Science.gov

Sample records for backbone structure variations

  1. External Tank - The Structure Backbone

    NASA Technical Reports Server (NTRS)

    Welzyn, Kenneth; Pilet, Jeffrey C.; Diecidue-Conners, Dawn; Worden, Michelle; Guillot, Michelle

    2011-01-01

    The External Tank forms the structural backbone of the Space Shuttle in the launch configuration. Because the tank flies to orbital velocity with the Space Shuttle Orbiter, minimization of weight is mandatory, to maximize payload performance. Choice of lightweight materials both for structure and thermal conditioning was necessary. The tank is large, and unique manufacturing facilities, tooling, handling, and transportation operations were required. Weld processes and tooling evolved with the design as it matured through several block changes, to reduce weight. Non Destructive Evaluation methods were used to assure integrity of welds and thermal protection system materials. The aluminum-lithium alloy was used near the end of the program and weld processes and weld repair techniques had to be refined. Development and implementation of friction stir welding was a substantial technology development incorporated during the Program. Automated thermal protection system application processes were developed for the majority of the tank surface. Material obsolescence was an issue throughout the 40 year program. The final configuration and tank weight enabled international space station assembly in a high inclination orbit allowing international cooperation with the Russian Federal Space Agency. Numerous process controls were implemented to assure product quality, and innovative proof testing was accomplished prior to delivery. Process controls were implemented to assure cleanliness in the production environment, to control contaminants, and to preclude corrosion. Each tank was accepted via rigorous inspections, including non-destructive evaluation techniques, proof testing, and all systems testing. In the post STS-107 era, the project focused on ascent debris risk reduction. This was accomplished via stringent process controls, post flight assessment using substantially improved imagery, and selective redesigns. These efforts were supported with a number of test programs to

  2. Solution Structure and Backbone Dynamics of Streptopain

    PubMed Central

    Wang, Chih-Chieh; Houng, Hsiang-Chee; Chen, Chun-Liang; Wang, Pei-Ju; Kuo, Chih-Feng; Lin, Yee-Shin; Wu, Jiunn-Jong; Lin, Ming T.; Liu, Ching-Chuan; Huang, Wenya; Chuang, Woei-Jer

    2009-01-01

    Streptococcal pyrogenic exotoxin B (SPE B) is a cysteine protease expressed by Streptococcus pyogenes. The D9N, G163S, G163S/A172S, and G239D mutant proteins were expressed to study the effect of the allelic variants on their protease activity. In contrast to other mutants, the G239D mutant was ∼12-fold less active. The Gly-239 residue is located within the C-terminal S230-G239 region, which cannot be observed in the x-ray structure. The three-dimensional structure and backbone dynamics of the 28-kDa mature SPE B (mSPE B) were determined. Unlike the x-ray structure of the 40-kDa zymogen SPE B (proSPE B), we observed the interactions between the C-terminal loop and the active site residues in mSPE B. The structural differences between mSPE B and proSPE B were the conformation of the C-terminal loop and the orientation of the catalytic His-195 residue, suggesting that activation and inactivation of SPE B is involved in the His-195 side-chain rotation. Dynamics analysis of mSPE B and the mSPE B/inhibitor complexes showed that the catalytic and C-terminal loops were the most flexible regions with low order parameter values of 0.5 to 0.8 and exhibited the motion on the ps/ns timescale. These findings suggest that the flexible C-terminal loop of SPE B may play an important role in controlling the substrate binding, resulting in its broad substrate specificity. PMID:19237546

  3. Local backbone structure prediction of proteins.

    PubMed

    de Brevern, Alexandre G; Benros, Cristina; Gautier, Romain; Valadié, Héléne; Hazout, Serge; Etchebest, Catherine

    2004-01-01

    A statistical analysis of the PDB structures has led us to define a new set of small 3D structural prototypes called Protein Blocks (PBs). This structural alphabet includes 16 PBs, each one is defined by the (phi, psi) dihedral angles of 5 consecutive residues. The amino acid distributions observed in sequence windows encompassing these PBs are used to predict by a Bayesian approach the local 3D structure of proteins from the sole knowledge of their sequences. LocPred is a software which allows the users to submit a protein sequence and performs a prediction in terms of PBs. The prediction results are given both textually and graphically. PMID:15724288

  4. A New Secondary Structure Assignment Algorithm Using Cα Backbone Fragments.

    PubMed

    Cao, Chen; Wang, Guishen; Liu, An; Xu, Shutan; Wang, Lincong; Zou, Shuxue

    2016-01-01

    The assignment of secondary structure elements in proteins is a key step in the analysis of their structures and functions. We have developed an algorithm, SACF (secondary structure assignment based on Cα fragments), for secondary structure element (SSE) assignment based on the alignment of Cα backbone fragments with central poses derived by clustering known SSE fragments. The assignment algorithm consists of three steps: First, the outlier fragments on known SSEs are detected. Next, the remaining fragments are clustered to obtain the central fragments for each cluster. Finally, the central fragments are used as a template to make assignments. Following a large-scale comparison of 11 secondary structure assignment methods, SACF, KAKSI and PROSS are found to have similar agreement with DSSP, while PCASSO agrees with DSSP best. SACF and PCASSO show preference to reducing residues in N and C cap regions, whereas KAKSI, P-SEA and SEGNO tend to add residues to the terminals when DSSP assignment is taken as standard. Moreover, our algorithm is able to assign subtle helices (310-helix, π-helix and left-handed helix) and make uniform assignments, as well as to detect rare SSEs in β-sheets or long helices as outlier fragments from other programs. The structural uniformity should be useful for protein structure classification and prediction, while outlier fragments underlie the structure-function relationship. PMID:26978354

  5. A New Secondary Structure Assignment Algorithm Using Cα Backbone Fragments

    PubMed Central

    Cao, Chen; Wang, Guishen; Liu, An; Xu, Shutan; Wang, Lincong; Zou, Shuxue

    2016-01-01

    The assignment of secondary structure elements in proteins is a key step in the analysis of their structures and functions. We have developed an algorithm, SACF (secondary structure assignment based on Cα fragments), for secondary structure element (SSE) assignment based on the alignment of Cα backbone fragments with central poses derived by clustering known SSE fragments. The assignment algorithm consists of three steps: First, the outlier fragments on known SSEs are detected. Next, the remaining fragments are clustered to obtain the central fragments for each cluster. Finally, the central fragments are used as a template to make assignments. Following a large-scale comparison of 11 secondary structure assignment methods, SACF, KAKSI and PROSS are found to have similar agreement with DSSP, while PCASSO agrees with DSSP best. SACF and PCASSO show preference to reducing residues in N and C cap regions, whereas KAKSI, P-SEA and SEGNO tend to add residues to the terminals when DSSP assignment is taken as standard. Moreover, our algorithm is able to assign subtle helices (310-helix, π-helix and left-handed helix) and make uniform assignments, as well as to detect rare SSEs in β-sheets or long helices as outlier fragments from other programs. The structural uniformity should be useful for protein structure classification and prediction, while outlier fragments underlie the structure–function relationship. PMID:26978354

  6. Backbone Solution Structures of Proteins Using Residual Dipolar Couplings: Application to a Novel Structural Genomics Target

    PubMed Central

    Valafar, H.; Mayer, K. L.; Bougault, C. M.; LeBlond, P. D.; Jenney, F. E.; Brereton, P. S.; Adams, M.W.W.; Prestegard, J.H.

    2006-01-01

    Structural genomics (or proteomics) activities are critically dependent on the availability of high-throughput structure determination methodology. Development of such methodology has been a particular challenge for NMR based structure determination because of the demands for isotopic labeling of proteins and the requirements for very long data acquisition times. We present here a methodology that gains efficiency from a focus on determination of backbone structures of proteins as opposed to full structures with all side chains in place. This focus is appropriate given the presumption that many protein structures in the future will be built using computational methods that start from representative fold family structures and replace as many as 70% of the side chains in the course of structure determination. The methodology we present is based primarily on residual dipolar couplings (RDCs), readily accessible NMR observables that constrain the orientation of backbone fragments irrespective of separation in space. A new software tool is described for the assembly of backbone fragments under RDC constraints and an application to a structural genomics target is presented. The target is an 8.7 kDa protein from Pyrococcus furiosus, PF1061, that was previously not well annotated, and had a nearest structurally characterized neighbor with only 33% sequence identity. The structure produced shows structural similarity to this sequence homologue, but also shows similarity to other proteins that suggests a functional role in sulfur transfer. Given the backbone structure and a possible functional link this should be an ideal target for development of modeling methods. PMID:15704012

  7. Changing the topology of protein backbone: the effect of backbone cyclization on the structure and dynamics of a SH3 domain

    PubMed Central

    Schumann, Frank H.; Varadan, Ranjani; Tayakuniyil, Praveen P.; Grossman, Jennifer H.; Camarero, Julio A.; Fushman, David

    2015-01-01

    Understanding of the effects of the backbone cyclization on the structure and dynamics of a protein is essential for using protein topology engineering to alter protein stability and function. Here we have determined, for the first time, the structure and dynamics of the linear and various circular constructs of the N-SH3 domain from protein c-Crk. These constructs differ in the length and amino acid composition of the cyclization region. The backbone cyclization was carried out using intein-mediated intramolecular chemical ligation between the juxtaposed N- and the C-termini. The structure and backbone dynamics studies were performed using solution NMR. Our data suggest that the backbone cyclization has little effect on the overall three-dimensional structure of the SH3 domain: besides the termini, only minor structural changes were found in the proximity of the cyclization region. In contrast to the structure, backbone dynamics are significantly affected by the cyclization. On the subnanosecond time scale, the backbone of all circular constructs on average appears more rigid than that of the linear SH3 domain; this effect is observed over the entire backbone and is not limited to the cyclization site. The backbone mobility of the circular constructs becomes less restricted with increasing length of the circularization loop. In addition, significant conformational exchange motions (on the sub-millisecond time scale) were found in the N-Src loop and in the adjacent β-strands in all circular constructs studied in this work. These effects of backbone cyclization on protein dynamics have potential implications for the stability of the protein fold and for ligand binding. PMID:25905098

  8. Automated Real-Space Refinement of Protein Structures Using a Realistic Backbone Move Set

    PubMed Central

    Haddadian, Esmael J.; Gong, Haipeng; Jha, Abhishek K.; Yang, Xiaojing; DeBartolo, Joe; Hinshaw, James R.; Rice, Phoebe A.; Sosnick, Tobin R.; Freed, Karl F.

    2011-01-01

    Crystals of many important biological macromolecules diffract to limited resolution, rendering accurate model building and refinement difficult and time-consuming. We present a torsional optimization protocol that is applicable to many such situations and combines Protein Data Bank-based torsional optimization with real-space refinement against the electron density derived from crystallography or cryo-electron microscopy. Our method converts moderate- to low-resolution structures at initial (e.g., backbone trace only) or late stages of refinement to structures with increased numbers of hydrogen bonds, improved crystallographic R-factors, and superior backbone geometry. This automated method is applicable to DNA-binding and membrane proteins of any size and will aid studies of structural biology by improving model quality and saving considerable effort. The method can be extended to improve NMR and other structures. Our backbone score and its sequence profile provide an additional standard tool for evaluating structural quality. PMID:21843481

  9. Structurally diverse cyclisation linkers impose different backbone conformations in bicyclic peptides.

    PubMed

    Chen, Shiyu; Morales-Sanfrutos, Julia; Angelini, Alessandro; Cutting, Brian; Heinis, Christian

    2012-05-01

    Combinatorial libraries of structurally diverse peptide macrocycles offer a rich source for the development of high-affinity ligands to targets of interest. In this work we have developed linkers for the generation of genetically encoded bicyclic peptides and tested whether the peptides cyclised by them have significant variations in their backbone conformations. Two new cyclisation reagents, each containing three thiol-reactive groups, efficiently and selectively cyclised linear peptides containing three cysteine moieties. When the mesitylene linker of the bicyclic peptide PK15, a potent inhibitor of plasma kallikrein (K(i)=2 nM), was replaced by the new linkers, its inhibitory activity dropped by a factor of more than 1000, suggesting that the linkers impose different conformations on the peptide. Indeed, structural analysis by solution-state NMR revealed different NOE constraints in the three bicyclic peptides, indicating that these relatively small linkers at the centres of bicyclic peptide structures significantly influence the conformations of the peptides. These results demonstrate the prominent structural role of linkers in peptide macrocycles and suggest that application of different cyclisation linkers in a combinatorial fashion could be an attractive means to generate topologically diverse macrocycle libraries. PMID:22492661

  10. Lasso peptide, a highly stable structure and designable multifunctional backbone.

    PubMed

    Zhao, Ning; Pan, Yongxu; Cheng, Zhen; Liu, Hongguang

    2016-06-01

    Lasso peptide belongs to a new class of natural product with highly compact and stable structure. It has varieties of biological activities, among which the most important one is its antibacterial efficacy. Novel lasso peptides have been constantly discovered and analyzed by advanced techniques, and the biosynthesis or even chemical synthesis of lasso peptide has been studied after learning its constituent amino acids and maturation process. Structural identification of lasso peptide provides information for elucidating the mechanisms of its antibacterial activity and basis for further modifications. Ring of lasso peptide is the key to both its highly compact and stable structure and its intrinsic antibacterial property. The loop has been considered as suitable modification region of lasso peptide, such as V11-S18 of MccJ25 being modifiable without disrupting the lasso structure in biosynthesis. The tail is the immunity protein that can export lasso peptide out of its produced strain and serve as a self-protection mechanism at the same time. Most of currently known lasso peptides are non-pathogenic, which implies that the modified lasso peptides are promising candidates for medical applications. Arginine, glycine, and aspartic acid as a ligands of cancer-specific receptor have been grafted to the loop of lasso peptide without losing its bioactivity, and many other targets are expected to be used for lasso peptide modification. Multi-molecular modification and large-scale production need to be studied and solved in future for designing and using multifunctional lasso peptide based on its extraordinary stable structure. PMID:27074719

  11. A structural role for arginine in proteins: multiple hydrogen bonds to backbone carbonyl oxygens.

    PubMed

    Borders, C L; Broadwater, J A; Bekeny, P A; Salmon, J E; Lee, A S; Eldridge, A M; Pett, V B

    1994-04-01

    We propose that arginine side chains often play a previously unappreciated general structural role in the maintenance of tertiary structure in proteins, wherein the positively charged guanidinium group forms multiple hydrogen bonds to backbone carbonyl oxygens. Using as a criterion for a "structural" arginine one that forms 4 or more hydrogen bonds to 3 or more backbone carbonyl oxygens, we have used molecular graphics to locate arginines of interest in 4 proteins: Arg 180 in Thermus thermophilus manganese superoxide dismutase, Arg 254 in human carbonic anhydrase II, Arg 31 in Streptomyces rubiginosus xylose isomerase, and Arg 313 in Rhodospirillum rubrum ribulose-1,5-bisphosphate carboxylase/oxygenase. Arg 180 helps to mold the active site channel of superoxide dismutase, whereas in each of the other enzymes the structural arginine is buried in the "mantle" (i.e., inside, but near the surface) of the protein interior well removed from the active site, where it makes 5 hydrogen bonds to 4 backbone carbonyl oxygens. Using a more relaxed criterion of 3 or more hydrogen bonds to 2 or more backbone carbonyl oxygens, arginines that play a potentially important structural role were found in yeast enolase, Bacillus stearothermophilus glyceraldehyde-3-phosphate dehydrogenase, bacteriophage T4 and human lysozymes, Enteromorpha prolifera plastocyanin, HIV-1 protease, Trypanosoma brucei brucei and yeast triosephosphate isomerases, and Escherichia coli trp aporepressor (but not trp repressor or the trp repressor/operator complex).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8003972

  12. East vergent structure of Backbone Range: Insights from A-Lan-Yi area and sandbox modeling

    NASA Astrophysics Data System (ADS)

    Lee, C. A.; Lu, C. Y.

    2015-12-01

    Southern Taiwan, including Pingtung peninsula and Taitung, is the incipient oblique collision zone of Eurasian plate and Philippine Sea plate. The Luzon volcanic arc converged toward Taiwan Island and formed Hengchun Ridge south offshore Taiwan. Thus, Taiwan mountain belt developed from north to south as the Backbone Range, so that we can infer the incipient feature structure from the topography and outcrop study of southern Taiwan. Our field survey of this study concentrated at the southeast coastline of Taiwan, also known as A-Lan-Yi Trail. According to previous study, the deformational structures such as faults and folds are consistent with regional kinematic processes, and the preserved transpression structure is the most important evidence of incipient collision. In this study, we use the sedimentary sequences of study area to trace the regional tectonics from north to south. Discovered structures in this area show the similar kinematic history as the eastern flank of Backbone Range, so that we suggest they are at the same series of a tectonic event. To complete the regional structure mapping in this accessible area, besides the field geological data, we also applied the LiDAR-derived DTM which is a 3D visualization technology to improve our topography information. In addition, we use the sandbox modeling to demonstrate the development of structures in the eastern flank of Backbone Range. After combining the results of field observation and regional structure mapping, this study provides a strong evidence of backthrusting and backfolding deformation during the incipient oblique collision stage.

  13. On the satisfaction of backbone-carbonyl lone pairs of electrons in protein structures.

    PubMed

    Bartlett, Gail J; Woolfson, Derek N

    2016-04-01

    Protein structures are stabilized by a variety of noncovalent interactions (NCIs), including the hydrophobic effect, hydrogen bonds, electrostatic forces and van der Waals' interactions. Our knowledge of the contributions of NCIs, and the interplay between them remains incomplete. This has implications for computational modeling of NCIs, and our ability to understand and predict protein structure, stability, and function. One consideration is the satisfaction of the full potential for NCIs made by backbone atoms. Most commonly, backbone-carbonyl oxygen atoms located within α-helices and β-sheets are depicted as making a single hydrogen bond. However, there are two lone pairs of electrons to be satisfied for each of these atoms. To explore this, we used operational geometric definitions to generate an inventory of NCIs for backbone-carbonyl oxygen atoms from a set of high-resolution protein structures and associated molecular-dynamics simulations in water. We included more-recently appreciated, but weaker NCIs in our analysis, such as n→π* interactions, Cα-H bonds and methyl-H bonds. The data demonstrate balanced, dynamic systems for all proteins, with most backbone-carbonyl oxygen atoms being satisfied by two NCIs most of the time. Combinations of NCIs made may correlate with secondary structure type, though in subtly different ways from traditional models of α- and β-structure. In addition, we find examples of under- and over-satisfied carbonyl-oxygen atoms, and we identify both sequence-dependent and sequence-independent secondary-structural motifs in which these reside. Our analysis provides a more-detailed understanding of these contributors to protein structure and stability, which will be of use in protein modeling, engineering and design. PMID:26833776

  14. Toward Atomistic Resolution Structure of Phosphatidylcholine Headgroup and Glycerol Backbone at Different Ambient Conditions.

    PubMed

    Botan, Alexandru; Favela-Rosales, Fernando; Fuchs, Patrick F J; Javanainen, Matti; Kanduč, Matej; Kulig, Waldemar; Lamberg, Antti; Loison, Claire; Lyubartsev, Alexander; Miettinen, Markus S; Monticelli, Luca; Määttä, Jukka; Ollila, O H Samuli; Retegan, Marius; Róg, Tomasz; Santuz, Hubert; Tynkkynen, Joona

    2015-12-10

    Phospholipids are essential building blocks of biological membranes. Despite a vast amount of very accurate experimental data, the atomistic resolution structures sampled by the glycerol backbone and choline headgroup in phoshatidylcholine bilayers are not known. Atomistic resolution molecular dynamics simulations have the potential to resolve the structures, and to give an arrestingly intuitive interpretation of the experimental data, but only if the simulations reproduce the data within experimental accuracy. In the present work, we simulated phosphatidylcholine (PC) lipid bilayers with 13 different atomistic models, and compared simulations with NMR experiments in terms of the highly structurally sensitive C-H bond vector order parameters. Focusing on the glycerol backbone and choline headgroups, we showed that the order parameter comparison can be used to judge the atomistic resolution structural accuracy of the models. Accurate models, in turn, allow molecular dynamics simulations to be used as an interpretation tool that translates these NMR data into a dynamic three-dimensional representation of biomolecules in biologically relevant conditions. In addition to lipid bilayers in fully hydrated conditions, we reviewed previous experimental data for dehydrated bilayers and cholesterol-containing bilayers, and interpreted them with simulations. Although none of the existing models reached experimental accuracy, by critically comparing them we were able to distill relevant chemical information: (1) increase of choline order parameters indicates the P-N vector tilting more parallel to the membrane, and (2) cholesterol induces only minor changes to the PC (glycerol backbone) structure. This work has been done as a fully open collaboration, using nmrlipids.blogspot.fi as a communication platform; all the scientific contributions were made publicly on this blog. During the open research process, the repository holding our simulation trajectories and files ( https

  15. Toward Atomistic Resolution Structure of Phosphatidylcholine Headgroup and Glycerol Backbone at Different Ambient Conditions†

    PubMed Central

    2015-01-01

    Phospholipids are essential building blocks of biological membranes. Despite a vast amount of very accurate experimental data, the atomistic resolution structures sampled by the glycerol backbone and choline headgroup in phoshatidylcholine bilayers are not known. Atomistic resolution molecular dynamics simulations have the potential to resolve the structures, and to give an arrestingly intuitive interpretation of the experimental data, but only if the simulations reproduce the data within experimental accuracy. In the present work, we simulated phosphatidylcholine (PC) lipid bilayers with 13 different atomistic models, and compared simulations with NMR experiments in terms of the highly structurally sensitive C–H bond vector order parameters. Focusing on the glycerol backbone and choline headgroups, we showed that the order parameter comparison can be used to judge the atomistic resolution structural accuracy of the models. Accurate models, in turn, allow molecular dynamics simulations to be used as an interpretation tool that translates these NMR data into a dynamic three-dimensional representation of biomolecules in biologically relevant conditions. In addition to lipid bilayers in fully hydrated conditions, we reviewed previous experimental data for dehydrated bilayers and cholesterol-containing bilayers, and interpreted them with simulations. Although none of the existing models reached experimental accuracy, by critically comparing them we were able to distill relevant chemical information: (1) increase of choline order parameters indicates the P–N vector tilting more parallel to the membrane, and (2) cholesterol induces only minor changes to the PC (glycerol backbone) structure. This work has been done as a fully open collaboration, using nmrlipids.blogspot.fi as a communication platform; all the scientific contributions were made publicly on this blog. During the open research process, the repository holding our simulation trajectories and files (https

  16. Effect of Liquid-Crystalline Epoxy Backbone Structure on Thermal Conductivity of Epoxy-Alumina Composites

    NASA Astrophysics Data System (ADS)

    Giang, Thanhkieu; Kim, Jinhwan

    2016-06-01

    In a series of papers published recently, we clearly demonstrated that the most important factor governing the thermal conductivity of epoxy-Al2O3 composites is the backbone structure of the epoxy. In this study, three more epoxies based on diglycidyl ester-terminated liquid-crystalline epoxy (LCE) have been synthesized to draw conclusions regarding the effect of the epoxy backbone structure on the thermal conductivity of epoxy-alumina composites. The synthesized structures were characterized by proton nuclear magnetic resonance (1H-NMR) and Fourier-transform infrared (FT-IR) spectroscopy. Differential scanning calorimetry, thermogravimetric analysis, and optical microscopy were also employed to examine the thermal and optical properties of the synthesized LCEs and the cured composites. All three LCE resins exhibited typical liquid-crystalline behaviors: clear solid crystalline state below the melting temperature (T m), sharp crystalline melting at T m, and transition to nematic phase above T m with consequent isotropic phase above the isotropic temperature (T i). The LCE resins displayed distinct nematic liquid-crystalline phase over a wide temperature range and retained liquid-crystalline phase after curing, with high thermal conductivity of the resulting composite. The thermal conductivity values ranged from 3.09 W/m-K to 3.89 W/m-K for LCE-Al2O3 composites with 50 vol.% filler loading. The steric effect played a governing role in the difference. The neat epoxy resin thermal conductivity was obtained as 0.35 W/m-K to 0.49 W/m-K based on analysis using the Agari-Uno model. The results clearly support the objective of this study in that the thermal conductivity of the LCE-containing networks strongly depended on the epoxy backbone structure and the degree of ordering in the cured network.

  17. The structure of the carbohydrate backbone of the lipopolysaccharide of Pectinatus frisingensis strain VTT E-79104.

    PubMed

    Vinogradov, Evgeny; Li, Jianjun; Sadovskaya, Irina; Jabbouri, Said; Helander, Ilkka M

    2004-06-22

    The structure of the carbohydrate backbone of the lipopolysaccharide from Pectinatus frisingensis strain VTT E-79104 was analyzed using chemical degradations, NMR spectroscopy, mass spectrometry, and chemical methods. The LPS contains two major structural variants, differing in the presence or absence of an octasaccharide fragment. The largest structure of the carbohydrate backbone of the LPS, that could be deduced from experimental results, consists of 20 monosaccharides arranged in a nonrepetitive sequence: [carbohydrate structure: see text] where R is H or 4-O-Me-alpha-L-Fuc-(1-2)-4-O-Me-beta-Hep-(1-3)-alpha-GlcNAc-(1-2)-beta-Man-(1-3)-beta-ManNAc-(1-4)-alpha-Gal-(1-4)-beta-Hep-(1-3)-beta-GalNAc-(1- where Hep is a residue of D-glycero-D-galacto-heptose; all monosaccharides have the D-configuration except for 4-O-Me-L-Fuc and L-Ara4N. This structure is architecturally similar to the oligosaccharide system reported previously in P. frisingensis VTT E-82164 LPS, but differs from the latter in composition and also in the size of the outer region. PMID:15183738

  18. Correlation between protein secondary structure, backbone bond angles, and side-chain orientations

    NASA Astrophysics Data System (ADS)

    Lundgren, Martin; Niemi, Antti J.

    2012-08-01

    We investigate the fine structure of the sp3 hybridized covalent bond geometry that governs the tetrahedral architecture around the central Cα carbon of a protein backbone, and for this we develop new visualization techniques to analyze high-resolution x-ray structures in the Protein Data Bank. We observe that there is a correlation between the deformations of the ideal tetrahedral symmetry and the local secondary structure of the protein. We propose a universal coarse-grained energy function to describe the ensuing side-chain geometry in terms of the Cβ carbon orientations. The energy function can model the side-chain geometry with a subatomic precision. As an example we construct the Cα-Cβ structure of HP35 chicken villin headpiece. We obtain a configuration that deviates less than 0.4 Å in root-mean-square distance from the experimental x-ray structure.

  19. Structure and Assembly of Group B Streptococcus Pilus 2b Backbone Protein

    PubMed Central

    Cozzi, Roberta; Malito, Enrico; Lazzarin, Maddalena; Nuccitelli, Annalisa; Castagnetti, Andrea; Bottomley, Matthew J.; Margarit, Immaculada; Maione, Domenico; Rinaudo, C. Daniela

    2015-01-01

    Group B Streptococcus (GBS) is a major cause of invasive disease in infants. Like other Gram-positive bacteria, GBS uses a sortase C-catalyzed transpeptidation mechanism to generate cell surface pili from backbone and ancillary pilin precursor substrates. The three pilus types identified in GBS contain structural subunits that are highly immunogenic and are promising candidates for the development of a broadly-protective vaccine. Here we report the X-ray crystal structure of the backbone protein of pilus 2b (BP-2b) at 1.06Å resolution. The structure reveals a classical IgG-like fold typical of the pilin subunits of other Gram-positive bacteria. The crystallized portion of the protein (residues 185-468) encompasses domains D2 and D3 that together confer high stability to the protein due to the presence of an internal isopeptide bond within each domain. The D2+D3 region, lacking the N-terminal D1 domain, was as potent as the entire protein in conferring protection against GBS challenge in a well-established mouse model. By site-directed mutagenesis and complementation studies in GBS knock-out strains we identified the residues and motives essential for assembly of the BP-2b monomers into high-molecular weight complexes, thus providing new insights into pilus 2b polymerization. PMID:25942637

  20. NMR Structure Determination for Larger Proteins Using Backbone-Only Data

    PubMed Central

    Raman, Srivatsan; Lange, Oliver F.; Rossi, Paolo; Tyka, Michael; Wang, Xu; Aramini, James; Liu, Gaohua; Ramelot, Theresa; Eletsky, Alexander; Szyperski, Thomas; Kennedy, Michael; Prestegard, James; Montelione, Gaetano T.; Baker, David

    2010-01-01

    Conventional protein structure determination from nuclear magnetic resonance data relies heavily on side-chain proton-proton distances. The necessary side-chain resonance assignment, however, is labor intensive and prone to error. Here we show that structures can be accurately determined without NMR information on the sidechains for proteins up to 25 kDa by incorporating backbone chemical shifts, residual dipolar couplings, and amide proton distances into the Rosetta protein structure modelling methodology. These data, which are too sparse for conventional methods, serve only to guide conformational search towards the lowest energy conformations in the folding landscape; the details of the computed models are determined by the physical chemistry implicit in the Rosetta all atom energy function. The new method is not hindered by the deuteration required to suppress nuclear relaxation processes for proteins greater than 15 kDa, and should enable routine NMR structure determination for larger proteins. PMID:20133520

  1. Statistical mechanics of protein allostery: Roles of backbone and side-chain structural fluctuations

    NASA Astrophysics Data System (ADS)

    Itoh, Kazuhito; Sasai, Masaki

    2011-03-01

    A statistical mechanical model of allosteric transition of proteins is developed by extending the structure-based model of protein folding to cases that a protein has two different native conformations. Partition function is calculated exactly within the model and free-energy surfaces associated with allostery are derived. In this paper, the model of allosteric transition proposed in a previous paper [Proc. Natl. Acad. Sci. U.S.A 134, 7775 (2010)] is reformulated to describe both fluctuation in side-chain configurations and that in backbone structures in a balanced way. The model is applied to example proteins, Ras, calmodulin, and CheY: Ras undergoes the allosteric transition between guanosine diphosphate (GDP)-bound and guanosine triphosphate (GTP)-bound forms, and the model results show that the GDP-bound form is stabilized enough to prevent unnecessary signal transmission, but the conformation in the GTP-bound state bears large fluctuation in side-chain configurations, which may help to bind multiple target proteins for multiple pathways of signaling. The calculated results of calmodulin show the scenario of sequential ordering in Ca2 + binding and the associated allosteric conformational change, which are realized though the sequential appearing of pre-existing structural fluctuations, i.e., fluctuations to show structures suitable to bind Ca2 + before its binding. Here, the pre-existing fluctuations to accept the second and third Ca2 + ions are dominated by the side-chain fluctuation. In CheY, the calculated side-chain fluctuation of Tyr106 is coordinated with the backbone structural change in the β4-α4 loop, which explains the pre-existing Y-T coupling process in this protein. Ability of the model to explain allosteric transitions of example proteins supports the view that the large entropic effects lower the free-energy barrier of allosteric transition.

  2. Proton NMR assignments and regular backbone structure of bovine pancreatic ribonuclease A in aqueous solution

    SciTech Connect

    Robertson, A.D. ); Purisima, E.O. Cornell Univ., Ithaca, NY ); Eastman, M.A.; Scheraga, H.A. )

    1989-07-11

    Proton NMR assignments have been made for 121 of the 124 residues of bovine pancreatic ribonuclease A (RNase A). During the first stage of assignment, COSY and relayed COSY data were used to identify 40 amino acid spin systems belonging to alanine, valine, threonine, isoleucine, and serine residues. Approximately 60 other NH-{alpha}CH-{beta}CH systems were also identified but not assigned to specific amino acid type. NOESY data then were used to connect sequentially neighboring spin systems; approximately 475 of the possible 700 resonances in RNase A were assigned in this way. The authors' assignments agree with those for 20 residues assigned previously. NOESY correlations were used to identify regular backbone structure elements in RNase A, which are very similar to those observed in X-ray crystallographic studies.

  3. Solution structure and backbone dynamics of Mason-Pfizer monkey virus (MPMV) nucleocapsid protein.

    PubMed Central

    Gao, Y.; Kaluarachchi, K.; Giedroc, D. P.

    1998-01-01

    Retroviral nucleocapsid proteins (NCPs) are CCHC-type zinc finger proteins that mediate virion RNA binding activities associated with retrovirus assembly and genomic RNA encapsidation. Mason-Pfizer monkey virus (MPMV), a type D retrovirus, encodes a 96-amino acid nucleocapsid protein, which contains two Cys-X2-Cys-X4-His-X4-Cys (CCHC) zinc fingers connected by an unusually long 15-amino acid linker. Homonuclear, two-dimensional sensitivity-enhanced 15N-1H, three-dimensional 15N-1H, and triple resonance NMR spectroscopy have been used to determine the solution structure and residue-specific backbone dynamics of the structured core domain of MPMV NCP containing residues 21-80. Structure calculations and spectral density mapping of N-H bond vector mobility reveal that MPMV NCP 21-80 is best described as two independently folded, rotationally uncorrelated globular domains connected by a seven-residue flexible linker consisting of residues 42-48. The N-terminal CCHC zinc finger domain (residues 24-37) appears to adopt a fold like that described previously for HIV-1 NCP; however, residues within this domain and the immediately adjacent linker region (residues 38-41) are characterized by extensive conformational averaging on the micros-ms time scale at 25 degrees C. In contrast to other NCPs, residues 49-77, which includes the C-terminal CCHC zinc-finger (residues 53-66), comprise a well-folded globular domain with the Val49-Pro-Gly-Leu52 sequence and C-terminal tail residues 67-77 characterized by amide proton exchange properties and 15N R1, R2, and (1H-15N) NOE values indistinguishable to residues in the core C-terminal finger. Twelve refined structural models of MPMV NCP residues 49-80 (pairwise backbone RMSD of 0.77 A) reveal that the side chains of the conserved Pro50 and Trp62 are in van der Waals contact with one another. Residues 70-73 in the C-terminal tail adopt a reverse turn-like structure. Ile77 is involved in extensive van der Waals contact with the core

  4. Characterization of the structure and melting of DNAs containing backbone nicks and gaps

    SciTech Connect

    Snowden-Ifft, E.A.; Wemmer, D.E. )

    1990-06-26

    A DNA molecule containing a gap (a missing phosphate) has been examined and compared to two other molecules of the same sequence, one containing a nick (a phosphorylated gap) and the other a normal duplex containing no break in the backbone. A second gapped sequence was also compared to a normal duplex of the same sequence. The molecules containing nicks or gaps were generated as dumbbell molecules, short helices closed by a loop at each end. The dumbbells were formed by the association of two hairpins with self-complementary dangling 5'-ends. Nuclear magnetic resonance was used to monitor the melting transition and to probe structural differences between molecules. Under the conditions used here no change in stability was observed upon phosphorylation of the gap. Structural changes upon phosphorylation of a gap or closure of a nick were minimal and were localized to the region immediately around the gap or nick. Two transitions can be observed as a gapped or nicked molecule melts, although the resolution of the two transitions varies with the salt concentration. At moderate to high salt (greater than or equal to 30 mM) the molecule melts essentially all at once. At low salt the two transitions occur at temperatures that differ by as much as 15 degrees C. In addition, comparison with other NMR melting studies indicates that the duplex formed by the overlap of the dangling ends of the hairpins is stabilized relative to a free duplex of the same sequence, probably by stacking onto the hairpin stem.

  5. A Multi-Objective Approach for Protein Structure Prediction Based on an Energy Model and Backbone Angle Preferences

    PubMed Central

    Tsay, Jyh-Jong; Su, Shih-Chieh; Yu, Chin-Sheng

    2015-01-01

    Protein structure prediction (PSP) is concerned with the prediction of protein tertiary structure from primary structure and is a challenging calculation problem. After decades of research effort, numerous solutions have been proposed for optimisation methods based on energy models. However, further investigation and improvement is still needed to increase the accuracy and similarity of structures. This study presents a novel backbone angle preference factor, which is one of the factors inducing protein folding. The proposed multiobjective optimisation approach simultaneously considers energy models and backbone angle preferences to solve the ab initio PSP. To prove the effectiveness of the multiobjective optimisation approach based on the energy models and backbone angle preferences, 75 amino acid sequences with lengths ranging from 22 to 88 amino acids were selected from the CB513 data set to be the benchmarks. The data sets were highly dissimilar, therefore indicating that they are meaningful. The experimental results showed that the root-mean-square deviation (RMSD) of the multiobjective optimization approach based on energy model and backbone angle preferences was superior to those of typical energy models, indicating that the proposed approach can facilitate the ab initio PSP. PMID:26151847

  6. Solution structure and backbone dynamics of streptopain: insight into diverse substrate specificity.

    PubMed

    Wang, Chih-Chieh; Houng, Hsiang-Chee; Chen, Chun-Liang; Wang, Pei-Ju; Kuo, Chih-Feng; Lin, Yee-Shin; Wu, Jiunn-Jong; Lin, Ming T; Liu, Ching-Chuan; Huang, Wenya; Chuang, Woei-Jer

    2009-04-17

    Streptococcal pyrogenic exotoxin B (SPE B) is a cysteine protease expressed by Streptococcus pyogenes. The D9N, G163S, G163S/A172S, and G239D mutant proteins were expressed to study the effect of the allelic variants on their protease activity. In contrast to other mutants, the G239D mutant was approximately 12-fold less active. The Gly-239 residue is located within the C-terminal S230-G239 region, which cannot be observed in the x-ray structure. The three-dimensional structure and backbone dynamics of the 28-kDa mature SPE B (mSPE B) were determined. Unlike the x-ray structure of the 40-kDa zymogen SPE B (proSPE B), we observed the interactions between the C-terminal loop and the active site residues in mSPE B. The structural differences between mSPE B and proSPE B were the conformation of the C-terminal loop and the orientation of the catalytic His-195 residue, suggesting that activation and inactivation of SPE B is involved in the His-195 side-chain rotation. Dynamics analysis of mSPE B and the mSPE B/inhibitor complexes showed that the catalytic and C-terminal loops were the most flexible regions with low order parameter values of 0.5 to 0.8 and exhibited the motion on the ps/ns timescale. These findings suggest that the flexible C-terminal loop of SPE B may play an important role in controlling the substrate binding, resulting in its broad substrate specificity. PMID:19237546

  7. Unconventional N-H…N Hydrogen Bonds Involving Proline Backbone Nitrogen in Protein Structures.

    PubMed

    Deepak, R N V Krishna; Sankararamakrishnan, Ramasubbu

    2016-05-10

    Contrary to DNA double-helical structures, hydrogen bonds (H-bonds) involving nitrogen as the acceptor are not common in protein structures. We systematically searched N-H…N H-bonds in two different sets of protein structures. Data set I consists of neutron diffraction and ultrahigh-resolution x-ray structures (0.9 Å resolution or better) and the hydrogen atom positions in these structures were determined experimentally. Data set II contains structures determined using x-ray diffraction (resolution ≤ 1.8 Å) and the positions of hydrogen atoms were generated using a computational method. We identified 114 and 14,347 potential N-H…N H-bonds from these two data sets, respectively, and 56-66% of these were of the Ni+1-Hi+1…Ni type, with Ni being the proline backbone nitrogen. To further understand the nature of such unusual contacts, we performed quantum chemical calculations on the model compound N-acetyl-L-proline-N-methylamide (Ace-Pro-NMe) with coordinates taken from the experimentally determined structures. A potential energy profile generated by varying the ψ dihedral angle in Ace-Pro-NMe indicates that the conformation with the N-H…N H-bond is the most stable. An analysis of H-bond-forming proline residues reveals that more than 30% of the proline carbonyl groups are also involved in n → π(∗) interactions with the carbonyl carbon of the preceding residue. Natural bond orbital analyses demonstrate that the strength of N-H…N H-bonds is less than half of that observed for a conventional H-bond. This study clearly establishes the H-bonding capability of proline nitrogen and its prevalence in protein structures. We found many proteins with multiple instances of H-bond-forming prolines. With more than 15% of all proline residues participating in N-H…N H-bonds, we suggest a new, to our knowledge, structural role for proline in providing stability to loops and capping regions of secondary structures in proteins. PMID:27166805

  8. STARD6 on steroids: solution structure, multiple timescale backbone dynamics and ligand binding mechanism

    PubMed Central

    Létourneau, Danny; Bédard, Mikaël; Cabana, Jérôme; Lefebvre, Andrée; LeHoux, Jean-Guy; Lavigne, Pierre

    2016-01-01

    START domain proteins are conserved α/β helix-grip fold that play a role in the non-vesicular and intracellular transport of lipids and sterols. The mechanism and conformational changes permitting the entry of the ligand into their buried binding sites is not well understood. Moreover, their functions and the identification of cognate ligands is still an active area of research. Here, we report the solution structure of STARD6 and the characterization of its backbone dynamics on multiple time-scales through 15N spin-relaxation and amide exchange studies. We reveal for the first time the presence of concerted fluctuations in the Ω1 loop and the C-terminal helix on the microsecond-millisecond time-scale that allows for the opening of the binding site and ligand entry. We also report that STARD6 binds specifically testosterone. Our work represents a milestone for the study of ligand binding mechanism by other START domains and the elucidation of the biological function of STARD6. PMID:27340016

  9. STARD6 on steroids: solution structure, multiple timescale backbone dynamics and ligand binding mechanism.

    PubMed

    Létourneau, Danny; Bédard, Mikaël; Cabana, Jérôme; Lefebvre, Andrée; LeHoux, Jean-Guy; Lavigne, Pierre

    2016-01-01

    START domain proteins are conserved α/β helix-grip fold that play a role in the non-vesicular and intracellular transport of lipids and sterols. The mechanism and conformational changes permitting the entry of the ligand into their buried binding sites is not well understood. Moreover, their functions and the identification of cognate ligands is still an active area of research. Here, we report the solution structure of STARD6 and the characterization of its backbone dynamics on multiple time-scales through (15)N spin-relaxation and amide exchange studies. We reveal for the first time the presence of concerted fluctuations in the Ω1 loop and the C-terminal helix on the microsecond-millisecond time-scale that allows for the opening of the binding site and ligand entry. We also report that STARD6 binds specifically testosterone. Our work represents a milestone for the study of ligand binding mechanism by other START domains and the elucidation of the biological function of STARD6. PMID:27340016

  10. Conformation Dependence of Backbone Geometry in Proteins

    PubMed Central

    Berkholz, Donald S.; Shapovalov, Maxim V.; Dunbrack, Roland L.; Karplus, P. Andrew

    2009-01-01

    Summary Protein structure determination and predictive modeling have long been guided by the paradigm that the peptide backbone has a single, context-independent ideal geometry. Both quantum-mechanics calculations and empirical analyses have shown this is an incorrect simplification in that backbone covalent geometry actually varies systematically as a function of the Φ and Ψ backbone dihedral angles. Here, we use a nonredundant set of ultrahigh-resolution protein structures to define these conformation-dependent variations. The trends have a rational, structural basis that can be explained by avoidance of atomic clashes or optimization of favorable electrostatic interactions. To facilitate adoption of this new paradigm, we have created a conformation-dependent library of covalent bond lengths and bond angles and shown that it has improved accuracy over existing methods without any additional variables to optimize. Protein structures derived both from crystallographic refinement and predictive modeling both stand to benefit from incorporation of the new paradigm. PMID:19836332

  11. Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning

    PubMed Central

    Heffernan, Rhys; Paliwal, Kuldip; Lyons, James; Dehzangi, Abdollah; Sharma, Alok; Wang, Jihua; Sattar, Abdul; Yang, Yuedong; Zhou, Yaoqi

    2015-01-01

    Direct prediction of protein structure from sequence is a challenging problem. An effective approach is to break it up into independent sub-problems. These sub-problems such as prediction of protein secondary structure can then be solved independently. In a previous study, we found that an iterative use of predicted secondary structure and backbone torsion angles can further improve secondary structure and torsion angle prediction. In this study, we expand the iterative features to include solvent accessible surface area and backbone angles and dihedrals based on Cα atoms. By using a deep learning neural network in three iterations, we achieved 82% accuracy for secondary structure prediction, 0.76 for the correlation coefficient between predicted and actual solvent accessible surface area, 19° and 30° for mean absolute errors of backbone φ and ψ angles, respectively, and 8° and 32° for mean absolute errors of Cα-based θ and τ angles, respectively, for an independent test dataset of 1199 proteins. The accuracy of the method is slightly lower for 72 CASP 11 targets but much higher than those of model structures from current state-of-the-art techniques. This suggests the potentially beneficial use of these predicted properties for model assessment and ranking. PMID:26098304

  12. Slow dynamics of a protein backbone in molecular dynamics simulation revealed by time-structure based independent component analysis

    SciTech Connect

    Naritomi, Yusuke; Fuchigami, Sotaro

    2013-12-07

    We recently proposed the method of time-structure based independent component analysis (tICA) to examine the slow dynamics involved in conformational fluctuations of a protein as estimated by molecular dynamics (MD) simulation [Y. Naritomi and S. Fuchigami, J. Chem. Phys. 134, 065101 (2011)]. Our previous study focused on domain motions of the protein and examined its dynamics by using rigid-body domain analysis and tICA. However, the protein changes its conformation not only through domain motions but also by various types of motions involving its backbone and side chains. Some of these motions might occur on a slow time scale: we hypothesize that if so, we could effectively detect and characterize them using tICA. In the present study, we investigated slow dynamics of the protein backbone using MD simulation and tICA. The selected target protein was lysine-, arginine-, ornithine-binding protein (LAO), which comprises two domains and undergoes large domain motions. MD simulation of LAO in explicit water was performed for 1 μs, and the obtained trajectory of C{sub α} atoms in the backbone was analyzed by tICA. This analysis successfully provided us with slow modes for LAO that represented either domain motions or local movements of the backbone. Further analysis elucidated the atomic details of the suggested local motions and confirmed that these motions truly occurred on the expected slow time scale.

  13. Slow dynamics of a protein backbone in molecular dynamics simulation revealed by time-structure based independent component analysis

    NASA Astrophysics Data System (ADS)

    Naritomi, Yusuke; Fuchigami, Sotaro

    2013-12-01

    We recently proposed the method of time-structure based independent component analysis (tICA) to examine the slow dynamics involved in conformational fluctuations of a protein as estimated by molecular dynamics (MD) simulation [Y. Naritomi and S. Fuchigami, J. Chem. Phys. 134, 065101 (2011)]. Our previous study focused on domain motions of the protein and examined its dynamics by using rigid-body domain analysis and tICA. However, the protein changes its conformation not only through domain motions but also by various types of motions involving its backbone and side chains. Some of these motions might occur on a slow time scale: we hypothesize that if so, we could effectively detect and characterize them using tICA. In the present study, we investigated slow dynamics of the protein backbone using MD simulation and tICA. The selected target protein was lysine-, arginine-, ornithine-binding protein (LAO), which comprises two domains and undergoes large domain motions. MD simulation of LAO in explicit water was performed for 1 μs, and the obtained trajectory of Cα atoms in the backbone was analyzed by tICA. This analysis successfully provided us with slow modes for LAO that represented either domain motions or local movements of the backbone. Further analysis elucidated the atomic details of the suggested local motions and confirmed that these motions truly occurred on the expected slow time scale.

  14. Backbone structures in human milk oligosaccharides: trans-glycosylation by metagenomic β-N-acetylhexosaminidases.

    PubMed

    Nyffenegger, Christian; Nordvang, Rune Thorbjørn; Zeuner, Birgitte; Łężyk, Mateusz; Difilippo, Elisabetta; Logtenberg, Madelon J; Schols, Henk A; Meyer, Anne S; Mikkelsen, Jørn Dalgaard

    2015-10-01

    This paper describes the discovery and characterization of two novel β-N-acetylhexosaminidases HEX1 and HEX2, capable of catalyzing the synthesis of human milk oligosaccharides (HMO) backbone structures with fair yields using chitin oligomers as β-N-acetylglucosamine (GlcNAc) donor. The enzyme-encoding genes were identified by functional screening of a soil-derived metagenomic library. The β-N-acetylhexosaminidases were expressed in Escherichia coli with an N-terminal His6-tag and were purified by nickel affinity chromatography. The sequence similarities of the enzymes with their respective closest homologues are 59 % for HEX1 and 51 % for HEX2 on the protein level. Both β-N-acetylhexosaminidases are classified into glycosyl hydrolase family 20 (GH 20) are able to hydrolyze para-nitrophenyl-β-N-acetylglucosamine (pNP-GlcNAc) as well as para-nitrophenyl-β-N-acetylgalactosamine (pNP-GalNAc) and exhibit pH optima of 8 and 6 for HEX1 and HEX2, respectively. The enzymes are able to hydrolyze N-acetylchitooligosaccharides with a degree of polymerization of two, three, and four. The major findings were, that HEX1 and HEX2 catalyze trans-glycosylation reactions with lactose as acceptor, giving rise to the human milk oligosaccharide precursor lacto-N-triose II (LNT2) with yields of 2 and 8 % based on the donor substrate. In total, trans-glycosylation reactions were tested with the disaccharide acceptors β-lactose, sucrose, and maltose, as well as with the monosaccharides galactose and glucose resulting in the successful attachment of GlcNAc to the acceptor in all cases. PMID:25843303

  15. Influence of the backbone structure on the release of bioactive volatiles from maleic acid-based polymer conjugates.

    PubMed

    Berthier, Damien L; Paret, Nicolas; Trachsel, Alain; Herrmann, Andreas

    2010-11-17

    Poly(maleic acid monoester)-based β-mercapto ketones were synthesized and investigated as potential delivery systems for the controlled release of bioactive, volatile, α,β-unsaturated enones (such as damascones and damascenones) by retro 1,4-addition. The bioconjugates were prepared in a one-pot synthesis using 2-mercaptoethanol as a linker. The thiol group of 2-mercaptoethanol adds to the double bond of the enone to form a β-mercapto ketone, which was then grafted via nucleophilic ring-opening of the remaining alcohol function onto a series of alternating copolymers of maleic anhydride and 1-octadecene, ethylene, isobutylene, and methyl vinyl ether. The influence of copolymer backbones on the release of δ-damascone was investigated in buffered aqueous solution as a function of pH and time. In the presence of a cationic surfactant, the polymer conjugates were transferred from an aqueous medium to a cotton surface. The deposition and the release of δ-damascone from the cotton surface as a function of the polymer backbone structure were measured by fluorescence spectroscopy and dynamic headspace analysis, respectively. All polymer conjugates were found to deliver higher amounts of the volatile into the headspace than the reference consisting of unmodified δ-damascone. Polymers with a hydrophobic backbone were generally efficiently deposited on the cotton surface, but released δ-damascone only moderately in solution. Conjugates with a more hydrophilic backbone release the active compound more efficiently in water, but are deposited to a lower extent onto the target surface. A good balance of the hydrophobicity and hydrophilicity of the polymer backbone is the key factor to maximize the deposition of the conjugates on the target surface and to optimize the release of the bioactive volatiles. PMID:20936844

  16. Protein inhibitors of serine proteinases: role of backbone structure and dynamics in controlling the hydrolysis constant.

    PubMed

    Song, Jikui; Markley, John L

    2003-05-13

    Standard mechanism protein inhibitors of serine proteinases bind as substrates and are cleaved by cognate proteinases at their reactive sites. The hydrolysis constant for this cleavage reaction at the P(1)-P(1)' peptide bond (K(hyd)) is determined by the relative concentrations at equilibrium of the "intact" (uncleaved, I) and "modified" (reactive site cleaved, I*) forms of the inhibitor. The pH dependence of K(hyd) can be explained in terms of a pH-independent term, K(hyd) degrees, plus the proton dissociation constants of the newly formed amino and carboxylate groups at the cleavage site. Two protein inhibitors that differ from one another by a single residue substitution have been found to have K(hyd) degrees values that differ by a factor of 5 [Ardelt, W., and Laskowski, M., Jr. (1991) J. Mol. Biol. 220, 1041-1052]: turkey ovomucoid third domain (OMTKY3) has K(hyd) degrees = 1.0, and Indian peafowl ovomucoid third domain (OMIPF3), which differs from OMTKY3 by the substitution P(2)'-Tyr(20)His, has K(hyd) degrees = 5.15. What mechanism is responsible for this small difference? Is it structural (enthalpic) or dynamic (entropic)? Does the mutation affect the free energy of the I state, the I* state, or both? We have addressed these questions through NMR investigations of the I and I forms of OMTKY3 and OMIPF3. Information about structure was derived from measurements of NMR chemical shift changes and trans-hydrogen-bond J-couplings; information about dynamics was obtained through measurements of (15)N relaxation rates and (1)H-(15)N heteronuclear NOEs with model-free analysis of the results. Although the I forms of each variant are more dynamic than the corresponding I forms, the study revealed no appreciable difference in the backbone dynamics of either intact inhibitor (OMIPF3 vs OMTKY3) or modified inhibitor (OMIPF3* vs OMTKY3*). Instead, changes in chemical shifts and trans-hydrogen-bond J-couplings suggested that the K(hyd) degrees difference arises from

  17. Backbone Structure of Transmembrane Domain IX of the Na+/Proline Transporter PutP of Escherichia coli

    PubMed Central

    Hilger, Daniel; Polyhach, Yevhen; Jung, Heinrich; Jeschke, Gunnar

    2009-01-01

    Abstract The backbone structure is determined by site-directed spin labeling, double electron electron resonance measurements of distances, and modeling in terms of a helix-loop-helix construct for a transmembrane domain that is supposed to line the translocation pathway in the 54.3 kDa Na+/proline symporter PutP of Escherichia coli. The conformational distribution of the spin labels is accounted for by a rotamer library. An ensemble of backbone models with a root mean-square deviation of less than 2 Å is obtained. These models exhibit a pronounced kink near residue T341, which is involved in substrate binding. The kink may be associated with a hinge that allows the protein to open and close an inwardly oriented cavity. PMID:19134477

  18. RNA-Binding Affinities and Crystal Structure of Oligonucleotides Containing Five-Atom Amide-Based Backbone Structures

    SciTech Connect

    Pallan, Pradeep S.; von Matt, Peter; Wilds, Christopher J.; Altmann, Karl-Heinz; Egli, Martin

    2010-03-08

    Among the hundreds of nucleic acid analogues that have been studied over the last two decades only very few exhibit backbones with linkers between residues that are either shorter or longer than the four-atom linker O3{prime}-P-O5{prime}-C5{prime} connecting sugar ring moieties in DNA and RNA. 2{prime}-Deoxyribonucleoside dimers connected by a five-atom linker O3{prime}-CH*(CH{sub 3})-CO-NH-CH{sub 2} (* designates a chiral center) were reported to lead to only a slight destabilization of RNA-DNA hybrids in which the DNA strand contained one or several of these amide-linked dimers (De Napoli, L., Iadonisi, A., Montesarchio, D., Varra, M., and Piccialli, G. (1995) Synthesis of thymidine dimers containing a new internucleosidic amide linkage and their incorporation into oligodeoxyribonucleotides, Bioorg. Med. Chem. Lett. 5, 1647-1652). To analyze the influence of various chemistries of such five-atom amide linkers on the RNA-binding affinity of modified DNA strands, we have synthesized five different amide-linked dimers, including structures with homochiral linkers of the type X3{prime}-C*H(CH{sub 3})-CO-NH-CH{sub 2} (X = O, CH{sub 2}) as well as the corresponding analogues carrying methoxy groups at the 2{prime}-position of the 3{prime}-nucleosides. We have conducted a detailed thermodynamic analysis of duplex formation between the modified DNA and RNA, with the DNA strands containing between one and seven consecutive modified dimers. Some of the five-atom-linked dimers lead to significantly higher RNA-binding affinities compared with that of native DNA. Interestingly, the linkers with opposite stereochemistry at the chiral center stabilize duplexes between the modified DNA and RNA to different degrees. CD spectroscopy in solution and a crystal structure of an RNA-DNA duplex with a single amide-linked dimer demonstrate that the longer amide backbones do not disrupt the duplex geometry. These observations provide further evidence that stable cross-pairing between two

  19. The backbone structure of the thermophilic Thermoanaerobacter tengcongensis ribose binding protein is essentially identical to its mesophilic E. coli homolog

    PubMed Central

    Cuneo, Matthew J; Tian, Yaji; Allert, Malin; Hellinga, Homme W

    2008-01-01

    Background Comparison of experimentally determined mesophilic and thermophilic homologous protein structures is an important tool for understanding the mechanisms that contribute to thermal stability. Of particular interest are pairs of homologous structures that are structurally very similar, but differ significantly in thermal stability. Results We report the X-ray crystal structure of a Thermoanaerobacter tengcongensis ribose binding protein (tteRBP) determined to 1.9 Å resolution. We find that tteRBP is significantly more stable (appTm value ~102°C) than the mesophilic Escherichia coli ribose binding protein (ecRBP) (appTm value ~56°C). The tteRBP has essentially the identical backbone conformation (0.41 Å RMSD of 235/271 Cα positions and 0.65 Å RMSD of 270/271 Cα positions) as ecRBP. Classification of the amino acid substitutions as a function of structure therefore allows the identification of amino acids which potentially contribute to the observed thermal stability of tteRBP in the absence of large structural heterogeneities. Conclusion The near identity of backbone structures of this pair of proteins entails that the significant differences in their thermal stabilities are encoded exclusively by the identity of the amino acid side-chains. Furthermore, the degree of sequence divergence is strongly correlated with structure; with a high degree of conservation in the core progressing to increased diversity in the boundary and surface regions. Different factors that may possibly contribute to thermal stability appear to be differentially encoded in each of these regions of the protein. The tteRBP/ecRBP pair therefore offers an opportunity to dissect contributions to thermal stability by side-chains alone in the absence of large structural differences. PMID:18373848

  20. The backbone structure of the thermophilic Thermoanaerobacter tengcongensis ribose binding protein is essentially identical to its mesophilic E. coli homolog

    SciTech Connect

    Cuneo, Matthew J.; Tian, Yaji; Allert, Malin; Hellinga, Homme W.

    2008-10-27

    We report the X-ray crystal structure of a Thermoanaerobacter tengcongensis ribose binding protein (tteRBP) determined to 1.9 {angstrom} resolution. We find that tteRBP is significantly more stable ({sup app}T{sub m} value {approx} 102 C) than the mesophilic Escherichia coli ribose binding protein (ecRBP) ({sup app}T{sub m} value {approx} 56 C). The tteRBP has essentially the identical backbone conformation (0.41 {angstrom} RMSD of 235/271 C{sub {alpha}} positions and 0.65 {angstrom} RMSD of 270/271 C{sub {alpha}} positions) as ecRBP. Classification of the amino acid substitutions as a function of structure therefore allows the identification of amino acids which potentially contribute to the observed thermal stability of tteRBP in the absence of large structural heterogeneities.

  1. Mechanics and Chemistry: Sinle Molecule Bond Rupture Forces Correlate with Molecular Backbone Structure

    SciTech Connect

    Frei, M.; Hybertsen, M.; Aradhya, S.V.; Koentopp, M.; Venkataraman, L.

    2011-03-02

    We simultaneously measure conductance and force across nanoscale junctions. A new, two-dimensional histogram technique is introduced to statistically extract bond rupture forces from a large data set of individual junction elongation traces. For the case of Au point contacts, we find a rupture force of 1.4 {+-} 0.2 nN, which is in good agreement with previous measurements. We then study systematic trends for single gold metal-molecule-metal junctions for a series of molecules terminated with amine and pyridine linkers. For all molecules studied, single molecule junctions rupture at the Au-N bond. Selective binding of the linker group allows us to correlate the N-Au bond-rupture force to the molecular backbone. We find that the rupture force ranges from 0.8 nN for 4,4' bipyridine to 0.5 nN in 1,4 diaminobenzene. These experimental results are in excellent quantitative agreement with density functional theory based adiabatic molecular junction elongation and rupture calculations.

  2. Formation of Hierarchical Structure Composed of (Co/Ni)Mn-LDH Nanosheets on MWCNT Backbones for Efficient Electrocatalytic Water Oxidation.

    PubMed

    Jia, Gan; Hu, Yingfei; Qian, Qinfeng; Yao, Yingfang; Zhang, Shiying; Li, Zhaosheng; Zou, Zhigang

    2016-06-15

    Active, stable, and cost-effective electrocatalysts are attractive alternatives to the noble metal oxides that have been used in water splitting. The direct nucleation and growth of electrochemically active LDH materials on chemically modified MWCNTs exhibit considerable electrocatalytic activity toward oxygen evolution from water oxidation. CoMn-based and NiMn-based hybrids were synthesized using a facile chemical bath deposition method and the as-synthesized materials exhibited three-dimensional hierarchical configurations with tunable Co/Mn and Ni/Mn ratio. Benefiting from enhanced electrical conductivity with MWCNT backbones and LDH lamellar structure, the Co5Mn-LDH/MWCNT and Ni5Mn-LDH/MWCNT could generated a current density of 10 mA cm(-2) at overpotentials of ∼300 and ∼350 mV, respectively, in 1 M KOH. In addition, the materials also exhibited outstanding long-term electrocatalytic stability. PMID:27214293

  3. Structure of the exceptionally large nonrepetitive carbohydrate backbone of the lipopolysaccharide of Pectinatus frisingensis strain VTT E-82164.

    PubMed

    Vinogradov, Evgeny; Petersen, Bent O; Sadovskaya, Irina; Jabbouri, Said; Duus, Jens Ø; Helander, Ilkka M

    2003-07-01

    The structures of the oligosaccharides obtained after acetic acid hydrolysis and alkaline deacylation of the rough-type lipopolysaccharide (LPS) from Pectinatus frisingensis strain VTT E-82164 were analysed using NMR spectroscopy, MS and chemical methods. The LPS contains two major structural variants, differing by a decasaccharide fragment, and some minor variants lacking the terminal glucose residue. The largest structure of the carbohydrate backbone of the LPS that could be deduced from experimental results consists of 25 monosaccharides (including the previously found Ara4NP residue in lipid A) arranged in a well-defined nonrepetitive structure: We presume that the shorter variant with R1 = H represents the core-lipid A part of the LPS, and the additional fragment is present instead of the O-specific polysaccharide. Structures of this type have not been previously described. Analysis of the deacylation products obtained from the LPS of the smooth strain, VTT E-79100T, showed that it contains a very similar core but with one different glycosidic linkage. PMID:12846837

  4. Hidden Markov models that use predicted local structure for fold recognition: alphabets of backbone geometry.

    PubMed

    Karchin, Rachel; Cline, Melissa; Mandel-Gutfreund, Yael; Karplus, Kevin

    2003-06-01

    An important problem in computational biology is predicting the structure of the large number of putative proteins discovered by genome sequencing projects. Fold-recognition methods attempt to solve the problem by relating the target proteins to known structures, searching for template proteins homologous to the target. Remote homologs that may have significant structural similarity are often not detectable by sequence similarities alone. To address this, we incorporated predicted local structure, a generalization of secondary structure, into two-track profile hidden Markov models (HMMs). We did not rely on a simple helix-strand-coil definition of secondary structure, but experimented with a variety of local structure descriptions, following a principled protocol to establish which descriptions are most useful for improving fold recognition and alignment quality. On a test set of 1298 nonhomologous proteins, HMMs incorporating a 3-letter STRIDE alphabet improved fold recognition accuracy by 15% over amino-acid-only HMMs and 23% over PSI-BLAST, measured by ROC-65 numbers. We compared two-track HMMs to amino-acid-only HMMs on a difficult alignment test set of 200 protein pairs (structurally similar with 3-24% sequence identity). HMMs with a 6-letter STRIDE secondary track improved alignment quality by 62%, relative to DALI structural alignments, while HMMs with an STR track (an expanded DSSP alphabet that subdivides strands into six states) improved by 40% relative to CE. PMID:12784210

  5. NMR characterization of structure, backbone dynamics, and glutathione binding of the human macrophage migration inhibitory factor (MIF).

    PubMed

    Mühlhahn, P; Bernhagen, J; Czisch, M; Georgescu, J; Renner, C; Ross, A; Bucala, R; Holak, T A

    1996-10-01

    Human macrophage migration inhibitory factor is a 114 amino acid protein that belongs to the family of immunologic cytokines. Assignments of 1H, 15N, and 13C resonances have enabled the determination of the secondary structure of the protein, which consists of two alpha-helices (residues 18-31 and 89-72) and a central four-stranded beta-sheet. In the beta-sheet, two parallel beta-sheets are connected in an antiparallel sense. From the total of three cysteines present in the primary structure of MIF, none was found to form disulfide bridges. 1H-15N heteronuclear T1, T2, and steady-state NOE measurements indicate that the backbone of MIF exists in a rigid structure of limited conformational flexibility (on the nanosecond to picosecond time scale). Several residues located in the loop regions and at the N termini of two helices exhibit internal motions on the 1-3 ns time scale. The capacity to bind glutathione was investigated by titration of a uniform 15N-labeled sample and led us to conclude that MIF has, at best, very low affinity for glutathione. PMID:8897610

  6. NMR characterization of structure, backbone dynamics, and glutathione binding of the human macrophage migration inhibitory factor (MIF).

    PubMed Central

    Mühlhahn, P.; Bernhagen, J.; Czisch, M.; Georgescu, J.; Renner, C.; Ross, A.; Bucala, R.; Holak, T. A.

    1996-01-01

    Human macrophage migration inhibitory factor is a 114 amino acid protein that belongs to the family of immunologic cytokines. Assignments of 1H, 15N, and 13C resonances have enabled the determination of the secondary structure of the protein, which consists of two alpha-helices (residues 18-31 and 89-72) and a central four-stranded beta-sheet. In the beta-sheet, two parallel beta-sheets are connected in an antiparallel sense. From the total of three cysteines present in the primary structure of MIF, none was found to form disulfide bridges. 1H-15N heteronuclear T1, T2, and steady-state NOE measurements indicate that the backbone of MIF exists in a rigid structure of limited conformational flexibility (on the nanosecond to picosecond time scale). Several residues located in the loop regions and at the N termini of two helices exhibit internal motions on the 1-3 ns time scale. The capacity to bind glutathione was investigated by titration of a uniform 15N-labeled sample and led us to conclude that MIF has, at best, very low affinity for glutathione. PMID:8897610

  7. Backbone and side-chain (1)H, (15)N, (13)C assignment and secondary structure of BPSL1445 from Burkholderia pseudomallei.

    PubMed

    Quilici, Giacomo; Berardi, Andrea; Gaudesi, Davide; Gourlay, Louise J; Bolognesi, Martino; Musco, Giovanna

    2015-10-01

    BPSL1445 is a lipoprotein produced by the Gram-negative bacterium Burkholderia pseudomallei (B. pseudomallei), the etiological agent of melioidosis. Immunodetection assays against sera patients using protein microarray suggest BPSL1445 involvement in melioidosis. Herein we report backbone, side chain NMR assignment and secondary structure for the recombinant protein. PMID:25893672

  8. Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks.

    PubMed

    de Brevern, A G; Etchebest, C; Hazout, S

    2000-11-15

    By using an unsupervised cluster analyzer, we have identified a local structural alphabet composed of 16 folding patterns of five consecutive C(alpha) ("protein blocks"). The dependence that exists between successive blocks is explicitly taken into account. A Bayesian approach based on the relation protein block-amino acid propensity is used for prediction and leads to a success rate close to 35%. Sharing sequence windows associated with certain blocks into "sequence families" improves the prediction accuracy by 6%. This prediction accuracy exceeds 75% when keeping the first four predicted protein blocks at each site of the protein. In addition, two different strategies are proposed: the first one defines the number of protein blocks in each site needed for respecting a user-fixed prediction accuracy, and alternatively, the second one defines the different protein sites to be predicted with a user-fixed number of blocks and a chosen accuracy. This last strategy applied to the ubiquitin conjugating enzyme (alpha/beta protein) shows that 91% of the sites may be predicted with a prediction accuracy larger than 77% considering only three blocks per site. The prediction strategies proposed improve our knowledge about sequence-structure dependence and should be very useful in ab initio protein modelling. PMID:11025540

  9. A non-intuitive design of a cyclic decapeptide library with unique backbone structural features.

    PubMed

    Paul, P K C

    2003-12-01

    An analysis of hydrogen bonding patterns of cyclic decapeptide (CDP) beta-sheet structures has resulted in a 'non-intuitive' design of cyclic decapeptides wherein their beta-turns and residue positions can be fixed by choosing 2 of the 10 residues, i.e. positions i and i+4, to be Prolines or N-substituted residues. This sequence relationship between the two Pro or N-substituted residues is shown to uniquely define the conformation of the CDP. Furthermore, this design of the 2 beta-turn, beta-sheet CDP structure is expected to be characterised by residues disposed in an exclusive fashion in which four residues are on one side of the ring, two on the other and the four corner residues in the beta-turn are in the plane of the ring. This opens up the possibility of fine-tuning the four residues facing one way and /or the two residues facing the other way such that a library containing a myriad of chemically diverse systems could be obtained. The design process along with the molecular modelling of specific CDP-s and the building of a CDP library are discussed in detail. PMID:14683511

  10. HMM-based prediction for protein structural motifs' two local properties: solvent accessibility and backbone torsion angles.

    PubMed

    Yu, Jianyong; Xiang, Leijun; Hong, Jiang; Zhang, Weidong

    2013-02-01

    Protein structure prediction is often assisted by predicting one-dimensional structural properties including relative solvent accessibility (RSA) surface and backbone torsion angles (BTA) of residues, and these two properties are continuously varying variables because proteins can move freely in a three-dimensional space. Instead of subdividing them into a few arbitrarily defined states that many popular approaches used, this paper proposes an integrated system for realvalue prediction of protein structural motifs' two local properties, based on the modified Hidden Markov Model that we previously presented. The model was used to capture the relevance of RSA and the dependency of BTA between adjacent residues along the local protein chain in motifs with definite probabilities. These two properties were predicted according to their own probability distribution. The method was applied to a protein fragment library. For nine different classes of motifs, real values of RSA were predicted with mean absolute error (MAE) of 0.122-0.175 and Pearson's correlation coefficient (PCC) of 0.623-0.714 between predicted and actual RSA. Meanwhile, real values of BTA were obtained with MAE of 8.5⁰-29.4⁰ for Φ angles, 11.2⁰-38.5⁰ for ψ angles and PCC of 0.601-0.716 for Φ, 0.597-0.713 for ψ. The results were compared with well-known Real-SPINE Server, and indicate the proposed method may at least serve as the foundation to obtain better local properties from structural motifs for protein structure prediction. PMID:22894152

  11. Variational identities and Hamiltonian structures

    SciTech Connect

    Ma Wenxiu

    2010-03-08

    This report is concerned with Hamiltonian structures of classical and super soliton hierarchies. In the classical case, basic tools are variational identities associated with continuous and discrete matrix spectral problems, targeted to soliton equations derived from zero curvature equations over general Lie algebras, both semisimple and non-semisimple. In the super case, a supertrace identity is presented for constructing Hamiltonian structures of super soliton equations associated with Lie superalgebras. We illustrate the general theories by the KdV hierarchy, the Volterra lattice hierarchy, the super AKNS hierarchy, and two hierarchies of dark KdV equations and dark Volterra lattices. The resulting Hamiltonian structures show the commutativity of each hierarchy discussed and thus the existence of infinitely many commuting symmetries and conservation laws.

  12. Role of monomer sequence and backbone structure in polypeptoid and polypeptide polymers for anti-fouling applications

    NASA Astrophysics Data System (ADS)

    Patterson, Anastasia; Rizis, Georgios; Wenning, Brandon; Finlay, John; Ober, Christopher; Segalman, Rachel

    Polymeric coatings rely on a fine balance of surface properties to achieve biofouling resistance. Bioinsipired polymers and oligomers provide a modular strategy for the inclusion of multiple functionalities with controlled architecture, sequence and surface properties. In this work, polypeptoid and polypeptide functionalized coatings based on PEO and PDMS block copolymers were compared with respect to surface presentation and fouling by Ulva linza. While polypeptoids and polypeptides are simple isomers of each other, the lack of backbone chirality and hydrogen bonding in polypeptoids leads to surprisingly different surface behavior. Specifically, the polypeptoids surface segregate much more strongly than analogous polypeptide functionalized polymers, which in turn affects the performance of the coating. Indeed, polypeptoid functionalized surfaces were significantly better both in terms of anti-fouling and fouling release than the corresponding polypeptide-bearing polymers. The role of specific monomer sequence and backbone chemistry will be further discussed in this poster.

  13. Dissecting the relationship between protein structure and sequence variation

    NASA Astrophysics Data System (ADS)

    Shahmoradi, Amir; Wilke, Claus; Wilke Lab Team

    2015-03-01

    Over the past decade several independent works have shown that some structural properties of proteins are capable of predicting protein evolution. The strength and significance of these structure-sequence relations, however, appear to vary widely among different proteins, with absolute correlation strengths ranging from 0 . 1 to 0 . 8 . Here we present the results from a comprehensive search for the potential biophysical and structural determinants of protein evolution by studying more than 200 structural and evolutionary properties in a dataset of 209 monomeric enzymes. We discuss the main protein characteristics responsible for the general patterns of protein evolution, and identify sequence divergence as the main determinant of the strengths of virtually all structure-evolution relationships, explaining ~ 10 - 30 % of observed variation in sequence-structure relations. In addition to sequence divergence, we identify several protein structural properties that are moderately but significantly coupled with the strength of sequence-structure relations. In particular, proteins with more homogeneous back-bone hydrogen bond energies, large fractions of helical secondary structures and low fraction of beta sheets tend to have the strongest sequence-structure relation. BEACON-NSF center for the study of evolution in action.

  14. Influence of the polymer backbone structure on the properties of aromatic ionomers with pendant sulfobenzoyl side chains for use as proton-exchange membranes.

    PubMed

    Jutemar, Elin Persson; Jannasch, Patric

    2010-12-01

    Six different ionomers having various aromatic polymer backbones with pendant 2-sulfobenzoyl side chains were prepared by nucleophilic aromatic substitution reactions of lithium 2,6-difluoro-2'-sulfobenzophenone with 4,4-biphenol, 2,7-dihydroxynaphthalene, 4,4-isopropylidenediphenol, 4,4-dihydroxydiphenyl ether, 4,4'-thiodiphenol, and 4,4'-thiobisbenzenethiol, respectively, to produce four poly(arylene ether)s, one poly(arylene ether sulfide), and one poly(arylene sulfide). Mechanically tough proton-exchange membranes with ion-exchange capacities in the narrow range from 1.9 to 2.3 mequiv/g were cast from the high-molecular-weight ionomers, and subsequently investigated with respect to their structure-property relationships. Glass transitions were only detected for ionomers in the sodium salt form, and increasing glass-transition temperatures (Tg) were found to give higher thermal decomposition temperatures. Analysis by small-angle X-ray scattering indicated that the ionic clustering was promoted for ionomers with flexible polymer backbones and low Tg values. The proton conductivity of the membranes at 80 °C under fully humidified conditions was found between 0.02 and 0.2 S/cm and appeared to depend primarily on the Tg. PMID:21138250

  15. Structure Elucidation of Poly-Faldaprevir: Polymer Backbone Solved Using Solid-State and Solution Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Gonnella, Nina C; Busacca, Carl A; Zhang, Li; Saha, Anjan; Wu, Jiang-Ping; Li, Guisheng; Davis, Mark; Offerdahl, Thomas; Jones, Paul-James; Herfurth, Lars; Reddig, Tim; Wagner, Klaus; Niemann, Michael; Werthmann, Ulrike; Grupe, Julia; Roos, Helmut; Reckzügel, Gaby; Ding, Andreas

    2016-06-01

    A large-scale synthesis of the hepatitis C virus drug Faldaprevir revealed precipitation of an unknown insoluble solid from methanol solutions of the drug substance. The unknown impurity was determined to be a polymer of Faldaprevir based on analytical methods that included size exclusion chromatography in combination with electrospray ionization mass spectrometry, solution nuclear magnetic resonance (NMR), matrix-assisted laser desorption ionization-time of flight, ultracentrifugation, elemental analysis, and sodium quantitation by atom absorption spectroscopy. Structure elucidation of the polymeric backbone was achieved using solid-state NMR cross-polarization/magic angle spinning (CP/MAS), cross polarization-polarization inversion, and heteronuclear correlation (HETCOR) experiments. The polymerization was found to occur at the vinyl cyclopropane via a likely free radical initiation mechanism. Full proton and carbon chemical shift assignments of the polymer were obtained using solution NMR spectroscopy. The polymer structure was corroborated with chemical synthesis of the polymer and solution NMR analysis. PMID:27238486

  16. The structure of irregular mesospheric variations.

    NASA Technical Reports Server (NTRS)

    Justus, C. G.

    1972-01-01

    The daily difference method developed by Woodrum and Justus (1968) has been used to analyze the existing data in the height range from 50 to 200 km for irregular variations which could be due to gravity waves. The results presented establish the magnitude as well as the vertical and latitudinal structure of the irregular atmospheric variations. It is pointed out that results obtained by Theon et al. (1969) indicate strong seasonal variation in the magnitude of upper atmospheric waves at high latitudes.

  17. Structure variations of pumpkin balloon

    NASA Astrophysics Data System (ADS)

    Yajima, N.; Izutsu, N.; Honda, H.

    2004-01-01

    A lobed pumpkin balloon by 3-D gore design concept is recognized as a basic form for a super-pressure balloon. This paper deals with extensions of this design concept for other large pressurized membrane structures, such as a stratospheric airship and a balloon of which volume is controllable. The structural modifications are performed by means of additional ropes, belts or a strut. When the original pumpkin shape is modified by these systems, the superior characteristics of the 3-D gore design, incorporating large bulges with a small local radius and unidirectional film tension, should be maintained. Improved design methods which are adequate for the above subjects will be discussed in detail. Application for ground structures are also mentioned.

  18. Structure variations of pumpkin balloon

    NASA Astrophysics Data System (ADS)

    Yajima, N.; Izutsu, N.; Honda, H.

    A robed pumpkin balloon by 3-D gore design concept is recognized as a basic form for a super -pressure balloon. This paper deals with an extension of this design concept for other large pressurized membrane structures, such as a stratospheric airship and a balloon of which volume is controllable. The structural modifications are performed by means of additional ropes or poles. When the original pumpkin shape is modified for those systems, superior characteristics of 3-D gore design, those are large bulges with a small local radius and unidirectional film tension, should be maintained. Improved design methods which are adequate for the above subjects will be discussed in detail.

  19. Structural variations in plant genomes

    PubMed Central

    Edwards, David; Varshney, Rajeev K.

    2014-01-01

    Differences between plant genomes range from single nucleotide polymorphisms to large-scale duplications, deletions and rearrangements. The large polymorphisms are termed structural variants (SVs). SVs have received significant attention in human genetics and were found to be responsible for various chronic diseases. However, little effort has been directed towards understanding the role of SVs in plants. Many recent advances in plant genetics have resulted from improvements in high-resolution technologies for measuring SVs, including microarray-based techniques, and more recently, high-throughput DNA sequencing. In this review we describe recent reports of SV in plants and describe the genomic technologies currently used to measure these SVs. PMID:24907366

  20. "Pinning strategy": a novel approach for predicting the backbone structure in terms of protein blocks from sequence.

    PubMed

    De Brevern, A G; Etchebest, C; Benros, C; Hazout, S

    2007-01-01

    The description of protein 3D structures can be performed through a library of 3D fragments, named a structural alphabet. Our structural alphabet is composed of 16 small protein fragments of 5 C alpha in length, called protein blocks (PBs). It allows an efficient approximation of the 3D protein structures and a correct prediction of the local structure. The 72 most frequent series of 5 consecutive PBs, called structural words (SWs)are able to cover more than 90% of the 3D structures. PBs are highly conditioned by the presence of a limited number of transitions between them. In this study, we propose a new method called "pinning strategy" that used this specific feature to predict long protein fragments. Its goal is to define highly probable successions of PBs. It starts from the most probable SW and is then extended with overlapping SWs. Starting from an initial prediction rate of 34.4%, the use of the SWs instead of the PBs allows a gain of 4.5%. The pinning strategy simply applied to the SWs increases the prediction accuracy to 39.9%. In a second step, the sequence-structure relationship is optimized, the prediction accuracy reaches 43.6%. PMID:17426380

  1. Structural insights into the evolution of a sexy protein: novel topology and restricted backbone flexibility in a hypervariable pheromone from the red-legged salamander, Plethodon shermani.

    PubMed

    Wilburn, Damien B; Bowen, Kathleen E; Doty, Kari A; Arumugam, Sengodagounder; Lane, Andrew N; Feldhoff, Pamela W; Feldhoff, Richard C

    2014-01-01

    In response to pervasive sexual selection, protein sex pheromones often display rapid mutation and accelerated evolution of corresponding gene sequences. For proteins, the general dogma is that structure is maintained even as sequence or function may rapidly change. This phenomenon is well exemplified by the three-finger protein (TFP) superfamily: a diverse class of vertebrate proteins co-opted for many biological functions - such as components of snake venoms, regulators of the complement system, and coordinators of amphibian limb regeneration. All of the >200 structurally characterized TFPs adopt the namesake "three-finger" topology. In male red-legged salamanders, the TFP pheromone Plethodontid Modulating Factor (PMF) is a hypervariable protein such that, through extensive gene duplication and pervasive sexual selection, individual male salamanders express more than 30 unique isoforms. However, it remained unclear how this accelerated evolution affected the protein structure of PMF. Using LC/MS-MS and multidimensional NMR, we report the 3D structure of the most abundant PMF isoform, PMF-G. The high resolution structural ensemble revealed a highly modified TFP structure, including a unique disulfide bonding pattern and loss of secondary structure, that define a novel protein topology with greater backbone flexibility in the third peptide finger. Sequence comparison, models of molecular evolution, and homology modeling together support that this flexible third finger is the most rapidly evolving segment of PMF. Combined with PMF sequence hypervariability, this structural flexibility may enhance the plasticity of PMF as a chemical signal by permitting potentially thousands of structural conformers. We propose that the flexible third finger plays a critical role in PMF:receptor interactions. As female receptors co-evolve, this flexibility may allow PMF to still bind its receptor(s) without the immediate need for complementary mutations. Consequently, this unique

  2. Structural and dynamic implications of an effector-induced backbone amide cis-trans isomerization in cytochrome P450cam.

    PubMed

    Asciutto, Eliana K; Madura, Jeffry D; Pochapsky, Susan Sondej; OuYang, Bo; Pochapsky, Thomas C

    2009-05-15

    Experimental evidence has been provided for a functionally relevant cis-trans isomerization of the Ile88-Pro89 peptide bond in cytochrome P450(cam) (CYP101). The isomerization is proposed to be a key element of the structural reorganization leading to the catalytically competent form of CYP101 upon binding of the effector protein putidaredoxin (Pdx). A detailed comparison of the results of molecular dynamics simulations on the cis and trans conformations of substrate- and carbonmonoxy-bound ferrous CYP101 with sequence-specific Pdx-induced structural perturbations identified by nuclear magnetic resonance is presented, providing insight into the structural and dynamic consequences of the isomerization. The mechanical coupling between the Pdx binding site on the proximal face of CYP101 and the site of isomerization is described. PMID:19327368

  3. Structural and dynamic implications of an effector-induced backbone amide cis-trans isomerization in cytochrome P450cam

    PubMed Central

    Asciutto, Eliana K.; Madura, Jeffry D.; Pochapsky, Susan Sondej; OuYang, Bo; Pochapsky, Thomas C.

    2009-01-01

    Experimental evidence has been provided for a functionally relevant cis-trans isomerization of the Ile 88-Pro 89 peptide bond in cytochrome P450cam (CYP101). The isomerization is proposed to be a key element of the structural reorganization leading to the catalytically competent form of CYP101 upon binding of the effector protein putidaredoxin (Pdx). A detailed comparison of the results of molecular dynamics simulations on the cis and trans conformations of substrate- and carbonmonoxy-bound ferrous CYP101 with sequence-specific Pdx-induced structural perturbations identified by nuclear magnetic resonance is presented, providing insight into the structural and dynamic consequences of the isomerization. The mechanical coupling between the Pdx binding site on the proximal face of CYP101 and the site of isomerization is described. PMID:19327368

  4. Solution structure and backbone dynamics of an antigen-free heavy chain variable domain (VHH) from Llama.

    PubMed

    Renisio, Jean-Guillaume; Pérez, Janice; Czisch, Michael; Guenneugues, Marc; Bornet, Olivier; Frenken, Leon; Cambillau, Christian; Darbon, Hervé

    2002-06-01

    Camelids, (dromedaries, camels, and llamas) produce heavy-chains antibodies, with their antigen recognition sites composed of a single VH-like domain, referred to as VHH. The solution structure of one of these VHHs domains (VHH-H14), raised against the alpha subunit of the human chorionic gonadotropin hormone (hCG), has been determined by (15)N heteronuclear three-dimensional NMR spectroscopy. The framework is well resolved within the set of 20 best-calculated NMR structures and is close to that of classical VH domains from vertebrate antibodies, consisting of two antiparallel beta-sheets organized in a beta-barrel. Loops display a lower precision, especially the Complementarity Determining Regions (CDRs), involved in antigen recognition. Comparison of the three-dimensional VHH-H14 solution structure with its previously solved crystal structure (Spinelli et al., Nature Struct. Biol. 1996;3:752-757) reveals a high similarity to the framework, whereas significant conformational differences occur on CDRs, leading to the assumption that the antigen recognition site is a more mobile part. In order to deepen our insights into the dynamics of VHH-H14 in solution, (15)N relaxation was measured with longitudinal R1 and transverse R2 self-relaxation rates, and (15)N steady-state heteronuclear nuclear Overhauser enhancements (NOE), making it possible to probe picosecond-to-millisecond internal motions. Determination of dynamic parameters (S(2), tau(e), and Rex) through the Lipari-Szabo Model-free approach enables the identification of several regions with enhanced dynamics. Especially, the mobility measurements from NMR confirm that the antigen recognition site is the most mobile part of the VHH-H14 domain on picosecond-to-nanosecond fast time scales. Several residues belonging to the three CDRs are submitted to chemical exchange processes occurring on slow microsecond-to-millisecond time scales, suggesting that the formation of the VHH/antigen complex should be accompanied

  5. Drug screening strategy for human membrane proteins: from NMR protein backbone structure to in silica- and NMR-screened hits.

    PubMed

    Lindert, Steffen; Maslennikov, Innokentiy; Chiu, Ellis J C; Pierce, Levi C; McCammon, J Andrew; Choe, Senyon

    2014-03-21

    About 8000 genes encode membrane proteins in the human genome. The information about their druggability will be very useful to facilitate drug discovery and development. The main problem, however, consists of limited structural and functional information about these proteins because they are difficult to produce biochemically and to study. In this paper we describe the strategy that combines Cell-free protein expression, NMR spectroscopy, and molecular DYnamics simulation (CNDY) techniques. Results of a pilot CNDY experiment provide us with a guiding light towards expedited identification of the hit compounds against a new uncharacterized membrane protein as a potentially druggable target. These hits can then be further characterized and optimized to develop the initial lead compound quicker. We illustrate such "omics" approach for drug discovery with the CNDY strategy applied to two example proteins: hypoxia-induced genes HIGD1A and HIGD1B. PMID:24525125

  6. TMAO influence on the backbone of proteins: an oligoglycine model

    PubMed Central

    Hu, Char Y.; Lynch, Gillian C.; Kokubo, Hironori; Pettitt, B. Montgomery

    2009-01-01

    The study of organic osmolytes has been pivotal in demonstrating the role of solvent effects on the protein backbone in the folding process. Whereas a thermodynamic description of the interactions between the protein backbone and osmolyte has been well defined, the structural analysis of the effect of osmolyte on the protein backbone has been incomplete. Therefore, we have carried out simulations of a peptide backbone model, glycine15 in protecting osmolyte TMAO solution in order to determine the effect of the solution structure on the conformation of the peptide backbone. We demonstrate that the models chosen show that the ensemble of backbone structures shifts towards a more collapsed state in TMAO solution as compared to pure water solution. The collapse is consistent with preferential exclusion of the osmolyte caused by unfavorable interactions between osmolyte and peptide backbone. The exclusion is due to strong triplet correlations of osmolyte, water, and peptide backbone. This provides a clear mechanism demonstrating that even a modest concentration of TMAO forces the protein backbone to adopt a more collapsed structure in the absence of sidechain effects. PMID:19790265

  7. Solution structure and backbone dynamics of the DNA-binding domain of FOXP1: Insight into its domain swapping and DNA binding

    PubMed Central

    Chu, Yuan-Ping; Chang, Chia-Hao; Shiu, Jia-Hau; Chang, Yao-Tsung; Chen, Chiu-Yueh; Chuang, Woei-Jer

    2011-01-01

    FOXP1 belongs to the P-subfamily of forkhead transcription factors and contains a conserved forkhead DNA-binding domain. According to size exclusion chromatography analysis, the forkhead domain of FOXP1 existed as a mixture of monomer and dimer. The dissociation constants of the forkhead domain of wild-type, C61S, and C61Y mutants of FOXP1 were 27.3, 28.8, and 332.0 μM, respectively. In contrast, FOXP1 A39P mutant formed only a monomer. NMR analysis also showed that FOXP1 C61S and C61Y mutants existed as a mixture. The solution structure of FOXP1 A39P/C61Y mutant was similar to the X-ray structure of the FOXP2 monomer. Comparison of backbone dynamics of FOXP1 A39P/C61Y and C61Y mutants showed that the residues preceding helix 3, the hinge region, exhibited the largest conformational exchange in FOXP1 monomer. The A39 residue of FOXP1 dimer has a lower order parameter with internal motion on the ps-ns timescale, suggesting that the dynamics of the hinge region of FOXP1 are important in the formation of the swapped dimer. The analysis also showed that the residues exhibiting the motions on the ps-ns and μs-ms timescales were located at the DNA-binding surface of FOXP1, suggesting the interactions between FOXP1 and DNA may be highly dynamic. PMID:21416545

  8. Motor Task Variation Induces Structural Learning

    PubMed Central

    Braun, Daniel A.; Aertsen, Ad; Wolpert, Daniel M.; Mehring, Carsten

    2009-01-01

    Summary When we have learned a motor skill, such as cycling or ice-skating, we can rapidly generalize to novel tasks, such as motorcycling or rollerblading [1–8]. Such facilitation of learning could arise through two distinct mechanisms by which the motor system might adjust its control parameters. First, fast learning could simply be a consequence of the proximity of the original and final settings of the control parameters. Second, by structural learning [9–14], the motor system could constrain the parameter adjustments to conform to the control parameters' covariance structure. Thus, facilitation of learning would rely on the novel task parameters' lying on the structure of a lower-dimensional subspace that can be explored more efficiently. To test between these two hypotheses, we exposed subjects to randomly varying visuomotor tasks of fixed structure. Although such randomly varying tasks are thought to prevent learning, we show that when subsequently presented with novel tasks, subjects exhibit three key features of structural learning: facilitated learning of tasks with the same structure, strong reduction in interference normally observed when switching between tasks that require opposite control strategies, and preferential exploration along the learned structure. These results suggest that skill generalization relies on task variation and structural learning. PMID:19217296

  9. Solution structure of the ActD–5′-CCGTT3GTGG-3′ complex: drug interaction with tandem G·T mismatches and hairpin loop backbone

    PubMed Central

    Chin, Ko-Hsin; Chen, Fu-Ming; Chou, Shan-Ho

    2003-01-01

    Binding of actinomycin D (ActD) to the seemingly single-stranded DNA (ssDNA) oligomer 5′-CCGTT3 GTGG-3′ has been studied in solution using high-resolution nuclear magnetic resonance (NMR) techniques. A strong binding constant (8 × 106 M–1) and high quality NMR spectra have allowed us to determine the initial DNA structure using distance geometry as well as the final ActD–5′-CCGTT3 GTGG-3′ complex structure using constrained molecular dynamics calculations. The DNA oligomer 5′-CCGTT3GTGG-3′ in the complex forms a hairpin structure with tandem G·T mismatches at the stem region next to a loop of three stacked thymine bases pointing toward the major groove. Bipartite T2O–GH1 and T2O–G2NH2 hydrogen bonds were detected for the G·T mismatches that further stabilize this unusual DNA hairpin. The phenoxazone chromophore of ActD intercalates nicely between the tandem G·T mismatches in essentially one major orientation. Additional hydrophobic interactions between the ActD quinoid amino acid residues with the loop T5–T6–T7 backbone protons were also observed. The hydrophobic G–phenoxazone–G interaction in the ActD–5′-CCGTT3GTGG-3′ complex is more robust than that of the classical ActD– 5′-CCGCT3GCGG-3′ complex, consistent with the roughly 2-fold stronger binding of ActD to the 5′-CCGTT3GTGG-3′ sequence than to its 5′-CCG CT3GCGG-3′ counterpart. Stabilization by ActD of a hairpin containing non-canonical stem base pairs further strengthens the notion that ActD or other related compounds may serve as a sequence- specific ssDNA-binding agent that inhibits human immunodeficiency virus (HIV) and other retroviruses replicating through ssDNA intermediates. PMID:12736312

  10. Variational approach for static mirror structures

    SciTech Connect

    Kuznetsov, E. A.; Passot, T.; Sulem, P. L.; Ruban, V. P.

    2015-04-15

    Anisotropic static plasma equilibria where the parallel and perpendicular pressures are only functions of the amplitude of the local magnetic field are shown to be amenable to a variational principle with a free energy density given by the parallel tension. This approach is used to demonstrate that two-dimensional small-amplitude static magnetic holes constructed from a Grad-Shafranov type equation slightly below the (subcritical) mirror instability threshold identify with lump solitons of KPII equation, but turn out to be unstable. Differently, large-amplitude magnetic structures, which are stable as they realize a minimum of the free energy, are computed using a gradient method within two-dimensional numerical simulations where the regularizing effect of finite Larmor radius corrections is retained. Interestingly, these structures transform from stripes to bubbles when the angle of the magnetic field with the coordinate plane is increased.

  11. Reconstruction of protein backbones from the BriX collection of canonical protein fragments.

    PubMed

    Baeten, Lies; Reumers, Joke; Tur, Vicente; Stricher, François; Lenaerts, Tom; Serrano, Luis; Rousseau, Frederic; Schymkowitz, Joost

    2008-05-01

    As modeling of changes in backbone conformation still lacks a computationally efficient solution, we developed a discretisation of the conformational states accessible to the protein backbone similar to the successful rotamer approach in side chains. The BriX fragment database, consisting of fragments from 4 to 14 residues long, was realized through identification of recurrent backbone fragments from a non-redundant set of high-resolution protein structures. BriX contains an alphabet of more than 1,000 frequently observed conformations per peptide length for 6 different variation levels. Analysis of the performance of BriX revealed an average structural coverage of protein structures of more than 99% within a root mean square distance (RMSD) of 1 Angstrom. Globally, we are able to reconstruct protein structures with an average accuracy of 0.48 Angstrom RMSD. As expected, regular structures are well covered, but, interestingly, many loop regions that appear irregular at first glance are also found to form a recurrent structural motif, albeit with lower frequency of occurrence than regular secondary structures. Larger loop regions could be completely reconstructed from smaller recurrent elements, between 4 and 8 residues long. Finally, we observed that a significant amount of short sequences tend to display strong structural ambiguity between alpha helix and extended conformations. When the sequence length increases, this so-called sequence plasticity is no longer observed, illustrating the context dependency of polypeptide structures. PMID:18483555

  12. Mechanical reliability of porous low-k dielectrics for advanced interconnect: Study of the instability mechanisms in porous low-k dielectrics and their mediation through inert plasma induced re-polymerization of the backbone structure

    NASA Astrophysics Data System (ADS)

    Sa, Yoonki

    Continuous scaling down of critical dimensions in interconnect structures requires the use of ultralow dielectric constant (k) films as interlayer dielectrics to reduce resistance-capacitance delays. Porous carbon-doped silicon oxide (p-SiCOH) dielectrics have been the leading approach to produce these ultralow-k materials. However, embedding of porosity into dielectric layer necessarily decreases the mechanical reliability and increases its susceptibility to adsorption of potentially deleterious chemical species during device fabrication process. Among those, exposure of porous-SiCOH low-k (PLK) dielectrics to oxidizing plasma environment causes the increase in dielectric constant and their vulnerability to mechanical instability of PLKs due to the loss of methyl species and increase in moisture uptake. These changes in PLK properties and physical stability have been persisting challenges for next-generation interconnects because they are the sources of failure in interconnect integration as well as functional and physical failures appearing later in IC device manufacturing. It is therefore essential to study the fundamentals of the interactions on p-SiCOH matrix induced by plasma exposure and find an effective and easy-to-implement way to reverse such changes by repairing damage in PLK structure. From these perspectives, the present dissertation proposes 1) a fundamental understanding of structural transformation occurring during oxidative plasma exposure in PLK matrix structure and 2) its restoration by using silylating treatment, soft x-ray and inert Ar-plasma radiation, respectively. Equally important, 3) as an alternative way of increasing the thermo-mechanical reliability, PLK dielectric film with an intrinsically robust structure by controlling pore morphology is fabricated and investigated. Based on the investigations, stability of PLK films studied by time-dependent ball indentation tester under the elevated temperature, variation in film thickness and

  13. The "universal polymer backbone" concept

    NASA Astrophysics Data System (ADS)

    Pollino, Joel Matthew

    This thesis begins with a brief analysis of the synthetic methodologies utilized in polymer science. A conclusion is drawn inferring that upper limits in molecular design are inevitable, arising as a direct consequence of the predominance of covalent strategies in the field. To address these concerns, the 'universal polymer backbone' (UPB) concept has been hypothesized. A UPB has been defined as any copolymer, side-chain functionalized with multiple recognition elements that are individually capable of forming strong, directional, and reversible non-covalent bonds. Non-covalent functionalization of these scaffolds can lead to the formation of a multitude of new polymer structures, each stemming from a single parent or 'universal polymer backbone'. To prepare such a UPB, isomerically pure exo-norbornene esters containing either a PdII SCS pincer complex or a diaminopyridine residue were synthesized, polymerized, and copolymerized via ROMP. All polymerizations were living under mild reaction conditions. Kinetic studies showed that the kp values are highly dependent upon the isomeric purity but completely independent of the terminal recognition units. Non-covalent functionalization of these copolymers was accomplished via (1) directed self-assembly, (2) multi-step self-assembly , and (3) one-step orthogonal self-assembly. This system shows complete specificity of each recognition motif for its complementary unit with no observable changes in the association constant upon functionalization. To explore potential applications of this UPB concept, random terpolymers possessing high concentrations of pendant alkyl chains and small amounts of recognition units were synthesized. Non-covalent crosslinking using a directed functionalization strategy resulted in dramatic increases in solution viscosities for metal crosslinked polymers with only minor changes in viscosity for hydrogen bonding motifs. The crosslinked materials were further functionalized via self-assembly by

  14. Variational modeling of ionic polymer plate structures

    NASA Astrophysics Data System (ADS)

    Buechler, Miles A.; Leo, Donald J.

    2006-03-01

    Ionomeric polymers are a promising class of intelligent material which exhibit electromechanical coupling similar to that of piezoelectric bimorphs. Ionomeric polymers are much more compliant than piezoelectric ceramics or polymers and have been shown to produce actuation strain on the order of 5% at operating voltages between 1 V and 5 V. This performance indicates the potential for self-actuating devices manufactured from ionomeric polymers, such as deformable mirrors or low pressure pump diaphragms. This paper presents a variational approach to the dynamic modeling of ionic polymer plates in rectangular coordinates. A linear matrix equation, which relates displacement and charge to applied forces and voltage, is developed to determine the response of the structure to applied forces and applied potentials. The modeling method is based on the incorporation of empirically determined material properties, which have been shown to be highly frequency dependent. The matrices are calculated at discrete frequencies and solved frequency-by-frequency to determine the response of the ionomeric plate structures. A model of a thin rectangular plate is developed and validated experimentally. Simulated frequency response functions are compared to experimental results for several locations on the plate. The response of the plate at certain frequencies is computed and compared to experimentally-determined response shapes. The results demonstrate the validity of the modeling approach in predicting the dynamic response of the ionomeric plate structure. These spatial solutions are also compared to experimentally determined response shapes.

  15. A sampling approach for protein backbone fragment conformations.

    PubMed

    Yu, J Y; Zhang, W

    2013-01-01

    In protein structure prediction, backbone fragment bias information can narrow down the conformational space of the whole polypeptide chain significantly. Unlike existing methods that use fragments as building blocks, the paper presents a probabilistic sampling approach for protein backbone torsion angles by modelling angular correlation of (phi, psi) with a directional statistics distribution. Given a protein sequence and secondary structure information, this method samples backbone fragments conformations by using a backtrack sampling algorithm for the hidden Markov model with multiple inputs and a single output. The proposed approach is applied to a fragment library, and some well-known structural motifs are sampled very well on the optimal path. Computational results show that the method can help to obtain native-like backbone fragments conformations. PMID:23777175

  16. Analysis of the Rotational Structure in the High-Resolution Infrared Spectrum of trans-Hexatriene-1-13C1; a Semiexperimental Equilibrium Structure for the C6 Backbone for trans-Hexatriene

    SciTech Connect

    Craig, Norman C.; Tian, Hengfeng; Blake, Thomas A.

    2012-03-29

    trans-Hexatriene-1-13C1 (tHTE-1-13C1) has been synthesized, and its high-resolution (0.0015 cm-1) infrared spectrum has been recorded. The rotational structure in the C-type bands for v26 at 1011 cm-1 and v30 at 894 cm-1 has been analyzed. To the 1458 ground state combination differences from these bands, ground state rotational constants were fitted to a Watson-type Hamiltonian to give A0 = 0.8728202(9), B0 = 0.0435868(4), and C0 = 0.0415314(2) cm-1. Upper state rotational constants for the v30 band were also fitted. Predictions of the ground state rotational constants for t-HTE-1-13C1 from a B3LYP/cc-pVTZ model with scale factors based on the normal species were in excellent agreement with observations. Similar good agreement was found between predicted and observed ground state rotational constants for the three 13C1 isotopologues of cis-hexatriene (cHTE), as determined from microwave spectroscopy. Equilibrium rotational constants for tHTE and its three 13C1 isotopologues, of which two were predicted, were used to find a semiexperimental equilibrium structure for the C6 backbone of tHTE. This structure shows increased structural effects of pi-electron delocalization in comparison with butadiene.

  17. ANSS Backbone Station Installation and Site Characterization

    NASA Astrophysics Data System (ADS)

    Meremonte, M.; Leeds, A.; Overturf, D.; McMillian, J.; Allen, J.; McNamara, D.

    2004-12-01

    During 2004 several new broadband seismic stations have been deployed as a part of the USGS's Advanced National Seismic System (ANSS) backbone and regional networks. New stations include: ERPA, MNTX, OGLA, AMTX, NATX, KCCO, BMO, MARC, TZTN, LAO, DGMT, REDW, KSU1, MOOW, TPAW, LOHW, RAMW. Permanent station locations were chosen to minimize the local noise conditions by recording continuous data and using a quantitative analysis of the statistical distribution of noise power estimates. For each one-hour segment of continuous data, a power spectral density (PSD) is estimated and smoothed in full octave averages at 1/8 octave intervals. Powers for each 1/8 period interval were then accumulated in one dB power bins. A statistical analysis of power bins yields probability density functions (PDFs) as a function of noise power for each of the octave bands at each station and component. Examination of earthquake signal, artifacts related to station operation and episodic cultural noise in the PDFs allow us to estimate both the overall station quality and the level of earth noise at each potential backbone site. The main function of a seismic network, such as the ANSS, is to provide high quality data for earthquake monitoring, source studies, and Earth structure research. The utility of seismic data is greatly increased when noise levels are reduced. A good quantification and understanding of seismic noise is a first step at reducing noise levels in seismic data and improving overall data quality from the ANSS backbone network.

  18. Simulation of Ames Backbone Network

    NASA Technical Reports Server (NTRS)

    Shahnasser, Hamid

    1998-01-01

    The networking demands of Ames Research Center are dramatically increasing. More and more workstations are requested to run video and audio applications on the network. These applications require a much greater bandwidth than data applications. The existing ARCLAN 2000 network bandwidth is insufficient, due to the use of FDDI as its backbone, for accommodating video applications. Operating at a maximum of 100 Mbps, FDDI can handle only a few workstations running multimedia applications. The ideal solution is to replace the current ARCLAN 2000 FDDI backbone with an ATM backbone. ATM has the capability to handle the increasing traffic loads on the ARCLAN 2000 that results from these new applications. As it can be seen from Figure 1, ARCLAN 2000 have a total of 32 routers (5 being core routers) each connected to the FDDI backbone via a 100 Mbps link. This network serves 34 different locations by using 34 hubs that are connected to secondary routers. End users are connected to the secondary routers with 10 Mbps links.

  19. Large-scale measurement and modeling of backbone Internet traffic

    NASA Astrophysics Data System (ADS)

    Roughan, Matthew; Gottlieb, Joel

    2002-07-01

    There is a brewing controversy in the traffic modeling community concerning how to model backbone traffic. The fundamental work on self-similarity in data traffic appears to be contradicted by recent findings that suggest that backbone traffic is smooth. The traffic analysis work to date has focused on high-quality but limited-scope packet trace measurements; this limits its applicability to high-speed backbone traffic. This paper uses more than one year's worth of SNMP traffic data covering an entire Tier 1 ISP backbone to address the question of how backbone network traffic should be modeled. Although the limitations of SNMP measurements do not permit us to comment on the fine timescale behavior of the traffic, careful analysis of the data suggests that irrespective of the variation at fine timescales, we can construct a simple traffic model that captures key features of the observed traffic. Furthermore, the model's parameters are measurable using existing network infrastructure, making this model practical in a present-day operational network. In addition to its practicality, the model verifies basic statistical multiplexing results, and thus sheds deep insight into how smooth backbone traffic really is.

  20. Mechanical reliability of porous low-k dielectrics for advanced interconnect: Study of the instability mechanisms in porous low-k dielectrics and their mediation through inert plasma induced re-polymerization of the backbone structure

    NASA Astrophysics Data System (ADS)

    Sa, Yoonki

    Continuous scaling down of critical dimensions in interconnect structures requires the use of ultralow dielectric constant (k) films as interlayer dielectrics to reduce resistance-capacitance delays. Porous carbon-doped silicon oxide (p-SiCOH) dielectrics have been the leading approach to produce these ultralow-k materials. However, embedding of porosity into dielectric layer necessarily decreases the mechanical reliability and increases its susceptibility to adsorption of potentially deleterious chemical species during device fabrication process. Among those, exposure of porous-SiCOH low-k (PLK) dielectrics to oxidizing plasma environment causes the increase in dielectric constant and their vulnerability to mechanical instability of PLKs due to the loss of methyl species and increase in moisture uptake. These changes in PLK properties and physical stability have been persisting challenges for next-generation interconnects because they are the sources of failure in interconnect integration as well as functional and physical failures appearing later in IC device manufacturing. It is therefore essential to study the fundamentals of the interactions on p-SiCOH matrix induced by plasma exposure and find an effective and easy-to-implement way to reverse such changes by repairing damage in PLK structure. From these perspectives, the present dissertation proposes 1) a fundamental understanding of structural transformation occurring during oxidative plasma exposure in PLK matrix structure and 2) its restoration by using silylating treatment, soft x-ray and inert Ar-plasma radiation, respectively. Equally important, 3) as an alternative way of increasing the thermo-mechanical reliability, PLK dielectric film with an intrinsically robust structure by controlling pore morphology is fabricated and investigated. Based on the investigations, stability of PLK films studied by time-dependent ball indentation tester under the elevated temperature, variation in film thickness and

  1. An approach to the structure determination of nucleic acid analogues hybridized to RNA. NMR studies of a duplex between 2'-OMe RNA and an oligonucleotide containing a single amide backbone modification.

    PubMed Central

    Blommers, M J; Pieles, U; De Mesmaeker, A

    1994-01-01

    The backbone modification amide-3, in which -CH2-NH-CO-CH2- replaces -C5'H2-O5'-PO2-O3'-, is studied in the duplex d(G1-C2-G3-T4.T5-G6-C7-G8)*mr(C9-G10-C11-A12-A13-C14-G15+ ++-C16) where . indicates the backbone modification and mr indicates the 2'-OMe RNA strand. The majority of the exchangeable and non-exchangeable resonances have been assigned. The assignment procedure differs from standard methods. The methyl substituent of the 2'-OMe position of the RNA strand can be used as a tool in the interpretation. The duplex structure is a right-handed double helix. The sugar conformations of the 2'-OMe RNA strand are predominantly N-type and the 2'-OMe is positioned at the surface of the minor groove. In the complementary strand, only the sugar of residue T4 is found exclusively in N-type conformation. The incorporation of the amide modification does not effect very strongly the duplex structure. All bases are involved in Watson-Crick base pairs. PMID:7524037

  2. Child Development and Structural Variation in the Human Genome

    ERIC Educational Resources Information Center

    Zhang, Ying; Haraksingh, Rajini; Grubert, Fabian; Abyzov, Alexej; Gerstein, Mark; Weissman, Sherman; Urban, Alexander E.

    2013-01-01

    Structural variation of the human genome sequence is the insertion, deletion, or rearrangement of stretches of DNA sequence sized from around 1,000 to millions of base pairs. Over the past few years, structural variation has been shown to be far more common in human genomes than previously thought. Very little is currently known about the effects…

  3. Self-assembly of diphenylalanine backbone homologues and their combination with functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Dinesh, Bhimareddy; Squillaci, Marco A.; Ménard-Moyon, Cécilia; Samorì, Paolo; Bianco, Alberto

    2015-09-01

    The integration of carbon nanotubes (CNTs) into organized nanostructures is of great interest for applications in materials science and biomedicine. In this work we studied the self-assembly of β and γ homologues of diphenylalanine peptides under different solvent and pH conditions. We aimed to investigate the role of peptide backbone in tuning the formation of different types of nanostructures alone or in combination with carbon nanotubes. In spite of having the same side chain, β and γ peptides formed distinctively different nanofibers, a clear indication of the role played by the backbone homologation on the self-assembly. The variation of the pH allowed to transform the nanofibers into spherical structures. Moreover, the co-assembly of β and γ peptides with carbon nanotubes covalently functionalized with the same peptide generated unique dendritic assemblies. This comparative study on self-assembly using diphenylalanine backbone homologues and of the co-assembly with CNT covalent conjugates is the first example exploring the capacity of β and γ peptides to adopt precise nanostructures, particularly in combination with carbon nanotubes. The dendritic organization obtained by mixing carbon nanotubes and peptides might find interesting applications in tissue engineering and neuronal interfacing.The integration of carbon nanotubes (CNTs) into organized nanostructures is of great interest for applications in materials science and biomedicine. In this work we studied the self-assembly of β and γ homologues of diphenylalanine peptides under different solvent and pH conditions. We aimed to investigate the role of peptide backbone in tuning the formation of different types of nanostructures alone or in combination with carbon nanotubes. In spite of having the same side chain, β and γ peptides formed distinctively different nanofibers, a clear indication of the role played by the backbone homologation on the self-assembly. The variation of the pH allowed to

  4. ANSS Backbone Station Quality Assessment

    NASA Astrophysics Data System (ADS)

    Leeds, A.; McNamara, D.; Benz, H.; Gee, L.

    2006-12-01

    In this study we assess the ambient noise levels of the broadband seismic stations within the United States Geological Survey's (USGS) Advanced National Seismic System (ANSS) backbone network. The backbone consists of stations operated by the USGS as well as several regional network stations operated by universities. We also assess the improved detection capability of the network due to the installation of 13 additional backbone stations and the upgrade of 26 existing stations funded by the Earthscope initiative. This assessment makes use of probability density functions (PDF) of power spectral densities (PSD) (after McNamara and Buland, 2004) computed by a continuous noise monitoring system developed by the USGS- ANSS and the Incorporated Research Institutions in Seismology (IRIS) Data Management Center (DMC). We compute the median and mode of the PDF distribution and rank the stations relative to the Peterson Low noise model (LNM) (Peterson, 1993) for 11 different period bands. The power of the method lies in the fact that there is no need to screen the data for system transients, earthquakes or general data artifacts since they map into a background probability level. Previous studies have shown that most regional stations, instrumented with short period or extended short period instruments, have a higher noise level in all period bands while stations in the US network have lower noise levels at short periods (0.0625-8.0 seconds), high frequencies (8.0- 0.125Hz). The overall network is evaluated with respect to accomplishing the design goals set for the USArray/ANSS backbone project which were intended to increase broadband performance for the national monitoring network.

  5. Backbone upgrades and DEC equipment replacement

    NASA Technical Reports Server (NTRS)

    Vancamp, Warren

    1991-01-01

    The NASA Science Internet (NSI) dual protocol backbone is outlined. It includes DECnet link upgrades to match TCP/IP link performance. It also includes the integration of backbone resources and central management. The phase 1 transition process is outlined.

  6. Secondary Structure, Backbone Dynamics, and Structural Topology of Phospholamban and Its Phosphorylated and Arg9Cys-Mutated Forms in Phospholipid Bilayers Utilizing 13C and 15N Solid-State NMR Spectroscopy

    PubMed Central

    2015-01-01

    Phospholamban (PLB) is a membrane protein that regulates heart muscle relaxation rates via interactions with the sarcoplasmic reticulum Ca2+ ATPase (SERCA). When PLB is phosphorylated or Arg9Cys (R9C) is mutated, inhibition of SERCA is relieved. 13C and 15N solid-state NMR spectroscopy is utilized to investigate conformational changes of PLB upon phosphorylation and R9C mutation. 13C=O NMR spectra of the cytoplasmic domain reveal two α-helical structural components with population changes upon phosphorylation and R9C mutation. The appearance of an unstructured component is observed on domain Ib. 15N NMR spectra indicate an increase in backbone dynamics of the cytoplasmic domain. Wild-type PLB (WT-PLB), Ser16-phosphorylated PLB (P-PLB), and R9C-mutated PLB (R9C-PLB) all have a very dynamic domain Ib, and the transmembrane domain has an immobile component. 15N NMR spectra indicate that the cytoplasmic domain of R9C-PLB adopts an orientation similar to P-PLB and shifts away from the membrane surface. Domain Ib (Leu28) of P-PLB and R9C-PLB loses the alignment. The R9C-PLB adopts a conformation similar to P-PLB with a population shift to a more extended and disordered state. The NMR data suggest the more extended and disordered forms of PLB may relate to inhibition relief. PMID:24511878

  7. Backbone Dynamics Of Intracellular Lipid Binding Proteins

    NASA Astrophysics Data System (ADS)

    Gutiérrez-González, Luis H.

    2005-04-01

    The family of intracellular lipid binding proteins (iLBPs) comprises a group of homologous 14-15 kDa proteins that specifically bind and facilitate the transport of fatty acids, bile acids, retinoids or eicosanoids. Members of this family include several types of fatty acid binding proteins (FABPs), ileal lipid binding protein, cellular retinoic acid binding proteins and cellular retinoid binding proteins. As a contribution to understanding the structure-function relationship in this protein family, the solution structure and backbone dynamics of human epidermal-type FABP (E-FABP) determined by NMR spectroscopy are reported. Moreover, hydrogen/deuterium exchange experiments indicated a direct correlation between the stability of the hydrogen-bonding network in the β-sheet structure and the conformational exchange in the millisecond-to-microsecond time range. The features of E-FABP backbone dynamics discussed in the present study are compared with those obtained for other phylogenetically related proteins. A strong interdependence with the overall protein stability and possibly also with the ligand-binding affinity for members of the lipid-binding protein family is shown.

  8. Constructing optimal backbone segments for joining fixed DNA base pairs.

    PubMed Central

    Mazur, J; Jernigan, R L; Sarai, A

    1996-01-01

    A method is presented to link a sequence of space-fixed base pairs by the sugar-phosphate segments of single nucleotides and to evaluate the effects in the backbone caused by this positioning of the bases. The entire computational unit comprises several nucleotides that are energy-minimized, subject to constraints imposed by the sugar-phosphate backbone segments being anchored to space-fixed base pairs. The minimization schemes are based on two stages, a conjugate gradient method followed by a Newton-Raphson algorithm. Because our purpose is to examine the response, or relaxation, of an artificially stressed backbone, it is essential to be able to obtain, as closely as possible, a lowest minimum energy conformation of the backbone segment in conformational space. For this purpose, an algorithm is developed that leads to the generation of an assembly of many local energy minima. From these sets of local minima, one conformation corresponding to the one with the lowest minimum is then selected and designated to represent the backbone segment at its minimum. The effective electrostatic potential of mean force is expressed in terms of adjustable parameters that incorporate solvent screening action in the Coulombic interactions between charged backbone atoms; these parameters are adjusted to obtain the best fit of the nearest-neighbor phosphorous atoms in an x-ray structure. PMID:8874023

  9. Backbone 1H, 15N, and 13C resonance assignments and secondary structure of a novel protein OGL-20P(T)-358 from hyperthermophile Thermococcus thioreducens sp. nov.

    PubMed

    Wilson, Randall; Hughes, Ronny; Curto, Ernest; Ng, Joseph; Twigg, Pamela

    2007-12-31

    OGL-20P(T)-358 is a novel 66 amino acid residue protein from the hyperthermophile Thermococcus thioreducens sp. nov., strain OGL-20PT, which was collected from the wall of the hydrothermal black smoker in the Rainbow Vent along the mid-Atlantic ridge. This protein, which has no detectable sequence homology with proteins or domains of known function, has a calculated pI of 4.76 and a molecular mass of 8.2 kDa. We report here the backbone 1H, 15N, and 13C resonance assignments of OGL-20PT-358. Assignments are 97.5% (316/324) complete. Chemical shift index was used to determine the secondary structure of the protein, which appears to consist of primarily alpha-helical regions. This work is the foundation for future studies to determine the three-dimensional solution structure of the protein. PMID:18182861

  10. Variations in the Circumplex Structure of Mood.

    ERIC Educational Resources Information Center

    Feldman, Lisa A.

    1995-01-01

    Researchers have emphasized the similarity of the semantic and self-report mood circumplexes. Study investigated systematic differences in theses structures. Demonstrated that when making judgments of their mood, people weigh the arousal dimension less than the valence dimension. Dimensions are weighed equally in semantic structure. (JBJ)

  11. Evolution of functional nucleic acids in the presence of nonheritable backbone heterogeneity

    PubMed Central

    Trevino, Simon G.; Zhang, Na; Elenko, Mark P.; Lupták, Andrej; Szostak, Jack W.

    2011-01-01

    Multiple lines of evidence support the hypothesis that the early evolution of life was dominated by RNA, which can both transfer information from generation to generation through replication directed by base-pairing, and carry out biochemical activities by folding into functional structures. To understand how life emerged from prebiotic chemistry we must therefore explain the steps that led to the emergence of the RNA world, and in particular, the synthesis of RNA. The generation of pools of highly pure ribonucleotides on the early Earth seems unlikely, but the presence of alternative nucleotides would support the assembly of nucleic acid polymers containing nonheritable backbone heterogeneity. We suggest that homogeneous monomers might not have been necessary if populations of heterogeneous nucleic acid molecules could evolve reproducible function. For such evolution to be possible, function would have to be maintained despite the repeated scrambling of backbone chemistry from generation to generation. We have tested this possibility in a simplified model system, by using a T7 RNA polymerase variant capable of transcribing nucleic acids that contain an approximately 1∶1 mixture of deoxy- and ribonucleotides. We readily isolated nucleotide-binding aptamers by utilizing an in vitro selection process that shuffles the order of deoxy- and ribonucleotides in each round. We describe two such RNA/DNA mosaic nucleic acid aptamers that specifically bind ATP and GTP, respectively. We conclude that nonheritable variations in nucleic acid backbone structure may not have posed an insurmountable barrier to the emergence of functionality in early nucleic acids. PMID:21825162

  12. Structure-activity study for (bis)ureidopropyl- and (bis)thioureidopropyldiamine LSD1 inhibitors with 3-5-3 and 3-6-3 carbon backbone architectures

    PubMed Central

    Nowotarski, Shannon L.; Pachaiyappan, Boobalan; Holshouser, Steven L.; Kutz, Craig J.; Li, Youxuan; Huang, Yi; Sharma, Shiv K.; Casero, Robert A.; Woster, Patrick M.

    2015-01-01

    Methylation at specific histone lysine residues is a critical post-translational modification that alters chromatin architecture, and dysregulated lysine methylation/demethylation is associated with the silencing of tumor suppressor genes. The enzyme lysine-specific demethylase 1 (LSD1) complexed to specific transcription factors catalyzes the oxidative demethylation of mono- and dimethyllysine 4 of histone H3 (H3K4me and H3K4me2 respectively). We have previously reported potent (bis)urea and (bis)thiourea LSD1 inhibitors that increase cellular levels of H3K4me and H3K4me2, promote the re-expression of silenced tumor suppressor genes and suppress tumor growth in vitro. Here we report the design additional (bis)urea and (bis)thiourea LSD1 inhibitors that feature 3-5-3 or 3-6-3 carbon backbone architectures. Three of these compounds displayed single-digit IC50 values in a recombinant LSD1 assay. In addition, compound 6d exhibited an IC50 of 4.2 μM against the Calu-6 human lung adenocarcinoma line, and 4.8 μM against the MCF7 breast tumor cell line, in an MTS cell viability assay. Following treatment with 6b–6d, Calu-6 cells exhibited a significant increase in the mRNA expression for the silenced tumor suppressor genes SFRP2, HCAD and p16, and modest increases in GATA4 message. The compounds described in this paper represent the most potent epigenetic modulators in this series, and have potential for use as antitumor agents. PMID:25725609

  13. Protein structure prediction from sequence variation

    PubMed Central

    Marks, Debora S; Hopf, Thomas A; Sander, Chris

    2015-01-01

    Genomic sequences contain rich evolutionary information about functional constraints on macromolecules such as proteins. This information can be efficiently mined to detect evolutionary couplings between residues in proteins and address the long-standing challenge to compute protein three-dimensional structures from amino acid sequences. Substantial progress has recently been made on this problem owing to the explosive growth in available sequences and the application of global statistical methods. In addition to three-dimensional structure, the improved understanding of covariation may help identify functional residues involved in ligand binding, protein-complex formation and conformational changes. We expect computation of covariation patterns to complement experimental structural biology in elucidating the full spectrum of protein structures, their functional interactions and evolutionary dynamics. PMID:23138306

  14. The backbone of a city

    NASA Astrophysics Data System (ADS)

    Scellato, S.; Cardillo, A.; Latora, V.; Porta, S.

    2006-03-01

    Recent studies have revealed the importance of centrality measures to analyze various spatial factors affecting human life in cities. Here we show how it is possible to extract the backbone of a city by deriving spanning trees based on edge betweenness and edge information. By using as sample cases the cities of Bologna and San Francisco, we show how the obtained trees are radically different from those based on edge lengths, and allow an extended comprehension of the “skeleton” of most important routes that so much affects pedestrian/vehicular flows, retail commerce vitality, land-use separation, urban crime and collective dynamical behaviours.

  15. Imaging crustal structure variation across southeastern Australia

    NASA Astrophysics Data System (ADS)

    Fontaine, Fabrice R.; Tkalčić, Hrvoje; Kennett, Brian L. N.

    2013-01-01

    A broad-band seismic network of 28 three-component seismometers was deployed in southeastern Australia to examine variations in crustal thickness across the transition between Precambrian and Phanerozoic lithosphere. Receiver function observations and modelling of P-to-S conversions at the Mohorovičić discontinuity (Moho) have been employed to investigate: (i) the variations in the Moho depth across southeastern Australia, and (ii) the nature of the transition between crust and mantle. Data from temporary deployments were used together with data from the few permanent broad-band stations in the region. The extraction of P-receiver functions from high-quality seismic data recorded on these stations has enabled the determination of the crustal thickness across the region. The crustal thicknesses lie in the range 28-48 km. The Moho depth is generally well correlated with the Earth surface elevation in the southeastern Australia. The Moho estimates from receiver functions are in good agreement with results from reflection profiling. The average crustal thickness is found to be around 39 km beneath the Precambrian area in the west and even thicker beneath the Lachlan Orogen in the east (~ 43 km). The average crustal thickness in between, beneath the Murray Basin is thinner ~ 32 km. Interestingly, the crust in the Mount Gambier volcanic area is rather thick ~ 41 km, suggesting that the limit between the Delamerian and western Lachlan orogens is located east of Mount Gambier. Our results favour a position for the Tasman Line generally consistent with the interpretation by Direen and Crawford (2003) and thus to the east of the location favoured by many authors. The broader crust-mantle transition and thicker crust beneath the Lachlan Orogen suggest the presence of magmatic underplating at the base of the lower crust. The intermediate nature of the crust-mantle transition also suggests magmatic underplating beneath the Gawler Craton and the Curnamona Province.

  16. Structural Variation in Bacterial Glyoxalase I Enzymes

    PubMed Central

    Suttisansanee, Uthaiwan; Lau, Kelvin; Lagishetty, Satyanarayana; Rao, Krishnamurthy N.; Swaminathan, Subramanyam; Sauder, J. Michael; Burley, Stephen K.; Honek, John F.

    2011-01-01

    The glyoxalase system catalyzes the conversion of toxic, metabolically produced α-ketoaldehydes, such as methylglyoxal, into their corresponding nontoxic 2-hydroxycarboxylic acids, leading to detoxification of these cellular metabolites. Previous studies on the first enzyme in the glyoxalase system, glyoxalase I (GlxI), from yeast, protozoa, animals, humans, plants, and Gram-negative bacteria, have suggested two metal activation classes, Zn2+ and non-Zn2+ activation. Here, we report a biochemical and structural investigation of the GlxI from Clostridium acetobutylicum, which is the first GlxI enzyme from Gram-positive bacteria that has been fully characterized as to its three-dimensional structure and its detailed metal specificity. It is a Ni2+/Co2+-activated enzyme, in which the active site geometry forms an octahedral coordination with one metal atom, two water molecules, and four metal-binding ligands, although its inactive Zn2+-bound form possesses a trigonal bipyramidal geometry with only one water molecule liganded to the metal center. This enzyme also possesses a unique dimeric molecular structure. Unlike other small homodimeric GlxI where two active sites are located at the dimeric interface, the C. acetobutylicum dimeric GlxI enzyme also forms two active sites but each within single subunits. Interestingly, even though this enzyme possesses a different dimeric structure from previously studied GlxI, its metal activation characteristics are consistent with properties of other GlxI. These findings indicate that metal activation profiles in this class of enzyme hold true across diverse quaternary structure arrangements. PMID:21914803

  17. Genetic variation, predator–prey interactions and food web structure

    PubMed Central

    Moya-Laraño, Jordi

    2011-01-01

    Food webs are networks of species that feed on each other. The role that within-population phenotypic and genetic variation plays in food web structure is largely unknown. Here, I show via simulation how variation in two key traits, growth rates and phenology, by influencing the variability of body sizes present through time, can potentially affect several structural parameters in the direction of enhancing food web persistence: increased connectance, decreased interaction strengths, increased variation among interaction strengths and increased degree of omnivory. I discuss other relevant traits whose variation could affect the structure of food webs, such as morphological and additional life-history traits, as well as animal personalities. Furthermore, trait variation could also contribute to the stability of food web modules through metacommunity dynamics. I propose future research to help establish a link between within-population variation and food web structure. If appropriately established, such a link could have important consequences for biological conservation, as it would imply that preserving (functional) genetic variation within populations could ensure the preservation of entire communities. PMID:21444316

  18. Self-assembly of diphenylalanine backbone homologues and their combination with functionalized carbon nanotubes.

    PubMed

    Dinesh, Bhimareddy; Squillaci, Marco A; Ménard-Moyon, Cécilia; Samorì, Paolo; Bianco, Alberto

    2015-10-14

    The integration of carbon nanotubes (CNTs) into organized nanostructures is of great interest for applications in materials science and biomedicine. In this work we studied the self-assembly of β and γ homologues of diphenylalanine peptides under different solvent and pH conditions. We aimed to investigate the role of peptide backbone in tuning the formation of different types of nanostructures alone or in combination with carbon nanotubes. In spite of having the same side chain, β and γ peptides formed distinctively different nanofibers, a clear indication of the role played by the backbone homologation on the self-assembly. The variation of the pH allowed to transform the nanofibers into spherical structures. Moreover, the co-assembly of β and γ peptides with carbon nanotubes covalently functionalized with the same peptide generated unique dendritic assemblies. This comparative study on self-assembly using diphenylalanine backbone homologues and of the co-assembly with CNT covalent conjugates is the first example exploring the capacity of β and γ peptides to adopt precise nanostructures, particularly in combination with carbon nanotubes. The dendritic organization obtained by mixing carbon nanotubes and peptides might find interesting applications in tissue engineering and neuronal interfacing. PMID:26359907

  19. Peptide Amphiphile Nanofibers with Conjugated Polydiacetylene Backbones in Their Core

    PubMed Central

    Hsu, Lorraine; Cvetanovich, Gregory L.; Stupp, Samuel I.

    2008-01-01

    The coupling of electronic and biological functionality through self-assembly is an interesting target in supramolecular chemistry. We report here on a set of diacetylene-derivatized peptide amphiphiles (PAs) that react to form conjugated polydiacetylene backbones following self-assembly into cylindrical nanofibers. The polymerization reaction yields highly conjugated backbones when the peptidic segment of the PAs has a linear, as opposed to a branched, architecture. Given the topotactic nature of the polymerization, these results suggest that a high degree of internal order exists in the supramolecular nanofibers formed by the linear PA. On the basis of microscopy, the formation of a polydiacetylene backbone to covalently connect the β-sheets that help form the fibers does not disrupt the fiber shape. Interestingly, we observe the appearance of a polydiacetylene (PDA) circular dichroism band at 547 nm in linear PA nanofibers suggesting the conjugated backbone in the core of the nanostructures is twisted. We believe this CD signal is due to chiral induction by the β-sheets, which are normally twisted in helical fashion. Heating and cooling shows simultaneous changes in β-sheet and conjugated backbone structure, indicating they are both correlated. At the same time, poor polymerization in nanofibers formed by branched PAs indicates that less internal order exists in these nanostructures and, as expected, then a circular dichroism signal is not observed for the conjugated backbone. The general variety of materials investigated here has the obvious potential to couple electronic properties and in vitro bioactivity. Furthermore, the polymerization of monomers in peptide amphiphile assemblies by a rigid conjugated backbone also leads to mechanical robustness and insolubility, two properties that may be important for the patterning of these materials at the cellular scale. PMID:18314978

  20. Identification of random variation in structures and their parameter estimates.

    SciTech Connect

    Farrar, C. R.; Aumann, R. J.; McCarty, A. A.; Olson, C. C.

    2002-01-01

    Structures that are members of an ensemble of nominally identical systems actually differ due to variations in details among individuals. Furthermore, there are variations in the system response of an individual structure that can be attributed to unmeasured conditions (such as temperature and humidity) that are present during experiments. Finally, noise is present in all measurements of structural excitations and responses. For these reasons, there is always random variation associated with the characterizations of structural dynamic systems, and descriptions of results must be in statistical or probabilistic terms;. This study identifies and assesses the sources and the degrees of randomness in a metric of structural dynamics of a given system through experiments and analysis.

  1. Solar cycle variations of coronal structures

    NASA Astrophysics Data System (ADS)

    Loucif, M. L.; Koutchmy, S.

    1989-01-01

    Using eclipse pictures of the solar corona, properly scaled drawings have been prepared to constitute a short atlas of coronal structures. These drawings have been used to extract 2 parameters which are further considered with respect to the sunspot number and the sunspot cycle: the extension of polar regions free of coronal streamers and the average radial deviation of large streamers. The flattening index deduced from the photometric analysis of a larger number of eclipse pictures is also considered. The out-of-phase behavior of several coronal parameters is confirmed. The results are discussed in the light of the analysis of the green-line activity as observed during 30 years at the Pic du Midi Observatory. The N-S asymmetric behavior of the activity in different solar hemispheres and the occurrence of a powerful secondary maximum of coronal activity are discussed.

  2. Trimethylamine Ν-oxide Influence on the Backbone of Proteins: An Oligoglycine Model

    SciTech Connect

    Hu, Char Y.; Lynch, Gillian C.; Kokubo, Hironori; Pettitt, Bernard M.

    2010-02-15

    The study of organic osmolytes has been pivotal in demonstrating the role of solvent effects on the protein backbone in the folding process. Although a thermodynamic description of the interactions between the protein backbone and osmolyte has been well defined, the structural analysis of the effect of osmolyte on the protein backbone has been incomplete. Therefore, we have performed simulations of a peptide backbone model, glycine₁₅, in protecting osmolyte trimethylamine Ν-oxide (TMAO) solution, in order to determine the effect of the solution structure on the conformation of the peptide backbone. We show that the models chosen show that the ensemble of backbone structures shifts toward a more collapsed state in TMAO solution as compared with pure water solution. The collapse is consistent with preferential exclusion of the osmolyte caused by unfavorable interactions between osmolyte and peptide backbone. The exclusion is caused by strong triplet correlations of osmolyte, water, and peptide backbone. This provides a clear mechanism showing that even a modest concentration of TMAO forces the protein backbone to adopt a more collapsed structure in the absence of side chain effects.

  3. A Variational Monte Carlo Approach to Atomic Structure

    ERIC Educational Resources Information Center

    Davis, Stephen L.

    2007-01-01

    The practicality and usefulness of variational Monte Carlo calculations to atomic structure are demonstrated. It is found to succeed in quantitatively illustrating electron shielding, effective nuclear charge, l-dependence of the orbital energies, and singlet-tripetenergy splitting and ionization energy trends in atomic structure theory.

  4. The novel structure of the core oligosaccharide backbone of the lipopolysaccharide from the Plesiomonas shigelloides strain CNCTC 80/89 (serotype O13).

    PubMed

    Kaszowska, Marta; Jachymek, Wojciech; Niedziela, Tomasz; Koj, Sabina; Kenne, Lennart; Lugowski, Czeslaw

    2013-10-18

    The new structure of the core oligosaccharide of Plesiomonas shigelloides CNCTC 80/89 (serotype O13) lipopolysaccharide has been investigated by chemical methods, (1)H and (13)C NMR spectroscopy and matrix-assisted laser-desorption/ionization time of flight (MALDI-TOF). It was concluded that the core oligosaccharide of P. shigelloides CNCTC 80/89 is a nonasaccharide with the following structure: The position of glycine was determined by MALDI-TOF MS/MS analyses. PMID:23920477

  5. Effects of phosphorylation on the intrinsic propensity of backbone conformations of serine/threonine.

    PubMed

    He, Erbin; Yan, Guanghui; Zhang, Jian; Wang, Jun; Li, Wenfei

    2016-03-01

    Each amino acid has its intrinsic propensity for certain local backbone conformations, which can be further modulated by the physicochemical environment and post-translational modifications. In this work, we study the effects of phosphorylation on the intrinsic propensity for different local backbone conformations of serine/threonine by molecular dynamics simulations. We showed that phosphorylation has very different effects on the intrinsic propensity for certain local backbone conformations for the serine and threonine. The phosphorylation of serine increases the propensity of forming polyproline II, whereas that of threonine has the opposite effect. Detailed analysis showed that such different responses to phosphorylation mainly arise from their different perturbations to the backbone hydration and the geometrical constraints by forming side-chain-backbone hydrogen bonds due to phosphorylation. Such an effect of phosphorylation on backbone conformations can be crucial for understanding the molecular mechanism of phosphorylation-regulated protein structures/dynamics and functions. PMID:26759163

  6. Adding Diverse Noncanonical Backbones to Rosetta: Enabling Peptidomimetic Design

    PubMed Central

    Craven, Timothy W.; Butterfoss, Glenn L.; Chou, Fang-Chieh; Lyskov, Sergey; Bullock, Brooke N.; Watkins, Andrew; Labonte, Jason W.; Pacella, Michael; Kilambi, Krishna Praneeth; Leaver-Fay, Andrew; Kuhlman, Brian; Gray, Jeffrey J.; Bradley, Philip; Kirshenbaum, Kent; Arora, Paramjit S.; Das, Rhiju; Bonneau, Richard

    2013-01-01

    Peptidomimetics are classes of molecules that mimic structural and functional attributes of polypeptides. Peptidomimetic oligomers can frequently be synthesized using efficient solid phase synthesis procedures similar to peptide synthesis. Conformationally ordered peptidomimetic oligomers are finding broad applications for molecular recognition and for inhibiting protein-protein interactions. One critical limitation is the limited set of design tools for identifying oligomer sequences that can adopt desired conformations. Here, we present expansions to the ROSETTA platform that enable structure prediction and design of five non-peptidic oligomer scaffolds (noncanonical backbones), oligooxopiperazines, oligo-peptoids, -peptides, hydrogen bond surrogate helices and oligosaccharides. This work is complementary to prior additions to model noncanonical protein side chains in ROSETTA. The main purpose of our manuscript is to give a detailed description to current and future developers of how each of these noncanonical backbones was implemented. Furthermore, we provide a general outline for implementation of new backbone types not discussed here. To illustrate the utility of this approach, we describe the first tests of the ROSETTA molecular mechanics energy function in the context of oligooxopiperazines, using quantum mechanical calculations as comparison points, scanning through backbone and side chain torsion angles for a model peptidomimetic. Finally, as an example of a novel design application, we describe the automated design of an oligooxopiperazine that inhibits the p53-MDM2 protein-protein interaction. For the general biological and bioengineering community, several noncanonical backbones have been incorporated into web applications that allow users to freely and rapidly test the presented protocols (http://rosie.rosettacommons.org). This work helps address the peptidomimetic community's need for an automated and expandable modeling tool for noncanonical

  7. Thin Films Formed from Conjugated Polymers with Ionic, Water-Soluble Backbones.

    PubMed

    Voortman, Thomas P; Chiechi, Ryan C

    2015-12-30

    This paper compares the morphologies of films of conjugated polymers in which the backbone (main chain) and pendant groups are varied between ionic/hydrophilic and aliphatic/hydrophobic. We observe that conjugated polymers in which the pendant groups and backbone are matched, either ionic-ionic or hydrophobic-hydrophobic, form smooth, structured, homogeneous films from water (ionic) or tetrahydrofuran (hydrophobic). Mismatched conjugated polymers, by contrast, form inhomogeneous films with rough topologies. The polymers with ionic backbone chains are conjugated polyions (conjugated polymers with closed-shell charges in the backbone), which are semiconducting materials with tunable bad-gaps, not unlike uncharged conjugated polymers. PMID:25723354

  8. New insights about pilus formation in gut-adapted Lactobacillus rhamnosus GG from the crystal structure of the SpaA backbone-pilin subunit

    PubMed Central

    Chaurasia, Priyanka; Pratap, Shivendra; von Ossowski, Ingemar; Palva, Airi; Krishnan, Vengadesan

    2016-01-01

    Thus far, all solved structures of pilin-proteins comprising sortase-assembled pili are from pathogenic genera and species. Here, we present the first crystal structure of a pilin subunit (SpaA) from a non-pathogen host (Lactobacillus rhamnosus GG). SpaA consists of two tandem CnaB-type domains, each with an isopeptide bond and E-box motif. Intriguingly, while the isopeptide bond in the N-terminal domain forms between lysine and asparagine, the one in the C-terminal domain atypically involves aspartate. We also solved crystal structures of mutant proteins where residues implicated in forming isopeptide bonds were replaced. Expectedly, the E-box-substituted E139A mutant lacks an isopeptide bond in the N-terminal domain. However, the C-terminal E269A substitution gave two structures; one of both domains with their isopeptide bonds present, and another of only the N-terminal domain, but with an unformed isopeptide bond and significant conformational changes. This latter crystal structure has never been observed for any other Gram-positive pilin. Notably, the C-terminal isopeptide bond still forms in D295N-substituted SpaA, irrespective of E269 being present or absent. Although E-box mutations affect SpaA proteolytic and thermal stability, a cumulative effect perturbing normal pilus polymerization was unobserved. A model showing the polymerized arrangement of SpaA within the SpaCBA pilus is proposed. PMID:27349405

  9. New insights about pilus formation in gut-adapted Lactobacillus rhamnosus GG from the crystal structure of the SpaA backbone-pilin subunit.

    PubMed

    Chaurasia, Priyanka; Pratap, Shivendra; von Ossowski, Ingemar; Palva, Airi; Krishnan, Vengadesan

    2016-01-01

    Thus far, all solved structures of pilin-proteins comprising sortase-assembled pili are from pathogenic genera and species. Here, we present the first crystal structure of a pilin subunit (SpaA) from a non-pathogen host (Lactobacillus rhamnosus GG). SpaA consists of two tandem CnaB-type domains, each with an isopeptide bond and E-box motif. Intriguingly, while the isopeptide bond in the N-terminal domain forms between lysine and asparagine, the one in the C-terminal domain atypically involves aspartate. We also solved crystal structures of mutant proteins where residues implicated in forming isopeptide bonds were replaced. Expectedly, the E-box-substituted E139A mutant lacks an isopeptide bond in the N-terminal domain. However, the C-terminal E269A substitution gave two structures; one of both domains with their isopeptide bonds present, and another of only the N-terminal domain, but with an unformed isopeptide bond and significant conformational changes. This latter crystal structure has never been observed for any other Gram-positive pilin. Notably, the C-terminal isopeptide bond still forms in D295N-substituted SpaA, irrespective of E269 being present or absent. Although E-box mutations affect SpaA proteolytic and thermal stability, a cumulative effect perturbing normal pilus polymerization was unobserved. A model showing the polymerized arrangement of SpaA within the SpaCBA pilus is proposed. PMID:27349405

  10. Gorilla genome structural variation reveals evolutionary parallelisms with chimpanzee.

    PubMed

    Ventura, Mario; Catacchio, Claudia R; Alkan, Can; Marques-Bonet, Tomas; Sajjadian, Saba; Graves, Tina A; Hormozdiari, Fereydoun; Navarro, Arcadi; Malig, Maika; Baker, Carl; Lee, Choli; Turner, Emily H; Chen, Lin; Kidd, Jeffrey M; Archidiacono, Nicoletta; Shendure, Jay; Wilson, Richard K; Eichler, Evan E

    2011-10-01

    Structural variation has played an important role in the evolutionary restructuring of human and great ape genomes. Recent analyses have suggested that the genomes of chimpanzee and human have been particularly enriched for this form of genetic variation. Here, we set out to assess the extent of structural variation in the gorilla lineage by generating 10-fold genomic sequence coverage from a western lowland gorilla and integrating these data into a physical and cytogenetic framework of structural variation. We discovered and validated over 7665 structural changes within the gorilla lineage, including sequence resolution of inversions, deletions, duplications, and mobile element insertions. A comparison with human and other ape genomes shows that the gorilla genome has been subjected to the highest rate of segmental duplication. We show that both the gorilla and chimpanzee genomes have experienced independent yet convergent patterns of structural mutation that have not occurred in humans, including the formation of subtelomeric heterochromatic caps, the hyperexpansion of segmental duplications, and bursts of retroviral integrations. Our analysis suggests that the chimpanzee and gorilla genomes are structurally more derived than either orangutan or human genomes. PMID:21685127

  11. Impact of template backbone heterogeneity on RNA polymerase II transcription

    PubMed Central

    Xu, Liang; Wang, Wei; Zhang, Lu; Chong, Jenny; Huang, Xuhui; Wang, Dong

    2015-01-01

    Variations in the sugar component (ribose or deoxyribose) and the nature of the phosphodiester linkage (3′-5′ or 2′-5′ orientation) have been a challenge for genetic information transfer from the very beginning of evolution. RNA polymerase II (pol II) governs the transcription of DNA into precursor mRNA in all eukaryotic cells. How pol II recognizes DNA template backbone (phosphodiester linkage and sugar) and whether it tolerates the backbone heterogeneity remain elusive. Such knowledge is not only important for elucidating the chemical basis of transcriptional fidelity but also provides new insights into molecular evolution. In this study, we systematically and quantitatively investigated pol II transcriptional behaviors through different template backbone variants. We revealed that pol II can well tolerate and bypass sugar heterogeneity sites at the template but stalls at phosphodiester linkage heterogeneity sites. The distinct impacts of these two backbone components on pol II transcription reveal the molecular basis of template recognition during pol II transcription and provide the evolutionary insight from the RNA world to the contemporary ‘imperfect’ DNA world. In addition, our results also reveal the transcriptional consequences from ribose-containing genomic DNA. PMID:25662224

  12. Challenges and standards in integrating surveys of structural variation

    PubMed Central

    Scherer, Stephen W; Lee, Charles; Birney, Ewan; Altshuler, David M; Eichler, Evan E; Carter, Nigel P; Hurles, Matthew E; Feuk, Lars

    2009-01-01

    There has been an explosion of data describing newly recognized structural variants in the human genome. In the flurry of reporting, there has been no standard approach to collecting the data, assessing its quality or describing identified features. This risks becoming a rampant problem, in particular with respect to surveys of copy number variation and their application to disease studies. Here, we consider the challenges in characterizing and documenting genomic structural variants. From this, we derive recommendations for standards to be adopted, with the aim of ensuring the accurate presentation of this form of genetic variation to facilitate ongoing research. PMID:17597783

  13. Flexible backbone aromatic polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.; St.clair, Terry L.

    1988-01-01

    Continuing research at Langley Research Center on the synthesis and development of new inexpensive flexible aromatic polyimides as adhesives has resulted in a material identified as LARC-F-SO2 with similarities to polyimidesulfone, PISO2, and other flexible backbone polyimides recently reported by Progar and St. Clair. Also prepared and evaluated was an endcapped version of PISO2. These two polymers were compared with LARC-TPI and LARC-STPI, polyimides research in our laboratory and reported in the literature. The adhesive evaluation, primarily based on lap shear strength (LSS) tests at RT, 177 C and 204 C, involved preparing adhesive tapes, conducting bonding studies and exposing lap shear specimens to 204 C air for up to 1000 hrs and to a 72-hour water boil. The type of adhesive failure as well as the Tg was determined for the fractured specimens. The results indicate that LARC-TPI provides the highest LSSs. LARC-F-SO2, LARC-TPI and LARC-STPI all retain their strengths after thermal exposure for 1000 hrs and PISO2 retains greater than 80 percent of its control strengths. After a 72-hr water boil exposure, most of the four adhesive systems showed reduced strengths for all test temperatures although still retaining a high percentage of their original strength (greater than 60 percent) except for one case. The predominant failure type was cohesive with no significant change in the Tgs.

  14. Flexible backbone aromatic polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.; St. Clair, Terry L.

    1989-01-01

    Continuing research at Langley Research Center on the synthesis and development of new inexpensive flexible aromatic polyimides as adhesives has resulted in a material identified as LARC-F-SO2 with similarities to polyimidesulfone, PISO2, and other flexible backbone polyimides recently reported by Progar and St. Clair. Also prepared and evaluated was an endcapped version of PISO2. These two polymers were compared with LARC-TPI and LARC-STPI, polyimides research in our laboratory and reported in the literature. The adhesive evaluation, primarily based on lap shear strength (LSS) tests at RT, 177 C and 204 C, involved preparing adhesive tapes, conducting bonding studies and exposing lap shear specimens to 204 C air for up to 1000 hrs and to a 72-hour water boil. The type of adhesive failure as well as the Tg was determined for the fractured specimens. The results indicate that LARC-TPI provides the highest LSSs. LARC-F-SO2, LARC-TPI and LARC-STPI all retain their strengths after thermal exposure for 1000 hrs and PISO2 retains greater than 80 percent of its control strengths. After a 72-hr water boil exposure, most of the four adhesive systems showed reduced strengths for all test temperatures although still retaining a high percentage of their original strength (greater than 60 percent) except for one case. The predominant failure type was cohesive with no significant change in the Tgs.

  15. 55P0110, a Novel Synthetic Compound Developed from a Plant Derived Backbone Structure, Shows Promising Anti-Hyperglycaemic Activity in Mice.

    PubMed

    Brunmair, Barbara; Lehner, Zsuzsanna; Stadlbauer, Karin; Adorjan, Immanuel; Frobel, Klaus; Scherer, Thomas; Luger, Anton; Bauer, Leonhardt; Fürnsinn, Clemens

    2015-01-01

    Starting off with a structure derived from the natural compound multiflorine, a derivatisation program aimed at the discovery and initial characterisation of novel compounds with antidiabetic potential. Design and discovery of the structures was guided by oral bioactivities obtained in oral glucose tolerance tests in mice. 55P0110, one among several new compounds with distinct anti-hyperglycaemic activity, was further examined to characterise its pharmacology and mode of action. Whereas a single oral dose of 55P0110 did not affect basal glycaemia, it markedly improved the glucose tolerance of healthy and diabetic mice (peak blood glucose in glucose tolerance test, mmol/l: healthy mice with 90 mg/kg 55P0110, 17.0 ± 1.2 vs. 10.1 ± 1.1; diabetic mice with 180 mg/kg 55P0110, 23.1 ± 0.9 vs. 11.1 ± 1.4; p<0.001 each). Closer examination argued against retarded glucose resorption from the gut, increased glucose excretion in urine, acute insulin-like or insulin sensitising properties, and direct inhibition of dipeptidyl peptidase-4 as the cause of glucose lowering. Hence, 55P0110 seems to act via a target not exploited by any drug presently approved for the treatment of diabetes mellitus. Whereas the insulinotropic sulfonylurea gliclazide (16 mg/kg) distinctly increased the circulating insulin-per-glucose ratio under basal conditions, 55P0110 (90 mg/kg) lacked such an effect (30 min. after dosing, nmol/mol: vehicle, 2.49 ± 0.27; 55P0110, 2.99 ± 0.35; gliclazide, 8.97 ± 0.49; p<0.001 each vs. gliclazide). Under an exogenous glucose challenge, however, 55P0110 increased this ratio to the same extent as gliclazide (20 min. after glucose feeding: vehicle, 2.53 ± 0.41; 55P0110, 3.80 ± 0.46; gliclazide, 3.99 ± 0.26; p<0.05 each vs. vehicle). By augmenting the glucose stimulated increase in plasma insulin, 55P0110 thus shows distinct anti-hyperglycaemic action in combination with low risk for fasting hypoglycaemia in mice. In summary, we have discovered a novel class of

  16. 55P0110, a Novel Synthetic Compound Developed from a Plant Derived Backbone Structure, Shows Promising Anti-Hyperglycaemic Activity in Mice

    PubMed Central

    Brunmair, Barbara; Lehner, Zsuzsanna; Stadlbauer, Karin; Adorjan, Immanuel; Frobel, Klaus; Scherer, Thomas; Luger, Anton; Bauer, Leonhardt; Fürnsinn, Clemens

    2015-01-01

    Starting off with a structure derived from the natural compound multiflorine, a derivatisation program aimed at the discovery and initial characterisation of novel compounds with antidiabetic potential. Design and discovery of the structures was guided by oral bioactivities obtained in oral glucose tolerance tests in mice. 55P0110, one among several new compounds with distinct anti-hyperglycaemic activity, was further examined to characterise its pharmacology and mode of action. Whereas a single oral dose of 55P0110 did not affect basal glycaemia, it markedly improved the glucose tolerance of healthy and diabetic mice (peak blood glucose in glucose tolerance test, mmol/l: healthy mice with 90 mg/kg 55P0110, 17.0±1.2 vs. 10.1±1.1; diabetic mice with 180 mg/kg 55P0110, 23.1±0.9 vs. 11.1±1.4; p<0.001 each). Closer examination argued against retarded glucose resorption from the gut, increased glucose excretion in urine, acute insulin-like or insulin sensitising properties, and direct inhibition of dipeptidyl peptidase-4 as the cause of glucose lowering. Hence, 55P0110 seems to act via a target not exploited by any drug presently approved for the treatment of diabetes mellitus. Whereas the insulinotropic sulfonylurea gliclazide (16 mg/kg) distinctly increased the circulating insulin-per-glucose ratio under basal conditions, 55P0110 (90 mg/kg) lacked such an effect (30 min. after dosing, nmol/mol: vehicle, 2.49±0.27; 55P0110, 2.99±0.35; gliclazide, 8.97±0.49; p<0.001 each vs. gliclazide). Under an exogenous glucose challenge, however, 55P0110 increased this ratio to the same extent as gliclazide (20 min. after glucose feeding: vehicle, 2.53±0.41; 55P0110, 3.80±0.46; gliclazide, 3.99±0.26; p<0.05 each vs. vehicle). By augmenting the glucose stimulated increase in plasma insulin, 55P0110 thus shows distinct anti-hyperglycaemic action in combination with low risk for fasting hypoglycaemia in mice. In summary, we have discovered a novel class of fully synthetic

  17. Solar cycle variation of large-scale coronal structures

    NASA Technical Reports Server (NTRS)

    Antonucci, E.; Duvall, T. L.

    1974-01-01

    A green line intensity variation is associated with the interplanetary and photospheric magnetic sector structure. This effect depends on the solar cycle and occurs with the same amplitude in the latitude range 60 deg N - 60 deg S. Extended longitudinal coronal structures are suggested, which indicate the existence of closed magnetic field lines over the neutral line, separating adjacent regions of opposite polarities on the photospheric surface.

  18. Bats aloft: Variation in echolocation call structure at high altitudes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bats alter their echolocation calls in response to changes in ecological and behavioral conditions, but little is known about how they adjust their call structure in response to changes in altitude. This study examines altitudinal variation in the echolocation calls of Brazilian free-tailed bats, T...

  19. Free backbone carbonyls mediate rhodopsin activation.

    PubMed

    Kimata, Naoki; Pope, Andreyah; Sanchez-Reyes, Omar B; Eilers, Markus; Opefi, Chikwado A; Ziliox, Martine; Reeves, Philip J; Smith, Steven O

    2016-08-01

    Conserved prolines in the transmembrane helices of G-protein-coupled receptors (GPCRs) are often considered to function as hinges that divide the helix into two segments capable of independent motion. Depending on their potential to hydrogen-bond, the free C=O groups associated with these prolines can facilitate conformational flexibility, conformational switching or stabilization of the receptor structure. To address the role of conserved prolines in family A GPCRs through solid-state NMR spectroscopy, we focus on bovine rhodopsin, a GPCR in the visual receptor subfamily. The free backbone C=O groups on helices H5 and H7 stabilize the inactive rhodopsin structure through hydrogen-bonds to residues on adjacent helices. In response to light-induced isomerization of the retinal chromophore, hydrogen-bonding interactions involving these C=O groups are released, thus facilitating repacking of H5 and H7 onto the transmembrane core of the receptor. These results provide insights into the multiple structural and functional roles of prolines in membrane proteins. PMID:27376589

  20. Periodicity, planarity, and pixel (3P): a program using the intrinsic residual dipolar coupling periodicity-to-peptide plane correlation and phi/psi angles to derive protein backbone structures.

    PubMed

    Wang, Jinbu; Walsh, Joseph D; Kuszewski, John; Wang, Yun-Xing

    2007-11-01

    We present a detailed description of a theory and a program called 3P. "3P" stands for periodicity, planarity, and pixel. The 3P program is based on the intrinsic periodic correlations between residual dipolar couplings (RDCs) and in-plane internuclear vectors, and between RDCs and the orientation of peptide planes relative to an alignment tensor. The program extracts accurate rhombic, axial components of the alignment tensor without explicit coordinates, and discrete peptide plane orientations, which are utilized in combination with readily available phi/psi angles to determine the three-dimensional backbone structures of proteins. The 3P program uses one alignment tensor. We demonstrate the utility and robustness of the program, using both experimental and synthetic data sets, which were added with different levels of noise or were incomplete. The program is interfaced to Xplor-NIH via a "3P" module and is available to the public. The limitations and differences between our program and existing methods are also discussed. PMID:17892961

  1. New Tests for Variations of the Fine Structure Constant

    NASA Technical Reports Server (NTRS)

    Prestage, John D.

    1995-01-01

    We describe a new test for possible variations of the fine structure constant, by comparisons of rates between clocks based on hyperfine transitions in alkali atomos with different atomic number Z. H- maser, Cs and Hg+ clocks have a different dependence on ia relativistic contributions of order (Z. Recent H-maser vs Hg+ clock comparison data improves laboratory limits on a time variation by 100-fold to giveFuture laser cooled clocks (Be+, Rb, Cs, Hg+, etc.), when compared, will yield the most senstive of all tests for.

  2. Major Variations in HIV-1 Capsid Assembly Morphologies Involve Minor Variations in Molecular Structures of Structurally Ordered Protein Segments.

    PubMed

    Lu, Jun-Xia; Bayro, Marvin J; Tycko, Robert

    2016-06-17

    We present the results of solid state nuclear magnetic resonance (NMR) experiments on HIV-1 capsid protein (CA) assemblies with three different morphologies, namely wild-type CA (WT-CA) tubes with 35-60 nm diameters, planar sheets formed by the Arg(18)-Leu mutant (R18L-CA), and R18L-CA spheres with 20-100 nm diameters. The experiments are intended to elucidate molecular structural variations that underlie these variations in CA assembly morphology. We find that multidimensional solid state NMR spectra of (15)N,(13)C-labeled CA assemblies are remarkably similar for the three morphologies, with only small differences in (15)N and (13)C chemical shifts, no significant differences in NMR line widths, and few differences in the number of detectable NMR cross-peaks. Thus, the pronounced differences in morphology do not involve major differences in the conformations and identities of structurally ordered protein segments. Instead, morphological variations are attributable to variations in conformational distributions within disordered segments, which do not contribute to the solid state NMR spectra. Variations in solid state NMR signals from certain amino acid side chains are also observed, suggesting differences in the intermolecular dimerization interface between curved and planar CA lattices, as well as possible differences in intramolecular helix-helix packing. PMID:27129282

  3. Computation-Guided Backbone Grafting of a Discontinuous Motif onto a Protein Scaffold

    SciTech Connect

    Azoitei, Mihai L.; Correia, Bruno E.; Ban, Yih-En Andrew; Carrico, Chris; Kalyuzhniy, Oleksandr; Chen, Lei; Schroeter, Alexandria; Huang, Po-Ssu; McLellan, Jason S.; Kwong, Peter D.; Baker, David; Strong, Roland K.; Schief, William R.

    2012-02-07

    The manipulation of protein backbone structure to control interaction and function is a challenge for protein engineering. We integrated computational design with experimental selection for grafting the backbone and side chains of a two-segment HIV gp120 epitope, targeted by the cross-neutralizing antibody b12, onto an unrelated scaffold protein. The final scaffolds bound b12 with high specificity and with affinity similar to that of gp120, and crystallographic analysis of a scaffold bound to b12 revealed high structural mimicry of the gp120-b12 complex structure. The method can be generalized to design other functional proteins through backbone grafting.

  4. Latitudinal variation in population structure of wintering Pacific Black Brant

    USGS Publications Warehouse

    Schamber, J.L.; Sedinger, J.S.; Ward, D.H.; Hagmeier, K.R.

    2007-01-01

    Latitudinal variation in population structure during the winter has been reported in many migratory birds, but has been documented in few species of waterfowl. Variation in environmental and social conditions at wintering sites can potentially influence the population dynamics of differential migrants. We examined latitudinal variation in sex and age classes of wintering Pacific Black Brant (Branta bernicla nigricans). Brant are distributed along a wide latitudinal gradient from Alaska to Mexico during the winter. Accordingly, migration distances for brant using different wintering locations are highly variable and winter settlement patterns are likely associated with a spatially variable food resource. We used resightings of brant banded in southwestern Alaska to examine sex and age ratios of birds wintering at Boundary Bay in British Columbia, and at San Quintin Bay, Ojo de Liebre Lagoon, and San Ignacio Lagoon in Baja California from 1998 to 2000. Sex ratios were similar among wintering locations for adults and were consistent with the mating strategy of geese. The distribution of juveniles varied among wintering areas, with greater proportions of juveniles observed at northern (San Quintin Bay and Ojo de Liebre Lagoon) than at southern (San Ignacio Lagoon) locations in Baja California. We suggest that age-related variation in the winter distribution of Pacific Black Brant is mediated by variation in productivity among individuals at different wintering locations and by social interactions among wintering family groups.

  5. CONSERTING: integrating copy number analysis with structural variation detection

    PubMed Central

    Chen, Xiang; Gupta, Pankaj; Wang, Jianmin; Nakitandwe, Joy; Roberts, Kathryn; Dalton, James D.; Parker, Matthew; Patel, Samir; Holmfeldt, Linda; Payne, Debbie; Easton, John; Ma, Jing; Rusch, Michael; Wu, Gang; Patel, Aman; J. Baker, Suzanne; Dyer, Michael A.; Shurtleff, Sheila; Espy, Stephen; Pounds, Stanley; Downing, James R.; Ellison, David W.; Mullighan, Charles G.; Zhang, Jinghui

    2015-01-01

    We developed Copy Number Segmentation by Regression Tree in Next Generation Sequencing (CONSERTING), a novel algorithm for detecting somatic copy number alteration (CNA) using whole-genome sequencing (WGS) data. CONSERTING performs iterative analysis of segmentation by read depth change and localized structural variation detection, achieving high accuracy and sensitivity. Analysis of 43 pediatric and adult cancer genomes revealed novel oncogenic CNAs, complex re-arrangements and subclonal CNAs missed by alternative approaches. PMID:25938371

  6. Controls-structures integrated design optimization with shape variations

    NASA Technical Reports Server (NTRS)

    Koganti, Gopichand; Hou, Gene

    1993-01-01

    The shape design variables have been introduced into the set of design variables of the Controls-Structure Integrated (CSI) Design of space-structures. The importance of the shape variations in improving the design (obtained with only control and sizing variables) has been aptly illustrated. Two different types of design variables that describe the shape variations of the structure have been introduced. In the first case, the nodal coordinates have been considered as design variables. This has the inherent difficulty of having too many design variables. This not only is time consuming but also memory intensive and may not yield a manufacturable shape to the structure. The second approach has been introduced to overcome this difficulty. The structure is allowed to vary in a particular pre defined pattern. The coefficients of these patterns are considered as the shape design variables. The eigenvalue and eigenvector sensitivity equations with respect to these coefficient design variables have been developed and are used to approximate the eigenvalues and eigenvectors in a perturbed design.

  7. NET amyloidogenic backbone in human activated neutrophils.

    PubMed

    Pulze, L; Bassani, B; Gini, E; D'Antona, P; Grimaldi, A; Luini, A; Marino, F; Noonan, D M; Tettamanti, G; Valvassori, R; de Eguileor, M

    2016-03-01

    Activated human neutrophils produce a fibrillar DNA network [neutrophil extracellular traps (NETs)] for entrapping and killing bacteria, fungi, protozoa and viruses. Our results suggest that the neutrophil extracellular traps show a resistant amyloidogenic backbone utilized for addressing reputed proteins and DNA against the non-self. The formation of amyloid fibrils in neutrophils is regulated by the imbalance of reactive oxygen species (ROS) in the cytoplasm. The intensity and source of the ROS signal is determinant for promoting stress-associated responses such as amyloidogenesis and closely related events: autophagy, exosome release, activation of the adrenocorticotrophin hormone/α-melanocyte-stimulating hormone (ACTH/α-MSH) loop and synthesis of specific cytokines. These interconnected responses in human activated neutrophils, that have been evaluated from a morphofunctional and quantitative viewpoint, represent primitive, but potent, innate defence mechanisms. In invertebrates, circulating phagocytic immune cells, when activated, show responses similar to those described previously for activated human neutrophils. Invertebrate cells within endoplasmic reticulum cisternae produce a fibrillar material which is then assembled into an amyloidogenic scaffold utilized to convey melanin close to the invader. These findings, in consideration to the critical role played by NET in the development of several pathologies, could explain the structural resistance of these scaffolds and could provide the basis for developing new diagnostic and therapeutic approaches in immunomediated diseases in which the innate branch of the immune system has a pivotal role. PMID:26462606

  8. Variation in compound eye structure: effects of diet and family.

    PubMed

    Merry, Justin W; Kemp, Darrell J; Rutowski, Ronald L

    2011-07-01

    Studies of compound eyes have revealed that variation in eye structure can substantially affect visual performance. Here, we investigate the degree to which a stressful rearing environment, which decreases body size, affects the eye phenotype. Full siblings of the Orange Sulphur butterfly, Colias eurytheme, were collected from known parents and split within families among two diet treatments that varied in quality. In both sexes, individuals reared on the high-quality diet had larger eye height and anterior facet diameter, and therefore, by inference, superior vision. However, relative to their reduced body size, individuals reared on low-quality diet had proportionally larger eyes and facets than individuals reared on high-quality diet. We interpret this finding as evidence that butterflies encountering nutritional stress increased proportional investment in eye development to reduce loss of visual performance. We also found significant broad-sense genetic variation underlying eye structure in both males and females, and report novel heritability estimates for eye height and facet diameter. Surprisingly, there was greater genetic variation in eye height among males than among females, despite apparently stronger directional selection on male vision. We discuss the implications of these data for our understanding of eye development and evolution. PMID:21729063

  9. Increasing Sequence Diversity with Flexible Backbone Protein Design: The Complete Redesign of a Protein Hydrophobic Core

    SciTech Connect

    Murphy, Grant S.; Mills, Jeffrey L.; Miley, Michael J.; Machius, Mischa; Szyperski, Thomas; Kuhlman, Brian

    2015-10-15

    Protein design tests our understanding of protein stability and structure. Successful design methods should allow the exploration of sequence space not found in nature. However, when redesigning naturally occurring protein structures, most fixed backbone design algorithms return amino acid sequences that share strong sequence identity with wild-type sequences, especially in the protein core. This behavior places a restriction on functional space that can be explored and is not consistent with observations from nature, where sequences of low identity have similar structures. Here, we allow backbone flexibility during design to mutate every position in the core (38 residues) of a four-helix bundle protein. Only small perturbations to the backbone, 12 {angstrom}, were needed to entirely mutate the core. The redesigned protein, DRNN, is exceptionally stable (melting point >140C). An NMR and X-ray crystal structure show that the side chains and backbone were accurately modeled (all-atom RMSD = 1.3 {angstrom}).

  10. Atomic Clocks and Variations of the FIne Structure Constant

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute

    1995-01-01

    We describe a new test for possible variations of the fine structure constant alpha by comparisons of rates between clocks based on hyperfine transitions in alkali atoms with different atomic number Z. H-maser, Cs, and Hg(+) clocks have a different dependence on alpha via relativistic contributions of order (Z-alpha)(sup 2). Recent H-maser vs Hg(+) clock comparison data improve laboratory limits on a time variation by 100-fold to give dot-alpha less than or equal to 3.7 x 10(exp -14)/yr. Future laser cooled clocks (Be(+), Rb, Cs, Hg(+), etc.), when compared, will yield the most sensitive of all tests for dot-alpha/alpha.

  11. Variational structure of inverse problems in wave propagation and vibration

    SciTech Connect

    Berryman, J.G.

    1995-03-01

    Practical algorithms for solving realistic inverse problems may often be viewed as problems in nonlinear programming with the data serving as constraints. Such problems are most easily analyzed when it is possible to segment the solution space into regions that are feasible (satisfying all the known constraints) and infeasible (violating some of the constraints). Then, if the feasible set is convex or at least compact, the solution to the problem will normally lie on the boundary of the feasible set. A nonlinear program may seek the solution by systematically exploring the boundary while satisfying progressively more constraints. Examples of inverse problems in wave propagation (traveltime tomography) and vibration (modal analysis) will be presented to illustrate how the variational structure of these problems may be used to create nonlinear programs using implicit variational constraints.

  12. Interplay among side chain sequence, backbone composition, and residue rigidification in polypeptide folding and assembly

    PubMed Central

    Horne, W. Seth; Price, Joshua L.; Gellman, Samuel H.

    2008-01-01

    The extent to which polypeptide conformation depends on side-chain composition and sequence has been widely studied, but less is known about the importance of maintaining an α-amino acid backbone. Here, we examine a series of peptides with backbones that feature different repeating patterns of α- and β-amino acid residues but an invariant side-chain sequence. In the pure α-backbone, this sequence corresponds to the previously studied peptide GCN4-pLI, which forms a very stable four-helix bundle quaternary structure. Physical characterization in solution and crystallographic structure determination show that a variety of α/β-peptide backbones can adopt sequence-encoded quaternary structures similar to that of the α prototype. There is a loss in helix bundle stability upon β-residue incorporation; however, stability of the quaternary structure is not a simple function of β-residue content. We find that cyclically constrained β-amino acid residues can stabilize the folds of α/β-peptide GCN4-pLI analogues and restore quaternary structure formation to backbones that are predominantly unfolded in the absence of cyclic residues. Our results show a surprising degree of plasticity in terms of the backbone compositions that can manifest the structural information encoded in a sequence of amino acid side chains. These findings offer a framework for the design of nonnatural oligomers that mimic the structural and functional properties of proteins. PMID:18587049

  13. Mapping the backbone of science.

    SciTech Connect

    Klavans, Richard; BÞorner, Katy; Boyack, Kevin W.

    2004-11-01

    This paper presents a new map representing the structure of all of science, based on journal articles, including both the natural and social sciences. Similar to cartographic maps of our world, the map of science provides a bird's eye view of today's scientific landscape. It can be used to visually identify major areas of science, their size, similarity, and interconnectedness. In order to be useful, the map needs to be accurate on a local and on a global scale. While our recent work has focused on the former aspect, this paper summarizes results on how to achieve structural accuracy. Eight alternative measures of journal similarity were applied to a data set of 7,121 journals covering over 1 million documents in the combined Science Citation and Social Science Citation Indexes. For each journal similarity measure we generated two-dimensional spatial layouts using the force-directed graph layout tool, VxOrd. Next, mutual information values were calculated for each graph at different clustering levels to give a measure of structural accuracy for each map. The best co-citation and inter-citation maps according to local and structural accuracy were selected and are presented and characterized. These two maps are compared to establish robustness. The inter-citation map is then used to examine linkages between disciplines. Biochemistry appears as the most interdisciplinary discipline in science.

  14. Crustal structure in and around the Onikobe geothermal area, northeastern Honshu, Japan, inferred from the spatial variation of coda decay

    NASA Astrophysics Data System (ADS)

    Hasemi, Akiko; Miura, Hidetoshi; Ishizawa, Mari; Kosuga, Masahiro; Umino, Norihito; Hasegawa, Akira

    2015-07-01

    The Onikobe area is an active geothermal area situated in the Ou backbone range of northeastern Honshu, Japan. It is home to calderas from the Tertiary to Quaternary eras and active volcanoes. A systematic spatial variation of Qc has been found in this area: Qc values are lower at stations in and around calderas than at other stations. The amplitude of coda waves with high Qcs decreases more slowly after a lapse time of around 7-10 s than that with low Qcs. In the present study, to determine causes for these coda decay variations, coda envelopes were synthesized in a structure model in which high attenuation zones existed beneath the Onikobe and Sanzugawa calderas and where scattering coefficients were higher in the lower crust than in the upper crust. Using hypocenters shallower than 10 km, envelopes were calculated for 256 station-hypocenter pairs with epicentral distances of less than 10 km. It was assumed that the coda waves were composed of S-S scattered waves, and that the scattering was single and isotropic. The observed features of the Qc distribution were reproduced in the synthesis, and synthesized envelopes were found to mostly coincide with observed decay curves. The top of high attenuation zones was thus estimated as being deeper than 7.5 km. The structure assumed for the synthesis was consistent with that of previous studies. We consider that the structure model used was appropriate, and that high attenuation zones beneath calderas and the reflective lower crust caused the spatial variation of the Qc and decay curves in the Onikobe area. We also consider that studies using coda decay would be beneficial in detecting high attenuation zones and the reflective lower crust.

  15. Genome Editing of Structural Variations: Modeling and Gene Correction.

    PubMed

    Park, Chul-Yong; Sung, Jin Jea; Kim, Dong-Wook

    2016-07-01

    The analysis of chromosomal structural variations (SVs), such as inversions and translocations, was made possible by the completion of the human genome project and the development of genome-wide sequencing technologies. SVs contribute to genetic diversity and evolution, although some SVs can cause diseases such as hemophilia A in humans. Genome engineering technology using programmable nucleases (e.g., ZFNs, TALENs, and CRISPR/Cas9) has been rapidly developed, enabling precise and efficient genome editing for SV research. Here, we review advances in modeling and gene correction of SVs, focusing on inversion, translocation, and nucleotide repeat expansion. PMID:27016031

  16. Trabecular bone structural variation throughout the human lower limb.

    PubMed

    Saers, Jaap P P; Cazorla-Bak, Yasmin; Shaw, Colin N; Stock, Jay T; Ryan, Timothy M

    2016-08-01

    Trabecular bone is responsive to mechanical loading, and thus may be a useful tool for interpreting past behaviour from fossil morphology. However, the ability to meaningfully interpret variation in archaeological and hominin trabecular morphology depends on the extent to which trabecular bone properties are integrated throughout the postcranium or are locally variable in response to joint specific loading. We investigate both of these factors by comparing trabecular bone throughout the lower limb between a group of highly mobile foragers and two groups of sedentary agriculturalists. Trabecular bone structure is quantified in four volumes of interest placed within the proximal and distal joints of the femur and tibia. We determine how trabecular structures correspond to inferred behavioural differences between populations and whether the patterns are consistent throughout the limb. A significant correlation was found between inferred mobility level and trabecular bone structure in all volumes of interest along the lower limb. The greater terrestrial mobility of foragers is associated with higher bone volume fraction, and thicker and fewer trabeculae (lower connectivity density). In all populations, bone volume fraction decreases while anisotropy increases proximodistally throughout the lower limb. This observation mirrors reductions in cortical bone mass resulting from proximodistal limb tapering. The reduction in strength associated with reduced bone volume fraction may be compensated for by the increased anisotropy in the distal tibia. A similar pattern of trabecular structure is found throughout the lower limb in all populations, upon which a signal of terrestrial mobility appears to be superimposed. These results support the validity of using lower limb trabecular bone microstructure to reconstruct terrestrial mobility levels from the archaeological and fossil records. The results further indicate that care should be taken to appreciate variation resulting from

  17. Alpha-helical stabilization by side chain shielding of backbone hydrogen bonds.

    PubMed

    García, Angel E; Sanbonmatsu, Kevin Y

    2002-03-01

    We study atomic models of the thermodynamics of the structural transition of peptides that form alpha-helices. The effect of sequence variation on alpha-helix formation for alanine-rich peptides, Ac-Ala21-methyl amide (A21) and Ac-A5 (AAARA)3A-methyl amide (Fs peptide), is investigated by atomic simulation studies of the thermodynamics of the helix-coil transition in explicit water. The simulations show that the guanidinium group in the Arg side chains in the Fs peptide interacts with the carbonyl group four amino acids upstream in the chain and desolvates backbone hydrogen bonds. This desolvation can be directly correlated with a higher probability of hydrogen bond formation. We find that Fs has higher helical content than A21 at all temperatures. A small modification in the amber force field reproduces the experimental helical content and helix-coil transition temperatures for the Fs peptide. PMID:11867710

  18. Statistical Analysis of RNA Backbone

    PubMed Central

    Hershkovitz, Eli; Sapiro, Guillermo; Tannenbaum, Allen; Williams, Loren Dean

    2009-01-01

    Local conformation is an important determinant of RNA catalysis and binding. The analysis of RNA conformation is particularly difficult due to the large number of degrees of freedom (torsion angles) per residue. Proteins, by comparison, have many fewer degrees of freedom per residue. In this work, we use and extend classical tools from statistics and signal processing to search for clusters in RNA conformational space. Results are reported both for scalar analysis, where each torsion angle is separately studied, and for vectorial analysis, where several angles are simultaneously clustered. Adapting techniques from vector quantization and clustering to the RNA structure, we find torsion angle clusters and RNA conformational motifs. We validate the technique using well-known conformational motifs, showing that the simultaneous study of the total torsion angle space leads to results consistent with known motifs reported in the literature and also to the finding of new ones. PMID:17048391

  19. MCBT: Multi-Hop Cluster Based Stable Backbone Trees for Data Collection and Dissemination in WSNs.

    PubMed

    Shin, Inyoung; Kim, Moonseong; Mutka, Matt W; Choo, Hyunseung; Lee, Tae-Jin

    2009-01-01

    We propose a stable backbone tree construction algorithm using multi-hop clusters for wireless sensor networks (WSNs). The hierarchical cluster structure has advantages in data fusion and aggregation. Energy consumption can be decreased by managing nodes with cluster heads. Backbone nodes, which are responsible for performing and managing multi-hop communication, can reduce the communication overhead such as control traffic and minimize the number of active nodes. Previous backbone construction algorithms, such as Hierarchical Cluster-based Data Dissemination (HCDD) and Multicluster, Mobile, Multimedia radio network (MMM), consume energy quickly. They are designed without regard to appropriate factors such as residual energy and degree (the number of connections or edges to other nodes) of a node for WSNs. Thus, the network is quickly disconnected or has to reconstruct a backbone. We propose a distributed algorithm to create a stable backbone by selecting the nodes with higher energy or degree as the cluster heads. This increases the overall network lifetime. Moreover, the proposed method balances energy consumption by distributing the traffic load among nodes around the cluster head. In the simulation, the proposed scheme outperforms previous clustering schemes in terms of the average and the standard deviation of residual energy or degree of backbone nodes, the average residual energy of backbone nodes after disseminating the sensed data, and the network lifetime. PMID:22454570

  20. Geographic variation and genetic structure in Spotted Owls

    USGS Publications Warehouse

    Haig, Susan M.; Wagner, R.S.; Forsman, E.D.; Mullins, Thomas D.

    2001-01-01

    We examined genetic variation, population structure, and definition of conservation units in Spotted Owls (Strix occidentalis). Spotted Owls are mostly non-migratory, long-lived, socially monogamous birds that have decreased population viability due to their occupation of highly-fragmented late successional forests in western North America. To investigate potential effects of habitat fragmentation on population structure, we used random amplified polymorphic DNA (RAPD) to examine genetic variation hierarchically among local breeding areas, subregional groups, regional groups, and subspecies via sampling of 21 breeding areas (276 individuals) among the three subspecies of Spotted Owls. Data from 11 variable bands suggest a significant relationship between geographic distance among local breeding groups and genetic distance (Mantel r = 0.53, P < 0.02) although multi-dimensional scaling of three significant axes did not identify significant grouping at any hierarchical level. Similarly, neighbor-joining clustering of Manhattan distances indicated geographic structure at all levels and identified Mexican Spotted Owls as a distinct clade. RAPD analyses did not clearly differentiate Northern Spotted Owls from California Spotted Owls. Among Northern Spotted Owls, estimates of population differentiation (FST) ranged from 0.27 among breeding areas to 0.11 among regions. Concordantly, within-group agreement values estimated via multi-response permutation procedures of Jaccarda??s distances ranged from 0.22 among local sites to 0.11 among regions. Pairwise comparisons of FST and geographic distance within regions suggested only the Klamath region was in equilibrium with respect to gene flow and genetic drift. Merging nuclear data with recent mitochondrial data provides support for designation of an Evolutionary Significant Unit for Mexican Spotted Owls and two overlapping Management Units for Northern and California Spotted Owls.

  1. Protein-protein docking with backbone flexibility.

    PubMed

    Wang, Chu; Bradley, Philip; Baker, David

    2007-10-19

    Computational protein-protein docking methods currently can create models with atomic accuracy for protein complexes provided that the conformational changes upon association are restricted to the side chains. However, it remains very challenging to account for backbone conformational changes during docking, and most current methods inherently keep monomer backbones rigid for algorithmic simplicity and computational efficiency. Here we present a reformulation of the Rosetta docking method that incorporates explicit backbone flexibility in protein-protein docking. The new method is based on a "fold-tree" representation of the molecular system, which seamlessly integrates internal torsional degrees of freedom and rigid-body degrees of freedom. Problems with internal flexible regions ranging from one or more loops or hinge regions to all of one or both partners can be readily treated using appropriately constructed fold trees. The explicit treatment of backbone flexibility improves both sampling in the vicinity of the native docked conformation and the energetic discrimination between near-native and incorrect models. PMID:17825317

  2. WDM backbone network with guaranteed performance planning

    NASA Astrophysics Data System (ADS)

    Liang, Peng; Sheng, Wang; Zhong, Xusi; Li, Lemin

    2005-11-01

    Wavelength-Division multiplexing (WDM), which allows a single fibre to carry multiple signals simultaneously, has been widely used to increase link capacity and is a promising technology in backbone transport network. But designing such WDM backbone network is hard for two reasons, one is the uncertainty of future traffic demand, the other is difficulty of planning of the backup resource for failure conditions. As a result, enormous amount of link capacity for the network has to be provided for the network. Recently, a new approach called Valiant Load-Balanced Scheme (VLBS) has been proposed to design the WDM backbone network. The network planned by Valiant Load-Balanced Scheme is insensitive to the traffic and continues to guarantee performance under a user defined number of link or node failures. In this paper, the Valiant Load-Balanced Scheme (VLBS) for backbone network planning has been studied and a new Valiant Load-Balanced Scheme has been proposed. Compared with the early work, the new Valiant Load-Balanced Scheme is much more general and can be used for the computation of the link capacity of both homogeneous and heterogeneous networks. The abbreviation for the general Valiant Load-Balanced Scheme is GVLBS. After a brief description of the VLBS, we will give the detail derivation of the GVLBS. The central concept of the derivation of GVLBS is transforming the heterogeneous network into a homogeneous network, and taking advantage of VLBS to get GVLBS. Such transformation process is described and the derivation and analysis of GVLBS for link capacity under normal and failure conditions is also given. The numerical results show that GVLBS can compute the minimum link capacity required for the heterogeneous backbone network under different conditions (normal or failure).

  3. Morphological structure and variations of lumbar plexus in human fetuses.

    PubMed

    Yasar, Soner; Kaya, Serdar; Temiz, Cağlar; Tehli, Ozkan; Kural, Cahit; Izci, Yusuf

    2014-04-01

    The objective of this study is to study the anatomy of lumbar plexus on human fetuses and to establish its morphometric characteristics and differences compared with adults. Twenty lumbar plexus of 10 human fetal cadavers in different gestational ages and genders were dissected. Lumbar spinal nerves, ganglions, and peripheral nerves were exposed. Normal anatomical structure and variations of lumbar plexus were investigated and morphometric analyses were performed. The diameters of lumbar spinal nerves increased from L1 to L4. The thickest nerve forming the plexus was femoral nerve, the thinnest was ilioinguinal nerve, the longest nerve through posterior abdominal wall was iliohypogastric nerve, and the shortest nerve was femoral nerve. Each plexus had a single furcal nerve and this arose from L4 nerve in all fetuses. No prefix or postfix plexus variation was observed. In two plexuses, L1 nerve was in the form of a single branch. Also, in two plexuses, genitofemoral nerve arose only from L2 nerve. Accessory obturator nerve was observed in four plexuses. According to these findings, the morphological pattern of the lumbar plexus in the fetus was found to be very similar to the lumbar plexus in adults. PMID:22696243

  4. The challenges and importance of structural variation detection in livestock

    PubMed Central

    Bickhart, Derek M.; Liu, George E.

    2014-01-01

    Recent studies in humans and other model organisms have demonstrated that structural variants (SVs) comprise a substantial proportion of variation among individuals of each species. Many of these variants have been linked to debilitating diseases in humans, thereby cementing the importance of refining methods for their detection. Despite progress in the field, reliable detection of SVs still remains a problem even for human subjects. Many of the underlying problems that make SVs difficult to detect in humans are amplified in livestock species, whose lower quality genome assemblies and incomplete gene annotation can often give rise to false positive SV discoveries. Regardless of the challenges, SV detection is just as important for livestock researchers as it is for human researchers, given that several productive traits and diseases have been linked to copy number variations (CNVs) in cattle, sheep, and pig. Already, there is evidence that many beneficial SVs have been artificially selected in livestock such as a duplication of the agouti signaling protein gene that causes white coat color in sheep. In this review, we will list current SV and CNV discoveries in livestock and discuss the problems that hinder routine discovery and tracking of these polymorphisms. We will also discuss the impacts of selective breeding on CNV and SV frequencies and mention how SV genotyping could be used in the future to improve genetic selection. PMID:24600474

  5. Altitude variations of the peak auroral emissions within auroral structures

    NASA Astrophysics Data System (ADS)

    Sangalli, L.; Partamies, N.; Gustavsson, B.

    2014-12-01

    The MIRACLE network monitors auroral activity in the Fennoscandian sector of Europe. Network stations cover the range of 55° to 57° magnetic latitude North and span two hours in magnetic local time. Some of the MIRACLE network stations include digital all-sky cameras (ASC) with overlapping field-of-views located at the latitude aurora occurs. The ASCs in this network operate at three different wavelengths: 427.8 nm (blue line), 557.7 nm (green line) and 630.0 nm (red line). These wavelengths are selected using narrow band filters. The new ASC systems are based on electron multiplying CCDs (emCCD), which allow higher time and spatial resolutions. The peak auroral emission altitude is determined using two ASC images from a station pair. Different auroral events are used to evaluate the altitude variations of the peak auroral emissions within auroral structures and its evolution in time.

  6. Altitude Variations of the Peak Auroral Emissions within Auroral Structures

    NASA Astrophysics Data System (ADS)

    Sangalli, L.

    2015-12-01

    The MIRACLE network monitors auroral activity in the Fennoscandian sector of Europe. Network stations cover the range of 55° to 57° magnetic latitude North and span two hours in magnetic local time. Some of the MIRACLE network stations include digital all-sky cameras (ASC) with overlapping field-of-views located at the latitude aurora occurs. The ASCs in this network operate at three different wavelengths: 427.8 nm (blue line), 557.7 nm (green line) and 630.0 nm (red line). These wavelengths are selected using narrow band filters. The new ASC systems are based on electron multiplying CCDs (emCCD), which allow higher time and spatial resolutions. The peak auroral emission altitude is determined using two ASC images from a station pair. Different auroral events are used to evaluate the altitude variations of the peak auroral emissions within auroral structures and its evolution in time.

  7. Symplectic structures related with higher order variational problems

    NASA Astrophysics Data System (ADS)

    Kijowski, Jerzy; Moreno, Giovanni

    2015-06-01

    In this paper, we derive the symplectic framework for field theories defined by higher order Lagrangians. The construction is based on the symplectic reduction of suitable spaces of iterated jets. The possibility of reducing a higher order system of partial differential equations to a constrained first-order one, the symplectic structures naturally arising in the dynamics of a first-order Lagrangian theory, and the importance of the Poincaré-Cartan form for variational problems, are all well-established facts. However, their adequate combination corresponding to higher order theories is missing in the literature. Here we obtain a consistent and truly finite-dimensional canonical formalism, as well as a higher order version of the Poincaré-Cartan form. In our exposition, the rigorous global proofs of the main results are always accompanied by their local coordinate descriptions, indispensable to work out practical examples.

  8. Extensive Natural Variation in Arabidopsis Seed Mucilage Structure

    PubMed Central

    Voiniciuc, Cătălin; Zimmermann, Eva; Schmidt, Maximilian Heinrich-Wilhelm; Günl, Markus; Fu, Lanbao; North, Helen M.; Usadel, Björn

    2016-01-01

    Hydrated Arabidopsis thaliana seeds are coated by a gelatinous layer called mucilage, which is mainly composed of cell wall polysaccharides. Since mucilage is rich in pectin, its architecture can be visualized with the ruthenium red (RR) dye. We screened the seeds of around 280 Arabidopsis natural accessions for variation in mucilage structure, and identified a large number of novel variants that differed from the Col-0 wild-type. Most of the accessions released smaller RR-stained capsules compared to the Col-0 reference. By biochemically characterizing the phenotypes of 25 of these accessions in greater detail, we discovered that distinct changes in polysaccharide structure resulted in gelatinous coatings with a deceptively similar appearance. Monosaccharide composition analysis of total mucilage extracts revealed a remarkable variation (from 50 to 200% of Col-0 levels) in the content of galactose and mannose, which are important subunits of heteromannan. In addition, most of the natural variants had altered Pontamine Fast Scarlet 4B staining of cellulose and significantly reduced birefringence of crystalline structures. This indicates that the production or organization of cellulose may be affected by the presence of different amounts of hemicellulose. Although, the accessions described in this study were primarily collected from Western Europe, they form five different phenotypic classes based on the combined results of our experiments. This suggests that polymorphisms at multiple loci are likely responsible for the observed mucilage structure. The transcription of MUCILAGE-RELATED10 (MUCI10), which encodes a key enzyme for galactoglucomannan synthesis, was severely reduced in multiple variants that phenocopied the muci10-1 insertion mutant. Although, we could not pinpoint any causal polymorphisms in this gene, constitutive expression of fluorescently-tagged MUCI10 proteins complemented the mucilage defects of a muci10-like accession. This leads us to

  9. Vertical variations in the turbulent structure over vineyards

    NASA Astrophysics Data System (ADS)

    Alfieri, J. G.; Kustas, W. P.; Prueger, J. H.; Hipps, L.

    2015-12-01

    Due to their highly-structured canopy, turbulent characteristics within and above vineyards, may not conform to those exhibited by other agricultural and natural ecosystems. As a result, the current generation of land surface models may not adequately describe the turbulent exchange of heat and moisture between the atmosphere and the surface over vineyards. Using data collected during 2014 as a part of the Grape Remote Sensing Atmospheric Profiling and Evapotranspiration Experiment (GRAPEX), an ongoing multi-agency field campaign conducted in the Central Valley of California, this study sought to characterize the variations in the turbulent structure over vineyards. Focusing on unstable daytime conditions, the study compared the turbulent structure at three above-canopy heights: 2.5 m, 3.75 m, and 8 m, agl. Both wavelet and Fourier-based spectral analysis of the wind velocity components indicates a strong tendency for the spectral peak to broaden and shift to lower frequencies as the measurement height increases. Also, beginning with the highest-frequency eddies, the turbulent structure at differing heights become increasingly decoupled as the distance between the measurements increases. In other terms, eddies contributing to a measurement at one height act independently of similarly-sized eddies at another height. As a result, the overall correlation between the turbulent flows measured at differing heights decreases exponential with increasing separation distance. While this effect was seen for all of the periods analyzed, the magnitude of the effect does appear to vary in response to the direction of the wind relative to the vineyard rows.

  10. Modeling (15)N NMR chemical shift changes in protein backbone with pressure.

    PubMed

    La Penna, Giovanni; Mori, Yoshiharu; Kitahara, Ryo; Akasaka, Kazuyuki; Okamoto, Yuko

    2016-08-28

    Nitrogen chemical shift is a useful parameter for determining the backbone three-dimensional structure of proteins. Empirical models for fast calculation of N chemical shift are improving their reliability, but there are subtle effects that cannot be easily interpreted. Among these, the effects of slight changes in hydrogen bonds, both intramolecular and with water molecules in the solvent, are particularly difficult to predict. On the other hand, these hydrogen bonds are sensitive to changes in protein environment. In this work, the change of N chemical shift with pressure for backbone segments in the protein ubiquitin is correlated with the change in the population of hydrogen bonds involving the backbone amide group. The different extent of interaction of protein backbone with the water molecules in the solvent is put in evidence. PMID:27586953

  11. Structural genomic variation in childhood epilepsies with complex phenotypes

    PubMed Central

    Helbig, Ingo; Swinkels, Marielle E M; Aten, Emmelien; Caliebe, Almuth; van 't Slot, Ruben; Boor, Rainer; von Spiczak, Sarah; Muhle, Hiltrud; Jähn, Johanna A; van Binsbergen, Ellen; van Nieuwenhuizen, Onno; Jansen, Floor E; Braun, Kees P J; de Haan, Gerrit-Jan; Tommerup, Niels; Stephani, Ulrich; Hjalgrim, Helle; Poot, Martin; Lindhout, Dick; Brilstra, Eva H; Møller, Rikke S; Koeleman, Bobby PC

    2014-01-01

    A genetic contribution to a broad range of epilepsies has been postulated, and particularly copy number variations (CNVs) have emerged as significant genetic risk factors. However, the role of CNVs in patients with epilepsies with complex phenotypes is not known. Therefore, we investigated the role of CNVs in patients with unclassified epilepsies and complex phenotypes. A total of 222 patients from three European countries, including patients with structural lesions on magnetic resonance imaging (MRI), dysmorphic features, and multiple congenital anomalies, were clinically evaluated and screened for CNVs. MRI findings including acquired or developmental lesions and patient characteristics were subdivided and analyzed in subgroups. MRI data were available for 88.3% of patients, of whom 41.6% had abnormal MRI findings. Eighty-eight rare CNVs were discovered in 71 out of 222 patients (31.9%). Segregation of all identified variants could be assessed in 42 patients, 11 of which were de novo. The frequency of all structural variants and de novo variants was not statistically different between patients with or without MRI abnormalities or MRI subcategories. Patients with dysmorphic features were more likely to carry a rare CNV. Genome-wide screening methods for rare CNVs may provide clues for the genetic etiology in patients with a broader range of epilepsies than previously anticipated, including in patients with various brain anomalies detectable by MRI. Performing genome-wide screens for rare CNVs can be a valuable contribution to the routine diagnostic workup in patients with a broad range of childhood epilepsies. PMID:24281369

  12. Brillouin resonance broadening due to structural variations in nanoscale waveguides

    NASA Astrophysics Data System (ADS)

    Wolff, C.; Van Laer, R.; Steel, M. J.; Eggleton, B. J.; Poulton, C. G.

    2016-02-01

    We study the impact of structural variations (that is slowly varying geometry aberrations and internal strain fields) on the width and shape of the stimulated Brillouin scattering (SBS) resonance in nanoscale waveguides. We find that they lead to an inhomogeneous resonance broadening through two distinct mechanisms: firstly, the acoustic frequency is directly influenced via mechanical nonlinearities; secondly, the optical wave numbers are influenced via the opto-mechanical nonlinearity leading to an additional acoustic frequency shift via the phase-matching condition. We find that this second mechanism is proportional to the opto-mechanical coupling and, hence, related to the SBS-gain itself. It is absent in intra-mode forward SBS, while it plays a significant role in backward scattering. In backward SBS increasing the opto-acoustic overlap beyond a threshold defined by the fabrication tolerances will therefore no longer yield the expected quadratic increase in overall Stokes amplification. Finally, we illustrate in a numerical example that in backward SBS and inter-mode forward SBS the existence of two broadening mechanisms with opposite sign also opens the possibility to compensate the effect of geometry-induced broadening. Our results can be transferred to other micro- and nano-structured waveguide geometries such as photonic crystal fibres.

  13. Variations in Upper Mantle Seismic Structure Across the Ethiopian Plateau

    NASA Astrophysics Data System (ADS)

    Weeraratne, D. S.; Solomon, S. C.; Nyblade, A. A.

    2006-05-01

    The Ethiopian plateau, disrupted by the Main Ethiopian Rift (MER) and adjacent to the nearby Red Sea spreading center, resides within a complex tectonic environment. We use Rayleigh wave phase velocity data from the Ethiopian Broadband Seismic Experiment to study the upper mantle seismic structure of the plateau. Dispersion curves indicate phase velocities that are significantly lower than other continental lithosphere by as much as 8% for periods between 18 and 91 s. Lateral velocity variations show a narrow low-velocity anomaly elongated in the NE-SW direction located within the rift boundaries. Phase velocities within the western and eastern plateau are ~6% higher than within the MER. Shear wave velocity inversions indicate a high-velocity lid that extends to 100 km ± 20 km depth and marks the base of the lithosphere. Azimuthal anisotropy within the western plateau is resolvable for periods up to 60 s; a 1.6% peak-to-peak amplitude gradually rotates in azimuth from NNE at short periods to NE at 60 s. This azimuthal rotation is consistent with lateral variations in the fast direction of SKS splitting studies between the rift and western plateau. The change in Rayleigh wave anisotropy at long periods indicates that the NE splitting direction observed within the western plateau may be due to a component of deep sublithospheric flow. We suggest that a transition in anisotropic fabric is controlled by the combined effects of aligned melt pockets within the MER and pre-existing Mozambique sutures at shallow lithospheric depths and asthenospheric flow parallel to plate spreading at greater depths. Our results may also be consistent with sublithospheric flow of mantle plume material that rises beneath the Ethiopian plateau and flows northeastward to the Red Sea spreading center.

  14. Backrub-like backbone simulation recapitulates natural protein conformational variability and improves mutant side-chain prediction

    PubMed Central

    Smith, Colin A.; Kortemme, Tanja

    2008-01-01

    Summary Incorporation of effective backbone sampling into protein simulation and design is an important step in increasing the accuracy of computational protein modeling. Recent analysis of high-resolution crystal structures has suggested a new model, termed backrub, to describe localized, hinge-like alternative backbone and side chain conformations observed in the crystal lattice. The model involves internal backbone rotations about axes between Cα atoms. Based on this observation, we have implemented a backrub-inspired sampling method in the Rosetta structure prediction and design program. We evaluate this model of backbone flexibility using three different tests. First, we show that Rosetta backrub simulations recapitulate the correlation between backbone and side-chain conformations in the high-resolution crystal structures upon which the model was based. As a second test of backrub sampling, we show that backbone flexibility improves the accuracy of predicting point-mutant side chain conformations over fixed backbone rotameric sampling alone. Finally, we show that backrub sampling of triosephosphate isomerase loop 6 can capture the ms/µs oscillation between the open and closed states observed in solution. Our results suggest that backrub sampling captures a sizable fraction of localized conformational changes that occur in natural proteins. Application of this simple model of backbone motions may significantly improve both protein design and atomistic simulations of localized protein flexibility. PMID:18547585

  15. Variational Reconstruction of Left Cardiac Structure from CMR Images

    PubMed Central

    Wan, Min; Huang, Wei; Zhang, Jun-Mei; Zhao, Xiaodan; Tan, Ru San; Wan, Xiaofeng; Zhong, Liang

    2015-01-01

    Cardiovascular Disease (CVD), accounting for 17% of overall deaths in the USA, is the leading cause of death over the world. Advances in medical imaging techniques make the quantitative assessment of both the anatomy and function of heart possible. The cardiac modeling is an invariable prerequisite for quantitative analysis. In this study, a novel method is proposed to reconstruct the left cardiac structure from multi-planed cardiac magnetic resonance (CMR) images and contours. Routine CMR examination was performed to acquire both long axis and short axis images. Trained technologists delineated the endocardial contours. Multiple sets of two dimensional contours were projected into the three dimensional patient-based coordinate system and registered to each other. The union of the registered point sets was applied a variational surface reconstruction algorithm based on Delaunay triangulation and graph-cuts. The resulting triangulated surfaces were further post-processed. Quantitative evaluation on our method was performed via computing the overlapping ratio between the reconstructed model and the manually delineated long axis contours, which validates our method. We envisage that this method could be used by radiographers and cardiologists to diagnose and assess cardiac function in patients with diverse heart diseases. PMID:26689551

  16. Variational Reconstruction of Left Cardiac Structure from CMR Images.

    PubMed

    Wan, Min; Huang, Wei; Zhang, Jun-Mei; Zhao, Xiaodan; Tan, Ru San; Wan, Xiaofeng; Zhong, Liang

    2015-01-01

    Cardiovascular Disease (CVD), accounting for 17% of overall deaths in the USA, is the leading cause of death over the world. Advances in medical imaging techniques make the quantitative assessment of both the anatomy and function of heart possible. The cardiac modeling is an invariable prerequisite for quantitative analysis. In this study, a novel method is proposed to reconstruct the left cardiac structure from multi-planed cardiac magnetic resonance (CMR) images and contours. Routine CMR examination was performed to acquire both long axis and short axis images. Trained technologists delineated the endocardial contours. Multiple sets of two dimensional contours were projected into the three dimensional patient-based coordinate system and registered to each other. The union of the registered point sets was applied a variational surface reconstruction algorithm based on Delaunay triangulation and graph-cuts. The resulting triangulated surfaces were further post-processed. Quantitative evaluation on our method was performed via computing the overlapping ratio between the reconstructed model and the manually delineated long axis contours, which validates our method. We envisage that this method could be used by radiographers and cardiologists to diagnose and assess cardiac function in patients with diverse heart diseases. PMID:26689551

  17. Electric field induced localization phenomena in a ladder network with superlattice configuration: Effect of backbone environment

    NASA Astrophysics Data System (ADS)

    Dutta, Paramita; Maiti, Santanu K.; Karmakar, S. N.

    2014-09-01

    Electric field induced localization properties of a tight-binding ladder network in presence of backbone sites are investigated. Based on Green's function formalism we numerically calculate two-terminal transport together with density of states for different arrangements of atomic sites in the ladder and its backbone. Our results lead to a possibility of getting multiple mobility edges which essentially plays a switching action between a completely opaque to fully or partly conducting region upon the variation of system Fermi energy, and thus, support in fabricating mesoscopic or DNA-based switching devices.

  18. AbDesign: an algorithm for combinatorial backbone design guided by natural conformations and sequences

    PubMed Central

    Lapidoth, Gideon D.; Baran, Dror; Pszolla, Gabriele M.; Norn, Christoffer; Alon, Assaf; Tyka, Michael D.; Fleishman, Sarel J.

    2016-01-01

    Computational design of protein function has made substantial progress, generating new enzymes, binders, inhibitors, and nanomaterials not previously seen in nature. However, the ability to design new protein backbones for function – essential to exert control over all polypeptide degrees of freedom – remains a critical challenge. Most previous attempts to design new backbones computed the mainchain from scratch. Here, instead, we describe a combinatorial backbone and sequence optimization algorithm called AbDesign, which leverages the large number of sequences and experimentally determined molecular structures of antibodies to construct new antibody models, dock them against target surfaces and optimize their sequence and backbone conformation for high stability and binding affinity. We used the algorithm to produce antibody designs that target the same molecular surfaces as nine natural, high-affinity antibodies; in six the backbone conformation at the core of the antibody binding surface is similar to the natural antibody targets, and in several cases sequence and sidechain conformations recapitulate those seen in the natural antibodies. In the case of an anti-lysozyme antibody, designed antibody CDRs at the periphery of the interface, such as L1 and H2, show a greater backbone conformation diversity than the CDRs at the core of the interface, and increase the binding surface area compared to the natural antibody, which could enhance affinity and specificity. PMID:25670500

  19. Conceptual Structure and Semantic Variation for Spatial Relations

    ERIC Educational Resources Information Center

    Khetarpal, Naveen Mohan

    2012-01-01

    Semantic categories across languages appear to reflect both universal conceptual tendencies and linguistic convention. To accommodate this pattern of constrained variation, many theories assume the existence of a universal conceptual space and explain cross-language variation in category extension as language-specific partitions of that space.…

  20. DNA Backbone BI/BII Distribution and Dynamics in E2 Protein-Bound Environment Determined by Molecular Dynamics Simulations.

    PubMed

    Robertson, James C; Cheatham, Thomas E

    2015-11-01

    BI and BII conformational substates in the DNA backbone typify canonical B-form DNA. The BI and BII substates are important for structural variation of DNA and have been implicated in protein-nucleic acid recognition mechanisms. Recent refinements have been made to nucleic acid force fields employed in molecular dynamics simulations that demonstrate a better ability to model the BI and BII states, leading to overall improved modeling of DNA structure and dynamics. These force field improvements have yet to be significantly demonstrated in the context of a protein-DNA system extended to long time scales. Our plan was to run molecular dynamics simulations of a well-studied protein-DNA system (E2-DNA) into the microsecond time scale and determine the ability of the force field to populate BII states in the DNA backbone consistent with dinucleotide steps crystallized in the BII conformation. The results showed that the dinucleotide steps in the E2-DNA complex with the highest BII populations from simulation trajectories corresponded to the dinucleotide steps crystallized in the BII state and that decoy BI and BII states converge to the same results within approximately one microsecond. PMID:26482568

  1. Electron Transfer Dissociation Reveals Changes in the Cleavage Frequencies of Backbone Bonds Distant to Amide-to-Ester Substitutions in Polypeptides

    NASA Astrophysics Data System (ADS)

    Hansen, Thomas A.; Jung, Hye R.; Kjeldsen, Frank

    2011-11-01

    Interrogation of electron transfer dissociation (ETD) mass spectra of peptide amide-to-ester backbone bond substituted analogues (depsipeptides) reveals substantial differences in the entire backbone cleavage frequencies. It is suggested that the point permutation of backbone bonds leads to changes in the predominant ion structures by removal/weakening of specific hydrogen bonding. ETD responds to these changes by redistributing the cleavage frequencies of the peptide backbone bonds. In comparison, no distinction between depsi-/peptide was observed using collision-activated dissociation, which is consistent with a general unfolding and elimination of structural information of these ions. These results should encourage further exploration of depsipeptides for gas-phase structural characterization.

  2. A comparison of the structures of some 2- and 3-substituted chromone derivatives: a structural study on the importance of the secondary carboxamide backbone for the inhibitory activity of MAO-B.

    PubMed

    Gomes, Ligia R; Low, John Nicolson; Cagide, Fernando; Gaspar, Alexandra; Borges, Fernanda

    2015-11-01

    The crystal structures of the 3-substituted tertiary chromone carboxamide derivative, C17H13NO3, N-methyl-4-oxo-N-phenyl-4H-chromene-3-carboxamide (1), and the chromone carbonyl pyrrolidine derivatives, C14H13NO3, 3-(pyrrolidine-1-carbon-yl)-4H-chromen-4-one (3) and 2-(pyrrolidine-1-carbon-yl)-4H-chromen-4-one (4) have been determined. Their structural features are discussed and compared with similar compounds namely with respect to their MAO-B inhibitory activities. The chromone carboxamide presents a -syn conformation with the aromatic rings twisted with respect to each other [the dihedral angle between the mean planes of the chromone system and the exocyclic phenyl ring is 58.48 (8)°]. The pyrrolidine derivatives also display a significant twist: the dihedral angles between the chromone system and the best plane formed by the pyrrolidine atoms are 48.9 (2) and 23.97 (12)° in (3) and (4), respectively. Compound (3) shows a short C-H⋯O intra-molecular contact forming an S(7) ring. The supra-molecular structures for each compound are defined by weak C-H⋯O hydrogen bonds, which link the mol-ecules into chains and sheets. The Cambridge Structural Database gave 45 hits for compounds with a pyrrolidinecarbonyl group. A simple statistical analysis of their geometric parameters is made in order to compare them with those of the mol-ecules determined in the present work. PMID:26594490

  3. A comparison of the structures of some 2- and 3-substituted chromone derivatives: a structural study on the importance of the secondary carboxamide backbone for the inhibitory activity of MAO-B

    PubMed Central

    Gomes, Ligia R.; Low, John Nicolson; Cagide, Fernando; Gaspar, Alexandra; Borges, Fernanda

    2015-01-01

    The crystal structures of the 3-substituted tertiary chromone carboxamide derivative, C17H13NO3, N-methyl-4-oxo-N-phenyl-4H-chromene-3-carboxamide (1), and the chromone carbonyl pyrrolidine derivatives, C14H13NO3, 3-(pyrrolidine-1-carbon­yl)-4H-chromen-4-one (3) and 2-(pyrrolidine-1-carbon­yl)-4H-chromen-4-one (4) have been determined. Their structural features are discussed and compared with similar compounds namely with respect to their MAO-B inhibitory activities. The chromone carboxamide presents a –syn conformation with the aromatic rings twisted with respect to each other [the dihedral angle between the mean planes of the chromone system and the exocyclic phenyl ring is 58.48 (8)°]. The pyrrolidine derivatives also display a significant twist: the dihedral angles between the chromone system and the best plane formed by the pyrrolidine atoms are 48.9 (2) and 23.97 (12)° in (3) and (4), respectively. Compound (3) shows a short C—H⋯O intra­molecular contact forming an S(7) ring. The supra­molecular structures for each compound are defined by weak C—H⋯O hydrogen bonds, which link the mol­ecules into chains and sheets. The Cambridge Structural Database gave 45 hits for compounds with a pyrrolidinecarbonyl group. A simple statistical analysis of their geometric parameters is made in order to compare them with those of the mol­ecules determined in the present work. PMID:26594490

  4. Spiral structures and regularities in magnetic field variations and auroras

    NASA Astrophysics Data System (ADS)

    Feldstein, Y. I.; Gromova, L. I.; Förster, M.; Levitin, A. E.

    2012-02-01

    The conception of spiral shaped precipitation regions, where solar corpuscles penetrate the upper atmosphere, was introduced into geophysics by C. Störmer and K. Birkeland at the beginning of the last century. Later, in the course of the XX-th century, spiral distributions were disclosed and studied in various geophysical phenomena. Most attention was devoted to spiral shapes in the analysis of regularities pertaining to the geomagnetic activity and auroras. We review the historical succession of perceptions about the number and positions of spiral shapes, that characterize the spatial-temporal distribution of magnetic disturbances. We describe the processes in the upper atmosphere, which are responsible for the appearance of spiral patterns. We considered the zones of maximal aurora frequency and of maximal particle precipitation intensity, as offered in the literature, in their connection with the spirals. We discuss the current system model, that is closely related to the spirals and that appears to be the source for geomagnetic field variations during magnetospheric substorms and storms. The currents in ionosphere and magnetosphere constitute together with field-aligned (along the geomagnetic field lines) currents (FACs) a common 3-D current system. At ionospheric heights, the westward and eastward electrojets represent characteristic elements of the current system. The westward electrojet covers the longitudinal range from the morning to the evening hours, while the eastward electrojet ranges from afternoon to near-midnight hours. The polar electrojet is positioned in the dayside sector at cusp latitudes. All these electrojets map along the magnetic field lines to certain plasma structures in the near-Earth space. The first spiral distribution of auroras was found based on observations in Antarctica for the nighttime-evening sector (N-spiral), and later in the nighttime-evening (N-spiral) and morning (M-spiral) sectors both in the Northern and Southern

  5. Computational structural variation discovery in genomes: state of the art and challenges

    NASA Astrophysics Data System (ADS)

    Osipowski, Paweł; Pawełkowicz, Magdalena; Przybecki, Zbigniew

    2014-11-01

    Identifying structural variations is crucial to obtain comprehensive knowledge on genomic differentiation. Massive data generated by present technologies determines researchers to make use of computational methods for variation discovery in genomes. Focusing on results and trying to specify challenges remained and possible solutions for the future, here we give a review of state-of-the-art methods and software utilized for structural variation discovery.

  6. Diffraction in resonant electron scattering from helical macromolecules: Effects of the DNA backbone

    SciTech Connect

    Caron, Laurent; Sanche, Leon

    2005-09-15

    We recently developed a theoretical framework to treat low-energy electron scattering from helical macromolecules. In this article, we use this framework to extend our previous model of simple base-pair scatterers, organized into the DNA structure, to include the backbone. The internal diffraction pattern due to base pairs is still present, but addition of the backbone screens the base pairs by a factor of 2. More interestingly, the effect of constructive interference on the phosphate groups within the backbone itself is seen to be strong at lower energies. We perform a calculation for electrons incident perpendicular and parallel to the axis of a fragment and find comparable electron patterns on the phosphate groups at the surface of films consisting of vertically or horizontally arranged segments relative to the substrate.

  7. Carbon backbone topology of the metabolome of a cell.

    PubMed

    Bingol, Kerem; Zhang, Fengli; Bruschweiler-Li, Lei; Brüschweiler, Rafael

    2012-05-30

    The complex metabolic makeup of a biological system, such as a cell, is a key determinant of its biological state providing unique insights into its function. Here we characterize the metabolome of a cell by a novel homonuclear (13)C 2D NMR approach applied to a nonfractionated uniformly (13)C-enriched lysate of E. coli cells and determine de novo their carbon backbone topologies that constitute the "topolome". A protocol was developed, which first identifies traces in a constant-time (13)C-(13)C TOCSY NMR spectrum that are unique for individual mixture components and then assembles for each trace the corresponding carbon-bond topology network by consensus clustering. This led to the determination of 112 topologies of unique metabolites from a single sample. The topolome is dominated by carbon topologies of carbohydrates (34.8%) and amino acids (45.5%) that can constitute building blocks of more complex structures. PMID:22540339

  8. A Native to Amyloidogenic Transition Regulated by a Backbone Trigger

    SciTech Connect

    Eakin,C.; Berman, A.; Miranker, A.

    2006-01-01

    Many polypeptides can self-associate into linear, aggregated assemblies termed amyloid fibers. High-resolution structural insights into the mechanism of fibrillogenesis are elusive owing to the transient and mixed oligomeric nature of assembly intermediates. Here, we report the conformational changes that initiate fiber formation by beta-2-microglobulin (beta2m) in dialysis-related amyloidosis. Access of beta2m to amyloidogenic conformations is catalyzed by selective binding of divalent cations. The chemical basis of this process was determined to be backbone isomerization of a conserved proline. On the basis of this finding, we designed a beta2m variant that closely adopts this intermediate state. The variant has kinetic, thermodynamic and catalytic properties consistent with its being a fibrillogenic intermediate of wild-type beta2m. Furthermore, it is stable and folded, enabling us to unambiguously determine the initiating conformational changes for amyloid assembly at atomic resolution.

  9. Morphodynamics structures induced by variations of the channel width

    NASA Astrophysics Data System (ADS)

    Duro, Gonzalo; Crosato, Alessandra; Tassi, Pablo

    2014-05-01

    In alluvial channels, forcing effects, such as a longitudinally varying width, can induce the formation of steady bars (Olesen, 1984). The type of bars that form, such as alternate, central or multiple, will mainly depend on the local flow width-to-depth ratio and on upstream conditions (Struiksma et al., 1985). The effects on bar formation of varying the channel width received attention only recently and investigations, based on flume experiments and mathematical modelling, are mostly restricted to small longitudinal sinusoidal variations of the channel width (e.g. Repetto et al., 2002; Wu and Yeh, 2005, Zolezzi et al., 2012; Frascati and Lanzoni, 2013). In this work, we analyze the variations in equilibrium bed topography in a longitudinal width-varying channel with characteristic scales of the Waal River (The Netherlands) using two different 2D depth-averaged morphodynamic models, one based on the Delft3D code and one on Telemac-Mascaret system. In particular, we explore the effects of changing the wavelength of sinusoidal width variations in a straight channel, focusing on the effects of the spatial lag between bar formation and forcing that is observed in numerical models and laboratory experiments (e.g. Crosato et al, 2011). We extend the investigations to finite width variations in which longitudinal changes of the width-to-depth ratio are such that they may affect the type of bars that become unstable (alternate, central or multiple bars). Numerical results are qualitatively validated with field observations and the resulting morphodynamic pattern is compared with the physics-based predictor of river bar modes by Crosato and Mosselman (2009). The numerical models are finally used to analyse the experimental conditions of Wu and Yeh (2005). The study should be seen as merely exploratory. The aim is to investigate possible approaches for future research aiming at assessing the effects of artificial river widening and narrowing to control bar formation in

  10. Genome-Wide Structural Variation Detection by Genome Mapping on Nanochannel Arrays

    PubMed Central

    Mak, Angel C. Y.; Lai, Yvonne Y. Y.; Lam, Ernest T.; Kwok, Tsz-Piu; Leung, Alden K. Y.; Poon, Annie; Mostovoy, Yulia; Hastie, Alex R.; Stedman, William; Anantharaman, Thomas; Andrews, Warren; Zhou, Xiang; Pang, Andy W. C.; Dai, Heng; Chu, Catherine; Lin, Chin; Wu, Jacob J. K.; Li, Catherine M. L.; Li, Jing-Woei; Yim, Aldrin K. Y.; Chan, Saki; Sibert, Justin; Džakula, Željko; Cao, Han; Yiu, Siu-Ming; Chan, Ting-Fung; Yip, Kevin Y.; Xiao, Ming; Kwok, Pui-Yan

    2016-01-01

    Comprehensive whole-genome structural variation detection is challenging with current approaches. With diploid cells as DNA source and the presence of numerous repetitive elements, short-read DNA sequencing cannot be used to detect structural variation efficiently. In this report, we show that genome mapping with long, fluorescently labeled DNA molecules imaged on nanochannel arrays can be used for whole-genome structural variation detection without sequencing. While whole-genome haplotyping is not achieved, local phasing (across >150-kb regions) is routine, as molecules from the parental chromosomes are examined separately. In one experiment, we generated genome maps from a trio from the 1000 Genomes Project, compared the maps against that derived from the reference human genome, and identified structural variations that are >5 kb in size. We find that these individuals have many more structural variants than those published, including some with the potential of disrupting gene function or regulation. PMID:26510793

  11. Historical variation of structural novelty in a natural product library.

    PubMed

    Kong, De-Xin; Guo, Ming-Yue; Xiao, Zhi-Hong; Chen, Ling-Ling; Zhang, Hong-Yu

    2011-11-01

    To evaluate the potential of natural products as novel structure suppliers, a historical analysis was performed on the structural novelty of a natural product library, viz., the Chapman & Hall/CRC Dictionary of Natural Products. The results show that although the unexplored natural product universe is still ample, it is more and more difficult to find novel agents from nature, with the discovery probability of novel structures and scaffolds being lower than 50% in the near future, which mainly results from the intrinsic redundancy of natural products and, thus, is unlikely to be reversed merely through technical progresses. PMID:22083910

  12. Impact of Temperature on Cooling Structural Variation of Forging Dies

    NASA Astrophysics Data System (ADS)

    Piesova, Marianna; Czan, Andrej

    2014-12-01

    The article is focused on the issue of die forging in the automotive industry. The cooling effect of temperature on the structure of forged die are under review. In the article, there is elaborated the analysis of theoretical knowledge in the field, focusing on die forging and experimentally proven effect of the cooling rate on the final structure of forged dies made of hypoeutectic carbon steel C56E2.

  13. Extracting the Information Backbone in Online System

    PubMed Central

    Zhang, Qian-Ming; Zeng, An; Shang, Ming-Sheng

    2013-01-01

    Information overload is a serious problem in modern society and many solutions such as recommender system have been proposed to filter out irrelevant information. In the literature, researchers have been mainly dedicated to improving the recommendation performance (accuracy and diversity) of the algorithms while they have overlooked the influence of topology of the online user-object bipartite networks. In this paper, we find that some information provided by the bipartite networks is not only redundant but also misleading. With such “less can be more” feature, we design some algorithms to improve the recommendation performance by eliminating some links from the original networks. Moreover, we propose a hybrid method combining the time-aware and topology-aware link removal algorithms to extract the backbone which contains the essential information for the recommender systems. From the practical point of view, our method can improve the performance and reduce the computational time of the recommendation system, thus improving both of their effectiveness and efficiency. PMID:23690946

  14. Toward future IP optical backbone networks

    NASA Astrophysics Data System (ADS)

    Urushidani, Shigeo

    2005-11-01

    The rapid and aggressive penetration of broadband access services such as fiber to the home (FTTH) has been accelerating the increase in IP traffic volume and new networking technologies are required in order to accommodate future traffic in a cost-effective manner. This paper overviews the advanced IP optical network architecture and technologies for very-large-scale IP backbone networks. These technologies are the key to accommodate the huge volumes of IP traffic expected and control network resources in an effective and dynamic manner. We describe advanced IP optical networking technologies which accommodate multiple service networks using multi-instance technologies, and enable multi-layer traffic engineering using virtual network topology technologies. The migration scenario is described from the existing networks to GMPLS networks; reference is made to the advanced Path Computation Element (PCE) which enables multi-layer traffic engineering and MPLS/GMPLS migration. New network concepts such as Layer 1 Virtual Private Network (L1VPN) and GMPLS interoperability issues, which are being discussed in IETF, are also described.

  15. Extracting the information backbone in online system.

    PubMed

    Zhang, Qian-Ming; Zeng, An; Shang, Ming-Sheng

    2013-01-01

    Information overload is a serious problem in modern society and many solutions such as recommender system have been proposed to filter out irrelevant information. In the literature, researchers have been mainly dedicated to improving the recommendation performance (accuracy and diversity) of the algorithms while they have overlooked the influence of topology of the online user-object bipartite networks. In this paper, we find that some information provided by the bipartite networks is not only redundant but also misleading. With such "less can be more" feature, we design some algorithms to improve the recommendation performance by eliminating some links from the original networks. Moreover, we propose a hybrid method combining the time-aware and topology-aware link removal algorithms to extract the backbone which contains the essential information for the recommender systems. From the practical point of view, our method can improve the performance and reduce the computational time of the recommendation system, thus improving both of their effectiveness and efficiency. PMID:23690946

  16. Structural Variations and Solvent Structure of r(UGGGGU) Quadruplexes Stabilized by Sr2+ Ions

    PubMed Central

    Fyfe, Alastair C.; Dunten, Pete W.; Martick, Monika M.; Scott, William G.

    2015-01-01

    Guanine-rich sequences can, under appropriate conditions, adopt a distinctive, four-stranded, helical fold known as a G-quadruplex. Interest in quadruplex folds has grown in recent years as evidence of their biological relevance has accumulated from both sequence analysis and function-specific assays. The folds are unusually stable and their formation appears to require close management to maintain cell health; regulatory failure correlates with genomic instability and a number of cancer phenotypes. Biologically relevant quadruplex folds are anticipated to form transiently in mRNA and in single-stranded, unwound DNA. To elucidate factors, including bound solvent, that contribute to the stability of RNA quadruplexes, we examine, by X-ray crystallography and small-angle X-ray scattering, the structure of a previously reported tetramolecular quadruplex, UGGGGU stabilized by Sr2+ ions. Crystal forms of the octameric assembly formed by this sequence exhibit unusually strong diffraction and anomalous signal enabling the construction of reliable models to a resolution of 0.88 Å. The solvent structure confirms hydration patterns reported for other nucleic acid helical conformations and provides support for the greater stability of RNA quadruplexes relative to DNA. Novel features detected in the octameric RNA assembly include a new crystal form, evidence of multiple conformations and structural variations in the 3′ U tetrad, including one that leads to the formation of a hydrated internal cavity. PMID:25861762

  17. Variation in Narrative Structure: A Simple Text vs. an Innovative Work of Art.

    ERIC Educational Resources Information Center

    Bjorklund, Martina; Virtanen, Tuija

    The focus of this paper is the variation within the narrative type of text. Specific attention is on the variation between two rather extreme forms of narrative: simple stories written for children that may be described as stereotypical in structure, and an artistic story, "The Steppe," by A. Cexov. The view is taken that stories are comparable…

  18. Studies on cattle genomic structural variation provide insights into ruminant speciation and adaptation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic structural variations, including segmental duplications (SD) and copy number variations (CNV), contribute significantly to individual health and disease in primates and rodents. As a part of the bovine genome annotation effort, we performed the first genome-wide analysis of SD in cattle usin...

  19. SPATIAL VARIATION OF THE EVOLUTION AND STRUCTURE OF THE URBAN BOUNDARY LAYER

    EPA Science Inventory

    The spatial variation of the nocturnal urban boundary layer structure and the time variation of the mixing height, the nocturnal inversion top and strength after sunrise are presented for urban sites located upwind, downwind, and near the center of the heat island and for upwind ...

  20. Buckling of Thermoviscoelastic Structures Under Temporal and Spatial Temperature Variations

    NASA Technical Reports Server (NTRS)

    Tsuyuki, Richard; Knauss, Wolfgang G.

    1992-01-01

    The problem of lateral instability of a viscoelastic in-plane loaded structure is considered in terms of thermorheolgically simple materials. As an example of a generally in-plane loaded structure, we examine the simple column under axial load: Both cyclic loading is considered (with constant or in-phase variable temperature excursions) as well as the case of constant load in the presence of thermal gradients through the thickness of the structure. The latter case involves a continuous movement of the neutral axis from the center to the colder side and then back to the center. In both cases, temperature has a very strong effect on the instability evolution, and under in-phase thermal cycling the critical loads are reduced compared to those at constant temperatures. The primary effect of thermal gradients beyond that of thermally-induced rate accelerations is occasioned by the generation of an "initial imperfection" or "structural bowing." Because the coefficient of thermal expansion tends to be large for many polymeric materials, it it may be necessary to take special care in lay-up design of composite structures intended for use under compressive loads in high-temperature applications. Finally, the implications for the temperature sensitivities of composites to micro-instability (fiber crimping) are also apparent from the results delineated here.

  1. Variation in the helical structure of native collagen.

    PubMed

    Orgel, Joseph P R O; Persikov, Anton V; Antipova, Olga

    2014-01-01

    The structure of collagen has been a matter of curiosity, investigation, and debate for the better part of a century. There has been a particularly productive period recently, during which much progress has been made in better describing all aspects of collagen structure. However, there remain some questions regarding its helical symmetry and its persistence within the triple-helix. Previous considerations of this symmetry have sometimes confused the picture by not fully recognizing that collagen structure is a highly complex and large hierarchical entity, and this affects and is effected by the super-coiled molecules that make it. Nevertheless, the symmetry question is not trite, but of some significance as it relates to extracellular matrix organization and cellular integration. The correlation between helical structure in the context of the molecular packing arrangement determines which parts of the amino acid sequence of the collagen fibril are buried or accessible to the extracellular matrix or the cell. In this study, we concentrate primarily on the triple-helical structure of fibrillar collagens I and II, the two most predominant types. By comparing X-ray diffraction data collected from type I and type II containing tissues, we point to evidence for a range of triple-helical symmetries being extant in the molecules native environment. The possible significance of helical instability, local helix dissociation and molecular packing of the triple-helices is discussed in the context of collagen's supramolecular organization, all of which must affect the symmetry of the collagen triple-helix. PMID:24586843

  2. Integrating population variation and protein structural analysis to improve clinical interpretation of missense variation: application to the WD40 domain.

    PubMed

    Laskowski, Roman A; Tyagi, Nidhi; Johnson, Diana; Joss, Shelagh; Kinning, Esther; McWilliam, Catherine; Splitt, Miranda; Thornton, Janet M; Firth, Helen V; Wright, Caroline F

    2016-03-01

    We present a generic, multidisciplinary approach for improving our understanding of novel missense variants in recently discovered disease genes exhibiting genetic heterogeneity, by combining clinical and population genetics with protein structural analysis. Using six new de novo missense diagnoses in TBL1XR1 from the Deciphering Developmental Disorders study, together with population variation data, we show that the β-propeller structure of the ubiquitous WD40 domain provides a convincing way to discriminate between pathogenic and benign variation. Children with likely pathogenic mutations in this gene have severely delayed language development, often accompanied by intellectual disability, autism, dysmorphology and gastrointestinal problems. Amino acids affected by likely pathogenic missense mutations are either crucial for the stability of the fold, forming part of a highly conserved symmetrically repeating hydrogen-bonded tetrad, or located at the top face of the β-propeller, where 'hotspot' residues affect the binding of β-catenin to the TBLR1 protein. In contrast, those altered by population variation are significantly less likely to be spatially clustered towards the top face or to be at buried or highly conserved residues. This result is useful not only for interpreting benign and pathogenic missense variants in this gene, but also in other WD40 domains, many of which are associated with disease. PMID:26740553

  3. Interpretation of O K-edge EELS in zircon using a structural variation approach

    SciTech Connect

    Spence, John C.H; Jiang, Nan

    2009-12-01

    This work describes an approach to interpret the near-edge fine structure of electron energy-loss spectroscopy (EELS) of O K-edge in zircon using a structural variation method. The positions and intensities of several peaks in the O K-edge EELS spectrum are assigned to specific structural parameters. It suggests that the near-edge structures in EELS can be used to measure atomic structure changes.

  4. Two worlds collide: Image analysis methods for quantifying structural variation in cluster molecular dynamics

    SciTech Connect

    Steenbergen, K. G.; Gaston, N.

    2014-02-14

    Inspired by methods of remote sensing image analysis, we analyze structural variation in cluster molecular dynamics (MD) simulations through a unique application of the principal component analysis (PCA) and Pearson Correlation Coefficient (PCC). The PCA analysis characterizes the geometric shape of the cluster structure at each time step, yielding a detailed and quantitative measure of structural stability and variation at finite temperature. Our PCC analysis captures bond structure variation in MD, which can be used to both supplement the PCA analysis as well as compare bond patterns between different cluster sizes. Relying only on atomic position data, without requirement for a priori structural input, PCA and PCC can be used to analyze both classical and ab initio MD simulations for any cluster composition or electronic configuration. Taken together, these statistical tools represent powerful new techniques for quantitative structural characterization and isomer identification in cluster MD.

  5. Variations in aggrecan structure modulate its susceptibility to aggrecanases.

    PubMed Central

    Roughley, Peter J; Barnett, James; Zuo, Fengrong; Mort, John S

    2003-01-01

    Proteoglycan aggregates and purified aggrecan from adult and fetal bovine cartilage and adult and neonatal human cartilage were subjected to in vitro degradation by recombinant aggrecanase-1 and aggrecanase-2. The ability of the aggrecanases to cleave within the aggrecan IGD (interglobular domain) and CS2 domain (chondroitin sulphate-rich domain 2) was monitored by SDS/PAGE and immunoblotting. Aggrecanase-2 showed a similar ability to cleave within the IGD of adult and immature aggrecan, whereas aggrecanase-1 was less efficient in cleavage in the IGD of immature aggrecan, for both the bovine and the human substrates. Both aggrecanases showed a similar ability to cleave within the CS2 domain of bovine aggrecan irrespective of age, but showed a much lower ability to cleave within the CS2 domain of human aggrecan. Equivalent results were obtained whether aggrecan was present in isolation or as part of proteoglycan aggregates. When proteoglycan aggregates were used, neither aggrecanase was able to cleave link protein. Thus, for aggrecan cleavage by aggrecanases, variations in cleavage efficiency exist with respect to the species and age of the animal from which the aggrecan is derived and the type of aggrecanase being used. PMID:12859252

  6. Protein 3D Structure Computed from Evolutionary Sequence Variation

    PubMed Central

    Sheridan, Robert; Hopf, Thomas A.; Pagnani, Andrea; Zecchina, Riccardo; Sander, Chris

    2011-01-01

    The evolutionary trajectory of a protein through sequence space is constrained by its function. Collections of sequence homologs record the outcomes of millions of evolutionary experiments in which the protein evolves according to these constraints. Deciphering the evolutionary record held in these sequences and exploiting it for predictive and engineering purposes presents a formidable challenge. The potential benefit of solving this challenge is amplified by the advent of inexpensive high-throughput genomic sequencing. In this paper we ask whether we can infer evolutionary constraints from a set of sequence homologs of a protein. The challenge is to distinguish true co-evolution couplings from the noisy set of observed correlations. We address this challenge using a maximum entropy model of the protein sequence, constrained by the statistics of the multiple sequence alignment, to infer residue pair couplings. Surprisingly, we find that the strength of these inferred couplings is an excellent predictor of residue-residue proximity in folded structures. Indeed, the top-scoring residue couplings are sufficiently accurate and well-distributed to define the 3D protein fold with remarkable accuracy. We quantify this observation by computing, from sequence alone, all-atom 3D structures of fifteen test proteins from different fold classes, ranging in size from 50 to 260 residues., including a G-protein coupled receptor. These blinded inferences are de novo, i.e., they do not use homology modeling or sequence-similar fragments from known structures. The co-evolution signals provide sufficient information to determine accurate 3D protein structure to 2.7–4.8 Å Cα-RMSD error relative to the observed structure, over at least two-thirds of the protein (method called EVfold, details at http://EVfold.org). This discovery provides insight into essential interactions constraining protein evolution and will facilitate a comprehensive survey of the universe of protein

  7. Variation in the modal parameters of space structures

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Barlow, Mark S.; Van Schoor, Marthinus C.; Bicos, Andrew S.

    1992-01-01

    An analytic and experimental study of gravity and suspension influences on space structural test articles is presented. A modular test article including deployable, erectable, and rotary modules was assembled in three one- and two-dimensional structures. The two deployable modules utilized cable diagonal bracing rather than rigid cross members; within a bay of one of the deployable modules, the cable preload was adjustable. A friction lock was used on the alpha joint to either allow or prohibit rotary motion. Suspension systems with plunge fundamentals of 1, 2, and 5 Hz were used for ground testing to evaluate the influences of suspension stiffness. Assembly and reassembly testing was performed, as was testing on two separate shipsets at two test sites. Trends and statistical variances in modal parameters are presented as a function of force amplitude, joint preload, reassembly, shipset and suspension. Linear finite element modeling of each structure provided analytical results for 0-g unsuspended and 1-g suspended models, which are correlated with the analytical model.

  8. Mosaic structural variation in children with developmental disorders

    PubMed Central

    King, Daniel A.; Jones, Wendy D.; Crow, Yanick J.; Dominiczak, Anna F.; Foster, Nicola A.; Gaunt, Tom R.; Harris, Jade; Hellens, Stephen W.; Homfray, Tessa; Innes, Josie; Jones, Elizabeth A.; Joss, Shelagh; Kulkarni, Abhijit; Mansour, Sahar; Morris, Andrew D.; Parker, Michael J.; Porteous, David J.; Shihab, Hashem A.; Smith, Blair H.; Tatton-Brown, Katrina; Tolmie, John L.; Trzaskowski, Maciej; Vasudevan, Pradeep C.; Wakeling, Emma; Wright, Michael; Plomin, Robert; Timpson, Nicholas J.; Hurles, Matthew E.

    2015-01-01

    Delineating the genetic causes of developmental disorders is an area of active investigation. Mosaic structural abnormalities, defined as copy number or loss of heterozygosity events that are large and present in only a subset of cells, have been detected in 0.2–1.0% of children ascertained for clinical genetic testing. However, the frequency among healthy children in the community is not well characterized, which, if known, could inform better interpretation of the pathogenic burden of this mutational category in children with developmental disorders. In a case–control analysis, we compared the rate of large-scale mosaicism between 1303 children with developmental disorders and 5094 children lacking developmental disorders, using an analytical pipeline we developed, and identified a substantial enrichment in cases (odds ratio = 39.4, P-value 1.073e − 6). A meta-analysis that included frequency estimates among an additional 7000 children with congenital diseases yielded an even stronger statistical enrichment (P-value 1.784e − 11). In addition, to maximize the detection of low-clonality events in probands, we applied a trio-based mosaic detection algorithm, which detected two additional events in probands, including an individual with genome-wide suspected chimerism. In total, we detected 12 structural mosaic abnormalities among 1303 children (0.9%). Given the burden of mosaicism detected in cases, we suspected that many of the events detected in probands were pathogenic. Scrutiny of the genotypic–phenotypic relationship of each detected variant assessed that the majority of events are very likely pathogenic. This work quantifies the burden of structural mosaicism as a cause of developmental disorders. PMID:25634561

  9. Enhanced Sensitivity of Micro Mechanical Chemical Sensors Through Structural Variation

    SciTech Connect

    Harris, J.C.

    2001-04-16

    Chemical detection devices are very effective; however, their bulkiness makes them undesirable for portable applications. The next generation of chemical detectors is microscopic mechanical devices capable of measuring trace amounts of chemical vapor within the environment. The chemicals do not react directly with the detector, instead intermolecular forces cause chemicals to adhere to the surface. This surface adhesion of the chemical creates surface stress on the detectors leading to measurable movement. Modifications to the structural design of these microstructures have resulted in signal enhancement to over seven hundred percent.

  10. Insurer Market Structure and Variation in Commercial Health Care Spending

    PubMed Central

    McKellar, Michael R; Naimer, Sivia; Landrum, Mary B; Gibson, Teresa B; Chandra, Amitabh; Chernew, Michael

    2014-01-01

    Objective To examine the relationship between insurance market structure and health care prices, utilization, and spending. Data Sources Claims for 37.6 million privately insured employees and their dependents from the Truven Health Market Scan Database in 2009. Measures of insurer market structure derived from Health Leaders Inter study data. Methods Regression models are used to estimate the association between insurance market concentration and health care spending, utilization, and price, adjusting for differences in patient characteristics and other market-level traits. Results Insurance market concentration is inversely related to prices and spending, but positively related to utilization. Our results imply that, after adjusting for input price differences, a market with two equal size insurers is associated with 3.9 percent lower medical care spending per capita (p = .002) and 5.0 percent lower prices for health care services relative to one with three equal size insurers (p < .001). Conclusion Greater fragmentation in the insurance market might lead to higher prices and higher spending for care, suggesting some of the gains from insurer competition may be absorbed by higher prices for health care. Greater attention to prices and utilization in the provider market may need to accompany procompetitive insurance market strategies. PMID:24303879

  11. Genetic Variation and Population Structure in Native Americans

    PubMed Central

    Ramachandran, Sohini; Ray, Nicolas; Bedoya, Gabriel; Rojas, Winston; Parra, Maria V; Molina, Julio A; Gallo, Carla; Mazzotti, Guido; Poletti, Giovanni; Hill, Kim; Hurtado, Ana M; Labuda, Damian; Klitz, William; Barrantes, Ramiro; Bortolini, Maria Cátira; Salzano, Francisco M; Petzl-Erler, Maria Luiza; Tsuneto, Luiza T; Llop, Elena; Rothhammer, Francisco; Excoffier, Laurent; Feldman, Marcus W; Rosenberg, Noah A; Ruiz-Linares, Andrés

    2007-01-01

    We examined genetic diversity and population structure in the American landmass using 678 autosomal microsatellite markers genotyped in 422 individuals representing 24 Native American populations sampled from North, Central, and South America. These data were analyzed jointly with similar data available in 54 other indigenous populations worldwide, including an additional five Native American groups. The Native American populations have lower genetic diversity and greater differentiation than populations from other continental regions. We observe gradients both of decreasing genetic diversity as a function of geographic distance from the Bering Strait and of decreasing genetic similarity to Siberians—signals of the southward dispersal of human populations from the northwestern tip of the Americas. We also observe evidence of: (1) a higher level of diversity and lower level of population structure in western South America compared to eastern South America, (2) a relative lack of differentiation between Mesoamerican and Andean populations, (3) a scenario in which coastal routes were easier for migrating peoples to traverse in comparison with inland routes, and (4) a partial agreement on a local scale between genetic similarity and the linguistic classification of populations. These findings offer new insights into the process of population dispersal and differentiation during the peopling of the Americas. PMID:18039031

  12. Genetic variation and population structure in native Americans.

    PubMed

    Wang, Sijia; Lewis, Cecil M; Jakobsson, Mattias; Ramachandran, Sohini; Ray, Nicolas; Bedoya, Gabriel; Rojas, Winston; Parra, Maria V; Molina, Julio A; Gallo, Carla; Mazzotti, Guido; Poletti, Giovanni; Hill, Kim; Hurtado, Ana M; Labuda, Damian; Klitz, William; Barrantes, Ramiro; Bortolini, Maria Cátira; Salzano, Francisco M; Petzl-Erler, Maria Luiza; Tsuneto, Luiza T; Llop, Elena; Rothhammer, Francisco; Excoffier, Laurent; Feldman, Marcus W; Rosenberg, Noah A; Ruiz-Linares, Andrés

    2007-11-01

    We examined genetic diversity and population structure in the American landmass using 678 autosomal microsatellite markers genotyped in 422 individuals representing 24 Native American populations sampled from North, Central, and South America. These data were analyzed jointly with similar data available in 54 other indigenous populations worldwide, including an additional five Native American groups. The Native American populations have lower genetic diversity and greater differentiation than populations from other continental regions. We observe gradients both of decreasing genetic diversity as a function of geographic distance from the Bering Strait and of decreasing genetic similarity to Siberians--signals of the southward dispersal of human populations from the northwestern tip of the Americas. We also observe evidence of: (1) a higher level of diversity and lower level of population structure in western South America compared to eastern South America, (2) a relative lack of differentiation between Mesoamerican and Andean populations, (3) a scenario in which coastal routes were easier for migrating peoples to traverse in comparison with inland routes, and (4) a partial agreement on a local scale between genetic similarity and the linguistic classification of populations. These findings offer new insights into the process of population dispersal and differentiation during the peopling of the Americas. PMID:18039031

  13. Motif-directed flexible backbone design of functional interactions

    PubMed Central

    Havranek, James J; Baker, David

    2009-01-01

    Computational protein design relies on a number of approximations to efficiently search the huge sequence space available to proteins. The fixed backbone and rotamer approximations in particular are important for formulating protein design as a discrete combinatorial optimization problem. However, the resulting coarse-grained sampling of possible side-chain terminal positions is problematic for the design of protein function, which depends on precise positioning of side-chain atoms. Although backbone flexibility can greatly increase the conformation freedom of side-chain functional groups, it is not obvious which backbone movements will generate the critical constellation of atoms responsible for protein function. Here, we report an automated method for identifying protein backbone movements that can give rise to any specified set of desired side-chain atomic placements and interactions, using protein–DNA interfaces as a model system. We use a library of previously observed protein–DNA interactions (motifs) and a rotamer-based description of side-chain conformation freedom to identify placements for the protein backbone that can give rise to a favorable side-chain interaction with DNA. We describe a tree-search algorithm for identifying those combinations of interactions from the library that can be realized with minimal perturbation of the protein backbone. We compare the efficiency of this method with the alternative approach of building and screening alternate backbone conformations. PMID:19472357

  14. Radiation safety system (RSS) backbones: Design, engineering, fabrication and installation

    SciTech Connect

    Wilmarth, J.E.; Sturrock, J.C.; Gallegos, F.R.

    1998-12-01

    The Radiation Safety System (RSS) Backbones are part of an electrical/electronic/mechanical system insuring safe access and exclusion of personnel to areas at the Los Alamos Neutron Science Center (LANSCE) accelerator. The RSS Backbones control the safety fusible beam plugs which terminate transmission of accelerated ion beams in response to predefined conditions. Any beam or access fault of the backbone inputs will cause insertion of the beam plugs in the low energy beam transport. The Backbones serve the function of tying the beam plugs to the access control systems, beam spill monitoring systems and current-level limiting systems. In some ways the Backbones may be thought of as a spinal column with beam plugs at the head and nerve centers along the spinal column. The two Linac Backbone segments and experimental area segments form a continuous cable plant over 3,500 feet from beam plugs to the tip on the longest tail. The Backbones were installed in compliance with current safety standards, such as installation of the two segments in separate conduits or tray. Monitoring for ground-faults and input wiring verification was an added enhancement to the system. The system has the capability to be tested remotely.

  15. Radiation Safety System (RSS) backbones: Design, engineering, fabrication, and installation

    SciTech Connect

    Wilmarth, J. E.; Sturrock, J. C.; Gallegos, F. R.

    1998-12-10

    The Radiation Safety System (RSS) backbones are part of an electrical/electronic/mechanical system ensuring safe access and exclusion of personnel to areas at the Los Alamos Neutron Science Center (LANSCE) accelerator. The RSS backbones control the safety-fusible beam plugs which terminate transmission of accelerated ion beams in response to predefined conditions. Any beam or access fault of the backbone inputs will cause insertion of the beam plugs in the low-energy beam transport. The backbones serve the function of tying the beam plugs to the access control systems, beam spill monitoring systems and current-level limiting systems. In some ways the backbones may be thought of as a spinal column with beam plugs at the head and nerve centers along the spinal column. The two linac backbone segments and the experimental area segments form a continuous cable plant over 3500 feet from the beam plugs to the tip on the longest tail. The backbones were installed in compliance with current safety standards, such as installation of the two segments in separate conduits or tray. Monitoring for ground-faults and input wiring verification was an added enhancement to the system. The system has the capability to be tested remotely.

  16. Radiation Safety System (RSS) backbones: Design, engineering, fabrication, and installation

    NASA Astrophysics Data System (ADS)

    Wilmarth, J. E.; Sturrock, J. C.; Gallegos, F. R.

    1998-12-01

    The Radiation Safety System (RSS) backbones are part of an electrical/electronic/mechanical system ensuring safe access and exclusion of personnel to areas at the Los Alamos Neutron Science Center (LANSCE) accelerator. The RSS backbones control the safety-fusible beam plugs which terminate transmission of accelerated ion beams in response to predefined conditions. Any beam or access fault of the backbone inputs will cause insertion of the beam plugs in the low-energy beam transport. The backbones serve the function of tying the beam plugs to the access control systems, beam spill monitoring systems and current-level limiting systems. In some ways the backbones may be thought of as a spinal column with beam plugs at the head and nerve centers along the spinal column. The two linac backbone segments and the experimental area segments form a continuous cable plant over 3500 feet from the beam plugs to the tip on the longest tail. The backbones were installed in compliance with current safety standards, such as installation of the two segments in separate conduits or tray. Monitoring for ground-faults and input wiring verification was an added enhancement to the system. The system has the capability to be tested remotely.

  17. Radiation Safety System (RSS) backbones: Design, engineering, fabrication, and installation

    SciTech Connect

    Wilmarth, J.E.; Sturrock, J.C.; Gallegos, F.R.

    1998-12-01

    The Radiation Safety System (RSS) backbones are part of an electrical/electronic/mechanical system ensuring safe access and exclusion of personnel to areas at the Los Alamos Neutron Science Center (LANSCE) accelerator. The RSS backbones control the safety-fusible beam plugs which terminate transmission of accelerated ion beams in response to predefined conditions. Any beam or access fault of the backbone inputs will cause insertion of the beam plugs in the low-energy beam transport. The backbones serve the function of tying the beam plugs to the access control systems, beam spill monitoring systems and current-level limiting systems. In some ways the backbones may be thought of as a spinal column with beam plugs at the head and nerve centers along the spinal column. The two linac backbone segments and the experimental area segments form a continuous cable plant over 3500 feet from the beam plugs to the tip on the longest tail. The backbones were installed in compliance with current safety standards, such as installation of the two segments in separate conduits or tray. Monitoring for ground-faults and input wiring verification was an added enhancement to the system. The system has the capability to be tested remotely. {copyright} {ital 1998 American Institute of Physics.}

  18. Population Structure Shapes Copy Number Variation in Malaria Parasites

    PubMed Central

    Cheeseman, Ian H.; Miller, Becky; Tan, John C.; Tan, Asako; Nair, Shalini; Nkhoma, Standwell C.; De Donato, Marcos; Rodulfo, Hectorina; Dondorp, Arjen; Branch, Oralee H.; Mesia, Lastenia Ruiz; Newton, Paul; Mayxay, Mayfong; Amambua-Ngwa, Alfred; Conway, David J.; Nosten, François; Ferdig, Michael T.; Anderson, Tim J. C.

    2016-01-01

    If copy number variants (CNVs) are predominantly deleterious, we would expect them to be more efficiently purged from populations with a large effective population size (Ne) than from populations with a small Ne. Malaria parasites (Plasmodium falciparum) provide an excellent organism to examine this prediction, because this protozoan shows a broad spectrum of population structures within a single species, with large, stable, outbred populations in Africa, small unstable inbred populations in South America and with intermediate population characteristics in South East Asia. We characterized 122 single-clone parasites, without prior laboratory culture, from malaria-infected patients in seven countries in Africa, South East Asia and South America using a high-density single-nucleotide polymorphism/CNV microarray. We scored 134 high-confidence CNVs across the parasite exome, including 33 deletions and 102 amplifications, which ranged in size from <500 bp to 59 kb, as well as 10,107 flanking, biallelic single-nucleotide polymorphisms. Overall, CNVs were rare, small, and skewed toward low frequency variants, consistent with the deleterious model. Relative to African and South East Asian populations, CNVs were significantly more common in South America, showed significantly less skew in allele frequencies, and were significantly larger. On this background of low frequency CNV, we also identified several high-frequency CNVs under putative positive selection using an FST outlier analysis. These included known adaptive CNVs containing rh2b and pfmdr1, and several other CNVs (e.g., DNA helicase and three conserved proteins) that require further investigation. Our data are consistent with a significant impact of genetic structure on CNV burden in an important human pathogen. PMID:26613787

  19. Population Structure Shapes Copy Number Variation in Malaria Parasites.

    PubMed

    Cheeseman, Ian H; Miller, Becky; Tan, John C; Tan, Asako; Nair, Shalini; Nkhoma, Standwell C; De Donato, Marcos; Rodulfo, Hectorina; Dondorp, Arjen; Branch, Oralee H; Mesia, Lastenia Ruiz; Newton, Paul; Mayxay, Mayfong; Amambua-Ngwa, Alfred; Conway, David J; Nosten, François; Ferdig, Michael T; Anderson, Tim J C

    2016-03-01

    If copy number variants (CNVs) are predominantly deleterious, we would expect them to be more efficiently purged from populations with a large effective population size (Ne) than from populations with a small Ne. Malaria parasites (Plasmodium falciparum) provide an excellent organism to examine this prediction, because this protozoan shows a broad spectrum of population structures within a single species, with large, stable, outbred populations in Africa, small unstable inbred populations in South America and with intermediate population characteristics in South East Asia. We characterized 122 single-clone parasites, without prior laboratory culture, from malaria-infected patients in seven countries in Africa, South East Asia and South America using a high-density single-nucleotide polymorphism/CNV microarray. We scored 134 high-confidence CNVs across the parasite exome, including 33 deletions and 102 amplifications, which ranged in size from <500 bp to 59 kb, as well as 10,107 flanking, biallelic single-nucleotide polymorphisms. Overall, CNVs were rare, small, and skewed toward low frequency variants, consistent with the deleterious model. Relative to African and South East Asian populations, CNVs were significantly more common in South America, showed significantly less skew in allele frequencies, and were significantly larger. On this background of low frequency CNV, we also identified several high-frequency CNVs under putative positive selection using an FST outlier analysis. These included known adaptive CNVs containing rh2b and pfmdr1, and several other CNVs (e.g., DNA helicase and three conserved proteins) that require further investigation. Our data are consistent with a significant impact of genetic structure on CNV burden in an important human pathogen. PMID:26613787

  20. Genomic Heterogeneity and Structural Variation in Soybean Near Isogenic Lines

    PubMed Central

    Stec, Adrian O.; Bhaskar, Pudota B.; Bolon, Yung-Tsi; Nolan, Rebecca; Shoemaker, Randy C.; Vance, Carroll P.; Stupar, Robert M.

    2013-01-01

    Near isogenic lines (NILs) are a critical genetic resource for the soybean research community. The ability to identify and characterize the genes driving the phenotypic differences between NILs is limited by the degree to which differential genetic introgressions can be resolved. Furthermore, the genetic heterogeneity extant among NIL sub-lines is an unaddressed research topic that might have implications for how genomic and phenotypic data from NILs are utilized. In this study, a recently developed high-resolution comparative genomic hybridization (CGH) platform was used to investigate the structure and diversity of genetic introgressions in two classical soybean NIL populations, respectively varying in protein content and iron deficiency chlorosis (IDC) susceptibility. There were three objectives: assess the capacity for CGH to resolve genomic introgressions, identify introgressions that are heterogeneous among NIL sub-lines, and associate heterogeneous introgressions with susceptibility to IDC. Using the CGH approach, introgression boundaries were refined and previously unknown introgressions were revealed. Furthermore, heterogeneous introgressions were identified within seven sub-lines of the IDC NIL “IsoClark.” This included three distinct introgression haplotypes linked to the major iron susceptible locus on chromosome 03. A phenotypic assessment of the seven sub-lines did not reveal any differences in IDC susceptibility, indicating that the genetic heterogeneity among the lines does not have a significant impact on the primary NIL phenotype. PMID:23630538

  1. Experimental investigation of crustacean swimming with variation of limb structures

    NASA Astrophysics Data System (ADS)

    Lai, Hong Kuan; Samaee, Milad; Donnell, Geoffrey; Santhanakrishnan, Arvind; Guy, Robert; Lewis, Timothy

    2015-11-01

    Crustaceans such as crayfish and krill swim by rhythmically paddling a set of four to five limbs (known as swimmerets or pleopods) originating from their abdomen. The limb motion in these animals has been observed to follow tail-to-head metachronal wave pattern with an approximate quarter-period inter-limb phase difference. The goal of this study is to investigate the hydrodynamics of this swimming mechanism as a function of inter-limb phase difference, inclusion of hinges in the limbs, and Reynolds number (Re). 2D PIV measurements were conducted on a scaled robotic model of metachronal paddling, consisting of a rectangular tank fitted with stepper motors coupled to a four-bar linkage that actuated four paddles immersed in water-glycerin fluid medium. The inter-limb phase difference was varied from 0% (synchronous paddling) through 50% across Re range of O(10-1000). Two types of limb models were used, including a simple flat plate and a `split-paddle' structure with two flat plates connected halfway with hinges. The results of the study show that limb models with hinges generated increased horizontal (thrust-producing direction) fluid velocity compared to the simple flat plate paddles, suggesting that asymmetry between power and return strokes is important to augment thrust.

  2. Population-based structural variation discovery with Hydra-Multi

    PubMed Central

    Lindberg, Michael R.; Hall, Ira M.; Quinlan, Aaron R.

    2015-01-01

    Summary: Current strategies for SNP and INDEL discovery incorporate sequence alignments from multiple individuals to maximize sensitivity and specificity. It is widely accepted that this approach also improves structural variant (SV) detection. However, multisample SV analysis has been stymied by the fundamental difficulties of SV calling, e.g. library insert size variability, SV alignment signal integration and detecting long-range genomic rearrangements involving disjoint loci. Extant tools suffer from poor scalability, which limits the number of genomes that can be co-analyzed and complicates analysis workflows. We have developed an approach that enables multisample SV analysis in hundreds to thousands of human genomes using commodity hardware. Here, we describe Hydra-Multi and measure its accuracy, speed and scalability using publicly available datasets provided by The 1000 Genomes Project and by The Cancer Genome Atlas (TCGA). Availability and implementation: Hydra-Multi is written in C++ and is freely available at https://github.com/arq5x/Hydra. Contact: aaronquinlan@gmail.com or ihall@genome.wustl.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25527832

  3. Structural and regulatory variation of phosphoglucomutase in rainbow trout.

    PubMed

    Allendorf, F W; Leary, R F; Knudsen, K L

    1983-01-01

    The results of inheritance experiments with allozymic variants indicate that two pairs of duplicate loci encode PGM in rainbow trout. Two of the loci (Pgm-3,4) share five electromorphs and are highly polymorphic. The large number of phenotypes and instability of these isozymes make them difficult to score in population studies. The other pair of duplicate loci (Pgm1 and Pgm2) have diverged both structurally and in their patterns of tissue-specific expression. We have detected four electromorphs at Pgm2; this locus is expressed approximately equally in all tissues examined. Two electromorphs and a null allele have been detected at Pgm1. PGM1 activity is greatest in skeletal muscle, heart, and brain; only weak activity, if any, is detectable in liver, eye, stomach, and kidney. Ten percent of the trout from the Arlee strain have a greater than 100-fold increase in the expression of Pgm1 in the liver but have normal expression of this locus in other tissues. Results of genetic crosses are consistent with a single regulatory gene (Pgm1-t) with additive inheritance being responsible for the differences in liver PGM1 activity. The allele responsible for the expression PGM1 in the liver is rare in rainbow trout and is apparently a recent mutation. The presence of PGM1 liver activity has a variety of phenotypic effects that are likely to be of adaptive significance. Embryos with liver PGM1 activity develop more quickly than their full-sibs lacking activity. This difference apparently results from increased flux through glycolysis in embryos with liver PGM1 activity while they are dependent on the yolk for energy. The more rapidly developing individuals begin exogenous feeding earlier and obtain a size advantage that is maintained until sexual maturity. This size advantage also produces a tendency for earlier age of first sexual maturity. Fish with liver PGM1 activity are also more developmentally buffered, as indicated by less fluctuating asymmetry of five meristic traits

  4. Subsurface hydrographic structures and the temporal variations of Aleutian eddies

    NASA Astrophysics Data System (ADS)

    Saito, Rui; Yasuda, Ichiro; Komatsu, Kosei; Ishiyama, Hiromu; Ueno, Hiromichi; Onishi, Hiroji; Setou, Takeshi; Shimizu, Manabu

    2016-05-01

    Aleutian eddies are mesoscale anticyclonic eddies formed within the Alaskan Stream region between 180° meridian and 170° E south of the Aleutian Islands. They propagate southwestward after the isolation from the Alaskan Stream and pass through the Western Subarctic Gyre. We compared hydrographic structures of three Aleutian eddies observed during summer, west of 170° E (Eddy A) and east of 170° E (Eddies B and C). In each eddy, a subsurface dichothermal water (3.0-4.0 °C) was observed above a subsurface mesothermal water (4.0-4.5 °C). The minimum temperature in the dichothermal water at around a depth of 100 m was colder in Eddy A (2.8 °C) than in Eddies B and C (3.0-3.2 °C). This difference could be ascribed to wintertime cooling and influence of surrounding waters during spring warming period. The wintertime cooling makes the dichothermal water colder for eddies isolated from the Alaskan Stream region for a longer time. Particle-tracking experiments using re-analysis products from a data-assimilative eddy resolving ocean model suggested that the dichothermal water within Eddy A was cooled by the entrainment of surrounding colder water even during the spring warming period. The mesothermal waters at depth around 250 m demonstrated similarity among the observed eddies, and the maximum temperature in the mesothermal water within Eddy A (4.3 °C) was close to that of Eddies B and C (4.2 °C) in the in situ observations. These results indicated that the dichothermal water of Aleutian eddies modifies over time, whereas the mesothermal water maintains the original feature as they propagate southwestward from the Alaskan Stream region to the Western Subarctic Gyre.

  5. Towards Structural Analysis of Audio Recordings in the Presence of Musical Variations

    NASA Astrophysics Data System (ADS)

    Müller, Meinard; Kurth, Frank

    2006-12-01

    One major goal of structural analysis of an audio recording is to automatically extract the repetitive structure or, more generally, the musical form of the underlying piece of music. Recent approaches to this problem work well for music, where the repetitions largely agree with respect to instrumentation and tempo, as is typically the case for popular music. For other classes of music such as Western classical music, however, musically similar audio segments may exhibit significant variations in parameters such as dynamics, timbre, execution of note groups, modulation, articulation, and tempo progression. In this paper, we propose a robust and efficient algorithm for audio structure analysis, which allows to identify musically similar segments even in the presence of large variations in these parameters. To account for such variations, our main idea is to incorporate invariance at various levels simultaneously: we design a new type of statistical features to absorb microvariations, introduce an enhanced local distance measure to account for local variations, and describe a new strategy for structure extraction that can cope with the global variations. Our experimental results with classical and popular music show that our algorithm performs successfully even in the presence of significant musical variations.

  6. On the relationship between NMR-derived amide order parameters and protein backbone entropy changes

    PubMed Central

    Sharp, Kim A.; O’Brien, Evan; Kasinath, Vignesh; Wand, A. Joshua

    2015-01-01

    Molecular dynamics simulations are used to analyze the relationship between NMR-derived squared generalized order parameters of amide NH groups and backbone entropy. Amide order parameters (O2NH) are largely determined by the secondary structure and average values appear unrelated to the overall flexibility of the protein. However, analysis of the more flexible subset (O2NH < 0.8) shows that these report both on the local flexibility of the protein and on a different component of the conformational entropy than that reported by the side chain methyl axis order parameters, O2axis. A calibration curve for backbone entropy vs. O2NH is developed which accounts for both correlations between amide group motions of different residues, and correlations between backbone and side chain motions. This calibration curve can be used with experimental values of O2NH changes obtained by NMR relaxation measurements to extract backbone entropy changes, e.g. upon ligand binding. In conjunction with our previous calibration for side chain entropy derived from measured O2axis values this provides a prescription for determination of the total protein conformational entropy changes from NMR relaxation measurements. PMID:25739366

  7. Calculus structure on the Lie conformal algebra complex and the variational complex

    SciTech Connect

    De Sole, Alberto; Hekmati, Pedram; Kac, Victor G.

    2011-05-15

    We construct a calculus structure on the Lie conformal algebra cochain complex. By restricting to degree one chains, we recover the structure of a g-complex introduced in [A. De Sole and V. G. Kac, Commun. Math. Phys. 292, 667 (2009)]. A special case of this construction is the variational calculus, for which we provide explicit formulas.

  8. Variation of form and dimension for minimum weight design of continuous structures

    NASA Astrophysics Data System (ADS)

    Berkes, Uwe-Laszlo

    1987-01-01

    A method for minimum weight design of arbitrary loaded continuous structures is outlined. The optimization algorithm is controlled by a fast fully stressed design procedure and the structure stress-strain behavior is computed by the finite element code. Both are completed by pre and postprocessors. To reach the minimum weight design two tasks are carried out: dimension variation in general elementwise thickness adaption to the stress limits; and form variation by element reduction in the finite element set. For comparison of the convergence behavior and accuracy of this code, results are compared with Michell reference structures and their analytic solutions. The method shows fast convergence and reaches the theoretical optimum efficiently.

  9. Backbone dependency further improves side chain prediction efficiency in the Energy-based Conformer Library (bEBL).

    PubMed

    Subramaniam, Sabareesh; Senes, Alessandro

    2014-11-01

    Side chain optimization is an integral component of many protein modeling applications. In these applications, the conformational freedom of the side chains is often explored using libraries of discrete, frequently occurring conformations. Because side chain optimization can pose a computationally intensive combinatorial problem, the nature of these conformer libraries is important for ensuring efficiency and accuracy in side chain prediction. We have previously developed an innovative method to create a conformer library with enhanced performance. The Energy-based Library (EBL) was obtained by analyzing the energetic interactions between conformers and a large number of natural protein environments from crystal structures. This process guided the selection of conformers with the highest propensity to fit into spaces that should accommodate a side chain. Because the method requires a large crystallographic data-set, the EBL was created in a backbone-independent fashion. However, it is well established that side chain conformation is strongly dependent on the local backbone geometry, and that backbone-dependent libraries are more efficient in side chain optimization. Here we present the backbone-dependent EBL (bEBL), whose conformers are independently sorted for each populated region of Ramachandran space. The resulting library closely mirrors the local backbone-dependent distribution of side chain conformation. Compared to the EBL, we demonstrate that the bEBL uses fewer conformers to produce similar side chain prediction outcomes, thus further improving performance with respect to the already efficient backbone-independent version of the library. PMID:25212195

  10. Bond distances in polypeptide backbones depend on the local conformation.

    PubMed

    Improta, Roberto; Vitagliano, Luigi; Esposito, Luciana

    2015-06-01

    By combining quantum-mechanical analysis of small model peptides and statistical surveys of high-resolution protein structures, a systematic conformational dependence of bond lengths in polypeptide backbones has been unveiled which involves both the peptide bond (C-O and C-N) and those bonds centred on the C(α) atom. All of these bond lengths indeed display a systematic variability in the ψ angle according to both calculations and surveys of protein structures. The overall agreement between the computed and the statistical data suggests that these trends are essentially driven by local effects. The dependence of C(α) distances on ψ is governed by interactions between the σ system of the C(α) moiety and the C-O π system of the peptide bond. Maximum and minimum values for each bond distance are found for conformations with the specific bond perpendicular and parallel to the adjacent CONH peptide plane, respectively. On the other hand, the variability of the C-O and C-N distances is related to the strength of the interactions between the lone pair of the N atom and the C-O π* system, which is modulated by the ψ angle. The C-O and C-N distances are related but their trends are not strictly connected to peptide-bond planarity, although a correlation amongst all of these parameters is expected on the basis of the classical resonance model. PMID:26057667

  11. Genotypic variation in foundation species generates network structure that may drive community dynamics and evolution.

    PubMed

    Lau, Matthew K; Keith, Arthur R; Borrett, Stuart R; Shuster, Stephen M; Whitham, Thomas G

    2016-03-01

    Although genetics in a single species is known to impact whole communities, little is known about how genetic variation influences species interaction networks in complex ecosystems. Here, we examine the interactions in a community of arthropod species on replicated genotypes (clones) of a foundation tree species, Populus angustifolia James (narrowleaf cottonwood), in a long-term, common garden experiment using a bipartite "genotype-species" network perspective. We combine this empirical work with a simulation experiment designed to further investigate how variation among individual tree genotypes can impact network structure. Three findings emerged: (1) the empirical "genotype-species network" exhibited significant network structure with modularity being greater than the highly conservative null model; (2) as would be expected given a modular network structure, the empirical network displayed significant positive arthropod co-occurrence patterns; and (3) furthermore, the simulations of "genotype-species" networks displayed variation in network structure, with modularity in particular clearly increasing, as genotypic variation increased. These results support the conclusion that genetic variation in a single species contributes to the structure of ecological interaction networks, which could influence eco-ogical dynamics (e.g., assembly and stability) and evolution in a community context. PMID:27197399

  12. Temporal variations in internal tide multimodal structure on the continental shelf, South China Sea

    NASA Astrophysics Data System (ADS)

    Gao, Dalu; Jin, Guangzhen; Lü, Xianqing

    2016-04-01

    Temporal variations in multimodal structures of diurnal (D 1) and semidiurnal (D 2) internal tides were investigated on the continental slope of the Dongsha Plateau, based on 2-month moored acoustic Doppler current profiler observations. Harmonic analysis indicated that the D 1 components (K 1 and O 1) dominated the internal tide field. The vertical structure of the K 1 constituent presented a first-mode structure while the M 2 constituent seemed to exhibit a high-mode structure. Amplitude spectra analysis of the current data revealed differences in baroclinic current amplitudes between different water depths. Temporal variations in modal structures ware analyzed, based on the D 1 and D 2 baroclinic tides extracted from the baroclinic velocity field with band-pass filters. Analysis showed that the magnitude of the D 1 internal tide current was much larger than the D 2 current, and temporal variations in the modal structure of the D 1 internal tide occurred on an approximately fortnightly cycle. The EOF analyses revealed temporal transformation of multimodal structures for D 1 and D 2 internal tides. The enhancement of the D 1 internal tide was mainly due to the superposition of K 1 and O 1, according to the temporal variation of coherent kinetic energy.

  13. Precise colocalization of interacting structural and pigmentary elements generates extensive color pattern variation in Phelsuma lizards

    PubMed Central

    2013-01-01

    Background Color traits in animals play crucial roles in thermoregulation, photoprotection, camouflage, and visual communication, and are amenable to objective quantification and modeling. However, the extensive variation in non-melanic pigments and structural colors in squamate reptiles has been largely disregarded. Here, we used an integrated approach to investigate the morphological basis and physical mechanisms generating variation in color traits in tropical day geckos of the genus Phelsuma. Results Combining histology, optics, mass spectrometry, and UV and Raman spectroscopy, we found that the extensive variation in color patterns within and among Phelsuma species is generated by complex interactions between, on the one hand, chromatophores containing yellow/red pteridine pigments and, on the other hand, iridophores producing structural color by constructive interference of light with guanine nanocrystals. More specifically, we show that 1) the hue of the vivid dorsolateral skin is modulated both by variation in geometry of structural, highly ordered narrowband reflectors, and by the presence of yellow pigments, and 2) that the reflectivity of the white belly and of dorsolateral pigmentary red marks, is increased by underlying structural disorganized broadband reflectors. Most importantly, these interactions require precise colocalization of yellow and red chromatophores with different types of iridophores, characterized by ordered and disordered nanocrystals, respectively. We validated these results through numerical simulations combining pigmentary components with a multilayer interferential optical model. Finally, we show that melanophores form dark lateral patterns but do not significantly contribute to variation in blue/green or red coloration, and that changes in the pH or redox state of pigments provide yet another source of color variation in squamates. Conclusions Precisely colocalized interacting pigmentary and structural elements generate extensive

  14. High Density LD-Based Structural Variations Analysis in Cattle Genome

    PubMed Central

    Salomon-Torres, Ricardo; Matukumalli, Lakshmi K.; Van Tassell, Curtis P.; Villa-Angulo, Carlos; Gonzalez-Vizcarra, Víctor M.; Villa-Angulo, Rafael

    2014-01-01

    Genomic structural variations represent an important source of genetic variation in mammal genomes, thus, they are commonly related to phenotypic expressions. In this work, ∼770,000 single nucleotide polymorphism genotypes from 506 animals from 19 cattle breeds were analyzed. A simple LD-based structural variation was defined, and a genome-wide analysis was performed. After applying some quality control filters, for each breed and each chromosome we calculated the linkage disequilibrium (r2) of short range (≤100 Kb). We sorted SNP pairs by distance and obtained a set of LD means (called the expected means) using bins of 5 Kb. We identified 15,246 segments of at least 1 Kb, among the 19 breeds, consisting of sets of at least 3 adjacent SNPs so that, for each SNP, r2 within its neighbors in a 100 Kb range, to the right side of that SNP, were all bigger than, or all smaller than, the corresponding expected mean, and their P-value were significant after a Benjamini-Hochberg multiple testing correction. In addition, to account just for homogeneously distributed regions we considered only SNPs having at least 15 SNP neighbors within 100 Kb. We defined such segments as structural variations. By grouping all variations across all animals in the sample we defined 9,146 regions, involving a total of 53,137 SNPs; representing the 6.40% (160.98 Mb) from the bovine genome. The identified structural variations covered 3,109 genes. Clustering analysis showed the relatedness of breeds given the geographic region in which they are evolving. In summary, we present an analysis of structural variations based on the deviation of the expected short range LD between SNPs in the bovine genome. With an intuitive and simple definition based only on SNPs data it was possible to discern closeness of breeds due to grouping by geographic region in which they are evolving. PMID:25050984

  15. Rare Variation Facilitates Inferences of Fine-Scale Population Structure in Humans

    PubMed Central

    O’Connor, Timothy D.; Fu, Wenqing; Mychaleckyj, Josyf C.; Logsdon, Benjamin; Auer, Paul; Carlson, Christopher S.; Leal, Suzanne M.; Smith, Joshua D.; Rieder, Mark J.; Bamshad, Michael J.; Nickerson, Deborah A.; Akey, Joshua M.

    2015-01-01

    Understanding the genetic structure of human populations has important implications for the design and interpretation of disease mapping studies and reconstructing human evolutionary history. To date, inferences of human population structure have primarily been made with common variants. However, recent large-scale resequencing studies have shown an abundance of rare variation in humans, which may be particularly useful for making inferences of fine-scale population structure. To this end, we used an information theory framework and extensive coalescent simulations to rigorously quantify the informativeness of rare and common variation to detect signatures of fine-scale population structure. We show that rare variation affords unique insights into patterns of recent population structure. Furthermore, to empirically assess our theoretical findings, we analyzed high-coverage exome sequences in 6,515 European and African American individuals. As predicted, rare variants are more informative than common polymorphisms in revealing a distinct cluster of European–American individuals, and subsequent analyses demonstrate that these individuals are likely of Ashkenazi Jewish ancestry. Our results provide new insights into the population structure using rare variation, which will be an important factor to account for in rare variant association studies. PMID:25415970

  16. ViVar: A Comprehensive Platform for the Analysis and Visualization of Structural Genomic Variation

    PubMed Central

    Sante, Tom; Vergult, Sarah; Volders, Pieter-Jan; Kloosterman, Wigard P.; Trooskens, Geert; De Preter, Katleen; Dheedene, Annelies; Speleman, Frank; De Meyer, Tim; Menten, Björn

    2014-01-01

    Structural genomic variations play an important role in human disease and phenotypic diversity. With the rise of high-throughput sequencing tools, mate-pair/paired-end/single-read sequencing has become an important technique for the detection and exploration of structural variation. Several analysis tools exist to handle different parts and aspects of such sequencing based structural variation analyses pipelines. A comprehensive analysis platform to handle all steps, from processing the sequencing data, to the discovery and visualization of structural variants, is missing. The ViVar platform is built to handle the discovery of structural variants, from Depth Of Coverage analysis, aberrant read pair clustering to split read analysis. ViVar provides you with powerful visualization options, enables easy reporting of results and better usability and data management. The platform facilitates the processing, analysis and visualization, of structural variation based on massive parallel sequencing data, enabling the rapid identification of disease loci or genes. ViVar allows you to scale your analysis with your work load over multiple (cloud) servers, has user access control to keep your data safe and is easy expandable as analysis techniques advance. URL: https://www.cmgg.be/vivar/ PMID:25503062

  17. Base-pairing potential identified by in vitro selection predicts the kinked RNA backbone observed in the crystal structure of the alfalfa mosaic virus RNA-coat protein complex.

    PubMed

    Boyce, Michael; Scott, Felicia; Guogas, Laura M; Gehrke, Lee

    2006-01-01

    The three-dimensional structure of the 3' terminus of alfalfa mosaic virus RNA in complex with an amino-terminal coat protein peptide revealed an unusual RNA fold with inter-AUGC basepairing stabilized by key arginine residues (Guogas, et al., 2004). To probe viral RNA interactions with the full-length coat protein, we have used in vitro genetic selection to characterize potential folding patterns among RNAs isolated from a complex randomized pool. Nitrocellulose filter retention, electrophoretic mobility bandshift analysis, and hydroxyl radical footprinting techniques were used to define binding affinities and to localize the potential RNA-protein interaction sites. Minimized binding sites were identified that included both the randomized domain and a portion of the constant regions of the selected RNAs. The selected RNAs, identified by their ability to bind full-length coat protein, have the potential to form the same unusual inter-AUGC Watson-Crick base pairs observed in the crystal structure, although the primary sequences diverge from the wild-type RNA. A constant feature of both the wild-type RNA and the selected RNAs is a G ribonucleotide in the third position of an AUGC-like repeat. Competitive binding assays showed that substituting adenosine for the constant guanosine in either the wild-type or selected RNAs impaired coat protein binding. These data suggest that the interactions observed in the RNA-peptide structure are likely recapitulated when the full-length protein binds. Further, the results underscore the power of in vitro genetic selection for probing RNA-protein structure and function. PMID:16312015

  18. Adaptive potential of genomic structural variation in human and mammalian evolution.

    PubMed

    Radke, David W; Lee, Charles

    2015-09-01

    Because phenotypic innovations must be genetically heritable for biological evolution to proceed, it is natural to consider new mutation events as well as standing genetic variation as sources for their birth. Previous research has identified a number of single-nucleotide polymorphisms that underlie a subset of adaptive traits in organisms. However, another well-known class of variation, genomic structural variation, could have even greater potential to produce adaptive phenotypes, due to the variety of possible types of alterations (deletions, insertions, duplications, among others) at different genomic positions and with variable lengths. It is from these dramatic genomic alterations, and selection on their phenotypic consequences, that adaptations leading to biological diversification could be derived. In this review, using studies in humans and other mammals, we highlight examples of how phenotypic variation from structural variants might become adaptive in populations and potentially enable biological diversification. Phenotypic change arising from structural variants will be described according to their immediate effect on organismal metabolic processes, immunological response and physical features. Study of population dynamics of segregating structural variation can therefore provide a window into understanding current and historical biological diversification. PMID:26003631

  19. The Inherent Conformational Preferences of Glutamine-Containing Peptides: the Role for Side-Chain Backbone Hydrogen Bonds

    NASA Astrophysics Data System (ADS)

    Walsh, Patrick S.; McBurney, Carl; Gellman, Samuel H.; Zwier, Timothy S.

    2015-06-01

    Glutamine is widely known to be found in critical regions of peptides which readily fold into amyloid fibrils, the structures commonly associated with Alzheimer's disease and glutamine repeat diseases such as Huntington's disease. Building on previous single-conformation data on Gln-containing peptides containing an aromatic cap on the N-terminus (Z-Gln-OH and Z-Gln-NHMe), we present here single-conformation UV and IR spectra of Ac-Gln-NHBn and Ac-Ala-Gln-NHBn, with its C-terminal benzyl cap. These results point towards side-chain to backbone hydrogen bonds dominating the structures observed in the cold, isolated environment of a molecular beam. We have identified and assigned three main conformers for Ac-Gln-NHBn all involving primary side-chain to backbone interactions. Ac-Ala-Gln-NHBn extends the peptide chain by one amino acid, but affords an improvement in the conformational flexibility. Despite this increase in the flexibility, only a single conformation is observed in the gas-phase: a structure which makes use of both side-chain-to-backbone and backbone-to-backbone hydrogen bonds.

  20. Incorporating backbone flexibility in MedusaDock improves ligand-binding pose prediction in the CSAR2011 docking benchmark.

    PubMed

    Ding, Feng; Dokholyan, Nikolay V

    2013-08-26

    Solution of the structures of ligand-receptor complexes via computational docking is an integral step in many structural modeling efforts as well as in rational drug discovery. A major challenge in ligand-receptor docking is the modeling of both receptor and ligand flexibilities in order to capture receptor conformational changes induced by ligand binding. In the molecular docking suite MedusaDock, both ligand and receptor side chain flexibilities are modeled simultaneously with sets of discrete rotamers, where the ligand rotamer library is generated "on the fly" in a stochastic manner. Here, we introduce backbone flexibility into MedusaDock by implementing ensemble docking in a sequential manner for a set of distinct receptor backbone conformations. We generate corresponding backbone ensembles to capture backbone changes upon binding to different ligands, as observed experimentally. We develop a simple clustering and ranking approach to select the top poses as blind predictions. We applied our method in the CSAR2011 benchmark exercise. In 28 out of 35 cases (80%) where the ligand-receptor complex structures were released, we were able to predict near-native poses (<2.5 Å RMSD), the highest success rate reported for CSAR2011. This result highlights the importance of modeling receptor backbone flexibility to the accurate docking of ligands to flexible targets. We expect a broad application of our fully flexible docking approach in biological studies as well as in rational drug design. PMID:23237273

  1. Backbone of complex networks of corporations: The flow of control

    NASA Astrophysics Data System (ADS)

    Glattfelder, J. B.; Battiston, S.

    2009-09-01

    We present a methodology to extract the backbone of complex networks based on the weight and direction of links, as well as on nontopological properties of nodes. We show how the methodology can be applied in general to networks in which mass or energy is flowing along the links. In particular, the procedure enables us to address important questions in economics, namely, how control and wealth are structured and concentrated across national markets. We report on the first cross-country investigation of ownership networks, focusing on the stock markets of 48 countries around the world. On the one hand, our analysis confirms results expected on the basis of the literature on corporate control, namely, that in Anglo-Saxon countries control tends to be dispersed among numerous shareholders. On the other hand, it also reveals that in the same countries, control is found to be highly concentrated at the global level, namely, lying in the hands of very few important shareholders. Interestingly, the exact opposite is observed for European countries. These results have previously not been reported as they are not observable without the kind of network analysis developed here.

  2. Backbone of complex networks of corporations: the flow of control.

    PubMed

    Glattfelder, J B; Battiston, S

    2009-09-01

    We present a methodology to extract the backbone of complex networks based on the weight and direction of links, as well as on nontopological properties of nodes. We show how the methodology can be applied in general to networks in which mass or energy is flowing along the links. In particular, the procedure enables us to address important questions in economics, namely, how control and wealth are structured and concentrated across national markets. We report on the first cross-country investigation of ownership networks, focusing on the stock markets of 48 countries around the world. On the one hand, our analysis confirms results expected on the basis of the literature on corporate control, namely, that in Anglo-Saxon countries control tends to be dispersed among numerous shareholders. On the other hand, it also reveals that in the same countries, control is found to be highly concentrated at the global level, namely, lying in the hands of very few important shareholders. Interestingly, the exact opposite is observed for European countries. These results have previously not been reported as they are not observable without the kind of network analysis developed here. PMID:19905177

  3. Comparison of Backbone Modification in Protein β-Sheets by α→γ Residue Replacement and α-Residue Methylation

    PubMed Central

    Lengyel, George A.; Reinert, Zachary E.; Griffith, Brian D.

    2014-01-01

    The mimicry of protein tertiary structure by oligomers with unnatural backbones is a significant contemporary research challenge. Among common elements of secondary structure found in natural proteins, sheets have proven the most difficult to address. Here, we report the systematic comparison of different strategies for peptide backbone modification in β-sheets with the goal of identifying the best method for replacing a multi-stranded sheet in a protein tertiary fold. The most effective sheet modifications examined lead to native-like tertiary folding behavior with thermodynamic fold stability comparable to the prototype protein on which the modified backbones are based. PMID:24909436

  4. Spatial variation of earthquake ground motion for application to soil-structure interaction

    SciTech Connect

    Abrahamson, N. )

    1992-03-01

    The spatial variation of strong ground motion from fifteen earthquakes recorded by the Lotung LSST strong motion array is analyzed. The earthquakes range in magnitude from 3.7 to 7.8 and in source distance from 4 to 80 km. In all a total of 533 station pairs are used with station separations ranging from 60 to 85 meters. The spatial variation of ground motion is divided into two parts: variation in the fourier phase (coherence), and variation in the Fourier amplitude. Empirical functions describing the frequency and separation distance dependence of the coherency and amplitude variation appropriate for use in engineering analyses are derived. Taken together, the spatial variation functions given in this study provide a complete description of the statistical properties of the horizontal components of the seismic wavefield assuming plane wave propagation for the S-wave window. Since the S-waves generally cause the largest shaking, these spatial variation functions are appropriate for use in engineering analyses of large structures.

  5. Spatial variation of earthquake ground motion for application to soil-structure interaction. Final report

    SciTech Connect

    Abrahamson, N.

    1992-03-01

    The spatial variation of strong ground motion from fifteen earthquakes recorded by the Lotung LSST strong motion array is analyzed. The earthquakes range in magnitude from 3.7 to 7.8 and in source distance from 4 to 80 km. In all a total of 533 station pairs are used with station separations ranging from 60 to 85 meters. The spatial variation of ground motion is divided into two parts: variation in the fourier phase (coherence), and variation in the Fourier amplitude. Empirical functions describing the frequency and separation distance dependence of the coherency and amplitude variation appropriate for use in engineering analyses are derived. Taken together, the spatial variation functions given in this study provide a complete description of the statistical properties of the horizontal components of the seismic wavefield assuming plane wave propagation for the S-wave window. Since the S-waves generally cause the largest shaking, these spatial variation functions are appropriate for use in engineering analyses of large structures.

  6. Parametric reduced-order models of battery pack vibration including structural variation and prestress effects

    NASA Astrophysics Data System (ADS)

    Hong, Sung-Kwon; Epureanu, Bogdan I.; Castanier, Matthew P.

    2014-09-01

    The goal of this work is to develop a numerical model for the vibration of hybrid electric vehicle (HEV) battery packs to enable probabilistic forced response simulations for the effects of variations. There are two important types of variations that affect their structural response significantly: the prestress that is applied when joining the cells within a pack; and the small, random structural property discrepancies among the cells of a battery pack. The main contributions of this work are summarized as follows. In order to account for these two important variations, a new parametric reduced order model (PROM) formulation is derived by employing three key observations: (1) the stiffness matrix can be parameterized for different levels of prestress, (2) the mode shapes of a battery pack with cell-to-cell variation can be represented as a linear combination of the mode shapes of the nominal system, and (3) the frame holding each cell has vibratory motion. A numerical example of an academic battery pack with pouch cells is presented to demonstrate that the PROM captures the effects of both prestress and structural variation on battery packs. The PROM is validated numerically by comparing full-order finite element models (FEMs) of the same systems.

  7. Constraints on field theoretical models for variation of the fine structure constant

    NASA Astrophysics Data System (ADS)

    Steinhardt, Charles L.

    2005-02-01

    Recent theoretical ideas and observational claims suggest that the fine structure constant α may be variable. We examine a spectrum of models in which α is a function of a scalar field. Specifically, we consider three scenarios: oscillating α, monotonic time variation of α, and time-independent α that is spatially varying. We examine the constraints imposed upon these theories by cosmological observations, particle detector experiments, and “fifth force” experiments. These constraints are very strong on models involving oscillation but cannot compete with bounds from the Oklo subnuclear reactor on models with monotonic timelike variation of α. One particular model with spatial variation is consistent with all current experimental and observational measurements, including those from two seemingly conflicting measurements of the fine structure constant using the many multiplet method on absorption lines.

  8. Molecular structure of deoxyadenylyl-3'-methylphosphonate-5'-thymidine dihydrate, (d-ApT x 2H2O), a dinucleoside monophosphate with neutral phosphodiester backbone. An X-ray crystal study.

    PubMed Central

    Chacko, K K; Lindner, K; Saenger, W; Miller, P S

    1983-01-01

    dApT, a modified deoxyribose dinucleoside phosphate with an uncharged methylphosphonate group, crystallizes as dihydrate in space group P2(1)2(1)2, a = 9.629(3), b = 20.884(6) and c = 14.173(4)A, Z = 4. The structure has been determined using 2176 X-ray diffractometer reflections and refined to a final R of 0.105. Torsion angles about P-O(5') and P-O(3') bonds are -91.8 degrees and 117.8 degrees. The former is in the normal (-)gauche range while the latter is eclipsed. Bases are oriented anti, the sugar of adenosine is puckered 2T3 (C(2')endo) whereas that of thymidine displays puckering disorder with major and minor occupancy sites. Major site is a half-chair 2T (C(2')endo-C(1')exo) and minor site an envelope 3T2 (C(3(1)endo). Adenine and thymine bases of symmetry related molecules form reversed Hoogsteen type base pairs, water molecules are disordered in the crystal lattice. PMID:6574427

  9. Histidine-Directed Arylation/Alkenylation of Backbone N-H Bonds Mediated by Copper(II).

    PubMed

    Ohata, Jun; Minus, Matthew B; Abernathy, Morgan E; Ball, Zachary T

    2016-06-22

    Chemical modification of proteins and peptides represents a challenge of reaction design as well as an important biological tool. In contrast to side-chain modification, synthetic methods to alter backbone structure are extremely limited. In this communication, copper-mediated backbone N-alkenylation or N-arylation of peptides and proteins by direct modification of natural sequences is described. Histidine residues direct oxidative coupling of boronic acids at the backbone NH of a neighboring amino acid. The mild reaction conditions in common physiological buffers, at ambient temperature, are compatible with proteins and biological systems. This simple reaction demonstrates the potential for directed reactions in complex systems to allow modification of N-H bonds that directly affect polypeptide structure, stability, and function. PMID:27249339

  10. The effect of structural stiffness variations on the onset of cross-flow VIV

    NASA Astrophysics Data System (ADS)

    Lee, Li

    2013-02-01

    This brief communication discusses test results in an earlier publication, which reveal that the onset of vortex-induced vibration (VIV) of a cylindrical structure is greatly influenced by its stiffness variations. An explanation is provided and a dimensionless parameter is proposed as an indicator to the onset of the cross-flow motion. The importance of this finding to VIV design of the cylindrical structures for marine applications is suggested.

  11. The determination of the in situ structure by nuclear spin contrast variation

    SciTech Connect

    Stuhrmann, H.B.; Nierhaus, K.H.

    1994-12-31

    Polarized neutron scattering from polarized nuclear spins in hydrogenous substances opens a new way of contrast variation. The enhanced contrast due to proton spin polarization was used for the in situ structure determination of tRNA of the functional complex of the E.coli ribosome.

  12. A study on the variation with temperature of fixed charge and membrane structure of cellophane membrane

    SciTech Connect

    Benavente, J. )

    1991-02-01

    Membrane potentials for a cellophane membrane at different temperatures (25-60C) have been measured. Experimental results were analyzed on the basis of the Kobatake equation, and some characteristic parameters have been estimated. The activation energy was also obtained. A variation of the membrane structure at the highest temperature studied has been found.

  13. Variation in mangrove forest structure and sediment characteristics in Bocas del Toro, Panama

    USGS Publications Warehouse

    Lovelock, C.E.; Feller, Ilka C.; McKee, K.L.; Thompson, R.

    2005-01-01

    Mangrove forest structure and sediment characteristics were examined in the extensive mangroves of Bocas del Toro, Republic of Panama. Forest structure was characterized to determine if spatial vegetation patterns were repeated over the Bocas del Toro landscape. Using a series of permanent plots and transects we found that the forests of Bocas del Toro were dominated by Rhizophora mangle with very few individuals of Avicennia germinans and Laguncularia racemosa. Despite this low species diversity, there was large variation in forest structure and in edaphic conditions (salinity, concentration of available phosphorus, Eh and sulphide concentration). Aboveground biomass varied 20-fold, from 6.8 Mg ha-1 in dwarf forests to 194.3 Mg ha-1 in the forests fringing the land. But variation in forest structure was predictable across the intertidal zone. There was a strong tree height gradient from seaward fringe (mean tree height 3.9 m), decreasing in stature in the interior dwarf forests (mean tree height 0.7 m), and increasing in stature in forests adjacent to the terrestrial forest (mean tree height 4.1 m). The predictable variation in forest structure emerges due to the complex interactions among edaphic and plant factors. Identifying predictable patterns in forest structure will aid in scaling up the ecosystem services provided by mangrove forests in coastal landscapes. Copyright 2005 College of Arts and Sciences.

  14. Photocentric variability of quasars caused by variations in their inner structure: consequences for Gaia measurements

    NASA Astrophysics Data System (ADS)

    Popović, L. Č.; Jovanović, P.; Stalevski, M.; Anton, S.; Andrei, A. H.; Kovačević, J.; Baes, M.

    2012-02-01

    Context. We study the photocenter position variability caused by variations in the quasar inner structure. We consider the variability in the accretion disk emissivity and torus structure variability caused by the different illumination by the central source. We discuss the possible detection of these effects by Gaia. Observations of the photocenter variability in two AGNs, SDSS J121855+020002 and SDSS J162011+1724327 have been reported and discussed. Aims: For variations in the quasar inner structure, we explore how much this effect can affect the position determination and whether it can (or not) be detected with the Gaia mission. Methods: We use models of (a) a relativistic disk, including the perturbation that can increase the brightness of part of the disk, and consequently offset the photocenter position, and (b) a dusty torus that absorbs and re-emits the incoming radiation from the accretion disk (central continuum source). We estimate the value of the photocenter offset caused by these two effects. Results: We found that perturbations in the inner structure can cause a significant offset to the photocenter. This offset depends on the characteristics of both the perturbation and accretion disk and on the structure of the torus. In the case of the two considered QSOs, the observed photocenter offsets cannot be explained by variations in the accretion disk and other effects should be considered. We discuss the possibility of exploding stars very close to the AGN source, and also that there are two variable sources at the center of these two AGNs that may indicate a binary supermassive black hole system on a kpc (pc) scale. Conclusions: The Gaia mission seems to be very promising, not only for astrometry, but also for exploring the inner structure of AGNs. We conclude that variations in the quasar inner structure can affect the observed photocenter (by up to several mas). There is a chance to observe such an effect in the case of bright and low-redshift QSOs.

  15. Spatial and spatiotemporal variation in metapopulation structure affects population dynamics in a passively dispersing arthropod.

    PubMed

    De Roissart, Annelies; Wang, Shaopeng; Bonte, Dries

    2015-11-01

    The spatial and temporal variation in the availability of suitable habitat within metapopulations determines colonization-extinction events, regulates local population sizes and eventually affects local population and metapopulation stability. Insights into the impact of such a spatiotemporal variation on the local population and metapopulation dynamics are principally derived from classical metapopulation theory and have not been experimentally validated. By manipulating spatial structure in artificial metapopulations of the spider mite Tetranychus urticae, we test to which degree spatial (mainland-island metapopulations) and spatiotemporal variation (classical metapopulations) in habitat availability affects the dynamics of the metapopulations relative to systems where habitat is constantly available in time and space (patchy metapopulations). Our experiment demonstrates that (i) spatial variation in habitat availability decreases variance in metapopulation size and decreases density-dependent dispersal at the metapopulation level, while (ii) spatiotemporal variation in habitat availability increases patch extinction rates, decreases local population and metapopulation sizes and decreases density dependence in population growth rates. We found dispersal to be negatively density dependent and overall low in the spatial variable mainland-island metapopulation. This demographic variation subsequently impacts local and regional population dynamics and determines patterns of metapopulation stability. Both local and metapopulation-level variabilities are minimized in mainland-island metapopulations relative to classical and patchy ones. PMID:25988264

  16. Monitoring Backbone Hydrogen-Bond Formation in β-Barrel Membrane Protein Folding.

    PubMed

    Raschle, Thomas; Rios Flores, Perla; Opitz, Christian; Müller, Daniel J; Hiller, Sebastian

    2016-05-10

    β-barrel membrane proteins are key components of the outer membrane of bacteria, mitochondria and chloroplasts. Their three-dimensional structure is defined by a network of backbone hydrogen bonds between adjacent β-strands. Here, we employ hydrogen-deuterium (H/D) exchange in combination with NMR spectroscopy and mass spectrometry to monitor backbone hydrogen bond formation during folding of the outer membrane protein X (OmpX) from E. coli in detergent micelles. Residue-specific kinetics of interstrand hydrogen-bond formation were found to be uniform in the entire β-barrel and synchronized to formation of the tertiary structure. OmpX folding thus propagates via a long-lived conformational ensemble state in which all backbone amide protons exchange with the solvent and engage in hydrogen bonds only transiently. Stable formation of the entire OmpX hydrogen bond network occurs downhill of the rate-limiting transition state and thus appears cooperative on the overall folding time scale. PMID:27062600

  17. Electron transfer dissociation reveals changes in the cleavage frequencies of backbone bonds distant to amide-to-ester substitutions in polypeptides.

    PubMed

    Hansen, Thomas A; Jung, Hye R; Kjeldsen, Frank

    2011-11-01

    Interrogation of electron transfer dissociation (ETD) mass spectra of peptide amide-to-ester backbone bond substituted analogues (depsipeptides) reveals substantial differences in the entire backbone cleavage frequencies. It is suggested that the point permutation of backbone bonds leads to changes in the predominant ion structures by removal/weakening of specific hydrogen bonding. ETD responds to these changes by redistributing the cleavage frequencies of the peptide backbone bonds. In comparison, no distinction between depsi-/peptide was observed using collision-activated dissociation, which is consistent with a general unfolding and elimination of structural information of these ions. These results should encourage further exploration of depsipeptides for gas-phase structural characterization. PMID:21952783

  18. Brain structure variation in great apes, with attention to the mountain gorilla (Gorilla beringei beringei).

    PubMed

    Sherwood, Chet C; Cranfield, Michael R; Mehlman, Patrick T; Lilly, Alecia A; Garbe, Jo Anne L; Whittier, Christopher A; Nutter, Felicia B; Rein, Thomas R; Bruner, Harlan J; Holloway, Ralph L; Tang, Cheuk Y; Naidich, Thomas P; Delman, Bradley N; Steklis, H Dieter; Erwin, Joseph M; Hof, Patrick R

    2004-07-01

    This report presents data regarding the brain structure of mountain gorillas (Gorilla beringei beringei) in comparison with other great apes. Magnetic resonance (MR) images of three mountain gorilla brains were obtained with a 3T scanner, and the volume of major neuroanatomical structures (neocortical gray matter, hippocampus, thalamus, striatum, and cerebellum) was measured. These data were included with our existing database that includes 23 chimpanzees, three western lowland gorillas, and six orangutans. We defined a multidimensional space by calculating the principal components (PCs) from the correlation matrix of brain structure fractions in the well-represented sample of chimpanzees. We then plotted data from all of the taxa in this space to examine phyletic variation in neural organization. Most of the variance in mountain gorillas, as well as other great apes, was contained within the chimpanzee range along the first two PCs, which accounted for 61.73% of the total variance. Thus, the majority of interspecific variation in brain structure observed among these ape taxa was no greater than the within-species variation seen in chimpanzees. The loadings on PCs indicated that the brain structure of great apes differs among taxa mostly in the relative sizes of the striatum, cerebellum, and hippocampus. These findings suggest possible functional differences among taxa in terms of neural adaptations for ecological and locomotor capacities. Importantly, these results fill a critical gap in current knowledge regarding great ape neuroanatomical diversity. PMID:15258959

  19. No association between schizophrenia susceptibility variants and macroscopic structural brain volume variation in healthy subjects.

    PubMed

    Li, Ming; Huang, Liang; Wang, Jinkai; Su, Bing; Luo, Xiong-Jian

    2016-03-01

    Previous studies have suggested that genetic variants for schizophrenia susceptibility might contribute to structural brain volume variations in schizophrenia patients, including total brain volume, hippocampal volume, and amygdalar volume. However, whether these schizophrenia susceptibility variants are associated with macroscopic structural brain volume (i.e., intracranial volume, total brain volume, and hippocampal volume) in healthy subjects is still unclear. In this study, we investigated the associations between 47 schizophrenia susceptibility variants (from 25 well-characterized schizophrenia susceptibility genes) and cranial volume variation in a healthy Chinese sample (N = 1,013). We also extracted the association between these 47 schizophrenia risk variants and the macroscopic structural brain volume (intracranial volume, total brain volume and hippocampal volume) in a large healthy sample of European ancestry (ENIGMA sample, N = 5,775). We identified several single-nucleotide polymorphisms (SNPs) nominally associated with intracranial volume, total brain volume, and hippocampal volume at P < 0.05 (uncorrected). However, after Bonferroni corrections for multiple testing, no SNP showed significant association. Hence, our results do not support previous observations that schizophrenia susceptibility variants are associated with brain structure (e.g., hippocampal volume) in healthy individuals, and indicate that single schizophrenia risk variant may not contribute significantly to macroscopic brain structure (e.g., intracranial volume or hippocampal volume) variation in healthy subjects. PMID:26437209

  20. Environmental diel variation, parasite loads, and local population structuring of a mixed-mating mangrove fish.

    PubMed

    Ellison, Amy; Wright, Patricia; Taylor, D Scott; Cooper, Chris; Regan, Kelly; Currie, Suzie; Consuegra, Sofia

    2012-07-01

    Genetic variation within populations depends on population size, spatial structuring, and environmental variation, but is also influenced by mating system. Mangroves are some of the most productive and threatened ecosystems on earth and harbor a large proportion of species with mixed-mating (self-fertilization and outcrossing). Understanding population structuring in mixed-mating species is critical for conserving and managing these complex ecosystems. Kryptolebias marmoratus is a unique mixed-mating vertebrate inhabiting mangrove swamps under highly variable tidal regimes and environmental conditions. We hypothesized that geographical isolation and ecological pressures influence outcrossing rates and genetic diversity, and ultimately determine the local population structuring of K. marmoratus. By comparing genetic variation at 32 microsatellites, diel fluctuations of environmental parameters, and parasite loads among four locations with different degrees of isolation, we found significant differences in genetic diversity and genotypic composition but little evidence of isolation by distance. Locations also differed in environmental diel fluctuation and parasite composition. Our results suggest that mating system, influenced by environmental instability and parasites, underpins local population structuring of K. marmoratus. More generally, we discuss how the conservation of selfing species inhabiting mangroves and other biodiversity hotspots may benefit from knowledge of mating strategies and population structuring at small spatial scales. PMID:22957172

  1. Variation in the structural changes of myoglobin in the presence of several protic ionic liquid.

    PubMed

    Attri, Pankaj; Jha, Indrani; Choi, Eun Ha; Venkatesu, Pannuru

    2014-08-01

    Protein stability in ionic solution depends on the delicate balance between protein-ion and ion-ion interactions. To address the ion specific effects on the protein, we have examined the stability of myoglobin (Mb) in the presence of buffer and ammonium-based ionic liquids (ILs) (50%, v/v). Here, fluorescence and circular dichroism (CD) spectroscopy experiments are used to study the influence of ILs on structure and stability of Mb. Our experimental results reveal that more viscous ILs (sulphate or phosphate ions) are stabilizers and therefore more biocompatible for Mb structure. Surprisingly, the less viscous ILs such as acetate anion based ILs are destabilizers for the native structure of Mb. Our results explicitly elucidate that anion variation has significant influence on Mb stability efficiency than cation variation. This study provides insight into anion effects on protein stability and explains that the intrasolvent interactions can be leveraged to enhance the stability. PMID:24857872

  2. Intraspecific phytochemical variation shapes community and population structure for specialist caterpillars.

    PubMed

    Glassmire, Andrea E; Jeffrey, Christopher S; Forister, Matthew L; Parchman, Thomas L; Nice, Chris C; Jahner, Joshua P; Wilson, Joseph S; Walla, Thomas R; Richards, Lora A; Smilanich, Angela M; Leonard, Michael D; Morrison, Colin R; Simbaña, Wilmer; Salagaje, Luis A; Dodson, Craig D; Miller, Jim S; Tepe, Eric J; Villamarin-Cortez, Santiago; Dyer, Lee A

    2016-10-01

    Chemically mediated plant-herbivore interactions contribute to the diversity of terrestrial communities and the diversification of plants and insects. While our understanding of the processes affecting community structure and evolutionary diversification has grown, few studies have investigated how trait variation shapes genetic and species diversity simultaneously in a tropical ecosystem. We investigated secondary metabolite variation among subpopulations of a single plant species, Piper kelleyi (Piperaceae), using high-performance liquid chromatography (HPLC), to understand associations between plant phytochemistry and host-specialized caterpillars in the genus Eois (Geometridae: Larentiinae) and associated parasitoid wasps and flies. In addition, we used a genotyping-by-sequencing approach to examine the genetic structure of one abundant caterpillar species, Eois encina, in relation to host phytochemical variation. We found substantive concentration differences among three major secondary metabolites, and these differences in chemistry predicted caterpillar and parasitoid community structure among host plant populations. Furthermore, E. encina populations located at high elevations were genetically different from other populations. They fed on plants containing high concentrations of prenylated benzoic acid. Thus, phytochemistry potentially shapes caterpillar and wasp community composition and geographic variation in species interactions, both of which can contribute to diversification of plants and insects. PMID:27279551

  3. Sensitivity of hyperfine structure to nuclear radius and quark mass variation

    SciTech Connect

    Dinh, T. H.; Dunning, A.; Dzuba, V. A.; Flambaum, V. V.

    2009-05-15

    To search for the temporal variation in the fundamental constants, one needs to know dependence of atomic transition frequencies on these constants. We study the dependence of the hyperfine structure of atomic s levels on nuclear radius and, via radius, on quark masses. An analytical formula has been derived and tested by the numerical relativistic Hartree-Fock calculations for Rb, Cd{sup +}, Cs, Yb{sup +}, and Hg{sup +}. The results of this work allow the use of the results of past and future atomic clock experiments and quasar spectra measurements to put constraints on time variation in the quark masses.

  4. Vertical structure and variation of currents observed in autumn in the Korea Strait

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Ho; Choi, Byoung-Ju

    2015-06-01

    To observe vertical structure and temporal variations of currents in the Tsushima Warm Current region of the Korea Strait, a moored buoy system was deployed in autumn 2009. The moored buoy system measured vertical profiles of current, temperature, and salinity for 24 days and a background hydrographic survey was performed. Along-strait northeastward currents were dominant in the upper layer (8-35 m). The mean current veers counterclockwise from 48 m to 74 m as much as 50°, and its speed is reduced with depth. There were distinct northward onshore currents near the bottom (65-80 m). It was demonstrated that thermal wind relation holds in the inclined pycnocline layer, which generates the counterclockwise veering current structure. Density gradient along the strait is a main factor producing the cross-strait onshore current component below the upper-layer and the cross-strait density gradient reduces the along-strait current component with depth. Previous studies have never focused on the effect of the along-strait density structure on current structure. The first Empirical Orthogonal Function mode (CM1) of current variability explains 70% of local current variations and its vertical structure is close to the mean current structure. The correlation analysis among variations of CM1 current, slope of sea level anomaly (SSLA) and local wind anomaly revealed that the variation of CM1 current is mainly related to the variation of SSLA across the strait (c-SSLA), which is known to be controlled by remote and local wind forcing. Similarity between vertical structures of mean and CM1 current suggests that thermal wind relation is the main dynamics maintaining the counterclockwise turning of CM1 current below the upper layer although the upperlayer CM1 current is controlled by c-SSLA through barotropic geostrophic relation. Time series of temperature and salinity indicate that the thermohaline front between Korean Coastal Water and Tsushima Warm Current Water meanders in

  5. Constraints on a possible variation of the fine structure constant from galaxy cluster data

    NASA Astrophysics Data System (ADS)

    Holanda, R. F. L.; Landau, S. J.; Alcaniz, J. S.; Sánchez G., I. E.; Busti, V. C.

    2016-05-01

    We propose a new method to probe a possible time evolution of the fine structure constant α from X-ray and Sunyaev-Zel'dovich measurements of the gas mass fraction (fgas) in galaxy clusters. Taking into account a direct relation between variations of α and violations of the distance-duality relation, we discuss constraints on α for a class of dilaton runaway models. Although not yet competitive with bounds from high-z quasar absorption systems, our constraints, considering a sample of 29 measurements of fgas, in the redshift interval 0.14 < z < 0.89, provide an independent estimate of α variation at low and intermediate redshifts. Furthermore, current and planned surveys will provide a larger amount of data and thus allow to improve the limits on α variation obtained in the present analysis.

  6. Spatial structure of 60- and 30-year variations of the geomagnetic field according to data of analytical models

    NASA Astrophysics Data System (ADS)

    Kalugin, V. I.; Rotanova, N. M.; Golovkov, V. P.

    1984-10-01

    The distribution of the amplitudes and phases of 60-year variations of the geomagnetic field on the earth's surface is obtained on the basis of analytical models. It is shown that the characteristic features or foci of these variations have different configurations and a dissimilar intensity. A global map of the spatial distribution of 30-year variations is also obtained; and a comparison of maps of the 60- and 30-year variations shows that, although the structure of the latter variations is more complex, the characteristic foci of both types of variations are manifested in the same regions.

  7. Genetic and Ontogenetic Variation in an Endangered Tree Structures Dependent Arthropod and Fungal Communities

    PubMed Central

    Gosney, Benjamin J.; O′Reilly-Wapstra, Julianne M.; Forster, Lynne G.; Barbour, Robert C.; Iason, Glenn R.; Potts, Brad M.

    2014-01-01

    Plant genetic and ontogenetic variation can significantly impact dependent fungal and arthropod communities. However, little is known of the relative importance of these extended genetic and ontogenetic effects within a species. Using a common garden trial, we compared the dependent arthropod and fungal community on 222 progeny from two highly differentiated populations of the endangered heteroblastic tree species, Eucalyptus morrisbyi. We assessed arthropod and fungal communities on both juvenile and adult foliage. The community variation was related to previous levels of marsupial browsing, as well as the variation in the physicochemical properties of leaves using near-infrared spectroscopy. We found highly significant differences in community composition, abundance and diversity parameters between eucalypt source populations in the common garden, and these were comparable to differences between the distinctive juvenile and adult foliage. The physicochemical properties assessed accounted for a significant percentage of the community variation but did not explain fully the community differences between populations and foliage types. Similarly, while differences in population susceptibility to a major marsupial herbivore may result in diffuse genetic effects on the dependent community, this still did not account for the large genetic-based differences in dependent communities between populations. Our results emphasize the importance of maintaining the populations of this rare species as separate management units, as not only are the populations highly genetically structured, this variation may alter the trajectory of biotic colonization of conservation plantings. PMID:25469641

  8. Genetic and ontogenetic variation in an endangered tree structures dependent arthropod and fungal communities.

    PubMed

    Gosney, Benjamin J; O Reilly-Wapstra, Julianne M; Forster, Lynne G; Barbour, Robert C; Iason, Glenn R; Potts, Brad M

    2014-01-01

    Plant genetic and ontogenetic variation can significantly impact dependent fungal and arthropod communities. However, little is known of the relative importance of these extended genetic and ontogenetic effects within a species. Using a common garden trial, we compared the dependent arthropod and fungal community on 222 progeny from two highly differentiated populations of the endangered heteroblastic tree species, Eucalyptus morrisbyi. We assessed arthropod and fungal communities on both juvenile and adult foliage. The community variation was related to previous levels of marsupial browsing, as well as the variation in the physicochemical properties of leaves using near-infrared spectroscopy. We found highly significant differences in community composition, abundance and diversity parameters between eucalypt source populations in the common garden, and these were comparable to differences between the distinctive juvenile and adult foliage. The physicochemical properties assessed accounted for a significant percentage of the community variation but did not explain fully the community differences between populations and foliage types. Similarly, while differences in population susceptibility to a major marsupial herbivore may result in diffuse genetic effects on the dependent community, this still did not account for the large genetic-based differences in dependent communities between populations. Our results emphasize the importance of maintaining the populations of this rare species as separate management units, as not only are the populations highly genetically structured, this variation may alter the trajectory of biotic colonization of conservation plantings. PMID:25469641

  9. Inter-chromosomal variation in the pattern of human population genetic structure.

    PubMed

    Baye, Tesfaye M

    2011-05-01

    Emerging technologies now make it possible to genotype hundreds of thousands of genetic variations in individuals, across the genome. The study of loci at finer scales will facilitate the understanding of genetic variation at genomic and geographic levels. We examined global and chromosomal variations across HapMap populations using 3.7 million single nucleotide polymorphisms to search for the most stratified genomic regions of human populations and linked these regions to ontological annotation and functional network analysis. To achieve this, we used five complementary statistical and genetic network procedures: principal component (PC), cluster, discriminant, fixation index (FST) and network/pathway analyses. At the global level, the first two PC scores were sufficient to account for major population structure; however, chromosomal level analysis detected subtle forms of population structure within continental populations, and as many as 31 PCs were required to classify individuals into homogeneous groups. Using recommended population ancestry differentiation measures, a total of 126 regions of the genome were catalogued. Gene ontology and networks analyses revealed that these regions included the genes encoding oculocutaneous albinism II (OCA2), hect domain and RLD 2 (HERC2), ectodysplasin A receptor (EDAR) and solute carrier family 45, member 2 (SLC45A2). These genes are associated with melanin production, which is involved in the development of skin and hair colour, skin cancer and eye pigmentation. We also identified the genes encoding interferon-γ (IFNG) and death-associated protein kinase 1 (DAPK1), which are associated with cell death, inflammatory and immunological diseases. An in-depth understanding of these genomic regions may help to explain variations in adaptation to different environments. Our approach offers a comprehensive strategy for analysing chromosome-based population structure and differentiation, and demonstrates the application of

  10. Backbone and sidechain 1H, 15N and 13C assignments of the KSR1 CA1 domain

    PubMed Central

    Koveal, Dorothy; Pinheiro, Anderson S.; Peti, Wolfgang; Page, Rebecca

    2014-01-01

    The backbone and side chain resonance assignments of the murine KSR1 CA1 domain have been determined based on triple-resonance experiments using uniformly [13C, 15N]-labeled protein. This assignment is the first step towards the determination of the three-dimensional structure of the unique KSR1 CA1 domain. PMID:20737253