Science.gov

Sample records for background neural tube

  1. Neural Tube Defects

    MedlinePlus

    Neural tube defects are birth defects of the brain, spine, or spinal cord. They happen in the first month ... that she is pregnant. The two most common neural tube defects are spina bifida and anencephaly. In spina bifida, ...

  2. What Are Neural Tube Defects?

    MedlinePlus

    ... NICHD Research Information Clinical Trials Resources and Publications Neural Tube Defects (NTDs): Condition Information Skip sharing on ... media links Share this: Page Content What are neural tube defects? Neural (pronounced NOOR-uhl ) tube defects ...

  3. Neural tube defects.

    PubMed

    Greene, Nicholas D E; Copp, Andrew J

    2014-01-01

    Neural tube defects (NTDs), including spina bifida and anencephaly, are severe birth defects of the central nervous system that originate during embryonic development when the neural tube fails to close completely. Human NTDs are multifactorial, with contributions from both genetic and environmental factors. The genetic basis is not yet well understood, but several nongenetic risk factors have been identified as have possibilities for prevention by maternal folic acid supplementation. Mechanisms underlying neural tube closure and NTDs may be informed by experimental models, which have revealed numerous genes whose abnormal function causes NTDs and have provided details of critical cellular and morphological events whose regulation is essential for closure. Such models also provide an opportunity to investigate potential risk factors and to develop novel preventive therapies. PMID:25032496

  4. Neural Tube Defects

    PubMed Central

    Greene, Nicholas D.E.; Copp, Andrew J.

    2015-01-01

    Neural tube defects (NTDs), including spina bifida and anencephaly, are severe birth defects of the central nervous system that originate during embryonic development when the neural tube fails to close completely. Human NTDs are multifactorial, with contributions from both genetic and environmental factors. The genetic basis is not yet well understood, but several nongenetic risk factors have been identified as have possibilities for prevention by maternal folic acid supplementation. Mechanisms underlying neural tube closure and NTDs may be informed by experimental models, which have revealed numerous genes whose abnormal function causes NTDs and have provided details of critical cellular and morphological events whose regulation is essential for closure. Such models also provide an opportunity to investigate potential risk factors and to develop novel preventive therapies. PMID:25032496

  5. Neural Tube Defects

    MedlinePlus

    ... The two most common neural tube defects are spina bifida and anencephaly. In spina bifida, the fetal spinal column doesn't close completely. There is usually nerve damage that causes at least some paralysis of the legs. In anencephaly, ... National Institute of Child Health and Human Development

  6. Screening for Open Neural Tube Defects.

    PubMed

    Krantz, David A; Hallahan, Terrence W; Carmichael, Jonathan B

    2016-06-01

    Biochemical prenatal screening was initiated with the use of maternal serum alpha fetoprotein to screen for open neural tube defects. Screening now includes multiple marker and sequential screening protocols involving serum and ultrasound markers to screen for aneuploidy. Recently cell-free DNA screening for aneuploidy has been initiated, but does not screen for neural tube defects. Although ultrasound is highly effective in identifying neural tube defects in high-risk populations, in decentralized health systems maternal serum screening still plays a significant role. Abnormal maternal serum alpha fetoprotein alone or in combination with other markers may indicate adverse pregnancy outcome in the absence of open neural tube defects. PMID:27235920

  7. Folic Acid Helps Prevent Neural Tube Defects

    MedlinePlus

    ... Features Folic Acid Helps Prevent Neural Tube Defects Language: English Español (Spanish) Recommend on Facebook Tweet Share Compartir The feature you selected is no longer available. In 10 seconds you will be automatically redirected to the CDC. ...

  8. Are There Disorders or Conditions Associated with Neural Tube Defects?

    MedlinePlus

    ... Publications Are there disorders or conditions associated with neural tube defects? Skip sharing on social media links Share this: Page Content Infants born with neural tube defects that are not immediately fatal may ...

  9. Genetics and development of neural tube defects.

    PubMed

    Copp, Andrew J; Greene, Nicholas D E

    2010-01-01

    Congenital defects of neural tube closure (neural tube defects; NTDs) are among the commonest and most severe disorders of the fetus and newborn. Disturbance of any of the sequential events of embryonic neurulation produce NTDs, with the phenotype (eg anencephaly, spina bifida) varying depending on the region of neural tube that remains open. While mutation of > 200 genes is known to cause NTDs in mice, the pattern of occurrence in humans suggests a multifactorial polygenic or oligogenic aetiology. This emphasizes the importance of gene-gene and gene-environment interactions in the origins of these defects. A number of cell biological functions are essential for neural tube closure, with defects of the cytoskeleton, cell cycle and molecular regulation of cell viability prominent among the mouse NTD mutants. Many transcriptional regulators and proteins that affect chromatin structure are also required for neural tube closure, although the downstream molecular pathways regulated by these proteins is unknown. Some key signalling pathways for NTDs have been identified: over-activation of sonic hedgehog signalling and loss of function in the planar cell polarity (non-canonical Wnt) pathway are potent causes of NTD, with requirements also for retinoid and inositol signalling. Folic acid supplementation is an effective method for primary prevention of a proportion of NTDs in both humans and mice, although the embryonic mechanism of folate action remains unclear. Folic acid-resistant cases can be prevented by inositol supplementation in mice, raising the possibility that this could lead to an additional preventive strategy for human NTDs in future. PMID:19918803

  10. Microtubules, polarity and vertebrate neural tube morphogenesis.

    PubMed

    Cearns, Michael D; Escuin, Sarah; Alexandre, Paula; Greene, Nicholas D E; Copp, Andrew J

    2016-07-01

    Microtubules (MTs) are key cellular components, long known to participate in morphogenetic events that shape the developing embryo. However, the links between the cellular functions of MTs, their effects on cell shape and polarity, and their role in large-scale morphogenesis remain poorly understood. Here, these relationships were examined with respect to two strategies for generating the vertebrate neural tube: bending and closure of the mammalian neural plate; and cavitation of the teleost neural rod. The latter process has been compared with 'secondary' neurulation that generates the caudal spinal cord in mammals. MTs align along the apico-basal axis of the mammalian neuroepithelium early in neural tube closure, participating functionally in interkinetic nuclear migration, which indirectly impacts on cell shape. Whether MTs play other functional roles in mammalian neurulation remains unclear. In the zebrafish, MTs are important for defining the neural rod midline prior to its cavitation, both by localizing apical proteins at the tissue midline and by orienting cell division through a mirror-symmetric MT apparatus that helps to further define the medial localization of apical polarity proteins. Par proteins have been implicated in centrosome positioning in neuroepithelia as well as in the control of polarized morphogenetic movements in the neural rod. Understanding of MT functions during early nervous system development has so far been limited, partly by techniques that fail to distinguish 'cause' from 'effect'. Future developments will likely rely on novel ways to selectively impair MT function in order to investigate the roles they play. PMID:27025884

  11. Neural tube defects, folic acid and methylation.

    PubMed

    Imbard, Apolline; Benoist, Jean-François; Blom, Henk J

    2013-09-01

    Neural tube defects (NTDs) are common complex congenital malformations resulting from failure of the neural tube closure during embryogenesis. It is established that folic acid supplementation decreases the prevalence of NTDs, which has led to national public health policies regarding folic acid. To date, animal studies have not provided sufficient information to establish the metabolic and/or genomic mechanism(s) underlying human folic acid responsiveness in NTDs. However, several lines of evidence suggest that not only folates but also choline, B12 and methylation metabolisms are involved in NTDs. Decreased B12 vitamin and increased total choline or homocysteine in maternal blood have been shown to be associated with increased NTDs risk. Several polymorphisms of genes involved in these pathways have also been implicated in risk of development of NTDs. This raises the question whether supplementation with B12 vitamin, betaine or other methylation donors in addition to folic acid periconceptional supplementation will further reduce NTD risk. The objective of this article is to review the role of methylation metabolism in the onset of neural tube defects. PMID:24048206

  12. Mouse models for neural tube closure defects.

    PubMed

    Juriloff, D M; Harris, M J

    2000-04-12

    Neural tube closure defects (NTDs), in particular anencephaly and spina bifida, are common human birth defects (1 in 1000), their genetics is complex and their risk is reduced by periconceptional maternal folic acid supplementation. There are > 60 mouse mutants and strains with NTDs, many reported within the past 2 years. Not only are NTD mutations at loci widely heterogeneous in function, but also most of the mutants demonstrate variable low penetrance and some show complex inheritance patterns (e.g. SELH/Bc, Abl / Arg, Mena / Profilin1 ). In most of these mouse models, the NTDs are exencephaly (equivalent to anencephaly) or spina bifida or both, reflecting failure of neural fold elevation in well defined, mechanistically distinct elevation zones. NTD risk is reduced in various models by different maternal nutrient supplements, including folic acid ( Pax3, Cart1, Cd mutants), inositol ( ct ) and methionine ( Axd ). Lack of de novo methylation in embryos ( Dnmt3b -null) leads to NTD risk, and we suggest a potential link between methylation and the observed female excess among cranial NTDs in several models. Some surprising NTD mutants ( Gadd45a, Terc, Trp53 ) suggest that genes with a basic mitotic function also have a function specific to neural fold elevation. The genes mutated in several mouse NTD models involve actin regulation ( Abl/Arg, Macs, Mena/Profilin1, Mlp, Shrm, Vcl ), support the postulated key role of actin in neural fold elevation, and may be a good candidate pathway to search for human NTD genes. PMID:10767323

  13. Genetic, Epigenetic, and Environmental Contributions to Neural Tube Closure

    PubMed Central

    Wilde, Jonathan J.; Petersen, Juliette R.; Niswander, Lee

    2015-01-01

    The formation of the embryonic brain and spinal cord begins as the neural plate bends to form the neural folds, which meet and fuse to close the neural tube. The neural ectoderm and surrounding tissues also coordinate proliferation, differentiation, and patterning. This highly orchestrated process is susceptible to disruption, leading to neural tube defects (NTDs), a common birth defect. Here, we highlight genetic and epigenetic contributions to neural tube closure. We describe an online database we created as a resource for researchers, geneticists, and clinicians. Neural tube closure is sensitive to environmental influences, and we discuss disruptive causes, preventative measures, and possible mechanisms. New technologies will move beyond candidate genes in small cohort studies toward unbiased discoveries in sporadic NTD cases. This will uncover the genetic complexity of NTDs and critical gene-gene interactions. Animal models can reveal the causative nature of genetic variants, the genetic interrelationships, and the mechanisms underlying environmental influences. PMID:25292356

  14. Nodal signaling is required for closure of the anterior neural tube in zebrafish

    PubMed Central

    Aquilina-Beck, Allisan; Ilagan, Kristine; Liu, Qin; Liang, Jennifer O

    2007-01-01

    Background Nodals are secreted signaling proteins with many roles in vertebrate development. Here, we identify a new role for Nodal signaling in regulating closure of the rostral neural tube of zebrafish. Results We find that the neural tube in the presumptive forebrain fails to close in zebrafish Nodal signaling mutants. For instance, the cells that will give rise to the pineal organ fail to move from the lateral edges of the neural plate to the midline of the diencephalon. The open neural tube in Nodal signaling mutants may be due in part to reduced function of N-cadherin, a cell adhesion molecule expressed in the neural tube and required for neural tube closure. N-cadherin expression and localization to the membrane are reduced in fish that lack Nodal signaling. Further, N-cadherin mutants and morphants have a pineal phenotype similar to that of mutants with deficiencies in the Nodal pathway. Overexpression of an activated form of the TGFβ Type I receptor Taram-A (Taram-A*) cell autonomously rescues mesendoderm formation in fish with a severe decrease in Nodal signaling. We find that overexpression of Taram-A* also corrects their open neural tube defect. This suggests that, as in mammals, the mesoderm and endoderm have an important role in regulating closure of the anterior neural tube of zebrafish. Conclusion This work helps establish a role for Nodal signals in neurulation, and suggests that defects in Nodal signaling could underlie human neural tube defects such as exencephaly, a fatal condition characterized by an open neural tube in the anterior brain. PMID:17996054

  15. Neural Tube Defects, Folate, and Immune Modulation

    PubMed Central

    Fathe, Kristin; Finnell, Richard H.; Taylor, Stephen M.; Woodruff, Trent M.

    2014-01-01

    Periconceptional supplementation with folic acid has led to a significant worldwide reduction in the incidence of neural tube defects (NTDs). However, despite increasing awareness of the benefits of folic acid supplementation and the implementation of food fortification programs in many countries, NTDs continue to be a leading cause of perinatal morbidity and mortality worldwide. Furthermore, there exists a significant subgroup of women who appear to be resistant to the protective effects of folic acid supplementation. The following review addresses emerging clinical and experimental evidence for a role of the immune system in the etiopathogenesis of NTDs, with the aim of developing novel preventative strategies to further reduce the incidence of NTD-affected pregnancies. In particular, recent studies demonstrating novel roles and interactions between innate immune factors such as the complement cascade, neurulation, and folate metabolism are explored. PMID:24078477

  16. Spina bifida and other neural tube defects.

    PubMed

    Northrup, H; Volcik, K A

    2000-01-01

    NTDs, resulting from failure of the neural tube to close during the fourth week of embryogenesis, are the most common severely disabling birth defects in the United States, with a frequency of approximately 1 of every 2000 births. Neural tube malformations involving the spinal cord and vertebral arches are referred to as spina bifida, with severe types of spina bifida involving protrusion of the spinal cord and/or meninges through a defect in the vertebral arch. Depending on the level of the lesion, interruption of the spinal cord at the site of the spina bifida defect causes paralysis of the legs, incontinence of urine and feces, anesthesia of the skin, and abnormalities of the hips, knees, and feet. Two additional abnormalities often seen in children with spina bifida include hydrocephalus and the Arnold-Chiari type II malformation. Despite the physical and particular learning disabilities children with spina bifida must cope with, participation in individualized educational programs can allow these children to develop skills necessary for autonomy in adulthood. Advances in research to uncover the molecular basis of NTDs is enhanced by knowledge of the link between both the environmental and genetic factors involved in the etiology of NTDs. The most recent development in NTD research for disease-causing genes is the discovery of a genetic link to the most well-known environmental cause of neural tube malformation, folate deficiency in pregnant women. Nearly a decade ago, periconceptional folic acid supplementation was proven to decrease both the recurrence and occurrence of NTDs. The study of folate and its association with NTDs is an ongoing endeavor that has led to numerous studies of different genes involved in the folate metabolism pathway, including the most commonly studied thermolabile mutation (C677T) in the MTHFR gene. An additional focus for NTD research involves mouse models that exhibit both naturally occurring NTDs, as well as those created by

  17. Aneuploidy among prenatally detected neural tube defects

    SciTech Connect

    Hume, R.F. Jr.; Lampinen, J.; Martin, L.S.; Johnson, M.P.; Evans, M.I.

    1996-01-11

    We have reported previously a 10% aneuploidy detection rate among 39 cases of fetal neural tube defects (NTD). Subsequently we amassed an additional experience of over 17,000 prenatal diagnosis cases over a 5-year period. During this period 106 cases of NTDs were identified; 44 with anencephaly, 62 with open spina bifida. The average maternal age of this population with NTDs was 29 years (15-40); 6 patients declined amniocentesis. Six of 100 cytogenetic studies were aneuploid; on anencephalic fetus had inherited a maternal marker chromosome, and 5 NTD cases had trisomy 18. The average maternal age of the aneuploid cases was 21 (19-40); 3 were 35 years or older. Four of 5 trisomy 18 cases had multiple congenital anomalies (MCA). The overall aneuploidy detection rate in our cohort was 5-6, while aneuploidy occurred in 2% of the isolated NTD cases, and 24% of the MCA cases. Combining the earlier experience, 4/39 aneuploidy (2 trisomy 18, 4p+, del 13q) yields an aneuploidy detection frequency of 10/145 (7%), of which most (7/10) had trisomy 18. These data support fetal karyotyping for accurate diagnosis, prognosis, and recurrence-risk counseling. 5 refs., 2 tabs.

  18. Neural Tube Defects: From a Proteomic Standpoint

    PubMed Central

    Puvirajesinghe, Tania M.; Borg, Jean-Paul

    2015-01-01

    Neural tube defects (NTDs) are congenital birth defects classified according to their resulting morphological characteristics in newborn patients. Current diagnosis of NTDs relies largely on the structural evaluation of fetuses using ultrasound imaging, with biochemical characterization used as secondary screening tools. The multigene etiology of NTDs has been aided by genetic studies, which have discovered panels of genes mutated in these diseases that encode receptors and cytoplasmic signaling molecules with poorly defined functions. Animal models ranging from flies to mice have been used to determine the function of these genes and identify their associated molecular cascades. More emphasis is now being placed on the identification of biochemical markers from clinical samples and model systems based on mass spectrometry, which open novel avenues in the understanding of NTDs at protein, metabolic and molecular levels. This article reviews how the use of proteomics can push forward the identification of novel biomarkers and molecular networks implicated in NTDs, an indispensable step in the improvement of patient management. PMID:25789708

  19. Folate status and neural tube defects.

    PubMed

    Molloy, A M; Mills, J L; Kirke, P N; Weir, D G; Scott, J M

    1999-01-01

    Periconceptional folic acid supplementation prevents approximately 70% of neural tube defects (NTDs). While most women carrying affected fetuses do not have deficient blood folate levels, the risk of having an NTD affected child is inversely correlated with pregnancy red cell folate levels. Current research is focused on the discovery of genetic abnormalities in folate related enzymes which might explain the role of folate in NTD prevention. The first candidate gene to emerge was the C677T variant of 5,10-methylenetetrahydrofolate reductase. Normal subjects who are homozygous for the mutation (TT) have red cell folate status some 20% lower than expected. It is now established that the prevalence of the TT genotype is significantly higher among spina bifida cases and their parents. Nevertheless, our studies show that the variant does not account for the reduced blood folate levels in many NTD affected mothers. We conclude that low maternal folate status may in itself be the most important risk factor for NTDs and that food fortification may be the only population strategy of benefit in the effort to eliminate NTDs. PMID:10609896

  20. What Are the Treatments for Neural Tube Defects?

    MedlinePlus

    ... Resources and Publications What are the treatments for neural tube defects? Skip sharing on social media links Share this: ... the long term. There is no treatment for anencephaly or iniencephaly. 2 These conditions are usually fatal ...

  1. How Do Health Care Providers Diagnose Neural Tube Defects?

    MedlinePlus

    ... Information Clinical Trials Resources and Publications How do health care providers diagnose neural tube defects? Skip sharing on ... AFP, as well as high levels of acetylcholinesterase; health care providers might conduct this test to confirm high ...

  2. [Folic acid: Primary prevention of neural tube defects. Literature Review].

    PubMed

    Llamas Centeno, M J; Miguélez Lago, C

    2016-03-01

    Neural tube defects (NTD) are the most common congenital malformations of the nervous system, they have a multifactorial etiology, are caused by exposure to chemical, physical or biological toxic agents, factors deficiency, diabetes, obesity, hyperthermia, genetic alterations and unknown causes. Some of these factors are associated with malnutrition by interfering with the folic acid metabolic pathway, the vitamin responsible for neural tube closure. Its deficit produce anomalies that can cause abortions, stillbirths or newborn serious injuries that cause disability, impaired quality of life and require expensive treatments to try to alleviate in some way the alterations produced in the embryo. Folic acid deficiency is considered the ultimate cause of the production of neural tube defects, it is clear the reduction in the incidence of Espina Bifida after administration of folic acid before conception, this leads us to want to further study the action of folic acid and its application in the primary prevention of neural tube defects. More than 40 countries have made the fortification of flour with folate, achieving encouraging data of decrease in the prevalence of neural tube defects. This paper attempts to make a literature review, which clarify the current situation and future of the prevention of neural tube defects. PMID:26959966

  3. Epithelial cell polarity genes are required for neural tube closure.

    PubMed

    Doudney, Kit; Stanier, Philip

    2005-05-15

    Human neural tube defects (NTD) are a heterogeneous group that exhibit complex inheritance, making it difficult to identify the underlying cause. Due to the uniform genetic background, inbred mouse strains are a more amenable target for genetic studies. We investigated the loop-tail (Lp) mouse as a model for the severe NTD, craniorachischisis. A homozygous point mutation was identified in the transmembrane protein Vangl2, which in Drosophila has been shown to function in the planar cell polarity (PCP) pathway. Morphological analysis of the Lp mice shows that the defect results from an abnormally broad floor plate, most likely through a failure in convergent extension. The elevated neural folds remain too far apart to contact, inhibiting neural tube closure. Recently, two other mouse mutants (crash and circletail) were described with a similar phenotype to Lp and were investigated as potentially new alleles. Mapping studies, however, showed that both mutants segregated to distinct loci. In the crash (Crsh) mouse, a mutation was identified in Celsr1, a seven pass transmembrane receptor that encodes a protein orthologous to Drosophila Flamingo. Like Vangl2, this gene also functions in the PCP pathway. While in circletail, a point mutation was identified introducing a premature stop codon into the apical-basal cell polarity gene scribble (Scrb1). We subsequently demonstrated a genetic interaction between all three genes, where double heterozygotes exhibit the same homozygous NTD phenotype. This strongly suggests both a candidate gene pathway and that interaction between independent recessive alleles may be a possible explanation for the complex inheritance in severe human NTD. PMID:15800847

  4. Periconceptional Maternal Alcohol Consumption and Neural Tube Defects

    PubMed Central

    Makelarski, Jennifer A.; Romitti, Paul A.; Sun, Lixian; Burns, Trudy L.; Druschel, Charlotte M.; Suarez, Lucina; Olshan, Andrew F.; Siega-Riz, Anna Maria; Olney, Richard S.

    2015-01-01

    BACKGROUND Neural tube defects (NTD)s, which occur when the neural tube fails to close during early gestation, are some of the most common birth defects worldwide. Alcohol is a known teratogen and has been shown to induce NTDs in animal studies, although most human studies have failed to corroborate these results. Using data from the National Birth Defects Prevention Study, associations between maternal reports of periconceptional (1 month prior through 2 months postconception) alcohol consumption and NTDs were examined. METHODS NTD cases and unaffected live born control infants, delivered from 1997 through 2005, were included. Interview reports of alcohol consumption (quantity, frequency, variability, and type) were obtained from 1223 case mothers and 6807 control mothers. Adjusted odds ratios (aOR)s and 95% confidence intervals were estimated using multivariable logistic regression analysis. RESULTS For all NTDs combined, most aORs for any alcohol consumption, one or more binge episodes, and different type(s) of alcohol consumed were near unity or modestly reduced (≥0.7

  5. How Many People Are Affected By or Are at Risk for Neural Tube Defects?

    MedlinePlus

    ... are affected by or are at risk for neural tube defects? Skip sharing on social media links Share this: ... with spina bifida. 1 The other types of neural tube defects are less common. About 340 infants are born ...

  6. Fumonisins, Tortillas and Neural Tube Defects: Untangling a Complex Issue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fumonisin mycotoxins are found in corn and corn-based foods. Fumonisin B1 (FB1), the most common, disrupts sphingolipid metabolism thereby causing species-specific diseases in animals that include cancer in rodents and (birth) neural tube defects (NTD) in LM/Bc mice. Fumonisins’ affect on human heal...

  7. Classification, clinical features, and genetics of neural tube defects

    PubMed Central

    Salih, Mustafa A.; Murshid, Waleed R.; Seidahmed, Mohammed Z.

    2014-01-01

    Neural tube defects (NTDs) constitute a major health burden (0.5-2/1000 pregnancies worldwide), and remain a preventable cause of still birth, neonatal, and infant death, or significant lifelong handicaps. The malformations result from failure of the neural folds to fuse in the midline, and form the neural tube between the third and the fourth week of embryonic development. This review article discusses their classification, clinical features, and genetics. Most NTDs are sporadic and both genetic, and non-genetic environmental factors are involved in its etiology. Consanguinity was suggested to contribute to the high incidence of NTDs in several countries, including Saudi Arabia. Syndromes, often associated with chromosomal anomalies, account for <10% of all NTDs; but a higher proportion (20%) has been documented in Saudi Arabia. Genetic predisposition constitutes the major underlying risk factor, with a strong implication of genes that regulate folate one-carbon metabolism and planar cell polarity. PMID:25551113

  8. Prevention of Neural Tube Defects. ARC Q&A #101-45.

    ERIC Educational Resources Information Center

    Arc, Arlington, TX.

    This fact sheet uses a question-and-answer format to summarize issues related to the prevention of neural tube defects. Questions and answers address the following topics: what neural tube defects are and the most common types (spina bifida and anencephaly); occurrence of neural tube defects during the first month of pregnancy; the frequency of…

  9. Neural tube defects and impaired neural progenitor cell proliferation in Gbeta1-deficient mice.

    PubMed

    Okae, Hiroaki; Iwakura, Yoichiro

    2010-04-01

    Heterotrimeric G proteins are well known for their roles in signal transduction downstream of G protein-coupled receptors (GPCRs), and both Galpha subunits and tightly associated Gbetagamma subunits regulate downstream effector molecules. Compared to Galpha subunits, the physiological roles of individual Gbeta and Ggamma subunits are poorly understood. In this study, we generated mice deficient in the Gbeta1 gene and found that Gbeta1 is required for neural tube closure, neural progenitor cell proliferation, and neonatal development. About 40% Gbeta1(-/-) embryos developed neural tube defects (NTDs) and abnormal actin organization was observed in the basal side of neuroepithelium. In addition, Gbeta1(-/-) embryos without NTDs showed microencephaly and died within 2 days after birth. GPCR agonist-induced ERK phosphorylation, cell proliferation, and cell spreading, which were all found to be regulated by Galphai and Gbetagamma signaling, were abnormal in Gbeta1(-/-) neural progenitor cells. These data indicate that Gbeta1 is required for normal embryonic neurogenesis. PMID:20186915

  10. Lack of Motor Neuron Differentiation is an Intrinsic Property of the Mouse Secondary Neural Tube

    PubMed Central

    Shum, Alisa S.W.; Tang, Louisa S.C.; Copp, Andrew J.; Roelink, Henk

    2016-01-01

    The cranial part of the amniote neural tube is formed by folding and fusion of the ectoderm-derived neural plate (primary neurulation). After posterior neuropore closure, however, the caudal neural tube is formed by cavitation of tail bud mesenchyme (secondary neurulation). In mouse embryos, the secondary neural tube expresses several genes important in early patterning and induction, in restricted domains similar to the primary neural tube, yet it does not undergo neuronal differentiation, but subsequently degenerates. Although the secondary neural tube, isolated from surrounding tissues, is responsive to exogenous Sonic Hedgehog proteins in vitro, motor neuron differentiation is never observed. This cannot be attributed to the properties of the secondary notochord, since it is able to induce motor neuron differentiation in naïve chick neural plate explants. Taken together, these results support that the lack of motor neuron differentiation is an intrinsic property of the mouse secondary neural tube. PMID:20960561

  11. Cats, frogs, and snakes: early concepts of neural tube defects.

    PubMed

    Obladen, Michael

    2011-11-01

    Disturbed neurulation fascinated scientists of all times. In Egypt, anencephalic infants were venerated as animal-headed gods. Roman law required them to be killed. The medieval world held the mother responsible, either because of assumed imagination or "miswatching," or because of suspected intercourse with animals or devils. Modern embryology and teratology began with the use of the microscope by Malpighi in 1672. Details of neural tube closure were described by Koelliker in 1861 and by His in 1874. From 1822, genetic disease and familial recurrence due to insufficient nutrition were discerned and lower social class identified as a risk factor. It took a century to define the malnutrition as insufficient folate intake. The mandatory supplementation of folate in staple foods successfully reduced the incidence of neural tube defects in the United States, Australia, Canada, and Chile, but it was not adopted by most European countries. PMID:21730342

  12. New Techniques for the Study of Neural Tube Defects

    PubMed Central

    Lei, Yunping; Finnell, Richard H

    2016-01-01

    Neural tube defects (NTDs) are among the most common complex congenital malformations observed in newborns. When the neural tube fails to close completely, severe malformations of the brain and/or spinal cord and subsequent neurologic impairment occurs. It is widely believed that nutritional, environmental and genetic interactions contribute to NTDs. It is well established that low folate levels during pregnancy increases a mother’s risk of having pregnancy complicated by an NTD, and providing periconceptional folate supplementation reduces this risk. The underlying genetic mechanisms of NTDs are still unclear. We review the many new approaches to better understand the etiology, especially the genetic etiology, underlying this family of birth defects. PMID:27066597

  13. Neural tube defects – recent advances, unsolved questions and controversies

    PubMed Central

    Copp, Andrew J.; Stanier, Philip; Greene, Nicholas D. E.

    2014-01-01

    Neural tube defects (NTDs) are severe congenital malformations affecting around 1 in every 1000 pregnancies. Here we review recent advances and currently unsolved issues in the NTD field. An innovation in clinical management has come from the demonstration that closure of open spina bifida lesions in utero can diminish neurological dysfunction in children. Primary prevention by folic acid has been enhanced through introduction of mandatory food fortification in some countries, although not yet in UK. Genetic predisposition comprises the majority of NTD risk, and genes that regulate folate one-carbon metabolism and planar cell polarity have been strongly implicated. The sequence of human neural tube closure events remains controversial, but study of mouse NTD models shows that anencephaly, open spina bifida and craniorachischisis result from failure of primary neurulation, while skin-covered spinal dysraphism results from defective secondary neurulation. Other ‘NTD’ malformations, such as encephalocele, are likely to be post-neurulation disorders. PMID:23790957

  14. Etiology, pathogenesis and prevention of neural tube defects.

    PubMed

    Padmanabhan, Rengasamy

    2006-06-01

    Spina bifida, anencephaly, and encephalocele are commonly grouped together and termed neural tube defects (NTD). Failure of closure of the neural tube during development results in anencephaly or spina bifida aperta but encephaloceles are possibly post-closure defects. NTD are associated with a number of other central nervous system (CNS) and non-neural malformations. Racial, geographic and seasonal variations seem to affect their incidence. Etiology of NTD is unknown. Most of the non-syndromic NTD are of multifactorial origin. Recent in vitro and in vivo studies have highlighted the molecular mechanisms of neurulation in vertebrates but the morphologic development of human neural tube is poorly understood. A multisite closure theory, extrapolated directly from mouse experiments highlighted the clinical relevance of closure mechanisms to human NTD. Animal models, such as circle tail, curly tail, loop tail, shrm and numerous knockouts provide some insight into the mechanisms of NTD. Also available in the literature are a plethora of chemically induced preclosure and a few post-closure models of NTD, which highlight the fact that CNS malformations are of hetergeneitic nature. No Mendelian pattern of inheritance has been reported. Association with single gene defects, enhanced recurrence risk among siblings, and a higher frequency in twins than in singletons indicate the presence of a strong genetic contribution to the etiology of NTD. Non-availability of families with a significant number of NTD cases makes research into genetic causation of NTD difficult. Case reports and epidemiologic studies have implicated a number of chemicals, widely differing therapeutic drugs, environmental contaminants, pollutants, infectious agents, and solvents. Maternal hyperthermia, use of valproate by epileptic women during pregnancy, deficiency and excess of certain nutrients and chronic maternal diseases (e.g. diabetes mellitus) are reported to cause a manifold increase in the

  15. Epidemiology of the neural tube defects in Kashmir Valley

    PubMed Central

    Laharwal, Masood Ahmed; Sarmast, Arif Hussain; Ramzan, Altaf Umer; Wani, Abrar Ahad; Malik, Nayil Khursheed; Arif, Sajad Hussain; Rizvi, Masooma

    2016-01-01

    Background: Neural tube defects (NTDs) are the most common congenital malformations affecting the brain and spinal cord and have a multifactorial etiology. Genetic and environmental factors have been found to cause these defects, both individually and in combination. Methods: A 2-year hospital-based prospective study was carried out from November 2013 to October 2015 to determine the incidence, types, demographics, risk factors, and other associated anamolies relevant to NTDs in Kashmir Valley. A detailed history of the mother was taken along with detailed clinical examination of neonate including measurement of head circumference and checking the status of fontanella, whether lax/full/bulging/or tense, type of NTD. Investigations that were done included were X-ray skull: Anterior-posterior (AP) and lateral, X-ray spine: AP and lateral, ultrasonography abdomen, magnetic resonance imaging: Spine and brain. Results: The total number of babies with NTD's was 125 with an overall incidence of 0.503. Kupwara district was having the highest incidence (1.047) and Srinagar district the lowest incidence of NTD's (0.197). Majority of NTD's (116 cases, 92.8%) were found in the rural areas. Among the different types of NTD's, spina bifida had an incidence of 0.342 (85 cases, 68%) and anencephaly had an incidence of 0.113 (28 cases, 22.4%). There was a slight preponderance of females over males with NTD's. There were 70 females (56%) and 55 males (44%), respectively, with a male: female ratio of 0.8:1 Conclusions: The incidence rates of NTDs is very high for Kashmir Valley. Geographical distribution of NTDs at this place confirms a relationship between the socioeconomic status, educational status, maternal too young or advanced age, and environmental factors for the development of a NTD. The results of this study point to the importance establishing a health policy to prevent NTD in Kashmir Valley. PMID:27127700

  16. Dynamic behaviors of the non-neural ectoderm during mammalian cranial neural tube closure.

    PubMed

    Ray, Heather J; Niswander, Lee A

    2016-08-15

    The embryonic brain and spinal cord initially form through the process of neural tube closure (NTC). NTC is thought to be highly similar between rodents and humans, and studies of mouse genetic mutants have greatly increased our understanding of the molecular basis of NTC with relevance for human neural tube defects. In addition, studies using amphibian and chick embryos have shed light into the cellular and tissue dynamics underlying NTC. However, the dynamics of mammalian NTC has been difficult to study due to in utero development until recently when advances in mouse embryo ex vivo culture techniques along with confocal microscopy have allowed for imaging of mouse NTC in real time. Here, we have performed live imaging of mouse embryos with a particular focus on the non-neural ectoderm (NNE). Previous studies in multiple model systems have found that the NNE is important for proper NTC, but little is known about the behavior of these cells during mammalian NTC. Here we utilized a NNE-specific genetic labeling system to assess NNE dynamics during murine NTC and identified different NNE cell behaviors as the cranial region undergoes NTC. These results bring valuable new insight into regional differences in cellular behavior during NTC that may be driven by different molecular regulators and which may underlie the various positional disruptions of NTC observed in humans with neural tube defects. PMID:27343896

  17. The epidemiology of neural tube defects. A mathematical model.

    PubMed

    Van Rootselaar, F J

    1993-07-01

    The incidence of neural tube defects (NTDs) shows a seasonal variation; and incidence as well as female/male ratio show a relation with latitude. The interrelation of these phenomena is presented as a mathematical model, which has a 'predictive' value, and is an instrument in estimating the local gene frequency. The model offers a simple explanation of the conundrum why the double X-chromosome has a variable influence on the sex ratio. UV light and the herpes virus fit in this model as related causative factors of NTDs. PMID:8231985

  18. Recent studies on neural tube defects in embryos of diabetic pregnancy: an overview.

    PubMed

    Dheen, S Thameem; Tay, Samuel S W; Boran, Jiang; Ting, Loh Wan; Kumar, S Dinesh; Fu, Jiang; Ling, Eng-Ang

    2009-01-01

    Maternal diabetes develops in 2-6% of total pregnancies, depending on geographical and ethnic background. About 10% of fetuses from diabetic pregnancy display congenital malformations in various organ systems including cardiovascular, gastrointestinal, genitourinary and neurological systems, among which the neural tube defects (NTDs) such as anencephaly, holoprosencephaly and syntelencephaly were more frequently demonstrated. Recent studies by the Diabetes Control and Complications Trial Research Group show that tight glycemic control early in pregnancy decreases the progression of a number of diabetic complications. However, it appears that the pre-existing tissue damage cannot be reversed even after normoglycemic levels are achieved during pregnancy. In recent years, considerable efforts have been made to investigate the etiology of birth defects among infants of diabetic mothers. It has been shown that diabetes-induced fetal abnormalities are accompanied by some metabolic disturbances including elevated superoxide dismutase (SOD) activity, reduced levels of myoinositol and arachidonic acid and inhibition of the pentose phosphate shunt pathway. Moreover, the frequency of fetal malformations in diabetic pregnancy has been reported to be markedly reduced by dietary supplements of antioxidants such as vitamin E, vitamin C and butylated hy- droxytoluene, suggesting that oxidative stress is involved in the etiology of fetal dysmorphogenesis. Furthermore, several experimental studies have shown that NTDs in embryos of diabetic mice are associated with altered expression of genes, which control development of the neural tube. In this review, recent findings of possible molecular mechanisms which cause morphological changes during neural tube development in embryos of diabetic pregnancy are discussed. PMID:19519395

  19. Associated anomalies with neural tube defects in fetal autopsies.

    PubMed

    Toru, Havva Serap; Sanhal, Cem Yasar; Uzun, Özlem Ceren; Ocak, Guzide Ayse; Mendilcioğlu, İnanç; Karaveli, Fatma Şeyda

    2016-03-01

    Neural tube defects (NTD), the consequences of aberrant neural tube closure during embryogenesis, have been mostly investigated in terms of their high prevalence, rate of mortalities and serious morbidities. A proper prenatal outcome counseling of couples coming across a fetal anomaly necessitates the detection and categorization of the primer abnormality, all the co-existing malformations. The aim of this work is to study the incidence and relevance of associated malformations in order to offer a complete pathology report with a true diagnosis. In this study, among 542 fetal autopsy 62 (%11.4) cases with NTD was recorded by the Akdeniz University Pathology Department between January 2006 and June 2012. Twenty (32.4%) NTD cases were associated with anomaly. Twelve cases of associated groups consisted of a congenital syndrome/association, spondylothoracic dysplasia, amniotic band syndrome, Meckel-Gruber syndrome, schisis association. The frequency of associated NTD was 32%, this result was higher than previous reports. NTDs have a significant genetic component to their etiology that interacts with environmental risk factors, which might pose Turkey to be a country with high prevalence of NTD. We want to emphasize that intensive screening, documentation of co-existent abnormalities of NTD, should be conducted in order to exhibit certain diagnosis, to perform proper prenatal genetic counseling of parents for on-going/future pregnancies. PMID:25800566

  20. Epidemiology of neural tube defects in Saudi Arabia

    PubMed Central

    AlShail, Essam; De Vol, Edward; Yassen, Ahsan; Elgamal, Essam A.

    2014-01-01

    Objective: To evaluate the distribution and pattern of neural tube defects in Saudi Arabia by creating a hospital based registry. Methods: All cases registered in the King Faisal Specialist Hospital and Research Center (KFSH&RC) neural tube defect (NTD) registry since it was established in October 2000 until December 2012 were studied through active surveillance comprising a registrar who collects NTD information by reviewing the patient’s medical records, and interviewing patient’s families. Results: The total number of patients registered from October 2000 to December 2012 was 718 patients. There were more females (417, 58%) than males (301, 42%). Of 620 mothers who underwent antenatal ultrasonography; 392 (63%) were diagnosed at birth, and 204 (33%) were diagnosed with antenatal hydrocephalus. In our registry sample, most mothers (95%) did not take folic acid 3 months prior to pregnancy, and 76% did not take folic acid during the 3 months after conception with the affected child. Only 5% received folic acid prior to conception. Conclusions: The KFSH&RC-NTD registry has met its objectives as a source of data that may significantly contribute to the prevention of NTDs, and improving quality of care for NTD patients through active publication of registry findings and management approaches. PMID:25551116

  1. Professor John Scott, folate and neural tube defects.

    PubMed

    Hoffbrand, A Victor

    2014-02-01

    John Scott (1940-2013) was born in Dublin where he was to spend the rest of his career, both as an undergraduate and subsequently Professor of Biochemistry and Nutrition at Trinity College. His research with the talented group of scientists and clinicians that he led has had a substantial impact on our understanding of folate metabolism, mechanisms of its catabolism and deficiency. His research established the leading theory of folate involvement with vitamin B12 in the pathogenesis of vitamin B12 neuropathy. He helped to establish the normal daily intake of folate and the increased requirements needed either in food or as a supplement before and during pregnancy to prevent neural tube defects. He also suggested a dietary supplement of vitamin B12 before and during pregnancy to reduce the risk of neural tube defects. It would be an appropriate epitaph if fortification of food with folic acid became mandatory in the UK and Ireland, as it is in over 70 other countries. PMID:24224721

  2. Slit/Robo1 signaling regulates neural tube development by balancing neuroepithelial cell proliferation and differentiation

    SciTech Connect

    Wang, Guang; Li, Yan; Wang, Xiao-yu; Han, Zhe; Chuai, Manli; Wang, Li-jing; Ho Lee, Kenneth Ka; Geng, Jian-guo; Yang, Xuesong

    2013-05-01

    Formation of the neural tube is the morphological hallmark for development of the embryonic central nervous system (CNS). Therefore, neural tube development is a crucial step in the neurulation process. Slit/Robo signaling was initially identified as a chemo-repellent that regulated axon growth cone elongation, but its role in controlling neural tube development is currently unknown. To address this issue, we investigated Slit/Robo1 signaling in the development of chick neCollege of Life Sciences Biocentre, University of Dundee, Dundee DD1 5EH, UKural tube and transgenic mice over-expressing Slit2. We disrupted Slit/Robo1 signaling by injecting R5 monoclonal antibodies into HH10 neural tubes to block the Robo1 receptor. This inhibited the normal development of the ventral body curvature and caused the spinal cord to curl up into a S-shape. Next, Slit/Robo1 signaling on one half-side of the chick embryo neural tube was disturbed by electroporation in ovo. We found that the morphology of the neural tube was dramatically abnormal after we interfered with Slit/Robo1 signaling. Furthermore, we established that silencing Robo1 inhibited cell proliferation while over-expressing Robo1 enhanced cell proliferation. We also investigated the effects of altering Slit/Robo1 expression on Sonic Hedgehog (Shh) and Pax7 expression in the developing neural tube. We demonstrated that over-expressing Robo1 down-regulated Shh expression in the ventral neural tube and resulted in the production of fewer HNK-1{sup +} migrating neural crest cells (NCCs). In addition, Robo1 over-expression enhanced Pax7 expression in the dorsal neural tube and increased the number of Slug{sup +} pre-migratory NCCs. Conversely, silencing Robo1 expression resulted in an enhanced Shh expression and more HNK-1{sup +} migrating NCCs but reduced Pax7 expression and fewer Slug{sup +} pre-migratory NCCs were observed. In conclusion, we propose that Slit/Robo1 signaling is involved in regulating neural tube

  3. Coordinating cell and tissue behavior during zebrafish neural tube morphogenesis.

    PubMed

    Araya, Claudio; Ward, Laura C; Girdler, Gemma C; Miranda, Miguel

    2016-03-01

    The development of a vertebrate neural epithelium with well-organized apico-basal polarity and a central lumen is essential for its proper function. However, how this polarity is established during embryonic development and the potential influence of surrounding signals and tissues on such organization has remained less understood. In recent years the combined superior transparency and genetics of the zebrafish embryo has allowed for in vivo visualization and quantification of the cellular and molecular dynamics that govern neural tube structure. Here, we discuss recent studies revealing how co-ordinated cell-cell interactions coupled with adjacent tissue dynamics are critical to regulate final neural tissue architecture. Furthermore, new findings show how the spatial regulation and timing of orientated cell division is key in defining precise lumen formation at the tissue midline. In addition, we compare zebrafish neurulation with that of amniotes and amphibians in an attempt to understand the conserved cellular mechanisms driving neurulation and resolve the apparent differences among animals. Zebrafish neurulation not only offers fundamental insights into early vertebrate brain development but also the opportunity to explore in vivo cell and tissue dynamics during complex three-dimensional animal morphogenesis. PMID:26177834

  4. Nutri-epigenomic Studies Related to Neural Tube Defects: Does Folate Affect Neural Tube Closure Via Changes in DNA Methylation?

    PubMed

    Rochtus, Anne; Jansen, Katrien; Van Geet, Chris; Freson, Kathleen

    2015-01-01

    Neural tube defects (NTDs), affecting 1-2 per 1000 pregnancies, are severe congenital malformations that arise from the failure of neurulation during early embryonic development. The methylation hypothesis suggests that folate prevents NTDs by stimulating cellular methylation reactions. Folate is central to the one-carbon metabolism that produces pyrimidines and purines for DNA synthesis and for the generation of the methyldonor S-adenosyl-methionine. This review focuses on the relation between the folate-mediated one-carbon metabolism, DNA methylation and NTDs. Studies will be discussed that investigated global or locus-specific DNA methylation differences in patients with NTDs. Folate deficiency may increase NTD risk by decreasing DNA methylation, but to date, human studies vary widely in study design in terms of analyzing different clinical subtypes of NTDs, using different methylation quantification assays and using DNA isolated from diverse types of tissues. Some studies have focused mainly on global DNA methylation differences while others have quantified specific methylation differences for imprinted genes, transposable elements and DNA repair enzymes. Findings of global DNA hypomethylation and LINE-1 hypomethylation suggest that epigenetic alterations may disrupt neural tube closure. However, current research does not support a linear relation between red blood cell folate concentration and DNA methylation. Further studies are required to better understand the interaction between folate, DNA methylation changes and NTDs. PMID:26349489

  5. Cell polarity pathways converge and extend to regulate neural tube closure.

    PubMed

    Zohn, Irene E; Chesnutt, Catherine R; Niswander, Lee

    2003-09-01

    Neural tube defects, such as spinabifida, craniorachischisis and anencephaly, are some of the most common birth defects in humans. Recent studies in mouse model systems suggest that craniorachischisis is associated with mutations in genes that regulate cell polarity. Using Xenopus as a model system, Wallingford and Harland have now shed light on the mechanism by which these pathways affect neural tube closure. PMID:12946622

  6. Is there a familial link between Down's syndrome and neural tube defects? Population and familial survey

    PubMed Central

    Amorim, Márcia R; Castilla, Eduardo E; Orioli, Iêda M

    2004-01-01

    Objective To verify whether Down's syndrome and neural tube defects arise more often in the same family than expected by chance. Design Population and familial survey. Setting Network of maternity hospitals in the Latin American collaborative study of congenital malformations (ECLAMC) in Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Paraguay, Peru, Uruguay, and Venezuela between 1982 and 2000. Probands 2421 cases of neural tube defects, 952 of hydrocephalus, and 3095 of Down's syndrome registered from a total of 1 583 838 live births and stillbirths. Main outcome measures Observed number of cases of Down's syndrome among siblings of probands with a neural tube defect or hydrocephalus and number expected on the basis of maternal age; observed number of cases of neural tube defects or hydrocephalus among siblings of probands with Down's syndrome and number expected according to the prevalence in the same population. Results Five cases of Down's syndrome occurred among 5404 pregnancies previous to a case of neural tube defect or hydrocephalus, compared with 5.13 expected after adjustment by maternal age. Twelve cases of neural tube defect or hydrocephalus occurred among 8066 pregnancies previous to a case of Down's syndrome, compared with 17.18 expected on the basis of the birth prevalence for neural tube defects plus hydrocephalus in the same population. Conclusion No association occurred between families at risk of neural tube defects and those at risk of Down's syndrome. PMID:14662523

  7. Birth Prevalence of Neural Tube Defects and Orofacial Clefts in India: A Systematic Review and Meta-Analysis

    PubMed Central

    Allagh, Komal Preet; Shamanna, B. R.; Murthy, Gudlavalleti V. S.; Ness, Andy R.; Doyle, Pat; Neogi, Sutapa B.; Pant, Hira B.

    2015-01-01

    Background In the last two decades, India has witnessed a substantial decrease in infant mortality attributed to infectious disease and malnutrition. However, the mortality attributed to birth defects remains constant. Studies on the prevalence of birth defects such as neural tube defects and orofacial clefts in India have reported inconsistent results. Therefore, we conducted a systematic review of observational studies to document the birth prevalence of neural tube defects and orofacial clefts. Methods A comprehensive literature search for observational studies was conducted in MEDLINE and EMBASE databases using key MeSH terms (neural tube defects OR cleft lip OR cleft palate AND Prevalence AND India). Two reviewers independently reviewed the retrieved studies, and studies satisfying the eligibility were included. The quality of included studies was assessed using selected criteria from STROBE statement. Results The overall pooled birth prevalence (random effect) of neural tube defects in India is 4.5 per 1000 total births (95% CI 4.2 to 4.9). The overall pooled birth prevalence (random effect) of orofacial clefts is 1.3 per 1000 total births (95% CI 1.1 to 1.5). Subgroup analyses were performed by region, time period, consanguinity, and gender of newborn. Conclusion The overall prevalence of neural tube defects from India is high compared to other regions of the world, while that of orofacial clefts is similar to other countries. The majority of studies included in the review were hospital based. The quality of these studies ranged from low to moderate. Further well-designed, high quality community-based observational studies are needed to accurately estimate the burden of neural tube defects and orofacial clefts in India. PMID:25768737

  8. Epidemiology, prenatal management, and prevention of neural tube defects

    PubMed Central

    Salih, Mustafa A.; Murshid, Waleed R.; Seidahmed, Mohammed Z.

    2014-01-01

    This review article discusses the epidemiology, risk factors, prenatal screening, diagnosis, prevention potentials, and epidemiologic impact of neural tube defects (NTDs). The average incidence of NTDs is 1/1000 births, with a marked geographic variation. In the developed countries, the incidence of NTDs has fallen over recent decades. However, it still remains high in the less-developed countries in Latin America, Africa, the Middle East, Asia, and the Far East (>1 to 11/1000 births). Recognized NTDs risks include maternal diabetes, obesity, lower socioeconomic status, hyperthermia, and exposure to certain teratogens during the periconceptional period. Periconceptional folic acid supplementation decreased the prevalence of NTDs by 50-70%, and an obligatory folic acid fortification of food was adopted in several countries to reach women with unplanned pregnancies and those facing social deprivation. Prevention of NTDs can be accelerated if more, especially low income countries, adopted fortification of the staple food in their communities. PMID:25551106

  9. Folic Acid for the Prevention of Infant Neural Tube Defects: U.S. Preventive Services Task Force Recommendation

    MedlinePlus

    Annals of Internal Medicine Summaries for Patients Folic Acid for the Prevention of Infant Neural Tube Defects: ... modern medicine. The full reports are titled “Folic Acid for the Prevention of Neural Tube Defects: U.S. ...

  10. Isolation and Culture of Neural Crest Cells from Embryonic Murine Neural Tube

    PubMed Central

    Pfaltzgraff, Elise R.; Mundell, Nathan A.; Labosky, Patricia A.

    2012-01-01

    The embryonic neural crest (NC) is a multipotent progenitor population that originates at the dorsal aspect of the neural tube, undergoes an epithelial to mesenchymal transition (EMT) and migrates throughout the embryo, giving rise to diverse cell types 1-3. NC also has the unique ability to influence the differentiation and maturation of target organs4-6. When explanted in vitro, NC progenitors undergo self-renewal, migrate and differentiate into a variety of tissue types including neurons, glia, smooth muscle cells, cartilage and bone. NC multipotency was first described from explants of the avian neural tube7-9. In vitro isolation of NC cells facilitates the study of NC dynamics including proliferation, migration, and multipotency. Further work in the avian and rat systems demonstrated that explanted NC cells retain their NC potential when transplanted back into the embryo10-13. Because these inherent cellular properties are preserved in explanted NC progenitors, the neural tube explant assay provides an attractive option for studying the NC in vitro. To attain a better understanding of the mammalian NC, many methods have been employed to isolate NC populations. NC-derived progenitors can be cultured from post-migratory locations in both the embryo and adult to study the dynamics of post-migratory NC progenitors11,14-20, however isolation of NC progenitors as they emigrate from the neural tube provides optimal preservation of NC cell potential and migratory properties13,21,22. Some protocols employ fluorescence activated cell sorting (FACS) to isolate a NC population enriched for particular progenitors11,13,14,17. However, when starting with early stage embryos, cell numbers adequate for analyses are difficult to obtain with FACS, complicating the isolation of early NC populations from individual embryos. Here, we describe an approach that does not rely on FACS and results in an approximately 96% pure NC population based on a Wnt1-Cre activated lineage reporter

  11. Isolation and culture of neural crest cells from embryonic murine neural tube.

    PubMed

    Pfaltzgraff, Elise R; Mundell, Nathan A; Labosky, Patricia A

    2012-01-01

    The embryonic neural crest (NC) is a multipotent progenitor population that originates at the dorsal aspect of the neural tube, undergoes an epithelial to mesenchymal transition (EMT) and migrates throughout the embryo, giving rise to diverse cell types. NC also has the unique ability to influence the differentiation and maturation of target organs. When explanted in vitro, NC progenitors undergo self-renewal, migrate and differentiate into a variety of tissue types including neurons, glia, smooth muscle cells, cartilage and bone. NC multipotency was first described from explants of the avian neural tube. In vitro isolation of NC cells facilitates the study of NC dynamics including proliferation, migration, and multipotency. Further work in the avian and rat systems demonstrated that explanted NC cells retain their NC potential when transplanted back into the embryo. Because these inherent cellular properties are preserved in explanted NC progenitors, the neural tube explant assay provides an attractive option for studying the NC in vitro. To attain a better understanding of the mammalian NC, many methods have been employed to isolate NC populations. NC-derived progenitors can be cultured from post-migratory locations in both the embryo and adult to study the dynamics of post-migratory NC progenitors, however isolation of NC progenitors as they emigrate from the neural tube provides optimal preservation of NC cell potential and migratory properties. Some protocols employ fluorescence activated cell sorting (FACS) to isolate a NC population enriched for particular progenitors. However, when starting with early stage embryos, cell numbers adequate for analyses are difficult to obtain with FACS, complicating the isolation of early NC populations from individual embryos. Here, we describe an approach that does not rely on FACS and results in an approximately 96% pure NC population based on a Wnt1-Cre activated lineage reporter. The method presented here is adapted from

  12. The Relationship of Aluminium and Silver to Neural Tube Defects; a Case Control

    PubMed Central

    Ramírez-Altamirano, María de Jesús; Fenton-Navarro, Patricia; Sivet-Chiñas, Elvira; Harp-Iturribarria, Flor de María; Martínez-Cruz, Ruth; Cruz, Pedro Hernández; Cruz, Margarito Martínez; Pérez-Campos, Eduardo

    2012-01-01

    Objective The purpose of this study was to identify the relationship of neurotoxic inorganic elements in the hair of patients with the diagnosis of Neural Tube Defects. Our initial hypothesis was that neurotoxic inorganic elements were associated with Neural Tube Defects. Methods Twenty-three samples of hair from newborns were obtained from the General Hospital, “Aurelio Valdivieso” in the city of Oaxaca, Mexico. The study group included 8 newborn infants with neural tube pathology. The control group was composed of 15 newborns without this pathology. The presence of inorganic elements in the hair samples was determined by inductively-coupled plasma spectroscopy (spectroscopic emission of the plasma). Findings The population of newborns with Neural Tube Defects showed significantly higher values of the following elements than the control group: Aluminium, Neural Tube Defects 152.77±51.06 µg/g, control group 76.24±27.89 µg/g; Silver, Neural Tube Defects 1.45±0.76, control group 0.25±0.53 µg/g; Potassium, Neural Tube Defects 553.87±77.91 µg/g, control group 341.13±205.90 µg/g. Association was found at 75 percentile between aluminium plus silver, aluminium plus potassium, silver plus potassium, and potassium plus sodium. Conclusion In the hair of newborns with Neural Tube Defects, the following metals were increased: aluminium, silver. Given the neurotoxicity of the same, and association of Neural Tube Defects with aluminum and silver, one may infer that they may be participating as factors in the development of Neural Tube Defects. PMID:23400307

  13. Neural Tube Defects In Mice Exposed To Tap Water

    PubMed Central

    Mallela, Murali K; Werre, Stephen R; Hrubec, Terry C

    2010-01-01

    In May of 2006 we suddenly began to observe neural tube defects (NTDs) in embryos of untreated control mice. We hypothesized the mice were being exposed unknowingly to a teratogenic agent and investigated the cause. Our results suggested that NTDs were not resulting from bedding material, feed, strain or source of the mice. Additionally, mice were negative for routine and comprehensive screens of pathogens. To further test whether the NTDs resulted from infectious or genetic cause localized to our facility, we obtained three strains of timed pregnant mice from commercial suppliers located in 4 different states. All strains and sources of mice arrived in our laboratory with NTDs, implying that commercially available mice were possibly exposed to a teratogen prior to purchase. Our investigation eventually concluded that exposure to tap water was causing the NTDs. The incidence of NTDs was greatest in purchased mice provided tap water and lowest in purchased mice provided distilled deionized water (DDI). Providing mice DDI water for two generations (F2-DDI) eliminated the NTDs. When F2-DDI mice were provided tap water from three different urban areas prior to breeding, their offspring again developed NTDs. Increased length of exposure to tap water significantly increased the incidence of NTDs. These results indicate that a contaminant in municipal tap water is likely causing NTDs in mice. The unknown teratogen appears to have a wide geographic distribution but has not yet been identified. Water analysis is currently underway to identify candidate contaminants that might be responsible for the malformations. PMID:20549630

  14. Mouse models of neural tube defects: investigating preventive mechanisms.

    PubMed

    Greene, Nicholas D E; Copp, Andrew J

    2005-05-15

    Neural tube defects (NTD), including anencephaly and spina bifida, are a group of severe congenital abnormalities in which the future brain and/or spinal cord fail to close. In mice, NTD may result from genetic mutations or knockouts, or from exposure to teratogenic agents, several of which are known risk factors in humans. Among the many mouse NTD models that have been identified to date, a number have been tested for possible primary prevention of NTD by exogenous agents, such as folic acid. In genetic NTD models such as Cart1, splotch, Cited2, and crooked tail, and NTD induced by teratogens including valproic acid and fumonisins, the incidence of defects is reduced by maternal folic acid supplementation. These folate-responsive models provide an opportunity to investigate the possible mechanisms underlying prevention of NTD by folic acid in humans. In another group of mouse models, that includes curly tail, axial defects, and the Ephrin-A5 knockout, NTD are not preventable by folic acid, reflecting the situation in humans in which a subset of NTD appear resistant to folic acid therapy. In this group of mutants alternative preventive agents, including inositol and methionine, have been shown to be effective. Overall, the data from mouse models suggests that a broad-based in utero therapy may offer scope for prevention of a greater proportion of NTD than is currently possible. PMID:15800852

  15. Pathophysiology, prevention, and potential treatment of neural tube defects.

    PubMed

    Manning, S M; Jennings, R; Madsen, J R

    2000-01-01

    Neural tube defects (NTD) remain a major cause of morbidity in spite of the reduction in liveborn incidence with periconceptional folic acid. However, the etiology remains unknown. This article reviews studies that address causation and potential treatment of NTD in humans and in animal models that resemble aspects of the common human NTD. Studies of nutritional markers of vitamin B12 and folic acid support a defect in homocysteine metabolism; a thermolabile variant of methylene tetrahydrofolate reductase, an enzyme that remethylates homocysteine to methionine, correlates with a risk of NTD in some human populations. Numerous mouse mutant models of NTD exist, attesting to the ease of disruption of neurulation, and a genetic basis for this malformation. Of these models, the curly tail mouse mutant most closely resembles the common human NTD. Folic acid does not prevent NTD in this model; however inositol supplementation does result in a significant reduction in incidence. Recent advances in fetal surgery, and evidence from mechanically created myelomeningocele in large animals amenable to surgical intervention suggest that the handicaps associated with myelomeningocele and associated Chiari Type II malformation may be prevented by in utero NTD closure. Success will depend on preservation of neurological tissue until such intervention is possible. Further research in animal models at the genetic and cellular levels, together with technological surgical advances, provide hope that prevention of more NTD and the associated handicaps may be possible. MRDD Research Reviews 6:6-14, 2000. PMID:10899792

  16. Folate receptor gene variants and neural tube defect occurrence

    SciTech Connect

    Finnell, R.; Greer, K.; Lammer, E.

    1994-09-01

    Recent epidemiological evidence shows that periconceptional use of folic acid supplements may prevent 40-50% of neural tube defects (NTDs). The FDA has subsequently recommended folic acid supplementation of all women of childbearing potential, even though the mechanism by which folic acid prevents NTDs is unknown. We investigated genetic variation of a candidate gene, the 5-methyltetrahydrofolate (5-MeTHF) receptor, that may mediate this preventive effect. The receptor concentrates folate within cells and we have localized its mRNA to neuroepithelial cells during neurulation. Our hypothesis is that dysfunctional 5-MeTHF receptors inadequately concentrate folate intracellularly, predisposing infants to NTDs. We have completed SSCP analysis on 3 of the 4 coding exons of the 5-MeTHF receptor gene of 474 infants participating in a large population-based epidemiological case-control study of NTDs in California; genotyping of another 500 infants is ongoing. Genomic DNA was extracted from residual blood spots from newborn screening samples of cases and controls. Genotyping was done blinded to case status. Polymorphisms have been detected for exons 4 and 5; fourteen percent of the infants have exon 5 polymorphisms. Data will be presented on the prevalence of 5-MeTHF receptor polymorphisms among cases and controls. Relationships among the polymorphisms and NTD occurrence may shed light on how folic acid supplementation prevents NTDs.

  17. Sall1, Sall2, and Sall4 Are Required for Neural Tube Closure in Mice

    PubMed Central

    Böhm, Johann; Buck, Anja; Borozdin, Wiktor; Mannan, Ashraf U.; Matysiak-Scholze, Uta; Adham, Ibrahim; Schulz-Schaeffer, Walter; Floss, Thomas; Wurst, Wolfgang; Kohlhase, Jürgen; Barrionuevo, Francisco

    2008-01-01

    Four homologs to the Drosophila homeotic gene spalt (sal) exist in both humans and mice (SALL1 to SALL4/Sall1 to Sall4, respectively). Mutations in both SALL1 and SALL4 result in the autosomal-dominant developmental disorders Townes-Brocks and Okihiro syndrome, respectively. In contrast, no human diseases have been associated with SALL2 to date, and Sall2-deficient mice have shown no apparent abnormal phenotype. We generated mice deficient in Sall2 and, contrary to previous reports, 11% of our Sall2-deficient mice showed background-specific neural tube defects, suggesting that Sall2 has a role in neurogenesis. To investigate whether Sall4 may compensate for the absence of Sall2, we generated compound Sall2 knockout/Sall4 genetrap mutant mice. In these mutants, the incidence of neural tube defects was significantly increased. Furthermore, we found a similar phenotype in compound Sall1/4 mutant mice, and in vitro studies showed that SALL1, SALL2, and SALL4 all co-localized in the nucleus. We therefore suggest a fundamental and redundant function of the Sall proteins in murine neurulation, with the heterozygous loss of a particular SALL protein also possibly compensated in humans during development. PMID:18818376

  18. Endocytic recycling protein EHD1 regulates primary cilia morphogenesis and SHH signaling during neural tube development

    PubMed Central

    Bhattacharyya, Sohinee; Rainey, Mark A; Arya, Priyanka; Dutta, Samikshan; George, Manju; Storck, Matthew D.; McComb, Rodney D.; Muirhead, David; Todd, Gordon L.; Gould, Karen; Datta, Kaustubh; Waes, Janee Gelineau-van; Band, Vimla; Band, Hamid

    2016-01-01

    Members of the four-member C-terminal EPS15-Homology Domain-containing (EHD) protein family play crucial roles in endocytic recycling of cell surface receptors from endosomes to the plasma membrane. In this study, we show that Ehd1 gene knockout in mice on a predominantly B6 background is embryonic lethal. Ehd1-null embryos die at mid-gestation with a failure to complete key developmental processes including neural tube closure, axial turning and patterning of the neural tube. We found that Ehd1-null embryos display short and stubby cilia on the developing neuroepithelium at embryonic day 9.5 (E9.5). Loss of EHD1 also deregulates the ciliary SHH signaling with Ehd1-null embryos displaying features indicative of increased SHH signaling, including a significant downregulation in the formation of the GLI3 repressor and increase in the ventral neuronal markers specified by SHH. Using Ehd1-null MEFS we found that EHD1 protein co-localizes with the SHH receptor Smoothened in the primary cilia upon ligand stimulation. Under the same conditions, EHD1 was shown to co-traffic with Smoothened into the developing primary cilia and we identify EHD1 as a direct binding partner of Smoothened. Overall, our studies identify the endocytic recycling regulator EHD1 as a novel regulator of the primary cilium-associated trafficking of Smoothened and Hedgehog signaling. PMID:26884322

  19. Towards Encoding Background Knowledge with Temporal Extent into Neural Networks

    NASA Astrophysics Data System (ADS)

    Anh, Han; Marques, Nuno C.

    Neuro-symbolic integration merges background knowledge and neural networks to provide a more effective learning system. It uses the Core Method as a means to encode rules. However, this method has several drawbacks in dealing with rules that have temporal extent. First, it demands some interface with the world which buffers the input patterns so they can be represented all at once. This imposes a rigid limit on the duration of patterns and further suggests that all input vectors be the same length. These are troublesome in domains where one would like comparable representations for patterns that are of variable length (e.g. language). Second, it does not allow dynamic insertion of rules conveniently. Finally and also most seriously, it cannot encode rules having preconditions satisfied at non-deterministic time points - an important class of rules. This paper presents novel methods for encoding such rules, thereby improves and extends the power of the state-of-the-art neuro-symbolic integration.

  20. ACAM, a novel member of the neural IgCAM family, mediates anterior neural tube closure in a primitive chordate.

    PubMed

    Morales Diaz, Heidi; Mejares, Emil; Newman-Smith, Erin; Smith, William C

    2016-01-01

    The neural IgCAM family of cell adhesion molecules, which includes NCAM and related molecules, has evolved via gene duplication and alternative splicing to allow for a wide range of isoforms with distinct functions and homophilic binding properties. A search for neural IgCAMs in ascidians (Ciona intestinalis, Ciona savignyi, and Phallusia mammillata) has identified a novel set of truncated family members that, unlike the known members, lack fibronectin III domains and consist of only repeated Ig domains. Within the tunicates this form appears to be unique to the ascidians, and it was designated ACAM, for Ascidian Cell Adhesion Molecule. In C. intestinalis ACAM is expressed in the developing neural plate and neural tube, with strongest expression in the anterior sensory vesicle precursor. Unlike the two other conventional neural IgCAMs in C. intestinalis, which are expressed maternally and throughout the morula and blastula stages, ACAM expression initiates at the gastrula stage. Moreover, C. intestinalis ACAM is a target of the homeodomain transcription factor OTX, which plays an essential role in the development of the anterior central nervous system. Morpholino (MO) knockdown shows that ACAM is required for neural tube closure. In MO-injected embryos neural tube closure was normal caudally, but the anterior neuropore remained open. A similar phenotype was seen with overexpression of a secreted version of ACAM. The presence of ACAM in ascidians highlights the diversity of this gene family in morphogenesis and neurodevelopment. PMID:26542009

  1. Genetic analysis of disheveled 2 and disheveled 3 in human neural tube defects.

    PubMed

    De Marco, Patrizia; Merello, Elisa; Consales, Alessandro; Piatelli, Gianluca; Cama, Armando; Kibar, Zoha; Capra, Valeria

    2013-03-01

    Neural tube defects are severe malformations affecting 1/1,000 live births. The planar cell polarity pathway controls the neural tube closure and has been implicated in the pathogenesis of neural tube defects both in animal models and human cohorts. In mouse disruption of Dvl2 alone (Dvl2 (-/-)) or Dvl2 and Dvl3 (Dvl2 (-/-); Dvl3 (+/-), Dvl2 (+/-); Dvl3 (-/-)) results in incomplete neurulation, suggesting a role for Disheveled in neural tube closure. Disheveled is a multifunctional protein that is involved in both the canonical Wnt signaling and the noncanonical planar cell polarity pathway. In this study, we analyzed the role of the human orthologs DVL2 and DVL3 in a cohort of 473 patients with neural tube defects. Rare variants were genotyped in 639 ethnically matched controls. We identified seven rare missense mutations that were absent in all controls analyzed. Two of these mutations, p.Tyr667Cys and p.Ala53Val, identified in DVL2 were predicted to be detrimental in silico. Significantly, a 1-bp insertion (c.1801_1802insG) in exon 15 of DVL2 predicted to lead to the truncation of the protein was identified in a patient with a complex form of caudal agenesis. In summary, we demonstrate a possible role for rare variants in DVL2 gene as risk factors for neural tube defects. PMID:22892949

  2. 21 CFR 101.79 - Health claims: Folate and neural tube defects.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Health claims: Folate and neural tube defects. 101.79 Section 101.79 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD LABELING Specific Requirements for Health Claims § 101.79 Health claims: Folate and neural...

  3. Early pregnancy screening for neural tube defects in Israel.

    PubMed

    Legum, C; Shomrat, R; Yedwab, G; Jaffa, A J; Rudick, A

    1986-01-01

    A pilot project to detect neural tube defects (NTD) of the fetus by maternal serum alpha-fetoprotein (MSAFP) screening of women in early pregnancy was initiated in Tel Aviv in 1982 at the instigation of the Israel Ministry of Health. The program was designed to be an extension of routine pregnancy care, which in this city is provided in municipal family clinics that are attended by about 50% of pregnant women before the 20th week of pregnancy. Of these women, 89% complied with the program. Women with a MSAFP level above a cutoff point of 2.4 multiples of the median (MOM) were invited for an ultrasound examination of the fetus, without having to repeat the MSAFP test, thereby reducing maternal anxiety. This deviation from the usual test system protocol did not impair sensitivity (87%), or specificity of the test on its own (95.6%), or in combination with ultrasound examination of the fetus and alpha-fetoprotein and acetylcholinesterase testing of the amniotic fluid (99.9%). The program detected 13 fetuses with an NTD; there were two false-negative results and one false-positive. The predictive value of a positive test was 93%. Its effectiveness as a preventive measure was impaired by the fact that 50% of pregnant women did not attend the family clinic before the 20th gestational week. An educational program for professionals and for the public is contemplated in order to reduce this proportion. Only 50% of normal twin pregnancies had an elevated MSAFP. A check on compliance with other screening systems during the interview for MSAFP screening led to the detection and elective abortion of two fetuses with Tay-Sachs disease. MSAFP screening in Israel is cost-effective rather than cost-beneficial. PMID:2427475

  4. Neural tube defects: prevention by folic acid and other vitamins.

    PubMed

    Copp, A J; Greene, N D

    2000-12-01

    Folic acid has been demonstrated in clinical trials to reduce significantly the recurrence (and probably occurrence) of neural tube defects (NTD). In the U.K., there has been no decline in prevalence of NTD since the publication of the findings with folic acid. This article examines a series of questions relating to the action of folic acid, with emphasis on the use of mouse models as a source of experimental information which cannot easily be obtained by direct study of humans. Several mouse genetic NTD models exhibit sensitivity to prevention by folic acid, whereas other mice which develop morphologically similar NTD are resistant. Folic acid normalises neurulation in the sensitive mouse strains, providing evidence for a direct effect on the developing embryo, not on the pregnant female: Mouse studies do not support the proposed action of folic acid in encouraging the in utero demise of affected fetuses (i.e. terathanasia). Polymorphic variants of several folate-related enzymes have been shown to influence risk of NTD in humans and an inherited abnormality of folate metabolism has been demonstrated in one mouse NTD model. However, the biochemical basis of the action of folic acid in preventing NTD remains to be determined in detail. NTD in one folate-resistant mouse strain can be prevented by myo-inositol, both in utero and in vitro, raising the possibility of a therapeutic role also in humans. Gene-gene interactions seem likely to underlie the majority of NTD, suggesting that poly-therapy involving folic acid and other agents, such as myo-inositol, may prove more effective in preventing NTD than folic acid treatment alone. PMID:11262991

  5. Isolation of Human Neural Stem Cells from the Amniotic Fluid with Diagnosed Neural Tube Defects.

    PubMed

    Chang, Yu-Jen; Su, Hong-Lin; Hsu, Lee-Feng; Huang, Po-Jui; Wang, Tzu-Hao; Cheng, Fu-Chou; Hsu, Li-Wen; Tsai, Ming-Song; Chen, Chih-Ping; Chang, Yao-Lung; Chao, An-Shine; Hwang, Shiaw-Min

    2015-08-01

    Human neural stem cells (NSCs) are particularly valuable for the study of neurogenesis process and have a therapeutic potential in treating neurodegenerative disorders. However, current progress in the use of human NSCs is limited due to the available NSC sources and the complicated isolation and culture techniques. In this study, we describe an efficient method to isolate and propagate human NSCs from the amniotic fluid with diagnosed neural tube defects (NTDs), specifically, anencephaly. These amniotic fluid-derived NSCs (AF-NSCs) formed neurospheres and underwent long-term expansion in vitro. In addition, these cells showed normal karyotypes and telomerase activity and expressed NSC-specific markers, including Nestin, Sox2, Musashi-1, and the ATP-binding cassette G2 (ABCG2). AF-NSCs displayed typical morphological patterns and expressed specific markers that were consistent with neurons, astrocytes, oligodendrocytes, and dopaminergic neurons after proper induction conditions. Furthermore, grafted AF-NSCs improved the physiological functions in a rat stroke model. The ability to isolate and bank human NSCs from this novel source provides a unique opportunity for translational studies of neurological disorders. PMID:25923707

  6. An FGF3-BMP Signaling Axis Regulates Caudal Neural Tube Closure, Neural Crest Specification and Anterior-Posterior Axis Extension

    PubMed Central

    Anderson, Matthew J.; Schimmang, Thomas; Lewandoski, Mark

    2016-01-01

    During vertebrate axis extension, adjacent tissue layers undergo profound morphological changes: within the neuroepithelium, neural tube closure and neural crest formation are occurring, while within the paraxial mesoderm somites are segmenting from the presomitic mesoderm (PSM). Little is known about the signals between these tissues that regulate their coordinated morphogenesis. Here, we analyze the posterior axis truncation of mouse Fgf3 null homozygotes and demonstrate that the earliest role of PSM-derived FGF3 is to regulate BMP signals in the adjacent neuroepithelium. FGF3 loss causes elevated BMP signals leading to increased neuroepithelium proliferation, delay in neural tube closure and premature neural crest specification. We demonstrate that elevated BMP4 depletes PSM progenitors in vitro, phenocopying the Fgf3 mutant, suggesting that excessive BMP signals cause the Fgf3 axis defect. To test this in vivo we increased BMP signaling in Fgf3 mutants by removing one copy of Noggin, which encodes a BMP antagonist. In such mutants, all parameters of the Fgf3 phenotype were exacerbated: neural tube closure delay, premature neural crest specification, and premature axis termination. Conversely, genetically decreasing BMP signaling in Fgf3 mutants, via loss of BMP receptor activity, alleviates morphological defects. Aberrant apoptosis is observed in the Fgf3 mutant tailbud. However, we demonstrate that cell death does not cause the Fgf3 phenotype: blocking apoptosis via deletion of pro-apoptotic genes surprisingly increases all Fgf3 defects including causing spina bifida. We demonstrate that this counterintuitive consequence of blocking apoptosis is caused by the increased survival of BMP-producing cells in the neuroepithelium. Thus, we show that FGF3 in the caudal vertebrate embryo regulates BMP signaling in the neuroepithelium, which in turn regulates neural tube closure, neural crest specification and axis termination. Uncovering this FGF3-BMP signaling axis is

  7. An FGF3-BMP Signaling Axis Regulates Caudal Neural Tube Closure, Neural Crest Specification and Anterior-Posterior Axis Extension.

    PubMed

    Anderson, Matthew J; Schimmang, Thomas; Lewandoski, Mark

    2016-05-01

    During vertebrate axis extension, adjacent tissue layers undergo profound morphological changes: within the neuroepithelium, neural tube closure and neural crest formation are occurring, while within the paraxial mesoderm somites are segmenting from the presomitic mesoderm (PSM). Little is known about the signals between these tissues that regulate their coordinated morphogenesis. Here, we analyze the posterior axis truncation of mouse Fgf3 null homozygotes and demonstrate that the earliest role of PSM-derived FGF3 is to regulate BMP signals in the adjacent neuroepithelium. FGF3 loss causes elevated BMP signals leading to increased neuroepithelium proliferation, delay in neural tube closure and premature neural crest specification. We demonstrate that elevated BMP4 depletes PSM progenitors in vitro, phenocopying the Fgf3 mutant, suggesting that excessive BMP signals cause the Fgf3 axis defect. To test this in vivo we increased BMP signaling in Fgf3 mutants by removing one copy of Noggin, which encodes a BMP antagonist. In such mutants, all parameters of the Fgf3 phenotype were exacerbated: neural tube closure delay, premature neural crest specification, and premature axis termination. Conversely, genetically decreasing BMP signaling in Fgf3 mutants, via loss of BMP receptor activity, alleviates morphological defects. Aberrant apoptosis is observed in the Fgf3 mutant tailbud. However, we demonstrate that cell death does not cause the Fgf3 phenotype: blocking apoptosis via deletion of pro-apoptotic genes surprisingly increases all Fgf3 defects including causing spina bifida. We demonstrate that this counterintuitive consequence of blocking apoptosis is caused by the increased survival of BMP-producing cells in the neuroepithelium. Thus, we show that FGF3 in the caudal vertebrate embryo regulates BMP signaling in the neuroepithelium, which in turn regulates neural tube closure, neural crest specification and axis termination. Uncovering this FGF3-BMP signaling axis is

  8. Misexpression of BRE gene in the developing chick neural tube affects neurulation and somitogenesis

    PubMed Central

    Wang, Guang; Li, Yan; Wang, Xiao-Yu; Chuai, Manli; Yeuk-Hon Chan, John; Lei, Jian; Münsterberg, Andrea; Lee, Kenneth Ka Ho; Yang, Xuesong

    2015-01-01

    The brain and reproductive expression (BRE) gene is expressed in numerous adult tissues and especially in the nervous and reproductive systems. However, little is known about BRE expression in the developing embryo or about its role in embryonic development. In this study, we used in situ hybridization to reveal the spatiotemporal expression pattern for BRE in chick embryo during development. To determine the importance of BRE in neurogenesis, we overexpressed BRE and also silenced BRE expression specifically in the neural tube. We established that overexpressing BRE in the neural tube indirectly accelerated Pax7+ somite development and directly increased HNK-1+ neural crest cell (NCC) migration and TuJ-1+ neurite outgrowth. These altered morphogenetic processes were associated with changes in the cell cycle of NCCs and neural tube cells. The inverse effect was obtained when BRE expression was silenced in the neural tube. We also determined that BMP4 and Shh expression in the neural tube was affected by misexpression of BRE. This provides a possible mechanism for how altering BRE expression was able to affect somitogenesis, neurogenesis, and NCC migration. In summary, our results demonstrate that BRE plays an important role in regulating neurogenesis and indirectly somite differentiation during early chick embryo development. PMID:25568339

  9. Planar cell polarity links axes of spatial dynamics in neural-tube closure.

    PubMed

    Nishimura, Tamako; Honda, Hisao; Takeichi, Masatoshi

    2012-05-25

    Neural-tube closure is a critical step of embryogenesis, and its failure causes serious birth defects. Coordination of two morphogenetic processes--convergent extension and neural-plate apical constriction--ensures the complete closure of the neural tube. We now provide evidence that planar cell polarity (PCP) signaling directly links these two processes. In the bending neural plates, we find that a PCP-regulating cadherin, Celsr1, is concentrated in adherens junctions (AJs) oriented toward the mediolateral axes of the plates. At these AJs, Celsr1 cooperates with Dishevelled, DAAM1, and the PDZ-RhoGEF to upregulate Rho kinase, causing their actomyosin-dependent contraction in a planar-polarized manner. This planar-polarized contraction promotes simultaneous apical constriction and midline convergence of neuroepithelial cells. Together our findings demonstrate that PCP signals confer anisotropic contractility on the AJs, producing cellular forces that promote the polarized bending of the neural plate. PMID:22632972

  10. An update to the list of mouse mutants with neural tube closure defects and advances toward a complete genetic perspective of neural tube closure.

    PubMed

    Harris, Muriel J; Juriloff, Diana M

    2010-08-01

    The number of mouse mutants and strains with neural tube defects (NTDs) now exceeds 240, including 205 representing specific genes, 30 for unidentified genes, and 9 multifactorial strains. These mutants identify genes needed for embryonic neural tube closure. Reports of 50 new NTD mutants since our 2007 review (Harris and Juriloff, 2007) were considered in relation to the previously reviewed mutants to obtain new insights into mechanisms of NTD etiology. In addition to null mutations, some are hypomorphs or conditional mutants. Some mutations do not cause NTDs on their own, but do so in digenic, trigenic, and oligogenic combinations, an etiology that likely parallels the nature of genetic etiology of human NTDs. Mutants that have only exencephaly are fourfold more frequent than those that have spina bifida aperta with or without exencephaly. Many diverse cellular functions and biochemical pathways are involved; the NTD mutants draw new attention to chromatin modification (epigenetics), the protease-activated receptor cascade, and the ciliopathies. Few mutants directly involve folate metabolism. Prevention of NTDs by maternal folate supplementation has been tested in 13 mutants and reduces NTD frequency in six diverse mutants. Inositol reduces spina bifida aperta frequency in the curly tail mutant, and three new mutants involve inositol metabolism. The many NTD mutants are the foundation for a future complete genetic understanding of the processes of neural fold elevation and fusion along mechanistically distinct cranial-caudal segments of the neural tube, and they point to several candidate processes for study in human NTD etiology. PMID:20740593

  11. Modeling Anterior Development in Mice: Diet as Modulator of Risk for Neural Tube Defects

    PubMed Central

    Kappen, Claudia

    2014-01-01

    Head morphogenesis is a complex process that is controlled by multiple signaling centers. The most common defects of cranial development are craniofacial defects, such as cleft lip and cleft palate, and neural tube defects, such as anencephaly and encephalocoele in humans. More than 400 genes that contribute to proper neural tube closure have been identified in experimental animals, but only very few causative gene mutations have been identified in humans, supporting the notion that environmental influences are critical. The intrauterine environment is influenced by maternal nutrition, and hence, maternal diet can modulate the risk for cranial and neural tube defects. This article reviews recent progress toward a better understanding of nutrients during pregnancy, with particular focus on mouse models for defective neural tube closure. At least four major patterns of nutrient responses are apparent, suggesting that multiple pathways are involved in the response, and likely in the underlying pathogenesis of the defects. Folic acid has been the most widely studied nutrient, and the diverse responses of the mouse models to folic acid supplementation indicate that folic acid is not universally beneficial, but that the effect is dependent on genetic configuration. If this is the case for other nutrients as well, efforts to prevent neural tube defects with nutritional supplementation may need to become more specifically targeted than previously appreciated. Mouse models are indispensable for a better understanding of nutrient–gene interactions in normal pregnancies, as well as in those affected by metabolic diseases, such as diabetes and obesity. PMID:24124024

  12. Genetic interactions between planar cell polarity genes cause diverse neural tube defects in mice.

    PubMed

    Murdoch, Jennifer N; Damrau, Christine; Paudyal, Anju; Bogani, Debora; Wells, Sara; Greene, Nicholas D E; Stanier, Philip; Copp, Andrew J

    2014-10-01

    Neural tube defects (NTDs) are among the commonest and most severe forms of developmental defect, characterized by disruption of the early embryonic events of central nervous system formation. NTDs have long been known to exhibit a strong genetic dependence, yet the identity of the genetic determinants remains largely undiscovered. Initiation of neural tube closure is disrupted in mice homozygous for mutations in planar cell polarity (PCP) pathway genes, providing a strong link between NTDs and PCP signaling. Recently, missense gene variants have been identified in PCP genes in humans with NTDs, although the range of phenotypes is greater than in the mouse mutants. In addition, the sequence variants detected in affected humans are heterozygous, and can often be detected in unaffected individuals. It has been suggested that interactions between multiple heterozygous gene mutations cause the NTDs in humans. To determine the phenotypes produced in double heterozygotes, we bred mice with all three pairwise combinations of Vangl2(Lp), Scrib(Crc) and Celsr1(Crsh) mutations, the most intensively studied PCP mutants. The majority of double-mutant embryos had open NTDs, with the range of phenotypes including anencephaly and spina bifida, therefore reflecting the defects observed in humans. Strikingly, even on a uniform genetic background, variability in the penetrance and severity of the mutant phenotypes was observed between the different double-heterozygote combinations. Phenotypically, Celsr1(Crsh);Vangl2(Lp);Scrib(Crc) triply heterozygous mutants were no more severe than doubly heterozygous or singly homozygous mutants. We propose that some of the variation between double-mutant phenotypes could be attributed to the nature of the protein disruption in each allele: whereas Scrib(Crc) is a null mutant and produces no Scrib protein, Celsr1(Crsh) and Vangl2(Lp) homozygotes both express mutant proteins, consistent with dominant effects. The variable outcomes of these genetic

  13. Genetic interactions between planar cell polarity genes cause diverse neural tube defects in mice

    PubMed Central

    Murdoch, Jennifer N.; Damrau, Christine; Paudyal, Anju; Bogani, Debora; Wells, Sara; Greene, Nicholas D. E.; Stanier, Philip; Copp, Andrew J.

    2014-01-01

    Neural tube defects (NTDs) are among the commonest and most severe forms of developmental defect, characterized by disruption of the early embryonic events of central nervous system formation. NTDs have long been known to exhibit a strong genetic dependence, yet the identity of the genetic determinants remains largely undiscovered. Initiation of neural tube closure is disrupted in mice homozygous for mutations in planar cell polarity (PCP) pathway genes, providing a strong link between NTDs and PCP signaling. Recently, missense gene variants have been identified in PCP genes in humans with NTDs, although the range of phenotypes is greater than in the mouse mutants. In addition, the sequence variants detected in affected humans are heterozygous, and can often be detected in unaffected individuals. It has been suggested that interactions between multiple heterozygous gene mutations cause the NTDs in humans. To determine the phenotypes produced in double heterozygotes, we bred mice with all three pairwise combinations of Vangl2Lp, ScribCrc and Celsr1Crsh mutations, the most intensively studied PCP mutants. The majority of double-mutant embryos had open NTDs, with the range of phenotypes including anencephaly and spina bifida, therefore reflecting the defects observed in humans. Strikingly, even on a uniform genetic background, variability in the penetrance and severity of the mutant phenotypes was observed between the different double-heterozygote combinations. Phenotypically, Celsr1Crsh;Vangl2Lp;ScribCrc triply heterozygous mutants were no more severe than doubly heterozygous or singly homozygous mutants. We propose that some of the variation between double-mutant phenotypes could be attributed to the nature of the protein disruption in each allele: whereas ScribCrc is a null mutant and produces no Scrib protein, Celsr1Crsh and Vangl2Lp homozygotes both express mutant proteins, consistent with dominant effects. The variable outcomes of these genetic interactions are

  14. Spontaneous neural tube defects in splotch mice supplemented with selected micronutrients

    SciTech Connect

    Wlodarczyk, Bogdan J. . E-mail: bwlodarczyk@ibt.tamhsc.edu; Tang, Louisa S.; Triplett, Aleata; Aleman, Frank; Finnell, Richard H.

    2006-05-15

    Splotch (Sp/Sp) mice homozygous for a mutation in the Pax3 gene inevitably present with neural tube defects (NTDs), along with other associated congenital anomalies. The affected mutant embryos usually die by gestation days (E) 12-13. In the present study, the effect of modifier genes from a new genetic background (CXL-Sp) and periconceptional supplementation with selected micronutrients (folic acid, 5-formyltetrahydrofolate, 5-methyltetrahydrofolate, methionine, myoinositol, thiamine, thymidine, and {alpha}-tocopherol) was determined with respect to the incidence of NTDs. In order to explore how different exposure parameters (time, dose, and route of compound administration) modulate the beneficial effects of micronutrient supplementation, female mice received either short- or long-term nutrient supplements via enteral or parenteral routes. Embryos were collected on E12.5 and examined for the presence of anterior or posterior NTDs. Additionally, whole mount in situ hybridization studies were conducted in order to reveal/confirm normal expression patterns of the Pax3 gene during neurulation in the wild-type and Sp/Sp homozygous mutant mouse embryos utilized in this study. A strong Pax3 signal was demonstrated in CXL-Sp embryos during neural tube closure (E9.5 to E10.5). The intensity and spatial pattern of expression were similar to other Splotch mutant mice. Of all the micronutrients tested, only supplementation with folic acid or 5-methyltetrahydrofolate rescued the normal phenotype in Sp/Sp embryos. When the folate supplementation dose was increased to 200 mg/kg in the diet, the incidence of rescued splotch homozygotes reached 30%; however, this was accompanied by six-fold increased resorption rate.

  15. Novel Mode of Defective Neural Tube Closure in the Non-Obese Diabetic (NOD) Mouse Strain

    PubMed Central

    Salbaum, J. Michael; Kruger, Claudia; MacGowan, Jacalyn; Herion, Nils J.; Burk, David; Kappen, Claudia

    2015-01-01

    Failure to close the neural tube results in birth defects, with severity ranging from spina bifida to lethal anencephaly. Few genetic risk factors for neural tube defects are known in humans, highlighting the critical role of environmental risk factors, such as maternal diabetes. Yet, it is not well understood how altered maternal metabolism interferes with embryonic development, and with neurulation in particular. We present evidence from two independent mouse models of diabetic pregnancy that identifies impaired migration of nascent mesodermal cells in the primitive streak as the morphogenetic basis underlying the pathogenesis of neural tube defects. We conclude that perturbed gastrulation not only explains the neurulation defects, but also provides a unifying etiology for the broad spectrum of congenital malformations in diabetic pregnancies. PMID:26593875

  16. Novel Mode of Defective Neural Tube Closure in the Non-Obese Diabetic (NOD) Mouse Strain.

    PubMed

    Salbaum, J Michael; Kruger, Claudia; MacGowan, Jacalyn; Herion, Nils J; Burk, David; Kappen, Claudia

    2015-01-01

    Failure to close the neural tube results in birth defects, with severity ranging from spina bifida to lethal anencephaly. Few genetic risk factors for neural tube defects are known in humans, highlighting the critical role of environmental risk factors, such as maternal diabetes. Yet, it is not well understood how altered maternal metabolism interferes with embryonic development, and with neurulation in particular. We present evidence from two independent mouse models of diabetic pregnancy that identifies impaired migration of nascent mesodermal cells in the primitive streak as the morphogenetic basis underlying the pathogenesis of neural tube defects. We conclude that perturbed gastrulation not only explains the neurulation defects, but also provides a unifying etiology for the broad spectrum of congenital malformations in diabetic pregnancies. PMID:26593875

  17. Syndecan 4 interacts genetically with Vangl2 to regulate neural tube closure and planar cell polarity

    PubMed Central

    Escobedo, Noelia; Contreras, Osvaldo; Muñoz, Rosana; Farías, Marjorie; Carrasco, Héctor; Hill, Charlotte; Tran, Uyen; Pryor, Sophie E.; Wessely, Oliver; Copp, Andrew J.; Larraín, Juan

    2013-01-01

    Syndecan 4 (Sdc4) is a cell-surface heparan sulfate proteoglycan (HSPG) that regulates gastrulation, neural tube closure and directed neural crest migration in Xenopus development. To determine whether Sdc4 participates in Wnt/PCP signaling during mouse development, we evaluated a possible interaction between a null mutation of Sdc4 and the loop-tail allele of Vangl2. Sdc4 is expressed in multiple tissues, but particularly in the non-neural ectoderm, hindgut and otic vesicles. Sdc4;Vangl2Lp compound mutant mice have defective spinal neural tube closure, disrupted orientation of the stereocilia bundles in the cochlea and delayed wound healing, demonstrating a strong genetic interaction. In Xenopus, co-injection of suboptimal amounts of Sdc4 and Vangl2 morpholinos resulted in a significantly greater proportion of embryos with defective neural tube closure than each individual morpholino alone. To probe the mechanism of this interaction, we overexpressed or knocked down Vangl2 function in HEK293 cells. The Sdc4 and Vangl2 proteins colocalize, and Vangl2, particularly the Vangl2Lp mutant form, diminishes Sdc4 protein levels. Conversely, Vangl2 knockdown enhances Sdc4 protein levels. Overall HSPG steady-state levels were regulated by Vangl2, suggesting a molecular mechanism for the genetic interaction in which Vangl2Lp/+ enhances the Sdc4-null phenotype. This could be mediated via heparan sulfate residues, as Vangl2Lp/+ embryos fail to initiate neural tube closure and develop craniorachischisis (usually seen only in Vangl2Lp/Lp) when cultured in the presence of chlorate, a sulfation inhibitor. These results demonstrate that Sdc4 can participate in the Wnt/PCP pathway, unveiling its importance during neural tube closure in mammalian embryos. PMID:23760952

  18. Roles of planar cell polarity pathways in the development of neural [correction of neutral] tube defects.

    PubMed

    Wu, Gang; Huang, Xupei; Hua, Yimin; Mu, Dezhi

    2011-01-01

    Neural tube defects (NTDs) are the second most common birth defect in humans. Despite many advances in the understanding of NTDs and the identification of many genes related to NTDs, the fundamental etiology for the majority of cases of NTDs remains unclear. Planar cell polarity (PCP) signaling pathway, which is important for polarized cell movement (such as cell migration) and organ morphogenesis through the activation of cytoskeletal pathways, has been shown to play multiple roles during neural tube closure. The disrupted function of PCP pathway is connected with some NTDs. Here, we summarize our current understanding of how PCP factors affect the pathogenesis of NTDs. PMID:21864354

  19. A dynamic code of dorsal neural tube genes regulates the segregation between neurogenic and melanogenic neural crest cells

    PubMed Central

    Nitzan, Erez; Krispin, Shlomo; Pfaltzgraff, Elise R.; Klar, Avihu; Labosky, Patricia A.; Kalcheim, Chaya

    2013-01-01

    Understanding when and how multipotent progenitors segregate into diverse fates is a key question during embryonic development. The neural crest (NC) is an exemplary model system with which to investigate the dynamics of progenitor cell specification, as it generates a multitude of derivatives. Based on ‘in ovo’ lineage analysis, we previously suggested an early fate restriction of premigratory trunk NC to generate neural versus melanogenic fates, yet the timing of fate segregation and the underlying mechanisms remained unknown. Analysis of progenitors expressing a Foxd3 reporter reveals that prospective melanoblasts downregulate Foxd3 and have already segregated from neural lineages before emigration. When this downregulation is prevented, late-emigrating avian precursors fail to upregulate the melanogenic markers Mitf and MC/1 and the guidance receptor Ednrb2, generating instead glial cells that express P0 and Fabp. In this context, Foxd3 lies downstream of Snail2 and Sox9, constituting a minimal network upstream of Mitf and Ednrb2 to link melanogenic specification with migration. Consistent with the gain-of-function data in avians, loss of Foxd3 function in mouse NC results in ectopic melanogenesis in the dorsal tube and sensory ganglia. Altogether, Foxd3 is part of a dynamically expressed gene network that is necessary and sufficient to regulate fate decisions in premigratory NC. Their timely downregulation in the dorsal neural tube is thus necessary for the switch between neural and melanocytic phases of NC development. PMID:23615280

  20. Helium Background in the D0 Detector Related to the Photomultiplier Tubes

    SciTech Connect

    Rucinski, R.; /Fermilab

    1998-04-09

    Helium is present in the earth's atmosphere at about 5 parts per million. (ref. Technology of liquid helium, NBS monograph 111). The D-Zero detector uses helium for the cryogenic cooling of its superconducting magnet and visible light photon counter (VLPC) electronics chips. In addition, the tevatron accelerator has superconducting magnets that use helium Due to the possibility of leaks or releases of helium from these helium lines and components, the background helium level in the collision hall may exceed the natural level of 5 ppm. This engineering note will quantify the probability and level of helium background in the D-Zero detector. The photomultiplier tubes used in the D-Zero detector are sensitive to an elevated helium atmosphere. This is due to the permeation rate of helium gas through the glass tube, into the vacuum space inside. It is very important for the helium atmosphere surrounding the photomultiplier tubes is known and controlled. If the level of helium in the vacuum tube reaches a level above 5 ppm, then the photomuliplier tube may no longer work as designed. The process is an irreversible one.

  1. Looking for causes of neural tube defects: where does the environment fit in?

    PubMed Central

    Sever, L E

    1995-01-01

    The neural tube defects anencephaly and spina bifida are important causes of infant mortality and morbidity. Recent studies suggest that many of these defects can be prevented by the periconceptional use of folic acid. At the same time, we do not know what causes most cases of neural tube defects and there is evidence to suggest that they are etiologically heterogeneous. Additional research needs to be directed toward the role of occupational and environmental exposures in the etiology of these defects. Importantly, studies need to examine embryologically and anatomically specific types of defects and develop accurate information on biologically relevant exposures. Exposures toward which attention needs to be directed include organic solvents; agricultural chemicals, including pesticides; water nitrates; heavy metals such as mercury; ionizing radiation; and water disinfection by products. We also recommend that additional attention be paid to mechanisms of neural tube closure and to the potential role of genetic heterogeneity in the absorption and metabolism of xenobiotics and in their effects on the neural tube. PMID:8549468

  2. Gene-environment interactions in susceptibility to fumonisin-induced neural tube defects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fumonisin B1 (FB1) is a mycotoxin produced by a common fungal contaminant of corn. In populations that rely on maize-based foods as a dietary staple, consumption of FB1-contaminated food during early pregnancy is associated with increased risk for neural tube defects (NTDs). Administration of FB1 ...

  3. Lipid mediators link cells progression with placental and neural tube defects after maternal fumonisin exposure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fumonisin B1 (FB1) is a mycotoxin produced by a common fungal contaminant of maize. Increased risk for neural tube defects (NTDs) is observed in populations that rely on maize as a dietary staple. FB1 inhibits ceramide synthase, resulting in altered pools of biologically active sphingolipids. FB1...

  4. Maternal fumonisin exposure as a risk factor for neural tube defects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fumonisins are mycotoxins produced by the fungus F. verticillioides, a common contaminant of maize (corn) worldwide. Maternal consumption of fumonisin B1-contaminated maize during early pregnancy has recently been associated with increased risk for neural tube defects (NTDs) in human populations th...

  5. 21 CFR 101.79 - Health claims: Folate and neural tube defects.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....79 Section 101.79 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD LABELING Specific Requirements for Health Claims § 101... defects—(1) Definition. Neural tube defects are serious birth defects of the brain or spinal cord that...

  6. 21 CFR 101.79 - Health claims: Folate and neural tube defects.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ....79 Section 101.79 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD LABELING Specific Requirements for Health Claims § 101... defects—(1) Definition. Neural tube defects are serious birth defects of the brain or spinal cord that...

  7. 21 CFR 101.79 - Health claims: Folate and neural tube defects.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ....79 Section 101.79 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD LABELING Specific Requirements for Health Claims § 101... defects—(1) Definition. Neural tube defects are serious birth defects of the brain or spinal cord that...

  8. 21 CFR 101.79 - Health claims: Folate and neural tube defects.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....79 Section 101.79 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD LABELING Specific Requirements for Health Claims § 101... defects—(1) Definition. Neural tube defects are serious birth defects of the brain or spinal cord that...

  9. Placental and neural tube defects after maternal fumonisin or FRY720 exposure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fumonisin B1 (FB1) is a mycotoxin produced by a common fungal contaminant of maize. Increased neural tube defect (NTD) risk is observed in human populations that rely heavily on maize as a dietary staple. FB1 inhibition of ceramide synthase results in elevated sphingoid bases. FTY720 is a sphingoid ...

  10. Fetotoxicity and neural tube defects in CD1 mice exposed to the mycotoxin Fumonisin B1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fumonisins are mycotoxins that are produced by Fusarium verticillioides and that occur in corn and corn-based foods. Their effects on human health are unclear, however, epidemiological and experimental evidence suggests that they increase the risk of neural tube defects (NTDs) in populations routine...

  11. Epidemiologic and Genetic Aspects of Spina Bifida and Other Neural Tube Defects

    ERIC Educational Resources Information Center

    Au, Kit Sing; Ashley-Koch, Allison; Northrup, Hope

    2010-01-01

    The worldwide incidence of neural tube defects (NTDs) ranges from 1.0 to 10.0 per 1,000 births with almost equal frequencies between two major categories: anencephaly and spina bifida (SB). Epidemiological studies have provided valuable insight for (a) researchers to identify nongenetic and genetic factors contributing to etiology, (b) public…

  12. From the Cover: Exposing Imidacloprid Interferes With Neurogenesis Through Impacting on Chick Neural Tube Cell Survival.

    PubMed

    Liu, Meng; Wang, Guang; Zhang, Shi-Yao; Zhong, Shan; Qi, Guo-Long; Wang, Chao-Jie; Chuai, Manli; Lee, Kenneth Ka Ho; Lu, Da-Xiang; Yang, Xuesong

    2016-09-01

    As a neonicotinoid pesticide, imidacloprid is widely used to control insects in agriculture and fleas on domestic animals. However, it is not known whether imidacloprid exposure negatively affects neurogenesis during embryonic development. In this study, using a chick embryo model, we investigated the effects of imidacloprid exposure on neurogenesis at the earliest stage and during late-stage embryo development. Exposing HH0 chick embryos to imidacloprid in EC culture caused neural tube defects (NTDs) and neuronal differentiation dysplasia as determined by NF/Tuj1 labeling. Furthermore, we found that F-actin accumulation on the apical side of the neural tube was suppressed by exposure to imidacloprid, and the expression of BMP4 and Shh on the dorsal and ventral sides of the neural tubes, respectively, were also reduced, which in turn affects the dorsolateral hinge points during bending of the neural plate. In addition, exposure to imidacloprid reduced cell proliferation and increased cell apoptosis, as determined by pHIS3 labeling and TUNEL staining, respectively, also contributing to the malformation. We obtained similar results in late-stage embryos exposed to imidacloprid. Finally, a bioinformatics analysis was employed to determine which genes identified in this study were involved in NTDs. The experimental evidence and bioinformatics analysis suggested that imidacloprid exposure during chick embryo development could increase the risk of NTDs and neural dysplasia. PMID:27444676

  13. Disruption of the MacMARCKS gene prevents cranial neural tube closure and results in anencephaly.

    PubMed Central

    Chen, J; Chang, S; Duncan, S A; Okano, H J; Fishell, G; Aderem, A

    1996-01-01

    MacMARCKS is a member of the MARCKS family of protein kinase C (PKC) substrates. Biochemical evidence demonstrates that these proteins integrate calcium and PKC-dependent signals to regulate actin structure at the membrane. We report here that deletion of the MacMARCKS gene prevents cranial neural tube closure in the developing brain, resulting in anencephaly. This suggests a central role for MacMARCKS and the PKC signal transduction pathway in the folding of the anterior neural plate during the early phases of brain formation, and supports the hypothesis that actin-based motility directs cranial neural tube closure. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8692805

  14. Periconceptional Use of Opioids and the Risk of Neural Tube Defects

    PubMed Central

    Yazdy, Mahsa M.; Mitchell, Allen A.; Tinker, Sarah C.; Parker, Samantha E.; Werler, Martha M.

    2015-01-01

    OBJECTIVE Opioid medications are among the most effective analgesics. However, the consequences of opioid exposure to the developing human offspring are not known. We assessed whether maternal opioid use in the periconceptional period was associated with the risk of neural tube defects in the offspring. METHODS We used data from 1998 to 2010 from the Slone Epidemiology Center Birth Defects Study, an ongoing case–control study. Mothers were interviewed by telephone within 6 months of delivery about sociodemographic factors and exposures during pregnancy including detailed questions on type and timing of medication use. Mothers of 305 offsprings with neural tube defect were compared with mothers of 7,125 offsprings in the nonmalformed control group and 13,405 offsprings in the malformed control group. Periconceptional opioid use was defined as any reported use in the 2 months after the last menstrual period. Logistic regression models were used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) adjusted for study center. RESULTS A higher percentage of mothers of offsprings with neural tube defects (3.9%) reported using an opioid medication than mothers of offsprings in the nonmalformed control group (1.6%) and offsprings in the malformed control group (2.0%) with adjusted ORs of 2.2 (95% CI 1.2 24.2) and 1.9 (95% CI 1.0 23.4), respectively. When offsprings were restricted to those with spina bifida, the adjusted ORs were 2.5 (95% CI 1.3–5.0) and 2.2 (95% CI 1.1–4.1), respectively. CONCLUSION A 2.2-fold increase in risk would translate to a neural tube defect prevalence of 5.9 per 10,000 live births among women who use opioids. Overall, opioid use in the periconceptional period appeared to be associated with a modest increased risk of neural tube defects. PMID:24084542

  15. Deletion of Mthfd1l causes embryonic lethality and neural tube and craniofacial defects in mice.

    PubMed

    Momb, Jessica; Lewandowski, Jordan P; Bryant, Joshua D; Fitch, Rebecca; Surman, Deborah R; Vokes, Steven A; Appling, Dean R

    2013-01-01

    Maternal supplementation with folic acid is known to reduce the incidence of neural tube defects (NTDs) by as much as 70%. Despite the strong clinical link between folate and NTDs, the biochemical mechanisms through which folic acid acts during neural tube development remain undefined. The Mthfd1l gene encodes a mitochondrial monofunctional 10-formyl-tetrahydrofolate synthetase, termed MTHFD1L. This gene is expressed in adults and at all stages of mammalian embryogenesis with localized regions of higher expression along the neural tube, developing brain, craniofacial structures, limb buds, and tail bud. In both embryos and adults, MTHFD1L catalyzes the last step in the flow of one-carbon units from mitochondria to cytoplasm, producing formate from 10-formyl-THF. To investigate the role of mitochondrial formate production during embryonic development, we have analyzed Mthfd1l knockout mice. All embryos lacking Mthfd1l exhibit aberrant neural tube closure including craniorachischisis and exencephaly and/or a wavy neural tube. This fully penetrant folate-pathway mouse model does not require feeding a folate-deficient diet to cause this phenotype. Maternal supplementation with sodium formate decreases the incidence of NTDs and partially rescues the growth defect in embryos lacking Mthfd1l. These results reveal the critical role of mitochondrially derived formate in mammalian development, providing a mechanistic link between folic acid and NTDs. In light of previous studies linking a common splice variant in the human MTHFD1L gene with increased risk for NTDs, this mouse model provides a powerful system to help elucidate the specific metabolic mechanisms that underlie folate-associated birth defects, including NTDs. PMID:23267094

  16. The essential role of protein kinase Cδ in diabetes-induced neural tube defects

    PubMed Central

    Cao, Yuanning; Zhao, Zhiyong; Eckert, Richard L.; Reece, E. Albert

    2015-01-01

    Background Maternal diabetes causes neural tube defects (NTDs) in the embryos via activating protein kinase Cs (PKCs), which regulate programmed cell death (apoptosis). The aims of this study are to investigate the role of proapoptotic PKCδ in NTD formation and the underlying mechanisms. Methods PKCδ heterozygous (pkcδ+/−) female mice were diabetic (DM) induced by intravenous injection of streptozotocin. Occurrence of NTDs was evaluated at embryonic day 11.5 and compared between wild type (WT) and PKCδ homozygous (pkcδ−/−) embryos. Changes in oxidative and endoplasmic reticulum (ER) stress-associated factors and stress-response c-Jun N-terminal kinases (JNKs) were assessed using Western blot assay. Results Compared to DM/WT, the DM/PKCδ−/− embryos had significantly lower NTD rate and lower levels of oxidative and ER stress factors and JNK activation. These values were similar to those in the non-diabetic control group. Conclusion PKCδ plays a critical role in diabetes-induced NTDs, potentially through increasing oxidative and ER stress and JNK-associated stress-response pathways. PMID:22463764

  17. Neural Plasticity in Multiple Sclerosis: The Functional and Molecular Background

    PubMed Central

    Ksiazek-Winiarek, Dominika Justyna; Szpakowski, Piotr; Glabinski, Andrzej

    2015-01-01

    Multiple sclerosis is an autoimmune neurodegenerative disorder resulting in motor dysfunction and cognitive decline. The inflammatory and neurodegenerative changes seen in the brains of MS patients lead to progressive disability and increasing brain atrophy. The most common type of MS is characterized by episodes of clinical exacerbations and remissions. This suggests the presence of compensating mechanisms for accumulating damage. Apart from the widely known repair mechanisms like remyelination, another important phenomenon is neuronal plasticity. Initially, neuroplasticity was connected with the developmental stages of life; however, there is now growing evidence confirming that structural and functional reorganization occurs throughout our lifetime. Several functional studies, utilizing such techniques as fMRI, TBS, or MRS, have provided valuable data about the presence of neuronal plasticity in MS patients. CNS ability to compensate for neuronal damage is most evident in RR-MS; however it has been shown that brain plasticity is also preserved in patients with substantial brain damage. Regardless of the numerous studies, the molecular background of neuronal plasticity in MS is still not well understood. Several factors, like IL-1β, BDNF, PDGF, or CB1Rs, have been implicated in functional recovery from the acute phase of MS and are thus considered as potential therapeutic targets. PMID:26229689

  18. An adverse outcome pathway framework for neural tube and axial defects mediated by modulation of retinoic acid homeostasis.

    PubMed

    Tonk, Elisa C M; Pennings, Jeroen L A; Piersma, Aldert H

    2015-08-01

    Developmental toxicity can be caused through a multitude of mechanisms and can therefore not be captured through a single simple mechanistic paradigm. However, it may be possible to define a selected group of overarching mechanisms that might allow detection of the vast majority of developmental toxicants. Against this background, we have explored the usefulness of retinoic acid mediated regulation of neural tube and axial patterning as a general mechanism that, when perturbed, may result in manifestations of developmental toxicity that may cover a large part of malformations known to occur in experimental animals and in man. Through a literature survey, we have identified key genes in the regulation of retinoic acid homeostasis, as well as marker genes of neural tube and axial patterning, that may be used to detect developmental toxicants in in vitro systems. A retinoic acid-neural tube/axial patterning adverse outcome pathway (RA-NTA AOP) framework was designed. The framework was tested against existing data of flusilazole exposure in the rat whole embryo culture, the zebrafish embryotoxicity test, and the embryonic stem cell test. Flusilazole is known to interact with retinoic acid homeostasis, and induced common and unique NTA marker gene changes in the three test systems. Flusilazole-induced changes were similar in directionality to gene expression responses after retinoic acid exposure. It is suggested that the RA-NTA framework may provide a general tool to define mechanistic pathways and biomarkers of developmental toxicity that may be used in alternative in vitro assays for the detection of embryotoxic compounds. PMID:25461899

  19. miR-430 regulates oriented cell division during neural tube development in zebrafish.

    PubMed

    Takacs, Carter M; Giraldez, Antonio J

    2016-01-15

    MicroRNAs have emerged as critical regulators of gene expression. Originally shown to regulate developmental timing, microRNAs have since been implicated in a wide range of cellular functions including cell identity, migration and signaling. miRNA-430, the earliest expressed microRNA during zebrafish embryogenesis, is required to undergo morphogenesis and has previously been shown to regulate maternal mRNA clearance, Nodal signaling, and germ cell migration. The functions of miR-430 in brain morphogenesis, however, remain unclear. Herein we find that miR-430 instructs oriented cell divisions in the neural rod required for neural midline formation. Loss of miR-430 function results in mitotic spindle misorientation in the neural rod, failed neuroepithelial integration after cell division, and ectopic cell accumulation in the dorsal neural tube. We propose that miR-430, independently of canonical apicobasal and planar cell polarity (PCP) pathways, coordinates the stereotypical cell divisions that instruct neural tube morphogenesis. PMID:26658217

  20. Zinc-deficient sprouting blight potatoes and their possible relation with neural tube defects.

    PubMed

    Ulman, Cevval; Taneli, Fatma; Oksel, Figen; Hakerlerler, Huseyin

    2005-01-01

    Maternal nutritional zinc deficiency is blamed in the pathogenesis of neural tube defects. In animal and plant domains zinc is required for growth and development. The objective of the present study was to show that sprouting blighted potato tuber is zinc deficient. In five potato varieties, zinc was measured by atomic absorption spectrophotometry in wet-ashed paired slices of edible potato tuber and in its peel, in blighted potato tuber and in its sprout. Zinc contents were measured as the mean (+/- SEM) and the following values were found, 0.388 +/- 0.036, 0.623 +/- 0.059, 0.550 +/- 0.030 and 1.089 +/- 0.181 mg per 100 g wet weight, respectively. In conclusion, we believe that long-term consumption of zinc-depleted, blight potato tuber by pregnant woman could be potentially teratogenic with the consequent birth of a baby with neural tube defects. PMID:15376231

  1. Can we afford screening for neural tube defects? The South Wales experience.

    PubMed Central

    Hibbard, B M; Roberts, C J; Elder, G H; Evans, K T; Laurence, K M

    1985-01-01

    Clinical and financial gains and losses accruing from five different options for screening for open neural tube defects were estimated, based principally on the results of detailed monitoring of inputs and outcomes and of process costs in the South Wales Anencephaly and Spina Bifida Study. As well as estimating the overall clinical costs of a screening service it was shown that if the prevalence, including terminations, of open neural tube defects is between 1.25 and five per 1000 births the financial cost of avoiding the birth of a seriously handicapped child who would survive for more than 24 hours is in the range 9000 pounds- 54000 pounds depending on the option adopted and the prevalence of the condition in the target population. Prevalence is the biggest determinant of cost. The data should provide a basis for assessment and discussion of resource priorities in the National Health Service. PMID:3917791

  2. Scaling Pattern to Variations in Size during Development of the Vertebrate Neural Tube.

    PubMed

    Uygur, Aysu; Young, John; Huycke, Tyler R; Koska, Mervenaz; Briscoe, James; Tabin, Clifford J

    2016-04-18

    Anatomical proportions are robustly maintained in individuals that vary enormously in size, both within a species and between members of related taxa. However, the mechanisms underlying scaling are still poorly understood. We have examined this phenomenon in the context of the patterning of the ventral neural tube in response to a gradient of the morphogen Sonic hedgehog (SHH) in the chick and zebra finch, two species that differ in size during the time of neural tube patterning. We find that scaling is achieved, at least in part, by altering the sensitivity of the target cells to SHH and appears to be achieved by modulating the ratio of the repressive and activating transcriptional regulators, GLI2 and GLI3. This mechanism contrasts with previous experimental and theoretical analyses of morphogenic scaling that have focused on compensatory changes in the morphogen gradient itself. PMID:27093082

  3. Prevention of neural tube defects with folic acid: The Chinese experience

    PubMed Central

    Ren, Ai-Guo

    2015-01-01

    Neural tube defects (NTDs) are a group of congenital malformations of the central nervous system that are caused by the closure failure of the embryonic neural tube by the 28th day of conception. Anencephaly and spina bifida are the two major subtypes. Fetuses with anencephaly are often stillborn or electively aborted due to prenatal diagnosis, or they die shortly after birth. Most infants with spina bifida are live-born and, with proper surgical treatment, can survive into adulthood. However, these children often have life-long physical disabilities. China has one of the highest prevalence of NTDs in the world. Inadequate dietary folate intake is believed to be the main cause of the cluster. Unlike many other countries that use staple fortification with folic acid as the public health strategy to prevent NTDs, the Chinese government provides all women who have a rural household registration and who plan to become pregnant with folic acid supplements, free of charge, through a nation-wide program started in 2009. Two to three years after the initiation of the program, the folic acid supplementation rate increased to 85% in the areas of the highest NTD prevalence. The mean plasma folate level of women during early and mid-pregnancy doubled the level before the program was introduced. However, most women began taking folic acid supplements when they knew that they were pregnant. This is too late for the protection of the embryonic neural tube. In a post-program survey of the women who reported folic acid supplementation, less than a quarter of the women began taking supplements prior to pregnancy, indicating that the remaining three quarters of the fetuses remained unprotected during the time of neural tube formation. Therefore, staple food fortification with folic acid should be considered as a priority in the prevention of NTDs. PMID:26261765

  4. Prevention of neural tube defects with folic acid: The Chinese experience.

    PubMed

    Ren, Ai-Guo

    2015-08-01

    Neural tube defects (NTDs) are a group of congenital malformations of the central nervous system that are caused by the closure failure of the embryonic neural tube by the 28(th) day of conception. Anencephaly and spina bifida are the two major subtypes. Fetuses with anencephaly are often stillborn or electively aborted due to prenatal diagnosis, or they die shortly after birth. Most infants with spina bifida are live-born and, with proper surgical treatment, can survive into adulthood. However, these children often have life-long physical disabilities. China has one of the highest prevalence of NTDs in the world. Inadequate dietary folate intake is believed to be the main cause of the cluster. Unlike many other countries that use staple fortification with folic acid as the public health strategy to prevent NTDs, the Chinese government provides all women who have a rural household registration and who plan to become pregnant with folic acid supplements, free of charge, through a nation-wide program started in 2009. Two to three years after the initiation of the program, the folic acid supplementation rate increased to 85% in the areas of the highest NTD prevalence. The mean plasma folate level of women during early and mid-pregnancy doubled the level before the program was introduced. However, most women began taking folic acid supplements when they knew that they were pregnant. This is too late for the protection of the embryonic neural tube. In a post-program survey of the women who reported folic acid supplementation, less than a quarter of the women began taking supplements prior to pregnancy, indicating that the remaining three quarters of the fetuses remained unprotected during the time of neural tube formation. Therefore, staple food fortification with folic acid should be considered as a priority in the prevention of NTDs. PMID:26261765

  5. Genomic DNA Hypomethylation Is Associated with Neural Tube Defects Induced by Methotrexate Inhibition of Folate Metabolism

    PubMed Central

    Wang, Xiuwei; Guan, Zhen; Chen, Yan; Dong, Yanting; Niu, Yuhu; Wang, Jianhua; Zhang, Ting; Niu, Bo

    2015-01-01

    DNA methylation is thought to be involved in the etiology of neural tube defects (NTDs). However, the exact mechanism between DNA methylation and NTDs remains unclear. Herein, we investigated the change of methylation in mouse model of NTDs associated with folate dysmetabolism by use of ultraperformance liquid chromatography tandem mass spectrometry (UPLC/MS/MS), liquid chromatography-electrospray ionization tandem mass spectrometry (LC-MS/MS), microarray, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and Real time quantitative PCR. Results showed that NTD neural tube tissues had lower concentrations of 5-methyltetrahydrofolate (5-MeTHF, P = 0.005), 5-formyltetrahydrofolate (5-FoTHF, P = 0.040), S-adenosylmethionine (SAM, P = 0.004) and higher concentrations of folic acid (P = 0.041), homocysteine (Hcy, P = 0.006) and S-adenosylhomocysteine (SAH, P = 0.045) compared to control. Methylation levels of genomic DNA decreased significantly in the embryonic neural tube tissue of NTD samples. 132 differentially methylated regions (35 low methylated regions and 97 high methylated regions) were selected by microarray. Two genes (Siah1b, Prkx) in Wnt signal pathway demonstrated lower methylated regions (peak) and higher expression in NTDs (P<0.05; P<0.05). Results suggest that DNA hypomethylation was one of the possible epigenetic variations correlated with the occurrence of NTDs induced by folate dysmetabolism and that Siah1b, Prkx in Wnt pathway may be candidate genes for NTDs. PMID:25822193

  6. [The effect of folic acid fortification on the reduction of neural tube defects].

    PubMed

    Santos, Leonor Maria Pacheco; Pereira, Michelle Zanon

    2007-01-01

    Neural tube defects are congenital malformations that occur during initial fetal development, leading to anencephaly and spina bifida; folic acid deficiency is the most important risk factor identified to date. Brazil has one of the world's highest neural tube defect rates. Food consumption surveys among pregnant Brazilian women showed a high rate of inadequate folic acid intake (< 0.6 mg/day). In 2004, the National Health Surveillance Agency (ANVISA) mandated the fortification of corn meal and wheat flour with folic acid (0.15 mg/100g). The National Family Budget Survey estimated the average amount of bread/flour products available in households as 106.1g/day (contributing with 0.16 mg folic acid/day). However, while in the South of the country the supply was 144 g/day, in the North and Central West it barely reached 70 g/day. Folic acid food fortification is mandatory in some 40 countries, but only four have assessed this strategy. The existing studies have all shown a significant impact, ranging from 19 to 78%. Folic acid fortification is an undeniably important intervention for primary prevention, and neural tube defects can now be considered a preventable epidemic. PMID:17187100

  7. Mini-review: toward understanding mechanisms of genetic neural tube defects in mice.

    PubMed

    Harris, M J; Juriloff, D M

    1999-11-01

    We review the data from studies of mouse mutants that lend insight to the mechanisms that lead to neural tube defects (NTDs). Most of the 50 single-gene mutations that cause neural tube defects (NTDs) in mice also cause severe embryonic-lethal syndromes, in which exencephaly is a nonspecific feature. In a few mutants (e.g., Trp53, Macs, Mlp or Sp), other defects may be present, but affected fetuses can survive to birth. Multifactorial genetic causes, as are present in the curly tail stock (15-20% spina bifida), or the SELH/Bc strain (15-20% exencephaly), lead to nonsyndromic NTDs. The mutations indicate that "spina bifida occulta," a dorsal gap in the vertebral arches over an intact neural tube, is usually genetically and developmentally unrelated to exencephaly or "spina bifida" (aperta). Almost all exencephaly or spina bifida aperta of genetic origin is caused by failure of neural fold elevation. The developmental mechanisms in genetic NTDs are considered in terms of distinct rostro-caudal zones along the neural folds that likely differ in mechanism of elevation. Failure of elevation leads to: split face (zone A), exencephaly (zone B), rachischisis (all of zone D), or spina bifida (caudal zone D). The developmental mechanisms leading to these genetic NTDs are heterogeneous, even within one zone. At the tissue level, the mutants show that the mechanism of failure of elevation can involve, e.g., (1) slow growth of adjacent tethered tissue (curly tail), (2) defective forebrain mesenchyme (Cart1 or twist), (3) defective basal lamina in surface ectoderm (Lama5), (4) excessive breadth of floorplate and notochord (Lp), (5) abnormal neuroepithelium (Apob, Sp, Tcfap2a), (6) morphological deformation of neural folds (jmj), (7) abnormal neuroepithelial and neural crest cell gap-junction communication (Gja1), or (8) incomplete compensation for a defective step in the elevation sequence (SELH/Bc). At the biochemical level, mutants suggest involvement of: (1) faulty regulation

  8. Cellular basis of neuroepithelial bending during mouse spinal neural tube closure

    PubMed Central

    McShane, Suzanne G.; Molè, Matteo A.; Savery, Dawn; Greene, Nicholas D. E; Tam, Patrick P.L.; Copp, Andrew J.

    2015-01-01

    Summary Bending of the neural plate at paired dorsolateral hinge points (DLHPs) is required for neural tube closure in the spinal region of the mouse embryo. As a step towards understanding the morphogenetic mechanism of DLHP development, we examined variations in neural plate cellular architecture and proliferation during closure. Neuroepithelial cells within the median hinge point (MHP) contain nuclei that are mainly basally located and undergo relatively slow proliferation, with a 7 h cell cycle length. In contrast, cells in the dorsolateral neuroepithelium, including the DLHP, exhibit nuclei distributed throughout the apico-basal axis and undergo rapid proliferation, with a 4 h cell cycle length. As the neural folds elevate, cell numbers increase to a greater extent in the dorsolateral neural plate that contacts the surface ectoderm, compared with the more ventromedial neural plate where cells contact paraxial mesoderm and notochord. This marked increase in dorsolateral cell number cannot be accounted for solely on the basis of enhanced cell proliferation in this region. We hypothesised that neuroepithelial cells may translocate in a ventral-to-dorsal direction as DLHP formation occurs, and this was confirmed by vital cell labelling in cultured embryos. The translocation of cells into the neural fold, together with its more rapid cell proliferation, leads to an increase in cell density dorsolaterally compared with the more ventromedial neural plate. These findings suggest a model in which DLHP formation may proceed through ‘buckling’ of the neuroepithelium at a dorso-ventral boundary marked by a change in cell-packing density. PMID:26079577

  9. When folic acid fails: Insights from 20 years of neural tube defect surveillance in South Carolina.

    PubMed

    Bupp, Caleb P; Sarasua, Sara M; Dean, Jane H; Stevenson, Roger E

    2015-10-01

    Neural tube defects (NTDs) are the most common of the severe malformations of the brain and spinal cord. Increased maternal intake of folic acid (FA) during the periconceptional period is known to reduce NTD risk. Data from 1046 NTD cases in South Carolina were gathered over 20 years of surveillance. It was possible to determine maternal periconceptional FA use in 615 NTD-affected pregnancies. In 163 occurrent (26.9%) and two recurrent (22%) NTD cases, the mothers reported periconceptional FA use. These women were older and more likely to be white. Maternal periconceptional FA usage was reported in 40.4% of cases of spina bifida with other anomalies but in only 25.2% of isolated spina bifida cases (P = 0.02). This enrichment for associated anomalies was not noted among cases of anencephaly or of encephalocele. Among the 563 subsequent pregnancies to mothers with previous NTD-affected pregnancies, those taking FA had a 0.4% NTD recurrence rate, but the recurrence without FA was 8.5%. NTDs with other associated findings were less likely to be prevented by FA, suggesting there is a background NTD rate that cannot be further reduced by FA. Nonetheless, the majority (73.9%) of NTDs in pregnancies in which the mothers reported periconceptional FA use were isolated NTDs of usual types. Cases in which FA failed in prevention of NTDs provide potential areas for further study into the causation of NTDs. The measures and techniques implemented in South Carolina can serve as an effective and successful model for prevention of NTD occurrence and recurrence. PMID:26108864

  10. Dietary folate, but not choline, modifies neural tube defect risk in Shmt1 knockout mice12345

    PubMed Central

    Beaudin, Anna E; Abarinov, Elena V; Malysheva, Olga; Perry, Cheryll A; Caudill, Marie; Stover, Patrick J

    2012-01-01

    Background: Low dietary choline intake has been proposed to increase the risk of neural tube defects (NTDs) in human populations. Mice with reduced Shmt1 expression exhibit a higher frequency of NTDs when placed on a folate- and choline-deficient diet and may represent a model of human NTDs. The individual contribution of dietary folate and choline deficiency to NTD incidence in this mouse model is not known. Objective: To dissociate the effects of dietary folate and choline deficiency on Shmt1-related NTD sensitivity, we determined NTD incidence in embryos from Shmt1-null dams fed diets deficient in either folate or choline. Design: Shmt1+/+ and Shmt1−/− dams were maintained on a standard AIN93G diet (Dyets), an AIN93G diet lacking folate (FD), or an AIN93G diet lacking choline (CD). Virgin Shmt1+/+ and Shmt1−/− dams were crossed with Shmt1+/− males, and embryos were examined for the presence of NTDs at embryonic day (E) 11.5 or E12.5. Results: Exencephaly was observed only in Shmt1−/− embryos isolated from dams maintained on the FD diet (P = 0.004). Approximately 33% of Shmt1−/−embryos (n = 18) isolated from dams maintained on the FD diet exhibited exencephaly. NTDs were not observed in any embryos isolated from dams maintained on the CD (n = 100) or control (n = 152) diets or in any Shmt1+/+ (n = 78) or Shmt1+/− embryos (n = 182). Conclusion: Maternal folate deficiency alone is sufficient to induce NTDs in response to embryonic Shmt1 disruption. PMID:22134951

  11. Arsenate-induced maternal glucose intolerance and neural tube defects in a mouse model

    SciTech Connect

    Hill, Denise S.; Wlodarczyk, Bogdan J.; Mitchell, Laura E.; Finnell, Richard H.

    2009-08-15

    Background: Epidemiological studies have linked environmental arsenic (As) exposure to increased type 2 diabetes risk. Periconceptional hyperglycemia is a significant risk factor for neural tube defects (NTDs), the second most common structural birth defect. A suspected teratogen, arsenic (As) induces NTDs in laboratory animals. Objectives: We investigated whether maternal glucose homeostasis disruption was responsible for arsenate-induced NTDs in a well-established dosing regimen used in studies of arsenic's teratogenicity in early neurodevelopment. Methods: We evaluated maternal intraperitoneal (IP) exposure to As 9.6 mg/kg (as sodium arsenate) in LM/Bc/Fnn mice for teratogenicity and disruption of maternal plasma glucose and insulin levels. Selected compounds (insulin pellet, sodium selenate (SS), N-acetyl cysteine (NAC), L-methionine (L-Met), N-tert-Butyl-{alpha}-phenylnitrone (PBN)) were investigated for their potential to mitigate arsenate's effects. Results: Arsenate caused significant glucose elevation during an IP glucose tolerance test (IPGTT). Insulin levels were not different between arsenate and control dams before (arsenate, 0.55 ng/dl; control, 0.48 ng/dl) or after glucose challenge (arsenate, 1.09 ng/dl; control, 0.81 ng/dl). HOMA-IR index was higher for arsenate (3.9) vs control (2.5) dams (p = 0.0260). Arsenate caused NTDs (100%, p < 0.0001). Insulin pellet and NAC were the most successful rescue agents, reducing NTD rates to 45% and 35%. Conclusions: IPGTT, insulin assay, and HOMA-IR results suggest a modest failure of glucose stimulated insulin secretion and insulin resistance characteristic of glucose intolerance. Insulin's success in preventing arsenate-induced NTDs provides evidence that these arsenate-induced NTDs are secondary to elevated maternal glucose. The NAC rescue, which did not restore maternal glucose or insulin levels, suggests oxidative disruption plays a role.

  12. Maternal ethnicity and risk of neural tube defects: a population-based study

    PubMed Central

    Ray, Joel G.; Vermeulen, Marian J.; Meier, Chris; Cole, David E.C.; Wyatt, Philip R.

    2004-01-01

    Background Maternal body mass and the presence of diabetes mellitus are probable risk factors for neural tube defects (NTDs). The association between maternal ethnicity and the risk of NTDs remains poorly understood, however. Methods We performed a retrospective population-based study and included all women in Ontario who underwent antenatal maternal screening (MSS) at 15 to 20 weeks' gestation between 1994 and late 2000. Self-declared maternal date of birth, ethnicity and weight and the presence of pregestational diabetes mellitus were recorded in a standardized fashion on the MSS requisition sheet. NTDs were detected antenatally by ultrasonography or fetal autopsy and postnatally by considering all live and stillborn affected infants beyond 20 weeks' gestation. The risk of open NTD was evaluated across the 5 broad ethnic groups used for MSS, with white ethnicity as the referent. Results Compared with white women (n = 290 799), women of First Nations origin (n = 1551) were at increased associated risk of an NTD-affected pregnancy (adjusted odds ratio [OR] 5.2, 95% confidence interval [CI] 2.1–12.9). Women of other ethnic origins were not at increased associated risk compared with white women (women of Asian origin [n = 75 590]: adjusted OR 0.9, 95% CI 0.6–1.3; black women [n = 25 966]: adjusted OR 0.6, 95% CI 0.3–1.1; women of “other” ethnic origin [n = 10 009]: adjusted OR 0.1, 95% CI 0.02–0.9). Interpretation The associated risk of NTD-affected pregnancies was higher among women of First Nations origin than among women of other ethnic origins. The mechanisms for this discrepancy should be explored. PMID:15313993

  13. A spatial model to predict the incidence of neural tube defects

    PubMed Central

    2012-01-01

    Background Environmental exposure may play an important role in the incidences of neural tube defects (NTD) of birth defects. Their influence on NTD may likely be non-linear; few studies have considered spatial autocorrelation of residuals in the estimation of NTD risk. We aimed to develop a spatial model based on generalized additive model (GAM) plus cokriging to examine and model the expected incidences of NTD and make the inference of the incidence risk. Methods We developed a spatial model to predict the expected incidences of NTD at village level in Heshun County, Shanxi Province, China, a region with high NTD cases. GAM was used to establish linear and non-linear relationships between local covariates and the expected NTD incidences. We examined the following village-level covariates in the model: projected coordinates, soil types, lithodological classes, distance to watershed, rivers, faults and major roads, annual average fertilizer uses, fruit and vegetable production, gross domestic product, and the number of doctors. The residuals from GAM were assumed to be spatially auto-correlative and cokriged with regional residuals to improve the prediction. Our approach was compared with three other models, universal kriging, generalized linear regression and GAM. Cross validation was conducted for validation. Results Our model predicted the expected incidences of NTD well, with a good CV R2 of 0.80. Important predictive factors included the fertilizer uses, locations of the centroid of each village, the shortest distance to rivers and faults and lithological classes with significant spatial autocorrelation of residuals. Our model out-performed the other three methods by 16% or more in term of R2. Conclusions The variance explained by our model was approximately 80%. This modeling approach is useful for NTD epidemiological studies and intervention planning. PMID:23134640

  14. Maternal vitamin levels in pregnancies affected by congenital malformations other than neural tube defects

    PubMed Central

    Sutton, Marie; Mills, James L.; Molloy, Anne M.; Troendle, James F.; Brody, Lawrence C.; Conley, Mary; Mc Donnell, Robert; Scott, John M.; Kirke, Peadar N.

    2012-01-01

    Background Periconceptional use of folic acid prevents most neural tube defects (NTDs). Whether folic acid and/or multivitamins can prevent other congenital anomalies is not clear. This study tested whether maternal blood levels of folate and vitamin B12 in pregnancies affected by congenital malformations excluding NTDs are lower when compared to non-affected pregnancies. Methods We measured pregnancy red cell folate (RCF), vitamin B12, and homocysteine (tHcy) concentrations in blood samples taken at the first antenatal clinic in Dublin maternity hospitals in 1986–1990 when vitamin supplementation was rare. The cases were mothers who delivered a baby with a congenital malformation other than NTD identified by the Dublin EUROCAT Registry; controls were a systematic sample of mothers of offspring without congenital malformations from the same hospitals in the same time period. Results The median maternal levels of RCF and tHcy did not differ significantly between cases and controls for any of the congenital malformation groups examined (RCF: all malformations 275.9 ug/L v controls 271.2; p=0.77; tHcy: all malformations 7.5 umol/L v controls 7.6; p=0.57). In an unadjusted analysis vitamin B12 was significantly higher in case-mothers whose babies had cleft palate only (p=0.006), musculoskeletal malformations (p=0.034) and midline defects (p=0.039) but not after adjustment for multiple testing. Conclusions Our data suggest that low maternal folate and B12 levels or high tHcy levels in early pregnancy are not associated with all congenital malformations excluding NTDs. Fortification with folic acid or B12 may not have a beneficial effect in the prevention of these anomalies. PMID:21591245

  15. Trehalose prevents neural tube defects by correcting maternal diabetes-suppressed autophagy and neurogenesis

    PubMed Central

    Xu, Cheng; Li, Xuezheng; Wang, Fang; Weng, Hongbo

    2013-01-01

    Preexisting maternal diabetes increases the risk of neural tube defects (NTDs). The mechanism underlying maternal diabetes-induced NTDs is not totally defined, and its prevention remains a challenge. Autophagy, an intracellular process to degrade dysfunction protein and damaged cellular organelles, regulates cell proliferation, differentiation, and apoptosis. Because autophagy impairment causes NTDs reminiscent of those observed in diabetic pregnancies, we hypothesize that maternal diabetes-induced autophagy impairment causes NTD formation by disrupting cellular homeostasis, leading to endoplasmic reticulum (ER) stress and apoptosis, and that restoration of autophagy by trehalose, a natural disaccharide, prevents diabetes-induced NTDs. Embryos from nondiabetic and type 1 diabetic mice fed with or without 2 or 5% trehalose water were used to assess markers of autophagy, ER stress, and neurogenesis, numbers of autophagosomes, gene expression that regulates autophagy, NTD rates, indices of mitochondrial dysfunction, and neuroepithelial cell apoptosis. Maternal diabetes suppressed autophagy by significantly reducing LC3-II expression, autophagosome numbers, and GFP-LC3 punctate foci in neuroepithelial cells and by altering autophagy-related gene expression. Maternal diabetes delayed neurogenesis by blocking Sox1 neural progenitor differentiation. Trehalose treatment reversed autophagy impairment and prevented NTDs in diabetic pregnancies. Trehalose resolved homeostatic imbalance by correcting mitochondrial defects, dysfunctional proteins, ER stress, apoptosis, and delayed neurogenesis in the neural tubes exposed to hyperglycemia. Our study demonstrates for the first time that maternal diabetes suppresses autophagy in neuroepithelial cells of the developing neural tube, leading to NTD formation, and provides evidence for the potential efficacy of trehalose as an intervention against hyperglycemia-induced NTDs. PMID:23880312

  16. Junctional neurulation: a unique developmental program shaping a discrete region of the spinal cord highly susceptible to neural tube defects.

    PubMed

    Dady, Alwyn; Havis, Emmanuelle; Escriou, Virginie; Catala, Martin; Duband, Jean-Loup

    2014-09-24

    In higher vertebrates, the primordium of the nervous system, the neural tube, is shaped along the rostrocaudal axis through two consecutive, radically different processes referred to as primary and secondary neurulation. Failures in neurulation lead to severe anomalies of the nervous system, called neural tube defects (NTDs), which are among the most common congenital malformations in humans. Mechanisms causing NTDs in humans remain ill-defined. Of particular interest, the thoracolumbar region, which encompasses many NTD cases in the spine, corresponds to the junction between primary and secondary neurulations. Elucidating which developmental processes operate during neurulation in this region is therefore pivotal to unraveling the etiology of NTDs. Here, using the chick embryo as a model, we show that, at the junction, the neural tube is elaborated by a unique developmental program involving concerted movements of elevation and folding combined with local cell ingression and accretion. This process ensures the topological continuity between the primary and secondary neural tubes while supplying all neural progenitors of both the junctional and secondary neural tubes. Because it is distinct from the other neurulation events, we term this phenomenon junctional neurulation. Moreover, the planar-cell-polarity member, Prickle-1, is recruited specifically during junctional neurulation and its misexpression within a limited time period suffices to cause anomalies that phenocopy lower spine NTDs in human. Our study thus provides a molecular and cellular basis for understanding the causality of NTD prevalence in humans and ascribes to Prickle-1 a critical role in lower spinal cord formation. PMID:25253865

  17. Development-on-chip: in vitro neural tube patterning with a microfluidic device.

    PubMed

    Demers, Christopher J; Soundararajan, Prabakaran; Chennampally, Phaneendra; Cox, Gregory A; Briscoe, James; Collins, Scott D; Smith, Rosemary L

    2016-06-01

    Embryogenesis is a highly regulated process in which the precise spatial and temporal release of soluble cues directs differentiation of multipotent stem cells into discrete populations of specialized adult cell types. In the spinal cord, neural progenitor cells are directed to differentiate into adult neurons through the action of mediators released from nearby organizing centers, such as the floor plate and paraxial mesoderm. These signals combine to create spatiotemporal diffusional landscapes that precisely regulate the development of the central nervous system (CNS). Currently, in vivo and ex vivo studies of these signaling factors present some inherent ambiguity. In vitro methods are preferred for their enhanced experimental clarity but often lack the technical sophistication required for biological realism. In this article, we present a versatile microfluidic platform capable of mimicking the spatial and temporal chemical environments found in vivo during neural tube development. Simultaneous opposing and/or orthogonal gradients of developmental morphogens can be maintained, resulting in neural tube patterning analogous to that observed in vivo. PMID:27246712

  18. Regulation of Patched by Sonic Hedgehog in the Developing Neural Tube

    NASA Astrophysics Data System (ADS)

    Marigo, Valeria; Tabin, Clifford J.

    1996-09-01

    Ventral cell fates in the central nervous system are induced by Sonic hedgehog, a homolog of hedgehog, a secreted Drosophila protein. In the central nervous system, Sonic hedgehog has been identified as the signal inducing floor plate, motor neurons, and dopaminergic neurons. Sonic hedgehog is also involved in the induction of ventral cell type in the developing somites. ptc is a key gene in the Drosophila hedgehog signaling pathway where it is involved in transducing the hedgehog signal and is also a transcriptional target of the signal. PTC, a vertebrate homolog of this Drosophila gene, is genetically downstream of Sonic hedgehog (Shh) in the limb bud. We analyze PTC expression during chicken neural and somite development and find it expressed in all regions of these tissues known to be responsive to Sonic hedgehog signal. As in the limb bud, ectopic expression of Sonic hedgehog leads to ectopic induction of PTC in the neural tube and paraxial mesoderm. This conservation of regulation allows us to use PTC as a marker for Sonic hedgehog response. The pattern of PTC expression suggests that Sonic hedgehog may play an inductive role in more dorsal regions of the neural tube than have been previously demonstrated. Examination of the pattern of PTC expression also suggests that PTC may act in a negative feedback loop to attenuate hedgehog signaling.

  19. Development-on-chip: in vitro neural tube patterning with a microfluidic device

    PubMed Central

    Soundararajan, Prabakaran; Chennampally, Phaneendra; Cox, Gregory A.

    2016-01-01

    Embryogenesis is a highly regulated process in which the precise spatial and temporal release of soluble cues directs differentiation of multipotent stem cells into discrete populations of specialized adult cell types. In the spinal cord, neural progenitor cells are directed to differentiate into adult neurons through the action of mediators released from nearby organizing centers, such as the floor plate and paraxial mesoderm. These signals combine to create spatiotemporal diffusional landscapes that precisely regulate the development of the central nervous system (CNS). Currently, in vivo and ex vivo studies of these signaling factors present some inherent ambiguity. In vitro methods are preferred for their enhanced experimental clarity but often lack the technical sophistication required for biological realism. In this article, we present a versatile microfluidic platform capable of mimicking the spatial and temporal chemical environments found in vivo during neural tube development. Simultaneous opposing and/or orthogonal gradients of developmental morphogens can be maintained, resulting in neural tube patterning analogous to that observed in vivo. PMID:27246712

  20. Lulu Regulates Shroom-Induced Apical Constriction during Neural Tube Closure

    PubMed Central

    Chu, Chih-Wen; Gerstenzang, Emma; Ossipova, Olga; Sokol, Sergei Y.

    2013-01-01

    Apical constriction is an essential cell behavior during neural tube closure, but its underlying mechanisms are not fully understood. Lulu, or EPB4.1l5, is a FERM domain protein that has been implicated in apical constriction and actomyosin contractility in mouse embryos and cultured cells. Interference with the function of Lulu in Xenopus embryos by a specific antisense morpholino oligonucleotide or a carboxy-terminal fragment of Lulu impaired apical constriction during neural plate hinge formation. This effect was likely due to lack of actomyosin contractility in superficial neuroectodermal cells. By contrast, overexpression of Lulu RNA in embryonic ectoderm cells triggered ectopic apico-basal elongation and apical constriction, accompanied by the apical recruitment of F-actin. Depletion of endogenous Lulu disrupted the localization and activity of Shroom3, a PDZ-containing actin-binding protein that has also been implicated in apical constriction. Furthermore, Lulu and Shroom3 RNAs cooperated in triggering ectopic apical constriction in embryonic ectoderm. Our findings reveal that Lulu is essential for Shroom3-dependent apical constriction during vertebrate neural tube closure. PMID:24282618

  1. Prediction of friction factor of pure water flowing inside vertical smooth and microfin tubes by using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Çebi, A.; Akdoğan, E.; Celen, A.; Dalkilic, A. S.

    2016-06-01

    An artificial neural network (ANN) model of friction factor in smooth and microfin tubes under heating, cooling and isothermal conditions was developed in this study. Data used in ANN was taken from a vertically positioned heat exchanger experimental setup. Multi-layered feed-forward neural network with backpropagation algorithm, radial basis function networks and hybrid PSO-neural network algorithm were applied to the database. Inputs were the ratio of cross sectional flow area to hydraulic diameter, experimental condition number depending on isothermal, heating, or cooling conditions and mass flow rate while the friction factor was the output of the constructed system. It was observed that such neural network based system could effectively predict the friction factor values of the flows regardless of their tube types. A dependency analysis to determine the strongest parameter that affected the network and database was also performed and tube geometry was found to be the strongest parameter of all as a result of analysis.

  2. Folate-related gene variants in Irish families affected by neural tube defects

    PubMed Central

    Fisk Green, Ridgely; Byrne, Julianne; Crider, Krista S.; Gallagher, Margaret; Koontz, Deborah; Berry, Robert J.

    2013-01-01

    Periconceptional folic acid use can often prevent neural tube defects (NTDs). Variants of genes involved in folate metabolism in mothers and children have been associated with occurrence of NTDs. We identified Irish families with individuals affected by neural tube defects. In these families, we observed that neural tube defects and birth defects overall occurred at a higher rate in the maternal lineage compared with the paternal lineage. The goal of this study was to look for evidence for genetic effects that could explain the discrepancy in the occurrence of these birth defects in the maternal vs. paternal lineage. We genotyped blood samples from 322 individuals from NTD-affected Irish families, identified through their membership in spina bifida associations. We looked for differences in distribution in maternal vs. paternal lineages of five genetic polymorphisms: the DHFR 19 bp deletion, MTHFD1 1958G>A, MTHFR 1298A>C, MTHFR 677C>T, and SLC19A1 80A>G. In addition to looking at genotypes individually, we determined the number of genotypes associated with decreased folate metabolism in each relative (“risk genotypes”) and compared the distribution of these genotypes in maternal vs. paternal relatives. Overall, maternal relatives had a higher number of genotypes associated with lower folate metabolism than paternal relatives (p = 0.017). We expected that relatives would share the same risk genotype as the individuals with NTDs and/or their mothers. However, we observed that maternal relatives had an over-abundance of any risk genotype, rather than one specific genotype. The observed genetic effects suggest an epigenetic mechanism in which decreased folate metabolism results in epigenetic alterations related to the increased rate of NTDs and other birth defects seen in the maternal lineage. Future studies on the etiology of NTDs and other birth defects could benefit from including multigenerational extended families, in order to explore potential epigenetic

  3. Fgf8-Related Secondary Organizers Exert Different Polarizing Planar Instructions along the Mouse Anterior Neural Tube

    PubMed Central

    Crespo-Enriquez, Ivan; Partanen, Juha; Martinez, Salvador; Echevarria, Diego

    2012-01-01

    Early brain patterning depends on proper arrangement of positional information. This information is given by gradients of secreted signaling molecules (morphogens) detected by individual cells within the responding tissue, leading to specific fate decisions. Here we report that the morphogen FGF8 exerts initially a differential signal activity along the E9.5 mouse neural tube. We demonstrate that this polarizing activity codes by RAS-regulated ERK1/2 signaling and depends on the topographical location of the secondary organizers: the isthmic organizer (IsO) and the anterior neural ridge (anr) but not on zona limitans intrathalamica (zli). Our results suggest that Sprouty2, a negative modulator of RAS/ERK pathway, is important for regulating Fgf8 morphogenetic signal activity by controlling Fgf8-induced signaling pathways and positional information during early brain development. PMID:22792203

  4. Neural network inversion of synthetic eddy current testing signals from flaws in steam generator tubes

    NASA Astrophysics Data System (ADS)

    Song, S. J.; Kim, C. H.; Shin, Y. K.; Lee, H. B.; Park, Y. W.; Yim, C. J.

    2001-04-01

    This paper reports our recent endeavor to develop automated, systematic inversion tools by the novel combination of neural networks and finite element modeling for eddy current flaw characterization in steam generator tubes. Specifically, this paper describes 1) development of the finite element models that can simulate synthetic ECT signals from axisymmetric flaws with arbitrary cross-sections, 2) construction of databases with abundant flaw signals, 3) implementation of effective feature extraction software and proposition of feature selection criteria, and finally 4) development of inversion tools by use of two neural networks for flaw classification and sizing. In addition, this paper also presents the performance of the proposed inversion tools for solving two sample problems: classification of flaws with non-symmetric cross-sections, and classification and sizing of flaws with tip variation.

  5. Research on the neural networks used for shaping tubes by the liquid extrusion process

    SciTech Connect

    Qi, L.H.; Li, H.J.; Hou, J.J.; Cui, P.L.

    2000-02-01

    Liquid extrusion, as a new kind of metal forming process for shaping tube and bar products directly from liquid metal, can reduce the intermediate steps and production costs and make the materials doubly strengthened. But it has not been widely used since the process parameters are now selected by experience, which can easily result in a high reject rate. In order to analyze the contributing factors of the process, the artificial neural network method was used in this paper. The network architecture was determined by adopting 125 sets of experimental data of the shaping tubes of AlCuSiMg alloy as samples and, by contrast, one or two hidden layers and the numbers of nodes and other network parameters. The knowledge base for the process parameters of liquid extrusion has been established. The values predicted by the knowledge base are very consistent with the practical ones. The result shows that the introduced method is feasible and effective.

  6. Signal/background classification in a cosmic ray space experiment by a modular neural system

    NASA Astrophysics Data System (ADS)

    Bellotti, Roberto; Castellano, Marcello; De Marzo, Carlo N.; Satalino, Giuseppe

    1995-04-01

    In the cosmic ray space experiments, the separation of the signal from background is a hard task. Due to the well-known critical conditions that characterize this class of experiments, some changes of the detector performances can be observed during the data taking. As a consequence, differences between the test and real data are found as systematic errors in the classification phase. In this paper, a modular classification system based on neural networks is proposed for the signal/background discrimination task in cosmic ray space experiments, without a priori knowledge of the discriminating feature distributions. The system is composed by two neural modules. The first one is a self organizing map (SOM) that both clusters the real data space in suitable classes of similarity and builds a prototype for each of them; a skilled inspection of the prototypes defines the signal and background. The second one, a multi layer perceptron (MLP) with a single hidden layer, adapts the classification model based on training/test data to the real experimental conditions. The MLP synaptic weights adaptive formation takes into account the labelled real data set as defined in the first system-phase. The modular neural system has been applied in the context of TRAMP-Si experiment, performed on the NASA Balloon-Borne Magnet Facility, for the positron/proton discrimination.

  7. [Neural tube defects and folic acid: a historical overview of a highly successful preventive intervention].

    PubMed

    Vásquez, Adriana Ordoñez; Suarez-Obando, Fernando

    2015-12-01

    This article gives a broad overview of part of the historical evolution of medical knowledge about neural tube defects (NTD) and the discovery of vitamin B9 or folic acid, as well as some relevant research events that, over the course of several centuries, defined the relationships between the understanding of central nervous system embryology, the discovery of the vitamin, the correlation between folic acid and cell proliferation and lastly the development of preventive measures for this type of defects. This narrative allows us to examine historically relevant concepts underlying clinical actions with a populational impact that prevent NTDs via folic acid consumption prior to conception. PMID:25650704

  8. Descriptive epidemiology of neural tube defects, Rochester, New York, 1918-1938.

    PubMed

    Biggar, R J; Mortimer, E A; Haughie, G E

    1976-07-01

    This study examines the secular distribution of births, sex, and age at death of 330 cases of anencephaly and spina bifida and 62 cases of "monstrosity" recorded on City of Rochester death certificates between 1918 and 1938. The results show that death certificates may be used as a source of data (with inherent biases) and that persons diagnosed as monstrosity had similar epidemiologic characteristics to those diagnosed as anencephalic during this period. In Rochester the rise in prevalence at birth of neural tube defects was similar to, and occurred at approximately the same years as, the rises reported in Boston and Providence. PMID:779463

  9. Neural tube malformations: complex segregation analysis and calculation of recurrence risks.

    PubMed Central

    Lalouel, J M; Morton, N E; Jackson, J

    1979-01-01

    Familial data on neural tube malformations in Great Britain were submitted to segregation analysis under the mixed model. Maternal and fetal factors cannot be discriminated in the absence of substantial bodies of data on spina bifida survivors who reproduce or on half-sibs. Early abortion studies would allow differential mortality in utero to be taken into account. After fitting the mixed and generalised single locus models, it is concluded that the multifactorial model can provisionally be used for calculation of recurrence risks. Pathogenic hypotheses implicating twinning seem to rest on little evidence. PMID:381662

  10. Giant occipital meningohydroencephalocele in an adult: Another historical case in neural tube defects.

    PubMed

    Coulibaly, O; Sogoba, Y; Kanikomo, D; Dama, M; Camara, M A; Diallo, O

    2016-08-01

    Meningohydroencephalocele is a herniation of meninges, cerebrospinal fluid, brain parenchyma and a part of the ventricular system through a bony defect in the skull. This bone defect may be congenital, spontaneous or traumatic in origin. The lesions are mostly congenital, discovered generally after birth or in very young infants. We report the first historical case of the entity in this location in a 29-year-old man and discuss the pathogenesis, surgical management and social considerations of this type of neural tube defect in our country. PMID:27389765

  11. Optimal Combination of Neural Temporal Envelope and Fine Structure Cues to Explain Speech Identification in Background Noise

    PubMed Central

    Moon, Il Joon; Won, Jong Ho; Ives, D. Timothy; Nie, Kaibao; Heinz, Michael G.; Lorenzi, Christian; Rubinstein, Jay T.

    2014-01-01

    The dichotomy between acoustic temporal envelope (ENV) and fine structure (TFS) cues has stimulated numerous studies over the past decade to understand the relative role of acoustic ENV and TFS in human speech perception. Such acoustic temporal speech cues produce distinct neural discharge patterns at the level of the auditory nerve, yet little is known about the central neural mechanisms underlying the dichotomy in speech perception between neural ENV and TFS cues. We explored the question of how the peripheral auditory system encodes neural ENV and TFS cues in steady or fluctuating background noise, and how the central auditory system combines these forms of neural information for speech identification. We sought to address this question by (1) measuring sentence identification in background noise for human subjects as a function of the degree of available acoustic TFS information and (2) examining the optimal combination of neural ENV and TFS cues to explain human speech perception performance using computational models of the peripheral auditory system and central neural observers. Speech-identification performance by human subjects decreased as the acoustic TFS information was degraded in the speech signals. The model predictions best matched human performance when a greater emphasis was placed on neural ENV coding rather than neural TFS. However, neural TFS cues were necessary to account for the full effect of background-noise modulations on human speech-identification performance. PMID:25186758

  12. MicroRNA GENE EXPRESSION SIGNATURES IN THE DEVELOPING NEURAL TUBE

    PubMed Central

    Mukhopadhyay, Partha; Brock, Guy; Appana, Savitri; Webb, Cynthia; Greene, Robert M.; Pisano, M. Michele

    2011-01-01

    BACKGROUND Neurulation requires precise, spatio-temporal expression of numerous genes and coordinated interaction of signal transduction and gene regulatory networks, disruption of which may contribute to the etiology of neural tube (NT) defects. MicroRNAs are key modulators of cell and tissue differentiation. In order to define potential roles of miRNAs in development of the murine NT, miRNA microarray analysis was conducted to establish expression profiles, and identify miRNA target genes and functional gene networks. METHODS miRNA expression profiles in murine embryonic NTs derived from gestational days 8.5, 9.0 and 9.5 were defined and compared utilizing miRXplore™ microarrays from Miltenyi Biotech GmbH. Gene expression changes were verified by TaqMan™ quantitative Real-Time PCR. clValid R package and the UPGMA (hierarchical) clustering method were utilized for cluster analysis of the microarray data. Functional associations among selected miRNAs were examined via Ingenuity Pathway Analysis. RESULTS miRXplore™ chips enabled examination of 609 murine miRNAs. Expression of approximately 12% of these was detected in murine embryonic NTs. Clustering analysis revealed several developmentally regulated expression clusters among these expressed genes. Target analysis of differentially expressed miRNAs enabled identification of numerous target genes associated with cellular processes essential for normal NT development. Utilization of Ingenuity Pathway Analysis revealed interactive biological networks which connected differentially expressed miRNAs with their target genes, and highlighted functional relationships. CONCLUSIONS The present study defined unique gene expression signatures of a range of miRNAs in the developing NT during the critical period of NT morphogenesis. Analysis of miRNA target genes and gene interaction pathways revealed that specific miRNAs may direct expression of numerous genes encoding proteins which have been shown to be indispensable

  13. Estimating the burden of neural tube defects in low– and middle–income countries

    PubMed Central

    Lo, Annie; Polšek, Dora; Sidhu, Simrita

    2014-01-01

    Background To provide an estimate for the burden of neural tube defects (NTD) in low– and middle–income countries (LMIC) and explore potential public health policies that may be implemented. Although effective interventions are available to prevent NTD, there is still considerable childhood morbidity and mortality present in LMIC. Methods A search of Medline, EMBASE, Global Health Library and PubMed identified 37 relevant studies that provided estimates of the burden of NTD in LMIC. Information on burden of total NTD and specific NTD types was separated according to the denominator into two groups: (i) estimates based on the number of live births only; and (ii) live births, stillbirths and terminations. The data was then extracted and analysed. Results The search retrieved NTD burden from 18 countries in 6 WHO regions. The overall burden calculated using the median from studies based on livebirths was 1.67/1000 (IQR = 0.98–3.49) for total NTD burden, 1.13/1000 (IQR = 0.75–1.73) for spina bifida, 0.25/1000 (IQR = 0.08–1.07) for anencephaly and 0.15/1000 (IQR = 0.08–0.23) for encephalocele. Corresponding estimates based on all pregnancies resulting in live births, still births and terminations were 2.55/1000 (IQR = 1.56–3.91) for total NTD burden, 1.04/1000 (IQR = 0.67–2.48) for spina bifida, 1.03/1000 (IQR = 0.67–1.60) for anencephaly and 0.21 (IQR = 0.16–0.28) for encephalocele. This translates into about 190 000neonates who are born each year with NTD in LMIC. Conclusion Limited available data on NTD in LMIC indicates the need for additional research that would improve the estimated burden of NTD and recommend suitable aid policies through maternal education on folic acid supplementation or food fortification. PMID:24976961

  14. Detection of Copy Number Variants Reveals Association of Cilia Genes with Neural Tube Defects

    PubMed Central

    Gao, Yonghui; Zhao, Huizhi; Sheng, Xiaoming; Zou, Jizhen; Lip, Va; Xie, Hua; Guo, Jin; Shao, Hong; Bao, Yihua; Shen, Jianliang; Niu, Bo; Gusella, James F.; Wu, Bai-Lin; Zhang, Ting

    2013-01-01

    Background Neural tube defects (NTDs) are one of the most common birth defects caused by a combination of genetic and environmental factors. Currently, little is known about the genetic basis of NTDs although up to 70% of human NTDs were reported to be attributed to genetic factors. Here we performed genome-wide copy number variants (CNVs) detection in a cohort of Chinese NTD patients in order to exam the potential role of CNVs in the pathogenesis of NTDs. Methods The genomic DNA from eighty-five NTD cases and seventy-five matched normal controls were subjected for whole genome CNVs analysis. Non-DGV (the Database of Genomic Variants) CNVs from each group were further analyzed for their associations with NTDs. Gene content in non-DGV CNVs as well as participating pathways were examined. Results Fifty-five and twenty-six non-DGV CNVs were detected in cases and controls respectively. Among them, forty and nineteen CNVs involve genes (genic CNV). Significantly more non-DGV CNVs and non-DGV genic CNVs were detected in NTD patients than in control (41.2% vs. 25.3%, p<0.05 and 37.6% vs. 20%, p<0.05). Non-DGV genic CNVs are associated with a 2.65-fold increased risk for NTDs (95% CI: 1.24–5.87). Interestingly, there are 41 cilia genes involved in non-DGV CNVs from NTD patients which is significantly enriched in cases compared with that in controls (24.7% vs. 9.3%, p<0.05), corresponding with a 3.19-fold increased risk for NTDs (95% CI: 1.27–8.01). Pathway analyses further suggested that two ciliogenesis pathways, tight junction and protein kinase A signaling, are top canonical pathways implicated in NTD-specific CNVs, and these two novel pathways interact with known NTD pathways. Conclusions Evidence from the genome-wide CNV study suggests that genic CNVs, particularly ciliogenic CNVs are associated with NTDs and two ciliogenesis pathways, tight junction and protein kinase A signaling, are potential pathways involved in NTD pathogenesis. PMID:23349908

  15. Describing the Prevalence of Neural Tube Defects Worldwide: A Systematic Literature Review

    PubMed Central

    Zaganjor, Ibrahim; Sekkarie, Ahlia; Tsang, Becky L.; Williams, Jennifer; Razzaghi, Hilda; Mulinare, Joseph; Sniezek, Joseph E.; Cannon, Michael J.; Rosenthal, Jorge

    2016-01-01

    Background Folate-sensitive neural tube defects (NTDs) are an important, preventable cause of morbidity and mortality worldwide. There is a need to describe the current global burden of NTDs and identify gaps in available NTD data. Methods and Findings We conducted a systematic review and searched multiple databases for NTD prevalence estimates and abstracted data from peer-reviewed literature, birth defects surveillance registries, and reports published between January 1990 and July 2014 that had greater than 5,000 births and were not solely based on mortality data. We classified countries according to World Health Organization (WHO) regions and World Bank income classifications. The initial search yielded 11,614 results; after systematic review we identified 160 full text manuscripts and reports that met the inclusion criteria. Data came from 75 countries. Coverage by WHO region varied in completeness (i.e., % of countries reporting) as follows: African (17%), Eastern Mediterranean (57%), European (49%), Americas (43%), South-East Asian (36%), and Western Pacific (33%). The reported NTD prevalence ranges and medians for each region were: African (5.2–75.4; 11.7 per 10,000 births), Eastern Mediterranean (2.1–124.1; 21.9 per 10,000 births), European (1.3–35.9; 9.0 per 10,000 births), Americas (3.3–27.9; 11.5 per 10,000 births), South-East Asian (1.9–66.2; 15.8 per 10,000 births), and Western Pacific (0.3–199.4; 6.9 per 10,000 births). The presence of a registry or surveillance system for NTDs increased with country income level: low income (0%), lower-middle income (25%), upper-middle income (70%), and high income (91%). Conclusions Many WHO member states (120/194) did not have any data on NTD prevalence. Where data are collected, prevalence estimates vary widely. These findings highlight the need for greater NTD surveillance efforts, especially in lower-income countries. NTDs are an important public health problem that can be prevented with folic acid

  16. Primary cilium and sonic hedgehog signaling during neural tube patterning: role of GPCRs and second messengers.

    PubMed

    Pal, Kasturi; Mukhopadhyay, Saikat

    2015-04-01

    The ventral neural tube in vertebrates is patterned by a gradient of sonic hedgehog (Shh) secreted from the notochord and floor plate. Forward genetic screens first pointed to the role of the primary cilium in ventral neural tube patterning. Further research has shown that most components of the Shh pathway localize to or shuttle through the primary cilium. In the absence of Shh, the bifunctional Gli transcription factors are proteolytically processed into repressor forms in a protein kinase A (PKA)- and cilium-dependent manner. Recent work suggests that the orphan G-protein-coupled receptor (GPCR) Gpr161 localizes to cilia, and functions as a negative regulator of Shh signaling by determining Gli processing via cAMP signaling. The primary cilium also functions as a signaling compartment for calcium in the Shh pathway. A better understanding of the role of the cilium as a signaling compartment, and the interplay of second messenger systems that regulate PKA activation and Gli amplification during signaling is critical for deciphering the role of Shh during development, neuronal differentiation, and tumorigenesis. PMID:24863049

  17. Folic acid supplementation of pregnant mice suppresses heat-induced neural tube defects in the offspring.

    PubMed

    Shin, J H; Shiota, K

    1999-11-01

    Neural tube defects (NTD) are a group of malformations that result from the failure of the neural tube to close early in embryonic development and among the most common congenital malformations in humans. It has been reported that a substantial proportion of NTD in humans can be prevented by folic acid (FA) supplementation prior to conception and during the first months of pregnancy, and myo-inositol (MI) was shown to reduce the incidence of NTD in curly tail mice which are not prevented by FA. Brief maternal hyperthermia (HT) early in pregnancy has been implicated in NTD both in humans and laboratory animals, and anterior NTD including exencephaly and anencephaly are induced frequently when pregnant mice are exposed to HT. We examined the effect of FA or MI supplementation of pregnant mice on the occurrence of heat-induced NTD in the offspring. When pregnant mice were treated with FA (3 mg/kg) daily from gestational day (GD) 0.5 through GD 9.5 and heated at GD 8.5, the prevalence of NTD in the fetuses (26.6%) was significantly lower than the corresponding figure in the HT alone group (38.6%; P < 0.05). However we failed to detect the preventive effect of MI (500 mg/kg). The results of this study suggest that prenatal FA supplementation decreases HT-induced NTD in mice and sufficient FA intake during early pregnancy may be recommended to avoid the birth of malformed children. PMID:10539786

  18. Mouse as a model for multifactorial inheritance of neural tube defects.

    PubMed

    Zohn, Irene E

    2012-06-01

    Neural tube defects (NTDs) such as spina bifida and anencephaly are some of the most common structural birth defects found in humans. These defects occur due to failures of neurulation, a process where the flat neural plate rolls into a tube. In spite of their prevalence, the causes of NTDs are poorly understood. The multifactorial threshold model best describes the pattern of inheritance of NTDs where multiple undefined gene variants interact with environmental factors to cause an NTD. To date, mouse models have implicated a multitude of genes as required for neurulation, providing a mechanistic understanding of the cellular and molecular pathways that control neurulation. However, the majority of these mouse models exhibit NTDs with a Mendelian pattern of inheritance. Still, many examples of multifactorial inheritance have been demonstrated in mouse models of NTDs. These include null and hypomorphic alleles of neurulation genes that interact in a complex fashion with other genetic mutations or environmental factors to cause NTDs. These models have implicated several genes and pathways for testing as candidates for the genetic basis of NTDs in humans, resulting in identification of putative pathogenic mutations in some patients. Mouse models also provide an experimental paradigm to gain a mechanistic understanding of the environmental factors that influence NTD occurrence, such as folic acid and maternal diabetes, and have led to the discovery of additional preventative nutritional supplements such as inositol. This review provides examples of how multifactorial inheritance of NTDs can be modeled in the mouse. PMID:22692891

  19. The prevalence of neural tube defects among ethnic groups in Brooklyn, New York.

    PubMed

    Feldman, J G; Stein, S C; Klein, R J; Kohl, S; Casey, G

    1982-01-01

    Records of almost 174,000 consecutive births at six Brooklyn hospitals during the years 1968-1976 were reviewed for congenital neural tube defects. Prevalence of anencephaly, myelomeningocele and occipital encephalocele combined was significantly higher in infants delivered to mothers born in Puerto Rico than in offspring of non-Puerto Rican whites or blacks. The association of prevalence rates with ethnicity remained significant after adjustment for several variables. However, when adjustment was made for private or service status the difference between Puerto Ricans and whites, although still appreciable, was no longer statistically significant. No significant differences in prevalence rates between whites and blacks were observed. Sex ratios of affected infants were close to unity in each ethnic group. Statistically significant associations were found between the prevalence of neural tube defects and parity, gravidity and economic status. The patterns of these associations varied among the ethnic groups. A declining trend in the prevalence of myelomeningocele was observed for all ethnic groups. PMID:7200098

  20. METHYLMERCURY INDUCED TOXICOGENOMIC RESPONSE IN C57 AND SWV MOUSE EMBRYOS UNDERGOING NEURAL TUBE CLOSURE

    PubMed Central

    Robinson, Joshua F.; Griffith, William C.; Yu, Xiaozhong; Hong, Sungwoo; Kim, Euvin; Faustman, Elaine M.

    2010-01-01

    Methylmercury (MeHg) is a developmental neurotoxicant and teratogen and is hypothesized to perturb a wide range of biological processes, like other metals including arsenic (As) and cadmium (Cd). Common inbred mouse strains including C57 (sensitive) and SWV (resistant) display differences in sensitivity to metals such as As and Cd when exposed during neurulation. In this study, we investigated the impact of MeHg on neurulation, assessing for potential differences in sensitivity and associated toxicogenomic response in C57 and SWV mouse embryos. Parallel with morphological assessments of neural tube closure, we evaluated quantitative differences in MeHg-induced alterations in expression between strains at the gene level and within gene-enriched biological processes. Specifically, we observed differing sensitivities to MeHg-induced impacts on neural tube closure between C57 and SWV embryos in a time-dependent manner. These observations correlated with greater impact on the expression of genes associated with development and environmental stress-related pathways in the C57 compared to the SWV. Additional developmental parameters (e.g. mortality, growth effects) evaluated showed mixed significant effects across the two strains and did not support observations of differential sensitivity to MeHg. This study provides potential insights into MeHg-induced mechanisms of developmental toxicity, alterations associated with increased MeHg sensitivity and common biological processes affected by metals in embryos undergoing neurulation. PMID:20493249

  1. Different Epigenetic Alterations Are Associated with Abnormal IGF2/Igf2 Upregulation in Neural Tube Defects

    PubMed Central

    Bai, Baoling; Zhang, Qin; Liu, Xiaozhen; Miao, Chunyue; Shangguan, Shaofang; Bao, Yihua; Guo, Jin; Wang, Li; Zhang, Ting; Li, Huili

    2014-01-01

    The methylation status of DNA methylation regions (DMRs) of the imprinted gene IGF2/Igf2 is associated with neural tube defects (NTDs), which are caused by a failure of the neural tube to fold and close and are the second-most common birth defect; however, the characterization of the expression level of IGF2/Igf2 in neural tissue from human fetuses affected with NTDs remains elusive. More importantly, whether abnormal chromatin structure also influences IGF2/Igf2 expression in NTDs is unclear. Here, we investigated the transcriptional activity of IGF2/Igf2 in normal and NTD spinal cord tissues, the methylation status of different DMRs, and the chromatin structure of the promoter. Our data indicated that in NTD samples from both human fetuses and retinoic acid (RA)-treated mouse fetuses, the expression level of IGF2/Igf2 was upregulated 6.41-fold and 1.84-fold, respectively, compared to controls. H19 DMR1, but not IGF2 DMR0, was hypermethylated in human NTD samples. In NTD mice, h19 DMR1 was stable, whereas the chromatin structure around the promoter of Igf2 might be loosened, which was displayed by higher H3K4 acetylation and lower H3K27 trimethylation. Therefore, the data revealed that IGF2/Igf2 expression can be ectopically up-regulated by dual epigenetic factors in NTDs. In detail, the upregulation of IGF2/Igf2 is likely controlled by hypermethylation of H19 DMR1 in human NTDs, however, in acute external RA-induced NTD mice it is potentially determined by more open chromatin structure. PMID:25423083

  2. Neural tube defects – disorders of neurulation and related embryonic processes

    PubMed Central

    Copp, Andrew J.; Greene, Nicholas D. E.

    2014-01-01

    Neural tube defects (NTDs) are severe congenital malformations affecting 1 in every 1000 pregnancies. ‘Open’ NTDs result from failure of primary neurulation as seen in anencephaly, myelomeningocele (open spina bifida) and craniorachischisis. Degeneration of the persistently open neural tube in utero leads to loss of neurological function below the lesion level. ‘Closed’ NTDs are skin-covered disorders of spinal cord structure, ranging from asymptomatic spina bifida occulta to severe spinal cord tethering, and usually traceable to disruption of secondary neurulation. ‘Herniation’ NTDs are those in which meninges, with or without brain or spinal cord tissue, become exteriorised through a pathological opening in the skull or vertebral column (e.g. encephalocele and meningocele). NTDs have multifactorial etiology, with genes and environmental factors interacting to determine individual risk of malformation. While over 200 mutant genes cause open NTDs in mice, much less is known about the genetic causation of human NTDs. Recent evidence has implicated genes of the planar cell polarity signalling pathway in a proportion of cases. The embryonic development of NTDs is complex, with diverse cellular and molecular mechanisms operating at different levels of the body axis. Molecular regulatory events include the BMP and Sonic hedgehog pathways which have been implicated in control of neural plate bending. Primary prevention of NTDs has been implemented clinically following the demonstration that folic acid, when taken as a peri-conceptional supplement, can prevent many cases. Not all NTDs respond to folic acid, however, and adjunct therapies are required for prevention of this folic acid-resistant category. PMID:24009034

  3. Background considerations in the analysis of PIXE spectra by Artificial Neural Systems.

    NASA Astrophysics Data System (ADS)

    Correa, R.; Morales, J. R.; Requena, I.; Miranda, J.; Barrera, V. A.

    2016-05-01

    In order to study the importance of background in PIXE spectra to determine elemental concentrations in atmospheric aerosols using artificial neural systems ANS, two independently trained ANS were constructed, one which considered as input the net number of counts in the peak, and another which included the background. In the training and validation phases thirty eight spectra of aerosols collected in Santiago, Chile, were used. In both cases the elemental concentration values were similar. This fact was due to the intrinsic characteristic of ANS operating with normalized values of the net and total number of counts under the peaks, something that was verified in the analysis of 172 spectra obtained from aerosols collected in Mexico city. Therefore, networks operating under the mode which include background can reduce time and cost when dealing with large number of samples.

  4. Melatonin prevents neural tube defects in the offspring of diabetic pregnancy.

    PubMed

    Liu, Shangming; Guo, Yuji; Yuan, Qiuhuan; Pan, Yan; Wang, Liyan; Liu, Qian; Wang, Fuwu; Wang, Jingjing; Hao, Aijun

    2015-11-01

    Melatonin, an endogenous neurohormone secreted by the pineal gland, has a variety of physiological functions and neuroprotective effects. However, its protective role on the neural tube defects (NTDs) was not very clear. The aim of this study was to investigate the effects of melatonin on the incidence of NTDs (including anencephaly, encephalocele, and spina bifida) of offspring from diabetic pregnant mice as well as its underlying mechanisms. Pregnant mice were given 10 mg/kg melatonin by daily i.p. injection from embryonic day (E) 0.5 until being killed on E11.5. Here, we showed that melatonin decreased the NTDs (especially exencephaly) rate of embryos exposed to maternal diabetes. Melatonin stimulated proliferation of neural stem cells (NSCs) under hyperglycemic condition through the extracellular regulated protein kinases (ERK) pathway. Furthermore, as a direct free radical scavenger, melatonin decreased apoptosis of NSCs exposed to hyperglycemia. In the light of these findings, it suggests that melatonin supplementation may play an important role in the prevention of neural malformations in diabetic pregnancy. PMID:26475080

  5. Restricted Pax3 Deletion within the Neural Tube Results in Congenital Hydrocephalus

    PubMed Central

    Zhou, Hong-Ming; Conway, Simon J.

    2016-01-01

    Congenital hydrocephalus is a common birth-defect whose developmental origins are poorly understood. Pax3-null mutants show defects in myogenesis, neural tube closure, neural crest morphogenesis, and heart development that, consequently, results in embryonic lethality. Here we demonstrate that conditional deletion of the mouse Pax3 transcription factor results in fully-penetrant congenital obstructive hydrocephalus. To identify the role of Pax3 during cranial development, we deleted Pax3 within the neuroepithelium (via Pax7−Cre), in the neural crest (via P0-Cre), and in both the neuroepithelium and the neural crest (via Wnt1-Cre). Only conditional mutants generated using Pax7−Cre or Wnt1-Cre developed early onset congenital hydrocephalus due to stenosis of the third ventricle, suggesting that loss of neuroepithelial Pax3 is sufficient to disturb third ventricle morphogenesis. Dilation of lateral ventricles occurs as early as E14.5, and lineage-mapping revealed that the neuroepithelial cells in the conditional mutants are present, but fail to undergo normal differentiation at the stenotic site. Concomitant with a narrowing of the mutant third ventricle, we detected ectopic apoptosis, reduced proliferation, and abnormal β-catenin localization. Furthermore, consistent with the overlapping expression pattern of Pax3 and Pax7 in early cranial neuroepithelium, we demonstrated a combinatorial role, as compound Pax3/Pax7 heterozygotes display partially-penetrant congenital hydrocephalus. These murine data provide an experimental paradigm underpinning clinical observations of the presence of PAX3 mutations in some hydrocephalic patients. PMID:26949601

  6. Induced neural stem cells from distinct genetic backgrounds exhibit different reprogramming status.

    PubMed

    Kim, Sung Min; Lim, Kyung Tae; Kwak, Tae Hwan; Lee, Seung Chan; Im, Jung Hyun; Hali, Sai; In Hwang, Seon; Kim, Dajeong; Hwang, Jeongho; Kim, Kee-Pyo; Chung, Hak-Jae; Kim, Jeong Beom; Ko, Kinarm; Chung, Hyung-Min; Lee, Hoon Taek; Schöler, Hans R; Han, Dong Wook

    2016-03-01

    Somatic cells could be directly converted into induced neural stem cells (iNSCs) by ectopic expression of defined transcription factors. However, the underlying mechanism of direct lineage transition into iNSCs is largely unknown. In this study, we examined the effect of genetic background on the direct conversion process into an iNSC state. The iNSCs from two different mouse strains exhibited the distinct efficiency of lineage conversion as well as clonal expansion. Furthermore, the expression levels of endogenous NSC markers, silencing of transgenes, and in vitro differentiation potential were also different between iNSC lines from different strains. Therefore, our data suggest that the genetic background of starting cells influences the conversion efficiency as well as reprogramming status of directly converted iNSCs. PMID:26930613

  7. A Neural Mechanism for Background Information-Gated Learning Based on Axonal-Dendritic Overlaps

    PubMed Central

    Mainetti, Matteo; Ascoli, Giorgio A.

    2015-01-01

    Experiencing certain events triggers the acquisition of new memories. Although necessary, however, actual experience is not sufficient for memory formation. One-trial learning is also gated by knowledge of appropriate background information to make sense of the experienced occurrence. Strong neurobiological evidence suggests that long-term memory storage involves formation of new synapses. On the short time scale, this form of structural plasticity requires that the axon of the pre-synaptic neuron be physically proximal to the dendrite of the post-synaptic neuron. We surmise that such “axonal-dendritic overlap” (ADO) constitutes the neural correlate of background information-gated (BIG) learning. The hypothesis is based on a fundamental neuroanatomical constraint: an axon must pass close to the dendrites that are near other neurons it contacts. The topographic organization of the mammalian cortex ensures that nearby neurons encode related information. Using neural network simulations, we demonstrate that ADO is a suitable mechanism for BIG learning. We model knowledge as associations between terms, concepts or indivisible units of thought via directed graphs. The simplest instantiation encodes each concept by single neurons. Results are then generalized to cell assemblies. The proposed mechanism results in learning real associations better than spurious co-occurrences, providing definitive cognitive advantages. PMID:25767887

  8. Methylenetetrahydrofolate reductase mutations, a genetic cause for familial recurrent neural tube defects

    PubMed Central

    Yaliwal, Laxmi V.; Desai, Rathnamala M.

    2012-01-01

    Methylenetetrahydrofolate reductase (MTHFR) gene mutations have been implicated as risk factors for neural tube defects (NTDs). The best-characterized MTHFR genetic mutation 677C→T is associated with a 2–4 fold increased risk of NTD if patient is homozygous for this mutation. This risk factor is modulated by folate levels in the body. A second mutation in the MTHFR gene is an A→C transition at position 1298. The 1298A→C mutation is also a risk factor for NTD, but with a smaller relative risk than 677C→T mutation. Under conditions of low folate intake or high folate requirements, such as pregnancy, this mutation could become of clinical importance. We present a case report with MTHFR genetic mutation, who presented with recurrent familial pregnancy losses due to anencephaly/NTDs. PMID:22754237

  9. Folic acid supplementation influences the distribution of neural tube defect subtypes: A registry-based study.

    PubMed

    Bergman, J E H; Otten, E; Verheij, J B G M; de Walle, H E K

    2016-01-01

    Periconceptional folic acid (FA) reduces neural tube defect (NTD) risk, but seems to have a varying effect per NTD subtype. We aimed to study the effect of FA supplementation on NTD subtype distribution using data from EUROCAT Northern Netherlands. We included all birth types with non-syndromal NTDs born in 1997-2012. By Fisher's exact test we analyzed possible differences in NTD subtype distribution between a correct FA supplementation group and incorrect FA supplementation group. We found proportionally fewer cervical/thoracic spina bifida cases and more lumbar/sacral spina bifida cases in the correct FA supplementation group, irrespective of the presence of the main NTD risk factors. The effect on NTD subtype distribution was only seen when FA supplementation was started before conception. We conclude that FA not only prevents the occurrence of a significant proportion of NTDs, but might also decrease the severity of NTDs, as long as supplementation is started before conception. PMID:26627544

  10. Folic Acid supplementation and pregnancy: more than just neural tube defect prevention.

    PubMed

    Greenberg, James A; Bell, Stacey J; Guan, Yong; Yu, Yan-Hong

    2011-01-01

    Folate (vitamin B(9)) is an essential nutrient that is required for DNA replication and as a substrate for a range of enzymatic reactions involved in amino acid synthesis and vitamin metabolism. Demands for folate increase during pregnancy because it is also required for growth and development of the fetus. Folate deficiency has been associated with abnormalities in both mothers (anemia, peripheral neuropathy) and fetuses (congenital abnormalities). This article reviews the metabolism of folic acid, the appropriate use of folic acid supplementation in pregnancy, and the potential benefits of folic acid, as well as the possible supplementation of l-methylfolate for the prevention of pregnancy-related complications other than neural tube defects. PMID:22102928

  11. Folate and neural tube defects: The role of supplements and food fortification.

    PubMed

    Ami, Noam; Bernstein, Mark; Boucher, François; Rieder, Michael; Parker, Louise

    2016-04-01

    Periconceptional folic acid significantly reduces the risk of neural tube defects. It is difficult to achieve optimal levels of folate by diet alone, even with fortification of flour, especially because flour consumption in Canada is slightly decreasing. Intermittent concerns have been raised concerning possible deleterious effects of folate supplementation, including the masking of symptoms of vitamin B12 deficiency and an association with cancer, especially colorectal cancer. Both concerns have been disproved. The Canadian Paediatric Society endorses the following steps to enhance folate intake in women of child-bearing age: encouraging the consumption of folate-rich foods such as leafy vegetables, increasing the level of folate food fortification, taking a supplement containing folate and B12, and providing free folate supplementation to disadvantaged women of child-bearing age. These recommendations are consistent with those of the Society of Obstetricians and Gynaecologists of Canada. PMID:27398055

  12. Inositol prevents folate-resistant neural tube defects in the mouse.

    PubMed

    Greene, N D; Copp, A J

    1997-01-01

    Clinical trials demonstrate that up to 70% of neural tube defects (NTDs) can be prevented by folic acid supplementation in early pregnancy, whereas the remaining NTDs are resistant to folate. Here, we show that a second vitamin, myo-inositol, is capable of significantly reducing the incidence of spinal NTDs in curly tail mice, a genetic model of folate-resistant NTDs. Inositol increases flux through the inositol/lipid cycle, stimulating protein kinase C activity and upregulating expression of retinoic acid receptor beta, specifically in the caudal portion of the embryonic hindgut. This reduces the delay in closure of the posterior neuropore, the embryonic defect that is known to lead directly to spina bifida in curly tail embryos. Our findings reveal a molecular pathway of NTD prevention and suggest the possible efficacy of combined treatment with folate and inositol in overcoming the majority of human NTDs. PMID:8986742

  13. A Robust Single Primate Neuroepithelial Cell Clonal Expansion System for Neural Tube Development and Disease Studies

    PubMed Central

    Zhu, Xiaoqing; Li, Bo; Ai, Zongyong; Xiang, Zheng; Zhang, Kunshang; Qiu, Xiaoyan; Chen, Yongchang; Li, Yuemin; Rizak, Joshua D.; Niu, Yuyu; Hu, Xintian; Sun, Yi Eve; Ji, Weizhi; Li, Tianqing

    2015-01-01

    Summary Developing a model of primate neural tube (NT) development is important to promote many NT disorder studies in model organisms. Here, we report a robust and stable system to allow for clonal expansion of single monkey neuroepithelial stem cells (NESCs) to develop into miniature NT-like structures. Single NESCs can produce functional neurons in vitro, survive, and extensively regenerate neuron axons in monkey brain. NT formation and NESC maintenance depend on high metabolism activity and Wnt signaling. NESCs are regionally restricted to a telencephalic fate. Moreover, single NESCs can turn into radial glial progenitors (RGPCs). The transition is accurately regulated by Wnt signaling through regulation of Notch signaling and adhesion molecules. Finally, using the “NESC-TO-NTs” system, we model the functions of folic acid (FA) on NT closure and demonstrate that FA can regulate multiple mechanisms to prevent NT defects. Our system is ideal for studying NT development and diseases. PMID:26584544

  14. A Robust Single Primate Neuroepithelial Cell Clonal Expansion System for Neural Tube Development and Disease Studies.

    PubMed

    Zhu, Xiaoqing; Li, Bo; Ai, Zongyong; Xiang, Zheng; Zhang, Kunshang; Qiu, Xiaoyan; Chen, Yongchang; Li, Yuemin; Rizak, Joshua D; Niu, Yuyu; Hu, Xintian; Sun, Yi Eve; Ji, Weizhi; Li, Tianqing

    2016-02-01

    Developing a model of primate neural tube (NT) development is important to promote many NT disorder studies in model organisms. Here, we report a robust and stable system to allow for clonal expansion of single monkey neuroepithelial stem cells (NESCs) to develop into miniature NT-like structures. Single NESCs can produce functional neurons in vitro, survive, and extensively regenerate neuron axons in monkey brain. NT formation and NESC maintenance depend on high metabolism activity and Wnt signaling. NESCs are regionally restricted to a telencephalic fate. Moreover, single NESCs can turn into radial glial progenitors (RGPCs). The transition is accurately regulated by Wnt signaling through regulation of Notch signaling and adhesion molecules. Finally, using the "NESC-TO-NTs" system, we model the functions of folic acid (FA) on NT closure and demonstrate that FA can regulate multiple mechanisms to prevent NT defects. Our system is ideal for studying NT development and diseases. PMID:26584544

  15. Gene Regulatory Logic for Reading the Sonic Hedgehog Signaling Gradient in the Vertebrate Neural Tube

    PubMed Central

    Balaskas, Nikolaos; Ribeiro, Ana; Panovska, Jasmina; Dessaud, Eric; Sasai, Noriaki; Page, Karen M.; Briscoe, James; Ribes, Vanessa

    2012-01-01

    Summary Secreted signals, known as morphogens, provide the positional information that organizes gene expression and cellular differentiation in many developing tissues. In the vertebrate neural tube, Sonic Hedgehog (Shh) acts as a morphogen to control the pattern of neuronal subtype specification. Using an in vivo reporter of Shh signaling, mouse genetics, and systems modeling, we show that a spatially and temporally changing gradient of Shh signaling is interpreted by the regulatory logic of a downstream transcriptional network. The design of the network, which links three transcription factors to Shh signaling, is responsible for differential spatial and temporal gene expression. In addition, the network renders cells insensitive to fluctuations in signaling and confers hysteresis—memory of the signal. Our findings reveal that morphogen interpretation is an emergent property of the architecture of a transcriptional network that provides robustness and reliability to tissue patterning. PMID:22265416

  16. Neural tube defects, maternal cohorts, and age: a pointer to aetiology.

    PubMed Central

    Bound, J P; Francis, B J; Harvey, P W

    1991-01-01

    The effects of maternal year of birth and age on the declining prevalence of neural tube defects after 1972-3 were examined using 403 cases ascertained in a prospective study in the Fylde of Lancashire during 1957-89. Matched case-control data were analysed using conditional logistic regression analysis. The risk of an anencephalic baby was significantly greater for older mothers, but changes in the maternal age distribution in the population did not appear to be relevant to the recent decline in prevalence. Antenatal diagnosis and termination of pregnancy was the major cause. Mothers born before 1950 were at significantly greater risk of producing a baby with spina bifida or cranium bifidum. We suggest that abandonment of mercury as a therapeutic agent for infants in the early 1950s is a possible factor in the current decline of these malformations. PMID:1953007

  17. Will Increasing Folic Acid in Fortified Grain Products Further Reduce Neural Tube Defects without Causing Harm?: Consideration of the Evidence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Will Increasing Folic Acid in Fortified Grain Products Further Reduce Neural Tube Defects without Causing Harm?: Consideration of the Evidence. In the January issue of this journal, Johnston (1) includes our group’s recent analysis of data from the 1999-2002 National Health and Nutrition Examination...

  18. Neural Tube Defect Induction by Fumonisin B1 in LM/Bc Mice Fed Folate Deficient or Folate Replete Diets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fumonisin B1 (FB1) is a mycotoxin produced by Fusarium verticillioides and F. proliferatum. FB1 is found in corn-based foods and evidence suggests that it is a risk factor for neural tube defects (NTD). The mechanism(s) underlying NTD induction by FB1 in the sensitive LM/Bc mouse model is not well...

  19. Increased sphingoid base-1-phosphates and failure of neural tube closure after exposure to fumonisin or FTY720

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fumonisin B1 (FB1) is a mycotoxin produced by a common fungal contaminant of corn. Ingestion of FB1-contaminated food is associated with increased risk for neural tube defects (NTDs). FB1 induces NTDs in inbred LM/Bc mice. FB1 inhibits ceramide synthase in de novo sphingolipid biosynthesis, resultin...

  20. Hydrolyzed fumonisin B1 (HFB1) did not induce neural tube defects in LM/Bc mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fumonisins are mycotoxins produced by Fusarium verticillioides. They are found in corn-based foods and are toxic and carcinogenic to rodents. There is evidence suggesting that consumption of corn tortillas containing fumonisins contributed to an enigmatic cluster of neural tube defects (NTDs) in s...

  1. Fumonisin as a possible contributing factor to neural tube defects in populations consuming large amounts of maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fumonisin B1 (FB) is an inhibitor of sphingolipid (SL) biosynthesis and folate transport and can induce neural tube defects (NTD) in mice. NTD incidence is high in countries where maize is a dietary staple and FB exposure is likely. In Guatemala the incidence of FB in maize has been well documented ...

  2. Use of Family History Information for Neural Tube Defect Prevention: Integration into State-Based Recurrence Prevention Programs

    ERIC Educational Resources Information Center

    Green, Ridgely Fisk; Ehrhardt, Joan; Ruttenber, Margaret F.; Olney, Richard S.

    2011-01-01

    A family history of neural tube defects (NTDs) can increase the risk of a pregnancy affected by an NTD. Periconceptional folic acid use decreases this risk. Purpose: Our objective was to determine whether second-degree relatives of NTD-affected children showed differences in folic acid use compared with the general population and to provide them…

  3. Not all cases of neural-tube defect can be prevented by increasing the intake of folic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to evaluate the beneficial effects of different levels of folic acid administration on the prevalence of neural tube defects, with a concurrent assessment of other potential benefits or adverse effects. The evaluation was based on a systematic review of the published ...

  4. Inositol for the prevention of neural tube defects: a pilot randomised controlled trial.

    PubMed

    Greene, Nicholas D E; Leung, Kit-Yi; Gay, Victoria; Burren, Katie; Mills, Kevin; Chitty, Lyn S; Copp, Andrew J

    2016-03-01

    Although peri-conceptional folic acid (FA) supplementation can prevent a proportion of neural tube defects (NTD), there is increasing evidence that many NTD are FA non-responsive. The vitamin-like molecule inositol may offer a novel approach to preventing FA-non-responsive NTD. Inositol prevented NTD in a genetic mouse model, and was well tolerated by women in a small study of NTD recurrence. In the present study, we report the Prevention of Neural Tube Defects by Inositol (PONTI) pilot study designed to gain further experience of inositol usage in human pregnancy as a preliminary trial to a future large-scale controlled trial to evaluate efficacy of inositol in NTD prevention. Study subjects were UK women with a previous NTD pregnancy who planned to become pregnant again. Of 117 women who made contact, ninety-nine proved eligible and forty-seven agreed to be randomised (double-blind) to peri-conceptional supplementation with inositol plus FA or placebo plus FA. In total, thirty-three randomised pregnancies produced one NTD recurrence in the placebo plus FA group (n 19) and no recurrences in the inositol plus FA group (n 14). Of fifty-two women who declined randomisation, the peri-conceptional supplementation regimen and outcomes of twenty-two further pregnancies were documented. Two NTD recurred, both in women who took only FA in their next pregnancy. No adverse pregnancy events were associated with inositol supplementation. The findings of the PONTI pilot study encourage a large-scale controlled trial of inositol for NTD prevention, but indicate the need for a careful study design in view of the unwillingness of many high-risk women to be randomised. PMID:26847388

  5. Shroom3 functions downstream of planar cell polarity to regulate myosin II distribution and cellular organization during neural tube closure

    PubMed Central

    McGreevy, Erica M.; Vijayraghavan, Deepthi; Davidson, Lance A.; Hildebrand, Jeffrey D.

    2015-01-01

    ABSTRACT Neural tube closure is a critical developmental event that relies on actomyosin contractility to facilitate specific processes such as apical constriction, tissue bending, and directional cell rearrangements. These complicated processes require the coordinated activities of Rho-Kinase (Rock), to regulate cytoskeletal dynamics and actomyosin contractility, and the Planar Cell Polarity (PCP) pathway, to direct the polarized cellular behaviors that drive convergent extension (CE) movements. Here we investigate the role of Shroom3 as a direct linker between PCP and actomyosin contractility during mouse neural tube morphogenesis. In embryos, simultaneous depletion of Shroom3 and the PCP components Vangl2 or Wnt5a results in an increased liability to NTDs and CE failure. We further show that these pathways intersect at Dishevelled, as Shroom3 and Dishevelled 2 co-distribute and form a physical complex in cells. We observed that multiple components of the Shroom3 pathway are planar polarized along mediolateral cell junctions in the neural plate of E8.5 embryos in a Shroom3 and PCP-dependent manner. Finally, we demonstrate that Shroom3 mutant embryos exhibit defects in planar cell arrangement during neural tube closure, suggesting a role for Shroom3 activity in CE. These findings support a model in which the Shroom3 and PCP pathways interact to control CE and polarized bending of the neural plate and provide a clear illustration of the complex genetic basis of NTDs. PMID:25596276

  6. Prediction of Mechanical Properties of 25CrMo48V Seamless Tube Using Neural Network Model

    NASA Astrophysics Data System (ADS)

    Sun, Laibo; Zhang, Chuanyou; Wang, Qingfeng; Wang, Mingzhi; Yan, Zesheng

    In this investigation, a neural network model was established to predict mechanical properties of 25CrMo48V seamless tubes. The sensitivity analysis was also performed to estimate the relative significance of each chemical composition in mechanical behavior of steel tubes. The results of this investigation show that there is a good agreement between experimental and predicted values indicating desirable validity of the model. Among those alloying elements, the elements of carbon, silicon and chromium tended to play a more important role in controlling both the yielding strength and the Charpy-V-Notch transverse impact toughness. In comparison, the impurities such as O, N, S and P have a relatively weak impact. More detailed dependences of mechanical properties on each chemical composition in isolation can be revealed using the established model. The well-trained neural network has a great potential in designing tough and ultrahigh-strength seamless tubes and modeling the on-line production parameters.

  7. Neural tube defects in Costa Rica, 1987-2012: origins and development of birth defect surveillance and folic acid fortification.

    PubMed

    Barboza-Argüello, María de la Paz; Umaña-Solís, Lila M; Azofeifa, Alejandro; Valencia, Diana; Flores, Alina L; Rodríguez-Aguilar, Sara; Alfaro-Calvo, Thelma; Mulinare, Joseph

    2015-03-01

    Our aim was to provide a descriptive overview of how the birth defects surveillance and folic acid fortification programs were implemented in Costa Rica-through the establishment of the Registry Center for Congenital Anomalies (Centro de Registro de Enfermedades Congénitas-CREC), and fortification legislation mandates. We estimated the overall prevalence of neural tube defects (i.e., spina bifida, anencephaly and encephalocele) before and after fortification captured by CREC. Prevalence was calculated by dividing the total number of infants born with neural tube defects by the total number of live births in the country (1987-2012).A total of 1,170 newborns with neural tube defects were identified from 1987 to 2012 (1992-1995 data excluded); 628 were identified during the baseline pre-fortification period (1987-1991; 1996-1998); 191 during the fortification period (1999-2002); and 351 during the post-fortification time period (2003-2012). The overall prevalence of neural tube defects decreased from 9.8 per 10,000 live-births (95 % CI 9.1-10.5) for the pre-fortification period to 4.8 per 10,000 live births (95 % CI 4.3-5.3) for the post-fortification period. Results indicate a statistically significant (P < 0.05) decrease of 51 % in the prevalence of neural tube defects from the pre-fortification period to the post-fortification period. Folic acid fortification via several basic food sources has shown to be a successful public health intervention for Costa Rica. Costa Rica's experience can serve as an example for other countries seeking to develop and strengthen both their birth defects surveillance and fortification programs. PMID:24952876

  8. Using artificial neural networks to model extrusion processes for the manufacturing of polymeric micro-tubes

    NASA Astrophysics Data System (ADS)

    Mekras, N.; Artemakis, I.

    2012-09-01

    In this paper a methodology and an application example are presented aiming to show how Artificial Neural Networks (ANNs) can be used to model manufacturing processes when mathematical models are missing or are not applicable e.g. due to the micro- & nano-scaling, due to non-conventional processes, etc. Besides the ANNs methodology, the results of a Software System developed will be presented, which was used to create ANNs models for micro & nano manufacturing processes. More specifically results of a specific application example will be presented, concerning the modeling of extrusion processes for polymeric micro-tubes. ANNs models are capable for modeling manufacturing processes as far as adequate experimental and/or historical data of processes' inputs & outputs are available for their training. The POLYTUBES ANNs models have been trained and tested with experimental data records of process' inputs and outputs concerning a micro-extrusion process of polymeric micro-tubes for several materials such as: COC, PC, PET, PETG, PP and PVDF. The main ANN model of the extrusion application example has 3 inputs and 9 outputs. The inputs are: tube's inner & outer diameters, and the material density. The model outputs are 9 process parameters, which correspond to the specific inputs e.g. process temperature, die inner & outer diameters, extrusion pressure, draw speed etc. The training of the ANN model was completed, when the errors for the model's outputs, which expressed the difference between the training target values and the ANNs outputs, were minimized to acceptable levels. After the training, the micro-extrusion ANN is capable to simulate the process and can be used to calculate model's outputs, which are the process parameters for any new set of inputs. By this way a satisfactory functional approximation of the whole process is achieved. This research work has been supported by the EU FP7 NMP project POLYTUBES.

  9. A Unique Missense Allele of BAF155, a Core BAF Chromatin Remodeling Complex Protein, Causes Neural Tube Closure Defects in Mice

    PubMed Central

    Harmacek, Laura; Watkins-Chow, Dawn E.; Chen, Jianfu; Jones, Kenneth L.; Pavan, William J.; Salbaum, J. Michael; Niswander, Lee

    2015-01-01

    Failure of embryonic neural tube closure results in the second most common class of birth defects known as neural tube defects (NTDs). While NTDs are likely the result of complex multigenic dysfunction, it is not known whether polymorphisms in epigenetic regulators may be risk factors for NTDs. Here we characterized Baf155msp3, a unique ENU-induced allele in mice. Homozygous Baf155mps3 embryos exhibit highly penetrant exencephaly, allowing us to investigate the roles of an assembled, but malfunctional BAF chromatin remodeling complex in vivo at the time of neural tube closure. Evidence of defects in proliferation and apoptosis were found within the neural tube. RNA-Seq analysis revealed that surprisingly few genes showed altered expression in Baf155 mutant neural tissue, given the broad epigenetic role of the BAF complex, but included genes involved in neural development and cell survival. Moreover, gene expression changes between individual mutants were variable even though the NTD was consistently observed. This suggests that inconsistent gene regulation contributes to failed neural tube closure. These results shed light on the role of the BAF complex in the process of neural tube closure and highlight the importance of studying missense alleles to understand epigenetic regulation during critical phases of development. PMID:24170322

  10. Transcriptome Profiling of Genes Involved in Neural Tube Closure During Human Embryonic Development Using Long Serial Analysis of Gene Expression (Long-SAGE)

    PubMed Central

    Krupp, D. R.; Xu, P-T.; Thomas, S.; Dellinger, A.; Etchevers, H. C.; Vekemans, M.; Gilbert, J. R.; Speer, M.C.; Ashley-Koch, A. E.; Gregory, S. G.

    2012-01-01

    Background Neural tube defects (NTDs) are common human birth defects with a complex etiology. To develop a comprehensive knowledge of the genes expressed during normal neurulation, we established transcriptomes from human neural tube fragments during and after neurulation using long Serial Analysis of Gene Expression (long-SAGE). Methods Rostral and caudal neural tubes were dissected from normal human embryos aged between 26 and 32 days of gestation. Tissues from the same region and Carnegie stage were pooled (n>=4) and total RNA extracted to construct four long-SAGE libraries. Tags were mapped using the UniGene Homo sapiens 17 bp tag-to-gene best mapping set. Differentially expressed genes were identified by chi-square or Fisher’s exact test and validation was performed for a subset of those transcripts using in situ hybridization. In silico analyses were performed with BinGO and EXPANDER. Results We observed most genes to be similarly regulated in rostral and caudal regions, but expression profiles differed during and after closure. In silico analysis found similar enrichments in both regions for biological process terms, transcription factor binding and miRNA target motifs. Twelve genes potentially expressing alternate isoforms by region or developmental stage, and the miRNAs miR-339-5p, miR-141/200a, miR-23ab, and miR-129/129-5p, are among several potential candidates identified here for future research. Conclusions Time appears to influence gene expression in the developing central nervous system more than location. These data provide a novel complement to traditional strategies of identifying genes associated with human NTDs, and offer unique insight into the genes associated with normal human neurulation. PMID:22806986

  11. Geminin loss causes neural tube defects through disrupted progenitor specification and neuronal differentiation

    PubMed Central

    ES, Patterson; LE, Waller; KL, Kroll

    2014-01-01

    Geminin is a nucleoprotein that can directly bind chromatin regulatory complexes to modulate gene expression during development. Geminin knockout mouse embryos are preimplantation lethal by the 32-cell stage, precluding in vivo study of Geminin's role in neural development. Therefore, here we used a conditional Geminin allele in combination with several Cre-driver lines to define an essential role for Geminin during mammalian neural tube (NT) formation and patterning. Geminin was required in the NT within a critical developmental time window (embryonic day 8.5–10.5), when NT patterning and closure occurs. Geminin excision at these stages resulted in strongly diminished expression of genes that mark and promote dorsal NT identities and decreased differentiation of ventral motor neurons, resulting in completely penetrant NT defects, while excision after embryonic day 10.5 did not result in NT defects. When Geminin was deleted specifically in the spinal NT, both NT defects and axial skeleton defects were observed, but neither defect occurred when Geminin was excised in paraxial mesenchyme, indicating a tissue autonomous requirement for Geminin in developing neuroectoderm. Despite a potential role for Geminin in cell cycle control, we found no evidence of proliferation defects or altered apoptosis. Comparisons of gene expression in the NT of Geminin mutant versus wild-type siblings at embryonic day 10.5 revealed decreased expression of key regulators of neurogenesis, including neurogenic bHLH transcription factors and dorsal interneuron progenitor markers. Together, these data demonstrate a requirement for Geminin for NT patterning and neuronal differentiation during mammalian neurulation in vivo. PMID:24995796

  12. LRP6 exerts non-canonical effects on Wnt signaling during neural tube closure.

    PubMed

    Gray, Jason D; Kholmanskikh, Stanislav; Castaldo, Bozena S; Hansler, Alex; Chung, Heekyung; Klotz, Brian; Singh, Shawn; Brown, Anthony M C; Ross, M Elizabeth

    2013-11-01

    Low-density lipoprotein receptor related protein 6 (Lrp6) mutational effects on neurulation were examined using gain (Crooked tail, Lrp6(Cd)) and loss (Lrp6(-)) of function mouse lines. Two features often associated with canonical Wnt signaling, dorsal-ventral patterning and proliferation, were no different from wild-type (WT) in the Lrp6(Cd/Cd) neural tube. Lrp6(-/-) embryos showed reduced proliferation and subtle patterning changes in the neural folds. Cell polarity defects in both Lrp6(Cd/Cd) and Lrp6(-/-) cranial folds were indicated by cell shape, centrosome displacement and failure of F-actin and GTP-RhoA accumulation at the apical surface. Mouse embryonic fibroblasts (MEFs) derived from Lrp6(Cd/Cd) or Lrp6(-/-) embryos exhibited elevated and decreased RhoA basal activity levels, respectively. While ligand-independent activation of canonical Wnt signaling, bypassing Lrp-Frizzled receptors, did not activate RhoA, non-canonical Wnt5a stimulation of RhoA activity was impaired in Lrp6(-/-) MEFs. RhoA inhibition exacerbated NTDs in cultured Lrp6 knockout embryos compared with WT littermates. In contrast, a ROCK inhibitor rescued Lrp6(Cd/Cd) embryos from NTDs. Lrp6 co-immunoprecipitated with Disheveled-associated activator of morphogenesis 1 (DAAM1), a formin promoting GEF activity in Wnt signaling. Biochemical and cell biological data revealed intracellular accumulation of Lrp6(Cd) protein where interaction with DAAM1 could account for observed elevated RhoA activity. Conversely, null mutation that eliminates Lrp6 interaction with DAAM1 led to lower basal RhoA activity in Lrp6(-/-) embryos. These results indicate that Lrp6 mediates not only canonical Wnt signaling, but can also modulate non-canonical pathways involving RhoA-dependent mechanisms to impact neurulation, possibly through intracellular complexes with DAAM1. PMID:23773994

  13. Mouse Fkbp8 activity is required to inhibit cell death and establish dorso-ventral patterning in the posterior neural tube.

    PubMed

    Wong, Rebecca Lee Yean; Wlodarczyk, Bogdan J; Min, Kyung Soo; Scott, Melissa L; Kartiko, Susan; Yu, Wei; Merriweather, Michelle Y; Vogel, Peter; Zambrowicz, Brian P; Finnell, Richard H

    2008-02-15

    Neural tube defects (NTDs) are birth defects that can be disabling or lethal and are second in their prevalence after cardiac defects among major human congenital malformations. Spina bifida is a NTD where the spinal cord is dysplastic, and the overlying spinal column is absent. At present, the molecular mechanisms underlying the spinal bifida development are largely unknown. In this study, we present a Fkbp8 mouse mutant that has an isolated and completely penetrant spina bifida, which is folate- and inositol-resistant. Fkbp8 mutants are not embryo lethal, but they display striking features of human spina bifida, including a dysplastic spinal cord, open neural canal and disability. The loss of Fkbp8 leads to increased apoptosis in the posterior neural tube, demonstrating that in vivo FKBP8 inhibits cell death. Gene expression analysis of Fkbp8 mutants revealed a perturbation of expression of neural tube patterning genes, suggesting that endogenous FKBP8 activity establishes dorso-ventral patterning of the neural tube. These studies demonstrate that Fkbp8 is not important for embryo survival, but is essential for spinal neural tube patterning, and to block apoptosis, in the developing neural tube. The mutant Fkbp8 allele is a new experimental model which will be useful in dissecting the pathogenesis of spinal NTDs, and enhance our understanding of the etiology of human NTDs. PMID:18003640

  14. Folate Deficiency and Folic Acid Supplementation: The Prevention of Neural-Tube Defects and Congenital Heart Defects

    PubMed Central

    Czeizel, Andrew E.; Dudás, Istvan; Vereczkey, Attila; Bánhidy, Ferenc

    2013-01-01

    Diet, particularly vitamin deficiency, is associated with the risk of birth defects. The aim of this review paper is to show the characteristics of common and severe neural-tube defects together with congenital heart defects (CHD) as vitamin deficiencies play a role in their origin. The findings of the Hungarian intervention (randomized double-blind and cohort controlled) trials indicated that periconceptional folic acid (FA)-containing multivitamin supplementation prevented the major proportion (about 90%) of neural-tube defects (NTD) as well as a certain proportion (about 40%) of congenital heart defects. Finally the benefits and drawbacks of three main practical applications of folic acid/multivitamin treatment such as (i) dietary intake; (ii) periconceptional supplementation; and (iii) flour fortification are discussed. The conclusion arrived at is indeed confirmation of Benjamin Franklin’s statement: “An ounce of prevention is better than a pound of care”. PMID:24284617

  15. [Prevalence of neural tube defects and estimation of cases averted in the post-fortification period in Argentina].

    PubMed

    Bidondo, María P; Liascovich, Rosa; Barbero, Pablo; Groisman, Boris

    2015-12-01

    Periconceptional intake of folic acid has demonstrated to be effective to reduce the frequency of neural tube defects, and food fortification has been one of the strategies implemented to increase it. An update is herein presented on the reduced prevalence of neural tube defect cases in the post-fortification period in Argentina and an estimation of cases averted in the 2005-2013 period as a result of this intervention. When comparing the prevalence observed in the post-fortification period to that reported in the pre-fortification period, anencephaly and encephalocele decreased by 66%, and spina bifida, by 47%, which were significant reductions. The estimated number of cases averted was higher for anencephaly, followed by spina bifida; encephalocele showed the lowest number of cases averted given that the prevalence of this defect was smaller. The decrease observed in the prevalence supports findings from previous studies on the impact of fortification. PMID:26593794

  16. Levels of Polycyclic Aromatic Hydrocarbons in Maternal Serum and Risk of Neural Tube Defects in Offspring

    PubMed Central

    2015-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants, and have been reported to be a risk factor for human neural tube defects (NTDs). We investigated the relationship between PAH concentrations in maternal serum and NTD risk in offspring using a case-control study design, and explored the link between PAH concentrations to household energy usage characteristics and life styles. One hundred and seventeen women who had NTD-affected pregnancies (cases) and 121 women who delivered healthy infants (controls) were recruited in Northern China. Maternal blood samples were collected at pregnancy termination or at delivery. Twenty-seven PAHs were measured by gas chromatography–mass spectrometry. The concentrations of 13 individual PAHs detected were significantly higher in the cases than in the controls. Clear dose–response relationships between concentrations of most individual PAHs and the risk of total NTDs or subtypes were observed, even when potential covariates were adjusted for. High-molecular-weight PAHs (H-PAHs) showed higher risk than low-molecular-weight PAHs (L-PAHs). No associations between PAH concentrations and indoor life styles and energy usage characteristics were observed. It was concluded that maternal exposure to PAHs was associated with an increased risk of NTDs, and H-PAHs overall posed a higher risk for NTDs than L-PAHs. PMID:25488567

  17. Prevention of neural tube defects in the UK: a missed opportunity

    PubMed Central

    Morris, JK; Rankin, J; Draper, ES; Kurinczuk, JJ; Springett, A; Tucker, D; Wellesley, D; Wreyford, B; Wald, NJ

    2016-01-01

    Objective In 1991, the Medical Research Council (MRC) Vitamin Study demonstrated that folic acid taken before pregnancy and in early pregnancy reduced the risk of a neural tube defect (NTD). We aimed to estimate the number of NTD pregnancies that would have been prevented if flour had been fortified with folic acid in the UK from 1998 as it had been in the USA. Design Estimates of NTD prevalence, the preventive effect of folic acid and the proportion of women taking folic acid supplements before pregnancy were used to predict the number of NTD pregnancies that would have been prevented if folic acid fortification had been implemented. Setting Eight congenital anomaly registers in England and Wales. Main outcome measures The prevalence of pregnancies with an NTD in the UK and the number of these pregnancies that would have been prevented if folic acid fortification had been implemented. Results From 1991 to 2012, the prevalence of NTD pregnancies was 1.28 (95% CI 1.24 to 1.31) per 1000 total births (19% live births, 81% terminations and 0.5% stillbirths and fetal deaths ≥20 weeks’ gestation). If the USA levels of folic acid fortification from 1998 onwards had been adopted in the UK, an estimated 2014 fewer NTD pregnancies would have occurred. Conclusions Failure to implement folic acid fortification in the UK has caused, and continues to cause, avoidable terminations of pregnancy, stillbirths, neonatal deaths and permanent serious disability in surviving children. PMID:26681697

  18. Orally administered melatonin prevents lipopolysaccharide-induced neural tube defects in mice.

    PubMed

    Fu, Lin; Yu, Zhen; Chen, Yuan-Hua; Xia, Mi-Zhen; Wang, Hua; Zhang, Cheng; Tao, Fang-Biao; Xu, De-Xiang

    2014-01-01

    Lipopolysaccharide (LPS) has been associated with adverse pregnant outcomes, including fetal demise, intra-uterine growth restriction (IUGR), neural tube defects (NTDs) and preterm delivery in rodent animals. Previous studies demonstrated that melatonin protected against LPS-induced fetal demise, IUGR and preterm delivery. The aim of the present study was to investigate the effects of melatonin on LPS-induced NTDs. All pregnant mice except controls were intraperitoneally injected with LPS (25 µg/kg) daily from gestational day (GD)8 to GD12. Some pregnant mice were orally administered with melatonin (MT, 50 mg/kg) before each LPS injection. A five-day LPS injection resulted in 27.5% of fetuses with anencephaly, exencephaly or encephalomeningocele. Additional experiment showed that maternal LPS exposure significantly down-regulated placental proton-coupled folate transporter (pcft) and disturbed folate transport from maternal circulation through the placentas into the fetus. Interestingly, melatonin significantly attenuated LPS-induced down-regulation of placental pcft. Moreover, melatonin markedly improved the transport of folate from maternal circulation through the placentas into the fetus. Correspondingly, orally administered melatonin reduced the incidence of LPS-induced anencephaly, exencephaly or encephalomeningocele. Taken together, these results suggest that orally administered melatonin prevents LPS-induced NTDs through alleviating LPS-induced disturbance of folate transport from maternal circulation through the placenta into the fetus. PMID:25420102

  19. Neural tube opening and abnormal extraembryonic membrane development in SEC23A deficient mice

    PubMed Central

    Zhu, Min; Tao, Jiayi; Vasievich, Matthew P.; Wei, Wei; Zhu, Guojing; Khoriaty, Rami N.; Zhang, Bin

    2015-01-01

    COPII (coat protein complex-II) vesicles transport proteins from the endoplasmic reticulum (ER) to the Golgi. Higher eukaryotes have two or more paralogs of most COPII components. Here we characterize mice deficient for SEC23A and studied interactions of Sec23a null allele with the previously reported Sec23b null allele. SEC23A deficiency leads to mid-embryonic lethality associated with defective development of extraembryonic membranes and neural tube opening in midbrain. Secretion defects of multiple collagen types are observed in different connective tissues, suggesting that collagens are primarily transported in SEC23A-containing vesicles in these cells. Other extracellular matrix proteins, such as fibronectin, are not affected by SEC23A deficiency. Intracellular accumulation of unsecreted proteins leads to strong induction of the unfolded protein response in collagen-producing cells. No collagen secretion defects are observed in SEC23B deficient embryos. We report that E-cadherin is a cargo that accumulates in acini of SEC23B deficient pancreas and salivary glands. Compensatory increase of one paralog is observed in the absence of the second paralog. Haploinsufficiency of the remaining Sec23 paralog on top of homozygous inactivation of the first paralog leads to earlier lethality of embryos. Our results suggest that mammalian SEC23A and SEC23B transport overlapping yet distinct spectra of cargo in vivo. PMID:26494538

  20. Glycine decarboxylase deficiency causes neural tube defects and features of non-ketotic hyperglycinemia in mice

    PubMed Central

    Pai, Yun Jin; Leung, Kit-Yi; Savery, Dawn; Hutchin, Tim; Prunty, Helen; Heales, Simon; Brosnan, Margaret E.; Brosnan, John T.; Copp, Andrew J.; Greene, Nicholas D.E.

    2015-01-01

    Glycine decarboxylase (GLDC) acts in the glycine cleavage system to decarboxylate glycine and transfer a one-carbon unit into folate one-carbon metabolism. GLDC mutations cause a rare recessive disease non-ketotic hyperglycinemia (NKH). Mutations have also been identified in patients with neural tube defects (NTDs); however, the relationship between NKH and NTDs is unclear. We show that reduced expression of Gldc in mice suppresses glycine cleavage system activity and causes two distinct disease phenotypes. Mutant embryos develop partially penetrant NTDs while surviving mice exhibit post-natal features of NKH including glycine accumulation, early lethality and hydrocephalus. In addition to elevated glycine, Gldc disruption also results in abnormal tissue folate profiles, with depletion of one-carbon-carrying folates, as well as growth retardation and reduced cellular proliferation. Formate treatment normalizes the folate profile, restores embryonic growth and prevents NTDs, suggesting that Gldc deficiency causes NTDs through limiting supply of one-carbon units from mitochondrial folate metabolism. PMID:25736695

  1. FZD6 is a novel gene for human neural tube defects

    PubMed Central

    De Marco, Patrizia; Merello, Elisa; Rossi, Andrea; Piatelli, Gianluca; Cama, Armando; Kibar, Zoha; Capra, Valeria

    2011-01-01

    Abstract Neural tube defects (NTDs) are severe malformations of the central nervous system, affecting 1 of 1,000 live births. Mouse models were instrumental in defining the signaling pathways defective in NTDs, including the planar cell polarity (PCP), also called noncanonical Frizzled/Disheveled pathway. Based on the highly penetrant occurrence of NTDs in double Fzd3/Fzd6−/− mutant mice, we investigated the role of the human orthologues, FZD3 and FZD6, by resequencing a cohort of 473 NTDs patients and 639 ethnically matched controls. While we could not demonstrate a significant contribution of FZD3 gene, we identified five rare FZD6 variants that were absent in all controls and predicted to have a functional effect by computational analysis: one de novo frameshift mutation (c.1843_1844insA), three missense changes (p.Arg405Gln, p.Arg511Cys p.Arg511His), and one substitution (c.*20C>T) affecting the 3′-untranslated region (UTR) of the gene. The overall rate of predicted deleterious variants of FZD6 was 5.1-fold higher in cases compared to controls, resulting in a significantly increased NTDs mutation burden. This study demonstrates that rare nonsynonymous variants in FZD6 may contribute to NTDs in humans and enlarges the spectrum of mutations that link PCP pathway to NTDs. Hum Mutat 33:384–390, 2012. © 2011 Wiley Periodicals, Inc. PMID:22045688

  2. Live imaging of apoptosis in a novel transgenic mouse highlights its role in neural tube closure.

    PubMed

    Yamaguchi, Yoshifumi; Shinotsuka, Naomi; Nonomura, Keiko; Takemoto, Kiwamu; Kuida, Keisuke; Yosida, Hiroki; Miura, Masayuki

    2011-12-12

    Many cells die during development, tissue homeostasis, and disease. Dysregulation of apoptosis leads to cranial neural tube closure (NTC) defects like exencephaly, although the mechanism is unclear. Observing cells undergoing apoptosis in a living context could help elucidate their origin, behavior, and influence on surrounding tissues, but few tools are available for this purpose, especially in mammals. In this paper, we used insulator sequences to generate a transgenic mouse that stably expressed a genetically encoded fluorescence resonance energy transfer (FRET)-based fluorescent reporter for caspase activation and performed simultaneous time-lapse imaging of apoptosis and morphogenesis in living embryos. Live FRET imaging with a fast-scanning confocal microscope revealed that cells containing activated caspases showed typical and nontypical apoptotic behavior in a region-specific manner during NTC. Inhibiting caspase activation perturbed and delayed the smooth progression of cranial NTC, which might increase the risk of exencephaly. Our results suggest that caspase-mediated cell removal facilitates NTC completion within a limited developmental window. PMID:22162136

  3. Role of arsenic as a reproductive toxin with particular attention to neural tube defects

    SciTech Connect

    Shalat, S.L.; Walker, D.B.; Finnell, R.H.

    1996-10-01

    Arsenic has been recognized as a human toxicant for over 2000 years. More recently it has been readily accepted as a human carcinogen. Animal research has demonstrated arsenic`s ability to have profound detrimental effects on the developing embryo in avian and mamalian species. This article comprehensively reviews the human and animal literature on the subject of the reproductive toxicity of arsenic. A variety of endpoints are considered, including spontaneous abortion, cardiovascular defects, and arsenic`s role in the causation of neural tube defects (NTDs). A summary of the literature that has examined the various postulated mechanisms by which arsenic may produce NTDs is also considered. In addition, a discussion of literature relative to the presence of arsenic in the general environment and in the workplace presented. This article reaches the conclusion that while further research is clearly needed, particularly on the potential toxicity of organic arsenical compounds, the current literature suggests it may be prudent and appropriate to treat inorganic arsenic as a probable human reproductive toxin. 132 refs.

  4. Long Term Maintenance of Neural Tube Defects Prevention in a High Prevalence State

    PubMed Central

    Collins, Julianne S.; Atkinson, Kristy K.; Dean, Jane H.; Best, Robert G.; Stevenson, Roger E.

    2011-01-01

    Objective To assess the efficacy of folic acid (FA) supplementation and fortification in preventing neural tube defects (NTDs) in a high prevalence region of the US. Study design Active and passive surveillance methods were used to identify all fetuses/infants affected by an NTD in South Carolina. Prevalence rates were compared with FA intake to determine the effects of increased intake on NTD occurrence and recurrence. Results From 1992–2009, 916 NTD cases occurred in South Carolina with isolated defects comprising 79% of cases. The NTD rate decreased 58% during this period. There was one NTD-affected pregnancy among 418 subsequent pregnancies (0.2%) in mothers with previous NTD-affected pregnancies who consumed periconceptional FA supplements and four NTDs among 66 pregnancies (6.1%) in which the mother did not take FA supplements. Folic acid supplementation increased from 8% to 35% from 1992–2007 and knowledge of the protective benefits of FA increased from 8% to 65% in women of childbearing age. Conclusions Increased periconceptional intake of FA appeared to reduce NTDs in a high prevalence region. The rate of spina bifida and anencephaly in South Carolina is now essentially the same (0.69 cases per 1000 live births and fetal deaths) as the 1998–2005 US rate (0.69). PMID:21345450

  5. Novel VANGL1 Gene Mutations in 144 Slovakian, Romanian and German Patients with Neural Tube Defects

    PubMed Central

    Bartsch, O.; Kirmes, I.; Thiede, A.; Lechno, S.; Gocan, H.; Florian, I.S.; Haaf, T.; Zechner, U.; Sabova, L.; Horn, F.

    2012-01-01

    Neural tube defects (NTDs) are a group of congenital malformations of the central nervous system occurring at an average rate of 1 per 1,000 human pregnancies worldwide. Numerous genetic and environmental factors are discussed to be relevant in their etiology. In mice, mutants in >200 genes including the planar cell polarity (PCP) pathway are known to cause NTDs, and recently, heterozygous mutations in the human VANGL1 gene have been described in a small subset of patients with NTDs. We performed a VANGL1 mutation analysis in 144 unrelated individuals with NTDs from Slovakia, Romania and Germany and identified 3 heterozygous missense mutations: c.613G>A (p.Gly205Arg) with an open spina bifida (lumbosacral meningomyelocele), c.557G>A (p.Arg186His) with a closed spina bifida (tethered cord and spinal lipoma) and c.518G>A (p.Arg173His) with an unknown NTD. The c.613G>A mutation was also found in a healthy sibling. None of the mutations were described previously. Findings support that heterozygous VANGL1 mutations represent hypomorphs or conditional mutants predisposing to NTDs and occur at a frequency of approximately 2.1% of open and closed spinal NTDs. The mutations (p.Arg173His, p.Arg186His, p.Gly205Arg) modified conserved regions of the VANGL1 protein and shared similarities with previously described mutants, providing further evidence for the presence of mutational hot spots in these patients. PMID:23326252

  6. The role of folic acid fortification in neural tube defects: a review.

    PubMed

    Osterhues, Anja; Ali, Nyima S; Michels, Karin B

    2013-01-01

    The worldwide prevalence of neural tube defects (NTDs) has fallen noticeably during the past 30 years, but the specific etiology and causative mechanism of NTDs remain unknown. Since introduction of mandatory fortification of grains with folic acid, a further decrease in NTD prevalence has been reported in North America and other countries with large variations among ethnic subgroups. However, a significant portion of NTDs still persists. Population data suggest that women of childbearing age may not yet be adequately targeted, while the general population may be overfortified with folic acid. While an excessive folate intake may be associated with adverse effects, there remains uncertainty about the minimum effective folate intake and status required for NTD prevention, and the safe upper folate level. Besides folate, several other lifestyle and environmental factors as well as genetic variations may influence NTD development, possibly by affecting one-carbon metabolism and thus epigenetic events. In conclusion, mandatory folic acid fortification plays a significant part in the reduction of NTD prevalence, but possibly at a cost and with a portion of NTDs remaining. More effective preventive strategies require better understanding of the etiology of this group of birth defects. PMID:24007422

  7. Risk factors for neural tube defects in Riyadh City, Saudi Arabia: Case-control study

    PubMed Central

    Salih, Mustafa A M; Murshid, Waleed R; Mohamed, Ashry Gad; Ignacio, Lena C; de Jesus, Julie E; Baabbad, Rubana; El Bushra, Hassan M

    2014-01-01

    Both genetic and non-genetic environmental factors are involved in the etiology of neural tube defects (NTD) which affect 0.5-2/1000 pregnancies worldwide. This study aimed to explore the risk factors for the development of NTD in Saudi population, and highlight identifiable and preventable causes. Similar studies are scarce in similar populations ofthe Arabian Peninsula and North Africa. This is an unmatched concurrent case-control study including NTD cases born at King Khalid University Hospital, Riyadh during a 4-year period (2002-2006). The case-control study included 25 cases and 125 controls (case: control ratio of 1:5). Years of formal education, employment, household environment (including availability of air conditioning) and rate of parental consanguinity did not differ between mothers of cases and controls. Significantly higher proportion of mothers of cases had history of stillbirth compared to control mothers (16% vs 4.1%, P=0.02). Also family history of hydrocephalus and congenital anomalies were more prevalent in cases than controls (P values=0.0000 and 0.003, respectively). There was significant protective effect of periconceptional folic acid consumption both prior to conception (OR 0.02, 95% CI 0.00-0.07) and during the first 6 weeks of conception (OR 0.13, 95% CI 0.04-0.39). Further research, including a larger cohort, is required to enable ascertainment of gene-nutrient and gene environment interactions associated with NTD in Saudi Arabia. PMID:27493405

  8. Drinking water treatment is not associated with an observed increase in neural tube defects in mice.

    PubMed

    Melin, Vanessa E; Johnstone, David W; Etzkorn, Felicia A; Hrubec, Terry C

    2014-06-01

    Disinfection by-products (DBPs) arise when natural organic matter in source water reacts with disinfectants used in the water treatment process. Studies have suggested an association between DBPs and birth defects. Neural tube defects (NTDs) in embryos of untreated control mice were first observed in-house in May 2006 and have continued to date. The source of the NTD-inducing agent was previously determined to be a component of drinking water. Tap water samples from a variety of sources were analyzed for trihalomethanes (THMs) to determine if they were causing the malformations. NTDs were observed in CD-1 mice provided with treated and untreated surface water. Occurrence of NTDs varied by water source and treatment regimens. THMs were detected in tap water derived from surface water but not detected in tap water derived from a groundwater source. THMs were absent in untreated river water and laboratory purified waters, yet the percentage of NTDs in untreated river water were similar to the treated water counterpart. These findings indicate that THMs were not the primary cause of NTDs in the mice since the occurrence of NTDs was unrelated to drinking water disinfection. PMID:24497082

  9. Association of Clomiphene and Assisted Reproductive Technologies With the Risk of Neural Tube Defects.

    PubMed

    Benedum, Corey M; Yazdy, Mahsa M; Parker, Samantha E; Mitchell, Allen A; Werler, Martha M

    2016-06-01

    Clomiphene and assisted reproductive technologies (ART) are methods used to help subfertile couples become pregnant. ART has been reported to be associated with neural tube defects (NTDs) in offspring. To evaluate these associations, we studied mothers of 219 cases and 4,262 controls from the Slone Epidemiology Center Birth Defects Study (1993-2012) who were interviewed within 6 months after delivery about pregnancy events, including use of fertility treatments. We considered exposures to clomiphene (without ART) and ART during the periconceptional period. Logistic regression models were used to calculate adjusted odds ratios and 95% confidence intervals, controlling for education and study center. We observed elevated adjusted odds ratios of 2.1 (95% confidence interval: 0.9, 4.8) and 2.0 (95% confidence interval: 1.1, 3.6) for clomiphene and ART exposure, respectively. We performed a mediation analysis to assess whether the observed elevated NTD risk was mediated through multiple births. For clomiphene exposure without ART use, the direct effect estimate of the adjusted odds ratio (aORDE) was 1.7 and the indirect effect estimate (aORIE) was 1.4. Conversely, for ART exposure, the aORDE was 0.9 and the aORIE was 2.5. Our findings suggest that relatively little of the clomiphene-NTD association is mediated through the pathway of multiple births, while the ART-NTD association was explained by the multiple-births pathway. PMID:27188944

  10. Planar cell polarity gene mutations contribute to the etiology of human neural tube defects in our population.

    PubMed

    De Marco, Patrizia; Merello, Elisa; Piatelli, Gianluca; Cama, Armando; Kibar, Zoha; Capra, Valeria

    2014-08-01

    Neural Tube Defects (NTDs) are congenital malformations that involve failure of the neural tube closure during the early phases of development at any level of the rostro-caudal axis. The planar cell polarity (PCP) pathway is a highly conserved, noncanonical Wnt-Frizzled-Dishevelled signaling cascade, that was first identified in the fruit fly Drosophila. We are here reviewing the role of the PCP pathway genes in the etiology of human NTDs, updating the list of the rare and deleterious mutations identified so far. We report 50 rare nonsynonymous mutations of PCP genes in 54 patients having a pathogenic effect on the protein function. Thirteen mutations that have previously been reported as novel are now reported in public databases, although at very low frequencies. The mutations were private, mostly missense, and transmitted by a healthy parent. To date, no clear genotype-phenotype correlation has been possible to create. Even if PCP pathway genes are involved in the pathogenesis of neural tube defects, future studies will be necessary to better dissect the genetic causes underlying these complex malformations. PMID:24838524

  11. The interaction between Shroom3 and Rho-kinase is required for neural tube morphogenesis in mice.

    PubMed

    Das, Debamitra; Zalewski, Jenna K; Mohan, Swarna; Plageman, Timothy F; VanDemark, Andrew P; Hildebrand, Jeffrey D

    2014-01-01

    Shroom3 is an actin-associated regulator of cell morphology that is required for neural tube closure, formation of the lens placode, and gut morphogenesis in mice and has been linked to chronic kidney disease and directional heart looping in humans. Numerous studies have shown that Shroom3 likely regulates these developmental processes by directly binding to Rho-kinase and facilitating the assembly of apically positioned contractile actomyosin networks. We have characterized the molecular basis for the neural tube defects caused by an ENU-induced mutation that results in an arginine-to-cysteine amino acid substitution at position 1838 of mouse Shroom3. We show that this substitution has no effect on Shroom3 expression or localization but ablates Rock binding and renders Shroom3 non-functional for the ability to regulate cell morphology. Our results indicate that Rock is the major downstream effector of Shroom3 in the process of neural tube morphogenesis. Based on sequence conservation and biochemical analysis, we predict that the Shroom-Rock interaction is highly conserved across animal evolution and represents a signaling module that is utilized in a variety of biological processes. PMID:25171888

  12. Measuring Neural Entrainment to Beat and Meter in Infants: Effects of Music Background.

    PubMed

    Cirelli, Laura K; Spinelli, Christina; Nozaradan, Sylvie; Trainor, Laurel J

    2016-01-01

    Caregivers often engage in musical interactions with their infants. For example, parents across cultures sing lullabies and playsongs to their infants from birth. Behavioral studies indicate that infants not only extract beat information, but also group these beats into metrical hierarchies by as early as 6 months of age. However, it is not known how this is accomplished in the infant brain. An EEG frequency-tagging approach has been used successfully with adults to measure neural entrainment to auditory rhythms. The current study is the first to use this technique with infants in order to investigate how infants' brains encode rhythms. Furthermore, we examine how infant and parent music background is associated with individual differences in rhythm encoding. In Experiment 1, EEG was recorded while 7-month-old infants listened to an ambiguous rhythmic pattern that could be perceived to be in two different meters. In Experiment 2, EEG was recorded while 15-month-old infants listened to a rhythmic pattern with an unambiguous meter. In both age groups, information about music background (parent music training, infant music classes, hours of music listening) was collected. Both age groups showed clear EEG responses frequency-locked to the rhythms, at frequencies corresponding to both beat and meter. For the younger infants (Experiment 1), the amplitudes at duple meter frequencies were selectively enhanced for infants enrolled in music classes compared to those who had not engaged in such classes. For the older infants (Experiment 2), amplitudes at beat and meter frequencies were larger for infants with musically-trained compared to musically-untrained parents. These results suggest that the frequency-tagging method is sensitive to individual differences in beat and meter processing in infancy and could be used to track developmental changes. PMID:27252619

  13. Measuring Neural Entrainment to Beat and Meter in Infants: Effects of Music Background

    PubMed Central

    Cirelli, Laura K.; Spinelli, Christina; Nozaradan, Sylvie; Trainor, Laurel J.

    2016-01-01

    Caregivers often engage in musical interactions with their infants. For example, parents across cultures sing lullabies and playsongs to their infants from birth. Behavioral studies indicate that infants not only extract beat information, but also group these beats into metrical hierarchies by as early as 6 months of age. However, it is not known how this is accomplished in the infant brain. An EEG frequency-tagging approach has been used successfully with adults to measure neural entrainment to auditory rhythms. The current study is the first to use this technique with infants in order to investigate how infants' brains encode rhythms. Furthermore, we examine how infant and parent music background is associated with individual differences in rhythm encoding. In Experiment 1, EEG was recorded while 7-month-old infants listened to an ambiguous rhythmic pattern that could be perceived to be in two different meters. In Experiment 2, EEG was recorded while 15-month-old infants listened to a rhythmic pattern with an unambiguous meter. In both age groups, information about music background (parent music training, infant music classes, hours of music listening) was collected. Both age groups showed clear EEG responses frequency-locked to the rhythms, at frequencies corresponding to both beat and meter. For the younger infants (Experiment 1), the amplitudes at duple meter frequencies were selectively enhanced for infants enrolled in music classes compared to those who had not engaged in such classes. For the older infants (Experiment 2), amplitudes at beat and meter frequencies were larger for infants with musically-trained compared to musically-untrained parents. These results suggest that the frequency-tagging method is sensitive to individual differences in beat and meter processing in infancy and could be used to track developmental changes. PMID:27252619

  14. Kif11 dependent cell cycle progression in radial glial cells is required for proper neurogenesis in the zebrafish neural tube.

    PubMed

    Johnson, Kimberly; Moriarty, Chelsea; Tania, Nessy; Ortman, Alissa; DiPietrantonio, Kristina; Edens, Brittany; Eisenman, Jean; Ok, Deborah; Krikorian, Sarah; Barragan, Jessica; Golé, Christophe; Barresi, Michael J F

    2014-03-01

    Radial glia serve as the resident neural stem cells in the embryonic vertebrate nervous system, and their proliferation must be tightly regulated to generate the correct number of neuronal and glial cell progeny in the neural tube. During a forward genetic screen, we recently identified a zebrafish mutant in the kif11 loci that displayed a significant increase in radial glial cell bodies at the ventricular zone of the spinal cord. Kif11, also known as Eg5, is a kinesin-related, plus-end directed motor protein responsible for stabilizing and separating the bipolar mitotic spindle. We show here that Gfap+ radial glial cells express kif11 in the ventricular zone and floor plate. Loss of Kif11 by mutation or pharmacological inhibition with S-trityl-L-cysteine (STLC) results in monoastral spindle formation in radial glial cells, which is characteristic of mitotic arrest. We show that M-phase radial glia accumulate over time at the ventricular zone in kif11 mutants and STLC treated embryos. Mathematical modeling of the radial glial accumulation in kif11 mutants not only confirmed an ~226× delay in mitotic exit (likely a mitotic arrest), but also predicted two modes of increased cell death. These modeling predictions were supported by an increase in the apoptosis marker, anti-activated Caspase-3, which was also found to be inversely proportional to a decrease in cell proliferation. In addition, treatment with STLC at different stages of neural development uncovered two critical periods that most significantly require Kif11 function for stem cell progression through mitosis. We also show that loss of Kif11 function causes specific reductions in oligodendroglia and secondary interneurons and motorneurons, suggesting these later born populations require proper radial glia division. Despite these alterations to cell cycle dynamics, survival, and neurogenesis, we document unchanged cell densities within the neural tube in kif11 mutants, suggesting that a mechanism of

  15. Levels of Folate Receptor Autoantibodies in Maternal and Cord Blood and Risk of Neural Tube Defects in a Chinese population

    PubMed Central

    Yang, Na; Wang, Linlin; Finnell, Richard H.; Li, Zhiwen; Jin, Lei; Zhang, Le; Cabrera, Robert M.; Ye, Rongwei; Ren, Aiguo

    2016-01-01

    Background After years of periconceptional folic acid supplementation, the prevalence of neural tube defects (NTDs) remains stable following the remarkable reduction observed immediately after the fortification practice. There is accumulating evidence that folate receptor (FR) autoimmunity may play a role in the etiology of folate-sensitive NTDs. Methods From 2011 to 2013, 118 NTD cases and 242 healthy controls were recruited from a population-based birth defects surveillance system in Northern China. Enzyme-linked immunosorbent assay was used to measure FR autoantibodies in maternal and cord blood. Logistic regression models were used to estimate the odds ratios (OR) and 95% confidence intervals (95% CI). Results Plasma FR autoantibodies levels were significantly elevated in mothers of infants with NTDs compared with mothers of healthy controls. Using the lowest tertile as the referent group, 2.20-fold (95% CI, 0.71–6.80) and 5.53-fold increased odds (95% CI, 1.90–16.08) of NTDs were observed for the second and third tertile of immunoglobulin G (IgG), respectively, and the odds of NTDs for each successive tertile of IgM was 0.98 (95% CI, 0.35–2.75) and 3.49 (95% CI, 1.45–8.39), respectively. A dose–response relationship was found between FR autoantibodies levels and risk of NTDs (P < 0.001 for IgG, P = 0.002 for IgM). The same pattern was observed in both subtypes of spina bifida and anencephaly. No significant difference in levels of cord blood FR autoantibodies was observed. Conclusion Higher levels of FR autoimmunity in maternal plasma are associated with elevated risk of NTDs in a dose–response manner. PMID:27166990

  16. Variants in maternal COMT and MTHFR genes and risk of neural tube defects in offspring.

    PubMed

    Liu, Jufen; Zhang, Yali; Jin, Lei; Li, Guoxing; Wang, Linlin; Bao, Yanping; Fu, Yunting; Li, Zhiwen; Zhang, Le; Ye, Rongwei; Ren, Aiguo

    2015-04-01

    Methylenetetrahydrofolate reductase (MTHFR) C677T and catechol-O-Methyltransferase (COMT) G158A are associated with a risk of neural tube defects (NTDs) in offspring. This study examined the effect of a MTHFR × COMT interaction on the risk of NTDs in a Chinese population with a high prevalence of NTDs. A total of 576 fetuses or newborns with NTDs and 594 controls were genotyped for MTHFRrs1801133, MTHFRrs1801131, and COMTrs4680 and COMTrs737865. Information on maternal sociodemographic characteristics, reproductive history, and related behavior was collected through face-to-face interviews. Possible interactions between genetic variants of MTHFR and COMT were examined. MTHFR C677T homozygous TT was associated with an elevated risk of total NTDs (odds ratio [OR] = 1.37, 95 % confidence interval [CI] = 0.93-2.03) and of anencephaly (OR = 1.67, 95 % CI = 0.98-2.84) compared with the CC genotype. There was a COMT rs737865 CC × MTHFR rs1801133 TT interaction for total NTDs (OR = 3.02, 95 % CI = 1.00-9.14) and for anencephaly (OR = 3.39, 95 % CI = 0.94-12.18). No interaction was found between COMT rs4680 AA/AG and MTHFR CT/TT genotypes for total NTDs or any subtype of NTD. The interaction of COMT rs737865 and MTHFR C677T was associated with an increased risk of NTDs, especially anencephaly, in a Chinese population with a high prevalence of NTDs. PMID:24990354

  17. SELDI-TOF-MS Proteomic Profiling of Serum, Urine, and Amniotic Fluid in Neural Tube Defects

    PubMed Central

    Liu, Zhenjiang; Yuan, Zhengwei; Zhao, Qun

    2014-01-01

    Neural tube defects (NTDs) are common birth defects, whose specific biomarkers are needed. The purpose of this pilot study is to determine whether protein profiling in NTD-mothers differ from normal controls using SELDI-TOF-MS. ProteinChip Biomarker System was used to evaluate 82 maternal serum samples, 78 urine samples and 76 amniotic fluid samples. The validity of classification tree was then challenged with a blind test set including another 20 NTD-mothers and 18 controls in serum samples, and another 19 NTD-mothers and 17 controls in urine samples, and another 20 NTD-mothers and 17 controls in amniotic fluid samples. Eight proteins detected in serum samples were up-regulated and four proteins were down-regulated in the NTD group. Four proteins detected in urine samples were up-regulated and one protein was down-regulated in the NTD group. Six proteins detected in amniotic fluid samples were up-regulated and one protein was down-regulated in the NTD group. The classification tree for serum samples separated NTDs from healthy individuals, achieving a sensitivity of 91% and a specificity of 97% in the training set, and achieving a sensitivity of 90% and a specificity of 97% and a positive predictive value of 95% in the test set. The classification tree for urine samples separated NTDs from controls, achieving a sensitivity of 95% and a specificity of 94% in the training set, and achieving a sensitivity of 89% and a specificity of 82% and a positive predictive value of 85% in the test set. The classification tree for amniotic fluid samples separated NTDs from controls, achieving a sensitivity of 93% and a specificity of 89% in the training set, and achieving a sensitivity of 90% and a specificity of 88% and a positive predictive value of 90% in the test set. These suggest that SELDI-TOF-MS is an additional method for NTDs pregnancies detection. PMID:25054433

  18. The methylfolate axis in neural tube defects: in vitro characterisation and clinical investigation.

    PubMed

    Lucock, M D; Wild, J; Schorah, C J; Levene, M I; Hartley, R

    1994-08-01

    We have investigated various micronutrients important to folate metabolism in women with two previous neural tube defect (NTD)-affected pregnancies. Results suggest the disposition of plasma 5-methyltetrahydrofolate (5CH3-H4PteGlu) with respect to dietary intake may differ from that of the control population. It appears that to achieve a given plasma level of 5CH3-H4PteGlu, the population with a history of NTD pregnancies needs to take in more dietary folate than controls. We discuss this in the context of a potential lesion at or upstream from 5,10-methylenetetrahydrofolate reductase (MTHFR). This metabolic axis, which is responsible for the multienzymic conversion of PteGlu to 5CH3-H4PteGlu, has been investigated in a rat model using liver homogenate. The anticonvulsant drug (ACD) carbamazepine was found to inhibit the reaction in terms of a reduced Vmax and increased Km. Inhibition approaching maximal was found to occur at therapeutic levels of ACD. Various potential inhibitory sites along the methylfolate axis are considered and possible relationships to congenital malformations discussed. We describe folate and one carbon metabolism in relation to potential NTD lesion sites, not only in the light of present findings, but with respect to the published findings of other workers. Based on our hypothesis that an NTD lesion exists upstream from MTHFR, we expound how pteroylmonoglutamate supplementation may protect against NTD (i) by reducing endotoxic homocysteine and (ii) through inhibiting MTHFR (as do dihydrofolates) and thus diverting one carbon units into DNA thymine. PMID:7993656

  19. Neural tube defects in Latin America and the impact of fortification: a literature review

    PubMed Central

    Rosenthal, Jorge; Casas, Jessica; Taren, Douglas; Alverson, Clinton J; Flores, Alina; Frias, Jaime

    2015-01-01

    Objective Data on the prevalence of birth defects and neural tube defects (NTD) in Latin America are limited. The present review summarizes NTD prevalence and time trends in Latin American countries and compares pre- and post-fortification periods to assess the impact of folic acid fortification in these countries. Design We carried out a literature review of studies and institutional reports published between 1990 and 2010 that contained information on NTD prevalence in Latin America. Results NTD prevalence in Latin American countries varied from 0.2 to 9.6 per 1000 live births and was influenced by methods of ascertainment. Time trends from Bogota, Costa Rica, Dominican Republic, Guatemala City, México and Puerto Rico showed average annual declines of 2.5% to 21.8%. Pre- and post-fortification comparisons were available for Argentina, Brazil, Chile, Costa Rica, Puerto Rico and México. The aggregate percentage decline in NTD prevalence ranged from 33% to 59%. Conclusions The present publication is the first to review data on time trends and the impact of folic acid fortification on NTD prevalence in Latin America. Reported NTD prevalence varied markedly by geographic region and in some areas of Latin America was among the lowest in the world, while in other areas it was among the highest. For countries with available information, time trends showed significant declines in NTD prevalence and these declines were greater in countries where folic acid fortification of staples reached the majority of the population at risk, such as Chile and Costa Rica. PMID:23464652

  20. Punicalagin exerts protective effect against high glucose-induced cellular stress and neural tube defects.

    PubMed

    Zhong, Jianxiang; Reece, E Albert; Yang, Peixin

    2015-11-13

    Maternal diabetes-induced birth defects remain a significant health problem. Studying the effect of natural compounds with antioxidant properties and minimal toxicities on diabetic embryopathy may lead to the development of new and safe dietary supplements. Punicalagin is a primary polyphenol found in pomegranate juice, which possesses antioxidant, anti-inflammatory and anti-tumorigenic properties, suggesting a protective effect of punicalagin on diabetic embryopathy. Here, we examined whether punicalagin could reduce high glucose-induced neural tube defects (NTDs), and if this rescue occurs through blockage of cellular stress and caspase activation. Embryonic day 8.5 (E8.5) mouse embryos were cultured for 24 or 36 h with normal (5 mM) glucose or high glucose (16.7 mM), in presence or absence of 10 or 20 μM punicalagin. 10 μM punicalagin slightly reduced NTD formation under high glucose conditions; however, 20 μM punicalagin significantly inhibited high glucose-induced NTD formation. Punicalagin suppressed high glucose-induced lipid peroxidation marker 4-hydroxynonenal, nitrotyrosine-modified proteins, and lipid peroxides. Moreover, punicalagin abrogated endoplasmic reticulum stress by inhibiting phosphorylated protein kinase ribonucleic acid (RNA)-like ER kinase (p-PERK), phosphorylated inositol-requiring protein-1α (p-IRE1α), phosphorylated eukaryotic initiation factor 2α (p-eIF2α), C/EBP-homologous protein (CHOP), binding immunoglobulin protein (BiP) and x-box binding protein 1 (XBP1) mRNA splicing. Additionally, punicalagin suppressed high glucose-induced caspase 3 and caspase 8 cleavage. Punicalagin reduces high glucose-induced NTD formation by blocking cellular stress and caspase activation. These observations suggest punicalagin supplements could mitigate the teratogenic effects of hyperglycemia in the developing embryo, and possibly prevent diabetes-induced NTDs. PMID:26453010

  1. Maternal Dietary Patterns are Associated With Risk of Neural Tube and Congenital Heart Defects

    PubMed Central

    Sotres-Alvarez, Daniela; Siega-Riz, Anna Maria; Herring, Amy H.; Carmichael, Suzan L.; Feldkamp, Marcia L.; Hobbs, Charlotte A.; Olshan, Andrew F.

    2013-01-01

    Studying empirically derived dietary patterns is useful in understanding dietary practice. We classified women by their dietary patterns using latent class analysis of 66 foods and studied the association of these patterns with neural tube defects (NTDs) and congenital heart defects (CHDs) in the US National Birth Defects Prevention Study (1997–2005). Logistic regression models used data from 1,047 with an NTD, 6,641 with a CHD, and 6,123 controls that were adjusted for maternal characteristics and tested the effect modification of multivitamin supplement use. Four latent dietary patterns were identified: prudent, Western, low-calorie Western, and Mexican. Among participants who did not use supplements, those in the Mexican, Western, and low-calorie Western classes were significantly more likely (odds ratios of 1.6, 1.5, and 1.4, respectively) to have offspring born with NTDs than were those in the prudent class after adjustment of for dietary folic acid intake. In contrast, among supplement users, there was no difference in the incidence of NTDs between classes. Associations between dietary class and CHD subgroups were not modified by supplement use except for tetralogy of Fallot; among supplement users, those in the Western class were twice as likely (95% confidence interval: 1.4, 2.8) as the prudent class to have offspring with tetralogy of Fallot. Women who adhered to a Western diet were 1.2 (95% confidence interval: 1.03, 1.35) times more likely to have an infant with septal heart defect than were women who adhered to a prudent diet. A prudent dietary pattern, even with folate fortification, may decrease the risk of NTDs and some heart defects. PMID:23639938

  2. Folic Acid Intake and Neural Tube Defects: Two Egyptian Centers Experience.

    PubMed

    El-Shabrawi, Mortada H; Kamal, Naglaa Mohamed; Elhusseini, Mona Abbas; Hussein, Laila; Abdallah, Enas Abdallah Ali; Ali, Yahia Zakaria Abdelalim; Azab, Ahmed Abelfattah; Salama, Mostafa Abdelazim; Kassab, Muna; Krawinkel, Michael

    2015-09-01

    Neural tube defects (NTDs) are a group of congenital malformations with worldwide distribution and complex etiopathogenesis. Folic acid plays a pivotal role in their prevention. We aimed to identify the protective effect of folic acid intake against NTDs and its dependence on different socioeconomic and environmental factors in a cohort of mothers in Egypt. A cross-sectional study was carried over a period of 12 months on mothers who gave birth to babies with NTDs (group 1) and a control group with healthy offsprings (group 2). Both groups completed 2 questionnaires: food frequency questionnaire targeting the daily folate intake, and socioeconomic status and medical history questionnaire. Both groups of mothers received folate <800 μg/day, recommended for pregnant women. A strong association was detected between NTDs and urban residency with medium educated mothers, with negative consanguinity, who had folate intake < 400 μg daily, and who had their food long cooked. Each of these factors separately had a limited impact to cause NTDs, but when present together they did augment each other. Interestingly enough is the role of fava bean, cauliflower, spinach, and mango in predisposing of NTDs in the presence of the above-mentioned factors. The protective effect of folic acid intake against NTDs may depend on the synergism of different socioeconomic and environmental factors (which differ from country to another). In Egypt, females especially the medium-educated who live in urban areas should be well-informed with the value of folate intake in the periconceptional period. PMID:26376380

  3. Folic Acid Intake and Neural Tube Defects: Two Egyptian Centers Experience

    PubMed Central

    El-Shabrawi, Mortada H.; Kamal, Naglaa Mohamed; Elhusseini, Mona Abbas; Hussein, Laila; Abdallah, Enas Abdallah Ali; Ali, Yahia Zakaria Abdelalim; Azab, Ahmed Abelfattah; Salama, Mostafa Abdelazim; Kassab, Muna; Krawinkel, Michael

    2015-01-01

    Abstract Neural tube defects (NTDs) are a group of congenital malformations with worldwide distribution and complex etiopathogenesis. Folic acid plays a pivotal role in their prevention. We aimed to identify the protective effect of folic acid intake against NTDs and its dependence on different socioeconomic and environmental factors in a cohort of mothers in Egypt. A cross-sectional study was carried over a period of 12 months on mothers who gave birth to babies with NTDs (group 1) and a control group with healthy offsprings (group 2). Both groups completed 2 questionnaires: food frequency questionnaire targeting the daily folate intake, and socioeconomic status and medical history questionnaire. Both groups of mothers received folate <800 μg/day, recommended for pregnant women. A strong association was detected between NTDs and urban residency with medium educated mothers, with negative consanguinity, who had folate intake < 400 μg daily, and who had their food long cooked. Each of these factors separately had a limited impact to cause NTDs, but when present together they did augment each other. Interestingly enough is the role of fava bean, cauliflower, spinach, and mango in predisposing of NTDs in the presence of the above-mentioned factors. The protective effect of folic acid intake against NTDs may depend on the synergism of different socioeconomic and environmental factors (which differ from country to another). In Egypt, females especially the medium-educated who live in urban areas should be well-informed with the value of folate intake in the periconceptional period. PMID:26376380

  4. Maternal exposure to arsenic, cadmium, lead, and mercury and neural tube defects in offspring

    SciTech Connect

    Brender, Jean D. . E-mail: jdbrender@aol.com; Suarez, Lucina; Felkner, Marilyn; Gilani, Zunera; Stinchcomb, David; Moody, Karen; Henry, Judy; Hendricks, Katherine

    2006-05-15

    Arsenic, cadmium, lead, and mercury are neurotoxins, and some studies suggest that these elements might also be teratogens. Using a case-control study design, we investigated the relation between exposure to these heavy metals and neural tube defects (NTDs) in offspring of Mexican-American women living in 1 of the 14 Texas counties bordering Mexico. A total of 184 case-women with NTD-affected pregnancies and 225 control-women with normal live births were interviewed about their environmental and occupational exposures during the periconceptional period. Biologic samples for blood lead and urinary arsenic, cadmium, and mercury were also obtained for a subset of these women. Overall, the median levels of these biomarkers for heavy metal exposure did not differ significantly (P>0.05) between case- and control-women. However, among women in the highest income group, case-women were nine times more likely (95% confidence interval (CI) 1.4-57) than control-women to have a urinary mercury >=5.62{mu}g/L. Case-women were 4.2 times more likely (95% CI 1.1-16) to report burning treated wood during the periconceptional period than control-women. Elevated odds ratios (ORs) were observed for maternal and paternal occupational exposures to arsenic and mercury, but the 95% CIs were consistent with unity. The 95% CIs of the ORs were also consistent with unity for higher levels of arsenic, cadmium, lead, and mercury in drinking water and among women who lived within 2 miles at the time of conception to industrial facilities with reported emissions of any of these heavy metals. Our findings suggest that maternal exposures to arsenic, cadmium, or lead are probably not significant risk factors for NTDs in offspring. However, the elevated urinary mercury levels found in this population and exposures to the combustion of treated wood may warrant further investigation.

  5. A study on the possible involvement of the PAX3 gene in human neural tube defects

    SciTech Connect

    Hol, F.A.; Hamel, B.C.J.; Geurds, M.P.A.

    1994-09-01

    Neural tube defects (NTD) are congenital malformations of the central nervous system which are generally attributed to a combination of environmental and genetic factors. Recently, the molecular defect responsible for the phenotype of the Splotch mouse, a monogenic model system for NTD, was determined. A mutation disrupts the homeodomain of the gene for Pax3. In humans, mutations in the cognate gene for PAX3 can cause Waardenburg syndrome (WS), which is associated with NTD. Based on these findings, PAX3 can be regarded as a candidate gene for human NTD. To test this hypothesis we have screened the DNA of 39 familial and 70 sporadic NTD patients for mutations in the coding exons and flanking intron sequences of the PAX3 gene. SSC analysis revealed abnormal bands in exon 2, exon 5, exon 6 and exon 7 in different patients. A missense mutation was identified in exon 6 downstream from the homeodomain in several patients resulting in an amino acid substitution (Thr315Lys) in the protein. However, the same substitution was detected in unaffected controls suggesting no biological significance. Above shifts most likely represent polymorphisms that are irrelevant for NTD. A conspicuous SSC-band shift was observed in exon 5 of one familial patient with spina bifida. Sequencing revealed that the patient was heterozygous for a 5 bp deletion upstream of the homeodomain. The deletion causes a frameshift, which leads to premature termination of translation. Mild characteristics of WS were detected in several members of the family including the index patient. DNA analysis showed co-segregation of the mutation with these symptoms. Although PAX3 mutations can increase the penetrance of NTD in families with WS, our results show that their presence is not sufficient to cause NTD.

  6. Epidemiologic and genetic aspects of spina bifida and other neural tube defects

    PubMed Central

    Au, Kit Sing; Ashley-Koch, Allison; Northrup, Hope

    2011-01-01

    The worldwide incidence of neural tube defects (NTDs) ranges from 1.0 to 10.0 per 1,000 births with almost equal frequencies between two major categories: anencephaly and spina bifida (SB). Epidemiological studies have provided valuable insight for (a) researchers to identify nongenetic and genetic factors contributing to etiology, (b) public health officials to design and implement policies to prevent NTD pregnancies, and (c) individuals to take precautions to reduce the chance of having an NTD-affected pregnancy. Despite extensive research, our knowledge of the genetic etiology of human NTDs is limited. Although more than 200 small animal models with NTDs exist, most of these models do not replicate the human disease phenotype. Over a hundred candidate genes have been examined for risk association to human SB. The candidate genes studied include those important in folic acid metabolism, glucose metabolism, retinoid metabolism, and apoptosis. Many genes that regulate transcription in early embryogenesis and maintain planar cell polarity have also been tested as candidates. Additionally, genes identified through mouse models of NTDs have been explored as candidates. We do not know how many genes in the human genome may confer risk for NTDs in human. Less than 20% of the studied candidate genes have been determined to confer even a minor effect on risk association. Many studies have provided conflicting conclusions due to limitations in study design that potentially affect the power of statistical analysis. Future directions such as genomewide association studies (GWAS) and whole exome or even whole genome sequencing are discussed as possible avenues to identify genes that affect risk for human NTDs. PMID:20419766

  7. Exposure to fumonisins and the occurrence of neural tube defects along the Texas-Mexico border.

    PubMed

    Missmer, Stacey A; Suarez, Lucina; Felkner, Marilyn; Wang, Elaine; Merrill, Alfred H; Rothman, Kenneth J; Hendricks, Katherine A

    2006-02-01

    Along the Texas-Mexico border, the prevalence of neural tube defects (NTDs) among Mexican-American women doubled during 1990-1991. The human outbreak began during the same crop year as epizootics attributed to exposure to fumonisin, a mycotoxin that often contaminates corn. Because Mexican Americans in Texas consume large quantities of corn, primarily in the form of tortillas, they may be exposed to high levels of fumonisins. We examined whether or not maternal exposure to fumonisins increases the risk of NTDs in offspring using a population-based case-control study. We estimated fumonisin exposure from a postpartum sphinganine:sphingosine (sa:so) ratio, a biomarker for fumonisin exposure measured in maternal serum, and from maternal recall of periconceptional corn tortilla intake. After adjusting for confounders, moderate (301-400) compared with low (< or = 100) consumption of tortillas during the first trimester was associated with increased odds ratios (ORs) of having an NTD-affected pregnancy (OR = 2.4; 95% confidence interval, 1.1-5.3). No increased risks were observed at intakes higher than 400 tortillas (OR = 0.8 for 401-800, OR = 1.0 for > 800). Based on the postpartum sa:so ratio, increasing levels of fumonisin exposure were associated with increasing ORs for NTD occurrences, except for the highest exposure category (sa:so > 0.35). Our findings suggest that fumonisin exposure increases the risk of NTD, proportionate to dose, up to a threshold level, at which point fetal death may be more likely to occur. These results also call for population studies that can more directly measure individual fumonisin intakes and assess effects on the developing embryo. PMID:16451860

  8. Identification of Biomarkers by Proteomics for Prenatal Screening for Neural Tube Defects.

    PubMed

    Shen, Guosong; He, Pingya; Du, Ying; Zhang, Su

    2016-01-01

    Neural tube defect (NTD) is a serious congenital defect, but current methods for identifying NTD are limited. We used proteomic analysis of maternal serum to identify NTD-specific proteins whose levels differed between women with NTD fetuses (n = 50) and those with healthy fetuses (n = 40). Three NTD-specific protein peaks (8,130.6, 15,941.7, and 3,960.3 m/z) were identified using MALDI-TOF-mass spectrophotemetry, and were included in a diagnostic model developed using Biomarker Patterns software. The model used cut-offs for the relative intensity of the three peaks to indicate if a case had or did not have NTD. The model identified 48 of the 50 NTD cases and 36 of the 40 control cases correctly, resulting in the sensitivity of 96.0% (48/50) and the specificity of 90.0% (36/40). The diagnostic model was also tested on 105 clinical cases at high risk for NTD, as determined by having high alpha-fetoprotein levels, resulting in the sensitivity of 100% (101/101) and the specificity of 75.0% (3/4). Using the International Protein Index database, we identified proteins with a molecular mass of 8,130.6 Da as ADP-ribosylation factor 1 and a protein similar to cold agglutinin FS-1 antibody light-chain. The 15,941.7-Da peak corresponded to vitamin K3 protein, and the identity of the 3,960.3-Da protein was unclear. Thus, this study developed a diagnostic model consisting of the three peaks which may be indicators of NTD. This new assay may be at least as accurate for diagnosing NTD compared with the commonly used clinical test that assesses alpha-fetoprotein levels. PMID:26806611

  9. Eddy Current Signature Classification of Steam Generator Tube Defects Using A Learning Vector Quantization Neural Network

    SciTech Connect

    Gabe V. Garcia

    2005-01-03

    A major cause of failure in nuclear steam generators is degradation of their tubes. Although seven primary defect categories exist, one of the principal causes of tube failure is intergranular attack/stress corrosion cracking (IGA/SCC). This type of defect usually begins on the secondary side surface of the tubes and propagates both inwards and laterally. In many cases this defect is found at or near the tube support plates.

  10. Lamin B1 Polymorphism Influences Morphology of the Nuclear Envelope, Cell Cycle Progression, and Risk of Neural Tube Defects in Mice

    PubMed Central

    De Castro, Sandra C. P.; Malhas, Ashraf; Leung, Kit-Yi; Gustavsson, Peter; Vaux, David J.; Copp, Andrew J.; Greene, Nicholas D. E.

    2012-01-01

    Neural tube defects (NTDs), including spina bifida and anencephaly, are common birth defects whose complex multigenic causation has hampered efforts to delineate their molecular basis. The effect of putative modifier genes in determining NTD susceptibility may be investigated in mouse models, particularly those that display partial penetrance such as curly tail, a strain in which NTDs result from a hypomorphic allele of the grainyhead-like-3 gene. Through proteomic analysis, we found that the curly tail genetic background harbours a polymorphic variant of lamin B1, lacking one of a series of nine glutamic acid residues. Lamins are intermediate filament proteins of the nuclear lamina with multiple functions that influence nuclear structure, cell cycle properties, and transcriptional regulation. Fluorescence loss in photobleaching showed that the variant lamin B1 exhibited reduced stability in the nuclear lamina. Genetic analysis demonstrated that the variant also affects neural tube closure: the frequency of spina bifida and anencephaly was reduced three-fold when wild-type lamin B1 was bred into the curly tail strain background. Cultured fibroblasts expressing variant lamin B1 show significantly increased nuclear dysmorphology and diminished proliferative capacity, as well as premature senescence, associated with reduced expression of cyclins and Smc2, and increased expression of p16. The cellular basis of spinal NTDs in curly tail embryos involves a proliferation defect localised to the hindgut epithelium, and S-phase progression was diminished in the hindgut of embryos expressing variant lamin B1. These observations indicate a mechanistic link between altered lamin B1 function, exacerbation of the Grhl3-mediated cell proliferation defect, and enhanced susceptibility to NTDs. We conclude that lamin B1 is a modifier gene of major effect for NTDs resulting from loss of Grhl3 function, a role that is likely mediated via the key function of lamin B1 in maintaining

  11. Epidémiologie et facteurs de risque des anomalies de fermeture du tube neural: données marocaines

    PubMed Central

    Radouani, Mohammed Amine; Chahid, Naima; Benmiloud, Loubna; Elammari, Laila; Lahlou, Khalid; Barkat, Amina

    2015-01-01

    Introduction Les anomalies de fermeture du tube neural sont des défauts congénitaux de la formation du système nerveux central. L'incidence varie entre 3 et 40 cas pour 10000 dans le monde. Il existe des facteurs de risque de survenue de cette affection. La prévention reste un élément important dans la prise en charge. L'objectif de ceete étude est d’étudier les paramètres sociodémographiques, maternels, obstétricaux et néonatals des anomalies de fermeture du tube neural et analyser les facteurs de risque responsables dans notre contexte. Méthodes Etude prospective cas-témoin sur 4 ans. Ont été recrutés tous les cas portant une malformation du tube neural isolée ou associée à d'autres malformations. Les données maternelles, obstétricales et néonatales ont été enregistrées. L'analyse statistique était réalisée par le biais d'un logiciel de statistiques SPSS version 17.0 pour Windows. Résultats Soixante huit cas ont été inclus. Quatre-vingts cinq pour cent des malformations étaient isolées. L'anencéphalie était l'anomalie la plus retrouvée (67%). L’âge maternel moyen était 31,03±7,50 ans. La consanguinité parentale était notée dans 9 cas. Un niveau socio-économique bas et un non suivi des grossesses ont été rapportés dans 29% des cas. L’étude a retrouvé des antécédents de mort-nés et de morts néonatales dans 4% des cas. La consommation de Fenugrec était significativement associée aux malformations du tube neural et a été retrouvée dans 8 cas contre 1 cas dans le groupe sain. La voie haute d'accouchement était utilisée dans 29% des cas. L’âge gestationnel moyen était de 35,55±4,16 semaines d'aménorrhée. Il n'y avait pas de prédominance de sexe. On avait noté une relation significative entre les malformations du tube neural et l'avènement d'une asphyxie périnatale, 15 cas présentaient un apgar à 0 à la première minute et 12 cas un apgar inférieur à 7 à la cinquième minute. Conclusion

  12. DNA methylation analysis of Homeobox genes implicates HOXB7 hypomethylation as risk factor for neural tube defects

    PubMed Central

    Rochtus, Anne; Izzi, Benedetta; Vangeel, Elise; Louwette, Sophie; Wittevrongel, Christine; Lambrechts, Diether; Moreau, Yves; Winand, Raf; Verpoorten, Carla; Jansen, Katrien; Van Geet, Chris; Freson, Kathleen

    2015-01-01

    Neural tube defects (NTDs) are common birth defects of complex etiology. Though family- and population-based studies have confirmed a genetic component, the responsible genes for NTDs are still largely unknown. Based on the hypothesis that folic acid prevents NTDs by stimulating methylation reactions, epigenetic factors, such as DNA methylation, are predicted to be involved in NTDs. Homeobox (HOX) genes play a role in spinal cord development and are tightly regulated in a spatiotemporal and collinear manner, partly by epigenetic modifications. We have quantified DNA methylation for the different HOX genes by subtracting values from a genome-wide methylation analysis using leukocyte DNA from 10 myelomeningocele (MMC) patients and 6 healthy controls. From the 1575 CpGs profiled for the 4 HOX clusters, 26 CpGs were differentially methylated (P-value < 0.05; β-difference > 0.05) between MMC patients and controls. Seventy-seven percent of these CpGs were located in the HOXA and HOXB clusters, with the most profound difference for 3 CpGs within the HOXB7 gene body. A validation case-control study including 83 MMC patients and 30 unrelated healthy controls confirmed a significant association between MMC and HOXB7 hypomethylation (-14.4%; 95% CI: 11.9–16.9%; P-value < 0.0001) independent of the MTHFR 667C>T genotype. Significant HOXB7 hypomethylation was also present in 12 unaffected siblings, each related to a MMC patient, suggestive of an epigenetic change induced by the mother. The inclusion of a neural tube formation model using zebrafish showed that Hoxb7a overexpression but not depletion resulted in deformed body axes with dysmorphic neural tube formation. Our results implicate HOXB7 hypomethylation as risk factor for NTDs and highlight the importance for future genome-wide DNA methylation analyses without preselecting candidate pathways. PMID:25565354

  13. DNA methylation analysis of Homeobox genes implicates HOXB7 hypomethylation as risk factor for neural tube defects.

    PubMed

    Rochtus, Anne; Izzi, Benedetta; Vangeel, Elise; Louwette, Sophie; Wittevrongel, Christine; Lambrechts, Diether; Moreau, Yves; Winand, Raf; Verpoorten, Carla; Jansen, Katrien; Van Geet, Chris; Freson, Kathleen

    2015-01-01

    Neural tube defects (NTDs) are common birth defects of complex etiology. Though family- and population-based studies have confirmed a genetic component, the responsible genes for NTDs are still largely unknown. Based on the hypothesis that folic acid prevents NTDs by stimulating methylation reactions, epigenetic factors, such as DNA methylation, are predicted to be involved in NTDs. Homeobox (HOX) genes play a role in spinal cord development and are tightly regulated in a spatiotemporal and collinear manner, partly by epigenetic modifications. We have quantified DNA methylation for the different HOX genes by subtracting values from a genome-wide methylation analysis using leukocyte DNA from 10 myelomeningocele (MMC) patients and 6 healthy controls. From the 1575 CpGs profiled for the 4 HOX clusters, 26 CpGs were differentially methylated (P-value < 0.05; β-difference > 0.05) between MMC patients and controls. Seventy-seven percent of these CpGs were located in the HOXA and HOXB clusters, with the most profound difference for 3 CpGs within the HOXB7 gene body. A validation case-control study including 83 MMC patients and 30 unrelated healthy controls confirmed a significant association between MMC and HOXB7 hypomethylation (-14.4%; 95% CI: 11.9-16.9%; P-value < 0.0001) independent of the MTHFR 667C>T genotype. Significant HOXB7 hypomethylation was also present in 12 unaffected siblings, each related to a MMC patient, suggestive of an epigenetic change induced by the mother. The inclusion of a neural tube formation model using zebrafish showed that Hoxb7a overexpression but not depletion resulted in deformed body axes with dysmorphic neural tube formation. Our results implicate HOXB7 hypomethylation as risk factor for NTDs and highlight the importance for future genome-wide DNA methylation analyses without preselecting candidate pathways. PMID:25565354

  14. Long term trends in prevalence of neural tube defects in Europe: population based study

    PubMed Central

    Loane, Maria; de Walle, Hermien; Arriola, Larraitz; Addor, Marie-Claude; Barisic, Ingeborg; Beres, Judit; Bianchi, Fabrizio; Dias, Carlos; Draper, Elizabeth; Garne, Ester; Gatt, Miriam; Haeusler, Martin; Klungsoyr, Kari; Latos-Bielenska, Anna; Lynch, Catherine; McDonnell, Bob; Nelen, Vera; Neville, Amanda J; O’Mahony, Mary T; Queisser-Luft, Annette; Rankin, Judith; Rissmann, Anke; Ritvanen, Annukka; Rounding, Catherine; Sipek, Antonin; Tucker, David; Verellen-Dumoulin, Christine; Wellesley, Diana; Dolk, Helen

    2015-01-01

    Study question What are the long term trends in the total (live births, fetal deaths, and terminations of pregnancy for fetal anomaly) and live birth prevalence of neural tube defects (NTD) in Europe, where many countries have issued recommendations for folic acid supplementation but a policy for mandatory folic acid fortification of food does not exist? Methods This was a population based, observational study using data on 11 353 cases of NTD not associated with chromosomal anomalies, including 4162 cases of anencephaly and 5776 cases of spina bifida from 28 EUROCAT (European Surveillance of Congenital Anomalies) registries covering approximately 12.5 million births in 19 countries between 1991 and 2011. The main outcome measures were total and live birth prevalence of NTD, as well as anencephaly and spina bifida, with time trends analysed using random effects Poisson regression models to account for heterogeneities across registries and splines to model non-linear time trends. Summary answer and limitations Overall, the pooled total prevalence of NTD during the study period was 9.1 per 10 000 births. Prevalence of NTD fluctuated slightly but without an obvious downward trend, with the final estimate of the pooled total prevalence of NTD in 2011 similar to that in 1991. Estimates from Poisson models that took registry heterogeneities into account showed an annual increase of 4% (prevalence ratio 1.04, 95% confidence interval 1.01 to 1.07) in 1995-99 and a decrease of 3% per year in 1999-2003 (0.97, 0.95 to 0.99), with stable rates thereafter. The trend patterns for anencephaly and spina bifida were similar, but neither anomaly decreased substantially over time. The live birth prevalence of NTD generally decreased, especially for anencephaly. Registration problems or other data artefacts cannot be excluded as a partial explanation of the observed trends (or lack thereof) in the prevalence of NTD. What this study adds In the absence of mandatory fortification

  15. Maternal-fetal metabolic gene-gene interactions and risk of neural tube defects.

    PubMed

    Lupo, Philip J; Mitchell, Laura E; Canfield, Mark A; Shaw, Gary M; Olshan, Andrew F; Finnell, Richard H; Zhu, Huiping

    2014-01-01

    Single-gene analyses indicate that maternal genes associated with metabolic conditions (e.g., obesity) may influence the risk of neural tube defects (NTDs). However, to our knowledge, there have been no assessments of maternal-fetal metabolic gene-gene interactions and NTDs. We investigated 23 single nucleotide polymorphisms among 7 maternal metabolic genes (ADRB3, ENPP1, FTO, LEP, PPARG, PPARGC1A, and TCF7L2) and 2 fetal metabolic genes (SLC2A2 and UCP2). Samples were obtained from 737 NTD case-parent triads included in the National Birth Defects Prevention Study for birth years 1999-2007. We used a 2-step approach to evaluate maternal-fetal gene-gene interactions. First, a case-only approach was applied to screen all potential maternal and fetal interactions (n = 76), as this design provides greater power in the assessment of gene-gene interactions compared to other approaches. Specifically, ordinal logistic regression was used to calculate the odds ratio (OR) and 95% confidence interval (CI) for each maternal-fetal gene-gene interaction, assuming a log-additive model of inheritance. Due to the number of comparisons, we calculated a corrected p-value (q-value) using the false discovery rate. Second, we confirmed all statistically significant interactions (q < 0.05) using a log-linear approach among case-parent triads. In step 1, there were 5 maternal-fetal gene-gene interactions with q < 0.05. The "top hit" was an interaction between maternal ENPP1 rs1044498 and fetal SLC2A2 rs6785233 (interaction OR = 3.65, 95% CI: 2.32-5.74, p = 2.09×10(-8), q=0.001), which was confirmed in step 2 (p = 0.00004). Our findings suggest that maternal metabolic genes associated with hyperglycemia and insulin resistance and fetal metabolic genes involved in glucose homeostasis may interact to increase the risk of NTDs. PMID:24332798

  16. Curcumin ameliorates high glucose-induced neural tube defects by suppressing cellular stress and apoptosis

    PubMed Central

    Wu, Yanqing; Wang, Fang; Reece, E. Albert; Yang, Peixin

    2015-01-01

    Objectives Curcumin is a naturally occurring polyphenol present in the roots of the Curcuma longa plant (turmeric), which possesses antioxidant, anti-tumorigenic and anti-inflammatory properties. Here, we test whether curcumin treatment reduces high glucose-induced neural tube defects (NTDs), and if this occurs via blocking cellular stress and caspase activation. Study Design Embryonic day 8.5 mouse embryos were collected for use in whole embryo culture under normal glucose (100 mg/dl glucose) or high glucose (300 mg/dl glucose) conditions, with or without curcumin treatment. After 24 h in culture, protein levels of oxidative stress makers, nitrosative stress makers, endoplasmic reticulum (ER) stress makers, cleaved caspase 3 and 8 and the level of lipid peroxides (LPO) were determined in the embryos. After 36 h in culture, embryos were examined for evidence of NTD formation. Results Although 10 μM curcumin did not significantly reduce the rate of NTDs caused by high glucose, 20 μM curcumin significantly ameliorated high glucose-induced NTD formation. Curcumin suppressed oxidative stress in embryos cultured under high glucose conditions. Treatment reduced the levels of the lipid peroxidation marker, 4-hydroxynonenal(4-HNE), nitrotyrosine-modified protein, and LPO. Curcumin also blocked ER stress by inhibiting phosphorylated protein kinase ribonucleic acid (RNA)-like ER kinase (p-PERK), phosphorylated inositol-requiring protein-1α (p-IRE1α), phosphorylated eukaryotic initiation factor 2α (p-eIF2α), C/EBP-homologous protein (CHOP), binding immunoglobulin protein (BiP) and x-box binding protein 1 (XBP1) mRNA splicing. Additionally, curcumin abolished caspase 3 and caspase 8 cleavage in embryos cultured under high glucose conditions. Conclusions Curcumin reduces high glucose-induced NTD formation by blocking cellular stress and caspase activation, suggesting that curcumin supplements could reduce the negative effects of diabetes on the embryo. Further

  17. Lipid droplets of neuroepithelial cells are a major calcium storage site during neural tube formation in chick and mouse embryos.

    PubMed

    Bush, K T; Lee, H; Nagele, R G

    1992-05-15

    In situ precipitation of calcium (Ca2+) with fluoride and antimonate shows that Ca(2+)-specific precipitate is localized almost exclusively within lipid droplets of neuroepithelial cells during neural tube formation in chick and mouse embryos. The density of Ca2+ precipitate within lipid droplets is generally greater in the apical ends of cells situated in regions of the neuroepithelium that are actively engaged in bending. These findings suggest that lipid droplets, in addition to providing a source of metabolic fuel for developing neuroepithelial cells, also serve as Ca(2+)-storage and -releasing sites during neurulation. PMID:1601118

  18. Epigenetic Profiles in Children with a Neural Tube Defect; A Case-Control Study in Two Populations

    PubMed Central

    Stolk, Lisette; Bouwland-Both, Marieke I.; van Mill, Nina H.; Verbiest, Michael M. P. J.; Eilers, Paul H. C.; Zhu, Huiping; Suarez, Lucina; Uitterlinden, André G.; Steegers-Theunissen, Régine P. M.

    2013-01-01

    Folate deficiency is implicated in the causation of neural tube defects (NTDs). The preventive effect of periconceptional folic acid supplement use is partially explained by the treatment of a deranged folate-dependent one carbon metabolism, which provides methyl groups for DNA-methylation as an epigenetic mechanism. Here, we hypothesize that variations in DNA-methylation of genes implicated in the development of NTDs and embryonic growth are part of the underlying mechanism. In 48 children with a neural tube defect and 62 controls from a Dutch case-control study and 34 children with a neural tube defect and 78 controls from a Texan case-control study, we measured the DNA-methylation levels of imprinted candidate genes (IGF2-DMR, H19, KCNQ1OT1) and non-imprinted genes (the LEKR/CCNL gene region associated with birth weight, and MTHFR and VANGL1 associated with NTD). We used the MassARRAY EpiTYPER assay from Sequenom for the assessment of DNA-methylation. Linear mixed model analysis was used to estimate associations between DNA-methylation levels of the genes and a neural tube defect. In the Dutch study group, but not in the Texan study group we found a significant association between the risk of having an NTD and DNA methylation levels of MTHFR (absolute decrease in methylation of −0.33% in cases, P-value = 0.001), and LEKR/CCNL (absolute increase in methylation: 1.36% in cases, P-value = 0.048), and a borderline significant association for VANGL (absolute increase in methylation: 0.17% in cases, P-value = 0.063). Only the association between MTHFR and NTD-risk remained significant after multiple testing correction. The associations in the Dutch study were not replicated in the Texan study. We conclude that the associations between NTDs and the methylation of the MTHFR gene, and maybe VANGL and LEKKR/CNNL, are in line with previous studies showing polymorphisms in the same genes in association with NTDs and embryonic development, respectively. PMID

  19. MTHFR C677T polymorphism as a risk factor of neural tube defects in Malay: a case control study.

    PubMed

    Hayati, A R; Zainal, A I; Tan, G C; Ong, L C; Khoo, T B

    2008-12-01

    Major congenital malformations occur in about 3% of newborn. Several studies have suggested that homozygosity for the C677T methylenetetrahydrofolate reductase (MTHFR) variant is a potential risk factor for neural tube defects (NTDs). It has been hypothesized that the maternal folic acid supplementation prevents NTDs by partially correcting reduced MTHFR activity associated with the variant form of the enzyme. This association has not been found in some ethnic groups. In this study, we attempted to assess the association between NTDs and MTHFR C677T in Malaysian Malay population. Results show that MTHFR 677TT genotype was absent in both patient and control groups. PMID:19803295

  20. Dual Labeling of Neural Crest Cells and Blood Vessels Within Chicken Embryos Using ChickGFP Neural Tube Grafting and Carbocyanine Dye DiI Injection

    PubMed Central

    Delalande, Jean-Marie; Thapar, Nikhil; Burns, Alan J.

    2015-01-01

    All developing organs need to be connected to both the nervous system (for sensory and motor control) as well as the vascular system (for gas exchange, fluid and nutrient supply). Consequently both the nervous and vascular systems develop alongside each other and share striking similarities in their branching architecture. Here we report embryonic manipulations that allow us to study the simultaneous development of neural crest-derived nervous tissue (in this case the enteric nervous system), and the vascular system. This is achieved by generating chicken chimeras via transplantation of discrete segments of the neural tube, and associated neural crest, combined with vascular DiI injection in the same embryo. Our method uses transgenic chickGFP embryos for intraspecies grafting, making the transplant technique more powerful than the classical quail-chick interspecies grafting protocol used with great effect since the 1970s. ChickGFP-chick intraspecies grafting facilitates imaging of transplanted cells and their projections in intact tissues, and eliminates any potential bias in cell development linked to species differences. This method takes full advantage of the ease of access of the avian embryo (compared with other vertebrate embryos) to study the co-development of the enteric nervous system and the vascular system. PMID:26065540

  1. Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets: Reducing background and attaining high precision

    NASA Astrophysics Data System (ADS)

    Xu, Xiaomei; Trumbore, Susan E.; Zheng, Shuhui; Southon, John R.; McDuffee, Kelsey E.; Luttgen, Madelyn; Liu, Julia C.

    2007-06-01

    The sealed tube zinc reduction method for converting CO2 to graphite for AMS 14C measurements was originally developed for rapid production of graphite in biomedical tracer experiments. The method was usually thought to have low precision and a high background. We have modified the zinc reduction method originally outlined in Vogel [J.S. Vogel, Radiocarbon 34 (3) (1992) 344] by carefully controlling the amounts of reagents (zinc, titanium hydride and Co or Fe catalyst) and now routinely obtain a precision of 2-3‰ and a relatively low background of ∼50,000 14C years when analyzing for 14C at the Keck Carbon Cycle AMS facility at UC Irvine. Fractionation of carbon isotopes does occur during graphitization and depends on the graphitization yield, which can be affected by the amounts of reagents used and other conditions. The δ13C of our zinc-reduced graphite is usually lighter by 2-3‰ than the CO2 from which it is made, but this is corrected for in our system by simultaneous measurement of 13C/12C along with 14C/12C by the spectrometer. This method is suitable for 14C enriched samples, as well as natural abundance 14C samples, especially those with modern 14C contents. With improved precision and background, we believe that many disciplines can benefit from this technique because of its low cost and rapid production of graphite.

  2. Estimating Neural Background Input with Controlled and Fast Perturbations: A Bandwidth Comparison between Inhibitory Opsins and Neural Circuits.

    PubMed

    Eriksson, David

    2016-01-01

    To test the importance of a certain cell type or brain area it is common to make a "lack of function" experiment in which the neuronal population of interest is inhibited. Here we review physiological and methodological constraints for making controlled perturbations using the corticothalamic circuit as an example. The brain with its many types of cells and rich interconnectivity offers many paths through which a perturbation can spread within a short time. To understand the side effects of the perturbation one should record from those paths. We find that ephaptic effects, gap-junctions, and fast chemical synapses are so fast that they can react to the perturbation during the few milliseconds it takes for an opsin to change the membrane potential. The slow chemical synapses, astrocytes, extracellular ions and vascular signals, will continue to give their physiological input for around 20 ms before they also react to the perturbation. Although we show that some pathways can react within milliseconds the strength/speed reported in this review should be seen as an upper bound since we have omitted how polysynaptic signals are attenuated. Thus the number of additional recordings that has to be made to control for the perturbation side effects is expected to be fewer than proposed here. To summarize, the reviewed literature not only suggests that it is possible to make controlled "lack of function" experiments, but, it also suggests that such a "lack of function" experiment can be used to measure the context of local neural computations. PMID:27574506

  3. Temporal and Spatial Analysis of Neural Tube Defects and Detection of Geographical Factors in Shanxi Province, China

    PubMed Central

    He, Lei; Wang, Jinfeng; Liu, Xin; Zhang, Ningxu; Xu, Bing

    2016-01-01

    Background Neural tube defects (NTDs) are congenital birth defects that occur in the central nervous system, and they have the highest incidence among all birth defects. Shanxi Province in China has the world’s highest rate of NTDs. Since the 1990s, China’s government has worked on many birth defect prevention programs to reduce the occurrence of NTDs, such as pregnancy planning, health education, genetic counseling, antenatal ultrasonography and serological screening. However, the rate of NTDs in Shanxi Province is still higher than the world’s average morbidity rate after intervention. In addition, Shanxi Province has abundant coal reserves, and is the largest coal production province in China. The objectives of this study are to determine the temporal and spatial variation of the NTD rate in rural areas of Shanxi Province, China, and identify geographical environmental factors that were associated with NTDs in the risk area. Methods In this study, Heshun County and Yuanping County in Shanxi Province, which have high incidence of NTDs, were selected as the study areas. Two paired sample T test was used to analyze the changes in the risk of NTDs from the time dimension. Ripley’s k function and spatial filtering were combined with geographic information system (GIS) software to study the changes in the risk of NTDs from the spatial dimension. In addition, geographical detectors were used to identify the risk geographical environmental factors of NTDs in the study areas, especially the areas close to the coal sites and main roads. Results In both Heshun County and Yuanping County, the incidence of NTDs was significantly (P<0.05) reduced after intervention. The results from spatial analysis showed that significant spatial heterogeneity existed in both counties. NTD clusters were still identified in areas close to coal sites and main roads after interventions. This study also revealed that the elevation, fault and soil types always had a larger influence on

  4. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters

    PubMed Central

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915measuredsamples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rateand heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08. PMID:26624613

  5. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters.

    PubMed

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915 measured samples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rate and heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08. PMID:26624613

  6. Functional dissection of the Pax6 paired domain: Roles in neural tube patterning and peripheral nervous system development.

    PubMed

    Huettl, Rosa-Eva; Eckstein, Simone; Stahl, Tessa; Petricca, Stefania; Ninkovic, Jovica; Götz, Magdalena; Huber, Andrea B

    2016-05-01

    During development of the CNS, stem and progenitor cell proliferation, cell fate designation, and patterning decisions are tightly regulated by interdependent networks of key transcriptional regulators. In a genetic approach we analyzed divergent functionality of the PAI and RED sub-domains of the Pax6 Paired domain (PD) during progenitor zone formation, motor and interneuron development, and peripheral connectivity at distinct levels within the neural tube: within the hindbrain, mutation of the PAI sub-domain severely affected patterning of the p3 and pMN domains and establishment of the corresponding motor neurons. Exit point designation of hypoglossal axons was disturbed in embryos harboring either mutations in the PD sub-domains or containing a functional Pax6 Null allele. At brachial spinal levels, we propose a selective involvement of the PAI sub-domain during patterning of ventral p2 and pMN domains, critically disturbing generation of specific motor neuron subtypes and increasing V2 interneuron numbers. Our findings present a novel aspect of how Pax6 not only utilizes its modular structure to perform distinct functions via its paired and homeodomain. Individual sub-domains can exert distinct functions, generating a new level of complexity for transcriptional regulation by one single transcription factor not only in dorso-ventral, but also rostro-caudal neural tube patterning. PMID:26187199

  7. Updated estimates of neural tube defects prevented by mandatory folic Acid fortification - United States, 1995-2011.

    PubMed

    Williams, Jennifer; Mai, Cara T; Mulinare, Joe; Isenburg, Jennifer; Flood, Timothy J; Ethen, Mary; Frohnert, Barbara; Kirby, Russell S

    2015-01-16

    In 1992, the U.S. Public Health Service recommended that all women capable of becoming pregnant consume 400 µg of folic acid daily to prevent neural tube defects (NTDs). NTDs are major birth defects of the brain and spine that occur early in pregnancy as a result of improper closure of the embryonic neural tube, which can lead to death or varying degrees of disability. The two most common NTDs are anencephaly and spina bifida. Beginning in 1998, the United States mandated fortification of enriched cereal grain products with 140 µg of folic acid per 100 g. Immediately after mandatory fortification, the birth prevalence of NTD cases declined. Fortification was estimated to avert approximately 1,000 NTD-affected pregnancies annually. To provide updated estimates of the birth prevalence of NTDs in the period after introduction of mandatory folic acid fortification (i.e., the post-fortification period), data from 19 population-based birth defects surveillance programs in the United States, covering the years 1999-2011, were examined. After the initial decrease, NTD birth prevalence during the post-fortification period has remained relatively stable. The number of births occurring annually without NTDs that would otherwise have been affected is approximately 1,326 (95% confidence interval = 1,122-1,531). Mandatory folic acid fortification remains an effective public health intervention. There remain opportunities for prevention among women with lower folic acid intakes, especially among Hispanic women, to further reduce the prevalence of NTDs in the United States. PMID:25590678

  8. Rho-kinase-dependent actin turnover and actomyosin disassembly are necessary for mouse spinal neural tube closure

    PubMed Central

    Escuin, Sarah; Vernay, Bertrand; Savery, Dawn; Gurniak, Christine B.; Witke, Walter; Greene, Nicholas D. E.; Copp, Andrew J.

    2015-01-01

    ABSTRACT The cytoskeleton is widely considered essential for neurulation, yet the mouse spinal neural tube can close despite genetic and non-genetic disruption of the cytoskeleton. To investigate this apparent contradiction, we applied cytoskeletal inhibitors to mouse embryos in culture. Preventing actomyosin cross-linking, F-actin assembly or myosin II contractile activity did not disrupt spinal closure. In contrast, inhibiting Rho kinase (ROCK, for which there are two isoforms ROCK1 and ROCK2) or blocking F-actin disassembly prevented closure, with apical F-actin accumulation and adherens junction disturbance in the neuroepithelium. Cofilin-1-null embryos yielded a similar phenotype, supporting the hypothesis that there is a key role for actin turnover. Co-exposure to Blebbistatin rescued the neurulation defects caused by RhoA inhibition, whereas an inhibitor of myosin light chain kinase, ML-7, had no such effect. We conclude that regulation of RhoA, Rho kinase, LIM kinase and cofilin signalling is necessary for spinal neural tube closure through precise control of neuroepithelial actin turnover and actomyosin disassembly. In contrast, actomyosin assembly and myosin ATPase activity are not limiting for closure. PMID:26040287

  9. Inositol deficiency increases the susceptibility to neural tube defects of genetically predisposed (curly tail) mouse embryos in vitro.

    PubMed

    Cockroft, D L; Brook, F A; Copp, A J

    1992-02-01

    Curly tail (ct/ct) mouse embryos, which have a genetic predisposition for neural tube defects (NTD), were grown in culture from the 2-5 somite stage, before the initiation of neurulation, up to the 22-24 somite stage, when closure of the anterior neural tube is normally complete. The embryos were cultured in whole rat serum or in extensively dialysed serum supplemented with glucose, amino acids, and vitamins, with inositol omitted or added at concentrations of 2, 10, 20, and 50 mg/l. Two strains were used as controls; CBA mice, which are related to curly tails, and an unrelated PO stock. It was found that ct/ct embryos were particularly sensitive to inositol deficiency; both they and the CBA embryos showed a similar high incidence of cranial NTD after culture in inositol deficient medium (12/17 and 11/18, respectively). Furthermore, the lowest dose of inositol had no effect on the frequency of head defects in ct/ct mice, though it halved the incidence in CBA embryos. With higher inositol concentrations, the majority of ct/ct embryos completed head closure normally, and their development was generally similar to that obtained in whole serum. PO embryos showed a lower proportion (5/19) of cranial NTD in the inositol deficient medium than the other two strains, and this was further reduced by even the lowest inositol dose. PMID:1615432

  10. Mutations in the planar cell polarity genes CELSR1 and SCRIB are associated with the severe neural tube defect craniorachischisis.

    PubMed

    Robinson, Alexis; Escuin, Sarah; Doudney, Kit; Vekemans, Michel; Stevenson, Roger E; Greene, Nicholas D E; Copp, Andrew J; Stanier, Philip

    2012-02-01

    Craniorachischisis (CRN) is a severe neural tube defect (NTD) resulting from failure to initiate closure, leaving the hindbrain and spinal neural tube entirely open. Clues to the genetic basis of this condition come from several mouse models, which harbor mutations in core members of the planar cell polarity (PCP) signaling pathway. Previous studies of humans with CRN failed to identify mutations in the core PCP genes, VANGL1 and VANGL2. Here, we analyzed other key PCP genes: CELSR1, PRICKLE1, PTK7, and SCRIB, with the finding of eight potentially causative mutations in both CELSR1 and SCRIB. Functional effects of these unique or rare human variants were evaluated using known protein-protein interactions as well as subcellular protein localization. While protein interactions were not affected, variants from five of the 36 patients exhibited a profound alteration in subcellular protein localization, with diminution or abolition of trafficking to the plasma membrane. Comparable effects were seen in the crash and spin cycle mouse Celsr1 mutants, and the line-90 mouse Scrib mutant. We conclude that missense variants in CELSR1 and SCRIB may represent a cause of CRN in humans, as in mice, with defective PCP protein trafficking to the plasma membrane a likely pathogenic mechanism. PMID:22095531

  11. Long term effects of periconceptional multivitamin supplements for prevention of neural tube defects: a seven to 10 year follow up.

    PubMed Central

    Holmes-Siedle, M; Dennis, J; Lindenbaum, R H; Galliard, A

    1992-01-01

    Periconceptional supplementation with Pregnavite Forte F was offered to women who presented consecutively to the Oxford genetic counselling service in the early 1980s who had previously had one or more pregnancies complicated by a neural tube defect. The first 100 children born alive to these women are the subject of this study. Birth weight, gestation, and congenital abnormalities were recorded. At age 2-5 years all 96 children remaining in the United Kingdom were assessed clinically and developmentally and behavioural information was obtained by questionnaire. At age 7-10 years, follow up of 91 children by telephone and postal questionnaire yielded further information about growth, general health, vision, hearing, and educational and behavioural status. Entry criteria excluded single mothers but the social class distribution of the sample was otherwise representative of the Oxfordshire population. There were no recurrences of neural tube defects. One child had radiological evidence of spina bifida occulta affecting only the fifth lumbar vertebra. One had an autosomal recessive disorder. Eight had random minor congenital anomalies. Birth weight for gestational age was significantly greater than for the local population and at age 7-10 years the girls were considerably taller than expected. Health, auditory, visual, and developmental status were no different from the general population. None of the children had special educational needs. None showed a major behaviour disorder but worries, fussiness, and fearfulness were highly significantly over represented. PMID:1489221

  12. Distinct Sonic Hedgehog signaling dynamics specify floor plate and ventral neuronal progenitors in the vertebrate neural tube

    PubMed Central

    Ribes, Vanessa; Balaskas, Nikolaos; Sasai, Noriaki; Cruz, Catarina; Dessaud, Eric; Cayuso, Jordi; Tozer, Samuel; Yang, Lin Lin; Novitch, Ben; Marti, Elisa; Briscoe, James

    2010-01-01

    The secreted ligand Sonic Hedgehog (Shh) organizes the pattern of cellular differentiation in the ventral neural tube. For the five neuronal subtypes, increasing levels and durations of Shh signaling direct progenitors to progressively more ventral identities. Here we demonstrate that this mode of action is not applicable to the generation of the most ventral cell type, the nonneuronal floor plate (FP). In chick and mouse embryos, FP specification involves a biphasic response to Shh signaling that controls the dynamic expression of key transcription factors. During gastrulation and early somitogenesis, FP induction depends on high levels of Shh signaling. Subsequently, however, prospective FP cells become refractory to Shh signaling, and this is a prerequisite for the elaboration of their identity. This prompts a revision to the model of graded Shh signaling in the neural tube, and provides insight into how the dynamics of morphogen signaling are deployed to extend the patterning capacity of a single ligand. In addition, we provide evidence supporting a common scheme for FP specification by Shh signaling that reconciles mechanisms of FP development in teleosts and amniotes. PMID:20516201

  13. Estimating Neural Background Input with Controlled and Fast Perturbations: A Bandwidth Comparison between Inhibitory Opsins and Neural Circuits

    PubMed Central

    Eriksson, David

    2016-01-01

    To test the importance of a certain cell type or brain area it is common to make a “lack of function” experiment in which the neuronal population of interest is inhibited. Here we review physiological and methodological constraints for making controlled perturbations using the corticothalamic circuit as an example. The brain with its many types of cells and rich interconnectivity offers many paths through which a perturbation can spread within a short time. To understand the side effects of the perturbation one should record from those paths. We find that ephaptic effects, gap-junctions, and fast chemical synapses are so fast that they can react to the perturbation during the few milliseconds it takes for an opsin to change the membrane potential. The slow chemical synapses, astrocytes, extracellular ions and vascular signals, will continue to give their physiological input for around 20 ms before they also react to the perturbation. Although we show that some pathways can react within milliseconds the strength/speed reported in this review should be seen as an upper bound since we have omitted how polysynaptic signals are attenuated. Thus the number of additional recordings that has to be made to control for the perturbation side effects is expected to be fewer than proposed here. To summarize, the reviewed literature not only suggests that it is possible to make controlled “lack of function” experiments, but, it also suggests that such a “lack of function” experiment can be used to measure the context of local neural computations. PMID:27574506

  14. Analysis of MTR and MTRR Polymorphisms for Neural Tube Defects Risk Association

    PubMed Central

    Wang, Yongxin; Liu, Yuan; Ji, Wenyu; Qin, Hu; Wu, Hao; Xu, Danshu; Tukebai, Turtuohut; Wang, Zengliang

    2015-01-01

    Abstract Neural tube defects (NTDs) are the most common congenital defects of the central nervous system among neonates and the folate status during pregnancy was considered as the most important etiopathogenesis of NTDs. Besides, methionine synthase (MTR) gene and methionine synthase reductase (MTRR) gene were folate metabolism involved genes and had been investigated in several previous studies with inconsistent results. Hence, we aimed to explore the association of 4 selected single-nucleotide polymorphisms (SNPs) on MTRR/MTR gene and the susceptibility of NTDs in a Chinese population. Seven SNPs were selected from HapMap databases with Haploview 4.2 software. A polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed to genotype the polymorphisms from blood samples of 165 NTDs patients and 280 healthy controls. The correlation between these SNPs and NTDs risk was tested by Student t test and Chi-square test by STATA 11.0 software. Furthermore, we performed a meta-analysis of relevant studies to investigate the association between the SNPs MTRR 66A>G and MTR 2756A>G and the susceptibility of NTDs. An increased risk of NTDs was verified to be significantly associated with MTRR 66A>G (G allele vs. A allele: OR = 1.36 (1.03–1.80), P = 0.028; GG + AG vs. AA: OR = 1.60 (1.05–2.43), P = 0.027) and MTR 2756A>G (G allele vs. A allele: OR = 1.45 (1.06–1.98), P = 0.021; GG + AG vs. AA: OR = 1.51 (1.02–2.23), P = 0.038) in our study. However, the other SNPs in our analysis showed no significant association with NTDs risk (all P > 0.05). Furthermore, the result of the meta-analysis supported the association between MTRR 66A>G and NTDs risk (G allele vs. A allele: OR = 1.32, 95% CI = 1.09–1.61, GG + GA vs. AA: OR = 1.49, 95% CI = 1.06–2.09, GG vs. AA: OR = 1.61, 95% CI = 1.04–2.49). Our study confirmed that the MTRR 66A>G and MTR 2756A>G were significantly

  15. A mutation in the tuft mouse disrupts TET1 activity and alters the expression of genes that are crucial for neural tube closure.

    PubMed

    Fong, Keith S K; Hufnagel, Robert B; Khadka, Vedbar S; Corley, Michael J; Maunakea, Alika K; Fogelgren, Ben; Ahmed, Zubair M; Lozanoff, Scott

    2016-05-01

    Genetic variations affecting neural tube closure along the head result in malformations of the face and brain. Neural tube defects (NTDs) are among the most common birth defects in humans. We previously reported a mouse mutant called tuft that arose spontaneously in our wild-type 3H1 colony. Adult tuft mice present midline craniofacial malformations with or without an anterior cephalocele. In addition, affected embryos presented neural tube closure defects resulting in insufficient closure of the anterior neuropore or exencephaly. Here, through whole-genome sequencing, we identified a nonsense mutation in the Tet1 gene, which encodes a methylcytosine dioxygenase (TET1), co-segregating with the tuft phenotype. This mutation resulted in premature termination that disrupts the catalytic domain that is involved in the demethylation of cytosine. We detected a significant loss of TET enzyme activity in the heads of tuft embryos that were homozygous for the mutation and had NTDs. RNA-Seq transcriptome analysis indicated that multiple gene pathways associated with neural tube closure were dysregulated in tuft embryo heads. Among them, the expressions of Cecr2, Epha7 and Grhl2 were significantly reduced in some embryos presenting neural tube closure defects, whereas one or more components of the non-canonical WNT signaling pathway mediating planar cell polarity and convergent extension were affected in others. We further show that the recombinant mutant TET1 protein was capable of entering the nucleus and affected the expression of endogenous Grhl2 in IMCD-3 (inner medullary collecting duct) cells. These results indicate that TET1 is an epigenetic determinant for regulating genes that are crucial to closure of the anterior neural tube and its mutation has implications to craniofacial development, as presented by the tuft mouse. PMID:26989192

  16. Prevention of neural tube defects by the fortification of flour with folic acid: a population-based retrospective study in Brazil

    PubMed Central

    Lecca, Roberto Carlos Reyes; Cortez-Escalante, Juan Jose; Sanchez, Mauro Niskier; Rodrigues, Humberto Gabriel

    2016-01-01

    Abstract Objective To determine if the fortification of wheat and maize flours with iron and folic acid – which became mandatory in Brazil from June 2004 – is effective in the prevention of neural tube defects. Methods Using data from national information systems on births in central, south-eastern and southern Brazil, we determined the prevalence of neural tube defects among live births and stillbirths in a pre-fortification period – i.e. 2001–2004 – and in a post-fortification period – i.e. 2005–2014. We distinguished between anencephaly, encephalocele, meningocele, myelomeningocele and other forms of spina bifida. Findings There were 8554 neural tube defects for 17 925 729 live births notified between 2001 and 2014. For the same period, 2673 neural tube defects were reported for 194 858 stillbirths. The overall prevalence of neural tube defects fell from 0.79 per 1000 pre-fortification to 0.55 per 1000 post-fortification (prevalence ratio, PR: 1.43; 95% confidence interval, CI: 1.38–1.50). For stillbirths, prevalence fell from 17.74 per 1000 stillbirths pre-fortification to 11.70 per 1000 stillbirths post-fortification. The corresponding values among live births were 0.57 and 0.44, respectively. Conclusion The introduction of the mandatory fortification of flour with iron and folic acid in Brazil was followed by a significant reduction in the prevalence of neural tube defects in our study area. PMID:26769993

  17. A mutation in the tuft mouse disrupts TET1 activity and alters the expression of genes that are crucial for neural tube closure

    PubMed Central

    Khadka, Vedbar S.; Corley, Michael J.; Maunakea, Alika K.; Fogelgren, Ben; Ahmed, Zubair M.; Lozanoff, Scott

    2016-01-01

    ABSTRACT Genetic variations affecting neural tube closure along the head result in malformations of the face and brain. Neural tube defects (NTDs) are among the most common birth defects in humans. We previously reported a mouse mutant called tuft that arose spontaneously in our wild-type 3H1 colony. Adult tuft mice present midline craniofacial malformations with or without an anterior cephalocele. In addition, affected embryos presented neural tube closure defects resulting in insufficient closure of the anterior neuropore or exencephaly. Here, through whole-genome sequencing, we identified a nonsense mutation in the Tet1 gene, which encodes a methylcytosine dioxygenase (TET1), co-segregating with the tuft phenotype. This mutation resulted in premature termination that disrupts the catalytic domain that is involved in the demethylation of cytosine. We detected a significant loss of TET enzyme activity in the heads of tuft embryos that were homozygous for the mutation and had NTDs. RNA-Seq transcriptome analysis indicated that multiple gene pathways associated with neural tube closure were dysregulated in tuft embryo heads. Among them, the expressions of Cecr2, Epha7 and Grhl2 were significantly reduced in some embryos presenting neural tube closure defects, whereas one or more components of the non-canonical WNT signaling pathway mediating planar cell polarity and convergent extension were affected in others. We further show that the recombinant mutant TET1 protein was capable of entering the nucleus and affected the expression of endogenous Grhl2 in IMCD-3 (inner medullary collecting duct) cells. These results indicate that TET1 is an epigenetic determinant for regulating genes that are crucial to closure of the anterior neural tube and its mutation has implications to craniofacial development, as presented by the tuft mouse. PMID:26989192

  18. Self-organized criticality in a two-dimensional cellular automaton model of a magnetic flux tube with background flow

    NASA Astrophysics Data System (ADS)

    Dănilă, B.; Harko, T.; Mocanu, G.

    2015-11-01

    We investigate the transition to self-organized criticality in a two-dimensional model of a flux tube with a background flow. The magnetic induction equation, represented by a partial differential equation with a stochastic source term, is discretized and implemented on a two-dimensional cellular automaton. The energy released by the automaton during one relaxation event is the magnetic energy. As a result of the simulations, we obtain the time evolution of the energy release, of the system control parameter, of the event lifetime distribution and of the event size distribution, respectively, and we establish that a self-organized critical state is indeed reached by the system. Moreover, energetic initial impulses in the magnetohydrodynamic flow can lead to one-dimensional signatures in the magnetic two-dimensional system, once the self-organized critical regime is established. The applications of the model for the study of gamma-ray bursts (GRBs) is briefly considered, and it is shown that some astrophysical parameters of the bursts, like the light curves, the maximum released energy and the number of peaks in the light curve can be reproduced and explained, at least on a qualitative level, by working in a framework in which the systems settles in a self-organized critical state via magnetic reconnection processes in the magnetized GRB fireball.

  19. Defective neural tube morphogenesis and altered apoptosis in the absence of both JNK1 and JNK2.

    PubMed

    Sabapathy, K; Jochum, W; Hochedlinger, K; Chang, L; Karin, M; Wagner, E F

    1999-12-01

    Mice lacking both c-Jun-NH(2)-terminal kinases (JNK1 and JNK2) were generated to define their roles in development. Jnk1/jnk2 double mutant fetuses die around embryonic day 11 (E11) and were found to display an open neural tube (exencephaly) at the hindbrain level with reduced apoptosis in the hindbrain neuroepithelium at E9.25. In contrast, a dramatic increase in cell death was observed one day later at E10.5 in both the hindbrain and forebrain regions. Moreover, about 25% of jnk1-/-jnk2+/- fetuses display exencephaly probably due to reduced levels of JNK proteins, whereas jnk1+/-jnk2-/- mice are viable. These results assign both pro- and anti-apoptotic functions for JNK1 and JNK2 in the development of the fetal brain. PMID:10559486

  20. A Single-Center Experience of CNS Anomalies or Neural Tube Defects in Patients With Jarcho-Levin Syndrome.

    PubMed

    Demir, Nihat; Peker, Erdal; Gülşen, İsmail; Ağengin, Kemal; Kaba, Sultan; Tuncer, Oğuz

    2016-03-01

    Jarcho-Levin syndrome (JLS) is a genetic disorder characterized by distinct malformations of the ribs and vertebrae, and/or other associated abnormalities such as neural tube defect, Arnold-Chiari malformation, renal and urinary abnormalities, hydrocephalus, congenital cardiac abnormalities, and extremity malformations. The study included 12 cases at 37-42 weeks of gestation and diagnosed to have had Jarcho-Levin syndrome, Arnold-Chiari malformation, and meningmyelocele. All cases of Jarcho-Levin syndrome had Arnold-Chiari type 2 malformation; there was corpus callosum dysgenesis in 6, lumbosacral meningmyelocele in 6, lumbal meningmyelocele in 3, thoracal meningmyelocele in 3, and holoprosencephaly in 1 of the cases. With this article, the authors underline the neurologic abnormalities accompanying Jarcho-Levin syndrome and that each of these abnormalities is a component of Jarcho-Levin syndrome. PMID:26239489

  1. Detection of Foreign Matter in Transfusion Solution Based on Gaussian Background Modeling and an Optimized BP Neural Network

    PubMed Central

    Zhou, Fuqiang; Su, Zhen; Chai, Xinghua; Chen, Lipeng

    2014-01-01

    This paper proposes a new method to detect and identify foreign matter mixed in a plastic bottle filled with transfusion solution. A spin-stop mechanism and mixed illumination style are applied to obtain high contrast images between moving foreign matter and a static transfusion background. The Gaussian mixture model is used to model the complex background of the transfusion image and to extract moving objects. A set of features of moving objects are extracted and selected by the ReliefF algorithm, and optimal feature vectors are fed into the back propagation (BP) neural network to distinguish between foreign matter and bubbles. The mind evolutionary algorithm (MEA) is applied to optimize the connection weights and thresholds of the BP neural network to obtain a higher classification accuracy and faster convergence rate. Experimental results show that the proposed method can effectively detect visible foreign matter in 250-mL transfusion bottles. The misdetection rate and false alarm rate are low, and the detection accuracy and detection speed are satisfactory. PMID:25347581

  2. Increased nuclear sphingoid base-1-phosphates and HDAC inhibition after fumonisin and FTY720-treatment: the link between epigenomic modifications and neural tube defects?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Fumonisin B1 (FB1) is a mycotoxin produced by a common fungal contaminant of corn. Ingestion of FB1-contaminated food during early pregnancy is associated with increased risk for neural tube defects (NTDs). FB1 inhibits the enzyme ceramide synthase in de novo sphingolipid biosynthes...

  3. Elevated Nuclear and Cytoplasmic FTY720-Phosphate in Mouse Embryonic Fibroblasts Suggests the Potential for Multiple Mechanisms in FTY720-Induced Neural Tube Defects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    FTY720 (fingolimod) is an FDA-approved drug to treat relapsing remitting multiple sclerosis. FTY720 treatment in pregnant inbred LM/Bc mice results in approximately 60% of embryos having a neural tube defect (NTD). Sphingosine kinases (Sphk1, Sphk2) phosphorylate FTY720 in vivo to form the bioactive...

  4. Consumption of folate deficient diet did not increase neural tube defects in LM/Bc mice exposed to fumonisin B1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fumonisin B1 (FB1) is a mycotoxin produced by Fusarium verticillioides and F. proliferatum. It is found in corn and evidence suggests it is a possible risk factor for neural tube defects (NTD) in populations consuming large amounts of contaminated corn-based foods. The mechanism(s) underlying NTD i...

  5. Insights into prevention of human neural tube defects by folic acid arising from consideration of mouse mutants.

    PubMed

    Harris, Muriel J

    2009-04-01

    Almost 30 years after the initial study by Richard W. Smithells and coworkers, it is still unknown how maternal periconceptional folic acid supplementation prevents human neural tube defects (NTDs). In this article, questions about human NTD prevention are considered in relation to three groups of mouse models: NTD mutants that respond to folate, NTD mutants and strains that do not respond to folate, and mutants involving folate-pathway genes. Of the 200 mouse NTD mutants, only a few have been tested with folate; half respond and half do not. Among responsive mutants, folic acid supplementation reduces exencephaly and/or spina bifida aperta frequency in the Sp(2H), Sp, Cd, Cited2, Cart1, and Gcn5 mutants. Prevention ranges from 35 to 85%. The responsive Sp(2H) (Pax3) mutant has abnormal folate metabolism, but the responsive Cited2 mutant does not. Neither folic nor folinic acid reduces NTD frequency in Axd, Grhl3, Fkbp8, Map3k4, or Nog mutants or in the curly tail or SELH/Bc strains. Spina bifida frequency is reduced in Axd by methionine and in curly tail by inositol. Exencephaly frequency is reduced in SELH/Bc by an alternative commercial ration. Mutations in folate-pathway genes do not cause NTDs, except for 30% exencephaly in folate-treated Folr1. Among folate-pathway mutants, neural tube closure is normal in Cbs, Folr2, Mthfd1, Mthfd2, Mthfr, and Shmt1 mutants. Embryos die by midgestation in Folr1, Mtr, Mtrr, and RFC1 mutants. The mouse models point to genetic heterogeneity in the ability to respond to folic acid and also to heterogeneity in genetic cause of NTDs that can be prevented by folic acid. PMID:19117321

  6. Specific isoforms of protein kinase C are essential for prevention of folate-resistant neural tube defects by inositol.

    PubMed

    Cogram, Patricia; Hynes, Andrew; Dunlevy, Louisa P E; Greene, Nicholas D E; Copp, Andrew J

    2004-01-01

    A proportion of neural tube defects (NTDs) can be prevented by maternal folic acid supplementation, although some cases are unresponsive. The curly tail mutant mouse provides a model of folate-resistant NTDs, in which defects can be prevented by inositol therapy in early pregnancy. Hence, inositol represents a possible novel adjunct therapy to prevent human NTDs. The present study investigated the molecular mechanism by which inositol prevents mouse NTDs. Activation of protein kinase C (PKC) is known to be essential, and we examined neurulation-stage embryos for PKC expression and applied PKC inhibitors to curly tail embryos developing in culture. Although all known PKC isoforms were detected in the closing neural tube, use of chemical PKC inhibitors identified a particular requirement for 'conventional' PKC isoforms. Peptide inhibitors offer selective inhibition of individual PKCs, and we demonstrated isoform-specific inhibition of PKC in embryonic cell cultures. Application of peptide inhibitors to neurulation-stage embryos revealed an absolute dependence on the activity of PKCbetaI and gamma for prevention of NTDs by inositol, and partial dependence on PKCzeta, whereas other PKCs (alpha, betaII delta, and epsilon) were dispensable. To investigate the cellular action of inositol and PKCs in NTD prevention, we examined cell proliferation in curly tail embryos. Defective proliferation of hindgut cells is a key component of the pathogenic sequence leading to NTDs in curly tail. Hindgut cell proliferation was stimulated specifically by inositol, an effect that required activation of PKCbetaI. Our findings reveal an essential role of specific PKC isoforms in mediating the prevention of mouse NTDs by inositol. PMID:14613966

  7. Folic acid and pantothenic acid protection against valproic acid-induced neural tube defects in CD-1 mice

    SciTech Connect

    Dawson, Jennifer E.; Raymond, Angela M.; Winn, Louise M. . E-mail: winnl@biology.queensu.ca

    2006-03-01

    In utero exposure to valproic acid (VPA) during pregnancy is associated with an increased risk of neural tube defects (NTDs). Although the mechanism by which VPA mediates these effects is unknown, VPA-initiated changes in embryonic protein levels have been implicated. The objectives of this study were to investigate the effect of in utero VPA exposure on embryonic protein levels of p53, NF-{kappa}B, Pim-1, c-Myb, Bax, and Bcl-2 in the CD-1 mouse. We also evaluated the protective effects of folic acid and pantothenic acid on VPA-induced NTDs and VPA-induced embryonic protein changes in this model. Pregnant CD-1 mice were administered a teratogenic dose of VPA prior to neural tube closure and embryonic protein levels were analyzed. In our study, VPA (400 mg/kg)-induced NTDs (24%) and VPA-exposed embryos with an NTD showed a 2-fold increase in p53, and 4-fold decreases in NF-{kappa}B, Pim-1, and c-Myb protein levels compared to their phenotypically normal littermates (P < 0.05). Additionally, VPA increased the ratio of embryonic Bax/Bcl-2 protein levels (P < 0.05). Pretreatment of pregnant dams with either folic acid or pantothenic acid prior to VPA significantly protected against VPA-induced NTDs (P < 0.05). Folic acid also reduced VPA-induced alterations in p53, NF-{kappa}B, Pim-1, c-Myb, and Bax/Bcl-2 protein levels, while pantothenic acid prevented VPA-induced alterations in NF-{kappa}B, Pim-1, and c-Myb. We hypothesize that folic acid and pantothenic acid protect CD-1 embryos from VPA-induced NTDs by independent, but not mutually exclusive mechanisms, both of which may be mediated by the prevention of VPA-induced alterations in proteins involved in neurulation.

  8. SOX10 structure-function analysis in the chicken neural tube reveals important insights into its role in human neurocristopathies.

    PubMed

    Cossais, François; Wahlbuhl, Mandy; Kriesch, Jana; Wegner, Michael

    2010-06-15

    The HMG-domain containing transcription factor Sox10 is essential for neural crest (NC) development and for oligodendrocyte differentiation. Heterozygous SOX10 mutations in humans lead to corresponding defects in several NC-derived lineages and to leukodystrophies. Disease phenotypes range from Waardenburg syndrome and Waardenburg-Hirschsprung disease to Peripheral demyelinating neuropathy, Central dysmyelination, Waardenburg syndrome and Hirschsprung disease (PCWH). The phenotypic variability can partly be explained by the action of modifier genes, but is also influenced by the mutation that leads to haploinsufficiency in some and to mutant SOX10 proteins with altered properties in other cases. Here, we used in ovo electroporation in the developing neural tube of chicken to determine which regions and properties of SOX10 are required for early NC development. We found a strict reliance on the DNA-binding activity and the presence of the C-terminal transactivation domain and a lesser influence of the dimerization function and a conserved domain in the center of the protein. Intriguingly, dominant-negative effects on early NC development were mostly observed for truncated SOX10 proteins whose production in patients is probably prevented by nonsense-mediated decay. In contrast, mutant SOX10 proteins that occur in patients were usually inactive. Any dominant negative activity which some of these mutants undoubtedly possess must, therefore, be restricted to single NC-derived cell lineages or oligodendrocytes at later times. This contributes to the phenotypic variability of human SOX10 mutations. PMID:20308050

  9. Neural underpinnings of background acoustic noise in normal aging and mild cognitive impairment.

    PubMed

    Sinanaj, Indrit; Montandon, Marie-Louise; Rodriguez, Cristelle; Herrmann, François; Santini, Francesco; Haller, Sven; Giannakopoulos, Panteleimon

    2015-12-01

    Previous contributions in younger cohorts have revealed that reallocation of cerebral resources, a crucial mechanism for working memory (WM), may be disrupted by parallel demands of background acoustic noise suppression. To date, no study has explored the impact of such disruption on brain activation in elderly individuals with or without subtle cognitive deficits. We performed a functional Magnetic Resonance Imaging (fMRI) study in 23 cases (mean age=75.7 y.o., 16 men) with mild cognitive impairment (MCI) and 16 elderly healthy controls (HC, mean age=70.1 y.o., three men) using a 2-back WM task, under two distinct MRI background acoustic noise conditions (louder vs. lower noise echo-planar imaging). General linear models were used to assess brain activation as a function of group and noise. In both groups, lower background noise is associated with increased activation of the working memory network (WMN). A decrease of the normally observed deactivation of the default mode network (DMN) is found under louder noise in both groups. Unlike HC, MCI cases also show decreased deactivation of the DMN under both louder and lower background noise. Under louder noise, this decrease is observed in anterior parts of the DMN in HC, and in the posterior cingulate cortex in MCI cases. Our results suggest that background acoustic noise has a differential impact on WMN activation in normal aging as a function of the cognitive status. Only louder noise has a disruptive effect on the usually observed DMN deactivation during WM task performance in HC. In contrast, MCI cases show altered DMN reactivity even in the presence of lower noise. PMID:26391923

  10. A Study on The Incidence of Neural Tube Defects in A Tertiary Care Hospital Over A Period of Five Years

    PubMed Central

    Subramanian, Manickam; Rajilarajendran, Hannahsugirthabai; Ramanujam, Sailatha; Saktivel, Sathiya; Sivaanandam, Renuka

    2015-01-01

    Introduction Several congenital malformations affect developing fetuses, among which Neural tube defect (NTD) is most common. Folic acid supplementation brought decline in the incidence of NTDs. The present study aims at finding the incidence of NTDs in a tertiary care hospital and compares the results with the similar Indian studies published earlier. Materials and Methods The study was done at Chettinad Hospital & Research Institute (CHRI), Kelambakkam. The total number of deliveries was recorded for a period of five years from 2009 to 2013. Fetuses which were still born with neural defect were collected and observed in detail externally for the sex, type of NTD and other associated anomalies. Indian studies published between 1987 and 2014 reporting the incidence of NTDs among the births occurred were retrieved from the Internet and their various observations were used for comparison. Results The number of deliveries conducted between 2009 and 2013 at CHRI was 3220. Of these, babies born with NTDs were nine (5 males and 4 females). The incidence of fetuses with meroanencephaly, holoanencephaly, craniorachischisis, encephalocele and myelocele were 0.62, 0.62, 0.93, 0.31 and 0.31 per 1000 births respectively. Overall incidence of NTDs in the present study was 2.79/1000 births. Fetuses with NTDs also had the following anomalies – Club foot, cleft lip and palate and exomphalos. Conclusion Comparing the results with the previous studies it is clearly evident that the incidence of NTDs have significantly reduced from 11.42/1000 births to 2.79/1000 births. In most of the previous studies NTDs had a female preponderance whereas present study has a male preponderance.In older studies, spina bifida was the most common NTDs followed by anencephaly. But in the present study anencephaly was the common NTD than spina bifida. Incidence of NTDs has reduced due to various reasons like prenatal screening for fetal anomalies and folic acid supplementation. PMID:26393168