These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Biofilm bacteria: formation and comparative susceptibility to antibiotics  

PubMed Central

The Calgary Biofilm Device (CBD) was used to form bacterial biofilms of selected veterinary gram-negative and gram-positive pathogenic bacteria from cattle, sheep, pigs, chicken, and turkeys. The minimum inhibitory concentration (MIC) and minimum biofilm eradication concentration (MBEC) of ampicillin, ceftiofur, cloxacillin, oxytetracycline, penicillin G, streptomycin, tetracycline, enrofloxacin, erythromycin, gentamicin, tilmicosin, and trimethoprim-sulfadoxine for gram-positive and -negative bacteria were determined. Bacterial biofilms were readily formed on the CBD under selected conditions. The biofilms consisted of microcolonies encased in extracellular polysaccharide material. Biofilms composed of Arcanobacterium (Actinomyces) pyogenes, Staphylococcus aureus, Staphylococcus hyicus, Streptococcus agalactiae, Corynebacterium renale, or Corynebacterium pseudotuberculosis were not killed by the antibiotics tested but as planktonic bacteria they were sensitive at low concentrations. Biofilm and planktonic Streptococcus dysgalactiae and Streptococcus suis were sensitive to penicillin, ceftiofur, cloxacillin, ampicillin, and oxytetracycline. Planktonic Escherichia coli were sensitive to enrofloxacin, gentamicin, oxytetracycline and trimethoprim/ sulfadoxine. Enrofloxacin and gentamicin were the most effective antibiotics against E. coli growing as a biofilm. Salmonella spp. and Pseudomonas aeruginosa isolates growing as planktonic populations were sensitive to enrofloxacin, gentamicin, ampicillin, oxytetracycline, and trimethoprim/sulfadoxine, but as a biofilm, these bacteria were only sensitive to enrofloxacin. Planktonic and biofilm Pasteurella multocida and Mannheimia haemolytica had similar antibiotic sensitivity profiles and were sensitive to most of the antibiotics tested. The CBD provides a valuable new technology that can be used to select antibiotics that are able to kill bacteria growing as biofilms. PMID:11989739

Olson, Merle E.; Ceri, Howard; Morck, Douglas W.; Buret, Andre G.; Read, Ronald R.

2002-01-01

2

Interactions of Motile Bacteria with Surfaces Leading to Biofilm Formation  

NASA Astrophysics Data System (ADS)

Motile bacteria have the ability to swim by the rotation of flagellar filaments that form a coordinated bundle and propel the bacteria from the bulk fluid to a surface. As swimming bacteria approach a surface their swimming speed decreases and the cell body moves laterally along the surface before a secure attachment is formed. Bacterial flagella have been implicated in the attachment of motile bacteria to surfaces due to their physical and chemical properties. To study the initial surface interactions we use a technique known as total internal reflection aqueous fluorescence (TIRAF) microscopy which can resolve distances between bacteria and surfaces to the nanometer scale. Behavior of mutant strains of bacteria with deficiencies in flagella function was observed within 100 nm of the surface to ascertain the role that flagella play in the attachment process. We compared these qualitative observations of behavior to quantitative analysis of attachment and detachment rate constants for bacterial suspensions in parallel plate flow chambers. We also assayed mutant populations for their ability to form a biofilm in order to relate our microscopic studies of individual cells to macroscopic observations of bacterial suspensions.

Ford, Roseanne

2003-03-01

3

Anaerobic bacteria grow within Candida albicans biofilms and induce biofilm formation in suspension cultures.  

PubMed

The human microbiome contains diverse microorganisms, which share and compete for the same environmental niches. A major microbial growth form in the human body is the biofilm state, where tightly packed bacterial, archaeal, and fungal cells must cooperate and/or compete for resources in order to survive. We examined mixed biofilms composed of the major fungal species of the gut microbiome, Candida albicans, and each of five prevalent bacterial gastrointestinal inhabitants: Bacteroides fragilis, Clostridium perfringens, Escherichia coli, Klebsiella pneumoniae, and Enterococcus faecalis. We observed that biofilms formed by C. albicans provide a hypoxic microenvironment that supports the growth of two anaerobic bacteria, even when cultured in ambient oxic conditions that are normally toxic to the bacteria. We also found that coculture with bacteria in biofilms induces massive gene expression changes in C. albicans, including upregulation of WOR1, which encodes a transcription regulator that controls a phenotypic switch in C. albicans, from the "white" cell type to the "opaque" cell type. Finally, we observed that in suspension cultures, C. perfringens induces aggregation of C. albicans into "mini-biofilms," which allow C. perfringens cells to survive in a normally toxic environment. This work indicates that bacteria and C. albicans interactions modulate the local chemistry of their environment in multiple ways to create niches favorable to their growth and survival. PMID:25308076

Fox, Emily P; Cowley, Elise S; Nobile, Clarissa J; Hartooni, Nairi; Newman, Dianne K; Johnson, Alexander D

2014-10-20

4

Sugar fatty acid esters inhibit biofilm formation by food-borne pathogenic bacteria  

PubMed Central

Effects of food additives on biofilm formation by food-borne pathogenic bacteria were investigated. Thirty-three potential food additives and 3 related compounds were added to the culture medium at concentrations from 0.001 to 0.1% (w/w), followed by inoculation and cultivation of five biofilm-forming bacterial strains for the evaluation of biofilm formation. Among the tested food additives, 21 showed inhibitory effects of biofilm formation by Staphylococcus aureus and Escherichia coli, and in particular, sugar fatty acid esters showed significant anti-biofilm activity. Sugar fatty acid esters with long chain fatty acid residues (C14-16) exerted their inhibitory effect at the concentration of 0.001%(w/w), but bacterial growth was not affected at this low concentration. Activities of the sugar fatty acid esters positively correlated with the increase of the chain length of the fatty acid residues. Sugar fatty acid esters inhibited the initial attachment of the Staphylococcus aureus cells to the abiotic surface. Sugar fatty acid esters with long chain fatty acid residues (C14-16) also inhibited biofilm formation by Streptococcus mutans and Listeria monocytogenes at 0.01%(w/w), while the inhibition of biofilm formation by Pseudomonas aeruginosa required the addition of a far higher concentration (0.1%(w/w)) of the sugar fatty acid esters. PMID:20089325

Furukawa, Soichi; Akiyoshi, Yuko; O’Toole, George A.; Ogihara, Hirokazu; Morinaga, Yasushi

2010-01-01

5

Convergent evolution of hyperswarming leads to impaired biofilm formation in pathogenic bacteria  

PubMed Central

Most bacteria in nature live in surface-associated communities rather than planktonic populations. Nonetheless, how surface-associated environments shape bacterial evolutionary adaptation remains poorly understood. Here we show that subjecting Pseudomonas aeruginosa to repeated rounds of swarming, a collective form of surface migration, drives remarkable parallel evolution towards a hyperswarmer phenotype. In all independently evolved hyperswarmers, the reproducible hyperswarming phenotype is caused by parallel point mutations in a flagellar synthesis regulator, FleN, which locks the naturally mono-flagellated bacteria in a multi-flagellated state and confers a growth-rate independent advantage in swarming. Even though hyperswarmers outcompete the ancestral strain in swarming competitions, they are strongly outcompeted in biofilm formation, which is an essential trait for P. aeruginosa in environmental and clinical settings. The finding that evolution in swarming colonies reliably produces evolution of poor biofilm formers supports the existence of an evolutionary tradeoff between motility and biofilm formation. PMID:23954787

van Ditmarsch, Dave; Boyle, Kerry E.; Sakhtah, Hassan; Oyler, Jennifer E.; Nadell, Carey D.; Déziel, Éric; Dietrich, Lars E. P.; Xavier, Joao B.

2013-01-01

6

Effect of estradiol on planktonic growth, coaggregation, and biofilm formation of the Prevotella intermedia group bacteria.  

PubMed

Alterations in the quantity and quality of biofilms at gingival margin are considered to play a role in the initiation and development of pregnancy-related gingivitis. Prevotella intermedia sensu lato is able to consume estradiol, the major sex hormone secreted during pregnancy, in the absence of vitamin K. The aim of the study was to examine the effect of estradiol on the planktonic growth, coaggregation, polysaccharide production, and biofilm formation of the P. intermedia group bacteria, namely P. intermedia, Prevotella nigrescens, and Prevotella pallens. In all experiments, the type strain (ATCC) and a clinical strain (AHN) of P. intermedia, P. nigrescens, and P. pallens were incubated with the concentrations of 0, 30, 90, and 120 nmol/L of estradiol. Planktonic growth was assessed by means of the colony forming unit method, while coaggregation and biofilm formation were assessed by spectrophotometric methods. In the determination of protein and polysaccharide levels, the Bradford and phenol-sulfuric acid methods were used, respectively. P. pallens AHN 9283 and P. nigrescens ATCC 33563 increased their numbers at planktonic stage with increasing estradiol concentrations. In 48-h biofilm tests, elevated protein levels were found for both strains of P. intermedia, and the strains P. nigrescens ATCC 33563 and P. pallens AHN 9283 in the presence of estradiol. The P. intermedia strains also increased the levels of polysaccharide formation in the biofilm. Coaggregation of the P. intermedia group organisms with Fusobacterium nucleatum was enhanced only in P. intermedia AHN 8290. In conclusion, our in vitro experiments indicate that estradiol regulates planktonic growth, coaggregation, polysaccharide production, and biofilm formation characteristics of P. intermedia, P. nigrescens, and P. pallens differently. These results may, at least partly, explain the differences seen in their contribution to the pathogenesis of pregnancy-related gingivitis. PMID:24594108

Fteita, Dareen; Könönen, Eija; Söderling, Eva; Gürsoy, Ulvi Kahraman

2014-06-01

7

Inactivation of biofilm bacteria.  

PubMed Central

The current project was developed to examine inactivation of biofilm bacteria and to characterize the interaction of biocides with pipe surfaces. Unattached bacteria were quite susceptible to the variety of disinfectants tested. Viable bacterial counts were reduced 99% by exposure to 0.08 mg of hypochlorous acid (pH 7.0) per liter (1 to 2 degrees C) for 1 min. For monochloramine, 94 mg/liter was required to kill 99% of the bacteria within 1 min. These results were consistent with those found by other investigators. Biofilm bacteria grown on the surfaces of granular activated carbon particles, metal coupons, or glass microscope slides were 150 to more than 3,000 times more resistant to hypochlorous acid (free chlorine, pH 7.0) than were unattached cells. In contrast, resistance of biofilm bacteria to monochloramine disinfection ranged from 2- to 100-fold more than that of unattached cells. The results suggested that, relative to inactivation of unattached bacteria, monochloramine was better able to penetrate and kill biofilm bacteria than free chlorine. For free chlorine, the data indicated that transport of the disinfectant into the biofilm was a major rate-limiting factor. Because of this phenomenon, increasing the level of free chlorine did not increase disinfection efficiency. Experiments where equal weights of disinfectants were used suggested that the greater penetrating power of monochloramine compensated for its limited disinfection activity. These studies showed that monochloramine was as effective as free chlorine for inactivation of biofilm bacteria. The research provides important insights into strategies for control of biofilm bacteria. Images PMID:2849380

LeChevallier, M W; Cawthon, C D; Lee, R G

1988-01-01

8

Biofilm formation and proteolytic activities of Pseudoalteromonas bacteria that were isolated from fish farm sediments  

PubMed Central

Summary In order to save natural resources and supply good fishes, it is important to improve fish?farming techniques. The survival rate of fish fry appears to become higher when powders of foraminifer limestone are submerged at the bottom of fish?farming fields, where bacterial biofilms often grow. The observations suggest that forming biofilms can benefit to keep health status of breeding fishes. We employed culture?based methods for the identification and characterization of biofilm?forming bacteria and assessed the application of their properties for fish farming. Fifteen bacterial strains were isolated from the biofilm samples collected from fish farm sediments. The 16S rRNA gene sequences indicated that these bacteria belonged to the genera, Pseudoalteromonas (seven strains), Vibrio (seven strains) and Halomonas (one strain). It was found that Pseudoalteromonas strains generally formed robust biofilms in a laboratory condition and produced extracellular proteases in a biofilm?dependent manner. The results suggest that Pseudoalteromonas bacteria, living in the biofilm community, contribute in part to remove excess proteineous matters from the sediment sludge of fish farms. PMID:21261930

Iijima, Saori; Washio, Kenji; Okahara, Ryota; Morikawa, Masaaki

2009-01-01

9

Calcium carbonate precipitation by heterotrophic bacteria isolated from biofilms formed on deteriorated ignimbrite stones: influence of calcium on EPS production and biofilm formation by these isolates.  

PubMed

Heterotrophic CaCO3-precipitating bacteria were isolated from biofilms on deteriorated ignimbrites, siliceous acidic rocks, from Morelia Cathedral (Mexico) and identified as Enterobacter cancerogenus (22e), Bacillus sp. (32a) and Bacillus subtilis (52g). In solid medium, 22e and 32a precipitated calcite and vaterite while 52g produced calcite. Urease activity was detected in these isolates and CaCO3 precipitation increased in the presence of urea in the liquid medium. In the presence of calcium, EPS production decreased in 22e and 32a and increased in 52g. Under laboratory conditions, ignimbrite colonization by these isolates only occurred in the presence of calcium and no CaCO3 was precipitated. Calcium may therefore be important for biofilm formation on stones. The importance of the type of stone, here a siliceous stone, on biological colonization is emphasized. This calcium effect has not been reported on calcareous materials. The importance of the effect of calcium on EPS production and biofilm formation is discussed in relation to other applications of CaCO3 precipitation by bacteria. PMID:24689777

López-Moreno, Angélica; Sepúlveda-Sánchez, José David; Mercedes Alonso Guzmán, Elia Mercedes; Le Borgne, Sylvie

2014-01-01

10

Effect of Algae and Plant Lectins on Planktonic Growth and Biofilm Formation in Clinically Relevant Bacteria and Yeasts  

PubMed Central

This study aimed to evaluate the abilities of plant and algae lectins to inhibit planktonic growth and biofilm formation in bacteria and yeasts. Initially, ten lectins were tested on Staphylococcus epidermidis, Staphylococcus aureus, Klebsiella oxytoca, Pseudomonas aeruginosa, Candida albicans, and C. tropicalis at concentrations of 31.25 to 250??g/mL. The lectins from Cratylia floribunda (CFL), Vatairea macrocarpa (VML), Bauhinia bauhinioides (BBL), Bryothamnion seaforthii (BSL), and Hypnea musciformis (HML) showed activities against at least one microorganism. Biofilm formation in the presence of the lectins was also evaluated; after 24?h of incubation with the lectins, the biofilms were analyzed by quantifying the biomass (by crystal violet staining) and by enumerating the viable cells (colony-forming units). The lectins reduced the biofilm biomass and/or the number of viable cells to differing degrees depending on the microorganism tested, demonstrating the different characteristics of the lectins. These findings indicate that the lectins tested in this study may be natural alternative antimicrobial agents; however, further studies are required to better elucidate the functional use of these proteins. PMID:24982871

Vasconcelos, Mayron Alves; Arruda, Francisco Vassiliepe Sousa; Carneiro, Victor Alves; Silva, Helton Colares; Nascimento, Kyria Santiago; Sampaio, Alexandre Holanda; Cavada, Benildo; Teixeira, Edson Holanda; Henriques, Mariana

2014-01-01

11

Proteinaceous determinants of surface colonization in bacteria: bacterial adhesion and biofilm formation from a protein secretion perspective  

PubMed Central

Bacterial colonization of biotic or abiotic surfaces results from two quite distinct physiological processes, namely bacterial adhesion and biofilm formation. Broadly speaking, a biofilm is defined as the sessile development of microbial cells. Biofilm formation arises following bacterial adhesion but not all single bacterial cells adhering reversibly or irreversibly engage inexorably into a sessile mode of growth. Among molecular determinants promoting bacterial colonization, surface proteins are the most functionally diverse active components. To be present on the bacterial cell surface, though, a protein must be secreted in the first place. Considering the close association of secreted proteins with their cognate secretion systems, the secretome (which refers both to the secretion systems and their protein substrates) is a key concept to apprehend the protein secretion and related physiological functions. The protein secretion systems are here considered in light of the differences in the cell-envelope architecture between diderm-LPS (archetypal Gram-negative), monoderm (archetypal Gram-positive) and diderm-mycolate (archetypal acid-fast) bacteria. Besides, their cognate secreted proteins engaged in the bacterial colonization process are regarded from single protein to supramolecular protein structure as well as the non-classical protein secretion. This state-of-the-art on the complement of the secretome (the secretion systems and their cognate effectors) involved in the surface colonization process in diderm-LPS and monoderm bacteria paves the way for future research directions in the field. PMID:24133488

Chagnot, Caroline; Zorgani, Mohamed A.; Astruc, Thierry; Desvaux, Mickaël

2013-01-01

12

Proteinaceous determinants of surface colonization in bacteria: bacterial adhesion and biofilm formation from a protein secretion perspective.  

PubMed

Bacterial colonization of biotic or abiotic surfaces results from two quite distinct physiological processes, namely bacterial adhesion and biofilm formation. Broadly speaking, a biofilm is defined as the sessile development of microbial cells. Biofilm formation arises following bacterial adhesion but not all single bacterial cells adhering reversibly or irreversibly engage inexorably into a sessile mode of growth. Among molecular determinants promoting bacterial colonization, surface proteins are the most functionally diverse active components. To be present on the bacterial cell surface, though, a protein must be secreted in the first place. Considering the close association of secreted proteins with their cognate secretion systems, the secretome (which refers both to the secretion systems and their protein substrates) is a key concept to apprehend the protein secretion and related physiological functions. The protein secretion systems are here considered in light of the differences in the cell-envelope architecture between diderm-LPS (archetypal Gram-negative), monoderm (archetypal Gram-positive) and diderm-mycolate (archetypal acid-fast) bacteria. Besides, their cognate secreted proteins engaged in the bacterial colonization process are regarded from single protein to supramolecular protein structure as well as the non-classical protein secretion. This state-of-the-art on the complement of the secretome (the secretion systems and their cognate effectors) involved in the surface colonization process in diderm-LPS and monoderm bacteria paves the way for future research directions in the field. PMID:24133488

Chagnot, Caroline; Zorgani, Mohamed A; Astruc, Thierry; Desvaux, Mickaël

2013-01-01

13

Identification of lactobacilli with inhibitory effect on biofilm formation by pathogenic bacteria on stainless steel surfaces.  

PubMed

Two hundred and thirty individual clones of microorganisms were recovered from milk tanks and milking machine surfaces at two distinct farms (Bejaja City, Algeria). Of these clones, 130 were identified as lactic acid bacteria (LAB). In addition Escherichia coli, Salmonella, Staphylococcus aureus and Pseudomonas aeruginosa species were identified in the remaining 100 isolates-spoilage isolate. These isolates were assayed for ability to form biofilms. S. aureus, Lactobacillus brevis strains LB1F2, LB14F1 and LB15F1, and Lactobacillus pentosus strains LB2F2 and LB3F2 were identified as the best biofilm formers. Besides, these LAB isolates were able to produce proteinaceous substances with antagonism against the aforementioned spoilage isolates, when grown in MRS or TSB-YE media. During the screening, L. pentosus LB3F2 exhibited the highest antibacterial activity when grown in TSB-YE medium at 30 °C. Additionally, L. pentosus LB3F2 was able to strongly hamper the adhesion of S. aureus SA3 on abiotic surfaces as polystyrene and stainless steel slides. LAB isolates did not show any hemolytic activity and all of them were sensitive to different families of antibiotic tested. It should be pointed out that LB3F2 isolate was not cytotoxic on the intestinal cells but could stimulate their metabolic activity. This report unveiled the potential of LB1F2, LB14F1, LB15F1, LB2F2, and LB3F2 isolates to be used as natural barrier or competitive exclusion organism in the food processing sector as well as a positive biofilm forming bacteria. PMID:25261829

Ait Ouali, Fatma; Al Kassaa, Imad; Cudennec, Benoit; Abdallah, Marwan; Bendali, Farida; Sadoun, Djamila; Chihib, Nour-Eddine; Drider, Djamel

2014-11-17

14

Biofilm formation by Clostridium difficile  

PubMed Central

Clostridium difficile infection (CDI) is a major healthcare-associated disease worldwide. Recurring infections and increasing antibiotic resistance have complicated treatment of CDI. While C. difficile spores are important for transmission and persistence of CDI, other factors such as gut colonization and formation of bacterial communities in the gut may also contribute to pathogenesis and persistence, but have not been well investigated. Recently, we reported that important clinical C. difficile strains are able to form composite biofilms in vitro. C. difficile biofilm formation is a complex process, modulated by several different factors, including cell surface components and regulators. We also reported that bacteria within biofilms are more resistant to high concentrations of vancomycin, the antibiotic of choice for treatment of CDI. Here we summarize our recent findings and discuss the implications of biofilm formation by this anaerobic gut pathogen in disease pathogenesis and treatment. PMID:23892245

Dapa, Tanja; Unnikrishnan, Meera

2013-01-01

15

?-Alkylidene-?-lactones and isobutylpyrrol-2(5H)-ones analogues to rubrolides as inhibitors of biofilm formation by gram-positive and gram-negative bacteria.  

PubMed

Several molecules have been discovered that interfere with formation of bacterial biofilms, opening a new strategy for the development of more efficient treatments in case of antibiotic resistant bacteria. Amongst the most active compounds are some natural brominated furanones from marine algae Delisea pulchra that have proven to be able to control pathogenic biofilms. We have recently reported that some rubrolide analogues are able to inhibit biofilm formation of Enterococcus faecalis. In the present Letter we describe results of the biological evaluation of a small library of 28 compounds including brominated furanones and the corresponding lactams against biofilm formation of Staphylococcus aureus, Pseudomonas aeruginosa, Staphylococcus epidermidis and Streptococcus mutans. Our results showed that in general these compounds were more active against biofilms of S. epidermidis and P. aeruginosa, with little or no inhibition of planktonic bacterial growth. In some cases they were able to prevent biofilm formation of P. aeruginosa at concentrations as low as 0.6 ?g/mL (1.3 ?M, compound 3d) and 0.7 ?g/mL (1.3 ?M, 3f). Results also indicate that, in general, lactams are more active against biofilms than their precursors, thus designating this class of molecules as good candidates for the development of a new generation of antimicrobial drugs targeted to biofilm inhibition. PMID:24484899

Pereira, Ulisses A; Barbosa, Luiz C A; Maltha, Célia R A; Demuner, Antônio J; Masood, Mohammed A; Pimenta, Andréa L

2014-02-15

16

Inactivation ofBiofilm Bacteria  

Microsoft Academic Search

Thecurrent project was developed toexamine inactivation ofbiofilm bacteria andtocharacterize the interaction ofbiocides withpipesurfaces. Unattached bacteria were quite susceptible tothevariety of disinfectants tested. Viable bacterial counts were reduced 99%byexposureto0.08 mg ofhypochlorous acid (pH7.0) perliter (1to2°C) for1min.Formonochloramine, 94mg\\/liter wasrequired tokill 99%ofthebacteria within 1min.Theseresults wereconsistent withthose found byother investigators. Biofilm bacteria grown on thesurfaces ofgranular activated carbon particles, metal coupons,orglass microscope slides were

MARK W. LECHEVALLIER; CHERYL D. CAWTHON; RAMON G. LEE

1988-01-01

17

Clay-Bacteria Systems and Biofilm Production  

NASA Astrophysics Data System (ADS)

Soil clots and the aerosol transport of bacteria and spores are promoted by the formation of biofilms (bacteria cells in an extracellular polymeric matrix). Biofilms protect microorganisms by promoting adhesion to both organic and inorganic surfaces. Time series experiments on bacteria-clay suspensions demonstrate that biofilm growth is catalyzed by the presence of hectorite in minimal growth media for the studied species: Gram negatives (Pseudomonas syringae and Escherichia coli,) and Gram positives (Staphylococcus aureus and Bacillus subtilis). Soil organisms (P. syringae, B. subtilis) and organisms found in the human population (E. coli, S. aureus) are both used to demonstrate the general applicability of clay involvement. Fluorescent images of the biofilms are acquired by staining with propidium iodide, a component of the BacLightTM Live/Dead bacterial viability staining kit (Molecular Probes, Eugene, OR). The evolving polysaccharide-rich biofilm reacts with the clay interlayer site causing a complex substitution of the two-water hectorite interlayer with polysaccharide. The result is often a three-peak composite of the (001) x-ray diffraction maxima resulting from polysaccharide-expanded clays and an organic-driven contraction of a subset of the clays in the reaction medium. X-ray diffractograms reveal that the expanded set creates a broad maximum with clay subsets at 1.84 nm and 1.41 nm interlayer spacings as approximated by a least squares double Lorentzian fit, and a smaller shoulder at larger 2q, deriving from a contraction of the interlayer spacing. Washing with chlorox removes organic material from the contracted clay and creates a 1-water hectorite single peak in place of the double peak. The clay response can be used as an indirect indicator of biofilm in an environmental system.

Steiner, J.; Alimova, A.; Katz, A.; Steiner, N.; Rudolph, E.; Gottlieb, P.

2007-12-01

18

Regulation of flagellar motility during biofilm formation  

PubMed Central

Many bacteria swim in liquid or swarm over solid surfaces by synthesizing rotary flagella. The same bacteria that are motile also commonly form non-motile multicellular aggregates held together by an extracellular matrix called biofilms. Biofilms are an important part of the lifestyle of pathogenic bacteria and it is assumed that there is a motility-to-biofilm transition wherein the inhibition of motility promotes biofilm formation. The transition is largely inferred from regulatory mutants that reveal the opposite regulation of the two phenotypes. Here we review the regulation of motility during biofilm formation in Bacillus, Pseudomonas, Vibrio, and Escherichia, and we conclude that the motility-to-biofilm transition, if necessary, likely involves two steps. In the short term, flagella are functionally regulated to either inhibit rotation or modulate the basal flagellar reversal frequency. Over the long term, flagellar gene transcription is inhibited and in the absence of de novo synthesis, flagella are likely diluted to extinction through growth. Both short term and long term control is likely important to the motility-to-biofilm transition to stabilize aggregates and optimize resource investment. We emphasize the newly discovered classes of flagellar functional regulators and speculate that others await discovery in the context of biofilm formation. PMID:23480406

Guttenplan, Sarah B.; Kearns, Daniel B.

2013-01-01

19

Biofilm Formation by Neisseria meningitidis  

PubMed Central

Biofilm formation by the human pathogen Neisseria meningitidis was analyzed. Biofilm-forming meningococcal strains were identified and quantitated by crystal violet staining. Laser scanning confocal microscopy of the meningococcal biofilm revealed variable layers up to 90 ?m in thickness. A total of 39 meningococcal isolates were studied; 23 were nasopharyngeal-carriage isolates, and 16 were invasive-disease isolates. Thirty percent of carriage isolates and 12.5% of invasive-disease isolates formed biofilms proficiently on a polystyrene surface. Generally, the strains that formed biofilms showed high-level cell surface hydrophobicity, characteristic of strains lacking a capsule. The inhibitory role of capsule in biofilm formation was further confirmed by comparing the biofilm-forming capabilities of a serogroup B wild-type strain of a disease-associated isolate to those of its capsule-deficient mutant (ctrA). Some strains of meningococci form biofilms, and this process is likely important in menigococcal colonization. PMID:15385518

Yi, Kyungcheol; Rasmussen, Andrew W.; Gudlavalleti, Seshu K.; Stephens, David S.; Stojiljkovic, Igor

2004-01-01

20

Automatic quantification of early transition points in biofilm formation  

NASA Astrophysics Data System (ADS)

Biofilms are multicellular, dynamic communities of interacting single-cell organisms, like bacteria. Biofilms are responsible for many infectious diseases as well as for significant damage in industrial settings, yet many aspects of biofilm formation are not well understood. Identifying and quantifying the interactions leading to biofilm formation will not only be important for understanding the basic science of these and other multicellular systems, but it will also be essential for designing targeted strategies to prevent or disrupt biofilms. In particular, it is not clear what physical interactions, and corresponding biological mechanisms, are responsible for the early steps in biofilm formation. Because of this, we are developing high-throughput software techniques to analyze micrograph movies of biofilm formation, from attachment to surfaces through the development of microcolonies. This work will focus on developing software tools to identify and quantify key steps in biofilm formation, first in non-chemotacting systems and later in chemotacting (and autotacting) systems.

Thatcher, Travis; Bienvenu, Samuel; Strain, Shinji; Gordon, Vernita

2010-10-01

21

Spaceflight Promotes Biofilm Formation by Pseudomonas aeruginosa  

PubMed Central

Understanding the effects of spaceflight on microbial communities is crucial for the success of long-term, manned space missions. Surface-associated bacterial communities, known as biofilms, were abundant on the Mir space station and continue to be a challenge on the International Space Station. The health and safety hazards linked to the development of biofilms are of particular concern due to the suppression of immune function observed during spaceflight. While planktonic cultures of microbes have indicated that spaceflight can lead to increases in growth and virulence, the effects of spaceflight on biofilm development and physiology remain unclear. To address this issue, Pseudomonas aeruginosa was cultured during two Space Shuttle Atlantis missions: STS-132 and STS-135, and the biofilms formed during spaceflight were characterized. Spaceflight was observed to increase the number of viable cells, biofilm biomass, and thickness relative to normal gravity controls. Moreover, the biofilms formed during spaceflight exhibited a column-and-canopy structure that has not been observed on Earth. The increase in the amount of biofilms and the formation of the novel architecture during spaceflight were observed to be independent of carbon source and phosphate concentrations in the media. However, flagella-driven motility was shown to be essential for the formation of this biofilm architecture during spaceflight. These findings represent the first evidence that spaceflight affects community-level behaviors of bacteria and highlight the importance of understanding how both harmful and beneficial human-microbe interactions may be altered during spaceflight. PMID:23658630

Kim, Wooseong; Tengra, Farah K.; Young, Zachary; Shong, Jasmine; Marchand, Nicholas; Chan, Hon Kit; Pangule, Ravindra C.; Parra, Macarena; Dordick, Jonathan S.; Plawsky, Joel L.; Collins, Cynthia H.

2013-01-01

22

Spaceflight promotes biofilm formation by Pseudomonas aeruginosa.  

PubMed

Understanding the effects of spaceflight on microbial communities is crucial for the success of long-term, manned space missions. Surface-associated bacterial communities, known as biofilms, were abundant on the Mir space station and continue to be a challenge on the International Space Station. The health and safety hazards linked to the development of biofilms are of particular concern due to the suppression of immune function observed during spaceflight. While planktonic cultures of microbes have indicated that spaceflight can lead to increases in growth and virulence, the effects of spaceflight on biofilm development and physiology remain unclear. To address this issue, Pseudomonas aeruginosa was cultured during two Space Shuttle Atlantis missions: STS-132 and STS-135, and the biofilms formed during spaceflight were characterized. Spaceflight was observed to increase the number of viable cells, biofilm biomass, and thickness relative to normal gravity controls. Moreover, the biofilms formed during spaceflight exhibited a column-and-canopy structure that has not been observed on Earth. The increase in the amount of biofilms and the formation of the novel architecture during spaceflight were observed to be independent of carbon source and phosphate concentrations in the media. However, flagella-driven motility was shown to be essential for the formation of this biofilm architecture during spaceflight. These findings represent the first evidence that spaceflight affects community-level behaviors of bacteria and highlight the importance of understanding how both harmful and beneficial human-microbe interactions may be altered during spaceflight. PMID:23658630

Kim, Wooseong; Tengra, Farah K; Young, Zachary; Shong, Jasmine; Marchand, Nicholas; Chan, Hon Kit; Pangule, Ravindra C; Parra, Macarena; Dordick, Jonathan S; Plawsky, Joel L; Collins, Cynthia H

2013-01-01

23

Interactions and transitions in biofilm formation  

NASA Astrophysics Data System (ADS)

Biofilms are multicellular, interacting communities of intrinsically-unicellular organisms that grow on surfaces. As such, they are fascinating model systems for multicellularity. They are also of great practical importance, since biofilms damage a variety of industrial infrastructure and are the cause of most persistent, antibiotic-resistant infections. In natural settings, most bacteria are found in biofilms. To initiate a biofilm, planktonic, free-swimming bacteria attach to a surface and then undergo a series of phenotypic changes as that adhesion becomes irreversible and the surface is populated, first by discrete bacteria, and then bacteria growing in dense clusters, ``microcolonies.'' Both adhesion to a surface and adhesion to other cells are associated with adhesive properties of cell-produced extracellular polysaccharides (EPSs). Using laser tweezers to test cell aggregation and aggregate stability, in combination with gene expression assays and gene-knockouts, we show the importance of one EPS, pel, for early cell aggregation. We also use automated bacteria-identification and --tracking software algorithims to identify and quantify key transitions early in biofilm formation.

Gordon, Vernita; Colvin, Kelly; Conrad, Jacinta; Gibiansky, Maxsim; Jin, Fan; Parsek, Matthew; Wong, Gerard

2010-10-01

24

Biofilm formation in bacterial pathogens of veterinary importance.  

PubMed

Bacterial biofilms are structured communities of bacterial cells enclosed in a self-produced polymer matrix that is attached to a surface. Biofilms protect and allow bacteria to survive and thrive in hostile environments. Bacteria within biofilms can withstand host immune responses, and are much less susceptible to antibiotics and disinfectants when compared with their planktonic counterparts. The ability to form biofilms is now considered a universal attribute of micro-organisms. Diseases associated with biofilms require novel methods for their prevention, diagnosis and treatment; this is largely due to the properties of biofilms. Surprisingly, biofilm formation by bacterial pathogens of veterinary importance has received relatively little attention. Here, we review the current knowledge of bacterial biofilms as well as studies performed on animal pathogens. PMID:20969814

Jacques, Mario; Aragon, Virginia; Tremblay, Yannick D N

2010-12-01

25

Biofilm formation in water cooling systems  

Microsoft Academic Search

Biofilm formation on stainless steel samples immersed in cooling water has been evaluated by exposing metal samples to cooling seawater for 30 days. Anaerobic bacteria were then at 1.6 × 106\\/cm2, with sulphate-reducing species predominating. Aerobic bacteria and fungi were 2600 and 140\\/cm2, respectively. After 60 days, numbers of aerobic microorganisms remained constant whereas the count of anaerobic microorganisms had

M. T. S. Lutterbach; F. P. França

1996-01-01

26

Oh What a Tangled Biofilm Web Bacteria Weave  

MedlinePLUS

... Home Page Oh What a Tangled Biofilm Web Bacteria Weave By Elia Ben-Ari Posted May 1, ... a suitable surface, some water and nutrients, and bacteria will likely put down stakes and form biofilms. ...

27

IMPACTS OF BIOFILM FORMATION ON CELLULOSE FERMENTATION  

SciTech Connect

This project addressed four major areas of investigation: i) characterization of formation of Cellulomonas uda biofilms on cellulose; ii) characterization of Clostridium phytofermentans biofilm development; colonization of cellulose and its regulation; iii) characterization of Thermobifida fusca biofilm development; colonization of cellulose and its regulation; and iii) description of the architecture of mature C. uda, C. phytofermentans, and T. fusca biofilms. This research is aimed at advancing understanding of biofilm formation and other complex processes involved in the degradation of the abundant cellulosic biomass, and the biology of the microbes involved. Information obtained from these studies is invaluable in the development of practical applications, such as the single-step bioconversion of cellulose-containing residues to fuels and other bioproducts. Our results have clearly shown that cellulose-decomposing microbes rapidly colonize cellulose and form complex structures typical of biofilms. Furthermore, our observations suggest that, as cells multiply on nutritive surfaces during biofilms formation, dramatic cell morphological changes occur. We speculated that morphological changes, which involve a transition from rod-shaped cells to more rounded forms, might be more apparent in a filamentous microbe. In order to test this hypothesis, we included in our research a study of biofilm formation by T. fusca, a thermophilic cellulolytic actinomycete commonly found in compost. The cellulase system of T. fusca has been extensively detailed through the work of David Wilson and colleagues at Cornell, and also, genome sequence of a T. fusca strain has been determine by the DOE Joint Genome Institute. Thus, T. fusca is an excellent subject for studies of biofilm development and its potential impacts on cellulose degradation. We also completed a study of the chitinase system of C. uda. This work provided essential background information for understanding how C. uda colonizes and degrades insoluble substrates. Major accomplishments of the project include: • Development of media containing dialysis tubing (described by the manufacturer as “regenerated cellulose”) as sole carbon and energy source and a nutritive surface for the growth of cellulolytic bacteria, and development of various microscopic methods to image biofilms on dialysis tubing. • Demonstration that cultures of C. phytofermentans, an obligate anaerobe, C. uda, a facultative aerobe, and T. fusca, a filamentous aerobe, formed microbial communities on the surface of dialysis tubing, which possessed architectural features and functional characteristics typical of biofilms. • Demonstration that biofilm formation on the nutritive surface, cellulose, involves a complex developmental processes, including colonization of dialysis tubing, formation of cell clusters attached to the nutritive surface, cell morphological changes, formation of complex structures embedded in extracellular polymeric matrices, and dispersal of biofilm communities as the nutritive surface is degraded. • Determination of surface specificity and regulatory aspects of biofilm formation by C. phytofermentans, C. uda, and T. fusca. • Demonstration that biofilm formation by T. fusca forms an integral part of the life cycle of this filamentous cellulolytic bacterium, including studies on the role of mycelial pellet formation in the T. fusca life cycle and a comparison of mycelial pellets to surface-attached T. fusca biofilms. • Characterization of T. fusca biofilm EPS, including demonstration of a functional role for EPS constituents. • Correlation of T. fusca developmental life cycle and cellulase gene expression.

Leschine, Susan

2009-10-31

28

Biofilm formation by Aspergillus fumigatus.  

PubMed

Aspergillus fumigatus is a well adapted, opportunistic fungus that causes a severe and commonly fatal disease, invasive pulmonary aspergillosis (IPA), in highly immunocompromised patients, aspergilloma in patients with lung cavities and allergic bronchopulmonary aspergillosis (ABPA) in hypersensitive individuals. Recent studies have suggested that biofilm formation by A. fumigatus may be one of the most important virulence factors in IPA and aspergilloma. Several fungal constituents may contribute to the formation of biofilm structures on host cells, including cell wall components, secondary metabolites and drug transporters. The biofilm phenotype of the fungus is refractory to most conventional antifungal treatment options. Thus, an in-depth analysis and understanding of A. fumigatus biofilms is necessary to devise newer and better antifungal targets for treating complex A. fumigatus biofilm-associated diseases. PMID:23962172

Kaur, Savneet; Singh, Shweta

2014-01-01

29

Biofilm formation of Pasteurella multocida on bentonite clay  

PubMed Central

Background and objectives Biofilms are structural communities of bacterial cells enshrined in a self produced polymeric matrix. The studies on biofilm formation of Pasteurella multocida have become imperative since it is a respiratory pathogen and its biofilm mode could possibly be one of its virulence factors for survival inside a host. The present study describes a biofilm assay for P. multocida on inert hydrophilic material called bentonite clay. Materials and methods The potential of the organism to form in vitro biofilm was assessed by growing the organism under nutrient restriction along with the inert substrate bentonite clay, which will provide a surface for attachment. For quantification of biofilm, plate count by the spread plate method was employed. Capsule production of the attached bacteria was demonstrated by light microscopic examination following Maneval staining and capsular polysaccharide estimation was done using standard procedures. Results and Conclusion The biofilm formation peaked on the third day of incubation (1.54 ×106 cfu/g of bentonite clay) while the planktonic cells were found to be at a maximum on day one post inoculation (8.10 ×108 cfu/ml of the broth). Maneval staining of late logarithmic phase biofilm cultures revealed large aggregates of bacterial cells, bacteria appearing as chains or as a meshwork. The capsular polysaccharide estimation of biofilm cells revealed a 3.25 times increase over the planktonic bacteria. The biofilm cells cultured on solid media also produced some exclusive colony morphotypes. PMID:23825728

Rajagopal, Ramachandranpillai; Nair, Govindapillai Krishnan; Mini, Mangattumuruppel; Joseph, Leo; Saseendranath, Mapranath Raghavan; John, Koshy

2013-01-01

30

Ginger Extract Inhibits Biofilm Formation by Pseudomonas aeruginosa PA14  

PubMed Central

Bacterial biofilm formation can cause serious problems in clinical and industrial settings, which drives the development or screening of biofilm inhibitors. Some biofilm inhibitors have been screened from natural products or modified from natural compounds. Ginger has been used as a medicinal herb to treat infectious diseases for thousands of years, which leads to the hypothesis that it may contain chemicals inhibiting biofilm formation. To test this hypothesis, we evaluated ginger’s ability to inhibit Pseudomonas aeruginosa PA14 biofilm formation. A static biofilm assay demonstrated that biofilm development was reduced by 39–56% when ginger extract was added to the culture. In addition, various phenotypes were altered after ginger addition of PA14. Ginger extract decreased production of extracellular polymeric substances. This finding was confirmed by chemical analysis and confocal laser scanning microscopy. Furthermore, ginger extract formed noticeably less rugose colonies on agar plates containing Congo red and facilitated swarming motility on soft agar plates. The inhibition of biofilm formation and the altered phenotypes appear to be linked to a reduced level of a second messenger, bis-(3?-5?)-cyclic dimeric guanosine monophosphate. Importantly, ginger extract inhibited biofilm formation in both Gram-positive and Gram-negative bacteria. Also, surface biofilm cells formed with ginger extract detached more easily with surfactant than did those without ginger extract. Taken together, these findings provide a foundation for the possible discovery of a broad spectrum biofilm inhibitor. PMID:24086697

Kim, Han-Shin; Park, Hee-Deung

2013-01-01

31

Effects of biofilm formation on haemodialysis monitor disinfection  

Microsoft Academic Search

Background. Biofilms are composed of communities of micro-organisms adhering to essentially any surface. We evaluated whether biofilm formation in the hy- draulic circuit of a purposely contaminated haemodial- ysis monitor would modify the efficacy of different disinfection modalities against bacteria and endotoxin concentrations. Methods. A water-borne Pseudomonas aeruginosa (109) suspension was recirculated for 1 h and was left standing for

Gianni Cappelli; Luisa Sereni; Maria Grazia Scialoja; Massimo Morselli; Salvatore Perrone; Angela Ciuffreda; Massimo Bellesia; Paola Inguaggiato; Alberto Albertazzi; Ciro Tetta

2003-01-01

32

Biofilm Formation by Pneumocystis spp.? †  

PubMed Central

Pneumocystis spp. can cause a lethal pneumonia in hosts with debilitated immune systems. The manner in which these fungal infections spread throughout the lung, the life cycles of the organisms, and their strategies used for survival within the mammalian host are largely unknown, due in part to the lack of a continuous cultivation method. Biofilm formation is one strategy used by microbes for protection against environmental assaults, for communication and differentiation, and as foci for dissemination. We posited that the attachment and growth of Pneumocystis within the lung alveoli is akin to biofilm formation. An in vitro system comprised of insert wells suspended in multiwell plates containing supplemented RPMI 1640 medium supported biofilm formation by P. carinii (from rat) and P. murina (from mouse).Dramatic morphological changes accompanied the transition to a biofilm. Cyst and trophic forms became highly refractile and produced branching formations that anastomosed into large macroscopic clusters that spread across the insert. Confocal microscopy revealed stacking of viable organisms enmeshed in concanavalin A-staining extracellular matrix. Biofilms matured over a 3-week time period and could be passaged. These passaged organisms were able to cause infection in immunosuppressed rodents. Biofilm formation was inhibited by farnesol, a quorum-sensing molecule in Candida spp., suggesting that a similar communication system may be operational in the Pneumocystis biofilms. Intense staining with a monoclonal antibody to the major surface glycoproteins and an increase in (1,3)-?-d-glucan content suggest that these components contributed to the refractile properties. Identification of this biofilm process provides a tractable in vitro system that should fundamentally advance the study of Pneumocystis. PMID:18820078

Cushion, Melanie T.; Collins, Margaret S.; Linke, Michael J.

2009-01-01

33

Influence of Bacterial Presence on Biofilm Formation of Candida albicans  

PubMed Central

Purpose Candida albicans is an opportunistic pathogen that is commonly found in human microflora. Biofilm formation (BF) is known as a major virulence factor of C. albicans. The aim of this study was to examine the influence of bacterial presence on biofilm formation of C. albicans. Materials and Methods The BF of Candida was investigated when it was co-cultured with C. albicans (C. albicans 53, a yeast with a low BF ability, and C. albicans 163, a yeast with high BF ability) and bacteria. BF was assessed with XTT reduction assay. A scanning electron microscope was used to determine the structure of the biofilm, and real-time reverse transcriptase polymerase chain reaction was used to amplify and quantify hyphae-associated genes. Results Co-culturing with two different types of bacteria increased the BF value. Co-culturing with C. albicans 53 and 163 also increased the BF value compared to the value that was obtained when the C. albicans was cultured individually. However, co-culturing with bacteria decreased the BF value of C. albicans, and the BF of C. albicans 163 was markedly inhibited. The expression of adherence and morphology transition related genes were significantly inhibited by co-culturing with live bacteria. Conclusion Bacteria have a negative effect on the formation of biofilm by C. albicans. This mechanism is the result of the suppression of genes associated with the hyphae transition of C. albicans, and bacteria particles physically affected the biofilm architecture and biofilm formation. PMID:24532517

Park, Su Jung; Han, Kyoung-Hee; Park, Joo Young; Choi, Sun Ju

2014-01-01

34

Biofilm-forming activity of bacteria isolated from toilet bowl biofilms and the bactericidal activity of disinfectants against the isolates.  

PubMed

To evaluate the sanitary conditions of toilets, the bacterial counts of the toilet bowl biofilms in 5 Kansai area and 11 Kansai and Kanto area homes in Japan were measured in winter and summer seasons, respectively. Isolates (128 strains) were identified by analyzing 16S ribosomal RNA sequences. The number of colonies and bacterial species from biofilms sampled in winter tended to be higher and lower, respectively, than those in summer. Moreover, the composition of bacterial communities in summer and winter samples differed considerably. In summer samples, biofilms in Kansai and Kanto areas were dominated by Blastomonas sp. and Mycobacterium sp., respectively. Methylobacterium sp. was detected in all toilet bowl biofilms except for one sample. Methylobacterium sp. constituted the major presence in biofilms along with Brevundimonas sp., Sphingomonas sp., and/or Pseudomonas sp. The composition ratio of the sum of their genera was 88.0 from 42.9% of the total bacterial flora. The biofilm formation abilities of 128 isolates were investigated, and results suggested that Methylobacterium sp. and Sphingomonas sp. were involved in biofilm formation in toilet bowls. The biofilm formation of a mixed bacteria system that included bacteria with the highest biofilm-forming ability in a winter sample was greater than mixture without such bacteria. This result suggests that isolates possessing a high biofilm-forming activity are involved in the biofilm formation in the actual toilet bowl. A bactericidal test against 25 strains indicated that the bactericidal activities of didecyldimethylammonium chloride (DDAC) tended to be higher than those of polyhexamethylene biguanide (PHMB) and N-benzyl-N,N-dimethyldodecylammonium chloride (ADBAC). In particular, DDAC showed high bactericidal activity against approximately 90% of tested strains under the 5 h treatment. PMID:24195153

Mori, Miho; Gomi, Mitsuhiro; Matsumune, Norihiko; Niizeki, Kazuma; Sakagami, Yoshikazu

2013-01-01

35

Adenoid Reservoir for Pathogenic Biofilm Bacteria?  

PubMed Central

Biofilms of pathogenic bacteria are present on the middle ear mucosa of children with chronic otitis media (COM) and may contribute to the persistence of pathogens and the recalcitrance of COM to antibiotic treatment. Controlled studies indicate that adenoidectomy is effective in the treatment of COM, suggesting that the adenoids may act as a reservoir for COM pathogens. To investigate the bacterial community in the adenoid, samples were obtained from 35 children undergoing adenoidectomy for chronic OM or obstructive sleep apnea. We used a novel, culture-independent molecular diagnostic methodology, followed by confocal microscopy, to investigate the in situ distribution and organization of pathogens in the adenoids to determine whether pathogenic bacteria exhibited criteria characteristic of biofilms. The Ibis T5000 Universal Biosensor System was used to interrogate the extent of the microbial diversity within adenoid biopsy specimens. Using a suite of 16 broad-range bacterial primers, we demonstrated that adenoids from both diagnostic groups were colonized with polymicrobial biofilms. Haemophilus influenzae was present in more adenoids from the COM group (P = 0.005), but there was no significant difference between the two patient groups for Streptococcus pneumoniae or Staphylococcus aureus. Fluorescence in situ hybridization, lectin binding, and the use of antibodies specific for host epithelial cells demonstrated that pathogens were aggregated, surrounded by a carbohydrate matrix, and localized on and within the epithelial cell surface, which is consistent with criteria for bacterial biofilms. PMID:21307211

Nistico, L.; Kreft, R.; Gieseke, A.; Coticchia, J. M.; Burrows, A.; Khampang, P.; Liu, Y.; Kerschner, J. E.; Post, J. C.; Lonergan, S.; Sampath, R.; Hu, F. Z.; Ehrlich, G. D.; Stoodley, P.; Hall-Stoodley, L.

2011-01-01

36

[Networks involving quorum sensing, cyclic-di-GMP and nitric oxide on biofilm production in bacteria].  

PubMed

Bacterial biofilms are ubiquitous in nature, and their flexibility is derived in part from a complex extracellular matrix that can be made-to-order to cope with environmental demand. Although common developmental stages leading to biofilm formation have been described, an in-depth knowledge of genetic and signaling is required to understand biofilm formation. Bacteria detect changes in population density by quorum sensing and particular environmental conditions, using signals such as cyclic di-GMP or nitric oxide. The significance of understanding these signaling pathways lies in that they control a broad variety of functions such as biofilm formation, and motility, providing benefits to bacteria as regards host colonization, defense against competitors, and adaptation to changing environments. Due to the importance of these features, we here review the signaling network and regulatory connections among quorum sensing, c-di-GMP and nitric oxide involving biofilm formation. PMID:25444134

Ramírez-Mata, Alberto; Fernández-Domínguez, Ileana J; Nuñez-Reza, Karen J; Xiqui-Vázquez, María L; Baca, Beatriz E

2014-01-01

37

Electron microscopic examination of wastewater biofilm formation and structural components.  

PubMed Central

This research documents in situ wastewater biofilm formation, structure, and physiochemical properties as revealed by scanning and transmission electron microscopy. Cationized ferritin was used to label anionic sites of the biofilm glycocalyx for viewing in thin section. Wastewater biofilm formation paralleled the processes involved in marine biofilm formation. Scanning electron microscopy revealed a dramatic increase in cell colonization and growth over a 144-h period. Constituents included a variety of actively dividing morphological types. Many of the colonizing bacteria were flagellated. Filaments were seen after primary colonization of the surface. Transmission electron microscopy revealed a dominant gram-negative cell wall structure in the biofilm constituents. At least three types of glycocalyces were observed. The predominant glycocalyx possessed interstices and was densely labeled with cationized ferritin. Two of the glycocalyces appeared to mediate biofilm adhesion to the substratum. The results suggest that the predominant glycocalyx of this thin wastewater biofilm serves, in part, to: (i) enclose the bacteria in a matrix and anchor the biofilm to the substratum and (ii) provide an extensive surface area with polyanionic properties. Images PMID:6881965

Eighmy, T T; Maratea, D; Bishop, P L

1983-01-01

38

Streptococcus pneumoniae biofilm formation and dispersion during colonization and disease  

PubMed Central

Streptococcus pneumoniae (the pneumococcus) is a common colonizer of the human nasopharynx. Despite a low rate of invasive disease, the high prevalence of colonization results in millions of infections and over one million deaths per year, mostly in individuals under the age of 5 and the elderly. Colonizing pneumococci form well-organized biofilm communities in the nasopharyngeal environment, but the specific role of biofilms and their interaction with the host during colonization and disease is not yet clear. Pneumococci in biofilms are highly resistant to antimicrobial agents and this phenotype can be recapitulated when pneumococci are grown on respiratory epithelial cells under conditions found in the nasopharyngeal environment. Pneumococcal biofilms display lower levels of virulence in vivo and provide an optimal environment for increased genetic exchange both in vitro and in vivo, with increased natural transformation seen during co-colonization with multiple strains. Biofilms have also been detected on mucosal surfaces during pneumonia and middle ear infection, although the role of these biofilms in the disease process is debated. Recent studies have shown that changes in the nasopharyngeal environment caused by concomitant virus infection, changes in the microflora, inflammation, or other host assaults trigger active release of pneumococci from biofilms. These dispersed bacteria have distinct phenotypic properties and transcriptional profiles different from both biofilm and broth-grown, planktonic bacteria, resulting in a significantly increased virulence in vivo. In this review we discuss the properties of pneumococcal biofilms, the role of biofilm formation during pneumococcal colonization, including their propensity for increased ability to exchange genetic material, as well as mechanisms involved in transition from asymptomatic biofilm colonization to dissemination and disease of otherwise sterile sites. Greater understanding of pneumococcal biofilm formation and dispersion will elucidate novel avenues to interfere with the spread of antibiotic resistance and vaccine escape, as well as novel strategies to target the mechanisms involved in induction of pneumococcal disease.

Chao, Yashuan; Marks, Laura R.; Pettigrew, Melinda M.; Hakansson, Anders P.

2015-01-01

39

Printed paper-based arrays as substrates for biofilm formation  

PubMed Central

The suitability of paper-based arrays for biofilm formation studies by Staphylococcus aureus is demonstrated. Laboratory-coated papers with different physicochemical properties were used as substrates. The array platform was fabricated by patterning the coated papers with vinyl-substituted polydimethylsiloxane (PDMS) -based ink. The affinity of bacteria onto the flexographically printed hydrophobic and smooth PDMS film was very low whereas bacterial adhesion and biofilm formation occurred preferentially on the unprinted areas, i.e. in the reaction arrays. The concentration of the attached bacteria was quantified by determining the viable colony forming unit (CFU/cm2) numbers. The distribution and the extent of surface coverage of the biofilms were determined by atomic force microscopy. In static conditions, the highest bacterial concentration and most highly organized biofilms were observed on substrates with high polarity. On a rough paper surface with low polarity, the biofilm formation was most hindered. Biofilms were effectively removed from a polar substrate upon exposure to (+)-dehydroabietic acid, an anti-biofilm compound. PMID:25006538

2014-01-01

40

Spore formation and toxin production in Clostridium difficile biofilms.  

PubMed

The ability to grow as a biofilm can facilitate survival of bacteria in the environment and promote infection. To better characterize biofilm formation in the pathogen Clostridium difficile, we established a colony biofilm culture method for this organism on a polycarbonate filter, and analyzed the matrix and the cells in biofilms from a variety of clinical isolates over several days of biofilm culture. We found that biofilms readily formed in all strains analyzed, and that spores were abundant within about 6 days. We also found that extracellular DNA (eDNA), polysaccharide and protein was readily detected in the matrix of all strains, including the major toxins A and/or B, in toxigenic strains. All the strains we analyzed formed spores. Apart from strains 630 and VPI10463, which sporulated in the biofilm at relatively low frequencies, the frequencies of biofilm sporulation varied between 46 and 65%, suggesting that variations in sporulation levels among strains is unlikely to be a major factor in variation in the severity of disease. Spores in biofilms also had reduced germination efficiency compared to spores obtained by a conventional sporulation protocol. Transmission electron microscopy revealed that in 3 day-old biofilms, the outermost structure of the spore is a lightly staining coat. However, after 6 days, material that resembles cell debris in the matrix surrounds the spore, and darkly staining granules are closely associated with the spores surface. In 14 day-old biofilms, relatively few spores are surrounded by the apparent cell debris, and the surface-associated granules are present at higher density at the coat surface. Finally, we showed that biofilm cells possess 100-fold greater resistance to the antibiotic metronidazole then do cells cultured in liquid media. Taken together, our data suggest that C. difficile cells and spores in biofilms have specialized properties that may facilitate infection. PMID:24498186

Semenyuk, Ekaterina G; Laning, Michelle L; Foley, Jennifer; Johnston, Pehga F; Knight, Katherine L; Gerding, Dale N; Driks, Adam

2014-01-01

41

Identification of Listeria monocytogenes Determinants Required for Biofilm Formation  

PubMed Central

Listeria monocytogenes is a Gram-positive, food-borne pathogen of humans and animals. L. monocytogenes is considered to be a potential public health risk by the U.S. Food and Drug Administration (FDA), as this bacterium can easily contaminate ready-to-eat (RTE) foods and cause an invasive, life-threatening disease (listeriosis). Bacteria can adhere and grow on multiple surfaces and persist within biofilms in food processing plants, providing resistance to sanitizers and other antimicrobial agents. While whole genome sequencing has led to the identification of biofilm synthesis gene clusters in many bacterial species, bioinformatics has not identified the biofilm synthesis genes within the L. monocytogenes genome. To identify genes necessary for L. monocytogenes biofilm formation, we performed a transposon mutagenesis library screen using a recently constructed Himar1 mariner transposon. Approximately 10,000 transposon mutants within L. monocytogenes strain 10403S were screened for biofilm formation in 96-well polyvinyl chloride (PVC) microtiter plates with 70 Himar1 insertion mutants identified that produced significantly less biofilms. DNA sequencing of the transposon insertion sites within the isolated mutants revealed transposon insertions within 38 distinct genetic loci. The identification of mutants bearing insertions within several flagellar motility genes previously known to be required for the initial stages of biofilm formation validated the ability of the mutagenesis screen to identify L. monocytogenes biofilm-defective mutants. Two newly identified genetic loci, dltABCD and phoPR, were selected for deletion analysis and both ?dltABCD and ?phoPR bacterial strains displayed biofilm formation defects in the PVC microtiter plate assay, confirming these loci contribute to biofilm formation by L. monocytogenes. PMID:25517120

Regeimbal, James M.; Regan, Patrick M.; Higgins, Darren E.

2014-01-01

42

Identification of a Novel Benzimidazole That Inhibits Bacterial Biofilm Formation in a Broad-Spectrum Manner?  

PubMed Central

Bacterial biofilm formation causes significant industrial economic loss and high morbidity and mortality in medical settings. Biofilms are defined as multicellular communities of bacteria encased in a matrix of protective extracellular polymers. Because biofilms have a high tolerance for treatment with antimicrobials, protect bacteria from immune defense, and resist clearance with standard sanitation protocols, it is critical to develop new approaches to prevent biofilm formation. Here, a novel benzimidazole molecule, named antibiofilm compound 1 (ABC-1), identified in a small-molecule screen, was found to prevent bacterial biofilm formation in multiple Gram-negative and Gram-positive bacterial pathogens, including Pseudomonas aeruginosa and Staphylococcus aureus, on a variety of different surface types. Importantly, ABC-1 itself does not inhibit the growth of bacteria, and it is effective at nanomolar concentrations. Also, coating a polystyrene surface with ABC-1 reduces biofilm formation. These data suggest ABC-1 is a new chemical scaffold for the development of antibiofilm compounds. PMID:21709104

Sambanthamoorthy, Karthik; Gokhale, Ankush A.; Lao, Weiwei; Parashar, Vijay; Neiditch, Matthew B.; Semmelhack, Martin F.; Lee, Ilsoon; Waters, Christopher M.

2011-01-01

43

Wild Mushroom Extracts as Inhibitors of Bacterial Biofilm Formation  

PubMed Central

Microorganisms can colonize a wide variety of medical devices, putting patients in risk for local and systemic infectious complications, including local-site infections, catheter-related bloodstream infections, and endocarditis. These microorganisms are able to grow adhered to almost every surface, forming architecturally complex communities termed biofilms. The use of natural products has been extremely successful in the discovery of new medicine, and mushrooms could be a source of natural antimicrobials. The present study reports the capacity of wild mushroom extracts to inhibit in vitro biofilm formation by multi-resistant bacteria. Four Gram-negative bacteria biofilm producers (Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, and Acinetobacter baumannii) isolated from urine were used to verify the activity of Russula delica, Fistulina hepatica, Mycena rosea, Leucopaxilus giganteus, and Lepista nuda extracts. The results obtained showed that all tested mushroom extracts presented some extent of inhibition of biofilm production. Pseudomonas aeruginosa was the microorganism with the highest capacity of biofilm production, being also the most susceptible to the extracts inhibition capacity (equal or higher than 50%). Among the five tested extracts against E. coli, Leucopaxillus giganteus (47.8%) and Mycenas rosea (44.8%) presented the highest inhibition of biofilm formation. The extracts exhibiting the highest inhibitory effect upon P. mirabilis biofilm formation were Sarcodon imbricatus (45.4%) and Russula delica (53.1%). Acinetobacter baumannii was the microorganism with the lowest susceptibility to mushroom extracts inhibitory effect on biofilm production (highest inhibition—almost 29%, by Russula delica extract). This is a pioneer study since, as far as we know, there are no reports on the inhibition of biofilm production by the studied mushroom extracts and in particular against multi-resistant clinical isolates; nevertheless, other studies are required to elucidate the mechanism of action. PMID:25438017

Alves, Maria José; Ferreira, Isabel C. F. R.; Lourenço, Inês; Costa, Eduardo; Martins, Anabela; Pintado, Manuela

2014-01-01

44

Wild mushroom extracts as inhibitors of bacterial biofilm formation.  

PubMed

Microorganisms can colonize a wide variety of medical devices, putting patients in risk for local and systemic infectious complications, including local-site infections, catheter-related bloodstream infections, and endocarditis. These microorganisms are able to grow adhered to almost every surface, forming architecturally complex communities termed biofilms. The use of natural products has been extremely successful in the discovery of new medicine, and mushrooms could be a source of natural antimicrobials. The present study reports the capacity of wild mushroom extracts to inhibit in vitro biofilm formation by multi-resistant bacteria. Four Gram-negative bacteria biofilm producers (Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, and Acinetobacter baumannii) isolated from urine were used to verify the activity of Russula delica, Fistulina hepatica, Mycena rosea, Leucopaxilus giganteus, and Lepista nuda extracts. The results obtained showed that all tested mushroom extracts presented some extent of inhibition of biofilm production. Pseudomonas aeruginosa was the microorganism with the highest capacity of biofilm production, being also the most susceptible to the extracts inhibition capacity (equal or higher than 50%). Among the five tested extracts against E. coli, Leucopaxillus giganteus (47.8%) and Mycenas rosea (44.8%) presented the highest inhibition of biofilm formation. The extracts exhibiting the highest inhibitory effect upon P. mirabilis biofilm formation were Sarcodon imbricatus (45.4%) and Russula delica (53.1%). Acinetobacter baumannii was the microorganism with the lowest susceptibility to mushroom extracts inhibitory effect on biofilm production (highest inhibition-almost 29%, by Russula delica extract). This is a pioneer study since, as far as we know, there are no reports on the inhibition of biofilm production by the studied mushroom extracts and in particular against multi-resistant clinical isolates; nevertheless, other studies are required to elucidate the mechanism of action. PMID:25438017

Alves, Maria José; Ferreira, Isabel C F R; Lourenço, Inês; Costa, Eduardo; Martins, Anabela; Pintado, Manuela

2014-01-01

45

Cigarette Smoke Increases Staphylococcus aureus Biofilm Formation via Oxidative Stress  

PubMed Central

The strong epidemiological association between cigarette smoke (CS) exposure and respiratory tract infections is conventionally attributed to immunosuppressive and irritant effects of CS on human cells. Since pathogenic bacteria such as Staphylococcus aureus are members of the normal microbiota and reside in close proximity to human nasopharyngeal cells, we hypothesized that bioactive components of CS might affect these organisms and potentiate their virulence. Using Staphylococcus aureus as a model organism, we observed that the presence of CS increased both biofilm formation and host cell adherence. Analysis of putative molecular pathways revealed that CS exposure decreased expression of the quorum-sensing agr system, which is involved in biofilm dispersal, and increased transcription of biofilm inducers such as sarA and rbf. CS contains bioactive compounds, including free radicals and reactive oxygen species, and we observed transcriptional induction of bacterial oxidoreductases, including superoxide dismutase, following exposure. Moreover, pretreatment of CS with an antioxidant abrogated CS-mediated enhancement of biofilms. Exposure of bacteria to hydrogen peroxide alone increased biofilm formation. These observations are consistent with the hypothesis that CS induces staphylococcal biofilm formation in an oxidant-dependent manner. CS treatment induced transcription of fnbA (encoding fibronectin binding protein A), leading to increased binding of CS-treated staphylococci to immobilized fibronectin and increased adherence to human cells. These observations indicate that the bioactive effects of CS may extend to the resident microbiota of the nasopharynx, with implications for the pathogenesis of respiratory infection in CS-exposed humans. PMID:22890993

Kulkarni, Ritwij; Antala, Swati; Wang, Alice; Amaral, Fábio E.; Rampersaud, Ryan; LaRussa, Samuel J.; Planet, Paul J.

2012-01-01

46

Imaging bacteria and biofilms on hardware and periprosthetic tissue in orthopedic infections.  

PubMed

Infection is a major complication of total joint arthroplasty (TJA) surgery, and even though it is now as low as 1 % in some hospitals, the increasing number of primary surgeries translates to tens of thousands of revisions due to prosthetic joint infection (PJI). In many cases the only solution is revision surgery in which the hardware is removed. This process is extremely long and painful for patients and is a considerable financial burden for the health-care system. A significant proportion of the difficulties in diagnosis and treatment of PJI are associated with biofilm formation where bacteria attach to the surface of the prosthesis and periprosthetic tissue and build a 3-D biofilm community encased in an extracellular polymeric slime (EPS) matrix. Bacteria in biofilms have a low metabolic rate which is thought to be a major contributor to their recalcitrance to antibiotic treatment. The diagnosis of biofilm infections is difficult due to the fact that bacteria in biofilms are not readily cultured with standard clinical microbiology techniques. To identify and visualize in situ biofilm bacteria in orthopedic samples, we have developed protocols for the collection of samples in the operating room, for molecular fluorescent staining with 16S rRNA fluorescence in situ hybridization (FISH), and for imaging of samples using confocal laser scanning microscopy (CLSM). Direct imaging is the only method which can definitively identify biofilms on implants and complements both culture and culture-independent diagnostic methods. PMID:24664829

Nistico, Laura; Hall-Stoodley, Luanne; Stoodley, Paul

2014-01-01

47

A stochastic mechanism for biofilm formation by Mycoplasma pulmonis.  

PubMed

Bacterial biofilms are communities of bacteria that are enclosed in an extracellular matrix. Within a biofilm the bacteria are protected from antimicrobials, environmental stresses, and immune responses from the host. Biofilms are often believed to have a highly developed organization that is derived from differential regulation of the genes that direct the synthesis of the extracellular matrix and the attachment to surfaces. The mycoplasmas have the smallest of the prokaryotic genomes and apparently lack complex gene-regulatory systems. We examined biofilm formation by Mycoplasma pulmonis and found it to be dependent on the length of the tandem repeat region of the variable surface antigen (Vsa) protein. Mycoplasmas that produced a short Vsa protein with few tandem repeats formed biofilms that attached to polystyrene and glass. Mycoplasmas that produced a long Vsa protein with many tandem repeats formed microcolonies that floated freely in the medium. The biofilms and the microcolonies contained an extracellular matrix which contained Vsa protein, lipid, DNA, and saccharide. As variation in the number of Vsa tandem repeats occurs by slipped-strand mispairing, the ability of the mycoplasmas to form a biofilm switches stochastically. PMID:17142389

Simmons, Warren L; Bolland, Jeffrey R; Daubenspeck, James M; Dybvig, Kevin

2007-03-01

48

Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates.  

PubMed

The ability to form biofilms is seen as an increasingly important colonization strategy among both pathogenic and environmental bacteria. A survey of 185 plant-associated, phytopathogenic, soil and river Pseudomonas isolates resulted in 76% producing biofilms at the air-liquid (A-L) interface after selection in static microcosms. Considerable variation in biofilm phenotype was observed, including waxy aggregations, viscous and floccular masses, and physically cohesive biofilms with continuously varying strengths over 1500-fold. Calcofluor epifluorescent microscopy identified cellulose as the matrix component in biofilms produced by Pseudomonas asplenii, Pseudomonas corrugata, Pseudomonas fluorescens, Pseudomonas marginalis, Pseudomonas putida, Pseudomonas savastanoi and Pseudomonas syringae isolates. Cellulose expression and biofilm formation could be induced by the constitutively active WspR19 mutant of the cyclic-di-GMP-associated, GGDEF domain-containing response regulator involved in the P. fluorescens SBW25 wrinkly spreader phenotype and cellular aggregation in Pseudomonas aeruginosa PA01. WspR19 could also induce P. putida KT2440, which otherwise did not produce a biofilm or express cellulose, as well as Escherichia coli K12 and Salmonella typhimurium LT2, both of which express cellulose yet lack WspR homologues. Statistical analysis of biofilm parameters suggest that biofilm development is a more complex process than that simply described by the production of attachment and matrix components and bacterial growth. This complexity was also seen in multivariate analysis as a species-ecological habitat effect, underscoring the fact that in vitro biofilms are abstractions of those surface and volume colonization processes used by bacteria in their natural environments. PMID:17014498

Ude, Susanne; Arnold, Dawn L; Moon, Christina D; Timms-Wilson, Tracey; Spiers, Andrew J

2006-11-01

49

Pili contribute to biofilm formation in vitro in Mycobacterium tuberculosis.  

PubMed

Organized bacterial communities, or biofilms, provide an important reservoir for persistent cells that are inaccessible or tolerant to antibiotics. Curli pili are cell-surface structures produced by certain bacteria and have been implicated in biofilm formation in these species. In order to determine whether these structures, which were suggested to be encoded by the Rv3312A (mtp) gene, have a similar role in Mycobacterium tuberculosis, we generated a ?mtp mutant and a mtp-complemented strain of a clinical isolate of M. tuberculosis and analyzed these strains for their ability to produce pili in comparison to the wild-type strain. Phenotypic analysis by transmission electron microscopy proved the essentiality of mtp for piliation in M. tuberculosis. We then compared biofilm formation of the derived strains in detergent-free Sauton's media. Biofilm mass was quantified spectrophotometrically using crystal violet. Furthermore, we examined mtp gene expression by quantitative real-time PCR in wild-type cells grown under biofilm versus planktonic growth conditions. We found a 68.4 % reduction in biofilm mass in the mutant compared to the wild-type strain (P = 0.002). Complementation of the mutant resulted in a restoration of the wild-type biofilm phenotype (P = 0.022). We, however, found no significant difference between mtp expression in cells of the biofilm to those growing planktonically. Our findings highlight a crucial, but non-specific, role of pili in the biofilm lifestyle of M. tuberculosis and indicate that they may represent an important target for the development of therapeutics to attenuate biofilm formation, thereby potentially reducing persistence. PMID:23907521

Ramsugit, Saiyur; Guma, Sinenhlanhla; Pillay, Balakrishna; Jain, Paras; Larsen, Michelle H; Danaviah, Siva; Pillay, Manormoney

2013-11-01

50

Bacteria, Biofilms and Fluid Dynamics: Elementary Flows and Unexpected Phenomena  

E-print Network

Bacteria, Biofilms and Fluid Dynamics: Elementary Flows and Unexpected Phenomena Wednesday February the migration of bacteria along surfaces when exposed to a shear flow. In particular, we identify an unusual response where flow produces a directed motion of twitching bacteria in the upstream direction. (ii) We

Fisher, Frank

51

Effects of surfactant on biofilm formation on silicone nasal splints.  

PubMed

Biofilms are sessile communities of bacteria embedded in self-produced extracellular polysaccharide matrix and are considered to be responsible for bacterial infections in humans. Topical surfactant use on silicone nasal splints may have a preventive effect on biofilm formation. The objective of this study is to investigate the effect of surfactant-containing nasal solutions on biofilm formation over the surface of silicone nasal splints. Forty patients were randomized after septoplasty to receive surfactant-containing saline solution (group 1) or saline without surfactant (group 2). At the postoperative 48th, 72th and 96th hours, pieces of splint samples were taken and prepared for scanning electron microscopic evaluation. Biofilm formation was observed in 3, 6 and 14 of 20 samples in group 1 (surfactant used) and 3, 14 and 20 of 20 samples in group 2 (control) at 48th, 72th and 96th hours, respectively. Biofilm formation incidences of groups at 48th hour were similar (p > 0.05), whereas it was significantly lower at group 1 regarding 72th and 96th hours (p < 0.05). Surfactant-containing nasal solutions have an inhibitory effect on biofilm formation over the surface of silicone nasal splints especially after 48 h. Surfactant-containing nasal solutions may have an important role in nasal septal dressing in the future. PMID:24874588

San, Turhan; Ertugay, Omer Cagatay; Catli, Tolgahan; Acar, Mustafa; Ertugay, Cigdem Kalaycik; Dag, Ilknur; Cingi, Cemal

2015-02-01

52

Environmental Stimuli Shape Biofilm Formation and the Virulence of Periodontal Pathogens  

PubMed Central

Periodontitis is a common inflammatory disease affecting the tooth-supporting structures. It is initiated by bacteria growing as a biofilm at the gingival margin, and communication of the biofilms differs in health and disease. The bacterial composition of periodontitis-associated biofilms has been well documented and is under continual investigation. However, the roles of several host response and inflammation driven environmental stimuli on biofilm formation is not well understood. This review article addresses the effects of environmental factors such as pH, temperature, cytokines, hormones, and oxidative stress on periodontal biofilm formation and bacterial virulence. PMID:23965982

Pöllänen, Marja T.; Paino, Annamari; Ihalin, Riikka

2013-01-01

53

Silver nanoparticles with anti microfouling effect: a study against marine biofilm forming bacteria.  

PubMed

Marine biofilms are the preliminary entities due to attachment of bacteria on surfaces immersed in seawater and aggregated in a hydrated polymeric matrix. Such biofilms or microfouling play a major role in the succession of marine biofouling which attracts the larvae of barnacles, mussels and other sessile invertebrates. Different approaches have been used to prevent micro and macrofouling on marine industrial settings. Silver nanoparticles are renowned for their influential antimicrobial activity. On this back drop the present work is focused on the effect of biosynthesized silver nanoparticles against marine biofilm forming bacterial species. Aspects such as circular zone of inhibition, quantification of biofilm formation and bacterial growth were assessed for bacterial species isolated from the marine biofilm in the presence and sabsence of silver nanoparticles. The size of the circular zone formation was directly proportional to the concentration of biosynthesized silver nanoparticles that reflected the antimicrobial effect. The crystal violet staining on biofilm formation and its optical density revealed the effect on biofilm inhibition. The growth of bacteria in the presence and absence of silver nanoparticles concluded the bactericidal ability of the silver nanoparticles. However, further research is required to examine these factors. PMID:23907051

Inbakandan, D; Kumar, C; Abraham, L Stanley; Kirubagaran, R; Venkatesan, R; Khan, S Ajmal

2013-11-01

54

Importance of biofilm formation for corrosion inhibition of SAE 1018 steel by axenic aerobic biofilms.  

PubMed

To investigate if corrosion inhibition by aerobic biofilms is a general phenomenon, carbon steel (SAE 1018) coupons were exposed to a complex liquid medium (Luria-Bertani) and seawater-mimicking medium (VNSS) containing fifteen different pure-culture bacterial suspensions representing seven genera. Compared to sterile controls, the mass loss in the presence of these bacteria (which are capable of developing a biofilm to various degrees) decreased by 2- to 15-fold. The extent of corrosion inhibition in LB medium depended on the nature of the biofilm: an increased proportion of live cells, observed with confocal scanning laser microscopy (CSLM) and image analysis, decreased corrosion. Corrosion inhibition in LB medium was greatest with Pseudomonas putida (good biofilm formation), while metal coupons exposed to Streptomyces lividans in LB medium (poor biofilm formation) corroded in a manner similar to the sterile controls. Pseudomonas mendocina KR1 reduced corrosion the most in VNSS. It appears that only a small layer of active, respiring cells is required to inhibit corrosion, and the corrosion inhibition observed is due to the attached biofilm. PMID:9248069

Jayaraman, A; Cheng, E T; Earthman, J C; Wood, T K

1997-06-01

55

AI-2 of Aggregatibacter actinomycetemcomitans inhibits Candida albicans biofilm formation  

PubMed Central

Aggregatibacter actinomycetemcomitans, a Gram-negative bacterium, and Candida albicans, a polymorphic fungus, are both commensals of the oral cavity but both are opportunistic pathogens that can cause oral diseases. A. actinomycetemcomitans produces a quorum-sensing molecule called autoinducer-2 (AI-2), synthesized by LuxS, that plays an important role in expression of virulence factors, in intra- but also in interspecies communication. The aim of this study was to investigate the role of AI-2 based signaling in the interactions between C. albicans and A. actinomycetemcomitans. A. actinomycetemcomitans adhered to C. albicans and inhibited biofilm formation by means of a molecule that was secreted during growth. C. albicans biofilm formation increased significantly when co-cultured with A. actinomycetemcomitans luxS, lacking AI-2 production. Addition of wild-type-derived spent medium or synthetic AI-2 to spent medium of the luxS strain, restored inhibition of C. albicans biofilm formation to wild-type levels. Addition of synthetic AI-2 significantly inhibited hypha formation of C. albicans possibly explaining the inhibition of biofilm formation. AI-2 of A. actinomycetemcomitans is synthesized by LuxS, accumulates during growth and inhibits C. albicans hypha- and biofilm formation. Identifying the molecular mechanisms underlying the interaction between bacteria and fungi may provide important insight into the balance within complex oral microbial communities. PMID:25101248

Bachtiar, Endang W.; Bachtiar, Boy M.; Jarosz, Lucja M.; Amir, Lisa R.; Sunarto, Hari; Ganin, Hadas; Meijler, Michael M.; Krom, Bastiaan P.

2014-01-01

56

Biofilm Formation in Microscopic Double Emulsion Droplets  

NASA Astrophysics Data System (ADS)

In natural, medical, and industrial settings, there exist surface-associated communities of bacteria known as biofilms. These highly structured films are composed of bacterial cells embedded within self-produced extracellular matrix, usually composed of exopolysaccharides, proteins, and nucleic acids; this matrix serves to protect the bacterial community from antibiotics and environmental stressors. Here, we form biofilms encapsulated within monodisperse, microscopically-sized double emulsion droplets using microfluidics. The bacteria self-organize at the inner liquid-liquid droplet interfaces, multiply, and differentiate into extracellular matrix-producing cells, forming manifold three-dimensional shell-within-a-shell structures of biofilms, templated upon the inner core of spherical liquid droplets. By using microfluidics to encapsulate bacterial cells, we have the ability to view individual cells multiplying in microscopically-sized droplets, which allows for high-throughput analysis in studying the genetic program leading to biofilm development, or cell signaling that induces differentiation.

Chang, Connie; Weitz, David

2012-02-01

57

A direct viable count method for the enumeration of attached bacteria and assessment of biofilm disinfection  

NASA Technical Reports Server (NTRS)

This report describes the adaptation of an in situ direct viable count (in situ DVC) method in biofilm disinfection studies. The results obtained with this technique were compared to two other enumeration methods, the plate count (PC) and conventional direct viable count (c-DVC). An environmental isolate (Klebsiella pneumoniae Kp1) was used to form biofilms on stainless steel coupons in a stirred batch reactor. The in situ DVC method was applied to directly assess the viability of bacteria in biofilms without disturbing the integrity of the interfacial community. As additional advantages, the results were observed after 4 h instead of the 24 h incubation time required for colony formation and total cell numbers that remained on the substratum were enumerated. Chlorine and monochloramine were used to determine the susceptibilities of attached and planktonic bacteria to disinfection treatment using this novel analytical approach. The planktonic cells in the reactor showed no significant change in susceptibility to disinfectants during the period of biofilm formation. In addition, the attached cells did not reveal any more resistance to disinfection than planktonic cells. The disinfection studies of young biofilms indicated that 0.25 mg/l free chlorine (at pH 7.2) and 1 mg/l monochloramine (at pH 9.0) have comparable disinfection efficiencies at 25 degrees C. Although being a weaker disinfectant, monochloramine was more effective in removing attached bacteria from the substratum than free chlorine. The in situ DVC method always showed at least one log higher viable cell densities than the PC method, suggesting that the in situ DVC method is more efficient in the enumeration of biofilm bacteria. The results also indicated that the in situ DVC method can provide more accurate information regarding the cell numbers and viability of bacteria within biofilms following disinfection.

Yu, F. P.; Pyle, B. H.; McFeters, G. A.

1993-01-01

58

Extracellular DNA in adhesion and biofilm formation of four environmental isolates: a quantitative study.  

PubMed

The importance of extracellular DNA (eDNA) in biofilm formation has become increasingly clear from research on clinically relevant bacteria. This study aimed to determine whether the quantity of eDNA produced can be linked to the ability to form biofilm. We systematically quantified eDNA over time during planktonic growth and biofilm formation in Reinheimera sp. F8 and three other environmental isolates belonging to the genera Pseudomonas, Microbacterium and Serratia. eDNA in biofilms was visualised by fluorescence microscopy and quantified by PicoGreen(®) labelling without further sample preparation, whereas eDNA in planktonic cultures was precipitated before labelling and quantification. The effect of eDNA removal was investigated by DNase treatment. eDNA appeared in the early exponential growth phase of planktonic batch cultures and the concentration peaked in the stationary phase. The concentration in biofilms differed substantially between strains and over time during biofilm development. eDNA was important for the initial attachment in all strains, and DNase treatment reduced biofilm formation in three of four strains. The extent to which eDNA accumulated in planktonic cultures or biofilms did not reflect its significance to biofilm formation, and even very low concentrations of eDNA affected biofilm formation strongly. The significance of eDNA for biofilm formation in nature may thus be more widespread than previously anticipated. PMID:23786537

Tang, Lone; Schramm, Andreas; Neu, Thomas R; Revsbech, Niels P; Meyer, Rikke L

2013-12-01

59

DOI: 10.1002/cplu.201200088 Biofilm Formation on Chromatic SolGel/Polydiacetylene  

E-print Network

] These multicellular constructs are marked by a high degree of chemical communication and are fundamental, and composition of these communities. Bacteria in biofilms exhibit a surprisingly sophisticated level of social communication among cells. As such, biofilm formation is governed by hierarchically organized processes shaped

Jelinek, Raz

60

Air-liquid interface biofilm formation by psychrotrophic pseudomonads recovered from spoilt meat.  

PubMed

The ability to colonise the surface of liquids has obvious advantages for bacteria and biofilm formation at the meniscus and air-liquid (A-L) interface is common amongst environmental pseudomonads. Bacteria from this genus also colonise raw meat and in this work the ability of these to produce biofilms was assessed. Sixty isolates were recovered from vacuum-packed venison, phenotypically characterised and shown by hierarchical cluster analysis to represent a diverse collection of psychrotrophic spoilt venison-associated pseudomonads. Of these, 12 % were found to produce biofilms limited to the meniscus region of the microcosm walls, 31 % produced attached biofilms with significant extensions across the A-L interface and 45 % produced unattached 'floating' biofilms. A combined statistical analysis of growth, biofilm strength and attachment levels revealed that growth affected strength but not attachment, and that there was a significant relationship between attachment and strength. Some environmental pseudomonads are known to utilise cellulose as a biofilm matrix component and here 28 % of the SVP isolates were found to express cellulose by epifluorescent microscopy. This survey suggests that biofilm formation may be more common in psychrotrophic meat-associated isolates than amongst the wider pseudomonad community from which spoilage bacteria might be recruited. This may reflect a selective advantage of bacterial aggregations such as biofilms in environments subject to high levels of physical disturbance. Aggregations may be more resistant to competition and dehydration stress than individual bacteria, whilst fragments of these aggregations may prove more effective in the colonisation of new habitats. PMID:22983557

Robertson, Mhari; Hapca, Simona M; Moshynets, Olena; Spiers, Andrew J

2013-01-01

61

Biofilm formation by clinical isolates and its relevance to clinical infections.  

PubMed

Reports of biofilms have increased exponentially in the scientific literature over the past two decades, yet the vast majority of these are basic science investigations with limited clinical relevance. Biofilm studies involving clinical isolates are most often surveys of isolate collections, but suffer from lack of standardization in methodologies for producing and assessing biofilms. In contrast, more informative clinical studies correlating biofilm formation to patient data have infrequently been reported. In this chapter, biofilm surveys of clinical isolates of aerobic and anaerobic bacteria, mycobacteria, and Candida are reviewed, as well as those pertaining to the unique situation of cystic fibrosis. In addition, the influence of host components on in vitro biofilm formation, as well as published studies documenting the clinical impact of biofilms in human infections, are presented. PMID:25366218

Akers, Kevin S; Cardile, Anthony P; Wenke, Joseph C; Murray, Clinton K

2015-01-01

62

Characterization and global gene expression of F ? phenocopies during Escherichia coli biofilm formation  

Microsoft Academic Search

The ecological role of horizontal gene transfer within biofilms has been recently investigated, and it has been reported that\\u000a conjugation directly induces bacteria to form biofilms via expression of conjugative pili. In this report, we described the\\u000a contribution of bacterial conjugation during biofilm formation by Escherichia coli harboring a natural IncF conjugative F plasmid (F+). We showed that cell-to-cell pili

Thithiwat May; Akinobu Ito; Satoshi Okabe

2010-01-01

63

Inhibitory effect of Lactobacillus salivarius on Streptococcus mutans biofilm formation.  

PubMed

Dental caries arises from an imbalance of metabolic activities in dental biofilms developed primarily by Streptococcus mutans. This study was conducted to isolate potential oral probiotics with antagonistic activities against S. mutans biofilm formation from Lactobacillus salivarius, frequently found in human saliva. We analysed 64 L. salivarius strains and found that two, K35 and K43, significantly inhibited S. mutans biofilm formation with inhibitory activities more pronounced than those of Lactobacillus rhamnosus GG (LGG), a prototypical probiotic that shows anti-caries activity. Scanning electron microscopy showed that co-culture of S. mutans with K35 or K43 resulted in significantly reduced amounts of attached bacteria and network-like structures, typically comprising exopolysaccharides. Spot assay for S. mutans indicated that K35 and K43 strains possessed a stronger bactericidal activity against S. mutans than LGG. Moreover, quantitative real-time polymerase chain reaction showed that the expression of genes encoding glucosyltransferases, gtfB, gtfC, and gtfD was reduced when S. mutans were co-cultured with K35 or K43. However, LGG activated the expression of gtfB and gtfC, but did not influence the expression of gtfD in the co-culture. A transwell-based biofilm assay indicated that these lactobacilli inhibited S. mutans biofilm formation in a contact-independent manner. In conclusion, we identified two L. salivarius strains with inhibitory activities on the growth and expression of S. mutans virulence genes to reduce its biofilm formation. This is not a general characteristic of the species, so presents a potential strategy for in vivo alteration of plaque biofilm and caries. PMID:24961744

Wu, C-C; Lin, C-T; Wu, C-Y; Peng, W-S; Lee, M-J; Tsai, Y-C

2015-02-01

64

Chemotaxis in P. Aeruginosa Biofilm Formation  

NASA Astrophysics Data System (ADS)

Pseudomonas biofilms form infections in the lungs of Cystic Fibrosis (CF) patients that damage lung tissue and lead to death. Previous work shows chemotaxis is important for Pseudomonas in CF lungs. The work studied swimming bacteria at high concentrations. In contrast, medically relevant biofilms initiate from sparse populations of surface-bound bacteria. The recent development of software techniques for automated, high-throughput bacteria tracking leaves us well-poised to quantitatively study these chemotactic conditions. We will develop experimental systems for such studies, focusing on L-Arginine (an amino acid), D-Galactose (a sugar present in lungs), and succinate and glucose (carbon sources for bacteria). This suite of chemoattractants will allow us to study how chemoattractant characteristics--size and diffusion behavior--change bacterial response; the interaction of competing chemoattractants; and, differences in bacterial behaviors, like motility modes, in response to different types of chemoattractions and varying neighbor cell density.

Bienvenu, Samuel; Strain, Shinji; Thatcher, Travis; Gordon, Vernita

2010-10-01

65

Fractal analysis of Xylella fastidiosa biofilm formation  

NASA Astrophysics Data System (ADS)

We have investigated the growth process of Xylella fastidiosa biofilms inoculated on a glass. The size and the distance between biofilms were analyzed by optical images; a fractal analysis was carried out using scaling concepts and atomic force microscopy images. We observed that different biofilms show similar fractal characteristics, although morphological variations can be identified for different biofilm stages. Two types of structural patterns are suggested from the observed fractal dimensions Df. In the initial and final stages of biofilm formation, Df is 2.73±0.06 and 2.68±0.06, respectively, while in the maturation stage, Df=2.57±0.08. These values suggest that the biofilm growth can be understood as an Eden model in the former case, while diffusion-limited aggregation (DLA) seems to dominate the maturation stage. Changes in the correlation length parallel to the surface were also observed; these results were correlated with the biofilm matrix formation, which can hinder nutrient diffusion and thus create conditions to drive DLA growth.

Moreau, A. L. D.; Lorite, G. S.; Rodrigues, C. M.; Souza, A. A.; Cotta, M. A.

2009-07-01

66

d-Amino Acids Do Not Inhibit Biofilm Formation in Staphylococcus aureus  

PubMed Central

Bacteria can either exist in the planktonic (free floating) state or in the biofilm (encased within an organic framework) state. Bacteria biofilms cause industrial concerns and medical complications and there has been a great deal of interest in the discovery of small molecule agents that can inhibit the formation of biofilms or disperse existing structures. Herein we show that, contrary to previously published reports, d-amino acids do not inhibit biofilm formation of Bacillus subtilis (B. subtilis), Staphylococcus aureus (S. aureus), and Staphylococcus epidermis (S. epidermis) at millimolar concentrations. We evaluated a diverse set of natural and unnatural d-amino acids and observed no activity from these compounds in inhibiting biofilm formation. PMID:25658642

Sarkar, Sourav; Pires, Marcos M.

2015-01-01

67

Animal models to investigate fungal biofilm formation.  

PubMed

Microbial biofilms play an essential role in several infectious diseases and are defined as extensive communities of sessile organisms irreversibly associated with a surface, encased within a polysaccharide-rich extracellular matrix (ECM), and exhibiting enhanced resistance to antimicrobial drugs. Forming a biofilm provides the microbes protection from environmental stresses due to contaminants, nutritional depletion, or imbalances, but is dangerous to human health due to their inherent robustness and elevated resistance.The use of indwelling medical devices (e.g., central venous catheters, CVCs) in current therapeutic practice is associated with 80-90 % of hospital-acquired bloodstream and deep tissue infections. Most cases of catheter-related bloodstream infections (CRBSIs) involve colonization of microorganisms on catheter surfaces where they form a biofilm. Additionally, Fusarium solani and F. oxysporum were the causative organisms of the 2005/2006 outbreak of contact lens-associated fungal keratitis in the United States, Europe, the UK, and Singapore, and these infections involved formation of biofilms on contact lens. Fungal biofilm formation is studied using a number of techniques, involving the use of a wide variety of substrates and growth conditions. In vitro techniques involving the use of confocal scanning laser/scanning electron microscopy, metabolic activity assay, dry weight measurements, and antifungal susceptibility assays are increasingly used by investigators to quantify and evaluate biofilm morphology. However, there are not many in vivo models used to validate biofilm-associated infections. In this protocol, we describe a clinically relevant rabbit model of C. albicans biofilm-associated catheter infection to evaluate the morphology, topography, and architecture of fungal biofilms. We also describe a murine model of contact lens-associated Fusarium keratitis.Evaluation of the formation of fungal biofilms on catheters in vivo, their analysis using scanning electron microscopy (SEM) and quantitative catheter culture (QCC), and treatment of biofilms using antimicrobial lock therapy can be completed in ~20-25 days using the described methods. The rabbit model has utility in evaluating the efficacy of lock solutions. In addition, the murine model of contact lens-associated Fusarium keratitis enables characterizing/comparing the formation of Fusarium biofilms on contact lenses in vitro and determining their role in vivo. PMID:24664831

Chandra, Jyotsna; Pearlman, Eric; Ghannoum, Mahmoud A

2014-01-01

68

Bacterial adherence and biofilm formation on medical implants: a review.  

PubMed

Biofilms are a complex group of microbial cells that adhere to the exopolysaccharide matrix present on the surface of medical devices. Biofilm-associated infections in the medical devices pose a serious problem to the public health and adversely affect the function of the device. Medical implants used in oral and orthopedic surgery are fabricated using alloys such as stainless steel and titanium. The biological behavior, such as osseointegration and its antibacterial activity, essentially depends on both the chemical composition and the morphology of the surface of the device. Surface treatment of medical implants by various physical and chemical techniques are attempted in order to improve their surface properties so as to facilitate bio-integration and prevent bacterial adhesion. The potential source of infection of the surrounding tissue and antimicrobial strategies are from bacteria adherent to or in a biofilm on the implant which should prevent both biofilm formation and tissue colonization. This article provides an overview of bacterial biofilm formation and methods adopted for the inhibition of bacterial adhesion on medical implants. PMID:25406229

Veerachamy, Suganthan; Yarlagadda, Tejasri; Manivasagam, Geetha; Yarlagadda, Prasad Kdv

2014-10-01

69

Streptococcus gordonii modulates Candida albicans biofilm formation through intergeneric communication.  

PubMed

The fungus Candida albicans colonizes human oral cavity surfaces in conjunction with a complex microflora. C. albicans SC5314 formed biofilms on saliva-coated surfaces that in early stages of development consisted of approximately 30% hyphal forms. In mixed biofilms with the oral bacterium Streptococcus gordonii DL1, hyphal development by C. albicans was enhanced so that biofilms consisted of approximately 60% hyphal forms. Cell-cell contact between S. gordonii and C. albicans involved Streptococcus cell wall-anchored proteins SspA and SspB (antigen I/II family polypeptides). Repression of C. albicans hyphal filament and biofilm production by the quorum-sensing molecule farnesol was relieved by S. gordonii. The ability of a luxS mutant of S. gordonii deficient in production of autoinducer 2 to induce C. albicans hyphal formation was reduced, and this mutant suppressed farnesol inhibition of hyphal formation less effectively. Coincubation of the two microbial species led to activation of C. albicans mitogen-activated protein kinase Cek1p, inhibition of Mkc1p activation by H(2)O(2), and enhanced activation of Hog1p by farnesol, which were direct effects of streptococci on morphogenetic signaling. These results suggest that interactions between C. albicans and S. gordonii involve physical (adherence) and chemical (diffusible) signals that influence the development of biofilm communities. Thus, bacteria may play a significant role in modulating Candida carriage and infection processes in the oral cavity. PMID:19528215

Bamford, Caroline V; d'Mello, Anita; Nobbs, Angela H; Dutton, Lindsay C; Vickerman, M Margaret; Jenkinson, Howard F

2009-09-01

70

Curli synthesis and biofilm formation in enteric bacteria are controlled by a dynamic small RNA module made up of a pseudoknot assisted by an RNA chaperone.  

PubMed

RydC pseudoknot aided by Hfq is a dynamic regulatory module. We report that RydC reduces expression of curli-specific gene D transcription factor required for adhesion and biofilm production in enterobacteria. During curli formation, csgD messenger RNA (mRNA) synthesis increases when endogenous levels of RydC are lacking. In Escherichia coli and Salmonella enterica, stimulation of RydC expression also reduces biofilm formation by impairing curli synthesis. Inducing RydC early on in growth lowers CsgA, -B and -D protein and mRNA levels. RydC's 5'-domain interacts with csgD mRNA translation initiation signals to prevent initiation. Translation inhibition occurs by an antisense mechanism, blocking the translation initiation signals through pairing, and that mechanism is facilitated by Hfq. Although Hfq represses csgD mRNA translation without a small RNA (sRNA), it forms a ternary complex with RydC and facilitates pseudoknot unfolding to interact with the csgD mRNA translation initiation signals. RydC action implies Hfq-assisted unfolding and mRNA rearrangements, but once the pseudoknot is disrupted, Hfq is unnecessary for regulation. RydC is the sixth sRNA that negatively controls CsgD synthesis. Hfq induces structural changes in the mRNA domains targeted by these six sRNAs. What we describe is an ingenious process whereby pseudoknot opening is orchestrated by a chaperone to allow RNA control of gene expression. PMID:24489123

Bordeau, Valérie; Felden, Brice

2014-04-01

71

Curli synthesis and biofilm formation in enteric bacteria are controlled by a dynamic small RNA module made up of a pseudoknot assisted by an RNA chaperone  

PubMed Central

RydC pseudoknot aided by Hfq is a dynamic regulatory module. We report that RydC reduces expression of curli-specific gene D transcription factor required for adhesion and biofilm production in enterobacteria. During curli formation, csgD messenger RNA (mRNA) synthesis increases when endogenous levels of RydC are lacking. In Escherichia coli and Salmonella enterica, stimulation of RydC expression also reduces biofilm formation by impairing curli synthesis. Inducing RydC early on in growth lowers CsgA, -B and -D protein and mRNA levels. RydC’s 5?-domain interacts with csgD mRNA translation initiation signals to prevent initiation. Translation inhibition occurs by an antisense mechanism, blocking the translation initiation signals through pairing, and that mechanism is facilitated by Hfq. Although Hfq represses csgD mRNA translation without a small RNA (sRNA), it forms a ternary complex with RydC and facilitates pseudoknot unfolding to interact with the csgD mRNA translation initiation signals. RydC action implies Hfq-assisted unfolding and mRNA rearrangements, but once the pseudoknot is disrupted, Hfq is unnecessary for regulation. RydC is the sixth sRNA that negatively controls CsgD synthesis. Hfq induces structural changes in the mRNA domains targeted by these six sRNAs. What we describe is an ingenious process whereby pseudoknot opening is orchestrated by a chaperone to allow RNA control of gene expression. PMID:24489123

Bordeau, Valérie; Felden, Brice

2014-01-01

72

Salmonella enterica Serovar Typhimurium Swarming Mutants with Altered Biofilm-Forming Abilities: Surfactin Inhibits Biofilm Formation  

PubMed Central

Swarming motility plays an important role in surface colonization by several flagellated bacteria. Swarmer cells are specially adapted to rapidly translocate over agar surfaces by virtue of their more numerous flagella, longer cell length, and encasement of slime. The external slime provides the milieu for motility and likely harbors swarming signals. We recently reported the isolation of swarming-defective transposon mutants of Salmonella enterica serovar Typhimurium, a large majority of which were defective in lipopolysaccharide (LPS) synthesis. Here, we have examined the biofilm-forming abilities of the swarming mutants using a microtiter plate assay. A whole spectrum of efficiencies were observed, with LPS mutants being generally more proficient than wild-type organisms in biofilm formation. Since we have postulated that O-antigen may serve a surfactant function during swarming, we tested the effect of the biosurfactant surfactin on biofilm formation. We report that surfactin inhibits biofilm formation of wild-type S. enterica grown either in polyvinyl chloride microtiter wells or in urethral catheters. Other bio- and chemical surfactants tested had similar effects. PMID:11566982

Mireles, Joe Robert; Toguchi, Adam; Harshey, Rasika M.

2001-01-01

73

Fluorescence-Based Quasicontinuous and In Situ Monitoring of Biofilm Formation Dynamics in Natural Marine Environments  

PubMed Central

Analyzing the dynamics of biofilm formation helps to deepen our understanding of surface colonization in natural environments. While methods for screening biofilm formation in the laboratory are well established, studies in marine environments have so far been based upon destructive analysis of individual samples and provide only discontinuous snapshots of biofilm establishment. In order to explore the development of biofilm over time and under various biotic and abiotic conditions, we applied a recently developed optical biofilm sensor to quasicontinuously analyze marine biofilm dynamics in situ. Using this technique in combination with microscope-assisted imaging, we investigated biofilm formation from its beginning to mature multispecies biofilms. In contrast to laboratory studies on biofilm formation, a smooth transition from initial attachment to colony formation and exponential growth could not be observed in the marine environment. Instead, initial attachment was followed by an adaptation phase of low growth and homogeneously distributed solitary bacterial cells. Moreover, we observed a diurnal variation of biofilm signal intensity, suggesting a transient state of biofilm formation of bacteria. Overall, the biofilm formation dynamics could be modeled by three consecutive development stages attributed to initial bacterial attachment, bacterial growth, and attachment and growth of unicellular eukaryotic microorganisms. Additional experiments showed that the presence of seaweed considerably shortened the adaptation phase in comparison with that on control surfaces but yielded similar growth rates. The outlined examples highlight the advantages of a quasicontinuous in situ detection that enabled, for the first time, the exploration of the initial attachment phase and the diurnal variation during biofilm formation in natural ecosystems. PMID:24727266

Friedrichs, G.; Lachnit, T.

2014-01-01

74

Murine solid tumours as a novel model to study bacterial biofilm formation in vivo.  

PubMed

Bacteria of many species are able to invade and colonize solid tumours in mice. We have focused on Salmonella enterica serovar Typhimurium. Detailed analysis revealed that such tumour-invading Salmonella form biofilms, thus providing a versatile in vivo test system for studying bacterial phenotypes and host-pathogen interactions. It appears that biofilm formation by S. typhimurium is induced as a defence against the immune system of the host, and in particular against neutrophils. Further, we extended our work to the clinically more relevant biofilm infection by Pseudomonas aeruginosa. The induction of P. aeruginosa biofilms in neoplastic tissue appears to be elicited as a reaction against the immune system. Reconstitution experiments reveal that T cells are responsible for biofilm induction. Isogenic mutants that are no longer able to form biofilms can be used for comparison studies to determine antimicrobial resistance, especially therapeutic efficacy against P. aeruginosa located in biofilms. PMID:24724621

Pawar, V; Crull, K; Komor, U; Kasnitz, N; Frahm, M; Kocijancic, D; Westphal, K; Leschner, S; Wolf, K; Loessner, H; Rohde, M; Häussler, S; Weiss, S

2014-08-01

75

Implications of Biofilm Formation on Urological Devices  

NASA Astrophysics Data System (ADS)

Despite millions of dollars and several decades of research targeted at their prevention and eradication, biofilm-associated infections remain the major cause of urological device failure. Numerous strategies have been aimed at improving device design, biomaterial composition, surface properties and drug delivery, but have been largely circumvented by microbes and their plethora of attachment, host evasion, antimicrobial resistance, and dissemination strategies. This is not entirely surprising since natural biofilm formation has been going on for millions of years and remains a major part of microorganism survival and evolution. Thus, the fact that biofilms develop on and in the biomaterials and tissues of humans is really an extension of this natural tendency and greatly explains why they are so difficult for us to combat. Firstly, biofilm structure and composition inherently provide a protective environment for microorganisms, shielding them from the shear stress of urine flow, immune cell attack and some antimicrobials. Secondly, many biofilm organisms enter a metabolically dormant state that renders them tolerant to those antibiotics and host factors able to penetrate the biofilm matrix. Lastly, the majority of organisms that cause biofilm-associated urinary tract infections originate from our own oral cavity, skin, gastrointestinal and urogenital tracts and therefore have already adapted to many of our host defenses. Ultimately, while biofilms continue to hold an advantage with respect to recurrent infections and biomaterial usage within the urinary tract, significant progress has been made in understanding these dynamic microbial communities and novel approaches offer promise for their prevention and eradication. These include novel device designs, antimicrobials, anti-adhesive coatings, biodegradable polymers and biofilm-disrupting compounds and therapies.

Cadieux, Peter A.; Wignall, Geoffrey R.; Carriveau, Rupp; Denstedt, John D.

2008-09-01

76

Modeling cell-death patterning during biofilm formation  

NASA Astrophysics Data System (ADS)

Self-organization by bacterial cells often leads to the formation of a highly complex spatially-structured biofilm. In such a bacterial biofilm, cells adhere to each other and are embedded in a self-produced extracellular matrix (ECM). Bacillus substilis bacteria utilize localized cell-death patterns which focuses mechanical forces to form wrinkled sheet-like structures in three dimensions. A most intriguing feature underlying this biofilm formation is that vertical buckling and ridge location is biased to occur in region of high cell-death. Here we present a spatially extended model to investigate the role of the bacterial secreted ECM during the biofilm formation and the self-organization of cell-death. Using this reaction-diffusion model we show that the interaction between the cell's motion and the ECM concentration gives rise to a self-trapping instability, leading to variety of cell-death patterns. The resultant spot patterns generated by our model are shown to be in semi-quantitative agreement with recent experimental observation.

Ghosh, Pushpita; Ben-Jacob, Eshel; Levine, Herbert

2013-12-01

77

Involvement of stress-related genes polB and PA14_46880 in biofilm formation of Pseudomonas aeruginosa.  

PubMed

Chronic infections of Pseudomonas aeruginosa are generally established through production of biofilm. During biofilm formation, production of an extracellular matrix and establishment of a distinct bacterial phenotype make these infections difficult to eradicate. However, biofilm studies have been hampered by the fact that most assays utilize nonliving surfaces as biofilm attachment substrates. In an attempt to better understand the mechanisms behind P. aeruginosa biofilm formation, we performed a genetic screen to identify novel factors involved in biofilm formation on biotic and abiotic surfaces. We found that deletion of genes polB and PA14_46880 reduced biofilm formation significantly compared to that in the wild-type strain PA14 in an abiotic biofilm system. In a biotic biofilm model, wherein biofilms form on cultured airway cells, the ?polB and ?PA14_46880 strains showed increased cytotoxic killing of the airway cells independent of the total number of bacteria bound. Notably, deletion mutant strains were more resistant to ciprofloxacin treatment. This phenotype was linked to decreased expression of algR, an alginate transcriptional regulatory gene, under ciprofloxacin pressure. Moreover, we found that pyocyanin production was increased in planktonic cells of mutant strains. These results indicate that inactivation of polB and PA14_46880 may inhibit transition of P. aeruginosa from a more acute infection lifestyle to the biofilm phenotype. Future investigation of these genes may lead to a better understanding of P. aeruginosa biofilm formation and chronic biofilm infections. PMID:25156741

Alshalchi, Sahar A; Anderson, Gregory G

2014-11-01

78

Clearance of Pseudomonas aeruginosa Foreign-Body Biofilm Infections through Reduction of the Cyclic Di-GMP Level in the Bacteria  

PubMed Central

Opportunistic pathogenic bacteria can engage in biofilm-based infections that evade immune responses and develop into chronic conditions. Because conventional antimicrobials cannot efficiently eradicate biofilms, there is an urgent need to develop alternative measures to combat biofilm infections. It has recently been established that the secondary messenger cyclic diguanosine monophosphate (c-di-GMP) functions as a positive regulator of biofilm formation in several different bacteria. In the present study we investigated whether manipulation of the c-di-GMP level in bacteria potentially can be used for biofilm control in vivo. We constructed a Pseudomonas aeruginosa strain in which a reduction in the c-di-GMP level can be achieved via induction of the Escherichia coli YhjH c-di-GMP phosphodiesterase. Initial experiments showed that induction of yhjH expression led to dispersal of the majority of the bacteria in in vitro-grown P. aeruginosa biofilms. Subsequently, we demonstrated that P. aeruginosa biofilms growing on silicone implants, located in the peritoneal cavity of mice, dispersed after induction of the YhjH protein. Bacteria accumulated temporarily in the spleen after induction of biofilm dispersal, but the mice tolerated the dispersed bacteria well. The present work provides proof of the concept that modulation of the c-di-GMP level in bacteria is a viable strategy for biofilm control. PMID:23690403

Christensen, Louise D.; van Gennip, Maria; Rybtke, Morten T.; Wu, Hong; Chiang, Wen-Chi; Alhede, Morten; Høiby, Niels; Nielsen, Thomas E.; Givskov, Michael

2013-01-01

79

Role of MshQ in MSHA pili biosynthesis and biofilm formation of Aeromonas hydrophila.  

PubMed

Biofilm formation of pathogen bacterium is currently one of the most widely studied topics; however, little is known regarding pathogen bacteria biofilms in aquaculture. Aeromonas hydrophila is a representative species of the genus Aeromonas, which has been recognized as a common pathogen, is associated with many diseases in aquatic animals, and causes significant mortality. The objectives of this study are i) to confirm that A. hydrophila can form biofilms on abiotic substrates and construct a biofilm growth curve for this bacterium; ii) to identify the genes that play crucial roles in A. hydrophila biofilm formation. The biofilm growth curve of A. hydrophila was constructed using a crystal violet assay, which showed that biofilm formation for this bacterium is a dynamic process. Next, a mutant library of pathogenic A. hydrophila B11 was constructed using the mini-Tn10 transposon mutagenesis system. A total of 861 mutants were screened, and 5 mutants were stably deficient in biofilm formation. Molecular analysis of the mutant B112 revealed that the open reading frame that encodes the protein MshQ was disrupted. Comparison of biological characteristics including growth, motility, and adhesion between the mutant B112 and the wild-type strain B11 suggested that MshQ is necessary for mannose-sensitive hemagglutinin pilus biosynthesis of A. hydrophila, and that these pili play crucial roles in A.hydrophila adherence to a solid surface during the early stages of biofilm formation. PMID:25366789

Qin, Y X; Yan, Q P; Mao, X X; Chen, Z; Su, Y Q

2014-01-01

80

Specific plant induced biofilm formation in Methylobacterium species  

PubMed Central

Two endophytic strains of Methylobacterium spp. were used to evaluate biofilm formation on sugarcane roots and on inert wooden sticks. Results show that biofilm formation is variable and that plant surface and possibly root exudates have a role in Methylobacterium spp. host recognition, biofilm formation and successful colonization as endophytes. PMID:24031703

Rossetto, Priscilla B.; Dourado, Manuella N.; Quecine, Maria C.; Andreote, Fernando D.; Araújo, Welington L.; Azevedo, João L.; Pizzirani-Kleiner, Aline A.

2011-01-01

81

Effects of different osmolarities on bacterial biofilm formation  

PubMed Central

Biofilm formation depends on several factors. The influence of different osmolarities on bacterial biofilm formation was studied. Two strains (Enterobacter sp. and Stenotrophomonas sp.) exhibited the most remarkable alterations. Biofilm formation is an important trait and its use has been associated to the protection of organisms against environmental stresses. PMID:25242950

Kavamura, Vanessa Nessner; de Melo, Itamar Soares

2014-01-01

82

Investigation of Biofilm Formation in Clinical Isolates of Staphylococcus aureus  

PubMed Central

Summary As with many other bacterial species, the most commonly used method to assess staphylococcal biofilm formation in vitro is the microtiter plate assay. This assay is particularly useful for comparison of multiple strains including large-scale screens of mutant libraries. When such screens are applied to the coagulase-negative staphylococci in general, and Staphylococcus epidermidis in particular, they are relatively straightforward by comparison with microtiter plate assays used to assess biofilm formation in other bacterial species. However, in the case of clinical isolates of Staphylococcus aureus, including methicillin-resistant S. aureus, we have found it necessary to employ specific modifications including precoating of the wells of the microtiter plate with plasma proteins and supplementation of the medium with both salt and glucose. In this chapter, we describe the microtiter plate assay in the specific context of clinical isolates of S. aureus and the use of these modifications. A second in vitro method, which also is generally dependent on coating with plasma proteins and supplementation of the growth medium, is the use of flow cells. In this method, bacteria are allowed to attach to a surface and then monitored with respect to their ability to remain attached to the substrate and differentiate into mature biofilms under the constant pressure of fluid shear force. Although flow cells are not applicable to large-scale screens, we have found that they provide a more reproducible and accurate assessment of the capacity of S. aureus clinical isolates to form a biofilm. They also provide a means of analyzing structural differences in biofilm architecture and isolating bacteria and/or spent media for analysis of physiological and metabolic changes associated with the adaptive response to growth in a biofilm. While a primary focus of this chapter is on the use of in vitro assays to assess biofilm formation in clinical isolates of S. aureus, it is important to emphasize two additional considerations. First, it has become increasingly evident that biofilm formation in S. epiderimidis and S. aureus is not equivalent. Additionally, to date, most studies with S. aureus have been done with a very limited number of strains, almost all of which are derived from the NCTC strain designated 8325, and we have found that these strains are not representative of the most relevant clinical isolates. As with the specific elements of our flow cell system, we have written this chapter to reflect our focus on clinical isolates of S. aureus and the specific methods that we have found most reliable in that context. Second, as is often the case, in vitro methods do not necessarily reflect events that occur in vivo. Several in vivo methods to assess biofilm formation have been described, and these generally fall into one of two categories. The first focuses directly on staphylococcal diseases that are generally thought to include a biofilm component (e.g., endocarditis, osteomyelitis, septic arthritis). A discussion of these models is also beyond the scope of this chapter, but examples are easily found in the staphylococcal literature. The second approach uses some form of implanted device in an attempt to focus more directly on implant-associated biofilms. We use a model in which a small piece of Teflon catheter is implanted subcutaneously in mice and used as a substrate for colonization. We have the advantage of using bioluminescent derivatives of S. aureus clinical isolates and the IVIS® imaging system. However, because this system is not generally available, we restrict technical comments in this chapter to our use of an implanted catheter model evaluated by direct microbiological analysis of explanted catheters (2). PMID:18025674

Cassat, James E.; Lee, Chia Y.; Smeltzer, Mark S.

2014-01-01

83

Cyclic di-GMP as an Intracellular Signal Regulating Bacterial Biofilm Formation  

Microsoft Academic Search

Cyclic di-GMP is a novel second messenger in bacteria that was first described as an alloste- ric activator of cellulose synthase in Gluconacetobacter xylinus. It is now established that this nucleotide regulates a range of functions including developmental transitions, aggregative behavior, adhesion, biofilm formation and virulence in diverse bacteria. The level of cyclic di-GMP in bacterial cells is influenced by

John M. Dow; Yvonne Fouhy

84

Spore formation in Bacillus subtilis biofilms.  

PubMed

Spore formation by a Bacillus strain (Bacillus subtilis SpoIVFB-GFP) engineered with a green fluorescent protein (GFP) fused to a polytopic membrane protein (SpoIVF) that fluoresces during sporulation was observed. Biofilms of B. subtilis SpoIVFB-GFP containing ca. 8 log CFU/ml vegetative cells and spores below the lower detection limit (i.e., <1 log CFU/ ml) were allowed to develop on glass wool (37 degrees C). These biofilms were subsequently exposed to nutrient limitation to stimulate spore formation, which was monitored for fluorescence by confocal scanning laser microscopy. Sporulation in corresponding planktonic cells was also monitored for comparative purposes. Planktonic B. subtilis SpoIVFB-GFP cells began fluorescing after 5 h, while B. subtilis SpoIVFB-GFP biofilm cells began fluorescing after 30 h. Results suggested that an existing biofilm of vegetative B. subtilis cells may be stimulated to form spores when exposed to conditions of nutrient limitation. From a practical point of view, it may be suggested that a window of time does exist before sporulation occurs in attached Bacillus biofilms highlighting the need for shorter operating runs between cleaning and sanitation of food-processing equipment surfaces. PMID:15830685

Lindsay, D; Brözel, V S; von Holy, A

2005-04-01

85

Biofilm inhibition of spoilage bacteria by Argentinean fruit juices with antihypertensive activity.  

PubMed

Argentinean juices have been studied for their antihypertensive activity, the inhibition of bacteria biofilm formation and the effect on the viability of wine yeast. The influence of phenolic compounds on these activities was evaluated. These studies are the first step for the development of a new type of wine that includes grape must supplement with fruit juices with antihypertensive effect. All juices posses a high antihypertensive activity, higher than 50%. Strawberry juices and eureka lemon showed the highest activity, whereas clarified juices posses the lowest activity. All studied juices produce a high inhibition of bacteria biofilm formation, and the strawberry, orange and mandarin varieties not affect the growth or viability of yeast. Our results permit to conclude that it could be possible the use of these juices in a new type of wine or as a source of new antihypertensive agents for pharmaceutical industry. PMID:24372267

Vallejo, Claudia V; Aredes-Fernández, Pedro A; Farías, Marta E; Rodríguez-Vaquero, María J

2013-01-01

86

Denitrification-derived nitric oxide modulates biofilm formation in Azospirillum brasilense.  

PubMed

Azospirillum brasilense is a rhizobacterium that provides beneficial effects on plants when they colonize roots. The formation of complex bacterial communities known as biofilms begins with the interaction of planktonic cells with surfaces in response to appropriate signals. Nitric oxide (NO) is a signaling molecule implicated in numerous processes in bacteria, including biofilm formation or dispersion, depending on genera and lifestyle. Azospirillum brasilense Sp245 produces NO by denitrification having a role in root growth promotion. We analyzed the role of endogenously produced NO on biofilm formation in A. brasilense Sp245 and in a periplasmic nitrate reductase mutant (napA::Tn5; Faj164) affected in NO production. Cells were statically grown in media with nitrate or ammonium as nitrogen sources and examined for biofilm formation using crystal violet and by confocal laser microscopy. Both strains formed biofilms, but the mutant produced less than half compared with the wild type in nitrate medium showing impaired nitrite production in this condition. NO measurements in biofilm confirmed lower values in the mutant strain. The addition of a NO donor showed that NO influences biofilm formation in a dose-dependent manner and reverses the mutant phenotype, indicating that Nap positively regulates the formation of biofilm in A. brasilense Sp245. PMID:23082946

Arruebarrena Di Palma, Andrés; Pereyra, Cintia M; Moreno Ramirez, Lizbeth; Xiqui Vázquez, María L; Baca, Beatriz E; Pereyra, María A; Lamattina, Lorenzo; Creus, Cecilia M

2013-01-01

87

Quorum sensing and biofilm formation investigated using laser-trapped bacterial arrays  

NASA Astrophysics Data System (ADS)

Studies of individual, free-swimming (planktonic) bacteria have yielded much information about their genetic and phenotypic characteristics and about ``quorum sensing,'' the autoinducing process by which bacteria detect high concentrations of other bacteria. However, in most environments the majority of bacteria are not in the planktonic form but are rather in biofilms, which are highly-structured, dynamic communities of multiple bacteria that adhere to a surface and to each other using an extracellular polysaccharide matrix. Bacteria in biofilms are phenotypically very different from their genetically-identical planktonic counterparts. Among other characteristics, they are much more antibiotic-resistant and virulent. Such biofilms form persistent infections on medical implants and in the lungs of cystic fibrosis patients, where Pseudomonas aeruginosa biofilms are the leading cause of lung damage and, ultimately, death. To understand the importance of different extracellular materials, motility mechanisms, and quorum sensing for biofilm formation and stability, we use single-gene knockout mutants and an infrared laser trap to create a bacterial aggregate that serves as a model biofilm and allows us to measure the importance of these factors as a function of trapping time, surface, and nutritional environment.

Gordon, Vernita; Butler, John; Smalyukh, Ivan; Parsek, Matthew; Wong, Gerard

2008-03-01

88

Dynamics of Aerial Tower Formation in Bacillus subtilis Biofilms  

NASA Astrophysics Data System (ADS)

Biofilms are highly-organized colonies of bacteria that form on surfaces. These colonies form sophisticated structures which make them robust and difficult to remove from environments such as catheters, where they pose serious infection problems. Previous work has shown that sub-mm sized aerial towers form on the surface of Bacillus subtilis colony biofilms. Spore-formation is located preferentially at the tops of these towers, known as fruiting bodies, which aid in the dispersal and propagation of the colony to new sites. The formation of towers is strongly affected by the quorum-sensing molecule surfactin and the cannibalism pathway of the bacteria. In the present work, we use confocal fluorescence microscopy to study the development of individual fruiting bodies, allowing us to visualize the time-dependent spatial distribution of matrix-forming and sporulating bacteria within the towers. With this information, we investigate the physical mechanisms, such as surface tension and polymer concentration gradients, that drive the formation of these structures.

Sinha, Naveen; Seminara, Agnese; Wilking, James; Brenner, Michael; Weitz, Dave

2012-02-01

89

The natural antimicrobial carvacrol inhibits quorum sensing in Chromobacterium violaceum and reduces bacterial biofilm formation at sub-lethal concentrations.  

PubMed

The formation of biofilm by bacteria confers resistance to biocides and presents problems in medical and veterinary clinical settings. Here we report the effect of carvacrol, one of the major antimicrobial components of oregano oil, on the formation of biofilms and its activity on existing biofilms. Assays were carried out in polystyrene microplates to observe (a) the effect of 0-0.8 mM carvacrol on the formation of biofilms by selected bacterial pathogens over 24 h and (b) the effect of 0-8 mM carvacrol on the stability of pre-formed biofilms. Carvacrol was able to inhibit the formation of biofilms of Chromobacterium violaceum ATCC 12472, Salmonella enterica subsp. Typhimurium DT104, and Staphylococcus aureus 0074, while it showed no effect on formation of Pseudomonas aeruginosa (field isolate) biofilms. This inhibitory effect of carvacrol was observed at sub-lethal concentrations (<0.5 mM) where no effect was seen on total bacterial numbers, indicating that carvacrol's bactericidal effect was not causing the observed inhibition of biofilm formation. In contrast, carvacrol had (up to 8 mM) very little or no activity against existing biofilms of the bacteria described, showing that formation of the biofilm also confers protection against this compound. Since quorum sensing is an essential part of biofilm formation, the effect of carvacrol on quorum sensing of C. violaceum was also studied. Sub-MIC concentrations of carvacrol reduced expression of cviI (a gene coding for the N-acyl-L-homoserine lactone synthase), production of violacein (pigmentation) and chitinase activity (both regulated by quorum sensing) at concentrations coinciding with carvacrol's inhibiting effect on biofilm formation. These results indicate that carvacrol's activity in inhibition of biofilm formation may be related to the disruption of quorum sensing. PMID:24691035

Burt, Sara A; Ojo-Fakunle, Victoria T A; Woertman, Jenifer; Veldhuizen, Edwin J A

2014-01-01

90

The Natural Antimicrobial Carvacrol Inhibits Quorum Sensing in Chromobacterium violaceum and Reduces Bacterial Biofilm Formation at Sub-Lethal Concentrations  

PubMed Central

The formation of biofilm by bacteria confers resistance to biocides and presents problems in medical and veterinary clinical settings. Here we report the effect of carvacrol, one of the major antimicrobial components of oregano oil, on the formation of biofilms and its activity on existing biofilms. Assays were carried out in polystyrene microplates to observe (a) the effect of 0–0.8 mM carvacrol on the formation of biofilms by selected bacterial pathogens over 24 h and (b) the effect of 0–8 mM carvacrol on the stability of pre-formed biofilms. Carvacrol was able to inhibit the formation of biofilms of Chromobacterium violaceum ATCC 12472, Salmonella enterica subsp. Typhimurium DT104, and Staphylococcus aureus 0074, while it showed no effect on formation of Pseudomonas aeruginosa (field isolate) biofilms. This inhibitory effect of carvacrol was observed at sub-lethal concentrations (<0.5 mM) where no effect was seen on total bacterial numbers, indicating that carvacrol's bactericidal effect was not causing the observed inhibition of biofilm formation. In contrast, carvacrol had (up to 8 mM) very little or no activity against existing biofilms of the bacteria described, showing that formation of the biofilm also confers protection against this compound. Since quorum sensing is an essential part of biofilm formation, the effect of carvacrol on quorum sensing of C. violaceum was also studied. Sub-MIC concentrations of carvacrol reduced expression of cviI (a gene coding for the N-acyl-L-homoserine lactone synthase), production of violacein (pigmentation) and chitinase activity (both regulated by quorum sensing) at concentrations coinciding with carvacrol's inhibiting effect on biofilm formation. These results indicate that carvacrol's activity in inhibition of biofilm formation may be related to the disruption of quorum sensing. PMID:24691035

Burt, Sara A.; Ojo-Fakunle, Victoria T. A.; Woertman, Jenifer; Veldhuizen, Edwin J. A.

2014-01-01

91

Genome-Wide Mutagenesis of Xanthomonas axonopodis pv. citri Reveals Novel Genetic Determinants and Regulation Mechanisms of Biofilm Formation  

PubMed Central

Xanthomonas axonopodis pv. citri (Xac) causes citrus canker disease, a major threat to citrus production worldwide. Accumulating evidence suggests that the formation of biofilms on citrus leaves plays an important role in the epiphytic survival of this pathogen prior to the development of canker disease. However, the process of Xac biofilm formation is poorly understood. Here, we report a genome-scale study of Xac biofilm formation in which we identified 92 genes, including 33 novel genes involved in biofilm formation and 7 previously characterized genes, colR, fhaB, fliC, galU, gumD, wxacO, and rbfC, known to be important for Xac biofilm formation. In addition, 52 other genes with defined or putative functions in biofilm formation were identified, even though they had not previously reported been to be associated with biofilm formation. The 92 genes were isolated from 292 biofilm-defective mutants following a screen of a transposon insertion library containing 22,000 Xac strain 306 mutants. Further analyses indicated that 16 of the novel genes are involved in the production of extracellular polysaccharide (EPS) and/or lipopolysaccharide (LPS), 7 genes are involved in signaling and regulatory pathways, and 5 genes have unknown roles in biofilm formation. Furthermore, two novel genes, XAC0482, encoding a haloacid dehalogenase-like phosphatase, and XAC0494 (designated as rbfS), encoding a two-component sensor protein, were confirmed to be biofilm-related genes through complementation assays. Our data demonstrate that the formation of mature biofilm requires EPS, LPS, both flagellum-dependent and flagellum-independent cell motility, secreted proteins and extracellular DNA. Additionally, multiple signaling pathways are involved in Xac biofilm formation. This work is the first report on a genome-wide scale of the genetic processes of biofilm formation in plant pathogenic bacteria. The report provides significant new information about the genetic determinants and regulatory mechanism of biofilm formation. PMID:21750733

Li, Jinyun; Wang, Nian

2011-01-01

92

2D Model for Diffusion of Oxygen with Biochemical Reaction During Biofilm Formation Process in Static Aqueous Medium  

NASA Astrophysics Data System (ADS)

A 2D model that describes diffusion of oxygen with biochemical reaction during biofilm formation process in static aqueous medium is presented. The analysis is based on X60 steel placed at the bottom of a container containing produced water inoculated with Leptothrix discophora (iron-oxidizing bacteria). These bacteria form biofilms on the exposed surfaces of the metal. The biofilm-microorganisms absorb oxygen from the produced water through biochemical reaction, resulting in transfer of oxygen from the bulk liquid phase to the biofilm. Predictions of the model are compared with experimental data and good agreement is obtained.

Puyate, Y. T.; Rim-Rukeh, A.

93

In vitro study of biofilm formation and effectiveness of antimicrobial treatment on various dental material surfaces.  

PubMed

Elevated proportions of Candida albicans in biofilms formed on dentures are associated with stomatitis whereas Streptococcus mutans accumulation on restorative materials can cause secondary caries. Candida albicans, S. mutans, saliva-derived and C. albicans/saliva-derived mixed biofilms were grown on different materials including acrylic denture, porcelain, hydroxyapatite (HA), and polystyrene. The resulting biomass was analysed by three-dimensional image quantification and assessment of colony-forming units. The efficacy of biofilm treatment with a dissolved denture cleansing tablet (Polident(®)) was also evaluated by colony counting. Biofilms formed on HA exhibited the most striking differences in biomass accumulation: biofilms comprising salivary bacteria accrued the highest total biomass whereas C. albicans biofilm formation was greatly reduced on the HA surface compared with other materials, including the acrylic denture surface. These results substantiate clinical findings that acrylic dentures can comprise a reservoir for C. albicans, which renders patients more susceptible to C. albicans infections and stomatitis. Additionally, treatment efficacy of the same type of biofilms varied significantly depending on the surface. Although single-species biofilms formed on polystyrene surfaces exhibited the highest susceptibility to the treatment, the most surviving cells were recovered from HA surfaces for all types of biofilms tested. This study demonstrates that the nature of a surface influences biofilm characteristics including biomass accumulation and susceptibility to antimicrobial treatments. Such treatments should therefore be evaluated on the surfaces colonized by the target pathogen(s). PMID:21040512

Li, L; Finnegan, M B; Özkan, S; Kim, Y; Lillehoj, P B; Ho, C-M; Lux, R; Mito, R; Loewy, Z; Shi, W

2010-12-01

94

CcpA Regulates Biofilm Formation and Competence in Streptococcus gordonii  

PubMed Central

Summary Streptococcus gordonii is an important member of the oral biofilm community. As oral commensal streptococci, S. gordonii is considered beneficial in promoting biofilm homeostasis. CcpA is known as central regulator of carbon catabolite repression in Gram-positive bacteria and is also involved in the control of virulence gene expression. To further establish the role of CcpA as central regulator in S. gordonii, the effect of CcpA on biofilm formation and natural competence of S. gordonii was investigated. These phenotypic traits have been suggested to be important to oral streptococci in coping with environmental stress. Here we demonstrate that a CcpA mutant was severely impaired in its biofilm forming ability, showed a defect in extracellular polysaccharide production and reduced competence. The data suggest that CcpA is involved in the regulation of biofilm formation and competence development in S. gordonii. PMID:22394467

Zheng, Lanyan; Chen, Zhiyun; Itzek, Andreas; Herzberg, Mark C.; Kreth, Jens

2011-01-01

95

Biofilm formation by Chlorella vulgaris is affected by light quality.  

PubMed

Formation of biofilm on surfaces is a common feature in aquatic environments. Major groups of inhabitants in conditions where light is present are photoautotrophic microorganisms, such as cyanobacteria and microalgae. This study examined the effect of light quality on growth and biofilm formation of the microalgal species Chlorella vulgaris. Dense biofilm formation and aggregated growth of cells were observed in treatments exposed to blue, purple and white light. Less dense biofilm formation and solitary growth of cells were observed in treatments exposed to red, yellow or green light. Microalgal biofilms are of high importance in many respects, not least from an economic perspective. One example is the intense efforts undertaken to control biofilm formation on technical surfaces such as ship hulls. The present study suggests that light quality plays a role in biofilm formation and that blue-light receptors may be involved. PMID:24985199

Hultberg, Malin; Asp, Håkan; Marttila, Salla; Bergstrand, Karl-Johan; Gustafsson, Susanne

2014-11-01

96

Biofilm Formation by Staphylococcus epidermidis on Foldable and Rigid Intraocular Lenses  

PubMed Central

Background: Biofilm formation of Staphylococcus epidermidis is a major etiological factor of inducing device-related infections. Objectives: The ability of biofilm formation by the S. epidermidis was assessed in vitro on two brands of foldable (hydrophilic) and two brands of rigid (hydrophobic) intraocular lens materials in order to investigate the role of lens material in postoperative endophthalmitis. Materials and Methods: To ensure reproducibility of biofilm formation on intraocular lenses, two strains of S. epidermidis and three quantification methods were performed. The S. epidermidis strains, DSMZ3270 (biofilm-producer) and ATCC12228 (non-biofilm-producer) were applied. Organisms were cultivated on disks of different brands of foldable hydrophilic Intra Ocular Lens (IOL) made of acrylic (Didar, Iran; (A) and Omni, India; (B)), and rigid hydrophobic IOL made of polymethyl methacrylate (PMMA; Didar, Iran; (C) and Hexavision, France; (D)). Biofilms were stained with crystal violet (CV) dye, which is an index of biofilm formation. The bacterial population was counted after biofilm homogenization. Scanning electron microscopy (SEM) was performed to examine the extent of biofilm formation. Results: Adherence of DSMZ3270 strain on both types of foldable and rigid IOLs, was significantly more than ATCC12228 (P < 0.001-0.05 and, P < 0.01-0.05, respectively). The bacterial populations between the lenses were significantly different (P < 0.05). Subsequent studies demonstrated significant differences between brands of foldable and PMMA IOLs. According to statistical analyses the incubation time influenced the biofilm formation on both types of IOLs which meant that by increasing incubation time, the biofilm formation increased. According to the SEM pictures, biofilm seems to be lysed at 72 hours. Conclusions: These data demonstrated that the attachment of bacteria to hydrophilic acrylic IOLs was more than hydrophobic PMMA ones independent of the brand. According to these results the bacterial strain might have more hydrophilic properties. Augmenting the biomass of biofilm by passing of time demonstrated the key role of time in biofilm formation on the IOL surfaces. The differences between IOL brands in the biofilm formation indicated the influence of design parameters for IOLs. PMID:25147711

Fazly Bazzaz, Bibi Sedigheh; Jalalzadeh, Monireh; Sanati, Maryam; Zarei-Ghanavati, Syamak; Khameneh, Bahman

2014-01-01

97

Furanone at Subinhibitory Concentrations Enhances Staphylococcal Biofilm Formation by luxS Repression ?  

PubMed Central

Brominated furanones from marine algae inhibit multicellular behaviors of gram-negative bacteria such as biofilm formation and quorum sensing (QS) without affecting their growth. The interaction of furanone with QS in gram-positive bacteria is unknown. Staphylococci have two QS systems, agr and luxS, which lower biofilm formation by two different pathways, RNAIII upregulation and bacterial detachment, and polysaccharide intercellular adhesin (PIA) reduction, respectively. We synthesized natural furanone compound 2 [(5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone] from Delisea pulchra and three analogues to investigate their effect on biofilm formation in gram-positive bacteria. Compound 2, but not the analogues, enhanced the biofilms of Staphylococcus epidermidis 1457 and 047 and of S. aureus Newman at concentrations between 1.25 and 20 ?M. We show the growth inhibition of S. epidermidis and S. aureus by free furanone and demonstrate bactericidal activity. An induction of biofilm occurred at concentrations of 10 to 20% of the MIC and correlated with an increase in PIA. The biofilm effect was agr independent. It was due to interference with luxS, as shown by reduced luxS expression in the presence of compound 2 and independence of the strong biofilm formation in a luxS mutant upon furanone addition. Poly(l-lysine)-grafted/poly(ethylene glycol)-grafted furanone was ineffective on biofilm and not bactericidal, indicating the necessity for free furanone. Free furanone was similarly toxic for murine fibroblasts as for staphylococci, excluding a therapeutic application of this compound. In summary, we observed a biofilm enhancement by furanone in staphylococci at subinhibitory concentrations, which was manifested by an increase in PIA and dependent on luxS. PMID:19620329

Kuehl, Richard; Al-Bataineh, Sameer; Gordon, Oliver; Luginbuehl, Reto; Otto, Michael; Textor, Marcus; Landmann, Regine

2009-01-01

98

Filaments in curved streamlines: rapid formation of Staphylococcus aureus biofilm streamers  

NASA Astrophysics Data System (ADS)

Biofilms are surface-associated conglomerates of bacteria that are highly resistant to antibiotics. These bacterial communities can cause chronic infections in humans by colonizing, for example, medical implants, heart valves, or lungs. Staphylococcus aureus, a notorious human pathogen, causes some of the most common biofilm-related infections. Despite the clinical importance of S. aureus biofilms, it remains mostly unknown how physical effects, in particular flow, and surface structure influence biofilm dynamics. Here we use model microfluidic systems to investigate how environmental factors, such as surface geometry, surface chemistry, and fluid flow affect biofilm development of S. aureus. We discovered that S. aureus rapidly forms flow-induced, filamentous biofilm streamers, and furthermore if surfaces are coated with human blood plasma, streamers appear within minutes and clog the channels more rapidly than if the channels are uncoated. To understand how biofilm streamer filaments reorient in flows with curved streamlines to bridge the distances between corners, we developed a mathematical model based on resistive force theory of slender filaments. Understanding physical aspects of biofilm formation of S. aureus may lead to new approaches for interrupting biofilm formation of this pathogen.

Kim, Minyoung Kevin; Drescher, Knut; Pak, On Shun; Bassler, Bonnie L.; Stone, Howard A.

2014-06-01

99

Filaments in curved streamlines: Rapid formation of Staphylococcus aureus biofilm streamers.  

PubMed

Biofilms are surface-associated conglomerates of bacteria that are highly resistant to antibiotics. These bacterial communities can cause chronic infections in humans by colonizing, for example, medical implants, heart valves, or lungs. Staphylococcus aureus, a notorious human pathogen, causes some of the most common biofilm-related infections. Despite the clinical importance of S. aureus biofilms, it remains mostly unknown how physical effects, in particular flow, and surface structure influence biofilm dynamics. Here we use model microfluidic systems to investigate how environmental factors, such as surface geometry, surface chemistry, and fluid flow affect biofilm development in S. aureus. We discovered that S. aureus rapidly forms flow-induced, filamentous biofilm streamers, and furthermore if surfaces are coated with human blood plasma, streamers appear within minutes and clog the channels more rapidly than if the channels are uncoated. To understand how biofilm streamer filaments reorient in flows with curved streamlines to bridge the distances between corners, we developed a mathematical model based on resistive force theory of slender filaments. Understanding physical aspects of biofilm formation in S. aureus may lead to new approaches for interrupting biofilm formation of this pathogen. PMID:25484614

Kim, Minyoung Kevin; Drescher, Knut; Pak, On Shun; Bassler, Bonnie L; Stone, Howard A

2014-06-26

100

In situ-monitoring of biofilm formation by using surface-enhanced Raman scattering.  

PubMed

A biofilm is a complex biochemical structure composed of microorganisms and extracellular polymeric substances used by microorganisms to adhere to each other and to surfaces. The monitoring of molecular changes during biofilm formation in situ can provide valuable insights in medicine, microbiology, and industrial processes. In this study, we investigated the characterization of biofilm produced by two model bacteria by using surface-enhanced Raman scattering (SERS) with the use of core silver (AgNPs)-shell chitosan nanoparticles (c-AgNPs), which are prepared by coating citrate-reduced AgNPs with a thin layer of chitosan averaging 10 nm. The chitosan thin film acts as porous layer and prevents the excess interactions of biological media secreted by bacteria. The two model bacteria, Escherichia coli and Staphylococcus cohnii, gram positive and gram negative, respectively, were chosen for the study. The SERS spectra were acquired directly from the growth culture by simply placing c-AgNPs substrate on the biofilm formed during the growth of the bacteria for in situ monitoring. It was found that c-AgNPs are effective SERS substrates to monitor molecular changes in the biofilm during the biofilm formation. PMID:23643038

Efeoglu, Esen; Culha, Mustafa

2013-05-01

101

Biofilm formation at warming temperature: acceleration of microbial colonization and microbial interactive effects  

Microsoft Academic Search

River biofilms that grow on wet benthic surface are mainly composed of bacteria, algae, cyanobacteria and protozoa embedded in a polysaccharide matrix. The effects of increased river water temperature on biofilm formation were investigated. A laboratory experiment was designed employing two temperatures (11.1–13.2°C, night–day; 14.7–16.0°C, night–day) and two nutrient levels (0.054 mg P l, 0.75 mg N l; 0.54 mg

Verónica Díaz Villanueva; Thomas Schwartz; Anna M. Romaní

2010-01-01

102

Detection of Bacteria Bearing Resistant Biofilm Forms, by Using the Universal and Specific PCR is Still Unhelpful in the Diagnosis of Periprosthetic Joint Infections.  

PubMed

Intraoperative conventional bacteriological cultures were compared with different polymerase chain reaction (PCR) methods in patients with total joint arthroplasties. The isolated bacteria were investigated for biofilm formation, and the biofilm forming strains, in their planktonic and biofilm forms, were further tested for their antimicrobial resistance against several clinically important antimicrobials. Forty four bone and joint samples were included and classified as infected or non-infected according to standard criteria for periprosthetic hip and knee infections. For the bacteriological diagnosis, conventional culture, two types of universal PCR and species specific PCR for three selected pathogens (Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa) were applied. Biofilm formation determination was performed by the tissue culture plate method. Antimicrobial susceptibility of the planktonic bacteria was performed by the minimal inhibitory concentration determination and, of the biofilm forms, by the minimal inhibitory concentration for bacterial regrowth from the biofilm. Twenty samples were culture positive, with S. epidermidis, S. aureus, or P. aeruginosa. All PCR methods were very ineffective in detecting only one pathogen. All isolates were biofilm positive and their biofilm forms, were highly resistant. In this study, compared to PCR, culture remains the "gold standard." The biofilm formation by the causative bacteria and the concomitant manifold increased antimicrobial resistance may explain the clinical failure of treatment in some cases and should be considered in the future for therapeutic planning. PMID:25593905

Zegaer, Batool H; Ioannidis, Anastasios; Babis, George C; Ioannidou, Vassiliki; Kossyvakis, Athanassios; Bersimis, Sotiris; Papaparaskevas, Joseph; Petinaki, Efthimia; Pliatsika, Paraskevi; Chatzipanagiotou, Stylianos

2014-01-01

103

Detection of Bacteria Bearing Resistant Biofilm Forms, by Using the Universal and Specific PCR is Still Unhelpful in the Diagnosis of Periprosthetic Joint Infections  

PubMed Central

Intraoperative conventional bacteriological cultures were compared with different polymerase chain reaction (PCR) methods in patients with total joint arthroplasties. The isolated bacteria were investigated for biofilm formation, and the biofilm forming strains, in their planktonic and biofilm forms, were further tested for their antimicrobial resistance against several clinically important antimicrobials. Forty four bone and joint samples were included and classified as infected or non-infected according to standard criteria for periprosthetic hip and knee infections. For the bacteriological diagnosis, conventional culture, two types of universal PCR and species specific PCR for three selected pathogens (Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa) were applied. Biofilm formation determination was performed by the tissue culture plate method. Antimicrobial susceptibility of the planktonic bacteria was performed by the minimal inhibitory concentration determination and, of the biofilm forms, by the minimal inhibitory concentration for bacterial regrowth from the biofilm. Twenty samples were culture positive, with S. epidermidis, S. aureus, or P. aeruginosa. All PCR methods were very ineffective in detecting only one pathogen. All isolates were biofilm positive and their biofilm forms, were highly resistant. In this study, compared to PCR, culture remains the “gold standard.” The biofilm formation by the causative bacteria and the concomitant manifold increased antimicrobial resistance may explain the clinical failure of treatment in some cases and should be considered in the future for therapeutic planning. PMID:25593905

Zegaer, Batool H.; Ioannidis, Anastasios; Babis, George C.; Ioannidou, Vassiliki; Kossyvakis, Athanassios; Bersimis, Sotiris; Papaparaskevas, Joseph; Petinaki, Efthimia; Pliatsika, Paraskevi; Chatzipanagiotou, Stylianos

2014-01-01

104

Subinhibitory concentrations of azithromycin decrease nontypeable Haemophilus influenzae biofilm formation and Diminish established biofilms.  

PubMed

Nontypeable Haemophilus influenzae (NTHi) commonly causes otitis media, chronic bronchitis in emphysema, and early airway infections in cystic fibrosis. Long-term, low-dose azithromycin has been shown to improve clinical outcomes in chronic lung diseases, although the mechanism of action remains unclear. The inhibition of bacterial biofilms by azithromycin has been postulated to be one mechanism mediating these effects. We hypothesized that subinhibitory concentrations of azithromycin would affect NTHi biofilm formation. Laboratory strains of NTHi expressing green fluorescent protein and azithromycin-resistant clinical isolates were grown in flow-cell and static-culture biofilm models. Using a range of concentrations of azithromycin and gentamicin, we measured the degree to which these antibiotics inhibited biofilm formation and persistence. Large biofilms formed over 2 to 4 days in a flow cell, displaying complex structures, including towers and channels. Subinhibitory concentrations of azithromycin significantly decreased biomass and maximal thickness in both forming and established NTHi biofilms. In contrast, subinhibitory concentrations of gentamicin had no effect on biofilm formation. Furthermore, established NTHi biofilms became resistant to gentamicin at concentrations far above the MIC. Biofilm formation of highly resistant clinical NTHi isolates (azithromycin MIC of > 64 microg/ml) was similarly decreased at subinhibitory azithromycin concentrations. Clinically obtainable azithromycin concentrations inhibited biofilms in all but the most highly resistant isolates. These data show that subinhibitory concentrations of azithromycin have antibiofilm properties, provide mechanistic insights, and supply an additional rationale for the use of azithromycin in chronic biofilm infections involving H. influenzae. PMID:17954687

Starner, Timothy D; Shrout, Joshua D; Parsek, Matthew R; Appelbaum, Peter C; Kim, GunHee

2008-01-01

105

Manganese Ion Increases LAB-yeast Mixed-species Biofilm Formation  

PubMed Central

Remarkable LAB-yeast mixed-species biofilm was formed by lactic acid bacteria (LAB) Lactobacillus plantarum ML11-11 isolated from Fukuyama pot vinegar and Saccharomyces cerevisiae. This mixed-species biofilm formation increased in proportion to the YPD medium concentration but decreased in proportion to the MRS medium concentration. The effect of MRS components on mixed-species biofilm formation was investigated in a YPD medium environment, and it was clarified that beef extract (one of the MRS medium components) decreased mixed-species biofilm formation. On the other hand, manganese sulfate (another component in MRS) remarkably increased both LAB single- and LAB-yeast mixed-species biofilm formation. LAB single- and mixed-species biofilm formation were increased in proportion to the manganese sulfate concentration up to 1?mM and 100 ?M, respectively. The growth of L. plantarum ML11-11 was increased significantly by the addition of 10 ?M manganese sulfate and was resistant to higher concentration of up to 100?mM, but growth of S. cerevisiae was sensitive to manganese ion above 100 ?M. These results suggested that mixed-species biofilm formation could be controlled artificially by controlling the manganese ion level. PMID:25003021

NOZAKA, Soma; FURUKAWA, Soichi; SASAKI, Miwa; HIRAYAMA, Satoru; OGIHARA, Hirokazu; MORINAGA, Yasushi

2014-01-01

106

Inhibition of Salmonella enterica Biofilm Formation Using Small-Molecule Adenosine Mimetics.  

PubMed

Biofilms have been widely implicated in chronic infections and environmental persistence of Salmonella enterica, facilitating enhanced colonization of surfaces and increasing the ability of the bacteria to be transmitted to new hosts. Salmonella enterica serovar Typhi biofilm formation on gallstones from humans and mice enhances gallbladder colonization and bacterial shedding, while Salmonella enterica serovar Typhimurium biofilms facilitate long-term persistence in a number of environments important to food, medical, and farming industries. Salmonella regulates expression of many virulence- and biofilm-related processes using kinase-driven pathways. Kinases play pivotal roles in phosphorylation and energy transfer in cellular processes and possess an ATP-binding pocket required for their functions. Many other cellular proteins also require ATP for their activity. Here we test the hypothesis that pharmacological interference with ATP-requiring enzymes utilizing adenosine mimetic compounds would decrease or inhibit bacterial biofilm formation. Through the screening of a 3,000-member ATP mimetic library, we identified a single compound (compound 7955004) capable of significantly reducing biofilm formation by S. Typhimurium and S. Typhi. The compound was not bactericidal or bacteriostatic toward S. Typhimurium or cytotoxic to mammalian cells. An ATP-Sepharose affinity matrix technique was used to discover potential protein-binding targets of the compound and identified GroEL and DeoD. Compound 7955004 was screened against other known biofilm-forming bacterial species and was found to potently inhibit biofilms of Acinetobacter baumannii as well. The identification of a lead compound with biofilm-inhibiting capabilities toward Salmonella provides a potential new avenue of therapeutic intervention against Salmonella biofilm formation, with applicability to biofilms of other bacterial pathogens. PMID:25313216

Koopman, Jacob A; Marshall, Joanna M; Bhatiya, Aditi; Eguale, Tadesse; Kwiek, Jesse J; Gunn, John S

2015-01-01

107

Biofilm formation of Clostridium perfringens and its exposure to low-dose antimicrobials  

PubMed Central

Clostridium perfringens is an opportunistic pathogen that can cause food poisoning in humans and various enterotoxemia in animal species. Very little is known on the biofilm of C. perfringens and its exposure to subminimal inhibitory concentrations of antimicrobials. This study was undertaken to address these issues. Most of the C. perfringens human and animal isolates tested in this study were able to form biofilm (230/277). Porcine clinical isolates formed significantly more biofilm than the porcine commensal isolates. A subgroup of clinical and commensal C. perfringens isolates was randomly selected for further characterization. Biofilm was found to protect C. perfringens bacterial cells from exposure to high concentrations of tested antimicrobials. Exposure to low doses of some of these antimicrobials tended to lead to a diminution of the biofilm formed. However, a few isolates showed an increase in biofilm formation when exposed to low doses of tylosin, bacitracin, virginiamycin, and monensin. Six isolates were randomly selected for biofilm analysis using scanning laser confocal microscopy. Of those, four produced more biofilm in presence of low doses of bacitracin whereas biofilms formed without bacitracin were thinner and less elevated. An increase in the area occupied by bacteria in the biofilm following exposure to low doses of bacitracin was also observed in the majority of isolates. Morphology examination revealed flat biofilms with the exception of one isolate that demonstrated a mushroom-like biofilm. Matrix composition analysis showed the presence of proteins, beta-1,4 linked polysaccharides and extracellular DNA, but no poly-beta-1,6-N-acetyl-D-glucosamine. This study brings new information on the biofilm produced by C. perfringens and its exposure to low doses of antimicrobials. PMID:24795711

Charlebois, Audrey; Jacques, Mario; Archambault, Marie

2014-01-01

108

Biofilm formation of Clostridium perfringens and its exposure to low-dose antimicrobials.  

PubMed

Clostridium perfringens is an opportunistic pathogen that can cause food poisoning in humans and various enterotoxemia in animal species. Very little is known on the biofilm of C. perfringens and its exposure to subminimal inhibitory concentrations of antimicrobials. This study was undertaken to address these issues. Most of the C. perfringens human and animal isolates tested in this study were able to form biofilm (230/277). Porcine clinical isolates formed significantly more biofilm than the porcine commensal isolates. A subgroup of clinical and commensal C. perfringens isolates was randomly selected for further characterization. Biofilm was found to protect C. perfringens bacterial cells from exposure to high concentrations of tested antimicrobials. Exposure to low doses of some of these antimicrobials tended to lead to a diminution of the biofilm formed. However, a few isolates showed an increase in biofilm formation when exposed to low doses of tylosin, bacitracin, virginiamycin, and monensin. Six isolates were randomly selected for biofilm analysis using scanning laser confocal microscopy. Of those, four produced more biofilm in presence of low doses of bacitracin whereas biofilms formed without bacitracin were thinner and less elevated. An increase in the area occupied by bacteria in the biofilm following exposure to low doses of bacitracin was also observed in the majority of isolates. Morphology examination revealed flat biofilms with the exception of one isolate that demonstrated a mushroom-like biofilm. Matrix composition analysis showed the presence of proteins, beta-1,4 linked polysaccharides and extracellular DNA, but no poly-beta-1,6-N-acetyl-D-glucosamine. This study brings new information on the biofilm produced by C. perfringens and its exposure to low doses of antimicrobials. PMID:24795711

Charlebois, Audrey; Jacques, Mario; Archambault, Marie

2014-01-01

109

Coexistence of Antibiotic-Producing and Antibiotic-Sensitive Bacteria in Biofilms Is Mediated by Resistant Bacteria? †  

PubMed Central

Antibiotic-sensitive bacteria have been found to coexist with antibiotic-producing bacteria in biofilms, but little is known about how the former develop in such an environment. Here we isolated pyocyanin-sensitive bacteria belonging to the genus Brevibacillus from a biofilm derived from soil extract and based on the preestablished biofilm of a pyocyanin producer, Pseudomonas aeruginosa strain P1. In addition, pyocyanin-resistant strains belonging to the genus Raoultella were isolated from the same biofilm. Microbial relationships within biofilms were examined by using three strains, strain P1, Brevibacillus strain S1, and Raoultella strain R1, each of which individually formed a biofilm within 2 days in a flow cell. Strain S1 did not fully develop on the preestablished biofilm of strain P1 during 4 days of cultivation, whereas a mutant of strain P1 which was deficient in pyocyanin production allowed strain S1 to cocolonize within a biofilm. On the other hand, strain R1 developed on the biofilm of strain P1 regardless of pyocyanin production. When mixed 1:1 inocula of strains S1 and R1 were introduced into the strain P1 biofilm, all three species were found in the 4-day biofilm. In the mixed biofilm, strain S1 was surrounded by the layer of strain R1 and seemed to be separated from strain P1 and the outflow solution. However, strain S1 did not survive in a three-species mixed culture under planktonic conditions. These results indicate that the survival of sensitive bacteria in biofilm with a pyocyanin producer is achieved by covering them with a layer of resistant bacteria. We also evaluated the influence of antibiotic production on the producer. PMID:18441106

Narisawa, Naoki; Haruta, Shin; Arai, Hiroyuki; Ishii, Masaharu; Igarashi, Yasuo

2008-01-01

110

Effects of growth conditions on biofilm formation by Actinobacillus pleuropneumoniae  

PubMed Central

Biofilm formation is an important virulence trait of many bacterial pathogens. It has been reported in the literature that only two of the reference strains of the swine pathogen Actinobacillus pleuropneumoniae, representing serotypes 5b and 11, were able to form biofilm in vitro. In this study, we compared biofilm formation by the serotype 1 reference strain S4074 of A. pleuropneumoniae grown in five different culture media. We observed that strain S4074 of A. pleuropneumoniae is able to form biofilms after growth in one of the culture conditions tested brain heart infusion (BHI medium, supplier B). Confocal laser scanning microscopy using a fluorescent probe specific to the poly-N-acetylglucosamine (PGA) polysaccharide further confirmed biofilm formation. In accordance, biofilm formation was susceptible to dispersin B, a PGA hydrolase. Transcriptional profiles of A. pleuropneumoniae S4074 following growth in BHI-B, which allowed a robust biofilm formation, and in BHI-A, in which only a slight biofilm formation was observed, were compared. Genes such as tadC, tadD, genes with homology to autotransporter adhesins as well as genes pgaABC involved in PGA biosynthesis and genes involved in zinc transport were up-regulated after growth in BHI-B. Interestingly, biofilm formation was inhibited by zinc, which was found to be more present in BHI-A (no or slight biofilm) than in BHI-B. We also observed biofilm formation in reference strains representing serotypes 3, 4, 5a, 12 and 14 as well as in 20 of the 37 fresh field isolates tested. Our data indicate that A. pleuropneumoniae has the ability to form biofilms under appropriate growth conditions and transition from a biofilm-positive to a biofilm-negative phenotype was reversible. PMID:19737507

Labrie, Josée; Pelletier-Jacques, Geneviève; Deslandes, Vincent; Ramjeet, Mahendrasingh; Auger, Eliane; Nash, John H.E.; Jacques, Mario

2010-01-01

111

A Movable Surface: Formation of Yersinia sp. Biofilms on Motile Caenorhabditis elegans  

PubMed Central

Bubonic plague is transmitted by fleas whose feeding is blocked by a mass of Yersinia pestis in the digestive tract. Y. pestis and the closely related Y. pseudotuberculosis also block the feeding of Caenorhabditis elegans by forming a biofilm on the nematode head. C. elegans mutants with severe motility defects acquire almost no biofilm, indicating that normal animals accumulate the biofilm matrix as they move through a Yersinia lawn. Using the lectin wheat germ agglutinin as a probe, we show that the matrix on C. elegans contains carbohydrate produced by Yersinia. The carbohydrate is present in bacterial lawns prior to addition of nematodes, indicating that biofilm formation does not involve signaling between the two organisms. Furthermore, biofilm accumulation depends on continuous C. elegans exposure to a lawn of Yersinia bacteria. PMID:15262945

Tan, Li; Darby, Creg

2004-01-01

112

inhibitory effects of citral, cinnamaldehyde, and tea polyphenols on mixed biofilm formation by foodborne Staphylococcus aureus and Salmonella enteritidis.  

PubMed

Biofilms are significant hazards in the food industry. In this study, we investigated the effects of food additive such as citral, cinnamaldehyde, and tea polyphenols on mixed biofilm formation by foodborne Staphylococcus aureus and Salmonella serotype Enteritidis. The adhesion rates of mixed strains in sub-MIC of additives were determined by a microtiter plate assay and bacterial communication signal autoinducer 2 (AI-2) production via a bioluminescence reporter Vibrio harveyi BB170. The structure of mixed biofilm was analyzed using scanning electron microscopy. The effect of the disinfectants hydrogen peroxide, sodium hypochlorite, and peracetic acid was tested on the mixed biofilm. Our results demonstrated that citral, cinnamaldehyde, and tea polyphenols were able to significantly inhibit mixed biofilm formation, while citral could reduce the synthesis of AI-2. Conversely, we observed a significant increase in AI-2 mediated by cinnamaldehyde. Tea polyphenols at lower concentrations induced AI-2 synthesis; however, AI-2 synthesis was significantly inhibited at higher concentrations (300 m g/ml). Food additives inhibited the adhesion of mixed bacteria on stainless steel chips and increased the sensitivity of the mixed biofilm to disinfectants. In conclusion, citral, cinnamaldehyde, and tea polyphenols had strong inhibitory effects on mixed biofilm formation and also enhanced the effect of disinfectant on mixed biofilm formation. This study provides a scientific basis for the application of natural food additives to control biofilm formation of foodborne bacteria. PMID:24853514

Zhang, Hongmei; Zhou, Wenyuan; Zhang, Wenyan; Yang, Anlin; Liu, Yanlan; Jiang, Yan; Huang, Shaosong; Su, Jianyu

2014-06-01

113

Novel application for the prevention and treatment of Staphylococcus aureus biofilm formation  

NASA Astrophysics Data System (ADS)

Formation of bacterial biofilms at solid-liquid interfaces creates numerous problems in both industrial and biomedical sciences. In this dissertation, the application of plasma from two very different facets was studied. In part one, the susceptibility of pre-formed Staphylococcus aureus biofilms on biomaterials to different plasmas was investigated. It was found that the distinct chemical/physical properties of plasmas generated from oxygen, nitrogen, and argon all demonstrated very potent but very different anti-biofilm mechanisms of action. An in depth analysis of these results show: 1) different reactive species produced in each plasma demonstrate specific activity, and 2) the commonly associated etching effect could be manipulated and even controlled, depending on experimental conditions and the discharge gas. These studies provide insights into the anti-biofilm mechanisms of plasma as well as the effects of different reactive species on biofilm inactivation. Under experimental parameters, bacterial cells in Staphylococcus aureus biofilms were killed (>99.9%) by plasmas within minutes of exposure and no bacteria nor biofilm re-growth from discharge gas treated biofilms was observed throughout the life-span of the re-growth experiment. The decontamination ability of plasmas for the treatment of biofilm related infections on biomedical materials was confirmed and novel applications involving the use of low power argon and oxygen for the treatment of biofilm contaminated biomaterials and indwelling devices is proposed. The second facet of this dissertation explores the interaction between biofilm forming Staphylococcus aureus bacteria on different antibacterial/anti-biofilm surfaces. The antibiotic-free anti-fouling surfaces constructed in this study were generated from the plasma-assisted graft polymerization technique. These sophisticated surfaces were stable, biocompatible and capable of preventing biofilm formation on biomaterials and medical devices. Under optimal experimental conditions, the antibacterial activities of these sophisticated surfaces had two distinct mechanisms: 1) reducing bacterial attachment and 2) eradicating adherent bacteria. The excellent antibacterial and anti-biofilm properties of these modified surfaces were initially tested in stationary cultures and later confirmed through a microfluidic cultivation system, which mimicked the in-vivo conditions of implanted catheters. Information gathered, suggests the graft polymerization of negatively charged monomers may be utilized to permanently prevent biofouling on inserted biomaterials, as well as implanted medical devices.

Traba, Christian

114

Biofilms as sources of fecal bacteria contamination in the stormwater drainage system in Singapore  

E-print Network

A study was performed to examine a possible source of fecal bacteria contamination originating from within the stormwater drainage system in Singapore. The extent of fecal bacteria presence in storm drain biofilms was ...

Burkhart, Tsung Hwa (Tsung Hwa Sophia)

2013-01-01

115

Environmental and genetic factors that contribute to Escherichia coli K-12 biofilm formation  

PubMed Central

Biofilms are communities of bacteria whose formation on surfaces requires a large portion of the bacteria’s transcriptional network. To identify environmental conditions and transcriptional regulators that contribute to sensing these conditions, we used a high-throughput approach to monitor biofilm biomass produced by an isogenic set of Escherichia coli K-12 strains grown under combinations of environmental conditions. Of the environmental combinationsd, growth in tryptic soy broth at 37°C supported the most biofilm production. To analyze the complex relationships between the diverse cell surface organelles, transcriptional regulators, and metabolic enzymes represented by the tested mutant set, we used a novel vector-item pattern-mining algorithm. The algorithm related biofilm amounts to the functional annotations of each mutated protein. The pattern with the best statistical significance was the gene ontology ‘pyruvate catabolic process,’ which is associated with enzymes of acetate metabolism. Phenotype microarray experiments illustrated that carbon sources that are metabolized to acetyl-coenzyme A, acetyl phosphate, and acetate are particularly supportive of biofilm formation. Scanning electron microscopy revealed structural differences between mutants that lack acetate metabolism enzymes and their parent and confirmed the quantitative differences. We conclude that acetate metabolism functions as a metabolic sensor, transmitting changes in environmental conditions to biofilm biomass and structure. PMID:20559621

Prüß, Birgit M.; Verma, Karan; Samanta, Priyankar; Sule, Preeti; Kumar, Sunil; Wu, Jianfei; Christianson, David; Horne, Shelley M.; Stafslien, Shane J.; Wolfe, Alan J.; Denton, Anne

2010-01-01

116

Inhibition of biofilm formation in Bacillus subtilis by new halogenated furanones.  

PubMed

Gram-positive bacteria can cause various infections including hospital-acquired infections. While in the biofilm, the resistance of bacteria to both antibiotics and the human immune system is increased causing difficulties in the treatment. Bacillus subtilis, a non-pathogenic Gram-positive bacterium, is widely used as a model organism for studying biofilm formation. Here we investigated the effect of novel synthesized chloro- and bromo-containing 2(5H)-furanones on biofilm formation by B. subtilis. Mucobromic acid (3,4-dibromo-5-hydroxy-2(5H)-furanone) and the two derivatives of mucochloric acid (3,4-dichloro-5-hydroxy-2(5H)-furanone)-F8 and F12-were found to inhibit the growth and to efficiently prevent biofilm formation by B. subtilis. Along with the low production of polysaccharide matrix and repression of the eps operon, strong repression of biofilm-related yqxM also occurred in the presence of furanones. Therefore, our data confirm that furanones affect significantly the regulatory pathway(s) leading to biofilm formation. We propose that the global regulator, Spo0A, is one of the potential putative cellular targets for these compounds.The Journal of Antibiotics advance online publication, 22 October 2014; doi:10.1038/ja.2014.143. PMID:25335695

Kayumov, Airat R; Khakimullina, Elvina N; Sharafutdinov, Irshad S; Trizna, Elena Y; Latypova, Lilia Z; Thi Lien, Hoang; Margulis, Anna B; Bogachev, Mikhail I; Kurbangalieva, Almira R

2014-10-22

117

Voice prostheses, microbial colonization and biofilm formation.  

PubMed

Total laryngectomy is performed in advanced laryngeal and hypopharyngeal cancer stages and results in reduced quality of life due to the loss of voice and smell, permanent tracheostoma and occasionally dysphagia. Therefore, successful voice rehabilitation is highly beneficial for the patients' quality of life after surgery. Over the past decades, voice prostheses have evolved to the gold standard in rehabilitation and allow faster and superior voicing results after laryngectomy compared to esophageal speech. Polyspecies biofilm formation has become the limiting factor for device lifetimes and causes prosthesis dysfunction, leakage and in consequence pneumonia, if not replaced immediately. Although major improvements in prosthesis design have been made and scientific insight in the complexity of biofilm evolution and material interaction progresses, the microbial colonization continues to restrict device lifetimes, causing patient discomfort and elevated health costs. However, present scientific findings and advances in technology yield promising future approaches to improve the situation for laryngectomized patients. PMID:25366225

Leonhard, Matthias; Schneider-Stickler, Berit

2015-01-01

118

Targeting cyclic di-GMP signalling: a strategy to control biofilm formation?  

PubMed

Cyclic di-GMP is a second messenger found in almost all eubacteria that acts to regulate a wide range of functions including developmental transitions, adhesion and biofilm formation. Cyclic di-GMP is synthesised from two GTP molecules by diguanylate cyclases that have a GGDEF domain and is degraded by phosphodiesterases with either an EAL or an HD-GYP domain. Proteins with these domains often contain additional signal input domains, suggesting that their enzymatic activity may be modulated as a response to different environmental or cellular cues. Cyclic di-GMP exerts a regulatory action through binding to diverse receptors that include a small protein domain called PilZ, enzymatically inactive GGDEF, EAL or HD-GYP domains, transcription factors and riboswitches. In many bacteria, high cellular levels of cyclic di-GMP are associated with a sessile, biofilm lifestyle, whereas low levels of the nucleotide promote motility and virulence factor synthesis in pathogens. Elucidation of the roles of cyclic di-GMP signalling in biofilm formation has suggested strategies whereby modulation of the levels of the nucleotide or interference with signalling pathways may lead to inhibition of biofilm formation or promotion of biofilm dispersal. In this review we consider these approaches for the control of biofilm formation, beginning with an overview of cyclic di-GMP signalling and the different ways that it can act in regulation of biofilm dynamics. PMID:25189859

Caly, Delphine L; Bellini, Domenico; Walsh, Martin A; Dow, J Maxwell; Ryan, Robert P

2015-01-01

119

Examining the Relationship Between Iron Corrosion and the Disinfection of Biofilm Bacteria  

Microsoft Academic Search

Previous research has shown a relationship between corrosion of an iron pipe and the protection of biofilm bacteria from disinfection. It is believed that the corrosion product reacts with chlorine disinfectants and prevents the biocide from penetrating the biofilm layer and inactivating the attached bacteria. The results of the current study show that even low levels of corrosion, i.e., <

Mark W. LeChevallier; Cheryl D. Lowry; Ramon G. Lee; Donald L. Gibbon

1993-01-01

120

Human plasma enhances the expression of Staphylococcal microbial surface components recognizing adhesive matrix molecules promoting biofilm formation and increases antimicrobial tolerance In Vitro  

PubMed Central

Background Microbial biofilms have been associated with the development of chronic human infections and represent a clinical challenge given their increased antimicrobial tolerance. Staphylococcus aureus is a major human pathogen causing a diverse range of diseases, of which biofilms are often involved. Staphylococcal attachment and the formation of biofilms have been shown to be facilitated by host factors that accumulate on surfaces. To better understand how host factors enhance staphylococcal biofilm formation, we evaluated the effect of whole human plasma on biofilm formation in clinical isolates of S. aureus and the expression of seven microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) known to be involved in biofilm formation by quantitative real-time PCR. We also evaluated whether plasma augmented changes in S. aureus biofilm morphology and antimicrobial resistance. Results Exposure of clinical isolates of S. aureus to human plasma (10%) within media, and to a lesser extent when coated onto plates, significantly enhanced biofilm formation in all of the clinical isolates tested. Compared to biofilms grown under non-supplemented conditions, plasma-augmented biofilms displayed significant changes in both the biofilm phenotype and cell morphology as determined by confocal scanning laser microscopy (CLSM) and scanning electron microscopy (SEM), respectively. Exposure of bacteria to plasma resulted in a significant fold-increase in MSCRAMM expression in both a time and isolate-dependent manner. Additionally, plasma-augmented biofilms displayed an increased tolerance to vancomycin compared to biofilms grown in non-supplemented media. Conclusions Collectively, these studies support previous findings demonstrating a role for host factors in biofilm formation and provide further insight into how plasma, a preferred growth medium for staphylococcal biofilm formation enhances as well as augments other intrinsic properties of S. aureus biofilms. Consequently, these findings indicate that incorporation of host factors may be necessary to better replicate in vivo conditions and for the best utility of a clinical biofilm assay to evaluate the process of biofilm formation and treatments. PMID:25034276

2014-01-01

121

Cinnamon bark oil and its components inhibit biofilm formation and toxin production.  

PubMed

The long-term usage of antibiotics has resulted in the evolution of multidrug resistant bacteria, and pathogenic biofilms contribute to reduced susceptibility to antibiotics. In this study, 83 essential oils were initially screened for biofilm inhibition against Pseudomonas aeruginosa. Cinnamon bark oil and its main constituent cinnamaldehyde at 0.05% (v/v) markedly inhibited P. aeruginosa biofilm formation. Furthermore, cinnamon bark oil and eugenol decreased the production of pyocyanin and 2-heptyl-3-hydroxy-4(1H)-quinolone, the swarming motility, and the hemolytic activity of P. aeruginosa. Also, cinnamon bark oil, cinnamaldehyde, and eugenol at 0.01% (v/v) significantly decreased biofilm formation of enterohemorrhagic Escherichia coli O157:H7 (EHEC). Transcriptional analysis showed that cinnamon bark oil down-regulated curli genes and Shiga-like toxin gene stx2 in EHEC. In addition, biodegradable poly(lactic-co-glycolic acid) film incorporating biofilm inhibitors was fabricated and shown to provide efficient biofilm control on solid surfaces. This is the first report that cinnamon bark oil and its components, cinnamaldehyde and eugenol, reduce the production of pyocyanin and PQS, the swarming motility, and the hemolytic activity of P. aeruginosa, and inhibit EHEC biofilm formation. PMID:25500277

Kim, Yong-Guy; Lee, Jin-Hyung; Kim, Soon-Il; Baek, Kwang-Hyun; Lee, Jintae

2015-02-16

122

Identification, structure, and characterization of an exopolysaccharide produced by Histophilus somni during biofilm formation  

PubMed Central

Background Histophilus somni, a gram-negative coccobacillus, is an obligate inhabitant of bovine and ovine mucosal surfaces, and an opportunistic pathogen responsible for respiratory disease and other systemic infections in cattle and sheep. Capsules are important virulence factors for many pathogenic bacteria, but a capsule has not been identified on H. somni. However, H. somni does form a biofilm in vitro and in vivo, and the biofilm matrix of most bacteria consists of a polysaccharide. Results Following incubation of H. somni under growth-restricting stress conditions, such as during anaerobiosis, stationary phase, or in hypertonic salt, a polysaccharide could be isolated from washed cells or culture supernatant. The polysaccharide was present in large amounts in broth culture sediment after H. somni was grown under low oxygen tension for 4-5 days (conditions favorable to biofilm formation), but not from planktonic cells during log phase growth. Immuno-transmission electron microscopy showed that the polysaccharide was not closely associated with the cell surface, and was of heterogeneous high molecular size by gel electrophoresis, indicating it was an exopolysaccharide (EPS). The EPS was a branched mannose polymer containing some galactose, as determined by structural analysis. The mannose-specific Moringa M lectin and antibodies to the EPS bound to the biofilm matrix, demonstrating that the EPS was a component of the biofilm. The addition of N-acetylneuraminic acid to the growth medium resulted in sialylation of the EPS, and increased biofilm formation. Real-time quantitative reverse transcription-polymerase chain reaction analyses indicated that genes previously identified in a putative polysaccharide locus were upregulated when the bacteria were grown under conditions favorable to a biofilm, compared to planktonic cells. Conclusions H. somni is capable of producing a branching, mannose-galactose EPS polymer under growth conditions favorable to the biofilm phase of growth, and the EPS is a component of the biofilm matrix. The EPS can be sialylated in strains with sialyltransferase activity, resulting in enhanced density of the biofilm, and suggesting that EPS and biofilm formation may be important to persistence in the bovine host. The EPS may be critical to virulence if the biofilm state is required for H. somni to persist in systemic sites. PMID:21854629

2011-01-01

123

LuxU connects quorum sensing to biofilm formation in Vibrio fischeri  

E-print Network

LuxU connects quorum sensing to biofilm formation in Vibrio fischeri Valerie A. Ray and Karen L regulates bio- luminescence in this organism. Introduction Bacteria readily adapt to changing environmental condi- tions by sensing and integrating different cues present in their surroundings to produce

McFall-Ngai, Margaret

124

Engineering Bacteria to Form a Biofilm and Induce Clumping in Caenorhabditis elegans.  

PubMed

Bacteria are needed for a vast range of biotechnological processes, which they carry out either as pure cultures or in association with other bacteria and/or fungi. The potential of bacteria as biofactories is hampered, though, by their limited mobility in solid or semisolid media such as agricultural or domestic waste. This work represents an attempt toward overcoming this limitation by associating bacterial biotechnological properties with the transport ability of the nematode Caenorhabditis elegans. We report here biofilm formation on C. elegans by engineered Escherichia coli expressing a Xhenorhabdus nematophila adhesion operon and induction of nematode social feeding behavior (clumping) through an E. coli-mediated iRNA blocking on the expression of FLP-21, a neuropeptide involved in worm solitary behavior. PMID:24933529

Dorado-Morales, Pedro; Iglesias, Alba; Zafrilla, Guillermo; Valero, Alejandro; Torres, Alejandro; Miravet-Verde, Samuel; de Loma, Jessica; Mañas, Marina; Ruiz, Antonio; Corman, Alba; Morales, Lucas J; Peretó, Juli; Vilanova, Cristina; Porcar, Manuel

2014-12-19

125

The biocidal effect of a novel synthesized gemini surfactant on environmental sulfidogenic bacteria: Planktonic cells and biofilms.  

PubMed

A cationic gemini surfactant was synthesized and characterized. The surfactant was successfully applied as a biocide against environmental sulfidogenic bacteria in the bulk phase (planktonic) and on the surface (biofilm). The activity of the synthesized surfactant was discussed based on the redox potential and the sulfide productivity in the bulk phase. The cultivated biofilm structure analysis and corrosion rate were estimated on the metal surface. The lowest metal corrosion rate was recognized at a concentration of 1mM with a metal corrosion inhibition efficiency of 95%. The synthesized gemini surfactant prevented the biofilm formation at a concentration of 0.1mM. The synthesized gemini surfactant displayed a broad spectrum antibacterial activity against Gram-positive and Gram-negative bacteria. PMID:25492209

Labena, A; Hegazy, M A; Horn, H; Müller, E

2015-02-01

126

Analysis and succession of nitrifying bacteria community structure in sequencing biofilm batch reactor.  

PubMed

To reveal the succession procedure of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) community structure in sequencing biofilm batch reactor (SBBR), the molecular biological techniques of denaturing gradient gel electrophoresis (DGGE), cloning, and real-time PCR were applied. DGGE showed that the structural diversity of the bacterial community increased during the biofilm formation period, and some kinds of populations had been highly preponderant consistently. The results of cloning and sequencing revealed that Nitrosomonas was the dominant species. The real-time PCR analysis indicated that the amount of the AOB increased significantly after the cultivation period, and the NOB gradually decreased. The AOB content on the 25th day was 17 times that of the 6th day. It also showed the biofilm formed successfully with accumulating nitrite and prepared to achieve the achievement of simultaneous nitrification and denitrification in SBBR. Furthermore, the ammonia-oxidizing rate was in correspondence with the NH4 (+)-N removal efficiency. PMID:24493570

Wang, Jingyin; Zhang, Chaosheng; Rong, Hongwei

2014-05-01

127

Plant-Associated Biofilms  

Microsoft Academic Search

Bacteria colonizing plant surfaces are of great importance in agriculture, having either a negative (pathogens surviving on leaf surfaces) or a positive (beneficial root-colonizing bacteria) role. Plant-associated populations develop in a way that shows similarities to that observed in biofilm formation on abiotic surfaces, and certain genetic determinants are common to both processes. The mechanisms involved in biofilm formation and

María Antonia Molina; Juan-Luis Ramos; Manuel Espinosa-Urgel

2003-01-01

128

Biodegradable polymer (PLGA) coatings featuring cinnamaldehyde and carvacrol mitigate biofilm formation.  

PubMed

Biofilm-associated infections are one of the leading causes of death in the United States. Although infections may be treated with antibiotics, the overuse of antibiotics has led to the spread of antibiotic resistance. Many natural antimicrobial compounds derived from edible plants are safe for human use and target bacteria nonspecifically. Therefore, they may impair biofilm formation with less evolutionary pressure on pathogens. Here, we explore the use of two natural antimicrobial compounds, cinnamaldehyde (CA, from cinnamon) and carvacrol (CARV, from oregano), for biofilm prevention. We have fabricated and characterized films that incorporate CA and CARV into the biodegradable, FDA-approved polymer poly(lactic-co-glycolic acid), PLGA. The addition of CA and CARV to PLGA films not only adds antimicrobial activity but also changes the surface properties of the films, making them more hydrophilic and therefore more resistant to bacterial attachment. An addition of 0.1% CA to a PLGA film significantly impairs biofilm development by Staphylococcus aureus, and 0.1% CARV in PLGA significantly decreases biofilm formation by both Escherichia coli and S. aureus. Pseudomonas aeruginosa, which is less susceptible to CA and CARV, was not affected by the addition of 0.1% CA or CARV to the PLGA coatings; however, P. aeruginosa biofilm was significantly reduced by 1.0% CA. These results indicate that both CA and CARV could potentially be used in low concentrations as natural additives in polymer coatings for indwelling devices to delay colonization by bacteria. PMID:22937881

Zodrow, Katherine R; Schiffman, Jessica D; Elimelech, Menachem

2012-10-01

129

Lrs14 transcriptional regulators influence biofilm formation and cell motility of Crenarchaea  

PubMed Central

Like bacteria, archaea predominately exist as biofilms in nature. However, the environmental cues and the molecular mechanisms driving archaeal biofilm development are not characterized. Here we provide data suggesting that the transcriptional regulators belonging to the Lrs14-like protein family constitute a key regulatory factor during Sulfolobus biofilm development. Among the six lrs14-like genes encoded by Sulfolobus acidocaldarius, the deletion of three led to markedly altered biofilm phenotypes. Although ?saci1223 and ?saci1242 deletion mutants were impaired in biofilm formation, the ?saci0446 deletion strain exhibited a highly increased extracellular polymeric substance (EPS) production, leading to a robust biofilm structure. Moreover, although the expression of the adhesive pili (aap) genes was upregulated, the genes of the motility structure, the archaellum (fla), were downregulated rendering the ?saci0446 strain non-motile. Gel shift assays confirmed that Saci0446 bound to the promoter regions of fla and aap thus controlling the expression of both cell surface structures. In addition, genetic epistasis analysis using ?saci0446 as background strain identified a gene cluster involved in the EPS biosynthetic pathway of S. acidocaldarius. These results provide insights into both the molecular mechanisms that govern biofilm formation in Crenarchaea and the functionality of the Lrs14-like proteins, an archaea-specific class of transcriptional regulators. PMID:23657363

Orell, Alvaro; Peeters, Eveline; Vassen, Victoria; Jachlewski, Silke; Schalles, Sven; Siebers, Bettina; Albers, Sonja-Verena

2013-01-01

130

Comparison of Biofilm Formation between Major Clonal Lineages of Methicillin Resistant Staphylococcus aureus  

PubMed Central

Objectives Epidemic methicillin-resistant S. aureus (MRSA) clones cause infections in both hospital and community settings. As a biofilm phenotype further facilitates evasion of the host immune system and antibiotics, we compared the biofilm-forming capacities of various MRSA clones. Methods Seventy-six MRSA classified into 13 clones (USA300, EMRSA-15, Hungarian/Brazilian etc.), and isolated from infections or from carriers were studied for biofilm formation under static and dynamic conditions. Static biofilms in microtitre plates were quantified colorimetrically. Dynamic biofilms (Bioflux 200, Fluxion, USA) were studied by confocal laser-scanning and time-lapse microscopy, and the total volume occupied by live/dead bacteria quantified by Volocity 5.4.1 (Improvision, UK). Results MRSA harbouring SCCmec IV produced significantly more biomass under static conditions than SCCmec I–III (P?=?0.003), and those harbouring SCCmec II significantly less than those harbouring SCCmec I or III (P<0.001). In the dynamic model, SCCmec I–III harbouring MRSA were significantly better biofilm formers than SCCmec IV (P?=?0.036). Only 16 strains successfully formed biofilms under both conditions, of which 13 harboured SCCmec IV and included all tested USA300 strains (n?=?3). However, USA300 demonstrated remarkably lower percentages of cell-occupied space (6.6%) compared to the other clones (EMRSA-15?=?19.0%) under dynamic conditions. Time-lapse microscopy of dynamic biofilms demonstrated that USA300 formed long viscoelastic tethers that stretched far from the point of attachment, while EMRSA-15 consisted of micro-colonies attached densely to the surface. Conclusions MRSA harbouring SCCmec types IV and I–III demonstrate distinct biofilm forming capacities, possibly owing to their adaptation to the community and hospital settings, respectively. USA300 demonstrated abundant biofilm formation under both conditions, which probably confers a competitive advantage, contributing to its remarkable success as a pathogen. PMID:25105505

Pirici, Daniel; Lammens, Christine; Hernalsteens, Jean-Pierre; De Greve, Henri; Kumar-Singh, Samir; Goossens, Herman; Malhotra-Kumar, Surbhi

2014-01-01

131

Importance of biofilm formation for corrosion inhibition of SAE 1018 steel by axenic aerobic biofilms  

Microsoft Academic Search

  To investigate if corrosion inhibition by aerobic biofilms is a general phenomenon, carbon steel (SAE 1018) coupons were\\u000a exposed to a complex liquid medium (Luria–Bertani) and seawater-mimicking medium (VNSS) containing fifteen different pure-culture\\u000a bacterial suspensions representing seven genera. Compared to sterile controls, the mass loss in the presence of these bacteria\\u000a (which are capable of developing a biofilm to various

A Jayaraman; E T Cheng; J C Earthman; T K Wood

1997-01-01

132

Controlled synthesis of the DSF cell–cell signal is required for biofilm formation and virulence in Xanthomonas campestris  

PubMed Central

Virulence of the black rot pathogen Xanthomonas campestris pv. campestris (Xcc) is regulated by cell–cell signalling involving the diffusible signal factor DSF. Synthesis and perception of DSF require products of genes within the rpf cluster (for regulation of pathogenicity factors). RpfF directs DSF synthesis whereas RpfC and RpfG are involved in DSF perception. Here we have examined the role of the rpf/DSF system in biofilm formation in minimal medium using confocal laser-scanning microscopy of GFP-labelled bacteria. Wild-type Xcc formed microcolonies that developed into a structured biofilm. In contrast, an rpfF mutant (DSF-minus) and an rpfC mutant (DSF overproducer) formed only unstructured arrangements of bacteria. A gumB mutant, defective in xanthan biosynthesis, was also unable to develop the typical wild-type biofilm. Mixed cultures of gumB and rpfF mutants formed a typical biofilm in vitro. In contrast, in mixed cultures the rpfC mutant prevented the formation of the structured biofilm by the wild-type and did not restore wild-type biofilm phenotypes to gumB or rpfF mutants. These effects on structured biofilm formation were correlated with growth and disease development by Xcc strains in Nicotiana benthamiana leaves. These findings suggest that DSF signalling is finely balanced during both biofilm formation and virulence. PMID:17635553

Torres, Pablo S; Malamud, Florencia; Rigano, Luciano A; Russo, Daniela M; Marano, María Rosa; Castagnaro, Atilio P; Zorreguieta, Angeles; Bouarab, Kamal; Dow, John Maxwell; Vojnov, Adrián A

2007-01-01

133

Dynamics of biofilm formation during anaerobic digestion of organic waste.  

PubMed

Biofilm-based reactors are effectively used for wastewater treatment but are not common in biogas production. This study investigated biofilm dynamics on biofilm carriers incubated in batch biogas reactors at high and low organic loading rates for sludge from meat industry dissolved air flotation units. Biofilm formation and dynamics were studied using various microscopic techniques. Resulting micrographs were analysed for total cell numbers, thickness of biofilms, biofilm-covered surface area, and the area covered by extracellular polymeric substances (EPS). Cell numbers within biofilms (10(11) cells ml(-1)) were up to one order of magnitude higher compared to the numbers of cells in the fluid reactor content. Further, biofilm formation and structure mainly correlated with the numbers of microorganisms present in the fluid reactor content and the organic loading. At high organic loading (45 kg VS m(-3)), the thickness of the continuous biofilm layer ranged from 5 to 160 ?m with an average of 51 ?m and a median of 26 ?m. Conversely, at lower organic loading (15 kg VS m(-3)), only microcolonies were detectable. Those microcolonies increased in their frequency of occurrence during ongoing fermentation. Independently from the organic loading rate, biofilms were embedded completely in EPS within seven days. The maturation and maintenance of biofilms changed during the batch fermentation due to decreasing substrate availability. Concomitant, detachment of microorganisms within biofilms was observed simultaneously with the decrease of biogas formation. This study demonstrates that biofilms of high cell densities can enhance digestion of organic waste and have positive effects on biogas production. PMID:24342346

Langer, Susanne; Schropp, Daniel; Bengelsdorf, Frank R; Othman, Maazuza; Kazda, Marian

2014-10-01

134

Surface-Mediated Release of a Small-Molecule Modulator of Bacterial Biofilm Formation: A Non-Bactericidal Approach to Inhibiting Biofilm Formation in Pseudomonas aeruginosa  

PubMed Central

We report an approach to preventing bacterial biofilm formation that is based on the surface-mediated release of 5,6-dimethyl-2-aminobenzimidazole (DMABI), a potent and non-bactericidal small-molecule inhibitor of bacterial biofilm growth. Our results demonstrate that DMABI can be encapsulated in thin films of a model biocompatible polymer [poly(lactide-co-glycolide), PLG] and be released in quantities that inhibit the formation of Pseudomonas aeruginosa biofilms by up to 75–90% on surfaces that otherwise support robust biofilm growth. This approach enables the release of this new anti-biofilm agent for over one month, and it can be used to inhibit biofilm growth on both film-coated surfaces and other adjacent surfaces (e.g., on other uncoated surfaces and at air/water interfaces). Our results demonstrate a non-bactericidal approach to the prevention of biofilm growth and provide proof of concept using a clinically relevant human pathogen. In contrast to coatings designed to kill bacteria on contact, this release-based approach should also permit the design of strategically placed depots that disseminate DMABI more broadly and exert inhibitory effects over larger areas, which could prove useful in applications where the design or function of a surface prohibits the application of a uniform coating. This approach could also be used to design new polymer-coated surfaces useful for fundamental studies of bacterial biofilm growth. In a broader context, the non-bactericidal nature of DMABI could also provide opportunities to address concerns related to evolved resistance that currently face approaches based on the release of traditional microbicidal agents (e.g., antibiotics). Finally, the results of initial in vitro mammalian cell culture studies indicate that DMABI is not toxic to cells at concentrations required for strong anti-biofilm activity, suggesting that this new agent is well suited for further investigation in biomedical and personal care contexts. The surface-mediated approach reported here provides new tools useful for fundamental studies of biofilm formation and could, with further development, prove useful in a range of other industrial and commercial contexts in which bacterial biofilm growth is endemic. PMID:23335593

Broderick, Adam H.; Breitbach, Anthony S.; Frei, Reto

2014-01-01

135

Characterization of Mannheimia haemolytica biofilm formation in vitro.  

PubMed

Mannheimia haemolytica is the primary bacterial agent in the bovine respiratory disease complex. It is thought that M. haemolytica colonizes the tonsillar crypts of cattle as a commensal and subsequently descends into the lungs to cause disease. Many bacterial species persist in the host as biofilms. There is limited information about the ability of M. haemolytica to form biofilms. The aim of this study was to develop an in vitro model for M. haemolytica biofilm formation. We found that M. haemolytica required at least 36h to form robust biofilms on plastic in vitro when incubated in RPMI-1640 tissue culture medium at 37°C, with maximal biofilm formation being evident at 48h. Biofilm formation was inhibited by adding the monosaccharides d(+) galactose and d(+) mannose to the growth medium. Addition of antibodies to the M. haemolytica surface protein OmpA also reduced biofilm formation. Upon evaluating the macromolecules within the biofilm extracellular polymeric substance we found it contained 9.7?g/cm(2) of protein, 0.81?g/cm(2) of total carbohydrate, and 0.47?g/cm(2) of extracellular DNA. Furthermore, proteinase K treatment significantly decreased biofilms (P<0.05) while ?-amylase and micrococcal nuclease decreased biofilms to a lesser extent. M. haemolytica biofilm cells were more resistant than planktonic cells to the antibiotics florfenicol, gentamicin, and tulathromycin. These results provide evidence that M. haemolytica can form biofilms, which could contribute to its ability to persist as a commensal in the bovine upper respiratory tract. PMID:25480166

Boukahil, Ismail; Czuprynski, Charles J

2015-01-30

136

Formation of biofilms under phage predation: considerations concerning a biofilm increase.  

PubMed

Bacteriophages are emerging as strong candidates for combating bacterial biofilms. However, reports indicating that host populations can, in some cases, respond to phage predation by an increase in biofilm formation are of concern. This study investigates whether phage predation can enhance the formation of biofilm and if so, if this phenomenon is governed by the emergence of phage-resistance or by non-evolutionary mechanisms (eg spatial refuge). Single-species biofilms of three bacterial pathogens (Pseudomonas aeruginosa, Salmonella enterica serotype Typhimurium, and Staphylococcus aureus) were pretreated and post-treated with species-specific phages. Some of the phage treatments resulted in an increase in the levels of biofilm of their host. It is proposed that the phenotypic change brought about by acquiring phage resistance is the main reason for the increase in the level of biofilm of P. aeruginosa. For biofilms of S. aureus and S. enterica Typhimurium, although resistance was detected, increased formation of biofilm appeared to be a result of non-evolutionary mechanisms. PMID:23597188

Hosseinidoust, Zeinab; Tufenkji, Nathalie; van de Ven, Theo G M

2013-01-01

137

Contribution of Cell Elongation to the Biofilm Formation of Pseudomonas aeruginosa during Anaerobic Respiration  

PubMed Central

Pseudomonas aeruginosa, a gram-negative bacterium of clinical importance, forms more robust biofilm during anaerobic respiration, a mode of growth presumed to occur in abnormally thickened mucus layer lining the cystic fibrosis (CF) patient airway. However, molecular basis behind this anaerobiosis-triggered robust biofilm formation is not clearly defined yet. Here, we identified a morphological change naturally accompanied by anaerobic respiration in P. aeruginosa and investigated its effect on the biofilm formation in vitro. A standard laboratory strain, PAO1 was highly elongated during anaerobic respiration compared with bacteria grown aerobically. Microscopic analysis demonstrated that cell elongation likely occurred as a consequence of defective cell division. Cell elongation was dependent on the presence of nitrite reductase (NIR) that reduces nitrite (NO2?) to nitric oxide (NO) and was repressed in PAO1 in the presence of carboxy-PTIO, a NO antagonist, demonstrating that cell elongation involves a process to respond to NO, a spontaneous byproduct of the anaerobic respiration. Importantly, the non-elongated NIR-deficient mutant failed to form biofilm, while a mutant of nitrate reductase (NAR) and wild type PAO1, both of which were highly elongated, formed robust biofilm. Taken together, our data reveal a role of previously undescribed cell biological event in P. aeruginosa biofilm formation and suggest NIR as a key player involved in such process. PMID:21267455

Park, Yongjin; Yoon, Sang Sun

2011-01-01

138

Specific Involvement of Pilus Type 2a in Biofilm Formation in Group B Streptococcus  

PubMed Central

Streptococcus agalactiae is the primary colonizer of the anogenital mucosa of up to 30% of healthy women and can infect newborns during delivery and cause severe sepsis and meningitis. Persistent colonization usually involves the formation of biofilm and increasing evidences indicate that in pathogenic streptococci biofilm formation is mediated by pili. Recently, we have characterized pili distribution and conservation in 289 GBS clinical isolates and we have shown that GBS has three pilus types, 1, 2a and 2b encoded by three corresponding pilus islands, and that each strain carries one or two islands. Here we have investigated the capacity of these strains to form biofilms. We have found that most of the biofilm-formers carry pilus 2a, and using insertion and deletion mutants we have confirmed that pilus type 2a, but not pilus types 1 and 2b, confers biofilm-forming phenotype. We also show that deletion of the major ancillary protein of type 2a did not impair biofilm formation while the inactivation of the other ancillary protein and of the backbone protein completely abolished this phenotype. Furthermore, antibodies raised against pilus components inhibited bacterial adherence to solid surfaces, offering new strategies to prevent GBS infection by targeting bacteria during their initial attachment to host epithelial cells. PMID:20169161

Galeotti, Cesira L.; Berti, Francesco; Necchi, Francesca; Reguzzi, Valerio; Ghezzo, Claudia; Telford, John Laird; Grandi, Guido; Maione, Domenico

2010-01-01

139

Contribution of Cell Elongation to the Biofilm Formation of Pseudomonas aeruginosa during Anaerobic Respiration  

E-print Network

Pseudomonas aeruginosa, a gram-negative bacterium of clinical importance, forms more robust biofilm during anaerobic respiration, a mode of growth presumed to occur in abnormally thickened mucus layer lining the cystic fibrosis (CF) patient airway. However, molecular basis behind this anaerobiosis-triggered robust biofilm formation is not clearly defined yet. Here, we identified a morphological change naturally accompanied by anaerobic respiration in P. aeruginosa and investigated its effect on the biofilm formation in vitro. A standard laboratory strain, PAO1 was highly elongated during anaerobic respiration compared with bacteria grown aerobically. Microscopic analysis demonstrated that cell elongation likely occurred as a consequence of defective cell division. Cell elongation was dependent on the presence of nitrite reductase (NIR) that reduces nitrite (NO2 2) to nitric oxide (NO) and was repressed in PAO1 in the presence of carboxy-PTIO, a NO antagonist, demonstrating that cell elongation involves a process to respond to NO, a spontaneous byproduct of the anaerobic respiration. Importantly, the non-elongated NIR-deficient mutant failed to form biofilm, while a mutant of nitrate reductase (NAR) and wild type PAO1, both of which were highly elongated, formed robust biofilm. Taken together, our data reveal a role of previously undescribed cell biological event in P. aeruginosa biofilm formation and suggest NIR as a key

Mi Young Yoon; Kang-mu Lee; Yongjin Park; Sang Sun Yoon

2011-01-01

140

Electrical spiking in bacterial biofilms.  

PubMed

In nature, biofilms are the most common form of bacterial growth. In biofilms, bacteria display coordinated behaviour to perform specific functions. Here, we investigated electrical signalling as a possible driver in biofilm sociobiology. Using a multi-electrode array system that enables high spatio-temporal resolution, we studied the electrical activity in two biofilm-forming strains and one non-biofilm-forming strain. The action potential rates monitored during biofilm-forming bacterial growth exhibited a one-peak maximum with a long tail, corresponding to the highest biofilm development. This peak was not observed for the non-biofilm-forming strain, demonstrating that the intensity of the electrical activity was not linearly related to the bacterial density, but was instead correlated with biofilm formation. Results obtained indicate that the analysis of the spatio-temporal electrical activity of bacteria during biofilm formation can open a new frontier in the study of the emergence of collective microbial behaviour. PMID:25392401

Masi, Elisa; Ciszak, Marzena; Santopolo, Luisa; Frascella, Arcangela; Giovannetti, Luciana; Marchi, Emmanuela; Viti, Carlo; Mancuso, Stefano

2015-01-01

141

Culturable bacterial diversity from a feed water of a reverse osmosis system, evaluation of biofilm formation and biocontrol using phages.  

PubMed

Biofilm formation on reverse osmosis (RO) systems represents a drawback in the application of this technology by different industries, including oil refineries. In RO systems the feed water maybe a source of microbial contamination and thus contributes for the formation of biofilm and consequent biofouling. In this study the planktonic culturable bacterial community was characterized from a feed water of a RO system and their capacities were evaluated to form biofilm in vitro. Bacterial motility and biofilm control were also analysed using phages. As results, diverse Protobacteria, Actinobacteria and Bacteroidetes were identified. Alphaproteobacteria was the predominant group and Brevundimonas, Pseudomonas and Mycobacterium the most abundant genera. Among the 30 isolates, 11 showed at least one type of motility and 11 were classified as good biofilm formers. Additionally, the influence of non-specific bacteriophage in the bacterial biofilms formed in vitro was investigated by action of phages enzymes or phage infection. The vB_AspP-UFV1 (Podoviridae) interfered in biofilm formation of most tested bacteria and may represent a good alternative in biofilm control. These findings provide important information about the bacterial community from the feed water of a RO system that may be used for the development of strategies for biofilm prevention and control in such systems. PMID:24980943

Belgini, D R B; Dias, R S; Siqueira, V M; Valadares, L A B; Albanese, J M; Souza, R S; Torres, A P R; Sousa, M P; Silva, C C; De Paula, S O; Oliveira, V M

2014-10-01

142

The relationship between biofilm formations and capsule in Haemophilus influenzae.  

PubMed

To evaluate the biofilm formation of non-typeable Haemophilus influenzae (NTHi) and H. influenzae type b (Hib) clinical isolates, we conducted the following study. Serotyping and polymerase chain reaction were performed to identify ?-lactamase-negative ampicillin (ABPC)-susceptible (BLNAS), ?-lactamase-negative ABPC-resistant (BLNAR), TEM-1 type ?-lactamase-producing ABPC-resistant (BLPAR)-NTHi, and Hib. Biofilm formation was investigated by microtiter biofilm assay, as well as visually observation with a scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) in a continuous-flow chamber. As a result, totally 99 strains were investigated, and were classified into 4 groups which were 26 gBLNAS, 22 gBLNAR, 28 gBLPAR-NTHi and 23 Hib strains. The mean OD600 in the microtiter biofilm assay of gBLNAS, gBLNAR, gBLPAR-NTHi, and Hib strains were 0.57, 0.50, 0.34, and 0.08, respectively. NTHi strains were similar in terms of biofilm formations, which were observed by SEM and CLSM. Five Hib strains with the alternated type b cap loci showed significantly increased biofilm production than the other Hib strains. In conclusion, gBLNAS, gBLNAR, and gBLPAR-NTHi strains were more capable to produce biofilms compared to Hib strains. Our data suggested that resistant status may not be a key factor but capsule seemed to play an important role in H. influenzae biofilm formation. PMID:24560562

Qin, Liang; Kida, Yutaka; Ishiwada, Naruhiko; Ohkusu, Kiyofumi; Kaji, Chiharu; Sakai, Yoshiro; Watanabe, Kiwao; Furumoto, Akitsugu; Ichinose, Akitoyo; Watanabe, Hiroshi

2014-03-01

143

Quorum sensing controls biofilm formation in Vibrio cholerae  

Microsoft Academic Search

Summary Multiple quorum-sensing circuits function in parallel to control virulence and biofilm formation in Vibrio cholerae . In contrast to other bacterial pathogens that induce virulence factor production and\\/or biofilm for- mation at high cell density in the presence of quorum- sensing autoinducers, V. cholerae represses these behaviours at high cell density. Consistent with this, we show here that V.

Brian K. Hammer; Bonnie L. Bassler

2003-01-01

144

Enterococcal Surface Protein, Esp, Enhances Biofilm Formation by Enterococcus faecalis  

Microsoft Academic Search

Enterococci play a dual role in human ecology. They serve as commensal organisms of the gastrointestinal tract and are also leading causes of multiple antibiotic-resistant hospital-acquired infection. Many nosocomial infections result from the ability of microorganisms to form biofilms. The molecular mechanisms involved in enterococcal biofilm formation are only now beginning to be understood. Enterococcal surface protein, Esp, has been

Preeti M. Tendolkar; Arto S. Baghdayan; Michael S. Gilmore; Nathan Shankar

2004-01-01

145

Investigating Catalase Activity Through Hydrogen Peroxide Decomposition by Bacteria Biofilms in Real Time Using Scanning  

E-print Network

Investigating Catalase Activity Through Hydrogen Peroxide Decomposition by Bacteria Biofilms University, Las Cruces, New Mexico 88003, United States *S Supporting Information ABSTRACT: Catalase activity electrochemical microscopy (SECM). The catalase activity, in units of micromoles hydrogen peroxide decomposed per

Nishiguchi, Michele

146

SinR is a mutational target for fine-tuning biofilm formation in laboratory-evolved strains of Bacillus subtilis.  

PubMed

BackgroundBacteria often form multicellular, organized communities known as biofilms, which protect cells from a variety of environmental stresses. During biofilm formation, bacteria secrete a species-specific matrix; in Bacillus subtilis biofilms, the matrix consists of protein polymers and exopolysaccharide. Many domesticated strains of B. subtilis have a reduced ability to form biofilms, and we conducted a two-month evolution experiment to test whether laboratory culturing provides selective pressure against biofilm formation in B. subtilis. ResultsBacteria grown in two-month-long batch culture rapidly diversified their biofilm-forming characteristics, exhibiting highly diverse colony morphologies on LB plates in the initial ten days of culture. Generally, this diversity decreased over time; however, multiple types of colony morphology remained in our final two-month-old populations, both under shaking and static conditions. Notably, while our final populations featured cells that produce less biofilm matrix than did the ancestor, cells overproducing biofilm matrix were present as well. We took a candidate-gene approach to identify mutations in the strains that overproduced matrix and found point mutations in the biofilm-regulatory gene sinR. Introducing these mutations into the ancestral strain phenocopied or partially phenocopied the evolved biofilm phenotypes.ConclusionsOur data suggest that standard laboratory culturing conditions do not rapidly select against biofilm formation. Although biofilm matrix production is often reduced in domesticated bacterial strains, we found that matrix production may still have a fitness benefit in the laboratory. We suggest that adaptive specialization of biofilm-forming species can occur through mutations that modulate biofilm formation in B. subtilis. PMID:25433524

Leiman, Sara A; Arboleda, Laura C; Spina, Joseph S; McLoon, Anna L

2014-11-30

147

Unsaturated fatty acid, cis-2-decenoic acid, in combination with disinfectants or antibiotics removes pre-established biofilms formed by food-related bacteria.  

PubMed

Biofilm formation by food-related bacteria and food-related pathogenesis are significant problems in the food industry. Even though much disinfection and mechanical procedure exist for removal of biofilms, they may fail to eliminate pre-established biofilms. cis-2 decenoic acid (CDA), an unsaturated fatty acid messenger produced by Pseudomonas aeruginosa, is reportedly capable of inducing the dispersion of established biofilms by multiple types of microorganisms. However, whether CDA has potential to boost the actions of certain antimicrobials is unknown. Here, the activity of CDA as an inducer of pre-established biofilms dispersal, formed by four main food pathogens; Staphylococcus aureus, Bacillus cereus, Salmonella enterica and E. coli, was measured using both semi-batch and continuous cultures bioassays. To assess the ability of CDA combined biocides treatments to remove pre-established biofilms formed on stainless steel discs, CFU counts were performed for both treated and untreated cultures. Eradication of the biofilms by CDA combined antibiotics was evaluated using crystal violet staining. The effect of CDA combined treatments (antibiotics and disinfectants) on biofilm surface area and bacteria viability was evaluated using fluorescence microscopy, digital image analysis and LIVE/DEAD staining. MICs were also determined to assess the probable inhibitory effects of CDA combined treatments on the growth of tested microorganisms' planktonic cells. Treatment of pre-established biofilms with only 310 nM CDA resulted in at least two-fold increase in the number of planktonic cells in all cultures. While antibiotics or disinfectants alone exerted a trivial effect on CFU counts and percentage of surface area covered by the biofilms, combinational treatments with both 310 nM CDA and antibiotics or disinfectants led to approximate 80% reduction in biofilm biomass. These data suggests that combined treatments with CDA would pave the way toward developing new strategies to control biofilms with widespread applications in industry as well as medicine. PMID:25000301

Sepehr, Shayesteh; Rahmani-Badi, Azadeh; Babaie-Naiej, Hamta; Soudi, Mohammad Reza

2014-01-01

148

Unsaturated Fatty Acid, cis-2-Decenoic Acid, in Combination with Disinfectants or Antibiotics Removes Pre-Established Biofilms Formed by Food-Related Bacteria  

PubMed Central

Biofilm formation by food-related bacteria and food-related pathogenesis are significant problems in the food industry. Even though much disinfection and mechanical procedure exist for removal of biofilms, they may fail to eliminate pre-established biofilms. cis-2 decenoic acid (CDA), an unsaturated fatty acid messenger produced by Pseudomonas aeruginosa, is reportedly capable of inducing the dispersion of established biofilms by multiple types of microorganisms. However, whether CDA has potential to boost the actions of certain antimicrobials is unknown. Here, the activity of CDA as an inducer of pre-established biofilms dispersal, formed by four main food pathogens; Staphylococcus aureus, Bacillus cereus, Salmonella enterica and E. coli, was measured using both semi-batch and continuous cultures bioassays. To assess the ability of CDA combined biocides treatments to remove pre-established biofilms formed on stainless steel discs, CFU counts were performed for both treated and untreated cultures. Eradication of the biofilms by CDA combined antibiotics was evaluated using crystal violet staining. The effect of CDA combined treatments (antibiotics and disinfectants) on biofilm surface area and bacteria viability was evaluated using fluorescence microscopy, digital image analysis and LIVE/DEAD staining. MICs were also determined to assess the probable inhibitory effects of CDA combined treatments on the growth of tested microorganisms' planktonic cells. Treatment of pre-established biofilms with only 310 nM CDA resulted in at least two-fold increase in the number of planktonic cells in all cultures. While antibiotics or disinfectants alone exerted a trivial effect on CFU counts and percentage of surface area covered by the biofilms, combinational treatments with both 310 nM CDA and antibiotics or disinfectants led to approximate 80% reduction in biofilm biomass. These data suggests that combined treatments with CDA would pave the way toward developing new strategies to control biofilms with widespread applications in industry as well as medicine. PMID:25000301

Sepehr, Shayesteh; Rahmani-Badi, Azadeh; Babaie-Naiej, Hamta; Soudi, Mohammad Reza

2014-01-01

149

Small RNAs regulating biofilm formation and outer membrane homeostasis.  

PubMed

Nowadays, the identification of small non-coding RNAs takes a prominent role in deciphering complex bacterial phenotypes. Evidences are given that the post-transcriptional layer of regulation mediated by sRNAs plays an important role in the formation of bacterial biofilms. These sRNAs exert their activity on various targets, be it directly or indirectly linked to biofilm formation. First, and best described, are the sRNAs that act in core regulatory pathways of biofilm formation, such as those regulating motility and matrix production. Second, overlaps between the regulation of biofilm formation and the outer membrane (OM) are becoming obvious. Additionally, different studies indicate that defects in the OM itself affect biofilm formation through this shared cascade, thereby forming a feedback mechanism. Interestingly, it is known that the OM itself is extensively regulated by different sRNAs. Third, biofilms are also linked to global metabolic changes. There is also evidence that metabolic pathways and the process of biofilm formation share sRNAs. PMID:23324602

Van Puyvelde, Sandra; Steenackers, Hans P; Vanderleyden, Jos

2013-02-01

150

Pseudomonas aeruginosa and their small diffusible extracellular molecules inhibit Aspergillus fumigatus biofilm formation.  

PubMed

Aspergillus fumigatus is often isolated from the lungs of cystic fibrosis (CF) patients, but unlike in severely immunocompromised individuals, the mortality rates are low. This suggests that competition from bacteria within the CF lung may be inhibitory. The purpose of this study was to investigate how Pseudomonas aeruginosa influences A. fumigatus conidial germination and biofilm formation. Aspergillus fumigatus biofilm formation was inhibited by direct contact with P. aeruginosa, but had no effect on preformed biofilm. A secreted heat-stable soluble factor was also shown to exhibit biofilm inhibition. Coculture of P. aeruginosa quorum-sensing mutants (PAO1:?LasI, PAO1:?LasR) did not significantly inhibit A. fumigatus biofilms (52.6-58.8%) to the same extent as that of the PA01 wild type (22.9-30.1%), both by direct and by indirect interaction (P<0.001). Planktonic and sessile inhibition assays with a series of short carbon chain molecules (decanol, decanoic acid and dodecanol) demonstrated that these molecules could both inhibit and disrupt biofilms in a concentration-dependent manner. Overall, this suggests that small diffusible and heat-stable molecules may be responsible for the competitive inhibition of filamentous fungal growth in polymicrobial environments such as the CF lung. PMID:20964704

Mowat, Eilidh; Rajendran, Ranjith; Williams, Craig; McCulloch, Elaine; Jones, Brian; Lang, Sue; Ramage, Gordon

2010-12-01

151

Biofilm formation of mucosa-associated methanoarchaeal strains  

PubMed Central

Although in nature most microorganisms are known to occur predominantly in consortia or biofilms, data on archaeal biofilm formation are in general scarce. Here, the ability of three methanoarchaeal strains, Methanobrevibacter smithii and Methanosphaera stadtmanae, which form part of the human gut microbiota, and the Methanosarcina mazei strain Gö1 to grow on different surfaces and form biofilms was investigated. All three strains adhered to the substrate mica and grew predominantly as bilayers on its surface as demonstrated by confocal laser scanning microscopy analyses, though the formation of multi-layered biofilms of Methanosphaera stadtmanae and Methanobrevibacter smithii was observed as well. Stable biofilm formation was further confirmed by scanning electron microscopy analysis. Methanosarcina mazei and Methanobrevibacter smithii also formed multi-layered biofilms in uncoated plastic ?-dishesTM, which were very similar in morphology and reached a height of up to 40 ?m. In contrast, biofilms formed by Methanosphaera stadtmanae reached only a height of 2 ?m. Staining with the two lectins ConA and IB4 indicated that all three strains produced relatively low amounts of extracellular polysaccharides most likely containing glucose, mannose, and galactose. Taken together, this study provides the first evidence that methanoarchaea can develop and form biofilms on different substrates and thus, will contribute to our knowledge on the appearance and physiological role of Methanobrevibacter smithii and Methanosphaera stadtmanae in the human intestine. PMID:25071757

Bang, Corinna; Ehlers, Claudia; Orell, Alvaro; Prasse, Daniela; Spinner, Marlene; Gorb, Stanislav N.; Albers, Sonja-Verena; Schmitz, Ruth A.

2014-01-01

152

Quorum sensing and biofilm formation in mycobacteria: Role of c-di-GMP and methods to study this second messenger.  

PubMed

Bacteria have evolved to survive the ever-changing environment using intriguing mechanisms of quorum sensing (QS). Very often, QS facilitates formation of biofilm to help bacteria to persist longer and the formation of such biofilms is regulated by c-di-GMP. It is a well-known second messenger also found in mycobacteria. Several methods have been developed to study c-di-GMP signaling pathways in a variety of bacteria. In this review, we have attempted to highlight a connection between c-di-GMP and biofilm formation and QS in mycobacteria and several methods that have helped in better understanding of c-di-GMP signaling. © 2014 IUBMB Life, 66(12):823-834, 2014. PMID:25546058

Sharma, Indra Mani; Petchiappan, Anushya; Chatterji, Dipankar

2014-12-01

153

Inhibition of Serratia marcescens Smj-11 biofilm formation by Alcaligenes faecalis STN17 crude extract  

NASA Astrophysics Data System (ADS)

Serratia marcescens biofilms are formed when they are bound to surfaces in aqueous environments. S. marcescens utilizes N-acylhomoserine lactone (AHL) as its quorum sensing signal molecule. The accumulation of AHL indicates the bacteria to produce matrices to form biofilms. Prodigiosin (2-methyl-3-pentyl-6-methoxyprodigiosin), which causes red pigmentation in the colonies, are also produced when the AHL reaches a certain threshold. The Alcaligenes faecalis STN17 crude extract is believed to inhibit quorum sensing in the S. marcescens Smj-11 and, thus, impedes its biofilm formation ability. A. faecalis STN17 was grown in marine broth, and ethyl acetate extraction was carried out. The crude compound of A. faecalis STN17 was diluted at high concentration (0.2-6.4 mg/mL) and was taken to confirm anti-biofilm activity through the crystal violet method in 96-wells plate. Then, the crude extract underwent purification using simple solvents partitioning test to discern the respective compounds that had the anti-biofilm activity under the crystal violet method. The crystal violet test showed that the crude did have anti-biofilm activity on S. marcescens Smj-11, but did not kill the cells. This finding signifies that the suppression of biofilm formation in S. marcescens by A. faecalis STN17 has a strong correlation. The partitioning test showed that A. faecalis STN17 crude extract has several compounds and only the compound(s) in chloroform showed activities. In conclusion, the crude extract of A. faecalis STN17 has the ability to inhibit S. marcescens Smj-11 biofilm formation.

Lutfi, Zainal; Usup, Gires; Ahmad, Asmat

2014-09-01

154

The Role of msa in Staphylococcus aureus Biofilm Formation  

PubMed Central

Background Staphylococcus aureus is an important pathogen that forms biofilms. The global regulator sarA is essential for biofilm formation. Since the modulator of sarA (msa) is required for full expression of sarA and regulates several virulence factors, we examined the capacity of the msa mutant to form biofilm. Results We found that mutation of msa results in reduced expression of sarA in biofilm and that the msa mutant formed a weak and unstable biofilm. The msa mutant is able to adhere to surfaces and begins to form biofilm but fails to mature indicating that the defect of the msa mutant biofilm is in the accumulation stage but not in primary adhesion. Conclusion The msa gene plays an important role in biofilm development which is likely due to its role in modulating the expression of sarA. This finding is significant because it identifies a new gene that plays a role in the development of biofilm. PMID:19087289

Sambanthamoorthy, Karthik; Schwartz, Antony; Nagarajan, Vijayaraj; Elasri, Mohamed O

2008-01-01

155

Biofilm formation by Streptococcus agalactiae: influence of environmental conditions and implicated virulence factors  

PubMed Central

Streptococcus agalactiae (Group B Streptococcus, GBS) is an important human pathogen that colonizes the urogenital and/or the lower gastro-intestinal tract of up to 40% of healthy women of reproductive age and is a leading cause of sepsis and meningitis in the neonates. GBS can also infect the elderly and immuno-compromised adults, and is responsible for mastitis in bovines. Like other Gram-positive bacteria, GBS can form biofilm-like three-dimensional structures that could enhance its ability to colonize and persist in the host. Biofilm formation by GBS has been investigated in vitro and appears tightly controlled by environmental conditions. Several adhesins have been shown to play a role in the formation of GBS biofilm-like structures, among which are the protein components of pili protruding outside the bacterial surface. Remarkably, antibodies directed against pilus proteins can prevent the formation of biofilms. The implications of biofilm formation in the context of GBS asymptomatic colonization and dissemination to cause invasive disease remain to be investigated in detail.

Rosini, Roberto; Margarit, Immaculada

2015-01-01

156

Effect of nitrofurans and NO generators on biofilm formation by Pseudomonas aeruginosa PAO1 and Burkholderia cenocepacia 370  

Microsoft Academic Search

Antibacterial drugs in the nitrofuran series, such as nitrofurazone, furazidin, nitrofurantoin and nifuroxazide, as well as the nitric oxide generators sodium nitroprusside and isosorbide mononitrate in concentrations that do not suppress bacterial growth, were shown to increase the capacity of pathogenic bacteria Pseudomonas aeruginosa PAO1 and Burkholderia cenocepacia 370 to form biofilms. At 25–100?g\\/ml, nitrofurans 2–2.5-fold enhanced biofilm formation of

Julia Zaitseva; Vladimir Granik; Alexandr Belik; Olga Koksharova; Inessa Khmel

2009-01-01

157

Flagella-Mediated Adhesion and Extracellular DNA Release Contribute to Biofilm Formation and Stress Tolerance of Campylobacter jejuni  

PubMed Central

Campylobacter jejuni is a leading cause of foodbourne gastroenteritis, despite fragile behaviour under standard laboratory conditions. In the environment, C. jejuni may survive within biofilms, which can impart resident bacteria with enhanced stress tolerance compared to their planktonic counterparts. While C. jejuni forms biofilms in vitro and in the wild, it had not been confirmed that this lifestyle confers stress tolerance. Moreover, little is understood about molecular mechanisms of biofilm formation in this pathogen. We previously found that a ?cprS mutant, which carries a deletion in the sensor kinase of the CprRS two-component system, forms enhanced biofilms. Biofilms were also enhanced by the bile salt deoxycholate and contained extracellular DNA. Through more in-depth analysis of ?cprS and WT under conditions that promote or inhibit biofilms, we sought to further define this lifestyle for C. jejuni. Epistasis experiments with ?cprS and flagellar mutations (?flhA, ?pflA) suggested that initiation is mediated by flagellum-mediated adherence, a process which was kinetically enhanced by motility. Lysis was also observed, especially under biofilm-enhancing conditions. Microscopy suggested adherence was followed by release of eDNA, which was required for biofilm maturation. Importantly, inhibiting biofilm formation by removal of eDNA with DNase decreased stress tolerance. This work suggests the biofilm lifestyle provides C. jejuni with resilience that has not been apparent from observation of planktonic bacteria during routine laboratory culture, and provides a framework for subsequent molecular studies of C. jejuni biofilms. PMID:25166748

Svensson, Sarah L.; Pryjma, Mark; Gaynor, Erin C.

2014-01-01

158

Bacterial Cyclic AMP-Phosphodiesterase Activity Coordinates Biofilm Formation  

PubMed Central

Biofilm-related infections are a major contributor to human disease, and the capacity for surface attachment and biofilm formation are key attributes for the pathogenesis of microbes. Serratia marcescens type I fimbriae-dependent biofilms are coordinated by the adenylate cyclase, CyaA, and the cyclic 3?,5?-adenosine monophosphate (cAMP)-cAMP receptor protein (CRP) complex. This study uses S. marcescens as a model system to test the role of cAMP-phosphodiesterase activity in controlling biofilm formation. Herein we describe the characterization of a putative S. marcescens cAMP-phosphodiesterase gene (SMA3506), designated as cpdS, and demonstrated to be a functional cAMP-phosphodiesterase both in vitro and in vivo. Deletion of cpdS resulted in defective biofilm formation and reduced type I fimbriae production, whereas multicopy expression of cpdS conferred a type I fimbriae-dependent hyper-biofilm. Together, these results support a model in which bacterial cAMP-phosphodiesterase activity modulates biofilm formation. PMID:23923059

Kalivoda, Eric J.; Brothers, Kimberly M.; Stella, Nicholas A.; Schmitt, Matthew J.; Shanks, Robert M. Q.

2013-01-01

159

BigR, a Transcriptional Repressor from Plant-Associated Bacteria, Regulates an Operon Implicated in Biofilm Growth?  

PubMed Central

Xylella fastidiosa is a plant pathogen that colonizes the xylem vessels, causing vascular occlusion due to bacterial biofilm growth. However, little is known about the molecular mechanisms driving biofilm formation in Xylella-plant interactions. Here we show that BigR (for “biofilm growth-associated repressor”) is a novel helix-turn-helix repressor that controls the transcription of an operon implicated in biofilm growth. This operon, which encodes BigR, membrane proteins, and an unusual beta-lactamase-like hydrolase (BLH), is restricted to a few plant-associated bacteria, and thus, we sought to understand its regulation and function in X. fastidiosa and Agrobacterium tumefaciens. BigR binds to a palindromic AT-rich element (the BigR box) in the Xylella and Agrobacterium blh promoters and strongly represses the transcription of the operon in these cells. The BigR box overlaps with two alternative ?10 regions identified in the blh promoters, and mutations in this box significantly affected transcription, indicating that BigR competes with the RNA polymerase for the same promoter site. Although BigR is similar to members of the ArsR/SmtB family of regulators, our data suggest that, in contrast to the initial prediction, it does not act as a metal sensor. Increased activity of the BigR operon was observed in both Xylella and Agrobacterium biofilms. In addition, an A. tumefaciens bigR mutant showed constitutive expression of operon genes and increased biofilm formation on glass surfaces and tobacco roots, indicating that the operon may play a role in cell adherence or biofilm development. PMID:17586627

Barbosa, Rosicler L.; Benedetti, Celso E.

2007-01-01

160

Transcriptional Analysis of Biofilm Formation Processes in the Anaerobic, Hyperthermophilic Bacterium Thermotoga maritima  

PubMed Central

Thermotoga maritima, a fermentative, anaerobic, hyperthermophilic bacterium, was found to attach to bioreactor glass walls, nylon mesh, and polycarbonate filters during chemostat cultivation on maltose-based media at 80°C. A whole-genome cDNA microarray was used to examine differential expression patterns between biofilm and planktonic populations. Mixed-model statistical analysis revealed differential expression (twofold or more) of 114 open reading frames in sessile cells (6% of the genome), over a third of which were initially annotated as hypothetical proteins in the T. maritima genome. Among the previously annotated genes in the T. maritima genome, which showed expression changes during biofilm growth, were several that corresponded to biofilm formation genes identified in mesophilic bacteria (i.e., Pseudomonas species, Escherichia coli, and Staphylococcus epidermidis). Most notably, T. maritima biofilm-bound cells exhibited increased transcription of genes involved in iron and sulfur transport, as well as in biosynthesis of cysteine, thiamine, NAD, and isoprenoid side chains of quinones. These findings were all consistent with the up-regulation of iron-sulfur cluster assembly and repair functions in biofilm cells. Significant up-regulation of several ?-specific glycosidases was also noted in biofilm cells, despite the fact that maltose was the primary carbon source fed to the chemostat. The reasons for increased ?-glycosidase levels are unclear but are likely related to the processing of biofilm-based polysaccharides. In addition to revealing insights into the phenotype of sessile T. maritima communities, the methodology developed here can be extended to study other anaerobic biofilm formation processes as well as to examine aspects of microbial ecology in hydrothermal environments. PMID:15466556

Pysz, Marybeth A.; Conners, Shannon B.; Montero, Clemente I.; Shockley, Keith R.; Johnson, Matthew R.; Ward, Donald E.; Kelly, Robert M.

2004-01-01

161

Small Regulatory RNAs in the Control of Motility and Biofilm Formation in E. coli and Salmonella.  

PubMed

Biofilm formation in Escherichia coli and other enteric bacteria involves the inverse regulation of the synthesis of flagella and biofilm matrix components such as amyloid curli fibres, cellulose, colanic acid and poly-N-acetylglucosamine (PGA). Physiologically, these processes reflect the transition from growth to stationary phase. At the molecular level, they are tightly controlled by various sigma factors competing for RNA polymerase, a series of transcription factors acting in hierarchical regulatory cascades and several nucleotide messengers, including cyclic-di-GMP. In addition, a surprisingly large number of small regulatory RNAs (sRNAs) have been shown to directly or indirectly modulate motility and/or biofilm formation. This review aims at giving an overview of these sRNA regulators and their impact in biofilm formation in E. coli and Salmonella. Special emphasis will be put on sRNAs, that have known targets such as the mRNAs of the flagellar master regulator FlhDC, the stationary phase sigma factor ?S (RpoS) and the key biofilm regulator CsgD that have recently been shown to act as major hubs for regulation by multiple sRNAs. PMID:23443158

Mika, Franziska; Hengge, Regine

2013-01-01

162

Small Regulatory RNAs in the Control of Motility and Biofilm Formation in E. coli and Salmonella  

PubMed Central

Biofilm formation in Escherichia coli and other enteric bacteria involves the inverse regulation of the synthesis of flagella and biofilm matrix components such as amyloid curli fibres, cellulose, colanic acid and poly-N-acetylglucosamine (PGA). Physiologically, these processes reflect the transition from growth to stationary phase. At the molecular level, they are tightly controlled by various sigma factors competing for RNA polymerase, a series of transcription factors acting in hierarchical regulatory cascades and several nucleotide messengers, including cyclic-di-GMP. In addition, a surprisingly large number of small regulatory RNAs (sRNAs) have been shown to directly or indirectly modulate motility and/or biofilm formation. This review aims at giving an overview of these sRNA regulators and their impact in biofilm formation in E. coli and Salmonella. Special emphasis will be put on sRNAs, that have known targets such as the mRNAs of the flagellar master regulator FlhDC, the stationary phase sigma factor ?S (RpoS) and the key biofilm regulator CsgD that have recently been shown to act as major hubs for regulation by multiple sRNAs. PMID:23443158

Mika, Franziska; Hengge, Regine

2013-01-01

163

Studying bacterial hydrophobicity and biofilm formation at liquid-liquid interfaces through interfacial rheology and pendant drop tensiometry.  

PubMed

Bacterial adsorption to interfaces is a key factor in biofilm formation. One major limitation to understanding biofilm formation and development is the accurate measurement of bacterial cell adhesion to hydrophobic interfaces. With this study, bacterial attachment and biofilm growth over time at water-oil interface was monitored through interfacial rheology and tensiometry. Five model bacteria (Pseudomonas putida KT2442, Pseudomonas putida W2, Salmonella typhimurium, Escherichia coli, and Bacillus subtilis) were allowed to adsorb at the water-oil interface either in their non-growing or growing state. We found that we were able to observe the initial kinetics of bacterial attachment and the transient biofilm formation at the water-oil interface through interfacial rheology and tensiometry. Electrophoretic mobility measurements and bacterial adhesion to hydrocarbons (BATH) tests were performed to characterize the selected bacteria. To validate interfacial rheology and tensiometry measurements, we monitored biofilm formation utilizing both confocal laser scanning microscopy and light microscopy. Using this combination of techniques, we were able to observe the elasticity and tension development over time, from the first bacterial attachment up to biofilm formation. PMID:24632390

Rühs, P A; Böcker, L; Inglis, R F; Fischer, P

2014-05-01

164

Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress  

PubMed Central

To compensate for stress imposed by salinity, biofilm formation and exopolysaccharide production are significant strategies of salt tolerant bacteria to assist metabolism. We hypothesized that two previously isolated salt-tolerant strains Halomonas variabilis (HT1) and Planococcus rifietoensis (RT4) have an ability to improve plant growth, These strains can form biofilm and accumulate exopolysacharides at increasing salt stress. These results showed that bacteria might be involved in developing microbial communities under salt stress and helpful in colonizing of bacterial strains to plant roots and soil particles. Eventually, it can add to the plant growth and soil structure. We investigated the comparative effect of exopolysacharide and biofilm formation in two bacterial strains Halomonas variabilis (HT1) and Planococcus rifietoensis (RT4) in response to varying salt stress. We found that biofilm formation and exopolysaccharide accumulation increased at higher salinity. To check the effect of bacterial inoculation on the plant (Cicer arietinum Var. CM-98) growth and soil aggregation, pot experiment was conducted by growing seedlings under salt stress. Inoculation of both strains increased plant growth at elevated salt stress. Weight of soil aggregates attached with roots and present in soil were added at higher salt concentrations compared to untreated controls. Soil aggregation was higher at plant roots under salinity. These results suggest the feasibility of using above strains in improving plant growth and soil fertility under salinity. PMID:24031943

Qurashi, Aisha Waheed; Sabri, Anjum Nasim

2012-01-01

165

Two quorum sensing systems control biofilm formation and virulence in members of the Burkholderia cepacia complex  

PubMed Central

The Burkholderia cepacia complex (Bcc) consists of 17 closely related species that are problematic opportunistic bacterial pathogens for cystic fibrosis patients and immunocompromised individuals. These bacteria are capable of utilizing two different chemical languages: N-acyl homoserine lactones (AHLs) and cis-2-unsaturated fatty acids. Here we summarize the current knowledge of the underlying molecular architectures of these communication systems, showing how they are interlinked and discussing how they regulate overlapping as well as specific sets of genes. A particular focus is laid on the role of these signaling systems in the formation of biofilms, which are believed to be highly important for chronic infections. We review genes that have been implicated in the sessile lifestyle of this group of bacteria. The new emerging role of the intracellular second messenger cyclic dimeric guanosine monophosphate (c-di-GMP) as a downstream regulator of the fatty acid signaling cascade and as a key factor in biofilm formation is also discussed. PMID:23799665

Suppiger, Angela; Schmid, Nadine; Aguilar, Claudio; Pessi, Gabriella; Eberl, Leo

2013-01-01

166

Biofilm formation and control in a simulated spacecraft water system - Interim results  

NASA Technical Reports Server (NTRS)

The ability of iodine to control microbial contamination and biofilm formation in spacecraft water distribution systems is studied using two stainless steel water subsystems. One subsystem has an iodine level of 2.5 mg/L maintained by an iodinated ion-exchange resin. The other subsystem has no iodine added. Stainless steel coupons are removed from each system to monitor biofilm formation. Results from the first six months of operation indicate that 2.5 mg/L of iodine has limited the number of viable bacteria that can be recovered from the iodinated subsystem. Epifluorescence microscopy of the coupons taken from this subsystem, however, indicates some evidence of microbial colonization after 15 weeks of operation. Numerous bacteria have been continually removed from both the water samples and the coupons taken from the noniodinated subsystem after only 3 weeks of operation.

Schultz, John R.; Taylor, Robert D.; Flanagan, David T.; Gibbons, Randall E.; Brown, Harlan D.; Sauer, Richard L.

1989-01-01

167

Enhanced Biofilm Formation by Escherichia coli LPS Mutants Defective in Hep Biosynthesis  

PubMed Central

Lipopolysaccharide (LPS) is the major component of the surface of Gram-negative bacteria and its polysaccharide portion is situated at the outermost region. We investigated the relationship between the polysaccharide portion of LPS and biofilm formation using a series of Escherichia coli mutants defective in genes earlier shown to affect the LPS sugar compositions. Biofilm formation by a deep rough LPS mutant, the hldE strain, was strongly enhanced in comparison with the parental strain and other LPS mutants. The hldE strain also showed a phenotype of increased auto-aggregation and stronger cell surface hydrophobicity compared to the wild-type. Similar results were obtained with another deep rough LPS mutant, the waaC strain whose LPS showed same molecular mass as that of the hldE strain. Confocal laser scanning microscopy (CLSM) analysis and biofilm formation assay using DNase I revealed that biofilm formation by the hldE strain was dependent on extracellular DNA. Furthermore, a loss of flagella and an increase in amount of outer membrane vesicles in case of the hldE strain were also observed by transmission electron microscopy and atomic force microscopy, respectively. In addition, we demonstrated that a mutation in the hldE locus, which alters the LPS structure, caused changes in both expression and properties of several surface bacterial factors involved in biofilm formation and virulence. We suggest that the implication of these results should be considered in the context of biofilm formation on abiotic surfaces, which is frequently associated with nosocominal infections such as the catheter-associated infections. PMID:23284671

Nakao, Ryoma; Ramstedt, Madeleine; Wai, Sun Nyunt; Uhlin, Bernt Eric

2012-01-01

168

DNase I and proteinase K impair Listeria monocytogenes biofilm formation and induce dispersal of pre-existing biofilms.  

PubMed

Current sanitation methods in the food industry are not always sufficient for prevention or dispersal of Listeria monocytogenes biofilms. Here, we determined if prevention of adherence or dispersal of existing biofilms could occur if biofilm matrix components were disrupted enzymatically. Addition of DNase during biofilm formation reduced attachment (<50% of control) to polystyrene. Treatment of established 72h biofilms with 100?g/ml of DNase for 24h induced incomplete biofilm dispersal, with <25% biofilm remaining compared to control. In contrast, addition of proteinase K completely inhibited biofilm formation, and 72h biofilms-including those grown under stimulatory conditions-were completely dispersed with 100?g/ml proteinase K. Generally-regarded-as-safe proteases bromelain and papain were less effective dispersants than proteinase K. In a time course assay, complete dispersal of L. monocytogenes biofilms from both polystyrene and type 304H food-grade stainless steel occurred within 5min at proteinase K concentrations above 25?g/ml. These data confirm that both DNA and proteins are required for L. monocytogenes biofilm development and maintenance, and that these components of the biofilm matrix can be targeted for effective prevention and removal of biofilms. PMID:25043896

Nguyen, Uyen T; Burrows, Lori L

2014-09-18

169

The Impact of spgM, rpfF, rmlA Gene Distribution on Biofilm Formation in Stenotrophomonas maltophilia  

PubMed Central

Background Stenotrophomonas maltophilia is emerging as one of the most frequently found bacteria in chronic pulmonary infection. Biofilm is increasingly recognized as a contributing factor to disease pathogenesis. In the present study, a total of 37 isolates of S. maltophilia obtained from chronic pulmonary infection patients were evaluated to the relationship between biofilm production and the relative genes expression. Methods The clonal relatedness of isolates was determined by pulse-field gel electrophoresis. Biofilm formation assays were performed by crystal violet assay, and confirmed by Electron microscopy analysis and CLSM analysis. PCR was employed to learn gene distribution and expression. Results Twenty-four pulsotypes were designated for 37 S. maltophilia isolates, and these 24 pulsotypes exhibited various levels of biofilm production, 8 strong biofilm-producing S. maltophilia strains with OD492 value above 0.6, 14 middle biofilm-producing strains with OD492 average value of 0.4 and 2 weak biofilm-producing strains with OD492 average value of 0.19. CLSM analysis showed that the isolates from the early stage of chronic infection enable to form more highly structured and multilayered biofim than those in the late stage. The prevalence of spgM, rmlA, and rpfF genes was 83.3%, 87.5%, and 50.0% in 24 S. maltophilia strains, respectively, and the presence of rmlA, spgM or rpfF had a close relationship with biofilm formation but did not significantly affect the mean amount of biofilm. Significant mutations of spgM and rmlA were found in both strong and weak biofilm-producing strains. Conclusion Mutations in spgM and rmlA may be relevant to biofilm formation in the clinical isolates of S. maltophilia. PMID:25285537

Zhuo, Chao; Zhao, Qian-yu; Xiao, Shu-nian

2014-01-01

170

Biofilm formation on brass coupons exposed to a cooling system of an oil refinery  

Microsoft Academic Search

  Brass coupons (70% Cu 30% Zn) were exposed to a cooling freshwater system of an oil refinery, in order to investigate susceptibility\\u000a of the metal to biofilm formation. The coupons were fixed on bypasses at points which allowed the circulation of makeup, cooling\\u000a and return water. The number of aerobic, anaerobic and sulfate-reducing bacteria was determined in both the planktonic

M A N Almeida; F P de França

1998-01-01

171

Quorum sensing controls biofilm formation in Vibrio cholerae through modulation of cyclic di-GMP levels and repression of vpsT.  

PubMed

Two chemical signaling systems, quorum sensing (QS) and 3',5'-cyclic diguanylic acid (c-di-GMP), reciprocally control biofilm formation in Vibrio cholerae. QS is the process by which bacteria communicate via the secretion and detection of autoinducers, and in V. cholerae, QS represses biofilm formation. c-di-GMP is an intracellular second messenger that contains information regarding local environmental conditions, and in V. cholerae, c-di-GMP activates biofilm formation. Here we show that HapR, a major regulator of QS, represses biofilm formation in V. cholerae through two distinct mechanisms. HapR controls the transcription of 14 genes encoding a group of proteins that synthesize and degrade c-di-GMP. The net effect of this transcriptional program is a reduction in cellular c-di-GMP levels at high cell density and, consequently, a decrease in biofilm formation. Increasing the c-di-GMP concentration at high cell density to the level present in the low-cell-density QS state restores biofilm formation, showing that c-di-GMP is epistatic to QS in the control of biofilm formation in V. cholerae. In addition, HapR binds to and directly represses the expression of the biofilm transcriptional activator, vpsT. Together, our results suggest that V. cholerae integrates information about the vicinal bacterial community contained in extracellular QS autoinducers with the intracellular environmental information encoded in c-di-GMP to control biofilm formation. PMID:18223081

Waters, Christopher M; Lu, Wenyun; Rabinowitz, Joshua D; Bassler, Bonnie L

2008-04-01

172

Biofilm formation by Salmonella enterica serovar 1,4,[5],12:i:- Portuguese isolates: a phenotypic, genotypic, and socio-geographic analysis.  

PubMed

Biofilm-forming ability is well established as an important virulence factor. However, there are no studies available regarding biofilm formation of Salmonella Typhimurium 1,4,[5],12:i:-, the new pandemic serovar in Europe. To address this problem, biofilm expression by Salmonella 1,4,[5],12:i:- was evaluated using 133 isolates from clinical, environmental and animal origins, collected in Portugal from 2006 to 2011. Biofilm detection was performed by phenotypic and genotypic methods, such growth characterization in agar and broth medium, optical density determination by microtiter assays and direct observation by fluorescent in situ hybridization. Biofilm-related genes adrA, csgD and gcpA were detected by PCR. A socio-geographic characterization of strains as biofilm producers was also performed. Results showed that biofilm formation in monophasic Salmonella is widely distributed in Portuguese isolates and could be one of the reasons for its dissemination in this country. Biofilm expression varies between locations, showing that isolates from some regions like Lisboa or Ponta Delgada have an increased ability to persist in the environment due to an enhanced biofilm production. Biofilm formation also varies between risk groups, with a higher prevalence in isolates from salmonellosis infections in women. Therefore, the analysis of the socio-geographic distribution of biofilm-forming bacteria should be considered for the establishment of more adequate regulatory measures or therapeutics regimens, especially important due to the continuous increase of infections caused by antimicrobial resistant microorganisms. PMID:24463530

Seixas, Rui; Machado, Jorge; Bernardo, Fernando; Vilela, Cristina; Oliveira, Manuela

2014-05-01

173

Importance of Biofilm Formation in Plant Growth Promoting Rhizobacterial Action  

Microsoft Academic Search

\\u000a Among the diverse soil microflora, plant growth promoting rhizobacteria (PGPR) mark an important role in enhancing plant growth\\u000a through a range of beneficial effects. This is often achieved by forming biofilms in the rhizosphere, which has advantages\\u000a over planktonic mode of bacterial existence. However, the biofilm formation of PGPR has been overlooked in past research.\\u000a This chapter focuses on new

Gamini Seneviratne; M. Weerasekara; K. Seneviratne; J. Zavahir; M. Kecskés; I. Kennedy

174

Variation in sessile microflora during biofilm formation on AISI-304 stainless steel coupons.  

PubMed

Coupons of stainless steel type AISI-304 were exposed to the industrial cooling system of a petrochemical plant fed by seawater from the Guanabara Bay, Rio de Janeiro, Brazil, in order to study the in situ formation of biofilms. Bacteria, microalgae and fungi were detected on the coupons as soon as 48 h after exposure. Their respective numbers were determined at times 48, 96 and 192 h and over the following 8 weeks. Aerobic, anaerobic and sulfate-reducing bacteria were quantified according to the technique of the most probable number, and fungi by the pour plate technique. The number of microorganisms present in the forming biofilm varied over the experimental period, reaching maximal levels of 14 x 10(11) cells cm-2, 30 x 10(13) cells cm-2, 38 x 10(11) cells cm-2 and 63 x 10(5) cells cm-2, respectively, for aerobic bacteria, anaerobic bacteria, sulfate-reducing bacteria and fungi, and the dynamics of this variation depended on the group of microorganisms. Bacillus sp, Escherichia coli, Serratia sp and Pseudomonas putrefaciens were identified among the aerobic bacteria isolated. Additionally, microalgae and bacteria of the genus Gallionella were also detected. Nonetheless, no evidence of corrosion was found on the stainless steel type AISI-304 coupons over the experimental period. PMID:8987686

de França, F P; Lutterbach, M T

1996-07-01

175

Antifouling potential of bacteria isolated from a marine biofilm  

NASA Astrophysics Data System (ADS)

Marine microorganisms are a new source of natural antifouling compounds. In this study, two bacterial strains, Kytococcus sedentarius QDG-B506 and Bacillus cereus QDG-B509, were isolated from a marine biofilm and identified. The bacteria fermentation broth could exert inhibitory effects on the growth of Skeletonema costatum and barnacle larvae. A procedure was employed to extract and identify the antifouling compounds. Firstly, a toxicity test was conducted by graduated pH and liquid-liquid extraction to determine the optimal extraction conditions. The best extraction conditions were found to be pH 2 and 100% petroleum ether. The EC 50 value of the crude extract of K. sedentarius against the test microalgae was 236.7 ± 14.08 ?g mL-1, and that of B. cereus was 290.6 ± 27.11 ?g mL-1. Secondly, HLB SPE columns were used to purify the two crude extracts. After purification, the antifouling activities of the two extracts significantly increased: the EC 50 of the K. sedentarius extract against the test microalgae was 86.4 ± 3.71 ?g mL-1, and that of B. cereus was 92.6 ± 1.47 ?g mL-1. These results suggest that the metabolites produced by the two bacterial strains are with high antifouling activities and they should be fatty acid compounds. Lastly, GC-MS was used for the structural elucidation of the compounds. The results show that the antifouling compounds produced by the two bacterial strains are myristic, palmitic and octadecanoic acids.

Gao, Min; Wang, Ke; Su, Rongguo; Li, Xuzhao; Lu, Wei

2014-10-01

176

Bactericidal Activity of N-Chlorotaurine against Biofilm-Forming Bacteria Grown on Metal Disks  

PubMed Central

Many orthopedic surgeons consider surgical irrigation and debridement with prosthesis retention as a treatment option for postoperative infections. Usually, saline solution with no added antimicrobial agent is used for irrigation. We investigated the activity of N-chlorotaurine (NCT) against various biofilm-forming bacteria in vitro and thereby gained significant information on its usability as a soluble and well-tolerated active chlorine compound in orthopedic surgery. Biofilms of Staphylococcus aureus were grown on metal alloy disks and in polystyrene dishes for 48 h. Subsequently, they were incubated for 15 min to 7 h in buffered solutions containing therapeutically applicable concentrations of NCT (1%, 0.5%, and 0.1%; 5.5 to 55 mM) at 37°C. NCT inactivated the biofilm in a time- and dose-dependent manner. Scanning electron microscopy revealed disturbance of the biofilm architecture by rupture of the extracellular matrix. Assays with reduction of carboxanilide (XTT) showed inhibition of the metabolism of the bacteria in biofilms. Quantitative cultures confirmed killing of S. aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa biofilms on metal alloy disks by NCT. Clinical isolates were slightly more resistant than ATCC type strains, but counts of CFU were reduced at least 10-fold by 1% NCT within 15 min in all cases. NCT showed microbicidal activity against various bacterial strains in biofilms. Whether this can be transferred to the clinical situation should be the aim of future studies. PMID:24492358

Ammann, Christoph G.; Fille, Manfred; Hausdorfer, Johann; Nogler, Michael

2014-01-01

177

Bactericidal activity of N-chlorotaurine against biofilm-forming bacteria grown on metal disks.  

PubMed

Many orthopedic surgeons consider surgical irrigation and debridement with prosthesis retention as a treatment option for postoperative infections. Usually, saline solution with no added antimicrobial agent is used for irrigation. We investigated the activity of N-chlorotaurine (NCT) against various biofilm-forming bacteria in vitro and thereby gained significant information on its usability as a soluble and well-tolerated active chlorine compound in orthopedic surgery. Biofilms of Staphylococcus aureus were grown on metal alloy disks and in polystyrene dishes for 48 h. Subsequently, they were incubated for 15 min to 7 h in buffered solutions containing therapeutically applicable concentrations of NCT (1%, 0.5%, and 0.1%; 5.5 to 55 mM) at 37°C. NCT inactivated the biofilm in a time- and dose-dependent manner. Scanning electron microscopy revealed disturbance of the biofilm architecture by rupture of the extracellular matrix. Assays with reduction of carboxanilide (XTT) showed inhibition of the metabolism of the bacteria in biofilms. Quantitative cultures confirmed killing of S. aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa biofilms on metal alloy disks by NCT. Clinical isolates were slightly more resistant than ATCC type strains, but counts of CFU were reduced at least 10-fold by 1% NCT within 15 min in all cases. NCT showed microbicidal activity against various bacterial strains in biofilms. Whether this can be transferred to the clinical situation should be the aim of future studies. PMID:24492358

Coraça-Huber, Débora C; Ammann, Christoph G; Fille, Manfred; Hausdorfer, Johann; Nogler, Michael; Nagl, Markus

2014-01-01

178

C. albicans growth, transition, biofilm formation, and gene expression modulation by antimicrobial decapeptide KSL-W  

PubMed Central

Background Antimicrobial peptides have been the focus of much research over the last decade because of their effectiveness and broad-spectrum activity against microbial pathogens. These peptides also participate in inflammation and the innate host defense system by modulating the immune function that promotes immune cell adhesion and migration as well as the respiratory burst, which makes them even more attractive as therapeutic agents. This has led to the synthesis of various antimicrobial peptides, including KSL-W (KKVVFWVKFK-NH2), for potential clinical use. Because this peptide displays antimicrobial activity against bacteria, we sought to determine its antifungal effect on C. albicans. Growth, hyphal form, biofilm formation, and degradation were thus examined along with EFG1, NRG1, EAP1, HWP1, and SAP 2-4-5-6 gene expression by quantitative RT-PCR. Results This study demonstrates that KSL-W markedly reduced C. albicans growth at both early and late incubation times. The significant effect of KSL-W on C. albicans growth was observed beginning at 10 ?g/ml after 5 h of contact by reducing C. albicans transition and at 25 ?g/ml by completely inhibiting C. albicans transition. Cultured C. albicans under biofilm-inducing conditions revealed that both KSL-W and amphotericin B significantly decreased biofilm formation at 2, 4, and 6 days of culture. KSL-W also disrupted mature C. albicans biofilms. The effect of KSL-W on C. albicans growth, transition, and biofilm formation/disruption may thus occur through gene modulation, as the expression of various genes involved in C. albicans growth, transition and biofilm formation were all downregulated when C. albicans was treated with KSL-W. The effect was greater when C. albicans was cultured under hyphae-inducing conditions. Conclusions These data provide new insight into the efficacy of KSL-W against C. albicans and its potential use as an antifungal therapy. PMID:24195531

2013-01-01

179

Biofilm exclusion of uropathogenic bacteria by selected asymptomatic bacteriuria Escherichia coli strains  

Microsoft Academic Search

Many bacterial infections are associated with biofilm formation. In the urinary tract bacterial biofilms develop on both living surfaces and artificial implants, producing chronic and often intractable infections. Escherichia coli is the most common organism associated with urinary tract infections. In contrast to uropathogenic E. coli (UPEC), which cause symptomatic urinary tract infection, asymptomatic bacteriuria (ABU) strains are associated with

Lionel Ferrieres; Viktoria Hancock; Per Klemm

2007-01-01

180

Determination of the biofilm formation capacity of bacterial pathogens associated with otorhinolaryngologic diseases in the Malaysian population.  

PubMed

This study aims to assess the association between microbial composition, biofilm formation and chronic otorhinolaryngologic disorders in Malaysia. A total of 45 patients with chronic rhinosinusitis, chronic tonsillitis and chronic suppurative otitis media and 15 asymptomatic control patients were studied. Swab samples were obtained from these subjects. Samples were studied by conventional microbiological culturing, PCR-based microbial detection and Confocal Laser Scanning Microscopy (CLSM). Haemophilus influenzae, Staphylococcus aureus, Streptococcus pneumoniae, coagulase-negative staphylococci (CoNS) and other Streptococcus species were detected in subjects of both patient and control groups. Biofilm was observed in approximately half of the smear prepared from swab samples obtained from subjects of the patient group. Most of these were polymicrobial biofilms. S. aureus biofilm was most prevalent among nasal samples while H. influenzae biofilm was more common among ear and throat samples. Results from this study supported the hypothesis that chronic otorhinolaryngologic diseases may be biofilm related. Due to the presence of unculturable bacteria in biofilms present in specimens from ear, nose and throat, the use of molecular methods in combination with conventional microbiological culturing has demonstrated an improvement in the detection of bacteria from such specimens in this study. PMID:23880921

Khosravi, Yalda; Ling, Lina Chooi; Loke, Mun Fai; Shailendra, Sivalingam; Prepageran, Narayanan; Vadivelu, Jamuna

2014-05-01

181

Virstatin inhibits biofilm formation and motility of Acinetobacter baumannii  

PubMed Central

Background Acinetobacter baumannii has emerged as an opportunistic nosocomial pathogen causing infections worldwide. One reason for this emergence is due to its natural ability to survive in the hospital environment, which may be explained by its capacity to form biofilms. Cell surface appendages are important determinants of the A. baumannii biofilm formation and as such constitute interesting targets to prevent the development of biofilm-related infections. A chemical agent called virstatin was recently described to impair the virulence of Vibrio cholerae by preventing the expression of its virulence factor, the toxin coregulated pilus (type IV pilus). The objective of this work was to investigate the potential effect of virstatin on A. baumannii biofilms. Results After a dose–response experiment, we determined that 100 ?M virstatin led to an important decrease (38%) of biofilms formed by A. baumannii ATCC17978 grown under static mode. We demonstrated that the production of biofilms grown under dynamic mode was also delayed and reduced. The biofilm susceptibility to virstatin was then tested for 40 clinical and reference A. baumannii strains. 70% of the strains were susceptible to virstatin (with a decrease of 10 to 65%) when biofilms grew in static mode, whereas 60% of strains respond to the treatment when their biofilms grew in dynamic mode. As expected, motility and atomic force microscopy experiments showed that virstatin acts on the A. baumannii pili biogenesis. Conclusions By its action on pili biogenesis, virstatin demonstrated a very promising antibiofilm activity affecting more than 70% of the A. baumannii clinical isolates. PMID:24621315

2014-01-01

182

Propionibacterium-Produced Coproporphyrin III Induces Staphylococcus aureus Aggregation and Biofilm Formation  

PubMed Central

ABSTRACT The majority of bacteria detected in the nostril microbiota of most healthy adults belong to three genera: Propionibacterium, Corynebacterium, and Staphylococcus. Among these staphylococci is the medically important bacterium Staphylococcus aureus. Almost nothing is known about interspecies interactions among bacteria in the nostrils. We observed that crude extracts of cell-free conditioned medium from Propionibacterium spp. induce S. aureus aggregation in culture. Bioassay-guided fractionation implicated coproporphyrin III (CIII), the most abundant extracellular porphyrin produced by human-associated Propionibacterium spp., as a cause of S. aureus aggregation. This aggregation response depended on the CIII dose and occurred during early stationary-phase growth, and a low pH (~4 to 6) was necessary but was not sufficient for its induction. Additionally, CIII induced plasma-independent S. aureus biofilm development on an abiotic surface in multiple S. aureus strains. In strain UAMS-1, CIII stimulation of biofilm depended on sarA, a key biofilm regulator. This study is one of the first demonstrations of a small-molecule-mediated interaction among medically relevant members of the nostril microbiota and the first description of a role for CIII in bacterial interspecies interactions. Our results indicate that CIII may be an important mediator of S. aureus aggregation and/or biofilm formation in the nostril or other sites inhabited by Propionibacterium spp. and S. aureus. PMID:25053784

Wollenberg, Michael S.; Claesen, Jan; Escapa, Isabel F.; Aldridge, Kelly L.; Fischbach, Michael A.

2014-01-01

183

Inhibition of biofilm formation and antibacterial properties of a silver nano-coating on human dentine.  

PubMed

The survival of pathogenic bacteria in the oral cavity depends on their successful adhesion to dental surfaces and their ability to develop into biofilms, known as dental plaque. Bacteria from the dental plaque are responsible for the development of dental caries, gingivitis, periodontitis, stomatitis and peri-implantitis. Certain metal nanoparticles have been suggested for infection control and the management of the oral biofilm. Here, it is shown that application of a silver nano-coating directly on dentine can successfully prevent the biofilm formation on dentine surfaces as well as inhibit bacterial growth in the surrounding media. This silver nano-coating was found to be stable (>98.8%) and to maintain its integrity in biological fluids. Its antibacterial activity was compared to silver nitrate and the widely used clinical antiseptic, chlorhexidine. The bacterial growth and cell viability were quantitatively assessed by measuring the turbidity, proportion of live and dead cells and lactate production. All three bioassays showed that silver nanoparticles and silver nitrate dentine coatings were equally highly bactericidal (>99.5%), while inhibiting bacterial adhesion. However, the latter caused significant dentine discolouration (?E* = 50.3). The chlorhexidine coating showed no antibacterial effect. Thus, silver nanoparticles may be a viable alternative to both chlorhexidine and silver nitrate, protecting from dental plaque and secondary caries when applied as a dentine coating, while they may provide the platform for creating anti-biofilm surfaces in medical devices and other biomedical applications. PMID:23875717

Besinis, Alexandros; De Peralta, Tracy; Handy, Richard D

2014-11-01

184

fSpatial and temporal dynamics of cellulose degradation and biofilm formation by Caldicellulosiruptor obsidiansis and Clostridium thermocellum  

PubMed Central

Cellulose degradation is one of the major bottlenecks of a consolidated bioprocess that employs cellulolytic bacterial cells as catalysts to produce biofuels from cellulosic biomass. In this study, we investigated the spatial and temporal dynamics of cellulose degradation by Caldicellulosiruptfor obsidiansis, which does not produce cellulosomes, and Clostridium thermocellum, which does produce cellulosomes. Results showed that the degradation of either regenerated or natural cellulose was synchronized with biofilm formation, a process characterized by the formation and fusion of numerous crater-like depressions on the cellulose surface. In addition, the dynamics of biofilm formation were similar in both bacteria, regardless of cellulosome production. Only the areas of cellulose surface colonized by microbes were significantly degraded, highlighting the essential role of the cellulolytic biofilm in cellulose utilization. After initial attachment, the microbial biofilm structure remained thin, uniform and dense throughout the experiment. A cellular automaton model, constructed under the assumption that the attached cells divide and produce daughter cells that contribute to the hydrolysis of the adjacent cellulose, can largely simulate the observed process of biofilm formation and cellulose degradation. This study presents a model, based on direct observation, correlating cellulolytic biofilm formation with cellulose degradation. PMID:21982458

2011-01-01

185

fSpatial and temporal dynamics of cellulose degradation and biofilm formation by Caldicellulosiruptor obsidiansis and Clostridium thermocellum.  

PubMed

Cellulose degradation is one of the major bottlenecks of a consolidated bioprocess that employs cellulolytic bacterial cells as catalysts to produce biofuels from cellulosic biomass. In this study, we investigated the spatial and temporal dynamics of cellulose degradation by Caldicellulosiruptfor obsidiansis, which does not produce cellulosomes, and Clostridium thermocellum, which does produce cellulosomes. Results showed that the degradation of either regenerated or natural cellulose was synchronized with biofilm formation, a process characterized by the formation and fusion of numerous crater-like depressions on the cellulose surface. In addition, the dynamics of biofilm formation were similar in both bacteria, regardless of cellulosome production. Only the areas of cellulose surface colonized by microbes were significantly degraded, highlighting the essential role of the cellulolytic biofilm in cellulose utilization. After initial attachment, the microbial biofilm structure remained thin, uniform and dense throughout the experiment. A cellular automaton model, constructed under the assumption that the attached cells divide and produce daughter cells that contribute to the hydrolysis of the adjacent cellulose, can largely simulate the observed process of biofilm formation and cellulose degradation. This study presents a model, based on direct observation, correlating cellulolytic biofilm formation with cellulose degradation. PMID:21982458

Wang, Zhi-Wu; Lee, Seung-Hwan; Elkins, James G; Morrell-Falvey, Jennifer L

2011-01-01

186

Heparin-Binding Motifs and Biofilm Formation by Candida albicans  

PubMed Central

Candida albicans is a leading pathogen in infections of central venous catheters, which are frequently infused with heparin. Binding of C. albicans to medically relevant concentrations of soluble and plate-bound heparin was demonstrable by confocal microscopy and enzyme-linked immunosorbent assay (ELISA). A sequence-based search identified 34 C. albicans surface proteins containing ?1 match to linear heparin-binding motifs. The virulence factor Int1 contained the most putative heparin-binding motifs (n = 5); peptides encompassing 2 of 5 motifs bound to heparin-Sepharose. Alanine substitution of lysine residues K805/K806 in 804QKKHQIHK811 (motif 1 of Int1) markedly attenuated biofilm formation in central venous catheters in rats, whereas alanine substitution of K1595/R1596 in 1593FKKRFFKL1600 (motif 4 of Int1) did not impair biofilm formation. Affinity-purified immunoglobulin G (IgG) recognizing motif 1 abolished biofilm formation in central venous catheters; preimmune IgG had no effect. After heparin treatment of C. albicans, soluble peptides from multiple C. albicans surface proteins were detected, such as Eno1, Pgk1, Tdh3, and Ssa1/2 but not Int1, suggesting that heparin changes candidal surface structures and may modify some antigens critical for immune recognition. These studies define a new mechanism of biofilm formation for C. albicans and a novel strategy for inhibiting catheter-associated biofilms. PMID:23904295

Green, Julianne V.; Orsborn, Kris I.; Zhang, Minlu; Tan, Queenie K. G.; Greis, Kenneth D.; Porollo, Alexey; Andes, David R.; Long Lu, Jason; Hostetter, Margaret K.

2013-01-01

187

Biofilm Formation by Mycobacterium bovis: Influence of Surface Kind and Temperatures of Sanitizer Treatments on Biofilm Control  

PubMed Central

Mycobacterium bovis causes classic bovine tuberculosis, a zoonosis which is still a concern in Africa. Biofilm forming ability of two Mycobacterium bovis strains was assessed on coupons of cement, ceramic, or stainless steel in three different microbiological media at 37°C with agitation for 2, 3, or 4 weeks to determine the medium that promotes biofilm. Biofilm mass accumulated on coupons was treated with 2 sanitizers (sanitizer A (5.5?mg?L?1 active iodine) and sanitizer B (170.6?g1 alkyl dimethylbenzyl ammonium chloride, 78?g?1 didecyldimethyl ammonium chloride, 107.25?g?L?1 glutaraldehyde, 146.25?g?L?1 isopropanol, and 20?g?L?1 pine oil) at 28 and 45°C and in hot water at 85°C for 5?min. Residual biofilms on treated coupons were quantified using crystal violet binding assay. The two strains had a similar ability to form biofilms on the three surfaces. More biofilms were developed in media containing 5% liver extract. Biofilm mass increased as incubation time increased till the 3rd week. More biofilms were formed on cement than on ceramic and stainless steel surfaces. Treatment with hot water at 85°C reduced biofilm mass, however, sanitizing treatments at 45°C removed more biofilms than at 28°C. However, neither treatment completely eliminated the biofilms. The choice of processing surface and temperatures used for sanitizing treatments had an impact on biofilm formation and its removal from solid surfaces. PMID:24991540

Adetunji, Victoria O.; Kehinde, Aderemi O.; Bolatito, Olayemi K.; Chen, Jinru

2014-01-01

188

Probiotic-mediated competition, exclusion and displacement in biofilm formation by food-borne pathogens.  

PubMed

The objective of this study was to examine the inhibitory effect of probiotic strains on pathogenic biofilm formation in terms of competition, exclusion and displacement. Probiotic strains (Lactobacillus acidophilus KACC 12419, Lact. casei KACC 12413, Lact. paracasei KACC 12427 and Lact. rhamnosus KACC 11953) and pathogens (Salmonella Typhimurium KCCM 40253 and Listeria monocytogenes KACC 12671) were used to evaluate the auto-aggregation, hydrophobicity and biofilm formation inhibition. The highest auto-aggregation abilities were observed in Lact. rhamnosus (17·5%), Lact. casei (17·2%) and Lact. acidophilus (15·1%). Salm. Typhimurium had the highest affinity to xylene, showing the hydrophobicity of 53·7%. The numbers of L. monocytogenes biofilm cells during the competition, exclusion and displacement assays were effectively reduced by more than 3 log when co-cultured with Lact. paracasei and Lact. rhamnosus. The results suggest that probiotic strains can be used as alternative way to effectively reduce the biofilm formation in pathogenic bacteria through competition, exclusion and displacement. PMID:23362863

Woo, J; Ahn, J

2013-04-01

189

Control of pathogen growth and biofilm formation using a urinary catheter that releases antimicrobial nitrogen oxides.  

PubMed

Antibacterial nitrogen oxides including nitric oxide are formed from nitrite under acidic conditions. In a continuous-flow model of the urinary bladder we used the retention cuff of an all-silicone Foley catheter as a depot for export of nitrogen oxides. The cuff was filled with sodium nitrite (50mM) and an acidic buffer solution (pH 3.6) and the growth of nine common uropathogens in the surrounding artificial urine was measured along with biofilm formation on the catheter surface. In experiments with control catheters (NaCl) bacteria grew readily and biofilm developed within hours in five of nine strains. In contrast, with test catheters bacterial counts were markedly reduced and biofilm formation by Pseudomonas aeruginosa, Klebsiella pneumoniae, and Enterobacter cloace was prevented, whereas Escherichia coli and Staphylococcus aureus were unaffected. We conclude that antibacterial nitrogen oxides generated in the retention cuff of a urinary catheter diffuse into urine and prevent the growth of urinary pathogens and biofilm formation. Although promising, future studies will reveal if this novel approach can be clinically useful for the prevention of catheter-associated urinary tract infections. PMID:24084579

Kishikawa, Hiroaki; Ebberyd, Anette; Römling, Ute; Brauner, Annelie; Lüthje, Petra; Lundberg, Jon O; Weitzberg, Eddie

2013-12-01

190

Occurrence of manganese-oxidizing microorganisms and manganese deposition during biofilm formation on stainless steel in a brackish surface water.  

PubMed

Abstract Biofilm formation on 316L stainless steel was investigated in a pilotscale flow-through system fed with brackish surface water using an alternating flow/stagnation/flow regime. Microbial community analysis by denaturing gradient gel electrophoresis and sequencing revealed the presence of complex microbial ecosystems consisting of, amongst others, Leptothrix-related manganese-oxidizing bacteria in the adjacent water, and sulfur-oxidizing, sulfate-reducing and slime-producing bacteria in the biofilm. Selective plating of the biofilm indicated the presence of high levels of manganese-oxidizing microorganisms, while microscopic and chemical analyses of the biofilm confirmed the presence of filamentous manganese-precipitating microorganisms, most probably Leptothrix species. Strong accumulation of iron and manganese occurred in the biofilm relative to the adjacent water. No evidence of selective colonization of the steel surface or biocorrosion was found over the experimental period. The overall results of this study highlight the potential formation of complex microbial biofilm communities in flow-through systems thriving on minor concentrations of manganese. PMID:19709183

Kielemoes, Jan; Bultinck, Isabelle; Storms, Hedwig; Boon, Nico; Verstraete, Willy

2002-01-01

191

Biofilm formation by coagulase-negative staphylococci: impact on the efficacy of antimicrobials and disinfectants commonly used on dairy farms.  

PubMed

Coagulase-negative staphylococci (CNS) have traditionally been considered minor mastitis pathogens and are the bacteria most frequently isolated from intramammary infection. Previously, our laboratory demonstrated that a majority of CNS isolated from Canadian milk were able to form biofilm and this was strongly and positively associated with days in milk. Biofilms offer protection against antibiotics and disinfectants, and the presence of CNS biofilms near the end of the lactation cycle could have an impact on the prevention and recurrence of CNS infections in the next lactation cycle. The objective of this study was to investigate the effect of biofilm formation on efficacy of commonly used antibiotics and disinfectants against CNS. The minimal inhibitory concentration (MIC) and minimal biofilm eradication concentration (MBEC) of several CNS isolates were determined using microdilution method and the MBEC device, respectively. Biofilm cells were more resistant to a penicillin G/novobiocin combination and to ceftiofur than their planktonic counterparts and the increase in resistance ranged from 4× to 2048×. For the disinfectants, we determined the minimum contact time required for different teat disinfectants to eradicated planktonic cells and biofilms. The chlorhexidine-based teat disinfectants eradicated planktonic cells and biofilms within 30s. For iodine-based teat disinfectants, it took 2-10× longer to eradicate the biofilms than planktonic cells. In conclusion, CNS biofilms were less susceptible to antibiotics; however, chlorhexidine-based teat disinfectants were still effective against CNS biofilms. This reinforces the use of post-milking teat disinfectants as a preventive measure of intramammary infections. PMID:24984943

Tremblay, Yannick D N; Caron, Vincent; Blondeau, Andréanne; Messier, Serge; Jacques, Mario

2014-08-27

192

Bacterial biofilm formation on urologic devices and heparin coating as preventive strategy  

Microsoft Academic Search

In the process of endourological development a variety of foreign bodies have been invented besides urinary catheters, on which biofilm can be formed. Bacteria in the biofilm are less susceptible to antibiotics. An additional problem of medical biomaterials in the urinary tract environment is the development of encrustation and consecutive obstruction. The most promising prevention strategy for bacterial biofilms is

Peter Tenke; Claus R. Riedl; Gwennan Ll Jones; Gareth J Williams; David Stickler; Elisabeth Nagy

2004-01-01

193

Electroactivity of Phototrophic River Biofilms and Constitutive Cultivable Bacteria ? †  

PubMed Central

Electroactivity is a property of microorganisms assembled in biofilms that has been highlighted in a variety of environments. This characteristic was assessed for phototrophic river biofilms at the community scale and at the bacterial population scale. At the community scale, electroactivity was evaluated on stainless steel and copper alloy coupons used both as biofilm colonization supports and as working electrodes. At the population scale, the ability of environmental bacterial strains to catalyze oxygen reduction was assessed by cyclic voltammetry. Our data demonstrate that phototrophic river biofilm development on the electrodes, measured by dry mass and chlorophyll a content, resulted in significant increases of the recorded potentials, with potentials of up to +120 mV/saturated calomel electrode (SCE) on stainless steel electrodes and +60 mV/SCE on copper electrodes. Thirty-two bacterial strains isolated from natural phototrophic river biofilms were tested by cyclic voltammetry. Twenty-five were able to catalyze oxygen reduction, with shifts of potential ranging from 0.06 to 0.23 V, cathodic peak potentials ranging from ?0.36 to ?0.76 V/SCE, and peak amplitudes ranging from ?9.5 to ?19.4 ?A. These isolates were diversified phylogenetically (Actinobacteria, Firmicutes, Bacteroidetes, and Alpha-, Beta-, and Gammaproteobacteria) and exhibited various phenotypic properties (Gram stain, oxidase, and catalase characteristics). These data suggest that phototrophic river biofilm communities and/or most of their constitutive bacterial populations present the ability to promote electronic exchange with a metallic electrode, supporting the following possibilities: (i) development of electrochemistry-based sensors allowing in situ phototrophic river biofilm detection and (ii) production of microbial fuel cell inocula under oligotrophic conditions. PMID:21642402

Lyautey, Emilie; Cournet, Amandine; Morin, Soizic; Boulêtreau, Stéphanie; Etcheverry, Luc; Charcosset, Jean-Yves; Delmas, François; Bergel, Alain; Garabetian, Frédéric

2011-01-01

194

Studies to control biofilm formation by coupling ultrasonication of natural waters and anodization of titanium.  

PubMed

The main objective of this study was to investigate the combined effect of ultrasonication of natural waters and anodization of titanium on microbial density and biofilm formation tendency on titanium surfaces. Application of 24 kHz, 400 W high power ultrasound through a 14 mm horn type SS (stainless steel) Sonicator with medium amplitude of 60% for 30 min brought about three order decrease in total bacterial density of laboratory tap water, cooling tower water and reservoir water and two order decrease in seawater. Studies on the effect of ultrasonication on dilute pure cultures of Gram-negative and Gram-positive bacteria showed five order and three order decrease for Pseudomonas sp. and Flavobacterium sp. respectively and two order and less than one order decrease for Bacillus sp. and Micrococcus sp. respectively. Ultrasonication increased lag phase and reduced logarithmic population increase and specific growth rate of Gram-negative bacteria whereas for Gram-positive bacteria specific growth rate increased. Studies on the biofilm formation tendency of these ultrasonicated mediums on titanium surface showed one order reduction under all conditions. Detailed biofilm imaging by advanced microscopic techniques like AFM, SEM and epifluorescence microscopy clearly visualized the lysed/damaged cells and membrane perforations due to ultrasonication. Combination of ultrasonication and anodization brought about maximum decrease in bacterial density and biofilm formation with greater than two order decrease in seawater, two order decrease in Bacillus sp. culture and more than four order decrease in Flavobacterium sp. culture establishing the synergistic effect of anodization and ultrasonication in this study. PMID:23871547

Nithila, S D Ruth; Anandkumar, B; Vanithakumari, S C; George, R P; Mudali, U Kamachi; Dayal, R K

2014-01-01

195

Staphylococcus epidermidis in Orthopedic Device Infections: The Role of Bacterial Internalization in Human Osteoblasts and Biofilm Formation  

PubMed Central

Background Staphylococcus epidermidis orthopedic device infections are caused by direct inoculation of commensal flora during surgery and remain rare, although S. epidermidis carriage is likely universal. We wondered whether S. epidermidis orthopedic device infection strains might constitute a sub-population of commensal isolates with specific virulence ability. Biofilm formation and invasion of osteoblasts by S. aureus contribute to bone and joint infection recurrence by protecting bacteria from the host-immune system and most antibiotics. We aimed to determine whether S. epidermidis orthopedic device infection isolates could be distinguished from commensal strains by their ability to invade osteoblasts and form biofilms. Materials and Methods Orthopedic device infection S. epidermidis strains (n?=?15) were compared to nasal carriage isolates (n?=?22). Osteoblast invasion was evaluated in an ex vivo infection model using MG63 osteoblastic cells co-cultured for 2 hours with bacteria. Adhesion of S. epidermidis to osteoblasts was explored by a flow cytometric approach, and internalized bacteria were quantified by plating cell lysates after selective killing of extra-cellular bacteria with gentamicin. Early and mature biofilm formations were evaluated by a crystal violet microtitration plate assay and the Biofilm Ring Test method. Results No difference was observed between commensal and infective strains in their ability to invade osteoblasts (internalization rate 308+/?631 and 347+/?431 CFU/well, respectively). This low internalization rate correlated with a low ability to adhere to osteoblasts. No difference was observed for biofilm formation between the two groups. Conclusion Osteoblast invasion and biofilm formation levels failed to distinguish S. epidermidis orthopedic device infection strains from commensal isolates. This study provides the first assessment of the interaction between S. epidermidis strains isolated from orthopedic device infections and osteoblasts, and suggests that bone cell invasion is not a major pathophysiological mechanism in S. epidermidis orthopedic device infections, contrary to what is observed for S. aureus. PMID:23840636

Valour, Florent; Trouillet-Assant, Sophie; Rasigade, Jean-Philippe; Lustig, Sébastien; Chanard, Emmanuel; Meugnier, Hélène; Tigaud, Sylvestre; Vandenesch, François; Etienne, Jérome; Ferry, Tristan; Laurent, Frédéric

2013-01-01

196

Purpurin Suppresses Candida albicans Biofilm Formation and Hyphal Development  

PubMed Central

A striking and clinically relevant virulence trait of the human fungal pathogen Candida albicans is its ability to grow and switch reversibly among different morphological forms. Inhibition of yeast-to-hypha transition in C. albicans represents a new paradigm for antifungal intervention. We have previously demonstrated the novel antifungal activity of purpurin against Candida fungi. In this study, we extended our investigation by examining the in vitro effect of purpurin on C. albicans morphogenesis and biofilms. The susceptibility of C. albicans biofilms to purpurin was examined quantitatively by 2,3-bis(2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide reduction assay. Hyphal formation and biofilm ultrastructure were examined qualitatively by scanning electron microscopy (SEM). Quantitative reverse transcription-PCR (qRT-PCR) was used to evaluate the expression of hypha-specific genes and hyphal regulator in purpurin-treated fungal cells. The results showed that, at sub-lethal concentration (3 µg/ml), purpurin blocked the yeast-to-hypha transition under hypha-inducing conditions. Purpurin also inhibited C. albicans biofilm formation and reduced the metabolic activity of mature biofilms in a concentration-dependent manner. SEM images showed that purpurin-treated C. albicans biofilms were scanty and exclusively consisted of aggregates of blastospores. qRT-PCR analyses indicated that purpurin downregulated the expression of hypha-specific genes (ALS3, ECE1, HWP1, HYR1) and the hyphal regulator RAS1. The data strongly suggested that purpurin suppressed C. albicans morphogenesis and caused distorted biofilm formation. By virtue of the ability to block these two virulence traits in C. albicans, purpurin may represent a potential candidate that deserves further investigations in the development of antifungal strategies against this notorious human fungal pathogen in vivo. PMID:23226409

Tsang, Paul Wai-Kei; Bandara, H. M. H. N.; Fong, Wing-Ping

2012-01-01

197

Purpurin suppresses Candida albicans biofilm formation and hyphal development.  

PubMed

A striking and clinically relevant virulence trait of the human fungal pathogen Candida albicans is its ability to grow and switch reversibly among different morphological forms. Inhibition of yeast-to-hypha transition in C. albicans represents a new paradigm for antifungal intervention. We have previously demonstrated the novel antifungal activity of purpurin against Candida fungi. In this study, we extended our investigation by examining the in vitro effect of purpurin on C. albicans morphogenesis and biofilms. The susceptibility of C. albicans biofilms to purpurin was examined quantitatively by 2,3-bis(2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide reduction assay. Hyphal formation and biofilm ultrastructure were examined qualitatively by scanning electron microscopy (SEM). Quantitative reverse transcription-PCR (qRT-PCR) was used to evaluate the expression of hypha-specific genes and hyphal regulator in purpurin-treated fungal cells. The results showed that, at sub-lethal concentration (3 µg/ml), purpurin blocked the yeast-to-hypha transition under hypha-inducing conditions. Purpurin also inhibited C. albicans biofilm formation and reduced the metabolic activity of mature biofilms in a concentration-dependent manner. SEM images showed that purpurin-treated C. albicans biofilms were scanty and exclusively consisted of aggregates of blastospores. qRT-PCR analyses indicated that purpurin downregulated the expression of hypha-specific genes (ALS3, ECE1, HWP1, HYR1) and the hyphal regulator RAS1. The data strongly suggested that purpurin suppressed C. albicans morphogenesis and caused distorted biofilm formation. By virtue of the ability to block these two virulence traits in C. albicans, purpurin may represent a potential candidate that deserves further investigations in the development of antifungal strategies against this notorious human fungal pathogen in vivo. PMID:23226409

Tsang, Paul Wai-Kei; Bandara, H M H N; Fong, Wing-Ping

2012-01-01

198

Assessment of Biofilm Formation and Resistance to Imipenem and Ciprofloxacin among Clinical Isolates of Acinetobacter baumannii in Tehran  

PubMed Central

Background: Biofilms are communities of bacteria attached to the surfaces in an extracellular polymeric matrix which are associated with many chronic infections in humans. Acinetobacter spp. are emerging as a major cause of nosocomial infections and Acinetobacter baumannii is the predominant species associated with this kind of infections. Objectives: In the present study, the potential of biofilm formation of clinical isolates, A. baumannii, was assessed by using crystal violet method. Furthermore, susceptibility pattern of these strains to ciprofloxacin and imipenem was determined. Methods and Materials: Biofilm formation by 75 A. baumannii isolates was evaluated by using microtiter plate and tube methods and crystal violet staining. Tube method was carried out under static and shaking conditions. Then, the susceptibility of isolates to ciprofloxacin and imipenem was determined. Results: Results showed that in tube method under shaking, 22% of clinical isolates were strong biofilm producers while 23% of them were not able to form biofilms. In this experiment, 18% and 42% of isolates were considered as moderate and weak biofilm-forming strains, respectively. In microtiter plate tests, 18% of strains were strong-biofilm producers and 25% of them were notable biofilm producers. In this assessment, 10% and 47% were considered as moderate and weak biofilm-forming isolates, respectively. The susceptibility tests, using microdilution method, confirmed that 92% of these isolates were resistant and 6.6% were susceptible to ciprofloxacin, although these results for imipenem were 68% and 24%, respectively. Conclusions: It can be concluded that most of A. baumannii isolates can form biofilm in microtiter plate and tube. The results also verified that most of these isolates were resistant to ciprofloxacin and imipenem. PMID:25147652

Abdi-Ali, Ahya; Hendiani, Saghar; Mohammadi, Parisa; Gharavi, Sara

2014-01-01

199

N-acetyl-L-cysteine affects growth, extracellular polysaccharide production, and bacterial biofilm formation on solid surfaces.  

PubMed

N-Acetyl-L-cysteine (NAC) is used in medical treatment of patients with chronic bronchitis. The positive effects of NAC treatment have primarily been attributed to the mucus-dissolving properties of NAC, as well as its ability to decrease biofilm formation, which reduces bacterial infections. Our results suggest that NAC also may be an interesting candidate for use as an agent to reduce and prevent biofilm formation on stainless steel surfaces in environments typical of paper mill plants. Using 10 different bacterial strains isolated from a paper mill, we found that the mode of action of NAC is chemical, as well as biological, in the case of bacterial adhesion to stainless steel surfaces. The initial adhesion of bacteria is dependent on the wettability of the substratum. NAC was shown to bind to stainless steel, increasing the wettability of the surface. Moreover, NAC decreased bacterial adhesion and even detached bacteria that were adhering to stainless steel surfaces. Growth of various bacteria, as monocultures or in a multispecies community, was inhibited at different concentrations of NAC. We also found that there was no detectable degradation of extracellular polysaccharides (EPS) by NAC, indicating that NAC reduced the production of EPS, in most bacteria tested, even at concentrations at which growth was not affected. Altogether, the presence of NAC changes the texture of the biofilm formed and makes NAC an interesting candidate for use as a general inhibitor of formation of bacterial biofilms on stainless steel surfaces. PMID:12902275

Olofsson, Ann-Cathrin; Hermansson, Malte; Elwing, Hans

2003-08-01

200

Systematic Analysis of Diguanylate Cyclases That Promote Biofilm Formation by Pseudomonas fluorescens Pf0-1 ? †  

PubMed Central

Cyclic di-GMP (c-di-GMP) is a broadly conserved, intracellular second-messenger molecule that regulates biofilm formation by many bacteria. The synthesis of c-di-GMP is catalyzed by diguanylate cyclases (DGCs) containing the GGDEF domain, while its degradation is achieved through the phosphodiesterase activities of EAL and HD-GYP domains. c-di-GMP controls biofilm formation by Pseudomonas fluorescens Pf0-1 by promoting the cell surface localization of a large adhesive protein, LapA. LapA localization is regulated posttranslationally by a c-di-GMP effector system consisting of LapD and LapG, which senses cytoplasmic c-di-GMP and modifies the LapA protein in the outer membrane. Despite the apparent requirement for c-di-GMP for biofilm formation by P. fluorescens Pf0-1, no DGCs from this strain have been characterized to date. In this study, we undertook a systematic mutagenesis of 30 predicted DGCs and found that mutations in just 4 cause reductions in biofilm formation by P. fluorescens Pf0-1 under the conditions tested. These DGCs were characterized genetically and biochemically to corroborate the hypothesis that they function to produce c-di-GMP in vivo. The effects of DGC gene mutations on phenotypes associated with biofilm formation were analyzed. One DGC preferentially affects LapA localization, another DGC mainly controls swimming motility, while a third DGC affects both LapA and motility. Our data support the conclusion that different c-di-GMP-regulated outputs can be specifically controlled by distinct DGCs. PMID:21764921

Newell, Peter D.; Yoshioka, Shiro; Hvorecny, Kelli L.; Monds, Russell D.; O'Toole, George A.

2011-01-01

201

HmsB enhances biofilm formation in Yersinia pestis  

PubMed Central

The hmsHFRS operon is responsible for biosynthesis and translocation of biofilm matrix exopolysaccharide. Yersinia pestis expresses the two sole diguanylate cyclases HmsT and HmsD and the sole phosphodiesterase HmsP, which are specific for biosynthesis and degradation, respectively, of 3?,5?-cyclic diguanosine monophosphate (c-di-GMP), a second messenger promoting exopolysaccharide production. In this work, the phenotypic assays indicates that Y. pestis sRNA HmsB enhances the production of c-di-GMP, exopolysaccharide, and biofilm. Further gene regulation experiments disclose that HmsB stimulates the expression of hmsB, hmsCDE, hmsT, and hmsHFRS but represses that of hmsP. HmsB most likely acts as a major activator of biofilm formation in Y. pestis. This is the first report of regulation of Yersinia biofilm formation by a sRNA. Data presented here will promote us to gain a deeper understanding of the complex regulatory circuits controlling Yersinia biofilm formation.

Fang, Nan; Qu, Shi; Yang, Huiying; Fang, Haihong; Liu, Lei; Zhang, Yiquan; Wang, Li; Han, Yanping; Zhou, Dongsheng; Yang, Ruifu

2014-01-01

202

Immobilization of Rhodococcus rhodochrous BX2 (an acetonitrile-degrading bacterium) with biofilm-forming bacteria for wastewater treatment.  

PubMed

In this study, a unique biofilm consisting of three bacterial strains with high biofilm-forming capability (Bacillus subtilis E2, E3, and N4) and an acetonitrile-degrading bacterium (Rhodococcus rhodochrous BX2) was established for acetonitrile-containing wastewater treatment. The results indicated that this biofilm exhibited strong resistance to acetonitrile loading shock and displayed a typical spatial and structural heterogeneity and completely depleted the initial concentration of acetonitrile (800mgL(-1)) within 24h in a moving-bed-biofilm reactor (MBBR) after operation for 30days. The immobilization of BX2 cells in the biofilm was confirmed by PCR-DGGE. It has been demonstrated that biofilm-forming bacteria can promote the immobilization of contaminant-degrading bacteria in the biofilms and can subsequently improve the degradation of contaminants in wastewater. This approach offers a novel strategy for enhancing biological oxidation of toxic pollutants in wastewater. PMID:23376196

Li, Chunyan; Li, Yue; Cheng, Xiaosong; Feng, Liping; Xi, Chuanwu; Zhang, Ying

2013-03-01

203

Species specificity, surface exposure, protein expression, immunogenicity, and participation in biofilm formation of Porphyromonas gingivalis HmuY  

PubMed Central

Background Porphyromonas gingivalis is a major etiological agent of chronic periodontitis. The aim of this study was to examine the species specificity, surface exposure, protein expression, immunogenicity, and participation in biofilm formation of the P. gingivalis heme-binding protein HmuY. Results HmuY is a unique protein of P. gingivalis since only low amino-acid sequence homology has been found to proteins encoded in other species. It is exposed on the cell surface and highly abundant in the outer membrane of the cell, in outer-membrane vesicles, and is released into culture medium in a soluble form. The protein is produced constitutively at low levels in bacteria grown under high-iron/heme conditions and at higher levels in bacteria growing under the low-iron/heme conditions typical of dental plaque. HmuY is immunogenic and elicits high IgG antibody titers in rabbits. It is also engaged in homotypic biofilm formation by P. gingivalis. Anti-HmuY antibodies exhibit inhibitory activity against P. gingivalis growth and biofilm formation. Conclusions Here it is demonstrated that HmuY may play a significant role not only in heme acquisition, but also in biofilm accumulation on abiotic surfaces. The data also suggest that HmuY, as a surface-exposed protein, would be available for recognition by the immune response during chronic periodontitis and the production of anti-HmuY antibodies may inhibit biofilm formation. PMID:20438645

2010-01-01

204

Adhesion and formation of microbial biofilms in complex microfluidic devices  

SciTech Connect

Shewanella oneidensis is a metal reducing bacterium, which is of interest for bioremediation and clean energy applications. S. oneidensis biofilms play a critical role in several situations such as in microbial energy harvesting devices. Here, we use a microfluidic device to quantify the effects of hydrodynamics on the biofilm morphology of S. oneidensis. For different rates of fluid flow through a complex microfluidic device, we studied the spatiotemporal dynamics of biofilms, and we quantified several morphological features such as spatial distribution, cluster formation and surface coverage. We found that hydrodynamics resulted in significant differences in biofilm dynamics. The baffles in the device created regions of low and high flow in the same device. At higher flow rates, a nonuniform biofilm develops, due to unequal advection in different regions of the microchannel. However, at lower flow rates, a more uniform biofilm evolved. This depicts competition between adhesion events, growth and fluid advection. Atomic force microscopy (AFM) revealed that higher production of extra-cellular polymeric substances (EPS) occurred at higher flow velocities.

Kumar, Aloke [ORNL; Karig, David K [ORNL; Neethirajan, Suresh [University of Guelph; Suresh, Anil K [ORNL; Srijanto, Bernadeta R [ORNL; Mukherjee, Partha P [ORNL; Retterer, Scott T [ORNL; Doktycz, Mitchel John [ORNL

2012-01-01

205

Evaluation of disinfectant efficacy against biofilm and suspended bacteria in a laboratory swimming pool model.  

PubMed

Laboratory reactor systems designed to model specific environments enable researchers to explore environmental dynamics in a more controlled manner. This paper describes the design and operation of a reactor system built to model a swimming pool in the laboratory. The model included relevant engineering parameters such as filter loading and turn-overs per day. The water chemistry in the system's bulk water was balanced according to standard recommendations and the system was challenged with a bacterial load and synthetic bather insult, formulated to represent urine and perspiration. The laboratory model was then used to evaluate the efficacy of six chemical treatments against biofilm and planktonic bacteria. Results showed that the biofilm was able to accumulate on coupons and in the filter systems of reactors treated with either 1-3 mg/L free chlorine or 10 mg/L polyhexamethylene biguanide (PHMB). All the treatments tested resulted in at least a 4 log reduction in biofilm density when compared to the control, but shock treatments were the most effective at controlling biofilm accumulation. A once weekly shock dose of 10 mg/L free chlorine resulted in the greatest log reduction in biofilm density. The research demonstrated the importance of studying a biofilm in addition to the planktonic bacteria to assess the microbial dynamics that exist in a swimming pool model. PMID:15261549

Goeres, D M; Palys, T; Sandel, B B; Geiger, J

2004-07-01

206

EmbRS a new two-component system that inhibits biofilm formation and saves Rubrivivax gelatinosus from sinking  

PubMed Central

Photosynthetic bacteria can switch from planktonic lifestyle to phototrophic biofilm in mats in response to environmental changes. The mechanisms of phototrophic biofilm formation are, however, not characterized. Herein, we report a two-component system EmbRS that controls the biofilm formation in a photosynthetic member of the Burkholderiales order, the purple bacterium Rubrivivax gelatinosus. EmbRS inactivation results in cells that form conspicuous bacterial veils and fast-sinking aggregates in liquid. Biofilm analyses indicated that EmbRS represses the production of an extracellular matrix and biofilm formation. Mapping of transposon mutants that partially or completely restore the wild-type (WT) phenotype allowed the identification of two gene clusters involved in polysaccharide synthesis, one fully conserved only in Thauera sp., a floc-forming wastewater bacterium. A second two-component system BmfRS and a putative diguanylate cyclase BdcA were also identified in this screen suggesting their involvement in biofilm formation in this bacterium. The role of polysaccharides in sinking of microorganisms and organic matter, as well as the importance and the evolution of such regulatory system in phototrophic microorganisms are discussed. PMID:23520142

Steunou, Anne Soisig; Liotenberg, Sylviane; Soler, Marie-Noêlle; Briandet, Romain; Barbe, Valérie; Astier, Chantal; Ouchane, Soufian

2013-01-01

207

Revised paradigm of aquatic biofilm formation facilitated by microgel transparent exopolymer particles  

PubMed Central

Transparent exopolymer particles (TEPs) are planktonic, organic microgels that are ubiquitous in aqueous environments. Increasing evidence indicates that TEPs play an active role in the process of aquatic biofilm formation. Frequently, TEPs are intensely colonized by bacteria and other microorganisms, thus serving as hot spots of intense microbial activity. We introduce the term “protobiofilm” to refer to TEPs with extensive microbial outgrowth and colonization. Such particles display most of the characteristics of developing biofilm, with the exception of being attached to a surface. In this study, coastal seawater was passed through custom-designed flow cells that enabled direct observation of TEPs and protobiofilm in the feedwater stream by bright-field and epifluorescence microscopy. Additionally, we could follow biofilm development on immersed surfaces inside the flow cells. Within minutes, we observed TEP and protobiofilm patches adhering to these surfaces. By 30 min, confocal laser-scanning microscopy (CLSM) revealed numerous patches of Con A and SYTO 9 staining structures covering the surfaces. Atomic force microscopy showed details of a thin, highly sticky, organic conditioning layer between these patches. Bright-field and epifluorescence microscopy and CLSM showed that biofilm development (observed until 24 h) was profoundly inhibited in flow cells with seawater prefiltered to remove most large TEPs and protobiofilm. We propose a revised paradigm for aquatic biofilm development that emphasizes the critical role of microgel particles such as TEPs and protobiofilm in facilitating this process. Recognition of the role of planktonic microgels in aquatic biofilm formation can have applied importance for the water industry. PMID:22615362

Bar-Zeev, Edo; Berman-Frank, Ilana; Girshevitz, Olga; Berman, Tom

2012-01-01

208

Revised paradigm of aquatic biofilm formation facilitated by microgel transparent exopolymer particles.  

PubMed

Transparent exopolymer particles (TEPs) are planktonic, organic microgels that are ubiquitous in aqueous environments. Increasing evidence indicates that TEPs play an active role in the process of aquatic biofilm formation. Frequently, TEPs are intensely colonized by bacteria and other microorganisms, thus serving as hot spots of intense microbial activity. We introduce the term "protobiofilm" to refer to TEPs with extensive microbial outgrowth and colonization. Such particles display most of the characteristics of developing biofilm, with the exception of being attached to a surface. In this study, coastal seawater was passed through custom-designed flow cells that enabled direct observation of TEPs and protobiofilm in the feedwater stream by bright-field and epifluorescence microscopy. Additionally, we could follow biofilm development on immersed surfaces inside the flow cells. Within minutes, we observed TEP and protobiofilm patches adhering to these surfaces. By 30 min, confocal laser-scanning microscopy (CLSM) revealed numerous patches of Con A and SYTO 9 staining structures covering the surfaces. Atomic force microscopy showed details of a thin, highly sticky, organic conditioning layer between these patches. Bright-field and epifluorescence microscopy and CLSM showed that biofilm development (observed until 24 h) was profoundly inhibited in flow cells with seawater prefiltered to remove most large TEPs and protobiofilm. We propose a revised paradigm for aquatic biofilm development that emphasizes the critical role of microgel particles such as TEPs and protobiofilm in facilitating this process. Recognition of the role of planktonic microgels in aquatic biofilm formation can have applied importance for the water industry. PMID:22615362

Bar-Zeev, Edo; Berman-Frank, Ilana; Girshevitz, Olga; Berman, Tom

2012-06-01

209

Community structure analysis of reverse osmosis membrane biofilms and the significance of Rhizobiales bacteria in biofouling.  

PubMed

The biofilm community structure of a biofouled reverse osmosis (RO) membrane was examined using a polyphasic approach, and the dominant phylotypes retrieved were related to the order Rhizobiales, a group of bacteria that is hitherto not implicated in membrane biofouling. A comparison with two other membrane biofilms using T-RFLP fingerprinting also revealed the dominance of Rhizobiales organisms. When pure culture RO biofilm isolates were cultivated aerobically in BIOLOG microplates, most Rhizobiales were metabolically versatile in their choice of carbon substrates. Nitrate reduction was observed in five RO isolates related to Castellaniella, Ochrobactrum, Stenotrophomonas, and Xanthobacter. Many of the key Rhizobiales genera including Bosea, Ochrobactrum, Shinella, and Rhodopseudomonas were detected by PCR to contain the nirK gene responsible for nitrite reductase activity. These findings suggest that Rhizobiales organisms are ecologically significant in membrane biofilm communities under both aerobic and anoxic conditions and may be responsible for biofouling in membrane separation systems. PMID:17695921

Pang, Chee Meng; Liu, Wen-Tso

2007-07-01

210

Metal-dependent repression of siderophore and biofilm formation in Actinomyces naeslundii.  

PubMed

Actinomyces naeslundii is a pioneer of the oral cavity and forms a biofilm on the tooth's surface. Most bacteria require iron for survival and in pathogenic bacteria iron availability regulates virulence gene expression. Metal-dependent repressors control gene expression involved in metal transport and uptake including siderophores. Siderophores are small molecules synthesized by bacteria and fungi to acquire iron. The A. naeslundii genome was searched for a gene encoding a metal-dependent repressor. Actinomyces metal-dependent repressor or amdR was identified. The AmdR protein was examined for its ability to bind to the promoter sequence of a gene encoding the siderophore uptake (sid gene). According to gel shift assays, AmdR binds to the sid gene promoter sequences. In the authors' model, when iron is available AmdR binds to the sid promoter and represses sid gene expression. To further explore the role of AmdR, an amdR-defective strain of A. naeslundii was constructed and biofilm formation and siderophore production were evaluated. When iron is removed from the medium A. naeslundii increases biofilm and siderophore production. However, amdR-defective A. naeslundii is less sensitive to metal ion concentrations in the growth medium. PMID:17825071

Moelling, Cas; Oberschlacke, Ross; Ward, Price; Karijolich, John; Borisova, Ksenia; Bjelos, Nikola; Bergeron, Lori

2007-10-01

211

Novel multiscale modeling tool applied to Pseudomonas aeruginosa biofilm formation.  

PubMed

Multiscale modeling is used to represent biological systems with increasing frequency and success. Multiscale models are often hybrids of different modeling frameworks and programming languages. We present the MATLAB-NetLogo extension (MatNet) as a novel tool for multiscale modeling. We demonstrate the utility of the tool with a multiscale model of Pseudomonas aeruginosa biofilm formation that incorporates both an agent-based model (ABM) and constraint-based metabolic modeling. The hybrid model correctly recapitulates oxygen-limited biofilm metabolic activity and predicts increased growth rate via anaerobic respiration with the addition of nitrate to the growth media. In addition, a genome-wide survey of metabolic mutants and biofilm formation exemplifies the powerful analyses that are enabled by this computational modeling tool. PMID:24147108

Biggs, Matthew B; Papin, Jason A

2013-01-01

212

Novel Multiscale Modeling Tool Applied to Pseudomonas aeruginosa Biofilm Formation  

PubMed Central

Multiscale modeling is used to represent biological systems with increasing frequency and success. Multiscale models are often hybrids of different modeling frameworks and programming languages. We present the MATLAB-NetLogo extension (MatNet) as a novel tool for multiscale modeling. We demonstrate the utility of the tool with a multiscale model of Pseudomonas aeruginosa biofilm formation that incorporates both an agent-based model (ABM) and constraint-based metabolic modeling. The hybrid model correctly recapitulates oxygen-limited biofilm metabolic activity and predicts increased growth rate via anaerobic respiration with the addition of nitrate to the growth media. In addition, a genome-wide survey of metabolic mutants and biofilm formation exemplifies the powerful analyses that are enabled by this computational modeling tool. PMID:24147108

Biggs, Matthew B.; Papin, Jason A.

2013-01-01

213

Biofilm Formation by Cryptococcus neoformans Under Distinct Environmental Conditions  

PubMed Central

Cryptococcus neoformans is an opportunistic fungal pathogen with a propensity to infect the central nervous system of immune compromised individuals causing life-threatening meningoencephalitis. Cryptococcal biofilms have been described as a protective niche against microbial predators in nature and shown to enhance resistance against antifungal agents and specific mediators of host immune responses. Based on the potential importance of cryptococcal biofilms to its survival in the human host and in nature, these studies were designed to investigate those factors that mediate biofilm formation by C. neoformans. We observed that C. neoformans preferentially grew as planktonic cells when cultured under specific conditions designed to mimic growth within host tissues (37°C, neutral pH, and ~5% CO2) or phagocytes (37°C, acidic pH, and ~5% CO2) and as biofilms when cultured under conditions such as those encountered in the external environment (25–37°C, neutral pH, and ambient CO2). Altogether, our studies suggest that conditions similar to those observed in its natural habitat may be conducive to biofilm formation by C. neoformans. PMID:19130292

Ravi, Sailatha; Pierce, Christopher; Witt, Colleen; Wormley, Floyd L.

2014-01-01

214

Laminar flow around corners triggers the formation of biofilm streamers  

PubMed Central

Bacterial biofilms have an enormous impact on medicine, industry and ecology. These microbial communities are generally considered to adhere to surfaces or interfaces. Nevertheless, suspended filamentous biofilms, or streamers, are frequently observed in natural ecosystems where they play crucial roles by enhancing transport of nutrients and retention of suspended particles. Recent studies in streamside flumes and laboratory flow cells have hypothesized a link with a turbulent flow environment. However, the coupling between the hydrodynamics and complex biofilm structures remains poorly understood. Here, we report the formation of biofilm streamers suspended in the middle plane of curved microchannels under conditions of laminar flow. Experiments with different mutant strains allow us to identify a link between the accumulation of extracellular matrix and the development of these structures. Numerical simulations of the flow in curved channels highlight the presence of a secondary vortical motion in the proximity of the corners, which suggests an underlying hydrodynamic mechanism responsible for the formation of the streamers. Our findings should be relevant to the design of all liquid-carrying systems where biofilms are potentially present and provide new insights on the origins of microbial streamers in natural and industrial environments. PMID:20356880

Rusconi, Roberto; Lecuyer, Sigolene; Guglielmini, Laura; Stone, Howard A.

2010-01-01

215

Discovering Biofilms: Inquiry-Based Activities for the Classroom  

ERIC Educational Resources Information Center

In nature, bacteria exist in and adapt to different environments by forming microbial communities called "biofilms." We propose simple, inquiry-based laboratory exercises utilizing a biofilm formation assay, which allows controlled biofilm growth. Students will be able to qualitatively assess biofilm growth via staining. Recently, we developed a…

Redelman, Carly V.; Marrs, Kathleen; Anderson, Gregory G.

2012-01-01

216

Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms  

Microsoft Academic Search

The population architecture of sulfidogenic biofilms established in anaerobic fixed-bed bioreactors was characterized by selective polymerase chain reaction amplification and fluorescence microscopy. A region of the 16S rRNA common to resident sulfate-reducing bacteria was selectively amplified by the polymerase chain reaction. Sequences of amplification products, with reference to a collection of 16S rRNA sequences representing most characterized sulfate-reducing bacteria, were

R. I. Amann; J. Stromley; R. Devereux; D. A. Stahl

1992-01-01

217

Potentials of Mouthwashes in Disinfecting Cariogenic Bacteria and Biofilms Leading to Inhibition of Caries  

PubMed Central

Objectives: The aim of this study was to compare the effects of certain commercially available mouthwashes on cariogenic bacteria and biofilms, following the acquisition of inhibition potentials of caries. Materials and Methods: Mouthwashes containing I) chlorhexidine gluconate (CHG; 0.0005% w/v), II) benzethonium chloride (BTC; 0.01% w/v), III) an essential oil (Listerine), and IV) povidone-iodine (PVP-I; 0.035% w/v) were tested on planktonic cariogenic bacteria, biofilms, and an ex vivo caries model. Bacterial aliquots were inoculated with each solution separately and vortexed for 10 seconds at room temperature. Bacterial viability was subsequently investigated by fluorescence microscopy (FM) after staining with a BacLight viability kit and the number of colony-forming units (CFUs) was counted. Similarly, mouthwash solutions were applied to artificial cariogenic biofilms, and bacterial viability of the biofilms was investigated as stated above. Inhibition potentials of two selected mouthwashes of carious lesions were investigated using biofilm-induced caries and a secondary caries model. In all steps, a phosphate-buffered saline (PBS) solution was included as a control. Results: Planktonic cariogenic bacteria and bacteria embedded in biofilms were killed in remarkably large numbers with Listerine and PVP-I treatment compared to PBS and other gargles. CFU counts also showed significant reduction after treatment with Listerine and PVP-I compared to other solutions (P<0.05). Listerine also displayed significant (P<0.05) inhibition effects in preventing the progression of demineralization. Conclusion: Bactericidal potencies of the mouthwashes varied significantly, suggesting that mouthwashes like Listerine can be useful for the prevention of caries and secondary caries. PMID:22303415

Oyanagi, Takehiro; Tagami, Junji; Matin, Khairul

2012-01-01

218

Photoautotrophic-heterotrophic biofilm communities: a laboratory incubator designed for growing axenic diatoms and bacteria in defined mixed-species biofilms.  

PubMed

Biofilm communities in the euphotic zone of aquatic habitats comprise photoautotrophic microorganisms, such as diatoms, green algae and cyanobacteria, which produce the organic carbon that fuels the life of a heterotrophic contingent of microorganisms, mostly bacteria. Such photoautotrophic-heterotrophic mixed-species biofilms have received little attention in biofilm research due to a lack of suitable pure-culture laboratory model systems. However, they offer important insight into microbial population dynamics and community interactions during a biofilm-developmental process that shapes highly structured, extremely well-adapted microbial landscapes. Here, we report on the development of a sterile incubation chamber for growing and monitoring axenic phototrophic biofilms, i.e. a sterilizable, illuminated, continuous-flow system for a routine work with pure cultures. The system has been designed to simulate the growth conditions in the shallow, littoral zone of aquatic habitats (horizontal surface, submerged in water, illuminated, aerated). Additional features of the concept include automated photometrical monitoring of biofilm density (as biofilm turbidity), analysis via confocal microscopy, direct harvesting of cells, and options to control illumination, flow velocity, and composition of culture fluid. The application of the system was demonstrated in growth experiments using axenic diatom biofilms, or axenic diatom biofilms co-cultivated with different bacterial strains isolated from epilithic biofilms of an oligotrophic freshwater lake. PMID:23757240

Buhmann, Matthias; Kroth, Peter G; Schleheck, David

2012-02-01

219

Effects of pipe materials on chlorine-resistant biofilm formation under long-term high chlorine level.  

PubMed

Drinking water distribution systems are composed of various pipe materials and may harbor biofilms even in the continuous presence of disinfectants. Biofilms formation on five pipe materials (copper (Cu), polyethylene (PE), stainless steel (STS), cast iron (CI), and concrete-coated polycarbonate (CP)) within drinking water containing 1.20 mg/L free chlorine, was investigated by flow cytometry, heterotrophic plate counts, and denaturing gradient gel electrophoresis analysis. Results showed that the biofilms formation varied in pipe materials. The biofilm formed on CP initially emerged the highest biomass in 12 days, but CI presented the significantly highest biomass after 28 days, and Cu showed the lowest bacterial numbers before 120 days, while STS expressed the lowest bacterial numbers after 159 days. In the biofilm community structure, Moraxella osloensis and Sphingomonas sp. were observed in all the pipe materials while Bacillus sp. was detected except in the CP pipe and Stenotrophomonas maltophila was found from three pipe materials (Cu, PE, and STS). Other bacteria were only found from one or two pipe materials. It is noteworthy that there are 11 opportunistic pathogens in the 17 classified bacterial strains. This research has afforded crucial information regarding the influence of pipe materials on chlorine-resistant biofilm formation. PMID:24828580

Zhu, Zebing; Wu, Chenguang; Zhong, Dan; Yuan, Yixing; Shan, Lili; Zhang, Jie

2014-07-01

220

BACTERIAL BIOFILM FORMATION UNDER MICROGRAVITY CONDITIONS. (R825503)  

EPA Science Inventory

Although biofilm formation is widely documented on Earth, it has not been demonstrated in the absence of gravity. To explore this possibility, Pseudomonas aeruginosa, suspended in sterile buffer, was flown in a commercial payload on space shuttle flight STS-95. During earth or...

221

Insights on Escherichia coli Biofilm Formation and Inhibition from Whole-Transcriptome Profiling  

PubMed Central

SUMMARY Biofilms transform independent cells into specialized cell communities. Here are presented some insights into biofilm formation ascertained with the best-characterized strain, Escherichia coli. Investigations of biofilm formation and inhibition with this strain using whole-transcriptome profiling coupled to phenotypic assays, in vivo DNA binding studies, and isogenic mutants have led to discoveries related to the role of stress, to the role of intra- and interspecies cell signaling, to the impact of the environment on cell signaling, to biofilm inhibition by manipulating cell signaling, to the role of toxin/anti-toxin genes in biofilm formation, and to the role of small RNAs on biofilm formation and dispersal. Hence, E. coli is an excellent resource for determining paradigms in biofilm formation and biofilm inhibition. PMID:19125816

Wood, Thomas K.

2008-01-01

222

Tannins Possessing Bacteriostatic Effect Impair Pseudomonas aeruginosa Adhesion and Biofilm Formation  

PubMed Central

Plants produce many compounds that are biologically active, either as part of their normal program of growth and development or in response to pathogen attack or stress. Traditionally, Anadenanthera colubrina, Commiphora leptophloeos and Myracrodruon urundeuva have been used by communities in the Brazilian Caatinga to treat several infectious diseases. The ability to impair bacterial adhesion represents an ideal strategy to combat bacterial pathogenesis, because of its importance in the early stages of the infectious process; thus, the search for anti-adherent compounds in plants is a very promising alternative. This study investigated the ability of stem-bark extracts from these three species to control the growth and prevent biofilm formation of Pseudomonas aeruginosa, an important opportunistic pathogen that adheres to surfaces and forms protective biofilms. A kinetic study (0–72 h) demonstrated that the growth of extract-treated bacteria was inhibited up to 9 h after incubation, suggesting a bacteriostatic activity. Transmission electron microscopy and fluorescence microscopy showed both viable and nonviable cells, indicating bacterial membrane damage; crystal violet assay and scanning electron microscopy demonstrated that treatment strongly inhibited biofilm formation during 6 and 24 h and that matrix production remained impaired even after growth was restored, at 24 and 48 h of incubation. Herein, we propose that the identified (condensed and hydrolyzable) tannins are able to inhibit biofilm formation via bacteriostatic properties, damaging the bacterial membrane and hindering matrix production. Our findings demonstrate the importance of this abundant class of Natural Products in higher plants against one of the most challenging issues in the hospital setting: biofilm resilience. PMID:23776646

Trentin, Danielle S.; Silva, Denise B.; Amaral, Matheus W.; Zimmer, Karine R.; Silva, Márcia V.; Lopes, Norberto P.; Giordani, Raquel B.; Macedo, Alexandre J.

2013-01-01

223

Inhibition of Biofilm Formation by Esomeprazole in Pseudomonas aeruginosa and Staphylococcus aureus  

PubMed Central

Staphylococcus aureus and Pseudomonas aeruginosa are common nosocomial pathogens responsible for biofilm-associated infections. Proton pump inhibitors (PPI), such as esomeprazole, may have novel antimicrobial properties. The objective of this study was to assess whether esomeprazole prevents sessile bacterial growth and biofilm formation and whether it may have synergistic killing effects with standard antibiotics. The antibiofilm activity of esomeprazole at 0.25 mM was tested against two strains each of S. aureus and P. aeruginosa. Bacterial biofilms were prepared using a commercially available 96-peg-plate Calgary biofilm device. Sessile bacterial CFU counts and biomass were assessed during 72 hours of esomeprazole exposure. The killing activities after an additional 24 hours of vancomycin (against S. aureus) and meropenem (against P. aeruginosa) treatment with or without preexposure to esomeprazole were also assessed by CFU and biomass analyses. P. aeruginosa and S. aureus strains exposed to esomeprazole displayed decreased sessile bacterial growth and biomass (P < 0.001, each parameter). After 72 h of exposure, there was a 1-log10 decrease in the CFU/ml of esomeprazole-exposed P. aeruginosa and S. aureus strains compared to controls (P < 0.001). After 72 h of exposure, measured absorbance was 100% greater in P. aeruginosa control strains than in esomeprazole-exposed strains (P < 0.001). Increased killing and decreased biomass were observed for esomeprazole-treated bacteria compared to untreated controls exposed to conventional antibiotics (P < 0.001, each parameter). Reduced biofilm growth after 24 h was visibly apparent by light micrographs for P. aeruginosa and S. aureus isolates exposed to esomeprazole compared to untreated controls. In conclusion, esomeprazole demonstrated an antibiofilm effect against biofilm-producing S. aureus and P. aeruginosa. PMID:22664967

Singh, Vandana; Arora, Vaneet; Alam, M. Jahangir

2012-01-01

224

Antibiotic-loaded synthetic calcium sulfate beads for prevention of bacterial colonization and biofilm formation in periprosthetic infections.  

PubMed

Periprosthetic infection (PI) causes significant morbidity and mortality after fixation and joint arthroplasty and has been extensively linked to the formation of bacterial biofilms. Poly(methyl methacrylate) (PMMA), as a cement or as beads, is commonly used for antibiotic release to the site of infection but displays variable elution kinetics and also represents a potential nidus for infection, therefore requiring surgical removal once antibiotics have eluted. Absorbable cements have shown improved elution of a wider range of antibiotics and, crucially, complete biodegradation, but limited data exist as to their antimicrobial and antibiofilm efficacy. Synthetic calcium sulfate beads loaded with tobramycin, vancomycin, or vancomycin-tobramycin dual treatment (in a 1:0.24 [wt/wt] ratio) were assessed for their abilities to eradicate planktonic methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis relative to that of PMMA beads. The ability of the calcium sulfate beads to prevent biofilm formation over multiple days and to eradicate preformed biofilms was studied using a combination of viable cell counts, confocal microscopy, and scanning electron microscopy of the bead surface. Biofilm bacteria displayed a greater tolerance to the antibiotics than their planktonic counterparts. Antibiotic-loaded beads were able to kill planktonic cultures of 10(6) CFU/ml, prevent bacterial colonization, and significantly reduce biofilm formation over multiple days. However, established biofilms were harder to eradicate. These data further demonstrate the difficulty in clearing established biofilms; therefore, early preventive measures are key to reducing the risk of PI. Synthetic calcium sulfate loaded with antibiotics has the potential to reduce or eliminate biofilm formation on adjacent periprosthetic tissue and prosthesis material and, thus, to reduce the rates of periprosthetic infection. PMID:25313221

Howlin, R P; Brayford, M J; Webb, J S; Cooper, J J; Aiken, S S; Stoodley, P

2015-01-01

225

Synthetic quorum-sensing circuit to control consortial biofilm formation and dispersal in a microfluidic device  

PubMed Central

To utilize biofilms for chemical transformations in biorefineries they need to be controlled and replaced. Previously, we engineered the global regulator Hha and cyclic diguanylate-binding BdcA to create proteins that enable biofilm dispersal. Here we report a biofilm circuit that utilizes these two dispersal proteins along with a population-driven quorum-sensing switch. With this synthetic circuit, in a novel microfluidic device, we form an initial colonizer biofilm, introduce a second cell type (dispersers) into this existing biofilm, form a robust dual-species biofilm and displace the initial colonizer cells in the biofilm with an extracellular signal from the disperser cells. We also remove the disperser biofilm with a chemically induced switch, and the consortial population could tune. Therefore, for the first time, cells have been engineered that are able to displace an existing biofilm and then be removed on command allowing one to control consortial biofilm formation for various applications. PMID:22215088

Hong, Seok Hoon; Hegde, Manjunath; Kim, Jeongyun; Wang, Xiaoxue; Jayaraman, Arul; Wood, Thomas K.

2012-01-01

226

Antibiotic Resistance Related to Biofilm Formation in Klebsiella pneumoniae  

PubMed Central

The Gram-negative opportunistic pathogen, Klebsiella pneumoniae, is responsible for causing a spectrum of community-acquired and nosocomial infections and typically infects patients with indwelling medical devices, especially urinary catheters, on which this microorganism is able to grow as a biofilm. The increasingly frequent acquisition of antibiotic resistance by K. pneumoniae strains has given rise to a global spread of this multidrug-resistant pathogen, mostly at the hospital level. This scenario is exacerbated when it is noted that intrinsic resistance to antimicrobial agents dramatically increases when K. pneumoniae strains grow as a biofilm. This review will summarize the findings about the antibiotic resistance related to biofilm formation in K. pneumoniae. PMID:25438022

Vuotto, Claudia; Longo, Francesca; Balice, Maria Pia; Donelli, Gianfranco; Varaldo, Pietro E.

2014-01-01

227

Regulation of biofilm formation in Salmonella enterica serovar Typhimurium.  

PubMed

In animals, plants and the environment, Salmonella enterica serovar Typhimurium forms the red dry and rough (rdar) biofilm characterized by extracellular matrix components curli and cellulose. With complex expression control by at least ten transcription factors, the bistably expressed orphan response regulator CsgD directs rdar morphotype development. CsgD expression is an integral part of the Hfq regulon and the complex cyclic diguanosine monophosphate signaling network partially controlled by the global RNA-binding protein CsrA. Cell wall turnover and the periplasmic redox status regulate csgD expression on a post-transcriptional level by unknown mechanisms. Furthermore, phosphorylation of CsgD is a potential inactivation and degradation signal in biofilm dissolution. Including complex incoherent feed-forward loops, regulation of biofilm formation versus motility and virulence is of recognized complexity. PMID:25437188

Simm, Roger; Ahmad, Irfan; Rhen, Mikael; Le Guyon, Soazig; Römling, Ute

2014-01-01

228

Effect of biofilm formation, and biocorrosion on denture base fractures  

PubMed Central

PURPOSE The aim of this study was to investigate the destructive effects of biofilm formation and/or biocorrosive activity of 6 different oral microorganisms. MATERIALS AND METHODS Three different heat polymerized acrylic resins (Ivocap Plus, Lucitone 550, QC 20) were used to prepare three different types of samples. Type "A" samples with "V" type notch was used to measure the fracture strength, "B" type to evaluate the surfaces with scanning electron microscopy and "C" type for quantitative biofilm assay. Development and calculation of biofilm covered surfaces on denture base materials were accomplished by SEM and quantitative biofilm assay. According to normality assumptions ANOVA or Kruskal-Wallis was selected for statistical analysis (?=0.05). RESULTS Significant differences were obtained among the adhesion potential of 6 different microorganisms and there were significant differences among their adhesion onto 3 different denture base materials. Compared to the control groups after contamination with the microorganisms, the three point bending test values of denture base materials decreased significantly (P<.05); microorganisms diffused at least 52% of the denture base surface. The highest median quantitative biofilm value within all the denture base materials was obtained with P. aeruginosa on Lucitone 550. The type of denture base material did not alter the diffusion potential of the microorganisms significantly (P>.05). CONCLUSION All the tested microorganisms had destructive effect over the structure and composition of the denture base materials. PMID:23755339

Ergin, Alper; Ayyildiz, Simel; Cosgun, Erdal; Uzun, Gulay

2013-01-01

229

Air-liquid interface biofilms of Bacillus cereus: formation, sporulation, and dispersion  

Microsoft Academic Search

Biofilm formation by Bacillus cereus was assessed using 56 strains of B. cereus, including the two sequenced strains, ATCC 14579 and ATCC 10987. Biofilm production in microtiter plates was found to be strongly dependent on incubation time, temperature, and medium, as well as the strain used, with some strains showing biofilm formation within 24 h and subsequent dispersion within the

Janneke G. E. Wijman; Leeuw de P. P. L. A; Roy Moezelaar; Marcel H. Zwietering; Tjakko Abee

2007-01-01

230

Studies on Biofilm Formation and Interactions of Salmonella enterica with Romaine-Lettuce Leaves  

Technology Transfer Automated Retrieval System (TEKTRAN)

The association between biofilm formation and the interactions of Salmonella enterica serovars with cut-Romaine-lettuce leaves was investigated. Biofilm formation by 8 S. enterica serovars was tested on polystyrene microtiter plates in the presence of different growth media. Maximal biofilm mass was...

231

The monitoring of biofilm formation in a mulch biowall barrier and its effect on performance  

Microsoft Academic Search

Lab scale mulch biofilm biowall barriers were constructed and tested to monitor the effect of biofilm formation on the performance of the biobarrier. Naphthalene, a two-ring polycyclic aromatic hydrocarbon (PAH), was used as the model compound. With column reactors, the amounts of viable naphthalene degraders and biofilm formation were monitored, as was the performance of the biobarrier.The sorption capacity of

Youngwoo Seo; Paul L. Bishop

2008-01-01

232

Attachment of and Biofilm Formation by Enterobacter sakazakii on Stainless Steel and Enteral Feeding Tubes  

Microsoft Academic Search

Enterobacter sakazakii has been reported to form biofilms, but environmental conditions affecting attachment to and biofilm formation on abiotic surfaces have not been described. We did a study to determine the effects of temperature and nutrient availability on attachment and biofilm formation by E. sakazakii on stainless steel and enteral feeding tubes. Five strains grown to stationary phase in tryptic

Hoikyung Kim; Jee-Hoon Ryu; Larry R. Beuchat

2006-01-01

233

Hypoxic Adaptation by Efg1 Regulates Biofilm Formation by Candida albicans  

Microsoft Academic Search

Hypoxia is encountered frequently by Candida albicans during systemic infection of the human host. We tested if hypoxia allows biofilm formation by C. albicans, which is a major cause of perseverance and antifungal resistance in C. albicans infections. Using an in vitro biofilm system, we unexpectedly discovered that several positive regulators of biofilm formation during normoxia, including Tec1, Ace2, Czf1,

Catrin Stichternoth; Joachim F. Ernst

2009-01-01

234

IscR Controls Iron-Dependent Biofilm Formation in Escherichia coli by Regulating Type I Fimbria Expression  

Microsoft Academic Search

Biofilm formation is a complex developmental process regulated by multiple environmental signals. In addition to other nutrients, the transition metal iron can also regulate biofilm formation. Iron-dependent regulation of biofilm formation varies by bacterial species, and the exact regulatory pathways that control iron-dependent biofilm formation are often unknown or only partially characterized. To address this gap in our knowledge, we

Yun Wu; F. Wayne Outten

2009-01-01

235

The Role of Antimicrobial Peptides in Preventing Multidrug-Resistant Bacterial Infections and Biofilm Formation  

PubMed Central

Over the last decade, decreasing effectiveness of conventional antimicrobial-drugs has caused serious problems due to the rapid emergence of multidrug-resistant pathogens. Furthermore, biofilms, which are microbial communities that cause serious chronic infections and dental plaque, form environments that enhance antimicrobial resistance. As a result, there is a continuous search to overcome or control such problems, which has resulted in antimicrobial peptides being considered as an alternative to conventional drugs. Antimicrobial peptides are ancient host defense effector molecules in living organisms. These peptides have been identified in diverse organisms and synthetically developed by using peptidomimic techniques. This review was conducted to demonstrate the mode of action by which antimicrobial peptides combat multidrug-resistant bacteria and prevent biofilm formation and to introduce clinical uses of these compounds for chronic disease, medical devices, and oral health. In addition, combinations of antimicrobial peptides and conventional drugs were considered due to their synergetic effects and low cost for therapeutic treatment. PMID:22016639

Park, Seong-Cheol; Park, Yoonkyung; Hahm, Kyung-Soo

2011-01-01

236

Intercellular interactions in early biofilm formation probed with image analysis and laser trapping  

NASA Astrophysics Data System (ADS)

Inter-bacterial interactions are essential to such fundamental phenomena as motility and biofilm development. Many of these interactions are mediated by quorum sensing to coordinate gene expression among groups of cells. Other influences include contact with a common surface and proximity of neighboring cells. All such mechanisms depend strongly on the spatial structure of the system. We investigate the early stages of biofilm formation. These cells show striking cooperative behavior: neighbor proximity and number correlate with the post-division detachment likelihood of daughter cells. To better study the effects of such spatial structure, we develop a platform that uses laser trapping to control bacterial patterning. We place bacteria on a surface with micron-lengthscale precision and reproducibility. This platform allows systematic study of the effects of neighbor number, density, and orientation on intercellular interactions.

Gordon, Vernita; Conrad, Jacinta; Gibiansky, Maxsim; Jin, Fan; Haque, Nyrene; Motto, Dominick; Mathewson, Margie; Spalding, Gabe; Parsek, Matthew; Shrout, Joshua; Wong, Gerard

2010-03-01

237

A different path: revealing the function of staphylococcal proteins in biofilm formation.  

PubMed

Staphylococcus aureus and Staphylococcus epidermidis cause dangerous and difficult to treat medical device-related infections through their ability to form biofilms. Extracellular poly-N-acetylglucosamine (PNAG) facilitates biofilm formation and is a vaccination target, yet details of its biosynthesis by the icaADBC gene products is limited. IcaC is the proposed transporter for PNAG export, however a comparison of the Ica proteins to homologous exo-polysaccharide synthases suggests that the common IcaAD protein components both synthesise and transport the PNAG. The limited distribution of icaC to the Staphylococcaceae and its membership of a family of membrane-bound acyltransferases, leads us to suggest that IcaC is responsible for the known O-succinylation of PNAG that occurs in staphylococci, identifying a potentially new therapeutic target specific for these bacteria. PMID:24735724

Atkin, Kate E; MacDonald, Sandy J; Brentnall, Andrew S; Potts, Jennifer R; Thomas, Gavin H

2014-05-21

238

From Nanowires to Biofilms: An Exploration of Novel Mechanisms of Uranium Transformation Mediated by Geobacter Bacteria  

SciTech Connect

One promising strategy for the in situ bioremediation of radioactive groundwater contaminants that has been identified by the SBR Program is to stimulate the activity of dissimilatory metal-reducing microorganisms to reductively precipitate uranium and other soluble toxic metals. The reduction of U(VI) and other soluble contaminants by Geobacteraceae is directly dependent on the reduction of Fe(III) oxides, their natural electron acceptor, a process that requires the expression of Geobacter’s conductive pili (pilus nanowires). Expression of conductive pili by Geobacter cells leads to biofilm development on surfaces and to the formation of suspended biogranules, which may be physiological closer to biofilms than to planktonic cells. Biofilm development is often assumed in the subsurface, particularly at the matrix-well screen interface, but evidence of biofilms in the bulk aquifer matrix is scarce. Our preliminary results suggest, however, that biofilms develop in the subsurface and contribute to uranium transformations via sorption and reductive mechanisms. In this project we elucidated the mechanism(s) for uranium immobilization mediated by Geobacter biofilms and identified molecular markers to investigate if biofilm development is happening in the contaminated subsurface. The results provided novel insights needed in order to understand the metabolic potential and physiology of microorganisms with a known role in contaminant transformation in situ, thus having a significant positive impact in the SBR Program and providing novel concept to monitor, model, and predict biological behavior during in situ treatments.

REGUERA, GEMMA [Michigan State University

2014-01-16

239

Biofilm formation by Bacillus subtilis: new insights into regulatory strategies and assembly mechanisms  

PubMed Central

Biofilm formation is a social behaviour that generates favourable conditions for sustained survival in the natural environment. For the Gram-positive bacterium Bacillus subtilis the process involves the differentiation of cell fate within an isogenic population and the production of communal goods that form the biofilm matrix. Here we review recent progress in understanding the regulatory pathways that control biofilm formation and highlight developments in understanding the composition, function and structure of the biofilm matrix. PMID:24988880

Cairns, Lynne S; Hobley, Laura; Stanley-Wall, Nicola R

2014-01-01

240

Biofilm comprising phototrophic, diazotrophic, and hydrocarbon-utilizing bacteria: a promising consortium in the bioremediation of aquatic hydrocarbon pollutants.  

PubMed

Biofilms harboring simultaneously anoxygenic and oxygenic phototrophic bacteria, diazotrophic bacteria, and hydrocarbon-utilizing bacteria were established on glass slides suspended in pristine and oily seawater. Via denaturing gradient gel electrophoresis analysis on PCR-amplified rRNA gene sequence fragments from the extracted DNA from biofilms, followed by band amplification, biofilm composition was determined. The biofilms contained anoxygenic phototrophs belonging to alphaproteobacteria; pico- and filamentous cyanobacteria (oxygenic phototrophs); two species of the diazotroph Azospirillum; and two hydrocarbon-utilizing gammaproteobacterial genera, Cycloclasticus and Oleibacter. The coexistence of all these microbial taxa with different physiologies in the biofilm makes the whole community nutritionally self-sufficient and adequately aerated, a condition quite suitable for the microbial biodegradation of aquatic pollutant hydrocarbons. PMID:23089957

Al-Bader, Dhia; Kansour, Mayada K; Rayan, Rehab; Radwan, Samir S

2013-05-01

241

Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development  

PubMed Central

Various cell-surface multisubunit protein polymers, known as pili or fimbriae, have a pivotal role in the colonization of specific host tissues by many pathogenic bacteria. In contrast to Gram-negative bacteria, Gram-positive bacteria assemble pili by a distinct mechanism involving a transpeptidase called sortase. Sortase crosslinks individual pilin monomers and ultimately joins the resulting covalent polymer to the cell-wall peptidoglycan. Here we review current knowledge of this mechanism and the roles of Gram-positive pili in the colonization of specific host tissues, modulation of host immune responses and the development of bacterial biofilms. PMID:18083568

Mandlik, Anjali; Swierczynski, Arlene; Das, Asis; Ton-That, Hung

2010-01-01

242

Characterization of Type 2 Quorum Sensing in Klebsiella pneumoniae and Relationship with Biofilm Formation  

PubMed Central

Quorum sensing is a process by which bacteria communicate by using secreted chemical signaling molecules called autoinducers. Many bacterial species modulate the expression of a wide variety of physiological functions in response to changes in population density by this mechanism. In this study, the opportunistic pathogen Klebsiella pneumoniae was observed to secrete type 2 signaling molecules. A homologue of luxS, the gene required for AI-2 synthesis in Vibrio harveyi, was isolated from the K. pneumoniae genome. A V. harveyi bioassay showed the luxS functionality in K. pneumoniae and its ability to complement the luxS-negative phenotype of Escherichia coli DH5?. Autoinducer activity was detected in the supernatant, and maximum expression of specific messengers detected by quantitative reverse transcription-PCR analysis occurred during the late exponential phase. The highest levels of AI-2 were observed in minimal medium supplemented with glycerol. To determine the potential role of luxS in colonization processes, a K. pneumoniae luxS isogenic mutant was constructed and tested for its capacity to form biofilms in vitro on an abiotic surface and to colonize the intestinal tract in a murine model. No difference was observed in the level of intestinal colonization between the wild-type strain and the luxS mutant. Microscopic analysis of biofilm structures revealed that the luxS mutant was able to form a mature biofilm but with reduced capacities in the development of microcolonies, mostly in the early steps of biofilm formation. These data suggest that a LuxS-dependent signal plays a role in the early stages of biofilm formation by K. pneumoniae. PMID:15805533

Balestrino, Damien; Haagensen, Janus A. J.; Rich, Chantal; Forestier, Christiane

2005-01-01

243

Effect of nitrofurans and NO generators on biofilm formation by Pseudomonas aeruginosa PAO1 and Burkholderia cenocepacia 370.  

PubMed

Antibacterial drugs in the nitrofuran series, such as nitrofurazone, furazidin, nitrofurantoin and nifuroxazide, as well as the nitric oxide generators sodium nitroprusside and isosorbide mononitrate in concentrations that do not suppress bacterial growth, were shown to increase the capacity of pathogenic bacteria Pseudomonas aeruginosa PAO1 and Burkholderia cenocepacia 370 to form biofilms. At 25-100microg/ml, nitrofurans 2-2.5-fold enhanced biofilm formation of P. aeruginosa PAO1, and NO donors 3-6-fold. For B. cenocepacia 370, the enhancement was 2-5-fold (nitrofurans) and 4.5-fold (sodium nitroprusside), respectively. PMID:19460431

Zaitseva, Julia; Granik, Vladimir; Belik, Alexandr; Koksharova, Olga; Khmel, Inessa

2009-06-01

244

Cholate-Stimulated Biofilm Formation by Lactococcus lactis Cells ? †  

PubMed Central

Bile acid resistance by Lactococcus lactis depends on the ABC-type multidrug transporter LmrCD. Upon deletion of the lmrCD genes, cells can reacquire bile acid resistance upon prolonged exposure to cholate, yielding the ?lmrCDr strain. The resistance mechanism in this strain is non-transporter based. Instead, cells show a high tendency to flocculate, suggesting cell surface alterations. Contact angle measurements demonstrate that the ?lmrCDr cells are equipped with an increased cell surface hydrophilicity compared to those of the parental and wild-type strains, while the surface hydrophilicity is reduced in the presence of cholate. ?lmrCDr cells are poor in biofilm formation on a hydrophobic polystyrene surface, but in the presence of subinhibitory concentrations of cholate, biofilm formation is strongly stimulated. Biofilm cells show an enhanced extracellular polymeric substance production and are highly resistant to bile acids. These data suggest that non-transporter-based cholate resistance in L. lactis is due to alterations in the cell surface that stimulate cells to form resistant biofilms. PMID:21335382

Zaidi, Arsalan Haseeb; Bakkes, Patrick J.; Krom, Bastiaan P.; van der Mei, Henny C.; Driessen, Arnold J. M.

2011-01-01

245

Polyketide glycosides from Bionectria ochroleuca inhibit Candida albicans biofilm formation.  

PubMed

One of the challenges presented by Candida infections is that many of the isolates encountered in the clinic produce biofilms, which can decrease these pathogens' susceptibilities to standard-of-care antibiotic therapies. Inhibitors of fungal biofilm formation offer a potential solution to counteracting some of the problems associated with Candida infections. A screening campaign utilizing samples from our fungal extract library revealed that a Bionectria ochroleuca isolate cultured on Cheerios breakfast cereal produced metabolites that blocked the in vitro formation of Candida albicans biofilms. A scale-up culture of the fungus was undertaken using mycobags (also known as mushroom bags or spawn bags), which afforded four known [TMC-151s C-F (1-4)] and three new [bionectriols B-D (5-7)] polyketide glycosides. All seven metabolites exhibited potent biofilm inhibition against C. albicans SC5314, as well as exerted synergistic antifungal activities in combination with amphotericin B. In this report, we describe the structure determination of the new metabolites, as well as compare the secondary metabolome profiles of fungi grown in flasks and mycobags. These studies demonstrate that mycobags offer a useful alternative to flask-based cultures for the preparative production of fungal secondary metabolites. PMID:25302529

Wang, Bin; You, Jianlan; King, Jarrod B; Cai, Shengxin; Park, Elizabeth; Powell, Douglas R; Cichewicz, Robert H

2014-10-24

246

Characterization of Biofilm Formation by Borrelia burgdorferi In Vitro  

PubMed Central

Borrelia burgdorferi, the causative agent of Lyme disease, has long been known to be capable of forming aggregates and colonies. It was recently demonstrated that Borrelia burgdorferi aggregate formation dramatically changes the in vitro response to hostile environments by this pathogen. In this study, we investigated the hypothesis that these aggregates are indeed biofilms, structures whose resistance to unfavorable conditions are well documented. We studied Borrelia burgdorferi for several known hallmark features of biofilm, including structural rearrangements in the aggregates, variations in development on various substrate matrices and secretion of a protective extracellular polymeric substance (EPS) matrix using several modes of microscopic, cell and molecular biology techniques. The atomic force microscopic results provided evidence that multilevel rearrangements take place at different stages of aggregate development, producing a complex, continuously rearranging structure. Our results also demonstrated that Borrelia burgdorferi is capable of developing aggregates on different abiotic and biotic substrates, and is also capable of forming floating aggregates. Analyzing the extracellular substance of the aggregates for potential exopolysaccharides revealed the existence of both sulfated and non-sulfated/carboxylated substrates, predominately composed of an alginate with calcium and extracellular DNA present. In summary, we have found substantial evidence that Borrelia burgdorferi is capable of forming biofilm in vitro. Biofilm formation by Borrelia species might play an important role in their survival in diverse environmental conditions by providing refuge to individual cells. PMID:23110225

Sapi, Eva; Bastian, Scott L.; Mpoy, Cedric M.; Scott, Shernea; Rattelle, Amy; Pabbati, Namrata; Poruri, Akhila; Burugu, Divya; Theophilus, Priyanka A. S.; Pham, Truc V.; Datar, Akshita; Dhaliwal, Navroop K.; MacDonald, Alan; Rossi, Michael J.; Sinha, Saion K.; Luecke, David F.

2012-01-01

247

Cyclic-di-GMP Regulates Extracellular Polysaccharide Production, Biofilm Formation, and Rugose Colony Development by Vibrio vulnificus?  

PubMed Central

Vibrio vulnificus is a human and animal pathogen that carries the highest death rate of any food-borne disease agent. It colonizes shellfish and forms biofilms on the surfaces of plankton, algae, fish, and eels. Greater understanding of biofilm formation by the organism could provide insight into approaches to decrease its load in filter feeders and on biotic surfaces and control the occurrence of invasive disease. The capsular polysaccharide (CPS), although essential for virulence, is not required for biofilm formation under the conditions used here. In other bacteria, increased biofilm formation often correlates with increased exopolysaccharide (EPS) production. We exploited the translucent phenotype of acapsular mutants to screen a V. vulnificus genomic library and identify genes that imparted an opaque phenotype to both CPS biosynthesis and transport mutants. One of these encoded a diguanylate cyclase (DGC), an enzyme that synthesizes bis-(3?-5?)-cyclic-di-GMP (c-di-GMP). This prompted us to use this DGC, DcpA, to examine the effect of elevated c-di-GMP levels on several developmental pathways in V. vulnificus. Increased c-di-GMP levels induced the production of an EPS that was distinct from the CPS and dramatically enhanced biofilm formation and rugosity in a CPS-independent manner. However, the EPS could not compensate for the loss of CPS production that is required for virulence. In contrast to V. cholerae, motility and virulence appeared unaffected by elevated levels of c-di-GMP. PMID:18487410

Nakhamchik, Alina; Wilde, Caroline; Rowe-Magnus, Dean A.

2008-01-01

248

A Role for Amyloid in Cell Aggregation and Biofilm Formation  

PubMed Central

Cell adhesion molecules in Saccharomyces cerevisiae and Candida albicans contain amyloid-forming sequences that are highly conserved. We have now used site-specific mutagenesis and specific peptide perturbants to explore amyloid-dependent activity in the Candida albicans adhesin Als5p. A V326N substitution in the amyloid-forming region conserved secondary structure and ligand binding, but abrogated formation of amyloid fibrils in soluble Als5p and reduced cell surface thioflavin T fluorescence. When displayed on the cell surface, Als5p with this substitution prevented formation of adhesion nanodomains and formation of large cellular aggregates and model biofilms. In addition, amyloid nanodomains were regulated by exogenous peptides. An amyloid-forming homologous peptide rescued aggregation and biofilm activity of Als5pV326N cells, and V326N substitution peptide inhibited aggregation and biofilm activity in Als5pWT cells. Therefore, specific site mutation, inhibition by anti-amyloid peturbants, and sequence-specificity of pro-amyloid and anti-amyloid peptides showed that amyloid formation is essential for nanodomain formation and activation. PMID:21408122

Garcia, Melissa C.; Lee, Janis T.; Ramsook, Caleen B.; Alsteens, David; Dufrêne, Yves F.; Lipke, Peter N.

2011-01-01

249

Rapid Redox Signal Transmission by "Cable Bacteria" beneath a Photosynthetic Biofilm.  

PubMed

Recently, long filamentous bacteria, belonging to the family Desulfobulbaceae, were shown to induce electrical currents over long distances in the surface layer of marine sediments. These "cable bacteria" are capable of harvesting electrons from free sulfide in deeper sediment horizons and transferring these electrons along their longitudinal axes to oxygen present near the sediment-water interface. In the present work, we investigated the relationship between cable bacteria and a photosynthetic algal biofilm. In a first experiment, we investigated sediment that hosted both cable bacteria and a photosynthetic biofilm and tested the effect of an imposed diel light-dark cycle by continuously monitoring sulfide at depth. Changes in photosynthesis at the sediment surface had an immediate and repeatable effect on sulfide concentrations at depth, indicating that cable bacteria can rapidly transmit a geochemical effect to centimeters of depth in response to changing conditions at the sediment surface. We also observed a secondary response of the free sulfide at depth manifest on the time scale of hours, suggesting that cable bacteria adjust to a moving oxygen front with a regulatory or a behavioral response, such as motility. Finally, we show that on the time scale of days, the presence of an oxygenic biofilm results in a deeper and more acidic suboxic zone, indicating that a greater oxygen supply can enable cable bacteria to harvest a greater quantity of electrons from marine sediments. Rapid acclimation strategies and highly efficient electron harvesting are likely key advantages of cable bacteria, enabling their success in high sulfide generating coastal sediments. PMID:25416774

Malkin, S Y; Meysman, F J R

2015-02-01

250

Human serum inhibits adhesion and biofilm formation in Candida albicans  

PubMed Central

Background Candida albicans can form biofilms on intravenous catheters; this process plays a key role in the pathogenesis of catheter infections. This study evaluated the effect of human serum (HS) on C. albicans biofilm formation and the expression of adhesion-related genes in vitro. A C. albicans laboratory strain (ATCC90028) and three clinical strains were grown for 24 h in RPMI 1640 supplemented with HS or RPMI 1640 alone (as a control). The growth of biofilm cells of four strains was monitored by a Live Cell Movie Analyzer, and by XTT reduction assay. The expression of the adhesion-related genes BCR1, ALS1, ALS3, HWP1 and ECE1 was analyzed by RT-PCR at three time points (60 min, 90 min, and 24 h). Results In the adhesion phase, C. albicans cells kept a Brownian movement in RPMI medium containing HS until a large number of germ tubes were formed. In the control group, C. albicans cells quickly adhered to the bottom of the reaction plate. Compared with RPMI 1640, medium supplemented with 3–50% HS caused a significant decrease in biofilm development (all p?biofilms (all p?>?0.05). Biofilm formation was also inhibited by heat-inactivated and proteinase K pre-treated HS. The presence of 50% HS did not significantly affect the planktonic growth of C. albicans (p?>?0.05). At three time points, HS inhibited expression of the ALS1 and ALS3 genes and promoted expression of the HWP1 and ECE1 genes. Significant up-regulation of BCR1 was observed only at the 90-min point. Conclusions Human serum reduces biofilm formation by inhibiting the adhesion of C. albicans cells. This response may be associated with the down-regulation of adhesion-related genes ALS1, ALS3 and BCR1. The inhibitory serum component is protease-resistant and heat stable. PMID:24673895

2014-01-01

251

Critical Role of Bcr1Dependent Adhesins in C. albicans Biofilm Formation In Vitro and In Vivo  

Microsoft Academic Search

The fungal pathogen Candida albicans is frequently associated with catheter-based infections because of its ability to form resilient biofilms. Prior studies have shown that the transcription factor Bcr1 governs biofilm formation in an in vitro catheter model. However, the mechanistic role of the Bcr1 pathway and its relationship to biofilm formation in vivo are unknown. Our studies of biofilm formation

Clarissa J Nobile; David R Andes; Jeniel E Nett; Frank J Smith; Fu Yue; Quynh-Trang Phan; John E Edwards; Scott G Filler; Aaron P Mitchell

2006-01-01

252

Evaluation of Intraspecies Interactions in Biofilm Formation by Methylobacterium Species Isolated from Pink-Pigmented Household Biofilms  

PubMed Central

Concern regarding household biofilms has grown due to their widespread existence and potential to threaten human health by serving as pathogen reservoirs. Previous studies identified Methylobacterium as one of the dominant genera found in household biofilms. In the present study, we examined the mechanisms underlying biofilm formation by using the bacterial consortium found in household pink slime. A clone library analysis revealed that Methylobacterium was the predominant genus in household pink slime. In addition, 16 out of 21 pink-pigmented bacterial isolates were assigned to the genus Methylobacterium. Although all of the Methylobacterium isolates formed low-level biofilms, the amount of the biofilms formed by Methylobacterium sp. P-1M and P-18S was significantly increased by co-culturing with other Methylobacterium strains that belonged to a specific phylogenetic group. The single-species biofilm was easily washed from the glass surface, whereas the dual-species biofilm strongly adhered after washing. A confocal laser scanning microscopy analysis showed that the dual-species biofilms were significantly thicker and tighter than the single-species biofilms.

Xu, Fang-Fang; Morohoshi, Tomohiro; Wang, Wen-Zhao; Yamaguchi, Yuka; Liang, Yan; Ikeda, Tsukasa

2014-01-01

253

Evaluation of Intraspecies Interactions in Biofilm Formation by Methylobacterium Species Isolated from Pink-Pigmented Household Biofilms.  

PubMed

Concern regarding household biofilms has grown due to their widespread existence and potential to threaten human health by serving as pathogen reservoirs. Previous studies identified Methylobacterium as one of the dominant genera found in household biofilms. In the present study, we examined the mechanisms underlying biofilm formation by using the bacterial consortium found in household pink slime. A clone library analysis revealed that Methylobacterium was the predominant genus in household pink slime. In addition, 16 out of 21 pink-pigmented bacterial isolates were assigned to the genus Methylobacterium. Although all of the Methylobacterium isolates formed low-level biofilms, the amount of the biofilms formed by Methylobacterium sp. P-1M and P-18S was significantly increased by co-culturing with other Methylobacterium strains that belonged to a specific phylogenetic group. The single-species biofilm was easily washed from the glass surface, whereas the dual-species biofilm strongly adhered after washing. A confocal laser scanning microscopy analysis showed that the dual-species biofilms were significantly thicker and tighter than the single-species biofilms. PMID:25381715

Xu, Fang-Fang; Morohoshi, Tomohiro; Wang, Wen-Zhao; Yamaguchi, Yuka; Liang, Yan; Ikeda, Tsukasa

2014-11-01

254

Control of marine biofouling and medical biofilm formation with engineered topography  

NASA Astrophysics Data System (ADS)

Biofouling is the unwanted accumulation and growth of cells and organisms on clean surfaces. This process occurs readily on unprotected surfaces in both the marine and physiological environments. Surface protection in both systems has typically relied upon toxic materials and biocides. Metallic paints, based on tin and copper, have been extremely successful as antifouling coatings for the hulls of ships by killing the majority of fouling species. Similarly, antibacterial medical coatings incorporate metal-containing compounds such as silver or antibiotics that kill the bacteria. The environmental concerns over the use of toxic paints and biocides in the ocean, the developed antibiotic resistance of bacterial biofilms, and the toxicity concerns with silver suggest the need for non-toxic and non-kill solutions for these systems. The manipulation of surface topography on non-toxic materials at the size scale of the fouling species or bacteria is one approach for the development of alternative coatings. These surfaces would function simply as a physical deterrent of settlement of fouling organisms or a physical obstacle for the adequate formation of a bacterial biofilm without the need to kill the targeted microorganisms. Species-specific topographical designs called engineered topographies have been designed, fabricated and evaluated for potential applications as antifouling marine coatings and material surfaces capable of reducing biofilm formation. Engineered topographies fabricated on the surface of a non-toxic, polydimethylsiloxane elastomer, or silicone, were shown to significantly reduce the attachment of zoospores of a common ship fouling green algae (Ulva) in standard bioassays versus a smooth substrate. Other engineered topographies were effective at significantly deterring the settlement of the cyprids of barnacles (Balanus amphitrite). These results indicate the potential use of engineered topography applied to non-toxic materials as an environmentally friendly coating for antifouling applications in the ocean. In addition, a biomaterial-grade silicone modified with a tailored engineered topography significantly inhibited the bacterial biofilm growth from Staphylococcus aureus for up to 14 days exposure without the use of bactericidal agents. Mature biofilms were present on equivalently exposed smooth silicone surfaces. Engineered surface topographies present a promising means of blocking biofilm development on medical surfaces and reducing the rate of related infections.

Schumacher, James Frederick

255

Analyses of Spatial Distributions of Sulfate-Reducing Bacteria and Their Activity in Aerobic Wastewater Biofilms  

PubMed Central

The vertical distribution of sulfate-reducing bacteria (SRB) in aerobic wastewater biofilms grown on rotating disk reactors was investigated by fluorescent in situ hybridization (FISH) with 16S rRNA-targeted oligonucleotide probes. To correlate the vertical distribution of SRB populations with their activity, the microprofiles of O2, H2S, NO2?, NO3?, NH4+, and pH were measured with microelectrodes. In addition, a cross-evaluation of the FISH and microelectrode analyses was performed by comparing them with culture-based approaches and biogeochemical measurements. In situ hybridization revealed that a relatively high abundance of the probe SRB385-stained cells (approximately 109 to 1010 cells per cm3 of biofilm) were evenly distributed throughout the biofilm, even in the oxic surface. The probe SRB660-stained Desulfobulbus spp. were found to be numerically important members of SRB populations (approximately 108 to 109 cells per cm3). The result of microelectrode measurements showed that a high sulfate-reducing activity was found in a narrow anaerobic zone located about 150 to 300 ?m below the biofilm surface and above which an intensive sulfide oxidation zone was found. The biogeochemical measurements showed that elemental sulfur (S0) was an important intermediate of the sulfide reoxidation in such thin wastewater biofilms (approximately 1,500 ?m), which accounted for about 75% of the total S pool in the biofilm. The contribution of an internal Fe-sulfur cycle to the overall sulfur cycle in aerobic wastewater biofilms was insignificant (less than 1%) due to the relatively high sulfate reduction rate. PMID:10543829

Okabe, Satoshi; Itoh, Tsukasa; Satoh, Hisashi; Watanabe, Yoshimasa

1999-01-01

256

Community Structure and Activity Dynamics of Nitrifying Bacteria in a Phosphate-Removing Biofilm  

PubMed Central

The microbial community structure and activity dynamics of a phosphate-removing biofilm from a sequencing batch biofilm reactor were investigated with special focus on the nitrifying community. O2, NO2?, and NO3? profiles in the biofilm were measured with microsensors at various times during the nonaerated-aerated reactor cycle. In the aeration period, nitrification was oxygen limited and restricted to the first 200 ?m at the biofilm surface. Additionally, a delayed onset of nitrification after the start of the aeration was observed. Nitrate accumulating in the biofilm in this period was denitrified during the nonaeration period of the next reactor cycle. Fluorescence in situ hybridization (FISH) revealed three distinct ammonia-oxidizing populations, related to the Nitrosomonas europaea, Nitrosomonas oligotropha, and Nitrosomonas communis lineages. This was confirmed by analysis of the genes coding for 16S rRNA and for ammonia monooxygenase (amoA). Based upon these results, a new 16S rRNA-targeted oligonucleotide probe specific for the Nitrosomonas oligotropha lineage was designed. FISH analysis revealed that the first 100 ?m at the biofilm surface was dominated by members of the N. europaea and the N. oligotropha lineages, with a minor fraction related to N. communis. In deeper biofilm layers, exclusively members of the N. oligotropha lineage were found. This separation in space and a potential separation of activities in time are suggested as mechanisms that allow coexistence of the different ammonia-oxidizing populations. Nitrite-oxidizing bacteria belonged exclusively to the genus Nitrospira and could be assigned to a 16S rRNA sequence cluster also found in other sequencing batch systems. PMID:11229931

Gieseke, Armin; Purkhold, Ulrike; Wagner, Michael; Amann, Rudolf; Schramm, Andreas

2001-01-01

257

Influence of topography and hydrophilicity on initial oral biofilm formation on microstructured titanium surfaces in vitro  

PubMed Central

Objectives The aim of this study was to analyse the influence of the microtopography and hydrophilicity of titanium (Ti) substrates on initial oral biofilm formation. Materials and methods Nine bacterial species belonging to the normal oral microbiota, including: Aggregatibacter actinomycetemcomitans, Actinomyces israelii, Campylobacter rectus, Eikenella corrodens, Fusobacterium nucleatum, Parvimonas micra, Porphyromonas gingivalis, Prevotella intermedia, and Streptococcus sanguinis were tested on Ti surfaces: pretreatment (PT [Ra<0.2 ?m]), acid-etched (A [Ra<0.8 ?m]), A modified to be hydrophilic (modA), sand-blasted/acid-etched (SLA [Ra = 4 ?m]), and hydrophilic SLA (modSLA). Disks were incubated for 24 h in anaerobic conditions using a normal culture medium (CM) or human saliva (HS). The total counts of bacteria and the proportion of each bacterial species were analysed by checkerboard DNA–DNA hybridization. Results: Higher counts of bacteria were observed on all surfaces incubated with CM compared with the samples incubated with HS. PT, SLA, and modSLA exhibited higher numbers of attached bacteria in CM, whereas SLA and modSLA had a significant increase in bacterial adhesion in HS. The proportion of the species in the initial biofilms was also influenced by the surface properties and the media used: SLA and modSLA increased the proportion of species like A. actinomycetemcomitans and S. sanguinis in both media, while the adhesion of A. israelii and P. gingivalis on the same surfaces was affected in the presence of saliva. Conclusions The initial biofilm formation and composition were affected by the microtopography and hydrophilicity of the surface and by the media used. PMID:21492236

Almaguer-Flores, A.; Olivares-Navarrete, R.; Wieland, M.; Ximénez-Fyvie, L. A.; Schwartz, Z.; Boyan, B. D.

2014-01-01

258

Voice prosthetic biofilm formation and Candida morphogenic conversions in absence and presence of different bacterial strains and species on silicone-rubber.  

PubMed

Morphogenic conversion of Candida from a yeast to hyphal morphology plays a pivotal role in the pathogenicity of Candida species. Both Candida albicans and Candida tropicalis, in combination with a variety of different bacterial strains and species, appear in biofilms on silicone-rubber voice prostheses used in laryngectomized patients. Here we study biofilm formation on silicone-rubber by C. albicans or C. tropicalis in combination with different commensal bacterial strains and lactobacillus strains. In addition, hyphal formation in C. albicans and C. tropicalis, as stimulated by Rothia dentocariosa and lactobacilli was evaluated, as clinical studies outlined that these bacterial strains have opposite results on the clinical life-time of silicone-rubber voice prostheses. Biofilms were grown during eight days in a silicone-rubber tube, while passing the biofilms through episodes of nutritional feast and famine. Biofilms consisting of combinations of C. albicans and a bacterial strain comprised significantly less viable organisms than combinations comprising C. tropicalis. High percentages of Candida were found in biofilms grown in combination with lactobacilli. Interestingly, L. casei, with demonstrated favorable effects on the clinical life-time of voice prostheses, reduced the percentage hyphal formation in Candida biofilms as compared with Candida biofilms grown in absence of bacteria or grown in combination with R. dentocariosa, a bacterial strain whose presence is associated with short clinical life-times of voice prostheses. PMID:25111806

van der Mei, Henny C; Buijssen, Kevin J D A; van der Laan, Bernard F A M; Ovchinnikova, Ekatarina; Geertsema-Doornbusch, Gésinda I; Atema-Smit, Jelly; van de Belt-Gritter, Betsy; Busscher, Henk J

2014-01-01

259

The Pseudomonas aeruginosa phosphate transport protein PstS plays a phosphate-independent role in biofilm formation.  

PubMed

Pseudomonas aeruginosa (PA) is a primary cause of nosocomial infections. A key element in PA pathogenicity is its ability to form biofilms that withstand eradication by antibiotics and the immune system. Biofilm formation is controlled by phosphate signaling and here we provide evidence that PstS, a subunit of the PA Pst phosphate transporter, has a surprising role in this process. Using X-ray crystallography, we characterized the unique underpinnings of PstS phosphate binding and identified an unusual 15-residue N' loop extension. Structure-based experiments showed that PstS-mediated phosphate uptake and biofilm formation are in fact two distinct functions. Specifically, a point mutation that abrogated phosphate binding did not eliminate biofilm formation; conversely, truncation of the N' loop diminished the ability of PA to form biofilms but had no effect on phosphate binding and uptake. This places PstS at a junction that separately controls phosphate sensing and uptake and the ultrastructure organization of bacteria. PMID:25223609

Neznansky, Avi; Blus-Kadosh, Inna; Yerushalmi, Gal; Banin, Ehud; Opatowsky, Yarden

2014-12-01

260

Inhibition of Candida albicans Biofilm Formation by Farnesol, a Quorum-Sensing Molecule  

Microsoft Academic Search

Farnesol is a quorum-sensing molecule that inhibits filamentation in Candida albicans. Both filamentation and quorum sensing are deemed to be important factors in C. albicans biofilm development. Here we examined the effect of farnesol on C. albicans biofilm formation. C. albicans adherent cell populations (after 0, 1, 2, and 4 h of adherence) and preformed biofilms (24 h) were treated

Gordon Ramage; Stephen P. Saville; Brian L. Wickes; J. L. Lopez-Ribot

2002-01-01

261

Outer Membrane Vesicles of Helicobacter pylori TK1402 are Involved in Biofilm Formation  

PubMed Central

Background Helicobacter pylori forms biofilms on glass surfaces at the air-liquid interface in in vitro batch cultures; however, biofilms of H. pylori have not been well characterized. In the present study, we analyzed the ability of H. pylori strains to form biofilms and characterized the underlying mechanisms of H. pylori biofilm formation. Results Strain TK1402 showed strong biofilm forming ability relative to the other strains in Brucella broth supplemented with 7% FCS. The strong biofilm forming ability of TK1402 is reflected the relative thickness of the biofilms. In addition, outer membrane vesicles (OMV) were detected within the matrix of only the TK1402 biofilms. Biofilm formation was strongly correlated with the production of OMV in this strain. We further observed that strain TK1402 did not form thick biofilms in Brucella broth supplemented with 0.2% ?-cyclodextrin. However, the addition of the OMV-fraction collected from TK1402 could enhance biofilm formation. Conclusion The results suggested that OMV produced from TK1402 play an important role in biofilm formation in strain TK1402. PMID:19751530

2009-01-01

262

Medicinal plants extracts affect virulence factors expression and biofilm formation by the uropathogenic Escherichia coli.  

PubMed

Medicinal plants are an important source for the therapeutic remedies of various diseases including urinary tract infections. This prompted us to perform research in this area. We decided to focus on medicinal plants species used in urinary tract infections prevention. The aim of our study was to determine the influence of Betula pendula, Equisetum arvense, Herniaria glabra, Galium odoratum, Urtica dioica, and Vaccinium vitis-idaea extracts on bacterial survival and virulence factors involved in tissue colonization and biofilm formation of the uropathogenic Escherichia coli rods. Qualitative and quantitative analysis of plant extracts were performed. Antimicrobial assay relied on the estimation of the colony forming unit number. Hydrophobicity of cells was established by salt aggregation test. Using motility agar, the ability of bacteria to move was examined. The erythrocyte hemagglutination test was used for fimbriae P screening. Curli expression was determined using YESCA agar supplemented with congo red. Quantification of biofilm formation was carried out using a microtiter plate assay and a spectrophotometric method. The results of the study indicate significant differences between investigated extracts in their antimicrobial activities. The extracts of H. glabra and V. vitis-idaea showed the highest growth-inhibitory effects (p < 0.05). Surface hydrophobicity of autoaggregating E. coli strain changed after exposure to all plant extracts, except V. vitis-idaea (p > 0.05). The B. pendula and U. dioica extracts significantly reduced the motility of the E. coli rods (p < 0.05). All the extracts exhibited the anti-biofilm activity. PMID:22915095

Wojnicz, Dorota; Kucharska, Alicja Z; Sokó?-??towska, Anna; Kicia, Marta; Tichaczek-Goska, Dorota

2012-12-01

263

Role of Alkyl Hydroperoxide Reductase (AhpC) in the Biofilm Formation of Campylobacter jejuni  

PubMed Central

Biofilm formation of Campylobacter jejuni, a major cause of human gastroenteritis, contributes to the survival of this pathogenic bacterium in different environmental niches; however, molecular mechanisms for its biofilm formation have not been fully understood yet. In this study, the role of oxidative stress resistance in biofilm formation was investigated using mutants defective in catalase (KatA), superoxide dismutase (SodB), and alkyl hydroperoxide reductase (AhpC). Biofilm formation was substantially increased in an ahpC mutant compared to the wild type, and katA and sodB mutants. In contrast to the augmented biofilm formation of the ahpC mutant, a strain overexpressing ahpC exhibited reduced biofilm formation. A perR mutant and a CosR-overexpression strain, both of which upregulate ahpC, also displayed decreased biofilms. However, the introduction of the ahpC mutation to the perR mutant and the CosR-overexpression strain substantially enhanced biofilm formation. The ahpC mutant accumulated more total reactive oxygen species and lipid hydroperoxides than the wild type, and the treatment of the ahpC mutant with antioxidants reduced biofilm formation to the wild-type level. Confocal microscopy analysis showed more microcolonies were developed in the ahpC mutant than the wild type. These results successfully demonstrate that AhpC plays an important role in the biofilm formation of C. jejuni. PMID:24498070

Oh, Euna; Jeon, Byeonghwa

2014-01-01

264

Biofilm formation and persistence on abiotic surfaces in the context of food and medical environments.  

PubMed

The biofilm formation on abiotic surfaces in food and medical sectors constitutes a great public health concerns. In fact, biofilms present a persistent source for pathogens, such as Pseudomonas aeruginosa and Staphylococcus aureus, which lead to severe infections such as foodborne and nosocomial infections. Such biofilms are also a source of material deterioration and failure. The environmental conditions, commonly met in food and medical area, seem also to enhance the biofilm formation and their resistance to disinfectant agents. In this regard, this review highlights the effect of environmental conditions on bacterial adhesion and biofilm formation on abiotic surfaces in the context of food and medical environment. It also describes the current and emergent strategies used to study the biofilm formation and its eradication. The mechanisms of biofilm resistance to commercialized disinfectants are also discussed, since this phenomenon remains unclear to date. PMID:24744186

Abdallah, Marwan; Benoliel, Corinne; Drider, Djamel; Dhulster, Pascal; Chihib, Nour-Eddine

2014-07-01

265

Environmental transcriptome analysis reveals physiological differences between biofilm and planktonic modes of life of the iron oxidizing bacteria Leptospirillum spp. in their natural microbial community  

PubMed Central

Background Extreme acidic environments are characterized by their high metal content and lack of nutrients (oligotrophy). Macroscopic biofilms and filaments usually grow on the water-air interface or under the stream attached to solid substrates (streamers). In the Río Tinto (Spain), brown filaments develop under the water stream where the Gram-negative iron-oxidizing bacteria Leptospirillum spp. (L. ferrooxidans and L. ferriphilum) and Acidithiobacillus ferrooxidans are abundant. These microorganisms play a critical role in bioleaching processes for industrial (biominery) and environmental applications (acid mine drainage, bioremediation). The aim of this study was to investigate the physiological differences between the free living (planktonic) and the sessile (biofilm associated) lifestyles of Leptospirillum spp. as part of its natural extremely acidophilic community. Results Total RNA extracted from environmental samples was used to determine the composition of the metabolically active members of the microbial community and then to compare the biofilm and planktonic environmental transcriptomes by hybridizing to a genomic microarray of L. ferrooxidans. Genes up-regulated in the filamentous biofilm are involved in cellular functions related to biofilm formation and maintenance, such as: motility and quorum sensing (mqsR, cheAY, fliA, motAB), synthesis of cell wall structures (lnt, murA, murB), specific proteases (clpX/clpP), stress response chaperons (clpB, clpC, grpE-dnaKJ, groESL), etc. Additionally, genes involved in mixed acid fermentation (poxB, ackA) were up-regulated in the biofilm. This result, together with the presence of small organic acids like acetate and formate (1.36 mM and 0.06 mM respectively) in the acidic (pH 1.8) water stream, suggests that either L. ferrooxidans or other member of the microbial community are producing acetate in the acidophilic biofilm under microaerophilic conditions. Conclusions Our results indicate that the acidophilic filaments are dynamic structures in which different mechanisms for biofilm formation/dispersion are operating. Specific transcriptomic fingerprints can be inferred for both planktonic and sessile cells, having the former a more active TCA cycle, while the mixed acid fermentation process dominate in the latter. The excretion of acetate may play a relevant ecological role as a source of electron donor for heterotrophic Fe3+ reducers like some Alphaproteobacteria, Acidobacterium spp. and Sulfobacillus spp., also present in the biofilm. Additionally, acetate may have a negative effect on bioleaching by inhibiting the growth of chemolithotrophic bacteria. PMID:20576116

2010-01-01

266

A Novel Two-Component Response Regulator Links rpf with Biofilm Formation and Virulence of Xanthomonas axonopodis pv. citri  

PubMed Central

Citrus bacterial canker caused by Xanthomonas axonopodis pv. citri is a serious disease that impacts citrus production worldwide, and X. axonopodis pv. citri is listed as a quarantine pest in certain countries. Biofilm formation is important for the successful development of a pathogenic relationship between various bacteria and their host(s). To understand the mechanisms of biofilm formation by X. axonopodis pv. citri strain XW19, the strain was subjected to transposon mutagenesis. One mutant with a mutation in a two-component response regulator gene that was deficient in biofilm formation on a polystyrene microplate was selected for further study. The protein was designated as BfdR for biofilm formation defective regulator. BfdR from strain XW19 shares 100% amino acid sequence identity with XAC1284 of X. axonopodis pv. citri strain 306 and 30–100% identity with two-component response regulators in various pathogens and environmental microorganisms. The bfdR mutant strain exhibited significantly decreased biofilm formation on the leaf surfaces of Mexican lime compared with the wild type strain. The bfdR mutant was also compromised in its ability to cause canker lesions. The wild-type phenotype was restored by providing pbfdR in trans in the bfdR mutant. Our data indicated that BfdR did not regulate the production of virulence-related extracellular enzymes including amylase, lipase, protease, and lecithinase or the expression of hrpG, rfbC, and katE; however, BfdR controlled the expression of rpfF in XVM2 medium, which mimics cytoplasmic fluids in planta. In conclusion, biofilm formation on leaf surfaces of citrus is important for canker development in X. axonopodis pv. citri XW19. The process is controlled by the two-component response regulator BfdR via regulation of rpfF, which is required for the biosynthesis of a diffusible signal factor. PMID:23626857

Huang, Tzu-Pi; Lu, Kuan-Min; Chen, Yu-Hsuan

2013-01-01

267

Abiotic and microbiotic factors controlling biofilm formation by thermophilic sporeformers.  

PubMed

One of the major concerns in the production of dairy concentrates is the risk of contamination by heat-resistant spores from thermophilic bacteria. In order to acquire more insight in the composition of microbial communities occurring in the dairy concentrate industry, a bar-coded 16S amplicon sequencing analysis was carried out on milk, final products, and fouling samples taken from dairy concentrate production lines. The analysis of these samples revealed the presence of DNA from a broad range of bacterial taxa, including a majority of mesophiles and a minority of (thermophilic) spore-forming bacteria. Enrichments of fouling samples at 55°C showed the accumulation of predominantly Brevibacillus and Bacillus, whereas enrichments at 65°C led to the accumulation of Anoxybacillus and Geobacillus species. Bacterial population analysis of biofilms grown using fouling samples as an inoculum indicated that both Anoxybacillus and Geobacillus preferentially form biofilms on surfaces at air-liquid interfaces rather than on submerged surfaces. Three of the most potent biofilm-forming strains isolated from the dairy factory industrial samples, including Geobacillus thermoglucosidans, Geobacillus stearothermophilus, and Anoxybacillus flavithermus, have been characterized in detail with respect to their growth conditions and spore resistance. Strikingly, Geobacillus thermoglucosidans, which forms the most thermostable spores of these three species, is not able to grow in dairy intermediates as a pure culture but appears to be dependent for growth on other spoilage organisms present, probably as a result of their proteolytic activity. These results underscore the importance of abiotic and microbiotic factors in niche colonization in dairy factories, where the presence of thermophilic sporeformers can affect the quality of end products. PMID:23851093

Zhao, Yu; Caspers, Martien P M; Metselaar, Karin I; de Boer, Paulo; Roeselers, Guus; Moezelaar, Roy; Nierop Groot, Masja; Montijn, Roy C; Abee, Tjakko; Kort, Remco

2013-09-01

268

Microbial Biofilms: How Effective in Rhizobium –Legume Symbiosis?  

Microsoft Academic Search

\\u000a Diverse genera of bacteria live as microbial communities called biofilms on biotic or abiotic surfaces, or interfaces. They\\u000a exhibit elevated microbial action, as a result of symbiosis in biofilm structure and physiological adaptation. The formation\\u000a of fungal–bacterial biofilms by bacterial colonization on biotic fungal surfaces gives the biofilms enhanced microbial effectiveness\\u000a compared to monocultures. When the bacteria include rhizobia, they

G. Seneviratne; M. L. M. A. W. Weerasekara; J. S. Zavahir

269

Caenorhabditis elegans: Plague bacteria biofilm blocks food intake  

Microsoft Academic Search

Bubonic plague is transmitted to mammals, including humans, by the bites of fleas whose digestive tracts are blocked by a mass of the bacterium Yersinia pestis. In these fleas, the plague-causing bacteria are surrounded by an extracellular matrix of unknown composition, and the blockage depends on a group of bacterial genes known as the hmsHFRS operon. Here we show that

Creg Darby; Jennifer W. Hsu; Nafisa Ghori; Stanley Falkow

2002-01-01

270

Role of Quorum Sensing and Antimicrobial Component Production by Serratia plymuthica in Formation of Biofilms, Including Mixed Biofilms with Escherichia coli  

Microsoft Academic Search

We have previously characterized the N-acyl-L-homoserine lactone-based quorum-sensing system of the biofilm isolate Serratia plymuthica RVH1. Here we investigated the role of quorum sensing and of quorum- sensing-dependent production of an antimicrobial compound (AC) on biofilm formation by RVH1 and on the cocultivation of RVH1 and Escherichia coli in planktonic cultures or in biofilms. Biofilm formation of S. plymuthica was

Pieter Moons; Rob Van Houdt; Abram Aertsen; Kristof Vanoirbeek; Yves Engelborghs; Chris W. Michiels

2006-01-01

271

Streptococcus parasanguis Fimbria-Associated Adhesin Fap1 Is Required for Biofilm Formation  

Microsoft Academic Search

The sanguis streptococci are primary colonizers of the tooth surface and thus form the foundation for the complex multiple species biofilm known as dental plaque. In addition, these bacteria can colonize native and prosthetic heart valves and are a common cause of endocarditis. Little is known about the molecular mech- anisms governing multiple or single species biofilm development within this

EUNICE H. FROELIGER; PAULA FIVES-TAYLOR

2001-01-01

272

Monitoring of biofilm formation on different material surfaces of medical devices using hyperspectral imaging method  

Technology Transfer Automated Retrieval System (TEKTRAN)

Contamination of the inner surface of indwelling (implanted) medical devices by microbial biofilm is a serious problem. Some microbial bacteria such as Escherichia coli form biofilms that lead to potentially life-threatening infections. Other types of medical devices such as bronchoscopes and duod...

273

Propionibacterium-produced coproporphyrin III induces Staphylococcus aureus aggregation and biofilm formation.  

PubMed

The majority of bacteria detected in the nostril microbiota of most healthy adults belong to three genera: Propionibacterium, Corynebacterium, and Staphylococcus. Among these staphylococci is the medically important bacterium Staphylococcus aureus. Almost nothing is known about interspecies interactions among bacteria in the nostrils. We observed that crude extracts of cell-free conditioned medium from Propionibacterium spp. induce S. aureus aggregation in culture. Bioassay-guided fractionation implicated coproporphyrin III (CIII), the most abundant extracellular porphyrin produced by human-associated Propionibacterium spp., as a cause of S. aureus aggregation. This aggregation response depended on the CIII dose and occurred during early stationary-phase growth, and a low pH (~4 to 6) was necessary but was not sufficient for its induction. Additionally, CIII induced plasma-independent S. aureus biofilm development on an abiotic surface in multiple S. aureus strains. In strain UAMS-1, CIII stimulation of biofilm depended on sarA, a key biofilm regulator. This study is one of the first demonstrations of a small-molecule-mediated interaction among medically relevant members of the nostril microbiota and the first description of a role for CIII in bacterial interspecies interactions. Our results indicate that CIII may be an important mediator of S. aureus aggregation and/or biofilm formation in the nostril or other sites inhabited by Propionibacterium spp. and S. aureus. Importance: Very little is known about interspecies interactions among the bacteria that inhabit the adult nostril, including Staphylococcus aureus, a potential pathogen that colonizes about a quarter of adults. We demonstrated that coproporphyrin III (CIII), a diffusible small molecule excreted by nostril- and skin-associated Propionibacterium spp., induces S. aureus aggregation in a manner dependent on dose, growth phase, and pH. CIII also induces S. aureus to form a plasma-independent surface-attached biofilm. This report is the first description of a role for CIII in bacterial interspecies interactions at any human body site and a novel demonstration that nostril microbiota physiology is influenced by small-molecule-mediated interactions. PMID:25053784

Wollenberg, Michael S; Claesen, Jan; Escapa, Isabel F; Aldridge, Kelly L; Fischbach, Michael A; Lemon, Katherine P

2014-01-01

274

The OxyR homologue in Tannerella forsythia regulates expression of oxidative stress responses and biofilm formation  

PubMed Central

Tannerella forsythia is an anaerobic periodontal pathogen that encounters constant oxidative stress in the human oral cavity due to exposure to air and reactive oxidative species from coexisting dental plaque bacteria as well as leukocytes. In this study, we sought to characterize a T. forsythia ORF with close similarity to bacterial oxidative stress response sensor protein OxyR. To analyse the role of this OxyR homologue, a gene deletion mutant was constructed and characterized. Aerotolerance, survival after hydrogen peroxide challenge and transcription levels of known bacterial antioxidant genes were then determined. Since an association between oxidative stress and biofilm formation has been observed in bacterial systems, we also investigated the role of the OxyR protein in biofilm development by T. forsythia. Our results showed that aerotolerance, sensitivity to peroxide challenge and the expression of oxidative stress response genes were significantly reduced in the mutant as compared with the wild-type strain. Moreover, the results of biofilm analyses showed that, as compared with the wild-type strain, the oxyR mutant showed significantly less autoaggregation and a reduced ability to form mixed biofilms with Fusobacterium nucleatum. In conclusion, a gene annotated in the T. forsythia genome as an oxyR homologue was characterized. Our studies showed that the oxyR homologue in T. forsythia constitutively activates antioxidant genes involved in resistance to peroxides as well as oxygen stress (aerotolerance). In addition, the oxyR deletion attenuates biofilm formation in T. forsythia. PMID:19389765

Honma, Kiyonobu; Mishima, Elina; Inagaki, Satoru; Sharma, Ashu

2009-01-01

275

Lavage with Allicin in Combination with Vancomycin Inhibits Biofilm Formation by Staphylococcus epidermidis in a Rabbit Model of Prosthetic Joint Infection  

PubMed Central

Background and Aim The present anti-infection strategy for prosthetic joint infections (PJI) includes the use of antibiotics and surgical treatments, but the bacterial eradication rates are still low. One of the major challenges is the formation of biofilm causing poor bacterial eradication. Recently it has been reported that allicin (diallyl thiosulphinate), an antibacterial principle of garlic, can inhibit bacteria adherence and prevent biofilm formation in vitro. However, whether allicin could inhibit biofilm formation in vivo is unknown. The aim of this study was to investigate the effects of allicin on biofilm formation, and whether allicin could potentiate the bactericidal effect of vancomycin in a rabbit PJI model. Methods A sterile stainless-steel screw with a sterile ultra-high molecular weight polyethylene washer was inserted into the lateral femoral condyle of the right hind knee joint of rabbit, and 1 mL inoculum containing 104 colony-forming units of Staphylococcus epidermidis was inoculated into the knee joint (n?=?32). Fourteen days later, rabbits randomly received one of the following 4 treatments using continuous lavages: normal saline, vancomycin (20 mcg/mL), allicin (4 mg/L), or allicin (4 mg/L) plus vancomycin (20 mcg/mL). Three days later, the washer surface biofilm formation was examined by scanning electron microscopy (SEM). The bacterial counts within the biofilm of implanted screws were determined by bacterial culture. Results The lowest number of viable bacterial counts of Staphylococcus epidermidis recovered from the biofilm was in the rabbits treated with allicin plus vancomycin (P<0.01 vs. all other groups). The biofilm formation was significantly reduced or undetectable by SEM in rabbits receiving allicin or allicin plus vancomycin. Conclusion Intra-articular allicincan inhibit biofilm formation and enhance the bactericidal effect of vancomycin on implant surface in vivo. Allicin in combination with vancomycin may be a useful anti-infection strategy for the treatment of PJI. PMID:25025650

Zhai, Haohan; Pan, Jianchao; Pang, En; Bai, Bo

2014-01-01

276

Disruption of E. coli amyloid-integrated biofilm formation at the air-liquid interface by a polysorbate surfactant  

PubMed Central

Functional amyloid fibers termed curli contribute to bacterial adhesion and biofilm formation in E. coli. We discovered that the nonionic surfactant Tween 20 inhibits biofilm formation by uropathogenic E. coli at the air-liquid interface, referred to as pellicle formation, and at the solid-liquid interface. At Tween 20 concentrations near and above the critical micelle concentration, the interfacial viscoelastic modulus is reduced to zero as cellular aggregates at the air-liquid interface are locally disconnected and eventually eliminated. Tween 20 does not inhibit the production of curli, but prevents curli-integrated film formation. Our results support a model in which the hydrophobic curli fibers associated with bacteria near the air-liquid interface require access to the gas phase to formed strong physical entanglements and to form a network that can support shear stress. PMID:23259693

Wu, Cynthia; Lim, Ji Youn; Fuller, Gerald G.; Cegelski, Lynette

2013-01-01

277

Diversity assessment of Listeria monocytogenes biofilm formation: impact of growth condition, serotype and strain origin.  

PubMed

The foodborne pathogen Listeria monocytogenes has the ability to produce biofilms in food-processing environments and then contaminate food products, which is a major concern for food safety. The biofilm forming behavior of 143 L. monocytogenes strains was determined in four different media that were rich, moderate or poor in nutrients at 12°C, 20°C, 30°C and 37°C. The biofilm formation was mostly influenced by temperature, resulting in decreased biofilm formation with decreasing temperature. Biofilm formation was enhanced in nutrient-poor medium rather than in nutrient-rich medium, and especially in nutrient-poor medium significantly enhanced biofilm production was observed early in biofilm maturation underlining the effect of medium on biofilm formation rate. Also serotype had a significant effect on biofilm formation and was influenced by medium used because strains from both serotype 1/2b and 1/2a formed more biofilm than serotype 4b strains in nutrient-rich medium at 20°C, 30°C and 37°C, whereas in nutrient-poor medium the biofilm production levels of serotype 1/2a and 4b strains were rather similar and lower than serotype 1/2b strains. The strains used originated from various origins, including dairy, meat, industrial environment, human and animal, and the level of biofilm formation was not significantly affected by the origin of isolation, irrespective of medium used and temperature tested. A linear model was used to correlate crystal violet staining of biofilm production to the number of viable cells within the biofilm. This showed that crystal violet staining was poorly correlated to the number of viable cells in nutrient-poor medium, and LIVE/DEAD staining and DNase I treatment revealed that this could be attributed to the presence of non-viable cells and extracellular DNA in the biofilm matrix. The significant impact of intrinsic and extrinsic factors on biofilm production of L. monocytogenes underlined that niche-specific features determine the levels of biofilm produced, and insights in biofilm formation characteristics will allow us to further optimize strategies to control the biofilm formation of L. monocytogenes. PMID:23800738

Kadam, Sachin R; den Besten, Heidy M W; van der Veen, Stijn; Zwietering, Marcel H; Moezelaar, Roy; Abee, Tjakko

2013-08-01

278

Actinomyces naeslundii GroEL-dependent initial attachment and biofilm formation in a flow cell system.  

PubMed

Actinomyces naeslundii is an early colonizer with important roles in the development of the oral biofilm. The effects of butyric acid, one of short chain fatty acids in A. naeslundii biofilm formation was observed using a flow cell system with Tryptic soy broth without dextrose and with 0.25% sucrose (TSB sucrose). Significant biofilms were established involving live and dead cells in TSB sucrose with 60mM butyric acid but not in concentrations of 6, 30, 40, and 50mM. Biofilm formation failed in 60mM sodium butyrate but biofilm level in 60mM sodium butyrate (pH4.7) adjusted with hydrochloric acid as 60mM butyric media (pH4.7) was similar to biofilm levels in 60mM butyric acid. Therefore, butyric acid and low pH are required for significant biofilm formation in the flow cell. To determine the mechanism of biofilm formation, we investigated initial A. naeslundii colonization in various conditions and effects of anti-GroEL antibody. The initial colonization was observed in the 60mM butyric acid condition and anti-GroEL antibody inhibited the initial colonization. In conclusion, we established a new biofilm formation model in which butyric acid induces GroEL-dependent initial colonization of A. naeslundii resulting in significant biofilm formation in a flow system. PMID:25555820

Arai, Toshiaki; Ochiai, Kuniyasu; Senpuku, Hidenobu

2015-02-01

279

Formation of hydroxyl radicals contributes to the bactericidal activity of ciprofloxacin against Pseudomonas aeruginosa biofilms.  

PubMed

Antibiotic-tolerant, biofilm-forming Pseudomonas aeruginosa has long been recognized as a major cause of chronic lung infections of cystic fibrosis patients. The mechanisms involved in the activity of antibiotics on biofilm are not completely clear. We have investigated whether the proposed induction of cytotoxic hydroxyl radicals (OH?) during antibiotic treatment of planktonically grown cells may contribute to action of the commonly used antibiotic ciprofloxacin on P. aeruginosa biofilms. For this purpose, WT PAO1, a catalase deficient ?katA and a ciprofloxacin resistant mutant of PAO1 (gyrA), were grown as biofilms in microtiter plates and treated with ciprofloxacin. Formation of OH? and total amount of reactive oxygen species (ROS) was measured and viability was estimated. Formation of OH? and total ROS in PAO1 biofilms treated with ciprofloxacin was shown but higher levels were measured in ?katA biofilms, and no ROS production was seen in the gyrA biofilms. Treatment with ciprofloxacin decreased the viability of PAO1 and ?katA biofilms but not of gyrA biofilms. Addition of thiourea, a OH? scavenger, decreased the OH? levels and killing of PAO1 biofilm. Our study shows that OH? is produced by P. aeruginosa biofilms treated with ciprofloxacin, which may contribute to the killing of biofilm subpopulations. PMID:24376174

Jensen, Peter Ø; Briales, Alejandra; Brochmann, Rikke P; Wang, Hengzhuang; Kragh, Kasper N; Kolpen, Mette; Hempel, Casper; Bjarnsholt, Thomas; Høiby, Niels; Ciofu, Oana

2014-04-01

280

Biofilm formation on titanium implants counteracted by grafting gallium and silver ions.  

PubMed

Biofilm-associated infections remain the leading cause of implant failure. Thanks to its established biocompatibility and biomechanical properties, titanium has become one of the most widely used materials for bone implants. Engineered surface modifications of titanium able to thwart biofilm formation while endowing a safe anchorage to eukaryotic cells are being progressively developed. Here surfaces of disks of commercial grade 2 titanium for bone implant were grafted with gallium and silver ions by anodic spark deposition. Scanning electron microscopy of the surface morphology and energy dispersive X-ray spectroscopy were used for characterization. Gallium-grafted titanium was evaluated in comparison with silver-grafted titanium for both in vivo and in vitro antibiofilm properties and for in vitro compatibility with human primary gingival fibroblasts. Surface-modified materials showed: (i) homogeneous porous morphology, with pores of micrometric size; (ii) absence of cytotoxic effects; (iii) ability to support in vitro the adhesion and spreading of gingival fibroblasts; and (iv) antibiofilm properties. Although both silver and gallium exhibited in vitro strong antibacterial properties, in vivo gallium was significantly more effective than silver in reducing number and viability of biofilm bacteria colonies. Gallium-based treatments represent promising titanium antibiofilm coatings to develop new bone implantable devices for oral, maxillofacial, and orthopedic applications. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2014. PMID:25044610

Cochis, Andrea; Azzimonti, Barbara; Della Valle, Cinzia; Chiesa, Roberto; Arciola, Carla Renata; Rimondini, Lia

2014-07-01

281

Characterization of the effect of serum and chelating agents on Staphylococcus aureus biofilm formation; chelating agents augment biofilm formation through clumping factor B  

NASA Astrophysics Data System (ADS)

Staphylococcus aureus is the causative agent of a diverse array of acute and chronic infections, and some these infections, including infective endocarditis, joint infections, and medical device-associated bloodstream infections, depend upon its capacity to form tenacious biofilms on surfaces. Inserted medical devices such as intravenous catheters, pacemakers, and artificial heart valves save lives, but unfortunately, they can also serve as a substrate on which S. aureus can form a biofilm, attributing S. aureus as a leading cause of medical device-related infections. The major aim of this work was take compounds to which S. aureus would be exposed during infection and to investigate their effects on its capacity to form a biofilm. More specifically, the project investigated the effects of serum, and thereafter of catheter lock solutions on biofilm formation by S. aureus. Pre-coating polystyrene with serum is frequently used as a method to augment biofilm formation. The effect of pre-coating with serum is due to the deposition of extracellular matrix components onto the polystyrene, which are then recognized by MSCRAMMs. We therefore hypothesized that the major component of blood, serum, would induce biofilm formation. Surprisingly, serum actually inhibited biofilm formation. The inhibitory activity was due to a small molecular weight, heat-stable, non-proteinaceous component/s of serum. Serum-mediated inhibition of biofilm formation may represent a previously uncharacterized aspect of host innate immunity that targets the expression of a key bacterial virulence factor: the ability to establish a resistant biofilm. Metal ion chelators like sodium citrate are frequently chosen to lock intravenous catheters because they are regarded as potent inhibitors of bacterial biofilm formation and viability. We found that, while chelating compounds abolished biofilm formation in most strains of S. aureus, they actually augmented the phenotype in a subset of strains. We investigated the molecular basis of this phenomenon. Deletion and complementation analysis and thereafter antibody based inhibition assays confirmed a functional role for the surface adhesin clumping factor B as the causative determinant associated with the increased biofilm phenotype. Finally, we investigated the regulation of clumping factor B-mediated biofilm formation and the basis for the strain dependence. Regulation was determined to occur via two novel post-translational networks- one affecting ClfB activity, mediated by Ca2+ binding to the EF-Hand domain, and the other affecting protein stability, mediated by the enzymatic activity of the metalloprotease-aureolysin. Polymorphisms within the aureolysin gene sequence, between strains, was identified as the basis for some strains forming robust biofilms within chelated media versus other than do not exhibit this phenotype.

Abraham, Nabil Mathew

282

Anti-caries DNA vaccine-induced secretory immunoglobulin A antibodies inhibit formation of Streptococcus mutans biofilms in vitro  

PubMed Central

Aim: To investigate the effects of anti-caries DNA vaccine-induced salivary secretory immunoglobulin A (S-IgA) antibodies on Streptococcus mutans (S. mutans) adherence and biofilms formation in vitro. Methods: Adult female Wistar rats were intranasally immunized with the anti-caries DNA vaccine pGJA-P/VAX. Their saliva samples were collected at different times after the immunization, and S-IgA antibody level in the saliva and its inhibition on S. mutans adherence were examined. The effects of S-IgA in the saliva with the strongest inhibitory effects were examined at 3 different stages, ie acquired pellicles, biofilm formation and production of mature biofilms. The number of viable bacteria and depth of the biofilm at 16 h in each stage were determined using counting colony forming units and using a confocal laser scanning microscopy (CLSM). The participation of S-IgA in acquired pellicles and its aggregation with S. mutans were also observed under CLSM. Results: The S-IgA titer in saliva reached its peak and exhibited the strongest inhibition on S. mutans adhesion at 10 weeks after the immunization. The colonies and depth of the biofilm in the saliva-pretreated group were 41.79% and 41.02%, respectively, less than the control group. The colonies and depth of the biofilm in the co-culture group were 27.4% and 22.81% less than the control group. The assembly of S. mutans and S-IgA was observed under CLSM after co-cultivation. In the mature-stage biofilm, no differences were observed between the different groups. Conclusion: These results demonstrate that the anti-caries DNA vaccine induces the production of specific S-IgA antibodies that may prevent dental caries by inhibiting the initial adherence of S. mutans onto tooth surfaces, thereby reducing the accumulation of S. mutans on the acquired pellicles. PMID:23274411

Huang, Li; Xu, Qing-an; Liu, Chang; Fan, Ming-wen; Li, Yu-hong

2013-01-01

283

Microenvironments and distribution of nitrifying bacteria in a membrane-bound biofilm.  

PubMed

The distribution of nitrifying bacteria of the genera Nitrosomonas, Nitrosospira, Nitrobacter and Nitrospira was investigated in a membrane-bound biofilm system with opposed supply of oxygen and ammonium. Gradients of oxygen, pH, nitrite and nitrate were determined by means of microsensors while the nitrifying populations along these gradients were identified and quantified using fluorescence in situ hybridization (FISH) in combination with confocal laser scanning microscopy. The oxic part of the biofilm which was subjected to high ammonium and nitrite concentrations was dominated by Nitrosomonas europaea-like ammonia oxidizers and by members of the genus Nitrobacter. Cell numbers of Nitrosospira sp. were 1-2 orders of magnitude lower than those of N. europaea. Nitrospira sp. were virtually absent in this part of the biofilm, whereas they were most abundant at the oxic-anoxic interface. In the totally anoxic part of the biofilm, cell numbers of all nitrifiers were relatively low. These observations support the hypothesis that N. europaea and Nitrobacter sp. can out-compete Nitrosospira and Nitrospira spp. at high substrate and oxygen concentrations. Additionally, they suggest microaerophilic behaviour of yet uncultured Nitrospira sp. as a factor of its environmental competitiveness. PMID:11214800

Schramm, A; De Beer, D; Gieseke, A; Amann, R

2000-12-01

284

Differential control of Yersinia pestis biofilm formation in vitro and in the flea vector by two c-di-GMP diguanylate cyclases.  

PubMed

Yersinia pestis forms a biofilm in the foregut of its flea vector that promotes transmission by flea bite. As in many bacteria, biofilm formation in Y. pestis is controlled by intracellular levels of the bacterial second messenger c-di-GMP. Two Y. pestis diguanylate cyclase (DGC) enzymes, encoded by hmsT and y3730, and one phosphodiesterase (PDE), encoded by hmsP, have been shown to control biofilm production in vitro via their opposing c-di-GMP synthesis and degradation activities, respectively. In this study, we provide further evidence that hmsT, hmsP, and y3730 are the only three genes involved in c-di-GMP metabolism in Y. pestis and evaluated the two DGCs for their comparative roles in biofilm formation in vitro and in the flea vector. As with HmsT, the DGC activity of Y3730 depended on a catalytic GGDEF domain, but the relative contribution of the two enzymes to the biofilm phenotype was influenced strongly by the environmental niche. Deletion of y3730 had a very minor effect on in vitro biofilm formation, but resulted in greatly reduced biofilm formation in the flea. In contrast, the predominant effect of hmsT was on in vitro biofilm formation. DGC activity was also required for the Hms-independent autoaggregation phenotype of Y. pestis, but was not required for virulence in a mouse model of bubonic plague. Our results confirm that only one PDE (HmsP) and two DGCs (HmsT and Y3730) control c-di-GMP levels in Y. pestis, indicate that hmsT and y3730 are regulated post-transcriptionally to differentially control biofilm formation in vitro and in the flea vector, and identify a second c-di-GMP-regulated phenotype in Y. pestis. PMID:21559445

Sun, Yi-Cheng; Koumoutsi, Alexandra; Jarrett, Clayton; Lawrence, Kevin; Gherardini, Frank C; Darby, Creg; Hinnebusch, B Joseph

2011-01-01

285

Fur Is a Repressor of Biofilm Formation in Yersinia pestis  

PubMed Central

Background Yersinia pestis synthesizes the attached biofilms in the flea proventriculus, which is important for the transmission of this pathogen by fleas. The hmsHFRS operons is responsible for the synthesis of exopolysaccharide (the major component of biofilm matrix), which is activated by the signaling molecule 3?, 5?-cyclic diguanylic acid (c-di-GMP) synthesized by the only two diguanylate cyclases HmsT, and YPO0449 (located in a putative operonYPO0450-0448). Methodology/Principal Findings The phenotypic assays indicated that the transcriptional regulator Fur inhibited the Y. pestis biofilm production in vitro and on nematode. Two distinct Fur box-like sequences were predicted within the promoter-proximal region of hmsT, suggesting that hmsT might be a direct Fur target. The subsequent primer extension, LacZ fusion, electrophoretic mobility shift, and DNase I footprinting assays disclosed that Fur specifically bound to the hmsT promoter-proximal region for repressing the hmsT transcription. In contrast, Fur had no regulatory effect on hmsHFRS and YPO0450-0448 at the transcriptional level. The detection of intracellular c-di-GMP levels revealed that Fur inhibited the c-di-GMP production. Conclusions/Significance Y. pestis Fur inhibits the c-di-GMP production through directly repressing the transcription of hmsT, and thus it acts as a repressor of biofilm formation. Since the relevant genetic contents for fur, hmsT, hmsHFRS, and YPO0450-0448 are extremely conserved between Y. pestis and typical Y. pseudotuberculosis, the above regulatory mechanisms can be applied to Y. pseudotuberculosis. PMID:23285021

Wang, Li; Fang, Nan; Tan, Yafang; Guo, Zhaobiao; Xia, Peiyuan; Zhou, Dongsheng; Yang, Ruifu

2012-01-01

286

Role of protein acetylation, formation and dispersal of biofilms, and their impact on insects  

E-print Network

). This degradation leads to the switch from high motility to low motility, which is also the shift from planktonic state to biofilm state (Wang et al., 2011). 2.2.3 Biofilm formation via cell signaling related genes Acylhomoserine lactones (AHL) Cell signaling...-DL-homoserine lactone and N-(3-oxododecatanoyl)-L-homoserine lactone. Hence SdiA can be evolved to both increase and decrease biofilm formation. H-NS H-NS is a global regulator in E. coli which controls genes related to stress response, biofilm formation...

Ma, Qun

2012-07-16

287

Biofilm formation by Salmonella spp. on food contact surfaces and their sensitivity to sanitizers  

Microsoft Academic Search

Biofilm formation by two poultry isolates of Salmonella on three commonly used food contact surfaces viz plastic, cement and stainless steel were studied. Biofilm formation of both the isolates showed a similar trend with the highest density being on plastic followed by cement and steel. Salmonella weltevreden formed biofilm with a cell density of 3.4×107, 1.57×106 and 3×105 cfu\\/cm2 on

B. Joseph; S. K. Otta; Indrani Karunasagar

2001-01-01

288

AzaSite® Inhibits Staphylococcus aureus and Coagulase-Negative Staphylococcus Biofilm Formation In Vitro  

PubMed Central

Abstract Purpose The aim of this study was to analyze the effect of azithromycin (AZM) 1% ophthalmic solution in DuraSite® (AzaSite®) on biofilm formation by Staphylococcus aureus and coagulase-negative staphylococci in vitro. Methods Susceptible and resistant clinical strains (n?=?8) of S. aureus and coagulase-negative staphylococci were challenged with serial dilutions of AzaSite® and its components: AZM, benzalkonium chloride (BAK), and the DuraSite drug delivery vehicle. After 20?h of incubation, bacterial growth was quantified using a spectrophotometer (A?=?600?nm). Plates were stained with crystal violet and biofilm formation was quantified spectrophotometrically at A?=?590?nm. Results AzaSite® and AZM inhibited bacterial growth (P?biofilm formation (P?biofilm formation (P?biofilm formation at concentrations from 1.25 to 10?mg/mL in most strains. DuraSite® inhibited biofilm formation at concentrations between 10% and 2.5% in all studied strains (P?biofilm formation in all strains between concentrations of 0.042 and 0.375?mg/mL (P?biofilm formation by inhibiting growth of AZM-susceptible strains. AzaSite®, AZM, and DuraSite® also reduced biofilm formation at subinhibitory concentrations for growth. Our data indicate that AZM has a moderate inhibitory effect on biofilm formation, whereas DuraSite® appears to play a greater role in the inhibition of staphylococcal biofilm formation by AzaSite®. PMID:21029017

Wu, Eric C.; Kowalski, Regis P.; Romanowski, Eric G.; Mah, Francis S.; Gordon, Y. Jerold

2010-01-01

289

Modelling biofilm-induced formation damage and biocide treatment in subsurface geosystems  

PubMed Central

Biofilm growth in subsurface porous media, and its treatment with biocides (antimicrobial agents), involves a complex interaction of biogeochemical processes which provide non-trivial mathematical modelling challenges. Although there are literature reports of mathematical models to evaluate biofilm tolerance to biocides, none of these models have investigated biocide treatment of biofilms growing in interconnected porous media with flow. In this paper, we present a numerical investigation using a pore network model of biofilm growth, formation damage and biocide treatment. The model includes three phases (aqueous, adsorbed biofilm, and solid matrix), a single growth-limiting nutrient and a single biocide dissolved in the water. Biofilm is assumed to contain a single species of microbe, in which each cell can be a viable persister, a viable non-persister, or non-viable (dead). Persisters describe small subpopulation of cells which are tolerant to biocide treatment. Biofilm tolerance to biocide treatment is regulated by persister cells and includes ‘innate’ and ‘biocide-induced’ factors. Simulations demonstrate that biofilm tolerance to biocides can increase with biofilm maturity, and that biocide treatment alone does not reverse biofilm-induced formation damage. Also, a successful application of biological permeability conformance treatment involving geologic layers with flow communication is more complicated than simply engineering the attachment of biofilm-forming cells at desired sites. PMID:23164434

Ezeuko, C C; Sen, A; Gates, I D

2013-01-01

290

Impact of Helicobacter pylori Biofilm Formation on Clarithromycin Susceptibility and Generation of Resistance Mutations  

PubMed Central

The human gastric pathogen Helicobacter pylori forms biofilms in vitro and in vivo. The purpose of this study was to evaluate the effects of H. pylori biofilm formation in vitro on clarithromycin (CLR) susceptibility. CLR susceptibility of H. pylori intermediate (2-day) and mature (3-day) biofilms on glass coverslips was determined at concentrations from 0.03 to 0.5 µg/ml. H. pylori biofilm biomass was increased after treatment with CLR at minimum inhibitory concentration levels by up to 4-fold (2-day biofilm) and 16-fold (3-day biofilm). Minimum bactericidal concentrations of CLR against cells in a biofilm were higher (1.0 µg/ml) than that for planktonic cells (0.25 µg/ml). It was shown that the expression of efflux pump genes was significantly increased in biofilm cells. In addition, exposure of biofilms to CLR resulted in high level resistance generation compared to planktonic cells with increased resistance associated with the presence of a point mutation at either position 2142 or 2143 in the domain V loop of the 23S rRNA gene. These results demonstrate that H. pylori biofilm formation decreases the susceptibility to CLR and that H. pylori CLR resistance mutations are more frequently generated in biofilms than in planktonic cells. PMID:24039906

Yonezawa, Hideo; Osaki, Takako; Hanawa, Tomoko; Kurata, Satoshi; Ochiai, Kuniyasu; Kamiya, Shigeru

2013-01-01

291

A GFP promoter fusion library for the study of Salmonella biofilm formation and the mode of action of biofilm inhibitors.  

PubMed

Salmonella, an important foodborne pathogen, forms biofilms in many different environments. The composition of these biofilms differs depending on the growth conditions, and their development is highly coordinated in time. To develop efficient treatments, it is therefore essential that biofilm formation and its inhibition be understood in different environments and in a time-dependent manner. Many currently used techniques, such as transcriptomics or proteomics, are still expensive and thus limited in their application. Therefore, a GFP-promoter fusion library with 79 important Salmonella biofilm genes was developed (covering among other things matrix production, fimbriae and flagella synthesis, and c-di-GMP regulation). This library is a fast, inexpensive, and easy-to-use tool, and can therefore be conducted in different experimental setups in a time-dependent manner. In this paper, four possible applications are highlighted to illustrate and validate the use of this reporter fusion library. PMID:24735176

Robijns, S C A; Roberfroid, S; Van Puyvelde, S; De Pauw, B; Uceda Santamaría, E; De Weerdt, A; De Coster, D; Hermans, K; De Keersmaecker, S C J; Vanderleyden, J; Steenackers, H P L

2014-01-01

292

Cigarette smoke condensate increases C. albicans adhesion, growth, biofilm formation, and EAP1, HWP1 and SAP2 gene expression  

PubMed Central

Background Smokers are more prone to oral infections than are non-smokers. Cigarette smoke reaches the host cells but also microorganisms present in the oral cavity. The contact between cigarette smoke and oral bacteria promotes such oral diseases as periodontitis. Cigarette smoke can also modulate C. albicans activities that promote oral candidiasis. The goal of this study was to investigate the effect of cigarette smoke condensate on C. albicans adhesion, growth, and biofilm formation as well as the activation of EAP1, HWP1 and secreted aspartic protease 2. Results Cigarette smoke condensate (CSC) increased C. albicans adhesion and growth, as well as biofilm formation. These features may be supported by the activation of certain important genes. Using quantitative RT-PCR, we demonstrated that CSC-exposed C. albicans expressed high levels of EAP1, HWP1 and SAP2 mRNA and that this gene expression increased with increasing concentrations of CSC. Conclusion CSC induction of C. albicans adhesion, growth, and biofilm formation may explain the increased persistence of this pathogen in smokers. These findings may also be relevant to other biofilm-induced oral diseases. PMID:24618025

2014-01-01

293

D-Amino acids inhibit biofilm formation in Staphylococcus epidermidis strains from ocular infections.  

PubMed

Biofilm formation on medical and surgical devices is a major virulence determinant for Staphylococcus epidermidis. The bacterium S. epidermidis is able to produce biofilms on biotic and abiotic surfaces and is the cause of ocular infection (OI). Recent studies have shown that d-amino acids inhibit and disrupt biofilm formation in the prototype strains Bacillus subtilis NCBI3610 and Staphylococcus aureus SCO1. The effect of d-amino acids on S. epidermidis biofilm formation has yet to be tested for clinical or commensal isolates. S. epidermidis strains isolated from healthy skin (n?=?3), conjunctiva (n?=?9) and OI (n?=?19) were treated with d-Leu, d-Tyr, d-Pro, d-Phe, d-Met or d-Ala and tested for biofilm formation. The presence of d-amino acids during biofilm formation resulted in a variety of patterns. Some strains were sensitive to all amino acids tested, while others were sensitive to one or more, and one strain was resistant to all of them when added individually; in this way d-Met inhibited most of the strains (26/31), followed by d-Phe (21/31). Additionally, the use of d-Met inhibited biofilm formation on a contact lens. The use of l-isomers caused no defect in biofilm formation in all strains tested. In contrast, when biofilms were already formed d-Met, d-Phe and d-Pro were able to disrupt it. In summary, here we demonstrated the inhibitory effect of d-amino acids on biofilm formation in S. epidermidis. Moreover, we showed, for the first time, that S. epidermidis clinical strains have a different sensitivity to these compounds during biofilm formation. PMID:25001104

Ramón-Peréz, Miriam L; Diaz-Cedillo, Francisco; Ibarra, J Antonio; Torales-Cardeña, Azael; Rodríguez-Martínez, Sandra; Jan-Roblero, Janet; Cancino-Diaz, Mario E; Cancino-Diaz, Juan C

2014-10-01

294

Inhibition of Staphylococcus epidermidis Biofilm Formation by Traditional Thai Herbal Recipes Used for Wound Treatment  

PubMed Central

Development of biofilm is a key mechanism involved in Staphylococcus epidermidis virulence during device-associated infections. We aimed to investigate antibiofilm formation and mature biofilm eradication ability of ethanol and water extracts of Thai traditional herbal recipes including THR-SK004, THR-SK010, and THR-SK011 against S. epidermidis. A biofilm forming reference strain, S. epidermidis ATCC 35984 was employed as a model for searching anti-biofilm agents by MTT reduction assay. The results revealed that the ethanol extract of THR-SK004 (THR-SK004E) could inhibit the formation of S. epidermidis biofilm on polystyrene surfaces. Furthermore, treatments with the extract efficiently inhibit the biofilm formation of the pathogen on glass surfaces determined by scanning electron microscopy and crystal violet staining. In addition, THR-SK010 ethanol extract (THR-SK010E; 0.63–5??g/mL) could decrease 30 to 40% of the biofilm development. Almost 90% of a 7-day-old staphylococcal biofilm was destroyed after treatment with THR-SK004E (250 and 500??g/mL) and THR-SK010E (10 and 20??g/mL) for 24?h. Therefore, our results clearly demonstrated THR-SK004E could prevent the staphylococcal biofilm development, whereas both THR-SK004E and THR-SK010E possessed remarkable eradication ability on the mature staphylococcal biofilm. PMID:22919409

Chusri, S.; Sompetch, K.; Mukdee, S.; Jansrisewangwong, S.; Srichai, T.; Maneenoon, K.; Limsuwan, S.; Voravuthikunchai, S. P.

2012-01-01

295

Biofilm Formation by the Fish Pathogen Flavobacterium columnare: Development and Parameters Affecting Surface Attachment  

PubMed Central

Flavobacterium columnare is a bacterial fish pathogen that affects many freshwater species worldwide. The natural reservoir of this pathogen is unknown, but its resilience in closed aquaculture systems posits biofilm as the source of contagion for farmed fish. The objectives of this study were (i) to characterize the dynamics of biofilm formation and morphology under static and flow conditions and (ii) to evaluate the effects of temperature, pH, salinity, hardness, and carbohydrates on biofilm formation. Nineteen F. columnare strains, including representatives of all of the defined genetic groups (genomovars), were compared in this study. The structure of biofilm was characterized by light microscopy, confocal laser scanning microscopy, and scanning electron microscopy. F. columnare was able to attach to and colonize inert surfaces by producing biofilm. Surface colonization started within 6 h postinoculation, and microcolonies were observed within 24 h. Extracellular polysaccharide substances and water channels were observed in mature biofilms (24 to 48 h). A similar time course was observed when F. columnare formed biofilm in microfluidic chambers under flow conditions. The virulence potential of biofilm was confirmed by cutaneous inoculation of channel catfish fingerlings with mature biofilm. Several physicochemical parameters modulate attachment to surfaces, with the largest influence being exerted by hardness, salinity, and the presence of mannose. Maintenance of hardness and salinity values within certain ranges could prevent biofilm formation by F. columnare in aquaculture systems. PMID:23851087

Cai, Wenlong; De La Fuente, Leonardo

2013-01-01

296

Biofilm formation and antibiotic resistance in Salmonella Typhimurium are affected by different ribonucleases.  

PubMed

Biofilm formation and antibiotic resistance are important determinants for bacterial pathogenicity. Ribonucleases control RNA degradation and there is increasing evidence that they have an important role in virulence mechanisms. In this report, we show that ribonucleases affect susceptibility against ribosome-targeting antibiotics and biofilm formation in Salmonella. PMID:24150497

Saramago, Margarida; Domingues, Susana; Viegas, Sandra Cristina; Arraiano, Cecília Maria

2014-01-01

297

Extracellular Genomic DNA Mediates Enhancement of Xylella fastidiosa Biofilm Formation in Vitro  

Technology Transfer Automated Retrieval System (TEKTRAN)

Xylella fastidiosa (Xf) produces extracellular DNA in PD3 liquid medium. This extracellular DNA could enhance biofilm formation, a factor in successful establishment of Xf in planta. The relative amounts of extracellular DNA were positively correlated with planktonic growth and biofilm formation in ...

298

Biofilm formation on surfaces of glass and Teflon exposed to treated water  

Microsoft Academic Search

Biofilm formation on glass and Teflon cylinders, situated on top of each other in vertical glass columns exposed to different types of treated water at a flow rate of 0.2 m\\/s, was determined using ATP analysis and heterotrophic plate counts. Biofilm formation rates (BFR) of these water types, as calculated from the linear relationship between exposure time and biomass accumulated

Dick van der Kooij; Harm R. Veenendaal; Cynthia Baars-Lorist; Daan W. van der Klift; Yvonne C. Drost

1995-01-01

299

Butyric acid released during milk lipolysis triggers biofilm formation of Bacillus species.  

PubMed

Bacillus species form biofilms within milking pipelines and on surfaces of equipment in the dairy industry which represent a continuous hygiene problem and can lead to serious economic losses due to food spoilage and equipment impairment. Although much is known about the mechanism by which the model organism Bacillus subtilis forms biofilms in laboratory mediums in vitro, little is known of how these biofilms are formed in natural environments such as milk. Besides, little is known of the signaling pathways leading to biofilm formation in other Bacillus species, such as Bacillus cereus and Bacillus licheniformis, both of which are known to contaminate milk. In this study, we report that milk triggers the formation of biofilm-related structures, termed bundles. We show this to be a conserved phenomenon among all Bacillus members tested. Moreover, we demonstrate that the tasA gene, which encodes a major portion of the matrix which holds the biofilm together, is vital for this process. Furthermore, we show that the free fatty acid (FFA) - butyric acid (BA), which is released during lipolysis of milk fat and demonstrates antimicrobial activity, is the potent trigger for biofilm bundle formation. We finally show that BA-triggered biofilm bundle formation is mediated by the histidine kinase, KinD. Taken together, these observations indicate that BA, which is a major FFA within milk triggers biofilm formation in a conserved mechanism among members of the Bacillus genus. PMID:24801271

Pasvolsky, Ronit; Zakin, Varda; Ostrova, Ievgeniia; Shemesh, Moshe

2014-07-01

300

Chicken Juice Enhances Surface Attachment and Biofilm Formation of Campylobacter jejuni  

PubMed Central

The bacterial pathogen Campylobacter jejuni is primarily transmitted via the consumption of contaminated foodstuffs, especially poultry meat. In food processing environments, C. jejuni is required to survive a multitude of stresses and requires the use of specific survival mechanisms, such as biofilms. An initial step in biofilm formation is bacterial attachment to a surface. Here, we investigated the effects of a chicken meat exudate (chicken juice) on C. jejuni surface attachment and biofilm formation. Supplementation of brucella broth with ?5% chicken juice resulted in increased biofilm formation on glass, polystyrene, and stainless steel surfaces with four C. jejuni isolates and one C. coli isolate in both microaerobic and aerobic conditions. When incubated with chicken juice, C. jejuni was both able to grow and form biofilms in static cultures in aerobic conditions. Electron microscopy showed that C. jejuni cells were associated with chicken juice particulates attached to the abiotic surface rather than the surface itself. This suggests that chicken juice contributes to C. jejuni biofilm formation by covering and conditioning the abiotic surface and is a source of nutrients. Chicken juice was able to complement the reduction in biofilm formation of an aflagellated mutant of C. jejuni, indicating that chicken juice may support food chain transmission of isolates with lowered motility. We provide here a useful model for studying the interaction of C. jejuni biofilms in food chain-relevant conditions and also show a possible mechanism for C. jejuni cell attachment and biofilm initiation on abiotic surfaces within the food chain. PMID:25192991

Brown, Helen L.; Reuter, Mark; Salt, Louise J.; Cross, Kathryn L.; Betts, Roy P.

2014-01-01

301

The Two-Component Signal Transduction System ArlRS Regulates Staphylococcus epidermidis Biofilm Formation in an ica-Dependent Manner  

PubMed Central

Due to its ability to form biofilms on medical devices, Staphylococcus epidermidis has emerged as a major pathogen of nosocomial infections. In this study, we investigated the role of the two-component signal transduction system ArlRS in regulating S. epidermidis biofilm formation. An ArlRS-deficient mutant, WW06, was constructed using S. epidermidis strain 1457 as a parental strain. Although the growth curve of WW06 was similar to that of SE1457, the mutant strain was unable to form biofilms in vitro. In a rabbit subcutaneous infection model, sterile disks made of polymeric materials were implanted subcutaneously followed with inoculation of WW06 or SE1457. The viable bacteria cells of WW06 recovered from biofilms on the embedded disks were much lower than that of SE1457. Complementation of arlRS genes expression from plasmid in WW06 restored biofilm-forming phenotype both in vivo and in vitro. WW06 maintained the ability to undergo initial attachment. Transcription levels of several genes involved in biofilm formation, including icaADBC, sigB, and sarA, were decreased in WW06, compared to SE1457; and icaR expression was increased in WW06, detected by real-time reverse-transcription PCR. The biofilm-forming phenotype was restored by overexpressing icaADBC in WW06 but not by overexpressing sigB, indicating that ArlRS regulates biofilm formation through the regulation of icaADBC. Gel shift assay showed that ArlR can bind to the promoter region of the ica operon. In conclusion, ArlRS regulates S. epidermidis biofilm formation in an ica-dependent manner, distinct from its role in S. aureus. PMID:22848368

Wu, Yang; Liu, Jingran; Yu, Wenqi; Lou, Qiang; Zhu, Tao; He, Nianan; Ben, Haijing; Hu, Jian; Götz, Friedrich; Qu, Di

2012-01-01

302

External pH is a cue for the behavioral switch that determines surface motility and biofilm formation of Alicyclobacillus acidoterrestris.  

PubMed

Bacteria use different strategies to survive unfavorable environmental conditions. Alicyclobacillus acidoterrestris is a bacterium capable of surviving extremely harsh conditions, for instance, during industrial food processing. A. acidoterrestris is a spore-forming, thermoacidophilic, nonpathogenic bacterium that commonly contaminates commercial pasteurized fruit juices and is, therefore, considered a major microbiological contaminant in the juice industry. The purpose of this study was to elucidate whether A. acidoterrestris is capable of multicellular behavior by testing its ability of biofilm formation and surface motility. A. acidoterrestris was found to be proficient in migration over a surface that is apparently powered by flagella. It was further shown that lowering the external pH leads to inhibition in surface motility of these bacteria. Concomitantly, the reduction in the external pH triggered biofilm formation of A. acidoterrestris cells. Thus, although no significant biofilm was formed at pH 4.5, robust cell adhesion and confluent biofilm formation was seen below the pH 3.6. These findings indicate that the reduction of external pH is an environmental cue for the behavioral switch that inhibits surface motility and triggers biofilm formation of A. acidoterrestris. Gaining insight into the multicellular behavior that facilitates A. acidoterrestris survival in food contact surfaces may contribute to the development of novel antimicrobial means to prevent cross-contamination caused by this bacterium. PMID:25198607

Shemesh, Moshe; Pasvolsky, Ronit; Zakin, Varda

2014-08-01

303

Disruption of Biofilm Formation by the Human Pathogen Acinetobacter baumannii Using Engineered Quorum-Quenching Lactonases  

PubMed Central

Acinetobacter baumannii is a major human pathogen associated with multidrug-resistant nosocomial infections; its virulence is attributed to quorum-sensing-mediated biofilm formation, and disruption of biofilm formation is an attractive antivirulence strategy. Here, we report the first successful demonstration of biofilm disruption in a clinical isolate of A. baumannii S1, using a quorum-quenching lactonase obtained by directed evolution; this engineered lactonase significantly reduced the biomass of A. baumannii-associated biofilms, demonstrating the utility of this antivirulence strategy. PMID:24379199

Chow, Jeng Yeong; Yang, Yuanyong; Tay, Song Buck

2014-01-01

304

Signals, Regulatory Networks, and Materials That Build and Break Bacterial Biofilms  

PubMed Central

Summary: Biofilms are communities of microorganisms that live attached to surfaces. Biofilm formation has received much attention in the last decade, as it has become clear that virtually all types of bacteria can form biofilms and that this may be the preferred mode of bacterial existence in nature. Our current understanding of biofilm formation is based on numerous studies of myriad bacterial species. Here, we review a portion of this large body of work including the environmental signals and signaling pathways that regulate biofilm formation, the components of the biofilm matrix, and the mechanisms and regulation of biofilm dispersal. PMID:19487730

Karatan, Ece; Watnick, Paula

2009-01-01

305

Multivariate analysis reveals differences in biofilm formation capacity among Listeria monocytogenes lineages.  

PubMed

Biofilm formation capacity evaluated under identical conditions differs among Listeria monocytogenes lineages. The approach of using one set of factors or one variable at a time fails to explain why some lineages are more prevalent than others in certain environments. This study proposes the use of multivariate analysis to compare biofilm formation by various strains and describes the ecological niches of L. monocytogenes lineages. Nutrient availability, temperature, pH and water activity (aw) at three different levels were used to determine biofilm formation by 41 strains. Despite the high degree of similarity (? 80%), distinct lineage-associated biofilm formation patterns were identified. A linear regression model for each strain and a principal component analysis of regression coefficients indicated that Lineages I and III have different, but overlapping, ecological niches. This study is the first to report the use of multivariate analyses to compare biofilm formation by various isolates of L. monocytogenes. PMID:25397897

Valderrama, Wladir B; Ostiguy, Nancy; Cutter, Catherine N

2014-11-01

306

Biofilm Matrix and Its Regulation in Pseudomonas aeruginosa  

PubMed Central

Biofilms are communities of microorganisms embedded in extracellular polymeric substances (EPS) matrix. Bacteria in biofilms demonstrate distinct features from their free-living planktonic counterparts, such as different physiology and high resistance to immune system and antibiotics that render biofilm a source of chronic and persistent infections. A deeper understanding of biofilms will ultimately provide insights into the development of alternative treatment for biofilm infections. The opportunistic pathogen Pseudomonas aeruginosa, a model bacterium for biofilm research, is notorious for its ability to cause chronic infections by its high level of drug resistance involving the formation of biofilms. In this review, we summarize recent advances in biofilm formation, focusing on the biofilm matrix and its regulation in P. aeruginosa, aiming to provide resources for the understanding and control of bacterial biofilms. PMID:24145749

Wei, Qing; Ma, Luyan Z.

2013-01-01

307

Biofilm formation on biotic and abiotic surfaces in the presence of antimicrobials by Escherichia coli Isolates from cases of bovine mastitis.  

PubMed

Escherichia coli is a highly adaptive microorganism, and its ability to form biofilms under certain conditions can be critical for antimicrobial resistance. The adhesion of four E. coli isolates from bovine mastitis to bovine mammary alveolar (MAC-T) cells, biofilm production on a polystyrene surface, and the expression profiles of the genes fliC, csgA, fimA, and luxS in the presence of enrofloxacin, gentamicin, co-trimoxazole, and ampicillin at half of the MIC were investigated. Increased adhesion of E. coli isolates in the presence of antimicrobials was not observed; however, increased internalization of some isolates was observed by confocal microscopy. All of the antimicrobials induced the formation of biofilms by at least one isolate, whereas enrofloxacin and co-trimoxazole decreased biofilm formation by at least one isolate. Quantitative PCR analysis revealed that all four genes were differentially expressed when bacteria were exposed to subinhibitory concentrations of antimicrobials, with expression altered on the order of 1.5- to 22-fold. However, it was not possible to associate gene expression with induction or reduction of biofilm formation in the presence of the antimicrobials. Taken together, the results demonstrate that antimicrobials could induce biofilm formation by some isolates, in addition to inducing MAC-T cell invasion, a situation that might occur in vivo, potentially resulting in a bacterial reservoir in the udder, which might explain some cases of persistent mastitis in herds. PMID:25063668

Silva, Vitor O; Soares, Larissa O; Silva Júnior, Abelardo; Mantovani, Hilário C; Chang, Yung-Fu; Moreira, Maria Aparecida S

2014-10-01

308

Biofilm formation on a TiO2 nanotube with controlled pore diameter and surface wettability.  

PubMed

Titania (TiO2) nanotube arrays (TNAs) with different pore diameters (140 - 20 nm) are fabricated via anodization using hydrofluoric acid (HF) containing ethylene glycol (EG) by changing the HF-to-EG volume ratio and the anodization voltage. To evaluate the effects of different pore diameters of TiO2 nanotubes on bacterial biofilm formation, Shewanella oneidensis (S. oneidensis) MR-1 cells and a crystal-violet biofilm assay are used. The surface roughness and wettability of the TNA surfaces as a function of pore diameter, measured via the contact angle and AFM techniques, are correlated with the controlled biofilm formation. Biofilm formation increases with the decreasing nanotube pore diameter, and a 20 nm TiO2 nanotube shows the maximum biofilm formation. The measurements revealed that 20 nm surfaces have the least hydrophilicity with the highest surface roughness of ?17 nm and that they show almost a 90% increase in the effective surface area relative to the 140 nm TNAs, which stimulate the cells more effectively to produce the pili to attach to the surface for more biofilm formation. The results demonstrate that bacterial cell adhesion (and hence, biofilm formation) can effectively be controlled by tuning the roughness and wettability of TNAs via controlling the pore diameters of TNA surfaces. This biofilm formation as a function of the surface properties of TNAs can be a potential candidate for both medical applications and as electrodes in microbial fuel cells. PMID:25604920

Anitha, V C; Lee, Jin-Hyung; Lee, Jintae; Narayan Banerjee, Arghya; Woo Joo, Sang; Ki Min, Bong

2015-02-13

309

Biofilm formation on a TiO2 nanotube with controlled pore diameter and surface wettability  

NASA Astrophysics Data System (ADS)

Titania (TiO2) nanotube arrays (TNAs) with different pore diameters (140 ? 20 nm) are fabricated via anodization using hydrofluoric acid (HF) containing ethylene glycol (EG) by changing the HF-to-EG volume ratio and the anodization voltage. To evaluate the effects of different pore diameters of TiO2 nanotubes on bacterial biofilm formation, Shewanella oneidensis (S. oneidensis) MR-1 cells and a crystal-violet biofilm assay are used. The surface roughness and wettability of the TNA surfaces as a function of pore diameter, measured via the contact angle and AFM techniques, are correlated with the controlled biofilm formation. Biofilm formation increases with the decreasing nanotube pore diameter, and a 20 nm TiO2 nanotube shows the maximum biofilm formation. The measurements revealed that 20 nm surfaces have the least hydrophilicity with the highest surface roughness of ?17 nm and that they show almost a 90% increase in the effective surface area relative to the 140 nm TNAs, which stimulate the cells more effectively to produce the pili to attach to the surface for more biofilm formation. The results demonstrate that bacterial cell adhesion (and hence, biofilm formation) can effectively be controlled by tuning the roughness and wettability of TNAs via controlling the pore diameters of TNA surfaces. This biofilm formation as a function of the surface properties of TNAs can be a potential candidate for both medical applications and as electrodes in microbial fuel cells.

Anitha, V. C.; Lee, Jin-Hyung; Lee, Jintae; Narayan Banerjee, Arghya; Joo, Sang Woo; Min, Bong Ki

2015-02-01

310

Pattern Formation Exhibited by Biofilm Formation within Microfluidic Chambers  

PubMed Central

This article investigates the dynamics of an important bacterial pathogen, Xylella fastidiosa, within artificial plant xylem. The bacterium is the causative agent of a variety of diseases that strike fruit-bearing plants including Pierce’s disease of grapevine. Biofilm colonization within microfluidic chambers was visualized in a laboratory setting, showing robust, regular spatial patterning. We also develop a mathematical model, based on a multiphase approach that is able to capture the spacing of the pattern and points to the role of the exopolymeric substance as the main source of control of the pattern dynamics. We concentrate on estimating the attachment/detachment processes within the chamber because these are two mechanisms that have the potential to be engineered by applying various chemicals to prevent or treat the disease. PMID:23663829

Cogan, N.G.; Donahue, M.R.; Whidden, Mark; De La Fuente, Leonardo

2013-01-01

311

A nitric oxide-responsive quorum sensing circuit in Vibrio harveyi regulates flagella production and biofilm formation.  

PubMed

Cell signaling plays an important role in the survival of bacterial colonies. They use small molecules to coordinate gene expression in a cell density dependent manner. This process, known as quorum sensing, helps bacteria regulate diverse functions such as bioluminescence, biofilm formation and virulence. In Vibrio harveyi, a bioluminescent marine bacterium, four parallel quorum-sensing systems have been identified to regulate light production. We have previously reported that nitric oxide (NO), through the H-NOX/HqsK quorum sensing pathway contributes to light production in V. harveyi through the LuxU/LuxO/LuxR quorum sensing pathway. In this study, we show that nitric oxide (NO) also regulates flagellar production and enhances biofilm formation. Our data suggest that V. harveyi is capable of switching between lifestyles to be able to adapt to changes in the environment. PMID:23965964

Henares, Bernadette M; Xu, Yueming; Boon, Elizabeth M

2013-01-01

312

Isolation of biofilm-forming bacteria from a fresh-cut processing plant and co-culturing with E. coli O157:H7  

Technology Transfer Automated Retrieval System (TEKTRAN)

In produce processing plants, biofilms can theoretically provide a supporting environment for pathogenic bacteria that is resistant to cleaning and sanitizing efforts. The objective of this study was to recover bacteria from a commercial produce processing plant that have the ability to form biofilm...

313

Inhibition of quorum sensing regulated biofilm formation in Serratia marcescens causing nosocomial infections.  

PubMed

Serratia marcescens is an opportunistic pathogen causing severe urinary tract infections in hospitalized individuals. Infections of S. marcescens are of great concern because of its increasing resistance towards conventional antibiotics. Quorum sensing (QS)-a cell to cell communication-system of S. marcescens acts as a global regulator of almost all the virulence factors and majorly its biofilm formation. Since, the QS system of S. marcescens directly accords to its pathogenesis, targeting QS system will provide an improved strategy to combat drug resistant pathogens. In the present study, QS system of S. marcescens has been used as target and its inhibition has been studied upon exposure to bioactives from coral associated bacteria (CAB). This study also emphasises the potential of CAB in producing bioactive agents with anti-QS and antibiofilm properties. Two CAB isolates CAB 23 and 41 have shown to inhibit biofilm formation and the production of QS dependent virulence factors like prodigiosin, protease, lipase and swarming motility. The study, on the whole explicates the potential of QS system as a target to treat drug resistant bacterial infections. PMID:22487181

Bakkiyaraj, Dhamodharan; Sivasankar, Chandran; Pandian, Shunmugiah Karutha

2012-05-01

314

The putative oligosaccharide translocase SypK connects biofilm formation with quorum signaling in Vibrio fischeri  

PubMed Central

Quorum signaling (QS) describes how bacteria can use small signaling molecules (autoinducers) to coordinate group-level behaviors. In Vibrio fischeri, QS is achieved through a complex regulatory network that ultimately controls bioluminescence, motility, and host colonization. We conducted a genetic screen focused on qrr1, which encodes a small regulatory RNA that is necessary for the core quorum-signaling cascade to transduce autoinducer information into cellular responses. We isolated unique mutants with a transposon inserted into one of two genes within the syp locus, which is involved in biofilm formation. We found that overexpression of sypK, which encodes a putative oligosaccharide translocase, is sufficient to activate qrr1, and, in addition, this effect appears to depend on the kinase activity of the sensor LuxQ. Consistent with the established model for QS in V. fischeri, enhanced expression of qrr1 by the overexpression of sypK resulted in reduced bioluminescence and increased motility. Finally, we found that induction of the syp locus by overexpression of sypG was sufficient to activate qrr1 levels. Together, our results show how conditions that promote biofilm formation impact the quorum-signaling network in V. fischeri, and further highlight the integrated nature of the regulatory circuits involved in complex bacterial behaviors. PMID:25257018

Miyashiro, Tim; Oehlert, Dane; Ray, Valerie A; Visick, Karen L; Ruby, Edward G

2014-01-01

315

In situ substrate conversion and assimilation by nitrifying bacteria in a model biofilm.  

PubMed

Local nitrification and carbon assimilation activities were studied in situ in a model biofilm to investigate carbon yields and contribution of distinct populations to these activities. Immobilized microcolonies (related to Nitrosomonas europaea/eutropha, Nitrosomonas oligotropha, Nitrospira sp., and to other Bacteria) were incubated with [14C]-bicarbonate under different experimental conditions. Nitrifying activity was measured concomitantly with microsensors (oxygen, ammonium, nitrite, nitrate). Biofilm thin sections were subjected to fluorescence in situ hybridization (FISH), microautoradiography (MAR), and local quantification of [14C]-bicarbonate uptake (beta microimaging). Nitrifying activity and tracer assimilation were restricted to a surface layer of different thickness in the various experiments (substrate or oxygen limitation). Excess oxygen uptake under all conditions revealed heterotrophic activity fuelled by decay or excretion products during active nitrification. Depth limits and intensity of tracer incorporation profiles were in agreement with ammonia-oxidation activity (measured with microsensors), and distribution of incorporated tracer (detected with MAR). Microautoradiography revealed a sharp individual response of distinct populations in terms of in-/activity depending on the (local) environmental conditions within the biofilm. Net in situ carbon yields on N, expressed as e- equivalent ratios, varied between 0.005 and 0.018, and, thus, were in the lower range of data reported for pure cultures of nitrifiers. PMID:16104862

Gieseke, Armin; Nielsen, Jeppe Lund; Amann, Rudolf; Nielsen, Per Halkjaer; de Beer, Dirk

2005-09-01

316

Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens.  

PubMed

In this work, two biosurfactant-producing strains, Bacillus subtilis and Bacillus licheniformis, have been characterized. Both strains were able to grow at high salinity conditions and produce biosurfactants up to 10% NaCl. Both extracted-enriched biosurfactants showed good surface tension reduction of water, from 72 to 26-30 mN/m, low critical micelle concentration, and high resistance to pH and salinity. The potential of the two lipopeptide biosurfactants at inhibiting biofilm adhesion of pathogenic bacteria was demonstrated by using the MBEC device. The two biosurfactants showed interesting specific anti-adhesion activity being able to inhibit selectively biofilm formation of two pathogenic strains. In particular, Escherichia coli CFT073 and Staphylococcus aureus ATCC 29213 biofilm formation was decreased of 97% and 90%, respectively. The V9T14 biosurfactant active on the Gram-negative strain was ineffective against the Gram-positive and the opposite for the V19T21. This activity was observed either by coating the polystyrene surface or by adding the biosurfactant to the inoculum. Two fractions from each purified biosurfactant, obtained by flash chromatography, fractions (I) and (II), showed that fraction (II), belonging to fengycin-like family, was responsible for the anti-adhesion activity against biofilm of both strains. PMID:19343338

Rivardo, F; Turner, R J; Allegrone, G; Ceri, H; Martinotti, M G

2009-06-01

317

Coryneform bacteria in human semen: inter-assay variability in species composition detection and biofilm production ability  

PubMed Central

Background Coryneform bacteria constitute an important segment of male urogenital microbiota. They have been generally considered as saprophytes, although some species have been associated with prostatitis as well. At the same time, biofilm infections have been suspected as a cause of prostatitis. Objective To identify a set of coryneform bacteria isolated from semen of either healthy men or prostatitis patients applying different methods to reveal inter-assay variability and to determine their ability of adhesion and biofilm production. Design Coryneform bacteria were identified by API Coryne 2.0 biochemical identification system and 16S rDNA sequencing using different primer sets. Quantitative assessment of biofilm production was performed using crystal violet binding assay method. Results The most common species were Corynebacterium seminale, C. minutissimum, and Dermabacter hominis. Altogether 14 species and related genera were found. We observed the best inter-assay agreement when identifying C. seminale. Biofilm was observed in 7 out of 24 strains. The biofilm-producing strains belonged to Arthrobacter cumminsii, Dermabacter hominis, C. minutissimum, and Actinomyces neuii. No differences were found between the strains originating from prostatitis patients and healthy men. Dermabacter hominis strains were more potent biofilm producers than C. seminale strains (p=0.048). Conclusions We can conclude that a wide variety of coryneform bacteria can be found from the male genital tract, although their exact identification is problematic due to insufficient representation in databases. Nearly one third of the strains are able to form biofilm that may give them an advantage for surviving several host- and treatment-related conditions. PMID:24563649

Türk, Silver; Mazzoli, Sandra; Štšepetova, Jelena; Kuznetsova, Julia; Mändar, Reet

2014-01-01

318

[Bacterial biofilms: their importance in animal health and public health].  

PubMed

Bacterial biofilms are structured communities of bacterial cells enclosed in a self-produced polymer matrix that is attached to a surface. Biofilms protect and allow bacteria to survive and thrive in hostile environments. Bacteria within biofilms can withstand host immune responses, and are much less susceptible to antibiotics and disinfectants when compared to their planktonic counterparts. The ability to form biofilms is now considered an attribute of many microorganisms. Diseases associated with biofilms require novel methods for their prevention, diagnosis and treatment; this is largely due to the properties of biofilms. Furthermore, the presence of biofilms on surfaces found at farms, slaughterhouses or food processing plants will have an impact on the efficacy of disinfection protocols. Surprisingly, biofilm formation by bacterial pathogens of veterinary or zoonotic importance has received relatively little attention. The objective of this brief Review article is to bring awareness about the importance of biofilms to animal health stakeholders.(Translated by the authors). PMID:24688172

Tremblay, Yannick D N; Hathroubi, Skander; Jacques, Mario

2014-04-01

319

The monitoring of biofilm formation in a mulch biowall barrier and its effect on performance.  

PubMed

Lab scale mulch biofilm biowall barriers were constructed and tested to monitor the effect of biofilm formation on the performance of the biobarrier. Naphthalene, a two-ring polycyclic aromatic hydrocarbon (PAH), was used as the model compound. With column reactors, the amounts of viable naphthalene degraders and biofilm formation were monitored, as was the performance of the biobarrier. The sorption capacity of the mulch, the increase in biomass and the extracellular polymeric substance (EPS) content of the biofilm created a strong affinity for naphthalene and induced an increase in the number of slowly growing hydrocarbon degraders, resulting in a higher degradation rate and more stable PAH removal. Concentration profiles of pore water naphthalene and electron acceptors indicated that dissolved oxygen (DO) was preferentially used as the electron acceptor, and the greatest removal occurred at the inlet to the column reactor where DO was highest. However, when using nitrate as an alternative electron acceptor, both biofilm formation and continual degradation of naphthalene also occurred. Microprofiles of DO in the biofilm revealed that oxygen transport in the biofilm was limited, and there might be sequential utilization of nitrate for naphthalene removal in the anoxic zones of the biofilm. These results provide insight into the distribution of viable biomass and biofilm EPS production in engineered permeable reactive mulch biobarriers. PMID:17681588

Seo, Youngwoo; Bishop, Paul L

2008-01-01

320

Effect of simulated gastrointestinal conditions on biofilm formation by Salmonella 1,4,[5],12:i:-.  

PubMed

Salmonella Typhimurium 1,4,[5],12:i:- is a major serovar responsible for human salmonellosis whose biofilm-forming ability, influenced by environmental conditions like those found in the gastrointestinal tract, is one of the main contributing factors to its ability to persist in the host and thus one of the main causes of chronic relapsing infections. Most studies to evaluate biofilm formation are performed in microtiter assays using standard media. However, no reports are available on the ability of this serovar to produce biofilm under in vitro simulated gastrointestinal conditions which better correlate with the environment found in the gastrointestinal tract. To address this, a modified biofilm assay simulating intestinal fluid was conceived to assess the biofilm formation of 133 Salmonella Typhimurium 1,4,[5],12:i:- isolates with and without agitation and at three different time points (24 h, 48 h, and 72 h). The results were then compared to the existing microtiter method using conventional biofilm growth medium (Mueller Hinton Broth). Statistical analysis revealed significant differences in the results obtained between the three protocols used. The simulated human intestinal environment impaired biofilm production demonstrating that conditions like pH, agitation or the presence of enzymes can influence biofilm production. Therefore, results from in vitro simulation of in vivo conditions may contribute to unravelling factors relating to biofilm formation and persistence in the context of the human host. PMID:25093197

Seixas, R; Gabriel, M; Machado, J; Tavares, L; Bernardo, F; Oliveira, M

2014-01-01

321

The monitoring of biofilm formation in a mulch biowall barrier and its effect on performance  

PubMed Central

Lab scale mulch-biofilm biowall barriers were constructed and tested to monitor the effect of biofilm formation on the performance of the biobarrier. Naphthalene, a two-ring polycyclic aromatic hydrocarbon (PAH), was used as the model compound. With column reactors, the amounts of viable naphthalene degraders and biofilm formation were monitored, as was the performance of the biobarrier. The sorption capacity of the mulch, the increase in biomass and the extracellular polymeric substance (EPS) content of the biofilm created a strong affinity for naphthalene and induced an increase in the number of slowly growing hydrocarbon degraders, resulting in a higher degradation rate and more stable PAH removal. Concentration profiles of pore water naphthalene and electron acceptors indicated that dissolved oxygen (DO) was preferentially used as the electron acceptor, and the greatest removal occurred at the inlet to the column reactor where DO was highest. However, when using nitrate as an alternative electron acceptor, both biofilm formation and continual degradation of naphthalene also occurred. Microprofiles of DO in the biofilm revealed that oxygen transport in the biofilm was limited, and there might be sequential utilization of nitrate for naphthalene removal in the anoxic zones of the biofilm. These results provide insight into the distribution of viable biomass and biofilm EPS production in engineered permeable reactive mulch biobarriers. PMID:17681588

Seo, Youngwoo; Bishop, Paul L.

2008-01-01

322

The role of iron in Mycobacterium smegmatis biofilm formation: the exochelin siderophore is essential in limiting iron conditions for biofilm formation but not for planktonic growth.  

PubMed

Many species of mycobacteria form structured biofilm communities at liquid-air interfaces and on solid surfaces. Full development of Mycobacterium smegmatis biofilms requires addition of supplemental iron above 1 microM ferrous sulphate, although addition of iron is not needed for planktonic growth. Microarray analysis of the M. smegmatis transcriptome shows that iron-responsive genes - especially those involved in siderophore synthesis and iron uptake - are strongly induced during biofilm formation reflecting a response to iron deprivation, even when 2 microM iron is present. The acquisition of iron under these conditions is specifically dependent on the exochelin synthesis and uptake pathways, and the strong defect of an iron-exochelin uptake mutant suggests a regulatory role of iron in the transition to biofilm growth. In contrast, although the expression of mycobactin and iron ABC transport operons is highly upregulated during biofilm formation, mutants in these systems form normal biofilms in low-iron (2 microM) conditions. A close correlation between iron availability and matrix-associated fatty acids implies a possible metabolic role in the late stages of biofilm maturation, in addition to the early regulatory role. M. smegmatis surface motility is similarly dependent on iron availability, requiring both supplemental iron and the exochelin pathway to acquire it. PMID:17854402

Ojha, Anil; Hatfull, Graham F

2007-10-01

323

The effects of N-acylhomoserine lactones, ?-lactam antibiotics and adenosine on biofilm formation in the multi-?-lactam antibiotic-resistant bacterium Acidovorax sp. strain MR-S7.  

PubMed

Bacteria in the natural ecosystem frequently live as adherent communities called biofilms. Some chemical compounds are known to affect biofilm formation. We investigated the effect of exogenous small molecules, N-acylhomoserine lactones (AHLs), ?-lactam antibiotics, and adenosine, on biofilm formation in the ?-lactam antibiotic-resistant bacterium Acidovorax sp. strain MR-S7. Biofilm formation was induced by the addition of various types of AHL isomers and ?-lactam antibiotics, whereas the addition of adenosine strongly interfered with the biofilm formation. A gene (macP) encoding adenosine deaminase (that converts adenosine to inosine controlling intracellular adenosine concentration) was successfully cloned from MR-S7 genome and heterologously expressed in Escherichia coli. The purified MacP protein clearly catalyzed the deamination of adenosine to produce inosine. A transcriptional analysis revealed that biofilm-inducing molecules, an AHL and a ?-lactam antibiotic, strongly induced not only biofilm formation but also adenosine deaminase gene expression, suggesting that an elaborate gene regulation network for biofilm formation is present in the ?-lactam antibiotic-resistant bacterium studied here. PMID:24480749

Kusada, Hiroyuki; Hanada, Satoshi; Kamagata, Yoichi; Kimura, Nobutada

2014-07-01

324

Biofilm formation of Salmonella serotypes in simulated meat processing environments and its relationship to cell characteristics.  

PubMed

Salmonella attached to meat contact surfaces encountered in meat processing facilities may serve as a source of cross-contamination. In this study, the influence of serotypes and media on biofilm formation of Salmonella was investigated in a simulated meat processing environment, and the relationships between biofilm formation and cell characteristics were also determined. All six serotypes (Salmonella enterica serotype Heidelberg, Salmonella Derby, Salmonella Agona, Salmonella Indiana, Salmonella Infantis, and Salmonella Typhimurium) can readily form biofilms on stainless steel surfaces, and the amounts of biofilms were significantly influenced by the serotypes, incubation media, and incubation time used in this study. Significant differences in cell surface hydrophobicity, autoaggregation, motility, and growth kinetic parameters were observed between individual serotypes tested. Except for growth kinetic parameters, the cell characteristics were correlated with the ability of biofilm formation incubated in tryptic soy broth, whereas no correlation with biofilm formation incubated in meat thawing-loss broth (an actual meat substrate) was found. Salmonella grown in meat thawing-loss broth showed a "cloud-shaped" morphology in the mature biofilm, whereas when grown in tryptic soy broth it had a "reticulum-shaped" appearance. Our study provides some practical information to understand the process of biofilm formation on meat processing contact surfaces. PMID:24112581

Wang, Huhu; Ding, Shijie; Dong, Yang; Ye, Keping; Xu, Xinglian; Zhou, Guanghong

2013-10-01

325

Identification of Biofilm-Associated Cluster (bac) in Pseudomonas aeruginosa Involved in Biofilm Formation and Virulence  

Microsoft Academic Search

Biofilms are prevalent in diseases caused by Pseudomonas aeruginosa, an opportunistic and nosocomial pathogen. By a proteomic approach, we previously identified a hypothetical protein of P. aeruginosa (coded by the gene pA3731) that was accumulated by biofilm cells. We report here that a ?pA3731 mutant is highly biofilm-defective as compared with the wild-type strain. Using a mouse model of lung

Camille Macé; Damien Seyer; Chanez Chemani; Pascal Cosette; Patrick di-Martino; Benoit Guery; Alain Filloux; Marc Fontaine; Virginie Molle; Guy-Alain Junter; Thierry Jouenne; Simon Williams

2008-01-01

326

Formation and post-formation dynamics of bacterial biofilm streamers as highly viscous liquid jets  

NASA Astrophysics Data System (ADS)

It has been recently reported that in presence of low Reynolds number (Re << 1) transport, preformed bacterial biofilms, several hours after their formation, may degenerate in form of filamentous structures, known as streamers. In this work, we explain that such streamers form as the highly viscous liquid states of the intrinsically viscoelastic biofilms. Such ``viscous liquid'' state can be hypothesized by noting that the time of appearance of the streamers is substantially larger than the viscoelastic relaxation time scale of the biofilms, and this appearance is explained by the inability of a viscous liquid to withstand external shear. Further, by identifying the post formation dynamics of the streamers as that of a viscous liquid jet in a surrounding flow field, we can interpret several unexplained issues associated with the post-formation dynamics of streamers, such as the clogging of the flow passage or the exponential time growth of streamer dimensions. Overall our manuscript provides a biophysical basis for understanding the evolution of biofilm streamers in creeping flows.

Das, Siddhartha; Kumar, Aloke

2014-11-01

327

Formation and post-formation dynamics of bacterial biofilm streamers as highly viscous liquid jets.  

PubMed

It has been recently reported that in presence of low Reynolds number (Re ? 1) transport, preformed bacterial biofilms, several hours after their formation, may degenerate in form of filamentous structures, known as streamers. In this work, we explain that such streamers form as the highly viscous liquid states of the intrinsically viscoelastic biofilms. Such "viscous liquid" state can be hypothesized by noting that the time of appearance of the streamers is substantially larger than the viscoelastic relaxation time scale of the biofilms, and this appearance is explained by the inability of a viscous liquid to withstand external shear. Further, by identifying the post formation dynamics of the streamers as that of a viscous liquid jet in a surrounding flow field, we can interpret several unexplained issues associated with the post-formation dynamics of streamers, such as the clogging of the flow passage or the exponential time growth of streamer dimensions. Overall our manuscript provides a biophysical basis for understanding the evolution of biofilm streamers in creeping flows. PMID:25410423

Das, Siddhartha; Kumar, Aloke

2014-01-01

328

Biofilm formation by exopolysaccharide mutants of Leuconostoc mesenteroides strain NRRL B-1355.  

PubMed

Leuconostoc mesenteroides strain NRRL B-1355 produces the soluble exopolysaccharides alternan and dextran in planktonic cultures. Mutants of this strain are available that are deficient in the production of alternan, dextran, or both. Another mutant of NRRL B-1355, strain R1510, produces an insoluble glucan in place of alternan and dextran. To test the effect of exopolysaccharide production on biofilm formation, these strains were cultured in a biofilm reactor. All strains grew well as biofilms, with comparable cell densities, including strain NRRL B-21414, which produces neither alternan nor dextran in planktonic cultures. However, the exopolysaccharide phenotype clearly affected the appearance of the biofilms and the sloughed-off biofilm material produced by these biofilms. For all strains, soluble glucansucrases and soluble polysaccharides produced by biofilm cultures appeared to be similar to those produced by planktonic cultures. Biofilms from all strains also contained insoluble polysaccharides. Strain R1510 biofilms contained an insoluble polysaccharide similar to that produced by planktonic cultures. For most other strains, the insoluble biofilm polysaccharides resembled a mixture of alternan and dextran. PMID:18301888

Leathers, Timothy D; Côté, Gregory L

2008-04-01

329

Rapid direct methods for enumeration of specific, active bacteria in water and biofilms  

NASA Technical Reports Server (NTRS)

Conventional methods for detecting indicator and pathogenic bacteria in water may underestimate the actual population due to sublethal environmental injury, inability of the target bacteria to take up nutrients and other physiological factors which reduce bacterial culturability. Rapid and direct methods are needed to more accurately detect and enumerate active bacteria. Such a methodological advance would provide greater sensitivity in assessing the microbiological safety of water and food. The principle goal of this presentation is to describe novel approaches we have formulated for the rapid and simultaneous detection of bacteria plus the determination of their physiological activity in water and other environmental samples. The present version of our method involves the concentration of organisms by membrane filtration or immunomagnetic separation and combines an intracellular fluorochrome (CTC) for assessment of respiratory activity plus fluorescent-labelled antibody detection of specific bacteria. This approach has also been successfully used to demonstrate spatial and temporal heterogeneities of physiological activities in biofilms when coupled with cryosectioning. Candidate physiological stains include those capable of determining respiratory activity, membrane potential, membrane integrity, growth rate and cellular enzymatic activities. Results obtained thus far indicate that immunomagnetic separation can provide a high degree of sensitivity in the recovery of seeded target bacteria (Escherichia coli O157:H7) in water and hamburger. The captured and stained target bacteria are then enumerated by either conventional fluorescence microscopy or ChemScan(R), a new instrument that is very sensitive and rapid. The ChemScan(R) laser scanning instrument (Chemunex, Paris, France) provides the detection of individual fluorescently labelled bacterial cells using three emission channels in less than 5 min. A high degree of correlation has been demonstrated between results obtained with the ChemScan and traditional plate counts of mixed natural bacterial populations in water. The continuing evolution of these methods will be valuable in the rapid and accurate analysis of environmental samples.

McFeters, G. A.; Pyle, B. H.; Lisle, J. T.; Broadaway, S. C.

1999-01-01

330

Protocol for biofilm streamer formation in a microfluidic device with micro-pillars.  

PubMed

Several bacterial species possess the ability to attach to surfaces and colonize them in the form of thin films called biofilms. Biofilms that grow in porous media are relevant to several industrial and environmental processes such as wastewater treatment and CO2 sequestration. We used Pseudomonas fluorescens, a Gram-negative aerobic bacterium, to investigate biofilm formation in a microfluidic device that mimics porous media. The microfluidic device consists of an array of micro-posts, which were fabricated using soft-lithography. Subsequently, biofilm formation in these devices with flow was investigated and we demonstrate the formation of filamentous biofilms known as streamers in our device. The detailed protocols for fabrication and assembly of microfluidic device are provided here along with the bacterial culture protocols. Detailed procedures for experimentation with the microfluidic device are also presented along with representative results. PMID:25178035

Hassanpourfard, Mahtab; Sun, Xiaohui; Valiei, Amin; Mukherjee, Partha; Thundat, Thomas; Liu, Yang; Kumar, Aloke

2014-01-01

331

Microbiological study of biofilm formation in isolates of Salmonella enterica Typhimurium DT104 and DT104b cultured from the modern pork chain.  

PubMed

The purpose of this study was to characterise 172 Salmonella Typhimurium isolates taken from the pork chain for their biofilm forming abilities and to analyse their potential to survive on food processing surfaces. Many Salmonella have the ability to form biofilms. These natural structures, elaborated by bacteria are important in food production because their formation contributes to bacterial survival. Adherent bacterial cells are more resilient to displacement strategies including physical and chemical procedures as a consequence of their altered more resistant phenotype. By improving our understanding of the nature of biofilms, this data could positively contribute to the development and implementation of eradication strategies. In this study, Salmonella Typhimurium DT104 and DT104b were investigated for their ability to form biofilms on a range of different surfaces under defined environmental growth conditions. Phenotypic characterisation involved examining colony morphology on indicator agars, assessing their ability to survive chlorine-based challenges and investigating their ability to attach to stainless steel and to plastic surfaces. All bacterial isolates were investigated for the presence of Salmonella genomic island I (SGI1) which is thought to enhance efficient biofilm formation. It was found that the majority of strains possess biofilm forming capabilities but successful attachment is highly dependent on the surface on which the biofilm is forming. The strains readily attached to stainless steel and plastic surfaces and survived high chlorine concentrations. Molecular and phenotypic comparisons of strong and weak biofilm forming strains indicate that biofilm development is not solely dependent on the acquirement of SGI1. PMID:23266499

O'Leary, Denis; Cabe, Evonne M Mc; McCusker, Matthew P; Martins, Marta; Fanning, Séamus; Duffy, Geraldine

2013-01-15

332

Genomewide screening for genes involved in biofilm formation and miconazole susceptibility in Saccharomyces cerevisiae.  

PubMed

Infections related to fungal biofilms are difficult to treat due to the reduced susceptibility of sessile cells to most antifungal agents. Previous research has shown that 1-10% of sessile Candida cells survive treatment with high doses of miconazole (a fungicidal imidazole). The aim of this study was to identify genes involved in fungal biofilm formation and to unravel the mechanisms of resistance of these biofilms to miconazole. To this end, a screening of a Saccharomyces cerevisiae deletion mutant bank was carried out. Our results revealed that genes involved in peroxisomal transport and the biogenesis of the respiratory chain complex IV play an essential role in biofilm formation. On the other hand, genes involved in transcription and peroxisomal and mitochondrial organization seem to highly influence the susceptibility to miconazole of yeast biofilms. Additionally, our data confirm previous findings on genes involved in biofilm formation and in general stress responses. Our data suggest the involvement of peroxisomes in biofilm formation and miconazole resistance in fungal biofilms. PMID:24034557

Vandenbosch, Davy; De Canck, Evelien; Dhondt, Inne; Rigole, Petra; Nelis, Hans J; Coenye, Tom

2013-12-01

333

Eap1p, an Adhesin That Mediates Candida albicans Biofilm Formation In Vitro and In Vivo  

Microsoft Academic Search

Received 19 February 2007\\/Accepted 26 March 2007 Candida albicans is the leading cause of systemic fungal infections in immunocompromised humans. The ability to form biofilms on surfaces in the host or on implanted medical devices enhances C. albicans virulence, leading to antimicrobial resistance and providing a reservoir for infection. Biofilm formation is a complex multicellular process consisting of cell adhesion,

Fang Li; Michael J. Svarovsky; Amy J. Karlsson; Joel P. Wagner; Karen Marchillo; Philip Oshel; David Andes; Sean P. Palecek

2007-01-01

334

The Effect of Carbon Source and Fluoride Concentrations in the "Streptococcus Mutans" Biofilm Formation  

ERIC Educational Resources Information Center

The main objective of this class experiment is to show the influence of carbon source and of different fluoride concentrations on the biofilm formation by the bacterium "Streptococcus mutans." The observation of different biofilm morphology as a function of carbon source and fluoride concentration allows an interesting discussion regarding the…

Paulino, Tony P.; Andrade, Ricardo O.; Bruschi-Thedei, Giuliana C. M.; Thedei, Geraldo, Jr.; Ciancaglini, Pietro

2004-01-01

335

Biofilm formation, gel and esp gene carriage among recreational beach enterococci.  

PubMed

Biofilm production, gel and esp gene carriage was enumerated among forty six vancomycin resistant enterococci (VRE) and vancomycin susceptible enterococci (VSE) beach isolates. A higher proportion (61.54%) of biofilm producers was observed among beach sand as compared to beach water enterococci isolates (30%) indicating that enterococci within the sand column may be more dependent on biofilm production for survival than their beach water counterparts. Correlation analysis revealed strongly negative correlation (r=-0.535, p=0.015) between vancomycin resistance and biofilm formation. Given the observation of high prevalence of biofilm production among beach sand and the concomitant absence of esp gene carriage in any of the isolate, esp gene carriage may not be necessary for the production of biofilms among beach sand isolates. On the whole beach sand and water isolates demonstrated clearly different prevalence levels of vancomycin resistance, biofilm formation, esp and gel gene carriage. Application of these differences may be found useful in beach microbial source tracking studies. Tested starved cells still produced biofilm albeit at lower efficiencies. Non-dividing enterococci in beach sand can survive extended periods of environmental hardship and can resume growth or biofilm production in appropriate conditions thus making them infectious agents with potential health risk to recreational beach users. PMID:25168975

Asmat, Ahmad; Dada, Ayokunle Christopher; Gires, Usup

2014-09-01

336

In vitro analysis of finasteride activity against Candida albicans urinary biofilm formation and filamentation.  

PubMed

Candida albicans is the 3rd most common cause of catheter-associated urinary tract infections, with a strong propensity to form drug-resistant catheter-related biofilms. Due to the limited efficacy of available antifungals against biofilms, drug repurposing has been investigated in order to identify novel agents with activities against fungal biofilms. Finasteride is a 5-?-reductase inhibitor commonly used for the treatment of benign prostatic hyperplasia, with activity against human type II and III isoenzymes. We analyzed the Candida Genome Database and identified a C. albicans homolog of type III 5-?-reductase, Dfg10p, which shares 27% sequence identity and 41% similarity to the human type III 5-?-reductase. Thus, we investigated finasteride for activity against C. albicans urinary biofilms, alone and in combination with amphotericin B or fluconazole. Finasteride alone was highly effective in the prevention of C. albicans biofilm formation at doses of ?16 mg/liter and the treatment of preformed biofilms at doses of ?128 mg/liter. In biofilm checkerboard analyses, finasteride exhibited synergistic activity in the prevention of biofilm formation in a combination of 4 mg/liter finasteride with 2 mg/liter fluconazole. Finasteride inhibited filamentation, thus suggesting a potential mechanism of action. These results indicate that finasteride alone is highly active in the prevention of C. albicans urinary biofilms in vitro and has synergistic activity in combination with fluconazole. Further investigation of the clinical utility of finasteride in the prevention of urinary candidiasis is warranted. PMID:25049253

Chavez-Dozal, Alba A; Lown, Livia; Jahng, Maximillian; Walraven, Carla J; Lee, Samuel A

2014-10-01

337

Anti-infective effects of Brazilian Caatinga plants against pathogenic bacterial biofilm formation.  

PubMed

Abstract Context: The local communities living in the Brazilian Caatinga biome have a significant body of traditional knowledge on a considerable number of medicinal plants used to heal several maladies. Objective: Based on ethnopharmacological data, this study screened 23 aqueous plant extracts against two well-known models of biofilm-forming bacteria: Staphylococcus epidermidis and Pseudomonas aeruginosa. Materials and methods: Crystal violet assay and scanning electron microscopy (SEM) were used to evaluate the effect of extracts on biofilm formation and measurements of the absorbance at 600?nm to assess bacterial growth. Selected extracts were investigated regarding the cytotoxicity by MTT assay using mammal cells and the qualitative phytochemical fingerprint by thin layer chromatography. Results: Harpochilus neesianus Mart. ex Nees. (Acanthaceae) leaves, Apuleia leiocarpa Vogel J. F. Macbr. (Fabaceae), and Poincianella microphylla Mart. ex G. Don L. P. Queiroz (Fabaceae) fruits showed non-biocidal antibiofilm action against S. epidermidis with activities of 69, 52, and 63%, respectively. SEM confirmed that biofilm structure was strongly prevented and that extracts promoted overproduction of the matrix and/or bacterial morphology modification. Poincianella microphylla demonstrated toxicity at 4.0?mg/mL and 2.0?mg/mL, A. leiocarpa presented toxicity only at 4.0?mg/mL, whereas H. neesianus presented the absence of toxicity against Vero cell line. Preliminary phytochemical analysis revealed the presence of flavonoids, terpenoids, steroids, amines, and polyphenols. Discussion and conclusions: This work provides a scientific basis which may justify the ethnopharmacological use of the plants herein studied, indicating extracts that possess limited mammal cytotoxicity in vitro and a high potential as a source of antibiofilm drugs prototypes. PMID:25472018

Silva, Laura Nunes; Trentin, Danielle da Silva; Zimmer, Karine Rigon; Treter, Janine; Brandelli, Clara Lia Costa; Frasson, Amanda Piccoli; Tasca, Tiana; Silva, Alexandre Gomes da; Silva, Márcia Vanusa da; Macedo, Alexandre José

2014-12-01

338

A Bacillus subtilis Sensor Kinase Involved in Triggering Biofilm Formation on the Roots of Tomato Plants  

PubMed Central

SUMMARY The soil bacterium Bacillus subtilis is widely used in agriculture as a biocontrol agent able to protect plants from a variety of pathogens. Protection is thought to involve the formation of bacterial communities - biofilms - on the roots of the plants. Here we used confocal microscopy to visualize biofilms on the surface of the roots of tomato seedlings and demonstrated that biofilm formation requires genes governing the production of the extracellular matrix that holds cells together. We further show that biofilm formation was dependent on the sensor histidine kinase KinD and in particular on an extracellular CACHE domain implicated in small molecule sensing. Finally, we report that exudates of tomato roots strongly stimulated biofilm formation ex planta and that an abundant small molecule in the exudates, l-malic acid, was able to stimulate biofilm formation at high concentrations in a manner that depended on the KinD CACHE domain. We propose that small signaling molecules released by the roots of tomato plants are directly or indirectly recognized by KinD, triggering biofilm formation. PMID:22716461

Chen, Yun; Cao, Shugeng; Chai, Yunrong; Clardy, Jon; Kolter, Roberto; Guo, Jian-hua; Losick, Richard

2012-01-01

339

Role of Burkholderia pseudomallei biofilm formation and lipopolysaccharide in relapse of melioidosis.  

PubMed

We examined whether quantitative biofilm formation and/or lipopolysaccharide type of Burkholderia pseudomallei was associated with relapsing melioidosis. We devised a 1 : 4 nested case-control study in which both cases and controls were drawn from a cohort of patients with primary melioidosis. Paired isolates from 80 patients with relapse and single isolates from 184 patients without relapse were tested. Relapse was associated with biofilm formation of the primary infecting isolate (conditional OR 2.03; 95% CI 1.27-3.25; p 0.003), but not with lipopolysaccharide type (p 0.74). This finding highlights the importance of biofilm formation in relapsing melioidosis. PMID:24602145

Limmathurotsakul, D; Paeyao, A; Wongratanacheewin, S; Saiprom, N; Takpho, N; Thaipadungpanit, J; Chantratita, N; Wuthiekanun, V; Day, N P J; Peacock, S J

2014-11-01

340

Role of Burkholderia pseudomallei biofilm formation and lipopolysaccharide in relapse of melioidosis  

PubMed Central

We examined whether quantitative biofilm formation and/or lipopolysaccharide type of Burkholderia pseudomallei was associated with relapsing melioidosis. We devised a 1 : 4 nested case–control study in which both cases and controls were drawn from a cohort of patients with primary melioidosis. Paired isolates from 80 patients with relapse and single isolates from 184 patients without relapse were tested. Relapse was associated with biofilm formation of the primary infecting isolate (conditional OR 2.03; 95% CI 1.27–3.25; p 0.003), but not with lipopolysaccharide type (p 0.74). This finding highlights the importance of biofilm formation in relapsing melioidosis. PMID:24602145

Limmathurotsakul, D; Paeyao, A; Wongratanacheewin, S; Saiprom, N; Takpho, N; Thaipadungpanit, J; Chantratita, N; Wuthiekanun, V; Day, N P J; Peacock, S J

2014-01-01

341

Top-down effects of a lytic bacteriophage and protozoa on bacteria in aqueous and biofilm phases  

PubMed Central

Lytic bacteriophages and protozoan predators are the major causes of bacterial mortality in natural microbial communities, which also makes them potential candidates for biological control of bacterial pathogens. However, little is known about the relative impact of bacteriophages and protozoa on the dynamics of bacterial biomass in aqueous and biofilm phases. Here, we studied the temporal and spatial dynamics of bacterial biomass in a microcosm experiment where opportunistic pathogenic bacteria Serratia marcescens was exposed to particle-feeding ciliates, surface-feeding amoebas, and lytic bacteriophages for 8 weeks, ca. 1300 generations. We found that ciliates were the most efficient enemy type in reducing bacterial biomass in the open water, but least efficient in reducing the biofilm biomass. Biofilm was rather resistant against bacterivores, but amoebae had a significant long-term negative effect on bacterial biomass both in the open-water phase and biofilm. Bacteriophages had only a minor long-term effect on bacterial biomass in open-water and biofilm phases. However, separate short-term experiments with the ancestral bacteriophages and bacteria revealed that bacteriophages crash the bacterial biomass dramatically in the open-water phase within the first 24 h. Thereafter, the bacteria evolve phage-resistance that largely prevents top-down effects. The combination of all three enemy types was most effective in reducing biofilm biomass, whereas in the open-water phase the ciliates dominated the trophic effects. Our results highlight the importance of enemy feeding mode on determining the spatial distribution and abundance of bacterial biomass. Moreover, the enemy type can be crucially important predictor of whether the rapid defense evolution can significantly affect top-down regulation of bacteria. PMID:25512841

Zhang, Ji; Örmälä-Odegrip, Anni-Maria; Mappes, Johanna; Laakso, Jouni

2014-01-01

342

Top-down effects of a lytic bacteriophage and protozoa on bacteria in aqueous and biofilm phases.  

PubMed

Lytic bacteriophages and protozoan predators are the major causes of bacterial mortality in natural microbial communities, which also makes them potential candidates for biological control of bacterial pathogens. However, little is known about the relative impact of bacteriophages and protozoa on the dynamics of bacterial biomass in aqueous and biofilm phases. Here, we studied the temporal and spatial dynamics of bacterial biomass in a microcosm experiment where opportunistic pathogenic bacteria Serratia marcescens was exposed to particle-feeding ciliates, surface-feeding amoebas, and lytic bacteriophages for 8 weeks, ca. 1300 generations. We found that ciliates were the most efficient enemy type in reducing bacterial biomass in the open water, but least efficient in reducing the biofilm biomass. Biofilm was rather resistant against bacterivores, but amoebae had a significant long-term negative effect on bacterial biomass both in the open-water phase and biofilm. Bacteriophages had only a minor long-term effect on bacterial biomass in open-water and biofilm phases. However, separate short-term experiments with the ancestral bacteriophages and bacteria revealed that bacteriophages crash the bacterial biomass dramatically in the open-water phase within the first 24 h. Thereafter, the bacteria evolve phage-resistance that largely prevents top-down effects. The combination of all three enemy types was most effective in reducing biofilm biomass, whereas in the open-water phase the ciliates dominated the trophic effects. Our results highlight the importance of enemy feeding mode on determining the spatial distribution and abundance of bacterial biomass. Moreover, the enemy type can be crucially important predictor of whether the rapid defense evolution can significantly affect top-down regulation of bacteria. PMID:25512841

Zhang, Ji; Ormälä-Odegrip, Anni-Maria; Mappes, Johanna; Laakso, Jouni

2014-12-01

343

Bacterial biofilms: from the Natural environment to infectious diseases  

Microsoft Academic Search

Biofilms — matrix-enclosed microbial accretions that adhere to biological or non-biological surfaces — represent a significant and incompletely understood mode of growth for bacteria. Biofilm formation appears early in the fossil record (?3.25 billion years ago) and is common throughout a diverse range of organisms in both the Archaea and Bacteria lineages, including the 'living fossils' in the most deeply

Luanne Hall-Stoodley; J. William Costerton; Paul Stoodley

2004-01-01

344

Essential Roles and Regulation of the Legionella pneumophila Collagen-Like Adhesin during Biofilm Formation  

PubMed Central

Legionellosis is mostly caused by Legionella pneumophila (Lp) and is defined by a severe respiratory illness with a case fatality rate ranging from 5 to 80%. In a previous study, we showed that a glycosaminoglycan (GAG)-binding adhesin of Lp, named Lcl, is produced during legionellosis and is unique to the L. pneumophila species. Importantly, a mutant depleted in Lcl (?lpg2644) is impaired in adhesion to GAGs and epithelial cells and in biofilm formation. Here, we examine the molecular function(s) of Lcl and the transcriptional regulation of its encoding gene during different stages of the biofilm development. We show that the collagen repeats and the C-terminal domains of Lcl are crucial for the production of biofilm. We present evidence that Lcl is involved in the early step of surface attachment but also in intercellular interactions. Furthermore, we address the relationship between Lcl gene regulation during biofilm formation and quorum sensing (QS). In a static biofilm assay, we show that Lcl is differentially regulated during growth phases and biofilm formation. Moreover, we show that the transcriptional regulation of lpg2644, mediated by a prototype of QS signaling homoserine lactone (3OC12-HSL), may play a role during the biofilm development. Thus, transcriptional down-regulation of lpg2644 may facilitate the dispersion of Lp to reinitiate biofilm colonization on a distal surface. PMID:23029523

Mallegol, Julia; Duncan, Carla; Prashar, Akriti; So, Jannice; Low, Donald E.; Terebeznik, Mauricio; Guyard, Cyril

2012-01-01

345

LuxS-Based Signaling in Streptococcus gordonii: Autoinducer 2 Controls Carbohydrate Metabolism and Biofilm Formation with Porphyromonas gingivalis  

PubMed Central

Communication based on autoinducer 2 (AI-2) is widespread among gram-negative and gram-positive bacteria, and the AI-2 pathway can control the expression of genes involved in a variety of metabolic pathways and pathogenic mechanisms. In the present study, we identified luxS, a gene responsible for the synthesis of AI-2, in Streptococcus gordonii, a major component of the dental plaque biofilm. S. gordonii conditioned medium induced bioluminescence in an AI-2 reporter strain of Vibrio harveyi. An isogenic mutant of S. gordonii, generated by insertional inactivation of the luxS gene, was unaffected in growth and in its ability to form biofilms on polystyrene surfaces. In contrast, the mutant strain failed to induce bioluminescence in V. harveyi and was unable to form a mixed species biofilm with a LuxS-null strain of the periodontal pathogen Porphyromonas gingivalis. Complementation of the luxS mutation in S. gordonii restored normal biofilm formation with the luxS-deficient P. gingivalis. Differential display PCR demonstrated that the inactivation of S. gordonii luxS downregulated the expression of a number of genes, including gtfG, encoding glucosyltransferase; fruA, encoding extracellular exo-?-d-fructosidase; and lacD encoding tagatose 1,6-diphosphate aldolase. However, S. gordonii cell surface expression of SspA and SspB proteins, previously implicated in mediating adhesion between S. gordonii and P. gingivalis, was unaffected by inactivation of luxS. The results suggest that S. gordonii produces an AI-2-like signaling molecule that regulates aspects of carbohydrate metabolism in the organism. Furthermore, LuxS-dependent intercellular communication is essential for biofilm formation between nongrowing cells of P. gingivalis and S. gordonii. PMID:12486064

McNab, Roderick; Ford, Suzannah K.; El-Sabaeny, Azza; Barbieri, Bruno; Cook, Guy S.; Lamont, Richard J.

2003-01-01

346

Copper Stress Induces a Global Stress Response in Staphylococcus aureus and Represses sae and agr Expression and Biofilm Formation? †  

PubMed Central

Copper is an important cofactor for many enzymes; however, high levels of copper are toxic. Therefore, bacteria must ensure there is sufficient copper for use as a cofactor but, more importantly, must limit free intracellular levels to prevent toxicity. In this study, we have used DNA microarray to identify Staphylococcus aureus copper-responsive genes. Transcriptional profiling of S. aureus SH1000 grown in excess copper identified a number of genes which fall into four groups, suggesting that S. aureus has four main mechanisms for adapting to high levels of environmental copper, as follows: (i) induction of direct copper homeostasis mechanisms; (ii) increased oxidative stress resistance; (iii) expression of the misfolded protein response; and (iv) repression of a number of transporters and global regulators such as Agr and Sae. Our experimental data confirm that resistance to oxidative stress and particularly to H2O2 scavenging is an important S. aureus copper resistance mechanism. Our previous studies have demonstrated that Eap and Emp proteins, which are positively regulated by Agr and Sae, are required for biofilm formation under low-iron growth conditions. Our transcriptional analysis has confirmed that sae, agr, and eap are repressed under high-copper conditions and that biofilm formation is indeed repressed under high-copper conditions. Therefore, our results may provide an explanation for how copper films can prevent biofilm formation on catheters. PMID:19880638

Baker, Jonathan; Sitthisak, Sutthirat; Sengupta, Mrittika; Johnson, Miranda; Jayaswal, R. K.; Morrissey, Julie A.

2010-01-01

347

Compartmentalization and Organelle Formation in Bacteria  

PubMed Central

A number of bacterial species rely on compartmentalization to gain specific functionalities that will provide them with a selective advantage. Here, we will highlight several of these modes of bacterial compartmentalization with an eye towards describing the mechanisms of their formation and their evolutionary origins. Spore formation in Bacillus subtilis, outer membrane biogenesis in Gram-negative bacteria and protein diffusion barriers of Caulobacter crescentus will be used to demonstrate the physical, chemical and compositional remodeling events that lead to compartmentalization. In addition, magnetosomes and carboxysomes will serve as models to examine the interplay between cytoskeletal systems and the subcellular positioning of organelles. PMID:24440431

Cornejo, Elias; Abreu, Nicole; Komeili, Arash

2015-01-01

348

The influence of subminimal inhibitory concentrations of benzalkonium chloride on biofilm formation by Listeria monocytogenes.  

PubMed

Disinfectants, such as benzalkonium chloride (BAC), are commonly used to control Listeria monocytogenes and other pathogens in food processing plants. Prior studies have demonstrated that the resistance to BAC of L. monocytogenes was associated with the prolonged survival of three strains of molecular serotype 1/2a in an Iberian pork processing plant. Because survival in such environments is related to biofilm formation, we hypothesised that the influence of BAC on the biofilm formation potential of L. monocytogenes might differ between BAC-resistant strains (BAC-R, MIC?10mg/L) and BAC-sensitive strains (BAC-S, MIC?2.5mg/L). To evaluate this possibility, three BAC-R strains and eight BAC-S strains, which represented all of the molecular serotype 1/2a strains detected in the sampled plant, were compared. Biofilm production was measured using the crystal violet staining method in 96-well microtitre plates. The BAC-R strains produced significantly (p<0.05) less biofilm than the BAC-S in the absence of BAC, independent of the rate of planktonic growth. In contrast, when the biofilm values were measured in the presence of BAC, one BAC-R strain (S10-1) was able to form biofilm at 5mg/L of BAC, which prevented biofilm formation among the rest of the strains. A genetic determinant of BAC resistance recently described in L. monocytogenes (Tn6188) was detected in S10-1. When a BAC-S strain and its spontaneous mutant BAC-R derivative were compared, resistance to BAC led to biofilm formation at 5mg/L of BAC and to a significant (p<0.05) stimulation of biofilm formation at 1.25mg/L of BAC, which significantly (p<0.05) reduced the biofilm level in the parent BAC-S strain. Our results suggest that the effect of subminimal inhibitory concentrations of BAC on biofilm production by L. monocytogenes might differ between strains with different MICs and even between resistant strains with similar MICs but different genetic determinants of BAC resistance. For BAC-R strains similar to S10-1, subminimal inhibitory BAC may represent an advantage, compensating for the weak biofilm formation level that might be associated with resistance. Biofilm formation in the presence of increased subminimal inhibitory concentrations of the disinfectant may represent an important attribute among certain resistant and persistent strains of L. monocytogenes. PMID:25136789

Ortiz, Sagrario; López, Victoria; Martínez-Suárez, Joaquín V

2014-10-17

349

Biological Filtration Limits Carbon Availability and Affects Downstream Biofilm Formation and Community Structure†  

PubMed Central

Carbon removal strategies have gained popularity in the mitigation of biofouling in water reuse processes, but current biofilm-monitoring practices based on organic-carbon concentrations may not provide an accurate representation of the in situ biofilm problem. This study evaluated a submerged microtiter plate assay for direct and rapid monitoring of biofilm formation by subjecting the plates to a continuous flow of either secondary effluent (SE) or biofilter-treated secondary effluent (BF). This method was very robust, based on a high correlation (R2 = 0.92) between the biomass (given by the A600 in the microtiter plate assay) and the biovolume (determined from independent biofilms developed on glass slides under identical conditions) measurements, and revealed that the biomasses in BF biofilms were consistently lower than those in SE biofilms. The influence of the organic-carbon content on the biofilm community composition and succession was further evaluated using molecular tools. Terminal restriction fragment length polymorphism analysis of 16S rRNA genes revealed a group of pioneer colonizers, possibly represented by Sphingomonadaceae and Caulobacter organisms, to be common in both SE and BF biofilms. However, differences in organic-carbon availabilities in the two water samples eventually led to the selection of distinct biofilm communities. Alphaproteobacterial populations were confirmed by fluorescence in situ hybridization to be enriched in SE biofilms, while Betaproteobacteria were dominant in BF biofilms. Cloning analyses further demonstrated that microorganisms adapted for survival under low-substrate conditions (e.g., Aquabacterium, Caulobacter, and Legionella) were preferentially selected in the BF biofilm, suggesting that carbon limitation strategies may not achieve adequate biofouling control in the long run. PMID:16957184

Pang, Chee Meng; Liu, Wen-Tso

2006-01-01

350

Streptococcus gordonii comCDE (competence) operon modulates biofilm formation with Candida albicans.  

PubMed

Candida albicans is a pleiomorphic fungus that forms mixed species biofilms with Streptococcus gordonii, an early colonizer of oral cavity surfaces. Activation of quorum sensing (QS; intercellular signalling) promotes monospecies biofilm development by these micro-organisms, but the role of QS in mixed species communities is not understood. The comCDE genes in S. gordonii encode a sensor-regulator system (ComDE), which is activated by the comC gene product (CSP, competence stimulating peptide) and modulates expression of QS-regulated genes. Dual species biofilms of S. gordonii ?comCDE or ?comC mutants with C. albicans showed increased biomass compared to biofilms of S. gordonii DL1 wild-type with C. albicans. The ?comCDE mutant dual species biofilms in particular contained more extracellular DNA (eDNA), and could be dispersed with DNase I or protease treatment. Exogenous CSP complemented the S. gordonii ?comC transformation deficiency, as well as the ?comC-C. albicans biofilm phenotype. Purified CSP did not affect C. albicans hyphal filament formation but inhibited monospecies biofilm formation by C. albicans. The results suggest that the S. gordonii comCDE QS-system modulates the production of eDNA and the incorporation of C. albicans into dual species biofilms. PMID:25505189

Jack, Alison A; Daniels, Debbie E; Jepson, Mark A; Vickerman, M Margaret; Lamont, Richard J; Jenkinson, Howard F; Nobbs, Angela H

2015-02-01

351

Investigating catalase activity through hydrogen peroxide decomposition by bacteria biofilms in real time using scanning electrochemical microscopy.  

PubMed

Catalase activity through hydrogen peroxide decomposition in a 1 mM bulk solution above Vibrio fischeri (?-Protebacteria-Vibrionaceae) bacterial biofilms of either symbiotic or free-living strains was studied in real time by scanning electrochemical microscopy (SECM). The catalase activity, in units of micromoles hydrogen peroxide decomposed per minute over a period of 348 s, was found to vary with incubation time of each biofilm in correlation with the corresponding growth curve of bacteria in liquid culture. Average catalase activity for the same incubation times ranging from 1 to 12 h was found to be 0.28 ± 0.07 ?mol H2O2/min for the symbiotic biofilms and 0.31 ± 0.07 ?mol H2O2/min for the free-living biofilms, suggesting similar catalase activity. Calculations based on Comsol Multiphysics simulations in fitting experimental biofilm data indicated that approximately (3 ± 1) × 10(6) molecules of hydrogen peroxide were decomposed by a single bacterium per second, signifying the presence of a highly active catalase. A 2-fold enhancement in catalase activity was found for both free-living and symbiotic biofilms in response to external hydrogen peroxide concentrations as low as 1 nM in the growth media, implying a similar mechanism in responding to oxidative stress. PMID:24328342

Abucayon, Erwin; Ke, Neng; Cornut, Renaud; Patelunas, Anthony; Miller, Douglas; Nishiguchi, Michele K; Zoski, Cynthia G

2014-01-01

352

Acoustic and Electrical Property Changes Due to Microbial Growth and Biofilm Formation in Porous Media  

EPA Science Inventory

A laboratory study was conducted to investigate the effect of microbial growth and biofilm formation on compressional waves, and complex conductivity during stimulated microbial growth. Over the 29 day duration of the experiment, compressional wave amplitudes and arrival times f...

353

Effect of Nitroxides on Swarming Motility and Biofilm Formation, Multicellular Behaviors in Pseudomonas aeruginosa  

PubMed Central

The ability of nitric oxide (NO) to induce biofilm dispersion has been well established. Here, we investigated the effect of nitroxides (sterically hindered nitric oxide analogues) on biofilm formation and swarming motility in Pseudomonas aeruginosa. A transposon mutant unable to produce nitric oxide endogenously (nirS) was deficient in swarming motility relative to the wild type and the complemented strain. Moreover, expression of the nirS gene was upregulated by 9.65-fold in wild-type swarming cells compared to planktonic cells. Wild-type swarming levels were substantially restored upon the exogenous addition of nitroxide containing compounds, a finding consistent with the hypothesis that NO is necessary for swarming motility. Here, we showed that nitroxides not only mimicked the dispersal activity of NO but also prevented biofilms from forming in flow cell chambers. In addition, a nirS transposon mutant was deficient in biofilm formation relative to the wild type and the complemented strain, thus implicating NO in the formation of biofilms. Intriguingly, despite its stand-alone action in inhibiting biofilm formation and promoting dispersal, a nitroxide partially restored the ability of a nirS mutant to form biofilms. PMID:23877682

de la Fuente-Núñez, César; Reffuveille, Fany; Fairfull-Smith, Kathryn E.

2013-01-01

354

Ability of Candida albicans mutants to induce Staphylococcus aureus vancomycin resistance during polymicrobial biofilm formation.  

PubMed

Candida albicans and Staphylococcus aureus form vigorous polymicrobial biofilms in serum, which may serve as the source of coinfection in patients. More importantly, S. aureus is highly resistant to vancomycin during polymicrobial biofilm formation, with no decreases in bacterial viability observed with up to 1,600 microg/ml drug. In these mixed-species biofilms, S. aureus preferentially associates with C. albicans hyphae, which express a variety of unique adhesins. We tested C. albicans mutants deficient in transcriptional regulators of morphogenesis (CPH1 and EFG1) and biofilm formation (BCR1) to investigate the role of hyphae in mediating polymicrobial biofilm formation. These mutants also have reduced expression of hypha-specific adhesins. The ability to form polymicrobial biofilms correlated with the ability to form hyphae in these mutants. However, only mutants that could adhere to the abiotic surface could induce S. aureus vancomycin resistance, regardless of the presence of hyphae. In examining factors that may mediate interspecies adhesion, we found that the C. albicans ALS family of adhesins (Als1 to Als7 and Als9) was not involved, and neither was the hypha-specific adhesin Hwp1. Therefore, polymicrobial biofilm formation and subsequent antibiotic resistance is a multifactorial process that may require a unique combination of fungal and/or bacterial adhesins. PMID:20566760

Harriott, Melphine M; Noverr, Mairi C

2010-09-01

355

Identification of bacterial strains isolated from the Mediterranean Sea exhibiting different abilities of biofilm formation.  

PubMed

The Mediterranean Sea has rarely been investigated for the characterization of marine bacteria as compared to other marine environments such as the Atlantic or Pacific Ocean. Bacteria recovered from inert surfaces are poorly studied in these environments, when it has been shown that the community structure of attached bacteria can be dissimilar from that of planktonic bacteria present in the water column. The objectives of this study were to identify and characterize marine bacteria isolated from biofilms developed on inert surfaces immersed in the Mediterranean Sea and to evaluate their capacity to form a biofilm in vitro. Here, 13 marine bacterial strains have been isolated from different supports immersed in seawater in the Bay of Toulon (France). Phylogenetic analysis and different biological and physico-chemical properties have been investigated. Among the 13 strains recovered, 8 different genera and 12 different species were identified including 2 isolates of a novel bacterial species that we named Persicivirga mediterranea and whose genus had never been isolated from the Mediterranean Sea. Shewanella sp. and Pseudoalteromonas sp. were the most preponderant genera recovered in our conditions. The phenotypical characterization revealed that one isolate belonging to the Polaribacter genus differed from all the other ones by its hydrophobic properties and poor ability to form biofilms in vitro. Identifying and characterizing species isolated from seawater including from Mediterranean ecosystems could be helpful for example, to understand some aspects of bacterial biodiversity and to further study the mechanisms of biofilm (and biofouling) development in conditions approaching those of the marine environment. PMID:24402359

Brian-Jaisson, Florence; Ortalo-Magné, Annick; Guentas-Dombrowsky, Linda; Armougom, Fabrice; Blache, Yves; Molmeret, Maëlle

2014-07-01

356

Identification of Salmonella enterica serovar Typhimurium genes regulated during biofilm formation on cholesterol gallstone surfaces.  

PubMed

Salmonella spp. are able to form biofilms on abiotic and biotic surfaces. In vivo studies in our laboratory have shown that Salmonella can form biofilms on the surfaces of cholesterol gallstones in the gallbladders of mice and human carriers. Biofilm formation on gallstones has been demonstrated to be a mechanism of persistence. The purpose of this work was to identify and evaluate Salmonella sp. cholesterol-dependent biofilm factors. Differential gene expression analysis between biofilms on glass or cholesterol-coated surfaces and subsequent quantitative real-time PCR (qRT-PCR) revealed that type 1 fimbria structural genes and a gene encoding a putative outer membrane protein (ycfR) were specifically upregulated in Salmonella enterica serovar Typhimurium biofilms grown on cholesterol-coated surfaces. Spatiotemporal expression of ycfR and FimA verified their regulation during biofilm development on cholesterol-coated surfaces. Surprisingly, confocal and scanning electron microscopy demonstrated that a mutant of type 1 fimbria structural genes (?fimAICDHF) and a ycfR mutant showed increased biofilm formation on cholesterol-coated surfaces. In vivo experiments using Nramp1(+/+) mice harboring gallstones showed that only the ?ycfR mutant formed extensive biofilms on mouse gallstones at 7 and 21 days postinfection; ?fimAICDHF was not observed on gallstone surfaces after the 7-day-postinfection time point. These data suggest that in Salmonella spp., wild-type type 1 fimbriae are important for attachment to and/or persistence on gallstones at later points of chronic infection, whereas YcfR may represent a specific potential natural inhibitor of initial biofilm formation on gallstones. PMID:23897604

Gonzalez-Escobedo, Geoffrey; Gunn, John S

2013-10-01

357

Biofilm Formation and Susceptibility to Amphotericin B and Fluconazole in Candida albicans  

PubMed Central

Background: The ability of Candida albicans to form biofilms and adhere to host tissues and biomaterial surfaces is an important factor in its pathogenesis. One of the main characteristics of biofilms is their resistance to broad-spectrum anti-microbial drugs. Objectives: In the present study the formation of biofilm by C. albicans from different sources was evaluated. In addition, the minimum biofilm inhibitory concentration (MBIC) for two antifungals was evaluated. Materials and Methods: In total, 120 isolates of C. albicans from different sources (patients with vaginitis, patients with candiduria, bucal cavity and environmental surfaces) were collected. Biofilm formation was determined by the 96-well micro-titeration plate method. MBIC testing was also performed, using the calorimetric indicator resazurin for amphotericin B and fluconazole. Results: The results indicated that 100% of C. albicans isolates from different sources had the ability to form biofilms in vitro. Amongst these isolates, 83.3% of isolates had the maximum potential (4+) to form biofilms, while only one (0.9%) of isolates had the minimum ability (1+) to form biofilms. Our results showed that 65.0% of the tested isolates are sensitive to amphotericin B at amounts lower than 10 µg/mL, while only 26.7% are sensitive to fluconazole (had MBIC < 10 µg/mL). Conclusions: Although biofilm formation was detected in all tested isolates, there were differences in the ability to form biofilms between isolates from different sources. In addition, there were differences in the MBIC against the two examined antifungals, amphotericin B and fluconazole. PMID:25368806

Zarei Mahmoudabadi, Ali; Zarrin, Majid; Kiasat, Neda

2014-01-01

358

Efficacy of silver-releasing rubber for the prevention of Pseudomonas aeruginosa biofilm formation in water  

Microsoft Academic Search

The aim of the present study was to evaluate the efficacy of Elastoguard™ silver-releasing rubber in preventing Pseudomonas aeruginosa biofilm formation in water. Biofilm formation by P. aeruginosa under various conditions in an in vitro model system was compared for silver-releasing and conventional rubber. Under most conditions tested, the numbers of sessile cells attached to silver-releasing rubber were considerably lower

Kristof De Prijck; Hans Nelis; Tom Coenye

2007-01-01