Science.gov

Sample records for background temperature fluctuations

  1. Non-Gaussianity in the Cosmic Microwave Background temperature fluctuations from cosmic (super-)strings

    SciTech Connect

    Takahashi, Keitaro; Naruko, Atsushi; Sendouda, Yuuiti; Yamauchi, Daisuke; Sasaki, Misao; Yoo, Chul-Moon E-mail: naruko@yukawa.kyoto-u.ac.jp E-mail: yamauchi@yukawa.kyoto-u.ac.jp E-mail: misao@yukawa.kyoto-u.ac.jp

    2009-10-01

    We compute analytically the small-scale temperature fluctuations of the cosmic microwave background from cosmic (super-)strings and study the dependence on the string intercommuting probability P. We develop an analytical model which describes the evolution of a string network and calculate the numbers of string segments and kinks in a horizon volume. Then we derive the probability distribution function (pdf) which takes account of finite angular resolution of observation. The resultant pdf consists of a Gaussian part due to frequent scatterings by long string segments and a non-Gaussian tail due to close encounters with kinks. The dispersion of the Gaussian part is reasonably consistent with that obtained by numerical simulations by Fraisse et al.. On the other hand, the non-Gaussian tail contains two phenomenological parameters which are determined by comparison with the numerical results for P = 1. Extrapolating the pdf to the cases with P < 1, we predict that the non-Gaussian feature is suppressed for small P.

  2. Radio brightness distribution within cosmic background fluctuations

    NASA Astrophysics Data System (ADS)

    Sazhin, M. V.

    1985-08-01

    The angular fluctuations delta T in the microwave background temperature constitute a random process. Calculations are performed for the number of 'pips' above a base level that might be produced by primordial scalar density perturbations or gravitational waves. The flux density expected for typical pips is determined, as well as the mean solid angle subtended by a pip that would exceed a level three times the dispersion in delta T.

  3. Topology of microwave background fluctuations - Theory

    NASA Technical Reports Server (NTRS)

    Gott, J. Richard, III; Park, Changbom; Bies, William E.; Bennett, David P.; Juszkiewicz, Roman

    1990-01-01

    Topological measures are used to characterize the microwave background temperature fluctuations produced by 'standard' scenarios (Gaussian) and by cosmic strings (non-Gaussian). Three topological quantities: total area of the excursion regions, total length, and total curvature (genus) of the isotemperature contours, are studied for simulated Gaussian microwave background anisotropy maps and then compared with those of the non-Gaussian anisotropy pattern produced by cosmic strings. In general, the temperature gradient field shows the non-Gaussian behavior of the string map more distinctively than the temperature field for all topology measures. The total contour length and the genus are found to be more sensitive to the existence of a stringy pattern than the usual temperature histogram. Situations when instrumental noise is superposed on the map, are considered to find the critical signal-to-noise ratio for which strings can be detected.

  4. Characterizing the Cosmic Infrared Background Fluctuations

    NASA Astrophysics Data System (ADS)

    Li, Yanxia; Hasinger, Guenther; Cappelluti, Nico; Cappelluti, Nico; Arendt, Richard G.

    2016-01-01

    A salient feature of the Cosmic Infrared Background (CIB) fluctuations is that their spatial power spectrum rises a factor of ~10 above the expected contribution from all known sources at angular scales >20". A tantalizing large-scale correlation signal between the residual Cosmic X-ray Background (CXB) and CIB found in the Extended Groth Strip (EGS) further suggests that at least 20% of the CIB fluctuations are associated with accreting X-ray sources, with efficient energy production similar to black holes. However, there is still a controversy about the sources that produce the excess flux. They could be faint, local populations with different spatial distribution from other known galaxies, or high-z populations at the epoch of reionization that we know little of. Constraining the origin of the CIB fluctuations will help to establish our understanding of the overall cosmic energy budget. We will combine the archival Spitzer/IRAC and the Chandra data of the Cosmic Evolution Survey (COSMOS), to accurately measure the source-subtracted CIB and CXB fluctuations to the largest angular scale (~1-2 deg) to date. The newly discovered link between CIB and CXB fluctuations found in the EGS will be revisited in the COSMOS, which provides better photon statistics. We will present current state of data collection and analysis progress.

  5. Characterizing the Cosmic Infrared Background Fluctuations

    NASA Astrophysics Data System (ADS)

    Li, Yanxia

    2015-08-01

    A salient feature of the Cosmic Infrared Background (CIB) fluctuations is that their spatial power spectrum rises a factor of ~10 above the expected contribution from all known sources at angular scales >20‧‧. A tantalizing large-scale correlation signal between the residual Cosmic X-ray Background (CXB) and CIB found in the Extended Groth Strip (EGS) further suggests that at least 20% of the CIB fluctuations are associated with accreting X-ray sources, with efficient energy production similar to black holes. However, there is still a controversy about the sources that produce the excess flux. They could be faint, local populations with different spatial distribution from other known galaxies, e.g., intra-halo light (emitted from stars in the outskirts of local galaxies), or really high-z populations at the epoch of reionization that we know little of. Constraining the origin of the CIB fluctuations will help to establish our understanding of the overall cosmic energy budget.In this talk, we will present our plan to break down this controversy, current state of data collection and analysis.(1) We will combine the archival Spitzer/IRAC and Herschel/PACS data, with the Chandra data of the Cosmic Evolution Survey (COSMOS), to accurately measure the source-subtracted CIB and CXB fluctuations to the largest angular scale (~1-2 deg) to date. The newly discovered link between CIB and CXB fluctuations found in the EGS will be revisited in the COSMOS, which provides better photon statistics. (2) We have been working on cross-correlating the unresolved background with the discrete sources detected at shorter wavelengths (1- 2μm), using ground-based multi-wavelength observations. In addition to exploring the Pan-STARRS 3PI and Medium Deep Survey database, we have also been awarded the telescope time of CFHT/WIRCam and Subaru/Hyper-Suprime-Cam for this purpose. The preliminary data analysis will be presented.

  6. Cosmic Infrared Background Fluctuations and Zodiacal Light

    NASA Astrophysics Data System (ADS)

    Arendt, Richard G.; Kashlinsky, A.; Moseley, S. H.; Mather, J.

    2016-06-01

    We performed a specific observational test to measure the effect that the zodiacal light can have on measurements of the spatial fluctuations of the near-IR background. Previous estimates of possible fluctuations caused by zodiacal light have often been extrapolated from observations of the thermal emission at longer wavelengths and low angular resolution or from IRAC observations of high-latitude fields where zodiacal light is faint and not strongly varying with time. The new observations analyzed here target the COSMOS field at low ecliptic latitude where the zodiacal light intensity varies by factors of ˜2 over the range of solar elongations at which the field can be observed. We find that the white-noise component of the spatial power spectrum of the background is correlated with the modeled zodiacal light intensity. Roughly half of the measured white noise is correlated with the zodiacal light, but a more detailed interpretation of the white noise is hampered by systematic uncertainties that are evident in the zodiacal light model. At large angular scales (≳100″) where excess power above the white noise is observed, we find no correlation of the power with the modeled intensity of the zodiacal light. This test clearly indicates that the large-scale power in the infrared background is not being caused by the zodiacal light.

  7. Ultraviolet background fluctuations with clustered sources

    NASA Astrophysics Data System (ADS)

    Desjacques, Vincent; Dizgah, Azadeh Moradinezhad; Biagetti, Matteo

    2014-11-01

    We develop a count-in-cells approach to the distribution of ultraviolet background fluctuations that includes source clustering. We demonstrate that an exact expression can be obtained if the clustering of ionizing sources follows the hierarchical ansatz. In this case, the intensity distribution depends solely on their two-point correlation function. We show that the void scaling function of high-redshift mock quasars is consistent with the negative binomial form, before applying our formalism to the description of He II-ionizing fluctuations at the end of helium reionization. The model inputs are the observed quasar luminosity function and two-point correlation at z ˜ 3. We find that, for an (comoving) attenuation length ≲55 Mpc, quasar clustering contributes less than 30 per cent of the variance of intensity fluctuations so long as the quasar correlation length does not exceed ˜15 Mpc. We investigate also the dependence of the intensity distribution on the large-scale environment. Differences in the mean He II-ionizing intensity between low- and high-density regions could be a factor of few if the sources are highly clustered. An accurate description of quasar demographics and their correlation with strong absorption systems is required to make more precise predictions.

  8. Non-Gaussian microwave background fluctuations from nonlinear gravitational effects

    NASA Technical Reports Server (NTRS)

    Salopek, D. S.; Kunstatter, G. (Editor)

    1991-01-01

    Whether the statistics of primordial fluctuations for structure formation are Gaussian or otherwise may be determined if the Cosmic Background Explorer (COBE) Satellite makes a detection of the cosmic microwave-background temperature anisotropy delta T(sub CMB)/T(sub CMB). Non-Gaussian fluctuations may be generated in the chaotic inflationary model if two scalar fields interact nonlinearly with gravity. Theoretical contour maps are calculated for the resulting Sachs-Wolfe temperature fluctuations at large angular scales (greater than 3 degrees). In the long-wavelength approximation, one can confidently determine the nonlinear evolution of quantum noise with gravity during the inflationary epoch because: (1) different spatial points are no longer in causal contact; and (2) quantum gravity corrections are typically small-- it is sufficient to model the system using classical random fields. If the potential for two scalar fields V(phi sub 1, phi sub 2) possesses a sharp feature, then non-Gaussian fluctuations may arise. An explicit model is given where cold spots in delta T(sub CMB)/T(sub CMB) maps are suppressed as compared to the Gaussian case. The fluctuations are essentially scale-invariant.

  9. Mathematical Background of 1/f Fluctuations

    SciTech Connect

    Musha, Toshimitsu

    2009-04-23

    Energy of harmonic oscillators in equilibrium decays exponentially in time when they are coupled in quadratic forms in amplitudes. In reality, however, their Hamiltonian includes higher-order coupling terms. Not all of the higher-order coupling terms contribute to the energy decay of oscillators after averaging over reservoir oscillators, and we find that one of the lowest higher-order terms makes a finite contribution to the energy decay. This effect is equivalently represented by a modified coupling coefficient of quadratic coupling terms. This modification works as a positive feedback to the action-reaction process between oscillators. Eventually the modified coupling terms generate 1/f fluctuations in energy partition among oscillators in equilibrium. It is concluded that 1/f type of energy partition is observable with harmonic oscillators if they obey the Bose-Einstein statistics regardless of whether the collective system is classical or quantum mechanical regime.

  10. Temperature-polarization correlations from tensor fluctuations

    SciTech Connect

    Crittenden, R.G.; Coulson, D.; Turok, N.G. |

    1995-11-15

    We study the polarization-temperature correlations on the cosmic microwave sky resulting from an initial scale-invariant spectrum of tensor (gravity wave) fluctuations, such as those which might arise during inflation. The correlation function has the opposite sign to that for scalar fluctuations on large scales, raising the possibility of a direct determination of whether the microwave anisotropies have a significant tensor component. We briefly discuss the important problem of estimating the expected foreground contamination.

  11. Classical and quantum temperature fluctuations via holography

    SciTech Connect

    Balatsky, Alexander V.; Gudnason, Sven Bjarke; Thorlacius, Larus; Zarembo, Konstantin; Krikun, Alexander; Kedem, Yaron

    2014-05-27

    We study local temperature fluctuations in a 2+1 dimensional CFT on the sphere, dual to a black hole in asymptotically AdS space-time. The fluctuation spectrum is governed by the lowest-lying hydrodynamic sound modes of the system whose frequency and damping rate determine whether temperature fluctuations are thermal or quantum. We calculate numerically the corresponding quasinormal frequencies and match the result with the hydrodynamics of the dual CFT at large temperature. As a by-product of our analysis we determine the appropriate boundary conditions for calculating low-lying quasinormal modes for a four-dimensional Reissner-Nordstrom black hole in global AdS.

  12. THE COSMIC NEAR-INFRARED BACKGROUND. II. FLUCTUATIONS

    SciTech Connect

    Fernandez, Elizabeth R.; Komatsu, Eiichiro; Shapiro, Paul R.; Iliev, Ilian T.

    2010-02-20

    The near-infrared background (NIRB) is one of a few methods that can be used to observe the redshifted light from early stars at a redshift of 6 and above, and thus it is imperative to understand the significance of any detection or nondetection of the NIRB. Fluctuations of the NIRB can provide information on the first structures, such as halos and their surrounding ionized regions in the intergalactic medium (IGM). We combine, for the first time, N-body simulations, radiative transfer code, and analytic calculations of luminosity of early structures to predict the angular power spectrum (C{sub l} ) of fluctuations in the NIRB. We study in detail the effects of various assumptions about the stellar mass, the initial mass spectrum of stars, the metallicity, the star formation efficiency (f{sub *}), the escape fraction of ionizing photons (f{sub esc}), and the star formation timescale (t{sub SF}), on the amplitude as well as the shape of C{sub l} . The power spectrum of NIRB fluctuations is maximized when f{sub *} is the largest (as C{sub l} {proportional_to} f {sup 2}{sub *}) and f{sub esc} is the smallest (as more nebular emission is produced within halos). A significant uncertainty in the predicted amplitude of C{sub l} exists due to our lack of knowledge of t{sub SF} of these early populations of galaxies, which is equivalent to our lack of knowledge of the mass-to-light ratio of these sources. We do not see a turnover in the NIRB angular power spectrum of the halo contribution, which was claimed to exist in the literature, and explain this as the effect of high levels of nonlinear bias that was ignored in the previous calculations. This is partly due to our choice of the minimum mass of halos contributing to NIRB ({approx}2 x 10{sup 9} M{sub sun}), and a smaller minimum mass, which has a smaller nonlinear bias, may still exhibit a turnover. Therefore, our results suggest that both the amplitude and shape of the NIRB power spectrum provide important information

  13. Studying extragalactic background fluctuations with the Cosmic Infrared Background ExpeRiment 2 (CIBER-2)

    NASA Astrophysics Data System (ADS)

    Lanz, Alicia; Arai, Toshiaki; Battle, John; Bock, James; Cooray, Asantha; Hristov, Viktor; Korngut, Phillip; Lee, Dae Hee; Mason, Peter; Matsumoto, Toshio; Matsuura, Shuji; Morford, Tracy; Onishi, Yosuke; Shirahata, Mai; Tsumura, Kohji; Wada, Takehiko; Zemcov, Michael

    2014-08-01

    Fluctuations in the extragalactic background light trace emission from the history of galaxy formation, including the emission from the earliest sources from the epoch of reionization. A number of recent near-infrared measure- ments show excess spatial power at large angular scales inconsistent with models of z < 5 emission from galaxies. These measurements have been interpreted as arising from either redshifted stellar and quasar emission from the epoch of reionization, or the combined intra-halo light from stars thrown out of galaxies during merging activity at lower redshifts. Though astrophysically distinct, both interpretations arise from faint, low surface brightness source populations that are difficult to detect except by statistical approaches using careful observations with suitable instruments. The key to determining the source of these background anisotropies will be wide-field imaging measurements spanning multiple bands from the optical to the near-infrared. The Cosmic Infrared Background ExpeRiment 2 (CIBER-2) will measure spatial anisotropies in the extra- galactic infrared background caused by cosmological structure using six broad spectral bands. The experiment uses three 2048 x 2048 Hawaii-2RG near-infrared arrays in three cameras coupled to a single 28.5 cm telescope housed in a reusable sounding rocket-borne payload. A small portion of each array will also be combined with a linear-variable filter to make absolute measurements of the spectrum of the extragalactic background with high spatial resolution for deep subtraction of Galactic starlight. The large field of view and multiple spectral bands make CIBER-2 unique in its sensitivity to fluctuations predicted by models of lower limits on the luminosity of the first stars and galaxies and in its ability to distinguish between primordial and foreground anisotropies. In this paper the scientific motivation for CIBER-2 and details of its first flight instrumentation will be discussed, including

  14. Fluctuations and effective temperatures in coarsening

    NASA Astrophysics Data System (ADS)

    Corberi, Federico; Cugliandolo, Leticia F.

    2009-05-01

    We study dynamic fluctuations in non-disordered finite dimensional ferromagnetic systems quenched to the critical point and the low temperature phase. We investigate the fluctuations of two two-time quantities, called χ and C, the averages of which yield the self-linear response and correlation functions. We introduce a restricted average of the χs, summing over all configurations with a given value of C. We find that the restricted average langχrangC obeys a scaling form, and that the slope of the scaling function approaches the universal value X_\\infty of the limiting effective temperature in the long time limit and for C\\to 0 . Our results tend to confirm the expectation that time-reparameterization invariance is not realized in coarsening systems at criticality. Finally, we discuss possible experimental tests of our proposal.

  15. Quark number fluctuations at high temperatures

    SciTech Connect

    Petreczky, P.; Hegde, P.; Velytsky, A.

    2009-11-01

    We calculate the second, fourth and sixth order quark number fluctuations in the deconfined phase of 2+1 flavor QCD using lattices with temporal extent N{sub t} = 4,6,8 and 12. We consider light, strange and charm quarks. We use p4 action for valence quarks and gauge configurations generated with p4 action with physical value of the strange quark mass and light quark mass m{sub q} = 0.1 m{sub s} generated by the RBC-Bielefeld collaboration. We observe that for all quark masses the quark number fluctuations rapidly get close to the corresponding ideal gas limits. We compare our results to predictions of a quasi-particle model and resummed high temperature perturbative calculations. We also investigate correlations among different flavor channels.

  16. Fluctuations in the soft X-ray background

    NASA Technical Reports Server (NTRS)

    Barber, C. R.; Warwick, R. S.; Snowden, S. L.

    1996-01-01

    Eight overlapping Rosat position sensitive proportional counter (PSPC) observations are discussed. The data concern the Lockman hole region and were analyzed in the 0.1 keV to 0.4 keV band. The contribution of noncosmic contaminants and bright discrete sources were removed from the data. A strong anticorrelation with column density was detected. Evidence for significant excess fluctuations superimposed on this anticorrelation was found. The fluctuations' possible origins are discussed.

  17. THE TEMPERATURE OF THE COSMIC MICROWAVE BACKGROUND

    SciTech Connect

    Fixsen, D. J.

    2009-12-20

    The Far InfraRed Absolute Spectrophotometer data are independently recalibrated using the Wilkinson Microwave Anisotropy Probe data to obtain a cosmic microwave background (CMB) temperature of 2.7260 +- 0.0013. Measurements of the temperature of the CMB are reviewed. The determination from the measurements from the literature is CMB temperature of 2.72548 +- 0.00057 K.

  18. Multiplicity fluctuations due to the temperature fluctuations in high-energy nuclear collisions

    SciTech Connect

    Wilk, Grzegorz; Wlodarczyk, Zbigniew

    2009-05-15

    We investigate the multiplicity fluctuations observed in high-energy nuclear collisions attributing them to intrinsic fluctuations of temperature of the hadronizing system formed in such processes. To account for these fluctuations, we replace the usual Boltzmann-Gibbs (BG) statistics by the nonextensive Tsallis statistics characterized by the nonextensivity parameter q, with |q-1| being a direct measure of fluctuation. In the limit of vanishing fluctuations, q{yields}1 and Tsallis statistics converge to the usual BG. We evaluate the nonextensivity parameter q and its dependence on the hadronizing system size from the experimentally observed collision centrality dependence of the mean multiplicity and its variance Var(N). We attribute the observed system size dependence of q to the finiteness of the hadronizing source, with q=1 corresponding to an infinite, thermalized source with a fixed temperature, and with q>1 (which is observed) corresponding to a finite source in which both the temperature and energy fluctuate.

  19. Mesoscale Temperature Fluctuations in the Southern Hemisphere Stratosphere

    NASA Technical Reports Server (NTRS)

    Gary, Bruce L.

    2008-01-01

    Isentrope surfaces in the Southern Hemisphere stratosphere reveal that air parcels undergo mesoscale temperature fluctuations that depend on latitude and season. The largest temperature fluctuations occur at high latitude winter, whereas the smallest fluctuations occur at high latitude summer. This is the same pattern found for the Northern Hemisphere stratosphere. However, the amplitude of the seasonal dependence in the Southern Hemisphere is only 37% of the Northern Hemisphere's seasonal amplitude.

  20. Minute Temperature Fluctuations Detected in Eta Bootis

    NASA Astrophysics Data System (ADS)

    1994-11-01

    periods around 20 minutes. These periods are longer than those of the Sun, as expected for a star that is larger and heavier than the Sun. The figure accompanying this Press Release shows these oscillations in the form of a "power spectrum", i.e., the amount of temperature change at different values of the period. Most of the highest peaks correspond to the real oscillations in the star. The changes (fluctuations) of the temperature of Eta Bootis vary with the oscillation mode and, at the time of these observations, were mostly between 0.03 and 0.08 degrees. This diagramme provides the first strong evidence ever for solar-type oscillations in a star other than the Sun. An article with the detailed results will soon appear in the "Astronomical Journal". Agreement with Stellar Theory The measured periods of the main oscillation modes give important information about the interior of Eta Bootis. Theoretical models of the star have now been compared with these observations and the astronomers were pleased to find that the agreement is excellent, implying that current stellar theory is remarkably good. This shows that we apparently understand stars quite well, but there is of course still much to be learned. Future observations of this kind, with ground-based telescopes and possibly in a more distant future also from space, promise to open up a new and exciting way of studying stars. From now on, we will be able "to look inside" stars in great detail. Appendix: Spectral Analysis Dark spectral lines were first seen in the solar spectrum by the German physicist Johann Fraunhofer in 1814. Later, in the mid-nineteenth century, such lines were also seen in the spectra of other stars. It is now known that they are due to the upper, cooler layers in the solar and stellar atmospheres, whose atoms and molecules absorb the radiation from the hotter, deeper layers at specific wavelengths. These wavelengths serve as "footprints" of these atoms and molecules and allow astronomers to

  1. Proton resonant firehose instability: Temperature anisotropy and fluctuating field constraints

    NASA Astrophysics Data System (ADS)

    Gary, S. Peter; Li, Hui; O'Rourke, Sean; Winske, Dan

    1998-07-01

    The electromagnetic proton firehose instability may grow in a plasma if the proton velocity distribution is approximately bi-Maxwellian and T∥p>T⊥p, where the directional subscripts denote directions relative to the background magnetic field. Linear Vlasov dispersion theory in a homogeneous electron-proton plasma implies an instability threshold condition at constant maximum growth rate 1-T⊥p/T∥p=Sp/β∥pαp over 1<β∥p<=10 where β∥p≡8πnpT∥p/B02 and B0 is the background magnetic field. Here Sp and αp are fitting parameters and αp~=0.7. One- and two-dimensional initial value hybrid simulations of this growing mode are carried out under proton cyclotron resonant conditions in a homogeneous plasma on the initial domain 2<~β∥p<=100. The two-dimensional simulations show that enhanced fluctuations from this instability impose a bound on the proton temperature anisotropy of the form of the above equation with the fluid theory result αp~=1.0. On this domain both one- and two-dimensional simulations yield a new form for the upper bound on the fluctuating field energy density from the proton resonant firehose instability |δB|2/B02=SB+αBln(β∥p) where SB and αB are empirical parameters which are functions of the initial growth rate. This logarithmic behavior is qualitatively different from a fluid theory prediction and, like the anisotropy bound, should be subject to observational verification in any sufficiently homogeneous plasma in which the proton velocity distribution is approximately bi-Maxwellian.

  2. Maps of the little bangs through energy density and temperature fluctuations

    NASA Astrophysics Data System (ADS)

    Basu, Sumit; Chatterjee, Rupa; Nandi, Basanta K.; Nayak, Tapan K.

    2016-01-01

    Heavy-ion collisions at ultra-relativistic energies are often referred to as little bangs. We propose for the first time to map the heavy-ion collisions at ultra-relativistic energies, similar to the maps of the cosmic microwave background radiation, using fluctuations of energy density and temperature in small phase space bins. We study the evolution of fluctuations at each stage of the collision using an event-by-event hydrodynamic framework. We demonstrate the feasibility of making fluctuation maps from experimental data and its usefulness in extracting considerable information regarding the early stages of the collision and its evolution.

  3. AKARI Observation of the Sub-degree Scale Fluctuation of the Near-infrared Background

    NASA Astrophysics Data System (ADS)

    Seo, H. J.; Lee, Hyung Mok; Matsumoto, T.; Jeong, W.-S.; Lee, Myung Gyoon; Pyo, J.

    2015-07-01

    We report spatial fluctuation analysis of the sky brightness in the near-infrared from observations toward the north ecliptic pole (NEP) by the AKARI at 2.4 and 3.2 μm. As a follow-up study of our previous work on the Monitor field of AKARI, we used NEP deep survey data, which covered a circular area of about 0.4 square degrees, in order to extend fluctuation analysis at angular scales up to 1000″. We found residual fluctuation over the estimated shot noise at larger angles than the angular scale of the Monitor field. The excess fluctuation of the NEP deep field smoothly connects with that of the Monitor field at angular scales of a few hundred arcseconds and extends without any significant variation to larger angular scales up to 1000″. By comparing excess fluctuations at two wavelengths, we confirm a blue spectral feature similar to the result of the Monitor field. We find that the result of this study is consistent with Spitzer Space Telescope observations at 3.6 μm. The origin of the excess fluctuation in the near-infrared background remains to be determined, but we could exclude zodiacal light, diffuse Galactic light, and unresolved faint galaxies at low redshift based on the comparison with mid- and far-infrared brightness, ground-based near-infrared images.

  4. Influence of temperature fluctuations on infrared limb radiance: a new simulation code

    NASA Astrophysics Data System (ADS)

    Rialland, Valérie; Chervet, Patrick

    2006-08-01

    Airborne infrared limb-viewing detectors may be used as surveillance sensors in order to detect dim military targets. These systems' performances are limited by the inhomogeneous background in the sensor field of view which impacts strongly on target detection probability. This background clutter, which results from small-scale fluctuations of temperature, density or pressure must therefore be analyzed and modeled. Few existing codes are able to model atmospheric structures and their impact on limb-observed radiance. SAMM-2 (SHARC-4 and MODTRAN4 Merged), the Air Force Research Laboratory (AFRL) background radiance code can be used to in order to predict the radiance fluctuation as a result of a normalized temperature fluctuation, as a function of the line-of-sight. Various realizations of cluttered backgrounds can then be computed, based on these transfer functions and on a stochastic temperature field. The existing SIG (SHARC Image Generator) code was designed to compute the cluttered background which would be observed from a space-based sensor. Unfortunately, this code was not able to compute accurate scenes as seen by an airborne sensor especially for lines-of-sight close to the horizon. Recently, we developed a new code called BRUTE3D and adapted to our configuration. This approach is based on a method originally developed in the SIG model. This BRUTE3D code makes use of a three-dimensional grid of temperature fluctuations and of the SAMM-2 transfer functions to synthesize an image of radiance fluctuations according to sensor characteristics. This paper details the working principles of the code and presents some output results. The effects of the small-scale temperature fluctuations on infrared limb radiance as seen by an airborne sensor are highlighted.

  5. Cosmic Infrared Background Fluctuations in Deep Spitzer Infrared Array Camera Images: Data Processing and Analysis

    NASA Technical Reports Server (NTRS)

    Arendt, Richard; Kashlinsky, A.; Moseley, S.; Mather, J.

    2010-01-01

    This paper provides a detailed description of the data reduction and analysis procedures that have been employed in our previous studies of spatial fluctuation of the cosmic infrared background (CIB) using deep Spitzer Infrared Array Camera observations. The self-calibration we apply removes a strong instrumental signal from the fluctuations that would otherwise corrupt the results. The procedures and results for masking bright sources and modeling faint sources down to levels set by the instrumental noise are presented. Various tests are performed to demonstrate that the resulting power spectra of these fields are not dominated by instrumental or procedural effects. These tests indicate that the large-scale ([greater, similar]30') fluctuations that remain in the deepest fields are not directly related to the galaxies that are bright enough to be individually detected. We provide the parameterization of these power spectra in terms of separate instrument noise, shot noise, and power-law components. We discuss the relationship between fluctuations measured at different wavelengths and depths, and the relations between constraints on the mean intensity of the CIB and its fluctuation spectrum. Consistent with growing evidence that the [approx]1-5 [mu]m mean intensity of the CIB may not be as far above the integrated emission of resolved galaxies as has been reported in some analyses of DIRBE and IRTS observations, our measurements of spatial fluctuations of the CIB intensity indicate the mean emission from the objects producing the fluctuations is quite low ([greater, similar]1 nW m-2 sr-1 at 3-5 [mu]m), and thus consistent with current [gamma]-ray absorption constraints. The source of the fluctuations may be high-z Population III objects, or a more local component of very low luminosity objects with clustering properties that differ from the resolved galaxies. Finally, we discuss the prospects of the upcoming space-based surveys to directly measure the epochs

  6. Effect of Background Fluctuations on Kinetic Alfvén Wave Turbulence

    NASA Astrophysics Data System (ADS)

    Kumari, Anju; Sharma, R. P.

    2016-07-01

    The localization of Kinetic Alfvén wave (KAW) caused by finite amplitude background density fluctuations has been studied in intermediate beta plasma. The dynamical equations are derived taking into account the ponderomotive nonlinearity of the KAW as well as background density fluctuations and then studied numerically. Numerical simulation has been performed to analyze the effect of background density fluctuations on localized structures and resulting turbulent spectrum of KAW applicable to the magnetopause. Simulation results reveal that the power spectrum deviates from Kolmogorov scaling at the transverse size of KAW, equal to ion gyroradius. Steepening of the power spectrum at shorter wavelengths may be accountable for heating and acceleration of the plasma particles. Thus the presented coupling suggests a mechanism of energy transfer from larger length-scales to smaller length-scales. The relevance of present investigation with observations collected from the THEMIS spacecraft in magnetopause is also discussed [Chaston et al., 2008]. Reference Chaston, C., J. Bonnell, J. P. McFadden, C. W. Carlson, C. Cully, O. Le Contel A. Roux, H. U. Auster, K. H. Glassmeier, V. Angelopoulos, C. T. Russell (2008), Turbulent heating and cross-field transport near the magnetopause from THEMIS, Geophys. Res. Lett., 35, L17S08.

  7. Density and temperature of bosons from quantum fluctuations

    NASA Astrophysics Data System (ADS)

    Zheng, Hua; Giuliani, Gianluca; Bonasera, Aldo

    2012-10-01

    A method to determine the density and temperature of a system is proposed based on quantum fluctuations typical of bosons in the limit where the temperature T is close to the critical temperature Tc for a Bose-Einstein condensate (BEC) at a given density ρ. Quadrupole and particle multiplicity fluctuations using Landau's theory of fluctuations near the critical point are derived. As an example, we apply our approach to heavy ion collisions using the Constrained Molecular Dynamics model (CoMD) which includes the Fermi statistics. The model shows some clusterization into deuteron (d) and alpha (α) clusters but it is not enough to reproduce available experimental data. We propose a modification of the collision term in the approach to include the possibility of α-α collisions. The relevant Bose-Einstein factor in the collision term is properly taken into account. This approach increases the yields of bosons relative to fermions closer to data. Boson fluctuations become larger than 1 as expected. If they are confirmed a new field of research could open up for a mixture of strongly interacting fermions and bosons which requires novel techniques both theoretically and experimentally.

  8. Ion temperature fluctuation measurements using a retarding field analyzer.

    PubMed

    Nedzelskiy, I S; Silva, C; Duarte, P; Fernandes, H

    2011-04-01

    The retarding field analyzer (RFA) is a widely used diagnostic tool for the ion temperature measurement in the scrape-off-layer (SOL) of the thermonuclear plasma devices. However, the temporal resolution in the standard RFA application is restricted to the ms timescale. In this paper, a dc operation of the RFA is considered, which allows for the measurement of the plasma ion temperature fluctuations. The method is based on the relation for the RFA current-voltage (I-V) characteristic resulted from a common RFA model of shifted Maxwellian distribution of the analyzed ions, and the measurements of two points on the exponentially decaying region of the I-V characteristic with two differently dc biased RFA electrodes. The method has been tested and compared with conventional RFA measurements of the ion temperature in the tokamak ISTTOK SOL plasma. An ion temperature of T(i) = 17 eV is obtained near the limiter position. The agreement between the results of the two methods is within ∼25%. The amplitude of the ion temperature fluctuations is found to be around 5 eV at this location. The method has been validated by taking into account the effect of fluctuations in the plasma potential and the noise contamination, proving the reliability of the results obtained. Finally, constrains to the method application are discussed that include a negligible electron emission from the RFA grids and the restriction to operate in the exponentially decaying region of the I-V characteristic. PMID:21529006

  9. Cosmic birefringence fluctuations and cosmic microwave background B-mode polarization

    NASA Astrophysics Data System (ADS)

    Lee, Seokcheon; Liu, Guo-Chin; Ng, Kin-Wang

    2015-06-01

    Recently, BICEP2 measurements of the cosmic microwave background (CMB) B-mode polarization has indicated the presence of primordial gravitational waves at degree angular scales, inferring the tensor-to-scalar ratio of r = 0.2 and a running scalar spectral index, provided that dust contamination is low. In this Letter, we show that the existence of the fluctuations of cosmological birefringence can give rise to CMB B-mode polarization that fits BICEP2 data with r < 0.11 and no running of the scalar spectral index. When dust contribution is taken into account, we derive an upper limit on the cosmological birefringence, Aβ2 < 0.0075, where A is the amplitude of birefringence fluctuations that couple to electromagnetism with a coupling strength β.

  10. Reconstructing Emission from Pre-reionization Sources with Cosmic Infrared Background Fluctuation Measurements by the JWST

    NASA Astrophysics Data System (ADS)

    Kashlinsky, A.; Mather, J. C.; Helgason, K.; Arendt, R. G.; Bromm, V.; Moseley, S. H.

    2015-05-01

    We present new methodology to use cosmic infrared background (CIB) fluctuations to probe sources at 10≲ z≲ 30 from a James Webb Space Telescope (JWST)/NIRCam configuration that will isolate known galaxies to 28 AB mag at 0.5-5 μm. At present significant mutually consistent source-subtracted CIB fluctuations have been identified in the Spitzer and AKARI data at ˜2-5 μm, but we demonstrate internal inconsistencies at shorter wavelengths in the recent CIBER data. We evaluate CIB contributions from remaining galaxies and show that the bulk of the high-z sources will be in the confusion noise of the NIRCam beam, requiring CIB studies. The accurate measurement of the angular spectrum of the fluctuations and probing the dependence of its clustering component on the remaining shot noise power would discriminate between the various currently proposed models for their origin and probe the flux distribution of its sources. We show that the contribution to CIB fluctuations from remaining galaxies is large at visible wavelengths for the current instruments precluding probing the putative Lyman-break of the CIB fluctuations. We demonstrate that with the proposed JWST configuration such measurements will enable probing the Lyman-break. We develop a Lyman-break tomography method to use the NIRCam wavelength coverage to identify or constrain, via the adjacent two-band subtraction, the history of emissions over 10≲ z≲ 30 as the universe comes out of the “Dark Ages.” We apply the proposed tomography to the current Spitzer/IRAC measurements at 3.6 and 4.5 μm, to find that it already leads to interestingly low upper limit on emissions at z≳ 30.

  11. Reconstructing Emission from Pre-Reionization Sources with Cosmic Infrared Background Fluctuation Measurements by the JWST

    NASA Technical Reports Server (NTRS)

    Kashlinsky, A.; Mather, J. C.; Helgason, K.; Arendt, R. G.; Bromm, V.; Moseley, S. H.

    2015-01-01

    We present new methodology to use cosmic infrared background (CIB) fluctuations to probe sources at 10 less than or approx. equal to z less than or approx. equal to 30 from a James Webb Space Telescope (JWST) NIRCam configuration that will isolate known galaxies to 28 AB mag at 0.55 m. At present significant mutually consistent source-subtracted CIB fluctuations have been identified in the Spitzer and AKARI data at 25 m, but we demonstrate internal inconsistencies at shorter wavelengths in the recent CIBER data. We evaluate CIB contributions from remaining galaxies and show that the bulk of the high-z sources will be in the confusion noise of the NIRCam beam, requiring CIB studies. The accurate measurement of the angular spectrum of the fluctuations and probing the dependence of its clustering component on the remaining shot noise power would discriminate between the various currently proposed models for their origin and probe the flux distribution of its sources. We show that the contribution to CIB fluctuations from remaining galaxies is large at visible wavelengths for the current instruments precluding probing the putative Lyman-break of the CIB fluctuations. We demonstrate that with the proposed JWST configuration such measurements will enable probing the Lyman-break. We develop a Lyman-break tomography method to use the NIRCam wavelength coverage to identify or constrain, via the adjacent two-band subtraction, the history of emissions over 10 less than or approx. equal to z less than or approx. equal to 30 as the universe comes out of the Dark Ages. We apply the proposed tomography to the current SpitzerIRAC measurements at 3.6 and 4.5 m, to find that it already leads to interestingly low upper limit on emissions at z greater than or approx. equal to 30.

  12. Small-scale spatial fluctuations in the soft-X-ray background

    NASA Astrophysics Data System (ADS)

    Kuntz, Kip Dee

    In order to isolate the diffuse extragalactic component of the soft X-ray background, we have used a combination of ROSAT All-Sky Survey and IRAS 100 mum data to separate the soft X-ray background into five components. We find a Local Hot Bubble similar to that described by Snowden et al (1998). We make a first calculation of the contribution by unresolved Galactic stars to the diffuse background. We constrain the normalization, of the Extragalactic Power Law (the contribution of the unresolved extragalactic point sources such as AGN, QSO's, and normal galaxies) to 9.5 +/- 0.9 keV cm -2 s-1 sr-1 keV -1, assuming a power-law index of 1.46. We show that the remaining emission, which is some combination of Galactic halo emission and the putative diffuse extragalactic emission, must be composed of at least two components which we have characterized by thermal spectra. The softer component has log T ˜ 6.08 and a patchy distribution; thus it is most probably part of the Galactic halo. The harder component has log T ˜ 6.46 and is nearly isotropic; some portion may be due to the Galactic halo and some portion may be due to the diffuse extragalactic emission. The maximum upper limit to the strength of the emission by the diffuse extragalactic component is the total of the hard component, ˜7.4 +/- 1.0 keV cm-2 s-1 sr-1 keV-1 in the ¾ keV band. We have made the first direct measure of the fluctuations due to the diffuse extragalactic emission in the ¾ keV band. Physical arguments suggest that small angular scale (˜10') fluctuations in the Local Hot Bubble or the Galactic halo will have very short dissipation times (˜105 years). Therefore, the fluctuation spectrum of the soft X-ray background should measure the distribution of the diffuse extragalactic emission. Using mosaics of deep, overlapping PSPC pointings, we find an autocorrelation function value of ˜0.0025 for 10' < theta < 20', and a value consistent with zero on larger scales. Measurement of the fluctuations

  13. Small-Scale Spatial Fluctuations in the Soft X-Ray Background

    NASA Astrophysics Data System (ADS)

    Kuntz, K. D.

    2001-02-01

    In order to isolate the diffuse extragalactic component of the soft X-ray background, we have used a combination of ROSAT All-Sky Survey and IRAS 100 micron data to separate the soft X-ray background into five components. We find a Local Hot Bubble similar to that described by Snowden et al (1998). We make a first calculation of the contribution by unresolved Galactic stars to the diffuse background. We constrain the normalization of the Extragalactic Power Law (the contribution of the unresolved extragalactic point sources such as AGN, QSO'S, and normal galaxies) to 9.5 +/- 0.9 keV/(sq cm s sr keV), assuming a power-law index of 1.46. We show that the remaining emission, which is some combination of Galactic halo emission and the putative diffuse extragalactic emission, must be composed of at least two components which we have characterized by thermal spectra. The softer component has log T - 6.08 and a patchy distribution; thus it is most probably part of the Galactic halo. The harder component has log T - 6.46 and is nearly isotropic; some portion may be due to the Galactic halo and some portion may be due to the diffuse extragalactic emission. The maximum upper limit to the strength of the emission by the diffuse extragalactic component is the total of the hard component, approx. 7.4 +/- 1.0 keV/(sq cm s sr keV) in the 3/4 keV band. We have made the first direct measure of the fluctuations due to the diffuse extragalactic emission in the 3/4 keV band. Physical arguments suggest that small angular scale (approx. 10') fluctuations in the Local Hot Bubble or the Galactic halo will have very short dissipation times (about 105 years). Therefore, the fluctuation spectrum of the soft X-ray background should measure the distribution of the diffuse extragalactic emission. Using mosaics of deep, overlapping PSPC pointings, we find an autocorrelation function value of approx. 0.0025 for 10' < theta < 20', and a value consistent with zero on larger scales. Measurement of

  14. Small-Scale Spatial Fluctuations in the Soft X-ray Background

    NASA Astrophysics Data System (ADS)

    Kuntz, K. D.

    2001-01-01

    In order to isolate the diffuse extragalactic component of the soft X-ray background, we have used a combination of ROSAT All-Sky Survey and IRAS 100 micrometer data to separate the soft X-ray background into five components: (1) We find a Local Hot Bubble similar to that described by Snowden et al.; (2) We make a first calculation of the contribution by unresolved galactic stars to the diffuse background; (3) We constrain the normalization of the Extragalactic Power Law (the contribution of the unresolved extragalactic point sources such as AGN, QSO's, and normal galaxies) to 9.5 +/- 0.9 keV/sq cm/s/sr/kEv, assuming a power-law index of 1.46; (4) We show that the remaining emission, which is some combination of galactic halo emission and the putative diffuse extragalactic emission, must be composed of at least two components which we have characterized by thermal spectra. The softer component has logT approx. = 6.08 and a patchy distribution; thus it is most probably part of the Galactic halo. The harder component has log T approx. = 6.46 and is nearly isotropic; some portion may be due to the Galactic halo and some portion may be due to the diffuse extragalactic emission. The maximum upper limit to the strength of the emission by the diffuse extragalactic component is the total of the hard component, approx. 7.4 +/- 1.0 keV/sq cm/s/sr/keV in the 3/4 keV band; (5) We have made the first direct measure of the fluctuations due to the diffuse extragalactic emission in the 1 keV band. Physical arguments suggest that small angular scale (approx. 10 min) fluctuations in the Local Hot Bubble or the Galactic halo will have very short dissipation times (approx. 105 years). Therefore, the fluctuation spectrum of the soft X-ray background should measure the distribution of the diffuse extragalactic emission. Using mosaics of deep, overlapping PSPC pointings, we find an autocorrelation function value of approx. 0.0025 for 10 min < theta < 20 min, and a value consistent with

  15. Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure.

    PubMed

    El-Mashad, Hamed M; Zeeman, Grietje; van Loon, Wilko K P; Bot, Gerard P A; Lettinga, Gatze

    2004-11-01

    The influence of temperature, 50 and 60 degrees C, at hydraulic retention times (HRTs) of 20 and 10 days, on the performance of anaerobic digestion of cow manure has been investigated in completely stirred tank reactors (CSTRs). Furthermore, the effect of both daily downward and daily upward temperature fluctuations has been studied. In the daily downward temperature fluctuation regime the temperatures of each reactor was reduced by 10 degrees C for 10 h while in the daily upward fluctuation regime the temperature of each reactor was increased 10 degrees C for 5 h. The results show that the methane production rate at 60 degrees C is lower than that at 50 degrees C at all experimental conditions of imposed HRT except when downward temperature fluctuations were applied at an HRT of 10 days. It also was found that the free ammonia concentration not only affects the acetate-utilising bacteria but also the hydrolysis and acidification process. The upward temperature fluctuation affects the maximum specific methanogenesis activity more severely as compared to imposed downward temperature fluctuations. The results clearly reveal the possibility of using available solar energy at daytime to heat up the reactor(s) without the need of heat storage during nights, especially at an operational temperature of 50 degrees C and at a 20 days HRT, and without the jeopardising of the overheating. PMID:15246444

  16. Quantum-gravity fluctuations and the black-hole temperature

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2015-05-01

    Bekenstein has put forward the idea that, in a quantum theory of gravity, a black hole should have a discrete energy spectrum with concomitant discrete line emission. The quantized black-hole radiation spectrum is expected to be very different from Hawking's semi-classical prediction of a thermal black-hole radiation spectrum. One naturally wonders: Is it possible to reconcile the discrete quantum spectrum suggested by Bekenstein with the continuous semi-classical spectrum suggested by Hawking? In order to address this fundamental question, in this essay we shall consider the zero-point quantum-gravity fluctuations of the black-hole spacetime. In a quantum theory of gravity, these spacetime fluctuations are closely related to the characteristic gravitational resonances of the corresponding black-hole spacetime. Assuming that the energy of the black-hole radiation stems from these zero-point quantum-gravity fluctuations of the black-hole spacetime, we derive the effective temperature of the quantized black-hole radiation spectrum. Remarkably, it is shown that this characteristic temperature of the discrete (quantized) black-hole radiation agrees with the well-known Hawking temperature of the continuous (semi-classical) black-hole spectrum.

  17. Tracing the first stars with fluctuations of the cosmic infrared background.

    PubMed

    Kashlinsky, A; Arendt, R G; Mather, J; Moseley, S H

    2005-11-01

    The deepest space- and ground-based observations find metal-enriched galaxies at cosmic times when the Universe was less than 1 Gyr old. These stellar populations had to be preceded by the metal-free first stars, known as 'population III'. Recent cosmic microwave background polarization measurements indicate that stars started forming early--when the Universe was < or =200 Myr old. It is now thought that population III stars were significantly more massive than the present metal-rich stellar populations. Although such sources will not be individually detectable by existing or planned telescopes, they would have produced significant cosmic infrared background radiation in the near-infrared, whose fluctuations reflect the conditions in the primordial density field. Here we report a measurement of diffuse flux fluctuations after removing foreground stars and galaxies. The anisotropies exceed the instrument noise and the more local foregrounds; they can be attributed to emission from population III stars, at an era dominated by these objects. PMID:16267547

  18. Problems encountered in fluctuating flame temperature measurements by thermocouple.

    SciTech Connect

    Donaldson, A. Burl; Lucero, Ralph E.; Gill, Walter; Yilmaz, Nadir

    2008-11-01

    Some thermocouple experiments were carried out in order to obtain sensitivity of thermocouple readings to fluctuations in flames and to determine if the average thermocouple reading was representative of the local volume temperature for fluctuating flames. The thermocouples considered were an exposed junction thermocouple and a fully sheathed thermocouple with comparable time constants. Either the voltage signal or indicated temperature for each test was recorded at sampling rates between 300-4,096 Hz. The trace was then plotted with respect to time or sample number so that time variation in voltage or temperature could be visualized and the average indicated temperature could be determined. For experiments where high sampling rates were used, the signal was analyzed using Fast Fourier Transforms (FFT) to determine the frequencies present in the thermocouple signal. This provided a basic observable as to whether or not the probe was able to follow flame oscillations. To enhance oscillations, for some experiments, the flame was forced. An analysis based on thermocouple time constant, coupled with the transfer function for a sinusoidal input was tested against the experimental results.

  19. Ionization and Cooling of a Hot Plasma with Temperature Fluctuations

    NASA Astrophysics Data System (ADS)

    Kholtygin, A. F.; Bratsev, V. F.; Ochkur, V. I.

    2002-01-01

    Cooling functions for a stationary plasma are calculated in a wide temperature range from 5·103 K to 108 K, both for a plasma with the solar abundances of elements and for a plasma with an anomalous chemical composition typical of Wolf—Rayet stars. The HILYS project is described, with the aim of calculating cross sections and rates of excitation by electron collision of atoms and ions with a charge Z 26 and principal electron quantum numbers n 10, needed to calculate the ionization and thermal states of a plasma and the development of methods of calculating the plasma's spectrum in the visible, UV, and x-ray ranges. The results of a calculation of cross sections and effective collision strengths obtained within the framework of the project are given. The influence of temperature fluctuations (T/T 0.16) on the relative ion abundances and the total cooling function is studied. It is shown that the presence of such fluctuations considerably increases the temperature range in which the abundances of ions of a given degree of ionization are not negligible, while the cooling function can differ considerably from that calculated for a one-temperature plasma. The contribution of dielectronic recombination to the total cooling function is investigated, and it proves to be significant only for a plasma with high abundances of heavy elements. The x-ray spectrum of the bright supergiant Pup is analyzed.

  20. Problems Encountered in Fluctuating Flame Temperature Measurements by Thermocouple

    PubMed Central

    Yilmaz, Nadir; Gill, Walt; Donaldson, A. Burl; Lucero, Ralph E.

    2008-01-01

    Some thermocouple experiments were carried out in order to obtain sensitivity of thermocouple readings to fluctuations in flames and to determine if the average thermocouple reading was representative of the local volume temperature for fluctuating flames. The thermocouples considered were an exposed junction thermocouple and a fully sheathed thermocouple with comparable time constants. Either the voltage signal or indicated temperature for each test was recorded at sampling rates between 300-4,096 Hz. The trace was then plotted with respect to time or sample number so that time variation in voltage or temperature could be visualized and the average indicated temperature could be determined. For experiments where high sampling rates were used, the signal was analyzed using Fast Fourier Transforms (FFT) to determine the frequencies present in the thermocouple signal. This provided a basic observable as to whether or not the probe was able to follow flame oscillations. To enhance oscillations, for some experiments, the flame was forced. An analysis based on thermocouple time constant, coupled with the transfer function for a sinusoidal input was tested against the experimental results.

  1. Objective differentiation of neonatal EEG background grades using detrended fluctuation analysis

    PubMed Central

    Matic, Vladimir; Cherian, Perumpillichira Joseph; Koolen, Ninah; Ansari, Amir H.; Naulaers, Gunnar; Govaert, Paul; Van Huffel, Sabine; De Vos, Maarten; Vanhatalo, Sampsa

    2015-01-01

    A quantitative and objective assessment of background electroencephalograph (EEG) in sick neonates remains an everyday clinical challenge. We studied whether long range temporal correlations quantified by detrended fluctuation analysis (DFA) could be used in the neonatal EEG to distinguish different grades of abnormality in the background EEG activity. Long-term EEG records of 34 neonates were collected after perinatal asphyxia, and their background was scored in 1 h epochs (8 h in each neonate) as mild, moderate or severe. We applied DFA on 15 min long, non-overlapping EEG epochs (n = 1088) filtered from 3 to 8 Hz. Our formal feasibility study suggested that DFA exponent can be reliably assessed in only part of the EEG epochs, and in only relatively short time scales (10–60 s), while it becomes ambiguous if longer time scales are considered. This prompted further exploration whether paradigm used for quantifying multifractal DFA (MF-DFA) could be applied in a more efficient way, and whether metrics from MF-DFA paradigm could yield useful benchmark with existing clinical EEG gradings. Comparison of MF-DFA metrics showed a significant difference between three visually assessed background EEG grades. MF-DFA parameters were also significantly correlated to interburst intervals quantified with our previously developed automated detector. Finally, we piloted a monitoring application of MF-DFA metrics and showed their evolution during patient recovery from asphyxia. Our exploratory study showed that neonatal EEG can be quantified using multifractal metrics, which might offer a suitable parameter to quantify the grade of EEG background, or to monitor changes in brain state that take place during long-term brain monitoring. PMID:25954174

  2. Response of the ice sheets to fluctuating temperatures

    NASA Astrophysics Data System (ADS)

    Bøgeholm Mikkelsen, Troels; Grinsted, Aslak; Ditlevsen, Peter

    2016-04-01

    Forecasting the future sea level relies on accurate modeling of the response of the Greenland and Antarctic ice sheets to changing tempera- tures. Using coupled climate and ice sheet models long time forecasting is often made computationally feasible by running the ice sheet model in off-line mode, such that the temperature and precipitation fields govern- ing the mass balance of the ice sheets are taken to be constant over time. As the temperature and precipitation fluctuates, the asymmetry in the typical time scales for accumulation and ablation would result in a bias in the resulting mass balance of the ice sheet. We show that the steady state of the ice sheet is biased toward larger size of the ice sheet, if the short time scale fluctuations in temperature are not taken into account. This could potentially imply that the critical global temperature increase for ice sheet collapse is overestimated, thus the risk of collapse in a given climate change scenario underestimated. Our results highlight the need to consider the variability and not only the mean of the forcing of the mass balance of the ice sheet. We estimate that the effect of temperature variability on surface mass balance of the Greenland Ice Sheet in recent ensemble forecasting should be adjusted downward by as much as 10 percent of the present day observed value, if assuming a 2 degree warming. We are thus closer to a potential tipping point, than previously anticipated. Many predicted scenarios of the future climate show an increased variability in temperature over much of the Earth. In light of the findings presented here, it is important to gauge the extent to which this increased variability will further influence climate change.

  3. Near-infrared sky background fluctuations at mid- and low latitudes

    NASA Astrophysics Data System (ADS)

    Moreels, G.; Clairemidi, J.; Faivre, M.; Pautet, D.; Rubio da Costa, F.; Rousselot, P.; Meriwether, J. W.; Lehmacher, G. A.; Vidal, E.; Chau, J. L.; Monnet, G.

    2008-10-01

    The emission of the upper atmosphere introduces an additional variable component into observations of astronomical objects in the NIR 700 3,000 nm range. The subtraction of this component is not easy because it varies during the night by as much as 100% and it is not homogeneous over the sky. A program aimed at measuring and understanding the main characteristics of the atmospheric NIR emission was undertaken. A 512 × 512 CCD camera equipped with a RG780/2 mm filter is used to obtain images of the sky in a 36° × 36° field of view. The intensities of a given star and of the nearby region devoid of star in a 439 arcmin2 area are monitored during periods of time of several hours. The sky intensity measured in the 754 900 nm bandpass, reduced to zenith and zero airmass is comprised between mag20 and mag18.5 per arcsecond2. A diminution by a factor of two during the night is frequently observed. Intensity fluctuations having an amplitude of 15% and periods of 5 40 min are present in the images with a structure of regularly spaced stripes. The fluctuations of the NIR sky background intensity are due to (1) the chemical evolution of the upper atmosphere composition during the night and (2) dynamical processes such as tides with periods of 3 6 h or gravity waves with periods of several tens of minutes. We suggest that a monitoring of the sky background intensity could be set up when quantitative observations of astronomical objects require exposure times longer than ~10 min. The publication is illustrated with several video films accessible on the web site http://www.obs-besancon.fr/nirsky/ . Enter username: nirsky and password: skynir.

  4. Transport and fluctuations in high temperature spheromak plasmas

    SciTech Connect

    McLean, H.S.; Wood, R.D.; Cohen, B.I.; Hooper, E.B.; Hill, D.N.; Moller, J.M.; Romero-Talamas, C.; Woodruff, S.

    2006-05-15

    Higher electron temperature (T{sub e}>350 eV) and reduced electron thermal diffusivity ({chi}{sub e}<10 m{sup 2}/s) is achieved in the Sustained Spheromak Physics Experiment (SSPX) by increasing the discharge current=I{sub gun} and gun bias flux={psi}{sub gun} in a prescribed manner. The internal current and q=safety factor profile derived from equilibrium reconstruction as well as the measured magnetic fluctuation amplitude can be controlled by programming the ratio {lambda}{sub gun}={mu}{sub 0}I{sub gun}/{psi}{sub gun}. Varying {lambda}{sub gun} above and below the minimum energy eigenvalue={lambda}{sub FC} of the flux conserver ({nabla}xB-vector={lambda}{sub FC}B-vector) varies the q profile and produces the m/n=poloidal/toroidal magnetic fluctuation mode spectrum expected from mode-rational surfaces with q=m/n. The highest T{sub e} is measured when the gun is driven with {lambda}{sub gun} slightly less than {lambda}{sub FC}, producing low fluctuation amplitudes (<1%) and 1/2fluctuations associated with low-order mode-rational surfaces, and the quality of magnetic surfaces.

  5. A Model for Temperature Fluctuations in a Buoyant Plume

    NASA Astrophysics Data System (ADS)

    Bisignano, A.; Devenish, B. J.

    2015-11-01

    We present a hybrid Lagrangian stochastic model for buoyant plume rise from an isolated source that includes the effects of temperature fluctuations. The model is based on that of Webster and Thomson (Atmos Environ 36:5031-5042, 2002) in that it is a coupling of a classical plume model in a crossflow with stochastic differential equations for the vertical velocity and temperature (which are themselves coupled). The novelty lies in the addition of the latter stochastic differential equation. Parametrizations of the plume turbulence are presented that are used as inputs to the model. The root-mean-square temperature is assumed to be proportional to the difference between the centreline temperature of the plume and the ambient temperature. The constant of proportionality is tuned by comparison with equivalent statistics from large-eddy simulations (LES) of buoyant plumes in a uniform crossflow and linear stratification. We compare plume trajectories for a wide range of crossflow velocities and find that the model generally compares well with the equivalent LES results particularly when added mass is included in the model. The exception occurs when the crossflow velocity component becomes very small. Comparison of the scalar concentration, both in terms of the height of the maximum concentration and its vertical spread, shows similar behaviour. The model is extended to allow for realistic profiles of ambient wind and temperature and the results are compared with LES of the plume that emanated from the explosion and fire at the Buncefield oil depot in 2005.

  6. Temperature fluctuation of the Iceland mantle plume through time

    NASA Astrophysics Data System (ADS)

    Spice, Holly E.; Fitton, J. Godfrey; Kirstein, Linda A.

    2016-02-01

    The newly developed Al-in-olivine geothermometer was used to find the olivine-Cr-spinel crystallization temperatures of a suite of picrites spanning the spatial and temporal extent of the North Atlantic Igneous Province (NAIP), which is widely considered to be the result of a deep-seated mantle plume. Our data confirm that start-up plumes are associated with a pulse of anomalously hot mantle over a large spatial area before becoming focused into a narrow upwelling. We find that the thermal anomaly on both sides of the province at Baffin Island/West Greenland and the British Isles at ˜61 Ma across an area ˜2000 km in diameter was uniform, with Al-in-olivine temperatures up to ˜300°C above that of average mid-ocean ridge basalt (MORB) primitive magma. Furthermore, by combining our results with geochemical data and existing geophysical and bathymetric observations, we present compelling evidence for long-term (>107 year) fluctuations in the temperature of the Iceland mantle plume. We show that the plume temperature fell from its initial high value during the start-up phase to a minimum at about 35 Ma, and that the mantle temperature beneath Iceland is currently increasing.

  7. Fluctuations in radiation backgrounds at high redshift and the first stars

    NASA Astrophysics Data System (ADS)

    Holzbauer, Lauren Nicole

    The first stars to light up our universe are as yet unseen, but there have been many attempts to elucidate their properties. The characteristics of these stars (`Population/Pop III' stars) that we do know lie mostly within theory; they formed out of metal-free hydrogen and helium gas contained in dark matter minihalos at redshifts z 20-30. The extent to which Pop III star formation reached into later times is unknown. Current and near future instruments are incapable of resolving individual Pop III stars. Consequently, astronomers must devise creative means with which to indirectly predict and measure and their properties. In this thesis, we will investigate a few of those means. We use a new method to model fluctuations of the Lyman-Werner (LW) and Lyman-alpha radiation backgrounds at high redshift. At these early epochs the backgrounds are symptoms of a universe newly lit with its first stars. LW photons (11.5-13.6 eV) are of particular interest because they dissociate molecular hydrogen, the primary coolant in the first minihalos that is necessary for star formation. By using a variation of the `halo model', which describes the spatial distribution and clustering of halos, we can efficiently generate power spectra for these backgrounds. Spatial fluctuations in the LW and (indirectly) the Lyman-alpha BG can tell us about the transition from primordial star formation to a more metal-enriched mode that marks the beginning of the second generation of stars in our Universe. The Near Infrared Background (NIRB) has for some time been considered a potential tool with which to indirectly observe the first stars. Ultraviolet (UV) emission from these stars is redshifted into the NIR band, making the NIRB amenable for hunting Pop III stellar signatures. There have been several measurements of the NIRB and subsequent theoretical studies attempting to explain them in recent years. Though controversial, residual levels of the mean NIRB intensity and anisotropies have been

  8. Transport and Fluctuations in High Temperature Spheromak Plasmas

    SciTech Connect

    McLean, H S; Woodruff, S; Wood, R D; Hooper, E B; Hill, D N; Moller, J; Romero-Talamas, C

    2005-10-27

    Globally coherent magnetic fluctuations often observed during the driven phase after spheromak formation in the Sustained Spheromak Physics Experiment (SSPX) can be reduced to small amplitude by programming the magnetic flux = {Psi}{sub gun} and the discharge current = I{sub gun} in the formation gun. Scanning the edge normalized current = {lambda}{sub edge} = {lambda}{sub gun} = {mu}{sub 0}I{sub gun}/{Psi}{sub gun} above and below the minimum energy eigenvalue = {lambda}{sub FC} of the flux conserver provides a variation in the internal q = safety factor profile producing the expected q = m/n = poloidal/toroidal mode spectrum. By driving the edge with the proper {lambda}{sub gun}, the system can be operated with the poloidal/toroidal mode spectrum between the m/n = 1/2 and 2/3 modes producing low magnetic fluctuation amplitudes and high electron temperature = T{sub e} > 350 eV. Transport and confinement parameters calculated using Thomson scattering-measured T{sub e} and N{sub e} profiles coupled with the equilibrium code internal current profiles show a reduction in electron thermal diffusivity as T{sub e} increases. This scaling behavior is more classical-like than Bohm or open field line transport models where thermal diffusivity increases with T{sub e}. Electron diffusivity is calculated to be less than 10 m{sup 2}/s, approaching levels seen in tokamaks.

  9. Temperature fluctuations as a source of brown dwarf variability

    SciTech Connect

    Robinson, Tyler D.; Marley, Mark S.

    2014-04-20

    A number of brown dwarfs are now known to be variable with observed amplitudes as large as 10%-30% at some wavelengths. While spatial inhomogeneities in cloud coverage and thickness are likely responsible for much of the observed variability, it is possible that some of the variations arise from atmospheric temperature fluctuations instead of, or in addition to, clouds. To better understand the role that thermal variability might play we present a case study of brown dwarf variability using a newly developed one-dimensional, time-stepping model of atmospheric thermal structure. We focus on the effects of thermal perturbations, intentionally simplifying the problem through omission of clouds and atmospheric circulation. Model results demonstrate that thermal perturbations occurring deep in the atmosphere (at pressures greater than 10 bar) of a model T-dwarf can be communicated to the upper atmosphere through radiative heating via the windows in near-infrared water opacity. The response time depends on where in the atmosphere a thermal perturbation is introduced. We show that, for certain periodic perturbations, the emission spectrum can have complex time- and wavelength-dependent behaviors, including phase shifts in times of maximum flux observed at different wavelengths. Since different wavelengths probe different levels in the atmosphere, these variations track a wavelength-dependent set of radiative exchanges happening between different atmospheric levels as a perturbation evolves in time. We conclude that thermal—as well as cloud—fluctuations must be considered as possible contributors to the observed brown dwarf variability.

  10. Observing temperature fluctuations in humans using infrared imaging

    PubMed Central

    Liu, Wei-Min; Meyer, Joseph; Scully, Christopher G.; Elster, Eric; Gorbach, Alexander M.

    2013-01-01

    In this work we demonstrate that functional infrared imaging is capable of detecting low frequency temperature fluctuations in intact human skin and revealing spatial, temporal, spectral, and time-frequency based differences among three tissue classes: microvasculature, large sub-cutaneous veins, and the remaining surrounding tissue of the forearm. We found that large veins have stronger contractility in the range of 0.005-0.06 Hz compared to the other two tissue classes. Wavelet phase coherence and power spectrum correlation analysis show that microvasculature and skin areas without vessels visible by IR have high phase coherence in the lowest three frequency ranges (0.005-0.0095 Hz, 0.0095-0.02 Hz, and 0.02-0.06 Hz), whereas large veins oscillate independently. PMID:23538682

  11. Cosmic Microwave Background Fluctuations from the Kinetic Sunyaev-Zeldovich Effect as a Cosmological Probe

    NASA Astrophysics Data System (ADS)

    Park, Hyunbae; Shapiro, P.; Komatsu, E.

    2012-01-01

    We present a calculation of the kinetic Sunyaev-Zel'dovich (kSZ) effect on of the Comic Microwave Background fluctuation. We focus on the scale at the multipole moment of l = 3000 10000 that is currently being probed by the South Pole Telescope (SPT) and the Atacama Cosmology Telescope. For the post-reionization contribution of the total signal, we use the 3rd order perturbation theory (3PT) to model non-linearity of post-reionization epoch. We evaluate a non-linear expression for momentum powerspectrum in Ma and Fry (2002) with the 3PT density and velocity powerspectrum. And, we use the 3PT momentum powerspectrum to calculate the kSZ signal. We show that the 3PT is a reasonable approximation by comparing our result with previous work by Zhang, Pen and Trac (2004). For reionization contribution, we use our N-body radiative transfer simulations to take patchiness of ionization of intergalactic medium in reionization epoch into account. Using ionized fraction field in the simulation, we calculate the momentum field of the ionized gas. And, we correct for the missing power in finite size boxes of simulations. Finally, we show the kSZ calculation for different simulations with reionization scenarios. With contributions from each epoch, we predict total kSZ signal for different reionization history and put constraint on reionization scenario using an upper bound of the signal from recent SPT measurement.

  12. 21 cm signal from cosmic dawn: imprints of spin temperature fluctuations and peculiar velocities

    NASA Astrophysics Data System (ADS)

    Ghara, Raghunath; Choudhury, T. Roy; Datta, Kanan K.

    2015-02-01

    The 21 cm brightness temperature δTb fluctuations from reionization promise to provide information on the physical processes during that epoch. We present a formalism for generating the δTb distribution using dark matter simulations and a 1D radiative transfer code. Our analysis is able to account for the spin temperature TS fluctuations arising from inhomogeneous X-ray heating and Lyα coupling during cosmic dawn. The δTb power spectrum amplitude at large scales (k ˜ 0.1 Mpc-1) is maximum when ˜10 per cent of the gas (by volume) is heated above the cosmic microwave background temperature. The power spectrum shows a `bump'-like feature during cosmic dawn and its location measures the typical sizes of heated regions. We find that the effect of peculiar velocities on the power spectrum is negligible at large scales for most part of the reionization history. During early stages (when the volume averaged ionization fraction ≲ 0.2) this is because the signal is dominated by fluctuations in TS. For reionization models that are solely driven by stars within high-mass (≳ 109 M⊙) haloes, the peculiar velocity effects are prominent only at smaller scales (k ≳ 0.4 Mpc-1) where patchiness in the neutral hydrogen density dominates the signal. The conclusions are unaffected by changes in the amplitude or steepness in the X-ray spectra of the sources.

  13. Transport and fluctuations in high temperature spheromak plasmas

    NASA Astrophysics Data System (ADS)

    McLean, Harry

    2005-10-01

    A systematic analysis is presented of thermal transport in a driven spheromak that extends well into the collisionless regime and spans a wide range of magnetic fluctuation levels. The relationship between internal fluctuations and energy/helicity transport is of fundamental interest to many self-organized configurations in laboratory and space plasmas and the subject of ongoing multi-institutional collaborations. With the recent achievement on the SSPX spheromak[1] of electron temperature Te˜350eV in the core, and good confinement (core electron thermal diffusivity χe<10m^2/ for Te>200eV), we are now comparing heat transport in the experiment with a variety of models including classical, Bohm, and stochastic[2]/diffusive[3]/open[4] field lines. Using Thomson scattering to measure Te, ne profiles and the CORSICA equilibrium code to calculate internal current profiles from magnetic probe fits, we find that χe decreases as Te increases, a scaling behavior more classical-like than Bohm or open field line models would indicate. Lower Te and higher χe is observed in the transition region between the core and the separatrix where NIMROD 3d resistive MHD calculations[5] show the possible existence of chaotic field lines. We will also discuss plans including multi-pulse Thomson scattering and neutral beam heating. [1] E.B. Hooper, et al., Nucl. Fusion 39, 863 (1999). [2] A.B. Rechester and M.N. Rosenbluth, Phys. Rev. Lett. 40, 38 (1978). [3] J.D. Callen, Phys. Rev. Lett. 94, 055002 (2005). [4] R.W. Moses, et al., Phys. Plasmas 8, 4839 (2001). [5] B.I. Cohen, et al., Phys. Plasmas 12, 056106 (2005). This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

  14. Temperature fluctuations driven by magnetorotational instability in protoplanetary disks

    SciTech Connect

    McNally, Colin P.; Hubbard, Alexander; Low, Mordecai-Mark Mac; Yang, Chao-Chin E-mail: ahubbard@amnh.org E-mail: ccyang@astro.lu.se

    2014-08-10

    The magnetorotational instability (MRI) drives magnetized turbulence in sufficiently ionized regions of protoplanetary disks, leading to mass accretion. The dissipation of the potential energy associated with this accretion determines the thermal structure of accreting regions. Until recently, the heating from the turbulence has only been treated in an azimuthally averaged sense, neglecting local fluctuations. However, magnetized turbulence dissipates its energy intermittently in current sheet structures. We study this intermittent energy dissipation using high resolution numerical models including a treatment of radiative thermal diffusion in an optically thick regime. Our models predict that these turbulent current sheets drive order-unity temperature variations even where the MRI is damped strongly by Ohmic resistivity. This implies that the current sheet structures where energy dissipation occurs must be well-resolved to correctly capture the flow structure in numerical models. Higher resolutions are required to resolve energy dissipation than to resolve the magnetic field strength or accretion stresses. The temperature variations are large enough to have major consequences for mineral formation in disks, including melting chondrules, remelting calcium-aluminum-rich inclusions, and annealing silicates; and may drive hysteresis: current sheets in MRI active regions could be significantly more conductive than the remainder of the disk.

  15. The gravitational wave contribution to cosmic microwave background anisotropies and the amplitude of mass fluctuations from COBE results

    NASA Technical Reports Server (NTRS)

    Lucchin, Francesco; Matarrese, Sabino; Mollerach, Silvia

    1992-01-01

    A stochastic background of primordial gravitational waves may substantially contribute, via the Sachs-Wolfe effect, to the large-scale cosmic microwave background (CMB) anisotropies recently detected by COBE. This implies a bias in any resulting determination of the primordial amplitude of density fluctuations. We consider the constraints imposed on n is less than 1 ('tilted') power-law fluctuation spectra, taking into account the contribution from both scalar and tensor waves, as predicted by power-law inflation. The gravitational wave contribution to CMB anisotropies generally reduces the required rms level of mass fluctuation, thereby increasing the linear bias parameter, even in models where the spectral index is close to the Harrison-Zel'dovich value n = 1. This 'gravitational wave bias' helps to reconcile the predictions of CDM models with observations on pairwise galaxy velocity dispersion on small scales.

  16. AKARI OBSERVATION OF THE FLUCTUATION OF THE NEAR-INFRARED BACKGROUND

    SciTech Connect

    Matsumoto, T.; Seo, H. J.; Lee, H. M.; Jeong, W.-S.; Pyo, J.; Matsuura, S.; Matsuhara, H.; Oyabu, S.; Wada, T.

    2011-12-01

    We report a search for fluctuations of the sky brightness toward the north ecliptic pole with the Japanese infrared astronomical satellite AKARI, at 2.4, 3.2, and 4.1 {mu}m. We obtained circular maps with 10' diameter fields of view, which clearly show a spatial structure on the scale of a few hundred arcseconds. A power spectrum analysis shows that there is a significant excess fluctuation at angular scales larger than 100'' that cannot be explained by zodiacal light, diffuse Galactic light, shot noise of faint galaxies, or clustering of low-redshift galaxies. These results are consistent with observations at 3.6 and 4.5 {mu}m by NASA's Spitzer Space Telescope. The fluctuating component observed at large angular scales has a blue stellar spectrum which is similar to that of the spectrum of the excess isotropic emission observed with the Infrared Telescope in Space. A significant spatial correlation between wavelength bands was found, and the slopes of the linear correlations are consistent with the spectrum of the excess fluctuation. These findings indicate that the detected fluctuation could be attributed to the first stars of the universe, i.e., Population III stars. The observed fluctuation provides an important constraint on the era of the first stars.

  17. Correlation Ece Measurements of Turbulent Electron Temperature Fluctuations in Diii-D

    NASA Astrophysics Data System (ADS)

    White, A. E.; Peebles, W. A.; Rhodes, T. L.; Wang, G.; Schmitz, L.; Carter, T. A.; Hillesheim, J. C.; Doyle, E. J.; Zeng, L.; Holland, C. H.; McKee, G. R.; Staebler, G. M.; Waltz, R. E.; Candy, J.; Deboo, J. C.; Petty, C. C.; Burrell, K. H.

    2011-02-01

    This paper describes measurements of long wavelength, turbulent electron temperature fluctuations in the core plasma of the DIII-D tokamak made with a correlation electron cyclotron emission (CECE) radiometer-based diagnostic. Experimental and simulation results indicate that long wavelength electron temperature fluctuations (1) are similar in amplitude and spectrum to density fluctuations, (2) can be associated with both ITG and TEM turbulence, (3) exhibit changes in the relative fluctuation level that correlate with changes in electron thermal transport, and (4) are correlated, but out of phase, with density fluctuations measured simultaneously with reflectometry.

  18. Effects of gas temperature fluctuations on the evolution of Nitrogenous species during coal devolatilization

    SciTech Connect

    Zhang, H.T.; Zhang, J.

    2009-02-15

    The effects of gas temperature fluctuations on the instantaneous evolution processes of nitrogenous species were investigated for pulverized coal particles undergoing devolatilization in a hot gas. The instantaneous mass variations of nitrogenous species released from the particles with diameters of 10-50 {mu} m were computed for different conditions. The instantaneous gas temperature was varied with time either in a simple harmonic way or in a random way. The calculated results showed that, under different time-average gas temperatures, the HCN evolution behaviors of particles with different diameters were all affected by the gas temperature fluctuations. The gas temperature fluctuations led to more rapid HCN release from the pulverized coal particles compared to the results obtained without gas temperature fluctuations. The effects were further enhanced by increasing the amplitude or intensity of the gas temperature fluctuations.

  19. New Measurements of the Cosmic Infrared Background Fluctuations in Deep SpitzerllRAC Survey Data and their Cosmological Implications

    NASA Technical Reports Server (NTRS)

    Kashlinsky, A.; Arendt, R. G.; Ashby, M. L. N.; Fazio, G. G.; Mather, J.; Moseley, S. H.

    2012-01-01

    We extend the previous measurements of CIB fluctuations to angular scales of less than or equal to 1 degree new data obtained in the course of the 2,000+ hour Spitzer Extended Deep Survey. Two fields with completed observations of approximately equal to 12 hr/pixel are analyzed for source-subtracted CIB fluctuations at 3.6 and 4.5 micrometers. The fields, EGS and UDS, cover a total area of approximately 0.25 deg and lie at high Galactic and Ecliptic latitudes, thus minimizing cirrus and zodiacal light contributions to the fluctuations. The observations have been conducted at 3 distinct epochs separated by about 6 months. As in our previous studies, the fields were assembled using the self-calibration method which is uniquely suitable for probing faint diffuse backgrounds. The assembled fields were cleaned off the bright sources down to the low shot noise levels corresponding to AB mag approximately equal to 25, Fourier-transformed and their power spectra evaluated. The noise was estimated from the time-differenced data and subtracted from the signal isolating the fluctuations remaining above the noise levels. The power spectra of the source-subtracted fields remain identical (within the observational uncertainties) for the three epochs of observations indicating that zodiacal light contributes negligibly to the fluctuations. By comparing to the measurements for the same regions at 8 micrometers we demonstrate that Galactic cirrus cannot account for the levels of the fluctuations either. The signal appears isotropically distributed on the sky as required by its origin in the CIB fluctuations. This measurement thus extends our earlier results to the important range of sub-degree scales. We find that the CIB fluctuations continue to diverge to more than 10 times those of known galaxy populations on angular scales out to less than or equal to 1 degree. The low shot noise levels remaining in the diffuse maps indicate that the large scale fluctuations arise from spatial

  20. RECONSTRUCTING THE NEAR-INFRARED BACKGROUND FLUCTUATIONS FROM KNOWN GALAXY POPULATIONS USING MULTIBAND MEASUREMENTS OF LUMINOSITY FUNCTIONS

    SciTech Connect

    Helgason, Kari; Ricotti, Massimo; Kashlinsky, Alexander

    2012-06-20

    We model fluctuations in the cosmic infrared background (CIB) arising from known galaxy populations using 233 measured UV, optical, and near-IR luminosity functions (LFs) from a variety of surveys spanning a wide range of redshifts. We compare best-fit Schechter parameters across the literature and find clear indication of evolution with redshift. Providing fitting formulae for the multi-band evolution of the LFs out to z {approx} 5, we calculate the total emission redshifted into the near-IR bands in the observer frame and recover the observed optical and near-IR galaxy counts to good accuracy. Our empirical approach, in conjunction with a halo model describing the clustering of galaxies, allows us to compute the fluctuations of the unresolved CIB and compare the models to current measurements. We find that fluctuations from known galaxy populations are unable to account for the large-scale CIB clustering signal seen by Spitzer/IRAC and AKARI/IRC and continue to diverge out to larger angular scales. This holds true even if the LFs are extrapolated out to faint magnitudes with a steep faint-end slope all the way to z = 8. We also show that removing resolved sources to progressively fainter magnitude limits isolates CIB fluctuations to increasingly higher redshifts. Our empirical approach suggests that known galaxy populations are not responsible for the bulk of the fluctuation signal seen in the measurements and favors a very faint population of highly clustered sources.

  1. Reduction of thermal emission background in high temperature microheaters

    NASA Astrophysics Data System (ADS)

    Armstrong, Philip R.; Mah, Merlin L.; Olson, Kyle D.; Taylor, Lucas N.; Talghader, Joseph J.

    2016-05-01

    High temperature microheaters have been designed and constructed to reduce the background thermal emission radiation produced by the heater. Such heaters allow one to probe luminescence with very low numbers of photons where the background emission would overwhelm the desired signal. Two methods to reduce background emission are described: one with low emission materials and the other with interference coating design. The first uses platforms composed of material that is transparent to mid-infrared light and therefore of low emissivity. Heating elements are embedded in the periphery of the heater. The transparent platform is composed of aluminum oxide, which is largely transparent for wavelengths less than about 8 μm. In the luminescent microscopy used to test the heater, an optical aperture blocks emission from the heating coils while passing light from the heated objects on the transparent center of the microheater. The amount of infrared light transmitted through the aperture was reduced by 90% as the aperture was moved from the highly emissive heater coils at 450 °C to the largely transparent center at the same temperature. The second method uses microheaters with integrated multilayer interference structures designed to limit background emission in the spectral range of the low-light luminescence object being measured. These heaters were composed of aluminum oxide, titanium dioxide, and platinum and were operated over a large range of temperatures, from 50 °C to 600 °C. At 600 °C, they showed a background photon emission only 1/800 that of a comparison heater without the multilayer interference structure. In this structure, the radiation background was sufficiently reduced to easily monitor weak thermoluminescent emission from CaSO4:Ce,Tb microparticles.

  2. Low-background temperature sensors fabricated on parylene substrates

    NASA Astrophysics Data System (ADS)

    Dhar, A.; Loach, J. C.; Barton, P. J.; Larsen, J. T.; Poon, A. W. P.

    2015-12-01

    Temperature sensors fabricated from ultra-low radioactivity materials have been developed for low-background experiments searching for neutrinoless double-beta decay and the interactions of WIMP dark matter. The sensors consist of electrical traces photolithographically-patterned onto substrates of vapor-deposited parylene. They are demonstrated to function as expected, to do so reliably and robustly, and to be highly radio-pure. This work is a proof-of-concept study of a technology that can be applied to broad class of electronic circuits used in low-background experiments.

  3. Impact of porous medium on the high cycle temperature fluctuations in a mixing tee

    SciTech Connect

    Bu, L.; Zhao, J.

    2012-07-01

    Temperature fluctuations occur in the region where hot and cold fluids mix turbulently in the nuclear power plants. Temperature fluctuations cause thermal fatigue of piping systems. In the design of generation IV nuclear power plants, supercritical fluids are supposed to be used widely. This paper investigated the thermal striping phenomenon caused by the turbulent mixing in a supercritical water Tee. There are two key issues in the study of thermal striping phenomenon: One is to find the region which experiences the peak temperature fluctuation; the other is how to attenuate it. Porous media was used to attenuate the temperature fluctuations in this paper. The results show that porous media with proper parameters in a tee can reduce the temperature fluctuations magnificently. (authors)

  4. Prominence oscillations: Effect of a time-dependent background temperature

    NASA Astrophysics Data System (ADS)

    Ballester, J. L.; Carbonell, M.; Soler, R.; Terradas, J.

    2016-06-01

    Context. Small amplitude oscillations in prominences have been known about for a long time, and from a theoretical point of view, these oscillations have been interpreted in terms of standing or propagating linear magnetohydrodynamic (MHD) waves. In general, these oscillations were studied by producing small perturbations in a background equilibrium with stationary physical properties. Aims: Taking into account that prominences are dynamic plasma structures, the assumption of a stationary equilibrium is not realistic. Therefore, our main aim is to study the effects produced by a non-stationary background on slow MHD waves, which could be responsible for prominence oscillations. Methods: Assuming that the radiation term is proportional to temperature and constant external heating, we have derived an expression for the temporal variation of the background temperature, which depends on the imbalance between heating and cooling processes. Furthermore, radiative losses, together with parallel thermal conduction, have also been included as damping mechanisms for the waves. Results: As temperature increases with time, the period of slow waves decreases and the amplitude of the velocity perturbations is damped. The inclusion of radiative losses enhances the damping. As temperature decreases with time, the period of slow waves increases and the amplitude of velocity perturbations grows while, as expected, the inclusion of radiative losses contributes to the damping of oscillations. Conclusions: There is observational evidence that, in different locations of the same prominence, oscillations are damped or amplified with time. This temporal damping or amplification can be obtained by a proper combination of a variable background temperature, together with radiative damping. Furthermore, decayless oscillations can also be obtained with an appropriate choice of the characteristic radiation time.

  5. Dipole modulation of cosmic microwave background temperature and polarization

    NASA Astrophysics Data System (ADS)

    Ghosh, Shamik; Kothari, Rahul; Jain, Pankaj; Rath, Pranati K.

    2016-01-01

    We propose a dipole modulation model for the Cosmic Microwave Background Radiation (CMBR) polarization field. We show that the model leads to correlations between l and l+1 multipoles, exactly as in the case of temperature. We obtain results for the case of TE, EE and BB correlations. An anisotropic or inhomogeneous model of primordial power spectrum which leads to such correlations in temperature field also predicts similar correlations in CMBR polarization. We analyze the CMBR temperature and polarization data in order to extract the signal of these correlation between l and l+1 multipoles. Our results for the case of temperature using the latest PLANCK data agree with those obtained by an earlier analysis. A detailed study of the correlation in the polarization data is not possible at present. Hence we restrict ourselves to a preliminary investigation in this case.

  6. Fluctuation-induced heat release from temperature-quenched nuclear spins near a quantum critical point.

    PubMed

    Kim, Y H; Kaur, N; Atkins, B M; Dalal, N S; Takano, Y

    2009-12-11

    At a quantum critical point (QCP)--a zero-temperature singularity in which a line of continuous phase transition terminates--quantum fluctuations diverge in space and time, leading to exotic phenomena that can be observed at nonzero temperatures. Using a quantum antiferromagnet, we present calorimetric evidence that nuclear spins frozen in a high-temperature nonequilibrium state by temperature quenching are annealed by quantum fluctuations near the QCP. This phenomenon, with readily detectable heat release from the nuclear spins as they are annealed, serves as an excellent marker of a quantum critical region around the QCP and provides a probe of the dynamics of the divergent quantum fluctuations. PMID:20366226

  7. Temperature dependence of vibrational frequency fluctuation of N3- in D2O

    NASA Astrophysics Data System (ADS)

    Tayama, Jumpei; Ishihara, Akane; Banno, Motohiro; Ohta, Kaoru; Saito, Shinji; Tominaga, Keisuke

    2010-07-01

    We have studied the temperature dependence of the vibrational frequency fluctuation of the antisymmetric stretching mode of N3- in D2O by three-pulse infrared (IR) photon echo experiments. IR pump-probe measurements were also carried out to investigate the population relaxation and the orientational relaxation of the same band. It was found that the time-correlation function (TCF) of the frequency fluctuation of this mode is well described by a biexponential function with a quasistatic term. The faster decay component has a time constant of about 0.1 ps, and the slower component varies from 1.4 to 1.1 ps in the temperature range from 283 to 353 K. This result indicates that liquid dynamics related to the frequency fluctuation are not highly sensitive to temperature. We discuss the relationship between the temperature dependence of the vibrational frequency fluctuation and that of the molecular motion of the system to investigate the molecular origin of the frequency fluctuation of the solute. We compare the temperature dependence of the frequency fluctuation with that of other dynamics such as dielectric relaxation of water. In contrast to the Debye dielectric relaxation time of D2O, the two time constants of the TCF of the frequency fluctuation do not exhibit strong temperature dependence. We propose a simple theoretical model for the frequency fluctuation in solutions based on perturbation theory and the dipole-dipole interaction between the vibrational mode of the solute and the solvent molecules. This model suggests that the neighboring solvent molecules in the vicinity of the solute play an important role in the frequency fluctuation. We suggest that the picosecond component of the frequency fluctuation results from structural fluctuation of the hydrogen-bonding network in water.

  8. Anderson localization in high temperature QCD: background configuration properties and Dirac eigenmodes

    NASA Astrophysics Data System (ADS)

    Cossu, Guido; Hashimoto, Shoji

    2016-06-01

    We investigate the properties of the background gauge field configurations that act as disorder for the Anderson localization mechanism in the Dirac spectrum of QCD at high temperatures. We compute the eigenmodes of the Möbius domain-wall fermion operator on configurations generated for the SU(3) gauge theory with two flavors of fermions, in the temperature range [0.9, 1.9]T c . We identify the source of localization of the eigenmodes with gauge configurations that are self-dual and support negative fluctuations of the Polyakov loop P L , in the high temperature sea of P L ˜ 1. The dependence of these observations on the boundary conditions of the valence operator is studied. We also investigate the spatial overlap of the left-handed and right-handed projected eigenmodes in correlation with the localization and the corresponding eigenvalue. We discuss an interpretation of the results in terms of monopole-instanton structures.

  9. Magnetic-Fluctuation-Induced Particle Transport and Density Relaxation in a High-Temperature Plasma

    SciTech Connect

    Ding, W. X.; Brower, D. L.; Fiksel, G.; Den Hartog, D. J.; Prager, S. C.; Sarff, J. S.

    2009-07-10

    The first direct measurement of magnetic-fluctuation-induced particle flux in the core of a high-temperature plasma is reported. Transport occurs due to magnetic field fluctuations associated with global tearing instabilities. The electron particle flux, resulting from the correlated product of electron density and radial magnetic fluctuations, accounts for density profile relaxation during a magnetic reconnection event. The measured particle transport is much larger than that expected for ambipolar particle diffusion in a stochastic magnetic field.

  10. Thermal fluctuations affect the transcriptome through mechanisms independent of average temperature.

    PubMed

    Sørensen, Jesper Givskov; Schou, Mads Fristrup; Kristensen, Torsten Nygaard; Loeschcke, Volker

    2016-01-01

    Terrestrial ectotherms are challenged by variation in both mean and variance of temperature. Phenotypic plasticity (thermal acclimation) might mitigate adverse effects, however, we lack a fundamental understanding of the molecular mechanisms of thermal acclimation and how they are affected by fluctuating temperature. Here we investigated the effect of thermal acclimation in Drosophila melanogaster on critical thermal maxima (CTmax) and associated global gene expression profiles as induced by two constant and two ecologically relevant (non-stressful) diurnally fluctuating temperature regimes. Both mean and fluctuation of temperature contributed to thermal acclimation and affected the transcriptome. The transcriptomic response to mean temperatures comprised modification of a major part of the transcriptome, while the response to fluctuations affected a much smaller set of genes, which was highly independent of both the response to a change in mean temperature and to the classic heat shock response. Although the independent transcriptional effects caused by fluctuations were relatively small, they are likely to contribute to our understanding of thermal adaptation. We provide evidence that environmental sensing, particularly phototransduction, is a central mechanism underlying the regulation of thermal acclimation to fluctuating temperatures. Thus, genes and pathways involved in phototransduction are likely of importance in fluctuating climates. PMID:27487917

  11. Thermal fluctuations affect the transcriptome through mechanisms independent of average temperature

    PubMed Central

    Sørensen, Jesper Givskov; Schou, Mads Fristrup; Kristensen, Torsten Nygaard; Loeschcke, Volker

    2016-01-01

    Terrestrial ectotherms are challenged by variation in both mean and variance of temperature. Phenotypic plasticity (thermal acclimation) might mitigate adverse effects, however, we lack a fundamental understanding of the molecular mechanisms of thermal acclimation and how they are affected by fluctuating temperature. Here we investigated the effect of thermal acclimation in Drosophila melanogaster on critical thermal maxima (CTmax) and associated global gene expression profiles as induced by two constant and two ecologically relevant (non-stressful) diurnally fluctuating temperature regimes. Both mean and fluctuation of temperature contributed to thermal acclimation and affected the transcriptome. The transcriptomic response to mean temperatures comprised modification of a major part of the transcriptome, while the response to fluctuations affected a much smaller set of genes, which was highly independent of both the response to a change in mean temperature and to the classic heat shock response. Although the independent transcriptional effects caused by fluctuations were relatively small, they are likely to contribute to our understanding of thermal adaptation. We provide evidence that environmental sensing, particularly phototransduction, is a central mechanism underlying the regulation of thermal acclimation to fluctuating temperatures. Thus, genes and pathways involved in phototransduction are likely of importance in fluctuating climates. PMID:27487917

  12. Measurement of Yields and Fluctuations using Background and Calibration Data from the LUX Detector

    NASA Astrophysics Data System (ADS)

    Pease, Evan; LUX Collaboration

    2016-03-01

    The Large Underground Xenon (LUX) detector is a 350-kg liquid xenon (LXe) time-projection chamber designed for the direct detection of weakly-interacting massive particles (WIMPs), a leading dark matter candidate. LUX operates on the 4850-foot level of the Sanford Underground Research Facility in Lead, SD. Monoenergetic electronic recoil (ER) peaks in the WIMP search and calibration data from the first underground science run of the LUX detector have been used to measure ER light and charge yields in LXe between 5.2 keV and 662 keV. The energy resolution of the LUX detector at these energies will also be presented. Recombination fluctuations are observed to follow a linear dependence on the number of ions for the energies in this study, and this dependence is consistent with low-energy measurements made with a tritium beta source in the LUX detector. Using these results and additional measurements of the recoil bands from tritium and D-D neutron calibrations, I will compare recombination fluctuations in LXe response to electronic and nuclear recoils. The presenter is supported by the U.S. Department of Energy, Office of Science Graduate Student Research (SCGSR) program. The SCGSR program is administered by the Oak Ridge Institute for Science and Education for the DOE under contract DE-AC05-06OR23100.

  13. Effect of Contraction on Turbulence and Temperature Fluctuations Generated by a Warm Grid

    NASA Technical Reports Server (NTRS)

    Mills, Robert R., Jr.; Corrsin, Stanley

    1959-01-01

    Hot-wire anemometer measurements were made of several statistical properties of approximately homogeneous and isotropic fields of turbulence and temperature fluctuations generated by a warm grid in a uniform airstream sent through a 4-to-1 contraction. These measurements were made both in the contraction and in the axisymmetric domain farther downstream. In addition to confirming the well-known turbulence anisotropy induced by strain, the data show effects on the skewnesses of both longitudinal velocity fluctuation (which has zero skewness in isotropic turbulence) and its derivative. The concomitant anisotropy in the temperature field accelerates the decay of temperature fluctuations.

  14. Quantum Fluctuations of Mesoscopic Damped Circuit Involving Capacitance-Inductance Coupling at a Finite Temperature

    NASA Astrophysics Data System (ADS)

    Xu, Xing-Lei; Xu, Shi-Min; Li, Hong-Qi

    2008-06-01

    The quantization of mesoscopic damped circuit involving capacitance-inductance coupling is proposed by the method of thrice linear transformation and damped harmonic oscillator quantization. The quantum fluctuations of the charges and current of each loop are calculated by thermo-field dynamics (TFD) in thermal vacuum state, thermal coherent state and thermal squeezed state, respectively. It is shown that the quantum fluctuations of the charges and current not only depend on circuit inherent parameter and coupled magnitude, but also rely on squeezed coefficients, squeezed angle, environmental temperature and damped resistance. And, because of influence of environmental temperature and damped resistance, the quantum fluctuations increase with increasing temperature and decrease with prolonging time.

  15. Effect of Fluctuations of Temperature During Frozen Storage on Denaturation of Fish Myofibrillar Protein

    NASA Astrophysics Data System (ADS)

    Fukuda, Yutaka; Okazaki, Emiko; Wada, Ritsuko

    The fluctuation in frozen storage temperature was set up by moving the minced meat from chub mackerel reversibly from the room of lower temperature to that of higher temperature for 7 hours every day during 180 days. The freeze denaturation of myofibrillar protein was studied in term the first-order rate (KD) of inactivation of myofibrillar Ca-ATPase. The freeze denaturation rate constant of the myofibrillar protein fluctuated between two different temperatures was same as or higher than the KD in case of constant temperature in higher temperature side.

  16. Skewness in CMB temperature fluctuations from curved cosmic (super-)strings

    SciTech Connect

    Yamauchi, Daisuke; Sendouda, Yuuiti; Yoo, Chul-Moon; Naruko, Atsushi; Sasaki, Misao; Takahashi, Keitaro E-mail: sendouda@yukawa.kyoto-u.ac.jp E-mail: keitaro@a.phys.nagoya-u.ac.jp E-mail: misao@yukawa.kyoto-u.ac.jp

    2010-05-01

    We compute the one-point probability distribution function of small-angle cosmic microwave background temperature fluctuations due to curved cosmic (super-)strings with a simple model of string network by performing Monte Carlo simulations. Taking into account of the correlation between the curvature and the velocity of string segments, there appear non-Gaussian features, specifically non-Gaussian tails and a skewness, in the one-point pdf. The obtained sample skewness for the conventional field-theoretic cosmic strings is g{sub 1} ≈ −0.14, which is consistent with the result reported by Fraisse et al. We also discuss the dependence of the pdf on the intercommuting probability. We find that the standard deviation of the Gaussian part increases and non-Gaussian features are suppressed as the intercommuting probability decreases. For sufficiently small intercommuting probability, the skewness is given by ∼< (a few) × 10{sup −2}.

  17. Quantum Dynamics in Noisy Backgrounds: from Sampling to Dissipation and Fluctuations

    NASA Astrophysics Data System (ADS)

    Oliveira, O.; Paula, W. de; Frederico, T.; Hussein, M. S.

    2016-08-01

    We investigate the dynamics of a quantum system coupled linearly to Gaussian white noise using functional methods. By performing the integration over the noisy field in the evolution operator, we get an equivalent non-Hermitian Hamiltonian, which evolves the quantum state with a dissipative dynamics. We also show that if the integration over the noisy field is done for the time evolution of the density matrix, a gain contribution from the fluctuations can be accessed in addition to the loss one from the non-hermitian Hamiltonian dynamics. We illustrate our study by computing analytically the effective non-Hermitian Hamiltonian, which we found to be the complex frequency harmonic oscillator, with a known evolution operator. It leads to space and time localisation, a common feature of noisy quantum systems in general applications.

  18. Introduction to temperature anisotropies of Cosmic Microwave Background radiation

    NASA Astrophysics Data System (ADS)

    Sugiyama, Naoshi

    2014-06-01

    Since its serendipitous discovery, Cosmic Microwave Background (CMB) radiation has been recognized as the most important probe of Big Bang cosmology. This review focuses on temperature anisotropies of CMB which make it possible to establish precision cosmology. Following a brief history of CMB research, the physical processes working on the evolution of CMB anisotropies are discussed, including gravitational redshift, acoustic oscillations, and diffusion dumping. Accordingly, dependencies of the angular power spectrum on various cosmological parameters, such as the baryon density, the matter density, space curvature of the universe, and so on, are examined and intuitive explanations of these dependencies are given.

  19. Age specific fecundity of Lygus hesperus in high, fluctuating temperatures.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have simulated hourly temperatures to examine Lygus response to hot summers in the San Joaquin Valley. Constant temperature of 33C quickly killed Lygus and SJV temperatures routinely surpass this level. Average hourly temperatures were tested for the months May, July, and September. Age specific ...

  20. REGULATION OF ISOPRENE EMISSION RESPONSES TO RAPID LEAF TEMPERATURE FLUCTUATIONS

    EPA Science Inventory

    Isoprene emission from leaves is temperature dependent and may protect them from damage at high temperatures. We measured the temperature of white oak (Quercus alba L.) leaves at the top of the canopy. The largest changes in leaf temperature were associated with changes in solar ...

  1. Systematic measurement of fast neutron background fluctuations in an urban area using a mobile detection system

    NASA Astrophysics Data System (ADS)

    Iyengar, A.; Beach, M.; Newby, R. J.; Fabris, L.; Heilbronn, L. H.; Hayward, J. P.

    2015-02-01

    Neutron background measurements using a mobile trailer-based system were conducted in Knoxville, Tennessee, USA. The 0.5 m2 system, consisting of eight EJ-301 liquid scintillation detectors, was used to collect neutron background measurements in order to better understand the systematic variations in background that depend solely on the street-level measurement position in a downtown area. Data was collected along 5 different streets, and the measurements were found to be repeatable. Using 10-min measurements, the fractional uncertainty in each measured data point was <2%. Compared with fast neutron background count rates measured away from downtown Knoxville, a reduction in background count rates ranging from 10% to 50% was observed in the downtown area, sometimes varying substantially over distances of tens of meters. These reductions are attributed to the net shielding of the cosmic ray neutron flux by adjacent buildings. For reference, the building structure as observed at street level is quantified in part here by a measured angle-of-open-sky metric.

  2. Systematic measurement of fast neutron background fluctuations in an urban area using a mobile detection system

    SciTech Connect

    Iyengar, Anagha; Beach, Matthew; Newby, Robert J.; Fabris, Lorenzo; Heilbronn, Lawrence H.; Hayward, Jason P.

    2015-11-12

    Neutron background measurements using a mobile trailer-based system were conducted in Knoxville, Tennessee. The 0.5 m2 system consisting of 8 EJ-301 liquid scintillation detectors was used to collect neutron background measurements in order to better understand the systematic background variations that depend solely on the street-level measurement position in a local, downtown area. Data was collected along 5 different streets in the downtown Knoxville area, and the measurements were found to be repeatable. Using 10-min measurements, fractional uncertainty in each measured data point was <2%. Compared with fast neutron background count rates measured away from downtown Knoxville, a reduction in background count rates ranging from 10-50% was observed in the downtown area, sometimes varying substantially over distances of tens of meters. These reductions are attributed to the shielding of adjacent buildings, quantified in part here by the metric angle-of-open-sky. The adjacent buildings may serve to shield cosmic ray neutron flux.

  3. Systematic measurement of fast neutron background fluctuations in an urban area using a mobile detection system

    DOE PAGESBeta

    Iyengar, Anagha; Beach, Matthew; Newby, Robert J.; Fabris, Lorenzo; Heilbronn, Lawrence H.; Hayward, Jason P.

    2015-11-12

    Neutron background measurements using a mobile trailer-based system were conducted in Knoxville, Tennessee. The 0.5 m2 system consisting of 8 EJ-301 liquid scintillation detectors was used to collect neutron background measurements in order to better understand the systematic background variations that depend solely on the street-level measurement position in a local, downtown area. Data was collected along 5 different streets in the downtown Knoxville area, and the measurements were found to be repeatable. Using 10-min measurements, fractional uncertainty in each measured data point was <2%. Compared with fast neutron background count rates measured away from downtown Knoxville, a reduction inmore » background count rates ranging from 10-50% was observed in the downtown area, sometimes varying substantially over distances of tens of meters. These reductions are attributed to the shielding of adjacent buildings, quantified in part here by the metric angle-of-open-sky. The adjacent buildings may serve to shield cosmic ray neutron flux.« less

  4. Experimental study of electron temperature fluctuations in the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    White, Anne Elisabeth

    The study of anomalous transport caused by turbulence in plasmas is an important aspect of magnetic fusion energy research. The importance of long-wavelength, electron temperature fluctuations in determining electron heat transport remains an open question. In this work, experiments were carried out to investigate the transport relevance of electron temperature fluctuations at the DIII-D tokamak using a radiometer-based, Correlation Electron Cyclotron Emission (CECE) diagnostic. The measurements of electron temperature fluctuations at DIII-D have provided the unique opportunity to quantitatively compare simultaneously measured electron temperature and density fluctuations with predictions from nonlinear gyrokinetic simulations. Experimentally, it is observed that the profiles of the two fields are similar in amplitude and spectrum in neutral beam-heated, low-confinement mode (L-mode) plasmas where the Ion Temperature Gradient (ITG) mode is expected to be the dominant linear instability. It is also observed that electron temperature fluctuations in the core plasma are reduced in high-confinement mode (H-mode), correlated with improved confinement. When Electron Cyclotron Heating (ECH) is used to modify profiles in neutral beam-heated L-mode plasmas, it is observed that the ratio of electron temperature and density fluctuation amplitudes increases, while theory predicts that the changes in the profiles will result in an increase in the Trapped Electron Mode (TEM) drive. The simultaneously measured profiles of electron temperature and density fluctuations in neutral beam-heated L-mode plasmas are compared with predictions from local, nonlinear gyrokinetic simulations using the GYRO code. The GYRO predictions are in good agreement with experimental observations of transport levels and fluctuation levels at one core location. GYRO predicts that electron temperature fluctuations are out of phase with potential fluctuations (non-Boltzmann response) and will contribute

  5. Fluctuating temperature leads to evolution of thermal generalism and preadaptation to novel environments.

    PubMed

    Ketola, Tarmo; Mikonranta, Lauri; Zhang, Ji; Saarinen, Kati; Ormälä, Anni-Maria; Friman, Ville-Petri; Mappes, Johanna; Laakso, Jouni

    2013-10-01

    Environmental fluctuations can select for generalism, which is also hypothesized to increase organisms' ability to invade novel environments. Here, we show that across a range of temperatures, opportunistic bacterial pathogen Serratia marcescens that evolved in fluctuating temperature (daily variation between 24°C and 38°C, mean 31°C) outperforms the strains that evolved in constant temperature (31°C). The growth advantage was also evident in novel environments in the presence of parasitic viruses and predatory protozoans, but less clear in the presence of stressful chemicals. Adaptation to fluctuating temperature also led to reduced virulence in Drosophila melanogaster host, which suggests that generalism can still be costly in terms of reduced fitness in other ecological contexts. While supporting the hypothesis that evolution of generalism is coupled with tolerance to several novel environments, our results also suggest that thermal fluctuations driven by the climate change could affect both species' invasiveness and virulence. PMID:24094344

  6. Small-Scale Spatial Fluctuations in the Soft X-Ray Background. Degree awarded by Maryland Univ., 2000

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; White, Nicolas E. (Technical Monitor)

    2001-01-01

    In order to isolate the diffuse extragalactic component of the soft X-ray background, we have used a combination of ROSAT All-Sky Survey and IRAS 100 micron data to separate the soft X-ray background into five components. We find a Local Hot Bubble similar to that described by Snowden et al (1998). We make a first calculation of the contribution by unresolved Galactic stars to the diffuse background. We constrain the normalization of the Extragalactic Power Law (the contribution of the unresolved extragalactic point sources such as AGN, QSO'S, and normal galaxies) to 9.5 +/- 0.9 keV/(sq cm s sr keV), assuming a power-law index of 1.46. We show that the remaining emission, which is some combination of Galactic halo emission and the putative diffuse extragalactic emission, must be composed of at least two components which we have characterized by thermal spectra. The softer component has log T - 6.08 and a patchy distribution; thus it is most probably part of the Galactic halo. The harder component has log T - 6.46 and is nearly isotropic; some portion may be due to the Galactic halo and some portion may be due to the diffuse extragalactic emission. The maximum upper limit to the strength of the emission by the diffuse extragalactic component is the total of the hard component, approx. 7.4 +/- 1.0 keV/(sq cm s sr keV) in the 3/4 keV band. We have made the first direct measure of the fluctuations due to the diffuse extragalactic emission in the 3/4 keV band. Physical arguments suggest that small angular scale (approx. 10') fluctuations in the Local Hot Bubble or the Galactic halo will have very short dissipation times (about 10(exp 5) years). Therefore, the fluctuation spectrum of the soft X-ray background should measure the distribution of the diffuse extragalactic emission. Using mosaics of deep, overlapping PSPC pointings, we find an autocorrelation function value of approx. 0.0025 for 10' < theta < 20', and a value consistent with zero on larger scales

  7. Phase speed saturation of Farley-Buneman waves due to stochastic, self-induced fluctuations in the background flow

    NASA Astrophysics Data System (ADS)

    Rojas, E. L.; Young, M. A.; Hysell, D. L.

    2016-06-01

    The phase speed saturation of Farley-Buneman waves is studied as an interaction with the random turbulent fluctuations in the background. We used the formalism of stochastic differential equations to model the complex interactions with a linearized system plus a stochastic term. Applying an averaging technique, we can obtain an augmented linear system that depends on the random behavior of the waves. The results show that following this approach we can obtain phase velocities that saturate close to the ion acoustic speed (Cs). This approach seems promising for the study of the influence of plasma turbulence generated by different kinds of instabilities on the mean state of the ionosphere.

  8. Test for anisotropy in the mean of the CMB temperature fluctuation in spherical harmonic space

    NASA Astrophysics Data System (ADS)

    Kashino, Daichi; Ichiki, Kiyotomo; Takeuchi, Tsutomu T.

    2012-03-01

    The standard models of inflation predict statistically homogeneous and isotropic primordial fluctuations, which should be tested by observations. In this paper we illustrate a method to test the statistical isotropy of the mean of the cosmic microwave background temperature fluctuations in the spherical harmonic space and apply the method to the Wilkinson Microwave Anisotropy Probe seven-year observation data. A classical method to test a mean, like the simple Student’s t test, is not appropriate for this purpose because the Wilkinson Microwave Anisotropy Probe data contain anisotropic instrumental noise and suffer from the effect of the mask for the foreground emissions which breaks the statistical independence. Here we perform a band-power analysis with Monte Carlo simulations in which we take into account the anisotropic noise and the mask. We find evidence of a nonzero mean at 99.93% confidence level in a particular range of multipoles. The evidence against the zero-mean assumption as a whole is still significant at the 99% confidence level even if the fact is taken into account that we have tested multiple ranges.

  9. Daily Temperature Fluctuations Alter Interactions between Closely Related Species of Marine Nematodes.

    PubMed

    De Meester, Nele; Dos Santos, Giovanni A P; Rigaux, Annelien; Valdes, Yirina; Derycke, Sofie; Moens, Tom

    2015-01-01

    In addition to an increase in mean temperature, climate change models predict decreasing amplitudes of daily temperature fluctuations. In temperate regions, where daily and seasonal fluctuations are prominent, such decreases in daily temperature fluctuations can have a pronounced effect on the fitness of species and on the outcome of species interactions. In this study, the effect of a temperature regime with daily fluctuations versus a constant temperature on the fitness and interspecific interactions of three cryptic species of the marine nematode species complex of Litoditis marina (Pm I, Pm III and Pm IV) were investigated. In a lab experiment, different combinations of species (monospecific treatment: Pm I and Pm IV and Pm III alone; two-species treatment: Pm I + Pm IV; three-species treatment: Pm I + Pm IV + Pm III) were subjected to two different temperature regimes: one constant and one fluctuating temperature. Our results showed that fluctuating temperature had minor or no effects on the population fitness of the three species in monocultures. In contrast, interspecific interactions clearly influenced the fitness of all three species, both positively and negatively. Temperature regime did have a substantial effect on the interactions between the species. In the two-species treatment, temperature regime altered the interaction from a sort of mutualism to commensalism. In addition, the strength of the interspecific interactions changed depending on the temperature regime in the three-species treatment. This experiment confirms that interactions between the species can change depending on the abiotic environment; these results show that it is important to incorporate the effect of fluctuations on interspecific interactions to predict the effect of climate change on biodiversity. PMID:26147103

  10. The impact of temperature fluctuations on the large-scale clustering of the Lyα forest

    NASA Astrophysics Data System (ADS)

    Greig, Bradley; Bolton, James S.; Wyithe, J. Stuart B.

    2015-03-01

    We develop a semi-analytic method for assessing the impact of the large-scale IGM temperature fluctuations expected following He II reionization on three-dimensional clustering measurements of the Lyα forest. Our methodology builds upon the existing large volume, mock Lyα forest survey simulations presented by Greig et al. by including a prescription for a spatially inhomogeneous ionizing background, temperature fluctuations induced by patchy He II photoheating and the clustering of quasars. This approach enables us to achieve a dynamic range within our semi-analytic model substantially larger than currently feasible with computationally expensive, fully numerical simulations. The results agree well with existing numerical simulations, with large-scale temperature fluctuations introducing a scale-dependent increase in the spherically averaged 3D Lyα forest power spectrum of up to 20-30 per cent at wavenumbers k ˜ 0.02 Mpc- 1. Although these large-scale thermal fluctuations will not substantially impact upon the recovery of the baryon acoustic oscillation scale from existing and forthcoming dark energy spectroscopic surveys, any complete forward modelling of the broad-band term in the Lyα correlation function will none the less require their inclusion.

  11. KINETICS OF LEAF TEMPERATURE FLUCTUATION AFFECT ISOPRENE EMISSION FROM RED OAK (QUERCUS RUBRA) LEAVES

    EPA Science Inventory

    Because the rate of isoprene (2-methyl-1,3-butadiene) emission from plants is highly temperature-dependent, we investigated the natural fluctuations on leaf temperature and the effects of rapid temperature change on isoprene emission of red oak (Quercus rubra L.) leaves at the to...

  12. Large fluctuations in the hydrogen-ionizing background and mean free path following the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Davies, Frederick B.; Furlanetto, Steven R.

    2016-04-01

    Extremely large opaque troughs in the Lyα forest have been interpreted as a sign of an extended reionization process below z ˜ 6. Such features are impossible to reproduce with simple models of the intergalactic ionizing background that assume a uniform mean free path of ionizing photons. We build a self-consistent model of the ionizing background that includes fluctuations in the mean free path due to the varying strength of the ionizing background and large-scale density field. The dominant effect is the suppression of the ionizing background in large-scale voids due to "self-shielding" by an enhanced number of optically thick absorbers. Our model results in a distribution of 50 Mpc/h Lyα forest effective optical depths that significantly improves agreement with the observations at z ˜ 5.6. Extrapolation to z ˜ 5.4 and z ˜ 5.8 appears promising, but matching the mean background evolution requires evolution in the absorber population beyond the scope of the present model. We also demonstrate the need for extremely large volumes ( > 400 Mpc on a side) to accurately determine the incidence of rare large-scale features in the Lyα forest.

  13. Large fluctuations in the hydrogen-ionizing background and mean free path following the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Davies, Frederick B.; Furlanetto, Steven R.

    2016-08-01

    Extremely large opaque troughs in the Lyα forest have been interpreted as a sign of an extended reionization process below z ˜ 6. Such features are impossible to reproduce with simple models of the intergalactic ionizing background that assume a uniform mean free path of ionizing photons. We build a self-consistent model of the ionizing background that includes fluctuations in the mean free path due to the varying strength of the ionizing background and large-scale density field. The dominant effect is the suppression of the ionizing background in large-scale voids due to `self-shielding' by an enhanced number of optically thick absorbers. Our model results in a distribution of 50 Mpc h-1 Lyα forest effective optical depths that significantly improves agreement with the observations at z ˜ 5.6. Extrapolation to z ˜ 5.4 and 5.8 appears promising, but matching the mean background evolution requires evolution in the absorber population beyond the scope of the present model. We also demonstrate the need for extremely large volumes (>400 Mpc on a side) to accurately determine the incidence of rare large-scale features in the Lyα forest.

  14. Impact of fluctuating temperatures on development of the koinobiont endoparasitoid Venturia canescens.

    PubMed

    Spanoudis, Christos G; Pappas, Christos S; Delpisi, Argyroula G; Andreadis, Stefanos S; Savopoulou-Soultani, Matilda

    2015-07-01

    The effect of temperature on the biology of Venturia canescens (Gravenhorst) (Hymenoptera: Ichneumonidae) is well understood under constant temperature conditions, but less so under more natural, fluctuating conditions. Herein we studied the influence of fluctuating temperatures on biological parameters of V. canescens. Parasitized fifth-instar larvae of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) were reared individually in incubators at six fluctuating temperature regimes (15-19.5°C with a mean of 17.6°C, 17.5-22.5°C with a mean of 19.8°C, 20-30°C with a mean of 22.7°C, 22.5-27.5°C with a mean of 25°C, 25.5-32.5°C with a mean of 28.3°C and 28.5-33°C with a mean of 30°C) until emergence and death of V. canescens adults. Developmental time from parasitism to adult eclosion, adult longevity and survival were recorded at each fluctuating temperature regime. In principle, developmental time decreased with an increase of the mean temperature of the fluctuating temperature regime. Upper and lower threshold temperatures for total development were estimated at 34.9 and 6.7°C, respectively. Optimum temperature for development and thermal constant were 28.6°C and 526.3 degree days, respectively. Adult longevity was also affected by fluctuating temperature, as it was significantly reduced at the highest mean temperature (7.0 days at 30°C) compared to the lowest one (29.4 days at 17.6°C). Survival was low at all tested fluctuating temperatures, apart from mean fluctuating temperature of 25°C (37%). Understanding the thermal biology of V. canescens under more natural conditions is of critical importance in applied contexts. Thus, predictions of biological responses to fluctuating temperatures may be used in population forecasting models which potentially influence decision-making in IPM programs. PMID:25965020

  15. Homeostasis of plasma membrane viscosity in fluctuating temperatures.

    PubMed

    Martinière, Alexandre; Shvedunova, Maria; Thomson, Adrian J W; Evans, Nicola H; Penfield, Steven; Runions, John; McWatters, Harriet G

    2011-10-01

    Temperature has a direct effect at the cellular level on an organism. For instance, in the case of biomembranes, cooling causes lipids to lose entropy and pack closely together. Reducing temperature should, in the absence of other factors, increase the viscosity of a lipid membrane. We have investigated the effect of temperature variation on plasma membrane (PM) viscosity. We used dispersion tracking of photoactivated green fluorescent protein (GFP) and fluorescence recovery after photobleaching in wild-type and desaturase mutant Arabidopsis thaliana plants along with membrane lipid saturation analysis to monitor the effect of temperature and membrane lipid composition on PM viscosity. Plasma membrane viscosity in A. thaliana is negatively correlated with ambient temperature only under constant-temperature conditions. In the more natural environment of temperature cycles, plants actively manage PM viscosity to counteract the direct effects of temperature. Plasma membrane viscosity is regulated by altering the proportion of desaturated fatty acids. In cold conditions, cell membranes accumulate desaturated fatty acids, which decreases membrane viscosity and vice versa. Moreover, we show that control of fatty acid desaturase 2 (FAD2)-dependent lipid desaturation is essential for this homeostasis of membrane viscosity. Finally, a lack of FAD2 function results in aberrant temperature responses. PMID:21762166

  16. Spectral analysis of temperature and Brunt-Vaisala frequency fluctuations observed by radiosondes

    NASA Technical Reports Server (NTRS)

    Tsuda, T.; Vanzandt, T. E.; Kato, S.; Fukao, S.; Sato, T.

    1989-01-01

    Recent studies have revealed that vertical wave number spectra of wind velocity and temperture fluctuations in the troposphere and the lower stratosphere are fairly well explained by a saturated gravity wave spectrum. But N(2) (N:Brunt-Vaisala (BV) frequency) spectra seem to be better for testing the scaling of the vertical wave number spectra in layers with different stratifications, beause its energy density is proportional only to the background value of N(2), while that for temperature depends on both the BV frequency and the potential temperature. From temperature profiles observed in June to August 1987 over the MU Observatory, Japan, by using a radiosonde with 30 m height resolution, N(2) spectra are determined in the 2 to 8.5 km (troposphere) and 18.5 to 25 km (lower stratosphere) ranges. Although individual spectra show fairly large day-by-day variability, the slope of the median of 34 spectra agrees reasonably with the theoretical value of -1 in the wave number range of 6 x 10(-4) similar to 3 x 10(-3) (c/m). The ratio of the spectral energy between these two height regions is about equal to the ratio of N(2), consistent with the prediction of saturated gravity wave theory.

  17. Effects of daily fluctuating temperatures on the Drosophila-Leptopilina boulardi parasitoid association.

    PubMed

    Delava, Emilie; Fleury, Frédéric; Gibert, Patricia

    2016-08-01

    Koinobiont parasitoid insects, which maintain intimate and long-term relationships with their arthropod hosts, constitute an association of ectothermic organisms that is particularly sensitive to temperature variations. Because temperature shows pronounced natural daily fluctuations, we examined if experiments based on a constant temperature range can mask the real effects of the thermal regime on host-parasitoid interactions. The effects of two fluctuating thermal regimes on several developmental parameters of the Drosophila larval parasitoid Leptopilina boulardi were analyzed in this study. Regime 1 included a range of 16-23-16°C and regime 2 included a range of 16-21-26-21-16°C (mean temperature 20.1°C) compared to a 20.1°C constant temperature. Under an average temperature of 20.1°C, which corresponds to a cold condition of L. boulardi development, we showed that the success of parasitism is significantly higher under a fluctuating temperature regime than at constant temperature. A fluctuating regime also correlated with a reduced development time of the parasitoids. In contrast, the thermal regime did not affect the ability of Drosophila to resist parasitoid infestation. Finally, we demonstrated that daily temperature fluctuation prevented the entry into diapause for this species, which is normally observed at a constant temperature of 21°C. Overall, the results reveal that constant temperature experiments can produce misleading results, highlighting the need to study the thermal biology of organisms under fluctuating regimes that reflect natural conditions as closely as possible. This is particularly a major issue in host-parasitoid associations, which constitute a good model to understand the effect of climate warming on interacting species. PMID:27503721

  18. Interaction of Mean Temperature and Daily Fluctuation Influences Dengue Incidence in Dhaka, Bangladesh

    PubMed Central

    Sharmin, Sifat; Glass, Kathryn; Viennet, Elvina; Harley, David

    2015-01-01

    Local weather influences the transmission of the dengue virus. Most studies analyzing the relationship between dengue and climate are based on relatively coarse aggregate measures such as mean temperature. Here, we include both mean temperature and daily fluctuations in temperature in modelling dengue transmission in Dhaka, the capital of Bangladesh. We used a negative binomial generalized linear model, adjusted for rainfall, anomalies in sea surface temperature (an index for El Niño-Southern Oscillation), population density, the number of dengue cases in the previous month, and the long term temporal trend in dengue incidence. In addition to the significant associations of mean temperature and temperature fluctuation with dengue incidence, we found interaction of mean and temperature fluctuation significantly influences disease transmission at a lag of one month. High mean temperature with low fluctuation increases dengue incidence one month later. Besides temperature, dengue incidence was also influenced by sea surface temperature anomalies in the current and previous month, presumably as a consequence of concomitant anomalies in the annual rainfall cycle. Population density exerted a significant positive influence on dengue incidence indicating increasing risk of dengue in over-populated Dhaka. Understanding these complex relationships between climate, population, and dengue incidence will help inform outbreak prediction and control. PMID:26161895

  19. Interaction of Mean Temperature and Daily Fluctuation Influences Dengue Incidence in Dhaka, Bangladesh.

    PubMed

    Sharmin, Sifat; Glass, Kathryn; Viennet, Elvina; Harley, David

    2015-01-01

    Local weather influences the transmission of the dengue virus. Most studies analyzing the relationship between dengue and climate are based on relatively coarse aggregate measures such as mean temperature. Here, we include both mean temperature and daily fluctuations in temperature in modelling dengue transmission in Dhaka, the capital of Bangladesh. We used a negative binomial generalized linear model, adjusted for rainfall, anomalies in sea surface temperature (an index for El Niño-Southern Oscillation), population density, the number of dengue cases in the previous month, and the long term temporal trend in dengue incidence. In addition to the significant associations of mean temperature and temperature fluctuation with dengue incidence, we found interaction of mean and temperature fluctuation significantly influences disease transmission at a lag of one month. High mean temperature with low fluctuation increases dengue incidence one month later. Besides temperature, dengue incidence was also influenced by sea surface temperature anomalies in the current and previous month, presumably as a consequence of concomitant anomalies in the annual rainfall cycle. Population density exerted a significant positive influence on dengue incidence indicating increasing risk of dengue in over-populated Dhaka. Understanding these complex relationships between climate, population, and dengue incidence will help inform outbreak prediction and control. PMID:26161895

  20. First measurements of core electron temperature fluctuations in Alcator C-Mod via Correlation ECE

    NASA Astrophysics Data System (ADS)

    Sung, C.; White, A.; Howard, N.; Oi, C.; Rice, J.; Gao, C.; Ennever, P.; Porkolab, M.; Hubbard, A.; Greenwald, M.

    2012-10-01

    A new Correlation Electron Cyclotron Emission (CECE) diagnostic has been installed at Alcator C-Mod to measure broadband, turbulent electron temperature fluctuations in the core region (ρ<0.9). This diagnostic has high poloidal resolution (φ0< 0.5cm ), and can measure long wavelength turbulence (kθρs< 0.4). We obtained the first electron temperature fluctuation data in Ohmic and ICRH plasmas. It was observed that the core (ρ˜0.8) electron temperature fluctuation level decreases as the Ohmic confinement regime transitions from Linear Ohmic Confinement (LOC) to Saturated Ohmic Confinement (SOC), while edge fluctuation levels (ρ> 0.9) stay similar in amplitude. These first quantitative, local electron temperature fluctuation measurements in C-Mod demonstrate that core turbulence characteristics change between LOC and SOC. In order to interpret the data, linear stability analysis is being performed, and the relation between fluctuation level and other plasma parameters is being investigated. This talk will describe the new CECE diagnostic, the SOC/LOC measurements, and associated gyrokinetic analyses.

  1. Spatial Fluctuations in the Diffuse Cosmic X-Ray Background. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Shafer, R. A.

    1983-01-01

    The bright, essentially isotropic, X-ray sky flux above 2 keV yields information on the universe at large distances. However, a definitive understanding of the origin of the flux is lacking. Some fraction of the total flux is contributed by active galactic nuclei and clusters of galaxies, but less than one percent of the total is contributed by the or approximately 3 keV band resolved sources, which is the band where the sky flux is directly observed. Parametric models of AGN (quasar) luminosity function evolution are examined. Most constraints are by the total sky flux. The acceptability of particular models hinges on assumptions currently not directly testable. The comparison with the Einstein Observatory 1 to keV low flux source counts is hampered by spectral uncertainties. A tentative measurement of a large scale dipole anisotropy is consistent with the velocity and direction derived from the dipole in the microwave background. The impact of the X-ray anisotropy limits for other scales on studies of large-scale structure in the universe is sketched. Models of the origins of the X-ray sky flux are reviewed, and future observational programs outlined.

  2. Measurement of Temperature Fluctuations and Microscopic Growth Rates in a Silicon Floating Zone and Microgravity

    NASA Technical Reports Server (NTRS)

    Schweizer, Markus; Croell, Arne

    1999-01-01

    A silicon crystal growth experiment has been accomplished using the floating-zone technique under microgravity on a sounding rocket (TEXUS 36). Measurements of temperature fluctuations in the silicon melt zone due to time dependent thermocapillary convection (Marangoni convection) and an observation of the microscopic growth rate were simultaneously performed during the experiment. Temperature fluctuations of about 0.5 - 0.7 C with a frequency range < 0.5Hz were detectable. The microscopic growth rate fluctuates considerably around the average growth rate of 1 mm/min: Growth rates up to 3 to 4mm/min, close to zero mm/min, as well as negative values (backmelting) were observed. Dopant striations are clearly visible in the Sb-doped crystal. They were characterized by Spreading Resistance measurements and Differential Interference Contrast microscopy. The frequencies of temperature fluctuations, microscopic growth rates, and the dopant inhomogeneities correspond quite well, with main frequencies between 0.1 and 0.3 Hz. 3D numerical simulations were performed to predict the optimum position of the temperature sensor, and the characteristic temperature amplitudes and frequencies. At a position 3.4mm above the interface and 1.4mm inside the melt, equivalent to the sensor tip position in the experiment, temperature fluctuations up to 1.8 C and frequencies ? 0.25Hz were found in the simulations.

  3. High temperature conductance fluctuations in an InGaAs/InAlAs open quantum dot

    NASA Astrophysics Data System (ADS)

    Faniel, S.; Hackens, B.; Delfosse, F.; Gustin, C.; Boutry, H.; Huynen, I.; Bayot, V.; Wallart, X.; Bollaert, S.; Cappy, A.

    2002-03-01

    We present magnetotransport measurements in an open quantum dot realized on an InGaAs/InAlAs narrow quantum well. The measurements are performed on a 500 nm diameter circular cavity patterned by electron beam lithography and wet etching. The electronic density can be tuned by a Ti/Pt/Au electrostatic gate. The sample is characterized down to 300mK in a magnetic field up to 5T. We observe a superposition of slowly varying reproducible magnetoconductance fluctuations and a rich pattern of universal conductance fluctuations whose characteristic magnetic field scale is much shorter. We study the evolution of these two types of fluctuations as a function of the temperature (up to 230K) and the gate voltage. We notice the persistence of fluctuations up to unexpectedly high temperatures.

  4. Lyman-tomography of Cosmic Infrared Background Fluctuations with Euclid: Probing Emissions and Baryonic Acoustic Oscillations at z ≳ 10

    NASA Astrophysics Data System (ADS)

    Kashlinsky, A.; Arendt, R. G.; Atrio-Barandela, F.; Helgason, K.

    2015-11-01

    The Euclid space mission, designed to probe evolution of the Dark Energy (DE), will map a large area of the sky at three adjacent near-IR filters, Y, J, and H. This coverage will also enable mapping source-subtracted cosmic infrared background (CIB) fluctuations with unprecedented accuracy on sub-degree angular scales. Here, we propose methodology, using the Lyman-break tomography applied to the Euclid-based CIB maps, to accurately isolate the history of CIB emissions as a function of redshift from 10 ≲ z ≲ 20 and to identify the baryonic acoustic oscillations (BAOs) at those epochs. To identify the BAO signature, we would assemble individual CIB maps over conservatively large contiguous areas of ≳400 deg2. The method can isolate the CIB spatial spectrum by z to sub-percent statistical accuracy. We illustrate this with a specific model of CIB production at high z normalized to reproduce the measured Spitzer-based CIB fluctuation. We show that even if the latter contains only a small component from high-z sources, the amplitude of that component can be accurately isolated with the methodology proposed here and the BAO signatures at z ≳ 10 are recovered well from the CIB fluctuation spatial spectrum. Probing the BAO at those redshifts will be an important test of the underlying cosmological paradigm and would narrow the overall uncertainties on the evolution of cosmological parameters, including the DE. Similar methodology is applicable to the planned WFIRST mission, where we show that a possible fourth near-IR channel at ≥2 μm would be beneficial.

  5. Measurements of temperature and pressure fluctuations in the T prime 2 cryogenic wind tunnel

    NASA Technical Reports Server (NTRS)

    Blanchard, A.; Dor, J. B.; Breil, J. F.

    1980-01-01

    Cold wire measurement of temperature fluctuations were made in a DERAT T'2 induction powered cryogenic wind tunnel for 2 types of liquid nitrogen injectors. Thermal turbulence measured in the tranquilization chamber depends to a great extent on the injector used; for fine spray of nitrogen drops, this level of turbulence seemed completely acceptable. Fluctuations in static pressure taken from the walls of the vein by Kulite sensors showed that there was no increase in aerodynamic noise during cryogenic gusts.

  6. Photosynthetic response of switchgrass ecotypes to fluctuating growth temperatures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass (Panicum virgatum L.), a warm-season C4 grass that shows excellent potential as a bioenergy feedstock and conservation crop, is widely adapted throughout North America, but its productivity tends to decline with increasing latitude. In northern regions where growing season temperatures c...

  7. ESTIMATATION OF GROWTH OF CLOSTRIDIUM PERFRINGENS IN COOKED BEEF UNDER FLUCTUATING TEMPERATURE CONDITIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new concept for estimating the bacterial growth under temperature fluctuations was hypothesized and validated using Clostridium perfringens as a test organism. This new methodology was based on the Gompertz models to calculate the equivalent growth times under different temperatures, and estimate...

  8. Zero-Temperature Fluctuations in Short-Range Spin Glasses

    NASA Astrophysics Data System (ADS)

    Arguin, L.-P.; Newman, C. M.; Stein, D. L.; Wehr, J.

    2016-06-01

    We consider the energy difference restricted to a finite volume for certain pairs of incongruent ground states (if they exist) in the d-dimensional Edwards-Anderson Ising spin glass at zero temperature. We prove that the variance of this quantity with respect to the couplings grows proportionally to the volume in any d ≥ 2. An essential aspect of our result is the use of the excitation metastate. As an illustration of potential applications, we use this result to restrict the possible structure of spin glass ground states in two dimensions.

  9. A comprehensive model to determine the effects of temperature and species fluctuations on reaction rates in turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Chinitz, W.; Foy, E.; Rowan, G.; Goldstein, D.

    1982-01-01

    The use of probability theory to determine the effects of turbulent fluctuations on reaction rates in turbulent combustion systems is briefly reviewed. Results are presented for the effect of species fluctuations in particular. It is found that turbulent fluctuations of species act to reduce the reaction rates, in contrast with the temperature fluctuations previously determined to increase Arrhenius reaction rate constants. For the temperature fluctuations, a criterion is set forth for determining if, in a given region of a turbulent flow field, the temperature can be expected to exhibit ramp like fluctuations. Using the above results, along with results previously obtained, a model is described for testing the effects of turbulent fluctuations of temperature and species on reaction rates in computer programs dealing with turbulent reacting flows. An alternative model which employs three variable probability density functions (temperature and two species) and is currently being formulated is discussed as well.

  10. Soil cover in the southern forest-steppe of the Central Russian Upland against the background of centennial climate fluctuations

    NASA Astrophysics Data System (ADS)

    Smirnova, L. G.; Kukharuk, N. S.; Chendev, Yu. G.

    2016-07-01

    Special approaches and algorithms for studying the response of zonal soils and the soil cover of the forest-steppe zone to climate fluctuations were developed on the basis of data of repeated soil surveys. They made it possible to analyze the particular transformations of the soil cover as indicators of short-term climate fluctuations in the southern forest-steppe of the Central Russian Upland. Vector soil maps and related databases on soil polygons were developed using GIS technologies. Changes in the climatic conditions between two rounds of large-scale soil surveys in 1971 and 1991 reflecting the so-called Brückner cycles were identified. A characteristic feature of climate change during that period was the rise in the mean annual air temperature by 0.2°C and an increase in the mean annual precipitation by 83 mm. In response to this change, the area of leached chernozems (Luvic Chernozems) on the interfluves somewhat increased, whereas the area of typical chernozems (Haplic Chernozems) decreased.

  11. The effect of temperature fluctuations of reaction rate constants in turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Chinitz, W.; Antaki, P. J.; Kassar, G. M.

    1981-01-01

    Current models of turbulent reacting flows frequently use Arrhenius reaction rate constants obtained from static or laminar flow theory and/or experiments, or from best fits of static, laminar, and turbulent data. By treating the reaction rate constant as a continuous random variable which is temperature-dependent, the present study assesses the effect of turbulent temperature fluctuations on the reaction rate constant. This model requires that a probability density function (PDF) describing the nature of the fluctuations be specified. Three PDFs are examined: the clipped Gaussian, the beta PDF, and the ramp model. All the models indicate that the reaction rate constant is greater in a turbulent flow field than in an equivalent laminar flow. In addition, an amplification ratio, which is the ratio of the turbulent rate constant to the laminar rate constant, is defined and its behavior as a function of the mean temperature fluctuations is described

  12. Effect of electron temperature fluctuations on slowly swept Langmuir probe measurements

    SciTech Connect

    Rudakov, D.L.; Boedo, J.A.; Moyer, R.A.; Stangeby, P.C.; McLean, A.; Watkins, J.G.

    2004-10-01

    Swept Langmuir probes are widely used to measure electron temperature (T{sub e}) in laboratory plasmas by performing an exponential fit to the measured volt-ampere (I-V) characteristic. Often the probe voltage sweep frequency is much lower than the characteristic frequencies of the plasma fluctuations and a time-averaged I-V characteristic is used for the fit. We show by numerical modeling that in the presence of T{sub e} fluctuations with frequencies well above the voltage sweep frequency this standard technique applied to a swept single probe tends to read higher than the actual time-averaged T{sub e} provided no correlated plasma potential (V{sub p}) fluctuations are present. In the presence of coupled T{sub e} and V{sub p} fluctuations a slowly swept single probe may read either higher or lower than the average T{sub e}, depending on the relative amplitude and phase of the temperature and potential fluctuations. In contrast, swept double probe measurements of T{sub e} are virtually unaffected by either T{sub e} or V{sub p} fluctuations.

  13. Fluctuation induced diamagnetism in the zero magnetic field limit in a low temperature superconducting alloy.

    PubMed

    Mosqueira, J; Carballeira, C; Vidal, F

    2001-10-15

    By using a Pb-18 at. % In alloy, the fluctuation induced diamagnetism was measured in the zero magnetic field limit, never observed until now in a low-T(C) superconductor. This allows us to disentangle the dynamic and the nonlocal electrodynamic effects from the short-wavelength fluctuation effects. The latter may be explained on the grounds of the Gaussian-Ginzburg-Landau approach by introducing a total energy cutoff in the fluctuation spectrum, which strongly suggests the existence of a well-defined temperature in the normal state above which all fluctuating modes vanish. This conclusion may also have implications when describing the superconducting state formation of the high-T(C) cuprates. PMID:11690233

  14. Temperature fluctuations underneath the ice in Diamond Lake, Hennepin County, Minnesota

    NASA Astrophysics Data System (ADS)

    Kletetschka, Gunther; Fischer, Tomas; Mls, Jiří; DěDeček, Petr

    2013-06-01

    Diamond Lake in Minnesota is covered every winter with ice and snow providing a modified thermal insulation between water and air. Autonomous temperature sensors, data loggers, were placed in this lake so that hourly measurements could be obtained from the snow-covered ice and water. The sensors that became frozen measured damped and delayed thermal response from the air-temperature fluctuation. Those sensors that were deeper within the snow-covered ice measured continuous, almost constant, temperature values near freezing. Several of them were within the liquid water and responded with a fluctuation of 24 h periods of amplitudes up to 0.2°C. Our analysis of the vertical temperature profiles suggested that the source of periodic water heating comes from the lake bottom. Because of the absence of daily temperature variations of the snow-covered ice, the influence of the air-temperature fluctuation can be ruled out. We attribute the heating process to the periodic inflow of groundwater to the lake and the cooling to the heat diffusion to the overlying ice cover. The periodic groundwater inflow is interpreted due to solid Earth tides, which cause periodic fluctuations of the groundwater pressure head.

  15. Observation of Aharonov-Bohm and Al'tshuler-Aronov-Spivak oscillations in the background of universal conductance fluctuations in silicon nanowires

    NASA Astrophysics Data System (ADS)

    Mtsuko, Davie; Aslan, Tahir; Ncube, Siphephile; Coleman, Christopher; Wamwangi, Daniel; Bhattacharyya, Somnath

    2016-02-01

    Magnetoresistance (MR) oscillations of multiple periodicities are recorded in singly connected silicon nanowires of diameter ≈50 \\text{nm} . At 100 K we observe oscillations of periodicity ≈1.78 \\text{T} and 0.444 T corresponding to h/e and h/4e Aharonov-Bohm (AB) oscillations, whereas at 10 K we record periodicities of 0.98 T, 0.49 T and 0.25 T corresponding to h/e, h/2e (Al'tshuler-Aronov-Spivak (AAS)) and h/4e oscillations. At 2.5 K we find magnetoresistance oscillations with multiple periodicities of 1.3 T, 0.52 T, and 0.325 T corresponding to AB and AAS oscillations. The h/2e and h/4e peaks can be attributed to the interference of time-reversed paths originating from the core orbits that scatter coherently on the surface of the nanowires multiple times. We also observed 20 mT and 60 mT oscillations of small amplitude superimposed on a quasi-periodic background which we attribute to the quantum interference of special surface states associated with skipping orbits that propagate quasi-ballistically. The aperiodic fluctuations in the MR at all temperatures are universal conductance fluctuations (UCF) originating from randomly spaced impurity scattering in the core of the nanowire.

  16. Fine-scale temperature fluctuation and modulation of Dirofilaria immitis larval development in Aedes aegypti.

    PubMed

    Ledesma, Nicholas; Harrington, Laura

    2015-04-15

    We evaluated degree-day predictions of Dirofilaria immitis development (HDU) under constant and fluctuating temperature treatments of equal average daily temperature. Aedes aegypti mosquitoes were infected with D. immitis microfilariae and parasite development was recorded at set time points in dissected mosquitoes. Time to L3 development in Malpighian tubules and detection in mosquito heads was shorter for larvae experiencing a daily regime of 19±9°C than larvae at constant 19°C; larval development rate in Malpighian tubules was slower in fluctuating regimes maintained above the 14°C developmental threshold than larvae under constant temperatures. We showed that hourly temperature modeling more accurately predicted D. immitis development to infective L3 stage. Development time differed between fluctuating and constant temperature treatments spanning the 14°C development threshold, implicating a physiological basis for these discrepancies. We conclude that average daily temperature models underestimate L3 development-and consequently dog heartworm transmission risk-at colder temperatures, and spatiotemporal models of D. immitis transmission risk should use hourly temperature data when analyzing high daily temperature ranges spanning 14°C. PMID:25747489

  17. The relation between isolated tree brightness temperature and grass background brightness temperature

    NASA Astrophysics Data System (ADS)

    Krusinger, A. E.

    1983-08-01

    This study involves thermal infrared measurement for the determination of the diurnal and seasonal aspects of the relations between isolated evergreen tress and a cut grass background and between a large truck brightness temperature and cut grass, uncut grass, and bare soil backgrounds. Seasonal changes in the tree brightness temperature-background brightness temperature contrast ranged from 4 to 5 C in February and March to 1 to 2 C in July. At night, the thermal contrast between trees and background was found to vary inversely with long wave incoming radiation, which is a measure of cloudiness. A study of the change in the thermal contrast during the night showed that, during clear weather, the contrast was at a peak a few hours after sundown and decreased the rest of the night. In overcast conditions, a reduced contrast peak occurred at sundown and very gradually diminished through the night. Isothermal conditions were found to occur in the early mornings, and the time of these occurrences changed seasonally, in a systematic manner.

  18. Impacts of Short-Term Meteorological Fluctuations on Near-Surface Ground Temperatures in Spitsbergen, Svalbard

    NASA Astrophysics Data System (ADS)

    Strand, S. M.; Christiansen, H. H.

    2015-12-01

    The state of permafrost in a given area is dependent on heat balance, which is largely controlled by major trends in climate. However, smaller-scale meteorological events can impact the thermal regime as well, depending on a number of ground surface factors. This project investigates the impact of short-term meteorological fluctuations on near-surface ground temperatures in central Spitsbergen, Svalbard, and identifies the depths at which these changes are perceptible. The Svalbard archipelago is subject to significant air temperature fluctuations due to its maritime climate; this can result in wintertime rain events. Even when snow is present, rain has the potential to notably affect near-surface ground temperatures. A few studies have examined Svalbard ground temperatures during specific wintertime warm periods, but no previous research has utilized the available long-term active layer and permafrost temperature data to compare distinct events. Though summer air temperatures on Svalbard are more stable, particularly warm intervals alter active layer thaw progression. By comparing high-resolution air temperature data with high-resolution ground temperature data, the temporal and spatial impact of short-term meteorological fluctuations is assessed and compared between sites from varying locations and lithology.

  19. Seasonal cycle dependence of temperature fluctuations in the atmosphere. Master's thesis

    SciTech Connect

    Tobin, B.F.

    1994-08-01

    The correlation statistics of meteorological fields have been of interest in weather forecasting for many years and are also of interest in climate studies. A better understanding of the seasonal variation of correlation statistics can be used to determine how the seasonal cycle of temperature fluctuations should be simulated in noise-forced energy balance models. It is shown that the length scale does have a seasonal dependence and will have to be handled through the seasonal modulation of other coefficients in noise-forced energy balance models. The temperature field variance and spatial correlation fluctuations exhibit seasonality with fluctuation amplitudes larger in the winter hemisphere and over land masses. Another factor contributing to seasonal differences is the larger solar heating gradient in the winter.

  20. Study of Turbulent Fluctuations Driven by the Electron Temperature Gradient in the National Spherical Torus Experiment

    SciTech Connect

    Mazzucato, E.; Bell, R. E.; Ethier, S.; Hosea, J. C.; Kaye, S. M.; LeBlanc, B. P.; Lee, W. W.; Ryan, P. M.; Smith, D. R.; Wang, W. X.; Wilson, J. R.

    2009-03-26

    Various theories and numerical simulations support the conjecture that the ubiquitous problem of anomalous electron transport in tokamaks may arise from a short-scale turbulence driven by the electron temperature gradient. To check whether this turbulence is present in plasmas of the National Spherical Torus Experiment (NSTX), measurements of turbulent fluctuations were performed with coherent scattering of electromagnetic waves. Results from plasmas heated by high harmonic fast waves (HHFW) show the existence of density fluctuations in the range of wave numbers k⊥ρe=0.1-0.4, corresponding to a turbulence scale length of the order of the collisionless skin depth. Experimental observations and agreement with numerical results from the linear gyro-kinetic GS2 code indicate that the observed turbulence is driven by the electron temperature gradient. These turbulent fluctuations were not observed at the location of an internal transport barrier driven by a negative magnetic shear.

  1. Variable-Temperature Tip-Enhanced Raman Spectroscopy of Single-Molecule Fluctuations and Dynamics.

    PubMed

    Park, Kyoung-Duck; Muller, Eric A; Kravtsov, Vasily; Sass, Paul M; Dreyer, Jens; Atkin, Joanna M; Raschke, Markus B

    2016-01-13

    Structure, dynamics, and coupling involving single-molecules determine function in catalytic, electronic or biological systems. While vibrational spectroscopy provides insight into molecular structure, rapid fluctuations blur the molecular trajectory even in single-molecule spectroscopy, analogous to spatial averaging in measuring large ensembles. To gain insight into intramolecular coupling, substrate coupling, and dynamic processes, we use tip-enhanced Raman spectroscopy (TERS) at variable and cryogenic temperatures, to slow and control the motion of a single molecule. We resolve intrinsic line widths of individual normal modes, allowing detailed and quantitative investigation of the vibrational modes. From temperature dependent line narrowing and splitting, we quantify ultrafast vibrational dephasing, intramolecular coupling, and conformational heterogeneity. Through statistical correlation analysis of fluctuations of individual modes, we observe rotational motion and spectral fluctuations of the molecule. This work demonstrates single-molecule vibrational spectroscopy beyond chemical identification, opening the possibility for a complete picture of molecular motion ranging from femtoseconds to minutes. PMID:26679007

  2. Effects of rapid temperature fluctuations prior to breeding on reproductive efficiency in replacement gilts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, we determined that rapidly cooling pigs after acute heat stress (HS) resulted in a pathological condition, and because rapid temperature fluctuations are often associated with reduced reproductive success in sows it lends itself to the hypothesis that these conditions may be linked. Study ...

  3. Large diurnal temperature fluctuations negatively influence Aedes aegypti (Diptera: Culicidae) life-history traits.

    PubMed

    Carrington, Lauren B; Seifert, Stephanie N; Willits, Neil H; Lambrechts, Louis; Scott, Thomas W

    2013-01-01

    Seasonal variation in dengue virus transmission in northwestern Thailand is inversely related to the magnitude of diurnal temperature fluctuations, although mean temperature does not vary significantly across seasons. We tested the hypothesis that diurnal temperature fluctuations negatively influence epidemiologically important life-history traits of the primary dengue vector, Aedes aegypti (L.), compared with a constant 26 degrees C temperature. A large diurnal temperature range (DTR) (approximately equals 18 degrees C daily swing) extended immature development time (>1 d), lowered larval survival (approximately equals 6%), and reduced adult female reproductive output by 25% 14 d after blood feeding, relative to the constant 26 degreesC temperature. A small DTR (approximately equal 8 degrees C daily swing) led to a negligible or slightly positive effect on the life history traits tested. Our results indicate that there is a negative impact of large DTR on mosquito biology and are consistent with the hypothesis that, in at least some locations, large temperature fluctuations contribute to seasonal reduction in dengue virus transmission. PMID:23427651

  4. Mars Background Noise Temperatures Received by Spacecraft Antennas

    NASA Astrophysics Data System (ADS)

    Ho, C.; Slobin, S.; Sue, M.; Njoku, E.

    2002-01-01

    Radio noise emissions seen by a spacecraft orbiting Mars or a lander located on the Martian surface are expected to be from Mars' atmospheric emission, surface noise, and extra-Martian sources. Compared with Earth, Mars has lower surface temperatures and much lower atmospheric absorption and radiation. However, Mars has higher surface emissivity due to the roughness of soil and rocks. Because of very low atmospheric density and optical depth, Mars' atmospheric emission from oxygen and water vapor is almost negligible. The upwelling brightness temperature at Mars is caused mainly by its surface temperature, with strong local time and latitudinal dependence. Downwelling brightness temperature is dominated by sky temperature. The actual radio noise contributing to the antenna temperature is also a function of antenna orientation, elevation angle, and gain pattern. Assuming a dish antenna with 1-m diameter, for a downward-looking antenna the total noise temperature is about the same as the Earth's for all frequency bands of interest, with ±15 percent deviations. For an upward-looking antenna, the noise temperature is less than half that of Earth.

  5. Analytical Comparisons of Tree Ring Data, Greenland Ice Core Temperatures and Temperature Fluctuations of the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Otto, James; Roberts, Jim; Dahiya, Jai

    2012-10-01

    Embedded in various events on Earth are data that allow us to map the temperature of the Earth over many years. In this work we have chosen the temperature fluctuations in the Sargasso sea, the changing patterns in tree ring growth and temperature fluctuations in Greenland ice core samples for comparison with a goal to understanding the patterns in global warming. Signatures have been identified that predate the Industrial Revolution, which had been blamed for much of global warming, that indicate that Earth temperatures have enjoyed numerous intervals of both global warming and global cooling. The intention of this work is not to stir controversy but to make comparisons of scientific data and processes rather than rely on popular opinion or deduction by ``experts'' in climatology to explain global warming.

  6. Analytical Comparisons of Tree Ring Data, Greenland Ice Core Temperatures and Temperature Fluctuations of the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Roberts, James; Dahiya, Jai

    2010-10-01

    Embedded in various events on Earth are data that allow us to map the temperature of the Earth over many years. In this work we have chosen the temperature fluctuations in the Sargasso Sea, the changing patterns in tree ring growth and temperature fluctuations in Greenland ice core samples for comparison with a goal to understanding the patterns in global warming. Signatures have been identified that predate the Industrial Revolution, which had been blamed for much of global warming, that indicate that Earth temperatures have enjoyed numerous intervals of both global warming and global cooling. The intention of this work is not to stir controversy but to provoke legitimate debate based on scientific data and processes rather than popular opinion or deduction by ``experts'' in climatology.

  7. Prediction of growth of Pseudomonas fluorescens in milk during storage under fluctuating temperature.

    PubMed

    Lin, Hao; Shavezipur, Mohammad; Yousef, Ahmed; Maleky, Farnaz

    2016-03-01

    Accurate prediction of growth of undesirable organisms (e.g., Pseudomonas fluorescens) in perishable foods (e.g., milk), held under sub-ideal storage conditions, can help ensure the quality and safety of these foods at the point of consumption. In this investigation, we inoculated sterile milk with P. fluorescens (~10(3) cfu/mL) and monitored inoculum growth behavior at constant and fluctuating storage temperatures. Three storage temperatures, 4 °C, 15 °C and 29 °C, were selected to simulate proper refrigeration conditions (4 °C) and temperature abuse, respectively. To simulate temperature fluctuation, milk held at 4 °C was subjected to temperature shifts to 15 °C or 29 °C for 4 to 6h. A modified logistic model was used to obtain the best-fit curve for the microbial growth under constant storage temperature. The specific growth rates at 4 °C, 15 °C, and 29 °C, obtained from experimental data, were 0.056 ± 0.00, 0.17 ± 0.05, and 0.46 ± 0.02 h(-1), respectively, and the lag time values were 29.5 ± 4.2, 12.7 ± 4.4, and 2.8 ± 0.3h, respectively. A model predicting bacterial growth under different temperature fluctuations was obtained using the growth parameters extracted from constant temperature experiments. Growth behavior predicted by the fluctuating temperature model and that obtained experimentally were in good agreement. Lag time exhibited a larger variation compared with specific growth rate, suggesting that it depends not only on growth temperature but also on the sample population and temperature gradient. Additionally, experimental data showed that changing the temperature during the lag phase induced an additional lag time before growth; however, no significant lag time was observed under the temperature fluctuation during the exponential phase. The results of this study provide information for precise shelf-life determination and reduction of food waste, particularly for milk and milk-containing food products. PMID:26723126

  8. POWER ASYMMETRY IN COSMIC MICROWAVE BACKGROUND FLUCTUATIONS FROM FULL SKY TO SUB-DEGREE SCALES: IS THE UNIVERSE ISOTROPIC?

    SciTech Connect

    Hansen, F. K.; Eriksen, H. K.; Lilje, P. B.; Banday, A. J.; Gorski, K. M. E-mail: h.k.k.eriksen@astro.uio.n E-mail: banday@MPA-Garching.MPG.D

    2009-10-20

    We repeat and extend the analysis of Eriksen et al. and Hansen et al., testing the isotropy of the cosmic microwave background fluctuations. We find that the hemispherical power asymmetry previously reported for the largest scales l = 2-40 extends to much smaller scales. In fact, for the full multipole range l = 2-600, significantly more power is found in the hemisphere centered at (theta = 107{sup 0} +- 10{sup 0}, phi = 226{sup 0} +- 10{sup 0}) in galactic co-latitude and longitude than in the opposite hemisphere, consistent with the previously detected direction of asymmetry for l = 2-40. We adopt a model selection test where the direction and amplitude of asymmetry, as well as the multipole range, are free parameters. A model with an asymmetric distribution of power for l = 2-600 is found to be preferred over the isotropic model at the 0.4% significance level, taking into account the additional parameters required to describe it. A similar direction of asymmetry is found independently in all six subranges of 100 multipoles between l = 2-600. None of our 9800 isotropic simulated maps show a similarly consistent direction of asymmetry over such a large multipole range. No known systematic effects or foregrounds are found to be able to explain the asymmetry.

  9. The effects of fluctuating culture temperature on stress tolerance and antioxidase expression in Esteya vermicola.

    PubMed

    Wang, Yun-bo; Pang, Wen-xing; Yv, Xiao-na; Li, Jing-jie; Zhang, Yong-an; Sung, Chang-keun

    2015-02-01

    The endoparasitic nematophagous fungus, Esteya vermicola, has shown great potential as a biological control agent against the pine wood nematode, Bursaphelenchus xylophilus. Fluctuating culture temperatures can affect fungal yields and fungal tolerance to desiccation, UV radiation, H2O2, and heat stress, as well as antioxidase expression. To explore these effects, E. vermicola cultured under five temperature ranges, 26°C, 15-26°C, 26-35°C, 20-30°C, and 15-35°C, were compared. The cultures grown at lower temperatures showed better growth, stronger tolerance to desiccation, UV, and H2O2 stresses, and increased catalase expression, However, these cultures also showed weaker heat stress tolerance and lower superoxide dismutase expression than the higher-temperature cultures. In particular, the E. vermicola cultured at 20-30°C, i.e., fluctuating in a narrow range around the optimal temperature, showed the best performance. Therefore, for production in practical applications, this narrowly fluctuating, moderate temperature appears to be optimal for yield and stress tolerance in E. vermicola. PMID:25626367

  10. A large temperature fluctuation may trigger an epidemic erythromelalgia outbreak in China

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Zhang, Yonghui; Lin, Hualiang; Lv, Xiaojuan; Xiao, Jianpeng; Zeng, Weilin; Gu, Yuzhou; Rutherford, Shannon; Tong, Shilu; Ma, Wenjun

    2015-03-01

    Although erythromelalgia (EM) has been documented in the literature for almost 150 years, it is still poorly understood. To overcome this limitation, we examined the spatial distribution of epidemic EM, and explored the association between temperature fluctuation and epidemic EM outbreaks in China. We searched all peer-reviewed literature on primary epidemic EM outbreaks in China. A two-stage model was used to characterize the relationship between temperature fluctuation and epidemic EM outbreaks. We observed that epidemic EM outbreaks were reported from 13 provinces during 1960-2014 and they mainly occurred between February and March in southern China. The majority of EM cases were middle school students, with a higher incidence rate in female and resident students. The major clinical characteristics of EM cases included burning, sharp, tingling and/or stinging pain in toes, soles and/or dorsum of feet, fever, erythema and swelling. A large ``V''-shaped fluctuation of daily average temperature (TM) observed during the epidemic EM outbreaks was significantly associated with the number of daily EM cases (β = 1.22, 95%CI: 0.66 ~ 1.79), which indicated that this ``V''-shaped fluctuation of TM probably triggered the epidemic EM outbreaks.

  11. Evidence for Large Temperature Fluctuations in Quasar Accretion Disks from Spectral Variability

    NASA Astrophysics Data System (ADS)

    Ruan, John J.; Anderson, Scott F.; Dexter, Jason; Agol, Eric

    2014-03-01

    The well-known bluer-when-brighter trend observed in quasar variability is a signature of the complex processes in the accretion disk and can be a probe of the quasar variability mechanism. Using a sample of 604 variable quasars with repeat spectra in the Sloan Digital Sky Survey-I/II (SDSS), we construct difference spectra to investigate the physical causes of this bluer-when-brighter trend. The continuum of our composite difference spectrum is well fit by a power law, with a spectral index in excellent agreement with previous results. We measure the spectral variability relative to the underlying spectra of the quasars, which is independent of any extinction, and compare to model predictions. We show that our SDSS spectral variability results cannot be produced by global accretion rate fluctuations in a thin disk alone. However, we find that a simple model of an inhomogeneous disk with localized temperature fluctuations will produce power-law spectral variability over optical wavelengths. We show that the inhomogeneous disk will provide good fits to our observed spectral variability if the disk has large temperature fluctuations in many independently varying zones, in excellent agreement with independent constraints from quasar microlensing disk sizes, their strong UV spectral continuum, and single-band variability amplitudes. Our results provide an independent constraint on quasar variability models and add to the mounting evidence that quasar accretion disks have large localized temperature fluctuations.

  12. Evidence for large temperature fluctuations in quasar accretion disks from spectral variability

    SciTech Connect

    Ruan, John J.; Anderson, Scott F.; Agol, Eric; Dexter, Jason

    2014-03-10

    The well-known bluer-when-brighter trend observed in quasar variability is a signature of the complex processes in the accretion disk and can be a probe of the quasar variability mechanism. Using a sample of 604 variable quasars with repeat spectra in the Sloan Digital Sky Survey-I/II (SDSS), we construct difference spectra to investigate the physical causes of this bluer-when-brighter trend. The continuum of our composite difference spectrum is well fit by a power law, with a spectral index in excellent agreement with previous results. We measure the spectral variability relative to the underlying spectra of the quasars, which is independent of any extinction, and compare to model predictions. We show that our SDSS spectral variability results cannot be produced by global accretion rate fluctuations in a thin disk alone. However, we find that a simple model of an inhomogeneous disk with localized temperature fluctuations will produce power-law spectral variability over optical wavelengths. We show that the inhomogeneous disk will provide good fits to our observed spectral variability if the disk has large temperature fluctuations in many independently varying zones, in excellent agreement with independent constraints from quasar microlensing disk sizes, their strong UV spectral continuum, and single-band variability amplitudes. Our results provide an independent constraint on quasar variability models and add to the mounting evidence that quasar accretion disks have large localized temperature fluctuations.

  13. Two dimensional electron cyclotron emission imaging study of electron temperature profiles and fluctuations in Tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Deng, Bihe

    An innovative plasma diagnostic technique, electron cyclotron emission imaging (ECEI), was successfully developed and implemented on the TEXT-U and RTP tokamaks for the study of plasma electron temperature profiles and fluctuations. Due to the high spatial and temporal resolution of this new diagnostic, plasma filamentation was observed during high power electron cyclotron resonance heating (ECRH) in TEXT-U, and was identified as multiple rotating magnetic islands. In RTP, under special plasma conditions, evidence for magnetic bubbling was first observed, which is characterized by the flattening of the electron temperature and pressure profiles over a small annular region of about 1-2 cm extent near the q = 2 surface. More important results arose from the detailed study of the broadband plasma turbulence in TEXT-U and RTP. With the first measurements of poloidal wavenumbers and dispersion relations, turbulent Te fluctuations in the confinement region of TEXT-U plasmas were identified as electron drift wave turbulence. The fluctuation amplitude is found to follow the mixing length scaling, and the fluctuation-induced conducted- heat flux can account for the observed anomalous energy transport in TEXT-U. In RTP, detailed ECEI study of broadband Te fluctuations has shown that many characteristics of the observed fluctuations are consistent with the predictions of toroidal ηi mode theory. These include the global dependence of the fluctuation frequency and amplitude on the plasma density and current. The measured isotope and impurity scalings quantitatively match the predictions of toroidal ηi mode theory. The ECEI measurements in combination with ECRH modification of T e profiles argue against the Te gradients serving as the driving force of the turbulence. With the detailed 2- D measurements of the fluctuation distribution over the plasma minor cross-section, large scale, coherent structures similar to the eigenmode structures predicted by toroidal ηi mode theory

  14. Lagrangian temperature and vertical velocity fluctuations due to gravity waves in the lower stratosphere

    NASA Astrophysics Data System (ADS)

    Podglajen, Aurélien; Hertzog, Albert; Plougonven, Riwal; Legras, Bernard

    2016-04-01

    Wave-induced Lagrangian fluctuations of temperature and vertical velocity in the lower stratosphere are quantified using measurements from superpressure balloons (SPBs). Observations recorded every minute along SPB flights allow the whole gravity wave spectrum to be described and provide unprecedented information on both the intrinsic frequency spectrum and the probability distribution function of wave fluctuations. The data set has been collected during two campaigns coordinated by the French Space Agency in 2010, involving 19 balloons over Antarctica and 3 in the deep tropics. In both regions, the vertical velocity distributions depart significantly from a Gaussian behavior. Knowledge on such wave fluctuations is essential for modeling microphysical processes along Lagrangian trajectories. We propose a new simple parameterization that reproduces both the non-Gaussian distribution of vertical velocities (or heating/cooling rates) and their observed intrinsic frequency spectrum.

  15. Simultaneous Microwave Imaging System for Density and Temperature Fluctuation Measurements on TEXTOR

    SciTech Connect

    H. Park; E. Mazzucato; T. Munsat; C.W. Domier; M. Johnson; N.C. Luhmann, Jr.; J. Wang; Z. Xia; I.G.J. Classen; A.J.H. Donne; M.J. van de Pol

    2004-05-07

    Diagnostic systems for fluctuation measurements in plasmas have, of necessity, evolved from simple 1-D systems to multi-dimensional systems due to the complexity of the MHD and turbulence physics of plasmas illustrated by advanced numerical simulations. Using the recent significant advancements in millimeter wave imaging technology, Microwave Imaging Reflectometry (MIR) and Electron Cyclotron Emission Imaging (ECEI), simultaneously measuring density and temperature fluctuations, are developed for TEXTOR. The MIR system was installed on TEXTOR and the first experiment was performed in September, 2003. Subsequent MIR campaigns have yielded poloidally resolved spectra and assessments of poloidal velocity. The new 2-D ECE Imaging system (with a total of 128 channels), installed on TEXTOR in December, 2003, successfully captured a true 2-D images of Te fluctuations of m=1 oscillation (''sawteeth'') near the q {approx} 1 surface for the first time.

  16. Occupation number and fluctuations in the finite-temperature Bose-Hubbard model

    SciTech Connect

    Plimak, L.I.; Fleischhauer, M.; Olsen, M.K.

    2004-07-01

    We study the occupation numbers and number fluctuations of ultracold atoms in deep optical lattices for finite-temperatures within the Bose-Hubbard model. Simple analytical expressions for the mean occupation number and number fluctuations are obtained in the weak-hopping regime using an interpolation between results from different perturbation approaches in the Mott-insulator and superfluid phases. With this approach the magnitude of number fluctuations under a wide range of experimental conditions can be estimated and the properties of the finite-temperature phase diagram can be studied. These analytical results are compared to exact one-dimensional numerical calculations using a finite temperature variant of the density-matrix renormalization group (DMRG) method and found to have a high degree of accuracy. We find very good agreement, also in the crossover 'thermal' region. We also analyze the influence of finite temperature on the behavior of the system in the vicinity of the zero-temperature phase transition, in one, two, and three dimensions.

  17. Finite-temperature quantum fluctuations in two-dimensional Fermi superfluids

    NASA Astrophysics Data System (ADS)

    Bighin, G.; Salasnich, L.

    2016-01-01

    In two-dimensional systems with a continuous symmetry, the Mermin-Wagner-Hohenberg theorem precludes spontaneous symmetry breaking and condensation at finite temperature. The Berezinskii-Kosterlitz-Thouless critical temperature marks the transition from a superfluid phase characterized by quasicondensation and algebraic long-range order, to a normal phase in which vortex proliferation completely destroys superfluidity. As opposed to conventional off-diagonal long-range order typical of three-dimensional superfluid systems, algebraic long-range order is driven by quantum and thermal fluctuations strongly enhanced in reduced dimensionality. Motivated by this unique scenario and by the very recent experimental realization of trapped quasi-two-dimensional fermionic clouds, we include one-loop Gaussian fluctuations in the theoretical description of resonant Fermi superfluids in two dimensions demonstrating that first sound, second sound, and also critical temperature are strongly renormalized, away from their mean-field values. In particular, we prove that in the intermediate- and strong-coupling regimes, these quantities are radically different when Gaussian fluctuations are taken into account. Our one-loop theory shows good agreement with very recent experimental data on the Berezinskii-Kosterlitz-Thouless critical temperature [Phys. Rev. Lett. 115, 010401 (2015)], 10.1103/PhysRevLett.115.010401 and on the first sound velocity, giving predictions for the second sound as a function of interaction strength and temperature that are open for experimental verification.

  18. Coupled Nosé-Hoover equations of motion to implement a fluctuating heat-bath temperature

    NASA Astrophysics Data System (ADS)

    Fukuda, Ikuo; Moritsugu, Kei

    2016-03-01

    The Nosé-Hoover (NH) equation provides a universal and powerful computer simulation protocol to realize an equilibrium canonical temperature for a target physical system. Here we demonstrate a general formalism to couple such NH equations. We provide a coupled NH equation that is constructed by coupling the NH equation of a target physical system and the NH equation of a temperature system. Thus, in contrast to the conventional single NH equation, the heat-bath temperature is a dynamical variable. The temperature fluctuations are not ad hoc, but instead are generated by the newly defined temperature system, and the statistical distribution of the temperature is completely described with an arbitrarily given probability function. The current equations of motion thus describe the physical system that develops with a predistributed fluctuating temperature, which allows enhanced sampling of the physical system. Since the total system is governed by a prescribed distribution, the equilibrium of the physical system is also reconstructed by reweighting. We have formulated a scheme for specifically setting the distribution of the dynamical inverse temperature and demonstrate the statistical relationship between the dynamical and physical temperatures. The statistical features, dynamical properties, and sampling abilities of the current method are demonstrated via the distributions, trajectories, dynamical correlations, and free energy landscapes for both a model system and a biomolecular system. These results indicated that the current coupled NH scheme works well.

  19. Effects of fluctuating temperature on mortality, stress, and energy reserves of juvenile coho salmon

    SciTech Connect

    Thomas, R.E.; Gharrett, J.A.; Carls, M.G.; Rice, S.D.; Moles, A.; Korn, S.

    1986-01-01

    The effects of fluctuating diel temperature cycles on survival, growth, plasma cortisol and glucose concentrations, liver weight, and liver glycogen of juvenile coho salmon Oncorhynchus kisutch were determined. Temperature cycles (10-13/sup 0/, 9-15/sup 0/, 8-17/sup 0/, and 6.5-20/sup 0/C) were selected to stimulate observed temperatures in clear-cuts of southeastern Alaska. Different levels of feeding, including starvation, were used in each of the tests. LT50s (peak temperature within a cycle producing 50% mortality) were 28/sup 0/C for age-0 fish (350 mg) and 26/sup 0/ for age-II fish (22-g presmolts). Cyclic temperatures for 40 d, averaging 11/sup 0/C daily, did not influence growth of age-0 fish on any food ration as compared to controls held at a constant 11/sup 0/C. Plasma cortisol and glucose concentrations were significantly greater in fish maintained for 20 d in the 6.5-20/sup 0/C cycle but not different in fish in 10-13/sup 0/ and 9-15/sup 0/ cycles or a constant 11/sup 0/C. These elevated concentrations may be indicators of long-term stress. Plasma cortisol concentrations were lower in starved fish than in fed fish at all temperature regimes; however, fluctuating temperature did not enhance starvation effects on cortisol levels. Diel temperature cycles did not affect liver weights or liver glycogen concentrations.

  20. The dynamics of mid-ocean ridge hydrothermal systems: Splitting plumes and fluctuating vent temperatures

    NASA Astrophysics Data System (ADS)

    Coumou, Dim; Driesner, Thomas; Geiger, Sebastian; Heinrich, Christoph A.; Matthäi, Stephan

    2006-05-01

    We present new, accurate numerical simulations of 2D models resembling hydrothermal systems active in the high-permeability axial plane of mid-ocean ridges and show that fluid flow patterns are much more irregular and convection much more unstable than reported in previous simulation studies. First, we observe the splitting of hot, rising plumes. This phenomenon is caused by the viscous instability at the interface between hot, low-viscosity fluid and cold, high-viscosity fluid. This process, known as Taylor-Saffman fingering could potentially explain the sudden extinguishing of black smokers. Second, our simulations show that for relatively moderate permeabilities, convection is unsteady resulting in transiently varying vent temperatures. The amplitude of these fluctuations typically is 40 °C with a period of decades or less, depending on the permeability. Although externally imposed events such as dike injections are possible mechanisms, they are not required to explain temperature variations observed in natural systems. Our results also offer a simple explanation of how seismic events cause fluctuating temperatures: Earthquake-induced permeability-increase shifts the hydrothermal system to the unsteady regime with accompanying fluctuating vent temperatures. We demonstrate that realistic modelling of these high-Rayleigh number convection systems does not only require the use of real fluid properties, but also the use of higher order numerical methods capable of handling high-resolution meshes. Less accurate numerical solutions smear out sharp advection fronts and thereby artificially stabilize the system.

  1. Concentration fluctuations in miscible polymer blends: Influence of temperature and chain rigidity

    SciTech Connect

    Dudowicz, Jacek; Freed, Karl F.; Douglas, Jack F.

    2014-05-21

    In contrast to binary mixtures of small molecule fluids, homogeneous polymer blends exhibit relatively large concentration fluctuations that can strongly affect the transport properties of these complex fluids over wide ranges of temperatures and compositions. The spatial scale and intensity of these compositional fluctuations are studied by applying Kirkwood-Buff theory to model blends of linear semiflexible polymer chains with upper critical solution temperatures. The requisite quantities for determining the Kirkwood-Buff integrals are generated from the lattice cluster theory for the thermodynamics of the blend and from the generalization of the random phase approximation to compressible polymer mixtures. We explore how the scale and intensity of composition fluctuations in binary blends vary with the reduced temperature τ ≡ (T − T{sub c})/T (where T{sub c} is the critical temperature) and with the asymmetry in the rigidities of the components. Knowledge of these variations is crucial for understanding the dynamics of materials fabricated from polymer blends, and evidence supporting these expectations is briefly discussed.

  2. Survival of rapidly fluctuating natural low winter temperatures by High Arctic soil invertebrates.

    PubMed

    Convey, Peter; Abbandonato, Holly; Bergan, Frode; Beumer, Larissa Teresa; Biersma, Elisabeth Machteld; Bråthen, Vegard Sandøy; D'Imperio, Ludovica; Jensen, Christina Kjellerup; Nilsen, Solveig; Paquin, Karolina; Stenkewitz, Ute; Svoen, Mildrid Elvik; Winkler, Judith; Müller, Eike; Coulson, Stephen James

    2015-12-01

    The extreme polar environment creates challenges for its resident invertebrate communities and the stress tolerance of some of these animals has been examined over many years. However, although it is well appreciated that standard air temperature records often fail to describe accurately conditions experienced at microhabitat level, few studies have explicitly set out to link field conditions experienced by natural multispecies communities with the more detailed laboratory ecophysiological studies of a small number of 'representative' species. This is particularly the case during winter, when snow cover may insulate terrestrial habitats from extreme air temperature fluctuations. Further, climate projections suggest large changes in precipitation will occur in the polar regions, with the greatest changes expected during the winter period and, hence, implications for the insulation of overwintering microhabitats. To assess survival of natural High Arctic soil invertebrate communities contained in soil and vegetation cores to natural winter temperature variations, the overwintering temperatures they experienced were manipulated by deploying cores in locations with varying snow accumulation: No Snow, Shallow Snow (30 cm) and Deep Snow (120 cm). Air temperatures during the winter period fluctuated frequently between +3 and -24 °C, and the No Snow soil temperatures reflected this variation closely, with the extreme minimum being slightly lower. Under 30 cm of snow, soil temperatures varied less and did not decrease below -12 °C. Those under deep snow were even more stable and did not decline below -2 °C. Despite these striking differences in winter thermal regimes, there were no clear differences in survival of the invertebrate fauna between treatments, including oribatid, prostigmatid and mesostigmatid mites, Araneae, Collembola, Nematocera larvae or Coleoptera. This indicates widespread tolerance, previously undocumented for the Araneae, Nematocera or Coleoptera, of

  3. Temperature fluctuations and infrared emission from dust particles in a hot gas

    NASA Technical Reports Server (NTRS)

    Dwek, E.

    1986-01-01

    In this paper, the effect of temperature fluctuations in very small dust particles caused by electronic collisions with an ambient hot gas, is calculated. The dust-temperature distribution differs strongly from that derived on the basis of equilibrium heating models, peaking at lower temperatures in the stochastically heated case. The resulting infrared spectrum is broadened at short wavelengths, giving much more emission than expected from equilibrium calculations, and at long wavelengths exhibits a lower color temperature. Dust-temperature fluctuations are thus expected to play an important role in determining the infrared spectrum of dusty, X-ray-emitting plasmas. A power-law distribution of grain radii extended to very small grain sizes will have a distinct infrared spectrum characterized by an infrared excess at the Wien side of the spectrum. This excess emission represents a high-temperature component in the spectrum, resulting from the stochastic heating of very small dust particles. Its magnitude depends on the grain-size distribution and the temperature and density of the ambient hot gas. This excess emission may be observed by IRAS in supernova remnants and rich clusters of galaxies.

  4. Response of New zealand mudsnails Potamopyrgus antipodarum to freezing and near freezing fluctuating water temperatures

    USGS Publications Warehouse

    Moffitt, Christine M.; James, Christopher A.

    2012-01-01

    We explored the resilience of the invasive New Zealand mudsnail Potamopyrgus antipodarum to fluctuating winter freezing and near-freezing temperature cycles in laboratory tests. Our goal was to provide data to confirm field observations of mortality and presumed mortality in stream habitats with fluctuating freezing to near-freezing temperatures. We tested individuals from 2 locations with distinctly different thermal regimes and population densities. One location had low snail densities and water temperatures with strong diel and seasonal water variation. The other location had high snail densities and nearly constant water temperatures. Groups of individuals from both locations were tested in each of 3 laboratory-created diel thermal cycles around nominal temperatures of 0, 2, or 4°C. Mortality occurred in cycles around 0°C in both populations, and little to no mortality occurred at temperatures >0°C. Individuals from both sources held in diel 0°C cycles for 72 h showed 100% mortality. Our findings support observations from published field studies that survival was limited in infested habitats subject to freezing temperatures.

  5. Measurements of temperature, density, pressure, and their fluctuations in supersonic turbulence using laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    Gross, K. P.; Mckenzie, R. L.; Logan, P.

    1987-01-01

    A laser-induced fluorescence method has been developed that provides simultaneous measurements of temperature, density, and their fluctuations owing to turbulence in unheated compressible flows. Pressure and its fluctuations are also deduced using the equation of state. Fluorescence is induced in nitric oxide that has been seeded into a nitrogen flow in concentrations of 100 ppm. Measurements are obtained from each laser pulse, with a spatial resolution of 1 mm and a temporal resolution of 125 ns. The method was applied to a supersonic, turbulent, boundary-layer flow with a free-stream Mach number of 2. For stream conditions in the range from 150-300 K and 0.3-1 atm, temperature is measured with an uncertainty of approximately 1 percent rms, while density and pressure uncertainties are approximately 2 percent rms.

  6. Measurements of density, temperature, and their fluctuations in turbulent supersonic flow using UV laser spectroscopy

    NASA Technical Reports Server (NTRS)

    Fletcher, Douglas G.; Mckenzie, R. L.

    1992-01-01

    Nonintrusive measurements of density, temperature, and their turbulent fluctuation levels were obtained in the boundary layer of an unseeded, Mach 2 wind tunnel flow. The spectroscopic technique that was used to make the measurements is based on the combination of laser-induced oxygen fluorescence and Raman scattering by oxygen and nitrogen from the same laser pulse. Results from this demonstration experiment are compared with previous measurements obtained in the same facility using conventional probes and an earlier spectroscopic technique. Densities and temperatures measured with the current technique agree with the previous surveys to within 3 percent and 2 percent, respectively. The fluctuation amplitudes for both variables agree with the measurements obtained using the earlier spectroscopic technique and show evidence of an unsteady, weak shock wave that perturbs the boundary layer.

  7. An Experimental Study of the Statistics of Temperature Fluctuations in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Costa Frola, Elena; Mazzino, Andrea; Cassola, Federico; Mortarini, Luca; Ferrero, Enrico

    2014-01-01

    A statistical characterization for two-point temperature fluctuations in the planetary boundary layer (PBL) is analyzed and its implications on the long-standing closure problem discussed. Despite the non-triviality of the dynamics of temperature fluctuations, our analysis supports the idea that the most relevant statistical properties can be captured solely in terms of two scaling exponents. They turned out to be weakly dependent on the stability properties of the PBL. Its statistics have been investigated by collecting data from a field experiment carried out in the urban area of Turin (Italy) from January 2007 to March 2008. Our results confirm those from a large-eddy simulation (LES) analysis carried out for the convective PBL with different level of convection. We extend the scenario to the stable PBL, a regime much more difficult to simulate when exploiting LES.

  8. Characterizing the effect of temperature fluctuation on the incidence of malaria: an epidemiological study in south-west China using the varying coefficient distributed lag non-linear model

    PubMed Central

    2014-01-01

    Background Malaria transmission is strongly determined by the environmental temperature and the environment is rarely constant. Therefore, mosquitoes and parasites are not only exposed to the mean temperature, but also to daily temperature variation. Recently, both theoretical and laboratory work has shown, in addition to mean temperatures, daily fluctuations in temperature can affect essential mosquito and parasite traits that determine malaria transmission intensity. However, so far there is no epidemiological evidence at the population level to this problem. Methods Thirty counties in southwest China were selected, and corresponding weekly malaria cases and weekly meteorological variables were collected from 2004 to 2009. Particularly, maximum, mean and minimum temperatures were collected. The daily temperature fluctuation was measured by the diurnal temperature range (DTR), the difference between the maximum and minimum temperature. The distributed lag non-linear model (MDLNM) was used to study the correlation between weekly malaria incidences and weekly mean temperatures, and the correlation pattern was allowed to vary over different levels of daily temperature fluctuations. Results The overall non-linear patterns for mean temperatures are distinct across different levels of DTR. When under cooler temperature conditions, the larger mean temperature effect on malaria incidences is found in the groups of higher DTR, suggesting that large daily temperature fluctuations act to speed up the malaria incidence in cooler environmental conditions. In contrast, high daily fluctuations under warmer conditions will lead to slow down the mean temperature effect. Furthermore, in the group of highest DTR, 24-25°C or 21-23°C are detected as the optimal temperature for the malaria transmission. Conclusion The environment is rarely constant, and the result highlights the need to consider temperature fluctuations as well as mean temperatures, when trying to understand or

  9. Fiberoptic probe for measuring high frequency temperature fluctuations in combustion gases

    SciTech Connect

    Dils, R.R.; Tichenor, D.A.

    1984-02-01

    A new fiberoptic probe for measuring high frequency gas-temperature fluctuations is described. The fiberoptic probe is an optical pyrometer in which the thermal radiation is transmitted through an optical fiber. The key element in the device is a high temperature optical fiber made of single-crystal alumina (sapphire), which remains transparent and nonemitting in the optical and near infrared at temperatures up to its melting point, 2345 K. On one end of the fiber a thin film of platinum or other high temperature alloy serves as a thermal radiator. The other end of the high temperature fiber is connected to a photodetector through a conventional fused silica fiber. In operation, thermal radiation from the metallic thin film is collected by the high-temperature fiber and transmitted through the conventional optical fiber to a detector assembly. The radiation is then transmitted through a band pass filter, and the intensity is measured using a photodetector. The system is calibrated to account for the emissivity of the thin-film tip, the responsivity of the detector and the gain of the amplifier. The frequency response of the fiberoptic probe is inherently superior to that of fine-wire thermocouples, because the output of the fiberoptic device depends only on the surface temperature of the probe. The output of a thermocouple depends on the internal temperature of the wire. As a result, the transfer function that relates gas temperature to probe temperature decreases 3 db per octave at high frequency rather than 6 db per octave characteristic of thermocouples. Experimental results demonstrate the capability of measuring temperature fluctuations up to 14 KHz in combustor exhaust gases.

  10. The Impact of Fluctuations in Precipitation and Temperature on the Seasonal Snowpack

    NASA Astrophysics Data System (ADS)

    Woods, R. A.

    2015-12-01

    The development and melting of the seasonal snowpack depends on complex interactions among climate elements. Previous work (Woods 2009, Adv. Wat. Res.) showed how the typical seasonal variation of temperature and precipitation rate influence snowpack development. Results were expressed in terms of three dimensionless variables for: seasonal temperature regime; seasonality of precipitation; and depth of the snowpack relative to the energy available for melting. However, that theory does not take account of sub-seasonal fluctuations in temperature and precipitation, and as a consequence, makes poor predictions of snow storage in some climates. Here we write a stochastic differential equation for snow storage, and then derive an equation for time variation of the probability distribution (pdf) of snow water equivalent (SWE). This provides a detailed but compact understanding of how temperature and precipitation interact to influence the seasonal accumulation and melt of snow. From this equation, we can estimate statistics such as the mean and standard deviation of SWE on any day of the year, and the mean residence time of snow, and see how they are related to climate characteristics. To develop the equation, we first describe temperature and precipitation with 4 parameters each, defining the mean, seasonal amplitude, seasonal timing, and sub-seasonal fluctuations. To simulate the response of the snowpack to climate, we use a temperature index model with two parameters: a degree-day melt factor and a threshold temperature. By writing the equation for snow storage in dimensionless form, we reduce the problem to five dimensionless parameters, three of them the same as found by Woods (2009), plus one each for the sub-seasonal fluctuations in precipitation and temperature. In the special case of no fluctuations in temperature and precipitation, the new equation reduces to the deterministic case of Woods (2009). We verify by Monte Carlo simulation that that the probability

  11. The Impact of Fluctuations in Precipitation and Temperature on the Seasonal Snowpack

    NASA Astrophysics Data System (ADS)

    Woods, Ross

    2016-04-01

    The development and melting of the seasonal snowpack depends on complex interactions among climate elements. Previous work (Woods 2009, Adv. Wat. Res.) showed how the typical seasonal variation of temperature and precipitation rate influence snowpack development. Results were expressed in terms of three dimensionless variables for: seasonal temperature regime; seasonality of precipitation; and depth of the snowpack relative to the energy available for melting. However, that theory does not take account of sub-seasonal fluctuations in temperature and precipitation, and as a consequence, makes poor predictions of snow storage in some climates. Here we write a stochastic differential equation for point-scale snow water equivalent (SWE), and then derive an equation for time variation of the probability distribution (pdf) of SWE. This provides a detailed but compact understanding of how temperature and precipitation interact to influence the seasonal accumulation and melt of snow. From this equation, we can estimate statistics such as the mean and standard deviation of SWE on any day of the year, and the mean residence time of snow, and see how they are related to climate characteristics. To develop the equation, we first describe temperature and precipitation with 4 parameters each, defining the mean, seasonal amplitude, seasonal timing, and sub-seasonal fluctuations. To simulate the response of the snowpack to climate, we use a temperature index model with two parameters: a degree-day melt factor and a threshold temperature. By writing the equation for snow storage in dimensionless form, we reduce the problem to five dimensionless parameters, three of them the same as found by Woods (2009), plus one each for the sub-seasonal fluctuations in precipitation and temperature. In the special case of no fluctuations in temperature and precipitation, the new equation reduces to the deterministic case of Woods (2009). We verify by Monte Carlo simulation that that the

  12. Thermal fluctuations of haemoglobin from different species: adaptation to temperature via conformational dynamics.

    PubMed

    Stadler, A M; Garvey, C J; Bocahut, A; Sacquin-Mora, S; Digel, I; Schneider, G J; Natali, F; Artmann, G M; Zaccai, G

    2012-11-01

    Thermodynamic stability, configurational motions and internal forces of haemoglobin (Hb) of three endotherms (platypus, Ornithorhynchus anatinus; domestic chicken, Gallus gallus domesticus and human, Homo sapiens) and an ectotherm (salt water crocodile, Crocodylus porosus) were investigated using circular dichroism, incoherent elastic neutron scattering and coarse-grained Brownian dynamics simulations. The experimental results from Hb solutions revealed a direct correlation between protein resilience, melting temperature and average body temperature of the different species on the 0.1 ns time scale. Molecular forces appeared to be adapted to permit conformational fluctuations with a root mean square displacement close to 1.2 Å at the corresponding average body temperature of the endotherms. Strong forces within crocodile Hb maintain the amplitudes of motion within a narrow limit over the entire temperature range in which the animal lives. In fully hydrated powder samples of human and chicken, Hb mean square displacements and effective force constants on the 1 ns time scale showed no differences over the whole temperature range from 10 to 300 K, in contrast to the solution case. A complementary result of the study, therefore, is that one hydration layer is not sufficient to activate all conformational fluctuations of Hb in the pico- to nanosecond time scale which might be relevant for biological function. Coarse-grained Brownian dynamics simulations permitted to explore residue-specific effects. They indicated that temperature sensing of human and chicken Hb occurs mainly at residues lining internal cavities in the β-subunits. PMID:22696485

  13. Trends in temperature extremes in association with weather-intraseasonal fluctuations in eastern China

    NASA Astrophysics Data System (ADS)

    Qian, Cheng; Yan, Zhongwei; Wu, Zhaohua; Fu, Congbin; Tu, Kai

    2011-03-01

    Trends in the frequencies of four temperature extremes (the occurrence of warm days, cold days, warm nights and cold nights) with respect to a modulated annual cycle (MAC), and those associated exclusively with weather-intraseasonal fluctuations (WIF) in eastern China were investigated based on an updated homogenized daily maximum and minimum temperature dataset for 1960-2008. The Ensemble Empirical Mode Decomposition (EEMD) method was used to isolate the WIF, MAC, and longer-term components from the temperature series. The annual, winter and summer occurrences of warm (cold) nights were found to have increased (decreased) significantly almost everywhere, while those of warm (cold) days have increased (decreased) in northern China (north of 40°N). However, the four temperature extremes associated exclusively with WIF for winter have decreased almost everywhere, while those for summer have decreased in the north but increased in the south. These characteristics agree with changes in the amplitude of WIF. In particular, winter WIF of maximum temperature tended to weaken almost everywhere, especially in eastern coastal areas (by 10%-20%); summer WIF tended to intensify in southern China by 10%-20%. It is notable that in northern China, the occurrence of warm days has increased, even where that associated with WIF has decreased significantly. This suggests that the recent increasing frequency of warm extremes is due to a considerable rise in the mean temperature level, which surpasses the effect of the weakening weather fluctuations in northern China.

  14. Rapid fluctuations of the air and surface temperature in the city of Bucharest (Romania)

    NASA Astrophysics Data System (ADS)

    Cheval, Sorin; Dumitrescu, Alexandru; Hustiu, Mihaita-Cristinel

    2016-04-01

    Urban areas derive significant changes of the ambient temperature generating specific challenges for society and infrastructure. Extreme temperature events, heat and cold waves affect the human comfort, increase the health risk, and require specific building regulations and emergency preparedness, strongly related to the magnitude and frequency of the thermal hazards. Rapid changes of the temperature put a particular stress for the urban settlements, and the topic has been approached constantly in the scientific literature. Due to its geographical position in a plain area with a temperate climate and noticeable continental influence, the city of Bucharest (Romania) deals with high seasonal and daily temperature variations. However, rapid fluctuations also occur at sub-daily scale caused by cold or warm air advections or by very local effects (e.g. radiative heat exchange, local precipitation). For example, in the area of Bucharest, the cold fronts of the warm season may trigger temperature decreasing up to 10-15 centigrades / hour, while warm advections lead to increasing of 1-2 centigrades / hour. This study focuses on the hourly and sub-hourly temperature variations over the period November 2014 - February 2016, using air temperature data collected from urban sensors and meteorological stations of the national network, and land surface temperature data obtained from satellite remote sensing. The analysis returns different statistics, such as magnitude, intensity, frequency, simultaneous occurrence and areal coverage of the rapid temperature fluctuations. Furthermore, the generating factors for each case study are assessed, and the results are used to define some preliminary patterns and enhance the urban temperature forecast at fine scale. The study was funded by the Romanian Programme Partnership in Priority Domains, PN - II - PCCA - 2013 - 4 - 0509 - Reducing UHI effects to improve urban comfort and balance energy consumption in Bucharest (REDBHI).

  15. Temperature dependence of universal fluctuations in the two-dimensional harmonic XY model

    NASA Astrophysics Data System (ADS)

    Palma, G.

    2006-04-01

    We compute exact analytical expressions for the skewness and kurtosis in the two-dimensional harmonic XY model. These quantities correspond to the third and fourth normalized moments of the probability density function (PDF) of the magnetization of the model. From their behavior, we conclude that they depend explicitly on the system temperature even in the thermodynamic limit, and hence the PDF itself must depend on it. Our results correct the hypothesis called universal fluctuations, they confirm and extend previous results which showed a T dependence of the PDF, including perturbative expansions within the XY model up to first order in temperature.

  16. Effect of gravity wave temperature fluctuations on homogeneous ice nucleation in the tropical tropopause layer

    NASA Astrophysics Data System (ADS)

    Dinh, T.; Podglajen, A.; Hertzog, A.; Legras, B.; Plougonven, R.

    2016-01-01

    The impact of high-frequency fluctuations of temperature on homogeneous nucleation of ice crystals in the vicinity of the tropical tropopause is investigated using a bin microphysics scheme for air parcels. The imposed temperature fluctuations come from measurements during isopycnic balloon flights near the tropical tropopause. The balloons collected data at high frequency, guaranteeing that gravity wave signals are well resolved.With the observed temperature time series, the numerical simulations with homogeneous freezing show a full range of ice number concentration (INC) as previously observed in the tropical upper troposphere. In particular, a low INC may be obtained if the gravity wave perturbations produce a non-persistent cooling rate (even with large magnitude) such that the absolute change in temperature remains small during nucleation. This result is explained analytically by a dependence of the INC on the absolute drop in temperature (and not on the cooling rate). This work suggests that homogeneous ice nucleation is not necessarily inconsistent with observations of low INCs.

  17. Thermal analysis of optical reference cavities for low sensitivity to environmental temperature fluctuations.

    PubMed

    Dai, Xiaojiao; Jiang, Yanyi; Hang, Chao; Bi, Zhiyi; Ma, Longsheng

    2015-02-23

    The temperature stability of optical reference cavities is significant in state-of-the-art ultra-stable narrow-linewidth laser systems. In this paper, the thermal time constant and thermal sensitivity of reference cavities are analyzed when reference cavities respond to environmental perturbations via heat transfer of thermal conduction and thermal radiation separately. The analysis as well as simulation results indicate that a reference cavity enclosed in multiple layers of thermal shields with larger mass, higher thermal capacity and lower emissivity is found to have a larger thermal time constant and thus a smaller sensitivity to environmental temperature perturbations. The design of thermal shields for reference cavities may vary according to experimentally achievable temperature stability and the coefficient of thermal expansion of reference cavities. A temperature fluctuation-induced length instability of reference cavities as low as 6 × 10(-16) on a day timescale can be achieved if a two-layer thermal shield is inserted between a cavity with the coefficient of thermal expansion of 1 × 10(-10) /K and an outer vacuum chamber with temperature fluctuation amplitude of 1 mK and period of 24 hours. PMID:25836547

  18. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment

    PubMed Central

    Schoepf, Verena; Stat, Michael; Falter, James L.; McCulloch, Malcolm T.

    2015-01-01

    Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events. PMID:26627576

  19. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment.

    PubMed

    Schoepf, Verena; Stat, Michael; Falter, James L; McCulloch, Malcolm T

    2015-01-01

    Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events. PMID:26627576

  20. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment

    NASA Astrophysics Data System (ADS)

    Schoepf, Verena; Stat, Michael; Falter, James L.; McCulloch, Malcolm T.

    2015-12-01

    Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events.

  1. Molecular Rayleigh Scattering Diagnostic for Measurement of High Frequency Temperature Fluctuations

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Elam, Kristie A.

    2005-01-01

    A novel technique for measurement of high frequency temperature fluctuations in unseeded gas flows using molecular Rayleigh scattering is investigated. The spectrum of laser light scattered from molecules in a gas flow is resolved using a Fabry-Perot interferometer. The width of the spectral peak is broadened by thermal motion of the molecules and hence is related to gas temperature. The interference fringe pattern containing spectral information is divided into four concentric regions using a series of mirrors angled with respect to one another. Light from each of these regions is directed towards photomultiplier tubes and sampled at 10 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows measurement of gas temperature. Independently monitoring the total scattered intensity provides a measure of gas density. This technique also has the potential to simultaneously measure a single component of flow velocity by monitoring the spectral peak location. Measurements of gas temperature and density are demonstrated using a low speed heated air jet surrounded by an unheated air co-flow. Mean values of temperature and density are shown for radial scans across the jet flow at a fixed axial distance from the jet exit plane. Power spectra of temperature and density fluctuations at several locations in the jet are also shown. The instantaneous measurements have fairly high uncertainty; however, long data records provide highly accurate statistically quantities, which include power spectra. Mean temperatures are compared with thermocouple measurements as well as the temperatures derived from independent density measurements. The accuracy for mean temperature measurements was +/- 7 K.

  2. Investigation of Temperature Fluctuations Caused by Steam-Water Two-Phase Flow in Pressurizer Spray Piping

    NASA Astrophysics Data System (ADS)

    Miyoshi, Koji; Nakamura, Akira; Takenaka, Nobuyuki; Oumaya, Toru

    In a PWR plant, a steam-water two-phase flow may possibly exist in the pressurizer spray pipe under a normal operating condition since the flow rate of the spray water is not sufficient to fill the horizontal section of the pipe completely. Initiation of high cycle fatigue cracks is suspected to occur under such thermally stratified two phase flow conditions due to cyclic thermal stress fluctuations caused by oscillations of the water surface. Such oscillations cannot be detected by the measurement of temperature on outer surface of the pipe. In order to clarify the flow and thermal conditions in the pressurizer spray pipe and assess their impact on the pipe structure, an experiment was conducted for a steam-water flow at a low flow rate using a mock-up pressurizer spray pipe. The maximum temperature fluctuation of about 0.2 times of the steam-water temperature difference was observed at the inner wall around water surface in the test section. Visualization tests were conducted to investigate the temperature fluctuation phenomena. It was shown that the fluid temperature fluctuations were not caused by the waves on the water surface, but were caused by liquid temperature fluctuations in water layer below the interface. The influence of small amount of non-condensable gas dissolved in the reactor coolant on the liquid temperature fluctuation phenomena was investigated by injecting air into the experimental loop. The air injection attenuated the liquid temperature fluctuations in the water layer since the condensation was suppressed by the non- condensable gas. It is not expected that wall temperature fluctuation in the actual PWR plant may exceed the temperature equivalent to the fatigue limit stress amplitude when it is assumed to be proportional to the steam-water temperature difference.

  3. Low-temperature magnetic fluctuations in the Kondo insulator SmB6

    NASA Astrophysics Data System (ADS)

    Biswas, P. K.; Salman, Z.; Neupert, T.; Morenzoni, E.; Pomjakushina, E.; von Rohr, F.; Conder, K.; Balakrishnan, G.; Hatnean, M. Ciomaga; Lees, M. R.; Paul, D. McK.; Schilling, A.; Baines, C.; Luetkens, H.; Khasanov, R.; Amato, A.

    2014-04-01

    We present the results of a systematic investigation of the magnetic properties of the three-dimensional Kondo topological insulator SmB6 using magnetization and muon-spin relaxation/rotation (μSR) measurements. The μSR measurements exhibit magnetic field fluctuations in SmB6 below ˜15 K due to electronic moments present in the system. However, no evidence for magnetic ordering is found down to 19 mK. The observed magnetism in SmB6 is homogeneous in nature throughout the full volume of the sample. Bulk magnetization measurements on the same sample show consistent behavior. The agreement between μSR, magnetization, and NMR results strongly indicate the appearance of intrinsic bulk magnetic in-gap states associated with fluctuating magnetic fields in SmB6 at low temperature.

  4. ECE Temperature Fluctuations associated with EDA H-Mode discharges in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Phillips, P. E.; Lynn, A. G.

    2006-10-01

    Alcator C-Mod exhibits an ELM-free H-mode with ``enhanced,,lpha'' emission accompanied by a quasi-coherent mode (QCM) edge relaxation mechanism. This steady state H-mode lowers the peak heat load to the diverters which is advantageous for reactor operations. A high-resolution heterodyne electron-cyclotron-emission (ECE) radiometer with 32 channels (δR˜7mm) and a bandwidth up to 1MHz covering the full radius of C-Mod has observed spatial resolved temperature fluctuations that are highly correlated with the edge QCM mode. The QCM mode is also directly observed by the edge ECE channels though the changes in optical depth due to the large density fluctuations in the QCM (˜30%). Details of these measurements will be presented in this poster.

  5. New correlation electron cyclotron emission temperature fluctuation diagnositc for Alcator C-mod

    NASA Astrophysics Data System (ADS)

    Sung, C.; White, A. E.; Irby, J.; Peebles, W. A.; Nguyen, X.

    2011-10-01

    A new Correlation Electron Cyclotron Emission (CECE) system for the measurement of electron temperature fluctuation is planned for Alcator C-mod. The multi-channel CECE radiometer will use the spectral decorrelation technique to measure turbulent fluctuations that are below thermal noise levels. The design of the optics and Intermediate Frequency (IF) section was constrained using predictions from nonlinear gyrokinetic turbulence simulations using the GYRO code. A Gaussian optical system will provide high poloidal spatial resolution (ω0 < 0 . 5 cm) needed to measure long-wavelength core turbulence at C-Mod, kθρs < 0 . 5 . The IF section will employ tunable band-pass filters to optimize turbulence measurements. We will present details of the new CECE system design and laboratory tests of the optics and IF section.

  6. Density fluctuations and radiated noise for a high-temperature supersonic jet

    NASA Technical Reports Server (NTRS)

    Parthasarathy, S. P.; Massier, P. F.; Cuffel, R. F.; Radbill, J. R.

    1975-01-01

    Experimental data on density fluctuations were obtained by the laser Schlieren method in a supersonic jet which at the nozzle exit had a Mach number of 1.43 and a stagnation temperature of about 1090 K. The jet emerged into the ambient atmosphere in an anechoic chamber, correctly expanded from a nozzle which had an exit diameter of 10.8 cm. Using the information on the density fluctuations and the mean shear obtained by probes, the autocorrelation of the radiated noise was calculated by a theory that is suitable for Mach wave emission. This theory is a modification of that developed by Ffowcs Williams and Maidanik (1965). The calculated noise field agrees well with that obtained by using microphones outside the jet.

  7. Influence of melt-temperature fluctuations on striation formation in large-scale Czochralski Si growth systems

    NASA Astrophysics Data System (ADS)

    Kanda, Tadashi; Hourai, Masataka; Miki, Shinichiro; Shigematsu, Tatsuhiko; Tomokage, Hajime; Miyano, Takaya; Morita, Hiroshi; Shintani, Akira

    1996-09-01

    The effects of melt-temperature fluctuations on growth striations in crystals grown in a commercial-scale growth system were studied by an analysis of the fast-Fourier-transform (FFT) method applied to the melt-temperature fluctuations and to the growth striations as evaluated by X-ray topography and spreading-resistance (SR) methods. The period of the growth striations observed in crystals corresponded exactly to that of temperature fluctuations in the melt; however, the amplitude of these growth striations decreased when temperature fluctuations with a constant amplitude occurred rapidly. This phenomenon results from a delay in the response of the microscopic growth rate to rapid temperature fluctuations. The amplitude of melt-temperature fluctuations and the peak height of the FFT power spectra were observed to decrease in the radial direction toward the crystal center, and this trend was also observed for growth striations. It was concluded that temporal thermal fluctuations caused by melt convection are preserved in growth striations for crystals grown in large growth systems.

  8. Rayleigh Scattering Diagnostic for Measurement of Temperature, Velocity, and Density Fluctuation Spectra

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Elam, Kristie A.; Sung, Chih-Jen; Panda, Jayanta

    2006-01-01

    A molecular Rayleigh scattering technique is developed to measure dynamic gas temperature, velocity, and density in unseeded turbulent flows at sampling rates up to 10 kHz. A high power CW laser beam is focused at a point in a heated air jet plume and Rayleigh scattered light is collected and spectrally resolved. The spectrum of the light, which contains information about the temperature, velocity, and density of the flow, is analyzed using a Fabry-Perot interferometer. The circular interference fringe pattern is divided into four concentric regions and sampled at 1 and 10 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows for measurement of gas temperature and velocity. Independently monitoring the total scattered light intensity provides a measure of gas density. Power spectral density calculations of temperature, velocity, and density fluctuations, as well as mean and fluctuating quantities are demonstrated for various radial locations in the jet flow at a fixed axial distance from the jet exit plane. Results are compared with constant current anemometry and pitot probe measurements at the same locations.

  9. Spatio-statistical analysis of temperature fluctuation using Mann-Kendall and Sen's slope approach

    NASA Astrophysics Data System (ADS)

    Atta-ur-Rahman; Dawood, Muhammad

    2016-04-01

    This article deals with the spatio-statistical analysis of temperature trend using Mann-Kendall trend model (MKTM) and Sen's slope estimator (SSE) in the eastern Hindu Kush, north Pakistan. The climate change has a strong relationship with the trend in temperature and resultant changes in rainfall pattern and river discharge. In the present study, temperature is selected as a meteorological parameter for trend analysis and slope magnitude. In order to achieve objectives of the study, temperature data was collected from Pakistan Meteorological Department for all the seven meteorological stations that falls in the eastern Hindu Kush region. The temperature data were analysed and simulated using MKTM, whereas for the determination of temperature trend and slope magnitude SSE method have been applied to exhibit the type of fluctuations. The analysis reveals that a positive (increasing) trend in mean maximum temperature has been detected for Chitral, Dir and Saidu Sharif met stations, whereas, negative (decreasing) trend in mean minimum temperature has been recorded for met station Saidu Sharif and Timergara. The analysis further reveals that the concern variation in temperature trend and slope magnitude is attributed to climate change phenomenon in the region.

  10. Quasi-linear theory of electron density and temperature fluctuations with application to MHD generators and MPD arc thrusters

    NASA Technical Reports Server (NTRS)

    Smith, M.

    1972-01-01

    Fluctuations in electron density and temperature coupled through Ohm's law are studied for an ionizable medium. The nonlinear effects are considered in the limit of a third order quasi-linear treatment. Equations are derived for the amplitude of the fluctuation. Conditions under which a steady state can exist in the presence of the fluctuation are examined and effective transport properties are determined. A comparison is made to previously considered second order theory. The effect of third order terms indicates the possibility of fluctuations existing in regions predicted stable by previous analysis.

  11. Quasi-linear theory of electron density and temperature fluctuations with application to MHD generators and MPD arc thrusters.

    NASA Technical Reports Server (NTRS)

    Smith, J. M.

    1972-01-01

    Fluctuations in electron density and temperature coupled through Ohm's law are studied for an ionizable medium. The nonlinear effects are considered in the limit of a third order quasi-linear treatment. Equations are derived for the amplitude of the fluctuation. Conditions under which a steady state can exist in the presence of the fluctuation are examined and effective transport properties are determined. A comparison is made to previously considered second order theory. The effect of third order terms indicates the possibility of fluctuations existing in regions predicted stable by previous analysis.

  12. Assay conditions in laboratory experiments: is the use of constant rather than fluctuating temperatures justified when investigating temperature-induced plasticity?

    PubMed

    Fischer, Klaus; Kölzow, Nadine; Höltje, Henriette; Karl, Isabell

    2011-05-01

    Temperature is an important selective agent in nature. Consequently, temperature-induced plasticity which may help buffering detrimental effects of temperature variation has received considerable attention over recent decades. Laboratory studies have almost exclusively used constant temperatures, while in nature, temperature typically shows pronounced daily fluctuations. Using a factorial design with constant versus fluctuating temperatures and a higher versus a lower mean temperature, we here investigate in the butterfly Lycaena tityrus whether the use of constant temperatures is justified. Fluctuating compared to constant temperatures caused shorter development times, increased heat but decreased cold stress resistance, decreased heat-shock protein expression, and increased immunocompetence. Thus, overall, fluctuating temperatures were more beneficial to the butterflies compared to constant ones. However, despite substantial variation across temperature regimes, the ranking of trait values among treatments remained largely unaffected (e.g. lower constant as well as fluctuating temperatures caused increased pupal mass). Thus, we tentatively conclude that there is no general reason for concern about using constant temperatures in studies investigating phenotypic plasticity, which seem to comprise a fair proxy. However, substantial differences in mean values as well as interactive effects suggest that one needs to be cautious. We further demonstrate negative effects of high temperatures on butterfly immune function, which seem to result from a trade-off between the latter and the heat shock response. PMID:21286923

  13. Studies of Electron Temperature Fluctuations in the Core of Alcator C-Mod Plasmas via Correlation ECE

    NASA Astrophysics Data System (ADS)

    Oi, C.; Sung, C.; Howard, N.; White, A. E.; Irby, J.; Leccacorvi, R.; Vieira, R.; Rice, J.; Gao, C.

    2012-10-01

    A correlation electron cyclotron emission (CECE) diagnostic has been designed and installed at the Alcator C-Mod tokamak to measure long wavelength fluctuations in electron temperature [C. Sung, this conference, C-Mod oral session]. It is important to characterize turbulent fluctuations in the plasma in order to better understand and predict transport, since the cross-magnetic field transport of particles and energy in fusion plasmas exceeds the values predicted by neoclassical theory. The first electron temperature fluctuation data collected from Alcator C-Mod ohmic plasmas has shown that as the ohmic confinement regime transitions from Linear Ohmic Confinement (LOC) to Saturated Ohmic Confinement (SOC) there is a decrease in the core electron temperature fluctuation level. The edge electron temperature fluctuations are similar between the two modes, suggesting that mainly the core turbulence characteristics change when there is a shift between LOC and SOC regimes. In both ohmic and ICRH plasmas, the measured spectrum is seen to broaden in response to increases in plasma rotation; and fluctuation level increases with radius. A description of the C-Mod CECE diagnostic will be presented, along with the initial measurements of turbulent electron temperature fluctuations.

  14. Diurnal temperature fluctuation effects on potatoes grown with 12 hr photoperiods

    NASA Technical Reports Server (NTRS)

    Bennett, S. M.; Tibbitts, T. W.; Cao, W.

    1991-01-01

    This study was designed to characterize the growth responses of potato (Solanum tuberosum L.) to diurnal temperature fluctuations. Potato plants of two cultivars, Norland and Denali, were grown for 90 days under 12 hr photoperiod in walk-in growth rooms at the University of Wisconsin Biotron. The alternating temperature was 22 C light/14 C dark and compared to a constant 18 C as control. At all temperature regimes vapor pressure deficit was maintained at 0.62 kPa (70% relative humidity [correction of humdidity] at 18 C). Plant height, plant dry weight, tuber dry weight, and harvest index were overall greater under the warm light/cool dark alternating temperatures than under the constant temperature. The differences between temperature treatments were greater for Denali than for Norland. Alternating temperatures increased Denali tuber weights by 25%, but no significant increase was found with Norland. Also the total plant weight was increased over 20% with Denali, but increased with Norland in only one of the two replications of the experiment. This study documents that alternating temperatures are a benefit to some cultivars but may not be of benefit to all cultivars.

  15. Simultaneous measurement of core electron temperature and density fluctuations during electron cyclotron heating on DIII-D

    SciTech Connect

    White, A. E.; Schmitz, L.; Peebles, W. A.; Rhodes, T. L.; Carter, T. A.; McKee, G. R.; Shafer, M. W.; Staebler, G. M.; Burrell, K. H.; DeBoo, J. C.; Prater, R.

    2010-02-15

    New measurements show that long-wavelength (k{sub t}hetarho{sub s}<0.5) electron temperature fluctuations can play an important role in determining electron thermal transport in low-confinement mode (L-mode) tokamak plasmas. In neutral beam-heated L-mode tokamak plasmas, electron thermal transport and the amplitude of long-wavelength electron temperature fluctuations both increase in cases where local electron cyclotron heating (ECH) is used to modify the plasma profiles. In contrast, the amplitude of simultaneously measured long-wavelength density fluctuations does not significantly increase. Linear stability analysis indicates that the ratio of the trapped electron mode (TEM) to ion temperature gradient (ITG) mode growth rates increases in the cases with ECH. The increased importance of the TEM drive relative to the ITG mode drive in the cases with ECH may be associated with the increases in electron thermal transport and electron temperature fluctuations.

  16. Determination of humidity and temperature fluctuations based on MOZAIC data and parametrisation of persistent contrail coverage for general circulation models

    NASA Astrophysics Data System (ADS)

    Gierens, K. M.; Schumann, U.; Smit, H. G. J.; Helten, M.; Zängl, G.

    1997-08-01

    Humidity and temperature fluctuations at pressure levels between 166 and 290 hPa on the grid scale of general circulation models for a region covered by the routes of airliners, mainly over the Atlantic, have been determined by evaluation of the data obtained with almost 2000 flights within the MOZAIC programme. It is found that the distributions of the fluctuations cannot be modelled by Gaussian distributions, because large fluctuations appear with a relatively high frequency. Lorentz distributions were used for the analytical representation of the fluctuation distributions. From these a joint probability distribution has been derived for simultaneous temperature and humidity fluctuations. This function together with the criteria for the formation and persistence of contrails are used to derive the maximum possible fractional coverage of persistent contrails in a grid cell of a GCM. This can be employed in a statistical formulation of contrail appearance in a climate model.

  17. Spin-fluctuation mechanism of anomalous temperature dependence of magnetocrystalline anisotropy in itinerant magnets

    DOE PAGESBeta

    Zhuravlev, I. A.; Antropov, V. P.; Belashchenko, K. D.

    2015-11-16

    The origins of the anomalous temperature dependence of magnetocrystalline anisotropy in (Fe1–xCox)2B alloys are elucidated using first-principles calculations within the disordered local moment model. Excellent agreement with experimental data is obtained. The anomalies are associated with the changes in band occupations due to Stoner-like band shifts and with the selective suppression of spin-orbit “hot spots” by thermal spin fluctuations. Under certain conditions, the anisotropy can increase, rather than decrease, with decreasing magnetization. These peculiar electronic mechanisms are in stark contrast to the assumptions of the existing models.

  18. Spin-fluctuation mechanism of anomalous temperature dependence of magnetocrystalline anisotropy in itinerant magnets

    SciTech Connect

    Zhuravlev, I. A.; Antropov, V. P.; Belashchenko, K. D.

    2015-11-16

    The origins of the anomalous temperature dependence of magnetocrystalline anisotropy in (Fe1–xCox)2B alloys are elucidated using first-principles calculations within the disordered local moment model. Excellent agreement with experimental data is obtained. The anomalies are associated with the changes in band occupations due to Stoner-like band shifts and with the selective suppression of spin-orbit “hot spots” by thermal spin fluctuations. Under certain conditions, the anisotropy can increase, rather than decrease, with decreasing magnetization. These peculiar electronic mechanisms are in stark contrast to the assumptions of the existing models.

  19. Feasibility of measuring temperature and density fluctuations in air using laser-induced O2 fluorescence

    NASA Technical Reports Server (NTRS)

    Massey, G. A.; Lemon, C. J.

    1984-01-01

    A tunable line-narrowed ArF laser can selectively excite several rotation al lines of the Schumann-Runge band system of O2 in air. The resulting ultraviolet fluorescence can be monitored at 90 deg to the laser beam axis, permitting space and time resolved observation of density and temperature fluctuations in turbulence. Experiments and calculations show that + or - 1 K, + or - 1 percent density, 1 cu mm spatial, and 1 microsecond temporal resolution can be achieved simultaneously under some conditions.

  20. Spatiotemporal temperature fluctuation measurements by means of a fast swept Langmuir probe array.

    PubMed

    Schubert, M; Endler, M; Thomsen, H

    2007-05-01

    Stationary Langmuir probe measurements of ion saturation current and floating potential in a plasma cannot give direct information on density and plasma potential fluctuations in the presence of temperature fluctuations. This problem can be avoided if the probe bias voltage is continuously swept faster than the fluctuation time scale, recording the current-voltage characteristic. This article reports the development of a spatiotemporal highly resolving Langmuir probe array with 15 fast swept tips, operating in the strongly magnetized, collisionless edge plasma of the Wendelstein 7-AS stellarator [Plasma Phys. Controlled Fusion 31, 1579 (1989)]. The probe tips are aligned in the poloidal direction, the tip spacing is 2 mm, and the sweeping frequency is 1.4 MHz. Current and voltage data are sampled with 50 MHz. The high bandwidth of the measurement is achieved by placing miniaturized differential amplifiers close to the probe tips in order to do an impedance transform. The surface-mounting technology and an additional inverse feedback module are utilized, allowing for an input voltage range of +/-100 V, and a common mode rejection rate of 55 dB at 4 MHz, which is sufficient to resolve the nonlinear probe characteristic. For the evaluation of the data, a fit model for stationary probes is employed and found adequate. Changes of the plasma parameters during one voltage sweep are taken into account by a linear interpolation of the fit parameters. Spatio-temporal fluctuation data gained by a fast swept Langmuir probe array, which can be relevant for the turbulent radial transport of particles and energy, are presented. PMID:17552818

  1. Observational Strategies of Cosmic Microwave Background Temperature and Polarization Interferometry Experiments

    NASA Astrophysics Data System (ADS)

    Park, Chan-Gyung; Ng, Kin-Wang; Park, Changbom; Liu, Guo-Chin; Umetsu, Keiichi

    2003-05-01

    We have simulated the interferometric observation of the cosmic microwave background (CMB) temperature and polarization fluctuations. We have constructed data pipelines from the time-ordered raw visibility samples to the CMB power spectra that utilize the methods of data compression, maximum likelihood analysis, and optimal subspace filtering. They are customized for three observational strategies: the single pointing, the mosaicking, and the drift-scanning. For each strategy, derived are the optimal strategy parameters that yield band power estimates with minimum uncertainty. The results are general and can be applied to any close-packed array on a single platform such as the CBI and the forthcoming AMiBA experiments. We have also studied the effect of rotation of the array platform on the band power correlation by simulating the CBI single-pointing observation. It is found that the band power anticorrelations can be reduced by rotating the platform and thus densely sampling the visibility plane. This enables us to increase the resolution of the power spectrum in the l-space down to the limit of the sampling theorem (Δl=226~π/θ), which is narrower by a factor of about sqrt(2) than the resolution limit (Δl~300) used in the recent CBI single-pointing observation. The validity of this idea is demonstrated for a two-element interferometer that samples visibilities uniformly in the uv-annulus. From the fact that the visibilities are the Fourier modes of the CMB field convolved with the beam, a fast unbiased estimator (FUE) of the CMB power spectra is developed and tested. It is shown that the FUE gives results very close to those from the quadratic estimator method without requiring large computer resources even though uncertainties in the results increase.

  2. Measurements of core electron temperature and density fluctuations in DIII-D and comparison to nonlinear gyrokinetic simulations

    SciTech Connect

    White, A. E.; Schmitz, L.; Peebles, W. A.; Carter, T. A.; Doyle, E. J.; Rhodes, T. L.; Wang, G.; McKee, G. R.; Shafer, M. W.; Holland, C.; Tynan, G. R.; Austin, M. E.; Burrell, K. H.; Candy, J.; DeBoo, J. C.; Prater, R.; Staebler, G. M.; Waltz, R. E.; Makowski, M. A.

    2008-05-15

    For the first time, profiles (0.3<{rho}<0.9) of electron temperature and density fluctuations in a tokamak have been measured simultaneously and the results compared to nonlinear gyrokinetic simulations. Electron temperature and density fluctuations measured in neutral beam-heated, sawtooth-free low confinement mode (L-mode) plasmas in DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] are found to be similar in frequency and normalized amplitude, with amplitude increasing with radius. The measured radial profile of two fluctuation fields allows for a new and rigorous comparison with gyrokinetic results. Nonlinear gyrokinetic flux-tube simulations predict that electron temperature and density fluctuations have similar normalized amplitudes in L-mode. At {rho}=0.5, simulation results match experimental heat diffusivities and density fluctuation amplitude, but overestimate electron temperature fluctuation amplitude and particle diffusivity. In contrast, simulations at {rho}=0.75 do not match either the experimentally derived transport properties or the measured fluctuation levels.

  3. Electron Temperature Fluctuations Associated with the Weakly Coherent Mode in the Edge of I-mode Plasmas

    NASA Astrophysics Data System (ADS)

    White, A. E.; Phillips, P.; Whyte, D. G.; Hubbard, A. E.; Sung, C.; Hughes, J. W.; Dominguez, A.; Terry, J.; Cziegler, I.

    2012-03-01

    New measurements of electron temperature fluctuations associated with the weakly coherent mode (WCM) during improved mode, or I-mode plasmas at Alcator C-Mod are presented in this poster [A. E. White, et al. Nuclear Fusion, 51, 113005 (2011)]. The measurements are made with a 32-channel, high-resolution profile ECE radiometer. The WCM electron temperature fluctuations are localized to a 1 cm region inside the last closed flux surface. The WCM electron temperature fluctuation level is measured in several different I-mode discharges and is in the range 1-2%, which is up to an order of magnitude smaller than the WCM density fluctuation level. The WCM edge fluctuations observed in I-mode are believed to play a role in increasing particle transport but not energy transport in the edge of I-mode plasmas. The large difference between normalized density and electron temperature fluctuation amplitudes provides new evidence that the WCM fluctuations can separately affect energy and particle transport.

  4. Thermodynamic Critical Field and Superconducting Fluctuation of Vortices for High Temperature Cuprate Superconductor: La-214

    SciTech Connect

    Yung Moo Huh

    2001-05-01

    Thermodynamics has been studied systematically for the high temperature cuprate superconductor La{sub 2-x}Sr{sub x}CuO{sub 4-{delta}}, La-214, in the entire superconductive region from strongly underdoped to strongly overdoped regimes. Magnetization studies with H{parallel}c have been made in order to investigate the changes in free energy of the system as the number of carriers is reduced. Above the superconducting transition temperature, the normal-state magnetization exhibits a two-dimensional Heisenberg antiferromagnetic behavior. Below T{sub c}, magnetization data are thermodynamically reversible over large portions of the H-T plane, so the free energy is well defined in these regions. As the Sr concentration is varied over the wide range from 0.060 (strongly underdoped) to 0.234 (strongly overdoped), the free energy change goes through a maximum at the optimum doped in a manner similar to the T{sub c0} vs. x curve. The density of states, N(0), remains nearly constant in the overdoped and optimum doped regimes, taking a broad maximum around x = 0.188, and then drops abruptly towards zero in the underdoped regime. The La{sub 2-x}Sr{sub x}CuO{sub 4} (La-214) system displays the fluctuating vortex behavior with the characteristic of either 2D or 3D fluctuations as indicated by clearly identifiable crossing points T* close to T{sub c}. The dimensional character of the fluctuations depends on both applied magnetic fields and the density of charge carriers. The dimensional crossover from 2D to 3D occurs in the strongly underdoped regime when the c-axis coherence distance {zeta}{sub c} becomes comparable to the spacing between adjacent CuO{sub 2} layers s at sufficiently high magnetic fields near H{sub c2}.

  5. Thermodynamic Critical Field and Superconducting Fluctuation of Vortices for High Temperature Cuprate Superconductor: La-214

    SciTech Connect

    Douglas K. Finnemore

    2001-06-25

    Thermodynamics has been studied systematically for the high temperature cuprate superconductor La{sub 2-x}Sr{sub x}CuO{sub 4-{delta}}, La-214, in the entire superconductive region from strongly underdoped to strongly overdoped regimes. Magnetization studies with H {parallel} c have been made in order to investigate the changes in free energy of the system as the number of carriers is reduced. Above the superconducting transition temperature, the normal-state magnetization exhibits a two-dimensional Heisenberg antiferromagnetic behavior. Below T{sub c}, magnetization data are thermodynamically reversible over large portions of the H-T plane, so the free energy is well defined in these regions. As the Sr concentration is varied over the wide range from 0.060 (strongly underdoped) to 0.234 (strongly overdoped), the free energy change goes through a maximum at the optimum doped in a manner similar to the T{sub c0} vs. x curve. The density of states, N(0), remains nearly constant in the overdoped and optimum doped regimes, taking a broad maximum around x = 0.188, and then drops abruptly towards zero in the underdoped regime. The La{sub 2-x}Sr{sub x}CuO{sub 4} (La-214) system displays the fluctuating vortex behavior with the characteristic of either 2D or 3D fluctuations as indicated by clearly identifiable crossing points T* close to T{sub c}. The dimensional character of the fluctuations depends on both applied magnetic fields and the density of charge carriers. The dimensional crossover from 2D to 3D occurs in the strongly underdoped regime when the c-axis coherence distance {xi}{sub c} becomes comparable to the spacing between adjacent CuO{sub 2} layers s at sufficiently high magnetic field near H{sub c2}.

  6. Pressure and temperature fluctuation simulation of J-PARC cryogenic hydrogen system

    NASA Astrophysics Data System (ADS)

    Tatsumoto, H.; Ohtsu, K.; Aso, T.; Kawakami, Y.

    2015-12-01

    The J-PARC cryogenic hydrogen system provides supercritical cryogenic hydrogen to the moderators at a pressure of 1.5 MPa and temperature of 18 K and removes 3.8 kW of nuclear heat from the 1 MW proton beam operation. We prepared a heater for thermal compensation and an accumulator, with a bellows structure for volume control, to mitigate the pressure fluctuation caused by switching the proton beam on and off. In this study, a 1-D simulation code named DiSC-SH2 was developed to understand the propagation of pressure and temperature propagations through the hydrogen loop due to on and off switching of the proton beam. We confirmed that the simulated dynamic behaviors in the hydrogen loop for 300-kW and 500-kW proton beam operations agree well with the experimental data under the same conditions.

  7. Note: Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations.

    PubMed

    Miao, Xinyu; Yin, Longfei; Zhuang, Wei; Luo, Bin; Dang, Anhong; Chen, Jingbiao; Guo, Hong

    2011-08-01

    We demonstrate an external-cavity laser system using an anti-reflection coated laser diode as gain medium with about 60 nm fluorescence spectrum, and a Rb Faraday anomalous dispersion optical filter (FADOF) as frequency-selecting element with a transmission bandwidth of 1.3 GHz. With 6.4% optical feedback, a single stable longitudinal mode is obtained with a linewidth of 69 kHz. The wavelength of this laser is operating within the center of the highest transmission peak of FADOF over a diode current range from 55 mA to 142 mA and a diode temperature range from 15 °C to 35 °C, thus it is immune to the fluctuations of current and temperature. PMID:21895284

  8. Measurement of temperature and density fluctuations in turbulence using an ultraviolet laser

    NASA Technical Reports Server (NTRS)

    Massey, G. A.

    1984-01-01

    Noninvasive measurement of density and temperature fluctuations in turbulent air flow was examined. The approach used fluorescence of oxygen molecules which are selectively excited by a tunable vacuum ultraviolet laser beam. The strength of the fluorescence signal and its dependence on laser wavelength vary with the density and temperature of the air in the laser beam. Because fluorescence can be detected at 90 degrees from the beam propagation direction, spatial resolution in three dimensions, rather than path-integrated measurements can be achieved. With spatial resolutions of the order of a millimeter and at supersonic air velocities it is necessary to perform each measurement in a time of the order of a microsecond; this is possible by by using laser pulses of ten nanosecond duration. In this method atmospheric O2 is excited by the emission of a tunable ArF excimer laser, and the fluorescence, which spans the 210 to 420 range, is detected by an ultraviolet phototube.

  9. Temperature-dependent fluctuations in the two-dimensional XY model

    NASA Astrophysics Data System (ADS)

    Banks, S. T.; Bramwell, S. T.

    2005-06-01

    We present a detailed investigation of the probability density function (PDF) of order parameter fluctuations in the finite two-dimensional XY (2dXY) model. In the low-temperature critical phase of this model, the PDF approaches a universal non-Gaussian limit distribution in the limit T → 0. Our analysis resolves the question of temperature dependence of the PDF in this regime, for which conflicting results have been reported. We show analytically that a weak temperature dependence results from the inclusion of multiple loop graphs in a previously derived graphical expansion. This is confirmed by numerical simulations on two controlled approximations to the 2dXY model: the harmonic and 'harmonic XY' models. The harmonic model has no Kosterlitz-Thouless-Berezinskiĭ (KTB) transition and the PDF becomes progressively less skewed with increasing temperature until it closely approximates a Gaussian function above T ap 4π. Near to that temperature, we find some evidence of a phase transition, although our observations appear to exclude a thermodynamic singularity.

  10. Cross-correlating Cosmic IR and X-ray Background Fluctuations: Evidence of Significant Black Hole Populations Among the CIB Sources

    NASA Technical Reports Server (NTRS)

    Cappelluti, N.; Kashlinsky, A.; Arendt, R. G.; Comastri, A.; Fazio, G. G.; Finoguenov, A.; Hasinger, G.; Mather, J. C.; Miyaji, T; Moseley, S. H.

    2013-01-01

    In order to understand the nature of the sources producing the recently uncovered cosmic infrared background (CIB) fluctuations, we study cross-correlations between the fluctuations in the source-subtracted CIB from Spitzer/IRAC data and the unresolved cosmic X-ray background from deep Chandra observations. Our study uses data from the EGS/AEGIS field, where both data sets cover an approx = 8' x 45' region of the sky. Our measurement is the cross-power spectrum between the IR and X-ray data. The cross-power signal between the IRAC maps at 3.6 micron and 4.5 micron and the Chandra [0.5-2] keV data has been detected, at angular scales approx >20'', with an overall significance of approx = 3.8 sigma and approx. = 5.6 sigma, respectively. At the same time we find no evidence of significant cross-correlations at the harder Chandra bands. The cross-correlation signal is produced by individual IR sources with 3.6 micron and 4.5 micron magnitudes m(sub AB) approx. > 25-26 and [0.5-2] keV X-ray fluxes << 7 × 10(exp -177 erg sq. cm/ s. We determine that at least 15%-25% of the large scale power of the CIB fluctuations is correlated with the spatial power spectrum of the X-ray fluctuations. If this correlation is attributed to emission from accretion processes at both IR and X-ray wavelengths, this implies a much higher fraction of accreting black holes than among the known populations. We discuss the various possible origins for the cross-power signal and show that neither local foregrounds nor the known remaining normal galaxies and active galactic nuclei can reproduce the measurements. These observational results are an important new constraint on theoretical modeling of the near-IR CIB fluctuations. local foregrounds, nor the known remaining normal galaxies and active galactic nuclei (AGN) can reproduce the measurements. These observational results are an important new constraint on theoretical modeling of the near-IR CIB fluctuations

  11. Measurement of electron temperature fluctuations using a tunable correlation electron cyclotron emission system on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Howard, N. T.; Sung, C.; White, A. E.

    2014-11-01

    A tunable correlation electron cyclotron (CECE) system was recently installed on the Alcator C-Mod tokamak to provide local, quantitative measurement of electron temperature fluctuations in the tokamak core. This system represents a significant upgrade from the original CECE system, expanding the measurement capabilities from 4 to 8 total channels, including 2 remotely tunable YIG filters (6-18 GHz; 200 MHz bandwidth). Additional upgrades were made to the optical system to provide enhanced poloidal resolution and allow for measurement of turbulent fluctuations below kθρs < 0.3. These expanded capabilities allow for single shot measurement of partial temperature fluctuation profiles in the region ρ = 0.7 - 0.9 (square root of normalized toroidal flux) in a wide variety of plasma conditions. These measurements are currently being used to provide stringent tests of the gyrokinetic model in ongoing model validation efforts. Details of the hardware upgrades, turbulent fluctuation measurements, and ongoing comparisons with simulations are presented.

  12. Modelling spoilage of fresh turbot and evaluation of a time-temperature integrator (TTI) label under fluctuating temperature.

    PubMed

    Nuin, Maider; Alfaro, Begoña; Cruz, Ziortza; Argarate, Nerea; George, Susie; Le Marc, Yvan; Olley, June; Pin, Carmen

    2008-10-31

    Kinetic models were developed to predict the microbial spoilage and the sensory quality of fresh fish and to evaluate the efficiency of a commercial time-temperature integrator (TTI) label, Fresh Check(R), to monitor shelf life. Farmed turbot (Psetta maxima) samples were packaged in PVC film and stored at 0, 5, 10 and 15 degrees C. Microbial growth and sensory attributes were monitored at regular time intervals. The response of the Fresh Check device was measured at the same temperatures during the storage period. The sensory perception was quantified according to a global sensory indicator obtained by principal component analysis as well as to the Quality Index Method, QIM, as described by Rahman and Olley [Rahman, H.A., Olley, J., 1984. Assessment of sensory techniques for quality assessment of Australian fish. CSIRO Tasmanian Regional Laboratory. Occasional paper n. 8. Available from the Australian Maritime College library. Newnham. Tasmania]. Both methods were found equally valid to monitor the loss of sensory quality. The maximum specific growth rate of spoilage bacteria, the rate of change of the sensory indicators and the rate of change of the colour measurements of the TTI label were modelled as a function of temperature. The temperature had a similar effect on the bacteria, sensory and Fresh Check kinetics. At the time of sensory rejection, the bacterial load was ca. 10(5)-10(6) cfu/g. The end of shelf life indicated by the Fresh Check label was close to the sensory rejection time. The performance of the models was validated under fluctuating temperature conditions by comparing the predicted and measured values for all microbial, sensory and TTI responses. The models have been implemented in a Visual Basic add-in for Excel called "Fish Shelf Life Prediction (FSLP)". This program predicts sensory acceptability and growth of spoilage bacteria in fish and the response of the TTI at constant and fluctuating temperature conditions. The program is freely

  13. Optical measurements of fluctuating temperatures in a supersonic turbulent flow using one- and two-photon, laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    Gross, K. P.; Mckenzie, R. L.

    1984-01-01

    A laser-induced fluorescence technique was developed that provides a practical means of nonintrusively measuring the instantaneous temperatures in low-temperature turbulent flows. The capabilities of the method are reviewed, and its application to a simple, two-dimensional, turbulent boundary-layer flow at Mach 2 is reported. Measurements of the average temperature distribution through the boundary layer and the magnitudes of temperature fluctuations about their average values are presented.

  14. Effect of Diurnal Fluctuating versus Constant Temperatures on Germination of 445 Species from the Eastern Tibet Plateau

    PubMed Central

    Liu, Kun; Baskin, Jerry M.; Baskin, Carol C.; Bu, Haiyan; Du, Guozhen; Ma, Miaojun

    2013-01-01

    Germination response to fluctuating temperatures is a mechanism by which seeds detect gaps in vegetation canopies and depth of burial in soil, and it is very important for plants. Thus, studies on the effect of fluctuating temperature on germination at the community level are valuable for understanding community structure and biodiversity maintenance. We determined the effects of two alternating temperatures (5/25°C and 10/20°C) and one constant temperature (15°C) on seed germination of 445 species in a grassland community on the eastern Tibet Plateau. Seed mass was determined for each species, and data on habitat, type of life cycle, altitudinal distribution and functional group (graminoids or forbs) were obtained from the literature. Taking all species into account, alternating temperatures increased germination percentages regardless of amplitude. Overall, species growing in disturbed ground showed a significant germination response to temperature fluctuation, but those living in Alpine/subalpine meadow, forest margin /scrub, marshland and dry sunny slope habitats did not. Species distributed only at high elevations (>2000m) did not show a significant germination response to temperature fluctuation, whereas those occurring at both high and low elevations had a significant positive response. Germination of annuals/biennials was significantly promoted by 5/25°C, but not by 10/20°C, whereas germination of perennials was significantly promoted by both 5/25°C and 10/20°C. Small-seeded species were more likely than large-seeded species to respond positively to fluctuating temperatures. Germination of forbs had a positive response to temperature fluctuation, but germination of graminoids did not. Regeneration ability by seeds for about 36% of the species studied in the grassland can be increased by temperature fluctuation. The differential response among species to alternating vs. constant temperatures helps maintain community structure and biodiversity. A

  15. Measurement of Turbulent Pressure and Temperature Fluctuations in a Gas Turbine Combustor

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis (Technical Monitor); LaGraff, John E.; Bramanti, Cristina; Pldfield, Martin; Passaro, Andrea; Biagioni, Leonardo

    2004-01-01

    The report summarizes the results of the redesign efforts directed towards the gas-turbine combustor rapid-injector flow diagnostic probe developed under sponsorship of NASA-GRC and earlier reported in NASA-CR-2003-212540. Lessons learned during the theoretical development, developmental testing and field-testing in the previous phase of this research were applied to redesign of both the probe sensing elements and of the rapid injection device. This redesigned probe (referred to herein as Turboprobe) has been fabricated and is ready, along with the new rapid injector, for field-testing. The probe is now designed to capture both time-resolved and mean total temperatures, total pressures and, indirectly, one component of turbulent fluctuations.

  16. Damage Evolution in Al Wire Bonds Subjected to a Junction Temperature Fluctuation of 30 K

    NASA Astrophysics Data System (ADS)

    Agyakwa, Pearl A.; Yang, Li; Arjmand, Elaheh; Evans, Paul; Corfield, Martin R.; Johnson, C. Mark

    2016-07-01

    Ultrasonically bonded heavy Al wires subjected to a small junction temperature fluctuation under power cycling from 40°C to 70°C were investigated using a non-destructive three-dimensional (3-D) x-ray tomography evaluation approach. The occurrence of irreversible deformation of the microstructure and wear-out under such conditions were demonstrated. The observed microstructures consist of interfacial and inter-granular cracks concentrated in zones of stress intensity, i.e., near heels and emanating from interface precracks. Interfacial voids were also observed within the bond interior. Degradation rates of `first' and `stitch' bonds are compared and contrasted. A correlative microscopy study combining perspectives from optical microscopy with the x-ray tomography results clarifies the damage observed. An estimation of lifetime is made from the results and discussed in the light of existing predictions.

  17. Damage Evolution in Al Wire Bonds Subjected to a Junction Temperature Fluctuation of 30 K

    NASA Astrophysics Data System (ADS)

    Agyakwa, Pearl A.; Yang, Li; Arjmand, Elaheh; Evans, Paul; Corfield, Martin R.; Johnson, C. Mark

    2016-04-01

    Ultrasonically bonded heavy Al wires subjected to a small junction temperature fluctuation under power cycling from 40°C to 70°C were investigated using a non-destructive three-dimensional (3-D) x-ray tomography evaluation approach. The occurrence of irreversible deformation of the microstructure and wear-out under such conditions were demonstrated. The observed microstructures consist of interfacial and inter-granular cracks concentrated in zones of stress intensity, i.e., near heels and emanating from interface precracks. Interfacial voids were also observed within the bond interior. Degradation rates of `first' and `stitch' bonds are compared and contrasted. A correlative microscopy study combining perspectives from optical microscopy with the x-ray tomography results clarifies the damage observed. An estimation of lifetime is made from the results and discussed in the light of existing predictions.

  18. Pressure dependence of critical temperature of bulk FeSe from spin fluctuation theory

    NASA Astrophysics Data System (ADS)

    Hirschfeld, Peter; Kreisel, Andreas; Wang, Yan; Tomic, Milan; Jeschke, Harald; Jacko, Anthony; Valenti, Roser; Maier, Thomas; Scalapino, Douglas

    2013-03-01

    The critical temperature of the 8K superconductor FeSe is extremely sensitive to pressure, rising to a maximum of 40K at about 10GPa. We test the ability of the current generation of fluctuation exchange pairing theories to account for this effect, by downfolding the density functional theory electronic structure for each pressure to a tight binding model. The Fermi surface found in such a procedure is then used with fixed Hubbard parameters to determine the pairing strength using the random phase approximation for the spin singlet pairing vertex. We find that the evolution of the Fermi surface captured by such an approach is alone not sufficient to explain the observed pressure dependence, and discuss alternative approaches. PJH, YW, AK were supported by DOE DE-FG02-05ER46236, the financial support of MT, HJ, and RV from the DFG Schwerpunktprogramm 1458 is kindly acknowledged.

  19. Information entropy of activation process: Application for low-temperature fluctuations of a myoglobin molecule

    NASA Astrophysics Data System (ADS)

    Stepanov, A. V.

    2015-11-01

    Activation process for unimolecular reaction has been considered by means of radiation theory. The formulae of information entropy of activation have been derived for the Boltzmann-Arrhenius model and the activation process model (APM). The physical meaning of this entropy has been determined. It is a measure of conversion of thermal radiation energy to mechanical energy that moves atoms in a molecule during elementary activation act. It is also a measure of uncertainty of this energy conversion. The uncertainty is due to unevenness of distribution function representing the activation process. It has been shown that Arrhenius dependence is caused by the entropy change. Efficiency comparison of the two models under consideration for low-temperature fluctuations of a myoglobin molecule structure shows that the APM should be favored over the Boltzmann-Arrhenius one.

  20. The effects of eggshell temperature fluctuations during incubation on welfare status and gait score of broilers.

    PubMed

    Ipek, A; Sozcu, A

    2016-06-01

    The aim of the current study was to determine the effects of different eggshell temperatures (EST); low (33.3 to 36.7°C), control (37.8 to 38.2°C), and high (38.9 to 40.0°C) during 10 to 18 days of incubation on welfare status including foot pad dermatitis (FPD), hock dermatitis (HD) and feathering status, and gait score in broilers. Score 2, 4, and 5 of FPD were found to be similar among the treatment groups, whereas a score of 3 was found to be higher in the control and high EST groups (27.7% and 29.2%) compred to the low EST group (16.9%). The eggshell temperature fluctuations were significantly affected the incidence of HD, whereas broiler sex did not. All of the broilers in the high EST group had HD with various scores, while a percentage of 21.1% and 6.9% of broilers had the score 1 of HD in the low and control EST groups, respectively. Feathering status showed a difference between body parts including wing, neck, back, and vent and also a general mean score of broilers from low EST treatment had the highest score for feathering. A higher incidence of gait score was observed in broilers from the control EST treatment than low and high EST groups. This can be attributed to a higher live weight of broilers from the control EST group. On the other hand, the incidence of a gait score of 3 and 4 was found for broilers from control and high EST treatment groups. Male and female broilers from the high EST group had the higher gait score. In conclusion, gait score and welfare status of broilers were affected by fluctuations in EST between 10 and 18 days of incubation. PMID:26944961

  1. A Passive Radio-Frequency Identification (RFID) Gas Sensor With Self-Correction Against Fluctuations of Ambient Temperature

    PubMed Central

    Potyrailo, Radislav A.; Surman, Cheryl

    2013-01-01

    Uncontrolled fluctuations of ambient temperature in the field typically greatly reduce accuracy of gas sensors. In this study, we developed an approach for the self-correction against fluctuations of ambient temperature of individual gas and vapor sensors. The main innovation of our work is in the temperature correction which is accomplished without the need for a separate uncoated reference sensor or a separate temperature sensor. Our sensors are resonant inductor-capacitor-resistor (LCR) transducers coated with sensing materials and operated as multivariable passive (battery-free) radio-frequency identification (RFID) sensors. Using our developed approach, we performed quantitation of an exemplary vapor over the temperature range from 25 to 40 °C. This technical solution will be attractive in numerous applications where temperature stabilization of a gas sensor or addition of auxiliary temperature or uncoated reference sensors is prohibitive. PMID:23956496

  2. A Passive Radio-Frequency Identification (RFID) Gas Sensor With Self-Correction Against Fluctuations of Ambient Temperature.

    PubMed

    Potyrailo, Radislav A; Surman, Cheryl

    2013-08-01

    Uncontrolled fluctuations of ambient temperature in the field typically greatly reduce accuracy of gas sensors. In this study, we developed an approach for the self-correction against fluctuations of ambient temperature of individual gas and vapor sensors. The main innovation of our work is in the temperature correction which is accomplished without the need for a separate uncoated reference sensor or a separate temperature sensor. Our sensors are resonant inductor-capacitor-resistor (LCR) transducers coated with sensing materials and operated as multivariable passive (battery-free) radio-frequency identification (RFID) sensors. Using our developed approach, we performed quantitation of an exemplary vapor over the temperature range from 25 to 40 °C. This technical solution will be attractive in numerous applications where temperature stabilization of a gas sensor or addition of auxiliary temperature or uncoated reference sensors is prohibitive. PMID:23956496

  3. Binary homogeneous nucleation: Temperature and relative humidity fluctuations and non-linearity

    SciTech Connect

    Easter, R.C.; Peters, L.K.

    1993-01-01

    This report discusses binary homogeneous nucleation involving H{sub 2}SO{sub 4} and water vapor is thought to be the primary mechanism for new particle formation in the marine boundary layer. Temperature, relative humidity, and partial pressure of H{sub 2}SO{sub 4} vapor are the most important parameters in fixing the binary homogeneous nucleation rate in the H{sub 2}SO{sub 4}/H{sub 2}O system. The combination of thermodynamic calculations and laboratory experiments indicates that this rate varies roughly as the tenth power of the saturation ratio of H{sub 2}SO{sub 4} vapor. Furthermore, the vapor pressure of H{sub 2}SO{sub 4} is a function of temperature, and similar dependencies of the binary homogeneous nucleation rate on relative humidity can be noted as well. These factors thus introduce strong non-linearities into the system, and fluctuations of temperature, relative humidity, and H{sub 2}SO{sub 4} vapor concentrations about mean values may strongly influence the nucleation rate measured in the atmosphere.

  4. Morning Martian Atmospheric Temperature Gradients and Fluctuations Observed by Mars Pathfinder

    NASA Technical Reports Server (NTRS)

    Mihalov, John D.; Haberle, R. M.; Murphy, J. R.; Seiff, A.; Wilson, G. R.

    1999-01-01

    We have studied the most prominent atmospheric temperature fluctuations observed during Martian mornings by Mars Pathfinder and have concluded, based on comparisons with wind directions, that they appear to be a result of atmospheric heating associated with the Lander spacecraft. Also, we have examined the morning surface layer temperature lapse rates, which are found to decrease as autumn approaches at the Pathfinder location, and which have mean (and median) values as large as 7.3 K/m in the earlier portions of the Pathfinder landed mission. It is plausible that brief isolated periods with gradients twice as steep are associated with atmospheric heating adjacent to Lander air bag material. In addition, we have calculated the gradient with height of the structure function obtained with Mars Pathfinder, for Mars' atmospheric temperatures measured within about 1.3 m from the surface, assuming a power law dependence, and have found that these gradients superficially resemble those reported for the upper region of the terrestrial stable boundary layer.

  5. Measurement of Turbulent Pressure and Temperature Fluctuations in a Gas Turbine Combustor

    NASA Technical Reports Server (NTRS)

    Passaro, Andrea; LaGraff, John E.; Oldfield, Martin L. G.; Biagioni, Leonardo; Moss, Roger W.; Battelle, Ryan T.; Povinelli, Louis A. (Technical Monitor)

    2003-01-01

    The present research concerns the development of high-frequency pressure and temperature probes and related instrumentation capable of performing spectral characterization of unsteady pressure and temperature fluctuations over the 0.05 20 kHz range, at the exit of a gas turbine combustor operating at conditions close to nominal ones for large power generation turbomachinery. The probes used a transient technique pioneered at Oxford University; in order to withstand exposure to the harsh environment the probes were fitted on a rapid injection and cooling system jointly developed by Centrospazio CPR and Syracuse University. The experimental runs were performed on a large industrial test rig being operated by ENEL Produzione. The achieved results clearly show the satisfactory performance provided by this diagnostic tool, even though the poor location of the injection port prevented the tests from yielding more insight of the core flow turbulence characteristics. The pressure and temperature probes survived several dozen injections in the combustor hot jet, while consistently providing the intended high frequency performance. The apparatus was kept connected to the combustor during long duration firings, operating as an unobtrusive, self contained, piggy-back experiment: high frequency flow samplings were remotely recorded at selected moments corresponding to different combustor operating conditions.

  6. Effects of fast-acting high-frequency compression on the intelligibility of speech in steady and fluctuating background sounds.

    PubMed

    Stone, M A; Moore, B C; Wojtczak, M; Gudgin, E

    1997-08-01

    This study examines whether speech intelligibility in background sounds can be improved for persons with loudness recruitment by the use of fast-acting compression applied at high frequencies, when the overall level of the sounds is held constant by means of a slow-acting automatic gain control (AGC) system and when appropriate frequency-response shaping is applied. Two types of fast-acting compression were used in the high-frequency channel of a two-channel system: a compression limiter with a 10:1 compression ratio and with a compression threshold about 9 dB below the peak level of the signal in the high-frequency channel; and a wide dynamic range compressor with a 2:1 compression ratio and with the compression threshold about 24 dB below the peak level of the signal in the high-frequency channel. A condition with linear processing in the high-frequency channel was also used. Speech reception thresholds (SRTs) were measured for two background sounds: a steady speech-shaped noise and a single male talker. All subjects had moderate-to-severe sensorineural hearing loss. Three different types of speech material were used: the adaptive sentence lists (ASL), the Bamford-Kowal-Bench (BKB) sentence lists and the Boothroyd word lists. For the steady background noise, the compression generally led to poorer performance than for the linear condition, although the deleterious effect was only significant for the 10:1 compression ratio. For the background of a single talker, the compression had no significant effect except for the ASL sentences, where the 10:1 compression gave significantly better performance than the linear condition. Overall, the results did not show any clear benefits of the fast-acting compression, possibly because the slow-acting AGC allowed the use of gains in the linear condition that were markedly higher than would normally be used with linear hearing aids. PMID:9307821

  7. Amplitude-frequency fluctuations of the seasonal cycle, temperature anomalies, and long-range persistence of climate records

    NASA Astrophysics Data System (ADS)

    Vecchio, A.; Carbone, V.

    2010-12-01

    The presence of long-term persistence of climate records on scales from 2 to 15 yr has been reported in the literature, even if the universality of this result is controversial. In the present paper results from monthly temperature records measured for about 250 yr in Prague and Milan are reported. Because of the nonlinear and nonstationary character of temperature time series the seasonal contribution has been identified through the empirical mode decomposition. We find that the seasonal component of the climate records is characterized by some time scales showing both amplitude and phase fluctuations. By using a more suitable definition of temperature anomalies, and thus excluding persistence effects due to seasonal oscillations and trends, the occurrence of long-term persistence has been investigated through the detrended fluctuation analysis. Our results indicate persistence on scales from 3 to 10 yr with similar values for the detrended fluctuation analysis indices.

  8. Limb Looking: The effects of background subtraction on the temperature of SXT loops.

    NASA Astrophysics Data System (ADS)

    Medlin, D. A.; Blevins, H. T.; Schmelz, J. T.

    2003-05-01

    Knowing the temperature distribution along a loop is one possible test for the coronal heating models. The matter of how background subtraction may or may not affect the temperature distribution of loops could also play a crucial role in this analysis. Several instruments are currently available for loop studies, and numerous techniques are used to determine the temperature distributions along the loops. This has lead to many different, and mostly conflicting temperature results. We have chosen the Soft X-ray Telescope (SXT), aboard the Japanese satellite Yohkoh, for this study. The SXT data archives were searched for possible loop candidates. A set of loops on the limb, as well as a set of loops on the disk, were chosen for analysis. Temperature maps were generated for each loop with and without background subtraction. For each loop, we used both a uniform background subtraction as well as a pixel-by-pixel background subtraction. Once the temperature as a function of arc length has been found, it is then compared to the predictions made by different models. The Solar physics research at the University of Memphis is supported by NASA grants NAG5-9783 and NAG5-12096.

  9. A high speed data acquisition and analysis system for transonic velocity, density, and total temperature fluctuations

    NASA Technical Reports Server (NTRS)

    Clukey, Steven J.

    1988-01-01

    The high speed Dynamic Data Acquisition System (DDAS) is described which provides the capability for the simultaneous measurement of velocity, density, and total temperature fluctuations. The system of hardware and software is described in context of the wind tunnel environment. The DDAS replaces both a recording mechanism and a separate data processing system. The data acquisition and data reduction process has been combined within DDAS. DDAS receives input from hot wires and anemometers, amplifies and filters the signals with computer controlled modules, and converts the analog signals to digital with real-time simultaneous digitization followed by digital recording on disk or tape. Automatic acquisition (either from a computer link to an existing wind tunnel acquisition system, or from data acquisition facilities within DDAS) collects necessary calibration and environment data. The generation of hot wire sensitivities is done in DDAS, as is the application of sensitivities to the hot wire data to generate turbulence quantities. The presentation of the raw and processed data, in terms of root mean square values of velocity, density and temperature, and the processing of the spectral data is accomplished on demand in near-real-time- with DDAS. A comprehensive description of the interface to the DDAS and of the internal mechanisms will be prosented. A summary of operations relevant to the use of the DDAS will be provided.

  10. Similar metabolic rate-temperature relationships after acclimation at constant and fluctuating temperatures in caterpillars of a sub-Antarctic moth.

    PubMed

    Chown, Steven L; Haupt, Tanya M; Sinclair, Brent J

    2016-02-01

    Temperature compensation in whole-animal metabolic rate is one of the responses thought, controversially, to characterize insects from low temperature environments. Temperature compensation may either involve a change in absolute values of metabolic rates or a change in the slope of the metabolic rate - temperature relationship. Moreover, assessments of compensation may be complicated by animal responses to fluctuating temperatures. Here we examined whole animal metabolic rates, at 0 °C, 5 °C, 10 °C and 15 °C, in caterpillars of the sub-Antarctic moth, Pringleophaga marioni Viette (Tineidae), following one week acclimations to 5 °C, 10 °C and 15 °C, and fluctuating temperatures of 0-10 °C, 5-15 °C, and 10-20 °C. Over the short term, temperature compensation was found following acclimation to 5 °C, but the effect size was small (3-14%). By comparison with caterpillars of 13 other lepidopteran species, no effect of temperature compensation was present, with the relationship between metabolic rate and temperature having a Q10 of 2 among species, and no effect of latitude on temperature-corrected metabolic rate. Fluctuating temperature acclimations for the most part had little effect compared with constant temperatures of the same mean value. Nonetheless, fluctuating temperatures of 5-15 °C resulted in lower metabolic rates at all test temperatures compared with constant 10 °C acclimation, in keeping with expectations from the literature. Absence of significant responses, or those of large effect, in metabolic rates in response to acclimation, may be a consequence of the unpredictable temperature variation over the short-term on sub-Antarctic Marion Island, to which P. marioni is endemic. PMID:26592773

  11. The role of spatial scale and background climate in the latitudinal temperature response to deforestation

    NASA Astrophysics Data System (ADS)

    Li, Y.; de Noblet-Ducoudré, N.; Davin, E. L.; Zeng, N.; Motesharrei, S.; Li, S. C.; Kalnay, E.

    2015-10-01

    Previous modeling and empirical studies have shown that the biophysical impact of deforestation is to warm the tropics and cool the extra-tropics. In this study, we use an earth system model to investigate how deforestation at various spatial scales affects ground temperature, with an emphasis on the latitudinal temperature response and its underlying mechanisms. Results show that the latitudinal pattern of temperature response depends non-linearly on the spatial extent of deforestation and the fraction of vegetation change. Compared with regional deforestation, temperature change in global deforestation is greatly amplified in temperate and boreal regions, but is dampened in tropical regions. Incremental forest removal leads to increasingly larger cooling in temperate and boreal regions, while the temperature increase saturates in tropical regions. The latitudinal and spatial patterns of the temperature response are driven by two processes with competing temperature effects: decreases in absorbed shortwave radiation due to increased albedo and decreases in evapotranspiration. These changes in the surface energy balance reflect the importance of the background climate on modifying the deforestation impact. Shortwave radiation and precipitation have an intrinsic geographical distribution that constrains the effects of biophysical changes and therefore leads to temperature changes that are spatially varying. For example, wet (dry) climate favors larger (smaller) evapotranspiration change, thus warming (cooling) is more likely to occur. Further analysis on the contribution of individual biophysical factors (albedo, roughness, and evapotranspiration efficiency) reveals that the latitudinal signature embodied in the temperature change probably result from the background climate conditions rather than the initial biophysical perturbation.

  12. The cosmic microwave background radiation temperature at a redshift of 2.34.

    PubMed

    Srianand, R; Petitjean, P; Ledoux, C

    The existence of the cosmic microwave background radiation is a fundamental prediction of hot Big Bang cosmology, and its temperature should increase with increasing redshift. At the present time (redshift z = 0), the temperature has been determined with high precision to be T(CMBR)(0) = 2.726 +/- 0.010 K. In principle, the background temperature can be determined using measurements of the relative populations of atomic fine-structure levels, which are excited by the background radiation. But all previous measurements have achieved only upper limits, thus still formally permitting the radiation temperature to be constant with increasing redshift. Here we report the detection of absorption lines from the first and second fine-structure levels of neutral carbon atoms in an isolated cloud of gas at z = 2.3371. We also detected absorption due to several rotational transitions of molecular hydrogen, and fine-structure lines of singly ionized carbon. These constraints enable us to determine that the background radiation was indeed warmer in the past: we find that T(CMBR)(z = 2.3371) is between 6.0 and 14 K. This is in accord with the temperature of 9.1 K predicted by hot Big Bang cosmology. PMID:11140672

  13. Simulated Seasonal Photoperiods and Fluctuating Temperatures Have Limited Effects on Blood Feeding and Life History in Aedes triseriatus (Diptera: Culicidae).

    PubMed

    Westby, K M; Juliano, S A

    2015-09-01

    Biotic and abiotic factors change seasonally and impact life history in temperate-zone ectotherms. Temperature and photoperiod are factors that change in predictable ways. Most studies testing for effects of temperature on vectors use constant temperatures and ignore potential correlated effects of photoperiod. In two experiments, we tested for effects of larval rearing environments creating ecologically relevant temperatures and photoperiods simulating early and late season conditions (June and August), or constant temperatures (cool and warm) with the June or August photoperiods, respectively. We determined effects on survivorship, development, size, and a composite performance index in a temperate-zone population of Aedes triseriatus (Say). We followed cohorts of resulting females, all held under the same environmental conditions, to assess carry-over effects of rearing conditions for larvae on longevity, blood feeding, and egg production. Larval survivorship was affected by treatment in one experiment. Development time was greater in the June and cool treatments, but the constant and fluctuating temperatures did not differ. Significantly larger mosquitoes were produced in fluctuating versus constant temperature treatments. There were no significant treatment effects on the composite performance index. Adult female longevity was lower after rearing at constant versus fluctuating temperature, but there was no difference between June and August, nor did size affect longevity. There was no effect of treatments on blood feeding and a limited effect on egg production. We conclude that seasonal temperatures and photoperiods during development have limited effects on this population of A. triseriatus and find little evidence of strong effects of fluctuating versus constant temperatures. PMID:26336255

  14. Geometrical aspects and connections of the energy-temperature fluctuation relation

    NASA Astrophysics Data System (ADS)

    Velazquez, L.; Curilef, S.

    2009-08-01

    Recently, we have derived a generalization of the known canonical fluctuation relation kBC = β2langδU2rang between heat capacity C and energy fluctuations, which can account for the existence of macrostates with negative heat capacities C < 0. In this work, we present a panoramic overview of direct implications and connections of this fluctuation theorem with other developments of statistical mechanics, such as the extension of canonical Monte Carlo methods, the geometric formulations of fluctuation theory and the relevance of a geometric extension of the Gibbs canonical ensemble that has been recently proposed in the literature.

  15. [IR spectral-analysis-based range estimation for an object with small temperature difference from background].

    PubMed

    Fu, Xiao-Ning; Wang, Jie; Yang, Lin

    2013-01-01

    It is a typical passive ranging technology that estimation of distance of an object is based on transmission characteristic of infrared radiation, it is also a hotspot in electro-optic countermeasures. Because of avoiding transmitting energy in the detection, this ranging technology will significantly enhance the penetration capability and infrared conceal capability of the missiles or unmanned aerial vehicles. With the current situation in existing passive ranging system, for overcoming the shortage in ranging an oncoming target object with small temperature difference from background, an improved distance estimation scheme was proposed. This article begins with introducing the concept of signal transfer function, makes clear the working curve of current algorithm, and points out that the estimated distance is not unique due to inherent nonlinearity of the working curve. A new distance calculation algorithm was obtained through nonlinear correction technique. It is a ranging formula by using sensing information at 3-5 and 8-12 microm combined with background temperature and field meteorological conditions. The authors' study has shown that the ranging error could be mainly kept around the level of 10% under the condition of the target and background apparent temperature difference equal to +/- 5 K, and the error in estimating background temperature is no more than +/- 15 K. PMID:23586223

  16. Electron temperature fluctuations changes associated with ELM suppression by RMP in DIII-D

    NASA Astrophysics Data System (ADS)

    Sung, C.; Wang, G.; Rhodes, T.; Peebles, W.

    2015-11-01

    New results in this presentation show an increase in broadband electron temperature fluctuations (T~e) during ELM suppression by resonant magnetic perturbations (RMP). This measurement is obtained via correlation ECE (CECE) near the top of the pedestal (ρ ~ 0.9 - 0.96). This T~e increase is significant, (>40%), and occurs after the ELM suppression but not between ELMS. This may imply an increase in thermal transport facilitated by the increased T~e levels. Considering that the changes in gradient scale length during ELMs with RMP are complicated, it is possible that the mechanism responsible for changing T~e is different compared to previously observed changes in ñe [G. R. McKee et al NF 2013]. This possibility, and the nature of the T~e , will be studied through profile analysis and linear gyrokinetic analysis using TGLF [J. E. Kinsey et al PoP 2008]. In addition, the relation between the T~e and an observed low frequency coherent mode will be investigated. Work supported by the US DOE under DE-FG02-08ER54984 and DE-FC02-04ER54698.

  17. A comprehensive model to determine the effects of temperature and species fluctuations on reaction rates in turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Foy, E.; Ronan, G.; Chinitz, W.

    1982-01-01

    A principal element to be derived from modeling turbulent reacting flows is an expression for the reaction rates of the various species involved in any particular combustion process under consideration. A temperature-derived most-likely probability density function (pdf) was used to describe the effects of temperature fluctuations on the Arrhenius reaction rate constant. A most-likely bivariate pdf described the effects of temperature and species concentrations fluctuations on the reaction rate. A criterion is developed for the use of an "appropriate" temperature pdf. The formulation of models to calculate the mean turbulent Arrhenius reaction rate constant and the mean turbulent reaction rate is considered and the results of calculations using these models are presented.

  18. Thermal Fluctuations in a Layer of Liquid CS2 Subjected to Temperature Gradients with and without the Influence of Gravity

    NASA Astrophysics Data System (ADS)

    Takacs, Christopher J.; Vailati, Alberto; Cerbino, Roberto; Mazzoni, Stefano; Giglio, Marzio; Cannell, David S.

    2011-06-01

    We report data for nonequilibrium density fluctuations in a layer of liquid CS2 subjected to temperature gradients on Earth and in a satellite. The structure factor S(q) was measured using a calibrated shadowgraph. Upon removing gravity, S(q) increased dramatically at small wave vector, until the fluctuations generated by thermal noise were limited only by the 3 mm sample thickness. The results agree with theory to within a few percent on Earth and are ˜14% below theory in microgravity, demonstrating that the use of equilibrium Langevin forces is appropriate in this nonequilibrium situation.

  19. Quark number fluctuations at finite temperature and finite chemical potential via the Dyson-Schwinger equation approach

    NASA Astrophysics Data System (ADS)

    Xin, Xian-yin; Qin, Si-xue; Liu, Yu-xin

    2014-10-01

    We investigate the quark number fluctuations up to the fourth order in the matter composed of two light flavor quarks with isospin symmetry and at finite temperature and finite chemical potential using the Dyson-Schwinger equation approach of QCD. In order to solve the quark gap equation, we approximate the dressed quark-gluon vertex with the bare one and adopt both the Maris-Tandy model and the infrared constant (Qin-Chang) model for the dressed gluon propagator. Our results indicate that the second, third, and fourth order fluctuations of net quark number all diverge at the critical endpoint (CEP). Around the CEP, the second order fluctuation possesses obvious pump while the third and fourth order ones exhibit distinct wiggles between positive and negative. For the Maris-Tandy model and the Qin-Chang model, we give the pseudocritical temperature at zero quark chemical potential as Tc=146 MeV and 150 MeV, and locate the CEP at (μEq,TE)=(120,124) MeV and (124,129) MeV, respectively. In addition, our results manifest that the fluctuations are insensitive to the details of the model, but the location of the CEP shifts to low chemical potential and high temperature as the confinement length scale increases.

  20. The role of spatial scale and background climate in the latitudinal temperature response to deforestation

    NASA Astrophysics Data System (ADS)

    Li, Yan; De Noblet-Ducoudré, Nathalie; Davin, Edouard L.; Motesharrei, Safa; Zeng, Ning; Li, Shuangcheng; Kalnay, Eugenia

    2016-03-01

    Previous modeling and empirical studies have shown that the biophysical impact of deforestation is to warm the tropics and cool the extratropics. In this study, we use an earth system model of intermediate complexity to investigate how deforestation on various spatial scales affects ground temperature, with an emphasis on the latitudinal temperature response and its underlying mechanisms. Results show that the latitudinal pattern of temperature response depends nonlinearly on the spatial extent of deforestation and the fraction of vegetation change. Compared with regional deforestation, temperature change in global deforestation is greatly amplified in temperate and boreal regions but is dampened in tropical regions. Incremental forest removal leads to increasingly larger cooling in temperate and boreal regions, while the temperature increase saturates in tropical regions. The latitudinal and spatial patterns of the temperature response are driven by two processes with competing temperature effects: decrease in absorbed shortwave radiation due to increased albedo and decrease in evapotranspiration. These changes in the surface energy balance reflect the importance of the background climate in modifying the deforestation impact. Shortwave radiation and precipitation have an intrinsic geographical distribution that constrains the effects of biophysical changes and therefore leads to temperature changes that are spatially varying. For example, wet (dry) climate favors larger (smaller) evapotranspiration change; thus, warming (cooling) is more likely to occur. Our analysis reveals that the latitudinal temperature change largely results from the climate conditions in which deforestation occurs and is less influenced by the magnitude of individual biophysical changes such as albedo, roughness, and evapotranspiration efficiency.

  1. Ultra-fast charge exchange spectroscopy for turbulent ion temperature fluctuation measurements on the DIII-D tokamak (invited).

    PubMed

    Uzun-Kaymak, I U; Fonck, R J; McKee, G R

    2012-10-01

    A novel two-channel, high throughput, high efficiency spectrometer system has been developed to measure impurity ion temperature and toroidal velocity fluctuations associated with long-wavelength turbulence and other plasma instabilities. The spectrometer observes the emission of the n = 8-7 hydrogenic transition of C(+5) ions (λ(air) = 529.06 nm) resulting from charge exchange reactions between deuterium heating beams and intrinsic carbon. Novel features include a large, prism-coupled high-dispersion, volume-phase-holographic transmission grating and high-quantum efficiency, high-gain, low-noise avalanche photodiode detectors that sample emission at 1 MHz. This new diagnostic offers an order-of-magnitude increase in sensitivity compared to earlier ion thermal turbulence measurements. Increased sensitivity is crucial for obtaining enough photon statistics from plasmas with much less impurity content. The irreducible noise floor set by photon statistics sets the ultimate sensitivity to plasma fluctuations. Based on the measured photon flux levels for the entire spectral line, photon noise levels for T̃(i)/T(i) and Ṽ(i)/V(i) of ~1% are expected, while statistical averaging over long data records enables reduction in the detectable plasma fluctuation levels to values less than that. Broadband ion temperature fluctuations are observed to near 200 kHz in an L-mode discharge. Cross-correlation with the local beam emission spectroscopy measurements demonstrates a strong coupling of the density and temperature fields, and enables the cross-phase measurements between density and ion temperature fluctuations. PMID:23126866

  2. Ultra-fast charge exchange spectroscopy for turbulent ion temperature fluctuation measurements on the DIII-D tokamak (invited)

    SciTech Connect

    Uzun-Kaymak, I. U.; Fonck, R. J.; McKee, G. R.

    2012-10-15

    A novel two-channel, high throughput, high efficiency spectrometer system has been developed to measure impurity ion temperature and toroidal velocity fluctuations associated with long-wavelength turbulence and other plasma instabilities. The spectrometer observes the emission of the n= 8-7 hydrogenic transition of C{sup +5} ions ({lambda}{sub air}= 529.06 nm) resulting from charge exchange reactions between deuterium heating beams and intrinsic carbon. Novel features include a large, prism-coupled high-dispersion, volume-phase-holographic transmission grating and high-quantum efficiency, high-gain, low-noise avalanche photodiode detectors that sample emission at 1 MHz. This new diagnostic offers an order-of-magnitude increase in sensitivity compared to earlier ion thermal turbulence measurements. Increased sensitivity is crucial for obtaining enough photon statistics from plasmas with much less impurity content. The irreducible noise floor set by photon statistics sets the ultimate sensitivity to plasma fluctuations. Based on the measured photon flux levels for the entire spectral line, photon noise levels for T(tilde sign){sub i}/T{sub i} and V(tilde sign){sub i}/V{sub i} of {approx}1% are expected, while statistical averaging over long data records enables reduction in the detectable plasma fluctuation levels to values less than that. Broadband ion temperature fluctuations are observed to near 200 kHz in an L-mode discharge. Cross-correlation with the local beam emission spectroscopy measurements demonstrates a strong coupling of the density and temperature fields, and enables the cross-phase measurements between density and ion temperature fluctuations.

  3. Measurement of the dispersion of thermal ion-acoustic fluctuations in high-temperature laser plasmas using multiple-wavelength Thomson scattering.

    PubMed

    Froula, D H; Davis, P; Divol, L; Ross, J S; Meezan, N; Price, D; Glenzer, S H; Rousseaux, C

    2005-11-01

    The dispersion of ion-acoustic fluctuations has been measured using a novel technique that employs multiple color Thomson-scattering diagnostics to measure the frequency spectrum for two separate thermal ion-acoustic fluctuations with significantly different wave vectors. The plasma fluctuations are shown to become dispersive with increasing electron temperature. We demonstrate that this technique allows a time resolved local measurement of electron density and temperature in inertial confinement fusion plasmas. PMID:16383991

  4. Probing environment fluctuations by two-dimensional electronic spectroscopy of molecular systems at temperatures below 5 K

    SciTech Connect

    Rancova, Olga; Abramavicius, Darius; Jankowiak, Ryszard

    2015-06-07

    Two-dimensional (2D) electronic spectroscopy at cryogenic and room temperatures reveals excitation energy relaxation and transport, as well as vibrational dynamics, in molecular systems. These phenomena are related to the spectral densities of nuclear degrees of freedom, which are directly accessible by means of hole burning and fluorescence line narrowing approaches at low temperatures (few K). The 2D spectroscopy, in principle, should reveal more details about the fluctuating environment than the 1D approaches due to peak extension into extra dimension. By studying the spectral line shapes of a dimeric aggregate at low temperature, we demonstrate that 2D spectra have the potential to reveal the fluctuation spectral densities for different electronic states, the interstate correlation of static disorder and, finally, the time scales of spectral diffusion with high resolution.

  5. Fast cosmic microwave background power spectrum estimation of temperature and polarization with Gabor transforms

    NASA Astrophysics Data System (ADS)

    Hansen, Frode K.; Górski, Krzysztof M.

    2003-08-01

    We extend the analysis of Gabor transforms on a cosmic microwave background temperature map to polarization. We study the temperature and polarization power spectra on the cut sky, the so-called pseudo-power spectra. The transformation kernels relating the full-sky polarization power spectra and the polarization pseudo-power spectra are found to be similar to the kernel for the temperature power spectrum. This fact is used to construct a fast power spectrum estimation algorithm using the pseudo-power spectrum of temperature and polarization as data vectors in a maximum-likelihood approach. Using the pseudo-power spectra as input to the likelihood analysis solves the problem of having to invert huge matrices, which makes the standard likelihood approach infeasible.

  6. Measurement of electron temperature fluctuations using a tunable correlation electron cyclotron emission system on Alcator C-Mod

    SciTech Connect

    Howard, N. T.; Sung, C.; White, A. E.

    2014-11-15

    A tunable correlation electron cyclotron (CECE) system was recently installed on the Alcator C-Mod tokamak to provide local, quantitative measurement of electron temperature fluctuations in the tokamak core. This system represents a significant upgrade from the original CECE system, expanding the measurement capabilities from 4 to 8 total channels, including 2 remotely tunable YIG filters (6–18 GHz; 200 MHz bandwidth). Additional upgrades were made to the optical system to provide enhanced poloidal resolution and allow for measurement of turbulent fluctuations below k{sub θ}ρ{sub s} < 0.3. These expanded capabilities allow for single shot measurement of partial temperature fluctuation profiles in the region ρ = 0.7 − 0.9 (square root of normalized toroidal flux) in a wide variety of plasma conditions. These measurements are currently being used to provide stringent tests of the gyrokinetic model in ongoing model validation efforts. Details of the hardware upgrades, turbulent fluctuation measurements, and ongoing comparisons with simulations are presented.

  7. Measurement of electron temperature fluctuations using a tunable correlation electron cyclotron emission system on Alcator C-Mod.

    PubMed

    Howard, N T; Sung, C; White, A E

    2014-11-01

    A tunable correlation electron cyclotron (CECE) system was recently installed on the Alcator C-Mod tokamak to provide local, quantitative measurement of electron temperature fluctuations in the tokamak core. This system represents a significant upgrade from the original CECE system, expanding the measurement capabilities from 4 to 8 total channels, including 2 remotely tunable YIG filters (6-18 GHz; 200 MHz bandwidth). Additional upgrades were made to the optical system to provide enhanced poloidal resolution and allow for measurement of turbulent fluctuations below kθρs < 0.3. These expanded capabilities allow for single shot measurement of partial temperature fluctuation profiles in the region ρ = 0.7 - 0.9 (square root of normalized toroidal flux) in a wide variety of plasma conditions. These measurements are currently being used to provide stringent tests of the gyrokinetic model in ongoing model validation efforts. Details of the hardware upgrades, turbulent fluctuation measurements, and ongoing comparisons with simulations are presented. PMID:25430224

  8. Fluid-inclusion evidence for past temperature fluctuations in the Kilauea East Rift Zone geothermal area, Hawaii

    USGS Publications Warehouse

    Bargar, K.E.; Keith, T.E.C.; Trusdell, F.A.

    1995-01-01

    Heating and freezing data were obtained for fluid inclusions in hydrothermal quartz, calcite, and anhydrite from several depths in three scientific observation holes drilled along the lower East Rift Zone of Kilauea volcano, Hawaii. Comparison of measured drill-hole temperatures with fluid-inclusion homogenization-temperature (Th) data indicates that only about 15% of the fluid inclusions could have formed under the present thermal conditions. The majority of fluid inclusions studied must have formed during one or more times in the past when temperatures fluctuated in response to the emplacement of nearby dikes and their subsequent cooling. -from Authors

  9. Changes in core electron temperature fluctuations across the ohmic energy confinement transition in Alcator C-Mod plasmas

    NASA Astrophysics Data System (ADS)

    Sung, C.; White, A. E.; Howard, N. T.; Oi, C. Y.; Rice, J. E.; Gao, C.; Ennever, P.; Porkolab, M.; Parra, F.; Mikkelsen, D.; Ernst, D.; Walk, J.; Hughes, J. W.; Irby, J.; Kasten, C.; Hubbard, A. E.; Greenwald, M. J.; the Alcator C-Mod Team

    2013-08-01

    The first measurements of long wavelength (kyρs < 0.3) electron temperature fluctuations in Alcator C-Mod made with a new correlation electron cyclotron emission diagnostic support a long-standing hypothesis regarding the confinement transition from linear ohmic confinement (LOC) to saturated ohmic confinement (SOC). Electron temperature fluctuations decrease significantly (∼40%) crossing from LOC to SOC, consistent with a change from trapped electron mode (TEM) turbulence domination to ion temperature gradient (ITG) turbulence as the density is increased. Linear stability analysis performed with the GYRO code (Candy and Waltz 2003 J. Comput. Phys. 186 545) shows that TEMs are dominant for long wavelength turbulence in the LOC regime and ITG modes are dominant in the SOC regime at the radial location (ρ ∼ 0.8) where the changes in electron temperature fluctuations are measured. In contrast, deeper in the core (ρ < 0.8), linear stability analysis indicates that ITG modes remain dominant across the LOC/SOC transition. This radial variation suggests that the robust global changes in confinement of energy and momentum occurring across the LOC/SOC transition are correlated to local changes in the dominant turbulent mode near the edge.

  10. Bacterial responses to fluctuations and extremes in temperature and brine salinity at the surface of Arctic winter sea ice.

    PubMed

    Ewert, Marcela; Deming, Jody W

    2014-08-01

    Wintertime measurements near Barrow, Alaska, showed that bacteria near the surface of first-year sea ice and in overlying saline snow experience more extreme temperatures and salinities, and wider fluctuations in both parameters, than bacteria deeper in the ice. To examine impacts of such conditions on bacterial survival, two Arctic isolates with different environmental tolerances were subjected to winter-freezing conditions, with and without the presence of organic solutes involved in osmoprotection: proline, choline, or glycine betaine. Obligate psychrophile Colwellia psychrerythraea strain 34H suffered cell losses under all treatments, with maximal loss after 15-day exposure to temperatures fluctuating between -7 and -25 °C. Osmoprotectants significantly reduced the losses, implying that salinity rather than temperature extremes presents the greater stress for this organism. In contrast, psychrotolerant Psychrobacter sp. strain 7E underwent miniaturization and fragmentation under both fluctuating and stable-freezing conditions, with cell numbers increasing in most cases, implying a different survival strategy that may include enhanced dispersal. Thus, the composition and abundance of the bacterial community that survives in winter sea ice may depend on the extent to which overlying snow buffers against extreme temperature and salinity conditions and on the availability of solutes that mitigate osmotic shock, especially during melting. PMID:24903191

  11. Theoretical Description of the Superconducting State of Nanostructures at Intermediate Temperatures: A Combined Treatment of Collective Modes and Fluctuations

    NASA Astrophysics Data System (ADS)

    Ribeiro, Pedro; García-García, Antonio M.

    2012-03-01

    A rigorous treatment of the combined effect of thermal and quantum fluctuations in a zero-dimensional superconductor is considered one of the most relevant and still-unsolved problems in the theory of nanoscale superconductors. In this Letter, we notice that the divergences that plagued previous calculations are avoided by identifying and treating nonperturbatively a low-energy collective mode. In this way, we obtain for the first time closed expressions for the partition function and the superconducting order parameter which include both types of fluctuation and are valid at any temperature and to leading order in δ/Δ0, where δ is the mean level spacing and Δ0 is the bulk energy gap. Our results pave the way for a quantitative description of superconductivity in nanostructures at finite temperature and pairing in hot nuclei.

  12. Long dephasing time and high-temperature conductance fluctuations in an open InGaAs quantum dot

    NASA Astrophysics Data System (ADS)

    Hackens, B.; Delfosse, F.; Faniel, S.; Gustin, C.; Boutry, H.; Wallart, X.; Bollaert, S.; Cappy, A.; Bayot, V.

    2002-12-01

    We measure the electron phase-coherence time τφ up to 18 K using universal fluctuations in the low-temperature magnetoconductance of an open InGaAs quantum dot. The temperature dependence of τφ is quantitatively consistent with the two-dimensional model of electron-electron interactions in disordered systems. In our sample, τφ is two to four times larger than previously reported in GaAs quantum dots. We attribute this enhancement to a larger value of the Fermi energy and the lower electron effective mass in our sample. We also observe a distinct type of conductance fluctuation due to ballistic electron focusing inside the dot up to 204 K.

  13. Quantitative comparison of electron temperature fluctuations to nonlinear gyrokinetic simulations in C-Mod Ohmic L-mode discharges

    NASA Astrophysics Data System (ADS)

    Sung, C.; White, A. E.; Mikkelsen, D. R.; Greenwald, M.; Holland, C.; Howard, N. T.; Churchill, R.; Theiler, C.

    2016-04-01

    Long wavelength turbulent electron temperature fluctuations (kyρs < 0.3) are measured in the outer core region (r/a > 0.8) of Ohmic L-mode plasmas at Alcator C-Mod [E. S. Marmar et al., Nucl. Fusion 49, 104014 (2009)] with a correlation electron cyclotron emission diagnostic. The relative amplitude and frequency spectrum of the fluctuations are compared quantitatively with nonlinear gyrokinetic simulations using the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] in two different confinement regimes: linear Ohmic confinement (LOC) regime and saturated Ohmic confinement (SOC) regime. When comparing experiment with nonlinear simulations, it is found that local, electrostatic ion-scale simulations (kyρs ≲ 1.7) performed at r/a ˜ 0.85 reproduce the experimental ion heat flux levels, electron temperature fluctuation levels, and frequency spectra within experimental error bars. In contrast, the electron heat flux is robustly under-predicted and cannot be recovered by using scans of the simulation inputs within error bars or by using global simulations. If both the ion heat flux and the measured temperature fluctuations are attributed predominantly to long-wavelength turbulence, then under-prediction of electron heat flux strongly suggests that electron scale turbulence is important for transport in C-Mod Ohmic L-mode discharges. In addition, no evidence is found from linear or nonlinear simulations for a clear transition from trapped electron mode to ion temperature gradient turbulence across the LOC/SOC transition, and also there is no evidence in these Ohmic L-mode plasmas of the "Transport Shortfall" [C. Holland et al., Phys. Plasmas 16, 052301 (2009)].

  14. Short-Scale Turbulent Fluctuations Driven by the Electron-Temperature Gradient in the National Spherical Torus Experiment

    SciTech Connect

    Mazzucato, E.; Smith, D. R.; Bell, R. E.; Kaye, S. M.; Hosea, J. C.; LeBlanc, B. P.; Wilson, J. R.; Ryan, P. M.; Domier, C. W.; Luhmann, N. C. Jr.; Yuh, H.; Lee, W.; Park, H.

    2008-08-15

    Measurements with coherent scattering of electromagnetic waves in plasmas of the National Spherical Torus Experiment indicate the existence of turbulent fluctuations in the range of wave numbers k{sub perpendicular}{rho}{sub e}=0.1-0.4, corresponding to a turbulence scale length nearly equal to the collisionless skin depth. Experimental observations and agreement with numerical results from a linear gyrokinetic stability code support the conjecture that the observed turbulence is driven by the electron-temperature gradient.

  15. Short-scale turbulent fluctuations driven by the electron-temperature gradient in the national spherical torus experiment.

    PubMed

    Mazzucato, E; Smith, D R; Bell, R E; Kaye, S M; Hosea, J C; LeBlanc, B P; Wilson, J R; Ryan, P M; Domier, C W; Luhmann, N C; Yuh, H; Lee, W; Park, H

    2008-08-15

    Measurements with coherent scattering of electromagnetic waves in plasmas of the National Spherical Torus Experiment indicate the existence of turbulent fluctuations in the range of wave numbers k perpendicular rho(e)=0.1-0.4, corresponding to a turbulence scale length nearly equal to the collisionless skin depth. Experimental observations and agreement with numerical results from a linear gyrokinetic stability code support the conjecture that the observed turbulence is driven by the electron-temperature gradient. PMID:18764544

  16. A high speed data acquisition system for the analysis of velocity, density, and total temperature fluctuations at transonic speeds

    NASA Technical Reports Server (NTRS)

    Clukey, Steven J.; Jones, Gregory S.; Stainback, P. Calvin

    1988-01-01

    The use of a high-speed Dynamic Data Acquisition System (DDAS) to measure simultaneously velocity, density, and total temperature fluctuations is described. The DDAS is used to automate the acquisition of hot-wire calibration data. The data acquisition, data handling, and data reporting techiques used by DDAS are described. Sample data are used to compare results obtained with the DDAS with those obtained from the FM tape and post-test digitization method.

  17. Short-Scale Turbulent Fluctuations Driven by the Electron-Temperature Gradient in the National Spherical Torus Experiment

    SciTech Connect

    Mazzucato, E.; Smith, D. R.; Bell, R. E.; Kaye, S.; Davis, W.; Hosea, J.; LeBlanc, B; Wilson, J. R.; Ryan, Philip Michael; Domier, C. W.; Luhmann, N. C.; Yuh, H.; Lee, W.; Park, H.

    2008-01-01

    Measurements with coherent scattering of electromagnetic waves in plasmas of the National Spherical Torus Experiment indicate the existence of turbulent fluctuations in the range of wave numbers k?e 0:1 0:4, corresponding to a turbulence scale length nearly equal to the collisionless skin depth. Experimental observations and agreement with numerical results from a linear gyrokinetic stability code support the conjecture that the observed turbulence is driven by the electron-temperature gradient.

  18. Mosselbay environmental conditions and sea-surface temperature fluctuations during the Late Holocene

    NASA Astrophysics Data System (ADS)

    Hahn, Annette; Andò, Sergio; Frenzel, Peter; Kugel, Martin; Mollenhauer, Gesine; Schefuß, Enno; Zabel, Matthias

    2016-04-01

    our current stage of research, we attribute this to a southward shift of the SHW and a strengthening in Aghulas current speed during this period. Cohen, A.L. and Tyson, P.D., 1995. Sea-surface temperature fluctuations during the Holocene off the south coast of Africa: implications for terrestrial climate and rainfall. The Holocene 5 (3), 304-312.

  19. ON MEASURING THE COSMIC MICROWAVE BACKGROUND TEMPERATURE AT REDSHIFT 0.89

    SciTech Connect

    Sato, M.; Menten, K. M.; Reid, M. J.; Carilli, C. L.

    2013-02-20

    We report on a measurement of the temperature of the cosmic microwave background radiation field, T {sub CMB}, at z = 0.88582 by imaging HC{sub 3}N(3 <- 2) and (5 <- 4) absorption in the foreground galaxy of the gravitationally lens magnified radio source PKS 1830-211 using the Very Long Baseline Array and the phased Very Large Array. Low-resolution imaging of the data yields a value of T {sub rot} = 5.6{sup +2.5} {sub -0.9} K for the rotational temperature, T {sub rot}, which is consistent with the temperature of the cosmic microwave background at the absorber's redshift of 2.73(1 + z) K. However, our high-resolution imaging reveals that the absorption peak position of the foreground gas is offset from the continuum peak position of the synchrotron radiation from PKS 1830-211SW, which indicates that the absorbing cloud is covering only part of the emission from PKS 1830-211, rather than the entire core-jet region. This changes the line-to-continuum ratios, and we find T {sub rot} between 1.1 and 2.5 K, which is lower than the expected value. This shows that previous T {sub rot} measurements could be biased due to unresolved structure.

  20. The effects of cosmic microwave background (CMB) temperature uncertainties on cosmological parameter estimation

    SciTech Connect

    Hamann, Jan; Wong, Yvonne Y Y E-mail: ywong@mppmu.mpg.de

    2008-03-15

    We estimate the effect of the experimental uncertainty in the measurement of the temperature of the cosmic microwave background (CMB) on the extraction of cosmological parameters from future CMB surveys. We find that even for an ideal experiment limited only by cosmic variance up to l=2500 for both the temperature and polarization measurements, the projected cosmological parameter errors are remarkably robust against the uncertainty of 1 mK in the firas CMB temperature monopole measurement. The maximum degradation in sensitivity is 20%, for the baryon density estimate, relative to the case in which the monopole is known infinitely well. While this degradation is acceptable, we note that reducing the uncertainty in the current temperature measurement by a factor of five will bring it down to {approx}1%. We also estimate the effect of the uncertainty in the dipole temperature measurement. Assuming the overall calibration of the data to be dominated by the dipole error of 0.2% from firas, the sensitivity degradation is insignificant and does not exceed 10% in any parameter direction.

  1. A precise measurement of the cosmic microwave background temperature from optical observations of interstellar CN

    NASA Technical Reports Server (NTRS)

    Meyer, D. M.; Jura, M.

    1985-01-01

    Very precise observations (with S/N greater than 2000) of the 3874-angstrom band of interstellar CN toward zeta Per and omicron Per are presented. In the zeta Oph, zeta Per, and omicron Per lines of sight, the saturation-corrected CN line strengths yield respective excitation temperatures of 2.72 plus or minus 0.05 K, 2.76 plus or minus 0.05 K, and 2.78 plus or minus 0.07 K for the J = 0-1 rotational transition at 2.64 mm. By confirming the blackbody character of the cosmic microwave background spectrum at wavelengths near the peak of its flux, the simplest explanation of the background as primeval fireball radiation from a hot bang is reinforced.

  2. Fluctuations at Finite Temperature and Thermodynamics of Mesoscopic RLC Circuit Calculated by Using Generalized Thermal Vacuum State

    NASA Astrophysics Data System (ADS)

    Yuan, Hong-Chun; Xu, Xue-Xiang; Xu, Xue-Fen; Fan, Hong-Yi

    By using the partial trace method and the technique of integration within an ordered product of operators we obtain the explicit expression of the generalized thermal vacuum state (GTVS) for an RLC circuit instead of using the Takahashi-Umezawa approach. According to thermal field dynamics (TFD), namely, the expectation value of physical observables in this GTVS is equivalent to their ensemble average, based on GTVS we successfully derive the quantum fluctuations at nonzero temperature and the thermodynamical relations for the mesoscopic RLC circuit. Our results show that the higher the temperature is, the more quantum noise the RLC circuit exhibits.

  3. Precise measurement of the cosmic microwave background temperature from optical observations of interstellar CN

    SciTech Connect

    Meyer, D.M.; Jura, M.

    1985-10-01

    We present very precise (S/N > 2000) observations of the 3874 A band of interstellar CN toward zeta Per and o Per. In the zeta Oph, zeta Per, and o Per lines of sight, the saturation-corrected CN line strengths yield respective excitation temperatures of 2.72 +- 0.05 K, 2.76 +- 0.05 K, and 2.78 +- 0.07 K for the J = 0--1 rotational transition at 2.64 mm. The excellent agreement among these temperatures confirms the expectation that the cosmic microwave background radiation (CMB) is primarily responsible for populating the excited rotational levels of interstellar CN. With small corrections for the local CN excitation due to electron impact, the J = 0--1 excitation temperatures toward zeta Oph, zeta Per, and o Per are all consistent with a CMB brightness temperature of 2.70 +- 0.04 K at 2.64 mm. This value represents the most precise determination to date of the CMB intensity at any wavelength. In addition, the CN J = 1--2 excitation temperatures toward these objects indicate a CMB temperature of 2.76 +- 0.20 K at 1.32 mm. Our temperatures at 2.64 mm and 1.32 mm are thus consistent with a 2.7 K blackbody spectrum for the CMB and do not support the spectral distortions observed near these wavelengths by Woody and Richards. Indeed, by confirming the blackbody character of the CMB spectrum at wavelengths near the peak of its flux, we have reinforced the simplest explanation of the CMB as primeval fireball radiation from a hot big bang.

  4. Ultrasonic thermometry simulation in a random fluctuating medium: Evidence of the acoustic signature of a one-percent temperature difference.

    PubMed

    Nagaso, M; Moysan, J; Benjeddou, S; Massacret, N; Ploix, M A; Komatitsch, D; Lhuillier, C

    2016-05-01

    We study the development potential of ultrasonic thermometry in a liquid fluctuating sodium environment similar to that present in a Sodium-cooled Fast Reactor, and thus investigate if and how ultrasonic thermometry could be used to monitor the sodium flow at the outlet of the reactor core. In particular we study if small temperature variations in the sodium flow of e.g. about 1% of the sodium temperature, i.e., about 5°C, can have a reliably-measurable acoustic signature. Since to our knowledge no experimental setups are available for such a study, and considering the practical difficulties of experimentation in sodium, we resort to a numerical technique for full wave propagation called the spectral-element method, which is a highly accurate finite-element method owing to the high-degree basis functions it uses. We obtain clear time-of-flight variations in the case of a small temperature difference of one percent in the case of a static temperature gradient as well as in the presence of a random fluctuation of the temperature field in the turbulent flow. The numerical simulations underline the potential of ultrasonic thermometry in such a context. PMID:26921558

  5. Low-Temperature Blackbodies for IR Calibrations in a Medium-Background Environment

    NASA Astrophysics Data System (ADS)

    Ogarev, S. A.; Samoylov, M. L.; Parfentyev, N. A.; Sapritsky, V. I.

    2009-02-01

    Utilization of Earth remote-sensing data to solve scientific and engineering problems within such fields as meteorology and climatology requires precise radiometric calibration of space-borne instruments. High-accuracy calibration equipment in the thermal-IR wavelength range ought to be combined during calibration procedures with the simulation of environmental conditions for space orbit (high vacuum, medium background). For more than 35 years, VNIIOFI has developed and manufactured standard radiation sources in the form of precision blackbodies (BB) functioning within wide ranges of wavelengths and working temperatures. These BBs are the spectral radiance and irradiance calibration devices in the world’s leading space research institutions, such as SDL (USA), DLR (Germany), Keldysh Space Center (Russia), RNIIKP/RISDE (Russia), NEC Toshiba Space Systems (Japan), etc. The paper contains a detailed description of low-temperature precision BBs developed at VNIIOFI. The characteristics of variable-temperature (100 K to 400 K) research-grade extended-area (up to 350 mm) BB models BB100-V1 and BB-80/350 are described (they are intended for radiometric calibrations by comparison with a primary standard source), as well as those that can be used as sources for high-accuracy IR calibration of space-borne and other systems not requiring a vacuum environment. The temperature nonuniformity and stability of these BBs are (0.05 to 0.1) K (cavity-type BB100-V1), and 0.1 % for the (1.5 to 15) μm wavelength region under cryo-vacuum conditions of a medium-background environment.

  6. Constraining the Redshift Evolution of the Cosmic Microwave Background Blackbody Temperature with PLANCK Data.

    NASA Astrophysics Data System (ADS)

    de Martino, I.; Génova-Santos, R.; Atrio-Barandela, F.; Ebeling, H.; Kashlinsky, A.; Kocevski, D.; Martins, C. J. A. P.

    2015-08-01

    We constrain the deviation of adiabatic evolution of the universe using the data on the cosmic microwave background (CMB) temperature anisotropies measured by the Planck satellite and a sample of 481 X-ray selected clusters with spectroscopically measured redshifts. To avoid antenna beam effects, we bring all of the maps to the same resolution. We use a CMB template to subtract the cosmological signal while preserving the Thermal Sunyaev-Zeldovich (TSZ) anisotropies; next, we remove galactic foreground emissions around each cluster and we mask out all known point sources. If the CMB blackbody temperature scales with redshift as T{(z)={T}0(1+z)}1-α , we constrain deviations of adiabatic evolution to be α = -0.007 ± 0.013, consistent with the temperature-redshift relation of the standard cosmological model. This result could suffer from a potential bias δα associated with the CMB template. We quantify it to be | δ α | ≤slant 0.02, with the same sign as the measured value of α. Our result is free from those biases associated with using TSZ selected clusters; it represents the best constraint to date of the temperature-redshift relation of the Big Bang model using only CMB data, confirming previous results.

  7. A real time dynamic data acquisition and processing system for velocity, density, and total temperature fluctuation measurements

    NASA Technical Reports Server (NTRS)

    Clukey, Steven J.

    1991-01-01

    The real time Dynamic Data Acquisition and Processing System (DDAPS) is described which provides the capability for the simultaneous measurement of velocity, density, and total temperature fluctuations. The system of hardware and software is described in context of the wind tunnel environment. The DDAPS replaces both a recording mechanism and a separate data processing system. DDAPS receives input from hot wire anemometers. Amplifiers and filters condition the signals with computer controlled modules. The analog signals are simultaneously digitized and digitally recorded on disk. Automatic acquisition collects necessary calibration and environment data. Hot wire sensitivities are generated and applied to the hot wire data to compute fluctuations. The presentation of the raw and processed data is accomplished on demand. The interface to DDAPS is described along with the internal mechanisms of DDAPS. A summary of operations relevant to the use of the DDAPS is also provided.

  8. Effect of fluctuations on time-averaged multi-line NO-LIF thermometry measurements of the gas-phase temperature

    NASA Astrophysics Data System (ADS)

    Feroughi, Omid M.; Kronemayer, Helmut; Dreier, Thomas; Schulz, Christof

    2015-09-01

    Multi-line NO laser-induced fluorescence (LIF) thermometry enables accurate gas-phase temperature imaging in combustion systems through least-squares fitting of excitation spectra. The required excitation wavelength scan takes several minutes which systematic biases the results in case of temperature fluctuations. In this work, the effect of various types (linear, Gaussian and bimodal) and amplitudes of temperature fluctuations is quantified based on simulated NO-LIF excitation spectra. Temperature fluctuations of less than ±5 % result in a negligible error of less than ±1 % in temperature for all cases. Bimodal temperature distributions have the largest effect on the determined temperature. Symmetric temperature fluctuations around 900 K have a negligible effect. At lower mean temperatures, fluctuations cause a positive bias leading to over-predicted mean temperatures, while at higher temperatures the bias is negative. The results of the theoretical analysis were applied as a guide for interpreting experimental multi-line NO-LIF temperature measurements in a mildly turbulent pilot-plant scale flame reactor dedicated for nanoparticle synthesis.

  9. An Analysis of Recent Measurements of the Temperature of the Cosmic Microwave Background Radiation

    DOE R&D Accomplishments Database

    Smoot, G.; Levin, S. M.; Witebsky, C.; De Amici, G.; Rephaeli, Y.

    1987-07-01

    This paper presents an analysis of the results of recent temperature measurements of the cosmic microwave background radiation (CMBR). The observations for wavelengths longer than 0.1 cum are well fit by a blackbody spectrum at 2.74{+ or -}0.0w K; however, including the new data of Matsumoto et al. (1987) the result is no longer consistent with a Planckian spectrum. The data are described by a Thomson-distortion parameter u=0.021{+ or -}0.002 and temperature 2.823{+ or -}0.010 K at the 68% confidence level. Fitting the low-frequency data to a Bose-Einstein spectral distortion yields a 95% confidence level upper limit of 1.4 x 10{sup -2} on the chemical potential mu{sub 0}. These limits on spectral distortions place restrictions on a number of potentially interesting sources of energy release to the CMBR, including the hot intergalactic medium proposed as the source of the X-ray background.

  10. Marshall N. Rosenbluth Outstanding Doctoral Thesis Award Talk: Simultaneous Measurement of Electron Temperature and Density Fluctuations in the Core of DIII-D Plasmas

    NASA Astrophysics Data System (ADS)

    White, A. E.

    2009-11-01

    Multi-field fluctuation measurements provide opportunities for rigorous comparison between experiment and nonlinear gyrokinetic turbulence simulations. A unique set of diagnostics on DIII-D allows for simultaneous study of local, long-wavelength (0 < kθρs< 0.5) electron temperature and density fluctuations in the core plasma (0.4 < ρ< 0.8). Previous experiments in L-mode indicate that normalized electron temperature fluctuation levels (40 < f < 400,kHz) increase with radius from ˜0.4% at ρ= 0.5 to ˜2% at ρ=0.8, similar to simultaneously measured density fluctuations. Electron cyclotron heating (ECH) is used to increase Te, which increases electron temperature fluctuation levels and electron heat transport in the experiments. In contrast, long wavelength density fluctuation levels change very little. The different responses are consistent with increased TEM drive relative to ITG-mode drive. A new capability at DIII-D is the measurement of phase angle between electron temperature and density fluctuations using coupled correlation electron cyclotron emission radiometer and reflectometer diagnostics. Linear and nonlinear GYRO runs have been used to design validation experiments that focus on measurements of the phase angle. GYRO shows that if Te and ∇Te increase 50% in a beam-heated L-mode plasma (ρ=0.5), then the phase angle between electron temperature and density fluctuations decreases 30%-50% and electron temperature fluctuation levels increase a factor of two more than density fluctuations. Comparisons between these predictions and experimental results will be presented.

  11. Viscous effects on the Rayleigh-Taylor instability with background temperature gradient

    DOE PAGESBeta

    Gerashchenko, Sergiy; Livescu, Daniel

    2016-07-28

    Here we studied the growth rate of the compressible Rayleigh-Taylor instability in the presence of a background temperature gradient, Θ, using a normal mode analysis. The effect of Θ variation is examined for three interface types corresponding to the combinations of the viscous properties of the fluids (inviscid-inviscid, viscous-viscous, and viscous-inviscid) at different Atwood numbers, At, and when at least one of the fluids' viscosity is non-zero, as a function of the Grashof number. For the general case, the resulting ordinary differential equations are solved numerically; however, dispersion relations for the growth rate are presented for several limiting cases. Anmore » analytical solution is found for the inviscid-inviscid interface and the corresponding dispersion equation for the growth rate is obtained in the limit of large Θ. For the viscous-inviscid case, a dispersion relation is derived in the incompressible limit and Θ=0. Compared to Θ=0 case, the role of Θ<0 (hotter light fluid) is destabilizing and becomes stabilizing when Θ>0 (colder light fluid). The most pronounced effect of Θ ≠ 0 is found at low At and/or at large perturbation wavelengths relative to the domain size for all interface types. On the other hand, at small perturbation wavelengths relative to the domain size, the growth rate for the Θ<0 case exceeds the infinite domain incompressible constant density result. The results are applied to two practical examples, using sets of parameters relevant to Inertial Confinement Fusion coasting stage and solar corona plumes. The role of viscosity on the growth rate reduction is discussed together with highlighting the range of wavenumbers most affected by viscosity. The viscous effects further increase in the presence of background temperature gradient, when the viscosity is temperature dependent.« less

  12. Viscous effects on the Rayleigh-Taylor instability with background temperature gradient

    NASA Astrophysics Data System (ADS)

    Gerashchenko, S.; Livescu, D.

    2016-07-01

    The growth rate of the compressible Rayleigh-Taylor instability is studied in the presence of a background temperature gradient, Θ, using a normal mode analysis. The effect of Θ variation is examined for three interface types corresponding to the combinations of the viscous properties of the fluids (inviscid-inviscid, viscous-viscous, and viscous-inviscid) at different Atwood numbers, At, and when at least one of the fluids' viscosity is non-zero, as a function of the Grashof number. For the general case, the resulting ordinary differential equations are solved numerically; however, dispersion relations for the growth rate are presented for several limiting cases. An analytical solution is found for the inviscid-inviscid interface and the corresponding dispersion equation for the growth rate is obtained in the limit of large Θ. For the viscous-inviscid case, a dispersion relation is derived in the incompressible limit and Θ = 0. Compared to Θ = 0 case, the role of Θ < 0 (hotter light fluid) is destabilizing and becomes stabilizing when Θ > 0 (colder light fluid). The most pronounced effect of Θ ≠ 0 is found at low At and/or at large perturbation wavelengths relative to the domain size for all interface types. On the other hand, at small perturbation wavelengths relative to the domain size, the growth rate for the Θ < 0 case exceeds the infinite domain incompressible constant density result. The results are applied to two practical examples, using sets of parameters relevant to Inertial Confinement Fusion coasting stage and solar corona plumes. The role of viscosity on the growth rate reduction is discussed together with highlighting the range of wavenumbers most affected by viscosity. The viscous effects further increase in the presence of background temperature gradient, when the viscosity is temperature dependent.

  13. Effects of fluctuating moisture and temperature regimes on the infection potential of Beauveria bassiana for Rhodnius prolixus.

    PubMed

    Fargues, J; Luz, C

    2000-04-01

    The effect of both moisture and temperature on the infective potential of Beauveria bassiana to the Chagas' disease vector, Rhodnius prolixus, was studied under fluctuating regimes. At constant 25 degrees C, contaminated first-instar nymphs exposed to increasing daily periods of initial exposure to 97% RH, followed by transfer to reduced humidity (43, 53, 75, and 86% RH), showed a significant reduction in mortality when the 97% RH exposure time declined from 12 to 8 h per day. The duration of disease incubation depended on the daily 97% RH exposure time. Under fluctuating regimes of both humidity (97% RH versus 75% RH) and temperature (15/28, 20/25, 25/28, and 25/35 degrees C), first-instar mortality was affected by weather conditions, daily 97% RH exposure time (8, 12, and 16 h per day), and number of temperature and humidity fluctuations before transferring tested insects to constant unfavorable conditions. In most cases, at 12/12 h alternating cycles, high and rapid mortality required five cycles. Under these fluctuating regimes, fungus-induced mortality and mortality time were similarly affected in third- and fifth-instar nymphs by the daily 97% RH exposure time. Despite a lower susceptibility of older larval stages, mortality rates in insects exposed for at least 12 h per day at 97% RH remained very high except at 15 degrees C. Moisture and temperature regimes at 12/12 h cycling significantly affected the dose-mortality response in first-instar nymphs. The most favorable conditions consisted of 97%-20 degrees C combined with either 75%-25 degrees C or 43%-25 degrees C. Under less favorable alternating conditions (lower and higher temperatures) the amounts of inoculum required for killing 50% of first-instar nymphs were 10 or 20 times higher. From a vector control standpoint, daily high humidity appears to be the most crucial climatic constraint. B. bassiana has the potential to control R. prolixus populations with applications made during the rainy seasons

  14. Ratio of Electron Temperature and Density Fluctuation Amplitudes During ECH in DIII-D Ohmic and L-mode Discharges

    NASA Astrophysics Data System (ADS)

    White, A. E.; Schmitz, L.; Peebles, W. A.; Carter, T. A.; Rhodes, T. L.; Wang, G.; Doyle, E. J.; Hillesheim, J. C.; Zeng, L.; McKee, G. R.; Shafer, M. W.; Deboo, J. C.; Staebler, G. M.

    2008-11-01

    An increase in the ratio of the amplitudes of two fluctuating fields, (Te/Te)/(n/n), is observed in DIII-D beam-heated (˜2.5 MW, co-injected) L-mode plasmas during ECH (˜2.5 MW deposited at ρ 0.17). The amplitude of long wavelength temperature fluctuations, Te/Te, measured with a correlation ECE diagnostic (CECE), increases significantly during ECH. In contrast, the amplitude of long wavelength density fluctuations, n/n, measured simultaneously with a BES diagnostic, does not change. Linear stability analysis with the TGLF code shows that during ECH the ratio of the TEM and ITG growth rates increases at long wavelengths in the range relevant for the CECE and BES diagnostics. These TGLF results are found to be more sensitive to changes in the TEM drive term a/Lne compared with changes in a/LTe or a/LTi. Sensitivity scans with TGLF and comparisons with experimental results for the ratio (Te/Te)/(n/n) measured in Ohmic plasmas with ECH will be presented.

  15. Effects of rf power on electron density and temperature, neutral temperature, and T{sub e} fluctuations in an inductively coupled plasma

    SciTech Connect

    Camparo, James; Fathi, Gilda

    2009-05-15

    Atomic clocks that fly on global-navigation satellites such as global positioning system (GPS) and Galileo employ light from low-temperature, inductively coupled plasmas (ICPs) for atomic signal generation and detection (i.e., alkali/noble-gas rf-discharge lamps). In this application, the performance of the atomic clock and the capabilities of the navigation system depend sensitively on the stability of the ICP's optical emission. In order to better understand the mechanisms that might lead to instability in these rf-discharge lamps, and hence the satellite atomic clocks, we studied the optical emission from a Rb/Xe ICP as a function of the rf power driving the plasma. Surprisingly, we found that the electron density in the plasma was essentially independent of increases in rf power above its nominal value (i.e., 'rf-power gain') and that the electron temperature was only a slowly varying function of rf-power gain. The primary effect of rf power was to increase the temperature of the neutrals in the plasma, which was manifested by an increase in Rb vapor density. Interestingly, we also found evidence for electron temperature fluctuations (i.e., fluctuations in the plasma's high-energy electron content). The variance of these fluctuations scaled inversely with the plasma's mean electron temperature and was consistent with a simple model that assumed that the total electron density in the discharge was independent of rf power. Taken as a whole, our results indicate that the electrons in alkali/noble-gas ICPs are little affected by slight changes in rf power and that the primary effect of such changes is to heat the plasma's neutral species.

  16. SMALL ANGULAR SCALE MEASUREMENTS OF THE COSMIC MICROWAVE BACKGROUND TEMPERATURE POWER SPECTRUM FROM QUaD

    SciTech Connect

    Friedman, R. B.; Culverhouse, T.; Ade, P.; Bowden, M.; Gear, W. K.; Gupta, S.; Orlando, A.; Bock, J.; Leitch, E.; Brown, M. L.; Cahill, G.; Murphy, J. A.; Castro, P. G.; Memari, Y.; Church, S.; Hinderks, J.; Ganga, K.; Melhuish, S. J.

    2009-08-01

    We present measurements of the cosmic microwave background (CMB) radiation temperature anisotropy in the multipole range 2000 < l < 3000 from the QUaD telescope's second and third observing seasons. After masking the brightest point sources our results are consistent with the primary {lambda}CDM expectation alone. We estimate the contribution of residual (un-masked) radio point sources using a model calibrated to our own bright source observations, and a full simulation of the source finding and masking procedure. Including this contribution slightly improves the {chi}{sup 2}. We also fit a standard Sunyaev-Zel'dovich (SZ) template to the bandpowers and see no strong evidence of an SZ contribution, which is as expected for {sigma}{sub 8} {approx} 0.8.

  17. Vacuum fluctuation effects on the {rho}-meson mass and the one-{rho} exchange potential at finite temperature and density

    SciTech Connect

    Zhang, Yi-Jun; Gao, Song; Su, Ru-Keng Zhang, Yi-Jun Gao, Song Su, Ru-Keng

    1997-12-01

    Based on thermofield dynamics, the temperature- and density-dependent effective mass and screening mass of {rho} meson have been calculated. The effects of vacuum fluctuation corrections through effective nucleon mass are examined. We have shown that vacuum fluctuations give an important correction to the self-energy of the {rho} meson and lead to a reduction of the {rho}-meson mass in hot and dense matter. The temperature and density dependence of one-{rho}-meson exchange potential with vacuum fluctuation correction is also given. {copyright} {ital 1997} {ital The American Physical Society}

  18. Long-range correlation in cosmic microwave background radiation.

    PubMed

    Movahed, M Sadegh; Ghasemi, F; Rahvar, Sohrab; Tabar, M Reza Rahimi

    2011-08-01

    We investigate the statistical anisotropy and gaussianity of temperature fluctuations of Cosmic Microwave Background (CMB) radiation data from the Wilkinson Microwave Anisotropy Probe survey, using the Multifractal Detrended Fluctuation Analysis, Rescaled Range, and Scaled Windowed Variance methods. Multifractal Detrended Fluctuation Analysis shows that CMB fluctuations has a long-range correlation function with a multifractal behavior. By comparing the shuffled and surrogate series of CMB data, we conclude that the multifractality nature of the temperature fluctuation of CMB radiation is mainly due to the long-range correlations, and the map is consistent with a gaussian distribution. PMID:21928945

  19. Measurements of the cosmic microwave background temperature at 1. 47 GHz

    SciTech Connect

    Bensadoun, M.J.

    1991-11-01

    A radiofrequency-gain total power radiometer measured the intensity of the cosmic microwave background (CMB) at a frequency of 1.47 GHz (20.4 cm wavelength) from White Mountain, California, in September 1988 and from the South Pole, Antarctica, in December 1989. The CMB thermodynamic temperature, TCMB, is 2.27 {plus minus} 0.25 K (68% C.L.) measured from White Mountain and 2.26 {plus minus} 0.21 K from the South Pole site. The combined result is 2.27 {plus minus} 0.19 K. The correction for galactic emission has been derived from scaled low-frequency maps and constitutes the main source, of error. The atmospheric signal is found by extrapolation from zenith scan measurements at higher frequencies. The result is consistent with previous low-frequency measurements, including a measurement at 1.41 GHz (Levin et al. 1988) made with an earlier version of this instrument. The result is {approximately}2.5 {sigma} ({approximately}l% probability) from the 2.74 {plus minus} 0.02,K global average CMB temperature.

  20. Measurements of the cosmic microwave background temperature at 1.47 GHz

    SciTech Connect

    Bensadoun, M.J.

    1991-11-01

    A radiofrequency-gain total power radiometer measured the intensity of the cosmic microwave background (CMB) at a frequency of 1.47 GHz (20.4 cm wavelength) from White Mountain, California, in September 1988 and from the South Pole, Antarctica, in December 1989. The CMB thermodynamic temperature, TCMB, is 2.27 {plus_minus} 0.25 K (68% C.L.) measured from White Mountain and 2.26 {plus_minus} 0.21 K from the South Pole site. The combined result is 2.27 {plus_minus} 0.19 K. The correction for galactic emission has been derived from scaled low-frequency maps and constitutes the main source, of error. The atmospheric signal is found by extrapolation from zenith scan measurements at higher frequencies. The result is consistent with previous low-frequency measurements, including a measurement at 1.41 GHz (Levin et al. 1988) made with an earlier version of this instrument. The result is {approximately}2.5 {sigma} ({approximately}l% probability) from the 2.74 {plus_minus} 0.02,K global average CMB temperature.

  1. Taking the Universe's Temperature with Spectral Distortions of the Cosmic Microwave Background.

    PubMed

    Hill, J Colin; Battaglia, Nick; Chluba, Jens; Ferraro, Simone; Schaan, Emmanuel; Spergel, David N

    2015-12-31

    The cosmic microwave background (CMB) energy spectrum is a near-perfect blackbody. The standard model of cosmology predicts small spectral distortions to this form, but no such distortion of the sky-averaged CMB spectrum has yet been measured. We calculate the largest expected distortion, which arises from the inverse Compton scattering of CMB photons off hot, free electrons, known as the thermal Sunyaev-Zel'dovich (TSZ) effect. We show that the predicted signal is roughly one order of magnitude below the current bound from the COBE-FIRAS experiment, but it can be detected at enormous significance (≳1000σ) by the proposed Primordial Inflation Explorer (PIXIE). Although cosmic variance reduces the effective signal-to-noise ratio to 230σ, this measurement will still yield a subpercent constraint on the total thermal energy of electrons in the observable Universe. Furthermore, we show that PIXIE can detect subtle relativistic effects in the sky-averaged TSZ signal at 30σ, which directly probe moments of the optical depth-weighted intracluster medium electron temperature distribution. These effects break the degeneracy between the electron density and the temperature in the mean TSZ signal, allowing a direct inference of the mean baryon density at low redshift. Future spectral distortion probes will thus determine the global thermodynamic properties of ionized gas in the Universe with unprecedented precision. These measurements will impose a fundamental "integral constraint" on models of galaxy formation and the injection of feedback energy over cosmic time. PMID:26764983

  2. On the definition of temperature and its fluctuations in small systems

    NASA Astrophysics Data System (ADS)

    Boltachev, Grey Sh.; Schmelzer, Jürn W. P.

    2010-10-01

    An analysis of the limits of applicability of the thermodynamic definition of temperature to small systems is given. It is shown that the classical thermodynamic definition, (dS /dU)=1/T (S being the entropy, U the energy, and T the absolute temperature), is not applicable to small systems. It results in an uncertainty in the definition of temperature of the order O(1/N), where N is the number of particles in the system. An alternative definition of temperature is proposed based on the statistical-mechanical description of ensembles of particles. Applying this definition to perfect gases, a rigorous expression for the distribution of temperatures is obtained valid also for small systems and even in the limit N →1. In contrast to alternative approaches based on the thermodynamic definition of temperature, this distribution retains the thermodynamic equilibrium conditions with respect to temperature (equality of average temperature of the small system and temperature of the thermostat) also for small systems resolving in this way a widely discussed in the past problem between thermodynamics and its statistical-mechanical interpretation. Further, a generalization of this distribution to nonideal systems of interacting particles is developed. The results are applied to an interpretation of recent molecular dynamics simulations of argon condensation. Some further consequences and different possible definitions of temperature for macroscopic systems are discussed briefly as well.

  3. Quantitative reconstruction of temperature in northern Japan for the last 2000 years and the influential factors to determine climatic fluctuation

    NASA Astrophysics Data System (ADS)

    Kawahata, Hodaka; Hatta, Yoshiki; Ota, Yuki; Yoshida, Akihiro; Habu, Junko

    2016-04-01

    A coastal sedimentary core at St. 5 in Uchiura Bay in northern Japan provided an opportunity to quantitatively estimate terrestrial atmospheric temperatures (AT) using the alkenone proxy because of their strong correlation with summer sea surface temperatures (SSTs) (r2 >0.90). In other words, when we can estimate SST, we can reconstruct AT quantitatively at high time resolution (10-30 years for the last 2K). During the last two millennia, SSTs fluctuated by 4.9 °C before 20 century, reaching two maximum in 1820 AD (22.3°C) and 760 AD (22.0 °C) and two minima around 145 AD (17.4 °C) and 1080 AD (17.4 °C). The SST profile is generally consistent with those obtained from western and central Japan by us (3 sites) and from East Asia by Cook (2013) but shows some differences. Although the MWP (Medieval Warm Period) was not identified in this study because a cold climate prevailed in 990-1100 AD. Particularly low temperatures around 1000-1100 AD can be verified by historical documents from in and around the ancient capital city of Kyoto (Ishii, 2002). The reconstructed SOI (Southern Oscillation Index) data suggest that the equatorial Pacific was predominantly in an El Niño phase in 900-1200 AD. Under modern conditions, during an El Niño episode, the Pacific high is weakened, with reduced atmospheric pressure in the western North Pacific in the vicinity of Japan. This results in an enhanced Okhotsk high, which tends to be accompanied by a cold and cloudy/rainy summer in Japan. A cold climate was definitely observed in 1550-1700 AD, which almost corresponded to the LIA (Little Ice Age). A cold event around 1650 AD can be attributed to big eruptions at Komagatake. This resulted in severe cold type of famine, which is evidenced by historical documents. Because several factors, including external forcing (e.g., solar activity) and internal forcing (e.g., volcanic activity, ENSO, and the Asian monsoon), can affect the climate, we compared SST fluctuations with each of

  4. Diagnosis of equilibrium magnetic profiles, current transport, and internal structures in a reversed-field pinch using electron temperature fluctuations

    NASA Astrophysics Data System (ADS)

    Parke, Eli

    Due to long fast ion confinement times, neutral beam injection (NBI) on the Madison Symmetric Torus (MST) yields large fast ion populations with substantial density gradients. Novel application of the unique high-rep-rate (>10 kHz) Thomson scattering diagnostic on MST has enabled characterization of a newly observed beam-driven instability, and detailed measurement of equilibrium changes caused by the fast ion population. While previous work has focused on high-frequency energetic particle modes (EPMs), recent observations indicate that fast ions drive a bursting instability near the plasma rotation frequency under appropriate conditions. The mode chirps strongly, with a frequency of approximately 7 kHz in the plasma reference frame at peak amplitude. Bursts are correlated with EPM activity and core neutral particle analyzer signals drop by 30% during a burst, suggesting that this mode participates in avalanches of the higher frequency EPMs and drives enhanced fast ion transport. Electron temperature fluctuations correlated with this low-frequency mode exhibit a core-peaked structure with a sensitive dependence on the safety factor q. Although this mode has not yet been positively identified, its characteristics and internal structure are suggestive of an internal kink (fishbone) or beta-induced Alfven eigenmode. In addition to driving EPMs, the large fast ion population also modifies the current profile. An increase in on-axis current density driven by NBI is offset by a reduction in the mid-radius, leading to net-zero current drive. This results in a slight flattening of the safety factor profile, observed by precise measurement of the rational surface locations of the dominant tearing modes; these are identified from the phase flip in correlated electron temperature fluctuations recorded by Thomson scattering. For the core n = 6 rational surface, an inward shift of 1.1 +/- 0.6 cm is observed, with an estimated reduction in q0 of 5%. This technique provides a

  5. MEASURING THE REDSHIFT DEPENDENCE OF THE COSMIC MICROWAVE BACKGROUND MONOPOLE TEMPERATURE WITH PLANCK DATA

    SciTech Connect

    De Martino, I.; Atrio-Barandela, F.; Da Silva, A.; Martins, C. J. A. P.; Kashlinsky, A.; Kocevski, D. E-mail: atrio@usal.es E-mail: Carlos.Martins@astro.up.pt E-mail: alexander.kashlinsky@nasa.gov

    2012-10-01

    We study the capability of Planck data to constrain deviations of the cosmic microwave background (CMB) blackbody temperature from adiabatic evolution using the thermal Sunyaev-Zeldovich anisotropy induced by clusters of galaxies. We consider two types of data sets depending on how the cosmological signal is removed: using a CMB template or using the 217 GHz map. We apply two different statistical estimators, based on the ratio of temperature anisotropies at two different frequencies and on a fit to the spectral variation of the cluster signal with frequency. The ratio method is biased if CMB residuals with amplitude {approx}1 {mu}K or larger are present in the data, while residuals are not so critical for the fit method. To test for systematics, we construct a template from clusters drawn from a hydro-simulation included in the pre-launch Planck Sky Model. We demonstrate that, using a proprietary catalog of X-ray-selected clusters with measured redshifts, electron densities, and X-ray temperatures, we can constrain deviations of adiabatic evolution, measured by the parameter {alpha} in the redshift scaling T(z) = T{sub 0}(1 + z){sup 1-{alpha}}, with an accuracy of {sigma}{sub {alpha}} = 0.011 in the most optimal case and with {sigma}{sub {alpha}} = 0.018 for a less optimal case. These results represent a factor of 2-3 improvement over similar measurements carried out using quasar spectral lines and a factor 6-20 with respect to earlier results using smaller cluster samples.

  6. Measuring the Redshift Dependence of The Cosmic Microwave Background Monopole Temperature With Planck Data

    NASA Technical Reports Server (NTRS)

    De Martino, I.; Atrio-Barandela, F.; Da Silva, A.; Ebling, H.; Kashlinsky, A.; Kocevski, D.; Martins, C. J. A. P.

    2012-01-01

    We study the capability of Planck data to constrain deviations of the cosmic microwave background (CMB) blackbody temperature from adiabatic evolution using the thermal Sunyaev-Zeldovich anisotropy induced by clusters of galaxies. We consider two types of data sets depending on how the cosmological signal is removed: using a CMB template or using the 217 GHz map. We apply two different statistical estimators, based on the ratio of temperature anisotropies at two different frequencies and on a fit to the spectral variation of the cluster signal with frequency. The ratio method is biased if CMB residuals with amplitude approximately 1 microK or larger are present in the data, while residuals are not so critical for the fit method. To test for systematics, we construct a template from clusters drawn from a hydro-simulation included in the pre-launch Planck Sky Model. We demonstrate that, using a proprietary catalog of X-ray-selected clusters with measured redshifts, electron densities, and X-ray temperatures, we can constrain deviations of adiabatic evolution, measured by the parameter a in the redshift scaling T (z) = T0(1 + z)(sup 1-alpha), with an accuracy of sigma(sub alpha) = 0.011 in the most optimal case and with sigma alpha = 0.018 for a less optimal case. These results represent a factor of 2-3 improvement over similar measurements carried out using quasar spectral lines and a factor 6-20 with respect to earlier results using smaller cluster samples.

  7. Effects of long-period solar activity fluctuation on temperature and pressure of the terrestrial atmosphere

    NASA Technical Reports Server (NTRS)

    Rubashev, B. M.

    1978-01-01

    The present state of research on the influence of solar sunspot activity on tropospheric temperature and pressure is reviewed. The existence of an 11-year temperature cycle of 5 different types is affirmed. A cyclic change in atmospheric pressure, deducing characteristic changes between 11-year cycles is discussed. The existence of 80-year and 5-to-6-year cycles of temperature is established, and physical causes for birth are suggested.

  8. ECE Imaging of Temperature Fluctuations and Drift Waves in DIII-D Plasmas

    NASA Astrophysics Data System (ADS)

    Zemedkun, Samuel; Munsat, Tobin; Tobias, Benjamin; Luhmann, Neville; Domier, Calvin

    2012-10-01

    Recent observations of 2-D turbulent structures have been performed with the ECEI instrument on DIII-D. The experiments were performed in NBI and ECH-heated plasmas, over a range of external heating power. Correlation techniques similar to those used in Correlation Electron Cyclotron Emission (CECE) systems are employed, with the advantage that the ECEI system detects a full 2-D array of plasma locations: vertical separation is provided by an optical system and horizontal separation is provided by frequency discrimination in the detection electronics. Among the results are 2-D images of poloidally-propagating drift-waves, and correlation properties of fluctuations (<200 kHz) in both the radial and poloidal directions. Scaling and parameter dependencies on plasma and heating conditions will be presented. In addition to the physics results, the data demonstrates the viability of the ECEI system in the presence of ECH heating, which will also be discussed.

  9. Development of KSTAR ECE imaging system for measurement of temperature fluctuations and edge density fluctuationsa)

    NASA Astrophysics Data System (ADS)

    Yun, G. S.; Lee, W.; Choi, M. J.; Kim, J. B.; Park, H. K.; Domier, C. W.; Tobias, B.; Liang, T.; Kong, X.; Luhmann, N. C.; Donné, A. J. H.

    2010-10-01

    The ECE imaging (ECEI) diagnostic tested on the TEXTOR tokamak revealed the sawtooth reconnection physics in unprecedented detail, including the first observation of high-field-side crash and collective heat transport [H. K. Park, N. C. Luhmann, Jr., A. J. H. Donné et al., Phys. Rev. Lett. 96, 195003 (2006)]. An improved ECEI system capable of visualizing both high- and low-field sides simultaneously with considerably better spatial coverage has been developed for the KSTAR tokamak in order to capture the full picture of core MHD dynamics. Direct 2D imaging of other MHD phenomena such as tearing modes, edge localized modes, and even Alfvén eigenmodes is expected to be feasible. Use of ECE images of the optically thin edge region to recover 2D electron density changes during L/H mode transitions is also envisioned, providing powerful information about the underlying physics. The influence of density fluctuations on optically thin ECE is discussed.

  10. Warming reduces metabolic rate in marine snails: adaptation to fluctuating high temperatures challenges the metabolic theory of ecology

    PubMed Central

    Marshall, David J.; McQuaid, Christopher D.

    2011-01-01

    The universal temperature-dependence model (UTD) of the metabolic theory of ecology (MTE) proposes that temperature controls mass-scaled, whole-animal resting metabolic rate according to the first principles of physics (Boltzmann kinetics). Controversy surrounds the model's implication of a mechanistic basis for metabolism that excludes the effects of adaptive regulation, and it is unclear how this would apply to organisms that live in fringe environments and typically show considerable metabolic adaptation. We explored thermal scaling of metabolism in a rocky-shore eulittoral-fringe snail (Echinolittorina malaccana) that experiences constrained energy gain and fluctuating high temperatures (between 25°C and approximately 50°C) during prolonged emersion (weeks). In contrast to the prediction of the UTD model, metabolic rate was often negatively related to temperature over a benign range (30–40°C), the relationship depending on (i) the temperature range, (ii) the degree of metabolic depression (related to the quiescent period), and (iii) whether snails were isolated within their shells. Apparent activation energies (E) varied between 0.05 and −0.43 eV, deviating excessively from the UTD's predicted range of between 0.6 and 0.7 eV. The lowering of metabolism when heated should improve energy conservation in a high-temperature environment and challenges both the theory's generality and its mechanistic basis. PMID:20685714

  11. Correlations of velocity and temperature fluctuations in the stagnation-point flow of circular cylinder in turbulent flow

    NASA Technical Reports Server (NTRS)

    Wang, Chi R.

    1988-01-01

    Boundary layer flow and turbulence transport analyses to study the influence of the free-stream turbulence on the surface heat transfer rate and the skin friction around the stagnation point of a circular cylinder in a turbulent flow are presented. The analyses are formulated with the turbulent boundary layer equations, the Reynolds stress transport equations and the k - epsilon two-equation turbulence modeling. The analyses are used to calculate the time-averaged turbulence double correlations, the mean flow properties, the surface heat transfer rate and the skin friction with an isotropic turbulence in the freestream. The analytical results are described and compared with the existing experimental measurements. Depending on the free-stream turbulence properties, the turbulence kinetic energy can increase or decrease as the flow moves toward the surface. However, the turbulence kinetic energy induces large Reynolds normal stresses at the boundary layer edge. The Reynolds normal stresses change the boundary layer profiles of the time-averaged double correlations of the velocity and temperature fluctuations, the surface heat transfer rate and the skin friction. The free-stream turbulence dissipation rate can affect the stagnation-point heat transfer rate but the influence of the free-stream temperature fluctuation on the heat transfer rate is insignificant.

  12. Comparison of electron temperature fluctuations with gyrokinetic sumulations across the ohmic energy confinement transition in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Sung, C.; White, A.; Howard, N.; Mikkelsen, D.; Rice, J.; Reinke, M.; Gao, C.; Ennever, P.; Porkolab, M.; Churchill, R.; Theiler, C.; Hubbard, A.; Greenwald, M.

    2013-10-01

    Long wavelength electron temperature fluctuations (kyρs < 0 . 3) near the edge (r / a ~ 0 . 85) are reduced across the ohmic confinement transition from Linear Ohmic Confinement(LOC) regime to Saturated Ohmic Confinement(SOC) regime in Alcator C-Mod. Linear stability analysis shows that the dominant mode of long wavelength turbulence near the edge is changed from Trapped Electron Mode(TEM) to Ion Temperature Gradient(ITG) mode while the dominant mode is not changed deeper in the core (r / a ~ 0 . 5). This indicates that local turbulence changes near the edge might be responsible for the change of global energy confinement in ohmic plasmas. Further study using nonlinear gyrokinetic simulations is being performed to clarify the relation between the change of local turbulence and global ohmic energy confinement. Through nonlinear gyrokinetic simulation (GYRO), we will investigate the change of fluctuating quantities (T~ , ñ , ϕ~) and their phase relations across ohmic confinement transitions, and relate them to the change of energy transport. A synthetic CECE diagnostic for C-Mod has been developed, and it will be used to validate the gyrokinetic simulations. Research supported by USDoE awards DE-SC0006419, DE-FC02-99ER54512.

  13. Room-temperature macromolecular crystallography using a micro-patterned silicon chip with minimal background scattering

    PubMed Central

    Roedig, Philip; Duman, Ramona; Sanchez-Weatherby, Juan; Vartiainen, Ismo; Burkhardt, Anja; Warmer, Martin; David, Christian; Wagner, Armin; Meents, Alke

    2016-01-01

    Recent success at X-ray free-electron lasers has led to serial crystallography experiments staging a comeback at synchrotron sources as well. With crystal lifetimes typically in the millisecond range and the latest-generation detector technologies with high framing rates up to 1 kHz, fast sample exchange has become the bottleneck for such experiments. A micro-patterned chip has been developed from single-crystalline silicon, which acts as a sample holder for up to several thousand microcrystals at a very low background level. The crystals can be easily loaded onto the chip and excess mother liquor can be efficiently removed. Dehydration of the crystals is prevented by keeping them in a stream of humidified air during data collection. Further sealing of the sample holder, for example with Kapton, is not required. Room-temperature data collection from insulin crystals loaded onto the chip proves the applicability of the chip for macromolecular crystallography. Subsequent structure refinements reveal no radiation-damage-induced structural changes for insulin crystals up to a dose of 565.6 kGy, even though the total diffraction power of the crystals has on average decreased to 19.1% of its initial value for the same dose. A decay of the diffracting power by half is observed for a dose of D 1/2 = 147.5 ± 19.1 kGy, which is about 1/300 of the dose before crystals show a similar decay at cryogenic temperatures. PMID:27275143

  14. Temperature fluctuations in the lower limbs of young and elderly individuals during activities of daily living.

    PubMed

    Borisov, Vladimir V; Lin, David C

    2014-09-01

    Age-related deficiencies in thermoregulation diminish the capacity to defend against heat loss under conditions often encountered during activities of daily living (ADL). A potential consequence of these deficiencies is that elderly individuals could have colder lower limbs, which would exacerbate the age-related decline in plantarflexor contractile properties and compromise recovery from a tripping incident. Moreover, a common self-perception among the elderly is that their limbs are cold. However, this impression has never been documented, especially under ADL conditions. Our objective was to test the hypothesis that elderly individuals have lower plantarflexor temperatures than their younger counterparts. Skin temperatures above the plantarflexors of elderly and young individuals were continuously recorded during ADL in the winter months and compared under three conditions: quiescent indoor temperature, during a cold challenge, and the recovery period subsequent to the cold challenge. For quiescent indoor periods, differences in skin temperature between the two groups were not statistically significant. During cold exposures, both age and exposure duration were statistically significant factors related to the decrease in skin temperature, with the elderly group maintaining warmer temperatures. In the recovery period following short duration cold exposures, a statistically significant difference between the two groups for the decrease in skin temperature persisted for the first 9min of recovery. The results do not support the hypothesis that the lower limbs of elderly participants are colder. Higher limb temperatures observed in elderly participants were consistent with previous studies of age-related thermoregulatory changes, indicating that deficiencies in vasoconstriction are persistent in ADL. PMID:24909351

  15. Thermal biology, population fluctuations and implications of temperature extremes for the management of two globally significant insect pests.

    PubMed

    Nyamukondiwa, Casper; Weldon, Christopher W; Chown, Steven L; le Roux, Peter C; Terblanche, John S

    2013-12-01

    The link between environmental temperature, physiological processes and population fluctuations is a significant aspect of insect pest management. Here, we explore how thermal biology affects the population abundance of two globally significant pest fruit fly species, Ceratitis capitata (medfly) and C. rosa (Natal fruit fly), including irradiated individuals and those expressing a temperature sensitive lethal (tsl) mutation that are used in the sterile insect technique. Results show that upper and lower lethal temperatures are seldom encountered at the field sites, while critical minimum temperatures for activity and lower developmental thresholds are crossed more frequently. Estimates of abundance revealed that C. capitata are active year-round, but abundance declines markedly during winter. Temporal autocorrelation of average fortnightly trap captures and of development time, estimated from an integrated model to calculate available degree days, show similar seasonal lags suggesting that population increases in early spring occur after sufficient degree-days have accumulated. By contrast, population collapses coincide tightly with increasing frequency of low temperature events that fall below critical minimum temperatures for activity. Individuals of C. capitata expressing the tsl mutation show greater critical thermal maxima and greater longevity under field conditions than reference individuals. Taken together, this evidence suggests that low temperatures limit populations in the Western Cape, South Africa and likely do so elsewhere. Increasing temperature extremes and warming climates generally may extend the season over which these species are active, and could increase abundance. The sterile insect technique may prove profitable as climates change given that laboratory-reared tsl flies have an advantage under warmer conditions. PMID:24080125

  16. Progress Toward a New Technique for Measuring Local Electric Field Fluctuations in High Temperature Plasmas

    NASA Astrophysics Data System (ADS)

    Bakken, M. R.; Burke, M. G.; Fonck, R. J.; Lewicki, B. T.; Liben, M. M.; Thompson, D. S.; Winz, G. R.

    2015-11-01

    A new diagnostic measuring local Ez(r,t) fluctuations is being developed at the Pegasus Toroidal Experiment. A novel multiple volume phase holographic grating spectrometer, designed to have high resolution (0.25Å) and high étendue (U = 0.01cm2-ster), measures the line separation of the π components of the Hα motional Stark spectrum of emitted beam light. The spectra are recorded at high frequency (fNy ~ 500kHz) by a high speed CMOS imaging detector. The groove density of the objective grating is varied linearly along its surface to counter geometric Doppler broadening. A low divergence (Ω ~ 0.5o) , 80kV, 2.5A H0 diagnostic neutral beam is being deployed on Pegasus. The beam uses a washer-stack arc ion source to maximize full energy species fraction in the injected neutral beam. Laboratory tests of the ion source demonstrate stable, repeatable plasmas with Te <= 20eV and ne ~ 5x1017m-3, sufficient to sustain a 6mA/cm2 current density at the focal plane for up to 20ms. A three phase resonant converter power supply, with low amplitude (δV/80kV ~ 0.05%), high frequency (frip ~ 280kHz) ripple, is in development to provide the 80kV accelerator power. This research supported by US D.O.E. Grant DE-FG02-89ER53296.

  17. Born-corrections to weak lensing of the cosmic microwave background temperature and polarization anisotropies

    NASA Astrophysics Data System (ADS)

    Hagstotz, Steffen; Schäfer, Björn Malte; Merkel, Philipp M.

    2015-11-01

    Many weak-lensing calculations make use of the Born approximation where the light ray is approximated by a straight path. We examine the effect of Born-corrections for lensing of the cosmic microwave background (CMB) in an analytical approach by taking perturbative corrections to the geodesic into account. The resulting extra power in the lensing potential spectrum is comparable to the power generated by non-linear structure formation and affects especially the polarization spectra, leading to relative changes of the order of 10-3 for the E-mode spectrum and several per cent on all scales to the B-mode spectrum. In contrast, there is only little change of spectra involving the CMB temperature. Additionally, the corrections excite one more degree of freedom resulting in a deflection component which cannot be described as a gradient of the lensing potential as it is related to image rotation in lens-lens coupling. We estimate the magnitude of this effect on the CMB spectra and find it to be negligible.

  18. MAXIMA: an experiment to measure temperature anisotropy in the cosmic microwave background

    SciTech Connect

    Lee, A.T.; Balbi, A.; Borrill, J.; Jaffe, A.H.; Oh, S.; Rabii, B.; Richards, P.L.; Smoot, G.F.; Winant, C.D.; Lee, A.T.; Jaffe, A.H.; Rabii, B.; Richards, P.L.; Smoot, G.F.; Winant, C.D.; Ade, P.; Hristov, V.; Lange, A.E.; Pascale, E.; Balbi, A.; Borrill, J.; Bock, J.; Crill, B.P.; Smoot, G.F.; Bock, J.; Del Castillo, H.; Boscaleri, A.; De Bernardis, P.; Ferreira, P.; Ganga, K.; Hanany, S.; Mauskopf, P.; Netterfield, C.B.; Ruhl, J.

    1999-05-01

    We describe the MAXIMA experiment, a balloon-borne measurement designed to map temperature anisotropy in the Cosmic Microwave Background (CMB) from l=80 to l=800. The experiment consists of a 1.3 m diameter off-axis Gregorian telescope and a receiver with a 16 element array of bolometers cooled to 100 mK. The frequency bands are centered at 150, 240, and 410 GHz. The 10{sup {prime}} FWHM beam sizes are well matched to the scale of acoustic peaks expected in the angular power spectrum of the CMB. The first flight of the experiment in its full configuration was launched in August 1998. A 122 deg{sup 2} map of the sky was made near the Draco constellation during the 7 hour flight in a region of extremely low galactic dust contamination. This map covers 0.3{percent} of the sky and has 3200 independent beamsize pixels. We describe the MAXIMA instrument and its performance during the recent flight. {copyright} {ital 1999 American Institute of Physics.}

  19. Fluctuations in Brain Temperature Induced by Lypopolysaccharides: Central and Peripheral Contributions

    PubMed Central

    Tang, Jeremy S.; Kiyatkin, Eugene A.

    2010-01-01

    In this study, we examined changes in central (anterior-preoptic hypothalamus) and peripheral (temporal muscle and facial skin) temperatures in freely moving rats following intravenous administration of bacterial lipopolysaccharides (LPS) at low doses (1 and 10 μg/kg) at thermoneutral conditions (28°C). Recordings were made with high temporal resolution (5-s bin) and the effects of LPS were compared with those induced by a tail-pinch, a standard arousing somato-sensory stimulus. At each dose, LPS moderately elevated brain, muscle and skin temperatures. In contrast to rapid, monophasic and relatively short hyperthermic responses induced by a tail-pinch, LPS-induced increases in brain and muscle temperatures occurred with ~40 min onset latencies, showed three not clearly defined phases, were slightly larger with the 10 μm/kg dose and maintained for the entire 4-hour post-injection recording duration. Based on dynamics of brain-muscle and skin-muscle temperature differentials, it appears that the hyperthermic response induced by LPS at the lowest dose originates from enhanced peripheral heat production, with no evidence of brain metabolic activation and skin vasoconstriction. While peripheral heat production also appears to determine the first phase of brain and body temperature elevation with LPS at 10 μg/kg, a further prolonged increase in brain-muscle differentials (onset at ~100 min) suggests metabolic brain activation as a factor contributing to brain and body hyperthermia. At this dose, skin temperature increase was weaker than in temporal muscle, suggesting vasoconstriction as another contributor to brain/ body hyperthermia. Therefore, although both LPS at low doses and salient sensory stimuli moderately increase brain and body temperatures, these hyperthermic responses have important qualitative differences, reflecting unique underlying mechanisms. PMID:21150339

  20. Effect of Daily Temperature Fluctuation during the Cool Season on the Infectivity of Cryptosporidium parvum▿

    PubMed Central

    Li, Xunde; Atwill, Edward R.; Dunbar, Lissa A.; Tate, Kenneth W.

    2010-01-01

    The present work calculated the rate of inactivation of Cryptosporidium parvum oocysts attributable to daily oscillations of low ambient temperatures. The relationship between air temperature and the internal temperature of bovine feces on commercial operations was measured, and three representative 24-h thermal regimens in the ∼15°C, ∼25°C, and ∼35°C ranges were chosen and emulated using a thermocycler. C. parvum oocysts suspended in deionized water were exposed to the temperature cycles, and their infectivity in mice was tested. Oral inoculation of 103 treated oocysts per neonatal BALB/c mouse (∼14 times the 50% infective dose) resulted in time- and temperature-dependent reductions in the proportion of infected mice. Oocysts were completely noninfectious after 14 24-h cycles with the 30°C regimen and after 70 24-h cycles with the 20°C regimen. In contrast, oocysts remained infectious after 90 24-h cycles with the 10°C regimens. The estimated numbers of days needed for a 1-log10 reduction in C. parvum oocyst infectivity were 4.9, 28.7, and 71.5 days for the 30, 20, and 10°C thermal regimens, respectively. The loss of infectivity of oocysts induced by these thermal regimens was due in part to partial or complete in vitro excystation. PMID:20023095

  1. The deal with diel: Temperature fluctuations, asymmetrical warming, and ubiquitous metals contaminants.

    PubMed

    Hallman, Tyler A; Brooks, Marjorie L

    2015-11-01

    Climate projections over the next century include disproportionately warmer nighttime temperatures ("asymmetrical warming"). Cool nighttime temperatures lower metabolic rates of aquatic ectotherms. In contaminated waters, areas with cool nights may provide thermal refugia from high rates of daytime contaminant uptake. We exposed Cope's gray tree frogs (Hyla chrysoscelis), southern leopard frogs (Lithobates sphenocephalus), and spotted salamanders (Ambystoma maculatum) to five concentrations of a mixture of cadmium, copper, and lead under three to four temperature regimes, representing asymmetrical warming. At concentrations with intermediate toxicosis at test termination (96 h), temperature effects on acute toxicity or escape distance were evident in all study species. Asymmetrical warming (day:night, 22:20 °C; 22:22 °C) doubled or tripled mortality relative to overall cooler temperatures (20:20 °C) or cool nights (22:18 °C). Escape distances were 40-70% shorter under asymmetrical warming. Results suggest potentially grave ecological impacts from unexpected toxicosis under climate change. PMID:26142755

  2. A validated model to predict microalgae growth in outdoor pond cultures subjected to fluctuating light intensities and water temperatures

    DOE PAGESBeta

    Huesemann, Michael H.; Crowe, Braden J.; Waller, Peter; Chavis, Aaron R.; Hobbs, Samuel J.; Edmundson, Scott J.; Wigmosta, Mark S.

    2015-12-11

    Here, a microalgae biomass growth model was developed for screening novel strains for their potential to exhibit high biomass productivities under nutrient-replete conditions in outdoor ponds subjected to fluctuating light intensities and water temperatures. Growth is modeled by first estimating the light attenuation by biomass according to a scatter-corrected Beer-Lambert Law, and then calculating the specific growth rate in discretized culture volume slices that receive declining light intensities due to attenuation. The model requires the following experimentally determined strain-specific input parameters: specific growth rate as a function of light intensity and temperature, biomass loss rate in the dark as amore » function of temperature and average light intensity during the preceding light period, and the scatter-corrected biomass light absorption coefficient. The model was successful in predicting the growth performance and biomass productivity of three different microalgae species (Chlorella sorokiniana, Nannochloropsis salina, and Picochlorum sp.) in raceway pond cultures (batch and semi-continuous) subjected to diurnal sunlight intensity and water temperature variations. Model predictions were moderately sensitive to minor deviations in input parameters. To increase the predictive power of this and other microalgae biomass growth models, a better understanding of the effects of mixing-induced rapid light dark cycles on photo-inhibition and short-term biomass losses due to dark respiration in the aphotic zone of the pond is needed.« less

  3. A validated model to predict microalgae growth in outdoor pond cultures subjected to fluctuating light intensities and water temperatures

    SciTech Connect

    Huesemann, Michael H.; Crowe, Braden J.; Waller, Peter; Chavis, Aaron R.; Hobbs, Samuel J.; Edmundson, Scott J.; Wigmosta, Mark S.

    2015-12-11

    Here, a microalgae biomass growth model was developed for screening novel strains for their potential to exhibit high biomass productivities under nutrient-replete conditions in outdoor ponds subjected to fluctuating light intensities and water temperatures. Growth is modeled by first estimating the light attenuation by biomass according to a scatter-corrected Beer-Lambert Law, and then calculating the specific growth rate in discretized culture volume slices that receive declining light intensities due to attenuation. The model requires the following experimentally determined strain-specific input parameters: specific growth rate as a function of light intensity and temperature, biomass loss rate in the dark as a function of temperature and average light intensity during the preceding light period, and the scatter-corrected biomass light absorption coefficient. The model was successful in predicting the growth performance and biomass productivity of three different microalgae species (Chlorella sorokiniana, Nannochloropsis salina, and Picochlorum sp.) in raceway pond cultures (batch and semi-continuous) subjected to diurnal sunlight intensity and water temperature variations. Model predictions were moderately sensitive to minor deviations in input parameters. To increase the predictive power of this and other microalgae biomass growth models, a better understanding of the effects of mixing-induced rapid light dark cycles on photo-inhibition and short-term biomass losses due to dark respiration in the aphotic zone of the pond is needed.

  4. Photosynthesis and growth response of different switchgrass ecotypes to fluctuating growth temperatures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass (Panicum virgatum L.), a warm-season C4 grass that shows good potential as a bioenergy feedstock and conservation crop, is widely adapted throughout North America. However, its productivity tends to decline with increasing latitude. In northern regions where growing season temperatures c...

  5. PRESSURE AND TEMPERATURE FLUCTUATIONS IN UNDERGROUND STORAGE TANK PIPELINES CONTAINING GASOLINE

    EPA Science Inventory

    A common method of detecting a small leak in a pressurized underground Storage tank pipeline system containing petroleum is to monitor the pressure in the line. eak is declared if the pressure drops below a specified threshold pressure. mall changes in the temperature of the prod...

  6. Fluctuation of Arabidopsis seed dormancy with relative humidity and temperature during dry storage.

    PubMed

    Basbouss-Serhal, Isabelle; Leymarie, Juliette; Bailly, Christophe

    2016-01-01

    The changes in germination potential of freshly harvested seeds of Arabidopsis thaliana stored in various combinations of temperature and relative humidity were investigated over 63 weeks of storage. Seeds of the wild type Col-0 and of two mutants displaying low and high levels of dormancy, cat2-1 and mtr4-1, respectively, were stored at harvest in 24 different environments including a combination of eight relative humidities, from 1 to 85%, and four temperatures (10, 15, 20, and 25 °C). These mutations did not influence behaviour of seeds during storage. Primary dormant seeds did not germinate in darkness at 25 °C but acquired the potential to germinate at this temperature within 7 weeks when stored in relative humidities close to 50% across all temperatures. Sorption isotherms and Arrhenius plots demonstrated that the seed moisture content of 0.06 g H2O/g dry weight was a critical value below which dormancy release was associated with reactions of negative activation energy and above which dormancy release increased with temperature. Longer storage times when relative humidity did not exceed 75-85% led to decreased germination at 25 °C, corresponding to the induction of secondary dormancy. Dormancy release and induction of secondary dormancy in the dry state were associated with induction or repression of key genes related to abscisic acid and gibberellins biosynthesis and signalling pathways. In high relative humidity, prolonged storage of seeds induced ageing and progressive loss of viability, but this was not related to the initial level of dormancy. PMID:26428064

  7. Fluctuation of Arabidopsis seed dormancy with relative humidity and temperature during dry storage

    PubMed Central

    Basbouss-Serhal, Isabelle; Leymarie, Juliette; Bailly, Christophe

    2016-01-01

    The changes in germination potential of freshly harvested seeds of Arabidopsis thaliana stored in various combinations of temperature and relative humidity were investigated over 63 weeks of storage. Seeds of the wild type Col-0 and of two mutants displaying low and high levels of dormancy, cat2-1 and mtr4-1, respectively, were stored at harvest in 24 different environments including a combination of eight relative humidities, from 1 to 85%, and four temperatures (10, 15, 20, and 25 °C). These mutations did not influence behaviour of seeds during storage. Primary dormant seeds did not germinate in darkness at 25 °C but acquired the potential to germinate at this temperature within 7 weeks when stored in relative humidities close to 50% across all temperatures. Sorption isotherms and Arrhenius plots demonstrated that the seed moisture content of 0.06g H2O/g dry weight was a critical value below which dormancy release was associated with reactions of negative activation energy and above which dormancy release increased with temperature. Longer storage times when relative humidity did not exceed 75–85% led to decreased germination at 25 °C, corresponding to the induction of secondary dormancy. Dormancy release and induction of secondary dormancy in the dry state were associated with induction or repression of key genes related to abscisic acid and gibberellins biosynthesis and signalling pathways. In high relative humidity, prolonged storage of seeds induced ageing and progressive loss of viability, but this was not related to the initial level of dormancy. PMID:26428064

  8. Adaptation to Fluctuating Temperatures in an RNA Virus Is Driven by the Most Stringent Selective Pressure

    PubMed Central

    Arribas, María; Kubota, Kirina; Cabanillas, Laura; Lázaro, Ester

    2014-01-01

    The frequency of change in the selective pressures is one of the main factors driving evolution. It is generally accepted that constant environments select specialist organisms whereas changing environments favour generalists. The particular outcome achieved in either case also depends on the relative strength of the selective pressures and on the fitness costs of mutations across environments. RNA viruses are characterized by their high genetic diversity, which provides fast adaptation to environmental changes and helps them evade most antiviral treatments. Therefore, the study of the adaptive possibilities of RNA viruses is highly relevant for both basic and applied research. In this study we have evolved an RNA virus, the bacteriophage Qβ, under three different temperatures that either were kept constant or alternated periodically. The populations obtained were analyzed at the phenotypic and the genotypic level to characterize the evolutionary process followed by the virus in each case and the amount of convergent genetic changes attained. Finally, we also investigated the influence of the pre-existent genetic diversity on adaptation to high temperature. The main conclusions that arise from our results are: i) under periodically changing temperature conditions, evolution of bacteriophage Qβ is driven by the most stringent selective pressure, ii) there is a high degree of evolutionary convergence between replicated populations and also among populations evolved at different temperatures, iii) there are mutations specific of a particular condition, and iv) adaptation to high temperatures in populations differing in their pre-existent genetic diversity takes place through the selection of a common set of mutations. PMID:24963780

  9. Consistent Temperature Coupling with Thermal Fluctuations of Smooth Particle Hydrodynamics and Molecular Dynamics

    PubMed Central

    Ganzenmüller, Georg C.; Hiermaier, Stefan; Steinhauser, Martin O.

    2012-01-01

    We propose a thermodynamically consistent and energy-conserving temperature coupling scheme between the atomistic and the continuum domain. The coupling scheme links the two domains using the DPDE (Dissipative Particle Dynamics at constant Energy) thermostat and is designed to handle strong temperature gradients across the atomistic/continuum domain interface. The fundamentally different definitions of temperature in the continuum and atomistic domain – internal energy and heat capacity versus particle velocity – are accounted for in a straightforward and conceptually intuitive way by the DPDE thermostat. We verify the here-proposed scheme using a fluid, which is simultaneously represented as a continuum using Smooth Particle Hydrodynamics, and as an atomistically resolved liquid using Molecular Dynamics. In the case of equilibrium contact between both domains, we show that the correct microscopic equilibrium properties of the atomistic fluid are obtained. As an example of a strong non-equilibrium situation, we consider the propagation of a steady shock-wave from the continuum domain into the atomistic domain, and show that the coupling scheme conserves both energy and shock-wave dynamics. To demonstrate the applicability of our scheme to real systems, we consider shock loading of a phospholipid bilayer immersed in water in a multi-scale simulation, an interesting topic of biological relevance. PMID:23300586

  10. A study of radiometric surface temperatures: Their fluctuations, distribution and meaning. [Voves, France

    NASA Technical Reports Server (NTRS)

    Perrier, A.; Itier, B.; Boissard, P. (Principal Investigator); Goillot, C.; Belluomo, P.; Valery, P.

    1980-01-01

    A consecutive night and day flight and measurements on the ground, were made in the region of Voves, south of Chartres. The statistical analysis of the thermal scanner data permitted the establishment of criteria for the homogeneity of surfaces. These criteria were used in defining the surface temperature values which are most representative for use in an energy balance approach to evapotranspiration (day) and heat balance (night). For a number of maize fields that airborne thermal scanner data permitted a detailed energy analysis of different fields of a same crop to be carried out. Such a detailed analysis was not necessary for a calculation of crop evapotranspiration which could be evaluated from the mean temperature of the crop surface. A differential analysis day night is of interest for enhancing the contrast between types of surfaces, as well as for a better definition of the daily energy balance. It should be stressed that, for a homogeneous region, a study such as the present one, could be carried out on a relatively small part of the total surface, as the results for a surface of 2.5 x 2 sq km were not significantly different from those obtained from a surface three times larger.

  11. Influence of temperature and salinity fluctuations on propagation behaviour of partially coherent beams in oceanic turbulence

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Liu, Liren; Sun, Jianfeng

    2006-12-01

    A theoretical study of the behaviour of partially coherent beams propagating through oceanic turbulence has been performed. Based on the previously developed knowledge of beam spreading of a partially coherent beam in the atmosphere and the spatial power spectrum of the refractive index of ocean water, we study the normalized root-mean-square width of a partially coherent beam on propagation through oceanic turbulence and its turbulence distance which may be a measure of turbulence resistance. Our analysis indicates that the behaviour of partially coherent beams on propagation may be described by the rate of dissipation of the mean-squared temperature χT and that of salinity χS. In terms of a quantity w that defines the contributions of the temperature and salinity distributions to the distribution of the refractive index, χS could be written as a function of χT and w. Therefore, the behaviour of partially coherent beams on propagation can be characterized only by χT for a given w. The results are shown for curved surfaces, from which one can see that partially coherent beams exhibit robust turbulence resistance when the water volume has a smaller χT.

  12. Fluctuations in an aging system: the absence of an effective temperature in the sol-gel transition of a quenched gelatin sample

    NASA Astrophysics Data System (ADS)

    Bérut, Antoine; Petrosyan, Artyom; Ruben Gomez-Solano, Juan; Ciliberto, Sergio

    2015-10-01

    We study the fluctuations of a Brownian microparticle trapped using optical tweezers in a gelatin solution undergoing a fast local temperature quench below that required for the sol-gel transition. Contrary to what has previously been reported, we observe no anomalous fluctuations in the particle’s position that could be interpreted in terms of an effective temperature. A careful analysis with ensemble averages shows only equilibrium-like properties for the fluctuations, even though the system is clearly aging. We also provide a detailed discussion on possible artifacts that could have been interpreted as an effective temperature, such as the presence of a drift, or a mixing between time average and ensemble average in the data analysis. These considerations are of general interest when dealing with nonergodic or nonstationary systems.

  13. IMPROVED MEASUREMENTS OF THE TEMPERATURE AND POLARIZATION OF THE COSMIC MICROWAVE BACKGROUND FROM QUaD

    SciTech Connect

    Brown, M. L.; Ade, P.; Bowden, M.; Gear, W. K.; Gupta, S.; Orlando, A.; Bock, J.; Leitch, E.; Cahill, G.; Murphy, J. A.; Castro, P. G.; Memari, Y.; Church, S.; Hinderks, J.; Culverhouse, T.; Friedman, R. B.; Ganga, K.; Melhuish, S. J.

    2009-11-01

    We present an improved analysis of the final data set from the QUaD experiment. Using an improved technique to remove ground contamination, we double the effective sky area and hence increase the precision of our cosmic microwave background (CMB) power spectrum measurements by approx30% versus that previously reported. In addition, we have improved our modeling of the instrument beams and have reduced our absolute calibration uncertainty from 5% to 3.5% in temperature. The robustness of our results is confirmed through extensive jackknife tests, and by way of the agreement that we find between our two fully independent analysis pipelines. For the standard six-parameter LAMBDACDM model, the addition of QUaD data marginally improves the constraints on a number of cosmological parameters over those obtained from the WMAP experiment alone. The impact of QUaD data is significantly greater for a model extended to include either a running in the scalar spectral index, or a possible tensor component, or both. Adding both the QUaD data and the results from the Arcminute Cosmology Bolometer Array Receiver experiment, the uncertainty in the spectral index running is reduced by approx25% compared to WMAP alone, while the upper limit on the tensor-to-scalar ratio is reduced from r < 0.48 to r < 0.33 (95% c.l.). This is the strongest limit on tensors to date from the CMB alone. We also use our polarization measurements to place constraints on parity-violating interactions to the surface of last scattering, constraining the energy scale of Lorentz violating interactions to <1.5 x 10{sup -43} GeV (68% c.l.). Finally, we place a robust upper limit on the strength of the lensing B-mode signal. Assuming a single flat band power between l = 200 and l = 2000, we constrain the amplitude of B-modes to be <0.57 muK{sup 2} (95% c.l.).

  14. Improved Measurements of the Temperature and Polarization of the Cosmic Microwave Background from QUaD

    NASA Astrophysics Data System (ADS)

    Brown, M. L.; Ade, P.; Bock, J.; Bowden, M.; Cahill, G.; Castro, P. G.; Church, S.; Culverhouse, T.; Friedman, R. B.; Ganga, K.; Gear, W. K.; Gupta, S.; Hinderks, J.; Kovac, J.; Lange, A. E.; Leitch, E.; Melhuish, S. J.; Memari, Y.; Murphy, J. A.; Orlando, A.; O'Sullivan, C.; Piccirillo, L.; Pryke, C.; Rajguru, N.; Rusholme, B.; Schwarz, R.; Taylor, A. N.; Thompson, K. L.; Turner, A. H.; Wu, E. Y. S.; Zemcov, M.; QUa D Collaboration

    2009-11-01

    We present an improved analysis of the final data set from the QUaD experiment. Using an improved technique to remove ground contamination, we double the effective sky area and hence increase the precision of our cosmic microwave background (CMB) power spectrum measurements by ~30% versus that previously reported. In addition, we have improved our modeling of the instrument beams and have reduced our absolute calibration uncertainty from 5% to 3.5% in temperature. The robustness of our results is confirmed through extensive jackknife tests, and by way of the agreement that we find between our two fully independent analysis pipelines. For the standard six-parameter ΛCDM model, the addition of QUaD data marginally improves the constraints on a number of cosmological parameters over those obtained from the WMAP experiment alone. The impact of QUaD data is significantly greater for a model extended to include either a running in the scalar spectral index, or a possible tensor component, or both. Adding both the QUaD data and the results from the Arcminute Cosmology Bolometer Array Receiver experiment, the uncertainty in the spectral index running is reduced by ~25% compared to WMAP alone, while the upper limit on the tensor-to-scalar ratio is reduced from r < 0.48 to r < 0.33 (95% c.l.). This is the strongest limit on tensors to date from the CMB alone. We also use our polarization measurements to place constraints on parity-violating interactions to the surface of last scattering, constraining the energy scale of Lorentz violating interactions to <1.5 × 10-43 GeV (68% c.l.). Finally, we place a robust upper limit on the strength of the lensing B-mode signal. Assuming a single flat band power between ell = 200 and ell = 2000, we constrain the amplitude of B-modes to be <0.57 μK2 (95% c.l.).

  15. Zero field splitting fluctuations induced phase relaxation of Gd3+ in frozen solutions at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Raitsimring, A.; Dalaloyan, A.; Collauto, A.; Feintuch, A.; Meade, T.; Goldfarb, D.

    2014-11-01

    Distance measurements using double electron-electron resonance (DEER) and Gd3+ chelates for spin labels (GdSL) have been shown to be an attractive alternative to nitroxide spin labels at W-band (95 GHz). The maximal distance that can be accessed by DEER measurements and the sensitivity of such measurements strongly depends on the phase relaxation of Gd3+ chelates in frozen, glassy solutions. In this work, we explore the phase relaxation of Gd3+-DOTA as a representative of GdSL in temperature and concentration ranges typically used for W-band DEER measurements. We observed that in addition to the usual mechanisms of phase relaxation known for nitroxide based spin labels, GdSL are subjected to an additional phase relaxation mechanism that features an increase in the relaxation rate from the center to the periphery of the EPR spectrum. Since the EPR spectrum of GdSL is the sum of subspectra of the individual EPR transitions, we attribute this field dependence to transition dependent phase relaxation. Using simulations of the EPR spectra and its decomposition into the individual transition subspectra, we isolated the phase relaxation of each transition and found that its rate increases with |ms|. We suggest that this mechanism is due to transient zero field splitting (tZFS), where its magnitude and correlation time are scaled down and distributed as compared with similar situations in liquids. This tZFS induced phase relaxation mechanism becomes dominant (or at least significant) when all other well-known phase relaxation mechanisms, such as spectral diffusion caused by nuclear spin diffusion, instantaneous and electron spin spectral diffusion, are significantly suppressed by matrix deuteration and low concentration, and when the temperature is sufficiently low to disable spin lattice interaction as a source of phase relaxation.

  16. Integrity of Ceramic Parts Predicted When Loads and Temperatures Fluctuate Over Time

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.

    2004-01-01

    Brittle materials are being used, and being considered for use, for a wide variety of high performance applications that operate in harsh environments, including static and rotating turbine parts for unmanned aerial vehicles, auxiliary power units, and distributed power generation. Other applications include thermal protection systems, dental prosthetics, fuel cells, oxygen transport membranes, radomes, and microelectromechanical systems (MEMS). In order for these high-technology ceramics to be used successfully for structural applications that push the envelope of materials capabilities, design engineers must consider that brittle materials are designed and analyzed differently than metallic materials. Unlike ductile metals, brittle materials display a stochastic strength response because of the combination of low fracture toughness and the random nature of the size, orientation, and distribution of inherent microscopic flaws. This plus the fact that the strength of a component under load may degrade over time because of slow crack growth means that a probabilistic-based life-prediction methodology must be used when the tradeoffs of failure probability, performance, and useful life are being optimized. The CARES/Life code (which was developed at the NASA Glenn Research Center) predicts the probability of ceramic components failing from spontaneous catastrophic rupture when these components are subjected to multiaxial loading and slow crack growth conditions. Enhancements to CARES/Life now allow for the component survival probability to be calculated when loading and temperature vary over time.

  17. Oxygen consumption in the shrimp, Palaemonetes pugio, exposed to fluctuating temperatures and food contaminated with the diaromatic petroleum hydrocarbon, dimethylnaphthalene

    NASA Astrophysics Data System (ADS)

    Dillon, T. M.

    1983-04-01

    Oxygen consumption rates ( V˙o 2) in the grass shrimp Palaemonetes pugio were determined after a 32 day exposure to fluctuating temperatures (FT) (18-22°C) and/or dimethylnaphthalene (DMN)-contaminated food (0·24 μg DMN g wet wt -1) and again after a 16 day recovery period of stable temperatures (20°C) and uncontaminated food. Ingestion of DMN-contaminated food for 32 days resulted in elevated V˙>o 2 in shrimp exposed to declining oxygen concentrations. After the 32 day exposure period, FT had no significant effect on V˙o 2 at 15, 20 and 25°C, tissue V˙o 2 and V˙o 2 in declining oxygen. Hemolymph copper concentrations were significantly depressed in shrimp exposed to DMN-contaminated food. After the 16 day recovery period, shrimp from the FT regime exhibited depressed V˙o 2 when exposed to 25°C but not to 15°C. These depressed respiratory rates were offset by the stimulatory effect of DMN-contaminated food. These respiration studies were generally unproductive in explaining the previously reported effects of FT and DMN-contaminated food on the survival of P. pugio under hypoxic conditions.

  18. The impact of spin-temperature fluctuations on the 21-cm moments

    NASA Astrophysics Data System (ADS)

    Watkinson, C. A.; Pritchard, J. R.

    2015-12-01

    This paper considers the impact of Lyman α coupling and X-ray heating on the 21-cm brightness-temperature one-point statistics (as predicted by seminumerical simulations). The X-ray production efficiency is varied over four orders of magnitude and the hardness of the X-ray spectrum is varied from that predicted for high-mass X-ray binaries, to the softer spectrum expected from the hot interstellar medium. We find peaks in the redshift evolution of both the variance and skewness associated with the efficiency of X-ray production. The amplitude of the variance is also sensitive to the hardness of the X-ray spectral energy distribution. We find that the relative timing of the coupling and heating phases can be inferred from the redshift extent of a plateau that connects a peak in the variance's evolution associated with Lyman α coupling to the heating peak. Importantly, we find that late X-ray heating would seriously hamper our ability to constrain reionization with the variance. Late X-ray heating also qualitatively alters the evolution of the skewness, providing a clean way to constrain such models. If foregrounds can be removed, we find that LOFAR, MWA and PAPER could constrain reionization and late X-ray heating models with the variance. We find that HERA and SKA (phase 1) will be able to constrain both reionization and heating by measuring the variance using foreground-avoidance techniques. If foregrounds can be removed they will also be able to constrain the nature of Lyman α coupling.

  19. A High Temperature-Dependent Mitochondrial Lipase EXTRA GLUME1 Promotes Floral Phenotypic Robustness against Temperature Fluctuation in Rice (Oryza sativa L.)

    PubMed Central

    Zhang, Yu’e; Xu, Ting; Guo, Feifei; Tang, Huashan; Li, Xiang; Wang, Pengfei; Qian, Wenfeng; Xue, Yongbiao

    2016-01-01

    The sessile plants have evolved diverse intrinsic mechanisms to control their proper development under variable environments. In contrast to plastic vegetative development, reproductive traits like floral identity often show phenotypic robustness against environmental variations. However, it remains obscure about the molecular basis of this phenotypic robustness. In this study, we found that eg1 (extra glume1) mutants of rice (Oryza savita L.) showed floral phenotypic variations in different growth locations resulting in a breakdown of floral identity robustness. Physiological and biochemical analyses showed that EG1 encodes a predominantly mitochondria-localized functional lipase and functions in a high temperature-dependent manner. Furthermore, we found that numerous environmentally responsive genes including many floral identity genes are transcriptionally repressed in eg1 mutants and OsMADS1, OsMADS6 and OsG1 genetically act downstream of EG1 to maintain floral robustness. Collectively, our results demonstrate that EG1 promotes floral robustness against temperature fluctuation by safeguarding the expression of floral identify genes through a high temperature-dependent mitochondrial lipid pathway and uncovers a novel mechanistic insight into floral developmental control. PMID:27367609

  20. Cyclic CO2 emissions during the high temperature pulse of fluctuating thermal regime in eye-pigmented pupae of Megachile rotundata

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Megachile rotundata, the primary pollinator used in alfalfa seed production, may need to be exposed to low-temperature storage to slow the bees’ development to better match spring emergence with the alfalfa bloom. It has been demonstrated that using a fluctuating thermal regime (FTR) improves the be...

  1. Prediction of strong and weak ignition regimes in turbulent reacting flows with temperature fluctuations: A direct numerical simulation study

    NASA Astrophysics Data System (ADS)

    Pal, Pinaki; Valorani, Mauro; Im, Hong; Wooldridge, Margaret

    2015-11-01

    The present work investigates the auto-ignition characteristics of compositionally homogeneous reactant mixtures in the presence of thermal non-uniformities and turbulent velocity fluctuations. An auto-ignition regime diagram is briefly discussed, that provides the framework for predicting the expected ignition behavior based on the thermo-chemical properties of the reactant mixture and flow/scalar field conditions. The regime diagram classifies the ignition regimes mainly into three categories: weak (deflagration dominant), reaction-controlled strong and mixing-controlled strong (volumetric ignition/spontaneous propagation dominant) regimes. Two-dimensional direct numerical simulations (DNS) of auto-ignition in a lean thermally-stratified syngas/air turbulent mixture at high-pressure, low-temperature conditions are performed to assess the validity of the regime diagram. Various parametric cases are considered corresponding to different locations on the regime diagram, by varying the characteristic turbulent Damköhler and Reynolds numbers. Detailed analysis of the reaction front propagation and heat release indicates that the observed ignition behaviors agree very well with the corresponding predictions by the regime diagram. U.S. DOE NETL award number DE-FE0007465; King Abdullah University of Science and Technology (KAUST).

  2. 2D/3D electron temperature fluctuations near explosive MHD instabilities accompanied by minor and major disruptions

    NASA Astrophysics Data System (ADS)

    Choi, M. J.; Park, H. K.; Yun, G. S.; Lee, W.; Luhmann, N. C., Jr.; Lee, K. D.; Ko, W.-H.; Park, Y.-S.; Park, B. H.; In, Y.

    2016-06-01

    Minor and major disruptions by explosive MHD instabilities were observed with the novel quasi 3D electron cyclotron emission imaging (ECEI) system in the KSTAR plasma. The fine electron temperature (T e) fluctuation images revealed two types of minor disruptions: a small minor disruption is a q∼ 2 localized fast transport event due to a single m/n  =  2/1 magnetic island growth, while a large minor disruption is partial collapse of the q≤slant 2 region with two successive fast heat transport events by the correlated m/n  =  2/1 and m/n  =  1/1 instabilities. The m/n  =  2/1 magnetic island growth during the minor disruption is normally limited below the saturation width. However, as the additional interchange-like perturbation grows near the inner separatrix of the 2/1 island, the 2/1 island can expand beyond the limit through coupling with the cold bubble formed by the interchange-like perturbation.

  3. The Temperature of the Cosmic Background Radiation: Results fromthe 1987 and 1988 Measurements at 3.8 GHz

    SciTech Connect

    De Amici, Giovanni; Bensadoun, M.; Bersanelli, M.; Kogut, A.; Levine, S.; Smoot, George F.; Witebsky, C.

    1989-11-10

    We have measured the temperature of the cosmic background radiation (CBR) at a frequency of 3.8 GHz (7.9 cm wavelength), during two consecutive summers, obtaining a brightness temperature, T{sub CBR}, of 2.56 {+-} 0.08 K in 1987 and 2.71 {+-} 0.07 K in 1988 (68% confidence level). The new results are in agreement with our previous measurement at 3.7 GHz obtained in 1986, and have smaller error bars. Combining measurements from all three years we obtain T{sub CBR} = 2.64 {+-} 0.07 K.

  4. Performance comparison of background-oriented schlieren and fringe deflection in temperature measurement, part 2: experimental evaluation

    NASA Astrophysics Data System (ADS)

    Blanco, Alan; Barrientos, Bernardino; Mares, Carlos

    2016-06-01

    In part 1 of the study, background-oriented schlieren (BOS) and fringe deflection (FD) were numerically compared when used for the measurement of temperature. The aim of this part is to experimentally corroborate the obtained numerical results. In this regard, we analyze an axisymmetric flame issued by a gas nozzle. Fringe deflection and BOS images are recorded at two different points in time and the corresponding displacement results are compared. Furthermore, we implement a variation of the techniques that allows us to carry out simultaneous displacement measurements by them. In this case, the signals of the techniques are encoded on the RGB channels of a color background image. The results confirm that FD slightly outperforms BOS, in particular for images that contain relatively high temperature gradients or regions with low contrast.

  5. Plio-Pleistocene sea level and temperature fluctuations in the northwestern Pacific promoted speciation in the globally-distributed flathead mullet Mugil cephalus

    PubMed Central

    2011-01-01

    Background The study of speciation in the marine realm is challenging because of the apparent absence of physical barriers to dispersal, which are one of the main drivers of genetic diversity. Although phylogeographic studies using mitochondrial DNA (mtDNA) information often reveal significant genetic heterogeneity within marine species, the evolutionary significance of such diversity is difficult to interpret with these markers. In the northwestern (NW) Pacific, several studies have emphasised the potential importance of sea-level regression during the most recent glaciations as a driver of genetic diversity in marine species. These studies have failed, however, to determine whether the period of isolation was long enough for divergence to attain speciation. Among these marine species, the cosmopolitan estuarine-dependent fish Mugil cephalus represents an interesting case study. Several divergent allopatric mtDNA lineages have been described in this species worldwide, and three occur in sympatry in the NW Pacific. Results Ten nuclear microsatellites were surveyed to estimate the level of genetic isolation of these lineages and determine the role of sea-level fluctuation in the evolution of NW Pacific M. cephalus. Three cryptic species of M. cephalus were identified within this region (NWP1, 2 and 3) using an assignment test on the microsatellite data. Each species corresponds with one of the three mtDNA lineages in the COI phylogenetic tree. NWP3 is the most divergent species, with a distribution range that suggests tropical affinities, while NWP1, with a northward distribution from Taiwan to Russia, is a temperate species. NWP2 is distributed along the warm Kuroshio Current. The divergence of NWP1 from NWP2 dates back to the Pleistocene epoch and probably corresponds to the separation of the Japan and China Seas when sea levels dropped. Despite their subsequent range expansion since this period of glaciation, no gene flow was observed among these three lineages

  6. CAREER: Hydrothermal vent flow and temperature fluctuations: exploring long-term variability through an integrated research and education program

    NASA Astrophysics Data System (ADS)

    Di Iorio, D.

    2011-12-01

    An acoustic scintillation system was built in partnership with ASL Environmental Sciences (Sidney BC Canada), which provided a unique opportunity for two engineering undergraduate students to live and work abroad. The acoustic instrumentation was tested in coastal waters and then deployed to study deep-sea hydrothermal plume dynamics. Undergraduate students were involved in the deployment of instrumentation and the development of processing software to give vertical velocities and temperature fluctuations from a vigorous hydrothermal vent. A graduate student thesis has yielded insights into the vertical and azimuthal dependence of entrainment and into plume bending and rise height. Teachers and Ocean Science Bowl students also participated in research cruises describing physical oceanography of estuaries, coastal waters, and deep-sea hydrothermal vents and participated in data collection, processing and analysis. Teachers used the knowledge they gained to develop creative educational curricula at their schools, to present their experiences at national conferences and to publish an article in the National Science Teachers Association - The Science Journal. One of the teachers was recently recognized with the Presidential Award for Excellence in Mathematics and Science Teaching. Working with the ocean bowl team at Oconee County High School has led to top ten placements in the national championships in 2005 (fourth place) and 2006 (sixth place). In order to increase quantitative methods in an undergraduate class, students acquire data from an ocean observatory and analyze the data for specific quantities of interest. One such project led to the calculation of the upper ocean heat content for the Greenland Sea using 7 years of Argo profiles, which showed a 0.04oC/year trend. These results were then published in JGR.

  7. BAYESIAN COMPONENT SEPARATION AND COSMIC MICROWAVE BACKGROUND ESTIMATION FOR THE FIVE-YEAR WMAP TEMPERATURE DATA

    SciTech Connect

    Dickinson, C.; Banday, A. J.; Jewell, J. B.; Gorski, K. M.; Huey, G.; Lawrence, C. R.; O'Dwyer, I. J.; Wandelt, B. D.

    2009-11-10

    A well-tested and validated Gibbs sampling code, that performs component separation and cosmic microwave background (CMB) power spectrum estimation, was applied to the WMAP five-year data. Using a simple model consisting of CMB, noise, monopoles, and dipoles, a 'per pixel' low-frequency power-law (fitting for both amplitude and spectral index), and a thermal dust template with a fixed spectral index, we found that the low-l (l < 50) CMB power spectrum is in good agreement with the published WMAP5 results. Residual monopoles and dipoles were found to be small (approx<3 muK) or negligible in the five-year data. We comprehensively tested the assumptions that were made about the foregrounds (e.g., dust spectral index, power-law spectral index prior, templates), and found that the CMB power spectrum was insensitive to these choices. We confirm the asymmetry of power between the north and south ecliptic hemispheres, which appears to be robust against foreground modeling. The map of low-frequency spectral indices indicates a steeper spectrum on average (beta = -2.97 +- 0.21) relative to those found at low (approxGHz) frequencies.

  8. Measurements of the cross-phase angle between density and electron temperature fluctuations and comparison with gyrokinetic simulations

    SciTech Connect

    White, A. E.; Peebles, W. A.; Rhodes, T. L.; Schmitz, L.; Carter, T. A.; Hillesheim, J. C.; Doyle, E. J.; Zeng, L.; Holland, C. H.; Wang, G.; McKee, G. R.; Staebler, G. M.; Waltz, R. E.; DeBoo, J. C.; Petty, C. C.; Burrell, K. H.

    2010-05-15

    This paper presents new measurements of the cross-phase angle, alpha{sub n{sub eT{sub e}}}, between long-wavelength (k{sub t}hetarho{sub s}<0.5) density, n-tilde{sub e}, and electron temperature, T-tilde{sub e}, fluctuations in the core of DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] tokamak plasmas. The coherency and cross-phase angle between n-tilde{sub e} and T-tilde{sub e} are measured using coupled reflectometer and correlation electron cyclotron emission diagnostics that view the same plasma volume. In addition to the experimental results, two sets of local, nonlinear gyrokinetic turbulence simulations that are performed with the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] are described. One set, called the pre-experiment simulations, was performed prior to the experiment in order to predict a change in alpha{sub n{sub eT{sub e}}} given experimentally realizable increases in the electron temperature, T{sub e}. In the experiment the cross-phase angle was measured at three radial locations (rho=0.55, 0.65, and 0.75) in both a 'Base' case and a 'High T{sub e}' case. The measured cross-phase angle is in good qualitative agreement with the pre-experiment simulations, which predicted that n-tilde{sub e} and T-tilde{sub e} would be out of phase. The pre-experiment simulations also predicted a decrease in cross-phase angle as T{sub e} is increased. Experimentally, this trend is observed at the inner two radial locations only. The second set of simulations, the postexperiment simulations, is carried out using local parameters taken from measured experimental profiles as input to GYRO. These postexperiment simulation results are in good quantitative agreement with the measured cross-phase angle, despite disagreements with transport fluxes. Directions for future modeling and experimental work are discussed.

  9. High-temperature expansion of the one-loop free energy of a scalar field on a curved background

    NASA Astrophysics Data System (ADS)

    Kalinichenko, I. S.; Kazinski, P. O.

    2013-04-01

    The complete form of the high-temperature expansion of the one-loop contribution to the free energy of a scalar field on a stationary gravitational background is derived. The explicit expressions for the divergent and finite parts of the high-temperature expansion in a three-dimensional space without boundaries are obtained. These formulas generalize the known one for the stationary spacetime. In particular, we confirm that for a massless conformal scalar field the leading correction to the Planck law proportional to the temperature squared turns out to be nonzero due to the nonstatic nature of the metric. The explicit expression for the so-called energy-time anomaly is found. The interrelation between this anomaly and the conformal (trace) anomaly is established. The natural simplest Lagrangian for the “Killing vector field” is given.

  10. Proteins, fluctuations and complexity

    SciTech Connect

    Frauenfelder, Hans; Chen, Guo; Fenimore, Paul W

    2008-01-01

    Glasses, supercooled liquids, and proteins share common properties, in particular the existence of two different types of fluctuations, {alpha} and {beta}. While the effect of the {alpha} fluctuations on proteins has been known for a few years, the effect of {beta} fluctuations has not been understood. By comparing neutron scattering data on the protein myoglobin with the {beta} fluctuations in the hydration shell measured by dielectric spectroscopy we show that the internal protein motions are slaved to these fluctuations. We also show that there is no 'dynamic transition' in proteins near 200 K. The rapid increase in the mean square displacement with temperature in many neutron scattering experiments is quantitatively predicted by the {beta} fluctuations in the hydration shell.

  11. First-principles modeling of longitudinal spin fluctuations in itinerant electron antiferromagnets: High Néel temperature in the V3Al alloy

    NASA Astrophysics Data System (ADS)

    Khmelevskyi, Sergii

    2016-07-01

    The V3Al alloy with D O3 crystal structure belongs to the family of the very few metallic materials that exhibit a magnetically ordered state with a high ordering temperature (˜600 K) and consist only of nonmagnetic elements. We show that, similarly to the ferromagnetism in the fcc Ni (with ordering temperature at about 630 K), the antiferromagnetism in V3Al has itinerant character, and the high value of the Néel temperature is the result of the strong longitudinal spin fluctuations in the paramagnetic state. In order to develop an ab initio-based theory of the magnetic ordering at finite temperatures, we employ an effective magnetic Heisenberg-like Hamiltonian with varying values of the on-site magnetic moments. Using a set of approximations we map this model onto the results of the first-principle-based disordered local moment formalism and the magnetoforce theorem applied in the framework of the Korringa-Kohn-Rostoker method. Our high-temperature approach is shown to describe the experimental Néel temperature of V3Al very well and thus underlines the importance of the longitudinal spin-fluctuation mechanism of formation of the vanadium magnetic moment at high temperatures.

  12. Temperature-fluctuation-sensitive accumulative effect of the phase measurement errors in low-coherence interferometry in characterizing arrayed waveguide gratings.

    PubMed

    Zhao, Changyun; Wei, Bing; Yang, Longzhi; Wang, Gencheng; Wang, Yuehai; Jiang, Xiaoqing; Li, Yubo; Yang, Jianyi

    2015-09-20

    We investigate the accumulative effect of the phase measurement errors in characterizing optical multipath components by low-coherence interferometry. The accumulative effect is caused by the fluctuation of the environment temperature, which leads to the variation of the refractive index of the device under test. The resulting phase measurement errors accumulate with the increasing of the phase difference between the two interferometer arms. Our experiments were carried out to demonstrate that the accumulative effect is still obvious even though the thermo-optical coefficient of the device under test is quite small. Shortening the measurement time to reduce the fluctuation of the environment temperature can effectively restrain the accumulative effect. The experiments show that when the scanning speed increases to 4.8 mm/s, the slope of the phase measurement errors decreases to 5.52×10(-8), which means the accumulative effect can be ignored. PMID:26406502

  13. Fluctuations in nuclear fragmentation

    SciTech Connect

    Aranda, A.; Dorso, C.O.; Furci, V.; Lopez, J.A.

    1995-12-01

    Heavy ion collisions can be used to study the thermodynamics of hot and dense nuclear matter only if the initial mass and energy fluctuations that lead to fragmentation are of thermal origin and survive the disassembly process. If this is the case, the observed fragment multiplicity should be directly related to those initial fluctuations and to the conditions of temperature and density causing them. The feasibility of this scenario is demonstrated with a molecular dynamics study of the evolution of mass and energy fluctuations, and fluctuations of the phase-space density. First, it is verified that the fluctuations leading to fragmentation are indeed early ones. Second, it is determined that different initial conditions of density and temperature can indeed produce varying final fragment multiplicities. The {rho}-{ital T} plane is mapped to the fragment multiplicity with good precision. This mapping should be easily reproducible with existing experimental data.

  14. Temporal fluctuations of the Sea Surface Temperature and Chlorophyll-a along of coral reef systems located on the Western coastal zone of the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    de Jesús Salas Pérez, José; Ocaña Valencia, Angel; González Gandara, Carlos

    2014-05-01

    On the coastal zone of the western Gulf of Mexico (GM), there are a variety of coral reef systems which are influenced by river discharge and macro-scale circulation of the GM. The goal of this study is determine if the main fluctuations of the chlorophyll-a and sea surface temperature values (measured from monthly satellite images of sensors Aqua Modis and NOAA-AVHRR in the period of 2008-2011) in coral reef systems, are determined by river discharges or macro-scale circulation of the basin. Moreover determine if the temporal fluctuations of those parameters are correlated between them and thus asses the relationship between them. The most norther coral reef system (Lobos) is classified as mesotrophic-eutrophic. The middle coral reef system (Tuxpan) is ranked as oligotrophic-mesotrophic. Toward the southern region of the western littoral of the GM the coral reefs systems (PNSAV and Coatzacoalcos) are classified as eutrophic. Regarding to Sea Surface Temperature (SST) fluctuations, all coral reef systems showed an almost similar behavior, winter is the season with cool waters (19-23°C). Then in spring, the temperature values increases to about 25°C. Summer season have warm waters (29-30°C). Slightly different, fall decrease their water temperatures to 28°C. The northern coral reef systems (Lobos-Tuxpan) are colder than that the coral reef systems of the southern region (PNSAV-Coatzacoalcos). Those fluctuations, in chlorophyll-a and SST are induced by cyclonic and anticyclonic gyres generated in the Loop current, which impact in the northern region, while the southern region is influenced by river discharge and the presence of a cyclonic gyre of the Campeche bay. But northern and southern coral reef systems are mainly affected by waters of the northern GM advected by winds blowing from the north, mainly in winter.

  15. Gaussian statistics of the cosmic microwave background: Correlation of temperature extrema in the COBE DMR two-year sky maps

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Banday, A. J.; Bennett, C. L.; Hinshaw, G.; Lubin, P. M.; Smoot, G. F.

    1995-01-01

    We use the two-point correlation function of the extrema points (peaks and valleys) in the Cosmic Background Explorer (COBE) Differential Microwave Radiometers (DMR) 2 year sky maps as a test for non-Gaussian temperature distribution in the cosmic microwave background anisotropy. A maximum-likelihood analysis compares the DMR data to n = 1 toy models whose random-phase spherical harmonic components a(sub lm) are drawn from either Gaussian, chi-square, or log-normal parent populations. The likelihood of the 53 GHz (A+B)/2 data is greatest for the exact Gaussian model. There is less than 10% chance that the non-Gaussian models tested describe the DMR data, limited primarily by type II errors in the statistical inference. The extrema correlation function is a stronger test for this class of non-Gaussian models than topological statistics such as the genus.

  16. Effect of dust charge fluctuations on dust acoustic structures in magnetized dusty plasma containing nonextensive electrons and two-temperature isothermal ions

    NASA Astrophysics Data System (ADS)

    Araghi, F.; Dorranian, D.

    2016-02-01

    Effect of dust electrical charge fluctuations on the nature of dust acoustic solitary waves (DASWs) in a four-species magnetized dusty plasma containing nonextensive electrons and two-temperature isothermal ions has been investigated. In this model, the negative dust electric charge is considered to be proportional to the plasma space potential. The nonlinear Zakharov-Kuznetsov (ZK) and modified Zakharov-Kuznetsov (mZK) equations are derived for DASWs by using the standard reductive perturbation method. The combined effects of electron nonextensivity and dust charge fluctuations on the DASW profile are analyzed. The different ranges of the nonextensive q-parameter are considered. The results show that solitary waves the amplitude and width of which depend sensitively on the nonextensive q-parameter can exist. Due to the electron nonextensivity and dust charge fluctuation rate, our dusty plasma model can admit both positive and negative potential solitons. The results show that the amplitude of the soliton increases with increasing electron nonextensivity, but its width decreases. Increasing the electrical charge fluctuations leads to a decrease in both the amplitude and width of DASWs.

  17. Short-term flow and water temperature fluctuations in Sagami Bay, Japan, associated with variations of the Kuroshio during the non-large-meander path

    NASA Astrophysics Data System (ADS)

    Takahashi, Daisuke; Morimoto, Akihiko; Nakamura, Tetsuya; Hosaka, Takuji; Mino, Yoshihisa; Dang, Vu Hai; Saino, Toshiro

    2012-10-01

    Short-term flow and water temperature fluctuations in Sagami Bay were examined using mooring and hydrographic data observed during the non-large-meander path (NLM) of the Kuroshio. In the surface layer (<150 m), the flow fluctuation is predominant and is excited by the sudden strong eastward flow with speeds greater than 20 cm s-1 in the central part of the bay. This flow is a part of an intrusion of Kuroshio water via the Oshima West Channel into the bay and/or a cyclonic circulation in the northern part of the bay. The cyclonic circulation, which is approximately balanced under the geostrophic flow relationship, is mainly generated or enhanced by the intrusion, which is accompanied by eastward propagation of the small meander of the Kuroshio south of Japan during the transition from the nearshore non-large-meander path (nNLM) to the offshore non-large-meander path (oNLM), regardless of season. The water temperature fluctuation in the subsurface layer (∼150 m) is caused by upwelling of cold deeper water and is closely related to the eastward flow fluctuations in the surface layer in the central part of the bay. Our analysis leads us the conclusion that the upwelling occurs as the response of the subsurface density field to the surface flow field under the Earth’s rotation. Additionally, the intrusion of Kuroshio water via the Oshima West Channel tends to cause, not only cyclonic circulation and upwelling in the northern part of the bay, but also the Kyucho, which is the coastal density current under the Earth’s rotation, in the bay’s coastal area during the non-large-meander path (NLM).

  18. A Measurement of the Temperature of the Cosmic MicrowaveBackground at a Frequency of 7.5 GHz

    SciTech Connect

    Kogut, A.; Bensadoun, M.; De Amici, Giovanni; Levin, S.; Smoot,George F.; Witebsky, C.

    1989-06-01

    We have measured the intensity of the cosmic microwave background (CMB) at a frequency of 7.5 GHz (wavelength 4.0 cm) using a ground-based, total power radiometer calibrated at the horn aperture by an external cryogenic reference target. The radiometer measured the difference in antenna temperature between the reference target and the zenith sky from a dry, high-altitude site. Subtraction of foreground signals (primarily atmospheric and galactic emission) measured with the same instrument leaves the CMB as the residual. The radiometer measured the atmospheric antenna temperature by correlating the signal change with the airmass in the beam during tip scans. The small galactic signal was subtracted based on extrapolation from lower frequencies, and was checked by differential drift scans. The limiting uncertainty in the CMB measurement was the effect of ground radiation in the antenna sidelobes during atmospheric measurements. The thermodynamic temperature of the CMB at 7.5 GHz is 2.59 {+-} 0.07 K (68% confidence level).

  19. On the recovery of ISW fluctuations using large-scale structure tracers and CMB temperature and polarization anisotropies

    NASA Astrophysics Data System (ADS)

    Bonavera, L.; Barreiro, R. B.; Marcos-Caballero, A.; Vielva, P.

    2016-06-01

    In this work we present a method to extract the signal induced by the integrated Sachs-Wolfe (ISW) effect in the cosmic microwave background (CMB). It makes use of the Linear Covariance-Based filter introduced by Barreiro et al., and combines CMB data with any number of large-scale structure (LSS) surveys and lensing information. It also exploits CMB polarization to reduce cosmic variance. The performance of the method has been thoroughly tested with simulations taking into account the impact of non-ideal conditions such as incomplete sky coverage or the presence of noise. In particular, three galaxy surveys are simulated, whose redshift distributions peak at low (z ≃ 0.3), intermediate (z ≃ 0.6) and high redshift (z ≃ 0.9). The contribution of each of the considered data sets as well as the effect of a mask and noise in the reconstructed ISW map is studied in detail. When combining all the considered data sets (CMB temperature and polarization, the three galaxy surveys and the lensing map), the proposed filter successfully reconstructs a map of the weak ISW signal, finding a perfect correlation with the input signal for the ideal case and around 80 per cent, on average, in the presence of noise and incomplete sky coverage. We find that including CMB polarization improves the correlation between input and reconstruction although only at a small level. Nonetheless, given the weakness of the ISW signal, even modest improvements can be of importance. In particular, in realistic situations, in which less information is available from the LSS tracers, the effect of including polarization is larger. For instance, for the case in which the ISW signal is recovered from CMB plus only one survey, and taking into account the presence of noise and incomplete sky coverage, the improvement in the correlation coefficient can be as large as 10 per cent.

  20. The impact of background radiation, illumination and temperature on EMF-induced changes of aqua medium properties.

    PubMed

    Naira, Baghdasaryan; Yerazik, Mikayelyan; Anna, Nikoghosyan; Sinerik, Ayrapetyan

    2013-09-01

    The effects of extremely low frequency electromagnetic field (ELF EMF) on physicochemical properties of physiological solution at different environmental media were studied. The existence of frequency "windows" at 4 and 8 Hz frequencies of ELF EMF having effects on heat fusion period, hydrogen peroxide (H2O2) formation and oxygen (O2) content of water solution and different dependency on temperature, background radiation and illumination was shown. Obtained data allow us to suggest that EMF-induced effect on water physicochemical properties depends on abovementioned environmental factors. As cell bathing medium is a target for biological effects of ELF EMF, the variability of experimental data on biological effects of EMF, obtained in different laboratories, can be explained by different environmental conditions of experiments, which very often are not considered adequately. PMID:23323624

  1. DIRECT MEASUREMENT OF THE ANGULAR POWER SPECTRUM OF COSMIC MICROWAVE BACKGROUND TEMPERATURE ANISOTROPIES IN THE WMAP DATA

    SciTech Connect

    Chiang, Lung-Yih; Chen, Fei-Fan

    2012-05-20

    The angular power spectrum of the cosmic microwave background temperature anisotropies is one of the most important characteristics in cosmology that can shed light on the properties of the universe such as its geometry and total density. Using flat sky approximation and Fourier analysis, we estimate the angular power spectrum from an ensemble of the least foreground-contaminated square patches from the Wilkinson Microwave Anisotropy Probe W and V frequency band map. This method circumvents the issue of foreground cleaning and that of breaking orthogonality in spherical harmonic analysis because we are able to mask out the bright Galactic plane region, thereby rendering a direct measurement of the angular power spectrum. We test and confirm the Gaussian statistical characteristic of the selected patches, from which the first and second acoustic peaks of the power spectrum are reproduced, and the third peak is clearly visible, albeit with some noise residual at the tail.

  2. Enhanced superconducting transition temperature in hyper-interlayer-expanded FeSe despite the suppressed electronic nematic order and spin fluctuations

    NASA Astrophysics Data System (ADS)

    Hrovat, Matevž Majcen; Jeglič, Peter; Klanjšek, Martin; Hatakeda, Takehiro; Noji, Takashi; Tanabe, Yoichi; Urata, Takahiro; Huynh, Khuong K.; Koike, Yoji; Tanigaki, Katsumi; Arčon, Denis

    2015-09-01

    The superconducting critical temperature, Tc, of FeSe can be dramatically enhanced by intercalation of a molecular spacer layer. Here we report on a 77Se,7Li , and 1H nuclear magnetic resonance (NMR) study of the powdered hyper-interlayer-expanded Lix(C2H8N2) yFe2 -zSe2 with a nearly optimal Tc=45 K. The absence of any shift in the 7Li and 1H NMR spectra indicates a complete decoupling of interlayer units from the conduction electrons in FeSe layers, whereas nearly temperature-independent 7Li and 1H spin-lattice relaxation rates are consistent with the non-negligible concentration of Fe impurities present in the insulating interlayer space. On the other hand, the strong temperature dependence of 77Se NMR shift and spin-lattice relaxation rate, 1 /77T1 , is attributed to the holelike bands close to the Fermi energy. 1 /77T1 shows no additional anisotropy that would account for the onset of electronic nematic order down to Tc. Similarly, no enhancement in 1 /77T1 due to the spin fluctuations could be found in the normal state. Yet, a characteristic power-law dependence 1 /77T1∝T4.5 still complies with the Cooper pairing mediated by spin fluctuations.

  3. Cyclic CO(2) emissions during the high temperature pulse of fluctuating thermal regime in eye-pigmented pupae of Megachile rotundata.

    PubMed

    Yocum, George D; Greenlee, Kendra J; Rinehart, Joseph P; Bennett, Meghan M; Kemp, William P

    2011-12-01

    Megachile rotundata (Hymenoptera: Megachilidae), the primary pollinator used in alfalfa seed production, may need to be exposed to low-temperature storage to slow the insects' development to better match spring emergence with the alfalfa bloom. It has been demonstrated that using a fluctuating thermal regime (FTR) improves the tolerance of pupae to low temperatures. Carbon dioxide emission rates were compared between four different FTRs, all with a base temperature of 6°C and a daily high-temperature pulse. Four different high-temperature pulses were examined, 15 or 25°C for 2h and 20°C for 1 or 2h. A subset of pupae at the FTR base temperature of 6°C exhibited continuous gas exchange and, once ramped to 20 or 25°C, shifted to cyclic gas exchange. As temperatures were ramped down from the high-temperature pulse to 6°C, the pupae reverted to continuous gas exchange. The following conclusions about the effect of FTR on the CO(2) emissions of M. rotundata pupae exposed to low-temperature storage during the spring incubation were reached: 1) the high temperature component of the FTR was the best predictor of respiratory pattern; 2) neither pupal body mass nor days in FTR significantly affected which respiratory pattern was expressed during FTRs; 3) cyclic gas exchange was induced only in pupae exposed to temperatures greater than 15°C during the FTR high temperature pulse; and 4) a two hour pulse at 25°C doubled the number of CO(2) peaks observed during the FTR pulse as compared to a two hour pulse at 20°C. PMID:21854865

  4. COSMIC MICROWAVE BACKGROUND POLARIZATION AND TEMPERATURE POWER SPECTRA ESTIMATION USING LINEAR COMBINATION OF WMAP 5 YEAR MAPS

    SciTech Connect

    Samal, Pramoda Kumar; Jain, Pankaj; Saha, Rajib; Prunet, Simon; Souradeep, Tarun

    2010-05-01

    We estimate cosmic microwave background (CMB) polarization and temperature power spectra using Wilkinson Microwave Anisotropy Probe (WMAP) 5 year foreground contaminated maps. The power spectrum is estimated by using a model-independent method, which does not utilize directly the diffuse foreground templates nor the detector noise model. The method essentially consists of two steps: (1) removal of diffuse foregrounds contamination by making linear combination of individual maps in harmonic space and (2) cross-correlation of foreground cleaned maps to minimize detector noise bias. For the temperature power spectrum we also estimate and subtract residual unresolved point source contamination in the cross-power spectrum using the point source model provided by the WMAP science team. Our TT, TE, and EE power spectra are in good agreement with the published results of the WMAP science team. We perform detailed numerical simulations to test for bias in our procedure. We find that the bias is small in almost all cases. A negative bias at low l in TT power spectrum has been pointed out in an earlier publication. We find that the bias-corrected quadrupole power (l(l + 1)C{sub l} /2{pi}) is 532 {mu}K{sup 2}, approximately 2.5 times the estimate (213.4 {mu}K{sup 2}) made by the WMAP team.

  5. On the importance of high-frequency air-temperature fluctuations for spectroscopic corrections of open-path carbon dioxide flux measurements

    NASA Astrophysics Data System (ADS)

    Bogoev, Ivan; Helbig, Manuel; Sonnentag, Oliver

    2015-04-01

    A growing number of studies report systematic differences in CO2 flux estimates obtained with the two main types of gas analyzers: compared to eddy-covariance systems based on closed-path (CP) gas analyzers, systems with open-path (OP) gas analyzers systematically overestimate CO2 uptake during daytime periods with high positive sensible heat fluxes, while patterns for differences in nighttime CO2 exchange are less obvious. These biases have been shown to correlate with the sign and the magnitude of the sensible heat flux and to introduce large uncertainties when calculating annual CO2 budgets. In general, CP and OP gas analyzers commonly used to measure the CO2 density in the atmosphere operate on the principle of infrared light absorption approximated by Beer-Lambert's law. Non-dispersive interference-based optical filter elements are used to select spectral bands with strong attenuation of light transmission, characteristic to the gas of interest. The intensity of the light passing through the optical sensing path depends primarily on the amount of absorber gas in the measurement volume. Besides the density of the gas, barometric pressure and air temperature are additional factors affecting the strength and the half-width of the absorption lines. These so-called spectroscopic effects are accounted for by measuring barometric pressure and air temperature in the sensing path and scaling the light-intensity measurements before applying the calibration equation. This approach works well for CP gas analyzers with an intake tube that acts as a low-pass filter on fast air-temperature fluctuations. Low-frequency response temperature sensors in the measurement cell are therefore sufficient to account for spectroscopic temperature effects. In contrast, OP gas analyzers are exposed to high-frequency air-temperature fluctuations associated with the atmospheric surface-layer turbulent heat exchange. If not corrected adequately, these fast air-temperature variations can cause

  6. Sub-250nm room temperature optical gain from AlGaN materials with strong compositional fluctuations

    NASA Astrophysics Data System (ADS)

    Pecora, Emanuele; Zhang, Wei; Sun, Haiding; Nikiforov, A.; Yin, Jian; Paiella, Roberto; Moustakas, Theodore; Dal Negro, Luca

    2013-03-01

    Compact and portable deep-UV LEDs and laser sources are needed for a number of engineering applications including optical communications, gas sensing, biochemical agent detection, disinfection, biotechnology and medical diagnostics. We investigate the deep-UV optical emission and gain properties of AlxGa1-xN/AlyGa1-yN multiple quantum wells structure. These structures were grown by molecular-beam epitaxy on 6H-SiC substrates resulting in either homogeneous wells or various degrees of band-structure compositional fluctuations in the form of cluster-like features within the wells. We measured the TE-polarized amplified spontaneous emission in the sample with cluster-like features and quantified the optical absorption/gain coefficients and gain spectra by the Variable Stripe Length (VSL) technique under ultrafast optical pumping. We report blue-shift and narrowing of the emission, VSL traces, gain spectra, polarization studies, and the validity of the Schalow-Townes relation to demonstrate a maximum net modal gain of 120 cm-1 at 250 nm in the sample with strong compositional fluctuations. Moreover, we measure a very low gain threshold (15 μJ/cm2) . On the other hand, we found that samples with homogeneous quantum wells lead to absorption only. In addition, we report gain measurements in graded-index-separate-confined heterostructure (GRINSCH) designed to increase the device optical confinement factor.

  7. Calibrating cosmological radiative transfer simulations with Ly α forest data: evidence for large spatial UV background fluctuations at z ˜ 5.6-5.8 due to rare bright sources

    NASA Astrophysics Data System (ADS)

    Chardin, Jonathan; Haehnelt, Martin G.; Aubert, Dominique; Puchwein, Ewald

    2015-11-01

    We calibrate here cosmological radiative transfer simulations with ATON/RAMSES with a range of measurements of the Ly α opacity from Quasi-Stellar Objects (QSO) absorption spectra. We find the Ly α opacity to be very sensitive to the exact timing of hydrogen reionization. Models reproducing the measured evolution of the mean photoionization rate and average mean free path reach overlap at z ˜ 7 and predict an accelerated evolution of the Ly α opacity at z > 6 consistent with the rapidly evolving luminosity function of Ly α emitters in this redshift range. Similar to `optically thin' simulations our full radiative transfer simulations fail, however, to reproduce the high-opacity tail of the Ly α opacity PDF (probability distribution function) at z > 5. We argue that this is due to spatial UV fluctuations in the post-overlap phase of reionization on substantially larger scales than predicted by our source model, where the ionizing emissivity is dominated by large numbers of sub-L* galaxies. We further argue that this suggests a significant contribution to the ionizing UV background by much rarer bright sources at high redshift.

  8. Fluctuating pressures measured beneath a high-temperature, turbulent boundary layer on a flat plate at Mach number of 5

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Jones, Michael G.; Albertson, Cindy W.

    1989-01-01

    Fluctuating pressures were measured beneath a Mach 5, turbulent boundary layer on a flat plate with an array of piezoresistive sensors. The data were obtained with a digital signal acquisition system during a test run of 4 seconds. Data sampling rate was such that frequency analysis up to 62.5 kHz could be performed. To assess in situ frequency response of the sensors, a specially designed waveguide calibration system was employed to measure transfer functions of all sensors and related instrumentation. Pressure time histories were approximated well by a Gaussian prohibiting distribution. Pressure spectra were very repeatable over the array span of 76 mm. Total rms pressures ranged from 0.0017 to 0.0046 of the freestream dynamic pressure. Streamwise, space-time correlations exhibited expected decaying behavior of a turbulence generated pressure field. Average convection speed was 0.87 of freestream velocity. The trendless behavior with sensor separation indicated possible systematic errors.

  9. Seasonal variation in parasite infection patterns of marine fish species from the Northern Wadden Sea in relation to interannual temperature fluctuations

    NASA Astrophysics Data System (ADS)

    Schade, Franziska M.; Raupach, Michael J.; Mathias Wegner, K.

    2016-07-01

    Marine environmental conditions are naturally changing throughout the year, affecting life cycles of hosts as well as parasites. In particular, water temperature is positively correlated with the development of many parasites and pathogenic bacteria, increasing the risk of infection and diseases during summer. Interannual temperature fluctuations are likely to alter host-parasite interactions, which may result in profound impacts on sensitive ecosystems. In this context we investigated the parasite and bacterial Vibrionaceae communities of four common small fish species (three-spined stickleback Gasterosteus aculeatus, Atlantic herring Clupea harengus, European sprat Sprattus sprattus and lesser sand eel Ammodytes tobianus) in the Northern Wadden Sea over a period of two years. Overall, we found significantly increased relative diversities of infectious species at higher temperature differentials. On the taxon-specific level some macroparasite species (trematodes, nematodes) showed a shift in infection peaks that followed the water temperatures of preceding months, whereas other parasite groups showed no effects of temperature differentials on infection parameters. Our results show that even subtle changes in seasonal temperatures may shift and modify the phenology of parasites as well as opportunistic pathogens that can have far reaching consequences for sensitive ecosystems.

  10. [Effect of Seasonal Temperature Increasing on Nitrogen Mineralization in Soil of the Water Level Fluctuating Zone of Three Gorge Tributary During the Dry Period].

    PubMed

    Lin, Jun-jie; Zhang, Shuai; Liu, Dan; Zhou, Bin; Xiao, Xiao-jun; Ma, Hui-yan; Yu, Zhi-guo

    2016-02-15

    To reveal the effect of seasonal temperature increasing on nitrogen mineralization in soil of the water level fluctuating soil zone of three gorge reservoir areas in the Yangtze river tributary during the dry period, surface soils were collected from the water level fluctuating zone of Pengxi river crossing two hydrological sections, i.e., upstream and downstream and three water level altitudes, 155 m (low), 165 m (middle) and 175 m (high). We incubated the soil at 25 degrees C and 35 degrees C to determine the transformation rates of nitrogen in soil of Pengxi river basin during the dry period. The result showed that TN and NO3- -N contents in the soil of upstream section and higher (175 m) altitude of water level were higher than those in downstream and low (165 m) altitude of water level, whereas the pattern for NH4+ -N was different, with higher NH4+ -N contents in downstream and low water level. The inorganic nitrogen was dominated by NO3- -N, which accounted for up to 57.4%-84.7% of inorganic nitrogen. Generally, soil ammoniation, nitration and net N mineralization increased with the rising water level altitude and stream sections (P < 0.05). In summary, nitration and net N mineralization significantly increased with increasing temperature, (P < 0.05), while ammoniation showed no difference (P > 0.05). PMID:27363162

  11. Comparison of temperature fluctuations at multiple anatomical locations in cattle during exposure to bovine viral diarrhea virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rectal temperature is generally considered the “gold standard” for monitoring temperature changes associated with environmental, immunological or endocrine stimuli in cattle. With the development of new telemetry systems, other anatomical locations and methods can be utilized to help continuously m...

  12. Carbon films embedded by nickel nanoparticles: fluctuation in hopping rate and variable-range hopping with respect to annealing temperature

    NASA Astrophysics Data System (ADS)

    Dalouji, Vali; Elahi, Smohammad; Solaymani, Shahram; Ghaderi, Atefeh; Elahi, Hossein

    2016-05-01

    In this work, the electrical properties of carbon-nickel films annealed at different temperatures (573, 773, 1073 and 1273 K) in the temperature range 15-300 K were investigated. The films were grown by radio frequency magnetron co-sputtering on quartz substrates at room temperature. The multiphonon hopping conduction mechanism is found to dominate the electrical transport in the temperature range 150-300 K. It can be seen that the room-temperature hopping rate (ΓRT) at 773 K has maximum value of 56.8 × 105 s-1. Our results of conductivity measurements at high temperature are in good agreement with strong carrier-lattice coupling model; on the other hand, the conductivity in the range 15-50 K is well described in terms of variable-range hopping (VRH) conduction mechanism. The localized state density around Fermi level N( E F) and the average hopping energy W hop at low temperature for the films annealed at 773 K have maximum value of 2.23 × 1023 (cm-3 eV-1) and minimum value of 9.74 × 10-4 eV, respectively.

  13. Difference in responses of two coastal species to fluctuating salinities and temperatures: Potential modification of specific distribution areas in the context of global change

    NASA Astrophysics Data System (ADS)

    Trancart, Thomas; Feunteun, Eric; Lefrançois, Christel; Acou, Anthony; Boinet, Christophe; Carpentier, Alexandre

    2016-05-01

    In the past several years, all numerical models have forecasted an increase in extreme climatic events linked to global change. Estuarine waters at the interface of marine and freshwater bodies are among the most volatile ecosystems, particularly for aquatic species, and will be strongly influenced by the temperature with extreme flooding events. This study aimed to quantify the acclimation capacity of coastal fish species to estuarine plume modifications. The thicklip mullet (Chelon labrosus) and European seabass (Dicentrarchus labrax) were selected as representative species of estuarine ecological guilds. These fish were subjected to an experiment mimicking a brief freshwater intrusion (35-5). These experiments were conducted at two different temperatures that these two species would encounter during their incursion from the sea through estuarine waters to freshwater habitats. The experimental results confirmed the high capacity for acclimation of both species to changes in salinity and temperature. Interspecific differences were observed. For example, the salinity has a greater effect on the metabolism of the seabass than on that of the mullets. Meanwhile, the temperature has a greater effect on the mullets. These differences in metabolic responses to fluctuating salinities and temperatures may modify the use of estuarine waters by these species and should be considered when predicting future specific distribution areas in the context of global change.

  14. Profiles of second- to fourth-order moments of turbulent temperature fluctuations in the convective boundary layer: first measurements with rotational Raman lidar

    NASA Astrophysics Data System (ADS)

    Behrendt, A.; Wulfmeyer, V.; Hammann, E.; Muppa, S. K.; Pal, S.

    2015-05-01

    The rotational Raman lidar (RRL) of the University of Hohenheim (UHOH) measures atmospheric temperature profiles with high resolution (10 s, 109 m). The data contain low-noise errors even in daytime due to the use of strong UV laser light (355 nm, 10 W, 50 Hz) and a very efficient interference-filter-based polychromator. In this paper, the first profiling of the second- to fourth-order moments of turbulent temperature fluctuations is presented. Furthermore, skewness profiles and kurtosis profiles in the convective planetary boundary layer (CBL) including the interfacial layer (IL) are discussed. The results demonstrate that the UHOH RRL resolves the vertical structure of these moments. The data set which is used for this case study was collected in western Germany (50°53'50.56'' N, 6°27'50.39'' E; 110 m a.s.l.) on 24 April 2013 during the Intensive Observations Period (IOP) 6 of the HD(CP)2 (High-Definition Clouds and Precipitation for advancing Climate Prediction) Observational Prototype Experiment (HOPE). We used the data between 11:00 and 12:00 UTC corresponding to 1 h around local noon (the highest position of the Sun was at 11:33 UTC). First, we investigated profiles of the total noise error of the temperature measurements and compared them with estimates of the temperature measurement uncertainty due to shot noise derived with Poisson statistics. The comparison confirms that the major contribution to the total statistical uncertainty of the temperature measurements originates from shot noise. The total statistical uncertainty of a 20 min temperature measurement is lower than 0.1 K up to 1050 m a.g.l. (above ground level) at noontime; even for single 10 s temperature profiles, it is smaller than 1 K up to 1020 m a.g.l. Autocovariance and spectral analyses of the atmospheric temperature fluctuations confirm that a temporal resolution of 10 s was sufficient to resolve the turbulence down to the inertial subrange. This is also indicated by the integral scale of

  15. Influence of seasonal temperature fluctuations on two different partial nitritation-anammox reactors treating mainstream municipal wastewater.

    PubMed

    Lackner, Susanne; Welker, Samuel; Gilbert, Eva M; Horn, Harald

    2015-01-01

    Partial nitritation-anammox (PN-A) has gained increasing interest for municipal wastewater treatment in recent years due to its high energy-saving potential. Moving the PN-A technology from side- to mainstream exhibited a set of challenges. Conditions are quite different, with much lower ammonium concentrations and temperatures. Biomass retention becomes highly important due to the even lower growth rates. This study compared two laboratory-scale reactors, a sequencing batch reactor (SBR) and a moving bed biofilm reactor (MBBR), employing realistic seasonal temperature variations over a 1-year period. The results revealed that both systems had to face decreasing ammonium conversion rates and nitrite accumulation at temperatures lower than 12°C. The SBR did not recover from the loss in anammox activity even when the temperature increased again. The MBBR only showed a short nitrite peak and recovered its initial ammonium turnover when the temperature rose back to >15°C. The SBR had higher biomass specific rates, indicating that suspended sludge is less diffusion-limited but also more susceptible to biomass wash-out. However, the MBBR showed the more stable performance also at low temperatures and managed to recover. Ex situ batch activity tests supported reactor operation data by providing additional insight with respect to specific biomass activities. PMID:26465306

  16. Orientation Cues for High-Flying Nocturnal Insect Migrants: Do Turbulence-Induced Temperature and Velocity Fluctuations Indicate the Mean Wind Flow?

    PubMed Central

    Reynolds, Andy M.; Reynolds, Don R.; Smith, Alan D.; Chapman, Jason W.

    2010-01-01

    Migratory insects flying at high altitude at night often show a degree of common alignment, sometimes with quite small angular dispersions around the mean. The observed orientation directions are often close to the downwind direction and this would seemingly be adaptive in that large insects could add their self-propelled speed to the wind speed, thus maximising their displacement in a given time. There are increasing indications that high-altitude orientation may be maintained by some intrinsic property of the wind rather than by visual perception of relative ground movement. Therefore, we first examined whether migrating insects could deduce the mean wind direction from the turbulent fluctuations in temperature. Within the atmospheric boundary-layer, temperature records show characteristic ramp-cliff structures, and insects flying downwind would move through these ramps whilst those flying crosswind would not. However, analysis of vertical-looking radar data on the common orientations of nocturnally migrating insects in the UK produced no evidence that the migrants actually use temperature ramps as orientation cues. This suggests that insects rely on turbulent velocity and acceleration cues, and refocuses attention on how these can be detected, especially as small-scale turbulence is usually held to be directionally invariant (isotropic). In the second part of the paper we present a theoretical analysis and simulations showing that velocity fluctuations and accelerations felt by an insect are predicted to be anisotropic even when the small-scale turbulence (measured at a fixed point or along the trajectory of a fluid-particle) is isotropic. Our results thus provide further evidence that insects do indeed use turbulent velocity and acceleration cues as indicators of the mean wind direction. PMID:21209956

  17. Orientation cues for high-flying nocturnal insect migrants: do turbulence-induced temperature and velocity fluctuations indicate the mean wind flow?

    PubMed

    Reynolds, Andy M; Reynolds, Don R; Smith, Alan D; Chapman, Jason W

    2010-01-01

    Migratory insects flying at high altitude at night often show a degree of common alignment, sometimes with quite small angular dispersions around the mean. The observed orientation directions are often close to the downwind direction and this would seemingly be adaptive in that large insects could add their self-propelled speed to the wind speed, thus maximising their displacement in a given time. There are increasing indications that high-altitude orientation may be maintained by some intrinsic property of the wind rather than by visual perception of relative ground movement. Therefore, we first examined whether migrating insects could deduce the mean wind direction from the turbulent fluctuations in temperature. Within the atmospheric boundary-layer, temperature records show characteristic ramp-cliff structures, and insects flying downwind would move through these ramps whilst those flying crosswind would not. However, analysis of vertical-looking radar data on the common orientations of nocturnally migrating insects in the UK produced no evidence that the migrants actually use temperature ramps as orientation cues. This suggests that insects rely on turbulent velocity and acceleration cues, and refocuses attention on how these can be detected, especially as small-scale turbulence is usually held to be directionally invariant (isotropic). In the second part of the paper we present a theoretical analysis and simulations showing that velocity fluctuations and accelerations felt by an insect are predicted to be anisotropic even when the small-scale turbulence (measured at a fixed point or along the trajectory of a fluid-particle) is isotropic. Our results thus provide further evidence that insects do indeed use turbulent velocity and acceleration cues as indicators of the mean wind direction. PMID:21209956

  18. Magnetoconductance fluctuations in open bismuth quantum dots

    NASA Astrophysics Data System (ADS)

    Hackens, B.; Minet, J. P.; Farhi, G.; Crahay, A.; Faniel, S.; Gustin, C.; Bayot, V.

    2002-03-01

    We investigate the low temperature (300 mK - 10 K) magnetoconductance of open circular bismuth quantum dots (diameter: 500 nm). The structures are fabricated using a combination of electron beam lithography, lift off and plasma etching techniques on bismuth thin films evaporated on heated SiO2 substrates. We observe reproducible magnetoconductance fluctuations (UCFs) up to 5T, qualitatively similar to conductance fluctuations evidenced in open quantum dots patterned in high mobility semiconductor heterostructures. In our samples, UCFs are superposed on a slowly varying negative magnetoconductance background. We also observe a sharp conductance maximum centered in B=0, which is reminescent of the spin-orbit induced anti-localisation phenomenon. The behavior of UCFs and of the conductance maximum is discussed as a function of the temperature, thickness and degree of cristallinity of the cavity.

  19. GRADFLEX: Fluctuations in Microgravity

    NASA Technical Reports Server (NTRS)

    Vailati, A.; Cerbino, R.; Mazzoni, S.; Giglio, M.; Nikolaenko, G.; Cannell, D. S.; Meyer, W. V.; Smart, A. E.

    2004-01-01

    We present the results of experimental investigations of gradient driven fluctuations induced in a liquid mixture with a concentration gradient and in a single-component fluid with a temperature gradient. We also describe the experimental apparatus being developed to carry out similar measurement under microgravity conditions.

  20. Sub-250 nm room-temperature optical gain from AlGaN/AlN multiple quantum wells with strong band-structure potential fluctuations

    NASA Astrophysics Data System (ADS)

    Francesco Pecora, Emanuele; Zhang, Wei; Yu. Nikiforov, A.; Zhou, Lin; Smith, David J.; Yin, Jian; Paiella, Roberto; Dal Negro, Luca; Moustakas, T. D.

    2012-02-01

    Deep-UV optical gain has been demonstrated in Al0.7Ga0.3N/AlN multiple quantum wells under femtosecond optical pumping. Samples were grown by molecular beam epitaxy under a growth mode that introduces band structure potential fluctuations and high-density nanocluster-like features within the AlGaN wells. A maximum net modal gain value of 118 ± 9 cm-1 has been measured and the transparency threshold of 5 ± 1 µJ/cm2 was experimentally determined, corresponding to 1.4 × 1017 cm-3 excited carriers. These findings pave the way for the demonstration of solid-state lasers with sub-250 nm emission at room temperature.

  1. Profiles of second- to third-order moments of turbulent temperature fluctuations in the convective boundary layer: first measurements with Rotational Raman Lidar

    NASA Astrophysics Data System (ADS)

    Behrendt, A.; Wulfmeyer, V.; Hammann, E.; Muppa, S. K.; Pal, S.

    2014-11-01

    The rotational Raman lidar of the University of Hohenheim (UHOH) measures atmospheric temperature profiles during daytime with high resolution (10 s, 109 m). The data contain low noise errors even in daytime due to the use of strong UV laser light (355 nm, 10 W, 50 Hz) and a very efficient interference-filter-based polychromator. In this paper, we present the first profiling of the second- to forth-order moments of turbulent temperature fluctuations as well as of skewness and kurtosis in the convective boundary layer (CBL) including the interfacial layer (IL). The results demonstrate that the UHOH RRL resolves the vertical structure of these moments. The data set which is used for this case study was collected in western Germany (50°53'50.56'' N, 6°27'50.39'' E, 110 m a.s.l.) within one hour around local noon on 24 April 2013 during the Intensive Observations Period (IOP) 6 of the HD(CP)2 Observational Prototype Experiment (HOPE), which is embedded in the German project HD(CP)2 (High-Definition Clouds and Precipitation for advancing Climate Prediction). First, we investigated profiles of the noise variance and compared it with estimates of the statistical temperature measurement uncertainty Δ T based on Poisson statistics. The agreement confirms that photon count numbers obtained from extrapolated analog signal intensities provide a lower estimate of the statistical errors. The total statistical uncertainty of a 20 min temperature measurement is lower than 0.1 K up to 1050 m a.g.l. at noontime; even for single 10 s temperature profiles, it is smaller than 1 K up to 1000 m a.g.l.. Then we confirmed by autocovariance and spectral analyses of the atmospheric temperature fluctuations that a temporal resolution of 10 s was sufficient to resolve the turbulence down to the inertial subrange. This is also indicated by the profile of the integral scale of the temperature fluctuations, which was in the range of 40 to 120 s in the CBL. Analyzing then profiles of the second

  2. Late-Pleistocene and Holocene remains of Hysterocarpus traski (Tule Perch) from Clear Lake, California, and inferred Holocene temperature fluctuations

    USGS Publications Warehouse

    Casteel, R.W.; Adam, D.P.; Sims, J.D.

    1977-01-01

    The remains of scales of Hysterocarpus traski Gibbons (Tule perch) were found throughout a 27.44-m core from Clear Lake. Most scales occurred between the mud surface and deposits approximately 11,000 years old. Changes in growth rates of the animals were examined by measuring scale annuli and applying an empirically established regression of fish length on scale radius. The data indicate a pattern of accelerating growth rates, reaching a peak between {reversed tilde equals}4000 and 2800 BP. After {reversed tilde equals}2800 BP, growth rates decline markedly. Because the growth rates of these animals are essentially dependent on temperature, the changes observed in the patterns of growth probably reflect changes in climate in the northern Coast Range. The general pattern of inferred temperature increase during the early and middle Holocene, ending between {reversed tilde equals}4000 and 2800 BP, is consistent with evidence from tree-line studies and palynology indicating higher temperatures in parts of the western United States during this period. ?? 1977.

  3. A comprehensive model to determine the effects of temperature and species fluctuations on reactions in turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Antaki, P. J.

    1981-01-01

    The joint probability distribution function (pdf), which is a modification of the bivariate Gaussian pdf, is discussed and results are presented for a global reaction model using the joint pdf. An alternative joint pdf is discussed. A criterion which permits the selection of temperature pdf's in different regions of turbulent, reacting flow fields is developed. Two principal approaches to the determination of reaction rates in computer programs containing detailed chemical kinetics are outlined. These models represent a practical solution to the modeling of species reaction rates in turbulent, reacting flows.

  4. Ameliorative effects of melatonin administration and photoperiods on diurnal fluctuations in cloacal temperature of Marshall broiler chickens during the hot dry season

    NASA Astrophysics Data System (ADS)

    Sinkalu, Victor O.; Ayo, Joseph O.; Adelaiye, Alexander B.; Hambolu, Joseph O.

    2015-01-01

    Experiments were performed with the aim of determining the effect of melatonin administration on diurnal fluctuations in cloacal temperature (CT) of Marshall broiler chickens during the hot dry season. Birds in group I (12L:12D cycle) were raised under natural photoperiod of 12-h light and 12-h darkness, without melatonin supplementation, while those in group II (LL) were kept under 24-h continuous lighting, without melatonin administration. Broiler chickens in group III (LL + melatonin) were raised under 24-h continuous lighting, with melatonin supplementation at 0.5 mg/kg per os. The cloacal temperatures of 15 labeled broiler chickens from each group were measured at 6:00, 13:00, and 19:00 h, 7 days apart, from days 14-42. Temperature-humidity index was highest at day 14 of the study, with the value of 36.72 ± 0.82 °C but lowest at day 28 with the value of 30.91 ± 0.80 °C ( P < 0.0001). The overall mean hourly cloacal temperature value of 41.51 ± 0.03 °C obtained in the 12L:12D cycle birds was significantly higher ( P < 0.001) than the value of 41.16 ± 0.03 °C recorded in the melatonin-treated group but lower than that of 41.65 ± 0.03 °C obtained in the LL birds. Mortality due to hyperthermia commenced at day 28 in both 12L:12D cycle and LL broiler chickens but was delayed till day 42 in LL + MEL broiler chickens. In conclusion, melatonin administration alleviated the deleterious effects of heat stress on broiler chickens by maintaining their cloacal temperature at relatively low values.

  5. On the finite-temperature generalization of the C-theorem and the interplay between classical and quantum fluctuations

    NASA Astrophysics Data System (ADS)

    Danchev, Daniel M.; Tonchev, Nicholay S.

    1999-10-01

    The behaviour of the finite-temperature C-function, defined by Neto and Fradkin (1993 Nucl. Phys. B 400 525), is analysed within a d -dimensional exactly solvable lattice model, recently considered by Vojta (1996 Phys. Rev. B 53 710), which is of the same universality class as the quantum nonlinear O(n) sigma model in the limit nicons/Journals/Common/rightarrow" ALT="rightarrow" ALIGN="TOP"/>icons/Journals/Common/infty" ALT="infty" ALIGN="TOP"/>. The scaling functions of C for the cases d = 1 (absence of long-range order), d = 2 (existence of a quantum critical point), d = 4 (existence of a line of finite-temperature critical points that ends up with a quantum critical point) are derived and analysed. The locations of regions where C is monotonically increasing (which depend significantly on d) are exactly determined. The results are interpreted within the finite-size scaling theory that has to be modified for d = 4.

  6. A comprehensive model to determine the effects of temperature and species fluctuations on reaction rates in turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Goldstein, D.; Magnotti, F.; Chinitz, W.

    1983-01-01

    Reaction rates in turbulent, reacting flows are reviewed. Assumed probability density functions (pdf) modeling of reaction rates is being investigated in relation to a three variable pdf employing a 'most likely pdf' model. Chemical kinetic mechanisms treating hydrogen air combustion is studied. Perfectly stirred reactor modeling of flame stabilizing recirculation regions was used to investigate the stable flame regions for silane, hydrogen, methane, and propane, and for certain mixtures thereof. It is concluded that in general, silane can be counted upon to stabilize flames only when the overall fuel air ratio is close to or greater than unity. For lean flames, silane may tend to destabilize the flame. Other factors favoring stable flames are high initial reactant temperatures and system pressure.

  7. Extracting primordial density fluctuations

    PubMed

    Gawiser; Silk

    1998-05-29

    The combination of detections of anisotropy in cosmic microwave background radiation and observations of the large-scale distribution of galaxies probes the primordial density fluctuations of the universe on spatial scales varying by three orders of magnitude. These data are found to be inconsistent with the predictions of several popular cosmological models. Agreement between the data and the cold + hot dark matter model, however, suggests that a significant fraction of the matter in the universe may consist of massive neutrinos. PMID:9603724

  8. Solar Influence on Recurring Global, Decadal, Climate Cycles Recorded by Glacial Fluctuations, Ice Cores, Sea Surface Temperatures, and Historic Measurements Over the Past Millennium

    NASA Astrophysics Data System (ADS)

    Easterbrook, D. J.

    2008-12-01

    Global, cyclic, decadal, climate patterns can be traced over the past millennium in glacier fluctuations, oxygen isotope ratios in ice cores, sea surface temperatures, and historic observations. The recurring climate cycles clearly show that natural climatic warming and cooling have occurred many times, long before increases in anthropogenic atmospheric CO2 levels. The Medieval Warm Period and Little Ice Age are well known examples of such climate changes, but in addition, at least 23 periods of climatic warming and cooling have occurred in the past 500 years. Each period of warming or cooling lasted about 25-30 years (average 27 years). Two cycles of global warming and two of global cooling have occurred during the past century, and the global cooling that has occurred since 1998 is exactly in phase with the long term pattern. Global cooling occurred from 1880 to ~1915; global warming occurred from ~1915 to ~1945; global cooling occurred from ~1945-1977;, global warming occurred from 1977 to 1998; and global cooling has occurred since 1998. All of these global climate changes show exceptionally good correlation with solar variation since the Little Ice Age 400 years ago. The IPCC predicted global warming of 0.6° C (1° F) by 2011 and 1.2° C (2° F) by 2038, whereas Easterbrook (2001) predicted the beginning of global cooling by 2007 (± 3-5 yrs) and cooling of about 0.3-0.5° C until ~2035. The predicted cooling seems to have already begun. Recent measurements of global temperatures suggest a gradual cooling trend since 1998 and 2007-2008 was a year of sharp global cooling. The cooling trend will likely continue as the sun enters a cycle of lower irradiance and the Pacific Ocean changed from its warm mode to its cool mode. Comparisons of historic global climate warming and cooling, glacial fluctuations, changes in warm/cool mode of the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO), and sun spot activity over the past century

  9. A circular equilibrium model for local gyrokinetic simulations of ion temperature gradient fluctuations in reversed field pinches

    NASA Astrophysics Data System (ADS)

    Tangri, Varun; Terry, P. W.; Waltz, R. E.

    2011-05-01

    A simple large-aspect-ratio (R0/r) circular equilibrium model is developed for low-beta reversed field pinch (RFP) geometry. The model is suitable for treating small scale instability and turbulent transport driven by ion temperature gradient (ITG) and related electron drift modes in gyrokinetic simulations. The equilibrium model is an RFP generalization of the common tokamak s-α model to small safety factor (q), where the poloidal field dominates the toroidal field. The model accommodates the RFP toroidal field reversal (where q vanishes) by generalizing the cylindrical force-free Bessel function model (BFM) [J. B. Taylor, Phys. Rev. Lett. 33, 1139 (1974)] to toroidal geometry. The global equilibrium can be described in terms of the RFP field reversal and pinch parameters [F ,Θ]. This new toroidal Bessel function model (TBFM) has been incorporated into the gyrokinetic code GYRO [J. Candy and R. E. Waltz, J.Comput. Phys. 186, 545 (2003)] and used here to explore local electrostatic ITG adiabatic electron instability rates for typical low-q RFP parameters.

  10. A circular equilibrium model for local gyrokinetic simulations of ion temperature gradient fluctuations in reversed field pinches

    SciTech Connect

    Tangri, Varun; Terry, P. W.; Waltz, R. E.

    2011-05-15

    A simple large-aspect-ratio (R{sub 0}/r) circular equilibrium model is developed for low-beta reversed field pinch (RFP) geometry. The model is suitable for treating small scale instability and turbulent transport driven by ion temperature gradient (ITG) and related electron drift modes in gyrokinetic simulations. The equilibrium model is an RFP generalization of the common tokamak s-{alpha} model to small safety factor (q), where the poloidal field dominates the toroidal field. The model accommodates the RFP toroidal field reversal (where q vanishes) by generalizing the cylindrical force-free Bessel function model (BFM) [J. B. Taylor, Phys. Rev. Lett. 33, 1139 (1974)] to toroidal geometry. The global equilibrium can be described in terms of the RFP field reversal and pinch parameters [F,{Theta}]. This new toroidal Bessel function model (TBFM) has been incorporated into the gyrokinetic code GYRO [J. Candy and R. E. Waltz, J.Comput. Phys. 186, 545 (2003)] and used here to explore local electrostatic ITG adiabatic electron instability rates for typical low-q RFP parameters.

  11. Pip Analysis of the Cosmic Microwave Background Data - Application to the Tenerife Experiment

    NASA Astrophysics Data System (ADS)

    Gutierrez de La Cruz, C. M.; Martinez-Gonzalez, E.; Cayon, L.; Rebolo, R.; Sanz, J. L.

    1994-12-01

    We present two geometrical methods to analyse the cosmic microwave background data along a strip in the sky. These methods are motivated by the fact that the temperature fluctuation field, on large angular scales, is not ergodic on the cosmic photosphere. This property is examined in the context of different experimental configurations. The methods involve a numerical study of the expected pip number and distribution function of pip sizes, and take into account the non-ergodicity of the temperature field. They are applied to the new measurements of the Tenerife experiment, assuming a Gaussian random field for the temperature fluctuations with power spectra poc k in a flat universe. Moreover, these geometrical methods can be readily used to test non-Gaussian random fields as representations of the cosmic microwave background temperature fluctuations. Key words: methods: data analysis - cosmic microwave background - cosmology: observations.

  12. Growth of Escherichia coli O157:H7 and Listeria monocytogenes in packaged fresh-cut romaine mix at fluctuating temperatures during commercial transport, retail storage, and display.

    PubMed

    Zeng, Wenting; Vorst, Keith; Brown, Wyatt; Marks, Bradley P; Jeong, Sanghyup; Pérez-Rodríguez, Fernando; Ryser, Elliot T

    2014-02-01

    Temperature abuse during commercial transport and retail sale of leafy greens negatively impacts both microbial safety and product quality. Consequently, the effect of fluctuating temperatures on Escherichia coli O157:H7 and Listeria monocytogenes growth in commercially-bagged salad greens was assessed during transport, retail storage, and display. Over a 16-month period, a series of time-temperature profiles for bagged salads were obtained from five transportation routes covering four geographic regions (432 profiles), as well as during retail storage (4,867 profiles) and display (3,799 profiles). Five different time-temperature profiles collected during 2 to 3 days of transport, 1 and 3 days of retail storage, and 3 days of retail display were then duplicated in a programmable incubator to assess E. coli O157:H7 and L. monocytogenes growth in commercial bags of romaine lettuce mix. Microbial growth predictions using the Koseki-Isobe and McKellar-Delaquis models were validated by comparing the root mean square error (RMSE), bias, and the acceptable prediction zone between the laboratory growth data and model predictions. Monte Carlo simulations were performed to calculate the probability distribution of microbial growth from 8,122,127,472 scenarios during transport, cold room storage, and retail display. Using inoculated bags of retail salad, E. coli O157:H7 and L. monocytogenes populations increased a maximum of 3.1 and 3.0 log CFU/g at retail storage. Both models yielded acceptable RMSEs and biases within the acceptable prediction zone for E. coli O157:H7. Based on the simulation, both pathogens generally increased <2 log CFU/g during transport, storage, and display. However, retail storage duration can significantly impact pathogen growth. This large-scale U.S. study-the first using commercial time/temperature profiles to assess the microbial risk of leafy greens-should be useful in filling some of the data gaps in current risk assessments for leafy greens

  13. The microwave background anisotropies: observations.

    PubMed

    Wilkinson, D

    1998-01-01

    Most cosmologists now believe that we live in an evolving universe that has been expanding and cooling since its origin about 15 billion years ago. Strong evidence for this standard cosmological model comes from studies of the cosmic microwave background radiation (CMBR), the remnant heat from the initial fireball. The CMBR spectrum is blackbody, as predicted from the hot Big Bang model before the discovery of the remnant radiation in 1964. In 1992 the cosmic background explorer (COBE) satellite finally detected the anisotropy of the radiation-fingerprints left by tiny temperature fluctuations in the initial bang. Careful design of the COBE satellite, and a bit of luck, allowed the 30 microK fluctuations in the CMBR temperature (2.73 K) to be pulled out of instrument noise and spurious foreground emissions. Further advances in detector technology and experiment design are allowing current CMBR experiments to search for predicted features in the anisotropy power spectrum at angular scales of 1 degrees and smaller. If they exist, these features were formed at an important epoch in the evolution of the universe--the decoupling of matter and radiation at a temperature of about 4,000 K and a time about 300,000 years after the bang. CMBR anisotropy measurements probe directly some detailed physics of the early universe. Also, parameters of the cosmological model can be measured because the anisotropy power spectrum depends on constituent densities and the horizon scale at a known cosmological epoch. As sophisticated experiments on the ground and on balloons pursue these measurements, two CMBR anisotropy satellite missions are being prepared for launch early in the next century. PMID:9419320

  14. Constraints on long-term carbon-climate feedbacks from spatially resolved CO2 growth rate fluctuations linked to temperature and precipitation

    NASA Astrophysics Data System (ADS)

    Keppel-Aleks, G.; Hoffman, F. M.

    2014-12-01

    Feedbacks between the global carbon cycle and climate represent one of the largest uncertainties in climate prediction. A promising method for reducing uncertainty in predictions of carbon-climate feedbacks is based on identifying an "emergent constraint" that leverages correlations between mechanistically linked long-term feedbacks and short-term variations within the model ensemble. By applying contemporary observations to evaluate model skill in simulating short-term variations, we may be able to better assess the probability of simulated long-term feedbacks. We probed the constraint on long-term terrestrial carbon stocks provided by climate-driven fluctuations in the atmospheric CO2 growth rate at contemporary timescales. We considered the impact of both temperature and precipitation anomalies on terrestrial ecosystem exchange and further separated the direct influence of fire where possible. When we explicitly considered the role of atmospheric transport in smoothing the imprint of climate-driven flux anomalies on atmospheric CO2 patterns, we found that the extent of temporal averaging of both the observations and ESM output leads to estimates for the long-term climate sensitivity of tropical land carbon storage that are different by a factor of two. In the context of these results, we discuss strategies for applying emergent constraints for benchmarking biogeochemical feedbacks in ESMs. Specifically, our results underscore the importance of selecting appropriate observational benchmarks and, for future model intercomparison projects, outputting fields that most closely correspond to available observational datasets.

  15. [Interannual changes in PAR and soil moisture during the warm season may be more important for directing of annual carbon balance in tundra than temperature fluctuations].

    PubMed

    Karelin, D V; Zamolodchikov, D G; Zukert, N V; Chestnykh, O V; Pochikalov, A V; Kraev, G N

    2013-01-01

    A lot of studies on the impact of global climate changes on natural communities deal with cryogenic ecosystems, tundra in particular, since they are delimited by low air temperature and permafrost, thus being extremely sensitive to long-term climate fluctuations. Continuous warming in Northern Hemisphere is unmasking all the more details concerning complex system of direct relationships, feedbacks, and interactions of carbon balance factors as the main response function. While the set of such factors may be viewed as more or less complete, their relative contribution to C-balance, as is becoming clear with accumulating results of field observations, directly depends on temporal scale of observations and is not constant. As the results of field observations and modeling of tundra ecosystems show, any one of significant factors can become the leading one within the boundaries determined by the given scale of observations. Even the least significant factor can become the determining one for direction of carbon annual net flux in an ecosystem, if contributions of more significant factors canceled each other during the period of observations. In the most general situation, the greater is the variation of a significant factor during the period of observations, the larger is its partial contribution. The complete set of independent variables of C-balance is not limited by abiotic factors but should include such an important factor as a stock of plants living top mass, which can be treated as not only the natural product of C-balance but also as its independent parameter. PMID:23659110

  16. Maritime infrared background clutter

    NASA Astrophysics Data System (ADS)

    Schwering, Piet B. W.

    1996-06-01

    The detection of small targets in maritime infrared surveillance is hampered by the presence of clutter. Sea surface structure, reflection and emission changes related to incident angle variations and surface effects are standard features governing the clutter behavior. Also special effects as sun glint and horizon effects play an important role for clutter. In order to optimize the detection process, quantitative clutter estimates are of use for filter settings. We have recorded a large amount of infrared backgrounds in the last few years, during common NATO trials. A large amount of different meteorological conditions took place during the various experiments. A first set of these data have been analyzed to obtain statistical data that represent the infrared scene. We have derived vertical temperature profiles, vertical fluctuation profiles, horizontal correlation coefficients and temporal correlation functions. In this paper we present the first analysis of these data. We are in the process of obtaining a condensed database of information to regenerate clutter images from bulk meteo parameters, and clutter parameters. The clutter and meteo parameters have been used to simulate various infrared scenes. Examples of this simulation process are shown in the presentation. The simulated images are statistically similar to the original images that were used to derive the parameters. A description of the image- generation is presented. Future expansions of the model are discussed.

  17. Fluctuating sea surface temperatures in the subtropical North Atlantic during Oceanic Anoxic Event 1a at DSDP Site 398 and ODP Site 641

    NASA Astrophysics Data System (ADS)

    Hofmann, P.; Wiegand, R.; Handley, L.; Wagner, T.; Talbot, H. M.; Mcanena, A.

    2012-04-01

    The early Aptian is characterized by a perturbation of the global carbon cycle which occurred during Oceanic Anoxic Event 1a (OAE 1a, Selli-Event, ca. 120 Ma). OAE 1a is well documented by organic carbon-rich sediments from marine and terrestrial localities worldwide. The trigger mechanism and the environmental consequences of OAE 1a are still under dispute. Here we present sea surface temperature estimates based on TEX 86 measurements (tetraether index of tetraethers containing 86 carbons) from the Galicia Margin (subtropical North Atlantic) at DSDP Site 398 and ODP Site 641C. The investigated sites are approximately 350 km apart and located on the slope of the Vigo seamount (Site 398) and the Galicia Bank (Site 641). Sea surface temperature (SST) records at both Sites suggest a significant and sustained warming of the Galica Margin surface waters during OAE 1a. The observed warming during OAE 1a is disrupted by several SST decreases which vary in magnitude from site to site. Similar surface water cooling episodes but with different magnitudes have been reported from the central Pacific region. The exact nature and timing of these intermittent cooling periods remains to be discovered but the occurrence in both the North Atlantic and Pacific may point towards a global trigger mechanism. We speculate that the thermal development of the surface waters of the subtropical North Atlantic during OAE 1a may reflect global fluctuations in pCO2 in response to variations in the intensity of Pacific volcanic activity in the Pacific Ontong Java area with superimposed local adjustments in the oceanic circulation pattern of the North Atlantic.

  18. Dodecahedral space topology as an explanation for weak wide-angle temperature correlations in the cosmic microwave background.

    PubMed

    Luminet, Jean-Pierre; Weeks, Jeffrey R; Riazuelo, Alain; Lehoucq, Roland; Uzan, Jean-Philippe

    2003-10-01

    The current 'standard model' of cosmology posits an infinite flat universe forever expanding under the pressure of dark energy. First-year data from the Wilkinson Microwave Anisotropy Probe (WMAP) confirm this model to spectacular precision on all but the largest scales. Temperature correlations across the microwave sky match expectations on angular scales narrower than 60 degrees but, contrary to predictions, vanish on scales wider than 60 degrees. Several explanations have been proposed. One natural approach questions the underlying geometry of space--namely, its curvature and topology. In an infinite flat space, waves from the Big Bang would fill the universe on all length scales. The observed lack of temperature correlations on scales beyond 60 degrees means that the broadest waves are missing, perhaps because space itself is not big enough to support them. Here we present a simple geometrical model of a finite space--the Poincaré dodecahedral space--which accounts for WMAP's observations with no fine-tuning required. The predicted density is Omega(0) approximately 1.013 > 1, and the model also predicts temperature correlations in matching circles on the sky. PMID:14534579

  19. Frequency fluctuations in silicon nanoresonators

    NASA Astrophysics Data System (ADS)

    Sansa, Marc; Sage, Eric; Bullard, Elizabeth C.; Gély, Marc; Alava, Thomas; Colinet, Eric; Naik, Akshay K.; Villanueva, Luis Guillermo; Duraffourg, Laurent; Roukes, Michael L.; Jourdan, Guillaume; Hentz, Sébastien

    2016-06-01

    Frequency stability is key to the performance of nanoresonators. This stability is thought to reach a limit with the resonator's ability to resolve thermally induced vibrations. Although measurements and predictions of resonator stability usually disregard fluctuations in the mechanical frequency response, these fluctuations have recently attracted considerable theoretical interest. However, their existence is very difficult to demonstrate experimentally. Here, through a literature review, we show that all studies of frequency stability report values several orders of magnitude larger than the limit imposed by thermomechanical noise. We studied a monocrystalline silicon nanoresonator at room temperature and found a similar discrepancy. We propose a new method to show that this was due to the presence of frequency fluctuations, of unexpected level. The fluctuations were not due to the instrumentation system, or to any other of the known sources investigated. These results challenge our current understanding of frequency fluctuations and call for a change in practices.

  20. Frequency fluctuations in silicon nanoresonators.

    PubMed

    Sansa, Marc; Sage, Eric; Bullard, Elizabeth C; Gély, Marc; Alava, Thomas; Colinet, Eric; Naik, Akshay K; Villanueva, Luis Guillermo; Duraffourg, Laurent; Roukes, Michael L; Jourdan, Guillaume; Hentz, Sébastien

    2016-06-01

    Frequency stability is key to the performance of nanoresonators. This stability is thought to reach a limit with the resonator's ability to resolve thermally induced vibrations. Although measurements and predictions of resonator stability usually disregard fluctuations in the mechanical frequency response, these fluctuations have recently attracted considerable theoretical interest. However, their existence is very difficult to demonstrate experimentally. Here, through a literature review, we show that all studies of frequency stability report values several orders of magnitude larger than the limit imposed by thermomechanical noise. We studied a monocrystalline silicon nanoresonator at room temperature and found a similar discrepancy. We propose a new method to show that this was due to the presence of frequency fluctuations, of unexpected level. The fluctuations were not due to the instrumentation system, or to any other of the known sources investigated. These results challenge our current understanding of frequency fluctuations and call for a change in practices. PMID:26925826

  1. The temperature of the cosmic microwave background radiation at 3.8 GHz - Results of a measurement from the South Pole site

    NASA Technical Reports Server (NTRS)

    De Amici, Giovanni; Limon, Michele; Smoot, George F.; Bersanelli, Marco; Kogut, AL; Levin, Steve

    1991-01-01

    As part of an international collaboration to measure the low-frequency spectrum of the cosmic microwave background (CMB) radiation, its temperature was measured at a frequency of 3.8 GHz, during the austral spring of 1989, obtaining a brightness temperature, T(CMB), of 2.64 +/-0.07 K (68 percent confidence level). The new result is in agreement with previous measurements at the same frequency obtained in 1986-88 from a very different site and has comparable error bars. Combining measurements from all years, T(CMB) = 2.64 +/-0.06 K is obtained.

  2. Effect of background color and low temperature on skin color and circulating alpha-MSH in two species of leopard frog.

    PubMed

    Fernandez, P J; Bagnara, J T

    1991-07-01

    Circulating levels of alpha-melanocyte stimulating hormone (alpha-MSH) in two species of leopard frog, Rana pipiens and R. chiricahuensis, were measured by radioimmunoassay to reveal the correlation between skin color change induced by background color and by low temperature. High levels of alpha-MSH were found in both species of frog on a black background, but R. chiricahuensis had eight times higher levels than R. pipiens, R. chiricahuensis also exhibited the ability to darken its ventral surface, whereas the ventral surface of R. pipiens remained white. Neither skin color nor plasma alpha-MSH of R. pipiens was affected by cold. Low temperature did, however, darken dorsal and ventral skin of R. chiricahuensis in vivo, which corresponded to increased levels of plasma alpha-MSH. Dorsal and ventral skin of R. chiricahuensis, in vitro, darken in a dose-dependent manner to alpha-MSH, but not to cold. PMID:1879665

  3. Insulin-like signaling (IIS) responses to temperature, genetic background, and growth variation in garter snakes with divergent life histories.

    PubMed

    Reding, Dawn M; Addis, Elizabeth A; Palacios, Maria G; Schwartz, Tonia S; Bronikowski, Anne M

    2016-07-01

    The insulin/insulin-like signaling pathway (IIS) has been shown to mediate life history trade-offs in mammalian model organisms, but the function of this pathway in wild and non-mammalian organisms is understudied. Populations of western terrestrial garter snakes (Thamnophis elegans) around Eagle Lake, California, have evolved variation in growth and maturation rates, mortality senescence rates, and annual reproductive output that partition into two ecotypes: "fast-living" and "slow-living". Thus, genes associated with the IIS network are good candidates for investigating the mechanisms underlying ecological divergence in this system. We reared neonates from each ecotype for 1.5years under two thermal treatments. We then used qPCR to compare mRNA expression levels in three tissue types (brain, liver, skeletal muscle) for four genes (igf1, igf2, igf1r, igf2r), and we used radioimmunoassay to measure plasma IGF-1 and IGF-2 protein levels. Our results show that, in contrast to most mammalian model systems, igf2 mRNA and protein levels exceed those of igf1 and suggest an important role for igf2 in postnatal growth in reptiles. Thermal rearing treatment and recent growth had greater impacts on IGF levels than genetic background (i.e., ecotype), and the two ecotypes responded similarly. This suggests that observed ecotypic differences in field measures of IGFs may more strongly reflect plastic responses in different environments than evolutionary divergence. Future analyses of additional components of the IIS pathway and sequence divergence between the ecotypes will further illuminate how environmental and genetic factors influence the endocrine system and its role in mediating life history trade-offs. PMID:27181752

  4. Temperature-controlled electrothermal atomization-atomic absorption spectrometry using a pyrometric feedback system in conjunction with a background monitoring device

    NASA Astrophysics Data System (ADS)

    Van Deijck, W.; Roelofsen, A. M.; Pieters, H. J.; Herber, R. F. M.

    The construction of a temperature-controlled feedback system for electrothermal atomization-atomic absorption spectrometry (ETA-AAS) using an optical pyrometer applied to the atomization stage is described. The system was used in conjunction with a fast-response background monitoring device. The heating rate of the furnace amounted to 1400° s -1 with a reproducibility better than 1%. The precision of the temperature control at a steady state temperature of 2000°C was 0.1%. The analytical improvements offered by the present system have been demonstrated by the determination of cadmium and lead in blood and finally by the determination of lead in serum. Both the sensitivity and the precision of the method have been improved. The accuracy of the method was checked by determining the lead content for a number of scrum samples both by ETA-AAS and differential pulse anodic stripping voltametry (DPASV) and proved to be satisfactory.

  5. Fluctuations for Galaxy Formation from Inflation Models.

    NASA Astrophysics Data System (ADS)

    Salopek, David Stephen

    The theory of fluctuations for galaxy formation from chaotic inflation models is extended to include the effects of (1) multiple scalar fields, (2) curvature coupling of scalar fields to gravity, (3) nonlinear evolution of long wavelength metric and scalar fields, and (4) stochastic generation of initial conditions. Multiple scalar field models may generate more large scale power than the standard Cold Dark Matter (CDM) model if the Universe undergoes two inflation epochs giving a CDM+ plateau spectrum. If the scalar fields pass over a mogul in the potential, then CDM+ mountain fluctuation spectra may be generated. The chaotic inflation scenario may be housed within a grand unified theory (GUT) framework through a coupling of scalar Higgs field to curvature, -xi Rphi ^2/2. If the curvature coupling is chosen large and negative, xi~ -2 times 10^4, then a more natural value of scalar field self-coupling lambda ~ 0.05 gives the observed level of fluctuations. Radiative corrections to the Higgs potential are small and the reheat temperature is typically high yielding successful baryogenesis. Using Hamilton-Jacobi theory, a general formalism is presented for following the nonlinear evolution of the metric (scalar, vector, and tensor modes) and scalar fields for fluctuations with wavelengths greater than the Hubble radius. Employing an expansion accurate to first order in spatial gradients, the classical momentum constraint of the Arnowitt-Deser -Misner (ADM) formalism may be integrated exactly without recourse to linear perturbation theory. It is shown how nonlinear effects of the metric and scalar fields may be included in Starobinski's formulation of stochastic inflation. Stochastic noise terms in the long wavelength evolution equations model quantum fluctuations that are assumed to become classical at horizon crossing and which then contribute to the background. T = ln(Ha) proves to be a useful time variable because it enables one to solve for scalar field quantum

  6. The unusual smoothness of the extragalactic unresolved radio background

    SciTech Connect

    Holder, Gilbert P.

    2014-01-01

    If the radio background is coming from cosmological sources, there should be some amount of clustering due to the large scale structure in the universe. Simple models for the expected clustering combined with the recent measurement by ARCADE-2 of the mean extragalactic temperature lead to predicted clustering levels that are substantially above upper limits from searches for anisotropy on arcminute scales using the Australia Telescope Compact Array and the Very Large Array. The rms temperature variations in the cosmic radio background appear to be more than a factor of 10 smaller (in temperature) than the fluctuations in the cosmic infrared background. It is therefore extremely unlikely that this background comes from galaxies, galaxy clusters, or any sources that trace dark matter halos at z ≲ 5, unless typical sources are smooth on arcminute scales, requiring typical sizes of several Mpc.

  7. Gradient Driven Fluctuations

    NASA Technical Reports Server (NTRS)

    Cannell, David

    2005-01-01

    We have worked with our collaborators at the University of Milan (Professor Marzio Giglio and his group-supported by ASI) to define the science required to measure gradient driven fluctuations in the microgravity environment. Such a study would provide an accurate test of the extent to which the theory of fluctuating hydrodynamics can be used to predict the properties of fluids maintained in a stressed, non-equilibrium state. As mentioned above, the results should also provide direct visual insight into the behavior of a variety of fluid systems containing gradients or interfaces, when placed in the microgravity environment. With support from the current grant, we have identified three key systems for detailed investigation. These three systems are: 1) A single-component fluid to be studied in the presence of a temperature gradient; 2) A mixture of two organic liquids to be studied both in the presence of a temperature gradient, which induces a steady-state concentration gradient, and with the temperature gradient removed, but while the concentration gradient is dying by means of diffusion; 3) Various pairs of liquids undergoing free diffusion, including a proteidbuffer solution and pairs of mixtures having different concentrations, to allow us to vary the differences in fluid properties in a controlled manner.

  8. Peak shifted properties of the "low background NaI(Tl) detectors": An experimental study of response function behavior in different temperature and acquisition time

    NASA Astrophysics Data System (ADS)

    Rezaei Moghaddam, Y.; Rafat Motavalli, L.; Miri Hakimabadi, H.

    2016-09-01

    Due to the necessity of using low background NaI detector in sensitive and accurate measurements, study on the response function variations in different conditions is very important. These types of detectors have different responses in various measurement conditions, including time, temperature and high voltage. In this study, the response function of 76 B 76 LB NaI (SCIONIX) in different conditions is discussed. According to the channel shifting in these detectors and its direct effect on degrading the resolution, the most convenient measurement condition for these detectors, is proposed. Finally, it is recommended that before long-time measurements a "waiting time" is needed to avoid the channel shifting effects.

  9. Gambling with Superconducting Fluctuations

    NASA Astrophysics Data System (ADS)

    Foltyn, Marek; Zgirski, Maciej

    2015-08-01

    Josephson junctions and superconducting nanowires, when biased close to superconducting critical current, can switch to a nonzero voltage state by thermal or quantum fluctuations. The process is understood as an escape of a Brownian particle from a metastable state. Since this effect is fully stochastic, we propose to use it for generating random numbers. We present protocol for obtaining random numbers and test the experimentally harvested data for their fidelity. Our work is prerequisite for using the Josephson junction as a tool for stochastic (probabilistic) determination of physical parameters such as magnetic flux, temperature, and current.

  10. Generalised tensor fluctuations and inflation

    SciTech Connect

    Cannone, Dario; Tasinato, Gianmassimo; Wands, David E-mail: g.tasinato@swansea.ac.uk

    2015-01-01

    Using an effective field theory approach to inflation, we examine novel properties of the spectrum of inflationary tensor fluctuations, that arise when breaking some of the symmetries or requirements usually imposed on the dynamics of perturbations. During single-clock inflation, time-reparameterization invariance is broken by a time-dependent cosmological background. In order to explore more general scenarios, we consider the possibility that spatial diffeomorphism invariance is also broken by effective mass terms or by derivative operators for the metric fluctuations in the Lagrangian. We investigate the cosmological consequences of the breaking of spatial diffeomorphisms, focussing on operators that affect the power spectrum of fluctuations. We identify the operators for tensor fluctuations that can provide a blue spectrum without violating the null energy condition, and operators for scalar fluctuations that lead to non-conservation of the comoving curvature perturbation on superhorizon scales even in single-clock inflation. In the last part of our work, we also examine the consequences of operators containing more than two spatial derivatives, discussing how they affect the sound speed of tensor fluctuations, and showing that they can mimic some of the interesting effects of symmetry breaking operators, even in scenarios that preserve spatial diffeomorphism invariance.

  11. FROM THE HISTORY OF PHYSICS: How Gamow calculated the temperature of the background radiation or a few words about the fine art of theoretical physics

    NASA Astrophysics Data System (ADS)

    Chernin, Artur D.

    1994-08-01

    In a paper published in 1953, i.e., more than a decade before the observational discovery of the cosmic microwave background radiation, George Gamow predicted theoretically the temperature of this radiation. He estimated it to be 7 K, which is very close to the subsequently measured value of about 3 K. Gamow found the present temperature of the background radiation on the basis of general formulas of cosmological dynamics. This prediction was in no way related to primordial nucleosynthesis.This circumstance has and is still causing misunderstanding in those cases in which the authors have raised doubts about Gamow's results, although an actual error has never been demonstrated. A detailed analysis makes it possible to understand how Gamow's calculation is possible. The problem lies in the fact that Gamow makes a certain additional implicit assumption which allows him to dispense with information on nucleosynthesis. This assumption is discussed in the context of the state of cosmology in the period from the fifties to the seventies, and of the current status of this branch of science.

  12. Ultra high vacuum high precision low background setup with temperature control for thermal desorption mass spectroscopy (TDA-MS) of hydrogen in metals.

    PubMed

    Merzlikin, Sergiy V; Borodin, S; Vogel, D; Rohwerder, M

    2015-05-01

    In this work, a newly developed UHV-based high precision low background setup for hydrogen thermal desorption analysis (TDA) of metallic samples is presented. Using an infrared heating with a low thermal capacity enables a precise control of the temperature and rapid cool down of the measurement chamber. This novel TDA-set up is superior in sensitivity to almost every standard hydrogen analyzer available commercially due to the special design of the measurement chamber, resulting in a very low hydrogen background. No effects of background drift characteristic as for carrier gas based TDA instruments were observed, ensuring linearity and reproducibility of the analysis. This setup will prove to be valuable for detailed investigations of hydrogen trapping sites in steels and other alloys. With a determined limit of detection of 5.9×10(-3)µg g(-1) hydrogen the developed instrument is able to determine extremely low hydrogen amounts even at very low hydrogen desorption rates. This work clearly demonstrates the great potential of ultra-high vacuum thermal desorption mass spectroscopy instrumentation. PMID:25702992

  13. Resonant tunneling of fluctuation Cooper pairs

    SciTech Connect

    Galda, Alexey; Mel'nikov, A. S.; Vinokur, V. M.

    2015-02-09

    Superconducting fluctuations have proved to be an irreplaceable source of information about microscopic and macroscopic material parameters that could be inferred from the experiment. According to common wisdom, the effect of thermodynamic fluctuations in the vicinity of the superconducting transition temperature, Tc, is to round off all of the sharp corners and discontinuities, which otherwise would have been expected to occur at Tc. Here we report the current spikes due to radiation-induced resonant tunneling of fluctuation Cooper pairs between two superconductors which grow even sharper and more pronounced upon approach to Tc. This striking effect offers an unprecedented tool for direct measurements of fluctuation Cooper pair lifetime, which is key to our understanding of the fluctuation regime, most notably to nature of the pseudogap state in high-temperature superconductors. Our finding marks a radical departure from the conventional view of superconducting fluctuations as a blurring and rounding phenomenon.

  14. Resonant tunneling of fluctuation Cooper pairs

    DOE PAGESBeta

    Galda, Alexey; Mel'nikov, A. S.; Vinokur, V. M.

    2015-02-09

    Superconducting fluctuations have proved to be an irreplaceable source of information about microscopic and macroscopic material parameters that could be inferred from the experiment. According to common wisdom, the effect of thermodynamic fluctuations in the vicinity of the superconducting transition temperature, Tc, is to round off all of the sharp corners and discontinuities, which otherwise would have been expected to occur at Tc. Here we report the current spikes due to radiation-induced resonant tunneling of fluctuation Cooper pairs between two superconductors which grow even sharper and more pronounced upon approach to Tc. This striking effect offers an unprecedented tool formore » direct measurements of fluctuation Cooper pair lifetime, which is key to our understanding of the fluctuation regime, most notably to nature of the pseudogap state in high-temperature superconductors. Our finding marks a radical departure from the conventional view of superconducting fluctuations as a blurring and rounding phenomenon.« less

  15. Principle of minimal work fluctuations.

    PubMed

    Xiao, Gaoyang; Gong, Jiangbin

    2015-08-01

    Understanding and manipulating work fluctuations in microscale and nanoscale systems are of both fundamental and practical interest. For example, in considering the Jarzynski equality 〈e-βW〉=e-βΔF, a change in the fluctuations of e-βW may impact how rapidly the statistical average of e-βW converges towards the theoretical value e-βΔF, where W is the work, β is the inverse temperature, and ΔF is the free energy difference between two equilibrium states. Motivated by our previous study aiming at the suppression of work fluctuations, here we obtain a principle of minimal work fluctuations. In brief, adiabatic processes as treated in quantum and classical adiabatic theorems yield the minimal fluctuations in e-βW. In the quantum domain, if a system initially prepared at thermal equilibrium is subjected to a work protocol but isolated from a bath during the time evolution, then a quantum adiabatic process without energy level crossing (or an assisted adiabatic process reaching the same final states as in a conventional adiabatic process) yields the minimal fluctuations in e-βW, where W is the quantum work defined by two energy measurements at the beginning and at the end of the process. In the classical domain where the classical work protocol is realizable by an adiabatic process, then the classical adiabatic process also yields the minimal fluctuations in e-βW. Numerical experiments based on a Landau-Zener process confirm our theory in the quantum domain, and our theory in the classical domain explains our previous numerical findings regarding the suppression of classical work fluctuations [G. Y. Xiao and J. B. Gong, Phys. Rev. E 90, 052132 (2014)]. PMID:26382367

  16. Principle of minimal work fluctuations

    NASA Astrophysics Data System (ADS)

    Xiao, Gaoyang; Gong, Jiangbin

    2015-08-01

    Understanding and manipulating work fluctuations in microscale and nanoscale systems are of both fundamental and practical interest. For example, in considering the Jarzynski equality =e-β Δ F , a change in the fluctuations of e-β W may impact how rapidly the statistical average of e-β W converges towards the theoretical value e-β Δ F, where W is the work, β is the inverse temperature, and Δ F is the free energy difference between two equilibrium states. Motivated by our previous study aiming at the suppression of work fluctuations, here we obtain a principle of minimal work fluctuations. In brief, adiabatic processes as treated in quantum and classical adiabatic theorems yield the minimal fluctuations in e-β W. In the quantum domain, if a system initially prepared at thermal equilibrium is subjected to a work protocol but isolated from a bath during the time evolution, then a quantum adiabatic process without energy level crossing (or an assisted adiabatic process reaching the same final states as in a conventional adiabatic process) yields the minimal fluctuations in e-β W, where W is the quantum work defined by two energy measurements at the beginning and at the end of the process. In the classical domain where the classical work protocol is realizable by an adiabatic process, then the classical adiabatic process also yields the minimal fluctuations in e-β W. Numerical experiments based on a Landau-Zener process confirm our theory in the quantum domain, and our theory in the classical domain explains our previous numerical findings regarding the suppression of classical work fluctuations [G. Y. Xiao and J. B. Gong, Phys. Rev. E 90, 052132 (2014), 10.1103/PhysRevE.90.052132].

  17. Effect of random charge fluctuation on strongly coupled dusty Plasma

    SciTech Connect

    Issaad, M.; Rouiguia, L.; Djebli, M.

    2008-09-07

    Modeling the interaction between particles is an open issue in dusty plasma. We dealt with strongly coupled dust particles in two dimensional confined system. For small number of clusters, we investigate the effect of random charge fluctuation on background configuration. The study is conducted for a short rang as well as a long rang potential interaction. Numerical simulation is performed using Monte-Carlo simulation in the presence of parabolic confinement and at low temperature. We have studied the background configurations for a dust particles with constant charge and in the presence of random charge fluctuation due to the discrete nature of charge carriers. The latter is studied for a positively charged dust when the dominant charging process is due to photo-emission from the dust surface. It is found, for small classical cluster consisting of small number of particles, short rang potential gives the same result as long rang one. It is also found that the random charge fluctuation affect the background configurations.

  18. Scientific results from the Cosmic Background Explorer (COBE)

    PubMed Central

    Bennett, C. L.; Boggess, N. W.; Cheng, E. S.; Hauser, M. G.; Kelsall, T.; Mather, J. C.; Moseley, S. H.; Murdock, T. L.; Shafer, R. A.; Silverberg, R. F.; Smoot, G. F.; Weiss, R.; Wright, E. L.

    1993-01-01

    The National Aeronautics and Space Administration (NASA) has flown the COBE satellite to observe the Big Bang and the subsequent formation of galaxies and large-scale structure. Data from the Far-Infrared Absolute Spectrophotometer (FIRAS) show that the spectrum of the cosmic microwave background is that of a black body of temperature T = 2.73 ± 0.06 K, with no deviation from a black-body spectrum greater than 0.25% of the peak brightness. The data from the Differential Microwave Radiometers (DMR) show statistically significant cosmic microwave background anisotropy, consistent with a scale-invariant primordial density fluctuation spectrum. Measurements from the Diffuse Infrared Background Experiment (DIRBE) provide new conservative upper limits to the cosmic infrared background. Extensive modeling of solar system and galactic infrared foregrounds is required for further improvement in the cosmic infrared background limits. PMID:11607383

  19. Fluctuation driven electroweak phase transition

    NASA Technical Reports Server (NTRS)

    Gleiser, Marcelo; Kolb, Edward W.

    1991-01-01

    We examine the dynamics of the electroweak phase transition in the early Universe. For Higgs masses in the range 46 less than or = M sub H less than or = 150 GeV and top quark masses less than 200 GeV, regions of symmetric and asymmetric vacuum coexist to below the critical temperature, with thermal equilibrium between the two phases maintained by fluctuations of both phases. We propose that the transition to the asymmetric vacuum is completed by percolation of these subcritical fluctuations. Our results are relevant to scenarios of baryogenesis that invoke a weakly first-order phase transition at the electroweak scale.

  20. Effects of finite beam and plasma temperature on the growth rate of a two-stream free electron laser with background plasma

    SciTech Connect

    Mahdizadeh, N.; Aghamir, F. M.

    2013-02-28

    A fluid theory is used to derive the dispersion relation of two-stream free electron laser (TSFEL) with a magnetic planar wiggler pump in the presence of background plasma (BP). The effect of finite beams and plasma temperature on the growth rate of a TSFEL has been verified. The twelve order dispersion equation has been solved numerically. Three instabilities, FEL along with the TS and TS-FEL instabilities occur simultaneously. The analysis in the case of cold BP shows that when the effect of the beam temperature is taken into account, both instable bands of wave-number and peak growth rate in the TS instability increase, but peak growth of the FEL and TS-FEL instabilities decreases. Thermal motion of the BP causes to diminish the TS instability and it causes to decrease the FEL and TS-FEL instabilities. By increasing the beam densities and lowering initial velocities (in the collective Raman regime), growth rate of instabilities increases; however, it has opposite behavior in the Campton regime.

  1. Measurements of E-Mode Polarization and Temperature-E-Mode Correlation in the Cosmic Microwave Background from 100 Square Degrees of SPTpol Data

    NASA Astrophysics Data System (ADS)

    Crites, A. T.; Henning, J. W.; Ade, P. A. R.; Aird, K. A.; Austermann, J. E.; Beall, J. A.; Bender, A. N.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Chiang, H. C.; Cho, H.-M.; Citron, R.; Crawford, T. M.; de Haan, T.; Dobbs, M. A.; Everett, W.; Gallicchio, J.; Gao, J.; George, E. M.; Gilbert, A.; Halverson, N. W.; Hanson, D.; Harrington, N.; Hilton, G. C.; Holder, G. P.; Holzapfel, W. L.; Hoover, S.; Hou, Z.; Hrubes, J. D.; Huang, N.; Hubmayr, J.; Irwin, K. D.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Li, D.; Liang, C.; Luong-Van, D.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Montroy, T. E.; Natoli, T.; Nibarger, J. P.; Novosad, V.; Padin, S.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Schaffer, K. K.; Smecher, G.; Stark, A. A.; Story, K. T.; Tucker, C.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Yefremenko, V.; Zahn, O.

    2015-05-01

    We present measurements of E-mode polarization and temperature-E-mode correlation in the cosmic microwave background using data from the first season of observations with SPTpol, the polarization-sensitive receiver currently installed on the South Pole Telescope (SPT). The observations used in this work cover 100 {{deg }2} of sky with arcminute resolution at 150 GHz. We report the E-mode angular auto-power spectrum (EE) and the temperature-E-mode angular cross-power spectrum (TE) over the multipole range 500 < ℓ ≤ 5000. These power spectra improve on previous measurements in the high-ℓ (small-scale) regime. We fit the combination of the SPTpol power spectra, data from Planck, and previous SPT measurements with a six-parameter ΛCDM cosmological model. We find that the best-fit parameters are consistent with previous results. The improvement in high-ℓ sensitivity over previous measurements leads to a significant improvement in the limit on polarized point-source power: after masking sources brighter than 50 mJy in unpolarized flux at 150 GHz, we find a 95% confidence upper limit on unclustered point-source power in the EE spectrum of {{D}\\ell }=\\ell (\\ell +1){{C}\\ell }/2π \\lt 0.40 μ {{K}2} at \\ell =3000, indicating that future EE measurements will not be limited by power from unclustered point sources in the multipole range \\ell \\lt 3600, and possibly much higher in \\ell .

  2. Thermal fluctuations and bouncing cosmologies

    SciTech Connect

    Cai, Yi-Fu; Zhang, Xinmin; Xue, Wei; Brandenberger, Robert E-mail: xuewei@physics.mcgill.ca E-mail: xmzhang@ihep.ac.cn

    2009-06-01

    We study the conditions under which thermal fluctuations generated in the contracting phase of a non-singular bouncing cosmology can lead to a scale-invariant spectrum of cosmological fluctuations at late times in the expanding phase. We consider point particle gases, holographic gases and string gases. In the models thus identified, we also study the thermal non-Gaussianities of the resulting distribution of inhomogeneities. For regular point particle radiation, we find that the background must have an equation of state w = 7/3 in order to obtain a scale-invariant spectrum, and that the non-Gaussianities are suppressed on scales larger than the thermal wavelength. For Gibbons-Hawking radiation, we find that a matter-dominated background yields scale-invariance, and that the non-Gaussianities are large. String gases are also briefly considered.

  3. Fluctuational electrodynamics of hyperbolic metamaterials

    SciTech Connect

    Guo, Yu; Jacob, Zubin

    2014-06-21

    We give a detailed account of equilibrium and non-equilibrium fluctuational electrodynamics of hyperbolic metamaterials. We show the unifying aspects of two different approaches; one utilizes the second kind of fluctuation dissipation theorem and the other makes use of the scattering method. We analyze the near-field of hyperbolic media at finite temperatures and show that the lack of spatial coherence can be attributed to the multi-modal nature of super-Planckian thermal emission. We also adopt the analysis to phonon-polaritonic super-lattice metamaterials and describe the regimes suitable for experimental verification of our predicted effects. The results reveal that far-field thermal emission spectra are dominated by epsilon-near-zero and epsilon-near-pole responses as expected from Kirchoff's laws. Our work should aid both theorists and experimentalists to study complex media and engineer equilibrium and non-equilibrium fluctuations for applications in thermal photonics.

  4. A method to determine true air temperature fluctuations in clouds with liquid water fraction and estimate water droplet effect on the calculations of the spectral structure of turbulent heat fluxes in cumulus clouds based on aircraft data

    NASA Astrophysics Data System (ADS)

    Strunin, Alexander M.; Zhivoglotov, Dmitriy N.

    2014-03-01

    Liquid water droplets could distort aircraft temperature measurements in clouds, leading to errors in calculated heat fluxes and incorrect flux distribution pattern. The estimation of cloud droplet effect on the readings of the high-frequency aircraft thermometer employed at the Central Aerological Observatory (CAO) was based on an experimental study of the sensor in a wind tunnel, using an air flow containing liquid water droplets. Simultaneously, calculations of the distribution of speed and temperature in a flow through the sensitive element of the sensor were fulfilled. This permitted estimating the coefficient of water content effect on temperature readings. Another way of estimating cloud droplet effect was based on the analysis of data obtained during aircraft observations of cumulus clouds in a tropical zone (Cuba Island). As a result, a method of correcting air temperature and recovering true air temperature fluctuations inside clouds was developed. This method has provided consistent patterns of heat flux distribution in a cumulus area. Analysis of the results of aircraft observations of cumulus clouds with temperature correction fulfilled has permitted investigation of the spectral structure of the fields of air temperature and heat fluxes to be performed in cumulus zones based on wavelet transformation. It is shown that mesoscale eddies (over 500 m in length) were the main factor of heat exchange between a cloud and the ambient space. The role of turbulence only consisted in mixing inside the cloud.

  5. Cosmic Microwave Background Data Analysis

    NASA Astrophysics Data System (ADS)

    Paykari, Paniez; Starck, Jean-Luc Starck

    2012-03-01

    About 400,000 years after the Big Bang the temperature of the Universe fell to about a few thousand degrees. As a result, the previously free electrons and protons combined and the Universe became neutral. This released a radiation which we now observe as the cosmic microwave background (CMB). The tiny fluctuations* in the temperature and polarization of the CMB carry a wealth of cosmological information. These so-called temperature anisotropies were predicted as the imprints of the initial density perturbations which gave rise to the present large-scale structures such as galaxies and clusters of galaxies. This relation between the present-day Universe and its initial conditions has made the CMB radiation one of the most preferred tools to understand the history of the Universe. The CMB radiation was discovered by radio astronomers Arno Penzias and Robert Wilson in 1965 [72] and earned them the 1978 Nobel Prize. This discovery was in support of the Big Bang theory and ruled out the only other available theory at that time - the steady-state theory. The crucial observations of the CMB radiation were made by the Far-Infrared Absolute Spectrophotometer (FIRAS) instrument on the Cosmic Background Explorer (COBE) satellite [86]- orbited in 1989-1996. COBE made the most accurate measurements of the CMB frequency spectrum and confirmed it as being a black-body to within experimental limits. This made the CMB spectrum the most precisely measured black-body spectrum in nature. The CMB has a thermal black-body spectrum at a temperature of 2.725 K: the spectrum peaks in the microwave range frequency of 160.2 GHz, corresponding to a 1.9mmwavelength. The results of COBE inspired a series of ground- and balloon-based experiments, which measured CMB anisotropies on smaller scales over the next decade. During the 1990s, the first acoustic peak of the CMB power spectrum (see Figure 5.1) was measured with increasing sensitivity and by 2000 the BOOMERanG experiment [26] reported

  6. Heat fluctuations and initial ensembles.

    PubMed

    Kim, Kwangmoo; Kwon, Chulan; Park, Hyunggyu

    2014-09-01

    Time-integrated quantities such as work and heat increase incessantly in time during nonequilibrium processes near steady states. In the long-time limit, the average values of work and heat become asymptotically equivalent to each other, since they only differ by a finite energy change in average. However, the fluctuation theorem (FT) for the heat is found not to hold with the equilibrium initial ensemble, while the FT for the work holds. This reveals an intriguing effect of everlasting initial memory stored in rare events. We revisit the problem of a Brownian particle in a harmonic potential dragged with a constant velocity, which is in contact with a thermal reservoir. The heat and work fluctuations are investigated with initial Boltzmann ensembles at temperatures generally different from the reservoir temperature. We find that, in the infinite-time limit, the FT for the work is fully recovered for arbitrary initial temperatures, while the heat fluctuations significantly deviate from the FT characteristics except for the infinite initial-temperature limit (a uniform initial ensemble). Furthermore, we succeed in calculating finite-time corrections to the heat and work distributions analytically, using the modified saddle point integral method recently developed by us. Interestingly, we find noncommutativity between the infinite-time limit and the infinite-initial-temperature limit for the probability distribution function (PDF) of the heat. PMID:25314405

  7. The glassy state of crambin and the THz time scale protein-solvent fluctuations possibly related to protein function

    PubMed Central

    2014-01-01

    Background THz experiments have been used to characterize the picosecond time scale fluctuations taking place in the model, globular protein crambin. Results Using both hydration and temperature as an experimental parameter, we have identified collective fluctuations (<= 200 cm−1) in the protein. Observation of the protein dynamics in the THz spectrum from both below and above the glass transition temperature (Tg) has provided unique insight into the microscopic interactions and modes that permit the solvent to effectively couple to the protein thermal fluctuations. Conclusions Our findings suggest that the solvent dynamics on the picosecond time scale not only contribute to protein flexibility but may also delineate the types of fluctuations that are able to form within the protein structure. PMID:25184036

  8. Theory of electromagnetic fluctuations for magnetized multi-species plasmas

    SciTech Connect

    Navarro, Roberto E. Muñoz, Víctor; Araneda, Jaime; Moya, Pablo S.; Viñas, Adolfo F.; Valdivia, Juan A.

    2014-09-15

    Analysis of electromagnetic fluctuations in plasma provides relevant information about the plasma state and its macroscopic properties. In particular, the solar wind persistently sustains a small but detectable level of magnetic fluctuation power even near thermal equilibrium. These fluctuations may be related to spontaneous electromagnetic fluctuations arising from the discreteness of charged particles. Here, we derive general expressions for the plasma fluctuations in a multi-species plasma following arbitrary distribution functions. This formalism, which generalizes and includes previous works on the subject, is then applied to the generation of electromagnetic fluctuations propagating along a background magnetic field in a plasma of two proton populations described by drifting bi-Maxwellians.

  9. Indistinguishability of thermal and quantum fluctuations

    NASA Astrophysics Data System (ADS)

    Kolekar, Sanved; Padmanabhan, T.

    2015-10-01

    The existence of Davies-Unruh temperature in a uniformly accelerated frame shows that quantum fluctuations of the inertial vacuum state appears as thermal fluctuations in the accelerated frame. Hence thermodynamic experiments cannot distinguish between phenomena occurring in a thermal bath of temperature T in the inertial frame from those in a frame accelerating through inertial vacuum with the acceleration a=2π T. We show that this indisguishability between quantum fluctuations and thermal fluctuations goes far beyond the fluctuations in the vacuum state. We show by an exact calculation, that the reduced density matrix for a uniformly accelerated observer when the quantum field is in a thermal state of temperature {T}\\prime , is symmetric between acceleration temperature T=a/(2π ) and the thermal bath temperature {T}\\prime . Thus thermal phenomena cannot distinguish whether (i) one is accelerating with a=2π T through a bath of temperature {T}\\prime or (ii) accelerating with a=2π {T}\\prime through a bath of temperature T. This shows that thermal and quantum fluctuations in an accelerated frame affect the observer in a symmetric manner. The implications are discussed.

  10. A search for the Sunyaev-Zel'dovich effect at millimeter wavelengths. [cosmic background photon energy increase due to Compton scattering by high temperature galactic cluster plasma electrons

    NASA Technical Reports Server (NTRS)

    Meyer, S. S.; Jeffries, A. D.; Weiss, R.

    1983-01-01

    It is believed that X-ray emission from clusters of galaxies represents thermal bremsstrahlung from a hot plasma. According to Sunyaev and Zel'dovich (1972), the plasma column density and temperature derived from this model imply a measurable distortion of the cosmic background radiation (CBR) in the cluster direction. This distortion results from the Compton scattering of the CBR photons by the electrons in the plasma, resulting in an average increase of each photon. This process, known as the Sunyaev-Zel'dovich effect, is photon conserving and 'shifts' the CBR spectrum to higher frequencies. The result is a decrease of flux at frequencies below 7.5 per cm (the Rayleigh-Jeans region), and an increase above. The investigation is concerned with measurements of the Sunyaev-Zel'dovich effect at frequencies in the range from 3 to 10 per cm. Attention is given to the employed observing and analysis technique, and an initial null result for the cluster Abell 1795.

  11. Scalar fluctuations in turbulent combustion - An experimental study

    NASA Astrophysics Data System (ADS)

    Ballal, D. R.; Chen, T. H.; Yaney, P. P.

    1986-01-01

    Temperature and velocity fluctuations data were gathered for turbulent premixed combustion to evaluate a model for scalar transport and scalar dissipation. The data were collected using laser Raman spectroscopy and laser Doppler anemometry with a premixed CH4-air flame from a Bunsen burner. Mean temperature profiles were generated and the pdf's temperature fluctuations were calculated. A wrinkled laminar flame structure was noted in the reaction zone, where the scalar field was anisotropic and where the temperature fluctuations exhibited peak values. The Bray, Moss and Libby model (1985) was successful in predicting the temperature fluctuation intensity and the dissipation ratios, the latter reaching peak values in the flame tip region.

  12. Strong Coupling Between Winter Climatic Fluctuations and Development of Phytoplankton in the Deep Lakes South of the Alps Assessed Using Long-Term in Situ and Satellite Temperature Data

    NASA Astrophysics Data System (ADS)

    Salmaso, N.; Pareeth, S.; Cerasino, L.; Neteler, M.

    2014-12-01

    Recent investigations showed that the winter climate in the lake district south of the Alps was strongly affected by specific prominent modes of low-frequency atmospheric variability relevant for the Mediterranean area (namely the East Atlantic pattern, EA, and the Eastern Mediterranean Pattern, EMP). In Lake Garda, the winter interannual fluctuations of EA and EMP triggered a long-chain of causally-linked effects on the physical structure of the lake and biological communities. Since 1991, and contrary to the summer months, the long-term increase of the mean winter water temperatures in the mixolimnion (0-50 m, ca. 0.01 °C yr-1) was statistically not-significant, coinciding, as confirmed by longer annual 1971-2014 series, with a period of relatively winter stable temperatures. Superimposed to the long-term trend, the deep hypolimnion showed different periods of warming caused by a downward transport of heat by turbulent diffusion during stratification. These phases were terminated by sudden cooling and overturn during harsh winters associated with negative EA and positive EMP values. The long term saw tooth temperature dynamics had a strong impact on the transport of hypolimnetic nutrients towards the surface, fuelling the development of eutrophic species, namely toxic cyanobacteria during the summer months. Other changes in the trophic webs included modifications in the phenology of the dominant zooplankton cladocerans. In the subalpine lake district, changes were documented not only at the level of species, but also genotypes, with a positive selection of cyanobacterial strains with strong gas-vesicles (i.e. best adapted to higher hydrostatic pressures) in lakes experiencing deep mixing. The study of the effects of climatic fluctuations and long-term changes was based on monthly field data. In this work, the evaluation will be further investigated also using high resolution satellite temperature data recorded using Moderate-resolution Imaging Spectroradiometer

  13. The microwave background anisotropies: Observations

    PubMed Central

    Wilkinson, David

    1998-01-01

    Most cosmologists now believe that we live in an evolving universe that has been expanding and cooling since its origin about 15 billion years ago. Strong evidence for this standard cosmological model comes from studies of the cosmic microwave background radiation (CMBR), the remnant heat from the initial fireball. The CMBR spectrum is blackbody, as predicted from the hot Big Bang model before the discovery of the remnant radiation in 1964. In 1992 the cosmic background explorer (COBE) satellite finally detected the anisotropy of the radiation—fingerprints left by tiny temperature fluctuations in the initial bang. Careful design of the COBE satellite, and a bit of luck, allowed the 30 μK fluctuations in the CMBR temperature (2.73 K) to be pulled out of instrument noise and spurious foreground emissions. Further advances in detector technology and experiment design are allowing current CMBR experiments to search for predicted features in the anisotropy power spectrum at angular scales of 1° and smaller. If they exist, these features were formed at an important epoch in the evolution of the universe—the decoupling of matter and radiation at a temperature of about 4,000 K and a time about 300,000 years after the bang. CMBR anisotropy measurements probe directly some detailed physics of the early universe. Also, parameters of the cosmological model can be measured because the anisotropy power spectrum depends on constituent densities and the horizon scale at a known cosmological epoch. As sophisticated experiments on the ground and on balloons pursue these measurements, two CMBR anisotropy satellite missions are being prepared for launch early in the next century. PMID:9419320

  14. Whistler Cyclotron Electromagnetic Fluctuations in a Maxwellian and Tsallis-kappa-like Plasma

    NASA Astrophysics Data System (ADS)

    Vinas, A. F.; Moya, P. S.; Navarro, R.; Araneda, J. A.

    2014-12-01

    Observed electron velocity distributions in the Earth's magnetosphere and the solar wind exhibit a variety of non-thermal features which deviate from thermal equilibrium, for example, in the form of temperature anisotropies, suprathermal tail extensions, and field aligned beams. The state close to thermal equilibrium and its departure from it provides a source for spontaneous emissions of electromagnetic fluctuations, such as the whistler. Here we present a comparative analysis of whistler-cyclotron fluctuations based upon anisotropic plasma modeled with Maxwellian and Tsallis kappa-like particle distributions, to explain the correspondence relationship of the magnetic fluctuations as a function of the electron temperature and thermal anisotropy in the solar wind and magnetosphere plasmas. The analysis presented here considers correlation theory of the fluctuation-dissipation theorem and the dispersion relation of transverse fluctuations, with wave vectors parallel to the uniform background magnetic field, in a finite temperature anisotropic thermal bi-Maxwellian and non-thermal Tsallis-kappa-like magnetized electron-proton plasma. Dispersion analysis and stability thresholds are derived for these thermal and non-thermal distributions using plasma and field parameters relevant to the solar wind and magnetosphere environments. Our results indicate that there is an enhancement of the fluctuations level in the case of non-thermal distributions due to the effective higher-temperature and the excess of suprathermal particles. These results suggest that a comparison of the electromagnetic fluctuations due to thermal and non-thermal distributions provides a diagnostic signature by which inferences about the nature of the particle velocity distribution function can be ascertained without in-situ particle measurements.

  15. A novel pyroelectric generator utilising naturally driven temperature fluctuations from oscillating heat pipes for waste heat recovery and thermal energy harvesting

    NASA Astrophysics Data System (ADS)

    Zabek, D.; Taylor, J.; Ayel, V.; Bertin, Y.; Romestant, C.; Bowen, C. R.

    2016-07-01

    Low temperature thermal to electrical energy converters have the potential to provide a route for recovering waste energy. In this paper, we propose a new configuration of a thermal harvester that uses a naturally driven thermal oscillator free of mechanical motion and operates between a hot heat source and a cold heat sink. The system exploits a heat induced liquid-vapour transition of a working fluid as a primary driver for a pyroelectric generator. The two-phase instability of a fluid in a closed looped capillary channel of an oscillating heat pipe (OHP) creates pressure differences which lead to local high frequency temperature oscillations in the range of 0.1-5 K. Such temperature changes are suitable for pyroelectric thermal to electrical energy conversion, where the pyroelectric generator is attached to the adiabatic wall of the OHP, thereby absorbing thermal energy from the passing fluid. This new pyroelectric-oscillating heat pipe (POHP) assembly of a low temperature generator continuously operates across a spatial heat source temperature of 55 °C and a heat sink temperature of 25 °C, and enables waste heat recovery and thermal energy harvesting from small temperature gradients at low temperatures. Our electrical measurements with lead zirconate titanate (PZT) show an open circuit voltage of 0.4 V (AC) and with lead magnesium niobate-lead titanate (PMN-PT) an open circuit voltage of 0.8 V (AC) at a frequency of 0.45 Hz, with an energy density of 95 pJ cm-3 for PMN-PT. Our novel POHP device therefore has the capability to convert small quantities of thermal energy into more desirable electricity in the nW to mW range and provides an alternative to currently used batteries or centralised energy generation.

  16. On the fluctuation induced mass enhancement

    NASA Astrophysics Data System (ADS)

    Van Hoa, Nguyen; Tuan, Vu Ngoc; Van Xuan, Le; Lan, Nguyen Tri; Viet, Nguyen Ai

    2016-06-01

    The effective mass induced by the background fluctuation on particles is considered. The analytical results show that the effective mass depends only on the properties of fluctuation, and takes non-zero value when and only when fluctuation mean value is non-zero. The possible applications of the obtained results to complex systems such as biology and ecology where environmental factors lead to the changes of the information exchange ranges from long to short one are discussed, i.e. the possibility of using physical modeling techniques to investigate macroscopic behaviors of some complex systems under consideration.

  17. Hawking radiation from fluctuating black holes

    NASA Astrophysics Data System (ADS)

    Takahashi, Tomohiro; Soda, Jiro

    2010-09-01

    Classically, black holes have a rigid event horizon. However, quantum mechanically, the event horizon of black holes becomes fuzzy due to quantum fluctuations. We study Hawking radiation of a real scalar field from a fluctuating black hole. To quantize metric perturbations, we derive the quadratic action for those in the black hole background. Then, we calculate cubic interaction terms in the action for the scalar field. Using these results, we obtain the spectrum of Hawking radiation in the presence of the interaction between the scalar field and the metric. It turns out that the spectrum deviates from the Planck spectrum due to quantum fluctuations of the metric.

  18. Cluster-Induced Fluctuations in the Microwave Background Radiation

    NASA Technical Reports Server (NTRS)

    Birkinshaw, Mark

    1997-01-01

    The research proposed was to detect, map and interpret the Sunyaev-Zel dovich (SZ) effects in two samples of distant clusters of galaxies with the OVRO 40-m telescope: an optically selected sample of 26 clusters at the North Ecliptic Pole, and an X-ray selected sample of clusters based on the Einstein Medium Sensitivity Survey, to make small maps of the strongest cluster SZ effects using the OVRO 40-m telescope, to combine the SZ and X-ray data for well-detected clusters to determine the value of the Hubble constant and set limits to the value of the deceleration parameter, and to study the properties of cluster atmospheres using the SZ effect.

  19. Fluctuations as stochastic deformation.

    PubMed

    Kazinski, P O

    2008-04-01

    A notion of stochastic deformation is introduced and the corresponding algebraic deformation procedure is developed. This procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). This method is demonstrated on diverse relativistic and nonrelativistic models with finite and infinite degrees of freedom. It is shown that under stochastic deformation the model of a nonrelativistic particle interacting with the electromagnetic field on a curved background passes into the stochastic model described by the Fokker-Planck equation with the diffusion tensor being the inverse metric tensor. The first stochastic correction to the Newton equations for this system is found. The Klein-Kramers equation is also derived as the stochastic deformation of a certain classical model. Relativistic generalizations of the Fokker-Planck and Klein-Kramers equations are obtained by applying the procedure of stochastic deformation to appropriate relativistic classical models. The analog of the Fokker-Planck equation associated with the stochastic Lorentz-Dirac equation is derived too. The stochastic deformation of the models of a free scalar field and an electromagnetic field is investigated. It turns out that in the latter case the obtained stochastic model describes a fluctuating electromagnetic field in a transparent medium. PMID:18517590

  20. Fluctuations as stochastic deformation

    NASA Astrophysics Data System (ADS)

    Kazinski, P. O.

    2008-04-01

    A notion of stochastic deformation is introduced and the corresponding algebraic deformation procedure is developed. This procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). This method is demonstrated on diverse relativistic and nonrelativistic models with finite and infinite degrees of freedom. It is shown that under stochastic deformation the model of a nonrelativistic particle interacting with the electromagnetic field on a curved background passes into the stochastic model described by the Fokker-Planck equation with the diffusion tensor being the inverse metric tensor. The first stochastic correction to the Newton equations for this system is found. The Klein-Kramers equation is also derived as the stochastic deformation of a certain classical model. Relativistic generalizations of the Fokker-Planck and Klein-Kramers equations are obtained by applying the procedure of stochastic deformation to appropriate relativistic classical models. The analog of the Fokker-Planck equation associated with the stochastic Lorentz-Dirac equation is derived too. The stochastic deformation of the models of a free scalar field and an electromagnetic field is investigated. It turns out that in the latter case the obtained stochastic model describes a fluctuating electromagnetic field in a transparent medium.

  1. Magnetically insulated baffled probe for real-time monitoring of equilibrium and fluctuating values of space potentials, electron and ion temperatures, and densities

    SciTech Connect

    Demidov, V. I.; Koepke, M. E.; Raitses, Y.

    2010-10-15

    By restricting the electron-collection area of a cold Langmuir probe compared to the ion-collection area, the probe floating potential can become equal to the space potential, and thus conveniently monitored, rather than to a value shifted from the space potential by an electron-temperature-dependent offset, i.e., the case with an equal-collection-area probe. This design goal is achieved by combining an ambient magnetic field in the plasma with baffles, or shields, on the probe, resulting in species-selective magnetic insulation of the probe collection area. This permits the elimination of electron current to the probe by further adjustment of magnetic insulation which results in an ion-temperature-dependent offset when the probe is electrically floating. Subtracting the floating potential of two magnetically insulated baffled probes, each with a different degree of magnetic insulation, enables the electron or ion temperature to be measured in real time.

  2. Quantum friction and fluctuation theorems

    NASA Astrophysics Data System (ADS)

    Intravaia, F.; Behunin, R. O.; Dalvit, D. A. R.

    2014-05-01

    We use general concepts of statistical mechanics to compute the quantum frictional force on an atom moving at constant velocity above a planar surface. We derive the zero-temperature frictional force using a nonequilibrium fluctuation-dissipation relation, and we show that in the large-time, steady-state regime, quantum friction scales as the cubic power of the atom's velocity. We also discuss how approaches based on Wigner-Weisskopf and quantum regression approximations fail to predict the correct steady-state zero-temperature frictional force, mainly due to the low-frequency nature of quantum friction.

  3. Effects of natural and artificial photoperiods and fluctuating temperature on age of first mating and mating frequency in the navel orangeworm, Amyelois transitella

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We examined the effect of weak illumination during part or all of scotophase on mating frequency of navel orangeworm, Amyelois transitella (Walker), in environmental chambers under long photoperiods and constant warm temperature (colony conditions) or shorter photoperiods and a cooler thermoperiod i...

  4. Nonisothermal fluctuating hydrodynamics and Brownian motion.

    PubMed

    Falasco, G; Kroy, K

    2016-03-01

    The classical theory of Brownian dynamics follows from coarse graining the underlying linearized fluctuating hydrodynamics of the solvent. We extend this procedure to globally nonisothermal conditions, requiring only a local thermal equilibration of the solvent. Starting from the conservation laws, we establish the stochastic equations of motion for the fluid momentum fluctuations in the presence of a suspended Brownian particle. These are then contracted to the nonisothermal generalized Langevin description of the suspended particle alone, for which the coupling to stochastic temperature fluctuations is found to be negligible under typical experimental conditions. PMID:27078335

  5. Nonisothermal fluctuating hydrodynamics and Brownian motion

    NASA Astrophysics Data System (ADS)

    Falasco, G.; Kroy, K.

    2016-03-01

    The classical theory of Brownian dynamics follows from coarse graining the underlying linearized fluctuating hydrodynamics of the solvent. We extend this procedure to globally nonisothermal conditions, requiring only a local thermal equilibration of the solvent. Starting from the conservation laws, we establish the stochastic equations of motion for the fluid momentum fluctuations in the presence of a suspended Brownian particle. These are then contracted to the nonisothermal generalized Langevin description of the suspended particle alone, for which the coupling to stochastic temperature fluctuations is found to be negligible under typical experimental conditions.

  6. Fluctuation spectroscopy of granularity in superconducting structures.

    SciTech Connect

    Lerner, I. V.; Varlamov, A. A.; Vinokur, V. M.; Materials Science Division; Univ. of Birmingham; Viale del Politecnico

    2008-03-01

    We suggest to use 'fluctuation spectroscopy' as a method to detect granularity in a disordered metal close to a superconducting transition. We show that with lowering temperature T the resistance R(T) of a system of relatively large grains initially grows due to the fluctuation suppression of the one-electron tunneling but decreases with further lowering T due to the coherent charge transfer of the fluctuation Cooper pairs. Under certain conditions, such a maximum in R(T) turns out to be sensitive to weak magnetic fields due to a novel Maki-Thompson-type mechanism.

  7. How to fool cosmic microwave background parameter estimation

    SciTech Connect

    Kinney, William H.

    2001-02-15

    With the release of the data from the Boomerang and MAXIMA-1 balloon flights, estimates of cosmological parameters based on the cosmic microwave background (CMB) have reached unprecedented precision. In this paper I show that it is possible for these estimates to be substantially biased by features in the primordial density power spectrum. I construct primordial power spectra which mimic to within cosmic variance errors the effect of changing parameters such as the baryon density and neutrino mass, meaning that even an ideal measurement would be unable to resolve the degeneracy. Complementary measurements are necessary to resolve this ambiguity in parameter estimation efforts based on CMB temperature fluctuations alone.

  8. The cosmic microwave background radiation

    NASA Technical Reports Server (NTRS)

    Silk, Joseph

    1992-01-01

    A review the implications of the spectrum and anisotropy of the cosmic microwave background for cosmology. Thermalization and processes generating spectral distortions are discussed. Anisotropy predictions are described and compared with observational constraints. If the evidence for large-scale power in the galaxy distribution in excess of that predicted by the cold dark matter model is vindicated, and the observed structure originated via gravitational instabilities of primordial density fluctuations, the predicted amplitude of microwave background anisotropies on angular scales of a degree and larger must be at least several parts in 10 exp 6.

  9. Hadronic Correlations and Fluctuations

    SciTech Connect

    Koch, Volker

    2008-10-09

    We will provide a review of some of the physics which can be addressed by studying fluctuations and correlations in heavy ion collisions. We will discuss Lattice QCD results on fluctuations and correlations and will put them into context with observables which have been measured in heavy-ion collisions. Special attention will be given to the QCD critical point and the first order co-existence region, and we will discuss how the measurement of fluctuations and correlations can help in an experimental search for non-trivial structures in the QCD phase diagram.

  10. Spatial fluctuation theorem

    NASA Astrophysics Data System (ADS)

    Pérez-Espigares, Carlos; Redig, Frank; Giardinà, Cristian

    2015-08-01

    For non-equilibrium systems of interacting particles and for interacting diffusions in d-dimensions, a novel fluctuation relation is derived. The theorem establishes a quantitative relation between the probabilities of observing two current values in different spatial directions. The result is a consequence of spatial symmetries of the microscopic dynamics, generalizing in this way the Gallavotti-Cohen fluctuation theorem related to the time-reversal symmetry. This new perspective opens up the possibility of direct experimental measurements of fluctuation relations of vectorial observables.

  11. Effects of temperature on the kinetics of the gated electron-transfer reaction between zinc cytochrome c and plastocyanin. Analysis of configurational fluctuation of the diprotein complex.

    PubMed

    Ivković-Jensen, M M; Kostić, N M

    1996-11-26

    This is a study of the effects of temperature (in the range 273.3-307.7 K) and of ionic strength (in the range 2.5-100 mM) on the kinetics of photoinduced electron-transfer reaction 3Zncyt/pc(II)--> Zncyt+/pc(I) within the electrostatic complex of zinc cytochrome c and cupriplastocyanin at pH 7.0. In order to separate direct and indirect effects of temperature on the rate constants, viscosity of the solutions was fixed, at different values, by additions of sucrose. The activation parameters for the reaction within the preformed complex, at the low ionic strength, are delta H++ = 13 +/- 2 kJ/mol and delta S++ = -97 +/- 4 J/K mol. The activation parameters for the reaction within the encounter complex, at the higher ionic strength, are delta H++ = 13 +/- 1 kJ/mol and delta S++ = -96 +/- 3 J/K mol. Evidently, the two complexes are the same. The proteins associate similarly in the persistent and the transient complex, i.e., at different ionic strengths. In both complexes, however, electron transfer is gated by a rearrangement, as previous studies from this laboratory showed. Changes in the solution viscosity modulate this rearrangement by affecting delta H++, not delta S++. The activation parameters are analyzed by empirical methods. The thermodynamic parameters delta H and delta S for the formation of the complex Zncyt/pc(II) are determined and related to changes in hydrophilic and hydrophobic surfaces upon protein association in three configurations. A difference between the values of delta H for the configuration providing optimal electronic coupling between the redox sites and the configuration providing optimal docking equals the experimental value delta H++ = 13 kJ/mol for the rearrangement of the latter configuration into the former. Enthalpy of activation may reflect a change in the character of the exposed surface as the diprotein complex rearranges. Entropy of activation may reflect tightening of the contact between the associated proteins. PMID:8942677

  12. Temperature Measurement of a Miniature Ceramic Heater in the Presence of an Extended Interfering Background Radiation Source Using a Multiwavelength Pyrometer

    NASA Technical Reports Server (NTRS)

    Ng, Daniel

    1999-01-01

    Temperature measurement of small (millimeter size) objects is generally difficult and demanding. Measurement involving ceramic materials using the traditional one- and two-color pyrometer is difficult because of their complex optical properties, such as low emissivity which may vary with both temperature and wavelength. Pyrometry applications in an environment with an interfering radiation source of extended dimension adds extra complexity to the process. We show that the multiwavelength pyrometer successfully measured the temperatures of a millimeter (mm) size ceramic heater under these demanding conditions.

  13. Fluctuations In Electrohydrodynamic Instability

    NASA Astrophysics Data System (ADS)

    Bianco, Francesco; Lucchesi, Mauro; Capaccioli, Simone; Fronzoni, Leone; Allegrini, Paolo

    2005-11-01

    Electrohydrodynamic Convection in Liquid Crystals (EHC) is a good system for the experimental study of spatio-temporal chaos. Particularly interesting is the behavior of the Nematic in presence of weak turbulence where ordered and disordered states are mixed. In this case, the fluctuations of velocity and electric current, for instance, are typical fluctuations of a system far from equilibrium. Recently some authors have analyzed the amplitude of the fluctuations as function of the applied electric field and they present interesting interpretations provided by some theories. Although important results have been obtained by these authors, many aspects of the dynamical behavior have to be further analyzed as the role of some localized coherences inside the turbulence regions. The direct optical observation allows us to make a correspondence between fluctuations and patterns, providing important information for a theoretical interpretation.

  14. Fluctuations in Photosynthesis

    NASA Astrophysics Data System (ADS)

    Khajeh, Ramin; Nishikida, Dean; Haberstroh, John; Geissler, Phillip L.

    2015-03-01

    The dynamics of the energy gap fluctuations of chromophores in Fenna-Matthews-Olson (FMO) complex can lead to an understanding of the underlying mechanism which is responsible for an efficient exciton energy transfer in such photosynthetic structures. Using Molecular Dynamics simulation results, we investigate trajectory statistics of energy gap fluctuations in chromophores using methods of propagators and Fourier coefficient distributions and examine possible anharmonic signatures in their behavior. Berkeley Lab - Material Science Division.

  15. Effect of Natural and Artificial Photoperiods and Fluctuating Temperature on Age of First Mating and Mating Frequency in the Navel Orangeworm, Amyelois transitella

    PubMed Central

    Burks, Charles S.; Brandl, David G.; Higbee, Bradley S.

    2011-01-01

    The effect of weak illumination during part or all of the scotophase on mating frequency of navel orangeworm, Amyelois transitella (Walker) (Lepidoptera: Pyralidae), was examined in environmental chambers under long photoperiods and constant warm temperature (colony conditions) or shorter photoperiods and a cooler thermoperiod intended to mimic spring conditions in our region. These data were compared to mating frequencies in sentinel females placed in the field during the first three weeks of May. Under colony conditions weak illumination in the final hour of the scotophase resulted in ∼90% mating on the first day after eclosion; significantly greater mating compared to complete darkness throughout the scotophase, weak illumination throughout the scotophase, or weak illumination for both the first and last hour of the scotophase. In an environmental chamber programmed to simulate spring conditions, little mating occurred on the first night after eclosion and three nights were required for more than 50% of the females to mate. There was no difference in mating frequency with between moths exposed to complete darkness throughout the scotophase and those provided with weak illumination in the last half hour of the scotophase or throughout the scotophase. This delay in age of first mating was consistent with field observations with sentinel females at May in the central San Joaquin Valley. The authors conclude that, along with greater longevity and later oviposition, first mating occurs at a later age in spring conditions compared to summer conditions in this species. Planned studies of the effect of delayed mating in first and second flights will need to take these factors into account. PMID:21861652

  16. Thermal Fluctuations in Nonequilibrium Systems

    NASA Astrophysics Data System (ADS)

    Garcia, Alex Luis

    A general Monte Carlo algorithm was developed for thermal systems whose transport and chemistry can be described by a Master Equation. Nicolis and Malek Mansour examined a model in which the transition rate could be derived exactly, namely a system coupled to two reservoirs by Knudsen flow. Their Fokker-Planck equation formulation of the thermal fluctuations is confirmed by the numerical simulation. In general it is very difficult to formulate the transition rate for thermal processes. Nicolis and Malek Mansour devised a parameterized transition rate using equilibrium and deterministic properties. They predicted the existence of long-range nonequilibrium temperature fluctuation correlations for a system subjected to a linear temperature gradient. Their construction, however, is not amenable to Monte Carlo simulation due to the nonkinetic nature of the resulting stochastic process. It is shown that a direct comparison can be made between their generic thermal system and the multicell Knudsen system. Quantitative confirmation of linear temperature correlations is obtained. A vectorized version of the Monte Carlo simulation which runs on an array processor is presented. The appearance of anomalous correlations when a system is not initialized at the steady state is discussed. It is found that even a deterministic system will display a fictitious long range correlation of fluctuations due to the slow decay of the lowest order mode even when the system is initially relatively close to steady state. Some guidelines for guarding against this type of data contamination are discussed. The analytic methods and numerical codes obtained in the above studies are used in the study of the stochastic temporal evolution of a complex thermal ignition system. A simple qualitative argument used for one-variable systems is found to yield important quantitative information concerning the variance of the explosion time. The results are confirmed by Monte Carlo numerical simulations.

  17. Fluctuations of a spherical gravitational impulsive wave.

    NASA Astrophysics Data System (ADS)

    Hortaçsu, M.

    1993-02-01

    It is shown that quantum fluctuations, in particular vacuum polarization, vanish in the background of a spherical impulsive wave solution of the Einstein field equations, recently found by Nutku and Penrose. The calculation is done in first-order perturbation theory but arguments are given why it should persist to all orders.

  18. Scaling metabolic rate fluctuations.

    PubMed

    Labra, Fabio A; Marquet, Pablo A; Bozinovic, Francisco

    2007-06-26

    Complex ecological and economic systems show fluctuations in macroscopic quantities such as exchange rates, size of companies or populations that follow non-Gaussian tent-shaped probability distributions of growth rates with power-law decay, which suggests that fluctuations in complex systems may be governed by universal mechanisms, independent of particular details and idiosyncrasies. We propose here that metabolic rate within individual organisms may be considered as an example of an emergent property of a complex system and test the hypothesis that the probability distribution of fluctuations in the metabolic rate of individuals has a "universal" form regardless of body size or taxonomic affiliation. We examined data from 71 individuals belonging to 25 vertebrate species (birds, mammals, and lizards). We report three main results. First, for all these individuals and species, the distribution of metabolic rate fluctuations follows a tent-shaped distribution with power-law decay. Second, the standard deviation of metabolic rate fluctuations decays as a power-law function of both average metabolic rate and body mass, with exponents -0.352 and -1/4 respectively. Finally, we find that the distributions of metabolic rate fluctuations for different organisms can all be rescaled to a single parent distribution, supporting the existence of general principles underlying the structure and functioning of individual organisms. PMID:17578913

  19. Harmonic inpainting of the cosmic microwave background sky: Formulation and error estimate

    SciTech Connect

    Inoue, Kaiki Taro; Cabella, Paolo; Komatsu, Eiichiro

    2008-06-15

    We develop a new interpolation scheme, based on harmonic inpainting, for reconstructing the cosmic microwave background temperature data within the Galaxy mask from the data outside the mask. We find that, for scale-invariant isotropic random Gaussian fluctuations, the developed algorithm reduces the errors in the reconstructed map for the odd-parity modes significantly for azimuthally symmetric masks with constant galactic latitudes. For a more realistic Galaxy mask, we find a modest improvement in the even-parity modes as well.

  20. Perturbative double field theory on general backgrounds

    NASA Astrophysics Data System (ADS)

    Hohm, Olaf; Marques, Diego

    2016-01-01

    We develop the perturbation theory of double field theory around arbitrary solutions of its field equations. The exact gauge transformations are written in a manifestly background covariant way and contain at most quadratic terms in the field fluctuations. We expand the generalized curvature scalar to cubic order in fluctuations and thereby determine the cubic action in a manifestly background covariant form. As a first application we specialize this theory to group manifold backgrounds, such as S U (2 )≃S3 with H -flux. In the full string theory this corresponds to a Wess-Zumino-Witten background CFT. Starting from closed string field theory, the cubic action around such backgrounds has been computed before by Blumenhagen, Hassler, and Lüst. We establish precise agreement with the cubic action derived from double field theory. This result confirms that double field theory is applicable to arbitrary curved background solutions, disproving assertions in the literature to the contrary.

  1. Velocity fluctuations of fission fragments

    NASA Astrophysics Data System (ADS)

    Llanes-Estrada, Felipe J.; Carmona, Belén Martínez; Martínez, Jose L. Muñoz

    2016-02-01

    We propose event by event velocity fluctuations of nuclear fission fragments as an additional interesting observable that gives access to the nuclear temperature in an independent way from spectral measurements and relates the diffusion and friction coefficients for the relative fragment coordinate in Kramers-like models (in which some aspects of fission can be understood as the diffusion of a collective variable through a potential barrier). We point out that neutron emission by the heavy fragments can be treated in effective theory if corrections to the velocity distribution are needed.

  2. Electromagnetic fluctuations of the whistler-cyclotron and firehose instabilities in a Maxwellian and Tsallis-kappa-like plasma

    NASA Astrophysics Data System (ADS)

    Viñas, Adolfo F.; Moya, Pablo S.; Navarro, Roberto E.; Valdivia, J. Alejandro; Araneda, Jaime A.; Muñoz, Víctor

    2015-05-01

    Observed electron velocity distributions in the Earth's magnetosphere and the solar wind exhibit a variety of nonthermal features which deviate from thermal equilibrium, for example, in the form of temperature anisotropies, suprathermal tail extensions, and field-aligned beams. The state close to thermal equilibrium and its departure from it provides a source for spontaneous emissions of electromagnetic fluctuations, such as the whistler. Here we present a comparative analysis of the electron whistler-cyclotron and firehose fluctuations based upon anisotropic plasma modeled with Maxwellian and Tsallis-kappa-like particle distributions, to explain the correspondence relationship of the magnetic fluctuations as a function of the electron temperature and thermal anisotropy in the solar wind and magnetosphere plasmas. The analysis presented here considers correlation theory of the fluctuation-dissipation theorem and the dispersion relation of transverse fluctuations, with wave vectors parallel to the uniform background magnetic field, in a finite temperature anisotropic thermal bi-Maxwellian and nonthermal Tsallis-kappa-like magnetized electron-proton plasma. Dispersion analysis and stability thresholds are derived for these thermal and nonthermal distributions using plasma and field parameters relevant to the solar wind and magnetosphere environments. Our results indicate that there is an enhancement of the fluctuations level in the case of nonthermal distributions due to the effective higher temperature and the excess of suprathermal particles. These results suggest that a comparison of the electromagnetic fluctuations due to thermal and nonthermal distributions provides a diagnostic signature by which inferences about the nature of the particle velocity distribution function can be ascertained without in situ particle measurements.

  3. Cluster evolution as a probe of primordial density fluctuations

    NASA Technical Reports Server (NTRS)

    Bond, J. Richard; Myers, Steven T.

    1993-01-01

    Although COBE's detection of large angle microwave background anisotropies fixes the amplitude of density fluctuations on length scales k exp -1 approximately = (300-6000) h(exp -1)Mpc, what is crucial for the level of large scale clustering is the amplitude of density fluctuations on scales (5-50) h(exp -1)Mpc. The level of dynamical clustering is usually parameterized by the size of the mass fluctuations in 8 h exp -1 Mpc spheres, sigma sub 8. For the cold dark matter model, COBE gives sigma sub 8 approximately = 1, while models with extra large scale power give sigma sub 8 approximately = 1/2. The most massive clusters of galaxies (greater than or approximately = 10 exp 15 solar mass) form from rare 'peak patches' found in the initial mass density distribution. Their abundance as a function of redshift is a sensitive probe of the wave number band k(exp -1) approx. (3-8) h(exp -1)Mpc, hence of sigma sub 8, and so cluster evolution can discriminate among models allowed by the COBE results. We use our Hierarchical Peaks Method, which accurately reproduces the results of P3M N-body simulations, to calculate the evolution of cluster x-ray flux counts, luminosity, and temperature functions as a function of sigma sub 8 for CDM models and those with more large scale power. We find that the EMSS and Edge et al. cluster samples support sigma sub 8 in the range from approx. 0.6-0.9, and that models with more large scale power (and hence flatter fluctuation spectra in the cluster regime) fit the x-ray bright end better.

  4. Fluctuating shells under pressure

    PubMed Central

    Paulose, Jayson; Vliegenthart, Gerard A.; Gompper, Gerhard; Nelson, David R.

    2012-01-01

    Thermal fluctuations strongly modify the large length-scale elastic behavior of cross-linked membranes, giving rise to scale-dependent elastic moduli. Whereas thermal effects in flat membranes are well understood, many natural and artificial microstructures are modeled as thin elastic shells. Shells are distinguished from flat membranes by their nonzero curvature, which provides a size-dependent coupling between the in-plane stretching modes and the out-of-plane undulations. In addition, a shell can support a pressure difference between its interior and its exterior. Little is known about the effect of thermal fluctuations on the elastic properties of shells. Here, we study the statistical mechanics of shape fluctuations in a pressurized spherical shell, using perturbation theory and Monte Carlo computer simulations, explicitly including the effects of curvature and an inward pressure. We predict novel properties of fluctuating thin shells under point indentations and pressure-induced deformations. The contribution due to thermal fluctuations increases with increasing ratio of shell radius to thickness and dominates the response when the product of this ratio and the thermal energy becomes large compared with the bending rigidity of the shell. Thermal effects are enhanced when a large uniform inward pressure acts on the shell and diverge as this pressure approaches the classical buckling transition of the shell. Our results are relevant for the elasticity and osmotic collapse of microcapsules. PMID:23150558

  5. Granularity of the Diffuse Background Observed

    NASA Technical Reports Server (NTRS)

    Gruber, D. E.; MacDonald, D.; Rothschild, R. E.; Boldt, E.; Mushotzky, R. F.; Fabian, A. C.

    1995-01-01

    First results are reported from a program for measuring the field-to-field fluctuation level of the cosmic diffuse background by using differences between the two background positions of each deep exposure with the High Energy X-ray Timing Experiment (HEXTE) instrument on the Remote X Ray Timing Explorer (RXTE). With 8 million live seconds accumulated to date a fluctuation level on the 15-25 keV band is observed which is consistent with extrapolations from the High Energy Astrophysical Observatory-1 (HEAO-1) measurements. Positive results are expected eventually at higher energies. Models of (active galactic nuclei) AGN origin will eventually be constrained by this program.

  6. Fermionic influence on inflationary fluctuations

    NASA Astrophysics Data System (ADS)

    Boyanovsky, Daniel

    2016-04-01

    Motivated by apparent persistent large scale anomalies in the cosmic microwave background we study the influence of fermionic degrees of freedom on the dynamics of inflaton fluctuations as a possible source of violations of (nearly) scale invariance on cosmological scales. We obtain the nonequilibrium effective action of an inflaton-like scalar field with Yukawa interactions (YD ,M) to light fermionic degrees of freedom both for Dirac and Majorana fields in de Sitter space-time. The effective action leads to Langevin equations of motion for the fluctuations of the inflaton-like field, with self-energy corrections and a stochastic Gaussian noise. We solve the Langevin equation in the super-Hubble limit implementing a dynamical renormalization group resummation. For a nearly massless inflaton its power spectrum of super-Hubble fluctuations is enhanced, P (k ;η )=(H/2 π )2eγt[-k η ] with γt[-k η ]=1/6 π2 [∑i =1 NDYi,D 2+2 ∑j =1 NMYj,M 2]{ln2[-k η ]-2 ln [-k η ]ln [-k η0]} for ND Dirac and NM Majorana fermions, and η0 is the renormalization scale at which the inflaton mass vanishes. The full power spectrum is shown to be renormalization group invariant. These corrections to the super-Hubble power spectrum entail a violation of scale invariance as a consequence of the coupling to the fermionic fields. The effective action is argued to be exact in the limit of a large number of fermionic fields. A cancellation between the enhancement from fermionic degrees of freedom and suppression from light scalar degrees of freedom conformally coupled to gravity suggests the possibility of a finely tuned supersymmetry among these fields.

  7. Fluctuations and friction

    NASA Astrophysics Data System (ADS)

    Raine, Derek

    2005-11-01

    Einstein's 1905 (Einstein 1905 Ann. Phys. 17 549) paper on Brownian motion is his most cited work, yet in terms of the scope of its application, apparently the least understood. In this brief note, I look at some examples of problems involving frictional forces that have puzzled school teachers, university lecturers and students, all of which can be understood from a proper appreciation of the relation between fluctuations and dissipation. For completeness I shall first give a simple derivation of a fluctuation-dissipation theorem, followed by three examples.

  8. Critical fluctuations in the domain structure of lipid membranes

    NASA Astrophysics Data System (ADS)

    Halstenberg, S.; Schrader, W.; Das, P.; Bhattacharjee, J. K.; Kaatze, U.

    2003-03-01

    Between 100 kHz and 2 GHz ultrasonic attenuation spectra of two aqueous solutions of vesicles from 1,2-dimyristoyl-L-3-phosphatidylcholine have been measured at 13 temperatures around the main phase transition temperature of the membranes. The spectra are analyzed in terms of an asymptotic high frequency background contribution and three relaxation terms. Two of these terms can be represented by a discrete relaxation time, respectively, the other one extends over a significantly broader frequency range than a Debye-type relaxation term. It was found to nicely follow the predictions of the Bhattacharjee-Ferrell model of three-dimensional critical fluctuations. This finding has been additionally verified by measurements of the scaling function and by an analysis of the relaxation rate of order parameter fluctuations following from the fit of the experimental scaling function data to the theoretical form. Theoretical arguments are presented to indicate why the three-dimensional theory applies so well to the quasi-two-dimensional membrane system.

  9. Noncontact Friction and Force Fluctuations between Closely Spaced Bodies

    SciTech Connect

    Stipe, B. C.; Mamin, H. J.; Stowe, T. D.; Kenny, T. W.; Rugar, D.

    2001-08-27

    Noncontact friction between a Au(111) surface and an ultrasensitive gold-coated cantilever was measured as a function of tip-sample spacing, temperature, and bias voltage using observations of cantilever damping and Brownian motion. The importance of the inhomogeneous contact potential is discussed and comparison is made to measurements over dielectric surfaces. Using the fluctuation-dissipation theorem, the force fluctuations are interpreted in terms of near-surface fluctuating electric fields interacting with static surface charge.

  10. Superconducting fluctuations and the Nernst effect

    NASA Astrophysics Data System (ADS)

    Ussishkin, Iddo; Sondhi, S. L.; Huse, David A.

    2003-03-01

    We consider the contribution of superconducting fluctuations above the critical temperature to thermal transport in general, and the Nernst effect in particular. The contribution is considered using both the Gaussian approximation to the stochastic time-dependent Ginzburg-Landau equation and within a diagrammatic approach. We compare our results with recent measurements of the Nernst effect in the cuprates by Ong and collaborators.

  11. Fluctuating Asymmetry and Intelligence

    ERIC Educational Resources Information Center

    Bates, Timothy C.

    2007-01-01

    The general factor of mental ability ("g") may reflect general biological fitness. If so, "g"-loaded measures such as Raven's progressive matrices should be related to morphological measures of fitness such as fluctuating asymmetry (FA: left-right asymmetry of a set of typically left-right symmetrical body traits such as finger lengths). This…

  12. Active fluctuation symmetries

    NASA Astrophysics Data System (ADS)

    Maes, Christian; Salazar, Alberto

    2014-01-01

    In contrast with the understanding of fluctuation symmetries for entropy production, similar ideas applied to the time-symmetric fluctuation sector have been less explored. Here we give detailed derivations of time-symmetric fluctuation symmetries in boundary-driven particle systems such as the open Kawasaki lattice gas and the zero-range model. As a measure of time-symmetric dynamical activity over time T we count the difference (Nℓ - Nr)/T between the number of particle jumps in or out at the left edge and those at the right edge of the system. We show that this quantity satisfies a fluctuation symmetry from which we derive a new Green-Kubo-type relation. It will follow then that the system is more active at the edge connected to the particle reservoir with the largest chemical potential. We also apply these exact relations derived for stochastic particle models to a deterministic case, the spinning Lorentz gas, where the symmetry relation for the activity is checked numerically.

  13. Electron Gyro-scale Fluctuation Measurements in National Spherical Torus Experiment H-mode Plasmas

    SciTech Connect

    Smith, D R; Lee, W; Mazzucato, E; Park, H K; Bell, R E; Domier, C W; LeBlanc, B P; Levinton, F M; Luhmann, N C; Menard, J E

    2009-08-10

    A collective scattering system has measured electron gyro-scale fluctuations in National Spherical Torus Experiment (NSTX) H-mode plasmas to investigate electron temperature gradient (ETG) turbulence. Observations and results pertaining to fluctuation measurements in ETGstable regimes, the toroidal field scaling of fluctuation amplitudes, the relation between between fluctuation amplitudes and transport quantities, and fluctuation magnitudes and k-spectra are presented. Collectively, the measurements provide insight and guidance for understanding ETG turbulence and anomalous electron thermal transport.

  14. Statistical evidence from fine-scale anisotropies in the cosmic background radiation

    NASA Astrophysics Data System (ADS)

    Zabotin, N. A.; Naselskij, P. D.

    1985-12-01

    The use of more sensitive radio telescopes to identify individual structural features in the distribution of Delta T/T over the celestial sphere, and thus obtain information on the fine-scale anisotropy of the cosmic background radiation, is discussed. By analyzing the statistical parameters of pips in the microwave background temperature fluctuations due to regions which had anomalously strong metric perturbations during the hydrogen recombination era, evidence on the correlation properties of that anisotropy can be gained even if the anisotropy is two to three times weaker than the prevailing noise levels of instrumental, atmospheric, galactic, and extragalactic origin.

  15. Statistical evidence from fine-scale anisotropies in the cosmic background radiation

    SciTech Connect

    Zabotin, N.A.; Naselskii, P.D.

    1985-12-01

    The use of more sensitive radio telescopes to identify individual structural features in the distribution of Delta T/T over the celestial sphere, and thus obtain information on the fine-scale anisotropy of the cosmic background radiation, is discussed. By analyzing the statistical parameters of pips in the microwave background temperature fluctuations due to regions which had anomalously strong metric perturbations during the hydrogen recombination era, evidence on the correlation properties of that anisotropy can be gained even if the anisotropy is two to three times weaker than the prevailing noise levels of instrumental, atmospheric, galactic, and extragalactic origin. 7 references.

  16. Terrestrial Gravity Fluctuations

    NASA Astrophysics Data System (ADS)

    Harms, Jan

    2015-12-01

    Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10^-23 Hz^-1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of

  17. Searching for stringy topologies in the cosmic microwave background

    SciTech Connect

    Ben-David, Assaf; Rathaus, Ben; Itzhaki, Nissan E-mail: ben.rathaus@gmail.com

    2012-11-01

    We consider a universe with a non-classical stringy topology that has fixed points. We concentrate on the simplest example, an orbifold point, and study its observable imprints on the cosmic microwave background (CMB). We show that an orbifold preserves the Gaussian nature of the temperature fluctuations, yet modifies the angular correlation function. A direct signature of an orbifold is a single circle in the CMB that is invariant under rotation by 180°. Searching the 7-year ILC map of WMAP, we find one candidate circle with high statistical significance. However, a closer look reveals that the temperature profile does not fit an orbifold. We place a lower bound on the distance to an orbifold point at ∼ 85% of the distance to the surface of last scattering.

  18. Fluctuation of heat current in Josephson junctions

    SciTech Connect

    Virtanen, P.; Giazotto, F.

    2015-02-15

    We discuss the statistics of heat current between two superconductors at different temperatures connected by a generic weak link. As the electronic heat in superconductors is carried by Bogoliubov quasiparticles, the heat transport fluctuations follow the Levitov–Lesovik relation. We identify the energy-dependent quasiparticle transmission probabilities and discuss the resulting probability density and fluctuation relations of the heat current. We consider multichannel junctions, and find that heat transport in diffusive junctions is unique in that its statistics is independent of the phase difference between the superconductors.

  19. Conductance fluctuations in nanostructures

    NASA Astrophysics Data System (ADS)

    Zhu, Ningjia

    1997-12-01

    In this Ph.D thesis the conductance fluctuations of different physical origins in semi-conductor nanostructures were studied using both diagrammatic analytical methods and large scale numerical techniques. In the "mixed" transport regime where both mesoscopic and ballistic features play a role, for the first time I have analytically calculated the non-universal conductance fluctuations. This mixed regime is reached when impurities are distributed near the walls of a quantum wire, leaving the center region ballistic. I have discovered that the existence of a ballistic region destroys the universal conductance fluctuations. The crossover behavior of the fluctuation amplitude from the usual quasi-1D situation to that of the mixed regime is clearly revealed, and the role of various length scales are identified. My analytical predictions were confirmed by a direct numerical simulation by evaluating the Landauer formula. In another direction, I have made several studies of conductance or resistance oscillations and fluctuations in systems with artificial impurities in the ballistic regime. My calculation gave explanations of all the experimental results concerning the classical focusing peaks of the resistance versus magnetic field, the weak localization peak in a Sinai billiard system, the formation of a chaotic billiard, and predicted certain transport features which were indeed found experimentally. I have further extended the calculation to study the Hall resistance in a four-terminal quantum dot in which there is an antidot array. From my numerical data I analyzed the classical paths of electron motion and its quantum oscillations. The results compare well with recent experimental studies on similar systems. Since these billiard systems could provide quantum chaotic dynamics, I have made a detailed study of the consequence of such dynamics. In particular I have investigated the resonant transmission of electrons in these chaotic systems, and found that the level

  20. Destruction of the Josephson effect by fluctuations

    NASA Astrophysics Data System (ADS)

    Fibich, M.; Kuper, C. G.; Revzen, M.; Ron, Amiram

    1987-12-01

    The Josephson effect occurs when the phases of the complex order parameter of two superconducting bodies separated by an insulating barrier become correlated. Prima facie, this is energetically favorable, since there is a finite coupling energy. However, when fluctuations of charge and phase are taken into account, one has to include the “cost” of these fluctuations in the energy balance. This becomes especially important in very small systems. We use the fluctuation-dissipation theorem to calculate the fluctuation energy and the associated free energy both when the junction is phase-correlated and when it is uncorrelated. In these calculations, we use the “resistively-shunted-junction” model to describe the junction. By comparing the excess free energy in the correlated state (over the uncorrelated one) with the Josephson coupling energy, we find a thermodynamic criterion for destruction of the Josephson characteristic of the junction. In the limiting case where the shunt resistance has a finite zero-temperature limit, we find a nearly universal resistance threshold. In another limit, where the resistance is taken to be the frequency-independent tunneling resistance of the Bogoliubov quasiparticles (in a “semiconductor” picture), our criterion reduces to that of Anderson when the temperature T=0. We predict that for some junction parameters, the system can be reentrant, while for some other values, the transition temperature may be lowered.

  1. Adiabatic fluctuations from cosmic strings in a contracting universe

    SciTech Connect

    Brandenberger, Robert H.; Takahashi, Tomo; Yamaguchi, Masahide E-mail: tomot@cc.saga-u.ac.jp

    2009-07-01

    We show that adiabatic, super-Hubble, and almost scale invariant density fluctuations are produced by cosmic strings in a contracting universe. An essential point is that isocurvature perturbations produced by topological defects such as cosmic strings on super-Hubble scales lead to a source term which seeds the growth of curvature fluctuations on these scales. Once the symmetry has been restored at high temperatures, the isocurvature seeds disappear, and the fluctuations evolve as adiabatic ones in the expanding phase. Thus, cosmic strings may be resurrected as a mechanism for generating the primordial density fluctuations observed today.

  2. Multiscale Fluctuation Analysis Revisited

    NASA Astrophysics Data System (ADS)

    Struzik, Zbigniew R.; Kiyono, Ken; Yamamoto, Yoshiharu

    2007-07-01

    Ubiquitous non-Gaussianity of the probability density of (time-series) fluctuations in many real world phenomena has been known and modelled extensively in recent years. Similarly, the analysis of (multi)scaling properties of (fluctuations in) complex systems has become a standard way of addressing unknown complexity. Yet the combined analysis and modelling of multiscale behaviour of probability density — multiscale PDF analysis — has only recently been proposed for the analysis of time series arising in complex systems, such as the cardiac neuro-regulatory system, financial markets or hydrodynamic turbulence. This relatively new technique has helped significantly to expand the previously obtained insights into the phenomena addressed. In particular, it has helped to identify a novel class of scale invariant behaviour of the multiscale PDF in healthy heart rate regulation during daily activity and in a market system undergoing crash dynamics. This kind of invariance reflects invariance of the system under renormalisation and resembles behaviour at criticality of a system undergoing continuous phase transition — indeed in both phenomena, such phase transition behaviour has been revealed. While the precise mechanism underlying invariance of the PDF under system renormalisation of both systems discussed is not to date understood, there is an intimate link between the non-Gaussian PDF characteristics and the persistent invariant correlation structure emerging between fluctuations across scale and time.

  3. Force fluctuations in stretching a tethered polymer

    NASA Astrophysics Data System (ADS)

    Varghese, Anoop; Vemparala, Satyavani; Rajesh, R.

    2013-08-01

    The recently proposed fluctuation relation in unfolding forces [Phys. Rev. E1539-375510.1103/PhysRevE.84.060101 84, 060101(R) (2011)] is reexamined taking into account the explicit time dependence of the force distribution. The stretching of a tethered Rouse polymer is exactly solved and the ratio of the probabilities of positive to negative forces is shown to be an exponential in force. Extensive steered molecular dynamics simulations of unfolding of deca alanine peptide confirm the form of fluctuation relation proposed earlier, but with explicit correct time dependence of unfolding forces taken into account. From exact calculations and simulations, a linear dependence of the constant in the exponential of the fluctuation relation on average unfolding forces and inverse temperature is proposed.

  4. Quantum fluctuation effects on the quench dynamics of thermal quasicondensates

    NASA Astrophysics Data System (ADS)

    Świsłocki, Tomasz; Deuar, Piotr

    2016-07-01

    We study the influence of quantum fluctuations on the phase, density, and pair correlations in a trapped quasicondensate after a quench of the interaction strength. To do so, we derive a description similar to the stochastic Gross–Pitaevskii equation (SGPE) but keeping a fully quantum description of the low-energy fields using the positive-P representation. This allows us to treat both the quantum and thermal fluctuations together in an integrated way. A plain SGPE only allows for thermal fluctuations. The approach is applicable to such situations as finite temperature quantum quenches, but not equilibrium calculations due to the time limitations inherent in positive-P descriptions of interacting gases. One sees the appearance of antibunching, the generation of counter-propagating atom pairs, and increased phase fluctuations. We show that the behavior can be estimated by adding the T = 0 quantum fluctuation contribution to the thermal fluctuations described by the plain SGPE.

  5. Equilibrium fluctuations of the Lennard-Jones cluster surface

    NASA Astrophysics Data System (ADS)

    Zhukhovitskii, D. I.

    2008-11-01

    Spectra of the cluster surface equilibrium fluctuations are treated by decomposition into the bulk and net capillary ones. The bulk fluctuations without capillary ones are simulated by the surface of a cluster truncated by a sphere. The bulk fluctuation spectrum is shown to be generated primarily by the discontinuity in the spatial distribution of cluster internal particles. The net capillary fluctuation slice spectrum is obtained in molecular dynamics simulation by subtraction of the bulk fluctuation spectrum from the total one. This net spectrum is in the best agreement with a theoretical estimation if we assume the intrinsic surface tension to be independent of the wave number. The wave number cutoff is brought in balance with the intrinsic surface tension and excess surface area induced by the capillary fluctuations. It is shown that the ratio of the ordinary surface tension to the intrinsic one can be considered as a universal constant independent of the temperature and cluster size.

  6. Intrinsic topological superfluidity - fluctuations and response

    NASA Astrophysics Data System (ADS)

    Levin, K.; Wu, Chien-Te; Anderson, Brandon; Boyack, Rufus

    Recent interest in topological superconductivity is based primarily on exploiting proximity effects to obtain this important phase. However, in cold gases it is possible to contemplate ``intrinsic'' topological superfluidity produced with a synthetic spin-orbit coupling and Zeeman field. It is important for such future experiments to establish how low in temperature one needs to go to reach the ordered phase. Similarly, it will be helpful to have a probe of the normal (pseudogap) phase to determine if the ultimate superfluid order will be topological or trivial. In this talk, we address these issues by considering fluctuation effects in such a superfluid, and calculate the critical transition temperature and response functions. We see qualitative signatures of topological superfluidity in spin and charge response functions. We also explore the suppression of superfluidity due to fluctuations, and importantly find that the temperature scales necessary to reach topological superfluidity are reasonably accessible

  7. The role of higher-order modes on the electromagnetic whistler-cyclotron wave fluctuations of thermal and non-thermal plasmas

    SciTech Connect

    Viñas, Adolfo F.; Moya, Pablo S.; Department of Physics, Catholic University of America, Washington DC, District of Columbia 20064 ; Navarro, Roberto; Araneda, Jaime A.

    2014-01-15

    Two fundamental challenging problems of laboratory and astrophysical plasmas are the understanding of the relaxation of a collisionless plasmas with nearly isotropic velocity distribution functions and the resultant state of nearly equipartition energy density with electromagnetic plasma turbulence. Here, we present the results of a study which shows the role that higher-order-modes play in limiting the electromagnetic whistler-like fluctuations in a thermal and non-thermal plasma. Our main results show that for a thermal plasma the magnetic fluctuations are confined by regions that are bounded by the least-damped higher order modes. We further show that the zone where the whistler-cyclotron normal modes merges the electromagnetic fluctuations shifts to longer wavelengths as the β{sub e} increases. This merging zone has been interpreted as the beginning of the region where the whistler-cyclotron waves losses their identity and become heavily damped while merging with the fluctuations. Our results further indicate that in the case of nonthermal plasmas, the higher-order modes do not confine the fluctuations due to the effective higher-temperature effects and the excess of suprathermal plasma particles. The analysis presented here considers the second-order theory of fluctuations and the dispersion relation of weakly transverse fluctuations, with wave vectors parallel to the uniform background magnetic field, in a finite temperature isotropic bi-Maxwellian and Tsallis-kappa-like magnetized electron–proton plasma. Our results indicate that the spontaneously emitted electromagnetic fluctuations are in fact enhanced over these quasi modes suggesting that such modes play an important role in the emission and absorption of electromagnetic fluctuations in thermal or quasi-thermal plasmas.

  8. The Role of Higher-Order Modes on the Electromagnetic Whistler-Cyclotron Wave Fluctuations of Thermal and Non-Thermal Plasmas

    NASA Technical Reports Server (NTRS)

    Vinas, Adolfo F.; Moya, Pablo S.; Navarro, Roberto; Araneda, Jamie A.

    2014-01-01

    Two fundamental challenging problems of laboratory and astrophysical plasmas are the understanding of the relaxation of a collisionless plasmas with nearly isotropic velocity distribution functions and the resultant state of nearly equipartition energy density with electromagnetic plasma turbulence. Here, we present the results of a study which shows the role that higher-order-modes play in limiting the electromagnetic whistler-like fluctuations in a thermal and non-thermal plasma. Our main results show that for a thermal plasma the magnetic fluctuations are confined by regions that are bounded by the least-damped higher order modes. We further show that the zone where the whistler-cyclotron normal modes merges the electromagnetic fluctuations shifts to longer wavelengths as the beta(sub e) increases. This merging zone has been interpreted as the beginning of the region where the whistler-cyclotron waves losses their identity and become heavily damped while merging with the fluctuations. Our results further indicate that in the case of nonthermal plasmas, the higher-order modes do not confine the fluctuations due to the effective higher-temperature effects and the excess of suprathermal plasma particles. The analysis presented here considers the second-order theory of fluctuations and the dispersion relation of weakly transverse fluctuations, with wave vectors parallel to the uniform background magnetic field, in a finite temperature isotropic bi-Maxwellian and Tsallis-kappa-like magnetized electron-proton plasma. Our results indicate that the spontaneously emitted electromagnetic fluctuations are in fact enhanced over these quasi modes suggesting that such modes play an important role in the emission and absorption of electromagnetic fluctuations in thermal or quasi-thermal plasmas.

  9. Model for lightcone fluctuations due to stress tensor fluctuations

    NASA Astrophysics Data System (ADS)

    Bessa, C. H. G.; De Lorenci, V. A.; Ford, L. H.; Ribeiro, C. C. H.

    2016-03-01

    We study a model for quantum lightcone fluctuations in which vacuum fluctuations of the electric field and of the squared electric field in a nonlinear dielectric material produce variations in the flight times of probe pulses. When this material has a nonzero third order polarizability, the flight time variations arise from squared electric field fluctuations, and are analogous to effects expected when the stress tensor of a quantized field drives passive spacetime geometry fluctuations. We also discuss the dependence of the squared electric field fluctuations upon the geometry of the material, which in turn determines a sampling function for averaging the squared electric field along the path of the pulse. This allows us to estimate the probability of especially large fluctuations, which is a measure of the probability distribution for quantum stress tensor fluctuations.

  10. Thermal fluctuations and meson melting: a holographic approach

    NASA Astrophysics Data System (ADS)

    Ali-Akbari, M.; Rezaei, Z.; Vahedi, A.

    2015-07-01

    We use gauge/gravity duality to investigate the effect of thermal fluctuations on the dissociation of the quarkonium mesons in strongly coupled (3+1)-dimensional gauge theories. The purpose of this paper is to introduce a new approach to study the instability and probable first-order phase transition of a probe D7-brane in the dual gravity theory. We explicitly show that for the Minkowski embeddings with their tips close to the horizon in the background, the long wavelength thermal fluctuations lead to an imaginary term in their action, signaling an instability in the system. Due to this instability, a phase transition is expected. On the gauge theory side, it indicates that the quarkonium mesons are not stable and dissociate in the plasma. Identifying the imaginary part of the probe brane action with the thermal width of the mesons, we observe that the thermal width increases as one decreases the mass of the quarks. Also keeping the mass fixed, thermal width increases by temperature as expected. We will also investigate the effect of the magnetic field on the mass and the thermal width.

  11. An analog model for quantum lightcone fluctuations in nonlinear optics

    SciTech Connect

    Ford, L.H.; De Lorenci, V.A.; Menezes, G.; Svaiter, N.F.

    2013-02-15

    We propose an analog model for quantum gravity effects using nonlinear dielectrics. Fluctuations of the spacetime lightcone are expected in quantum gravity, leading to variations in the flight times of pulses. This effect can also arise in a nonlinear material. We propose a model in which fluctuations of a background electric field, such as that produced by a squeezed photon state, can cause fluctuations in the effective lightcone for probe pulses. This leads to a variation in flight times analogous to that in quantum gravity. We make some numerical estimates which suggest that the effect might be large enough to be observable. - Highlights: Black-Right-Pointing-Pointer Lightcone fluctuations, quantum fluctuations of the effective speed of light, are a feature of quantum gravity. Black-Right-Pointing-Pointer Nonlinear dielectrics have a variable speed of light, analogous to the effects of gravity. Black-Right-Pointing-Pointer Fluctuating electric fields create the effect of lightcone fluctuations in a nonlinear material. Black-Right-Pointing-Pointer We propose to use squeezed light in a nonlinear material as an analog model of lightcone fluctuations. Black-Right-Pointing-Pointer Variation in the speed of propagation of pulses is the observational signature of lightcone fluctuations.

  12. De Sitter Space Without Dynamical Quantum Fluctuations

    NASA Astrophysics Data System (ADS)

    Boddy, Kimberly K.; Carroll, Sean M.; Pollack, Jason

    2016-06-01

    We argue that, under certain plausible assumptions, de Sitter space settles into a quiescent vacuum in which there are no dynamical quantum fluctuations. Such fluctuations require either an evolving microstate, or time-dependent histories of out-of-equilibrium recording devices, which we argue are absent in stationary states. For a massive scalar field in a fixed de Sitter background, the cosmic no-hair theorem implies that the state of the patch approaches the vacuum, where there are no fluctuations. We argue that an analogous conclusion holds whenever a patch of de Sitter is embedded in a larger theory with an infinite-dimensional Hilbert space, including semiclassical quantum gravity with false vacua or complementarity in theories with at least one Minkowski vacuum. This reasoning provides an escape from the Boltzmann brain problem in such theories. It also implies that vacuum states do not uptunnel to higher-energy vacua and that perturbations do not decohere while slow-roll inflation occurs, suggesting that eternal inflation is much less common than often supposed. On the other hand, if a de Sitter patch is a closed system with a finite-dimensional Hilbert space, there will be Poincaré recurrences and dynamical Boltzmann fluctuations into lower-entropy states. Our analysis does not alter the conventional understanding of the origin of density fluctuations from primordial inflation, since reheating naturally generates a high-entropy environment and leads to decoherence, nor does it affect the existence of non-dynamical vacuum fluctuations such as those that give rise to the Casimir effect.

  13. De Sitter Space Without Dynamical Quantum Fluctuations

    NASA Astrophysics Data System (ADS)

    Boddy, Kimberly K.; Carroll, Sean M.; Pollack, Jason

    2016-03-01

    We argue that, under certain plausible assumptions, de Sitter space settles into a quiescent vacuum in which there are no dynamical quantum fluctuations. Such fluctuations require either an evolving microstate, or time-dependent histories of out-of-equilibrium recording devices, which we argue are absent in stationary states. For a massive scalar field in a fixed de Sitter background, the cosmic no-hair theorem implies that the state of the patch approaches the vacuum, where there are no fluctuations. We argue that an analogous conclusion holds whenever a patch of de Sitter is embedded in a larger theory with an infinite-dimensional Hilbert space, including semiclassical quantum gravity with false vacua or complementarity in theories with at least one Minkowski vacuum. This reasoning provides an escape from the Boltzmann brain problem in such theories. It also implies that vacuum states do not uptunnel to higher-energy vacua and that perturbations do not decohere while slow-roll inflation occurs, suggesting that eternal inflation is much less common than often supposed. On the other hand, if a de Sitter patch is a closed system with a finite-dimensional Hilbert space, there will be Poincaré recurrences and dynamical Boltzmann fluctuations into lower-entropy states. Our analysis does not alter the conventional understanding of the origin of density fluctuations from primordial inflation, since reheating naturally generates a high-entropy environment and leads to decoherence, nor does it affect the existence of non-dynamical vacuum fluctuations such as those that give rise to the Casimir effect.

  14. Anisotropies in the cosmic microwave background: an analytic approach

    NASA Astrophysics Data System (ADS)

    Hu, Wayne; Sugiyama, Naoshi

    1995-05-01

    We introduce a conceptually simple yet powerful analytic method which traces the structure of cosmic microwave background anisotropies to better than 5%-10% in temperature fluctuations on all scales. It is applicable to any model in which the gravitational potential is known and last scattering is sufficiently early. Moreover, it recovers and explains the presence of the 'Doppler peaks' at degree scales as driven acoustic oscillations of the photon-baryon fluid. We treat in detail such subtleties as the time dependence of the gravitational driving force, anisotropic stress from the neutrino quadrupole, and damping during the recombination process, again all from an analytic standpoint. We apply this formalism to the standard cold dark matter model to gain physical insight into the anisotropies, including the dependence of the peak locations and heights on cosmological parameters such as Omegab and h. Furthermore, the ionization history controls damping due to the finite thickness of the last scattering surface, which is in fact mianly caused by photon diffusion. In addition to being a powerful probe into the nature of anisotropies, this treatment can be used in place of the standard Boltzmann code where 5%-10% accuracy in temperature fluctuations is satisfactory and/or speed is essential. Equally importantly, it can be used as a portable standard by which numerical codes can be tested and compared.

  15. Fluctuations, Intermittency and Predictivity

    NASA Astrophysics Data System (ADS)

    Charbonneau, Paul

    This chapter considers the various mechanisms capable of producing amplitude and duration variations in the various dynamo models introduced in Chap. 3 (10.1007/978-3-642-32093-4_3). After a survey of observed and inferred fluctuation patterns of the solar cycle, the effects on the basic cycle of stochastic forcing, dynamical nonlinearities and time delay are considered in turn. The occurrence of intermittency in a subset of these models is then investigated, with an eye on explaining Grand Minima observed in the solar activity record. The chapter closes with a brief discussion of solar cycle prediction schemes based on dynamo models.

  16. Whistler-cyclotron spontaneous fluctuations as a proxy to identify thermal and non-thermal electrons in the solar wind

    NASA Astrophysics Data System (ADS)

    Moya, P. S.; Vinas, A. F.; Navarro, R.; Araneda, J. A.

    2014-12-01

    Observed electron velocity distributions in the solar wind exhibit a variety of non-thermal features which deviate from thermal equilibrium, in the form of temperature anisotropies, suprathermal tails, and field aligned beams. The state close to thermal equilibrium and its departure from it provides a source for spontaneous emissions of electromagnetic fluctuations as for example the whistler cyclotron waves at electron scales. Here we present a comparative analysis of these fluctuations based upon anisotropic plasma modeled with thermal and non-thermal particle distributions. The analysis presented here considers the second-order theory of fluctuations and the dispersion relation of weakly transverse fluctuations, with wave vectors parallel to the uniform background magnetic field, in a finite temperature isotropic thermal bi-Maxwellian and non-thermal Tsallis-kappa-like magnetized electron-proton plasma. Dispersion analysis and stability thresholds are derived for these non-thermal distributions and compared with similar results obtained from PIC simulations using plasma and field parameters relevant to the solar wind environments. Our results indicate that there is a strong dependence between the shape of the velocity distribution function and the topological regions in the frequency-wave number plane in which the spontaneous fluctuations emerge. In the case of non-thermal plasmas there is an enhancement of the fluctuations level due to the effective higher-temperature effects and the excess of suprathermal particles. This feature may be used proxy to identify the nature of electron populations in space plasmas when high resolution particle instruments are not available.

  17. Condensate fluctuations of interacting Bose gases within a microcanonical ensemble

    SciTech Connect

    Wang Jianhui; He Jizhou; Ma Yongli

    2011-05-15

    Based on counting statistics and Bogoliubov theory, we present a recurrence relation for the microcanonical partition function for a weakly interacting Bose gas with a finite number of particles in a cubic box. According to this microcanonical partition function, we calculate numerically the distribution function, condensate fraction, and condensate fluctuations for a finite and isolated Bose-Einstein condensate. For ideal and weakly interacting Bose gases, we compare the condensate fluctuations with those in the canonical ensemble. The present approach yields an accurate account of the condensate fluctuations for temperatures close to the critical region. We emphasize that the interactions between excited atoms turn out to be important for moderate temperatures.

  18. Quantum fluctuations of vortices in Josephson-coupled superconductors

    SciTech Connect

    Bulaevskii, L.N.; Maley, M.P.

    1994-12-31

    The effect of quantum fluctuations of vortices on the low temperature specific heat and reversible magnetization in the mixed state in highly anisotropic layered superconductors is discussed. For reversible magnetization, M, the change of slope in the dependence of M vs ln B, observed in Bi(2:2:1:2) single crystals, is explained. In the mean field approach this slope should be almost B independent. The authors show that for magnetization quantum fluctuations are important at all temperatures except in a narrow region near {Tc}. The specific heat due to the vortex fluctuation contribution is predicted to be linear in T at low T and to increase logarithmically with B.

  19. Anomalous phase shifts in drift wave fluctuations

    NASA Astrophysics Data System (ADS)

    Diallo, Ahmed; Skiff, Fred

    2003-10-01

    Ion phase space density fluctuation measurements are performed in a linearly magnetized device using Laser Induced Fluorescence(LIF). An ICP source produces an 8cm diameter plasma column that drifts in a cylindrical vessel whose diameter and length are 40 cm and 3 m, respectively. These experiments are performed using a CW singly ionized Argon plasma that is immersed in a 1kG magnetic field along the axis of the cylinder. A density of the order of 10^9 cm-3 is obtained under a regulated neutral background pressure of 2.× 10-4 torr. The electron and ion temperature are respectively 2 eV and 0.1 eV. LIF is carried out by pumping the Ar II metastable (3d^1)^2G_9/2, using a CW tunable laser centered at 611.6653 nm scanned over 6 GHz, to metastable (4p^1)F_7/2, and then detecting the 460nm photons emitted from its transition to (4s^1)^2F_5/2. This collection is made possible using two low f-umber periscopes that are directed to PMTs. Here we present measurements of the complex two-point correlation function < f(v_i_allel),z_1,ω)f(v_i_allel,z_2,ω)> as a function of the spatial separation of two LIF detection systems Δ d = z_2-z_1, the ion parallel velocity v_i_allel and the frequency ω. Preliminary results show ion particle velocity dependent phase shifts at the drift wave frequency.

  20. Differentiating CDM and baryon isocurvature models with 21 cm fluctuations

    SciTech Connect

    Kawasaki, Masahiro; Sekiguchi, Toyokazu; Takahashi, Tomo E-mail: sekiguti@icrr.u-tokyo.ac.jp

    2011-10-01

    We discuss how one can discriminate models with cold dark matter (CDM) and baryon isocurvature fluctuations. Although current observations such as cosmic microwave background (CMB) can severely constrain the fraction of such isocurvature modes in the total density fluctuations, CMB cannot differentiate CDM and baryon ones by the shapes of their power spectra. However, the evolution of CDM and baryon density fluctuations are different for each model, thus it would be possible to discriminate those isocurvature modes by extracting information on the fluctuations of CDM/baryon itself. We discuss that observations of 21 cm fluctuations can in principle differentiate these modes and demonstrate to what extent we can distinguish them with future 21 cm surveys. We show that, when the isocurvature mode has a large blue-tilted initial spectrum, 21 cm surveys can clearly probe the difference.

  1. A Fluctuating Torque

    NASA Astrophysics Data System (ADS)

    Zamorano, Nelson; Gómez, Alfredo

    2013-04-01

    The existence of a fluctuating torque generates a wide variety of possible orbits. This situation contrasts with those examples where the torque vanishes and the angular momentum remains constant. Here we study a two dimensional example with a logarithmic effective potential V(x,y)= 12,,^2o,[ x^2 + (y/b)^2], with a small deviation from the axis symmetry given by the constant b with b < 1. Briefly, the effective potential models the gravitational force exerted by the N point particles on a test object. This potential is used to learn about the dynamics of galaxies and among other features, generates a fluctuating torque which is our main interest here. There is not an analytical solution for these two equations of motion. A simple numerical approach (provided) is required. Also, a change on the initial conditions may generate a different shape for the orbit. This apparently simple potential, represents a challenge for the students. We propose it as a good pedagogical tool for reviewing the main concepts of newtonian dynamics.

  2. Fitness in fluctuating environments

    NASA Astrophysics Data System (ADS)

    Tanase Nicola, Sorin; Nemenman, Ilya

    2011-03-01

    Often environments change faster than the time needed to evolve optimal phenotypes through cycles of mutation and selection. We focus on this case, but assume that environmental oscillations are slower than an individual's lifetime. This is relevant, for example, for bacterial populations confronted with daily environmental changes. We analyze a resource-limited competition between a mutant phenotype and the ancestor. Environmental dynamics is represented by periodically varying, off-phase parameters of the corresponding Lotka-Volterra model. For the very slow dynamics (but still faster than the fixation time scale) the strength and the sign of selection are functions of the birth/death rates averaged over all of the environmental states and independent of the period of the fluctuations. For faster fluctuations, selection depends on the particular sequence of the successive environmental states. In particular, a time reversal of the environmental dynamics can change the sign of the selection. We conclude that the fittest phenotype in a changing environment can be very different from both the optimal phenotype in the average environment, and the phenotype with the largest average fitness.

  3. Inelastic neutron scattering in valence fluctuation compounds

    SciTech Connect

    Jon M Lawrence

    2011-02-15

    The valence fluctuation compounds are rare earth intermetallics where hybridization of the nearly-localized 4f electrons with the conduction electrons leads to incorporation of the 4f's into the itinerant states. This hybridization slows down the conduction electrons and hence gives them a heavy effective mass, justifying application of the term 'heavy Fermion' (HF) to these materials. During the project period, we grew large single crystals of several such compounds and measured their properties using both standard thermodynamic probes and state-of-the-art inelastic neutron scattering. We obtained three main results. For the intermediate valence compounds CePd{sub 3} and YbAl{sub 3}, we showed that the scattering of neutrons by the fluctuations of the 4f magnetic moment does not have the momentum dependence expected for the itinerant heavy mass state; rather, the scattering is more typical of a localized spin fluctuation. We believe that incoherent scattering localizes the excitation. For the heavy Fermion compound Ce(Ni{sub 0.935}Pd{sub 0.065}){sub 2}Ge{sub 2}, which sits at a T = 0 critical point for transformation into an antiferromagnetic (AF) phase, we showed that the scattering from the AF fluctuations does not exhibit any of the divergences that are expected at a phase transition. We speculate that alloy disorder profoundly suppresses the growth of the fluctuating AF regions, leading to short range clusters rather than regions of infinite size. Finally, we explored the applicability of key concepts used to describe the behavior of rare earth heavy Fermions to uranium based HF compounds where the 5f electrons are itinerant as opposed to localized. We found that scaling laws relating the spin fluctuation energy measured in neutron scattering to the low temperature specific heat and susceptibility are valid for the uranium compounds, once corrections are made for AF fluctuations; however, the degeneracy of the high temperature moment is smaller than expected

  4. Background events in microchannel plates

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Vallerga, J.; Wargelin, B.

    1988-01-01

    Measurements have been made to assess the characteristics and origins of background events in microchannel plates (MCPs). An overall background rate of about 0.4 events/sq cm persec has been achieved consistently for MCPs that have been baked and scrubbed. The temperature and gain of the MCPs are found to have no significant effect on the background rate. Detection of 1.46-MeV gamma rays from the MCP glass confirms the presence of K-40, with a concentration of 0.0007 percent, in MCP glass. It is shown that beta decay from K-40 is sufficient to cause the background rate and spectrum observed. Anticoincidence measurements indicate the the background rate caused by cosmic ray interactions is small (less than 0.016 events/sq cm per sec).

  5. Thermal fluctuations, mechanical response, and hyperuniformity in jammed solids

    NASA Astrophysics Data System (ADS)

    Ikeda, Atsushi; Berthier, Ludovic

    2015-07-01

    Jamming is a geometric phase transition occurring in dense particle systems in the absence of temperature. We use computer simulations to analyze the effect of thermal fluctuations on several signatures of the transition. We show that scaling laws for bulk and shear moduli only become relevant when thermal fluctuations are extremely small, and propose their relative ratio as a quantitative signature of jamming criticality. Despite the nonequilibrium nature of the transition, we find that thermally induced fluctuations and mechanical responses obey equilibrium fluctuation-dissipation relations near jamming, provided the appropriate fluctuating component of the particle displacements is analyzed. This shows that mechanical moduli can be directly measured from particle positions in mechanically unperturbed packings, and suggests that the definition of a "nonequilibrium index" is unnecessary for amorphous materials. We find that fluctuations of particle displacements are spatially correlated, and define a transverse and a longitudinal correlation length scale which both diverge as the jamming transition is approached. We analyze the frozen component of density fluctuations and find that it displays signatures of nearly hyperuniform behavior at large length scales. This demonstrates that hyperuniformity in jammed packings is unrelated to a vanishing compressibility and explains why it appears remarkably robust against temperature and density variations. Differently from jamming criticality, obstacles preventing the observation of hyperuniformity in colloidal systems do not originate from thermal fluctuations.

  6. Thermoemission of Eu + ions and its fluctuations

    NASA Astrophysics Data System (ADS)

    Gładyszewski, L.

    1988-07-01

    The surface ionization of europium on tungsten has been studied using a single filament ion source in a 90° magnetic mass spectrometer. The influence of temperature on the ion current was measured between 1100 and 2800 K. Additionally, the ion current noises arising from the fluctuations of the work function as a result of random fluctuations of the adsorbate density on the ion emitter surface has been investigated. The spectral density functions and their temperature dependence are discussed in terms of the surface diffusion noise model at adsorption-desorption equilibrium. The density probability function seems to be Gaussian and its skewness Sk and kurtosis Ex were: Sk ˜ 0, Ex ˜ 3.

  7. Fluctuation effects in grain growth

    NASA Astrophysics Data System (ADS)

    Kim, Seong Gyoon; Park, Yong Bum

    2016-08-01

    In this study, we attempted to clarify the roles of fluctuation effects in grain growth. To capture the persistent nature in both space and time of fluctuations due to variations in the local surroundings of individual grains, we developed a local mean-field model. The fluctuation strength in this model is arbitrarily controlled by employing an artificial number, n , of nearest neighbor grains. Large-scale numerical computations of the model for various n values and initial GSDs were carried out to follow transient behaviors and determine the steady states. This study reveals that, in the classical mean-field model with no fluctuation effects, the steady state is not unique but is strongly dependent upon the initial GSD. However, a small fluctuation drives the mean-field model to reach the Hillert solution, independent of the fluctuation strength and initial GSD, as long as the fluctuation strength is sufficiently small. On the other hand, when the fluctuation is sufficiently strong, the fluctuation pushes the steady state of the mean-field model out of the Hillert solution, and its strength determines a unique steady state independent of the initial GSD. The strong fluctuation makes the GSD more symmetric than the Hillert distribution. Computations designed to mimic actual 2 and 3D grain growth were carried out by taking the number of nearest neighbors of each grain as a function of the scaled grain size. The resultant GSDs in two and three dimensions were compared with the direct simulations of ideal grain growth.

  8. Time-dependent density fluctuations in liquid water

    NASA Astrophysics Data System (ADS)

    Waldron, Conor J.; English, Niall J.

    2016-04-01

    Temporal system-mass-density fluctuation analysis was performed on liquid-water molecular-dynamics simulations at ambient pressure and 200 and 300 K, in three increasingly-large systems. A prominent mode in system-density fluctuations was observed at molecular-librational frequencies of ∼600-800 cm-1 (with pronounced temperature dependence). This mode displayed marked system-size dependence, disappearing for larger systems. Persistent system-density fluctuations were clearly evident at 10-11 cm-1 for all systems and temperatures, with lower-amplitude 'overtones' evident only in larger systems. It is conjectured that this reflects ∼3 ps timescales observed in earlier studies for dissipation of local-density fluctuations in liquid water in this 200-300 K temperature range.

  9. Patchy screening of the cosmic microwave background by inhomogeneous reionization

    NASA Astrophysics Data System (ADS)

    Gluscevic, Vera; Kamionkowski, Marc; Hanson, Duncan

    2013-02-01

    We derive a constraint on patchy screening of the cosmic microwave background from inhomogeneous reionization using off-diagonal TB and TT correlations in WMAP-7 temperature/polarization data. We interpret this as a constraint on the rms optical-depth fluctuation Δτ as a function of a coherence multipole LC. We relate these parameters to a comoving coherence scale, of bubble size RC, in a phenomenological model where reionization is instantaneous but occurs on a crinkly surface, and also to the bubble size in a model of “Swiss cheese” reionization where bubbles of fixed size are spread over some range of redshifts. The current WMAP data are still too weak, by several orders of magnitude, to constrain reasonable models, but forthcoming Planck and future EPIC data should begin to approach interesting regimes of parameter space. We also present constraints on the parameter space imposed by the recent results from the EDGES experiment.

  10. GALAXY COUNTS ON THE COSMIC MICROWAVE BACKGROUND COLD SPOT

    SciTech Connect

    Granett, Benjamin R.; Szapudi, Istvan; Neyrinck, Mark C.

    2010-05-01

    The cold spot on the cosmic microwave background (CMB) could arise due to a supervoid at low redshift through the integrated Sachs-Wolfe effect. We imaged the region with MegaCam on the Canada-France-Hawaii Telescope and present galaxy counts in photometric redshift bins. We rule out the existence of a 100 Mpc radius spherical supervoid with underdensity {delta} = -0.3 at 0.5 < z < 0.9 at high significance. The data are consistent with an underdensity at low redshift, but the fluctuations are within the range of cosmic variance and the low-density areas are not contiguous on the sky. Thus, we find no strong evidence for a supervoid. We cannot resolve voids smaller than a 50 Mpc radius; however, these can only make a minor contribution to the CMB temperature decrement.

  11. Fluctuating Thermodynamics for Biological Processes

    NASA Astrophysics Data System (ADS)

    Ham, Sihyun

    Because biomolecular processes are largely under thermodynamic control, dynamic extension of thermodynamics is necessary to uncover the mechanisms and driving factors of fluctuating processes. The fluctuating thermodynamics technology presented in this talk offers a practical means for the thermodynamic characterization of conformational dynamics in biomolecules. The use of fluctuating thermodynamics has the potential to provide a comprehensive picture of fluctuating phenomena in diverse biological processes. Through the application of fluctuating thermodynamics, we provide a thermodynamic perspective on the misfolding and aggregation of the various proteins associated with human diseases. In this talk, I will present the detailed concepts and applications of the fluctuating thermodynamics technology for elucidating biological processes. This work was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1401-13.

  12. Fluctuation theory of starlight polarization

    SciTech Connect

    Nee, S.F.

    1980-04-15

    The average and the variance of absolute polarization of starlight are calculated as a function of distance based on the fluctuation theory of Langevin's scheme. The computed curves from the theory agree with the sample observational data. It estimates a correlation length of 225 pc and a fluctuating angle of 22./sup 0/5 for the fluctuation of interstellar magnetic field for the observation direction within 60/sup 0/

  13. Proceedings of RIKEN BNL Resarch Center Workshop: Fluctuations, Correlations and RHIC Low Energy Runs

    SciTech Connect

    Karsch, F.; Kojo, T.; Mukherjee, S.; Stephanov, M.; Xu, N.

    2011-10-27

    Most of our visible universe is made up of hadronic matter. Quantum Chromodynamics (QCD) is the theory of strong interaction that describes the hadronic matter. However, QCD predicts that at high enough temperatures and/or densities ordinary hadronic matter ceases to exist and a new form of matter is created, the so-called Quark Gluon Plasma (QGP). Non-perturbative lattice QCD simulations shows that for high temperature and small densities the transition from the hadronic to the QCD matter is not an actual phase transition, rather it takes place via a rapid crossover. On the other hand, it is generally believed that at zero temperature and high densities such a transition is an actual first order phase transition. Thus, in the temperature-density phase diagram of QCD, the first order phase transition line emanating from the zero temperature high density region ends at some higher temperature where the transition becomes a crossover. The point at which the first order transition line turns into a crossover is a second order phase transition point belonging to three dimensional Ising universality class. This point is known as the QCD Critical End Point (CEP). For the last couple of years the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been performing experiments at lower energies in search of the elusive QCD CEP. In general critical behaviors are manifested through appearance of long range correlations and increasing fluctuations associated with the presence of mass-less modes in the vicinity of a second order phase transition. Experimental signatures of the CEP are likely to be found in observables related to fluctuations and correlations. Thus, one of the major focuses of the RHIC low energy scan program is to measure various experimental observables connected to fluctuations and correlations. On the other hand, with the start of the RHIC low energy scan program, a flurry of activities are taking place to provide solid theoretical

  14. Critical Fluctuations in Cortical Models Near Instability

    PubMed Central

    Aburn, Matthew J.; Holmes, C. A.; Roberts, James A.; Boonstra, Tjeerd W.; Breakspear, Michael

    2012-01-01

    Computational studies often proceed from the premise that cortical dynamics operate in a linearly stable domain, where fluctuations dissipate quickly and show only short memory. Studies of human electroencephalography (EEG), however, have shown significant autocorrelation at time lags on the scale of minutes, indicating the need to consider regimes where non-linearities influence the dynamics. Statistical properties such as increased autocorrelation length, increased variance, power law scaling, and bistable switching have been suggested as generic indicators of the approach to bifurcation in non-linear dynamical systems. We study temporal fluctuations in a widely-employed computational model (the Jansen–Rit model) of cortical activity, examining the statistical signatures that accompany bifurcations. Approaching supercritical Hopf bifurcations through tuning of the background excitatory input, we find a dramatic increase in the autocorrelation length that depends sensitively on the direction in phase space of the input fluctuations and hence on which neuronal subpopulation is stochastically perturbed. Similar dependence on the input direction is found in the distribution of fluctuation size and duration, which show power law scaling that extends over four orders of magnitude at the Hopf bifurcation. We conjecture that the alignment in phase space between the input noise vector and the center manifold of the Hopf bifurcation is directly linked to these changes. These results are consistent with the possibility of statistical indicators of linear instability being detectable in real EEG time series. However, even in a simple cortical model, we find that these indicators may not necessarily be visible even when bifurcations are present because their expression can depend sensitively on the neuronal pathway of incoming fluctuations. PMID:22952464

  15. Detection of polarization in the cosmic microwave background using DASI. Degree Angular Scale Interferometer.

    PubMed

    Kovac, J M; Leitch, E M; Pryke, C; Carlstrom, J E; Halverson, N W; Holzapfel, W L

    The past several years have seen the emergence of a standard cosmological model, in which small temperature differences in the cosmic microwave background (CMB) radiation on angular scales of the order of a degree are understood to arise from acoustic oscillations in the hot plasma of the early Universe, arising from primordial density fluctuations. Within the context of this model, recent measurements of the temperature fluctuations have led to profound conclusions about the origin, evolution and composition of the Universe. Using the measured temperature fluctuations, the theoretical framework predicts the level of polarization of the CMB with essentially no free parameters. Therefore, a measurement of the polarization is a critical test of the theory and thus of the validity of the cosmological parameters derived from the CMB measurements. Here we report the detection of polarization of the CMB with the Degree Angular Scale Interferometer (DASI). The polarization is deteced with high confidence, and its level and spatial distribution are in excellent agreement with the predictions of the standard theory. PMID:12490941

  16. Large-angle cosmic microwave background anisotropies in an open universe

    NASA Technical Reports Server (NTRS)

    Kamionkowski, Marc; Spergel, David N.

    1994-01-01

    If the universe is open, scales larger than the curvature scale may be probed by observation of large-angle fluctuations in the cosmic microwave background (CMB). We consider primordial adiabatic perturbations and discuss power spectra that are power laws in volume, wavelength, and eigenvalue of the Laplace operator. Such spectra may have arisen if, for example, the universe underwent a period of `frustated' inflation. The resulting large-angle anisotropies of the CMB are computed. The amplitude generally increases as Omega is decreased but decreases as h is increased. Interestingly enough, for all three Ansaetze, anisotropies on angular scales larger than the curvature scale are suppressed relative to the anisotropies on scales smaller than the curvature scale, but cosmic variance makes discrimination between various models difficult. Models with 0.2 approximately less than Omega h approximately less than 0.3 appear compatible with CMB fluctuations detected by Cosmic Background Explorer Satellite (COBE) and the Tenerife experiment and with the amplitude and spectrum of fluctuations of galaxy counts in the APM, CfA, and 1.2 Jy IRAS surveys. COBE normalization for these models yields sigma(sub 8) approximately = 0.5 - 0.7. Models with smaller values of Omega h when normalized to COBE require bias factors in excess of 2 to be compatible with the observed galaxy counts on the 8/h Mpc scale. Requiring that the age of the universe exceed 10 Gyr implies that Omega approximately greater than 0.25, while requiring that from the last-scattering term in the Sachs-Wolfe formula, large-angle anisotropies come primarily from the decay of potential fluctuations at z approximately less than 1/Omega. Thus, if the universe is open, COBE has been detecting temperature fluctuations produced at moderate redshift rather than at z approximately 1300.

  17. Matter-Wave Interferometry with Phase Fluctuating Bose-Einstein Condensates

    SciTech Connect

    Jo, G.-B.; Choi, J.-H.; Christensen, C. A.; Lee, Y.-R.; Pasquini, T. A.; Ketterle, W.; Pritchard, D. E.

    2007-12-14

    Elongated Bose-Einstein condensates (BECs) exhibit strong spatial phase fluctuations even well below the BEC transition temperature. We demonstrate that atom interferometers using such condensates are robust against phase fluctuations; i.e., the relative phase of the split condensate is reproducible despite axial phase fluctuations. However, larger phase fluctuations limit the coherence time, especially in the presence of some asymmetries in the two wells of the interferometer.

  18. Matter-wave interferometry with phase fluctuating Bose-Einstein condensates.

    PubMed

    Jo, G-B; Choi, J-H; Christensen, C A; Lee, Y-R; Pasquini, T A; Ketterle, W; Pritchard, D E

    2007-12-14

    Elongated Bose-Einstein condensates (BECs) exhibit strong spatial phase fluctuations even well below the BEC transition temperature. We demonstrate that atom interferometers using such condensates are robust against phase fluctuations; i.e., the relative phase of the split condensate is reproducible despite axial phase fluctuations. However, larger phase fluctuations limit the coherence time, especially in the presence of some asymmetries in the two wells of the interferometer. PMID:18233429

  19. Hybrid lipids increase nanoscale fluctuation lifetimes in mixed membranes

    NASA Astrophysics Data System (ADS)

    Palmieri, Benoit; Safran, Samuel A.

    2013-09-01

    A recently proposed ternary mixture model is used to predict fluctuation domain lifetimes in the one phase region. The membrane is made of saturated, unsaturated, and hybrid lipids that have one saturated and one unsaturated hydrocarbon chain. The hybrid lipid is a natural linactant which can reduce the packing incompatibility between saturated and unsaturated lipids. The fluctuation lifetimes are predicted as a function of the hybrid lipid fraction and the fluctuation domain size. These lifetimes can be increased by up to three orders of magnitude compared to the case of no hybrids. With hybrid, small length scale fluctuations have sizable amplitudes even close to the critical temperature and, hence, benefit from enhanced critical slowing down. The increase in lifetime is particularly important for nanometer scale fluctuation domains where the hybrid orientation and the other lipids composition are highly coupled.

  20. Characterization and Prediction of the SPI Background

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.; Jean, P.; Knodlseder, J.; Skinner, G. K.; Weidenspointer, G.

    2003-01-01

    The INTEGRAL Spectrometer, like most gamma-ray instruments, is background dominated. Signal-to-background ratios of a few percent are typical. The background is primarily due to interactions of cosmic rays in the instrument and spacecraft. It characteristically varies by +/- 5% on time scales of days. This variation is caused mainly by fluctuations in the interplanetary magnetic field that modulates the cosmic ray intensity. To achieve the maximum performance from SPI it is essential to have a high quality model of this background that can predict its value to a fraction of a percent. In this poster we characterize the background and its variability, explore various models, and evaluate the accuracy of their predictions.

  1. Stabilization of composition fluctuations in mixed membranes by hybrid lipids

    NASA Astrophysics Data System (ADS)

    Safran, Samuel; Palmieri, Benoit

    2013-03-01

    A ternary mixture model is proposed to describe composition fluctuations in mixed membranes composed of saturated, unsaturated and hybrid lipids. The asymmetric hybrid lipid has one saturated and one unsaturated hydrocarbon chain and it can reduce the packing incompatibility between saturated and unsaturated lipids. A methodology to recast the free-energy of the lattice in terms of a continuous isotropic field theory is proposed and used to analyze composition fluctuations above the critical temperature. The effect of hybrid lipids on fluctuations domains rich in saturated/unsaturated lipids is predicted. The correlation length of such fluctuations decreases significantly with increasing amounts of hybrids even if the temperature is maintained close to the critical temperature. This provides an upper bound for the domain sizes expected in rafts stabilized by hybrids, above the critical temperature. When the hybrid composition of the membrane is increased further, a crossover value is found above which ``stripe-like'' fluctuations are observed. The wavelength of these fluctuations decreases with increasing hybrid fraction and tends toward a molecular size in a membrane that contains only hybrids.

  2. Chemical Applications of Fluctuation Spectroscopy.

    ERIC Educational Resources Information Center

    Green, Michael E.

    1984-01-01

    Examines some of the possibilities for applying the noise spectroscopic technique as well as the origin of noise (or fluctuations) which accompanies transport in physical systems. Indicates that fluctuation techniques are useful in studying liposome and micelle suspensions, liquid-liquid surfaces, semiconductors, and semiconductor devices. (JN)

  3. Polarization Status of Magnetic Fluctuations at Proton Scales

    NASA Astrophysics Data System (ADS)

    Bruno, Roberto; Telloni, Daniele; D'Amicis, Raffaella; DeMarco, Rossana; Marcucci, Federica

    2016-04-01

    We study the polarization status of magnetic field fluctuations at proton scales looking for possible links between the large-scale and small-scale features of solar wind fluctuations across the frequency break separating fluid and kinetic regimes. The main goal is to correlate the occurrence of proton temperature anisotropy, low proton β∥ values and, magnetic field fluctuations polarization to the particular state of turbulence found within the inertial range. We found clear correlations between each type of polarization, either left or right, and turbulence status. Moreover, for the first time in literature, we show that left-handed and right handed polarized fluctuations occupy different areas of the temperature anisotropy-β∥ plot, as expected for Alfvén Ion Cyclotron and Kinetic Alfvén waves, respectively.

  4. Fluctuation Modes of a Twist-Bend Nematic Liquid Crystal

    NASA Astrophysics Data System (ADS)

    Parsouzi, Z.; Shamid, S. M.; Borshch, V.; Challa, P. K.; Baldwin, A. R.; Tamba, M. G.; Welch, C.; Mehl, G. H.; Gleeson, J. T.; Jakli, A.; Lavrentovich, O. D.; Allender, D. W.; Selinger, J. V.; Sprunt, S.

    2016-04-01

    We report a dynamic light-scattering study of the fluctuation modes in a thermotropic liquid crystalline mixture of monomer and dimer compounds that exhibits the twist-bend nematic (NTB ) phase. The results reveal a spectrum of overdamped fluctuations that includes two nonhydrodynamic modes and one hydrodynamic mode in the NTB phase, and a single nonhydrodynamic mode plus two hydrodynamic modes (the usual nematic optic axis or director fluctuations) in the higher temperature, uniaxial nematic phase. The properties of these fluctuations and the conditions for their observation are comprehensively explained by a Landau-de Gennes expansion of the free-energy density in terms of heliconical director and helical polarization fields that characterize the NTB structure, with the latter serving as the primary order parameter. A "coarse-graining" approximation simplifies the theoretical analysis and enables us to demonstrate quantitative agreement between the calculated and experimentally determined temperature dependence of the mode relaxation rates.

  5. Lake Level Fluctuations Boost Toxic Cyanobacterial “Oligotrophic Blooms”

    PubMed Central

    Callieri, Cristiana; Bertoni, Roberto; Contesini, Mario; Bertoni, Filippo

    2014-01-01

    Global warming has been shown to strongly influence inland water systems, producing noticeable increases in water temperatures. Rising temperatures, especially when combined with widespread nutrient pollution, directly favour the growth of toxic cyanobacteria. Climate changes have also altered natural water level fluctuations increasing the probability of extreme events as dry periods followed by heavy rains. The massive appearance of Dolichospermum lemmermannii ( = planktonic Anabaena), a toxic species absent from the pelagic zone of the subalpine oligotrophic Lake Maggiore before 2005, could be a consequence of the unusual fluctuations of lake level in recent years. We hypothesized that these fluctuations may favour the cyanobacterium as result of nutrient pulses from the biofilms formed in the littoral zone when the lake level is high. To help verify this, we exposed artificial substrates in the lake, and evaluated their nutrient enrichment and release after desiccation, together with measurements of fluctuations in lake level, precipitation and D.lemmermannii population. The highest percentage of P release and the lowest C∶P molar ratio of released nutrients coincided with the summer appearance of the D.lemmermannii bloom. The P pulse indicates that fluctuations in level counteract nutrient limitation in this lake and it is suggested that this may apply more widely to other oligotrophic lakes. In view of the predicted increase in water level fluctuations due to climate change, it is important to try to minimize such fluctuations in order to mitigate the occurrence of cyanobacterial blooms. PMID:25295866

  6. Forming disoriented chiral condensates through fluctuations

    SciTech Connect

    Rischke, D.H.

    1998-10-01

    Using the influence functional formalism, classical equations of motion for the O(N) model are derived in the presence of a heat bath, in both the symmetric phase as well as the phase of spontaneously broken symmetry. The heat bath leads to dissipation and fluctuation terms in the classical equations of motion, which are explicitly computed to lowest order in perturbation theory. In the broken phase these terms are found to be large for the {sigma} field, even at zero temperature, due to the decay process {sigma}{r_arrow}{pi}{pi}, while they are small for the {pi} fields at temperatures below T{sub c}{approx_equal}160 MeV. It is shown that in large volumes the presence of dissipation and fluctuations suppresses the formation of disoriented chiral condensates (DCC{close_quote}s). In small volumes, however, fluctuations become sufficiently large to induce the formation of DCC{close_quote}s even if chiral symmetry has not been restored in the initial stage of the system{close_quote}s evolution. {copyright} {ital 1998} {ital The American Physical Society}

  7. Fluctuation phenomena in layered superconductors

    SciTech Connect

    Klemm, R.A.

    1996-10-01

    Gaussian fluctuations in layered superconductors have been the subject of study for many years. Although the FD was studied in detail long ago, the FC (fluctuation conductivity) was studied only recently, since the MT and DOS diagrams were previously neglected. Recent comparisons with experiment on YBCO have shown that the DOS diagrams are important and can lead to qualitatively different behaviors for the FC parallel and perpendicular to the layers. In both cases, Gaussian fluctuations fit the data above {Tc} very well, even for YBCO. To date, nearly all calculations of fluctuation quantities were for B{parallel}{cflx c}. Nevertheless, it should be possible to treat an arbitrary B, but the evaluation of the required matrix elements for the fluctuation quantities will be more complicated.

  8. Nonequilibrium fluctuations in a resistor

    NASA Astrophysics Data System (ADS)

    Garnier, N.; Ciliberto, S.

    2005-06-01

    In small systems where relevant energies are comparable to thermal agitation, fluctuations are of the order of average values. In systems in thermodynamical equilibrium, the variance of these fluctuations can be related to the dissipation constant in the system, exploiting the fluctuation-dissipation theorem. In nonequilibrium steady systems, fluctuations theorems (FT) additionally describe symmetry properties of the probability density functions (PDFs) of the fluctuations of injected and dissipated energies. We experimentally probe a model system: an electrical dipole driven out of equilibrium by a small constant current I , and show that FT are experimentally accessible and valid. Furthermore, we stress that FT can be used to measure the dissipated power P¯ =R I2 in the system by just studying the PDFs’ symmetries.

  9. Superfluidity of heated Fermi systems in the static fluctuation approximation

    SciTech Connect

    Khamzin, A. A.; Nikitin, A. S.; Sitdikov, A. S.

    2015-10-15

    Superfluidity properties of heated finite Fermi systems are studied in the static fluctuation approximation, which is an original method. This method relies on a single and controlled approximation, which permits taking correctly into account quasiparticle correlations and thereby going beyond the independent-quasiparticle model. A closed self-consistent set of equations for calculating correlation functions at finite temperature is obtained for a finite Fermi system described by the Bardeen–Cooper–Schrieffer Hamiltonian. An equation for the energy gap is found with allowance for fluctuation effects. It is shown that the phase transition to the supefluid state is smeared upon the inclusion of fluctuations.

  10. Background sources at PEP

    SciTech Connect

    Lynch, H.; Schwitters, R.F.; Toner, W.T.

    1988-01-01

    Important sources of background for PEP experiments are studied. Background particles originate from high-energy electrons and positrons which have been lost from stable orbits, ..gamma..-rays emitted by the primary beams through bremsstrahlung in the residual gas, and synchrotron radiation x-rays. The effect of these processes on the beam lifetime are calculated and estimates of background rates at the interaction region are given. Recommendations for the PEP design, aimed at minimizing background are presented. 7 figs., 4 tabs.

  11. Effects of a decaying cosmological fluctuation.

    PubMed

    Amendola, Luca; Finelli, Fabio

    2005-06-10

    We present the initial conditions for a decaying cosmological perturbation and study its signatures in the cosmic microwave background anisotropies and matter power spectra. An adiabatic decaying mode in the presence of components that are not described as perfect fluids (such as collisionless matter) decays slower than in a perfect-fluid dominated Universe and displays super-Hubble oscillations. Wilkinson Microwave Anisotropy Probe first year data constrain the decaying to growing ratio of scale invariant adiabatic fluctuations at the matter-radiation equality to less than 10%. PMID:16090380

  12. Building Background Knowledge

    ERIC Educational Resources Information Center

    Neuman, Susan B.; Kaefer, Tanya; Pinkham, Ashley

    2014-01-01

    This article make a case for the importance of background knowledge in children's comprehension. It suggests that differences in background knowledge may account for differences in understanding text for low- and middle-income children. It then describes strategies for building background knowledge in the age of common core standards.

  13. A COSMIC MICROWAVE BACKGROUND LENSING MASS MAP AND ITS CORRELATION WITH THE COSMIC INFRARED BACKGROUND

    SciTech Connect

    Holder, G. P.; De Haan, T.; Dobbs, M. A.; Dudley, J.; Viero, M. P.; Bock, J.; Zahn, O.; Aird, K. A.; Benson, B. A.; Bhattacharya, S.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Brodwin, M.; Cho, H-M.; Conley, A.; George, E. M.; Halverson, N. W.; and others

    2013-07-01

    We use a temperature map of the cosmic microwave background (CMB) obtained using the South Pole Telescope at 150 GHz to construct a map of the gravitational convergence to z {approx} 1100, revealing the fluctuations in the projected mass density. This map shows individual features that are significant at the {approx}4{sigma} level, providing the first image of CMB lensing convergence. We cross-correlate this map with Herschel/SPIRE maps covering 90 deg{sup 2} at wavelengths of 500, 350, and 250 {mu}m. We show that these submillimeter (submm) wavelength maps are strongly correlated with the lensing convergence map, with detection significances in each of the three submm bands ranging from 6.7{sigma} to 8.8{sigma}. We fit the measurement of the cross power spectrum assuming a simple constant bias model and infer bias factors of b = 1.3-1.8, with a statistical uncertainty of 15%, depending on the assumed model for the redshift distribution of the dusty galaxies that are contributing to the Herschel/SPIRE maps.

  14. [Cosmic Microwave Background (CMB) Anisotropies

    NASA Technical Reports Server (NTRS)

    Silk, Joseph

    1998-01-01

    One of the main areas of research is the theory of cosmic microwave background (CMB) anisotropies and analysis of CMB data. Using the four year COBE data we were able to improve existing constraints on global shear and vorticity. We found that, in the flat case (which allows for greatest anisotropy), (omega/H)0 less than 10(exp -7), where omega is the vorticity and H is the Hubble constant. This is two orders of magnitude lower than the tightest, previous constraint. We have defined a new set of statistics which quantify the amount of non-Gaussianity in small field cosmic microwave background maps. By looking at the distribution of power around rings in Fourier space, and at the correlations between adjacent rings, one can identify non-Gaussian features which are masked by large scale Gaussian fluctuations. This may be particularly useful for identifying unresolved localized sources and line-like discontinuities. Levin and collaborators devised a method to determine the global geometry of the universe through observations of patterns in the hot and cold spots of the CMB. We have derived properties of the peaks (maxima) of the CMB anisotropies expected in flat and open CDM models. We represent results for angular resolutions ranging from 5 arcmin to 20 arcmin (antenna FWHM), scales that are relevant for the MAP and COBRA/SAMBA space missions and the ground-based interferometer. Results related to galaxy formation and evolution are also discussed.

  15. [Cosmic Microwave Background (CMB) Anisotropies

    NASA Astrophysics Data System (ADS)

    Silk, Joseph

    1998-01-01

    One of the main areas of research is the theory of cosmic microwave background (CMB) anisotropies and analysis of CMB data. Using the four year COBE data we were able to improve existing constraints on global shear and vorticity. We found that, in the flat case (which allows for greatest anisotropy), (omega/H)0 less than 10-7, where omega is the vorticity and H is the Hubble constant. This is two orders of magnitude lower than the tightest, previous constraint. We have defined a new set of statistics which quantify the amount of non-Gaussianity in small field cosmic microwave background maps. By looking at the distribution of power around rings in Fourier space, and at the correlations between adjacent rings, one can identify non-Gaussian features which are masked by large scale Gaussian fluctuations. This may be particularly useful for identifying unresolved localized sources and line-like discontinuities. Levin and collaborators devised a method to determine the global geometry of the universe through observations of patterns in the hot and cold spots of the CMB. We have derived properties of the peaks (maxima) of the CMB anisotropies expected in flat and open CDM models. We represent results for angular resolutions ranging from 5 arcmin to 20 arcmin (antenna FWHM), scales that are relevant for the MAP and COBRA/SAMBA space missions and the ground-based interferometer. Results related to galaxy formation and evolution are also discussed.

  16. Climatic Significance of Holocene Glacier Fluctuations in New Zealand

    NASA Astrophysics Data System (ADS)

    Doughty, A. M.; Mackintosh, A. N.; Anderson, B. A.; Putnam, A. E.; Barrell, D.; Denton, G.; Schaefer, J. M.

    2012-12-01

    Holocene glacier fluctuations in New Zealand are represented by well-preserved moraine complexes in the Southern Alps. Recent cosmogenic dating of Holocene moraine sequences has allowed for interhemispheric comparisons of glacier advances and hence climate change. However, Balco (2009, Science, v 324, p 599-600) and others have asked "Can the timing and magnitude of observed past glacier changes in a particular region be explained by stochastic variability inherent in a steady climate, or is a change in the mean climate required?" To understand better the link between glaciers and climate during the Holocene, we evaluate possible past climate parameters by simulating ice extent at several well-preserved moraines deposited by the Cameron Glacier in the Arrowsmith Range, Southern Alps, New Zealand. We use a coupled 2-D ice-flow and distributed energy balance model with a snow transport component, the latter of which is necessary because, in its present-day configuration, this glacier receives a component of its accumulation from frequent snow avalanches. In our first experiment, we use steady-state simulations to identify the temperature and precipitation forcing required to fit the modelled Cameron Glacier to each of the geomorphically-defined moraine ridges. In our second experiment, we forced the glacier model with a time series of stochastic climate forcing that excludes a background temperature change. We discuss results of these tests, which permit assessment of the sensitivity and response of the Cameron Glacier to different modes of climate variability.

  17. Peptide formation in the prebiotic era - Thermal condensation of glycine in fluctuating clay environments

    NASA Technical Reports Server (NTRS)

    Lahav, N.; White, D.; Chang, S.

    1978-01-01

    As geologically relevant models of prebiotic environments, systems consisting of clay, water, and amino acids were subjected to cyclic variations in temperature and water content. Fluctuations of both variables produced longer oligopeptides in higher yields than were produced by temperature fluctuations alone. The results suggest that fluctuating environments provided a favorable geological setting in which the rate and extent of chemical evolution would have been determined by the number and frequency of cycles.

  18. Low-frequency fluctuations in plasma magnetic fields

    SciTech Connect

    Cable, S.; Tajima, T.

    1992-02-01

    It is shown that even a non-magnetized plasma with temperature T sustains zero-frequency magnetic fluctuations in thermal equilibrium. Fluctuations in electric and magnetic fields, as well as in densities, are computed. Four cases are studied: a cold, gaseous, isotropic, non-magnetized plasma; a cold, gaseous plasma in a uniform magnetic field; a warm, gaseous plasma described by kinetic theory; and a degenerate electron plasma. For the simple gaseous plasma, the fluctuation strength of the magnetic field as a function of frequency and wavenumber is calculated with the aid of the fluctuation-dissipation theorem. This calculation is done for both collisional and collisionless plasmas. The magnetic field fluctuation spectrum of each plasma has a large zero-frequency peak. The peak is a Dirac {delta}-function in the collisionless plasma; it is broadened into a Lorentzian curve in the collisional plasma. The plasma causes a low frequency cutoff in the typical black-body radiation spectrum, and the energy under the discovered peak approximates the energy lost in this cutoff. When the imposed magnetic field is weak, the magnetic field were vector fluctuation spectra of the two lowest modes are independent of the strength of the imposed field. Further, these modes contain finite energy even when the imposed field is zero. It is the energy of these modes which forms the non-magnetized zero-frequency peak of the isotropic plasma. In deriving these results, a simple relationship between the dispersion relation and the fluctuation power spectrum of electromagnetic waves if found. The warm plasma is shown, by kinetic theory, to exhibit a zero-frequency peak in its magnetic field fluctuation spectrum as well. For the degenerate plasma, we find that electric field fluctuations and number density fluctuations vanish at zero frequency; however, the magnetic field power spectrum diverges at zero frequency.

  19. Behavior of a high-temperature superconducting conductor on a round core cable at current ramp rates as high as 67.8 kA s-1 in background fields of up to 19 T

    NASA Astrophysics Data System (ADS)

    Michael, P. C.; Bromberg, L.; van der Laan, D. C.; Noyes, P.; Weijers, H. W.

    2016-04-01

    High temperature superconducting (HTS) conductor-on-round-core (CORC®) cables have been developed for use in power transmission systems and large high-field magnets. The use of high-current conductors for large-scale magnets reduces system inductance and limits the peak voltage needed for ramped field operation. A CORC® cable contains a large number of RE-Ba2Cu3O7-δ (RE = rare earth) (REBCO) coated conductors, helically wound in multiple layers on a thin, round former. Large-scale applications, such as fusion and accelerator magnets, require current ramp rates of several kilo-Amperes per second during pulsed operation. This paper presents results that demonstrate the electromagnetic stability of a CORC® cable during transient conditions. Measurements were performed at 4.2 K using a 1.55 m long CORC® cable in background fields of up to 19 T. Repeated current pulses in a background field of 19 T at current ramp rates of up to 67.8 kA s-1 to approximately 90% of the cable’s quench current at that field, did not show any sign of degradation in cable performance due to excessive ac loss or electromagnetic instability. The very high current ramp rates applied during these tests were used to compensate, to the extent possible, the limited cable length accommodated by the test facility, assuming that the measured results could be extrapolated to longer length cables operated at proportionally lower current ramp rates. No shift of the superconducting transition to lower current was measured when the current ramp rate was increased from 25 A s-1 to 67.8 kA s-1. These results demonstrate the viability of CORC® cables for use in low-inductance magnets that operate at moderate to high current ramp rates.

  20. Effects of critical fluctuations and dimensionality on the jump in specific heat at the superconducting transition temperature: Application to YBa2Cu3O7 -δ ,Bi2Sr2CaCu2O8 +δ , and KOs2O6 compounds

    NASA Astrophysics Data System (ADS)

    Keumo Tsiaze, R. M.; Wirngo, A. V.; Mkam Tchouobiap, S. E.; Fotue, A. J.; Baloïtcha, E.; Hounkonnou, M. N.

    2016-06-01

    We report on a study of the superconducting order parameter thermodynamic fluctuations in YBa2Cu3O7 -δ ,Bi2Sr2CaCu2O8 +δ , and KOs2O6 compounds. A nonperturbative technique within the framework of the renormalized Gaussian approach is proposed. The essential features are reported (analytically and numerically) through Ginzburg-Landau (GL) model-based calculations which take into account both the dimension and the microscopic parameters of the system. By presenting a self-consistent approach improvement on the GL theory, a technique for obtaining corrections to the asymptotic critical behavior in terms of nonuniversal parameters is developed. Therefore, corrections to the specific heat and the critical transition temperature for one-, two-, and three-dimensional samples are found taking into account the fact that fluctuations occur at all length scales as the critical point of a system is approached. The GL model in the free-field approximation and the 3D-X Y model are suitable for describing the weak and strong fluctuation regimes respectively. However, with a modified quadratic coefficient, the renormalized GL model is able to explain certain experimental observations including the specific heat of complicated systems, such as the cup-rate superconductors and the β -pyrochlore oxides. It is clearly shown that the enhancement, suppression, or rounding of the specific heat jump of high-Tc cup-rate superconductors at the transition are indicative of the order parameter thermodynamic fluctuations according to the dimension and the nature of interactions.