such hosts towards catalysis, has much in common with many enzymatic reactions, chiefly the use of both spatially appropriate binding pockets and precisely oriented functional groups to recognize and activate specific substrate molecules. Although there are now many examples which demonstrate how selective encapsulation in a host cavity can enhance the reactivity of a bound guest, all have failed to reach the degree of increased reactivity typical of enzymes. We now report the catalysis of the Nazarov cyclization by a self-assembled coordination cage, a carbon-carbon bond-forming reaction which proceeds under mild, aqueous conditions. The acceleration in this system is over a million-fold, and represents the first example of supramolecular catalysis that achieves the level of rate enhancement comparable to that observed in several enzymes. We explain the unprecedented degree of rate increase as due to the combination of (a) preorganization of the encapsulated substrate molecule, (b) stabilization of the transition state of the cyclization by constrictive binding, and (c) increase in the basicity of the complexed alcohol functionality.

  13. Tandem Prins/Friedel–Crafts cyclization for stereoselective synthesis of heterotricyclic systems.

    PubMed

    Reddy, B V Subba; Borkar, Prashant; Yadav, J S; Sridhar, B; Grée, René

    2011-10-01

    Homoallylic substrates such as (E)-6-arylhex-3-enyl alcohols, N-tosylamides, and thiols undergo smooth cross-coupling with various aldehydes in the presence of 10 mol % Sc(OTf)(3) and 30 mol % TsOH to afford the trans-fused hexahydro-1H-benzo[f]isochromenes, N-tosyloctahydrobenzo[f]isoquinolines, and hexahydro-1H-benzo[f]isothiochromenes, respectively. However, the cross-coupling of (Z)-olefins such as 6-arylhex-3-enyl alcohols, N-tosylamides, and thiols with aldehydes affords the corresponding hexahydro-1H-benzo[f]isochromenes, N-tosyloctahydrobenzo[f]isoquinolines, and hexahydro-1H-benzo[f]isothiochromenes with complete cis selectivity via intramolecular Prins-, aza-Prins-, and thia-Prins/Friedel-Crafts cyclizations, respectively. Though the Prins cyclization proceeds smoothly under the influence of Sc(OTf)(3), high conversions and enhanced reaction rates are achieved using a mixture of Sc(OTf)(3) and TsOH (1:3). PMID:21842903

  14. Positional effects of click cyclization on β-hairpin structure, stability, and function†

    PubMed Central

    Park, Jessica H.; Waters, Marcey L.

    2014-01-01

    The use of the copper (I)-assisted azide-alkyne cycloaddition (CuAAC, or “click” reaction) as a method of β-hairpin stabilization was investigated at several different positions to determine the impact on hairpin structure and function, including hydrogen bonded sites, non-hydrogen bonded sites, and at the peptide termini. The role of the turn sequence in the peptide and the chain length of the azied were also investigated. It was determined that the CuAAC reaction was a suitable method for locking in β-hairpin structure in peptides possessing either the type I’ turn, VNGO and the type II’ turn, VpGO. Moreover, all cyclic variants exhibited improved thermal stability and resistance to proteolysis as compared to the non-cyclic peptides, regardless of the position in the strand. Additionally, the function of the CuAAC cyclized peptides was not altered as exhibited by similar binding affinities for ATP as the WKWK peptide. These studies provided a comprehensive method for CuAAC cyclization of β-hairpin peptides, which could further be utilized in the inhibition of protein-protein and protein-nucleic acid interactions. PMID:23064223

  15. The cyclization transformation of the sulfonylurea herbicide flupyrsulfuron in the soil of winter wheat crops.

    PubMed

    Rouchaud, Jean; Neus, Olivier; Moulard, Claude

    2003-08-01

    The synthesis of 1-(4,6-dimethoxypyrimidine-2-yl)-7-trifluoromethyl-1,2,3,4-tetrahydropyrido [2,3-d]pyrimidin-2,4-dione has been carried out in such a way that the dimethoxypyrimidine substituent was unambiguously in position 1 of the pyrido[2,3-d]pyrimidine ring. This regioisomer was obtained by cyclization with phosgene of 2-(4,6-dimethoxypyrimidin-2-ylamino)-6-trifluoromethylnicotinamide which had previously been ionized with sodium hydride. It was shown to be identical to the metabolite generated in the soil of winter wheat crops treated previously with the sulfonylurea herbicide flupyrsulfuronmethyl [(methyl 2-(4,6-dimethoxypyrimidin-2-ylcarbamoylsulfamoyl)-6-trifluoromethylnicotinate]. The position of the dimethoxypyrimidine substituent had not previously been assigned unambiguously to positions 1 or 3 of the pyrido[2,3-d]pyrimidine ring. The regioisomer was also identical to the cyclization compound generated chemically from flupyrsulfuron in a sterile water buffer at pH 9. The metabolism pathways of flupyrsulfuron in soil are discussed in the light these structure determinations and compared with the soil metabolism pathways frequently observed with other sulfonylurea herbicides. PMID:12916776

  16. Organo-selenium induced radical ring-opening intramolecular cyclization or electrophilic cyclization of 2- (arylmethylene)cyclopropylaldehyde: a tunable synthesis of 1-naphthaldehydes or 3-oxabicyclo[3.1.0]hexan-2-ols.

    PubMed

    Miao, Maozhong; Huang, Xian

    2009-08-01

    1-Naphthaldehydes and 3-oxabicyclo[3.1.0]hexan-2-ols can be prepared, respectively, by the intramolecular alkylation and cyclization of (E)-2-(arylmethylene)cyclopropylaldehyde 1 mediated by different organo-selenium reagents. The properties of selenium reagents may play an important role in the reactions. A rationale for these transformations is proposed. PMID:19558177

  17. Enzymatic cyclization of 22,23-dihydro-2,3-oxidosqualene into euph-7-en-3beta-ol and bacchar-12-en-3beta-ol by recombinant beta-amyrin synthase.

    PubMed

    Abe, Ikuro; Sakano, Yuichi; Tanaka, Hideya; Lou, Weiwei; Noguchi, Hiroshi; Shibuya, Masaaki; Ebizuka, Yutaka

    2004-03-24

    Recombinant beta-amyrin synthase from Pisum sativum converted 22,23-dihydro-2,3-oxidosqualene, a substrate analogue lacking the terminal double bond of 2,3-oxidosqualene, into a 4:1 mixture of euph-7-en-3beta-ol and bacchar-12-en-3beta-ol. This is the first demonstration of the enzymatic formation of the baccharene skeleton with a six-membered D-ring. In the absence of the terminal double bond, the proton-initiated cyclization first generated the tetracyclic dammarenyl cation, followed by a backbone rearrangement with loss of H-7alpha leading to the formation of euph-7-en-3beta-ol, while D-ring expansion to the baccharenyl cation and subsequent 1,2-hydride shifts with H-12alpha elimination yielded bacchar-12-en-3beta-ol. It is remarkable that the formation of the anti-Markovnikov six-membered D-ring did not depend on the participation of the terminal pi-electrons. PMID:15025461

  18. Modeling (15)N NMR chemical shift changes in protein backbone with pressure.

    PubMed

    La Penna, Giovanni; Mori, Yoshiharu; Kitahara, Ryo; Akasaka, Kazuyuki; Okamoto, Yuko

    2016-08-28

    Nitrogen chemical shift is a useful parameter for determining the backbone three-dimensional structure of proteins. Empirical models for fast calculation of N chemical shift are improving their reliability, but there are subtle effects that cannot be easily interpreted. Among these, the effects of slight changes in hydrogen bonds, both intramolecular and with water molecules in the solvent, are particularly difficult to predict. On the other hand, these hydrogen bonds are sensitive to changes in protein environment. In this work, the change of N chemical shift with pressure for backbone segments in the protein ubiquitin is correlated with the change in the population of hydrogen bonds involving the backbone amide group. The different extent of interaction of protein backbone with the water molecules in the solvent is put in evidence. PMID:27586953

  19. Chemorheology of phenylboronate-salicylhydroxamate crosslinked hydrogel networks with a sulfonated polymer backbone

    PubMed Central

    Roberts, Meredith C.; Mahalingam, Alamelu; Hanson, Melissa C.; Kiser, Patrick F.

    2012-01-01

    Hydrogel networks crosslinked with polymer-bound phenylboronic acid (PBA) and salicylhydroxamic acid (SHA) demonstrate pH-reversible gel behavior due to the pH-dependent equilibrium of the crosslinking moieties that form the gel network. Furthermore, the pH at which gels behave dynamically can be controlled by use of a polyelectrolyte backbone. Here we report on the frequency-dependent chemorheological characterization of PBA-SHA crosslinked hydrogel networks with a sulfonated polymer backbone. Our results suggest that the anionic nature of the polymers allows reversible crosslinking at neutral pH that an otherwise neutral-backboned PBA-SHA crosslinked network cannot, and that these charge-induced dynamics can be effectively screened by ions in solution. Moreover, moduli-frequency data can effectively be reduced into a single master curve with a neutral-backboned PBA-SHA gel data set as the reference condition. PMID:23132956

  20. Increasing Sequence Diversity with Flexible Backbone Protein Design: The Complete Redesign of a Protein Hydrophobic Core

    SciTech Connect

    Murphy, Grant S.; Mills, Jeffrey L.; Miley, Michael J.; Machius, Mischa; Szyperski, Thomas; Kuhlman, Brian

    2015-10-15

    Protein design tests our understanding of protein stability and structure. Successful design methods should allow the exploration of sequence space not found in nature. However, when redesigning naturally occurring protein structures, most fixed backbone design algorithms return amino acid sequences that share strong sequence identity with wild-type sequences, especially in the protein core. This behavior places a restriction on functional space that can be explored and is not consistent with observations from nature, where sequences of low identity have similar structures. Here, we allow backbone flexibility during design to mutate every position in the core (38 residues) of a four-helix bundle protein. Only small perturbations to the backbone, 12 {angstrom}, were needed to entirely mutate the core. The redesigned protein, DRNN, is exceptionally stable (melting point >140C). An NMR and X-ray crystal structure show that the side chains and backbone were accurately modeled (all-atom RMSD = 1.3 {angstrom}).

  1. Oxidative cyclization of a phenolic Schiff base and synthesis of a cyclometalated ruthenium nitrosyl complex: photoinduced NO release by visible light.

    PubMed

    Ghosh, Kaushik; Kumar, Sushil; Kumar, Rajan; Singh, Udai P; Goel, Nidhi

    2010-08-16

    The reactivity of sigma-arylruthenium cyclometallate [Ru(L(SB1))(PPh(3))(2)Cl] [1; L(SB1)H(2) = 4-methyl-2-(4-nitrobenzylideneamino)phenol] with nitric oxide (NO) gave rise to nitrosylation at the metal center, ring nitration, and oxidative cyclization, affording benzoxazole derivative formation. The molecular structure of the resultant nitrosyl complex, [Ru(L(PB1))(PPh(3))(2)(NO)Cl](ClO(4)) [2; L(PB1)H = 5-methyl-7-nitro-2-(4-nitrophenyl)benzoxazole] was determined, and a different sigma-arylruthenium cyclometallate was characterized in which the benzoxazole derivative was found to be coordinated to the metal center. The crystal structure and IR and NMR spectral data confirmed the formation of a diamagnetic {RuNO}(6) species with a S = 0 ground state and a {Ru(II)NO(+)}(6) description of the {RuNO}(6) moiety. Coordinated NO in the resultant complex 2 was photolabile under visible light and was transferred to reduced myoglobin. PMID:20690733

  2. Formation of Hierarchical Structure Composed of (Co/Ni)Mn-LDH Nanosheets on MWCNT Backbones for Efficient Electrocatalytic Water Oxidation.

    PubMed

    Jia, Gan; Hu, Yingfei; Qian, Qinfeng; Yao, Yingfang; Zhang, Shiying; Li, Zhaosheng; Zou, Zhigang

    2016-06-15

    Active, stable, and cost-effective electrocatalysts are attractive alternatives to the noble metal oxides that have been used in water splitting. The direct nucleation and growth of electrochemically active LDH materials on chemically modified MWCNTs exhibit considerable electrocatalytic activity toward oxygen evolution from water oxidation. CoMn-based and NiMn-based hybrids were synthesized using a facile chemical bath deposition method and the as-synthesized materials exhibited three-dimensional hierarchical configurations with tunable Co/Mn and Ni/Mn ratio. Benefiting from enhanced electrical conductivity with MWCNT backbones and LDH lamellar structure, the Co5Mn-LDH/MWCNT and Ni5Mn-LDH/MWCNT could generated a current density of 10 mA cm(-2) at overpotentials of ∼300 and ∼350 mV, respectively, in 1 M KOH. In addition, the materials also exhibited outstanding long-term electrocatalytic stability. PMID:27214293

  3. Pd-Catalyzed C-H activation/oxidative cyclization of acetanilide with norbornene: concise access to functionalized indolines.

    PubMed

    Gao, Yang; Huang, Yubing; Wu, Wanqing; Huang, Kefan; Jiang, Huanfeng

    2014-08-01

    An efficient Pd-catalyzed oxidative cyclization reaction for the synthesis of functionalized indolines by direct C-H activation of acetanilide has been developed. The norbornylpalladium species formed via direct ortho C-H activation of acetanilides is supposed to be a key intermediate in this transformation. PMID:24942255

  4. A Bulky Thiyl-Radical Catalyst for the [3+2] Cyclization of N-Tosyl Vinylaziridines and Alkenes.

    PubMed

    Hashimoto, Takuya; Takino, Kohei; Hato, Kazuki; Maruoka, Keiji

    2016-07-01

    Thiyl-radical-catalyzed cyclization reactions of N-tosyl vinylaziridines and alkenes were developed as a new synthetic method for the generation of substituted pyrrolidines. The key to making this process accessible to a broad range of substrates is the use of a sterically demanding thiyl radical, which prevents the undesired degradation of the catalyst. PMID:27169816

  5. Enantioselective Nickel-Catalyzed anti-Carbometallative Cyclizations of Alkynyl Electrophiles Enabled by Reversible Alkenylnickel E/Z Isomerization.

    PubMed

    Clarke, Christopher; Incerti-Pradillos, Celia A; Lam, Hon Wai

    2016-07-01

    Nickel-catalyzed additions of arylboronic acids to alkynes, followed by enantioselective cyclizations of the alkenylnickel species onto tethered ketones or enones, are reported. These reactions are reliant upon the formal anti-carbonickelation of the alkyne, which is postulated to occur by the reversible E/Z isomerization of an alkenylnickel species. PMID:27333360

  6. Synthesis of 3,4-Disubstituted 2H-Benzopyrans Through C-C Bond Formation via Electrophilic Cyclization

    PubMed Central

    Worlikar, Shilpa A.; Kesharwani, Tanay; Yao, Tuanli; Larock, Richard C.

    2008-01-01

    The electrophilic cyclization of substituted propargylic aryl ethers by I2, ICl and PhSeBr produces 3,4-disubstituted 2H-benzopyrans in excellent yields. This methodology results in vinylic halides or selenides under mild reaction conditions, and tolerates a variety of functional groups, including methoxy, alcohol, aldehyde and nitro groups. PMID:17288382

  7. Organocatalytic Synthesis of Fused Bicyclic 2,3-Dihydro-1,3,4-oxadiazoles through an Intramolecular Cascade Cyclization.

    PubMed

    Fugard, Alison J; Thompson, Bethany K; Slawin, Alexandra M Z; Taylor, James E; Smith, Andrew D

    2015-12-01

    Hydrazone-carboxylic acids undergo intramolecular cyclization in the presence of pivaloyl chloride, iPr(2)NEt, and catalytic DABCO to form a range of substituted fused tricyclic 2,3-dihydro-1,3,4-oxadiazoles in high yields. PMID:26598296

  8. Stereoselective 6-exo radical cyclization using cis-vinyl sulfoxide: practical total synthesis of CTX3C.

    PubMed

    Yamashita, Shuji; Ishihara, Yuuki; Morita, Hiroyuki; Uchiyama, Junichi; Takeuchi, Katsutoshi; Inoue, Masayuki; Hirama, Masahiro

    2011-03-25

    Ciguatoxins, the principal causative toxins of ciguatera seafood poisoning, are large ladder-like polycyclic ethers. We report a highly stereoselective 6-exo radical cyclization/ring-closing olefin metathesis sequence to construct the syn/trans-fused polyether system. The new method was applied to the practical synthesis of ciguatoxin CTX3C. PMID:21250701

  9. Enantioselective Nickel-Catalyzed anti-Carbometallative Cyclizations of Alkynyl Electrophiles Enabled by Reversible Alkenylnickel E/Z Isomerization

    PubMed Central

    2016-01-01

    Nickel-catalyzed additions of arylboronic acids to alkynes, followed by enantioselective cyclizations of the alkenylnickel species onto tethered ketones or enones, are reported. These reactions are reliant upon the formal anti-carbonickelation of the alkyne, which is postulated to occur by the reversible E/Z isomerization of an alkenylnickel species. PMID:27333360

  10. Rh(iii)-catalyzed C-H activation/cyclization of oximes with alkenes for regioselective synthesis of isoquinolines.

    PubMed

    Chen, Renjie; Qi, Jifeng; Mao, Zhenjun; Cui, Sunliang

    2016-07-14

    A Rh(iii)-catalyzed C-H activation/cyclization of oximes and alkenes for facile and regioselective access to isoquinolines has been developed. This protocol features mild reaction conditions and easily accessible starting materials, and has been applied to the concise synthesis of moxaverine. A kinetic isotope effect study was conducted and a plausible mechanism was proposed. PMID:27273816

  11. Oxazolidines. 2. Synthesis of 2-methyloxazolidines by cyclization of vinyl ethers of 1,2-amino alcohols

    SciTech Connect

    Kukharev, B.F.; Stankevich, V.K.; Klimenko, G.R.; Terent'eva, V.P.; Kukhareva, V.A.

    1986-10-01

    A study has been made of the catalytic activity of a number of proton acids and Lewis acids, amongst which mercury salts were particularly active, in the cyclization of N-phenylethanolamine vinyl ether to 2-methyl-3-phenyloxazolidine. A method for the preparative synthesis of 2-methyloxazolidines has been developed.

  12. SYNTHESIS OF TETRAHYDROPYRAN DERIVATIVES VIA A NOVEL INDIUM TRICHLORIDE MEDIATED CROSS-CYCLIZATION BETWEEN EPOXIDES AND HOMOALLYL ALCOHOLS. (R822668)

    EPA Science Inventory

    Abstract

    A cross-cyclization between epoxides and homoallyl alcohols catalyzed by indium chloride generates tetrahydropyran derivatives in high yields.

    Graphical Abstract


    Interplay among side chain sequence, backbone composition, and residue rigidification in polypeptide folding and assembly

    PubMed Central

    Horne, W. Seth; Price, Joshua L.; Gellman, Samuel H.

    2008-01-01

    The extent to which polypeptide conformation depends on side-chain composition and sequence has been widely studied, but less is known about the importance of maintaining an α-amino acid backbone. Here, we examine a series of peptides with backbones that feature different repeating patterns of α- and β-amino acid residues but an invariant side-chain sequence. In the pure α-backbone, this sequence corresponds to the previously studied peptide GCN4-pLI, which forms a very stable four-helix bundle quaternary structure. Physical characterization in solution and crystallographic structure determination show that a variety of α/β-peptide backbones can adopt sequence-encoded quaternary structures similar to that of the α prototype. There is a loss in helix bundle stability upon β-residue incorporation; however, stability of the quaternary structure is not a simple function of β-residue content. We find that cyclically constrained β-amino acid residues can stabilize the folds of α/β-peptide GCN4-pLI analogues and restore quaternary structure formation to backbones that are predominantly unfolded in the absence of cyclic residues. Our results show a surprising degree of plasticity in terms of the backbone compositions that can manifest the structural information encoded in a sequence of amino acid side chains. These findings offer a framework for the design of nonnatural oligomers that mimic the structural and functional properties of proteins. PMID:18587049

  13. Base sequence dependence and backbone-induced effects on charge transport through DNA

    NASA Astrophysics Data System (ADS)

    Joe, Yong; Lee, Sun; Hedin, Eric

    2009-03-01

    We investigate quantum mechanical electron transmission along the long axis of the DNA molecule using a tight-binding model. Specifically, we use two different DNA models to study the charge transfer efficiency of synthetic ds-DNA. First, the generic form of a simple one-conduction channel model, called the fishbone model, is used. The sugar-phosphate backbone and the coupling amplitude between each site of the base and the backbone are incorporated into an energy-dependent on-site potential in the main DNA site. Here, individual sites represent a base-pair formed by either AT (TA) or GC (CG) pairs coupled via hydrogen bonds. Second, we employ a two-dimensional three-chain model where the backbone on-site energy, the coupling amplitude between the bases and the backbone, and a possible hopping of charge carriers between the successive backbone sites are used as key parameters. The overall transmission and the current-voltage characteristics are calculated to determine the influence of mismatch (impurity) effects in the DNA sequence. Finally, we discuss the transmission gap as a function of coupling between the bases and between the bases and the backbone. *One of the authors (E.R.H) is partially supported by a grant from the Center for Energy Research, Education, and Service (CERES) at Ball State University.

  14. AbDesign: an algorithm for combinatorial backbone design guided by natural conformations and sequences

    PubMed Central

    Lapidoth, Gideon D.; Baran, Dror; Pszolla, Gabriele M.; Norn, Christoffer; Alon, Assaf; Tyka, Michael D.; Fleishman, Sarel J.

    2016-01-01

    Computational design of protein function has made substantial progress, generating new enzymes, binders, inhibitors, and nanomaterials not previously seen in nature. However, the ability to design new protein backbones for function – essential to exert control over all polypeptide degrees of freedom – remains a critical challenge. Most previous attempts to design new backbones computed the mainchain from scratch. Here, instead, we describe a combinatorial backbone and sequence optimization algorithm called AbDesign, which leverages the large number of sequences and experimentally determined molecular structures of antibodies to construct new antibody models, dock them against target surfaces and optimize their sequence and backbone conformation for high stability and binding affinity. We used the algorithm to produce antibody designs that target the same molecular surfaces as nine natural, high-affinity antibodies; in six the backbone conformation at the core of the antibody binding surface is similar to the natural antibody targets, and in several cases sequence and sidechain conformations recapitulate those seen in the natural antibodies. In the case of an anti-lysozyme antibody, designed antibody CDRs at the periphery of the interface, such as L1 and H2, show a greater backbone conformation diversity than the CDRs at the core of the interface, and increase the binding surface area compared to the natural antibody, which could enhance affinity and specificity. PMID:25670500

  15. Domino Cyclization of 1,n-Enynes (n = 7, 8, 9) Giving Derivatives of Pyrane, Chromene, Fluorene, Phenanthrene and Dibenzo[7]annulene by Ruthenium Complexes.

    PubMed

    Ma, Hao-Wei; Chen, Pei-Min; Lo, Ji-Xian; Lin, Ying-Chih; Huang, Shou-Ling; Chen, Chi-Ren; Chia, Pi-Yeh

    2016-06-01

    Cyclization of the ether enyne 1 catalyzed by [Ru]NCCH3(+) ([Ru] = Cp(PPh3)2Ru) in CHCl3 generates a diastereomeric mixture of the substituted tetrahydropyran 11. Presumably, formation of an allenylidene complex is followed by a cyclization by nucleophilic addition of the olefinic group to Cγ of the ligand giving a boat-like six-membered ring. The diastereoselectivity is controlled by the 1,3-diaxial interaction. The vinylidene complex 7, a precursor of 11, is obtained from 1 and [Ru]Cl. In a mixture of MeOH/CHCl3, the domino cyclization of 1 further affords 14a, a chromene product catalytically. The second cyclization proceeds via nucleophilic addition of the resulting olefinic unit to Cα of 7. But the ether enyne 3 with a cyclopentyl ring on the olefinic unit undergoes only single cyclization due to steric effect. The propargyl alcohol and the two terminal methyl groups on the olefinic unit shape the cyclization. Thus, similar all-carbon 1,n-enynes (n = 7, 8, 9) 4-6 each with an aromatic linker undergo direct domino cyclization catalyzed by [Ru]NCCH3(+), to give derivatives of tricyclic fluorene, phenanthrene and dibenzo[7]annulene, respectively, with no intermediate observed. PMID:27132939

  16. Cyclization of substitued 2-(2-fluorophenylazo)azines to azino[1,2-c]benzo[d][1,2,4]triazinium derivatives

    PubMed Central

    Jankowiak, Aleksandra; Obijalska, Emilia

    2013-01-01

    Summary Light-induced cyclization of several substituted 2-(2-fluorophenylazo)azines in the presence of Ca2+ ions to the corresponding triazinium derivatives is investigated experimentally and computationally. The azo derivatives of 4-methylpyridine 4 undergo facile cyclization to the corresponding triazinium 1, and the rate of cyclization increases with increasing number of fluorine atoms at the benzene ring. No triazinium ions were obtained from azo derivatives of 4-cyanopyridine, pyrazine and pyrimidine, presumably due to their instability under the reaction conditions. The experimental results and mechanism are discussed with the aid of DFT computational results. PMID:24062855

  17. Unsaturated syn- and anti-1,2-amino alcohols by cyclization of allylic bis-trichloroacetimidates. stereoselectivity dependence on substrate configuration.

    PubMed

    Grigorjeva, Liene; Kinens, Artis; Jirgensons, Aigars

    2015-01-16

    Disubstituted allylic bis-imidates undergo Lewis acid catalyzed or spontaneous cyclization to oxazolines, which are precursors of unsaturated amino alcohols. Stereoselectivity of the cyclization is mainly determined by the substrate configuration. Highly selective cis-oxazoline formation is achieved starting from anti-E-bis-imidates while trans-oxazoline predominantly forms from anti-Z-bis-imidates. On the basis of DFT calculations, the stereoselectivity trends can be explained by the formation of the energetically most stable carbenium ion conformation, followed by the cyclization via most favorable bond rotations. PMID:25484278

  18. Cobalt-Catalyzed Cyclization of N-Methoxy Benzamides with Alkynes using an Internal Oxidant through C-H/N-O Bond Activation.

    PubMed

    Sivakumar, Ganesan; Vijeta, Arjun; Jeganmohan, Masilamani

    2016-04-18

    The cyclization of substituted N-methoxy benzamides with alkynes in the presence of an easily affordable cobalt complex and NaOAc provides isoquinolone derivatives in good to excellent yields. The cyclization reaction is compatible with a range of functional group-substituted benzamides, as well as ester- and alcohol-substituted alkynes. The cobalt complex [Co(III) Cp*(OR)2 ] (R=Me or Ac) serves as an efficient catalyst for the cyclization reaction. Later, isoquinolone derivatives were converted into 1-chloro and 1-bromo substituted isoquinoline derivatives in excellent yields in the presence of POCl3 or PBr3 . PMID:26951887

  19. Copper(I)/Ligand-Catalyzed 5-endo Radical Cyclization-Aromatization of 2,2,2-Trichloroethyl Vinyl Ethers: Synthesis of 2,3-Difunctionalized 4-Chlorofurans.

    PubMed

    Ram, Ram N; Gupta, Dharmendra Kumar; Soni, Vineet Kumar

    2016-02-19

    Copper(I)/ligand-catalyzed one pot synthesis of highly substituted 2,3-difunctionalized-4-chlorofurans has been reported. The reaction proceeds via a Cu(I)-catalyzed regioselective 5-endo-trig radical cyclization of 2,2,2-trichloroethyl vinyl ethers followed by the base-promoted dehydrochlorination. The success of the kinetically disfavored 5-endo cyclization was attributed to the formation of captodatively stabilized radical intermediate in the cyclization step and relatively high reaction temperature. Synthetic application of this protocol was also demonstrated in the preparation of alkyl and aryl substituted 4-chlorofuranonapthoquinones. PMID:26796068

  1. Cyclization of the Monoterpene Citronellal to Isopulegol: A Biomimetic Natural Product Synthesis

    NASA Astrophysics Data System (ADS)

    Jensen, Bruce L.; Malkawi, Ahmed; McGowan, Vanessa

    2000-11-01

    Cyclization of the monoterpene (S)-(--)-citronellal takes place rapidly in the presence of tin(IV) chloride in methylene chloride at 0 °C, affording the cyclic monoterpene isopulegol in a yield of 85%. The experiment reported here mimics the reaction found in the biosynthetic pathway leading to another well-known natural product, menthol. The starting material and final product display easily interpreted infrared and proton-NMR spectra. Coupling patterns and constants produced by the C-3 methine proton establish the all-equatorial substitution pattern of the cyclohexane ring system found in the product. Either a carbocation process or an ene reaction can be used to describe the mechanistic details of this reaction.

  2. Tuneable enhancement of the salt and thermal stability of polymeric micelles by cyclized amphiphiles

    PubMed Central

    Honda, Satoshi; Yamamoto, Takuya; Tezuka, Yasuyuki

    2013-01-01

    Cyclic molecules provide better stability for their aggregates. Typically in nature, the unique cyclic cell membrane lipids allow thermophilic archaea to inhabit extreme conditions. By mimicking the biological design, the robustness of self-assembled synthetic nanostructures is expected to be improved. Here we report topology effects by cyclized polymeric amphiphiles against their linear counterparts, demonstrating a drastic enhancement in the thermal, as well as salt stability of self-assembled micelles. Furthermore, through coassembly of the linear and cyclic amphiphiles, the stability was successfully tuned for a wide range of temperatures and salt concentrations. The enhanced thermal/salt stability was exploited in a halogen exchange reaction to stimulate the catalytic activity. The mechanism for the enhancement was also investigated. These topology effects by the cyclic amphiphiles offer unprecedented opportunities in polymer materials design unattainable by traditional means. PMID:23481382

  3. Synergistic effects between Lewis and Brønsted acids: application to the Prins cyclization.

    PubMed

    Breugst, Martin; Grée, René; Houk, K N

    2013-10-01

    Brønsted and Lewis acids can catalyze the Prins cyclization, an efficient method for the synthesis of tetrahydropyrans from homoallylic alcohols and carbonyl compounds. Synergistic effects between weak Brønsted and Lewis acids in these reactions have been analyzed by density functional theory [M06-L/def2-QZVP/IEFPCM(CH2Cl2)//M06-L/6-311+G(2df,2p)]. In order to characterize the reactivities of the employed Lewis acids, methyl anion and hydroxide affinities were determined. On the basis of our calculations, we found that the coordination of Lewis acids to carboxylic and sulfonic acids results in a significant increase in the Brønsted acidities of the latter. PMID:23984760

  4. Cyclization of gold acetylides: synthesis of vinyl sulfonates via gold vinylidene complexes.

    PubMed

    Bucher, Janina; Wurm, Thomas; Nalivela, Kumara Swamy; Rudolph, Matthias; Rominger, Frank; Hashmi, A Stephen K

    2014-04-01

    Differently substituted terminal alkynes that bear sulfonate leaving groups at an appropriate distance were converted in the presence of a propynyl gold(I) precatalyst. After initial formation of a gold acetylide, a cyclization takes place at the β-carbon atom of this species. Mechanistic studies support a mechanism that is related to that of dual gold-catalyzed reactions, but for the new substrates, only one gold atom is needed for substrate activation. After formation of a gold vinylidene complex, which forms a tight contact ion pair with the sulfonate leaving group, recombination of the two parts delivers vinyl sulfonates, which are valuable targets that can serve as precursors for cross-coupling reactions, for example. PMID:24596326

  5. Spectral assignments and structural studies of a warfarin derivative stereoselectively formed by tandem cyclization

    NASA Astrophysics Data System (ADS)

    Velayutham Pillai, M.; Rajeswari, K.; Vidhyasagar, T.

    2015-11-01

    The structural elucidation of a Mannich condensation product of rac-Warfarin with benzaldehyde and methyl amine was carried out using IR, Mass, 1H NMR, 13C NMR, 1H-1H COSY, 1H-13C COSY, DEPT-135, HMBC, NOESY spectra and single crystal X-ray diffraction. Formation of a new pyran ring via a tandem cyclization in the presence of methyl amine was observed. The optimized geometry and HOMO-LUMO energy gap along with other important physical parameters were found by Gaussian 09 program using HF 6-31G (d, p) and B3YLP/DFT 6-31G (d, p) level of theory. The preferred conformation of the piperidine ring in solution state was found to be chair from the NMR spectra. Single crystal X-ray diffraction and optimized geometry (by theoretical study) also confirms the chair conformation in the solid state.

  6. Cyclization characteristics of cyclodextrin glucanotransferase are conferred by the NH2-terminal region of the enzyme.

    PubMed Central

    Fujiwara, S; Kakihara, H; Woo, K B; Lejeune, A; Kanemoto, M; Sakaguchi, K; Imanaka, T

    1992-01-01

    Cyclodextrin glucanotransferase (CGTase; EC 2.4.1.19) is produced mainly by Bacillus strains. CGTase from Bacillus macerans IFO3490 produces alpha-cyclodextrin as the major hydrolysis product from starch, whereas thermostable CGTase from Bacillus stearothermophilus NO2 produces alpha- and beta-cyclodextrins. To analyze the cyclization characteristics of CGTase, we cloned different types of CGTase genes and constructed chimeric genes. CGTase genes from these two strains were cloned in Bacillus subtilis NA-1 by using pTB523 as a vector plasmid, and their nucleotide sequences were determined. Three CGTase genes (cgt-1, cgt-5, and cgt-232) were isolated from B. stearothermophilus NO2. Nucleotide sequence analysis revealed that the three CGTase genes have different nucleotide sequences encoding the same amino acid sequence. Base substitutions were found at the third letter of five codons among the three genes. Each open reading frame was composed of 2,133 bases, encoding 711 amino acids containing 31 amino acids as a signal sequence. The molecular weight of the mature enzyme was estimated to be 75,374. The CGTase gene (cgtM) of B. macerans IFO3490 was composed of 2,142 bases, encoding 714 amino acids containing 27 residues as a signal sequence. The molecular weight of the mature enzyme was estimated to be 74,008. The sequence determined in this work was quite different from that reported previously by other workers. From data on the three-dimensional structure of a CGTase, seven kinds of chimeric CGTase genes were constructed by using cgt-1 from B. stearothermophilus NO2 and cgtM from B. macerans IFO3490. We examined the characteristics of these chimeric enzymes on cyclodextrin production and thermostability. It was found that the cyclization reaction was conferred by the NH2-terminal region of CGTase and that the thermostability of some chimeric enzymes was lower than that of the parental CGTases. Images PMID:1476442

  7. Enhanced cellular uptake of short polyarginine peptides through fatty acylation and cyclization.

    PubMed

    Oh, Donghoon; Nasrolahi Shirazi, Amir; Northup, Kevin; Sullivan, Brian; Tiwari, Rakesh Kumar; Bisoffi, Marco; Parang, Keykavous

    2014-08-01

    Many of the reported arginine-rich cell-penetrating peptides (CPPs) for the enhanced delivery of drugs are linear peptides composed of more than seven arginine residues to retain the cell penetration properties. Herein, we synthesized a class of nine polyarginine peptides containing 5 and 6 arginines, namely, R5 and R6. We further explored the effect of acylation with long chain fatty acids (i.e., octanoic acid, dodecanoic acid, and hexadecanoic acid) and cyclization on the cell penetrating properties of the peptides. The fluorescence-labeled acylated cyclic peptide dodecanoyl-[R5] and linear peptide dodecanoyl-(R5) showed approximately 13.7- and 10.2-fold higher cellular uptake than that of control 5,6-carboxyfluorescein, respectively. The mechanism of the peptide internalization into cells was found to be energy-dependent endocytosis. Dodecanoyl-[R5] and dodecanoyl-[R6] enhanced the intracellular uptake of a fluorescence-labeled cell-impermeable negatively charged phosphopeptide (F'-GpYEEI) in human ovarian cancer cells (SK-OV-3) by 3.4-fold and 5.5-fold, respectively, as shown by flow cytometry. The cellular uptake of F'-GpYEEI in the presence of hexadecanoyl-[R5] was 9.3- and 6.0-fold higher than that in the presence of octanoyl-[R5] and dodecanoyl-[R5], respectively. Dodecanoyl-[R5] enhanced the cellular uptake of the phosphopeptide by 1.4-2.5-fold higher than the corresponding linear peptide dodecanoyl-(R5) and those of representative CPPs, such as hepta-arginine (CR7) and TAT peptide. These results showed that a combination of acylation by long chain fatty acids and cyclization on short arginine-containing peptides can improve their cell-penetrating property, possibly through efficient interaction of rigid positively charged R and hydrophobic dodecanoyl moiety with the corresponding residues in the cell membrane phospholipids. PMID:24978295

  8. Molecular Dynamics Simulations Elucidate Conformational Dynamics Responsible for the Cyclization Reaction in TEAS.

    PubMed

    Zhang, Fan; Chen, Nanhao; Wu, Ruibo

    2016-05-23

    The Mg-dependent 5-epi-aristolochene synthase from Nicotiana tabacum (called TEAS) could catalyze the linear farnesyl pyrophosphate (FPP) substrate to form bicyclic hydrocarbon 5-epi-aristolochene. The cyclization reaction mechanism of TEAS was proposed based on static crystal structures and quantum chemistry calculations in a few previous studies, but substrate FPP binding kinetics and protein conformational dynamics responsible for the enzymatic catalysis are still unclear. Herein, by elaborative and extensive molecular dynamics simulations, the loop conformation change and several crucial residues promoting the cyclization reaction in TEAS are elucidated. It is found that the unusual noncatalytic NH2-terminal domain is essential to stabilize Helix-K and the adjoining J-K loop of the catalytic COOH-terminal domain. It is also illuminated that the induce-fit J-K/A-C loop dynamics is triggered by Y527 and the optimum substrate binding mode in a "U-shape" conformation. The U-shaped ligand binding pose is maintained well with the cooperative interaction of the three Mg(2+)-containing coordination shell and conserved residue W273. Furthermore, the conserved Arg residue pair R264/R266 and aromatic residue pair Y527/W273, whose spatial orientations are also crucial to promote the closure of the active site to a hydrophobic pocket, as well as to form π-stacking interactions with the ligand, would facilitate the carbocation migration and electrophilic attack involving the catalytic reaction. Our investigation more convincingly proves the greater roles of the protein local conformational dynamics than do hints from the static crystal structure observations. Thus, these findings can act as a guide to new protein engineering strategies on diversifying the sesquiterpene products for drug discovery. PMID:27082764

  9. A cyclization-induced emission enhancement (CIEE)-based ratiometric fluorogenic and chromogenic probe for the facile detection of a nerve agent simulant DCP.

    PubMed

    Mahapatra, Ajit Kumar; Maiti, Kalipada; Manna, Saikat Kumar; Maji, Rajkishor; Mondal, Sanchita; Das Mukhopadhyay, Chitrangada; Sahoo, Prithidipa; Mandal, Debasish

    2015-06-14

    The first ratiometric fluorescent probe for the detection of a nerve agent simulant was developed based on tandem phosphorylation and intramolecular cyclization, by which high sensitivity as well as large emission shift could be achieved. PMID:25980383

  10. Diverse tandem cyclization reactions of o-cyanoanilines and diaryliodonium salts with copper catalyst for the construction of quinazolinimine and acridine scaffolds.

    PubMed

    Pang, Xinlong; Chen, Chao; Su, Xiang; Li, Ming; Wen, Lirong

    2014-12-01

    Two cyclization modes are realized to produce different nitrogen-containing heterocycles, i.e., quinazolin-4(3H)-imines and acridines by assembling o-cyanoanilines and diaryliodonium salts via tandem reaction pathways. PMID:25420123

  11. Regioselectivities in alkyne activation: synthesis of 2-(bicyclo[3.1.0]hexan-1-yl)furan derivatives by Au-catalyzed cyclization and cyclopropanation.

    PubMed

    Oh, Chang Ho; Lee, Su Jin; Lee, Ji Ho; Na, Yoon Jung

    2008-11-30

    2-Alkynyl-1-cycloalkenecarbaldehydes, in the presence of gold catalysts, undergo aurative cyclization via the 5-exo-dig mode to form Au-carbene intermediates which react with a double bond to form the corresponding cyclopropanes. PMID:19009084

  12. Tandem Suzuki-Miyaura coupling/acid-catalyzed cyclization between vinyl ether boronates and vinyl halides: a concise approach to polysubstituted furans.

    PubMed

    Butkevich, Alexey N; Meerpoel, Lieven; Stansfield, Ian; Angibaud, Patrick; Corbu, Andrei; Cossy, Janine

    2013-08-01

    Polysubstituted 2-(ω-hydroxyalkyl)furans were prepared by tandem Suzuki-Miyaura coupling/acid-catalyzed cyclization starting from appropriately substituted 3-haloallylic alcohols and dihydrofuran-, dihydropyran- or glycal-derived pinacol boronates. PMID:23855589

  13. Mechanism, reactivity, and selectivity in Rh(III)-catalyzed phosphoryl-directed oxidative C-H activation/cyclization: a DFT study.

    PubMed

    Liu, Liu; Wu, Yile; Wang, Tao; Gao, Xiang; Zhu, Jun; Zhao, Yufen

    2014-06-01

    Density functional theory calculations (DFT) have been performed on Rh(III)-catalyzed phosphoryl-directed oxidative C-H activation/cyclization to investigate the detailed mechanism, including four basic steps: C-H activation, alkyne insertion, reductive elimination, and catalyst recycling, each of which consists of different steps. Interestingly, the Rh(III)-AgOAc catalyst system was found to be more favorable in the C-H activation step in comparison with the Rh(III)-Ag2CO3 system, whereas the Rh(I)-Ag2CO3 catalyst system was more efficient for catalyst recycling. Importantly, our calculations suggest that the alkyne insertion process is a reversible step. Reductive elimination is the rate-determining step with an activation energy of 25.0 kcal/mol. In addition, the origin of the reactivity and selectivity difference between diarylacetylenes and dialkylacetylenes or electron-rich and electron-deficient diarylacetylenes was probed by means of comparative DFT calculations. The calculation results show that the electronic effects of alkynes play a key role in the reactivity and selectivity, in line with the experimental observations that diarylacetylenes and electron-rich diarylacetylenes are more reactive than dialkylacetylenes and electron-deficient diarylacetylenes, respectively. Our findings should be useful for further developments of transition-metal-catalyzed C-H activation reactions. PMID:24815788

  14. A ruthenium(II) complex as turn-on Cu(II) luminescent sensor based on oxidative cyclization mechanism and its application in vivo

    PubMed Central

    Zhang, Yunfei; Liu, Zonglun; Yang, Kui; Zhang, Yi; Xu, Yongqian; Li, Hongjuan; Wang, Chaoxia; Lu, Aiping; Sun, Shiguo

    2015-01-01

    Copper ions play a vital role in a variety of fundamental physiological processes not only in human beings and plants, but also for extensive insects and microorganisms. In this paper, a novel water-soluble ruthenium(II) complex as a turn-on copper(II) ions luminescent sensor based on o-(phenylazo)aniline was designed and synthesized. The azo group would undergo a specific oxidative cyclization reaction with copper(II) ions and turn into high luminescent benzotriazole, triggering significant luminescent increasements which were linear to the concentrations of copper(II) ions. The sensor distinguished by its high sensitivity (over 80-fold luminescent switch-on response), good selectivity (the changes of the emission intensity in the presence of other metal ions or amino acids were negligible) and low detection limit (4.42 nM) in water. Moreover, the copper(II) luminescent sensor exhibited good photostability under light irradiation. Furthermore, the applicability of the proposed sensor in biological samples assay was also studied and imaged copper(II) ions in living pea aphids successfully. PMID:25640000

  15. A ruthenium(II) complex as turn-on Cu(II) luminescent sensor based on oxidative cyclization mechanism and its application in vivo.

    PubMed

    Zhang, Yunfei; Liu, Zonglun; Yang, Kui; Zhang, Yi; Xu, Yongqian; Li, Hongjuan; Wang, Chaoxia; Lu, Aiping; Sun, Shiguo

    2015-01-01

    Copper ions play a vital role in a variety of fundamental physiological processes not only in human beings and plants, but also for extensive insects and microorganisms. In this paper, a novel water-soluble ruthenium(II) complex as a turn-on copper(II) ions luminescent sensor based on o-(phenylazo)aniline was designed and synthesized. The azo group would undergo a specific oxidative cyclization reaction with copper(II) ions and turn into high luminescent benzotriazole, triggering significant luminescent increasements which were linear to the concentrations of copper(II) ions. The sensor distinguished by its high sensitivity (over 80-fold luminescent switch-on response), good selectivity (the changes of the emission intensity in the presence of other metal ions or amino acids were negligible) and low detection limit (4.42 nM) in water. Moreover, the copper(II) luminescent sensor exhibited good photostability under light irradiation. Furthermore, the applicability of the proposed sensor in biological samples assay was also studied and imaged copper(II) ions in living pea aphids successfully. PMID:25640000

  16. A ruthenium(II) complex as turn-on Cu(II) luminescent sensor based on oxidative cyclization mechanism and its application in vivo

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfei; Liu, Zonglun; Yang, Kui; Zhang, Yi; Xu, Yongqian; Li, Hongjuan; Wang, Chaoxia; Lu, Aiping; Sun, Shiguo

    2015-02-01

    Copper ions play a vital role in a variety of fundamental physiological processes not only in human beings and plants, but also for extensive insects and microorganisms. In this paper, a novel water-soluble ruthenium(II) complex as a turn-on copper(II) ions luminescent sensor based on o-(phenylazo)aniline was designed and synthesized. The azo group would undergo a specific oxidative cyclization reaction with copper(II) ions and turn into high luminescent benzotriazole, triggering significant luminescent increasements which were linear to the concentrations of copper(II) ions. The sensor distinguished by its high sensitivity (over 80-fold luminescent switch-on response), good selectivity (the changes of the emission intensity in the presence of other metal ions or amino acids were negligible) and low detection limit (4.42 nM) in water. Moreover, the copper(II) luminescent sensor exhibited good photostability under light irradiation. Furthermore, the applicability of the proposed sensor in biological samples assay was also studied and imaged copper(II) ions in living pea aphids successfully.

  17. Engineering of indole-based tethered biheterocyclic alkaloid meridianin into β-carboline-derived tetracyclic polyheterocycles via amino functionalization/6-endo cationic π-cyclization

    PubMed Central

    Agarwal, Piyush Kumar; Dathi, Meena Devi; Saifuddin, Mohammad

    2012-01-01

    Summary A mild, efficient and versatile method has been developed for the construction of a functionalized natural product, meridianin, and its post conversion to pyrimido-β-carboline by cationic π- cyclization. The strategy involves the introduction of an amino group at the C-5 of the pyrimidine ring and utilizing the nucleophilictiy of the C-2 in the indole ring to facilitate cationic π-cyclization. PMID:23209529

  18. Synthesis of 2,3-Disubstituted Benzo[b]furans by the Palladium-Catalyzed Coupling of o-Iodoanisoles and Terminal Alkynes, Followed by Electrophilic Cyclization

    PubMed Central

    Yue, Dawei; Yao, Tuanli; Larock, Richard C.

    2008-01-01

    2,3-Disubstituted benzo[b]furans are readily prepared under very mild reaction conditions by the palladium/copper-catalyzed cross-coupling of various o-iodoanisoles and terminal alkynes, followed by electrophilic cyclization using I2, PhSeCl or p-O2NC6H4SCl. Aryl- and vinylic-substituted alkynes undergo electrophilic cyclization in excellent yields. Biologically important furopyridines can be prepared by this approach in high yields. PMID:16323837

  19. Synthesis of isoquinolines via Rh-catalyzed C-H activation/C-N cyclization with diazodiesters or diazoketoesters as a C2 source.

    PubMed

    Wang, Jie; Zha, Shanke; Chen, Kehao; Zhang, Feifei; Zhu, Jin

    2016-06-01

    Synthesis of isoquinolines based on efficient C-C and C-N bond formation through Rh(iii)-catalyzed C-H activation and subsequent intramolecular cyclization is reported. Diazodiesters serving as a C2 source in the newly formed heterocycles are first demonstrated. Additionally, the Rh(iii)-catalyzed direct C-H activation/cyclization of benzimidates with diazoketoesters is also described. PMID:27146107

  20. Access to Isoquinolines and Isoquinolin-3-ols via Rh(III)-Catalyzed Coupling/Cyclization Cascade Reaction of Arylimidates and Diazo Compounds.

    PubMed

    Li, Xing Guang; Sun, Min; Jin, Qiao; Liu, Kai; Liu, Pei Nian

    2016-05-01

    A Rh(III)-catalyzed coupling/cyclization cascade reaction is described, which involves arylimidates and diazo compounds and proceeds via intermolecular C-C bond formation and subsequent intramolecular C-N bond formation. Mechanistic investigation revealed that the reaction is a two-step process: the initial Rh(III)-catalyzed coupling/cyclization proceeds very fast and the following dehydration is rather slow. The reaction provides a direct approach to isoquinolines and isoquinolin-3-ols without any oxidants. PMID:27042947

  1. Efficient construction of the oxatricyclo[6.3.1.0(0,0)]dodecane core of komaroviquinone using a cyclization/cycloaddition cascade of a rhodium carbenoid intermediate.

    PubMed

    Padwa, Albert; Boonsombat, Jutatip; Rashatasakhon, Paitoon; Willis, Jerremey

    2005-08-18

    The rhodium(II)-catalyzed cyclization/cycloaddition cascade of a o-carbomethoxyaryl diazo dione is described as a potential route to the oxatricyclo[6.3.1.0(0,0)]dodecane substructure of the icetexane diterpene komaroviquinone. The initially formed carbonyl ylide dipole prefers to cyclize to an epoxide at 25 degrees C but can be induced to undergo cycloaddition across the tethered pi-bond at higher temperatures. [reaction: see text] PMID:16092860

  2. Diffraction in resonant electron scattering from helical macromolecules: Effects of the DNA backbone

    SciTech Connect

    Caron, Laurent; Sanche, Leon

    2005-09-15

    We recently developed a theoretical framework to treat low-energy electron scattering from helical macromolecules. In this article, we use this framework to extend our previous model of simple base-pair scatterers, organized into the DNA structure, to include the backbone. The internal diffraction pattern due to base pairs is still present, but addition of the backbone screens the base pairs by a factor of 2. More interestingly, the effect of constructive interference on the phosphate groups within the backbone itself is seen to be strong at lower energies. We perform a calculation for electrons incident perpendicular and parallel to the axis of a fragment and find comparable electron patterns on the phosphate groups at the surface of films consisting of vertically or horizontally arranged segments relative to the substrate.

  3. Automated Real-Space Refinement of Protein Structures Using a Realistic Backbone Move Set

    PubMed Central

    Haddadian, Esmael J.; Gong, Haipeng; Jha, Abhishek K.; Yang, Xiaojing; DeBartolo, Joe; Hinshaw, James R.; Rice, Phoebe A.; Sosnick, Tobin R.; Freed, Karl F.

    2011-01-01

    Crystals of many important biological macromolecules diffract to limited resolution, rendering accurate model building and refinement difficult and time-consuming. We present a torsional optimization protocol that is applicable to many such situations and combines Protein Data Bank-based torsional optimization with real-space refinement against the electron density derived from crystallography or cryo-electron microscopy. Our method converts moderate- to low-resolution structures at initial (e.g., backbone trace only) or late stages of refinement to structures with increased numbers of hydrogen bonds, improved crystallographic R-factors, and superior backbone geometry. This automated method is applicable to DNA-binding and membrane proteins of any size and will aid studies of structural biology by improving model quality and saving considerable effort. The method can be extended to improve NMR and other structures. Our backbone score and its sequence profile provide an additional standard tool for evaluating structural quality. PMID:21843481

  4. Remote Enantioselection Transmitted by an Achiral Peptide Nucleic Acid Backbone

    NASA Technical Reports Server (NTRS)

    Kozlov, Igor A.; Orgel, Leslie E.; Nielsen, Peter E.

    2000-01-01

    short homochiral segment of DNA into a PNA helix could have guaranteed that the next short segment of DNA to be incorporated would have the same handedness as the first. Once two segments of the same handedness were present, the probability that a third segment would have the same handedness would increase, and so on. Evolution could then slowly dilute out the PNA part. This scenario would ultimately allow the formation of a chiral oligonucleotide by processes that are largely resistant to enantiomeric crossinhibition. It is important to note that the ligation of homochiral dinucleotides on a nucleic acid template would probably be at least as enantiospecific as the reaction that we have studied. The disadvantage of using chiral monomers as components of a replicating system arises from the difficulty of generating a first long homochiral template from a racemic mixture of monomers, although results of experiments designed to overcome this difficulty by employing homochiral tetramers have been reported.l l The probability of obtaining a homochiral n-mer from achiral substrates is approximately 1P-I if the nontemplate-directed extension of the primer is not enantioselective. Hence, it would be very hard to get started with a homochiral 40-mer, for example. No such difficulty exists in a scenario that originates with an achiral genetic material and in which the incorporation of very few chiral monomers in this achiral background gradually progresses towards homochirality. It seems possible that some PNA sequences could act as catalysts, analogous to ribozymes, even though PNA lacks clear metal binding sites. Although such catalysts could not be enantioselective, the incorporation of as few as two chiral nucleotides could then impose chiral specificity on the system. Furthermore, such patch chimeras could help to bridge the gap in catalytic potential between PNA and RNA, while guaranteeing enantioselectivity.

  5. I2 mediated synthesis of 5-substituted-3-methyl/benzyl-1,3,4-oxadiazol-2(3H)-ones via sequential condensation/oxidative cyclization and rearrangement.

    PubMed

    Patel, Shyam Sunder; Chandna, Nisha; Kumar, Shreemoyee; Jain, Nidhi

    2016-06-15

    A simple and efficient iodine-assisted protocol for the synthesis of 5-substituted-3-methyl/benzyl-1,3,4-oxadiazol-2(3H)-ones has been developed. The reaction involves a sequential condensation followed by tandem oxidative cyclization and rearrangement of readily available methyl/benzyl carbazates and aldehydes as starting substrates. The presence of iodine and base promotes intramolecular C-O bond formation, followed by Chapman-like rearrangement at 90 °C of the methyl/benzyl group in the hydrazone intermediate formed during the condensation step. This transition-metal-free approach has been adopted to generate a variety of oxadiazolones under mild conditions in good to excellent yields. PMID:26853373

  6. Solvation thermodynamics of amino acid side chains on a short peptide backbone

    SciTech Connect

    Hajari, Timir; Vegt, Nico F. A. van der

    2015-04-14

    The hydration process of side chain analogue molecules differs from that of the actual amino acid side chains in peptides and proteins owing to the effects of the peptide backbone on the aqueous solvent environment. A recent molecular simulation study has provided evidence that all nonpolar side chains, attached to a short peptide backbone, are considerably less hydrophobic than the free side chain analogue molecules. In contrast to this, the hydrophilicity of the polar side chains is hardly affected by the backbone. To analyze the origin of these observations, we here present a molecular simulation study on temperature dependent solvation free energies of nonpolar and polar side chains attached to a short peptide backbone. The estimated solvation entropies and enthalpies of the various amino acid side chains are compared with existing side chain analogue data. The solvation entropies and enthalpies of the polar side chains are negative, but in absolute magnitude smaller compared with the corresponding analogue data. The observed differences are large; however, owing to a nearly perfect enthalpy-entropy compensation, the solvation free energies of polar side chains remain largely unaffected by the peptide backbone. We find that a similar compensation does not apply to the nonpolar side chains; while the backbone greatly reduces the unfavorable solvation entropies, the solvation enthalpies are either more favorable or only marginally affected. This results in a very small unfavorable free energy cost, or even free energy gain, of solvating the nonpolar side chains in strong contrast to solvation of small hydrophobic or nonpolar molecules in bulk water. The solvation free energies of nonpolar side chains have been furthermore decomposed into a repulsive cavity formation contribution and an attractive dispersion free energy contribution. We find that cavity formation next to the peptide backbone is entropically favored over formation of similar sized nonpolar side

  7. Convenient and Scalable Synthesis of Fmoc-Protected Peptide Nucleic Acid Backbone

    PubMed Central

    Feagin, Trevor A.; Shah, Nirmal I.; Heemstra, Jennifer M.

    2012-01-01

    The peptide nucleic acid backbone Fmoc-AEG-OBn has been synthesized via a scalable and cost-effective route. Ethylenediamine is mono-Boc protected, then alkylated with benzyl bromoacetate. The Boc group is removed and replaced with an Fmoc group. The synthesis was performed starting with 50 g of Boc anhydride to give 31 g of product in 32% overall yield. The Fmoc-protected PNA backbone is a key intermediate in the synthesis of nucleobase-modified PNA monomers. Thus, improved access to this molecule is anticipated to facilitate future investigations into the chemical properties and applications of nucleobase-modified PNA. PMID:22848796

  8. Convenient and scalable synthesis of fmoc-protected Peptide nucleic Acid backbone.

    PubMed

    Feagin, Trevor A; Shah, Nirmal I; Heemstra, Jennifer M

    2012-01-01

    The peptide nucleic acid backbone Fmoc-AEG-OBn has been synthesized via a scalable and cost-effective route. Ethylenediamine is mono-Boc protected, then alkylated with benzyl bromoacetate. The Boc group is removed and replaced with an Fmoc group. The synthesis was performed starting with 50 g of Boc anhydride to give 31 g of product in 32% overall yield. The Fmoc-protected PNA backbone is a key intermediate in the synthesis of nucleobase-modified PNA monomers. Thus, improved access to this molecule is anticipated to facilitate future investigations into the chemical properties and applications of nucleobase-modified PNA. PMID:22848796

  9. Using Excel To Study The Relation Between Protein Dihedral Angle Omega And Backbone Length

    NASA Astrophysics Data System (ADS)

    Shew, Christopher; Evans, Samari; Tao, Xiuping

    How to involve the uninitiated undergraduate students in computational biophysics research? We made use of Microsoft Excel to carry out calculations of bond lengths, bond angles and dihedral angles of proteins. Specifically, we studied protein backbone dihedral angle omega by examining how its distribution varies with the length of the backbone length. It turns out Excel is a respectable tool for this task. An ordinary current-day desktop or laptop can handle the calculations for midsized proteins in just seconds. Care has to be taken to enter the formulas for the spreadsheet column after column to minimize the computing load. Supported in part by NSF Grant #1238795.

  10. Polyboramines for Hydrogen Release: Polymers Containing Lewis Pairs in their Backbone.

    PubMed

    Ledoux, Audrey; Larini, Paolo; Boisson, Christophe; Monteil, Vincent; Raynaud, Jean; Lacôte, Emmanuel

    2015-12-21

    The one-step polycondensation of diamines and diboranes triggered by the in situ deprotonation of the diammonium salts and concomitant reduction of bisboronic acids leads to the assembly of polymer chains through multiple Lewis pairing in their backbone. These new polyboramines are dihydrogen reservoirs that can be used for the hydrogenation of imines and carbonyl compounds. They also display a unique dihydrogen thermal release profile that is a direct consequence of the insertion of the amine-borane linkages in the polymeric backbone. PMID:26563914

  11. Electric field induced localization phenomena in a ladder network with superlattice configuration: Effect of backbone environment

    NASA Astrophysics Data System (ADS)

    Dutta, Paramita; Maiti, Santanu K.; Karmakar, S. N.

    2014-09-01

    Electric field induced localization properties of a tight-binding ladder network in presence of backbone sites are investigated. Based on Green's function formalism we numerically calculate two-terminal transport together with density of states for different arrangements of atomic sites in the ladder and its backbone. Our results lead to a possibility of getting multiple mobility edges which essentially plays a switching action between a completely opaque to fully or partly conducting region upon the variation of system Fermi energy, and thus, support in fabricating mesoscopic or DNA-based switching devices.

  12. Sequential electrophilic trifluoromethanesulfanylation-cyclization of tryptamine derivatives: synthesis of C(3)-trifluoromethanesulfanylated hexahydropyrrolo[2,3-b]indoles.

    PubMed

    Yang, Yi; Jiang, Xueliang; Qing, Feng-Ling

    2012-09-01

    A practical and efficient synthesis of C(3)-trifluoromethanesulfanylated hexahydropyrrolo[2,3-b]indoles 5 from tryptamine derivatives was described. The features of this synthesis included electrophilic activation of C(3) of tryptamine derivatives with "CF(3)S(+)" and cascade ring cyclization by carbamate nucleophile attacking at C(2). Surprisingly, when Lewis acid (BF(3)·OEt(2)) was used as activator instead of proton acid (TsOH·H(2)O) for the electrophilic trifluoromethanesulfanylation of tryptamine derivatives, the uncyclized product 6 was formed preferentially. This sequential trifluoromethanesulfanylation-cyclization protocol was used to synthesize several pyrrolidinoindolinic alkaloid analogues. The cytotoxicity activities of these trifluoromethanesulfanylated alkaloid analogues were evaluated against three cancer cell lines (K562, HeLa, L929). PMID:22889233

  13. Divergent synthesis of chiral heterocycles via sequencing of enantioselective three-component reactions and one-pot subsequent cyclization reactions.

    PubMed

    Tang, Min; Xing, Dong; Huang, Haoxi; Hu, Wenhao

    2015-07-01

    A highly efficient sequencing of catalytic asymmetric three-component reactions of alcohols, diazo compounds and aldimines/aldehydes with one-pot subsequent cyclization reactions was reported. The development of a robust and versatile Rh(ii)/Zr(iv)-BINOL co-catalytic system not only gives high diastereo- and enantioselective controls of the three-component reaction, but also shows excellent functionality tolerances that allow a wide range of functionalities to be pre-installed in each component and readily undergo one-pot subsequent cyclization reactions, thus providing rapid and diversity-oriented synthesis (DOS) of different types of chiral nitrogen- and/or oxygen-containing polyfunctional heterocycles. PMID:25864421

  14. Oxidative cyclization reaction of 2-aryl-substituted cinnamates to form phenanthrene carboxylates by using MoCl5.

    PubMed

    Wehming, Kathrin; Schubert, Moritz; Schnakenburg, Gregor; Waldvogel, Siegfried R

    2014-09-22

    The oxidative cyclization reaction of 2-aryl cinnamates and derivatives thereof can be easily performed with MoCl5 as the oxidant. This powerful reagent allows oxidative coupling reactions for which other reagents fail. The best results are obtained when the 2-phenyl substituent of the cinnamate is equipped with two methoxy groups. Even iodo moieties in the bay region of phenanthrene are tolerated under the reaction conditions. If naphthalene moieties are involved, a rearrangement of the skeleton occurs, providing an elegant route to highly functionalized angular arenes. The cyclization is demonstrated for 15 example substrates with isolated yields of up to 99 % for the phenanthrene derivative. The broad scope of the reaction underlines the usefulness of MoCl5 and MoCl5 /TiCl4 in the oxidative coupling reaction. PMID:25043751

  15. Stereodivergent Synthesis of Functionalized Tetrahydropyrans Accelerated by Mechanism-Based Allylboration and Bioinspired Oxa-Michael Cyclization.

    PubMed

    Yang, Lin; Lin, Zuming; Huang, Sha-Hua; Hong, Ran

    2016-05-17

    A stereodivergent strategy enabled by bioinspired oxa-Michael cyclization was developed for the synthesis of functionalized tetrahydropyrans on the basis of the inherent symmetry in 1,3-diols, the symmetries of which were tunable by stereoselective hydroboration of an allene with a variety of alkylborane reagents and subsequent allylation of an aldehyde. The mechanism-based utilization of monoalkyl borane in the hydroboration and allylation cascade is unprecedented. PMID:27072483

  16. Nazarov cyclization of divinyl and arylvinyl epoxides: application in the synthesis of resveratrol-based natural products.

    PubMed

    Sudhakar, Gangarajula; Satish, Kovela

    2015-04-20

    New variation in the Nazarov cyclization has been developed by preparing divinyl and arylvinyl epoxides as pentadienyl cation precursors for the first time. Highly substituted cyclopentadienes, hydrindienes, and indenes were synthesized to demonstrate the compatibility of this reaction with substrates bearing a variety of substitutions and having different types of epoxides. Application of this method in the synthesis of resveratrol-based natural products was also demonstrated. PMID:25760544

  17. Rhodium(III)-Catalyzed Cascade Cyclization/Electrophilic Amidation for the Synthesis of 3-Amidoindoles and 3-Amidofurans.

    PubMed

    Hu, Zhiyong; Tong, Xiaofeng; Liu, Guixia

    2016-05-01

    A rhodium(III)-catalyzed cascade cyclization/electrophilic amidation using N-pivaloyloxylamides as the electrophilic nitrogen source has been developed. This protocol provides an efficient route for the synthesis of 3-amidoindoles and 3-amidofurans under mild conditions with good functional group tolerance. The synthetic utility of this reaction has been demonstrated through the derivatization of the 3-amidoindoles to several heterocycle-fused indoles. PMID:27151555

  18. Photoredox-Catalyzed Tandem Insertion/Cyclization Reactions of Difluoromethyl and 1,1-Difluoroalkyl Radicals with Biphenyl Isocyanides.

    PubMed

    Zhang, Zuxiao; Tang, Xiaojun; Dolbier, William R

    2015-09-18

    Using visible-light photoredox conditions, difluoromethylation and 1,1-difluoroalkylation of biphenyl isocyanides have allowed the synthesis of a series of 6-(difluoromethyl)- and 6-(1,1-difluoroalkyl)phenanthridines via tandem addition/cyclization/oxidation processes. The reactions are carried out in wet dioxane at room temperature using fac-Ir(ppy)3 as catalyst to form a large variety of substituted phenanthridine products in good to excellent yield. PMID:26336815

  19. Convergent Synthesis of Diverse Nitrogen Heterocycles via Rh(III)-Catalyzed C-H Conjugate Addition/Cyclization Reactions.

    PubMed

    Weinstein, Adam B; Ellman, Jonathan A

    2016-07-01

    The development of Rh(III)-catalyzed C-H conjugate addition/cyclization reactions that provide access to synthetically useful fused bi- and tricyclic nitrogen heterocycles is reported. A broad scope of C-H functionalization substrates and electrophilic olefin coupling partners is effective, and depending on the nature of the directing group, cyclic imide, amide, or heteroaromatic products are obtained. An efficient synthesis of a pyrrolophenanthridine alkaloid natural product, oxoassoanine, highlights the utility of this method. PMID:27337641

  20. Reprogramming the Chemodiversity of Terpenoid Cyclization by Remolding the Active Site Contour of epi-Isozizaene Synthase

    PubMed Central

    2015-01-01

    The class I terpenoid cyclase epi-isozizaene synthase (EIZS) utilizes the universal achiral isoprenoid substrate, farnesyl diphosphate, to generate epi-isozizaene as the predominant sesquiterpene cyclization product and at least five minor sesquiterpene products, making EIZS an ideal platform for the exploration of fidelity and promiscuity in a terpenoid cyclization reaction. The hydrophobic active site contour of EIZS serves as a template that enforces a single substrate conformation, and chaperones subsequently formed carbocation intermediates through a well-defined mechanistic sequence. Here, we have used the crystal structure of EIZS as a guide to systematically remold the hydrophobic active site contour in a library of 26 site-specific mutants. Remolded cyclization templates reprogram the reaction cascade not only by reproportioning products generated by the wild-type enzyme but also by generating completely new products of diverse structure. Specifically, we have tripled the overall number of characterized products generated by EIZS. Moreover, we have converted EIZS into six different sesquiterpene synthases: F96A EIZS is an (E)-β-farnesene synthase, F96W EIZS is a zizaene synthase, F95H EIZS is a β-curcumene synthase, F95M EIZS is a β-acoradiene synthase, F198L EIZS is a β-cedrene synthase, and F96V EIZS and W203F EIZS are (Z)-γ-bisabolene synthases. Active site aromatic residues appear to be hot spots for reprogramming the cyclization cascade by manipulating the stability and conformation of critical carbocation intermediates. A majority of mutant enzymes exhibit only relatively modest 2–100-fold losses of catalytic activity, suggesting that residues responsible for triggering substrate ionization readily tolerate mutations deeper in the active site cavity. PMID:24517311

  1. Site-specific in situ growth of a cyclized protein-polymer conjugate with improved stability and tumor retention.

    PubMed

    Hu, Jin; Zhao, Wenguo; Gao, Yan; Sun, Mengmeng; Wei, Yen; Deng, Haiteng; Gao, Weiping

    2015-04-01

    A major disadvantage of therapeutic proteins is their instability to external stressors during storage, transport and use. Here, we report site-specific in situ growth of a cyclized protein-polymer conjugate with improved in vitro and in vivo stability. Green fluorescence protein (GFP) was genetically fused at its N- and C-termini with two sortase recognition sequences pentaglycine and LPETG, respectively to yield a linear GFP (l-GFP). A cyclized GFP (c-GFP) was generated from the l-GFP by sortase-catalyzed cyclization. A maleimide-functionalized atom transfer radical polymerization (ATRP) initiator was selectively attached to a free cysteine residue genetically engineered at the C-terminus of GFP to form a macroinitiator (c-GFP-Br). Subsequent in situ ATRP of oligo(ethylene glycol) methyl ether methacrylate (OEGMA) from the c-GFP-Br generated a site-specific (C-terminal) and stoichiometric (1:1) c-GFP-POEGMA conjugate with almost quantitative conversion and highly retained activity. Notably, the c-GFP-POEGMA conjugate showed 9- and 310-fold increases in thermal stability as compared to the l-GFP and its counterpart l-GFP-POEGMA, respectively. Additionally, the conjugate displayed significantly improved tumor retention relative to the l-GFP and l-GFP-POEGMA. The method developed may be applicable to a variety of therapeutic proteins to improve their in vitro and in vivo stability. PMID:25682156

  2. 7-N-(mercaptoalkyl)mitomycins: implications of cyclization for drug function.

    PubMed

    Na, Younghwa; Wang, Shuang; Kohn, Harold

    2002-05-01

    The Kyowa Hakko Kogyo and Bristol-Myers Squibb companies reported that select mitomycin C(7) aminoethylene disulfides displayed improved pharmacological profiles compared with mitomycin C (1). Mechanisms have been advanced for these mitomycins that differ from 1. Central to many of these hypotheses is the intermediate generation of 7-N-(2-mercaptoethyl)mitomycin C (5). Thiol 5 has been neither isolated nor characterized. Two efficient methods were developed for mitomycin (porfiromycin) C(7)-substituted thiols. In the first method, the thiol was produced by a thiol-mediated disulfide exchange process using an activated mixed mitomycin disulfide. In the second route, the thiol was generated by base-mediated cleavage of a porfiromycin C(7)-substituted thiol ester. We selected four thiols, 7-N-(2-mercaptoethyl)mitomycin C (5), 7-N-(2-mercaptoethyl)porfiromycin (12), 7-N-(2-mercapto-2-methylpropyl)mitomycin C (13), and 7-N-(3-mercaptopropyl)porfiromycin (14), for study. Thiols 5 and 12-14 differed in the composition of the alkyl linker that bridged the thiol with the mitomycin (porfiromycin) C(7) amino substituent. Thiol generation was documented by HPLC and spectroscopic studies and by thiol-trapping experiments. The linker affected the structure of the thiol species and the stability of the thiol. We observed that thiols 5 and 12 existed largely as their cyclic isomers. Evidence is presented that cyclization predominantly occurred at the mitomycin C(7) position. Correspondingly, alkyl linker substitution (13) or extension of the linker to three carbons (14) led to enhanced thiol stability and the predominant formation of the free thiol species. The dominant reaction of thiols 5 and 12-14 or their isomers was dimerization, and we found no evidence that thiol formation led to mitosene production and aziridine ring-opening. These findings indicated that thiol generation was not sufficient for mitomycin ring activation. The potential pharmacological advantages of

  3. Structural Insights into the Role of the Cyclic Backbone in a Squash Trypsin Inhibitor*

    PubMed Central

    Daly, Norelle L.; Thorstholm, Louise; Greenwood, Kathryn P.; King, Gordon J.; Rosengren, K. Johan; Heras, Begoña; Martin, Jennifer L.; Craik, David J.

    2013-01-01

    MCoTI-II is a head-to-tail cyclic peptide with potent trypsin inhibitory activity and, on the basis of its exceptional proteolytic stability, is a valuable template for the design of novel drug leads. Insights into inhibitor dynamics and interactions with biological targets are critical for drug design studies, particularly for protease targets. Here, we show that the cyclization and active site loops of MCoTI-II are flexible in solution, but when bound to trypsin, the active site loop converges to a single well defined conformation. This finding of reduced flexibility on binding is in contrast to a recent study on the homologous peptide MCoTI-I, which suggested that regions of the peptide are more flexible upon binding to trypsin. We provide a possible explanation for this discrepancy based on degradation of the complex over time. Our study also unexpectedly shows that the cyclization loop, not present in acyclic homologues, facilitates potent trypsin inhibitory activity by engaging in direct binding interactions with trypsin. PMID:24169696

  4. Metal-free one-pot synthesis of 2-substituted and 2,3-disubstituted morpholines from aziridines

    PubMed Central

    Sun, Hongnan; Huang, Binbin; Lin, Run; Yang, Chao

    2015-01-01

    Summary The metal-free synthesis of 2-substituted and 2,3-disubstituted morpholines through a one-pot strategy is described. A simple and inexpensive ammonium persulfate salt enables the reaction of aziridines with halogenated alcohols to proceed via an SN2-type ring opening followed by cyclization of the resulting haloalkoxy amine. PMID:25977727

  5. Metal-free one-pot synthesis of 2-substituted and 2,3-disubstituted morpholines from aziridines.

    PubMed

    Sun, Hongnan; Huang, Binbin; Lin, Run; Yang, Chao; Xia, Wujiong

    2015-01-01

    The metal-free synthesis of 2-substituted and 2,3-disubstituted morpholines through a one-pot strategy is described. A simple and inexpensive ammonium persulfate salt enables the reaction of aziridines with halogenated alcohols to proceed via an SN2-type ring opening followed by cyclization of the resulting haloalkoxy amine. PMID:25977727

  6. Development of novel bifunctional chelating agents containing rigid cyclic hydrocarbon backbones

    SciTech Connect

    Sweet, M.P.; Joshi, V.; Mease, R.C.

    1995-05-01

    We are developing a new class of ligands in which the metal-binding polyaminocarboxylate groups are incorporated onto rigid cyclic hydrocarbon backbones. These ligands, with increased preorganization, should produce radiometal-bioconjugates with higher in-vivo stability. The synthesis of the first in this series of ligands (2,3-diaminobicyclo[2.2.2] octanetetraacetic acid, BODTA) began with a Diels-Alder reaction of 1,3-diacetylimidazolin-2-one and 1,3-cyclohexadiene. Base hydrolysis, alkylation with ethyl iodoacetate, hydrolysis of the esters, and catalytic hydrogenation gave BODTA. For conjugation to MAbs, an average of one COOH group of unsaturated BODTA was converted into an NHS ester using 0.8 equivalent of DCC. The second ligand under development is the decadentate tethered bis-cyclohexyl-EDTA (bis-CDTA) in which 2 cyclohexyl rings are tied together with an ethylene tether. Acylation of monotrityl-1,2-diaminocyclohexane with the di-NHS ester of oxalic acid, reduction of the amide moieties, and removal of the trityl groups followed by cyanomethylation has afforded a hexanitrile whose hydrolysis will produce tethered bis-CDTA. An anti-CEA F(ab{prime}){sub 2} MAb was conjugated with an average of 0.6 BODTA per MAb molecule, labeled with Co-57, and purified by size-exclusion HPLC. Stability of this radioconjugate in mouse serum at 48 h was somewhat better (2% loss) than that of the conventional DTPA-dianhydride (DTPA-DA) conjugate (8% loss). In human tumor-xenografted nude mice (LS-174T cells), tumor (T), blood (B), liver (L), and kidney (K) uptakes (% ID/g) at 24h were: TODTA, 21.6, 4.4, 4.8, 6.0; DTPA-DA, 13.6, 2.5, 5.0, 2.9. The tumor to normal tissue ratios at 48 h for BODTA and DTPA-DA respectively were: T/B, 18.0, 13.9; T/L 4.9, 2.3; T/K, 5.4, 3.9. These preliminary results show promise for using the basic BODTA structure to produce improved bioconjugates with small radiometal ions.

  7. Pyran formation by an atypical CYP-mediated four-electron oxygenation-cyclization cascade in an engineered aureothin pathway.

    PubMed

    Richter, Martin; Busch, Benjamin; Ishida, Keishi; Moore, Bradley S; Hertweck, Christian

    2012-10-15

    Small changes, big effect: A new aureothin derivative, aureopyran, which features an unusual pyran backbone, was generated by simply altering the enzymatic methylation topology. The α-pyrone ring hampers the correct placement of the polyketide backbone in the multifunctional cytochrome P450 monooxygenase AurH. Instead of a tetrahydrofuran ring, an oxo intermediate is formed that readily undergoes a rare electrocyclization reaction. PMID:22961965

  8. Synthesis and evaluation of backbone/amide-modified analogs of leualacin.

    PubMed

    Hu, M K; Yang, F C; Chou, C C; Yen, M H

    1999-02-22

    Leualacin (1), a cyclic depsi-pentapeptide, and its backbone/amide-modified analogs 2-4 were synthesized. Amide analogue 3 exhibited stronger vasodilatory effects. It also strongly inhibited collagen- and arachidonic acid (AA)-induced platelet aggregations with IC50s of 0.6 microM and 2.0 microM, respectively. PMID:10098664

  9. Backbone Solution Structures of Proteins Using Residual Dipolar Couplings: Application to a Novel Structural Genomics Target

    PubMed Central

    Valafar, H.; Mayer, K. L.; Bougault, C. M.; LeBlond, P. D.; Jenney, F. E.; Brereton, P. S.; Adams, M.W.W.; Prestegard, J.H.

    2006-01-01

    Structural genomics (or proteomics) activities are critically dependent on the availability of high-throughput structure determination methodology. Development of such methodology has been a particular challenge for NMR based structure determination because of the demands for isotopic labeling of proteins and the requirements for very long data acquisition times. We present here a methodology that gains efficiency from a focus on determination of backbone structures of proteins as opposed to full structures with all side chains in place. This focus is appropriate given the presumption that many protein structures in the future will be built using computational methods that start from representative fold family structures and replace as many as 70% of the side chains in the course of structure determination. The methodology we present is based primarily on residual dipolar couplings (RDCs), readily accessible NMR observables that constrain the orientation of backbone fragments irrespective of separation in space. A new software tool is described for the assembly of backbone fragments under RDC constraints and an application to a structural genomics target is presented. The target is an 8.7 kDa protein from Pyrococcus furiosus, PF1061, that was previously not well annotated, and had a nearest structurally characterized neighbor with only 33% sequence identity. The structure produced shows structural similarity to this sequence homologue, but also shows similarity to other proteins that suggests a functional role in sulfur transfer. Given the backbone structure and a possible functional link this should be an ideal target for development of modeling methods. PMID:15704012

  10. Animals without Backbones: The Invertebrate Story. Grade Level 5-9.

    ERIC Educational Resources Information Center

    Jerome, Brian; Fuqua, Paul

    This guide, when used in tandem with the videotape "Animals Without Backbones," helps students learn about invertebrates. These materials promote hands-on discovery and learning. The guide is composed of six curriculum-based teaching units: (1) "Getting Started"; (2) "Porifera"; (3) "Cnidarians"; (4) "Worms"; (5) "Mollusks"; (6) "Arthropods"; and…

  11. On the relationship between NMR-derived amide order parameters and protein backbone entropy changes

    PubMed Central

    Sharp, Kim A.; O’Brien, Evan; Kasinath, Vignesh; Wand, A. Joshua

    2015-01-01

    Molecular dynamics simulations are used to analyze the relationship between NMR-derived squared generalized order parameters of amide NH groups and backbone entropy. Amide order parameters (O2NH) are largely determined by the secondary structure and average values appear unrelated to the overall flexibility of the protein. However, analysis of the more flexible subset (O2NH < 0.8) shows that these report both on the local flexibility of the protein and on a different component of the conformational entropy than that reported by the side chain methyl axis order parameters, O2axis. A calibration curve for backbone entropy vs. O2NH is developed which accounts for both correlations between amide group motions of different residues, and correlations between backbone and side chain motions. This calibration curve can be used with experimental values of O2NH changes obtained by NMR relaxation measurements to extract backbone entropy changes, e.g. upon ligand binding. In conjunction with our previous calibration for side chain entropy derived from measured O2axis values this provides a prescription for determination of the total protein conformational entropy changes from NMR relaxation measurements. PMID:25739366

  12. Graduate Education in Kinesiology: Are We Part of "America's Backbone for Competitiveness and Innovation"?

    ERIC Educational Resources Information Center

    DePauw, Karen P.

    2008-01-01

    Graduate education in the United States has been identified as being the backbone of American competitiveness and innovation in a recent report by the Council of Graduate Schools. The report provides a framework for examining the role of graduate education in partnership with business and government to advance an action agenda for achieving…

  13. A structural role for arginine in proteins: multiple hydrogen bonds to backbone carbonyl oxygens.

    PubMed

    Borders, C L; Broadwater, J A; Bekeny, P A; Salmon, J E; Lee, A S; Eldridge, A M; Pett, V B

    1994-04-01

    We propose that arginine side chains often play a previously unappreciated general structural role in the maintenance of tertiary structure in proteins, wherein the positively charged guanidinium group forms multiple hydrogen bonds to backbone carbonyl oxygens. Using as a criterion for a "structural" arginine one that forms 4 or more hydrogen bonds to 3 or more backbone carbonyl oxygens, we have used molecular graphics to locate arginines of interest in 4 proteins: Arg 180 in Thermus thermophilus manganese superoxide dismutase, Arg 254 in human carbonic anhydrase II, Arg 31 in Streptomyces rubiginosus xylose isomerase, and Arg 313 in Rhodospirillum rubrum ribulose-1,5-bisphosphate carboxylase/oxygenase. Arg 180 helps to mold the active site channel of superoxide dismutase, whereas in each of the other enzymes the structural arginine is buried in the "mantle" (i.e., inside, but near the surface) of the protein interior well removed from the active site, where it makes 5 hydrogen bonds to 4 backbone carbonyl oxygens. Using a more relaxed criterion of 3 or more hydrogen bonds to 2 or more backbone carbonyl oxygens, arginines that play a potentially important structural role were found in yeast enolase, Bacillus stearothermophilus glyceraldehyde-3-phosphate dehydrogenase, bacteriophage T4 and human lysozymes, Enteromorpha prolifera plastocyanin, HIV-1 protease, Trypanosoma brucei brucei and yeast triosephosphate isomerases, and Escherichia coli trp aporepressor (but not trp repressor or the trp repressor/operator complex).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8003972

  14. Effects of ion binding on the backbone dynamics of calbindin D9k determined by 15N NMR relaxation.

    PubMed

    Akke, M; Skelton, N J; Kördel, J; Palmer, A G; Chazin, W J

    1993-09-21

    The backbone dynamics of apo- and (Cd2+)1-calbindin D9k have been characterized by 15N nuclear magnetic resonance spectroscopy. Spin-lattice and spin-spin relaxation rate constants and steady-state [1H]-15N nuclear Overhauser effects were measured at a magnetic field strength of 11.74 T by two-dimensional, proton-detected heteronuclear NMR experiments using 15N-enriched samples. The relaxation parameters were analyzed using a model-free formalism that characterizes the dynamics of the N-H bond vectors in terms of generalized order parameters and effective correlation times. The data for the apo and (Cd2+)1 states were compared to those for the (Ca2+)2 state [Kördel, J., Skelton, N. J., Akke, M., Palmer, A. G., & Chazin, W. J. (1992) Biochemistry 31, 4856-4866] to ascertain the effects on ion ligation on the backbone dynamics of calbindin D9k. The two binding loops respond differently to ligation by metal ions: high-frequency (10(9)-10(12) s-1) fluctuations of the N-terminal ion-binding loop are not affected by ion binding, whereas residues G57, D58, G59, and E60 in the C-terminal ion-binding loop have significantly lower order parameters in the apo state than in the metal-bound states. The dynamical responses of the four helices to binding of ions are much smaller than that for the C-terminal binding loop, with the strongest effect on helix III, which is located between the linker loop and binding site II. Significant fluctuations on slower time scales also were detected in the unoccupied N-terminal ion-binding loop of the apo and (Cd2+)1 states; the apparent rates were greater for the (Cd2+)1 state. These results on the dynamical response to ion binding in calbindin D9k provide insights into the molecular details of the binding process and qualitative evidence for entropic contributions to the cooperative phenomenon of calcium binding for the pathway in which the ion binds first in the C-terminal site. PMID:8373781

  15. Toward a synthesis of hirsutellone B by the concept of double cyclization

    PubMed Central

    Reber, Keith P.; Tilley, S. David; Carson, Cheryl A.; Sorensen, Erik J.

    2014-01-01

    This account describes a strategy for directly forming three of the six rings found in the polyketide natural product hirsutellone B via a novel cyclization cascade. The key step in our approach comprises two transformations: a large-ring forming, nucleophilic capture of a transient acyl ketene and an intramolecular Diels–Alder reaction, both of which occur in tandem through thermolyses of appropriately functionalized, polyunsaturated dioxinones. These thermally induced “double cyclization” cascades generate three new bonds, four contiguous stereocenters, and a significant fraction of the polycyclic architecture of hirsutellone B. The advanced macrolactam and macrolactone intermediates that were synthesized by this process possess key features of the hirsutellone framework, including the stereochemically dense decahydrofluorene core and the strained para-cyclophane ring. However, attempts to complete the carbon skeleton of hirsutellone B via transannular carbon-carbon bond formation were undermined by competitive O-alkylation reactions. This account also documents how we adapted to this undesired outcome through an evaluation of several distinct strategies for synthesis, as well as our eventual achievement of a formal total synthesis of hirsutellone B. PMID:24032341

  16. Cyclization of polyketides and non-ribosomal peptides on and off their assembly lines.

    PubMed

    Pang, Bo; Wang, Min; Liu, Wen

    2016-02-01

    Modular polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs) are multifunctional megaenzymes that serve as templates to program the assembly of short carboxylic acids and amino acids in a primarily co-linear manner. The variation, combination, permutation and evolution of their functional units (e.g., modules, domains and proteins) along with their association with external enzymes have resulted in the generation of numerous versions of templates, the roles of which have not been fully recognized in the structural diversification of polyketides, non-ribosomal peptides and their hybrids present in nature. In this Highlight, we focus on the assembly-line enzymology and associated chemistry by providing examples of some newly characterized cyclization reactions that occur on and off the assembly lines during and after chain elongation for the purpose of elucidating the template effects of PKSs and NRPSs. A fundamental understanding of the underlying biosynthetic logic would facilitate the elucidation of chemical information contained within the PKS or NRPS templates and benefit the development of strategies for genome mining, biosynthesis-inspired chemical synthesis and combinatorial biosynthesis. PMID:26604034

  17. Intramolecular cyclization of aspartic acid residues assisted by three water molecules: a density functional theory study

    NASA Astrophysics Data System (ADS)

    Takahashi, Ohgi; Kirikoshi, Ryota

    2014-01-01

    Aspartic acid (Asp) residues in peptides and proteins (l-Asp) are known to undergo spontaneous nonenzymatic reactions to form l-β-Asp, d-Asp, and d-β-Asp residues. The formation of these abnormal Asp residues in proteins may affect their three-dimensional structures and hence their properties and functions. Indeed, the reactions have been thought to contribute to aging and pathologies. Most of the above reactions of the l-Asp residues proceed via a cyclic succinimide intermediate. In this paper, a novel three-water-assisted mechanism is proposed for cyclization of an Asp residue (forming a gem-diol precursor of the succinimide) by the B3LYP/6-31 + G(d,p) density functional theory calculations carried out for an Asp-containing model compound (Ace-Asp-Nme, where Ace = acetyl and Nme = NHCH3). The three water molecules act as catalysts by mediating ‘long-range’ proton transfers. In the proposed mechanism, the amide group on the C-terminal side of the Asp residue is first converted to the tautomeric iminol form (iminolization). Then, reorientation of a water molecule and a conformational change occur successively, followed by the nucleophilic attack of the iminol nitrogen on the carboxyl carbon of the Asp side chain to form the gem-diol species. A satisfactory agreement was obtained between the calculated and experimental energetics.

  18. Towards photoswitchable enediyne antibiotics: single and two-photon triggering of bergman cyclization.

    PubMed

    Polukhtine, Andrei; Karpov, Grigori; Popik, Vladimir V

    2008-01-01

    The concept of photoswitchable enediynes, which are stable in the dark but undergo efficient cycloaro-matization reaction to produce p-benzyne diradical after irradiation with light of an appropriate wavelength, is discussed. Two novel methods for the generation of reactive enediyne compounds from thermally stable precursors have been developed. In the first approach, one of the triple bonds of cyclodeca-3-ene-1,5-diynes is replaced with cyclopropenone group. Cyclopropenone-containing enediyne precursors are unable to undergo cycloaromatization because the enediyne fragment is incomplete. Photolysis of cyclopropenones results in the efficient decarbonylation and the regeneration of a triple bond thus completing the enediyne pi-system. The second method employs photo-Wolff reaction to achieve ring contraction of stable eleven-membered ring precursor enediynes. Benzannulated cyclic enediynes produced by the photodecomposition of enediyne precursor containing 2-diazo-1,3-diketones possess enolized beta-ketoester fragment and undergo remarkably facile tau(36)o = 5 min - 3 h) Bergman cyclization. The generation of reactive enediyne was also achieved with NIR light by non resonant two-photon excitation. PMID:18397169

  19. Backrub-like backbone simulation recapitulates natural protein conformational variability and improves mutant side-chain prediction

    PubMed Central

    Smith, Colin A.; Kortemme, Tanja

    2008-01-01

    Summary Incorporation of effective backbone sampling into protein simulation and design is an important step in increasing the accuracy of computational protein modeling. Recent analysis of high-resolution crystal structures has suggested a new model, termed backrub, to describe localized, hinge-like alternative backbone and side chain conformations observed in the crystal lattice. The model involves internal backbone rotations about axes between Cα atoms. Based on this observation, we have implemented a backrub-inspired sampling method in the Rosetta structure prediction and design program. We evaluate this model of backbone flexibility using three different tests. First, we show that Rosetta backrub simulations recapitulate the correlation between backbone and side-chain conformations in the high-resolution crystal structures upon which the model was based. As a second test of backrub sampling, we show that backbone flexibility improves the accuracy of predicting point-mutant side chain conformations over fixed backbone rotameric sampling alone. Finally, we show that backrub sampling of triosephosphate isomerase loop 6 can capture the ms/µs oscillation between the open and closed states observed in solution. Our results suggest that backrub sampling captures a sizable fraction of localized conformational changes that occur in natural proteins. Application of this simple model of backbone motions may significantly improve both protein design and atomistic simulations of localized protein flexibility. PMID:18547585

  20. Mapping membrane protein backbone dynamics: a comparison of site-directed spin labeling with NMR 15N-relaxation measurements.

    PubMed

    Lo, Ryan H; Kroncke, Brett M; Solomon, Tsega L; Columbus, Linda

    2014-10-01

    The ability to detect nanosecond backbone dynamics with site-directed spin labeling (SDSL) in soluble proteins has been well established. However, for membrane proteins, the nitroxide appears to have more interactions with the protein surface, potentially hindering the sensitivity to backbone motions. To determine whether membrane protein backbone dynamics could be mapped with SDSL, a nitroxide was introduced at 55 independent sites in a model polytopic membrane protein, TM0026. Electron paramagnetic resonance spectral parameters were compared with NMR (15)N-relaxation data. Sequential scans revealed backbone dynamics with the same trends observed for the R1 relaxation rate, suggesting that nitroxide dynamics remain coupled to the backbone on membrane proteins. PMID:25296323

  1. Impact of HIV-1 Backbone on Neutralization Sensitivity: Neutralization Profiles of Heterologous Envelope Glycoproteins Expressed in Native Subtype C and CRF01_AE Backbone

    PubMed Central

    Sanders-Buell, Eric; Wesberry, Maggie; Towle, Teresa; Pillis, Devin M.; Molnar, Sebastian; McLinden, Robert; Edmonds, Tara; Hirsch, Ivan; O’Connell, Robert; McCutchan, Francine E.; Montefiori, David C.; Ochsenbauer, Christina; Kappes, John C.; Kim, Jerome H.; Polonis, Victoria R.; Tovanabutra, Sodsai

    2013-01-01

    Standardized assays to assess vaccine and antiviral drug efficacy are critical for the development of protective HIV-1 vaccines and drugs. These immune assays will be advanced by the development of standardized viral stocks, such as HIV-1 infectious molecular clones (IMC), that i) express a reporter gene, ii) are representative of globally diverse subtypes and iii) are engineered to easily exchange envelope (env) genes for expression of sequences of interest. Thus far, a subtype B IMC backbone expressing Renilla luciferase (LucR), and into which the ectodomain of heterologous env coding sequences can be expressed has been successfully developed but as execution of HIV-1 vaccine efficacy trials shifts increasingly to non-subtype B epidemics (Southern African and Southeast Asia), non-subtype B HIV-1 reagents are needed to support vaccine development. Here we describe two IMCs derived from subtypes C and CRF01_AE HIV-1 primary isolates expressing LucR (IMC.LucR) that were engineered to express heterologous gp160 Envs. 18 constructs expressing various subtypes C and CRF01_AE Envs, mostly acute, in subtype-matched and –unmatched HIV backbones were tested for functionality and neutralization sensitivity. Our results suggest a possible effect of non-env HIV-1 genes on the interaction of Env and neutralizing antibodies and highlight the need to generate a library of IMCs representative of the HIV-1 subtype spectrum to be used as standardized neutralization assay reagents for assessing HIV-1 vaccine efficacy. PMID:24312165

  2. The magnitude of the backbone conformational entropy change in protein folding.

    PubMed

    D'Aquino, J A; Gómez, J; Hilser, V J; Lee, K H; Amzel, L M; Freire, E

    1996-06-01

    The magnitude of the conformational entropy change experienced by the peptide backbone upon protein folding was investigated experimentally and by computational analysis. Experimentally, two different pairs of mutants of a 33 amino acid peptide corresponding to the leucine zipper region of GCN4 were used for high-sensitivity microcalorimetric analysis. Each pair of mutants differed only by having alanine or glycine at a specific solvent-exposed position under conditions in which the differences in stability could be attributed to differences in the conformational entropy of the unfolded state. The mutants studied were characterized by different stabilities but had identical heat capacity changes of unfolding (delta Cp), identical solvent-related entropies of unfolding (delta Ssolv), and identical enthalpies of unfolding (delta H) at equivalent temperatures. Accordingly, the differences in stability between the different mutants could be attributed to differences in conformational entropy. The computational studies were aimed at generating the energy profile of backbone conformations as a function of the main chain dihedral angles phi and phi. The energy profiles permit a direct calculation of the probability distribution of different conformers and therefore of the conformational entropy of the backbone. The experimental results presented in this paper indicate that the presence of the methyl group in alanine reduces the conformational entropy of the peptide backbone by 2.46 +/- 0.2 cal/K. mol with respect to that of glycine, consistent with a 3.4-fold reduction in the number of allowed conformations in the alanine-containing peptides. Similar results were obtained from the energy profiles. The computational analysis also indicates that the addition of further carbon atoms to the side chain had only a small effect as long as the side chains were unbranched at position beta. A further reduction with respect to Ala of only 0.61 and 0.81 cal/K. mol in the backbone

  3. Self-assembly of diphenylalanine backbone homologues and their combination with functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Dinesh, Bhimareddy; Squillaci, Marco A.; Ménard-Moyon, Cécilia; Samorì, Paolo; Bianco, Alberto

    2015-09-01

    The integration of carbon nanotubes (CNTs) into organized nanostructures is of great interest for applications in materials science and biomedicine. In this work we studied the self-assembly of β and γ homologues of diphenylalanine peptides under different solvent and pH conditions. We aimed to investigate the role of peptide backbone in tuning the formation of different types of nanostructures alone or in combination with carbon nanotubes. In spite of having the same side chain, β and γ peptides formed distinctively different nanofibers, a clear indication of the role played by the backbone homologation on the self-assembly. The variation of the pH allowed to transform the nanofibers into spherical structures. Moreover, the co-assembly of β and γ peptides with carbon nanotubes covalently functionalized with the same peptide generated unique dendritic assemblies. This comparative study on self-assembly using diphenylalanine backbone homologues and of the co-assembly with CNT covalent conjugates is the first example exploring the capacity of β and γ peptides to adopt precise nanostructures, particularly in combination with carbon nanotubes. The dendritic organization obtained by mixing carbon nanotubes and peptides might find interesting applications in tissue engineering and neuronal interfacing.The integration of carbon nanotubes (CNTs) into organized nanostructures is of great interest for applications in materials science and biomedicine. In this work we studied the self-assembly of β and γ homologues of diphenylalanine peptides under different solvent and pH conditions. We aimed to investigate the role of peptide backbone in tuning the formation of different types of nanostructures alone or in combination with carbon nanotubes. In spite of having the same side chain, β and γ peptides formed distinctively different nanofibers, a clear indication of the role played by the backbone homologation on the self-assembly. The variation of the pH allowed to

  4. Drawing dependent structures, mechanical properties and cyclization behaviors of polyacrylonitrile and polyacrylonitrile/carbon nanotube composite fibers prepared by plasticized spinning.

    PubMed

    Li, Xiang; Qin, Aiwen; Zhao, Xinzhen; Liu, Dapeng; Wang, Haiye; He, Chunju

    2015-09-14

    Drawing to change the structural properties and cyclization behaviors of the polyacrylonitrile (PAN) chains in crystalline and amorphous regions is carried out on PAN and PAN/carbon nanotube (CNT) composite fibers. Various characterization methods including Fourier transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction and thermal gravimetric analysis are used to monitor the structural evolution and cyclization behaviors of the fibers. With an increase of the draw ratio during the plasticized spinning process, the structural parameters of the fibers, i.e. crystallinity and planar zigzag conformation, are decreased at first, and then increased, which are associated with the heat exchange rate and the oriented-crystallization rate. A possible mechanism for plasticized spinning is proposed to explain the changing trends of crystallinity and planar zigzag conformation. PAN and PAN/CNT fibers exhibit various cyclization behaviors induced by drawing, e.g., the initiation temperature for the cyclization (Ti) of PAN fibers is increased with increasing draw ratio, while Ti of PAN/CNT fibers is decreased. Drawing also facilitates cyclization and lowers the percentage of β-amino nitrile for PAN/CNT fibers during the stabilization. PMID:26235219

  5. Radical Additions to Aromatic Residues in Peptides Facilitate Unexpected Side Chain and Backbone Losses

    NASA Astrophysics Data System (ADS)

    Zhang, Xing; Julian, Ryan R.

    2014-04-01

    Accurate identification of fragments in tandem mass spectrometry experiments is aided by knowledge of relevant fragmentation mechanisms. Herein, novel radical addition reactions that direct unexpected side-chain dissociations at tryptophan and tyrosine residues are reported. Various mechanisms that can account for the observed dissociation channels are investigated by experiment and theory. The propensity for radical addition at a particular site is found to be primarily under kinetic control, which is largely dictated by molecular structure. In certain peptides, intramolecular radical addition reactions are favored, which leads to the observation of numerous unexpected fragments. In one pathway, radical addition leads to migration of an aromatic side chain to another residue. Alternatively, radical addition followed by hydrogen atom loss leads to cyclization of the peptide and increased observation of internal sequence fragments. Radical addition reactions should be considered when assigning fragmentation spectra obtained from activation of hydrogen deficient peptides.

  6. Dialkylaluminium-, -gallium-, and -indium-based poly-Lewis acids with a 1,8-diethynylanthracene backbone.

    PubMed

    Chmiel, Jasmin; Neumann, Beate; Stammler, Hans-Georg; Mitzel, Norbert W

    2010-10-18

    Potential host systems based on a rigid 1,8-diethynylanthracendiyl backbone were synthesised by treatment of 1,8-diethynylanthracene with the Group 13 trialkyls AlMe(3), GaMe(3), InMe(3), AlEt(3) and GaEt(3). The resulting products were characterised by IR and multinuclear NMR spectroscopy, elemental analyses and determination of their crystal structures by X-ray diffraction. The compounds are dimeric in the solid state and comprise two M(2)C(2) heterocycles. Depending on the steric demand of the alkyl substituents at the metal atom, different types of binding modes were observed, which can be classified to lie between the ideals of side-on coordination with almost linear primary M-C≡C units and the 3c-2e coordination with symmetrically bridging alkynyl units in M-C-M bonds. As a solution in THF the dimers are broken into monomers and some are found to undergo ligand scrambling reactions. PMID:20827789

  7. A total synthesis of estrone based on a novel cascade of radical cyclizations

    PubMed Central

    Pattenden, Gerald; Gonzalez, Miguel A.; McCulloch, Stuart; Walter, Affo; Woodhead, Steven J.

    2004-01-01

    Two conceptually different and novel radical-mediated cascade reactions leading to a total synthesis of the steroid (±)-estrone 1 and to a synthesis of 14-epiestrone 40 are described. Treatment of the iododienynone 23 with Bu3SnH/2,2′-azobis(isobutyronitrile) (AIBN) triggers a 13-endo-dig radical macrocyclization followed by two sequential radical transannulation reactions leading to the crystalline estrane 24 in 50% yield. The x-ray crystal structure of 24 established its trans, syn, stereochemistry. Transposition of the enone functionality in 24 next led to 38, which was then converted into 39 by reductive methylation. Deprotection of the methyl ether 39 finally gave 14-epiestone 40. When the substituted iodovinylcyclopropane 55 was treated similarly with Bu3SnH/AIBN, the resulting radical center underwent a different sequence of cascade macrocyclization-transannulation reactions producing the trans, anti, trans estrane 56 in 12% overall yield. Oxidation of 56, using CrO3-H2SO4 next led to the cyclopentanone 57, which, on deprotection using BBr3 gave (±)-estrone 1. A number of alternative substituted iodopolyenynones and iodovinylcyclopropanes, i.e., 8a, 8b, 33, 49a, and 49b, underwent similar radical-mediated cascade cyclizations leading to other estranes, i.e., 21a, 21b, 35, and 50, and, in one case, to the 6,6,5,6-tetracycle 51, in variable overall yields. The structures and stereochemistries of several estranes were established by using x-ray crystal structure measurements in combination with analysis of their NMR spectroscopic data and correlation with literature precedent. PMID:15304654

  8. Insights into Diterpene Cyclization from Structure of Bifunctional Abietadiene Synthase from Abies grandis

    SciTech Connect

    Zhou, Ke; Gao, Yang; Hoy, Julie A.; Mann, Francis M.; Honzatko, Richard B.; Peters, Reuben J.

    2013-09-24

    Abietadiene synthase from Abies grandis (AgAS) is a model system for diterpene synthase activity, catalyzing class I (ionization-initiated) and class II (protonation-initiated) cyclization reactions. Reported here is the crystal structure of AgAS at 2.3 {angstrom} resolution and molecular dynamics simulations of that structure with and without active site ligands. AgAS has three domains ({alpha}, {beta}, and {gamma}). The class I active site is within the C-terminal {alpha} domain, and the class II active site is between the N-terminal {gamma} and {beta} domains. The domain organization resembles that of monofunctional diterpene synthases and is consistent with proposed evolutionary origins of terpene synthases. Molecular dynamics simulations were carried out to determine the effect of substrate binding on enzymatic structure. Although such studies of the class I active site do lead to an enclosed substrate-Mg{sup 2+} complex similar to that observed in crystal structures of related plant enzymes, it does not enforce a single substrate conformation consistent with the known product stereochemistry. Simulations of the class II active site were more informative, with observation of a well ordered external loop migration. This 'loop-in' conformation not only limits solvent access but also greatly increases the number of conformational states accessible to the substrate while destabilizing the nonproductive substrate conformation present in the 'loop-out' conformation. Moreover, these conformational changes at the class II active site drive the substrate toward the proposed transition state. Docked substrate complexes were further assessed with regard to the effects of site-directed mutations on class I and II activities.

  9. New nucleoside/nucleotide backbone options: a review of recent studies.

    PubMed

    Ruane, Peter J; DeJesus, Edwin

    2004-09-01

    The nucleoside/nucleotide reverse transcriptase inhibitor (NRTI/NtRTI) class continues to serve as an important component of the standard of care for HIV infection. Combinations of dual NRTIs/NtRTIs with protease inhibitors (PIs) or nonnucleoside reverse transcriptase inhibitors (NNRTIs) remain the most commonly used regimens in clinical practice. In recent years, clinical outcomes data on previously novel NRTI/NtRTI backbone combinations have provided clinicians with new options to address potency, tolerability, and convenience of antiretroviral therapy. However, the tolerability, drug-drug interactions, and resistance profiles of specific regimens using new NRTI/NtRTI combinations must be weighed against the needs and preferences of individual patients. This review summarizes recent efficacy and safety data on emerging NRTI/NtRTI combination backbones, including tenofovir DF (TDF) with lamivudine (3TC), abacavir with 3TC, didanosine (ddI) with 3TC, ddI with emtricitabine (FTC), and TDF with FTC. PMID:15319666

  10. Modifications to the Peptidoglycan Backbone Help Bacteria To Establish Infection ▿

    PubMed Central

    Davis, Kimberly M.; Weiser, Jeffrey N.

    2011-01-01

    Bacterial pathogens that colonize mucosal surfaces have acquired resistance to antimicrobials that are abundant at these sites. One of the main antimicrobials present on mucosal surfaces is lysozyme, a muramidase that hydrolyzes the peptidoglycan backbone of bacteria. Cleavage of the peptidoglycan backbone leads to bacterial cell death and lysis, which releases bacterial fragments, including peptidoglycan, at the site of infection. Peptidoglycan fragments can be recognized by host receptors and initiate an immune response that will aid in clearing infection. Many mucosal pathogens modify the peptidoglycan residues surrounding the cleavage site for lysozyme to avoid peptidoglycan degradation and the release of these proinflammatory fragments. This review will focus specifically on peptidoglycan modifications, their role in lysozyme resistance, and downstream effects on the host immune response to infection. PMID:21041496

  11. Nano-Scale Alignment of Proteins on a Flexible DNA Backbone

    PubMed Central

    Nojima, Tatsuya; Konno, Hiroki; Kodera, Noriyuki; Seio, Kohji; Taguchi, Hideki; Yoshida, Masasuke

    2012-01-01

    Nano-scale alignment of several proteins with freedom of motion is equivalent to an enormous increase in effective local concentration of proteins and will enable otherwise impossible weak and/or cooperative associations between them or with their ligands. For this purpose, a DNA backbone made of six oligodeoxynucleotide (ODN) chains is designed in which five double-stranded segments are connected by four single-stranded flexible linkers. A desired protein with an introduced cysteine is connected covalently to the 5′-end of azido-ODN by catalyst-free click chemistry. Then, six protein-ODN conjugates are assembled with their complementary nucleotide sequences into a single multi-protein-DNA complex, and six proteins are aligned along the DNA backbone. Flexible alignment of proteins is directly observed by high-speed AFM imaging, and association of proteins with weak interaction is demonstrated by fluorescence resonance energy transfer between aligned proteins. PMID:23300700

  12. Smart-Grid Backbone Network Real-Time Delay Reduction via Integer Programming.

    PubMed

    Pagadrai, Sasikanth; Yilmaz, Muhittin; Valluri, Pratyush

    2016-08-01

    This research investigates an optimal delay-based virtual topology design using integer linear programming (ILP), which is applied to the current backbone networks such as smart-grid real-time communication systems. A network traffic matrix is applied and the corresponding virtual topology problem is solved using the ILP formulations that include a network delay-dependent objective function and lightpath routing, wavelength assignment, wavelength continuity, flow routing, and traffic loss constraints. The proposed optimization approach provides an efficient deterministic integration of intelligent sensing and decision making, and network learning features for superior smart grid operations by adaptively responding the time-varying network traffic data as well as operational constraints to maintain optimal virtual topologies. A representative optical backbone network has been utilized to demonstrate the proposed optimization framework whose simulation results indicate that superior smart-grid network performance can be achieved using commercial networks and integer programming. PMID:25935050

  13. Direct oxidative coupling of amidine hydrochlorides and methylarenes: TBHP-mediated synthesis of substituted 1,3,5-triazines under metal-free conditions.

    PubMed

    Guo, Wei

    2015-11-01

    Various 2,4,6-trisubstituted 1,3,5-triazines were smoothly formed via TBHP-mediated direct oxidative coupling of amidine and methylarenes. This tandem oxidation-imination-cyclization transformation exhibits a straightforward protocol to prepare 1,3,5-triazines from easily available starting materials and green oxidants under metal-free conditions. PMID:26411699

  14. Tritium containing polymers having a polymer backbone substantially void of tritium

    DOEpatents

    Jensen, G.A.; Nelson, D.A.; Molton, P.M.

    1992-03-31

    A radioluminescent light source comprises a solid mixture of a phosphorescent substance and a tritiated polymer. The solid mixture forms a solid mass having length, width, and thickness dimensions, and is capable of self-support. In one aspect of the invention, the phosphorescent substance comprises solid phosphor particles supported or surrounded within a solid matrix by a tritium containing polymer. The tritium containing polymer comprises a polymer backbone which is essentially void of tritium. 2 figs.

  15. On the satisfaction of backbone-carbonyl lone pairs of electrons in protein structures.

    PubMed

    Bartlett, Gail J; Woolfson, Derek N

    2016-04-01

    Protein structures are stabilized by a variety of noncovalent interactions (NCIs), including the hydrophobic effect, hydrogen bonds, electrostatic forces and van der Waals' interactions. Our knowledge of the contributions of NCIs, and the interplay between them remains incomplete. This has implications for computational modeling of NCIs, and our ability to understand and predict protein structure, stability, and function. One consideration is the satisfaction of the full potential for NCIs made by backbone atoms. Most commonly, backbone-carbonyl oxygen atoms located within α-helices and β-sheets are depicted as making a single hydrogen bond. However, there are two lone pairs of electrons to be satisfied for each of these atoms. To explore this, we used operational geometric definitions to generate an inventory of NCIs for backbone-carbonyl oxygen atoms from a set of high-resolution protein structures and associated molecular-dynamics simulations in water. We included more-recently appreciated, but weaker NCIs in our analysis, such as n→π* interactions, Cα-H bonds and methyl-H bonds. The data demonstrate balanced, dynamic systems for all proteins, with most backbone-carbonyl oxygen atoms being satisfied by two NCIs most of the time. Combinations of NCIs made may correlate with secondary structure type, though in subtly different ways from traditional models of α- and β-structure. In addition, we find examples of under- and over-satisfied carbonyl-oxygen atoms, and we identify both sequence-dependent and sequence-independent secondary-structural motifs in which these reside. Our analysis provides a more-detailed understanding of these contributors to protein structure and stability, which will be of use in protein modeling, engineering and design. PMID:26833776

  16. Backbone and side chain NMR assignments for the ribosome assembly factor Nop6 from Saccharomyces cerevisiae.

    PubMed

    Wurm, Jan Philip; Lioutikov, Anatoli; Kötter, Peter; Entian, Karl-Dieter; Wöhnert, Jens

    2014-10-01

    The Saccharomyces cerevisiae Nop6 protein is involved in the maturation of the small ribosomal subunit. It contains a central RNA binding domain and a predicted C-terminal coiled-coil domain. Here we report the almost complete (>90%) (1)H,(13)C,(15)N backbone and side chain NMR assignment of a 15 kDa Nop6 construct comprising the RNA binding and coiled-coil domains. PMID:23921755

  17. Tritium containing polymers having a polymer backbone substantially void of tritium

    DOEpatents

    Jensen, George A.; Nelson, David A.; Molton, Peter M.

    1992-01-01

    A radioluminescent light source comprises a solid mixture of a phosphorescent substance and a tritiated polymer. The solid mixture forms a solid mass having length, width, and thickness dimensions, and is capable of self-support. In one aspect of the invention, the phosphorescent substance comprises solid phosphor particles supported or surrounded within a solid matrix by a tritium containing polymer. The tritium containing polymer comprises a polymer backbone which is essentially void of tritium.

  18. Biosynthesis of monoterpenes. Stereochemistry of the enzymatic cyclizations of geranyl pyrophosphate to (+)-alpha-pinene and (-)-beta-pinene

    SciTech Connect

    Croteau, R.; Satterwhite, D.M.; Wheeler, C.J.; Felton, N.M.

    1989-02-05

    The conversion of geranyl pyrophosphate to (+)-alpha-pinene and to (-)-beta-pinene is considered to proceed by the initial isomerization of the substrate to (-)-(3R)- and to (+)-(3S)-linalyl pyrophosphate, respectively, and the subsequent cyclization of the anti, endo-conformer of these bound intermediates by mirror-image sequences which should result in the net retention of configuration at C1 of the geranyl precursor. Incubation of (1R)-(2-14C,1-3H)- and (1S)-(2-14C,1-3H)geranyl pyrophosphate with (+)-pinene cyclase and with (-)-pinene cyclase from common sage (Salvia officinalis) gave labeled (+)-alpha- and (-)-beta-pinene of unchanged 3H/14C ratio in all cases, and the (+)- and (-)-olefins were stereoselectively converted to (+)- and (-)-borneol, respectively, which were oxidized to the corresponding (+)- and (-)-isomers of camphor, again without change in isotope ratio. The location of the tritium was determined in each case by stereoselective, base-catalyzed exchange of the exo-alpha-hydrogens of these derived ketones. The results indicated that the configuration at C1 of the substrate was retained in the enzymatic transformations to the (+)- and (-)-pinenes, which is entirely consistent with the syn-isomerization of geranyl pyrophosphate to linalyl pyrophosphate, transoid to cisoid rotation, and anti, endo-cyclization of the latter. The absolute stereochemical elements of the antipodal reaction sequences were confirmed by the selective enzymatic conversions of (3R)- and (3S)-1Z-(1-3H)linalyl pyrophosphate to (+)-alpha-pinene and (-)-beta-pinene, respectively, and by the location of the tritium in the derived camphors as before. The summation of the results fully defines the overall stereochemistry of the coupled isomerization and cyclization of geranyl pyrophosphate to the antipodal pinenes.

  19. Biosynthesis of monoterpenes. Enantioselectivity in the enzymatic cyclization of (+)- and (-)-linalyl pyrophosphate to (+)- and (-)-pinene and (+)- and (-)-camphene

    SciTech Connect

    Croteau, R.; Satterwhite, D.M.; Cane, D.E.; Chang, C.C.

    1988-07-25

    Cyclase I from Salvia officinalis leaf catalyzes the conversion of geranyl pyrophosphate to the stereo-chemically related bicyclic monoterpenes (+)-alpha-pinene and (+)-camphene and to lesser quantities of monocyclic and acyclic olefins, whereas cyclase II from this plant tissue converts the same acyclic precursor to (-)-alpha-pinene, (-)-beta-pinene and (-)-camphene as well as to lesser amounts of monocyclics and acyclics. These antipodal cyclizations are considered to proceed by the initial isomerization of the substrate to the respective bound tertiary allylic intermediates (-)-(3R)- and (+)-(3S)-linalyl pyrophosphate. ((3R)-8,9-14C,(3RS)-1E-3H)Linalyl pyrophosphate (3H:14C = 5.14) was tested as a substrate with both cyclases to determine the configuration of the cyclizing intermediate. This substrate with cyclase I yielded alpha-pinene and camphene with 3H:14C ratios of 3.1 and 4.2, respectively, indicating preferential, but not exclusive, utilization of the (3R)-enantiomer. With cyclase II, the doubly labeled substrate gave bicyclic olefins with 3H:14C ratios of from 13 to 20, indicating preferential, but not exclusive, utilization of the (3S)-enantiomer in this case. (3R)- and (3S)-(1Z-3H)linalyl pyrophosphate were separately compared to the achiral precursors (1-3H)geranyl pyrophosphate and (1-3H)neryl pyrophosphate (cis-isomer) as substrates for the cyclizations. With cyclase I, geranyl, neryl, and (3R)-linalyl pyrophosphate gave rise exclusively to (+)-alpha-pinene and (+)-camphene, whereas (3S)-linayl pyrophosphate produced, at relatively low rates, the (-)-isomers. With cyclase II, geranyl, neryl, and (3S)-linalyl pyrophosphate yielded exclusively the (-)-isomer series, whereas (3R)-linalyl pyrophosphate afforded the (+)-isomers at low rates.

  20. East vergent structure of Backbone Range: Insights from A-Lan-Yi area and sandbox modeling

    NASA Astrophysics Data System (ADS)

    Lee, C. A.; Lu, C. Y.

    2015-12-01

    Southern Taiwan, including Pingtung peninsula and Taitung, is the incipient oblique collision zone of Eurasian plate and Philippine Sea plate. The Luzon volcanic arc converged toward Taiwan Island and formed Hengchun Ridge south offshore Taiwan. Thus, Taiwan mountain belt developed from north to south as the Backbone Range, so that we can infer the incipient feature structure from the topography and outcrop study of southern Taiwan. Our field survey of this study concentrated at the southeast coastline of Taiwan, also known as A-Lan-Yi Trail. According to previous study, the deformational structures such as faults and folds are consistent with regional kinematic processes, and the preserved transpression structure is the most important evidence of incipient collision. In this study, we use the sedimentary sequences of study area to trace the regional tectonics from north to south. Discovered structures in this area show the similar kinematic history as the eastern flank of Backbone Range, so that we suggest they are at the same series of a tectonic event. To complete the regional structure mapping in this accessible area, besides the field geological data, we also applied the LiDAR-derived DTM which is a 3D visualization technology to improve our topography information. In addition, we use the sandbox modeling to demonstrate the development of structures in the eastern flank of Backbone Range. After combining the results of field observation and regional structure mapping, this study provides a strong evidence of backthrusting and backfolding deformation during the incipient oblique collision stage.

  1. Evolution of functional nucleic acids in the presence of nonheritable backbone heterogeneity

    PubMed Central

    Trevino, Simon G.; Zhang, Na; Elenko, Mark P.; Lupták, Andrej; Szostak, Jack W.

    2011-01-01

    Multiple lines of evidence support the hypothesis that the early evolution of life was dominated by RNA, which can both transfer information from generation to generation through replication directed by base-pairing, and carry out biochemical activities by folding into functional structures. To understand how life emerged from prebiotic chemistry we must therefore explain the steps that led to the emergence of the RNA world, and in particular, the synthesis of RNA. The generation of pools of highly pure ribonucleotides on the early Earth seems unlikely, but the presence of alternative nucleotides would support the assembly of nucleic acid polymers containing nonheritable backbone heterogeneity. We suggest that homogeneous monomers might not have been necessary if populations of heterogeneous nucleic acid molecules could evolve reproducible function. For such evolution to be possible, function would have to be maintained despite the repeated scrambling of backbone chemistry from generation to generation. We have tested this possibility in a simplified model system, by using a T7 RNA polymerase variant capable of transcribing nucleic acids that contain an approximately 1∶1 mixture of deoxy- and ribonucleotides. We readily isolated nucleotide-binding aptamers by utilizing an in vitro selection process that shuffles the order of deoxy- and ribonucleotides in each round. We describe two such RNA/DNA mosaic nucleic acid aptamers that specifically bind ATP and GTP, respectively. We conclude that nonheritable variations in nucleic acid backbone structure may not have posed an insurmountable barrier to the emergence of functionality in early nucleic acids. PMID:21825162

  2. Self-assembly of diphenylalanine backbone homologues and their combination with functionalized carbon nanotubes.

    PubMed

    Dinesh, Bhimareddy; Squillaci, Marco A; Ménard-Moyon, Cécilia; Samorì, Paolo; Bianco, Alberto

    2015-10-14

    The integration of carbon nanotubes (CNTs) into organized nanostructures is of great interest for applications in materials science and biomedicine. In this work we studied the self-assembly of β and γ homologues of diphenylalanine peptides under different solvent and pH conditions. We aimed to investigate the role of peptide backbone in tuning the formation of different types of nanostructures alone or in combination with carbon nanotubes. In spite of having the same side chain, β and γ peptides formed distinctively different nanofibers, a clear indication of the role played by the backbone homologation on the self-assembly. The variation of the pH allowed to transform the nanofibers into spherical structures. Moreover, the co-assembly of β and γ peptides with carbon nanotubes covalently functionalized with the same peptide generated unique dendritic assemblies. This comparative study on self-assembly using diphenylalanine backbone homologues and of the co-assembly with CNT covalent conjugates is the first example exploring the capacity of β and γ peptides to adopt precise nanostructures, particularly in combination with carbon nanotubes. The dendritic organization obtained by mixing carbon nanotubes and peptides might find interesting applications in tissue engineering and neuronal interfacing. PMID:26359907

  3. Reconstruction of protein backbones from the BriX collection of canonical protein fragments.

    PubMed

    Baeten, Lies; Reumers, Joke; Tur, Vicente; Stricher, François; Lenaerts, Tom; Serrano, Luis; Rousseau, Frederic; Schymkowitz, Joost

    2008-05-01

    As modeling of changes in backbone conformation still lacks a computationally efficient solution, we developed a discretisation of the conformational states accessible to the protein backbone similar to the successful rotamer approach in side chains. The BriX fragment database, consisting of fragments from 4 to 14 residues long, was realized through identification of recurrent backbone fragments from a non-redundant set of high-resolution protein structures. BriX contains an alphabet of more than 1,000 frequently observed conformations per peptide length for 6 different variation levels. Analysis of the performance of BriX revealed an average structural coverage of protein structures of more than 99% within a root mean square distance (RMSD) of 1 Angstrom. Globally, we are able to reconstruct protein structures with an average accuracy of 0.48 Angstrom RMSD. As expected, regular structures are well covered, but, interestingly, many loop regions that appear irregular at first glance are also found to form a recurrent structural motif, albeit with lower frequency of occurrence than regular secondary structures. Larger loop regions could be completely reconstructed from smaller recurrent elements, between 4 and 8 residues long. Finally, we observed that a significant amount of short sequences tend to display strong structural ambiguity between alpha helix and extended conformations. When the sequence length increases, this so-called sequence plasticity is no longer observed, illustrating the context dependency of polypeptide structures. PMID:18483555

  4. Monitoring Backbone Hydrogen-Bond Formation in β-Barrel Membrane Protein Folding.

    PubMed

    Raschle, Thomas; Rios Flores, Perla; Opitz, Christian; Müller, Daniel J; Hiller, Sebastian

    2016-05-10

    β-barrel membrane proteins are key components of the outer membrane of bacteria, mitochondria and chloroplasts. Their three-dimensional structure is defined by a network of backbone hydrogen bonds between adjacent β-strands. Here, we employ hydrogen-deuterium (H/D) exchange in combination with NMR spectroscopy and mass spectrometry to monitor backbone hydrogen bond formation during folding of the outer membrane protein X (OmpX) from E. coli in detergent micelles. Residue-specific kinetics of interstrand hydrogen-bond formation were found to be uniform in the entire β-barrel and synchronized to formation of the tertiary structure. OmpX folding thus propagates via a long-lived conformational ensemble state in which all backbone amide protons exchange with the solvent and engage in hydrogen bonds only transiently. Stable formation of the entire OmpX hydrogen bond network occurs downhill of the rate-limiting transition state and thus appears cooperative on the overall folding time scale. PMID:27062600

  5. Probing the Backbone Function of Tumor Targeting Peptides by an Amide-to-Triazole Substitution Strategy.

    PubMed

    Valverde, Ibai E; Vomstein, Sandra; Fischer, Christiane A; Mascarin, Alba; Mindt, Thomas L

    2015-09-24

    Novel backbone-modified radiolabeled analogs based on the tumor targeting peptide bombesin were synthesized and fully evaluated in vitro and in vivo. We have recently introduced the use of 1,4-disubstituted 1,2,3-triazoles as metabolically stable trans-amide bond surrogates in radiolabeled peptides in order to improve their tumor targeting. As an extension of our approach, we now report several backbone-modified analogs of the studied bombesin peptide bearing multiple triazole substitutions. We investigated the effect of the modifications on several biological parameters including the internalization of the radiopeptidomimetics into tumor cells, their affinity toward the gastrin releasing peptide receptor (GRPr), metabolic stability in blood plasma, and biodistribution in mice bearing GRPr-expressing xenografts. The backbone-modified radiotracers exhibited a significantly increased resistance to proteolytic degradation. In addition, some of the radiopeptidomimetics retained a nanomolar affinity toward GRPr, resulting in an up to 2-fold increased tumor uptake in vivo in comparison to a (all amide bond) reference compound. PMID:26309061

  6. Silver-catalyzed C(sp2)-H functionalization/C-O cyclization reaction at room temperature.

    PubMed

    Dai, Jian-Jun; Xu, Wen-Tao; Wu, Ya-Dong; Zhang, Wen-Man; Gong, Ying; He, Xia-Ping; Zhang, Xin-Qing; Xu, Hua-Jian

    2015-01-16

    Silver-catalyzed C(sp(2))-H functionalization/C-O cyclization has been developed. The scalable reaction proceeds at room temperature in an open flask. The present method exhibits good functional-group compatibility because of the mild reaction conditions. Using a AgNO3 catalyst and a (NH4)2S2O8 oxidant in CH2Cl2/H2O solvent, various lactones are obtained in good to excellent yields. A kinetic isotope effect (KIE) study indicates that the reaction may occur via a radical process. PMID:25495388

  7. Protecting-Group-Free Total Synthesis of (-)-Lycopodine via Phosphoric Acid Promoted Alkyne Aza-Prins Cyclization.

    PubMed

    Ma, Donghui; Zhong, Zhuliang; Liu, Zaimin; Zhang, Mingjie; Xu, Shiyan; Xu, Dengyu; Song, Dengpeng; Xie, Xingang; She, Xuegong

    2016-09-01

    A protecting-group-free route for the total synthesis of (-)-lycopodine was demonstrated in only 8 steps from Wade's fawcettimine enone (12 steps from commercial availiable (R)-(+)-pulegone). The key core of this alkaloid was constructed through a phosphoric acid promoted and highly stereocontrolled alkyne aza-Prins cyclization reaction, synchronously establishing the bridged B-ring and the C13 quaternary stereocenter. Importantly, the synthesis further features a new efficient approach for the preparation of other lycopodine-type alkaloids. PMID:27529730

  8. Aerobic Radical-Cascade Alkylation/Cyclization of α,β-Unsaturated Amides: an Efficient Approach to Quaternary Oxindoles.

    PubMed

    Biswas, Promita; Paul, Subhasis; Guin, Joyram

    2016-06-27

    An efficient method for the aerobic radical-cascade alkylation/cyclization of α,β-unsaturated amides to afford functionalized oxindoles with a C3 quaternary stereocenter is described. The process is based on the generation of valuable alkyl radicals through sustainable aerobic C-H activation of aldehydes followed by decarbonylation using O2 as the sole oxidant. This method features a broad substrate scope, inexpensive alkyl radical precursors, and convenient reagents. Finally, the method was successfully applied to the synthesis of alkyl analogues of tetrahydrofuranoindoline and (±)-esermethole. PMID:27294682

  9. Rhodium-Catalyzed Cyclization of 2-Ethynylanilines in the Presence of Isocyanates: Approach toward Indole-3-carboxamides.

    PubMed

    Mizukami, Akiho; Ise, Yumi; Kimachi, Tetsutaro; Inamoto, Kiyofumi

    2016-02-19

    Catalytic synthesis of indole-3-carboxamides from 2-ethynylanilines and isocyanates was achieved in the presence of a rhodium catalyst through a tandem-type, cyclization-addition sequence. This tandem-type process can be performed under mild reaction conditions, affording 2,3-disubstituted indoles in a one-pot manner generally in good to excellent yields. The broad substrate scope and good functional group compatibility make the method highly efficient and widely applicable, providing a facile and entirely novel route toward variously substituted indole-3-carboxamides. PMID:26840978

  10. Concise Synthesis of Annulated Pyrido[3,4-b]indoles via Rh(I)-Catalyzed Cyclization.

    PubMed

    Varelas, Jonathan G; Khanal, Satyam; O'Donnell, Michael A; Mulcahy, Seann P

    2015-11-01

    The synthesis of pyridines bearing multiple ring fusions poses a considerable challenge for organic chemists. To address this problem, we describe the synthesis of a small library of pyrido[3,4-b]indoles via an efficient, five-step sequence. The key transformation is a Rh(I)-catalyzed [2 + 2 + 2] cyclization that forms three rings in one reaction flask. Our method is high yielding, accommodates a variety of functional groups, and suffers no entropic costs as ring size increases. PMID:26495834

  11. Copper-Catalyzed Double Additions and Radical Cyclization Cascades in the Re-Engineering of the Antibacterial Pleuromutilin.

    PubMed

    Ruscoe, Rebecca E; Fazakerley, Neal J; Huang, Huanming; Flitsch, Sabine; Procter, David J

    2016-01-01

    A general synthetic sequence involving simply prepared starting materials provides rapid access to diverse, novel tricyclic architectures inspired by pleuromutilin. Sm(II) -mediated radical cyclization cascades of dialdehydes, prepared using a new, one-pot, copper-catalyzed double organomagnesium addition to β-chlorocyclohexenone, proceed with complete sequence selectivity and typically with high diastereocontrol to give analogues of the target core. Our expedient approach (ca. 7 steps) allows non-traditional, de novo synthetic access to analogues of the important antibacterial that can't be prepared from the natural product by semisynthesis. PMID:26527052

  12. Cesium Carboxylate-Promoted Iridium Catalyzed C-H Amidation/Cyclization with 2,2,2-Trichloroethoxycarbonyl Azide.

    PubMed

    Zhang, Tao; Wang, Zhen; Hu, Xuejiao; Yu, Meng; Deng, Tianning; Li, Guigen; Lu, Hongjian

    2016-06-01

    An Ir(III)-catalyzed direct C-H amidation/cyclization of benzamides using 2,2,2-trichloroethoxycarbonyl azide (TrocN3) as the aminocarbonyl source is reported. With the aid of cesium carboxylate, the reactions proceed efficiently and with high regioselectivity, producing various functionalized quinazoline-2,4(1H,3H)-diones, which are important building blocks and key synthetic intermediates for biologically and medicinally important compounds. During the reactions, two new C-N bonds were formed by breaking C-H and N-H bonds sequence. PMID:27164005

  13. Copper‐Catalyzed Double Additions and Radical Cyclization Cascades in the Re‐Engineering of the Antibacterial Pleuromutilin

    PubMed Central

    Ruscoe, Rebecca E.; Fazakerley, Neal J.; Huang, Huanming; Flitsch, Sabine

    2015-01-01

    Abstract A general synthetic sequence involving simply prepared starting materials provides rapid access to diverse, novel tricyclic architectures inspired by pleuromutilin. SmII‐mediated radical cyclization cascades of dialdehydes, prepared using a new, one‐pot, copper‐catalyzed double organomagnesium addition to β‐chlorocyclohexenone, proceed with complete sequence selectivity and typically with high diastereocontrol to give analogues of the target core. Our expedient approach (ca. 7 steps) allows non‐traditional, de novo synthetic access to analogues of the important antibacterial that can′t be prepared from the natural product by semisynthesis. PMID:26527052

  14. Synergistic Effect of the TiCl4/p-TsOH Promoter System on the Aza-Prins Cyclization.

    PubMed

    Durel, Vianney; Lalli, Claudia; Roisnel, Thierry; Weghe, Pierre van de

    2016-02-01

    A novel aza-Prins cyclization promoted by a synergistic combination between a Lewis acid and a Brønsted acid to efficiently afford piperidines is described. Contrary to what has been previously reported in the literature, the generality of the reaction employing N-alkyl, N-aryl, and nonprotected homoallylamines has been demonstrated. The reaction is highly diastereoselective depending on the homoallylic amine used, N-PMP homoallyl amine leading preferentially to the trans diastereomer, and free homoallylamine affording the deprotected piperidine as single cis diastereomer. PMID:26736061

  15. Palladium-Catalyzed Ullmann Cross-Coupling/Tandem Reductive Cyclization Route to Key Members of the Uleine Alkaloid Family.

    PubMed

    Tang, Fei; Banwell, Martin G; Willis, Anthony C

    2016-04-01

    The trisubstituted cyclohexenone 12, generated through a palladium-catalyzed Ullmann cross-coupling reaction between o-iodonitrobenzene and a 4,5-trans-disubstituted 2-iodo-2-cyclohexen-1-one, engaged in a tandem reductive cyclization process upon exposure to hydrogen gas in the presence of Raney cobalt. As a result, the 1,5-methanoazocino[4,3-b]indole 13 was obtained and this could be readily elaborated to the racemic modifications of the alkaloids uleine, dasycarpidone, noruleine, and nordasycarpidone (1-4, respectively). PMID:26914482

  16. Tandem C-H oxidation/cyclization/rearrangement and its application to asymmetric syntheses of (-)-brussonol and (-)-przewalskine E.

    PubMed

    Jiao, Zhi-Wei; Tu, Yong-Qiang; Zhang, Qing; Liu, Wen-Xing; Zhang, Shu-Yu; Wang, Shao-Hua; Zhang, Fu-Min; Jiang, Sen

    2015-01-01

    Natural products are a vital source of lead compounds in drug discovery. Development of efficient tandem reactions to build useful compounds and apply them to the synthesis of natural products is not only a significant challenge but also an important goal for chemists. Here we describe a tandem C-H oxidation/cyclization/rearrangement of isochroman-derived allylic silylethers, promoted by DDQ and InCl3. This method allows the efficient construction of tricyclic benzoxa[3.2.1]octanes with a wide substrate scope. We employ this tandem reaction to achieve the asymmetric total syntheses of (-)-brussonol and (-)-przewalskine E. PMID:26081438

  17. Facile Access to Cyclooctanoid Ring Systems via Microwave-Assisted Tandem 6-exo dig Cyclization-Rearrangement Sequence

    PubMed Central

    Feldman, Aaron W.; Ovaska, Sami I.; Ovaska, Timo V.

    2014-01-01

    Appropriately substituted 5-alkyn-1-ol systems bearing a nitrile moiety at the triple bond serve as versatile precursors to a variety of cyclooctenone derivatives via a “one-pot” base-catalyzed oxyanionic 6-exo dig cyclization/Claisen rearrangement sequence under microwave irradiation. It was found that the initially formed cyclic intermediate consists of a mixture of endo and exocyclic isomers, which appear to be in equilibrium under the reaction conditions. However, the only observed products from these reactions are α-cyano substituted cyclooctenones, derived from the exocyclic dihydrofuran intermediates. PMID:24994941

  18. Amino-zinc-ene-enolate cyclization: a short access to cis-3-substituted prolino-homotryptophane derivatives.

    PubMed

    Mothes, Céline; Lavielle, Solange; Karoyan, Philippe

    2008-09-01

    Proline chimeras are useful tools for medicinal chemistry and/or biological applications. The asymmetric synthesis of cis-3-substituted prolines can be easily achieved via amino-zinc-ene-enolate cyclization followed by transmetalation of the cyclic zinc intermediate for further functionalization. Syntheses of prolino-homotryptophane derivatives were achieved through Negishi cross-coupling of the zinc intermediate with indole rings. The use of Pd catalyst derived from Fu's [(t-Bu3)PH]-BF4 was required to avoid the undesired beta-hydride elimination. Optically pure and orthogonally protected compounds were obtained readily usable for peptide synthesis. PMID:18656982

  19. Preparation of the Core Structure of Aspidosperma and Strychnos Alkaloids from Aryl Azides by a Cascade Radical Cyclization.

    PubMed

    Wyler, Benjamin; Brucelle, François; Renaud, Philippe

    2016-03-18

    A novel approach to prepare the core structure of Aspidosperma and Strychnos alkaloids is described. The strategy is based on a cyclization cascade involving the formation of quaternary carbon center followed by trapping of the radical intermediate by an aryl azide to build the 5-membered ring of the pyrrolocarbazole system. This reaction is run with triethylborane without the need for any hydrogen atom donor such as a tin hydride or tris(trimethylsilyl)silane, and it furnishes the tetracyclic framework as a single diastereomer. The influence of different N-protecting groups on the starting iodoacetamide has been examined. PMID:26926777

  20. Solving the puzzling competition of the thermal C2–C6 vs Myers–Saito cyclization of enyne-carbodiimides

    PubMed Central

    Rana, Anup; Cinar, Mehmet Emin; Samanta, Debabrata

    2016-01-01

    Summary The mechanism of the thermal cyclization of enyne-carbodiimides 7a–c has been studied computationally by applying the DFT method. The results indicate that enyne-carbodiimides preferentially follow the C2–C6 (Schmittel) cyclization pathway in a concerted fashion although the Myers–Saito diradical formation is kinetically preferred. The experimentally verified preference of the C2–C6 over the Myers–Saito pathway is guided by the inability of the Myers–Saito diradical to kinetically compete in the rate-determining trapping reactions, either inter- or intramolecular, with the concerted C2–C6 cyclization. As demonstrated with enyne-carbodiimide 11, the Myers–Saito channel can be made the preferred pathway if the trapping reaction by hydrogen transfer is no more rate determining. PMID:26877807

  1. Synthesis of highly enantioenriched 3,4-dihydroquinolin-2-ones by 6-exo-trig radical cyclizations of axially chiral α-halo-ortho-alkenyl anilides

    PubMed Central

    Guthrie, David B.; Geib, Steven J.; Curran, Dennis P.

    2009-01-01

    Radical cyclizations (Bu3SnH, Et3B/air, rt) of racemic α-halo-ortho-alkenyl anilides provide 3,4-dihydroquinolin-2-ones in high yield. Cyclizations of enantioenriched precursors occur in similarly high yields and with transfer of axial chirality to the new stereocenter of the products with exceptionally high fidelity (often > 95%). Single and tandem cyclizations of α-halo-ortho-alkenyl anilides bearing an additional substituent on the α-carbon occur with high chirality transfer and high diastereoselectivity. Straightforward models are proposed to interpret both the chirality transfer and diastereoselectivity aspects. These first examples of an approach for axial chiral transfer from a reactive species in the amide to an acceptor suggest broad potential for extension both within and beyond radical reactions. PMID:19799432

  2. Conformational study of two linear hexapeptides by two-dimensional NMR and computer-simulated modeling: implication for peptide cyclization in solution.

    PubMed

    Chiou, A J; Ong, G T; Wang, K T; Chiou, S H; Wu, S H

    1996-02-15

    Two linear peptides, D-leucyl-L-prolyl-L-isoleucyl-L-valyl-L-alanyl-beta-alanine (I) and D-leucyl-L-prolyl-L-isoleucyl-L-valyl-N-methyl-L-alanyl-beta-alanine (II), whose sequences were designed from protodestruxin and desmethyldestruxin B by replacing D-leucic acid with D-leucine, two cyclic hexadepsipeptides with insecticidal and immunodepressant activities, have been found to be cyclized in unusually high yields (>85%). In order to gain insight into the conformation and the relative flexibility of different constituent residues in these linear peptides, we have applied various techniques of 2D-NMR spectroscopy coupled with dynamic simulated annealing by computer modeling to establish the solution conformations of these two linear peptides. Based on the derived structures, it is found that the distances between N- and C-terminal residues of both peptides are short enough to facilitate the cyclization, thus collaborating the observation of favorable cyclization yields for both linear peptides. PMID:8605029

  3. The Role of Methoxy Group in the Nazarov Cyclization of 1,5- bis-(2-Methoxyphenyl)-1,4-Pentadien-3-one in the Gas Phase and Condensed Phase

    NASA Astrophysics Data System (ADS)

    Cyriac, June; Paulose, Justin; George, Mathai; Ramesh, Marupaka; Srinivas, Ragampeta; Giblin, Daryl; Gross, Michael L.

    2014-03-01

    ESI-protonated 1,5- bis-(2-methoxyphenyl)-1,4-pentadien-3-one (1) undergoes a gas-phase Nazarov cyclization and dissociates via expulsions of ketene and anisole. The dissociations of the [M + D]+ ions are accompanied by limited HD scrambling that supports the proposed cyclization. Solution cyclization of 1 was effected to yield the cyclic ketone, 2,3- bis-(2-methoxyphenyl)-cyclopent-2-ene-1-one, (2) on a time scale that is significantly shorter than the time for cyclization of dibenzalacetone. The dissociation characteristics of the ESI-generated [M + H]+ ion of the synthetic cyclic ketone closely resemble those of 1, suggesting that gas-phase and solution cyclization products are the same. Additional mechanistic studies by density functional theory (DFT) methods of the gas-phase reaction reveals that the initial cyclization is followed by two sequential 1,2-aryl migrations that account for the observed structure of the cyclic product in the gas phase and solution. Furthermore, the DFT calculations show that the methoxy group serves as a catalyst for the proton migrations necessary for both cyclization and fragmentation after aryl migration. An isomer formed by moving the 2-methoxy to the 4-position requires relatively higher collision energy for the elimination of anisole, as is consistent with DFT calculations. Replacement of the 2-methoxy group with an OH shows that the cyclization followed by aryl migration and elimination of phenol occurs from the [M + H]+ ion at low energy similar to that for 1.

  4. Effects of temperature on excluded volume-promoted cyclization and concatemerization of cohesive-ended DNA longer than 0.04 Mb.

    PubMed Central

    Louie, D; Serwer, P

    1991-01-01

    The 0.048502 megabase (Mb), primarily double-stranded DNA of bacteriophage lambda has single-stranded, complementary termini (cohesive ends) that undergo either spontaneous intramolecular joining to form open circular DNA or spontaneous intermolecular joining to form linear, end-to-end oligomeric DNAs (concatemers); concatemers also cyclize. In the present study, the effects of polyethylene glycol (PEG) on the cyclization and concatemerization of lambda DNA are determined at temperatures that, in the absence of PEG, favor dissociation of cohesive ends. Circular and linear lambda DNA, monomeric and concatemeric, are observed by use of pulsed field agarose gel (PFG) electrophoresis. During preparation of lambda DNA for these studies, hydrodynamic shear-induced, partial dissociation of joined cohesive ends is fortuitously observed. Although joined lambda cohesive ends progressively dissociate as their temperature is raised in the buffer used here (0.1 M NaCl, 0.01 M sodium phosphate, pH 7.4, 0.001 M EDTA), when PEG is added to this buffer, raising the temperature sometimes promotes joining of cohesive ends. Conditions for promotion of primarily either cyclization or concatemerization are described. Open circular DNAs as long as a 7-mer are produced and resolved. The concentration of PEG required to promote joining of cohesive ends decreases as the molecular weight of the PEG increases. The rate of cyclization is brought, the first time, to values that are high enough to be comparable to the rate observed in vivo. For double-stranded DNA bacteriophages that have a linear replicative form of DNA (bacteriophage T7, for example), a suppression, sometimes observed here, of cyclization mimics a suppression of cyclization previously observed in vivo. The PEG, temperature effects on DNA joining are explained by both the excluded volume of PEG random coils and an increase in this excluded volume that occurs when temperature increases. Images PMID:1829160

  5. Sulfation and cation effects on the conformational properties of the glycan backbone of chondroitin sulfate disaccharides.

    PubMed

    Faller, Christina E; Guvench, Olgun

    2015-05-21

    Chondroitin sulfate (CS) is one of several glycosaminoglycans that are major components of proteoglycans. A linear polymer consisting of repeats of the disaccharide -4GlcAβ1-3GalNAcβ1-, CS undergoes differential sulfation resulting in five unique sulfation patterns. Because of the dimer repeat, the CS glycosidic "backbone" has two distinct sets of conformational degrees of freedom defined by pairs of dihedral angles: (ϕ1, ψ1) about the β1-3 glycosidic linkage and (ϕ2, ψ2) about the β1-4 glycosidic linkage. Differential sulfation and the possibility of cation binding, combined with the conformational flexibility and biological diversity of CS, complicate experimental efforts to understand CS three-dimensional structures at atomic resolution. Therefore, all-atom explicit-solvent molecular dynamics simulations with Adaptive Biasing Force sampling of the CS backbone were applied to obtain high-resolution, high-precision free energies of CS disaccharides as a function of all possible backbone geometries. All 10 disaccharides (β1-3 vs β1-4 linkage × five different sulfation patterns) were studied; additionally, ion effects were investigated by considering each disaccharide in the presence of either neutralizing sodium or calcium cations. GlcAβ1-3GalNAc disaccharides have a single, broad, thermodynamically important free-energy minimum, whereas GalNAcβ1-4GlcA disaccharides have two such minima. Calcium cations but not sodium cations bind to the disaccharides, and binding is primarily to the GlcA -COO(-) moiety as opposed to sulfate groups. This binding alters the glycan backbone thermodynamics in instances where a calcium cation bound to -COO(-) can act to bridge and stabilize an interaction with an adjacent sulfate group, whereas, in the absence of this cation, the proximity of a sulfate group to -COO(-) results in two like charges being both desolvated and placed adjacent to each other and is found to be destabilizing. In addition to providing information

  6. Inorganic backbone ionomers: Design and dielectric response of single-ion conducting polymers

    NASA Astrophysics Data System (ADS)

    Bartels, Joshua

    Ion-conducting polymers were studied primarily through the use of dielectric spectroscopy. The conclusions drawn from ion conduction models of the dielectric data are corroborated by additional independent experiments, including x-ray scattering, calorimetry, prism coupling, and DFT calculations. The broad concern of this dissertation is to understand and clarify a path forward in ion conducting polymer research. This is achieved by considering low-Tg ionomers and the advantages imparted by siloxane and phosphazene backbones. The most successful dielectric spectroscopy model for the materials studied is the electrode polarization model (EP), whereas other models, such as the Dyre random barrier model, fail to describe the experimental results. Seven nonionic ether oxygen (EO) containing polymers were studied in order to observe the effect that backbone chemistry has on dipole motion. Conventional carboncarbon backbone EO-containing polymers show no distinct advantage over similar EO-pendant polysiloxane or polyphosphazene systems. The mobility and effective backbone Tg imparted by the inorganic backbones are comparable. A short EO pendant results in a lower static dielectric constant due to restricted motion of dipoles close to the chain. The flexibility and chemical versatility of inorganic backbone polymers motivates further study of two ionomer systems. A polypohosphazene iodide conducting system was characterized by dielectric spectroscopy and x-ray scattering. Two end "tail" functionalization of the ammonium ion were used, a tail with two EOs and an alkyl tail of six carbons. This functional group plays an important role in ion dynamics and can wrap around the ion and self-solvate when EOs are present. The iodide-ammonium ionomers are observed to have unusually large high-frequency dielectric constants due to atomic polarization of ions. The strength of the atomic polarization scales with ion content. The aggregation state of ions is able to be determined from

  7. Triazole linkages and backbone branches in nucleic acids for biological and extra-biological applications

    NASA Astrophysics Data System (ADS)

    Paredes, Eduardo

    The recently increasing evidence of nucleic acids' alternative roles in biology and potential as useful nanomaterials and therapeutic agents has enabled the development of useful probes, elaborate nanostructures and therapeutic effectors based on nucleic acids. The study of alternative nucleic acid structure and function, particularly RNA, hinges on the ability to introduce site-specific modifications that either provide clues to the nucleic acid structure function relationship or alter the nucleic acid's function. Although the available chemistries allow for the conjugation of useful labels and molecules, their limitations lie in their tedious conjugation conditions or the lability of the installed probes. The development and optimization of click chemistry with RNA now provides the access to a robust and orthogonal conjugation methodology while providing stable conjugates. Our ability to introduce click reactive groups enzymatically, rather than only in the solid-phase, allows for the modification of larger, more cell relevant RNAs. Additionally, ligation of modified RNAs with larger RNA constructs through click chemistry represents an improvement over traditional ligation techniques. We determined that the triazole linkage generated through click chemistry is compatible in diverse nucleic acid based biological systems. Click chemistry has also been developed for extra-biological applications, particularly with DNA. We have expanded its use to generate useful polymer-DNA conjugates which can form controllable soft nanoparticles which take advantage of DNA's properties, i.e. DNA hybridization and computing. Additionally, we have generated protein-DNA conjugates and assembled protein-polymer hybrids mediated by DNA hybridization. The use of click chemistry in these reactions allows for the facile synthesis of these unnatural conjugates. We have also developed backbone branched DNA through click chemistry and showed that these branched DNAs are useful in generating

  8. Synthesis of tricyclic quinazolinones via intramolecular cyclization of 3-(2-aminoalkyl)-2-(phenylamino)quinazolin-4(3H)-ones.

    PubMed

    Yang, Xuhong; Wu, Minghu; Sun, Shaofa; Huang, Changfeng; Guo, Haibing; Wang, Jian; Lee, John; Xing, Yalan

    2016-05-01

    Bioactive tricyclic quinazolines class of 3,4-dihydro-1H-pyrimido[2,1-b]quinazolin-6(2H)-ones I and 2,3-dihydroimidazo[2,1-b]quinazolin-5(1H)-ones II were synthesized by the formic acid-catalyzed intramolecular cyclization of 3-(2-aminoalkyl)-2-(phenylamino)quinazolin-4(3H)-ones 1 in high yields. A plausible mechanism of the cyclization step is proposed. PMID:26470864

  9. Multicomponent Double Diels-Alder/Nazarov Tandem Cyclization of Symmetric Cross-Conjugated Diynones to Generate [6-5-6] Tricyclic Products.

    PubMed

    Carmichael, Rachael A; Chalifoux, Wesley A

    2016-06-20

    The construction of complex polycyclic terpenoid products in an efficient and step-economical manner using multicomponent and tandem processes is highly valuable. Herein, we report a tandem cyclization sequence that initiates with a multicomponent double Diels-Alder reaction of cross-conjugated diynones, followed by a Nazarov cyclization to efficiently produce [6-5-6] tricyclic products with excellent regio- and diastereoselectivity. This methodology generates five new carbon-carbon bonds, three rings, quaternary or vicinal quaternary carbons, and stereogenic centers in a one-pot reaction. PMID:27124516

  10. Hg/Pt-catalyzed conversion of bromo alkynamines/alkynols to saturated and unsaturated γ-butyrolactams/lactones via intramolecular electrophilic cyclization.

    PubMed

    Kiran Kumar, Yalla; Ranjith Kumar, Gadi; Sridhar Reddy, Maddi

    2016-01-28

    Convenient and general Hg(ii)/Pt(iv) catalyzed syntheses of γ-butyrolactams and α,β-unsaturated γ-butyrolactones/lactams are described via intramolecular electrophilic cyclizations of bromoalkynes with tosylamino and hydroxyl tethers. The reaction features the use of wet solvents, the exclusion of any base and additive, mild conditions and practical yields. We also synthesised few chiral lactams through this pathway. Additionally, it is shown that the NHTs group distanced further from the homopropargylic position assists regioselective bromoalkyne hydration to yield useful α-bromoketones. Furthermore, Boc protected bromo homo propargyl amines undergo 6-endo-dig cyclization through Boc oxygen to give bromomethylene substituted oxazinones. PMID:26647118

  11. Theoretical study of free-radical-mediated 5-exo-trig cyclizations of chiral 3-substituted hepta-1,6-dienes.

    PubMed

    d'Antuono, Philippe; Fritsch, Alain; Ducasse, Laurent; Castet, Frédéric; James, Philippe; Landais, Yannick

    2006-03-16

    Free radical-mediated 5-exo-trig cyclizations of hepta-1,6-dienes incorporating allylsilane, alkyl and alkoxy analogues are modeled using correlated ab initio calculations. The structural, electronic and thermochemical properties of reactants, products and transition species involved in the key step of the radical cyclization process are analyzed and compared with those predicted by the Beckwith-Houk transition models. The product ratios are calculated from the Gibbs energy differences between the possible transition structures following the Curtin-Hammet principle and compared to experimental values. PMID:16526655

  12. Doped Si nanoparticles with conformal carbon coating and cyclized-polyacrylonitrile network as high-capacity and high-rate lithium-ion battery anodes

    NASA Astrophysics Data System (ADS)

    Xie, Ming; Molina Piper, Daniela; Tian, Miao; Clancey, Joel; George, Steven M.; Lee, Se-Hee; Zhou, Yun

    2015-09-01

    Doped Si nanoparticles (SiNPs) with conformal carbon coating and cyclized-polyacrylonitrile (PAN) network displayed capacities of 3500 and 3000 mAh g-1 at C/20 and C/10, respectively. At 1 C, the electrode preserves a specific discharge capacity of ˜1500 mAh g-1 for at least 60 cycles without decay. Al2O3 atomic layer deposition (ALD) helps improve the initial Coulombic efficiency (CE) to 85%. The dual coating of conformal carbon and cyclized-PAN help alleviate volume change and facilitate charge transfer. Ultra-thin Al2O3 ALD layers help form a stable solid electrolyte interphase interface.

  13. Synthesis of functionalized 5-substituted thiazolidine-2-thiones via adscititious xanthate-promoted radical cyclization of allyl(alkyl/aryl)dithiocarbamates.

    PubMed

    Gao, Simiao; Zhang, Yu; Dong, Jun; Chen, Ning; Xu, Jiaxi

    2016-01-21

    Functionalized 5-substituted thiazolidine-2-thiones were synthesized efficiently from alkyl allyl(alkyl/aryl)-dithiocarbamates via radical cyclization with the corresponding S-alkyl O-ethyl xanthates as the adscititious radical precursors. The application of the adscititious radical precursors improves not only the yields, but also the efficiency in the radical cyclization reaction significantly. The current adscititious radical precursor method provides a new strategy for the achievement and improvement of some radical reactions which are hardly or difficultly realized by the traditional direct methods. PMID:26626401

  14. Catalyst-Free Three-Component Tandem CDC Cyclization: Convenient Access to Isoindolinones from Aromatic Acid, Amides, and DMSO by a Pummerer-Type Rearrangement.

    PubMed

    Wang, Peng-Min; Pu, Fan; Liu, Ke-Yan; Li, Chao-Jun; Liu, Zhong-Wen; Shi, Xian-Ying; Fan, Juan; Yang, Ming-Yu; Wei, Jun-Fa

    2016-04-25

    A catalyst-free multicomponent CDC reaction is rarely reported, especially for the intermolecular tandem CDC cyclization, which represents an important strategy for constructing cyclic compounds. Herein, a three-component tandem CDC cyclization by a Pummerer-type rearrangement to afford biologically relevant isoindolinones from aromatic acids, amides, and DMSO, is described. This intermolecular tandem reaction undergoes a C(sp(2) )-H/C(sp(3) )-H cross-dehydrogenative coupling, C-N bond formation, and intramolecular amidation. A notable feature of this novel protocol is avoiding a catalyst and additive (apart from oxidant). PMID:26998754

  15. Synthesis of functionalized γ-lactone via Sakurai exo-cyclization/rearrangement of 3,3-bis(silyl) enol ester with a tethered acetal.

    PubMed

    Yin, Zhiping; Liu, Zengjin; Huang, Zhenggang; Chu, Yang; Chu, Zhiwen; Hu, Jia; Gao, Lu; Song, Zhenlei

    2015-03-20

    An efficient synthesis of functionalized γ-lactones has been developed involving Sakurai exo-cyclization/rearrangement of 3,3-bis(silyl) enol esters with a tethered acetal. While the steric and electronic effects of geminal bis(silane) favor the desired Sakurai pathway, the methoxy species formed in the deprotection step also facilitates both cyclization and rearrangement. The synthetic value of this approach has been demonstrated by efficiently transforming the E-vinylsilane into enyne and the γ-lactone moiety into multisubstituted THF. PMID:25730288

  16. Mechanism of action of cyclic beta-1,2-glucan synthetase from Agrobacterium tumefaciens: competition between cyclization and elongation reactions.

    PubMed Central

    Williamson, G; Damani, K; Devenney, P; Faulds, C B; Morris, V J; Stevens, B J

    1992-01-01

    We have examined some aspects of the mechanism of cyclic beta-1,2-glucan synthetase from Agrobacterium tumefaciens (235-kDa protein, gene product of the chvB region). The enzyme produces cyclic beta-1,2-glucans containing 17 to 23 glucose residues from UDP-glucose. In the presence of added cyclic beta-1,2-glucans (> 0.5 mg/ml) (containing 17 to 23 glucose residues), the enzyme instead synthesizes larger cyclic beta-1,2-glucans containing 24 to 30 glucose residues. This is achieved by de novo synthesis and not by disproportion reactions with the added product. This is interpreted as inhibition of the specific cyclization reaction for the synthesis of cyclic beta-1,2-glucans containing 17 to 23 glucose residues but with no concomitant effect on the elongation (polymerization) reaction. Temperature and detergents both affect the distribution of sizes of cyclic beta-1,2-glucans, but glucans containing 24 to 30 glucose residues are not produced. We suggest that the size distribution of cyclic beta-1,2-glucan products depends on competing elongation and cyclization reactions. PMID:1459942

  17. Incorporation of N-amidino-pyroglutamic acid into peptides using intramolecular cyclization of alpha-guanidinoglutaric acid.

    PubMed

    Burov, Sergey; Moskalenko, Yulia; Dorosh, Marina; Shkarubskaya, Zoya; Panarin, Evgeny

    2009-11-01

    N-terminal modification of peptides by unnatural amino acids significantly affects their enzymatic stability, conformational properties and biological activity. Application of N-amidino-amino acids, positively charged under physiological conditions, can change peptide conformation and its affinity to the corresponding receptor. In this article, we describe synthesis of short peptides, containing a new building block-N-amidino-pyroglutamic acid. Although direct guanidinylation of pyroglutamic acid and oxidation of N-amidino-proline using RuO(4) did not produce positive results, N-amidino-Glp-Phe-OH was synthesized on Wang polymer by cyclization of alpha-guanidinoglutaric acid residue. In the course of synthesis, it was found that literature procedure of selective Boc deprotection using TMSOTf/TEA reagent is accompanied by concomitant side reaction of triethylamine alkylation by polymer linker fragment. It should be mentioned that independently from cyclization time and coupling agent (DIC or HCTU), the lactam formation was incomplete. Separation of the cyclic product from the linear precursor was achieved by HPLC in ammonium formate buffer at pH 6. HPLC analysis showed N-amidino-Glp-Phe-OH stability at acidic and physiological pH and fast ring opening in water solution at pH 9. The suggested method of N-amidino-Glp residue formation can be applied in the case of short peptide chains, whereas synthesis of longer ones will require fragment condensation approach. PMID:19739127

  18. Aza-Morita-Baylis-Hillman reactions and cyclizations of conjugated dienes activated by sulfone, ester, and keto groups.

    PubMed

    Sorbetti, Jovina M; Clary, Kristen N; Rankic, Danica A; Wulff, Jeremy E; Parvez, Masood; Back, Thomas G

    2007-04-27

    The aza-Morita-Baylis-Hillman reactions of aldimines 2 with several activated conjugated dienes were found to proceed smoothly in DMF in the presence of 3-hydroxyquinuclidine (HQD). Imines 2 reacted with 1-(p-toluenesulfonyl)-1,3-butadiene (3), methyl 2,4-pentadienoate (6), hexa-3,5-dien-2-one (7), and 1-phenylpenta-2,4-dien-1-one (8) to afford adducts 4, 13, 14, and 15, respectively. While products 4, 13, and 15 were formed as E,Z mixtures, adducts 14 were obtained as essentially pure E-isomers. Cyclization of the E-isomers of the products derived from the dienyl sulfone 3 and the dienoate ester 6 occurred via intramolecular conjugate addition under base-catalyzed conditions to afford functionalized piperidines 5 and 16, respectively. The aza-Morita-Baylis-Hillman reaction and subsequent cyclization of the imine 2a with 3 were also carried out as a one-pot reaction, while the reaction mixture was simultaneously irradiated at 300 nm to effect the photoisomerization of the unreactive Z-adduct of the corresponding 4 to the more reactive E-isomer. PMID:17381156

  19. In Vivo Efficacy of Anuran Trypsin Inhibitory Peptides against Staphylococcal Skin Infection and the Impact of Peptide Cyclization

    PubMed Central

    Malik, U.; Silva, O. N.; Fensterseifer, I. C. M.; Chan, L. Y.; Clark, R. J.; Franco, O. L.; Daly, N. L.

    2015-01-01

    Staphylococcus aureus is a virulent pathogen that is responsible for a wide range of superficial and invasive infections. Its resistance to existing antimicrobial drugs is a global problem, and the development of novel antimicrobial agents is crucial. Antimicrobial peptides from natural resources offer potential as new treatments against staphylococcal infections. In the current study, we have examined the antimicrobial properties of peptides isolated from anuran skin secretions and cyclized synthetic analogues of these peptides. The structures of the peptides were elucidated by nuclear magnetic resonance (NMR) spectroscopy, revealing high structural and sequence similarity with each other and with sunflower trypsin inhibitor 1 (SFTI-1). SFTI-1 is an ultrastable cyclic peptide isolated from sunflower seeds that has subnanomolar trypsin inhibitory activity, and this scaffold offers pharmaceutically relevant characteristics. The five anuran peptides were nonhemolytic and noncytotoxic and had trypsin inhibitory activities similar to that of SFTI-1. They demonstrated weak in vitro inhibitory activities against S. aureus, but several had strong antibacterial activities against S. aureus in an in vivo murine wound infection model. pYR, an immunomodulatory peptide from Rana sevosa, was the most potent, with complete bacterial clearance at 3 mg · kg−1. Cyclization of the peptides improved their stability but was associated with a concomitant decrease in antimicrobial activity. In summary, these anuran peptides are promising as novel therapeutic agents for treating infections from a clinically resistant pathogen. PMID:25624332

  20. A Highly Effective Ruthenium System for the Catalyzed Dehydrogenative Cyclization of Amine-Boranes to Cyclic Boranes under Mild Conditions.

    PubMed

    Wallis, Christopher J; Alcaraz, Gilles; Petit, Alban S; Poblador-Bahamonde, Amalia I; Clot, Eric; Bijani, Christian; Vendier, Laure; Sabo-Etienne, Sylviane

    2015-09-01

    We recently disclosed a new ruthenium-catalyzed dehydrogenative cyclization process (CDC) of diamine-monoboranes leading to cyclic diaminoboranes. In the present study, the CDC reaction has been successfully extended to a larger number of diamine-monoboranes (4-7) and to one amine-borane alcohol precursor (8). The corresponding NB(H)N- and NB(H)O-containing cyclic diaminoboranes (12-15) and oxazaborolidine (16) were obtained in good to high yields. Multiple substitution patterns on the starting amine-borane substrates were evaluated and the reaction was also performed with chiral substrates. Efforts have been spent to understand the mechanism of the ruthenium CDC process. In addition to a computational approach, a strategy enabling the kinetic discrimination on successive events of the catalytic process leading to the formation of the NB(H)N linkage was performed on the six-carbon chain diamine-monoborane 21 and completed with a (15) N NMR study. The long-life bis-σ-borane ruthenium intermediate 23 possessing a reactive NHMe ending was characterized in situ and proved to catalyze the dehydrogenative cyclization of 1, ascertaining that bis σ-borane ruthenium complexes are key intermediates in the CDC process. PMID:26220052

  1. Trajectory Calculations for Bergman Cyclization Predict H/D Kinetic Isotope Effects Due to Nonstatistical Dynamics in the Product.

    PubMed

    Doubleday, Charles; Boguslav, Mayla; Howell, Caronae; Korotkin, Scott D; Shaked, David

    2016-06-22

    An unusual H/D kinetic isotope effect (KIE) is described, in which isotopic selectivity arises primarily from nonstatistical dynamics in the product. In DFT-based quasiclassical trajectories of Bergman cyclization of (Z)-3-hexen-1,5-diyne (1) at 470 K, the new CC bond retains its energy, and 28% of nascent p-benzyne recrosses back to the enediyne on a vibrational time scale. The competing process of intramolecular vibrational redistribution (IVR) in p-benzyne is too slow to prevent this. Deuteration increases the rate of IVR, which decreases the fraction of recrossing and increases the yield of statistical (trapable) p-benzyne, 2. Trapable yields for three isotopomers of 2 range from 72% to 86%. The resulting KIEs for Bergman cyclization differ substantially from KIEs predicted by transition state theory, which suggests that IVR in this reaction can be studied by conventional KIEs. Leakage of vibrational zero point energy (ZPE) into the reaction coordinate was probed by trajectories in which initial ZPE in the CH/CD stretching modes was reduced by 25%. This did not change the predicted KIEs. PMID:27281683

  2. Solid polymer battery electrolyte and reactive metal-water battery

    DOEpatents

    Harrup, Mason K.; Peterson, Eric S.; Stewart, Frederick F.

    2000-01-01

    In one implementation, a reactive metal-water battery includes an anode comprising a metal in atomic or alloy form selected from the group consisting of periodic table Group 1A metals, periodic table Group 2A metals and mixtures thereof. The battery includes a cathode comprising water. Such also includes a solid polymer electrolyte comprising a polyphosphazene comprising ligands bonded with a phosphazene polymer backbone. The ligands comprise an aromatic ring containing hydrophobic portion and a metal ion carrier portion. The metal ion carrier portion is bonded at one location with the polymer backbone and at another location with the aromatic ring containing hydrophobic portion. The invention also contemplates such solid polymer electrolytes use in reactive metal/water batteries, and in any other battery.

  3. Backbone dependency further improves side chain prediction efficiency in the Energy-based Conformer Library (bEBL).

    PubMed

    Subramaniam, Sabareesh; Senes, Alessandro

    2014-11-01

    Side chain optimization is an integral component of many protein modeling applications. In these applications, the conformational freedom of the side chains is often explored using libraries of discrete, frequently occurring conformations. Because side chain optimization can pose a computationally intensive combinatorial problem, the nature of these conformer libraries is important for ensuring efficiency and accuracy in side chain prediction. We have previously developed an innovative method to create a conformer library with enhanced performance. The Energy-based Library (EBL) was obtained by analyzing the energetic interactions between conformers and a large number of natural protein environments from crystal structures. This process guided the selection of conformers with the highest propensity to fit into spaces that should accommodate a side chain. Because the method requires a large crystallographic data-set, the EBL was created in a backbone-independent fashion. However, it is well established that side chain conformation is strongly dependent on the local backbone geometry, and that backbone-dependent libraries are more efficient in side chain optimization. Here we present the backbone-dependent EBL (bEBL), whose conformers are independently sorted for each populated region of Ramachandran space. The resulting library closely mirrors the local backbone-dependent distribution of side chain conformation. Compared to the EBL, we demonstrate that the bEBL uses fewer conformers to produce similar side chain prediction outcomes, thus further improving performance with respect to the already efficient backbone-independent version of the library. PMID:25212195

  4. Effect of Liquid-Crystalline Epoxy Backbone Structure on Thermal Conductivity of Epoxy-Alumina Composites

    NASA Astrophysics Data System (ADS)

    Giang, Thanhkieu; Kim, Jinhwan

    2016-06-01

    In a series of papers published recently, we clearly demonstrated that the most important factor governing the thermal conductivity of epoxy-Al2O3 composites is the backbone structure of the epoxy. In this study, three more epoxies based on diglycidyl ester-terminated liquid-crystalline epoxy (LCE) have been synthesized to draw conclusions regarding the effect of the epoxy backbone structure on the thermal conductivity of epoxy-alumina composites. The synthesized structures were characterized by proton nuclear magnetic resonance (1H-NMR) and Fourier-transform infrared (FT-IR) spectroscopy. Differential scanning calorimetry, thermogravimetric analysis, and optical microscopy were also employed to examine the thermal and optical properties of the synthesized LCEs and the cured composites. All three LCE resins exhibited typical liquid-crystalline behaviors: clear solid crystalline state below the melting temperature (T m), sharp crystalline melting at T m, and transition to nematic phase above T m with consequent isotropic phase above the isotropic temperature (T i). The LCE resins displayed distinct nematic liquid-crystalline phase over a wide temperature range and retained liquid-crystalline phase after curing, with high thermal conductivity of the resulting composite. The thermal conductivity values ranged from 3.09 W/m-K to 3.89 W/m-K for LCE-Al2O3 composites with 50 vol.% filler loading. The steric effect played a governing role in the difference. The neat epoxy resin thermal conductivity was obtained as 0.35 W/m-K to 0.49 W/m-K based on analysis using the Agari-Uno model. The results clearly support the objective of this study in that the thermal conductivity of the LCE-containing networks strongly depended on the epoxy backbone structure and the degree of ordering in the cured network.

  5. On the role of thermal backbone fluctuations in myoglobin ligand gate dynamics

    NASA Astrophysics Data System (ADS)

    Krokhotin, Andrey; Niemi, Antti J.; Peng, Xubiao

    2013-05-01

    We construct an energy function that describes the crystallographic structure of sperm whale myoglobin backbone. As a model in our construction, we use the Protein Data Bank entry 1ABS that has been measured at liquid helium temperature. Consequently, the thermal B-factor fluctuations are very small, which is an advantage in our construction. The energy function that we utilize resembles that of the discrete nonlinear Schrödinger equation. Likewise, ours supports topological solitons as local minimum energy configurations. We describe the 1ABS backbone in terms of topological solitons with a precision that deviates from 1ABS by an average root-mean-square distance, which is less than the experimentally observed Debye-Waller B-factor fluctuation distance. We then subject the topological multi-soliton solution to extensive numerical heating and cooling experiments, over a very wide range of temperatures. We concentrate in particular to temperatures above 300 K and below the Θ-point unfolding temperature, which is around 348 K. We confirm that the behavior of the topological multi-soliton is fully consistent with Anfinsen's thermodynamic principle, up to very high temperatures. We observe that the structure responds to an increase of temperature consistently in a very similar manner. This enables us to characterize the onset of thermally induced conformational changes in terms of three distinct backbone ligand gates. One of the gates is made of the helix F and the helix E. The two other gates are chosen similarly, when open they provide a direct access route for a ligand to reach the heme. We find that out of the three gates we investigate, the one which is formed by helices B and G is the most sensitive to thermally induced conformational changes. Our approach provides a novel perspective to the important problem of ligand entry and exit.

  6. Exposing Hidden Alternative Backbone Conformations in X-ray Crystallography Using qFit

    PubMed Central

    Keedy, Daniel A.; Fraser, James S.; van den Bedem, Henry

    2015-01-01

    Proteins must move between different conformations of their native ensemble to perform their functions. Crystal structures obtained from high-resolution X-ray diffraction data reflect this heterogeneity as a spatial and temporal conformational average. Although movement between natively populated alternative conformations can be critical for characterizing molecular mechanisms, it is challenging to identify these conformations within electron density maps. Alternative side chain conformations are generally well separated into distinct rotameric conformations, but alternative backbone conformations can overlap at several atomic positions. Our model building program qFit uses mixed integer quadratic programming (MIQP) to evaluate an extremely large number of combinations of sidechain conformers and backbone fragments to locally explain the electron density. Here, we describe two major modeling enhancements to qFit: peptide flips and alternative glycine conformations. We find that peptide flips fall into four stereotypical clusters and are enriched in glycine residues at the n+1 position. The potential for insights uncovered by new peptide flips and glycine conformations is exemplified by HIV protease, where different inhibitors are associated with peptide flips in the “flap” regions adjacent to the inhibitor binding site. Our results paint a picture of peptide flips as conformational switches, often enabled by glycine flexibility, that result in dramatic local rearrangements. Our results furthermore demonstrate the power of large-scale computational analysis to provide new insights into conformational heterogeneity. Overall, improved modeling of backbone heterogeneity with high-resolution X-ray data will connect dynamics to the structure-function relationship and help drive new design strategies for inhibitors of biomedically important systems. PMID:26506617

  7. Exposing hidden alternative backbone conformations in X-ray crystallography using qFit

    DOE PAGESBeta

    Keedy, Daniel A.; Fraser, James S.; van den Bedem, Henry; Shehu, Amarda

    2015-10-27

    Proteins must move between different conformations of their native ensemble to perform their functions. Crystal structures obtained from high-resolution X-ray diffraction data reflect this heterogeneity as a spatial and temporal conformational average. Although movement between natively populated alternative conformations can be critical for characterizing molecular mechanisms, it is challenging to identify these conformations within electron density maps. Alternative side chain conformations are generally well separated into distinct rotameric conformations, but alternative backbone conformations can overlap at several atomic positions. Our model building program qFit uses mixed integer quadratic programming (MIQP) to evaluate an extremely large number of combinations of sidechainmore » conformers and backbone fragments to locally explain the electron density. Here, we describe two major modeling enhancements to qFit: peptide flips and alternative glycine conformations. We find that peptide flips fall into four stereotypical clusters and are enriched in glycine residues at the n+1 position. The potential for insights uncovered by new peptide flips and glycine conformations is exemplified by HIV protease, where different inhibitors are associated with peptide flips in the “flap” regions adjacent to the inhibitor binding site. Our results paint a picture of peptide flips as conformational switches, often enabled by glycine flexibility, that result in dramatic local rearrangements. Our results furthermore demonstrate the power of large-scale computational analysis to provide new insights into conformational heterogeneity. Furthermore, improved modeling of backbone heterogeneity with high-resolution X-ray data will connect dynamics to the structure-function relationship and help drive new design strategies for inhibitors of biomedically important systems.« less

  8. Exposing hidden alternative backbone conformations in X-ray crystallography using qFit

    SciTech Connect

    Keedy, Daniel A.; Fraser, James S.; van den Bedem, Henry; Shehu, Amarda

    2015-10-27

    Proteins must move between different conformations of their native ensemble to perform their functions. Crystal structures obtained from high-resolution X-ray diffraction data reflect this heterogeneity as a spatial and temporal conformational average. Although movement between natively populated alternative conformations can be critical for characterizing molecular mechanisms, it is challenging to identify these conformations within electron density maps. Alternative side chain conformations are generally well separated into distinct rotameric conformations, but alternative backbone conformations can overlap at several atomic positions. Our model building program qFit uses mixed integer quadratic programming (MIQP) to evaluate an extremely large number of combinations of sidechain conformers and backbone fragments to locally explain the electron density. Here, we describe two major modeling enhancements to qFit: peptide flips and alternative glycine conformations. We find that peptide flips fall into four stereotypical clusters and are enriched in glycine residues at the n+1 position. The potential for insights uncovered by new peptide flips and glycine conformations is exemplified by HIV protease, where different inhibitors are associated with peptide flips in the “flap” regions adjacent to the inhibitor binding site. Our results paint a picture of peptide flips as conformational switches, often enabled by glycine flexibility, that result in dramatic local rearrangements. Our results furthermore demonstrate the power of large-scale computational analysis to provide new insights into conformational heterogeneity. Furthermore, improved modeling of backbone heterogeneity with high-resolution X-ray data will connect dynamics to the structure-function relationship and help drive new design strategies for inhibitors of biomedically important systems.

  9. RNA backbone: consensus all-angle conformers and modular string nomenclature (an RNA Ontology Consortium contribution).

    PubMed

    Richardson, Jane S; Schneider, Bohdan; Murray, Laura W; Kapral, Gary J; Immormino, Robert M; Headd, Jeffrey J; Richardson, David C; Ham, Daniela; Hershkovits, Eli; Williams, Loren Dean; Keating, Kevin S; Pyle, Anna Marie; Micallef, David; Westbrook, John; Berman, Helen M

    2008-03-01

    A consensus classification and nomenclature are defined for RNA backbone structure using all of the backbone torsion angles. By a consensus of several independent analysis methods, 46 discrete conformers are identified as suitably clustered in a quality-filtered, multidimensional dihedral angle distribution. Most of these conformers represent identifiable features or roles within RNA structures. The conformers are given two-character names that reflect the seven-angle delta epsilon zeta alpha beta gamma delta combinations empirically found favorable for the sugar-to-sugar "suite" unit within which the angle correlations are strongest (e.g., 1a for A-form, 5z for the start of S-motifs). Since the half-nucleotides are specified by a number for delta epsilon zeta and a lowercase letter for alpha beta gamma delta, this modular system can also be parsed to describe traditional nucleotide units (e.g., a1) or the dinucleotides (e.g., a1a1) that are especially useful at the level of crystallographic map fitting. This nomenclature can also be written as a string with two-character suite names between the uppercase letters of the base sequence (N1aG1gN1aR1aA1cN1a for a GNRA tetraloop), facilitating bioinformatic comparisons. Cluster means, standard deviations, coordinates, and examples are made available, as well as the Suitename software that assigns suite conformer names and conformer match quality (suiteness) from atomic coordinates. The RNA Ontology Consortium will combine this new backbone system with others that define base pairs, base-stacking, and hydrogen-bond relationships to provide a full description of RNA structural motifs. PMID:18192612

  10. Membrane Curvature Sensing by Amphipathic Helices Is Modulated by the Surrounding Protein Backbone

    PubMed Central

    Doucet, Christine M.; Esmery, Nina; de Saint-Jean, Maud; Antonny, Bruno

    2015-01-01

    Membrane curvature is involved in numerous biological pathways like vesicle trafficking, endocytosis or nuclear pore complex assembly. In addition to its topological role, membrane curvature is sensed by specific proteins, enabling the coordination of biological processes in space and time. Amongst membrane curvature sensors are the ALPS (Amphipathic Lipid Packing Sensors). ALPS motifs are short peptides with peculiar amphipathic properties. They are found in proteins targeted to distinct curved membranes, mostly in the early secretory pathway. For instance, the ALPS motif of the golgin GMAP210 binds trafficking vesicles, while the ALPS motif of Nup133 targets nuclear pores. It is not clear if, besides curvature sensitivity, ALPS motifs also provide target specificity, or if other domains in the surrounding protein backbone are involved. To elucidate this aspect, we studied the subcellular localization of ALPS motifs outside their natural protein context. The ALPS motifs of GMAP210 or Nup133 were grafted on artificial fluorescent probes. Importantly, ALPS motifs are held in different positions and these contrasting architectures were mimicked by the fluorescent probes. The resulting chimeras recapitulated the original proteins localization, indicating that ALPS motifs are sufficient to specifically localize proteins. Modulating the electrostatic or hydrophobic content of Nup133 ALPS motif modified its avidity for cellular membranes but did not change its organelle targeting properties. In contrast, the structure of the backbone surrounding the helix strongly influenced targeting. In particular, introducing an artificial coiled-coil between ALPS and the fluorescent protein increased membrane curvature sensitivity. This coiled-coil domain also provided membrane curvature sensitivity to the amphipathic helix of Sar1. The degree of curvature sensitivity within the coiled-coil context remains correlated to the natural curvature sensitivity of the helices. This suggests

  11. Toward Atomistic Resolution Structure of Phosphatidylcholine Headgroup and Glycerol Backbone at Different Ambient Conditions.

    PubMed

    Botan, Alexandru; Favela-Rosales, Fernando; Fuchs, Patrick F J; Javanainen, Matti; Kanduč, Matej; Kulig, Waldemar; Lamberg, Antti; Loison, Claire; Lyubartsev, Alexander; Miettinen, Markus S; Monticelli, Luca; Määttä, Jukka; Ollila, O H Samuli; Retegan, Marius; Róg, Tomasz; Santuz, Hubert; Tynkkynen, Joona

    2015-12-10

    Phospholipids are essential building blocks of biological membranes. Despite a vast amount of very accurate experimental data, the atomistic resolution structures sampled by the glycerol backbone and choline headgroup in phoshatidylcholine bilayers are not known. Atomistic resolution molecular dynamics simulations have the potential to resolve the structures, and to give an arrestingly intuitive interpretation of the experimental data, but only if the simulations reproduce the data within experimental accuracy. In the present work, we simulated phosphatidylcholine (PC) lipid bilayers with 13 different atomistic models, and compared simulations with NMR experiments in terms of the highly structurally sensitive C-H bond vector order parameters. Focusing on the glycerol backbone and choline headgroups, we showed that the order parameter comparison can be used to judge the atomistic resolution structural accuracy of the models. Accurate models, in turn, allow molecular dynamics simulations to be used as an interpretation tool that translates these NMR data into a dynamic three-dimensional representation of biomolecules in biologically relevant conditions. In addition to lipid bilayers in fully hydrated conditions, we reviewed previous experimental data for dehydrated bilayers and cholesterol-containing bilayers, and interpreted them with simulations. Although none of the existing models reached experimental accuracy, by critically comparing them we were able to distill relevant chemical information: (1) increase of choline order parameters indicates the P-N vector tilting more parallel to the membrane, and (2) cholesterol induces only minor changes to the PC (glycerol backbone) structure. This work has been done as a fully open collaboration, using nmrlipids.blogspot.fi as a communication platform; all the scientific contributions were made publicly on this blog. During the open research process, the repository holding our simulation trajectories and files ( https

  12. Toward Atomistic Resolution Structure of Phosphatidylcholine Headgroup and Glycerol Backbone at Different Ambient Conditions†

    PubMed Central

    2015-01-01

    Phospholipids are essential building blocks of biological membranes. Despite a vast amount of very accurate experimental data, the atomistic resolution structures sampled by the glycerol backbone and choline headgroup in phoshatidylcholine bilayers are not known. Atomistic resolution molecular dynamics simulations have the potential to resolve the structures, and to give an arrestingly intuitive interpretation of the experimental data, but only if the simulations reproduce the data within experimental accuracy. In the present work, we simulated phosphatidylcholine (PC) lipid bilayers with 13 different atomistic models, and compared simulations with NMR experiments in terms of the highly structurally sensitive C–H bond vector order parameters. Focusing on the glycerol backbone and choline headgroups, we showed that the order parameter comparison can be used to judge the atomistic resolution structural accuracy of the models. Accurate models, in turn, allow molecular dynamics simulations to be used as an interpretation tool that translates these NMR data into a dynamic three-dimensional representation of biomolecules in biologically relevant conditions. In addition to lipid bilayers in fully hydrated conditions, we reviewed previous experimental data for dehydrated bilayers and cholesterol-containing bilayers, and interpreted them with simulations. Although none of the existing models reached experimental accuracy, by critically comparing them we were able to distill relevant chemical information: (1) increase of choline order parameters indicates the P–N vector tilting more parallel to the membrane, and (2) cholesterol induces only minor changes to the PC (glycerol backbone) structure. This work has been done as a fully open collaboration, using nmrlipids.blogspot.fi as a communication platform; all the scientific contributions were made publicly on this blog. During the open research process, the repository holding our simulation trajectories and files (https

  13. Sulfation and Cation Effects on the Conformational Properties of the Glycan Backbone of Chondroitin Sulfate Disaccharides

    PubMed Central

    Faller, Christina E.; Guvench, Olgun

    2015-01-01

    Chondroitin sulfate (CS) is one of several glycosaminoglycans that are major components of proteoglycans. A linear polymer consisting of repeats of the disaccharide -4GlcAβ1-3GalNAcβ1-, CS undergoes differential sulfation resulting in five unique sulfation patterns. Because of the dimer repeat, the CS glycosidic “backbone” has two distinct sets of conformational degrees of freedom defined by pairs of dihedral angles: (ϕ1, ψ1) about the β1-3 glycosidic linkage and (ϕ2, ψ2) about the β1-4 glycosidic linkage. Differential sulfation and the possibility of cation binding, combined with the conformational flexibility and biological diversity of CS, complicate experimental efforts to understand CS three-dimensional structures at atomic resolution. Therefore, all-atom explicit-solvent molecular dynamics simulations with Adaptive Biasing Force sampling of the CS backbone were applied to obtain high resolution, high precision free energies of CS disaccharides as a function of all possible backbone geometries. All ten disaccharides (β1-3 vs. β1-4 linkage x five different sulfation patterns) were studied; additionally, ion effects were investigated by considering each disaccharide in the presence of either neutralizing sodium or calcium cations. GlcAβ1-3GalNAc disaccharides have a single, broad, thermodynamically important free-energy minimum whereas GalNAcβ1-4GlcA disaccharides have two such minima. Calcium cations but not sodium cations bind to the disaccharides, and binding is primarily to the GlcA –COO− moiety as opposed to sulfate groups. This binding alters the glycan backbone thermodynamics in instances where a calcium cation bound to –COO− can act to bridge and stabilize an interaction with an adjacent sulfate group, whereas, in the absence of this cation, the proximity of a sulfate group to –COO− results in two like charges being both desolvated and placed adjacent to each other and is found to be destabilizing. In addition to providing

  14. Integrating the university medical center. Phase one: providing an information backbone.

    PubMed Central

    Berry, S. J.; Reber, E.; Offeman, W. E.

    1991-01-01

    UCLA School of Medicine represents a diverse computing community where the creation of each individual network has been driven by applications, price/performance and functionality. Indeed, the ability to connect to other computers has had no bearing on selection. Yet, there exists a need to seamlessly connect the individual networks to other minicomputers, mainframes and remote computers. We have created a school wide backbone network that will enable an individual from a single workstation to access a wide variety of services residing on any number of machines. PMID:1807658

  15. First water-soluble backbone Ru-Ru-Ni heterometallic organometallic polymer.

    PubMed

    Scalambra, Franco; Serrano-Ruiz, Manuel; Romerosa, Antonio

    2015-04-01

    The water-soluble backbone heterometallic polymer {[(PTA)2 CpRu-μ-CN-RuCp(PTA)2 -μ-NiCl3 ]}n (2) is synthesized using a reproducible and robust method and fully characterized by X-ray single crystal diffraction. The Ru-Ru-Ni polymer is found to be stable in the solid state and soluble in water. Nuclear magnetic resonance (NMR) and light scattering studies show that the polymer is stable in water for several days in air. PMID:25739739

  16. Colloidal quantum dot lasers built on a passive two-dimensional photonic crystal backbone.

    PubMed

    Chang, Hojun; Min, Kyungtaek; Lee, Myungjae; Kang, Minsu; Park, Yeonsang; Cho, Kyung-Sang; Roh, Young-Geun; Woo Hwang, Sung; Jeon, Heonsu

    2016-03-17

    We report the room-temperature lasing action from two-dimensional photonic crystal (PC) structures composed of a passive Si3N4 backbone with an over-coat of CdSe/CdS/ZnS colloidal quantum dots (CQDs) for optical gain. When optically excited, devices lased in dual PC band-edge modes, with the modal dominance governed by the thickness of the CQD over-layer. The demonstrated laser platform should have an impact on future photonic integrated circuits as the on-chip coupling between active and passive components is readily achievable. PMID:26935411

  17. Visible-Light Photoredox Catalyzed Three-Component Cyclization of 2H-Azirines, Alkynyl Bromides, and Molecular Oxygen to Oxazole Skeleton.

    PubMed

    Chen, Lili; Li, Hongji; Li, Pinhua; Wang, Lei

    2016-08-01

    A novel three-component cyclization of 2H-azirines, alkynyl bromides, and molecular oxygen under visible-light photoredox catalysis at room temperature has been developed, which provides a direct approach to a wide range of substituted oxazoles in moderate to good yields. PMID:27456612

  18. Understanding the domino retro [3+2] cycloaddition/cyclization reaction of bicyclic isoxazolidines in the synthesis of spirocyclic alkaloids. A DFT study.

    PubMed

    Layeb, Hatem; Nacereddine, Abdelmalek Khorief; Djerourou, Abdelhafid; Domingo, Luis R

    2014-07-01

    The domino retro [3+2] cycloaddition/cyclization reaction of bicyclic isoxazolidines 4 yielding [6.6.5]-tricyclic isoxazolidines 7 and [6.5.5]-tricyclic isoxazolidines 8, experimentally reported by Holmes et al., has been studied in toluene using DFT methods at the MPWB1K/6-311G** level. This domino reaction begins by a reto [3+2] cycloaddition reaction of the bicyclic isoxazolidines 4 forming the cyclic nitrones 5, which undergo a subsequent cyclization reaction yielding [6.6.5]-tricyclic isoxazolidines 7 or [6.5.5]-tricyclic isoxazolidines 8. The [3+2] cycloaddition reactions of cyclic nitrone 12 with ethylene 13, and with (Z)-but-2-enenitrile 15 were also studied in order to explain the role of the tether in the cyclization step. The present study shows that, unlike the [3+2] cycloaddition reaction of cyanoalkene 15, the cyano group in the cyclization step does not have any effect on the selectivity. The present study suggests that the presence of the BF3 catalyst in the domino reaction can change the formation of the [6.5.5]-tricyclic isoxazolidine 7 to the [6.6.5]-tricyclic isoxazolidine 8. PMID:25005002

  19. Domino cyclization-alkylation protocol for the synthesis of 2,3-functionalized indoles from o-alkynylanilines and allylic alcohols.

    PubMed

    Xu, Chang; Murugan, Vinod K; Pullarkat, Sumod A

    2012-05-21

    A practical and efficient protocol for the one-pot synthesis of 2,3-substituted indoles was developed via a palladacycle catalyzed domino cyclization-alkylation reaction involving 2-alkynylanilines and allylic alcohols under mild conditions without any additives. PMID:22526600

  20. Synthesis of 1,3-Disubstituted Imidazo[1,5-a]pyridines from Amino Acids via Catalytic Decarboxylative Intramolecular Cyclization.

    PubMed

    Wang, Huiqiao; Xu, Wentao; Xin, Lilan; Liu, Wenmin; Wang, Zhiqiang; Xu, Kun

    2016-05-01

    A copper/iodine cocatalyzed decarboxylative cyclization of α-amino acids is described. Starting from the readily available amino acids and either 2-benzoylpyridines or 2-benzoylquinolines, 1,3-disubstituted imidazo[1,5-a]pyridines and 1,3-disubstituted imidazo[1,5-a]quinolines were prepared in excellent yields. PMID:27045422

  1. Palladium-catalyzed cascade cyclization of allylamine-tethered alkylidenecyclopropanes: facile access to iodine/difluoromethylene- and perfluoroalkyl-containing 1-benzazepine scaffolds.

    PubMed

    Yu, Liu-Zhu; Zhu, Zi-Zhong; Hu, Xu-Bo; Tang, Xiang-Ying; Shi, Min

    2016-05-01

    The unprecedented palladium-catalyzed cascade cyclization of allylamine-tethered alkylidenecyclopropanes with an ethyl difluoroiodoacetate or perfluoroalkylated reagent is developed, providing facile access to a variety of synthetically and medicinally valuable iodine/difluoromethylene- and perfluoroalkyl-containing 1-benzazepine frameworks. These reactions exhibited good yields and functional group tolerance via a radical mechanism. PMID:27109032

  2. Enantioselective synthesis of 1,2,4-triazolines by chiral iron(II)-complex catalyzed cyclization of α-isocyano esters and azodicarboxylates.

    PubMed

    Wang, Min; Liu, Xiaohua; He, Peng; Lin, Lili; Feng, Xiaoming

    2013-03-28

    Enantioselective cyclization of α-isocyano esters with azodicarboxylates catalyzed by Fe(II)-N,N'-dioxide complexes has been developed. Under mild conditions, a variety of 1,2,4-triazoline derivatives was obtained in high yields and enantioselectivities. PMID:23423581

  3. Cinchona alkaloid squaramide catalyzed enantioselective hydrazination/cyclization cascade reaction of α-isocyanoacetates and azodicarboxylates: synthesis of optically active 1,2,4-triazolines.

    PubMed

    Zhao, Mei-Xin; Bi, Hong-Lei; Zhou, Hao; Yang, Hui; Shi, Min

    2013-09-20

    An efficient enantioselective hydrazination/cyclization cascade reaction of α-substituted isocyanoacetates to azodicarboxylates catalyzed by Cinchona alkaloid derived squaramide catalysts has been investigated, affording the optically active 1,2,4-triazolines in excellent yields (up to 99%) and good to excellent enantioselectivities (up to 97% ee) under mild conditions. PMID:23984761

  4. Visible-Light-Promoted Dual C-C Bond Formations of Alkynoates via a Domino Radical Addition/Cyclization Reaction: A Synthesis of Coumarins.

    PubMed

    Feng, Shangbiao; Xie, Xingang; Zhang, Weiwei; Liu, Lin; Zhong, Zhuliang; Xu, Dengyu; She, Xuegong

    2016-08-01

    A visible-light-promoted, mild, and direct difunctionalization of alkynoates has been accomplished. This procedure provides a new strategy toward synthesis of the coumarin core structure by photoredox-mediated oxidation to generate the α-oxo radical, which supervenes a domino radical addition/cyclization reaction in moderate to good yields with high regioselectivity at ambient temperature. PMID:27443889

  5. Cyclic pentapeptide analogs based on endomorphin-2 structure: cyclization studies using liquid chromatography combined with on-line mass spectrometry and tandem mass spectrometry.

    PubMed

    Piekielna, Justyna; Kluczyk, Alicja; Perlikowska, Renata; Janecka, Anna

    2014-05-01

    The cyclization of linear analogs based on endomorphin-2 structure, Tyr/Dmt-d-Lys-Phe-Phe-Asp-NH2 and Tyr/Dmt-d-Cys-Phe-Phe-Cys-NH2 (where Dmt=2',6'-dimethyltyrosine), resulting in obtaining lactam or disulfide derivatives, was studied using liquid chromatography combined with on-line mass spectrometry (LC-MS) and tandem mass spectrometry (LC-MS/MS). In case of cyclization via an amide bond, the formation of the cyclic monomers, cyclic but not linear dimers and even traces of cyclic trimers was observed. Disulfide bridge containing peptides was obtained by the solid-phase synthesis of the linear sequences, followed by either in-solution or on-resin cyclization. In case of the in-solution cyclization, the expected cyclic monomers were the only products. When oxidation of the cysteine residues was performed when the peptides were still on the resin, cyclic monomer and two cyclodimers, parallel and antiparallel, were found. Digestion of the isolated cyclodimers with α-chymotrypsin allowed for their unambiguous identification. The comparison of the cyclic monomer/dimer ratios for analogs with Tyr versus Dmt in position 1 revealed that the presence of the exocyclic Dmt favored formation of the cyclic monomer, most likely due to the increased steric bulk of this amino acid side-chain as compared with Tyr. PMID:24525024

  6. An asymmetric assembly of spirooxindole dihydropyranones through a direct enantioselective organocatalytic vinylogous aldol-cyclization cascade reaction of 3-alkylidene oxindoles with isatins.

    PubMed

    Han, Jeng-Liang; Chang, Chia-Hao

    2016-02-01

    A highly enantioselective organocatalytic vinylogous aldol-cyclization cascade reaction of 3-alkylidene oxindoles to isatins has been achieved by using bifunctional organocatalysts. The unexpected intramolecular lactonization which follows the initial aldol reaction, leading to the cleavage of the oxindole ring and generation of enantioenriched spirooxindole dihydropyranones in good to excellent yields with high enantioselectivities. PMID:26728396

  7. Microwave-assisted synthesis of dinucleoside analogues containing a thiazolidin-4-one linkage via one-pot tandem Staudinger/aza-Wittig/cyclization.

    PubMed

    Shen, Fengjuan; Li, Xiaoliu; Zhang, Xiaoyuan; Yin, Qingmei; Qin, Zhanbin; Chen, Hua; Zhang, Jinchao; Ma, Zhaipu

    2011-08-21

    Dinucleosides containing a thiazolidin-4-one linkage were prepared by one-pot tandem Staudinger/aza-Wittig/intermolecular cyclization under microwave irradiation and their structures were confirmed. Preliminary examination of HIV-RT inhibition showed that the dinucleosides containing (R)-thiazolidin-4-one linkage are significantly more active than those containing (S)-thiazolidin-4-one linkage. PMID:21717016

  8. Total synthesis of protosappanin A and its derivatives via palladium catalyzed ortho C-H activation/C-C cyclization under microwave irradiation.

    PubMed

    Liu, Jiaqi; Zhou, Xuan; Wang, Chenglong; Fu, Wanyong; Chu, Wenyi; Sun, Zhizhong

    2016-04-14

    A total synthesis method for protosappanin A, which is a complex natural product with many biological activities, was developed with 6 linear steps. Dibenzo[b,d]oxepinones as the key intermediates of the synthetic route were prepared by a palladium-catalyzed ortho C-H activation/C-C cyclization under microwave irradiation. 25 derivatives of protosappanin A were obtained. PMID:26997503

  9. Highly efficient and versatile synthesis of lactams and N-heterocycles via Al(OTf)3-catalyzed cascade cyclization and ionic hydrogenation reactions.

    PubMed

    Qi, Jianguo; Sun, Chenbin; Tian, Yulin; Wang, Xiaojian; Li, Gang; Xiao, Qiong; Yin, Dali

    2014-01-01

    The discovery and development of an efficient and versatile method for the synthesis of N-substituted lactams is described. Pyrrolindinones, piperidones, and structurally related heterocycles were formed by Al(OTf)3-catalyzed cascade cyclization and ionic hydrogenation reactions of corresponding nitrogen substituted ketoamides in good yields. PMID:24313882

  10. Regioselective metal-free one-pot synthesis of functionalized 2-aminothiophene derivatives.

    PubMed

    Luo, Xiaoyan; Ge, Li-Shi; An, Xing-Lan; Jin, Jing-Hai; Wang, Yu; Sun, Pei-Pei; Deng, Wei-Ping

    2015-05-01

    A facile metal-free synthesis of 2-aminothiophene derivatives by the reaction of 2-ynals with thioamides in alcohols has been developed. This transformation allows the assembly of 2-aminothienyl ether derivatives via a well-designed aldol condensation/regioselective intramolecular cyclization/conjugate addition cascade reaction and provides a straightforward synthetic protocol for constructing 2,3,5-trisubstituted 2-aminothiophenes. PMID:25880135

  11. Direct generation of oxygen-stabilized radicals by H• transfer from transition metal hydrides.

    PubMed

    Kuo, Jonathan L; Hartung, John; Han, Arthur; Norton, Jack R

    2015-01-28

    Transition-metal hydrides generate α-alkoxy radicals by H• transfer to enol ethers. We have measured the rate constant for transfer from CpCr(CO)3H to n-butyl vinyl ether and have examined the chemistry of radicals generated by such transfers. Radicals from appropriate substrates undergo 5-exo cyclization, with higher diastereoselectivity than the analogous all-carbon radicals. From such radicals it is straightforward to make substituted tetrahydrofurans. PMID:25569214

  12. Cu-64-labeled lactam bridge-cyclized α-MSH peptides for PET imaging of melanoma.

    PubMed

    Guo, Haixun; Miao, Yubin

    2012-08-01

    The purpose of this study was to examine and compare the melanoma targeting and imaging properties of (64)Cu-NOTA-GGNle-CycMSH(hex) {(64)Cu-1,4,7-triazacyclononane-1,4,7-triacetic acid-Gly-Gly-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2} and (64)Cu-DOTA-GGNle-CycMSH(hex) {(64)Cu-1,4,7,10-tetraazacyclononane-1,4,7,10-tetraacetic acid-GGNle-CycMSH(hex)}. Two lactam bridge-cyclized peptides, NOTA-GGNle-CycMSH(hex) and DOTA-GGNle-CycMSH(hex), were synthesized using fluorenylmethyloxy carbonyl (Fmoc) chemistry. The melanocortin-1 (MC1) receptor binding affinity of NOTA-GGNle-CycMSH(hex) was determined in B16/F1 melanoma cells and compared with DOTA-GGNle-CycMSH(hex). The melanoma targeting and imaging properties of (64)Cu-NOTA-GGNle-CycMSH(hex) and (64)Cu-DOTA-GGNle-CycMSH(hex) were determined in B16/F1 melanoma-bearing C57 mice. NOTA-GGNle-CycMSH(hex) and DOTA-GGNle-CycMSH(hex) displayed comparable MC1 receptor binding affinities (1.6 vs 2.1 nM). The substitution of DOTA with NOTA dramatically increased the melanoma uptake and decreased the renal and liver uptake of (64)Cu-NOTA-GGNle-CycMSH(hex). The tumor uptake of (64)Cu-NOTA-GGNle-CycMSH(hex) was between 12.39 ± 1.61 and 12.71 ± 2.68% ID/g at 0.5, 2, and 4 h postinjection. The accumulation of (64)Cu-NOTA-GGNle-CycMSH(hex) activity in normal organs was lower than 1.02% ID/g except for the kidneys 2, 4, and 24 h postinjection. The tumor/liver uptake ratios of (64)Cu-NOTA-GGNle-CycMSHhex were 17.96, 16.95, and 8.02, whereas the tumor/kidney uptake ratios of (64)Cu-NOTA-GGNle-CycMSH(hex) were 2.52, 3.60, and 5.74 at 2, 4, and 24 h postinjection, respectively. Greater than 91% of the injected radioactivity cleared through the urinary system by 2 h postinjection. The substitution of DOTA with NOTA resulted in a dramatic increase in melanoma uptake and decrease in renal and liver uptake of (64)Cu-NOTA-GGNle-CycMSH(hex) as compared to (64)Cu-DOTA-GGNle-CycMSH(hex). High melanoma uptake coupled with low accumulation in nontarget

  13. Conformation-dependent backbone geometry restraints set a new standard for protein crystallographic refinement

    SciTech Connect

    Moriarty, Nigel W.; Tronrud, Dale E.; Adams, Paul D.; Karplus, P. Andrew

    2014-06-17

    Ideal values of bond angles and lengths used as external restraints are crucial for the successful refinement of protein crystal structures at all but the highest of resolutions. The restraints in common usage today have been designed based on the assumption that each type of bond or angle has a single ideal value independent of context. However, recent work has shown that the ideal values are, in fact, sensitive to local conformation, and as a first step toward using such information to build more accurate models, ultra-high resolution protein crystal structures have been used to derive a conformation-dependent library (CDL) of restraints for the protein backbone (Berkholz et al. 2009. Structure. 17, 1316). Here, we report the introduction of this CDL into the Phenix package and the results of test refinements of thousands of structures across a wide range of resolutions. These tests show that use of the conformation dependent library yields models that have substantially better agreement with ideal main-chain bond angles and lengths and, on average, a slightly enhanced fit to the X-ray data. No disadvantages of using the backbone CDL are apparent. In Phenix usage of the CDL can be selected by simply specifying the cdl=True option. This successful implementation paves the way for further aspects of the context-dependence of ideal geometry to be characterized and applied to improve experimental and predictive modelling accuracy.

  14. Conformation-dependent backbone geometry restraints set a new standard for protein crystallographic refinement

    DOE PAGESBeta

    Moriarty, Nigel W.; Tronrud, Dale E.; Adams, Paul D.; Karplus, P. Andrew

    2014-06-17

    Ideal values of bond angles and lengths used as external restraints are crucial for the successful refinement of protein crystal structures at all but the highest of resolutions. The restraints in common usage today have been designed based on the assumption that each type of bond or angle has a single ideal value independent of context. However, recent work has shown that the ideal values are, in fact, sensitive to local conformation, and as a first step toward using such information to build more accurate models, ultra-high resolution protein crystal structures have been used to derive a conformation-dependent library (CDL)more » of restraints for the protein backbone (Berkholz et al. 2009. Structure. 17, 1316). Here, we report the introduction of this CDL into the Phenix package and the results of test refinements of thousands of structures across a wide range of resolutions. These tests show that use of the conformation dependent library yields models that have substantially better agreement with ideal main-chain bond angles and lengths and, on average, a slightly enhanced fit to the X-ray data. No disadvantages of using the backbone CDL are apparent. In Phenix usage of the CDL can be selected by simply specifying the cdl=True option. This successful implementation paves the way for further aspects of the context-dependence of ideal geometry to be characterized and applied to improve experimental and predictive modelling accuracy.« less

  15. Structure and Assembly of Group B Streptococcus Pilus 2b Backbone Protein

    PubMed Central

    Cozzi, Roberta; Malito, Enrico; Lazzarin, Maddalena; Nuccitelli, Annalisa; Castagnetti, Andrea; Bottomley, Matthew J.; Margarit, Immaculada; Maione, Domenico; Rinaudo, C. Daniela

    2015-01-01

    Group B Streptococcus (GBS) is a major cause of invasive disease in infants. Like other Gram-positive bacteria, GBS uses a sortase C-catalyzed transpeptidation mechanism to generate cell surface pili from backbone and ancillary pilin precursor substrates. The three pilus types identified in GBS contain structural subunits that are highly immunogenic and are promising candidates for the development of a broadly-protective vaccine. Here we report the X-ray crystal structure of the backbone protein of pilus 2b (BP-2b) at 1.06Å resolution. The structure reveals a classical IgG-like fold typical of the pilin subunits of other Gram-positive bacteria. The crystallized portion of the protein (residues 185-468) encompasses domains D2 and D3 that together confer high stability to the protein due to the presence of an internal isopeptide bond within each domain. The D2+D3 region, lacking the N-terminal D1 domain, was as potent as the entire protein in conferring protection against GBS challenge in a well-established mouse model. By site-directed mutagenesis and complementation studies in GBS knock-out strains we identified the residues and motives essential for assembly of the BP-2b monomers into high-molecular weight complexes, thus providing new insights into pilus 2b polymerization. PMID:25942637

  16. First-principles study of the effect of functional groups on polyaniline backbone

    NASA Astrophysics Data System (ADS)

    Chen, X. P.; Jiang, J. K.; Liang, Q. H.; Yang, N.; Ye, H. Y.; Cai, M.; Shen, L.; Yang, D. G.; Ren, T. L.

    2015-11-01

    We present a first-principles density functional theory study focused on how the chemical and electronic properties of polyaniline are adjusted by introducing suitable substituents on a polymer backbone. Analyses of the obtained energy barriers, reaction energies and minimum energy paths indicate that the chemical reactivity of the polyaniline derivatives is significantly enhanced by protonic acid doping of the substituted materials. Further study of the density of states at the Fermi level, band gap, HOMO and LUMO shows that both the unprotonated and protonated states of these polyanilines are altered to different degrees depending on the functional group. We also note that changes in both the chemical and electronic properties are very sensitive to the polarity and size of the functional group. It is worth noting that these changes do not substantially alter the inherent chemical and electronic properties of polyaniline. Our results demonstrate that introducing different functional groups on a polymer backbone is an effective approach to obtain tailored conductive polymers with desirable properties while retaining their intrinsic properties, such as conductivity.

  17. The effect of chirality and steric hindrance on intrinsic backbone conformational propensities: tools for protein design.

    PubMed

    Childers, Matthew Carter; Towse, Clare-Louise; Daggett, Valerie

    2016-07-01

    The conformational propensities of amino acids are an amalgamation of sequence effects, environmental effects and underlying intrinsic behavior. Many have attempted to investigate neighboring residue effects to aid in our understanding of protein folding and improve structure prediction efforts, especially with respect to difficult to characterize states, such as disordered or unfolded states. Host-guest peptide series are a useful tool in examining the propensities of the amino acids free from the surrounding protein structure. Here, we compare the distributions of the backbone dihedral angles (φ/ψ) of the 20 proteogenic amino acids in two different sequence contexts using the AAXAA and GGXGG host-guest pentapeptide series. We further examine their intrinsic behaviors across three environmental contexts: water at 298 K, water at 498 K, and 8 M urea at 298 K. The GGXGG systems provide the intrinsic amino acid propensities devoid of any conformational context. The alanine residues in the AAXAA series enforce backbone chirality, thereby providing a model of the intrinsic behavior of amino acids in a protein chain. Our results show modest differences in φ/ψ distributions due to the steric constraints of the Ala side chains, the magnitudes of which are dependent on the denaturing conditions. One of the strongest factors modulating φ/ψ distributions was the protonation of titratable side chains, and the largest differences observed were in the amino acid propensities for the rarely sampled αL region. PMID:27284086

  18. Supramolecular Organization of the Repetitive Backbone Unit of the Streptococcus pneumoniae Pilus

    PubMed Central

    Spraggon, Glen; Koesema, Eric; Scarselli, Maria; Malito, Enrico; Biagini, Massimiliano; Norais, Nathalie; Emolo, Carla; Barocchi, Michèle Anne; Giusti, Fabiola; Hilleringmann, Markus; Rappuoli, Rino; Lesley, Scott; Covacci, Antonello; Masignani, Vega; Ferlenghi, Ilaria

    2010-01-01

    Streptococcus pneumoniae, like many other Gram-positive bacteria, assembles long filamentous pili on their surface through which they adhere to host cells. Pneumococcal pili are formed by a backbone, consisting of the repetition of the major component RrgB, and two accessory proteins (RrgA and RrgC). Here we reconstruct by transmission electron microscopy and single particle image reconstruction method the three dimensional arrangement of two neighbouring RrgB molecules, which represent the minimal repetitive structural domain of the native pilus. The crystal structure of the D2-D4 domains of RrgB was solved at 1.6 Å resolution. Rigid-body fitting of the X-ray coordinates into the electron density map enabled us to define the arrangement of the backbone subunits into the S. pneumoniae native pilus. The quantitative fitting provide evidence that the pneumococcal pilus consists uniquely of RrgB monomers assembled in a head-to-tail organization. The presence of short intra-subunit linker regions connecting neighbouring domains provides the molecular basis for the intrinsic pilus flexibility. PMID:20559564

  19. RNA-Redesign: a web server for fixed-backbone 3D design of RNA.

    PubMed

    Yesselman, Joseph D; Das, Rhiju

    2015-07-01

    RNA is rising in importance as a design medium for interrogating fundamental biology and for developing therapeutic and bioengineering applications. While there are several online servers for design of RNA secondary structure, there are no tools available for the rational design of 3D RNA structure. Here we present RNA-Redesign (http://rnaredesign.stanford.edu), an online 3D design tool for RNA. This resource utilizes fixed-backbone design to optimize the sequence identity and nucleobase conformations of an RNA to match a desired backbone, analogous to fundamental tools that underlie rational protein engineering. The resulting sequences suggest thermostabilizing mutations that can be experimentally verified. Further, sequence preferences that differ between natural and computationally designed sequences can suggest whether natural sequences possess functional constraints besides folding stability, such as cofactor binding or conformational switching. Finally, for biochemical studies, the designed sequences can suggest experimental tests of 3D models, including concomitant mutation of base triples. In addition to the designs generated, detailed graphical analysis is presented through an integrated and user-friendly environment. PMID:25964298

  20. Di-Isocyanate Crosslinked Aerogels with 1, 6-Bis (Trimethoxysilyl) Hexane Incorporated in Silica Backbone

    NASA Technical Reports Server (NTRS)

    Vivod, Stephanie L.; Meador, Mary Ann B.; Nguyen, Baochau N.; Quade, Derek; Randall, Jason; Perry, Renee

    2008-01-01

    Silica aerogels are desirable materials for many applications that take advantage of their light weight and low thermal conductivity. Addition of a conformal polymer coating which bonds with the amine decorated surface of the silica network improves the strength of the aerogels by as much as 200 times. Even with vast improvement in strength they still tend to undergo brittle failure due to the rigid silica backbone. We hope to increase the flexibility and elastic recovery of the silica based aerogel by altering the silica back-bone by incorporation of more flexible hexane links. To this end, we investigated the use of 1,6-bis(trimethoxysilyl)hexane (BTMSH), a polysilsesquioxane precursor3, as an additional co-reactant to prepare silica gels which were subsequently cross-linked with di-isocyanate. Previously, this approach of adding flexibility by BTMSH incorporation was demonstrated with styrene cross-linked aerogels. In our study, we varied silane concentration, mol % of silicon from BTMSH and di-isocyanate concentration by weight percent to attempt to optimize both the flexibility and the strength of the aerogels.

  1. A backbone amide protecting group for overcoming difficult sequences and suppressing aspartimide formation.

    PubMed

    Abdel-Aal, Abu-Baker M; Papageorgiou, George; Raz, Richard; Quibell, Martin; Burlina, Fabienne; Offer, John

    2016-05-01

    A backbone amide bond protecting group, 2-hydroxy-4-methoxy-5-nitrobenzyl (Hmnb), improved the synthesis of aggregation and aspartimide-prone peptides. Introduction of Hmnb is automated and carried out during peptide assembly by addition of 4-methoxy-5-nitrosalicylaldehyde to the peptidyl-resin and on-resin reduction to the secondary amine. Acylation of the hindered secondary amine is aided by the formation of an internal nitrophenol ester that undergoes a favourable O,N intramolecular acyl transfer. This activated ester participates in the coupling and generally gives complete reaction with standard coupling conditions. Hmnb is easily available in a single preparative step from commercially available material. Different methods for removing the amide protecting group were explored. The protecting group is labile to acidolysis, following reduction of the nitro group to the aniline. The two main uses of backbone protection of preventing aspartimide formation and of overcoming difficult sequences are demonstrated, first with the synthesis of a challenging aspartimide-prone test sequence and then with the classic difficult sequence ACP (65-74) and a 23-mer homopolymer of polyalanine. PMID:27086749

  2. NMR Backbone Assignment of Large Proteins by Using (13) Cα -Only Triple-Resonance Experiments.

    PubMed

    Wei, Qingtao; Chen, Jiajing; Mi, Juan; Zhang, Jiahai; Ruan, Ke; Wu, Jihui

    2016-07-01

    Nuclear magnetic resonance (NMR) is a powerful tool to interrogate protein structure and dynamics residue by residue. However, the prerequisite chemical-shift assignment remains a bottleneck for large proteins due to the fast relaxation and the frequency degeneracy of the (13) Cα nuclei. Herein, we present a covariance NMR strategy to assign the backbone chemical shifts by using only HN(CO)CA and HNCA spectra that has a high sensitivity even for large proteins. By using the peak linear correlation coefficient (LCC), which is a sensitive probe even for tiny chemical-shift displacements, we correctly identify the fidelity of approximately 92 % cross-peaks in the covariance spectrum, which is thus a significant improvement on the approach developed by Snyder and Brüschweiler (66 %) and the use of spectral derivatives (50 %). Thus, we calculate the 4D covariance spectrum from HN(CO)CA and HNCA experiments, in which cross-peaks with LCCs above a universal threshold are considered as true correlations. This 4D covariance spectrum enables the sequential assignment of a 42 kDa maltose binding protein (MBP), in which about 95 % residues are successfully assigned with a high accuracy of 98 %. Our LCC approach, therefore, paves the way for a residue-by-residue study of the backbone structure and dynamics of large proteins. PMID:27276173

  3. Backbone Model of an Aquareovirus Virion by Cryo-Electron Microscopy and Bioinformatics

    PubMed Central

    Cheng, Lingpeng; Zhu, Jiang; Hui, Wong Hoi; Zhang, Xiaokang; Honig, Barry; Fang, Qin; Zhou, Z. Hong

    2010-01-01

    Grass carp reovirus (GCRV) is a member of the aquareovirus genus in the Reoviridae family and has a capsid with two shells—a transcription-competent core surrounded by a coat. We report a near-atomic-resolution reconstruction of the GCRV virion by cryo-electron microscopy and single-particle reconstruction. A backbone model of the GCRV virion, including seven conformers of the five capsid proteins making up the 1500 molecules in both the core and the coat, was derived using cryo-electron microscopy density-map-constrained homology modeling and refinement. Our structure clearly showed that the amino-terminal segment of core protein VP3B forms an ~120-Å-long α-helix-rich extension bridging across the icosahedral 2-fold-symmetry-related molecular interface. The presence of this unique structure across this interface and the lack of an external cementing molecule at this location in GCRV suggest a stabilizing role of this extended amino-terminal density. Moreover, part of this amino-terminal extension becomes invisible in the reconstruction of transcription-competent core particles, suggesting its involvement in endogenous viral RNA transcription. Our structure of the VP1 turret represents its open state, and comparison with its related structures at the closed state suggests hinge-like domain movements associated with the mRNA-capping machinery. Overall, this first backbone model of an aquareovirus virion provides a wealth of structural information for understanding the structural basis of GCRV assembly and transcription. PMID:20036256

  4. The structure of the carbohydrate backbone of the lipopolysaccharide of Pectinatus frisingensis strain VTT E-79104.

    PubMed

    Vinogradov, Evgeny; Li, Jianjun; Sadovskaya, Irina; Jabbouri, Said; Helander, Ilkka M

    2004-06-22

    The structure of the carbohydrate backbone of the lipopolysaccharide from Pectinatus frisingensis strain VTT E-79104 was analyzed using chemical degradations, NMR spectroscopy, mass spectrometry, and chemical methods. The LPS contains two major structural variants, differing in the presence or absence of an octasaccharide fragment. The largest structure of the carbohydrate backbone of the LPS, that could be deduced from experimental results, consists of 20 monosaccharides arranged in a nonrepetitive sequence: [carbohydrate structure: see text] where R is H or 4-O-Me-alpha-L-Fuc-(1-2)-4-O-Me-beta-Hep-(1-3)-alpha-GlcNAc-(1-2)-beta-Man-(1-3)-beta-ManNAc-(1-4)-alpha-Gal-(1-4)-beta-Hep-(1-3)-beta-GalNAc-(1- where Hep is a residue of D-glycero-D-galacto-heptose; all monosaccharides have the D-configuration except for 4-O-Me-L-Fuc and L-Ara4N. This structure is architecturally similar to the oligosaccharide system reported previously in P. frisingensis VTT E-82164 LPS, but differs from the latter in composition and also in the size of the outer region. PMID:15183738

  5. Backbone and side chain chemical shift assignments of apolipophorin III from Galleria mellonella.

    PubMed

    Crowhurst, Karin A; Horn, James V C; Weers, Paul M M

    2016-04-01

    Apolipophorin III, a 163 residue monomeric protein from the greater wax moth Galleria mellonella (abbreviated as apoLp-IIIGM), has roles in upregulating expression of antimicrobial proteins as well as binding and deforming bacterial membranes. Due to its similarity to vertebrate apolipoproteins there is interest in performing atomic resolution analysis of apoLp-IIIGM as part of an effort to better understand its mechanism of action in innate immunity. In the first step towards structural characterization of apoLp-IIIGM, 99 % of backbone and 88 % of side chain (1)H, (13)C and (15)N chemical shifts were assigned. TALOS+ analysis of the backbone resonances has predicted that the protein is composed of five long helices, which is consistent with the reported structures of apolipophorins from other insect species. The next stage in the characterization of apoLp-III from G. mellonella will be to utilize these resonance assignments in solving the solution structure of this protein. PMID:26493308

  6. First-principles study of the effect of functional groups on polyaniline backbone

    PubMed Central

    Chen, X. P.; Jiang, J. K.; Liang, Q. H.; Yang, N.; Ye, H. Y.; Cai, M.; Shen, L.; Yang, D. G.; Ren, T. L.

    2015-01-01

    We present a first-principles density functional theory study focused on how the chemical and electronic properties of polyaniline are adjusted by introducing suitable substituents on a polymer backbone. Analyses of the obtained energy barriers, reaction energies and minimum energy paths indicate that the chemical reactivity of the polyaniline derivatives is significantly enhanced by protonic acid doping of the substituted materials. Further study of the density of states at the Fermi level, band gap, HOMO and LUMO shows that both the unprotonated and protonated states of these polyanilines are altered to different degrees depending on the functional group. We also note that changes in both the chemical and electronic properties are very sensitive to the polarity and size of the functional group. It is worth noting that these changes do not substantially alter the inherent chemical and electronic properties of polyaniline. Our results demonstrate that introducing different functional groups on a polymer backbone is an effective approach to obtain tailored conductive polymers with desirable properties while retaining their intrinsic properties, such as conductivity. PMID:26584671

  7. Low Molecular Weight Oligomers with Aromatic Backbone as Efficient Nonviral Gene Vectors.

    PubMed

    Luan, Chao-Ran; Liu, Yan-Hong; Zhang, Ji; Yu, Qing-Ying; Huang, Zheng; Wang, Bing; Yu, Xiao-Qi

    2016-05-01

    A series of oligomers were synthesized via ring-opening polymerization. Although the molecular weights of these oligomers are only ∼2.5 kDa, they could efficiently bind and condense DNA into nanoparticles. These oligomers gave comparable transfection efficiency (TE) to PEI 25 kDa, while their TE could even increase with the presence of serum, and up to 65 times higher TE than PEI was obtained. The excellent serum tolerance was also confirmed by TEM, flow cytometry, and BSA adsorption assay. Moreover, structure-activity relationship studies revealed some interesting factors. First, oligomers containing aromatic rings in the backbone showed better DNA binding ability. These materials could bring more DNA cargo into the cells, leading to much better TE. Second, the isomerism of the disubstituted phenyl group on the oligomer backbone has large effect on the transfection. The ortho-disubstituted ones gave at least 1 order of magnitude higher TE than meta- or para-disubstituted oligomers. Gel electrophoresis involving DNase and heparin indicated that the difficulty to release DNA might contribute to the lower TE of the latter. Such clues may help us to design novel nonviral gene vectors with high efficiency and biocompatibility. PMID:27077449

  8. Phosphorothioate backbone modifications of nucleotide-based drugs are potent platelet activators.

    PubMed

    Flierl, Ulrike; Nero, Tracy L; Lim, Bock; Arthur, Jane F; Yao, Yu; Jung, Stephanie M; Gitz, Eelo; Pollitt, Alice Y; Zaldivia, Maria T K; Jandrot-Perrus, Martine; Schäfer, Andreas; Nieswandt, Bernhard; Andrews, Robert K; Parker, Michael W; Gardiner, Elizabeth E; Peter, Karlheinz

    2015-02-01

    Nucleotide-based drug candidates such as antisense oligonucleotides, aptamers, immunoreceptor-activating nucleotides, or (anti)microRNAs hold great therapeutic promise for many human diseases. Phosphorothioate (PS) backbone modification of nucleotide-based drugs is common practice to protect these promising drug candidates from rapid degradation by plasma and intracellular nucleases. Effects of the changes in physicochemical properties associated with PS modification on platelets have not been elucidated so far. Here we report the unexpected binding of PS-modified oligonucleotides to platelets eliciting strong platelet activation, signaling, reactive oxygen species generation, adhesion, spreading, aggregation, and thrombus formation in vitro and in vivo. Mechanistically, the platelet-specific receptor glycoprotein VI (GPVI) mediates these platelet-activating effects. Notably, platelets from GPVI function-deficient patients do not exhibit binding of PS-modified oligonucleotides, and platelet activation is fully abolished. Our data demonstrate a novel, unexpected, PS backbone-dependent, platelet-activating effect of nucleotide-based drug candidates mediated by GPVI. This unforeseen effect should be considered in the ongoing development programs for the broad range of upcoming and promising DNA/RNA therapeutics. PMID:25646267

  9. Conformation-dependent backbone geometry restraints set a new standard for protein crystallographic refinement

    PubMed Central

    Moriarty, Nigel W.; Tronrud, Dale E.; Adams, Paul D.; Karplus, P. Andrew

    2014-01-01

    Ideal values of bond angles and lengths used as external restraints are crucial for the successful refinement of protein crystal structures at all but the highest of resolutions. The restraints in common usage today have been designed based on the assumption that each type of bond or angle has a single ideal value independent of context. However, recent work has shown that the ideal values are, in fact, sensitive to local conformation, and as a first step toward using such information to build more accurate models, ultra-high resolution protein crystal structures have been used to derive a conformation-dependent library (CDL) of restraints for the protein backbone (Berkholz et al. 2009. Structure. 17, 1316). Here, we report the introduction of this CDL into the Phenix package and the results of test refinements of thousands of structures across a wide range of resolutions. These tests show that use of the conformation dependent library yields models that have substantially better agreement with ideal main-chain bond angles and lengths and, on average, a slightly enhanced fit to the X-ray data. No disadvantages of using the backbone CDL are apparent. In Phenix usage of the CDL can be selected by simply specifying the cdl=True option. This successful implementation paves the way for further aspects of the context-dependence of ideal geometry to be characterized and applied to improve experimental and predictive modelling accuracy. PMID:24890778

  10. An optimized microRNA backbone for effective single-copy RNAi.

    PubMed

    Fellmann, Christof; Hoffmann, Thomas; Sridhar, Vaishali; Hopfgartner, Barbara; Muhar, Matthias; Roth, Mareike; Lai, Dan Yu; Barbosa, Inês A M; Kwon, Jung Shick; Guan, Yuanzhe; Sinha, Nishi; Zuber, Johannes

    2013-12-26

    Short hairpin RNA (shRNA) technology enables stable and regulated gene repression. For establishing experimentally versatile RNAi tools and minimizing toxicities, synthetic shRNAs can be embedded into endogenous microRNA contexts. However, due to our incomplete understanding of microRNA biogenesis, such "shRNAmirs" often fail to trigger potent knockdown, especially when expressed from a single genomic copy. Following recent advances in design of synthetic shRNAmir stems, here we take a systematic approach to optimize the experimental miR-30 backbone. Among several favorable features, we identify a conserved element 3' of the basal stem as critically required for optimal shRNAmir processing and implement it in an optimized backbone termed "miR-E", which strongly increases mature shRNA levels and knockdown efficacy. Existing miR-30 reagents can be easily converted to miR-E, and its combination with up-to-date design rules establishes a validated and accessible platform for generating effective single-copy shRNA libraries that will facilitate the functional annotation of the genome. PMID:24332856

  11. Colloidal quantum dot lasers built on a passive two-dimensional photonic crystal backbone

    NASA Astrophysics Data System (ADS)

    Chang, Hojun; Min, Kyungtaek; Lee, Myungjae; Kang, Minsu; Park, Yeonsang; Cho, Kyung-Sang; Roh, Young-Geun; Woo Hwang, Sung; Jeon, Heonsu

    2016-03-01

    We report the room-temperature lasing action from two-dimensional photonic crystal (PC) structures composed of a passive Si3N4 backbone with an over-coat of CdSe/CdS/ZnS colloidal quantum dots (CQDs) for optical gain. When optically excited, devices lased in dual PC band-edge modes, with the modal dominance governed by the thickness of the CQD over-layer. The demonstrated laser platform should have an impact on future photonic integrated circuits as the on-chip coupling between active and passive components is readily achievable.We report the room-temperature lasing action from two-dimensional photonic crystal (PC) structures composed of a passive Si3N4 backbone with an over-coat of CdSe/CdS/ZnS colloidal quantum dots (CQDs) for optical gain. When optically excited, devices lased in dual PC band-edge modes, with the modal dominance governed by the thickness of the CQD over-layer. The demonstrated laser platform should have an impact on future photonic integrated circuits as the on-chip coupling between active and passive components is readily achievable. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08544f

  12. First-principles study of the effect of functional groups on polyaniline backbone.

    PubMed

    Chen, X P; Jiang, J K; Liang, Q H; Yang, N; Ye, H Y; Cai, M; Shen, L; Yang, D G; Ren, T L

    2015-01-01

    We present a first-principles density functional theory study focused on how the chemical and electronic properties of polyaniline are adjusted by introducing suitable substituents on a polymer backbone. Analyses of the obtained energy barriers, reaction energies and minimum energy paths indicate that the chemical reactivity of the polyaniline derivatives is significantly enhanced by protonic acid doping of the substituted materials. Further study of the density of states at the Fermi level, band gap, HOMO and LUMO shows that both the unprotonated and protonated states of these polyanilines are altered to different degrees depending on the functional group. We also note that changes in both the chemical and electronic properties are very sensitive to the polarity and size of the functional group. It is worth noting that these changes do not substantially alter the inherent chemical and electronic properties of polyaniline. Our results demonstrate that introducing different functional groups on a polymer backbone is an effective approach to obtain tailored conductive polymers with desirable properties while retaining their intrinsic properties, such as conductivity. PMID:26584671

  13. RNA-Redesign: a web server for fixed-backbone 3D design of RNA

    PubMed Central

    Yesselman, Joseph D.; Das, Rhiju

    2015-01-01

    RNA is rising in importance as a design medium for interrogating fundamental biology and for developing therapeutic and bioengineering applications. While there are several online servers for design of RNA secondary structure, there are no tools available for the rational design of 3D RNA structure. Here we present RNA-Redesign (http://rnaredesign.stanford.edu), an online 3D design tool for RNA. This resource utilizes fixed-backbone design to optimize the sequence identity and nucleobase conformations of an RNA to match a desired backbone, analogous to fundamental tools that underlie rational protein engineering. The resulting sequences suggest thermostabilizing mutations that can be experimentally verified. Further, sequence preferences that differ between natural and computationally designed sequences can suggest whether natural sequences possess functional constraints besides folding stability, such as cofactor binding or conformational switching. Finally, for biochemical studies, the designed sequences can suggest experimental tests of 3D models, including concomitant mutation of base triples. In addition to the designs generated, detailed graphical analysis is presented through an integrated and user-friendly environment. PMID:25964298

  14. Ultraviolet Spectroscopy of Protein Backbone Transitions in Aqueous Solution: combined QM and MM Simulations

    PubMed Central

    Jiang, Jun; Abramavicius, Darius; Bulheller, Benjamin M.; Hirst, Jonathan D.; Mukamel, Shaul

    2010-01-01

    A generalized approach combining Quantum Mechanics (QM) and Molecular Mechanics (MM) calculations is developed to simulate the n → π* and π → π* backbone transitions of proteins in aqueous solution. These transitions, which occur in the ultraviolet (UV) at 180–220 nm, provide a sensitive probe for secondary structures. The excitation Hamiltonian is constructed using high level electronic structure calculations of N-methylacetamide (NMA). Its electrostatic fluctuations are modeled using a new algorithm, EHEF, which combines a molecular dynamics (MD) trajectory obtained with a molecular mechanics forcefield, and electronic structures of sampled MD snapshots calculated by QM. The lineshapes and excitation split-tings induced by the electrostatic environment in the experimental UV linear absorption (LA) and circular dichroism (CD) spectra of several proteins in aqueous solution are reproduced by our calculations. The distinct CD features of α-helix and β-sheet protein structures are observed in the simulations and can be assigned to different backbone geometries. The fine structure of the UV spectra is accurately characterized and enables us to identify signatures of secondary structures. PMID:20503991

  15. The Nanomechanical Properties of Lactococcus lactis Pili Are Conditioned by the Polymerized Backbone Pilin

    PubMed Central

    Castelain, Mickaël; Duviau, Marie-Pierre; Canette, Alexis; Schmitz, Philippe; Loubière, Pascal; Cocaign-Bousquet, Muriel; Piard, Jean-Christophe; Mercier-Bonin, Muriel

    2016-01-01

    Pili produced by Lactococcus lactis subsp. lactis are putative linear structures consisting of repetitive subunits of the major pilin PilB that forms the backbone, pilin PilA situated at the distal end of the pilus, and an anchoring pilin PilC that tethers the pilus to the peptidoglycan. We determined the nanomechanical properties of pili using optical-tweezers force spectroscopy. Single pili were exposed to optical forces that yielded force-versus-extension spectra fitted using the Worm-Like Chain model. Native pili subjected to a force of 0–200 pN exhibit an inextensible, but highly flexible ultrastructure, reflected by their short persistence length. We tested a panel of derived strains to understand the functional role of the different pilins. First, we found that both the major pilin PilB and sortase C organize the backbone into a full-length organelle and dictate the nanomechanical properties of the pili. Second, we found that both PilA tip pilin and PilC anchoring pilin were not essential for the nanomechanical properties of pili. However, PilC maintains the pilus on the bacterial surface and may play a crucial role in the adhesion- and biofilm-forming properties of L. lactis. PMID:27010408

  16. Copper-Catalyzed Cascade Reaction via Intramolecular Hydroamination Cyclization of Homopropargylic Amines and Intermolecular Povarov Reaction with Imines.

    PubMed

    Wang, Hongkai; Wang, Chan; Huang, Kaimeng; Liu, Lingyan; Chang, Weixing; Li, Jing

    2016-05-20

    A new one-pot cascade reaction of homopropargylic amines with simple imines is developed in the presence of Cu(OTf)2 and affords a series of hexahydro-1H-pyrrolo[3,2-c]quinoline derivatives in good to high yields. This reaction proceeds through an intramolecular hydroamination cyclization of homopropargylic amine to generate a highly reactive dihydropyrrole intermediate in situ. It subsequently reacts with imine via an intermolecular inverse-electron-demand aza-Diels-Alder reaction and a 1,3-H shift to give the fused pyrroloquinoline structures, forming two new C-C bonds and one C-N bond and one N-H bond. PMID:27128977

  17. Evolution of a short route to strychnine by using the samarium-diiodide-induced cascade cyclization as a key step.

    PubMed

    Beemelmanns, Christine; Reissig, Hans-Ulrich

    2015-06-01

    This comprehensive report accounts the development of a highly diastereoselective samarium diiodide-induced cascade reaction of substituted indolyl ketones. The complexity-generating transformation with SmI2 allows the diastereoselective generation of three stereogenic centers including one quaternary center in one step. The obtained tetra- or pentacyclic dihydroindole derivatives are structural motifs of many monoterpene indole alkaloids, and their subsequent transformations gave way to one of the shortest approaches towards strychnine (14 % overall yield in ten steps, or 10 % overall yield in eight steps). During the course of this report we discuss the influence of substituents on the cyclization step, plausible mechanistic scenarios for the SmI2 -induced cascade reaction, diastereoselective reductive amination, and regioselective dehydratization protocols towards the pentacyclic core structure of strychnos alkaloids. PMID:25877308

  18. Synthesis of a Pentacene-Type Silaborin via Double Dehydrogenative Cyclization of 1,4-Diboryl-2,5-disilylbenzene.

    PubMed

    Hirofuji, Tatsuya; Ikeda, Toshiaki; Haino, Takeharu; Yamamoto, Yohsuke; Kawachi, Atsushi

    2016-07-01

    A new pentacene-type silaborin, in which three benzene rings are bridged by silicon and boron atoms, has been synthesized and characterized by using NMR spectroscopy and X-ray crystallographic analysis. The precursor, 1,4-bis(dimesitylboryl)-2,5-bis(phenylsilyl)benzene (4), was prepared by stepwise introduction of a silyl group and a boryl group to a benzene ring starting from 1,4-dibromobenzene. Double cyclization of 4 proceeds by a H-Mes exchange and a B-H/C-H dehydrogenative condensation to afford pentacene-type silaborin 5. X-ray crystal structure analysis reveals that 5 adopts a bent structure rather than a planar one. UV/Vis spectra and DFT calculations for 5 reveal a lowering of the LUMO energy level compared with corresponding anthracene-type 3. PMID:27273363

  19. Bioorthogonal Cyclization-Mediated In Situ Self-Assembly of Small Molecule Probes for Imaging Caspase Activity in vivo

    PubMed Central

    Ye, Deju; Shuhendler, Adam J.; Cui, Lina; Tong, Ling; Tee, Sui Seng; Tikhomirov, Grigory; Felsher, Dean W.; Rao, Jianghong

    2014-01-01

    Directed self-assembly of small molecules in living systems could enable a myriad of applications in biology and medicine, and it has been widely used to synthesize supramolecules and nano/microstructures in solution and in living cells. However, controlling self-assembly of synthetic small molecules in living animals is challenging because of the complex and dynamic in vivo physiological environment. Here we employed an optimized first-order bioorthogonal cyclization reaction to control self-assembly of a fluorescent small molecule, and demonstrated its in vivo applicability by imaging of casapae-3/7 activity in human tumor xenograft mouse models of chemotherapy. The in situ assembled fluorescent nanoparticles have been successfully imaged in both apoptotic cells and tumor tissues using three-dimensional structured illumination microscopy. This strategy combines the advantages offered by small molecules with those of nanomaterials and should find widespread use for non-invasive imaging of enzyme activity in vivo. PMID:24848238

  20. Bioorthogonal cyclization-mediated in situ self-assembly of small-molecule probes for imaging caspase activity in vivo.

    PubMed

    Ye, Deju; Shuhendler, Adam J; Cui, Lina; Tong, Ling; Tee, Sui Seng; Tikhomirov, Grigory; Felsher, Dean W; Rao, Jianghong

    2014-06-01

    Directed self-assembly of small molecules in living systems could enable a myriad of applications in biology and medicine, and already this has been used widely to synthesize supramolecules and nano/microstructures in solution and in living cells. However, controlling the self-assembly of synthetic small molecules in living animals is challenging because of the complex and dynamic in vivo physiological environment. Here we employ an optimized first-order bioorthogonal cyclization reaction to control the self-assembly of a fluorescent small molecule, and demonstrate its in vivo applicability by imaging caspase-3/7 activity in human tumour xenograft mouse models of chemotherapy. The fluorescent nanoparticles assembled in situ were imaged successfully in both apoptotic cells and tumour tissues using three-dimensional structured illumination microscopy. This strategy combines the advantages offered by small molecules with those of nanomaterials and should find widespread use for non-invasive imaging of enzyme activity in vivo. PMID:24848238

  1. Giffonins J-P, Highly Hydroxylated Cyclized Diarylheptanoids from the Leaves of Corylus avellana Cultivar "Tonda di Giffoni".

    PubMed

    Masullo, Milena; Cantone, Vincenza; Cerulli, Antonietta; Lauro, Gianluigi; Messano, Francesco; Russo, Gian Luigi; Pizza, Cosimo; Bifulco, Giuseppe; Piacente, Sonia

    2015-12-24

    Two new diaryl ether heptanoids, giffonins J and K (1 and 2), along with five new diarylheptanoids, giffonins L-P (3-7), were isolated from a methanol extract of the leaves of Corylus avellana cultivar "Tonda di Giffoni". These compounds were identified as highly hydroxylated cyclized diarylheptanoids by 1D- and 2D-NMR experiments. The relative configurations of giffonins J-P (1-7) were established by a combined QM (quantum mechanical)/NMR approach, comparing the experimental (13)C/(1)H NMR chemical shift data and the related predicted values. The cytotoxic activities of giffonins J-P (1-7) were evaluated against the human osteosarcoma U2Os and SAOs cell lines. PMID:26606246

  2. Donor Properties of a New Class of Guanidinate Ligands Possessing Ketimine Backbones: A Comparative Study Using Iron.

    PubMed

    Maity, Arnab K; Metta-Magaña, Alejandro J; Fortier, Skye

    2015-10-19

    Addition of 1 equiv of LiN═C(t)Bu2 or LiN═Ad (Ad = 2-adamantyl) to the aryl carbodiimide C(NDipp)2 (Dipp = 2,6-diisopropylphenyl) readily generates the lithium ketimine-guanidinates Li(THF)2[(X)C(NDipp)2] (X = N═C(t)Bu2 (1-(t)Bu), N═Ad (1-Ad)) in excellent yields. These new ligands can be readily metalated with iron to give the N,N'-bidentate chelates [{(X)C(NDipp)2}FeBr]2 (X = N═C(t)Bu2 (5-(t)Bu), N═Ad (5-Ad)), in which the ketimines behave as noncoordinating backbone substituents. In an effort to understand the potential electronic contributions of the ketimine group to the ligand architecture, a thorough structural and electronic study was conducted comparing the features and properties of 5-(t)Bu and 5-Ad to their guanidinate and amidinate analogues [{(X)C(NDipp)2}FeBr]2 (X = (i)Pr2N (6), (t)Bu (7)). Solid-state structural analyses indicate little electronic contribution from the N-ketimine nitrogen atom, while solution-phase electronic absorption spectra of 5-(t)Bu and 5-Ad are qualitatively similar to the amidinate complex 7. Yet, electrochemical measurements do show the donor properties of the ketimine-guanidinate in 5-(t)Bu to be intermediate between its guanidinate and amidinate counterparts in 6 and 7. Preliminary reactivity studies also show that the reduction chemistry of 5-(t)Bu diverges significantly from that of 6 and 7. Treatment of 5-(t)Bu with excess magnesium or 1 equiv of KC8 leads to the formation of the Fe(I)-Fe(I) complex [{μ-((t)Bu2C═N)C(NDipp)2}2Fe2] (11), which possesses an exceedingly short Fe═Fe bond (2.1516(5) Å), while neither 6 nor 7 forms dinuclear complexes upon reduction. This result demonstrates that ketimine-guanidinates do not simply behave as amidinate variants but can contribute to distinctive metal chemistry of their own. PMID:26419613

  3. From adjacent activation in Escherichia coli and DNA cyclization to eukaryotic enhancers: the elements of a puzzle

    PubMed Central

    Amouyal, Michèle

    2014-01-01

    Deoxyribonucleic acid cyclization, Escherichia coli lac repressor binding to two spaced lac operators and repression enhancement can be successfully used for a better understanding of the conditions required for interaction between eukaryotic enhancers and the machinery of transcription initiation. Chronologically, the DNA looping model has first accounted for the properties initially defining enhancers, i.e., independence of action with distance or orientation with respect to the start of transcription. It has also predicted enhancer activity or its disruption at short distance (site orientation, alignment between promoter and enhancer sites), with high-order complexes of protein, or with transcription factor concentrations close or different from the wild-type situation. In another step, histones have been introduced into the model to further adapt it to eukaryotes. They in fact favor DNA cyclization in vitro. The resulting DNA compaction might explain the difference counted in base pairs in the distance of action between eukaryotic transcription enhancers and prokaryotic repression enhancers. The lac looping system provides a potential tool for analysis of this discrepancy and of chromatin state directly in situ. Furthermore, as predicted by the model, the contribution of operators O2 and O3 to repression of the lac operon clearly depends on the lac repressor level in the cell and is prevented in strains overproducing lac repressor. By extension, gene regulation especially that linked to cell fate, should also depend on transcription factor levels, providing a potential tool for cellular therapy. In parallel, a new function of the O1–O3 loop completes the picture of lac repression. The O1–O3 loop would at the same time ensure high efficiency of repression, inducibility through the low-affinity sites and limitation of the level of repressor through self-repression of the lac repressor. Last, the DNA looping model can be successfully adapted to the enhancer

  4. Evolution of cyclizing 5-aminolevulinate synthases in the biosynthesis of actinomycete secondary metabolites: outcomes for genetic screening techniques

    PubMed Central

    Petříčková, Kateřina; Chroňáková, Alica; Zelenka, Tomáš; Chrudimský, Tomáš; Pospíšil, Stanislav; Petříček, Miroslav; Krištůfek, Václav

    2015-01-01

    A combined approach, comprising PCR screening and genome mining, was used to unravel the diversity and phylogeny of genes encoding 5-aminolevulinic acid synthases (ALASs, hemA gene products) in streptomycetes-related strains. In actinomycetes, these genes were believed to be directly connected with the production of secondary metabolites carrying the C5N unit, 2-amino-3-hydroxycyclopent-2-enone, with biological activities making them attractive for future use in medicine and agriculture. Unlike “classical” primary metabolism ALAS, the C5N unit-forming cyclizing ALAS (cALAS) catalyses intramolecular cyclization of nascent 5-aminolevulinate. Specific amino acid sequence changes can be traced by comparison of “classical” ALASs against cALASs. PCR screening revealed 226 hemA gene-carrying strains from 1,500 tested, with 87% putatively encoding cALAS. Phylogenetic analysis of the hemA homologs revealed strain clustering according to putative type of metabolic product, which could be used to select producers of specific C5N compound classes. Supporting information was acquired through analysis of actinomycete genomic sequence data available in GenBank and further genetic or metabolic characterization of selected strains. Comparison of 16S rRNA taxonomic identification and BOX-PCR profiles provided evidence for numerous horizontal gene transfers of biosynthetic genes or gene clusters within actinomycete populations and even from non-actinomycete organisms. Our results underline the importance of environmental and evolutionary data in the design of efficient techniques for identification of novel producers. PMID:26300877

  5. Direct photolysis of MeO-PBDEs in water and methanol: focusing on cyclization product MeO-PBDFs.

    PubMed

    Xue, Weifeng; Chen, Jingwen; Xie, Qing; Zhao, Hongxia

    2015-11-01

    Polybrominated diphenyl ethers (PBDEs) and hydroxylated PBDEs can transform into polybrominated dibenzofurans (PBDFs) via photocyclization. However, it is unclear whether methoxylated PBDEs (MeO-PBDEs) can photocyclize to form MeO-PBDFs. In this study, 5-MeO-BDE-47, 5'-MeO-BDE-99 and 6-MeO-BDE-85 were selected as models to investigate their direct photolysis, especially photocyclization in two solvent environments (water and methanol) using simulated photochemical experiments and density functional theory (DFT) calculations. The experimental results showed that MeO-PBDEs had faster direct photolysis reactions and higher quantum yields in methanol, and MeO-PBDFs could only be formed in a methanol solution of 5-MeO-BDE-47. The DFT results indicated that the lowest excited triplet state MeO-PBDEs can form dibenzofurans via direct cyclization pathways. Intra-annular H-elimination was found to be the rate-determining step for most cyclization pathways with high reaction barriers (⩾19.7kcal/mol), while 5-MeO-BDE-47 was found to have a distinct pathway for which the rate-determining step is ring closure with a low barrier (13.8kcal/mol) in a methanol environment. For this pathway, H-elimination assisted by Br cleaved from an ortho-C-Br bond was observed with a 2.0kcal/mol barrier. Thus, the DFT results reasonably explained the experimental findings, and the photocyclization of MeO-PBDEs depended on the specific Br-substitution patterns and specific effects of the environmental media. PMID:26298690

  6. HIV-1 Phenotypic Reverse Transcriptase Inhibitor Drug Resistance Test Interpretation Is Not Dependent on the Subtype of the Virus Backbone

    PubMed Central

    Bronze, Michelle; Steegen, Kim; Wallis, Carole L.; De Wolf, Hans; Papathanasopoulos, Maria A.; Van Houtte, Margriet; Stevens, Wendy S.; de Wit, Tobias Rinke; Stuyver, Lieven J.

    2012-01-01

    To date, the majority of HIV-1 phenotypic resistance testing has been performed with subtype B virus backbones (e.g. HXB2). However, the relevance of using this backbone to determine resistance in non-subtype B HIV-1 viruses still needs to be assessed. From 114 HIV-1 subtype C clinical samples (36 ARV-naïve, 78 ARV-exposed), pol amplicons were produced and analyzed for phenotypic resistance using both a subtype B- and C-backbone in which the pol fragment was deleted. Phenotypic resistance was assessed in resulting recombinant virus stocks (RVS) for a series of antiretroviral drugs (ARV's) and expressed as fold change (FC), yielding 1660 FC comparisons. These Antivirogram® derived FC values were categorized as having resistant or sensitive susceptibility based on biological cut-off values (BCOs). The concordance between resistance calls obtained for the same clinical sample but derived from two different backbones (i.e. B and C) accounted for 86.1% (1429/1660) of the FC comparisons. However, when taking the assay variability into account, 95.8% (1590/1660) of the phenotypic data could be considered as being concordant with respect to their resistance call. No difference in the capacity to detect resistance associated with M184V, K103N and V106M mutations was noted between the two backbones. The following was concluded: (i) A high level of concordance was shown between the two backbone phenotypic resistance profiles; (ii) Assay variability is largely responsible for discordant results (i.e. for FC values close to BCO); (iii) Confidence intervals should be given around the BCO's, when assessing resistance in HIV-1 subtype C; (iv) No systematic resistance under- or overcalling of subtype C amplicons in the B-backbone was observed; (v) Virus backbone subtype sequence variability outside the pol region does not contribute to phenotypic FC values. In conclusion the HXB2 virus backbone remains an acceptable vector for phenotyping HIV-1 subtype C pol amplicons. PMID

  7. The Inherent Conformational Preferences of Glutamine-Containing Peptides: the Role for Side-Chain Backbone Hydrogen Bonds

    NASA Astrophysics Data System (ADS)

    Walsh, Patrick S.; McBurney, Carl; Gellman, Samuel H.; Zwier, Timothy S.

    2015-06-01

    Glutamine is widely known to be found in critical regions of peptides which readily fold into amyloid fibrils, the structures commonly associated with Alzheimer's disease and glutamine repeat diseases such as Huntington's disease. Building on previous single-conformation data on Gln-containing peptides containing an aromatic cap on the N-terminus (Z-Gln-OH and Z-Gln-NHMe), we present here single-conformation UV and IR spectra of Ac-Gln-NHBn and Ac-Ala-Gln-NHBn, with its C-terminal benzyl cap. These results point towards side-chain to backbone hydrogen bonds dominating the structures observed in the cold, isolated environment of a molecular beam. We have identified and assigned three main conformers for Ac-Gln-NHBn all involving primary side-chain to backbone interactions. Ac-Ala-Gln-NHBn extends the peptide chain by one amino acid, but affords an improvement in the conformational flexibility. Despite this increase in the flexibility, only a single conformation is observed in the gas-phase: a structure which makes use of both side-chain-to-backbone and backbone-to-backbone hydrogen bonds.

  8. Incorporating backbone flexibility in MedusaDock improves ligand-binding pose prediction in the CSAR2011 docking benchmark.

    PubMed

    Ding, Feng; Dokholyan, Nikolay V

    2013-08-26

    Solution of the structures of ligand-receptor complexes via computational docking is an integral step in many structural modeling efforts as well as in rational drug discovery. A major challenge in ligand-receptor docking is the modeling of both receptor and ligand flexibilities in order to capture receptor conformational changes induced by ligand binding. In the molecular docking suite MedusaDock, both ligand and receptor side chain flexibilities are modeled simultaneously with sets of discrete rotamers, where the ligand rotamer library is generated "on the fly" in a stochastic manner. Here, we introduce backbone flexibility into MedusaDock by implementing ensemble docking in a sequential manner for a set of distinct receptor backbone conformations. We generate corresponding backbone ensembles to capture backbone changes upon binding to different ligands, as observed experimentally. We develop a simple clustering and ranking approach to select the top poses as blind predictions. We applied our method in the CSAR2011 benchmark exercise. In 28 out of 35 cases (80%) where the ligand-receptor complex structures were released, we were able to predict near-native poses (<2.5 Å RMSD), the highest success rate reported for CSAR2011. This result highlights the importance of modeling receptor backbone flexibility to the accurate docking of ligands to flexible targets. We expect a broad application of our fully flexible docking approach in biological studies as well as in rational drug design. PMID:23237273

  9. Development of metal-containing polymers for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Chan, Wai Kin; Hou, Sijian; Ng, Po K.; Wong, Chi T.; Yu, Sze C.

    1999-11-01

    Most of the work in organic electroluminescent polymers has been focused on organic conjugated polymers. However, polymers attached with transition metal complex have received relatively less attention. We have synthesized and studied the light emitting properties of some metal containing polymers based on the polypyridine complexes of rhenium and ruthenium. These complexes exhibit long-lived excited states caused by the metal to ligand charge transfer transitions. By varying the structure of the ligand and/or the transition metal, we are able to fine-tune the electronic properties of the resulting metal complexes. We have synthesized a series of poly(phenylenevinylene) (PPV) derivatives which are functionalized with ruthenium polypyridine complexes at the polymer mainchain or side chain. These complexes are able to act as photosensitizers which enhance the photoconductivity of these polymers at longer wavelength. Both the conjugated backbone and the metal complex can emit light upon excitation. As a result, it is possible to tune the color by loading different amount of ruthenium complex to the polymer. Luminescence studies showed that the ruthenium complex could quench the emission of the conjugated backbone in some polymers, which suggests an energy transfer process between the backbone and the metal complexes. It was also found that the presence of metal complexes could enhance the charge carrier mobilities of the polymers, as the metal and/or ligands can act as extra charge carriers in the charge transport process.

  10. Oligo(p-phenylene-ethynylene)s with backbone conformation controlled by competitive intramolecular hydrogen bonds.

    PubMed

    Hu, Wei; Yan, Qifan; Zhao, Dahui

    2011-06-14

    A series of conjugated oligo(p-phenylene-ethynylene) (OPE) molecules with backbone conformations (that is, the relative orientations of the contained phenylene units) controlled by competitive intramolecular hydrogen bonds to be either co-planar or random were synthesised and studied. In these oligomers, carboxylate and amido substituents were attached to alternate phenylene units in the OPE backbone. These functional groups were able to form intramolecular hydrogen bonds between neighbouring phenylene units. Thereby, all phenylene units in the backbone were confined in a co-planar conformation. This planarised structure featured a more extended effective conjugation length than that of regular OPEs with phenylene units adopting random orientation due to a low rotational-energy barrier. However, if a tri(ethylene glycol) (Tg) side chain was appended to the amido group, it enabled another type of intramolecular hydrogen bond, formed by the Tg chain folding back and the contained ether oxygen atom competing with the ester carbonyl group as the hydrogen-bond acceptor. The outcome of this competition was proven to depend on the length of the alkylene linker joining the ether oxygen atom to the amido group. Specifically, if the Tg chain folded back to form a five-membered cyclic structure, this hydrogen-bonding motif was sufficiently robust to overrule the hydrogen bonds between adjacent phenylene units. Consequently, the oligomers assumed non-planar conformations. However, if the side chain formed a six-membered ring by hydrogen bonding with the amido NH group, such a motif was much less stable and yielded in the competition with the ester carbonyl group from the adjacent phenylene unit. Thus, the hydrogen bonds between the phenylene units remained, and the co-planar conformation was manifested. In our system, the hydrogen bonds formed by the back-folded Tg chain and amido NH group relied on a single oxygen atom as the hydrogen-bond acceptor. The additional oxygen

  11. Histidine-Directed Arylation/Alkenylation of Backbone N-H Bonds Mediated by Copper(II).

    PubMed

    Ohata, Jun; Minus, Matthew B; Abernathy, Morgan E; Ball, Zachary T

    2016-06-22

    Chemical modification of proteins and peptides represents a challenge of reaction design as well as an important biological tool. In contrast to side-chain modification, synthetic methods to alter backbone structure are extremely limited. In this communication, copper-mediated backbone N-alkenylation or N-arylation of peptides and proteins by direct modification of natural sequences is described. Histidine residues direct oxidative coupling of boronic acids at the backbone NH of a neighboring amino acid. The mild reaction conditions in common physiological buffers, at ambient temperature, are compatible with proteins and biological systems. This simple reaction demonstrates the potential for directed reactions in complex systems to allow modification of N-H bonds that directly affect polypeptide structure, stability, and function. PMID:27249339

  12. Sequential backbone resonance assignments of the E. coli dihydrofolate reductase Gly67Val mutant: folate complex.

    PubMed

    Puthenpurackal Narayanan, Sunilkumar; Maeno, Akihiro; Wada, Yuji; Tate, Shin-Ichi; Akasaka, Kazuyuki

    2016-04-01

    Occasionally, a mutation in an exposed loop region causes a significant change in protein function and/or stability. A single mutation Gly67Val of E. coli dihydrofolate reductase (DHFR) in the exposed CD loop is such an example. We have carried out the chemical shift assignments for H(N), N(H), C(α) and C(β) atoms of the Gly67Val mutant of E. coli DHFR complexed with folate at pH 7.0, 35 °C, and then evaluated the H(N), N(H), C(α) and C(β) chemical shift changes caused by the mutation. The result indicates that, while the overall secondary structure remains the same, the single mutation Gly67Val causes site-specific conformational changes of the polypeptide backbone restricted around the adenosine-binding subdomain (residues 38-88) and not in the distant catalytic domain. PMID:26482924

  13. Proton NMR assignments and regular backbone structure of bovine pancreatic ribonuclease A in aqueous solution

    SciTech Connect

    Robertson, A.D. ); Purisima, E.O. Cornell Univ., Ithaca, NY ); Eastman, M.A.; Scheraga, H.A. )

    1989-07-11

    Proton NMR assignments have been made for 121 of the 124 residues of bovine pancreatic ribonuclease A (RNase A). During the first stage of assignment, COSY and relayed COSY data were used to identify 40 amino acid spin systems belonging to alanine, valine, threonine, isoleucine, and serine residues. Approximately 60 other NH-{alpha}CH-{beta}CH systems were also identified but not assigned to specific amino acid type. NOESY data then were used to connect sequentially neighboring spin systems; approximately 475 of the possible 700 resonances in RNase A were assigned in this way. The authors' assignments agree with those for 20 residues assigned previously. NOESY correlations were used to identify regular backbone structure elements in RNase A, which are very similar to those observed in X-ray crystallographic studies.

  14. Correlation between protein secondary structure, backbone bond angles, and side-chain orientations

    NASA Astrophysics Data System (ADS)

    Lundgren, Martin; Niemi, Antti J.

    2012-08-01

    We investigate the fine structure of the sp3 hybridized covalent bond geometry that governs the tetrahedral architecture around the central Cα carbon of a protein backbone, and for this we develop new visualization techniques to analyze high-resolution x-ray structures in the Protein Data Bank. We observe that there is a correlation between the deformations of the ideal tetrahedral symmetry and the local secondary structure of the protein. We propose a universal coarse-grained energy function to describe the ensuing side-chain geometry in terms of the Cβ carbon orientations. The energy function can model the side-chain geometry with a subatomic precision. As an example we construct the Cα-Cβ structure of HP35 chicken villin headpiece. We obtain a configuration that deviates less than 0.4 Å in root-mean-square distance from the experimental x-ray structure.

  15. Modulation of Backbone Flexibility for Effective Dissociation of Antibacterial and Hemolytic Activity in Cyclic Peptides.

    PubMed

    Oddo, Alberto; Thomsen, Thomas T; Britt, Hannah M; Løbner-Olesen, Anders; Thulstrup, Peter W; Sanderson, John M; Hansen, Paul R

    2016-08-11

    Bacterial resistance to antibiotic therapy is on the rise and threatens to evolve into a worldwide emergency: alternative solutions to current therapies are urgently needed. Cationic amphipathic peptides are potent membrane-active agents that hold promise as the next-generation therapy for multidrug-resistant infections. The peptides' behavior upon encountering the bacterial cell wall is crucial, and much effort has been dedicated to the investigation and optimization of this amphipathicity-driven interaction. In this study we examined the interaction of a novel series of nine-membered flexible cyclic AMPs with liposomes mimicking the characteristics of bacterial membranes. Employed techniques included circular dichroism and marker release assays, as well as microbiological experiments. Our analysis was aimed at correlating ring flexibility with their antimicrobial, hemolytic, and membrane activity. By doing so, we obtained useful insights to guide the optimization of cyclic antimicrobial peptides via modulation of their backbone flexibility without loss of activity. PMID:27563396

  16. A recombinant, chimeric tetravalent dengue vaccine candidate based on a dengue virus serotype 2 backbone.

    PubMed

    Osorio, Jorge E; Wallace, Derek; Stinchcomb, Dan T

    2016-04-01

    Dengue fever is caused by infection with one of four dengue virus (DENV) serotypes (DENV-1-4), necessitating tetravalent dengue vaccines that can induce protection against all four DENV. Takeda's live attenuated tetravalent dengue vaccine candidate (TDV) comprises an attenuated DENV-2 strain plus chimeric viruses containing the prM and E genes of DENV-1, -3 and -4 cloned into the attenuated DENV-2 'backbone'. In Phase 1 and 2 studies, TDV was well tolerated by children and adults aged 1.5-45 years, irrespective of prior dengue exposure; mild injection-site symptoms were the most common adverse events. TDV induced neutralizing antibody responses and seroconversion to all four DENV as well as cross-reactive T cell-mediated responses that may be necessary for broad protection against dengue fever. PMID:26635182

  17. Assignment of protein backbone resonances using connectivity, torsion angles and 13Calpha chemical shifts.

    PubMed

    Morris, Laura C; Valafar, Homayoun; Prestegard, James H

    2004-05-01

    A program is presented which will return the most probable sequence location for a short connected set of residues in a protein given just (13)C(alpha) chemical shifts (delta((13)C(alpha))) and data restricting the phi and psi backbone angles. Data taken from both the BioMagResBank and the Protein Data Bank were used to create a probability density function (PDF) using a multivariate normal distribution in delta((13)C(alpha)), phi, and psi space for each amino acid residue. Extracting and combining probabilities for particular amino acid residues in a short proposed sequence yields a score indicative of the correctness of the proposed assignment. The program is illustrated using several proteins for which structure and (13)C(alpha) chemical shift data are available. PMID:15017135

  18. Novel Natural Oximes and Oxime Esters with a Vibralactone Backbone from the Basidiomycete Boreostereum vibrans

    PubMed Central

    Chen, He‐Ping; Zhao, Zhen‐Zhu; Li, Zheng‐Hui; Dong, Ze‐Jun; Wei, Kun; Bai, Xue; Zhang, Ling; Wen, Chun‐Nan

    2016-01-01

    Abstract A variety of novel natural products with significant bioactivities are produced by the basidiomycete Boreostereum vibrans. In the present study, we describe 16 novel natural oximes and oxime esters with a vibralactone backbone, vibralactoximes, which were isolated from the scale‐up fermentation broth of B. vibrans. Their structures were determined through extensive spectroscopic analyses. These compounds represent the first oxime esters from nature. The hypothetical biosynthetic pathway of these compounds was also proposed. Seven compounds exhibited significant pancreatic lipase inhibitory activity, while ten compounds exhibited cytotoxicities against five human cancer cell lines (HL‐60, SMMC‐7721, A‐549, MCF‐7, and SW480), with IC50 values comparable with those of cisplatin. PMID:27308232

  19. NMR Structure Determination for Larger Proteins Using Backbone-Only Data

    PubMed Central

    Raman, Srivatsan; Lange, Oliver F.; Rossi, Paolo; Tyka, Michael; Wang, Xu; Aramini, James; Liu, Gaohua; Ramelot, Theresa; Eletsky, Alexander; Szyperski, Thomas; Kennedy, Michael; Prestegard, James; Montelione, Gaetano T.; Baker, David

    2010-01-01

    Conventional protein structure determination from nuclear magnetic resonance data relies heavily on side-chain proton-proton distances. The necessary side-chain resonance assignment, however, is labor intensive and prone to error. Here we show that structures can be accurately determined without NMR information on the sidechains for proteins up to 25 kDa by incorporating backbone chemical shifts, residual dipolar couplings, and amide proton distances into the Rosetta protein structure modelling methodology. These data, which are too sparse for conventional methods, serve only to guide conformational search towards the lowest energy conformations in the folding landscape; the details of the computed models are determined by the physical chemistry implicit in the Rosetta all atom energy function. The new method is not hindered by the deuteration required to suppress nuclear relaxation processes for proteins greater than 15 kDa, and should enable routine NMR structure determination for larger proteins. PMID:20133520

  20. On the photostability of peptides after selective photoexcitation of the backbone: prompt versus slow dissociation.

    PubMed

    Byskov, Camilla Skinnerup; Jensen, Frank; Jørgensen, Thomas J D; Nielsen, Steen Brøndsted

    2014-08-14

    Vulnerability of biomolecules to ultraviolet radiation is intimately linked to deexcitation pathways: photostability requires fast internal conversion to the electronic ground state, but also intramolecular vibrational redistribution and cooling on a time scale faster than dissociation. Here we present a protocol to disentangle slow and non-hazardous statistical dissociation from prompt cleavage of peptide bonds by 210 nm light based on experiments on protonated peptides isolated in vacuo and tagged by 18-crown-6 ether (CE). The weakest link in the system is between the charged site and CE, which is remote from the initial site of excitation. Hence loss of CE serves as direct proof that energy has reached the charge-site end, leaving the backbone intact. Our work demonstrates that excitation of tertiary amide moieties (proline linkages) results in both prompt dissociation and statistical dissociation after energy randomisation over all vibrational degrees of freedom. PMID:24945849

  1. Alpha-helical stabilization by side chain shielding of backbone hydrogen bonds.

    PubMed

    García, Angel E; Sanbonmatsu, Kevin Y

    2002-03-01

    We study atomic models of the thermodynamics of the structural transition of peptides that form alpha-helices. The effect of sequence variation on alpha-helix formation for alanine-rich peptides, Ac-Ala21-methyl amide (A21) and Ac-A5 (AAARA)3A-methyl amide (Fs peptide), is investigated by atomic simulation studies of the thermodynamics of the helix-coil transition in explicit water. The simulations show that the guanidinium group in the Arg side chains in the Fs peptide interacts with the carbonyl group four amino acids upstream in the chain and desolvates backbone hydrogen bonds. This desolvation can be directly correlated with a higher probability of hydrogen bond formation. We find that Fs has higher helical content than A21 at all temperatures. A small modification in the amber force field reproduces the experimental helical content and helix-coil transition temperatures for the Fs peptide. PMID:11867710

  2. Effects of NHC-backbone substitution on efficiency in ruthenium-based olefin metathesis.

    PubMed

    Kuhn, Kevin M; Bourg, Jean-Baptiste; Chung, Cheol K; Virgil, Scott C; Grubbs, Robert H

    2009-04-15

    A series of ruthenium olefin metathesis catalysts bearing N-heterocyclic carbene (NHC) ligands with varying degrees of backbone and N-aryl substitution have been prepared. These complexes show greater resistance to decomposition through C-H activation of the N-aryl group, resulting in increased catalyst lifetimes. This work has utilized robotic technology to examine the activity and stability of each catalyst in metathesis, providing insights into the relationship between ligand architecture and enhanced efficiency. The development of this robotic methodology has also shown that, under optimized conditions, catalyst loadings as low as 25 ppm can lead to 100% conversion in the ring-closing metathesis of diethyl diallylmalonate. PMID:19351207

  3. Extensive Air Showers: from the muonic smoking guns to the hadronic backbone

    NASA Astrophysics Data System (ADS)

    Cazon, L.

    2013-06-01

    Extensive Air Showers are complex macroscopic objects initiated by single ultra-high energy particles. They are the result of millions of high energy reactions in the atmosphere and can be described as the superposition of hadronic and electromagnetic cascades. The hadronic cascade is the air shower backbone, and it is mainly made of pions. Decays of neutral pions initiate electromagnetic cascades, while the decays of charged pions produce muons which leave the hadronic core and travel many kilometers almost unaffected. Muons are smoking guns of the hadronic cascade: the energy, transverse momentum, spatial distribution and depth of production are key to reconstruct the history of the air shower. In this work, we overview the phenomenology of muons on the air shower and its relation to the hadronic cascade. We briefly review the experimental efforts to analyze muons within air showers and discuss possible paths to use this information.

  4. Increased Diels-Alderase activity through backbone remodeling guided by Foldit players.

    PubMed

    Eiben, Christopher B; Siegel, Justin B; Bale, Jacob B; Cooper, Seth; Khatib, Firas; Shen, Betty W; Players, Foldit; Stoddard, Barry L; Popovic, Zoran; Baker, David

    2012-02-01

    Computational enzyme design holds promise for the production of renewable fuels, drugs and chemicals. De novo enzyme design has generated catalysts for several reactions, but with lower catalytic efficiencies than naturally occurring enzymes. Here we report the use of game-driven crowdsourcing to enhance the activity of a computationally designed enzyme through the functional remodeling of its structure. Players of the online game Foldit were challenged to remodel the backbone of a computationally designed bimolecular Diels-Alderase to enable additional interactions with substrates. Several iterations of design and characterization generated a 24-residue helix-turn-helix motif, including a 13-residue insertion, that increased enzyme activity >18-fold. X-ray crystallography showed that the large insertion adopts a helix-turn-helix structure positioned as in the Foldit model. These results demonstrate that human creativity can extend beyond the macroscopic challenges encountered in everyday life to molecular-scale design problems. PMID:22267011

  5. Side chain and backbone contributions of Phe508 to CFTR folding

    SciTech Connect

    Thibodeau, Patrick H.; Brautigam, Chad A.; Machius, Mischa; Thomas, Philip J.

    2010-12-07

    Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), an integral membrane protein, cause cystic fibrosis (CF). The most common CF-causing mutant, deletion of Phe508, fails to properly fold. To elucidate the role Phe508 plays in the folding of CFTR, missense mutations at this position were generated. Only one missense mutation had a pronounced effect on the stability and folding of the isolated domain in vitro. In contrast, many substitutions, including those of charged and bulky residues, disrupted folding of full-length CFTR in cells. Structures of two mutant nucleotide-binding domains (NBDs) reveal only local alterations of the surface near position 508. These results suggest that the peptide backbone plays a role in the proper folding of the domain, whereas the side chain plays a role in defining a surface of NBD1 that potentially interacts with other domains during the maturation of intact CFTR.

  6. Remote consultation and diagnosis in medical imaging using a global PACS backbone network

    NASA Astrophysics Data System (ADS)

    Martinez, Ralph; Sutaria, Bijal N.; Kim, Jinman; Nam, Jiseung

    1993-10-01

    A Global PACS is a national network which interconnects several PACS networks at medical and hospital complexes using a national backbone network. A Global PACS environment enables new and beneficial operations between radiologists and physicians, when they are located in different geographical locations. One operation allows the radiologist to view the same image folder at both Local and Remote sites so that a diagnosis can be performed. The paper describes the user interface, database management, and network communication software which has been developed in the Computer Engineering Research Laboratory and Radiology Research Laboratory. Specifically, a design for a file management system in a distributed environment is presented. In the remote consultation and diagnosis operation, a set of images is requested from the database archive system and sent to the Local and Remote workstation sites on the Global PACS network. Viewing the same images, the radiologists use pointing overlay commands, or frames to point out features on the images. Each workstation transfers these frames, to the other workstation, so that an interactive session for diagnosis takes place. In this phase, we use fixed frames and variable size frames, used to outline an object. The data pockets for these frames traverses the national backbone in real-time. We accomplish this feature by using TCP/IP protocol sockets for communications. The remote consultation and diagnosis operation has been tested in real-time between the University Medical Center and the Bowman Gray School of Medicine at Wake Forest University, over the Internet. In this paper, we show the feasibility of the operation in a Global PACS environment. Future improvements to the system will include real-time voice and interactive compressed video scenarios.

  7. Exocyclic groups in the minor groove influence the backbone conformation of DNA

    PubMed Central

    Wellenzohn, Bernd; Flader, Wolfgang; Winger, Rudolf H.; Hallbrucker, Andreas; Mayer, Erwin; Liedl, Klaus R.

    2001-01-01

    Exocyclic groups in the minor groove of DNA modulate the affinity and positioning of nucleic acids to the histone protein. The addition of exocyclic groups decreases the formation of this protein–DNA complex, while their removal increases nucleosome formation. On the other hand, recent theoretical results show a strong correlation between the BI/BII phosphate backbone conformation and the hydration of the grooves of the DNA. We performed a simulation of the d(CGCGAATTCGCG)2 Drew Dickerson dodecamer and one simulation of the d(CGCIAATTCGCG)2 dodecamer in order to investigate the influence of the exocyclic amino group of guanine. The removal of the amino group introduces a higher intrinsic flexibility to DNA supporting the suggestions that make the enhanced flexibility responsible for the enlarged histone complexation affinity. This effect is attributed to changes in the destacking interactions of both strands of the DNA. The differences in the hydration of the minor groove could be the explanation of this flexibility. The changed hydration of the minor groove also leads to a different BI/BII substate pattern. Due to the fact that the histone preferentially builds contacts with the backbone of the DNA, we propose an influence of these BI/BII changes on the nucleosome formation process. Thus, we provide an additional explanation for the enhanced affinity to the histone due to removal of exocyclic groups. In terms of BI/BII we are also able to explain how minor groove binding ligands could affect the nucleosome assembly without disrupting the structure of DNA. PMID:11812834

  8. Direct Observation of the Intrinsic Backbone Torsional Mobility of Disordered Proteins.

    PubMed

    Jain, Neha; Narang, Dominic; Bhasne, Karishma; Dalal, Vijit; Arya, Shruti; Bhattacharya, Mily; Mukhopadhyay, Samrat

    2016-08-23

    The fundamental backbone dynamics of unfolded proteins arising due to intrinsic ϕ-ψ dihedral angle fluctuations dictate the course of protein folding, binding, assembly, and function. These internal fluctuations are also critical for protein misfolding associated with a range of human diseases. However, direct observation and unambiguous assignment of this inherent dynamics in chemically denatured proteins is extremely challenging due to various experimental limitations. To directly map the backbone torsional mobility in the ϕ-ψ dihedral angle space, we used a model intrinsically disordered protein, namely, α-synuclein, that adopts an expanded state under native conditions. We took advantage of nonoccurrence of tryptophan in α-synuclein and created a number of single-tryptophan variants encompassing the entire polypeptide chain. We then utilized highly sensitive picosecond time-resolved fluorescence depolarization measurements that allowed us to discern the site-specific torsional relaxation at a low protein concentration under physiological conditions. For all the locations, the depolarization kinetics exhibited two well-separated rotational-correlation-time components. The shorter, subnanosecond component arises due to the local mobility of the indole side chain, whereas the longer rotational-correlation-time component (1.37 ± 0.15 ns), independent of global tumbling, represents a characteristic timescale for short-range conformational exchange in the ϕ-ψ dihedral space. This correlation time represents an intrinsic timescale for torsional relaxation and is independent of position, which is expected for an extended polypeptide chain having little or no propensity to form persistent structures. We were also able to capture this intrinsic timescale at the N-terminal unstructured domain of the prion protein. Our estimated timescale of the segmental mobility is similar to that of unfolded proteins studied by nuclear magnetic resonance in conjunction with

  9. Statistical mechanics of protein allostery: Roles of backbone and side-chain structural fluctuations

    NASA Astrophysics Data System (ADS)

    Itoh, Kazuhito; Sasai, Masaki

    2011-03-01

    A statistical mechanical model of allosteric transition of proteins is developed by extending the structure-based model of protein folding to cases that a protein has two different native conformations. Partition function is calculated exactly within the model and free-energy surfaces associated with allostery are derived. In this paper, the model of allosteric transition proposed in a previous paper [Proc. Natl. Acad. Sci. U.S.A 134, 7775 (2010)] is reformulated to describe both fluctuation in side-chain configurations and that in backbone structures in a balanced way. The model is applied to example proteins, Ras, calmodulin, and CheY: Ras undergoes the allosteric transition between guanosine diphosphate (GDP)-bound and guanosine triphosphate (GTP)-bound forms, and the model results show that the GDP-bound form is stabilized enough to prevent unnecessary signal transmission, but the conformation in the GTP-bound state bears large fluctuation in side-chain configurations, which may help to bind multiple target proteins for multiple pathways of signaling. The calculated results of calmodulin show the scenario of sequential ordering in Ca2 + binding and the associated allosteric conformational change, which are realized though the sequential appearing of pre-existing structural fluctuations, i.e., fluctuations to show structures suitable to bind Ca2 + before its binding. Here, the pre-existing fluctuations to accept the second and third Ca2 + ions are dominated by the side-chain fluctuation. In CheY, the calculated side-chain fluctuation of Tyr106 is coordinated with the backbone structural change in the β4-α4 loop, which explains the pre-existing Y-T coupling process in this protein. Ability of the model to explain allosteric transitions of example proteins supports the view that the large entropic effects lower the free-energy barrier of allosteric transition.

  10. An avian live attenuated master backbone for potential use in epidemic and pandemic influenza vaccines

    PubMed Central

    Hickman, Danielle; Hossain, Md Jaber; Song, Haichen; Araya, Yonas; Solórzano, Alicia; Perez, Daniel R.

    2008-01-01

    The unprecedented emergence in Asia of multiple avian influenza virus (AIV) subtypes with a broad host range poses a major challenge in the design of vaccination strategies that are both effective and available in a timely manner. The present study focused on the protective effects of a genetically modified AIV as a source for the preparation of vaccines for epidemic and pandemic influenza. It has previously been demonstrated that a live attenuated AIV based on the internal backbone of influenza A/Guinea fowl/Hong Kong/WF10/99 (H9N2), called WF10att, is effective at protecting poultry species against low- and high-pathogenicity influenza strains. More importantly, this live attenuated virus provided effective protection when administered in ovo. In order to characterize the WF10att backbone further for use in epidemic and pandemic influenza vaccines, this study evaluated its protective effects in mice. Intranasal inoculation of modified attenuated viruses in mice provided adequate protective immunity against homologous lethal challenges with both the wild-type influenza A/WSN/33 (H1N1) and A/Vietnam/1203/04 (H5N1) viruses. Adequate heterotypic immunity was also observed in mice vaccinated with modified attenuated viruses carrying H7N2 surface proteins. The results presented in this report suggest that the internal genes of a genetically modified AIV confer similar protection in a mouse model and thus could be used as a master donor strain for the generation of live attenuated vaccines for epidemic and pandemic influenza. PMID:18931063

  11. Quantum chemical benchmark study on 46 RNA backbone families using a dinucleotide unit.

    PubMed

    Kruse, Holger; Mladek, Arnost; Gkionis, Konstantinos; Hansen, Andreas; Grimme, Stefan; Sponer, Jiri

    2015-10-13

    We have created a benchmark set of quantum chemical structure-energy data denoted as UpU46, which consists of 46 uracil dinucleotides (UpU), representing all known 46 RNA backbone conformational families. Penalty-function-based restrained optimizations with COSMO TPSS-D3/def2-TZVP ensure a balance between keeping the target conformation and geometry relaxation. The backbone geometries are close to the clustering-means of their respective RNA bioinformatics family classification. High-level wave function methods (DLPNO-CCSD(T) as reference) and a wide-range of dispersion-corrected or inclusive DFT methods (DFT-D3, VV10, LC-BOP-LRD, M06-2X, M11, and more) are used to evaluate the conformational energies. The results are compared to the Amber RNA bsc0χOL3 force field. Most dispersion-corrected DFT methods surpass the Amber force field significantly in accuracy and yield mean absolute deviations (MADs) for relative conformational energies of ∼0.4-0.6 kcal/mol. Double-hybrid density functionals represent the most accurate class of density functionals. Low-cost quantum chemical methods such as PM6-D3H+, HF-3c, DFTB3-D3, as well as small basis set calculations corrected for basis set superposition errors (BSSEs) by the gCP procedure are also tested. Unfortunately, the presently available low-cost methods are struggling to describe the UpU conformational energies with satisfactory accuracy. The UpU46 benchmark is an ideal test for benchmarking and development of fast methods to describe nucleic acids, including force fields. PMID:26574283

  12. 40-Gbps optical backbone network deep packet inspection based on FPGA

    NASA Astrophysics Data System (ADS)

    Zuo, Yuan; Huang, Zhiping; Su, Shaojing

    2014-11-01

    In the era of information, the big data, which contains huge information, brings about some problems, such as high speed transmission, storage and real-time analysis and process. As the important media for data transmission, the Internet is the significant part for big data processing research. With the large-scale usage of the Internet, the data streaming of network is increasing rapidly. The speed level in the main fiber optic communication of the present has reached 40Gbps, even 100Gbps, therefore data on the optical backbone network shows some features of massive data. Generally, data services are provided via IP packets on the optical backbone network, which is constituted with SDH (Synchronous Digital Hierarchy). Hence this method that IP packets are directly mapped into SDH payload is named POS (Packet over SDH) technology. Aiming at the problems of real time process of high speed massive data, this paper designs a process system platform based on ATCA for 40Gbps POS signal data stream recognition and packet content capture, which employs the FPGA as the CPU. This platform offers pre-processing of clustering algorithms, service traffic identification and data mining for the following big data storage and analysis with high efficiency. Also, the operational procedure is proposed in this paper. Four channels of 10Gbps POS signal decomposed by the analysis module, which chooses FPGA as the kernel, are inputted to the flow classification module and the pattern matching component based on TCAM. Based on the properties of the length of payload and net flows, buffer management is added to the platform to keep the key flow information. According to data stream analysis, DPI (deep packet inspection) and flow balance distribute, the signal is transmitted to the backend machine through the giga Ethernet ports on back board. Practice shows that the proposed platform is superior to the traditional applications based on ASIC and NP.

  13. Backbone dynamics of the oligomerization domain of p53 determined from 15N NMR relaxation measurements.

    PubMed

    Clubb, R T; Omichinski, J G; Sakaguchi, K; Appella, E; Gronenborn, A M; Clore, G M

    1995-05-01

    The backbone dynamics of the tetrameric p53 oligomerization domain (residues 319-360) have been investigated by two-dimensional inverse detected heteronuclear 1H-15N NMR spectroscopy at 500 and 600 MHz. 15N T1, T2, and heteronuclear NOEs were measured for 39 of 40 non-proline backbone NH vectors at both field strengths. The overall correlation time for the tetramer, calculated from the T1/T2 ratios, was found to be 14.8 ns at 35 degrees C. The correlation times and amplitudes of the internal motions were extracted from the relaxation data using the model-free formalism (Lipari G, Szabo A, 1982, J Am Chem Soc 104:4546-4559). The internal dynamics of the structural core of the p53 oligomerization domain are uniform and fairly rigid, with residues 327-354 exhibiting an average generalized order parameter (S2) of 0.88 +/- 0.08. The N- and C-termini exhibit substantial mobility and are unstructured in the solution structure of p53. Residues located at the N- and C-termini, in the beta-sheet, in the turn between the alpha-helix and beta-sheet, and at the C-terminal end of the alpha-helix display two distinct internal motions that are faster than the overall correlation time. Fast internal motions (< or = 20 ps) are within the extreme narrowing limit and are of uniform amplitude. The slower motions (0.6-2.2 ns) are outside the extreme narrowing limit and vary in amplitude.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7663341

  14. Antigenic characterization of influenza viruses produced using synthetic DNA and novel backbones.

    PubMed

    Suphaphiphat, Pirada; Whittaker, Lynne; De Souza, Ivna; Daniels, Rodney S; Dormitzer, Philip R; McCauley, John W; Settembre, Ethan C

    2016-07-12

    The global system for manufacturing seasonal influenza vaccines has been developed to respond to the natural evolution of influenza viruses, but the problem of antigenic mismatch continues to be a challenge in certain years. In some years, mismatches arise naturally due to the antigenic drift of circulating viruses after vaccine strain selection has already been made. In other years, antigenic differences between the vaccine virus and circulating viruses are introduced as part of the current system, which relies on the use of egg-adapted isolates as a starting material for candidate vaccine viruses (CVVs). Improving the current process for making vaccine viruses can provide great value. We have previously established a synthetic approach for rapidly generating influenza viruses in a vaccine-approved Madin Darby canine kidney (MDCK) cell line using novel, high-growth backbones that increase virus rescue efficiency and antigen yield. This technology also has the potential to produce viruses that maintain antigenic similarity to the intended reference viruses, depending on the hemagglutinin (HA) and neuraminidase (NA) sequences used for gene synthesis. To demonstrate this utility, we generated a panel of synthetic viruses using HA and NA sequences from recent isolates and showed by hemagglutination inhibition (HI) tests that all synthetic viruses were antigenically-like their conventional egg- or cell-propagated reference strains and there was no impact of the novel backbones on antigenicity. This synthetic approach can be used for the efficient production of CVVs that may be more representative of circulating viruses and may be used for both egg- and cell-based vaccine manufacturing platforms. When combined with mammalian cell culture technology for antigen production, synthetic viruses generated using HA and NA sequences from a non-egg-adapted prototype can help to reduce the potential impact of antigenic differences between vaccine virus and circulating viruses on

  15. An effective approach for alleviating cation-induced backbone degradation in aromatic ether-based alkaline polymer electrolytes.

    PubMed

    Han, Juanjuan; Liu, Qiong; Li, Xueqi; Pan, Jing; Wei, Ling; Wu, Ying; Peng, Hanqing; Wang, Ying; Li, Guangwei; Chen, Chen; Xiao, Li; Lu, Juntao; Zhuang, Lin

    2015-02-01

    Aromatic ether-based alkaline polymer electrolytes (APEs) are one of the most popular types of APEs being used in fuel cells. However, recent studies have demonstrated that upon being grafted by proximal cations some polar groups in the backbone of such APEs can be attacked by OH(-), leading to backbone degradation in an alkaline environment. To resolve this issue, we performed a systematic study on six APEs. We first replaced the polysulfone (PS) backbone with polyphenylsulfone (PPSU) and polyphenylether (PPO), whose molecular structures contain fewer polar groups. Although improved stability was seen after this change, cation-induced degradation was still obvious. Thus, our second move was to replace the ordinary quaternary ammonia (QA) cation, which had been closely attached to the polymer backbone, with a pendant-type QA (pQA), which was linked to the backbone through a long side chain. After a stability test in a 1 mol/L KOH solution at 80 °C for 30 days, all pQA-type APEs (pQAPS, pQAPPSU, and pQAPPO) exhibited as low as 8 wt % weight loss, which is close to the level of the bare backbone (5 wt %) and remarkably lower than those of the QA-type APEs (QAPS, QAPPSU, and QAPPO), whose weight losses under the same conditions were >30%. The pQA-type APEs also possessed clear microphase segregation morphology, which led to ionic conductivities that were higher, and water uptakes and degrees of membrane swelling that were lower, than those of the QA-type APEs. These observations unambiguously indicate that designing pendant-type cations is an effective approach to increasing the chemical stability of aromatic ether-based APEs. PMID:25594224

  16. Metal Preferences and Metallation*

    PubMed Central

    Foster, Andrew W.; Osman, Deenah; Robinson, Nigel J.

    2014-01-01

    The metal binding preferences of most metalloproteins do not match their metal requirements. Thus, metallation of an estimated 30% of metalloenzymes is aided by metal delivery systems, with ∼25% acquiring preassembled metal cofactors. The remaining ∼70% are presumed to compete for metals from buffered metal pools. Metallation is further aided by maintaining the relative concentrations of these pools as an inverse function of the stabilities of the respective metal complexes. For example, magnesium enzymes always prefer to bind zinc, and these metals dominate the metalloenzymes without metal delivery systems. Therefore, the buffered concentration of zinc is held at least a million-fold below magnesium inside most cells. PMID:25160626

  17. Electron Transfer Dissociation Reveals Changes in the Cleavage Frequencies of Backbone Bonds Distant to Amide-to-Ester Substitutions in Polypeptides

    NASA Astrophysics Data System (ADS)

    Hansen, Thomas A.; Jung, Hye R.; Kjeldsen, Frank

    2011-11-01

    Interrogation of electron transfer dissociation (ETD) mass spectra of peptide amide-to-ester backbone bond substituted analogues (depsipeptides) reveals substantial differences in the entire backbone cleavage frequencies. It is suggested that the point permutation of backbone bonds leads to changes in the predominant ion structures by removal/weakening of specific hydrogen bonding. ETD responds to these changes by redistributing the cleavage frequencies of the peptide backbone bonds. In comparison, no distinction between depsi-/peptide was observed using collision-activated dissociation, which is consistent with a general unfolding and elimination of structural information of these ions. These results should encourage further exploration of depsipeptides for gas-phase structural characterization.

  18. Copper-Catalyzed Cascade Substitution/Cyclization of N-Isocyanates: A Synthesis of 1-Aminobenzimidazolones.

    PubMed

    An, Jing; Alper, Howard; Beauchemin, André M

    2016-07-15

    A copper-catalyzed cascade reaction of in situ generated nitrogen-substituted isocyanates (N-isocyanates) and 2-iodoanilines has been developed. The cascade relies on the base-catalyzed substitution of masked N-isocyanates, followed by Cu(I)-catalyzed coupling to afford a variety of 1-aminobenzimidazolones in moderate to excellent yields. This is the first example of a transition-metal-catalyzed cascade reaction involving N-isocyanate intermediates. PMID:27341005

  19. A divergent approach to benzylisoquinoline-type and oxoaporphine alkaloids via regioselective direct ring metalation of alkoxy isoquinolines.

    PubMed

    Melzer, Benedikt; Bracher, Franz

    2015-07-28

    Methoxy- and benzyloxy-substituted isoquinolines are regioselectively metalated at C-1 with the Knochel-Hauser base, subsequent trapping with aromatic aldehydes gives aryl(isoquinolin-1-yl)carbinols as building blocks for divergent syntheses of different types of benzylisoquinoline alkaloids. Photochemical cyclization of ortho-bromo analogues under reductive conditions gives oxoaporphine alkaloids. Nine benzylisoquinoline alkaloids and two oxoaporphine alkaloids were obtained in two or three steps from appropriate isoquinolines. PMID:26081123

  20. Toward the ABCD Core of the Calyciphylline A-Type Daphniphyllum Alkaloids: Solvent non-Innocence in Neutral Aminyl Radical Cyclizations

    PubMed Central

    Stockdill, Jennifer L.; Lopez, Alberto M.; Ibrahim, Ahmad A.

    2015-01-01

    The Daphniphyllum alkaloids remain an attractive target in the synthetic community because of their unique framework and promising biological activities. We have shown that the ABC core of the calyciphylline A-type alkaloids can be rapidly accessed via the tandem cyclization of a neutral aminyl radical with a polarized cyclic olefin. Deuterium labeling experiments and reactions omitting a tin hydride reagent suggest that the solvent is the major source of the terminating hydrogen atom in the cyclization cascade. Incorporation of an internal alkyne in the radical pathway was tolerated in the reaction, and it provided the necessary atoms to enable completion of the D ring of the calyciphylline A-type alkaloids. PMID:26028785