Sample records for bacteria biofilm formation

  1. Biofilm bacteria: formation and comparative susceptibility to antibiotics

    PubMed Central

    Olson, Merle E.; Ceri, Howard; Morck, Douglas W.; Buret, Andre G.; Read, Ronald R.

    2002-01-01

    The Calgary Biofilm Device (CBD) was used to form bacterial biofilms of selected veterinary gram-negative and gram-positive pathogenic bacteria from cattle, sheep, pigs, chicken, and turkeys. The minimum inhibitory concentration (MIC) and minimum biofilm eradication concentration (MBEC) of ampicillin, ceftiofur, cloxacillin, oxytetracycline, penicillin G, streptomycin, tetracycline, enrofloxacin, erythromycin, gentamicin, tilmicosin, and trimethoprim-sulfadoxine for gram-positive and -negative bacteria were determined. Bacterial biofilms were readily formed on the CBD under selected conditions. The biofilms consisted of microcolonies encased in extracellular polysaccharide material. Biofilms composed of Arcanobacterium (Actinomyces) pyogenes, Staphylococcus aureus, Staphylococcus hyicus, Streptococcus agalactiae, Corynebacterium renale, or Corynebacterium pseudotuberculosis were not killed by the antibiotics tested but as planktonic bacteria they were sensitive at low concentrations. Biofilm and planktonic Streptococcus dysgalactiae and Streptococcus suis were sensitive to penicillin, ceftiofur, cloxacillin, ampicillin, and oxytetracycline. Planktonic Escherichia coli were sensitive to enrofloxacin, gentamicin, oxytetracycline and trimethoprim/ sulfadoxine. Enrofloxacin and gentamicin were the most effective antibiotics against E. coli growing as a biofilm. Salmonella spp. and Pseudomonas aeruginosa isolates growing as planktonic populations were sensitive to enrofloxacin, gentamicin, ampicillin, oxytetracycline, and trimethoprim/sulfadoxine, but as a biofilm, these bacteria were only sensitive to enrofloxacin. Planktonic and biofilm Pasteurella multocida and Mannheimia haemolytica had similar antibiotic sensitivity profiles and were sensitive to most of the antibiotics tested. The CBD provides a valuable new technology that can be used to select antibiotics that are able to kill bacteria growing as biofilms. PMID:11989739

  2. Biofilm bacteria: formation and comparative susceptibility to antibiotics.

    PubMed

    Olson, Merle E; Ceri, Howard; Morck, Douglas W; Buret, Andre G; Read, Ronald R

    2002-04-01

    The Calgary Biofilm Device (CBD) was used to form bacterial biofilms of selected veterinary gram-negative and gram-positive pathogenic bacteria from cattle, sheep, pigs, chicken, and turkeys. The minimum inhibitory concentration (MIC) and minimum biofilm eradication concentration (MBEC) of ampicillin, ceftiofur, cloxacillin, oxytetracycline, penicillin G, streptomycin, tetracycline, enrofloxacin, erythromycin, gentamicin, tilmicosin, and trimethoprim-sulfadoxine for gram-positive and -negative bacteria were determined. Bacterial biofilms were readily formed on the CBD under selected conditions. The biofilms consisted of micro-colonies encased in extracellular polysaccharide material. Biofilms composed of Arcanobacterium (Actinomyces) pyogenes, Staphylococcus aureus, Staphylococcus hyicus, Streptococcus agalactiae, Corynebacterium renale, or Corynebacterium pseudotuberculosis were not killed by the antibiotics tested but as planktonic bacteria they were sensitive at low concentrations. Biofilm and planktonic Streptococcus dysgalactiae and Streptococcus suis were sensitive to penicillin, ceftiofur, cloxacillin, ampicillin, and oxytetracycline. Planktonic Escherichia coli were sensitive to enrofloxacin, gentamicin, oxytetracycline and trimethoprim/ sulfadoxine. Enrofloxacin and gentamicin were the most effective antibiotics against E. coli growing as a biofilm. Salmonella spp. and Pseudomonas aeruginosa isolates growing as planktonic populations were sensitive to enrofloxacin, gentamicin, ampicillin, oxytetracycline, and trimethoprim/sulfadoxine, but as a biofilm, these bacteria were only sensitive to enrofloxacin. Planktonic and biofilm Pasteurella multocida and Mannheimia haemolytica had similar antibiotic sensitivity profiles and were sensitive to most of the antibiotics tested. The CBD provides a valuable new technology that can be used to select antibiotics that are able to kill bacteria growing as biofilms. PMID:11989739

  3. Curli synthesis and biofilm formation in enteric bacteria are controlled by a dynamic small RNA

    E-print Network

    Boyer, Edmond

    Curli synthesis and biofilm formation in enteric bacteria are controlled by a dynamic small RNA-specific gene D transcription factor required for adhesion and biofilm production in enterobacteria. During biofilm formation by impairing curli synthesis. Inducing RydC early on in growth lowers CsgA, -B and -D

  4. Biofilm Formation and Contamination of Cheese by Nonstarter Lactic Acid Bacteria in The Dairy Environment

    Microsoft Academic Search

    E. B. Somers; M. E. Johnson; A. C. L. Wong

    2001-01-01

    Defects in cheese, such as undesirable flavors, gas formation, or white surface haze from calcium lactate crystals, can result from growth of nonstarter lactic acid bacteria (NSLAB). The potential for biofilm forma- tion by NSLAB during cheese manufacturing, the effect of cleaning and sanitizing on the biofilm, and bacterial growth and formation of defects during ripening of the contaminated cheese

  5. Biofilm Formation by Gram-Negative Bacteria on Central Venous Catheter Connectors: Effect of Conditioning Films in a Laboratory Model

    Microsoft Academic Search

    R. Murga; J. M. Miller; R. M. Donlan

    2001-01-01

    Human blood components have been shown to enhance biofilm formation by gram-positive bacteria. We investigated the effect of human blood on biofilm formation on the inner lumen of needleless central venous catheter connectors by several gram-negative bacteria, specifically Enterobacter cloacae, Pseudomonas aerugi- nosa, and Pantoea agglomerans. Results suggest that a conditioning film of blood components promotes biofilm formation by these

  6. Biofilm formation and contamination of cheese by nonstarter lactic acid bacteria in the dairy environment.

    PubMed

    Somers, E B; Johnson, M E; Wong, A C

    2001-09-01

    Defects in cheese, such as undesirable flavors, gas formation, or white surface haze from calcium lactate crystals, can result from growth of nonstarter lactic acid bacteria (NSLAB). The potential for biofilm formation by NSLAB during cheese manufacturing, the effect of cleaning and sanitizing on the biofilm, and bacterial growth and formation of defects during ripening of the contaminated cheese were studied. Stirred-curd Cheddar cheese was made in the presence of stainless steel chips containing biofilms of either of two strains of erythromycin-resistant NSLAB (Lactobacillus curvatus strain JBL2126 or Lactobacillus fermentum strain AWL4001). During ripening, the cheese was assayed for total lactic acid bacteria, numbers of NSLAB, and percentage of lactic acid isomers. Biofilms of L. curvatus formed during cheese making survived the cleaning process and persisted in a subsequent batch of cheese. The starter culture also survived the cleaning process. Additionally, L. curvatus biofilms present in the vat dislodged, grew to high numbers, and caused a calcium lactate white haze defect in cheese during ripening. On the other hand, biofilms of L. fermentum sloughed off during cheese making but could not compete with other NSLAB present in cheese during ripening. Pulsed-field gel electrophoresis results verified the presence of the two biofilm strains during cheese making and in the ripening cheese. Probable contamination sites in the plant for other NSLAB isolated in the cheese were identified, thus supporting the hypothesis that resident NSLAB biofilms are a viable source of contamination in the dairy environment. PMID:11573770

  7. Interspecies interactions result in enhanced biofilm formation by co-cultures of bacteria isolated from a food processing environment.

    PubMed

    Røder, Henriette L; Raghupathi, Prem K; Herschend, Jakob; Brejnrod, Asker; Knøchel, Susanne; Sørensen, Søren J; Burmølle, Mette

    2015-10-01

    Bacterial attachment and biofilm formation can lead to poor hygienic conditions in food processing environments. Furthermore, interactions between different bacteria may induce or promote biofilm formation. In this study, we isolated and identified a total of 687 bacterial strains from seven different locations in a meat processing environment and evaluated their biofilm formation capability. A diverse group of bacteria was isolated and most were classified as poor biofilm producers in a Calgary biofilm device assay. Isolates from two sampling sites, the wall and the meat chopper, were further examined for multispecies biofilm formation. Eight strains from each sampling site were chosen and all possible combinations of four member co-cultures were tested for enhanced biofilm formation at 15 °C and 24 °C. In approximately 20% of the multispecies consortia grown at 15 °C, the biofilm formation was enhanced when comparing to monospecies biofilms. Two specific isolates (one from each location) were found to be present in synergistic combinations with higher frequencies than the remaining isolates tested. This data provides insights into the ability of co-localized isolates to influence co-culture biofilm production with high relevance for food safety and food production facilities. PMID:26187823

  8. Quorum sensing signalling and biofilm formation of brewery-derived bacteria, and inhibition of signalling by natural compounds.

    PubMed

    Priha, O; Virkajärvi, V; Juvonen, R; Puupponen-Pimiä, R; Nohynek, L; Alakurtti, S; Pirttimaa, M; Storgårds, E

    2014-11-01

    Bacteria use quorum sensing signalling in various functions, e.g. while forming biofilms, and inhibition of this signalling could be one way to control biofilm formation. The aim of this study was to evaluate the production of signalling molecules and its correlation with the biofilm formation capability of bacteria isolated from brewery filling process. A further aim was to study berry extracts and wood-derived terpenes for their possible quorum sensing inhibitory effects. Out of the twenty bacteria studied, five produced short-chain and five long-chain AHL (acyl homoserine lactone) signalling molecules when tested with the Chromobacterium violaceum CV026 reporter bacterium. Production of AI-2 (autoinducer-2) signalling molecules was detected from nine strains with the Vibrio harveyi BB170 bioassay. Over half of the strains produced biofilm in the microtitre plate assay, but the production of AHL and AI-2 signalling molecules and biofilm formation capability did not directly correlate with each other. Out of the 13 berry extracts and wood-derived terpenes screened, four compounds decreased AHL signalling without effect on growth. These were betulin, raspberry extract and two cloudberry extracts. The effect of these compounds on biofilm formation of the selected six bacterial strains varied. The phenolic extract of freeze-dried cloudberry fruit caused a statistically significant reduction of biofilm formation of Obesumbacterium proteus strain. Further experiments should aim at identifying the active compounds and revealing whether quorum sensing inhibition causes structural changes in the biofilms formed. PMID:24944110

  9. Molecular mechanisms involved in biofilm formation by food-associated bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofilms are complex bacterial communities adhering to a surface, an interface, or to each other and enclosed in an extracellular polymeric matrix. Genomic studies show that gene expression patterns of bacteria in biofilms differ from those of non-biofilm cells, indicating that there is a differen...

  10. Quorum quenching bacteria isolated from the sludge of a wastewater treatment plant and their application for controlling biofilm formation.

    PubMed

    Kim, A-Leum; Park, Son-Young; Lee, Chi-Ho; Lee, Chung-Hak; Lee, Jung-Kee

    2014-11-28

    Bacteria recognize changes in their population density by sensing the concentration of signal molecules, N-acyl-homoserine lactones (AHLs). AHL-mediated quorum sensing (QS) plays a key role in biofilm formation, so the interference of QS, referred to as quorum quenching (QQ), has received a great deal of attention. A QQ strategy can be applied to membrane bioreactors (MBRs) for advanced wastewater treatment to control biofouling. To isolate QQ bacteria that can inhibit biofilm formation, we isolated diverse AHL-degrading bacteria from a laboratory-scale MBR and sludge from real wastewater treatment plants. A total of 225 AHLdegrading bacteria were isolated from the sludge sample by enrichment culture. To identify the enzyme responsible for AHL degradation in QQ bacteria, AHL-degrading activities were analyzed using cell-free lysate, culture supernatant, and whole cells. Afipia sp. and Acinetobacter sp. strains produced the intracellular QQ enzyme, whereas Pseudomonas sp. and Micrococcus sp. produced the extracellular QQ enzyme that was most likely to produce AHLacylase. AHL-degrading activity was observed in whole-cell assay with the Microbacterium sp. and Rhodococcus sp. strains. There has been no report for AHL-degrading capability in the case of Streptococcus sp. and Afipia sp. strains. Finally, inhibition of biofilm formation by isolated QQ bacteria or enzymes was observed on glass slides and 96-well microtiter plates using crystal violet staining. QQ strains or enzymes not only inhibited initial biofilm development but also reduced established biofilms. PMID:25112313

  11. Transitions in biofilm formation

    NASA Astrophysics Data System (ADS)

    Gordon, Vernita; Thatcher, Travis; Cooley, Benjamin

    2011-03-01

    Biofilms are multicellular, dynamic communities formed by interacting unicellular organisms bound to a surface. Forming a biofilm is a developmental process, characterized by sequential changes in gene expression and behavior as bacteria and yeast progress from discrete, free-swimming cells though stages that arrive at a mature biofilm. We are developing automated metrics to identify key transitions in early biofilm formation as cells attach to a surface, populate that surface, and adhere to each other to form early microcolonies. Our metrics use high-throughput tracking and analysis of microscopy movies to localize these transitions in space and time. Each of these transitions is associated with a loss of entropy in the bacterial system and, therefore, with biological activity that drives this loss of entropy. Better understanding of these transitions will allow automated determination of the strength and turn-on of attractive cell-surface and cell-cell interactions as biofilm development progresses.

  12. Formation of Sphalerite (ZnS) Deposits in Natural Biofilms of Sulfate-Reducing Bacteria

    Microsoft Academic Search

    Matthias Labrenz; Gregory K. Druschel; Tamara Thomsen-Ebert; Benjamin Gilbert; Susan A. Welch; Kenneth M. Kemner; Graham A. Logan; Roger E. Summons; Gelsomina De Stasio; Philip L. Bond; Barry Lai; Shelly D. Kelly; Jillian F. Banfield; Diversions Scuba

    2000-01-01

    Abundant, micrometer-scale, spherical aggregates of 2- to 5-nanometer-diameter sphalerite (ZnS) particles formed within natural biofilms dominated by relatively aerotolerant sulfate-reducing bacteria of the family Desulfobacteriaceae. The biofilm zinc concentration is about 106 times that of associated groundwater (0.09 to 1.1 parts per million zinc). Sphalerite also concentrates arsenic (0.01 weight %) and selenium (0.004 weight %). The almost monomineralic product

  13. Dual-species biofilm formation by Escherichia coli O157:H7 and environmental bacteria isolated from fresh-cut processing facilities.

    PubMed

    Liu, Nancy T; Nou, Xiangwu; Lefcourt, Alan M; Shelton, Daniel R; Lo, Y Martin

    2014-02-01

    Biofilm formation is a mechanism adapted by many microorganisms that enhances the survival in stressful environments. In food processing facilities, foodborne bacterial pathogens, which many are poor biofilm formers, could potentially take advantage of this protective mechanism by interacting with other strong biofilm producers. The objective of this study was to determine the influence of bacteria native to fresh produce processing environments on the incorporation of Escherichia coli O157:H7 in biofilms. Bacteria strains representing 13 Gram-negative species isolated from two fresh produce processing facilities in a previous study were tested for forming dual-species biofilms with E. coli O157:H7. Strong biofilm producing strains of Burkholderia caryophylli and Ralstonia insidiosa exhibited 180% and 63% increase in biofilm biomass, and significant thickening of the biofilms (B. caryophylli not tested), when co-cultured with E. coli O157:H7. E. coli O157:H7 populations increased by approximately 1 log in dual-species biofilms formed with B. caryophylli or R. insidiosa. While only a subset of environmental isolates with strong biofilm formation abilities increased the presence of E. coli O157:H7 in biofilms, all tested E. coli O157:H7 exhibited higher incorporation in dual-species biofilms with R. insidiosa. These observations support the notion that E. coli O157:H7 and specific strong biofilm producing bacteria interact synergistically in biofilm formation, and suggest a route for increased survival potential of E. coli O157:H7 in fresh produce processing environments. PMID:24296258

  14. Engineering biofilm formation and dispersal

    PubMed Central

    Wood, Thomas K.; Hong, Seok Hoon; Ma, Qun

    2011-01-01

    Anywhere water is in the liquid state, bacteria will exist as biofilms, which are complex communities of cells cemented together. Although frequently associated with disease and biofouling, biofilms are also important for engineering applications, such as bioremediation, biocatalysis and microbial fuel cells. Here we review approaches to alter genetic circuits and cell signaling toward controlling biofilm formation, and emphasize utilizing these tools for engineering applications. Based on a better understanding of the genetic basis of biofilm formation, we find that biofilms may be controlled by manipulating extracellular signals and that they may be dispersed using conserved intracellular signals and regulators. Biofilms could also be formed at specific locations where they might be engineered to make chemicals or treat human disease. PMID:21131080

  15. Calcium carbonate precipitation by heterotrophic bacteria isolated from biofilms formed on deteriorated ignimbrite stones: influence of calcium on EPS production and biofilm formation by these isolates.

    PubMed

    López-Moreno, Angélica; Sepúlveda-Sánchez, José David; Mercedes Alonso Guzmán, Elia Mercedes; Le Borgne, Sylvie

    2014-01-01

    Heterotrophic CaCO3-precipitating bacteria were isolated from biofilms on deteriorated ignimbrites, siliceous acidic rocks, from Morelia Cathedral (Mexico) and identified as Enterobacter cancerogenus (22e), Bacillus sp. (32a) and Bacillus subtilis (52g). In solid medium, 22e and 32a precipitated calcite and vaterite while 52g produced calcite. Urease activity was detected in these isolates and CaCO3 precipitation increased in the presence of urea in the liquid medium. In the presence of calcium, EPS production decreased in 22e and 32a and increased in 52g. Under laboratory conditions, ignimbrite colonization by these isolates only occurred in the presence of calcium and no CaCO3 was precipitated. Calcium may therefore be important for biofilm formation on stones. The importance of the type of stone, here a siliceous stone, on biological colonization is emphasized. This calcium effect has not been reported on calcareous materials. The importance of the effect of calcium on EPS production and biofilm formation is discussed in relation to other applications of CaCO3 precipitation by bacteria. PMID:24689777

  16. [Role of polymer complexes in the formation of biofilms by corrosive bacteria on steel surfaces].

    PubMed

    Purish, L M; Asaulenko, L G; Abdulina, D R; Vasil'ev, V N; Iutinskaia, G A

    2012-01-01

    The composition of exopolymer complexes (EPCs), synthesized by the monocultures Desulfovibrio sp. 10, Bacillus subtilis 36, and Pseudomonas aeruginosa 27 and by microbial associations involved in the corrosion of metal surfaces has been studied. An analysis of the monosaccharide composition of carbohydrate components, as well as the fatty acid composition of the lipid part of EPCs, was carried out by gas-liquid chromatography (GLC). It was found that bacteria in biofilms synthesized polymers; this process was dominated by glucose, while the growth of bacteria in a suspension was marked by a high rhamnose content. Hexouronic acids and hexosamine have been revealed as a part of B. subtilis 36 and P. aeruginosa 27 EPCs. Qualitative differences were revealed in the fatty acid composition ofexopolymers in biofilms and in a bacterial suspension. It was shown that the transition to a biofilm form of growth led to an increase in the unsaturation degree of fatty acids in the exopolymers of associative cultures. The results can be used to develop methods to control microbial corrosion of metal surfaces. PMID:22834300

  17. Effect of Algae and Plant Lectins on Planktonic Growth and Biofilm Formation in Clinically Relevant Bacteria and Yeasts

    PubMed Central

    Vasconcelos, Mayron Alves; Arruda, Francisco Vassiliepe Sousa; Carneiro, Victor Alves; Silva, Helton Colares; Nascimento, Kyria Santiago; Sampaio, Alexandre Holanda; Cavada, Benildo; Teixeira, Edson Holanda; Henriques, Mariana

    2014-01-01

    This study aimed to evaluate the abilities of plant and algae lectins to inhibit planktonic growth and biofilm formation in bacteria and yeasts. Initially, ten lectins were tested on Staphylococcus epidermidis, Staphylococcus aureus, Klebsiella oxytoca, Pseudomonas aeruginosa, Candida albicans, and C. tropicalis at concentrations of 31.25 to 250??g/mL. The lectins from Cratylia floribunda (CFL), Vatairea macrocarpa (VML), Bauhinia bauhinioides (BBL), Bryothamnion seaforthii (BSL), and Hypnea musciformis (HML) showed activities against at least one microorganism. Biofilm formation in the presence of the lectins was also evaluated; after 24?h of incubation with the lectins, the biofilms were analyzed by quantifying the biomass (by crystal violet staining) and by enumerating the viable cells (colony-forming units). The lectins reduced the biofilm biomass and/or the number of viable cells to differing degrees depending on the microorganism tested, demonstrating the different characteristics of the lectins. These findings indicate that the lectins tested in this study may be natural alternative antimicrobial agents; however, further studies are required to better elucidate the functional use of these proteins. PMID:24982871

  18. Proteinaceous determinants of surface colonization in bacteria: bacterial adhesion and biofilm formation from a protein secretion perspective

    PubMed Central

    Chagnot, Caroline; Zorgani, Mohamed A.; Astruc, Thierry; Desvaux, Mickaël

    2013-01-01

    Bacterial colonization of biotic or abiotic surfaces results from two quite distinct physiological processes, namely bacterial adhesion and biofilm formation. Broadly speaking, a biofilm is defined as the sessile development of microbial cells. Biofilm formation arises following bacterial adhesion but not all single bacterial cells adhering reversibly or irreversibly engage inexorably into a sessile mode of growth. Among molecular determinants promoting bacterial colonization, surface proteins are the most functionally diverse active components. To be present on the bacterial cell surface, though, a protein must be secreted in the first place. Considering the close association of secreted proteins with their cognate secretion systems, the secretome (which refers both to the secretion systems and their protein substrates) is a key concept to apprehend the protein secretion and related physiological functions. The protein secretion systems are here considered in light of the differences in the cell-envelope architecture between diderm-LPS (archetypal Gram-negative), monoderm (archetypal Gram-positive) and diderm-mycolate (archetypal acid-fast) bacteria. Besides, their cognate secreted proteins engaged in the bacterial colonization process are regarded from single protein to supramolecular protein structure as well as the non-classical protein secretion. This state-of-the-art on the complement of the secretome (the secretion systems and their cognate effectors) involved in the surface colonization process in diderm-LPS and monoderm bacteria paves the way for future research directions in the field. PMID:24133488

  19. Hydrodynamics of catheter biofilm formation

    E-print Network

    Sotolongo-Costa, Oscar; Rodriguez-Perez, Daniel; Martinez-Escobar, Sergio; Fernandez-Barbero, Antonio

    2009-01-01

    A hydrodynamic model is proposed to describe one of the most critical problems in intensive medical care units: the formation of biofilms inside central venous catheters. The incorporation of approximate solutions for the flow-limited diffusion equation leads to the conclusion that biofilms grow on the internal catheter wall due to the counter-stream diffusion of blood through a very thin layer close to the wall. This biological deposition is the first necessary step for the subsequent bacteria colonization.

  20. Biofilm formation in Streptococcus pneumoniae

    PubMed Central

    Domenech, Mirian; García, Ernesto; Moscoso, Miriam

    2012-01-01

    Summary Biofilm?grown bacteria are refractory to antimicrobial agents and show an increased capacity to evade the host immune system. In recent years, studies have begun on biofilm formation by Streptococcus pneumoniae, an important human pathogen, using a variety of in vitro model systems. The bacterial cells in these biofilms are held together by an extracellular matrix composed of DNA, proteins and, possibly, polysaccharide(s). Although neither the precise nature of these proteins nor the composition of the putative polysaccharide(s) is clear, it is known that choline?binding proteins are required for successful biofilm formation. Further, many genes appear to be involved, although the role of each appears to vary when biofilms are produced in batch or continuous culture. Prophylactic and therapeutic measures need to be developed to fight S.?pneumoniae biofilm formation. However, much care needs to be taken when choosing strains for such studies because different S.?pneumoniae isolates can show remarkable genomic differences. Multispecies and in vivo biofilm models must also be developed to provide a more complete understanding of biofilm formation and maintenance. PMID:21906265

  1. Biofilm formation by Clostridium difficile

    PubMed Central

    Dapa, Tanja; Unnikrishnan, Meera

    2013-01-01

    Clostridium difficile infection (CDI) is a major healthcare-associated disease worldwide. Recurring infections and increasing antibiotic resistance have complicated treatment of CDI. While C. difficile spores are important for transmission and persistence of CDI, other factors such as gut colonization and formation of bacterial communities in the gut may also contribute to pathogenesis and persistence, but have not been well investigated. Recently, we reported that important clinical C. difficile strains are able to form composite biofilms in vitro. C. difficile biofilm formation is a complex process, modulated by several different factors, including cell surface components and regulators. We also reported that bacteria within biofilms are more resistant to high concentrations of vancomycin, the antibiotic of choice for treatment of CDI. Here we summarize our recent findings and discuss the implications of biofilm formation by this anaerobic gut pathogen in disease pathogenesis and treatment. PMID:23892245

  2. Inactivation ofBiofilm Bacteria

    Microsoft Academic Search

    MARK W. LECHEVALLIER; CHERYL D. CAWTHON; RAMON G. LEE

    1988-01-01

    Thecurrent project was developed toexamine inactivation ofbiofilm bacteria andtocharacterize the interaction ofbiocides withpipesurfaces. Unattached bacteria were quite susceptible tothevariety of disinfectants tested. Viable bacterial counts were reduced 99%byexposureto0.08 mg ofhypochlorous acid (pH7.0) perliter (1to2°C) for1min.Formonochloramine, 94mg\\/liter wasrequired tokill 99%ofthebacteria within 1min.Theseresults wereconsistent withthose found byother investigators. Biofilm bacteria grown on thesurfaces ofgranular activated carbon particles, metal coupons,orglass microscope slides were

  3. Biofilm formation and proteolytic activities of Pseudoalteromonas bacteria that were isolated from fish farm sediments

    Microsoft Academic Search

    Saori Iijima; Kenji Washio; Ryota Okahara; Masaaki Morikawa

    2009-01-01

    Summary In order to save natural resources and supply good fishes, it is important to improve fish-farming tech- niques. The survival rate of fish fry appears to become higher when powders of foraminifer lime- stone are submerged at the bottom of fish-farming fields, where bacterial biofilms often grow. The obser- vations suggest that forming biofilms can benefit to keep health

  4. A survey of culturable aerobic and anaerobic marine bacteria in de novo biofilm formation on natural substrates in St. Andrews Bay, Scotland

    Microsoft Academic Search

    Lucy Finnegan; Manuel Garcia-Melgares; Tomasz Gmerek; W. Ryan Huddleston; Alexander Palmer; Andrew Robertson; Sarah Shapiro; Shiela E. Unkles

    This study reports a novel study of marine biofilm formation comprising aerobic and anaerobic bacteria. Samples of quartz\\u000a and feldspar, minerals commonly found on the earth, were suspended 5 m deep in the North Sea off the east coast of St. Andrews,\\u000a Scotland for 5 weeks. The assemblage of organisms attached to these stones was cultivated under aerobic and anaerobic conditions\\u000a in

  5. Biofilm formation, cleaning, re-formation on polyamide composite membranes

    Microsoft Academic Search

    Arun Subramani; Eric M. V. Hoek

    2010-01-01

    Bacterial adhesion and biofilm formation were studied in a continuous flow annular biofilm reactor using two commercial polyamide composite membranes — a relatively hydrophilic and smooth nanofiltration (NF) membrane and a relatively hydrophobic and rough reverse osmosis (RO) membrane. Multiple probe-liquid contact angle analyses confirmed that both membrane surfaces had nearly identical chemical properties after exposure to bacteria-free nutrient media

  6. A new biofilm-associated colicin with increased efficiency against biofilm bacteria

    PubMed Central

    Rendueles, Olaya; Beloin, Christophe; Latour-Lambert, Patricia; Ghigo, Jean-Marc

    2014-01-01

    Formation of bacterial biofilm communities leads to profound physiological modifications and increased physical and metabolic exchanges between bacteria. It was previously shown that bioactive molecules produced within the biofilm environment contribute to bacterial interactions. Here we describe new pore-forming colicin R, specifically produced in biofilms formed by the natural isolate Escherichia coli ROAR029 but that cannot be detected under planktonic culture conditions. We demonstrate that an increased SOS stress response within mature biofilms induces SOS-dependent colicin R expression. We provide evidence that colicin R displays increased activity against E. coli strains that have a reduced lipopolysaccharide length, such as the pathogenic enteroaggregative E. coli LF82 clinical isolate, therefore pointing to lipopolysaccharide size as an important determinant for resistance to colicins. We show that colicin R toxicity toward E. coli LF82 is increased under biofilm conditions compared with planktonic susceptibility and that release of colicin R confers a strong competitive advantage in mixed biofilms by rapidly outcompeting sensitive neighboring bacteria. This work identifies the first biofilm-associated colicin that preferentially targets biofilm bacteria. Furthermore, it indicates that the study of antagonistic molecules produced in biofilm and multispecies contexts could reveal unsuspected, ecologically relevant bacterial interactions influencing population dynamics in natural environments. PMID:24451204

  7. [Role of exopolymeric substances of corrosion-aggressive bacteria in the biofilm formation on the steel surface].

    PubMed

    Purish, L M; Asaulenko, L H; Abdulina, D R; Vasyl'ev, V M; Iutyns'ka, H O

    2011-01-01

    It had been done the comparative study of the exopolymeric substances (EPS) synthesized by the sulfidogenic microbial community and monocultures of Desulfovibrio sp. 10, Bacillus subtilis 36 and Pseudomonas aeruginosa 27 under various growth models as biofilm and plankton was performed. It was established that biofilm-produced exopolymers contained increased amount of glucose and fucose, while planktonic ones had more amount of mannose and rhamnose. The amount of rhamnose was 24% of the total amount of carbohydrates in the planktonic-produced exopolymers synthesized by Pseudomonas aeruginosa 27 and Bacillus subtilis 36. Glucuronic acid, galactosamine and glucosamine along with neutral carbohydrates were found in the composition of EPS synthesized by associative cultures, while only galactosamine was found in EPS synthesized by Desulfovibrio sp. 10. The amount of hexuronic acids and hexozamines was, respectively, 4.6 and 1.6 times higher in the biofilm formed by Pseudomonas aeruginosa 27 on the steel surface, than in the planktonic exopolymers. It is discussed the role in the biofilm formation of dominative members of the corrosion-aggressive microbial community. PMID:21442946

  8. Spaceflight promotes biofilm formation by Pseudomonas aeruginosa.

    PubMed

    Kim, Wooseong; Tengra, Farah K; Young, Zachary; Shong, Jasmine; Marchand, Nicholas; Chan, Hon Kit; Pangule, Ravindra C; Parra, Macarena; Dordick, Jonathan S; Plawsky, Joel L; Collins, Cynthia H

    2013-01-01

    Understanding the effects of spaceflight on microbial communities is crucial for the success of long-term, manned space missions. Surface-associated bacterial communities, known as biofilms, were abundant on the Mir space station and continue to be a challenge on the International Space Station. The health and safety hazards linked to the development of biofilms are of particular concern due to the suppression of immune function observed during spaceflight. While planktonic cultures of microbes have indicated that spaceflight can lead to increases in growth and virulence, the effects of spaceflight on biofilm development and physiology remain unclear. To address this issue, Pseudomonas aeruginosa was cultured during two Space Shuttle Atlantis missions: STS-132 and STS-135, and the biofilms formed during spaceflight were characterized. Spaceflight was observed to increase the number of viable cells, biofilm biomass, and thickness relative to normal gravity controls. Moreover, the biofilms formed during spaceflight exhibited a column-and-canopy structure that has not been observed on Earth. The increase in the amount of biofilms and the formation of the novel architecture during spaceflight were observed to be independent of carbon source and phosphate concentrations in the media. However, flagella-driven motility was shown to be essential for the formation of this biofilm architecture during spaceflight. These findings represent the first evidence that spaceflight affects community-level behaviors of bacteria and highlight the importance of understanding how both harmful and beneficial human-microbe interactions may be altered during spaceflight. PMID:23658630

  9. The effects of metabolite molecules produced by drinking water-isolated bacteria on their single and multispecies biofilms

    Microsoft Academic Search

    Lúcia Chaves Simões; Manuel Simões; Maria João Vieira

    2011-01-01

    The elucidation of the mechanisms by which diverse species survive and interact in drinking water (DW) biofilm communities may allow the identification of new biofilm control strategies. The purpose of the present study was to investigate the effects of metabolite molecules produced by bacteria isolated from DW on biofilm formation. Six opportunistic bacteria, viz. Acinetobacter calcoaceticus, Burkholderia cepacia, Methylobacterium sp.,

  10. Biofilm Formation As a Response to Ecological Competition.

    PubMed

    Oliveria, Nuno M; Martinez-Garcia, Esteban; Xavier, Joao; Durham, William M; Kolter, Roberto; Kim, Wook; Foster, Kevin R

    2015-07-01

    Bacteria form dense surface-associated communities known as biofilms that are central to their persistence and how they affect us. Biofilm formation is commonly viewed as a cooperative enterprise, where strains and species work together for a common goal. Here we explore an alternative model: biofilm formation is a response to ecological competition. We co-cultured a diverse collection of natural isolates of the opportunistic pathogen Pseudomonas aeruginosa and studied the effect on biofilm formation. We show that strain mixing reliably increases biofilm formation compared to unmixed conditions. Importantly, strain mixing leads to strong competition: one strain dominates and largely excludes the other from the biofilm. Furthermore, we show that pyocins, narrow-spectrum antibiotics made by other P. aeruginosa strains, can stimulate biofilm formation by increasing the attachment of cells. Side-by-side comparisons using microfluidic assays suggest that the increase in biofilm occurs due to a general response to cellular damage: a comparable biofilm response occurs for pyocins that disrupt membranes as for commercial antibiotics that damage DNA, inhibit protein synthesis or transcription. Our data show that bacteria increase biofilm formation in response to ecological competition that is detected by antibiotic stress. This is inconsistent with the idea that sub-lethal concentrations of antibiotics are cooperative signals that coordinate microbial communities, as is often concluded. Instead, our work is consistent with competition sensing where low-levels of antibiotics are used to detect and respond to the competing genotypes that produce them. PMID:26158271

  11. Biofilm Formation As a Response to Ecological Competition

    PubMed Central

    Oliveira, Nuno M.; Martinez-Garcia, Esteban; Xavier, Joao; Durham, William M.; Kolter, Roberto; Kim, Wook; Foster, Kevin R.

    2015-01-01

    Bacteria form dense surface-associated communities known as biofilms that are central to their persistence and how they affect us. Biofilm formation is commonly viewed as a cooperative enterprise, where strains and species work together for a common goal. Here we explore an alternative model: biofilm formation is a response to ecological competition. We co-cultured a diverse collection of natural isolates of the opportunistic pathogen Pseudomonas aeruginosa and studied the effect on biofilm formation. We show that strain mixing reliably increases biofilm formation compared to unmixed conditions. Importantly, strain mixing leads to strong competition: one strain dominates and largely excludes the other from the biofilm. Furthermore, we show that pyocins, narrow-spectrum antibiotics made by other P. aeruginosa strains, can stimulate biofilm formation by increasing the attachment of cells. Side-by-side comparisons using microfluidic assays suggest that the increase in biofilm occurs due to a general response to cellular damage: a comparable biofilm response occurs for pyocins that disrupt membranes as for commercial antibiotics that damage DNA, inhibit protein synthesis or transcription. Our data show that bacteria increase biofilm formation in response to ecological competition that is detected by antibiotic stress. This is inconsistent with the idea that sub-lethal concentrations of antibiotics are cooperative signals that coordinate microbial communities, as is often concluded. Instead, our work is consistent with competition sensing where low-levels of antibiotics are used to detect and respond to the competing genotypes that produce them. PMID:26158271

  12. IMPACTS OF BIOFILM FORMATION ON CELLULOSE FERMENTATION

    SciTech Connect

    Leschine, Susan

    2009-10-31

    This project addressed four major areas of investigation: i) characterization of formation of Cellulomonas uda biofilms on cellulose; ii) characterization of Clostridium phytofermentans biofilm development; colonization of cellulose and its regulation; iii) characterization of Thermobifida fusca biofilm development; colonization of cellulose and its regulation; and iii) description of the architecture of mature C. uda, C. phytofermentans, and T. fusca biofilms. This research is aimed at advancing understanding of biofilm formation and other complex processes involved in the degradation of the abundant cellulosic biomass, and the biology of the microbes involved. Information obtained from these studies is invaluable in the development of practical applications, such as the single-step bioconversion of cellulose-containing residues to fuels and other bioproducts. Our results have clearly shown that cellulose-decomposing microbes rapidly colonize cellulose and form complex structures typical of biofilms. Furthermore, our observations suggest that, as cells multiply on nutritive surfaces during biofilms formation, dramatic cell morphological changes occur. We speculated that morphological changes, which involve a transition from rod-shaped cells to more rounded forms, might be more apparent in a filamentous microbe. In order to test this hypothesis, we included in our research a study of biofilm formation by T. fusca, a thermophilic cellulolytic actinomycete commonly found in compost. The cellulase system of T. fusca has been extensively detailed through the work of David Wilson and colleagues at Cornell, and also, genome sequence of a T. fusca strain has been determine by the DOE Joint Genome Institute. Thus, T. fusca is an excellent subject for studies of biofilm development and its potential impacts on cellulose degradation. We also completed a study of the chitinase system of C. uda. This work provided essential background information for understanding how C. uda colonizes and degrades insoluble substrates. Major accomplishments of the project include: • Development of media containing dialysis tubing (described by the manufacturer as “regenerated cellulose”) as sole carbon and energy source and a nutritive surface for the growth of cellulolytic bacteria, and development of various microscopic methods to image biofilms on dialysis tubing. • Demonstration that cultures of C. phytofermentans, an obligate anaerobe, C. uda, a facultative aerobe, and T. fusca, a filamentous aerobe, formed microbial communities on the surface of dialysis tubing, which possessed architectural features and functional characteristics typical of biofilms. • Demonstration that biofilm formation on the nutritive surface, cellulose, involves a complex developmental processes, including colonization of dialysis tubing, formation of cell clusters attached to the nutritive surface, cell morphological changes, formation of complex structures embedded in extracellular polymeric matrices, and dispersal of biofilm communities as the nutritive surface is degraded. • Determination of surface specificity and regulatory aspects of biofilm formation by C. phytofermentans, C. uda, and T. fusca. • Demonstration that biofilm formation by T. fusca forms an integral part of the life cycle of this filamentous cellulolytic bacterium, including studies on the role of mycelial pellet formation in the T. fusca life cycle and a comparison of mycelial pellets to surface-attached T. fusca biofilms. • Characterization of T. fusca biofilm EPS, including demonstration of a functional role for EPS constituents. • Correlation of T. fusca developmental life cycle and cellulase gene expression.

  13. Mathematical modeling of dormant cell formation in growing biofilm

    PubMed Central

    Chihara, Kotaro; Matsumoto, Shinya; Kagawa, Yuki; Tsuneda, Satoshi

    2015-01-01

    Understanding the dynamics of dormant cells in microbial biofilms, in which the bacteria are embedded in extracellular matrix, is important for developing successful antibiotic therapies against pathogenic bacteria. Although some of the molecular mechanisms leading to bacterial persistence have been speculated in planktonic bacterial cell, how dormant cells emerge in the biofilms of pathogenic bacteria such as Pseudomonas aeruginosa remains unclear. The present study proposes four hypotheses of dormant cell formation; stochastic process, nutrient-dependent, oxygen-dependent, and time-dependent processes. These hypotheses were implemented into a three-dimensional individual-based model of biofilm formation. Numerical simulations of the different mechanisms yielded qualitatively different spatiotemporal distributions of dormant cells in the growing biofilm. Based on these simulation results, we discuss what kinds of experimental studies are effective for discriminating dormant cell formation mechanisms in biofilms. PMID:26074911

  14. Vaginal Lactobacillus: biofilm formation in vivo - clinical implications.

    PubMed

    Ventolini, Gary

    2015-01-01

    Vaginal lactobacilli provide protection against intrusive pathogenic bacteria. Some Lactobacillus spp. produce in vitro a thick, protective biofilm. We report in vivo formation of biofilm by vaginal Lactobacillus jensenii. The biofilm formation was captured in fresh wet-mount microscopic samples from asymptomatic patients after treatment for recurrent bacterial vaginitis. In vivo documentation of biofilm formation is in our opinion noteworthy, and has significant clinical implications, among which are the possibility to isolate, grow, and therapeutically utilize lactobacilli to prevent recurrent vaginal infections and preterm labor associated with vaginal microbial pathogens. PMID:25733930

  15. Biofilm Formation Avoids Complement Immunity and Phagocytosis of Streptococcus pneumoniae

    PubMed Central

    Domenech, Mirian; Ramos-Sevillano, Elisa; García, Ernesto

    2013-01-01

    Streptococcus pneumoniae is a frequent member of the microbiota of the human nasopharynx. Colonization of the nasopharyngeal tract is a first and necessary step in the infectious process and often involves the formation of sessile microbial communities by this human pathogen. The ability to grow and persist as biofilms is an advantage for many microorganisms, because biofilm-grown bacteria show reduced susceptibility to antimicrobial agents and hinder recognition by the immune system. The extent of host protection against biofilm-related pneumococcal disease has not been determined yet. Using pneumococcal strains growing as planktonic cultures or as biofilms, we have investigated the recognition of S. pneumoniae by the complement system and its interactions with human neutrophils. Deposition of C3b, the key complement component, was impaired on S. pneumoniae biofilms. In addition, binding of C-reactive protein and the complement component C1q to the pneumococcal surface was reduced in biofilm bacteria, demonstrating that pneumococcal biofilms avoid the activation of the classical complement pathway. In addition, recruitment of factor H, the downregulator of the alternative pathway, was enhanced by S. pneumoniae growing as biofilms. Our results also show that biofilm formation diverts the alternative complement pathway activation by a PspC-mediated mechanism. Furthermore, phagocytosis of pneumococcal biofilms was also impaired. The present study confirms that biofilm formation in S. pneumoniae is an efficient means of evading both the classical and the PspC-dependent alternative complement pathways the host immune system. PMID:23649097

  16. Biofilm-forming activity of bacteria isolated from toilet bowl biofilms and the bactericidal activity of disinfectants against the isolates.

    PubMed

    Mori, Miho; Gomi, Mitsuhiro; Matsumune, Norihiko; Niizeki, Kazuma; Sakagami, Yoshikazu

    2013-01-01

    To evaluate the sanitary conditions of toilets, the bacterial counts of the toilet bowl biofilms in 5 Kansai area and 11 Kansai and Kanto area homes in Japan were measured in winter and summer seasons, respectively. Isolates (128 strains) were identified by analyzing 16S ribosomal RNA sequences. The number of colonies and bacterial species from biofilms sampled in winter tended to be higher and lower, respectively, than those in summer. Moreover, the composition of bacterial communities in summer and winter samples differed considerably. In summer samples, biofilms in Kansai and Kanto areas were dominated by Blastomonas sp. and Mycobacterium sp., respectively. Methylobacterium sp. was detected in all toilet bowl biofilms except for one sample. Methylobacterium sp. constituted the major presence in biofilms along with Brevundimonas sp., Sphingomonas sp., and/or Pseudomonas sp. The composition ratio of the sum of their genera was 88.0 from 42.9% of the total bacterial flora. The biofilm formation abilities of 128 isolates were investigated, and results suggested that Methylobacterium sp. and Sphingomonas sp. were involved in biofilm formation in toilet bowls. The biofilm formation of a mixed bacteria system that included bacteria with the highest biofilm-forming ability in a winter sample was greater than mixture without such bacteria. This result suggests that isolates possessing a high biofilm-forming activity are involved in the biofilm formation in the actual toilet bowl. A bactericidal test against 25 strains indicated that the bactericidal activities of didecyldimethylammonium chloride (DDAC) tended to be higher than those of polyhexamethylene biguanide (PHMB) and N-benzyl-N,N-dimethyldodecylammonium chloride (ADBAC). In particular, DDAC showed high bactericidal activity against approximately 90% of tested strains under the 5 h treatment. PMID:24195153

  17. Biofilm formation of Bdellovibrio bacteriovorus host-independent derivatives.

    PubMed

    Medina, Adrian A; Kadouri, Daniel E

    2009-04-01

    Bdellovibrios are Gram-negative predatory bacteria which are ubiquitous to many environmental niches, including natural biofilms. In this study, host-independent (HI) variants of Bdellovibrio bacteriovorus 109J were isolated. Predation assays and genetic analysis confirmed that the selected HI variants are derivatives of B. bacteriovorus. When grown in microtiter plates, HI variants were able to form tenacious biofilms on the surface of the wells. HI biofilm formation on different surfaces, media and temperatures was examined. HI biofilm development was seen on all of the examined surfaces, with the most robust biofilm developing at 22 degrees C and in media supplemented with yeast extract. Biofilm detachment experiments revealed that the HI cells are firmly attached to the surface of the wells and are not easily removed by physical and chemical treatments. Treating the biofilm with proteinase K and DNase-I caused rapid detachment of the biofilm as well as inhibition of biofilm formation, suggesting that DNA and proteins are major components of the HI biofilm extracellular matrix. Our data suggest that under conditions that might favor the development of HI variants, such as a rich nutrient environment, Bdellovibrio facultative prey cells are capable of attaching to abiotic surfaces and forming biofilms. PMID:19223013

  18. IMPACTS OF BIOFILM FORMATION ON CELLULOSE FERMENTATION

    Microsoft Academic Search

    Leschine

    2009-01-01

    This project addressed four major areas of investigation: i) characterization of formation of Cellulomonas uda biofilms on cellulose; ii) characterization of Clostridium phytofermentans biofilm development; colonization of cellulose and its regulation; iii) characterization of Thermobifida fusca biofilm development; colonization of cellulose and its regulation; and iii) description of the architecture of mature C. uda, C. phytofermentans, and T. fusca biofilms.

  19. Biofilm formation by enterococci

    Microsoft Academic Search

    Jamal A. Mohamed; David B. Huang

    2007-01-01

    Enterococci are an important global cause of nosocomial infections, being increasingly associated with urinary tract infections, endocarditis, intra-abdominal and pelvic infections, catheter-related infections, surgical wound infections, and central nervous system infections. The two most common enterococci species are Enterococcus faecalis and Enterococcus faecium. Both are capable of producing biofilms, which consist of a population of cells attached irreversibly on various

  20. Effect of alkaline pH on staphylococcal biofilm formation.

    PubMed

    Nostro, Antonia; Cellini, Luigina; Di Giulio, Mara; D'Arrigo, Manuela; Marino, Andreana; Blanco, Anna Rita; Favaloro, Angelo; Cutroneo, Giuseppina; Bisignano, Giuseppe

    2012-09-01

    Biofilms are a serious problem, cause of severe inconvenience in the biomedical, food and industrial environment. Staphylococcus aureus and S. epidermidis are important pathogenic bacteria able to form thick and resistant biofilms on various surfaces. Therefore, strategies aimed at preventing or at least interfering with the initial adhesion and subsequent biofilm formation are a considerable achievement. The aim of this study was to evaluate the effect of alkaline pH on bacterial adhesion and further biofilm formation of S. aureus and S. epidermidis strains by biofilm biomass, cell-surface hydrophobicity, scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) analysis. The results demonstrated that the amount of biofilm biomass formed and the surface hydrophobicity were significantly less than what were observed at higher levels of pH. SEM and CLSM images revealed a poorly structured and very thin biofilm (2.5-3 times thinner than that of the controls). The inhibiting effect of the alkaline pH on the bacterial attachment impaired the normal development of biofilm that arrested at the microcolony stage. Alkaline formulations could be promising towards the control of bacterial colonization and therefore the reduction of the biofilm-related hazard. In the clinical setting, alkaline solutions or cleaners could be promising to prevent the bacterial colonization, by treating surfaces such as catheters or indwelling medical devices, reducing the risk of biofilm related infections. PMID:22882263

  1. Platelets enhance biofilm formation and resistance of endocarditis-inducing streptococci on the injured heart valve.

    PubMed

    Jung, Chiau-Jing; Yeh, Chiou-Yueh; Shun, Chia-Tung; Hsu, Ron-Bin; Cheng, Hung-Wei; Lin, Chi-Shuan; Chia, Jean-San

    2012-04-01

    Infective endocarditis is a typical biofilm-associated infectious disease frequently caused by commensal streptococci, but the contribution of host factors in biofilm formation is unclear. We found that platelets are essential for in vitro biofilm formation by Streptococcus mutans or Streptococcus gordonii grown in human plasma. The biofilms were composed of bacterial floes embedded with platelet aggregates in layers, and a similar architecture was also detected in situ on the injured valves of a rat model of experimental endocarditis. Similar to planktonic cells, the streptococci in biofilms were also able to induce platelet aggregation, which facilitates multilayer biofilm formation. Entrapping of platelets directly enhances the resistance of streptococcal biofilms to clindamycin. Prophylactic antibiotics or aspirin can reduce but not prevent or abolish biofilm formation on injured heart valves. Therefore, the platelet is a host factor for commensal streptococci in the circulation to consolidate biofilm formation and protect bacteria against antibiotics. PMID:22357661

  2. Inhibition of Flavobacterium psychrophilum biofilm formation using a biofilm of the antagonist Pseudomonas fluorescens FF48.

    PubMed

    De la Fuente, Mery; Vidal, José M; Miranda, Claudio D; González, Gerardo; Urrutia, Homero

    2013-12-01

    The most important bacterial pathology currently occurring in Chilean freshwater salmon farming is the cold-water disease produced by the psychrotrophic bacteria Flavobacterium psychrophilum. The main aim of this study was to characterize the inhibitory activity of an antagonist strain on the formation of biofilms of a F. psychrophilum strain. The antagonistic strain Pseudomonas fluorescens FF48 was isolated from the sediment beneath the salmon cages of a freshwater Chilean salmon farm and was identified by using the 16S rRNA gene sequence analysis. The production of siderophores, mainly during the stationary phase of growth of the antagonist strain was demonstrated using the Chrome Azurol S method and through F. psychrophilum inhibition under iron saturation conditions. Subsequently, the effect of the antagonist supernatant on the formation of F. psychrophilum biofilm was tested using the crystal violet staining method observing an inhibition of the growth of F. psychrophilum, but no effect was observed when iron saturation concentrations were used. Furthermore, when the antagonist strain was previously deposited on the support, it completely inhibited the formation of F. psychrophilum biofilms, but when both bacteria were inoculated simultaneously no inhibitory effect was detected. In conclusion, it was demonstrated that FF48 strain is able to inhibit the formation of F. psychrophilum biofilms in vitro probably mediated by the siderophore production, suggesting its potential use as a biocontrol biofilm in freshwater fish rearing systems to prevent the persistence of biofilms of the fish pathogenic species F. psychrophilum. PMID:23667820

  3. Printed paper-based arrays as substrates for biofilm formation

    PubMed Central

    2014-01-01

    The suitability of paper-based arrays for biofilm formation studies by Staphylococcus aureus is demonstrated. Laboratory-coated papers with different physicochemical properties were used as substrates. The array platform was fabricated by patterning the coated papers with vinyl-substituted polydimethylsiloxane (PDMS) -based ink. The affinity of bacteria onto the flexographically printed hydrophobic and smooth PDMS film was very low whereas bacterial adhesion and biofilm formation occurred preferentially on the unprinted areas, i.e. in the reaction arrays. The concentration of the attached bacteria was quantified by determining the viable colony forming unit (CFU/cm2) numbers. The distribution and the extent of surface coverage of the biofilms were determined by atomic force microscopy. In static conditions, the highest bacterial concentration and most highly organized biofilms were observed on substrates with high polarity. On a rough paper surface with low polarity, the biofilm formation was most hindered. Biofilms were effectively removed from a polar substrate upon exposure to (+)-dehydroabietic acid, an anti-biofilm compound. PMID:25006538

  4. Biofilm formation by Fusarium oxysporum f. sp. cucumerinum and susceptibility to environmental stress.

    PubMed

    Peiqian, Li; Xiaoming, Pu; Huifang, Shen; Jingxin, Zhang; Ning, Huang; Birun, Lin

    2014-01-01

    To the authors' knowledge, most studies on biofilm formation have focused on bacteria and yeasts. So far, biofilm formation by fungal plant pathogen has not been reported. In this study, the biofilm-forming capacity of Fusarium oxysporum f. sp. cucumerinum was evaluated. For biofilm quantification, a colorimetric 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium-hydroxide (XTT) reduction assay was used to observe metabolic activity. Fluorescence and confocal scanning laser microscopy revealed that the biofilms have a highly heterogeneous architecture composed of robust hyphae and extracellular polysaccharide materials. Additionally, the influence of physical factors on F. oxysporum biofilm formation and the susceptibility of biofilms to environmental stress was investigated. Biofilms were less susceptible to heat, cold, UV light and three fungicides than were their planktonic counterparts. Our findings may provide a novel perspective on the pathogenic mechanism associated with biofilms of F. oxysporum f. sp. cucumerinum. PMID:24164057

  5. Identification of a Novel Benzimidazole That Inhibits Bacterial Biofilm Formation in a Broad-Spectrum Manner?

    PubMed Central

    Sambanthamoorthy, Karthik; Gokhale, Ankush A.; Lao, Weiwei; Parashar, Vijay; Neiditch, Matthew B.; Semmelhack, Martin F.; Lee, Ilsoon; Waters, Christopher M.

    2011-01-01

    Bacterial biofilm formation causes significant industrial economic loss and high morbidity and mortality in medical settings. Biofilms are defined as multicellular communities of bacteria encased in a matrix of protective extracellular polymers. Because biofilms have a high tolerance for treatment with antimicrobials, protect bacteria from immune defense, and resist clearance with standard sanitation protocols, it is critical to develop new approaches to prevent biofilm formation. Here, a novel benzimidazole molecule, named antibiofilm compound 1 (ABC-1), identified in a small-molecule screen, was found to prevent bacterial biofilm formation in multiple Gram-negative and Gram-positive bacterial pathogens, including Pseudomonas aeruginosa and Staphylococcus aureus, on a variety of different surface types. Importantly, ABC-1 itself does not inhibit the growth of bacteria, and it is effective at nanomolar concentrations. Also, coating a polystyrene surface with ABC-1 reduces biofilm formation. These data suggest ABC-1 is a new chemical scaffold for the development of antibiofilm compounds. PMID:21709104

  6. Boundaries for Biofilm Formation: Humidity and Temperature

    PubMed Central

    Else, Terry Ann; Pantle, Curtis R.; Amy, Penny S.

    2003-01-01

    Environmental conditions which define boundaries for biofilm production could provide useful ecological information for biofilm models. A practical use of defined conditions could be applied to the high-level nuclear waste repository at Yucca Mountain. Data for temperature and humidity conditions indicate that decreases in relative humidity or increased temperature severely affect biofilm formation on three candidate canister metals. PMID:12902302

  7. COAGGREGATION OCCURS AMONGST BACTERIA WITHIN AND BETWEEN DOMESTIC SHOWERHEAD BIOFILMS

    PubMed Central

    Vornhagen, Jay; Stevens, Michael; McCormick, David; Dowd, Scot E.; Eisenberg, Joseph N.S.; Boles, Blaise R.; Rickard, Alexander H.

    2014-01-01

    Showerheads support the development multi-species biofilms that can be unsightly, produce malodor, and may harbor pathogens. The outer surface spray plates of many showerheads support visible biofilms that likely contain a mixture of bacteria from freshwater and potentially from human users. Coaggregation, a mechanism by which genetically distinct bacteria specifically recognize one another, may contribute to the retention and enrichment of different species within these biofilms. The aim of this work was to identify the bacterial composition of outer spray plate biofilms of three domestic shower heads and to determine the inter- and intra-biofilm coaggregation ability of each culturable isolate. The bacterial composition of the three biofilms was determined by using bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) and by culturing on R2A medium. An average of 31 genera per biofilm were identified using bTEFAP and a total of 30 isolates were cultured. Even though the microbial diversity of each showerhead biofilm differed, every cultured isolate was able to coaggregate with at least one other isolate from the same or different showerhead biofilm. Promiscuous coaggregating isolates belonged to the genera Brevundimonas, Micrococcus, and Lysobacter. This work suggests that coaggregation may be a common feature of showerhead biofilms. Characterization of the mechanisms mediating coaggregation, and the inter-species interactions they facilitate, may allow for novel strategies to inhibit biofilm development. PMID:23194413

  8. Bacteria, Biofilms and Fluid Dynamics: Elementary Flows and Unexpected Phenomena

    E-print Network

    Fisher, Frank

    Bacteria, Biofilms and Fluid Dynamics: Elementary Flows and Unexpected Phenomena Wednesday February the migration of bacteria along surfaces when exposed to a shear flow. In particular, we identify an unusual response where flow produces a directed motion of twitching bacteria in the upstream direction. (ii) We

  9. Desiccation tolerance of iron bacteria biofilms on Mars regolith simulants

    NASA Astrophysics Data System (ADS)

    Feyh, Nina; Szewzyk, Ulrich

    2010-05-01

    Iron oxidizing bacteria play an important role in the geological redox cycling of iron on earth. The redox change between Fe(II) and Fe(III) can be used for biological energy production [1]. Therefore iron oxidation in the iron rich martian soils may be or may have been microbially mediated. The microbial conversion of iron is considered to be an ancient form of metabolism [2], so it might have evolved on Mars as well. However, to exist in recent martian soils, bacteria must be able to endure dry and cold conditions. Neutrophilic iron oxidizers can be found in various iron rich aquatic environments, where they lead to the precipitation of insoluble ferric hydroxides. Some of these environments fall temporarily dry, what could have led to an adaptation to desiccation by bacteria, existing there. One strategy of iron bacteria to endure drought stress might be the formation of biofilms by excreting Extracellular Polymeric Substances (EPS). The deposition of iron hydroxides could enable them to endure dry conditions as well. For our experiments, neutrophilic iron oxidizing bacteria have been isolated from a creek in Bad Salzhausen/Hesse and temporarily drying out pools in Tierra del Fuego. Strains from aquatic environments in the national park "Unteres Odertal" and from water wells in Berlin/Brandenburg are included in the tests as well. In desiccation experiments, the capability of iron bacteria to tolerate dry conditions are investigated. The aim of our first experiment is the adaptation to dry conditions. Biofilms of 15 strains are grown on ceramic beads in liquid medium containing complexed Fe(II), established biofilms contain Fe(III) precipitates. The cultures are desiccated in a sterile airflow until the weight of the cultures remained constant. After a desiccation period of 9 h up to 7 d, the beads are transferred to fresh liquid medium. Adapted strains are used in further desiccation experiments, where biofilms are grown on two martian regolith simulants. These mineral mixtures were developed and produced by the Naturkundemuseum Berlin according to recent data of Mars research missions [3, 4, 5, 6, 7]. The minerals are attached to object slides with potassium silicate and biofilms are grown on the mineral surface. The biofilms are quantified by cell counting and the structure is evaluated by epifluorescence microscopy. After desiccation in a sterile airflow, the survival of cells is determined by fluorescence staining. Acknowledgements This research was supported by the Helmholtz Association through the research alliance "Planetary Evolution and Life". References [1] Weber, K. A. et al. (2006). Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nature Reviews Microbiology 4: 752-764. [2] Vargas, M. et al. (1998). Microbiological evidence for Fe(III) reduction on early Earth. Nature 395: 65-67. [3] Bibring, J.-P., Y. Langevin, et al. (2005). Mars surface diversity as revealed by the OMEGA/Mars express observations. Science 307(5715): 1576-1581. [4] Bibring, J.-P., S. W. Squyres, et al. (2006). Merging Views on Mars. Science 313(5795): 1899-1901. [5] Chevrier, V. and P. E. Mathé (2007). Mineralogy and evolution of the surface of Mars: A review. Planetary and Space Science 55(3): 289-314. [6] McCollom, T. M. and B. M. Hynek (2005). A volcanic environment for bedrock diagenesis at Meridiani Planum on Mars. Nature 438(7071): 1129-1131. [7] Poulet, F., J. P. Bibring, et al. (2005). Phyllosilicates on Mars and implications for early martian climate. Nature 438(7068): 623-627.

  10. Role of Capsular Polysaccharides in Biofilm Formation: An AFM Nanomechanics Study.

    PubMed

    Wang, Huabin; Wilksch, Jonathan J; Strugnell, Richard A; Gee, Michelle L

    2015-06-17

    Bacteria form biofilms to facilitate colonization of biotic and abiotic surfaces, and biofilm formation on indwelling medical devices is a common cause of hospital-acquired infection. Although it is well-recognized that the exopolysaccharide capsule is one of the key bacterial components for biofilm formation, the underlying biophysical mechanism is poorly understood. In the present study, nanomechanical measurements of wild type and specific mutants of the pathogen, Klebsiella pneumoniae, were performed in situ using atomic force microscopy (AFM). Theoretical modeling of the mechanical data and static microtiter plate biofilm assays show that the organization of the capsule can influence bacterial adhesion, and thereby biofilm formation. The capsular organization is affected by the presence of type 3 fimbriae. Understanding the biophysical mechanisms for the impact of the structural organization of the bacterial polysaccharide capsule on biofilm formation will aid the development of strategies to prevent biofilm formation. PMID:26034816

  11. Environmental Stimuli Shape Biofilm Formation and the Virulence of Periodontal Pathogens

    PubMed Central

    Pöllänen, Marja T.; Paino, Annamari; Ihalin, Riikka

    2013-01-01

    Periodontitis is a common inflammatory disease affecting the tooth-supporting structures. It is initiated by bacteria growing as a biofilm at the gingival margin, and communication of the biofilms differs in health and disease. The bacterial composition of periodontitis-associated biofilms has been well documented and is under continual investigation. However, the roles of several host response and inflammation driven environmental stimuli on biofilm formation is not well understood. This review article addresses the effects of environmental factors such as pH, temperature, cytokines, hormones, and oxidative stress on periodontal biofilm formation and bacterial virulence. PMID:23965982

  12. Environmental stimuli shape biofilm formation and the virulence of periodontal pathogens.

    PubMed

    Pöllänen, Marja T; Paino, Annamari; Ihalin, Riikka

    2013-01-01

    Periodontitis is a common inflammatory disease affecting the tooth-supporting structures. It is initiated by bacteria growing as a biofilm at the gingival margin, and communication of the biofilms differs in health and disease. The bacterial composition of periodontitis-associated biofilms has been well documented and is under continual investigation. However, the roles of several host response and inflammation driven environmental stimuli on biofilm formation is not well understood. This review article addresses the effects of environmental factors such as pH, temperature, cytokines, hormones, and oxidative stress on periodontal biofilm formation and bacterial virulence. PMID:23965982

  13. Efficient suppression of biofilm formation by a nucleic acid aptamer.

    PubMed

    Ning, Yi; Cheng, Lijuan; Ling, Min; Feng, Xinru; Chen, Lingli; Wu, Minxi; Deng, Le

    2015-08-01

    Biofilms are microbial communities that are attached to a solid surface using extracellular polymeric substances. Motility and initial attachment mediated by flagella are required for biofilm formation. Therefore, blocking the motility of flagella is a potential strategy to inhibit biofilm formation. In this study, single-stranded DNA aptamers specific to the Salmonella choleraesuis were selected after 14 cycles of the systematic evolution of ligands by exponential enrichment. Among the selected aptamers, the aptamer 3 showed the highest affinity for S. choleraesuis with a dissociation constant (Kd) of 41 ± 2?nM. Aptamer 3, conjugated with magnetic beads, was then used to capture its binding target on the bacteria. After mass spectrometry and specific binding analysis, the flagellin was identified as the target captured by aptamer 3. Furthermore, inhibition experiments, inverted microscopy and atomic force microscopy demonstrated that aptamer 3 was able to control the biofilm formation and promote the inhibitory effect of an antibiotic on bacterial biofilms. Single-stranded DNA aptamers therefore have great potential as inhibitors of biofilm formation. PMID:26025307

  14. AI-2 of Aggregatibacter actinomycetemcomitans inhibits Candida albicans biofilm formation.

    PubMed

    Bachtiar, Endang W; Bachtiar, Boy M; Jarosz, Lucja M; Amir, Lisa R; Sunarto, Hari; Ganin, Hadas; Meijler, Michael M; Krom, Bastiaan P

    2014-01-01

    Aggregatibacter actinomycetemcomitans, a Gram-negative bacterium, and Candida albicans, a polymorphic fungus, are both commensals of the oral cavity but both are opportunistic pathogens that can cause oral diseases. A. actinomycetemcomitans produces a quorum-sensing molecule called autoinducer-2 (AI-2), synthesized by LuxS, that plays an important role in expression of virulence factors, in intra- but also in interspecies communication. The aim of this study was to investigate the role of AI-2 based signaling in the interactions between C. albicans and A. actinomycetemcomitans. A. actinomycetemcomitans adhered to C. albicans and inhibited biofilm formation by means of a molecule that was secreted during growth. C. albicans biofilm formation increased significantly when co-cultured with A. actinomycetemcomitans luxS, lacking AI-2 production. Addition of wild-type-derived spent medium or synthetic AI-2 to spent medium of the luxS strain, restored inhibition of C. albicans biofilm formation to wild-type levels. Addition of synthetic AI-2 significantly inhibited hypha formation of C. albicans possibly explaining the inhibition of biofilm formation. AI-2 of A. actinomycetemcomitans is synthesized by LuxS, accumulates during growth and inhibits C. albicans hypha- and biofilm formation. Identifying the molecular mechanisms underlying the interaction between bacteria and fungi may provide important insight into the balance within complex oral microbial communities. PMID:25101248

  15. AI-2 of Aggregatibacter actinomycetemcomitans inhibits Candida albicans biofilm formation

    PubMed Central

    Bachtiar, Endang W.; Bachtiar, Boy M.; Jarosz, Lucja M.; Amir, Lisa R.; Sunarto, Hari; Ganin, Hadas; Meijler, Michael M.; Krom, Bastiaan P.

    2014-01-01

    Aggregatibacter actinomycetemcomitans, a Gram-negative bacterium, and Candida albicans, a polymorphic fungus, are both commensals of the oral cavity but both are opportunistic pathogens that can cause oral diseases. A. actinomycetemcomitans produces a quorum-sensing molecule called autoinducer-2 (AI-2), synthesized by LuxS, that plays an important role in expression of virulence factors, in intra- but also in interspecies communication. The aim of this study was to investigate the role of AI-2 based signaling in the interactions between C. albicans and A. actinomycetemcomitans. A. actinomycetemcomitans adhered to C. albicans and inhibited biofilm formation by means of a molecule that was secreted during growth. C. albicans biofilm formation increased significantly when co-cultured with A. actinomycetemcomitans luxS, lacking AI-2 production. Addition of wild-type-derived spent medium or synthetic AI-2 to spent medium of the luxS strain, restored inhibition of C. albicans biofilm formation to wild-type levels. Addition of synthetic AI-2 significantly inhibited hypha formation of C. albicans possibly explaining the inhibition of biofilm formation. AI-2 of A. actinomycetemcomitans is synthesized by LuxS, accumulates during growth and inhibits C. albicans hypha- and biofilm formation. Identifying the molecular mechanisms underlying the interaction between bacteria and fungi may provide important insight into the balance within complex oral microbial communities. PMID:25101248

  16. Application of micro-PIV to the study of staphylococci bacteria bio-film dynamics

    NASA Astrophysics Data System (ADS)

    Sherman, Erica; Bayles, Kenneth; Moormeier, Derek; Wei, Timothy

    2012-11-01

    Staphylococci bacteria are recognized as the most frequent cause of biofilm-associated infections. Although humans are regularly exposed to staphylococcus bacteria without consequence, a localized staph infection has the potential to enter the bloodstream and lead to serious infections such as endocarditis, pneumonia, or toxic shock syndrome. The mechanics of staphylococci biofilm formation and dispersion through the bloodstream are not well known. It has recently been observed that under certain flow conditions, bacteria grow in stable bio-films. Under other conditions, they organize in tower-like structures which break and are transported downstream by the flow. The fundamental questions addressed in this study are i) whether or not fluid mechanics plays a role in differentiating between film or tower formation and ii) whether or not the faulty towers are a bio-film propagation mechanism. This talk focuses on the application of micro-PIV to study this problem. Bacteria were cultured in a glass microchannel and subjected to a range of steady shear rates. Micro-PIV measurements were made to map the flow over and around different types of bio-film structures. Measurements and control volume analysis will be presented quantifying forces acting on these structures.

  17. A direct viable count method for the enumeration of attached bacteria and assessment of biofilm disinfection

    NASA Technical Reports Server (NTRS)

    Yu, F. P.; Pyle, B. H.; McFeters, G. A.

    1993-01-01

    This report describes the adaptation of an in situ direct viable count (in situ DVC) method in biofilm disinfection studies. The results obtained with this technique were compared to two other enumeration methods, the plate count (PC) and conventional direct viable count (c-DVC). An environmental isolate (Klebsiella pneumoniae Kp1) was used to form biofilms on stainless steel coupons in a stirred batch reactor. The in situ DVC method was applied to directly assess the viability of bacteria in biofilms without disturbing the integrity of the interfacial community. As additional advantages, the results were observed after 4 h instead of the 24 h incubation time required for colony formation and total cell numbers that remained on the substratum were enumerated. Chlorine and monochloramine were used to determine the susceptibilities of attached and planktonic bacteria to disinfection treatment using this novel analytical approach. The planktonic cells in the reactor showed no significant change in susceptibility to disinfectants during the period of biofilm formation. In addition, the attached cells did not reveal any more resistance to disinfection than planktonic cells. The disinfection studies of young biofilms indicated that 0.25 mg/l free chlorine (at pH 7.2) and 1 mg/l monochloramine (at pH 9.0) have comparable disinfection efficiencies at 25 degrees C. Although being a weaker disinfectant, monochloramine was more effective in removing attached bacteria from the substratum than free chlorine. The in situ DVC method always showed at least one log higher viable cell densities than the PC method, suggesting that the in situ DVC method is more efficient in the enumeration of biofilm bacteria. The results also indicated that the in situ DVC method can provide more accurate information regarding the cell numbers and viability of bacteria within biofilms following disinfection.

  18. PotD protein stimulates biofilm formation by Escherichia coli.

    PubMed

    Zhang, Xiao; Zhang, Yuzhen; Liu, Junjun; Liu, Honglei

    2013-07-01

    In natural environments bacteria often adopt a biofilm-growth mode. PotD is a spermidine/putrescine-binding periplasmic protein belonging to polyamine transport system and we have examined its role during biofilm formation and for planktonic growth in Escherichia coli BL21(DE3) strains that either over-express PotD (PotD+), or under-express it (PotDi) and also in a control strain with vector pET26b(+) (PotD0). The three strains displayed similar growth in planktonic growth-mode, but over expression of PotD protein greatly stimulated the formation of biofilms, while less biofilm formed by strain PotDi in comparison to strain PotD0. The expressions of five genes, recA, sfiA, groEL, groES, and gyrA, were increasingly expressed in PotD+ biofilm cells. Thus, PotD is likely to change the rate of polyamine synthesis, which stimulates the expression of SOS genes and biofilm formation. PMID:23539287

  19. Biomolecular Mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm Formation

    PubMed Central

    Laverty, Garry; Gorman, Sean P.; Gilmore, Brendan F.

    2014-01-01

    Pseudomonas aeruginosa and Escherichia coli are the most prevalent Gram-negative biofilm forming medical device associated pathogens, particularly with respect to catheter associated urinary tract infections. In a similar manner to Gram-positive bacteria, Gram-negative biofilm formation is fundamentally determined by a series of steps outlined more fully in this review, namely adhesion, cellular aggregation, and the production of an extracellular polymeric matrix. More specifically this review will explore the biosynthesis and role of pili and flagella in Gram-negative adhesion and accumulation on surfaces in Pseudomonas aeruginosa and Escherichia coli. The process of biofilm maturation is compared and contrasted in both species, namely the production of the exopolysaccharides via the polysaccharide synthesis locus (Psl), pellicle Formation (Pel) and alginic acid synthesis in Pseudomonas aeruginosa, and UDP-4-amino-4-deoxy-l-arabinose and colonic acid synthesis in Escherichia coli. An emphasis is placed on the importance of the LuxR homologue sdiA; the luxS/autoinducer-II; an autoinducer-III/epinephrine/norepinephrine and indole mediated Quorum sensing systems in enabling Gram-negative bacteria to adapt to their environments. The majority of Gram-negative biofilms consist of polysaccharides of a simple sugar structure (either homo- or heteropolysaccharides) that provide an optimum environment for the survival and maturation of bacteria, allowing them to display increased resistance to antibiotics and predation. PMID:25438014

  20. Biomolecular Mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm Formation.

    PubMed

    Laverty, Garry; Gorman, Sean P; Gilmore, Brendan F

    2014-01-01

    Pseudomonas aeruginosa and Escherichia coli are the most prevalent Gram-negative biofilm forming medical device associated pathogens, particularly with respect to catheter associated urinary tract infections. In a similar manner to Gram-positive bacteria, Gram-negative biofilm formation is fundamentally determined by a series of steps outlined more fully in this review, namely adhesion, cellular aggregation, and the production of an extracellular polymeric matrix. More specifically this review will explore the biosynthesis and role of pili and flagella in Gram-negative adhesion and accumulation on surfaces in Pseudomonas aeruginosa and Escherichia coli. The process of biofilm maturation is compared and contrasted in both species, namely the production of the exopolysaccharides via the polysaccharide synthesis locus (Psl), pellicle Formation (Pel) and alginic acid synthesis in Pseudomonas aeruginosa, and UDP-4-amino-4-deoxy-l-arabinose and colonic acid synthesis in Escherichia coli. An emphasis is placed on the importance of the LuxR homologue sdiA; the luxS/autoinducer-II; an autoinducer-III/epinephrine/norepinephrine and indole mediated Quorum sensing systems in enabling Gram-negative bacteria to adapt to their environments. The majority of Gram-negative biofilms consist of polysaccharides of a simple sugar structure (either homo- or heteropolysaccharides) that provide an optimum environment for the survival and maturation of bacteria, allowing them to display increased resistance to antibiotics and predation. PMID:25438014

  1. Aminoglycoside antibiotics induce bacterial biofilm formation.

    PubMed

    Hoffman, Lucas R; D'Argenio, David A; MacCoss, Michael J; Zhang, Zhaoying; Jones, Roger A; Miller, Samuel I

    2005-08-25

    Biofilms are adherent aggregates of bacterial cells that form on biotic and abiotic surfaces, including human tissues. Biofilms resist antibiotic treatment and contribute to bacterial persistence in chronic infections. Hence, the elucidation of the mechanisms by which biofilms are formed may assist in the treatment of chronic infections, such as Pseudomonas aeruginosa in the airways of patients with cystic fibrosis. Here we show that subinhibitory concentrations of aminoglycoside antibiotics induce biofilm formation in P. aeruginosa and Escherichia coli. In P. aeruginosa, a gene, which we designated aminoglycoside response regulator (arr), was essential for this induction and contributed to biofilm-specific aminoglycoside resistance. The arr gene is predicted to encode an inner-membrane phosphodiesterase whose substrate is cyclic di-guanosine monophosphate (c-di-GMP)-a bacterial second messenger that regulates cell surface adhesiveness. We found that membranes from arr mutants had diminished c-di-GMP phosphodiesterase activity, and P. aeruginosa cells with a mutation changing a predicted catalytic residue of Arr were defective in their biofilm response to tobramycin. Furthermore, tobramycin-inducible biofilm formation was inhibited by exogenous GTP, which is known to inhibit c-di-GMP phosphodiesterase activity. Our results demonstrate that biofilm formation can be a specific, defensive reaction to the presence of antibiotics, and indicate that the molecular basis of this response includes alterations in the level of c-di-GMP. PMID:16121184

  2. Air-liquid interface biofilm formation by psychrotrophic pseudomonads recovered from spoilt meat.

    PubMed

    Robertson, Mhari; Hapca, Simona M; Moshynets, Olena; Spiers, Andrew J

    2013-01-01

    The ability to colonise the surface of liquids has obvious advantages for bacteria and biofilm formation at the meniscus and air-liquid (A-L) interface is common amongst environmental pseudomonads. Bacteria from this genus also colonise raw meat and in this work the ability of these to produce biofilms was assessed. Sixty isolates were recovered from vacuum-packed venison, phenotypically characterised and shown by hierarchical cluster analysis to represent a diverse collection of psychrotrophic spoilt venison-associated pseudomonads. Of these, 12 % were found to produce biofilms limited to the meniscus region of the microcosm walls, 31 % produced attached biofilms with significant extensions across the A-L interface and 45 % produced unattached 'floating' biofilms. A combined statistical analysis of growth, biofilm strength and attachment levels revealed that growth affected strength but not attachment, and that there was a significant relationship between attachment and strength. Some environmental pseudomonads are known to utilise cellulose as a biofilm matrix component and here 28 % of the SVP isolates were found to express cellulose by epifluorescent microscopy. This survey suggests that biofilm formation may be more common in psychrotrophic meat-associated isolates than amongst the wider pseudomonad community from which spoilage bacteria might be recruited. This may reflect a selective advantage of bacterial aggregations such as biofilms in environments subject to high levels of physical disturbance. Aggregations may be more resistant to competition and dehydration stress than individual bacteria, whilst fragments of these aggregations may prove more effective in the colonisation of new habitats. PMID:22983557

  3. Characterization and global gene expression of F ? phenocopies during Escherichia coli biofilm formation

    Microsoft Academic Search

    Thithiwat May; Akinobu Ito; Satoshi Okabe

    2010-01-01

    The ecological role of horizontal gene transfer within biofilms has been recently investigated, and it has been reported that\\u000a conjugation directly induces bacteria to form biofilms via expression of conjugative pili. In this report, we described the\\u000a contribution of bacterial conjugation during biofilm formation by Escherichia coli harboring a natural IncF conjugative F plasmid (F+). We showed that cell-to-cell pili

  4. Original article Effects of growth conditions on biofilm formation

    E-print Network

    Boyer, Edmond

    Original article Effects of growth conditions on biofilm formation by Actinobacillus 24 April 2009; accepted 8 September 2009) Abstract ­ Biofilm formation is an important virulence to form biofilm in vitro. In this study, we compared biofilm formation by the serotype 1 reference strain

  5. Inhibition of Biofilm Formation by T7 Bacteriophages Producing Quorum-Quenching Enzymes

    PubMed Central

    Lamas-Samanamud, Gisella R.

    2014-01-01

    Bacterial growth in biofilms is the major cause of recalcitrant biofouling in industrial processes and of persistent infections in clinical settings. The use of bacteriophage treatment to lyse bacteria in biofilms has attracted growing interest. In particular, many natural or engineered phages produce depolymerases to degrade polysaccharides in the biofilm matrix and allow access to host bacteria. However, the phage-produced depolymerases are highly specific for only the host-derived polysaccharides and may have limited effects on natural multispecies biofilms. In this study, an engineered T7 bacteriophage was constructed to encode a lactonase enzyme with broad-range activity for quenching of quorum sensing, a form of bacterial cell-cell communication via small chemical molecules (acyl homoserine lactones [AHLs]) that is necessary for biofilm formation. Our results demonstrated that the engineered T7 phage expressed the AiiA lactonase to effectively degrade AHLs from many bacteria. Addition of the engineered T7 phage to mixed-species biofilms containing Pseudomonas aeruginosa and Escherichia coli resulted in inhibition of biofilm formation. Such quorum-quenching phages that can lyse host bacteria and express quorum-quenching enzymes to affect diverse bacteria in biofilm communities may become novel antifouling and antibiofilm agents in industrial and clinical settings. PMID:24951790

  6. Inhibitory effect of Lactobacillus salivarius on Streptococcus mutans biofilm formation.

    PubMed

    Wu, C-C; Lin, C-T; Wu, C-Y; Peng, W-S; Lee, M-J; Tsai, Y-C

    2015-02-01

    Dental caries arises from an imbalance of metabolic activities in dental biofilms developed primarily by Streptococcus mutans. This study was conducted to isolate potential oral probiotics with antagonistic activities against S. mutans biofilm formation from Lactobacillus salivarius, frequently found in human saliva. We analysed 64 L. salivarius strains and found that two, K35 and K43, significantly inhibited S. mutans biofilm formation with inhibitory activities more pronounced than those of Lactobacillus rhamnosus GG (LGG), a prototypical probiotic that shows anti-caries activity. Scanning electron microscopy showed that co-culture of S. mutans with K35 or K43 resulted in significantly reduced amounts of attached bacteria and network-like structures, typically comprising exopolysaccharides. Spot assay for S. mutans indicated that K35 and K43 strains possessed a stronger bactericidal activity against S. mutans than LGG. Moreover, quantitative real-time polymerase chain reaction showed that the expression of genes encoding glucosyltransferases, gtfB, gtfC, and gtfD was reduced when S. mutans were co-cultured with K35 or K43. However, LGG activated the expression of gtfB and gtfC, but did not influence the expression of gtfD in the co-culture. A transwell-based biofilm assay indicated that these lactobacilli inhibited S. mutans biofilm formation in a contact-independent manner. In conclusion, we identified two L. salivarius strains with inhibitory activities on the growth and expression of S. mutans virulence genes to reduce its biofilm formation. This is not a general characteristic of the species, so presents a potential strategy for in vivo alteration of plaque biofilm and caries. PMID:24961744

  7. Effect of biofilm formation on antimicrobial tolerance of Flavobacterium psychrophilum.

    PubMed

    Sundell, K; Wiklund, T

    2011-05-01

    Treatment of bacterial fish diseases can be complicated by resistant bacterial biofilms harbouring pathogenic bacteria and causing recurrent exposure of fish to infections. In this study, the effect of biofilm formation on antimicrobial tolerance was examined using three bacterial isolates of the fish pathogen Flavobacterium psychrophilum and two antimicrobial agents, oxytetracycline and flumequine, commonly used in aquaculture. Planktonic and biofilm cells were exposed to a minimum inhibitory concentration (MIC), to a 3 × MIC concentration and to an environmental concentration level of each antimicrobial in 96-well microtitre plates after which growth on agar plates was measured. The type strain NCIMB1947 of F. psychrophilum was further used to study the development of antimicrobial resistance in biofilm cells. The results suggest that at high bacterial densities (>10(7) CFU mL(-1)), biofilm cells of F. psychrophilum are less susceptible to antimicrobial agents. Furthermore, the results imply that biofilm cells of F. psychrophilum may rapidly develop resistance to both oxytetracycline and flumequine if exposed to subinhibitory concentrations of these antimicrobials. PMID:21488905

  8. Measurement of fluid dynamic loading on staphylococci bacteria bio-film structures using ?PIV

    NASA Astrophysics Data System (ADS)

    Sherman, Erica; Moormeier, Derek; Bayles, Kenneth; Davidson, John; Ryu, Sangjin; Wei, Timothy

    2013-11-01

    Staphylococci bacteria are recognized as the most frequent cause of biofilm-associated infections. Although humans are regularly exposed to these bacteria without consequence, a localized infection can enter the bloodstream and lead to serious infections such as endocarditis, pneumonia, or toxic shock syndrome. The mechanics of staphylococci biofilm formation and dispersion through the bloodstream are not well known. It has recently been observed that under certain flow conditions, bacteria organize in tower-like structures which break and are transported downstream by the flow. The fundamental questions of interest are i) whether or not fluid mechanics plays a role in differentiating between film or tower formation and ii) whether or not the faulty towers are a bio-film propagation mechanism. This talk focuses on the application of ?PIV to study this problem. Staphylococcus aureus bacteria were cultured in the Bioflux Fluxion square microchannel of a 65 by 65 um cross section, and subjected to a steady shear rate of 0.5 dynes. ?PIV measurements were made to map the flow over and around a biofilm tower structure which occluded approximately 66% of the channel width. Data were recorded around the structure at a series of two dimensional planes, which when stacked vertically show a two dimensional flow field as a function of tower height. Measurements and control volume analysis will be presented quantifying forces acting on these structures.

  9. Acetic Acid Acts as a Volatile Signal To Stimulate Bacterial Biofilm Formation

    PubMed Central

    Chen, Yun; Gozzi, Kevin; Yan, Fang

    2015-01-01

    ABSTRACT Volatiles are small air-transmittable chemicals with diverse biological activities. In this study, we showed that volatiles produced by the bacterium Bacillus subtilis had a profound effect on biofilm formation of neighboring B. subtilis cells that grew in proximity but were physically separated. We further demonstrated that one such volatile, acetic acid, is particularly potent in stimulating biofilm formation. Multiple lines of genetic evidence based on B. subtilis mutants that are defective in either acetic acid production or transportation suggest that B. subtilis uses acetic acid as a metabolic signal to coordinate the timing of biofilm formation. Lastly, we investigated how B. subtilis cells sense and respond to acetic acid in regulating biofilm formation. We showed the possible involvement of three sets of genes (ywbHG, ysbAB, and yxaKC), all encoding putative holin-antiholin-like proteins, in cells responding to acetic acid and stimulating biofilm formation. All three sets of genes were induced by acetate. A mutant with a triple mutation of those genes showed a severe delay in biofilm formation, whereas a strain overexpressing ywbHG showed early and robust biofilm formation. Results of our studies suggest that B. subtilis and possibly other bacteria use acetic acid as a metabolic signal to regulate biofilm formation as well as a quorum-sensing-like airborne signal to coordinate the timing of biofilm formation by physically separated cells in the community. PMID:26060272

  10. Engineering Escherichia coli to Control Biofilm Formation, Dispersal, and Persister Cell Formation

    E-print Network

    Hong, Seok Hoon

    2012-02-14

    as well as for promoting biofilm dispersal (Wood et al., 2011). The first engineered biofilm utilized Bacillus subtilis to secrete the peptide antimicrobials indolicidin and bactenecin to inhibit the growth of sulfate-reducing bacteria in the biofilm...

  11. Engineering Escherichia coli to Control Biofilm Formation, Dispersal, and Persister Cell Formation 

    E-print Network

    Hong, Seok Hoon

    2012-02-14

    Biofilms are formed in aquatic environments by the attachment of bacteria to submerged surfaces, to the air/liquid interface, and to each other. Although biofilms are associated with disease and biofouling, the robust nature of biofilms; for example...

  12. d-Amino Acids Do Not Inhibit Biofilm Formation in Staphylococcus aureus

    PubMed Central

    Sarkar, Sourav; Pires, Marcos M.

    2015-01-01

    Bacteria can either exist in the planktonic (free floating) state or in the biofilm (encased within an organic framework) state. Bacteria biofilms cause industrial concerns and medical complications and there has been a great deal of interest in the discovery of small molecule agents that can inhibit the formation of biofilms or disperse existing structures. Herein we show that, contrary to previously published reports, d-amino acids do not inhibit biofilm formation of Bacillus subtilis (B. subtilis), Staphylococcus aureus (S. aureus), and Staphylococcus epidermis (S. epidermis) at millimolar concentrations. We evaluated a diverse set of natural and unnatural d-amino acids and observed no activity from these compounds in inhibiting biofilm formation. PMID:25658642

  13. Photoinactivation of bacteria attached to glass and acrylic surfaces by 405 nm light: potential application for biofilm decontamination.

    PubMed

    McKenzie, Karen; Maclean, Michelle; Timoshkin, Igor V; Endarko, Endarko; MacGregor, Scott J; Anderson, John G

    2013-01-01

    Attachment of bacteria to surfaces and subsequent biofilm formation remains a major cause of cross-contamination capable of inducing both food-related illness and nosocomial infections. Resistance to many current disinfection technologies means facilitating their removal is often difficult. The aim of this study was to investigate the efficacy of 405 nm light for inactivation of bacterial attached as biofilms to glass and acrylic. Escherichia coli biofilms (10(3)-10(8) CFU mL(-1)) were generated on glass and acrylic surfaces and exposed for increasing times to 405 nm light (5-60 min) at ca 140 mW cm(-2). Successful inactivation of biofilms has been demonstrated, with results highlighting complete/near-complete inactivation (up to 5 log10 reduction on acrylic and 7 log10 on glass). Results also highlight that inactivation of bacterial biofilms could be achieved whether the biofilm was on the upper "directly exposed" surface or "indirectly exposed" underside surface. Statistically significant inactivation was also shown with a range of other microorganisms associated with biofilm formation (Staphylococcus aureus, Pseudomonas aeruginosa and Listeria monocytogenes). Results from this study have demonstrated significant inactivation of bacteria ranging from monolayers to densely populated biofilms using 405 nm light, highlighting that with further development this technology may have potential applications for biofilm decontamination in food and clinical settings. PMID:23550978

  14. Biofilm formation by Helicobacter pylori.

    PubMed

    Stark, R M; Gerwig, G J; Pitman, R S; Potts, L F; Williams, N A; Greenman, J; Weinzweig, I P; Hirst, T R; Millar, M R

    1999-02-01

    Helicobacter pylori NCTC 11637 produces a water-insoluble biofilm when grown under defined conditions with a high carbon:nitrogen ratio in continuous culture and in 10% strength Brucella broth supplemented with 3 g l-1 glucose. Biofilm accumulated at the air/liquid interface of the culture. Light microscopy of frozen sections of the biofilm material showed few bacterial cells in the mass of the biofilm. The material stained with periodic acid Schiff's reagent. Fucose, glucose, galactose, and glycero-manno-heptose, N-acetylglucosamine and N-acetylmuramic acid were identified in partially purified and in crude material, using gas chromatography and mass spectrometry. The sugar composition strongly indicates the presence of a polysaccharide as a component of the biofilm material. Antibodies (IgG) to partially purified material were found in both sero-positive and sero-negative individuals. Treatment of the biofilm material with periodic acid reduced or abolished immunoreactivity. Treatment with 5 mol l-1 urea at 100 degrees C and with phenol did not remove antigenic recognition by patient sera. The production of a water-insoluble biofilm by H. pylori may be important in enhancing resistance to host defence factors and antibiotics, and in microenvironmental pH homeostasis facilitating the growth and survival of H. pylori in vivo. PMID:10063642

  15. Mycobacterium avium Possesses Extracellular DNA that Contributes to Biofilm Formation, Structural Integrity, and Tolerance to Antibiotics

    PubMed Central

    Rose, Sasha J.; Babrak, Lmar M.; Bermudez, Luiz E.

    2015-01-01

    Mycobacterium avium subsp. hominissuis is an opportunistic pathogen that is associated with biofilm-related infections of the respiratory tract and is difficult to treat. In recent years, extracellular DNA (eDNA) has been found to be a major component of bacterial biofilms, including many pathogens involved in biofilm-associated infections. To date, eDNA has not been described as a component of mycobacterial biofilms. In this study, we identified and characterized eDNA in a high biofilm-producing strain of Mycobacterium avium subsp. hominissuis (MAH). In addition, we surveyed for presence of eDNA in various MAH strains and other nontuberculous mycobacteria. Biofilms of MAH A5 (high biofilm-producing strain) and MAH 104 (reference strain) were established at 22°C and 37°C on abiotic surfaces. Acellular biofilm matrix and supernatant from MAH A5 7 day-old biofilms both possess abundant eDNA, however very little eDNA was found in MAH 104 biofilms. A survey of MAH clinical isolates and other clinically relevant nontuberculous mycobacterial species revealed many species and strains that also produce eDNA. RAPD analysis demonstrated that eDNA resembles genomic DNA. Treatment with DNase I reduced the biomass of MAH A5 biofilms when added upon biofilm formation or to an already established biofilm both on abiotic surfaces and on top of human pharyngeal epithelial cells. Furthermore, co-treatment of an established biofilm with DNase 1 and either moxifloxacin or clarithromycin significantly increased the susceptibility of the bacteria within the biofilm to these clinically used antimicrobials. Collectively, our results describe an additional matrix component of mycobacterial biofilms and a potential new target to help treat biofilm-associated nontuberculous mycobacterial infections. PMID:26010725

  16. Mycobacterium avium Possesses Extracellular DNA that Contributes to Biofilm Formation, Structural Integrity, and Tolerance to Antibiotics.

    PubMed

    Rose, Sasha J; Babrak, Lmar M; Bermudez, Luiz E

    2015-01-01

    Mycobacterium avium subsp. hominissuis is an opportunistic pathogen that is associated with biofilm-related infections of the respiratory tract and is difficult to treat. In recent years, extracellular DNA (eDNA) has been found to be a major component of bacterial biofilms, including many pathogens involved in biofilm-associated infections. To date, eDNA has not been described as a component of mycobacterial biofilms. In this study, we identified and characterized eDNA in a high biofilm-producing strain of Mycobacterium avium subsp. hominissuis (MAH). In addition, we surveyed for presence of eDNA in various MAH strains and other nontuberculous mycobacteria. Biofilms of MAH A5 (high biofilm-producing strain) and MAH 104 (reference strain) were established at 22°C and 37°C on abiotic surfaces. Acellular biofilm matrix and supernatant from MAH A5 7 day-old biofilms both possess abundant eDNA, however very little eDNA was found in MAH 104 biofilms. A survey of MAH clinical isolates and other clinically relevant nontuberculous mycobacterial species revealed many species and strains that also produce eDNA. RAPD analysis demonstrated that eDNA resembles genomic DNA. Treatment with DNase I reduced the biomass of MAH A5 biofilms when added upon biofilm formation or to an already established biofilm both on abiotic surfaces and on top of human pharyngeal epithelial cells. Furthermore, co-treatment of an established biofilm with DNase 1 and either moxifloxacin or clarithromycin significantly increased the susceptibility of the bacteria within the biofilm to these clinically used antimicrobials. Collectively, our results describe an additional matrix component of mycobacterial biofilms and a potential new target to help treat biofilm-associated nontuberculous mycobacterial infections. PMID:26010725

  17. Interaction of biofilm bacteria with antibiotics in a novel in vitro chemostat system.

    PubMed Central

    Anwar, H; van Biesen, T; Dasgupta, M; Lam, K; Costerton, J W

    1989-01-01

    Pseudomonas aeruginosa was cultivated at low growth rates under iron-limiting conditions on acrylic tiles. Biofilm cells exhibited increased tobramycin resistance compared with that of planktonic cells, and in old biofilms were more resistant than were cells in young biofilms. However, on suspension of the biofilm bacteria, glycocalyx-mediated resistance was lost. PMID:2511804

  18. Interaction of biofilm bacteria with antibiotics in a novel in vitro chemostat system.

    PubMed

    Anwar, H; van Biesen, T; Dasgupta, M; Lam, K; Costerton, J W

    1989-10-01

    Pseudomonas aeruginosa was cultivated at low growth rates under iron-limiting conditions on acrylic tiles. Biofilm cells exhibited increased tobramycin resistance compared with that of planktonic cells, and in old biofilms were more resistant than were cells in young biofilms. However, on suspension of the biofilm bacteria, glycocalyx-mediated resistance was lost. PMID:2511804

  19. Alternative modes of biofilm formation by plant-associated Bacillus cereus

    PubMed Central

    Gao, Tantan; Foulston, Lucy; Chai, Yunrong; Wang, Qi; Losick, Richard

    2015-01-01

    The ability to form multicellular communities known as biofilms is a widespread adaptive behavior of bacteria. Members of the Bacillus group of bacteria have been found to form biofilms on plant roots, where they protect against pathogens and promote growth. In the case of the model bacterium Bacillus subtilis the genetic pathway controlling biofilm formation and the production of an extracellular matrix is relatively well understood. However, it is unclear whether other members of this genus utilize similar mechanisms. We determined that a plant-associated strain of Bacillus cereus (905) can form biofilms by two seemingly independent pathways. In one mode involving the formation of floating biofilms (pellicles) B. cereus 905 appears to rely on orthologs of many of the genes known to be important for B. subtilis biofilm formation. We report that B. cereus 905 also forms submerged, surface-associated biofilms and in a manner that resembles biofilm formation by the pathogen Staphylococcus aureus. This alternative mode, which does not rely on B. subtilis-like genes for pellicle formation, takes place under conditions of glucose fermentation and depends on a drop in the pH of the medium. PMID:25828975

  20. Alternative modes of biofilm formation by plant-associated Bacillus cereus.

    PubMed

    Gao, Tantan; Foulston, Lucy; Chai, Yunrong; Wang, Qi; Losick, Richard

    2015-06-01

    The ability to form multicellular communities known as biofilms is a widespread adaptive behavior of bacteria. Members of the Bacillus group of bacteria have been found to form biofilms on plant roots, where they protect against pathogens and promote growth. In the case of the model bacterium Bacillus subtilis the genetic pathway controlling biofilm formation and the production of an extracellular matrix is relatively well understood. However, it is unclear whether other members of this genus utilize similar mechanisms. We determined that a plant-associated strain of Bacillus cereus (905) can form biofilms by two seemingly independent pathways. In one mode involving the formation of floating biofilms (pellicles) B. cereus 905 appears to rely on orthologs of many of the genes known to be important for B. subtilis biofilm formation. We report that B. cereus 905 also forms submerged, surface-associated biofilms and in a manner that resembles biofilm formation by the pathogen Staphylococcus aureus. This alternative mode, which does not rely on B. subtilis-like genes for pellicle formation, takes place under conditions of glucose fermentation and depends on a drop in the pH of the medium. PMID:25828975

  1. Experimental and Computational Investigation of Biofilm Formation by Rhodopseudomonas palustris Growth under Two Metabolic Modes

    PubMed Central

    Kernan, Chase; Chow, Philicia P.; Christianson, Rebecca J.; Huang, Jean

    2015-01-01

    We examined biofilms formed by the metabolically versatile bacterium Rhodopseudomonas palustris grown via different metabolic modes. R. palustris was grown in flow cell chambers with identical medium conditions either in the presence or absence of light and oxygen. In the absence of oxygen and the presence of light, R. palustris grew and formed biofilms photoheterotrophically, and in the presence of oxygen and the absence of light, R. palustris grew and formed biofilms heterotrophically. We used confocal laser scanning microscopy and image analysis software to quantitatively analyze and compare R. palustris biofilm formation over time in these two metabolic modes. We describe quantifiable differences in structure between the biofilms formed by the bacterium grown heterotrophically and those grown photoheterotrophically. We developed a computational model to explore ways in which biotic and abiotic parameters could drive the observed biofilm architectures, as well as a random-forest machine-learning algorithm based on structural differences that was able to identify growth conditions from the confocal imaging of the biofilms with 87% accuracy. Insight into the structure of phototrophic biofilms and conditions that influence biofilm formation is relevant for understanding the generation of biofilm structures with different properties, and for optimizing applications with phototrophic bacteria growing in the biofilm state. PMID:26087200

  2. Experimental and Computational Investigation of Biofilm Formation by Rhodopseudomonas palustris Growth under Two Metabolic Modes.

    PubMed

    Kernan, Chase; Chow, Philicia P; Christianson, Rebecca J; Huang, Jean

    2015-01-01

    We examined biofilms formed by the metabolically versatile bacterium Rhodopseudomonas palustris grown via different metabolic modes. R. palustris was grown in flow cell chambers with identical medium conditions either in the presence or absence of light and oxygen. In the absence of oxygen and the presence of light, R. palustris grew and formed biofilms photoheterotrophically, and in the presence of oxygen and the absence of light, R. palustris grew and formed biofilms heterotrophically. We used confocal laser scanning microscopy and image analysis software to quantitatively analyze and compare R. palustris biofilm formation over time in these two metabolic modes. We describe quantifiable differences in structure between the biofilms formed by the bacterium grown heterotrophically and those grown photoheterotrophically. We developed a computational model to explore ways in which biotic and abiotic parameters could drive the observed biofilm architectures, as well as a random-forest machine-learning algorithm based on structural differences that was able to identify growth conditions from the confocal imaging of the biofilms with 87% accuracy. Insight into the structure of phototrophic biofilms and conditions that influence biofilm formation is relevant for understanding the generation of biofilm structures with different properties, and for optimizing applications with phototrophic bacteria growing in the biofilm state. PMID:26087200

  3. Implications of Biofilm Formation on Urological Devices

    NASA Astrophysics Data System (ADS)

    Cadieux, Peter A.; Wignall, Geoffrey R.; Carriveau, Rupp; Denstedt, John D.

    2008-09-01

    Despite millions of dollars and several decades of research targeted at their prevention and eradication, biofilm-associated infections remain the major cause of urological device failure. Numerous strategies have been aimed at improving device design, biomaterial composition, surface properties and drug delivery, but have been largely circumvented by microbes and their plethora of attachment, host evasion, antimicrobial resistance, and dissemination strategies. This is not entirely surprising since natural biofilm formation has been going on for millions of years and remains a major part of microorganism survival and evolution. Thus, the fact that biofilms develop on and in the biomaterials and tissues of humans is really an extension of this natural tendency and greatly explains why they are so difficult for us to combat. Firstly, biofilm structure and composition inherently provide a protective environment for microorganisms, shielding them from the shear stress of urine flow, immune cell attack and some antimicrobials. Secondly, many biofilm organisms enter a metabolically dormant state that renders them tolerant to those antibiotics and host factors able to penetrate the biofilm matrix. Lastly, the majority of organisms that cause biofilm-associated urinary tract infections originate from our own oral cavity, skin, gastrointestinal and urogenital tracts and therefore have already adapted to many of our host defenses. Ultimately, while biofilms continue to hold an advantage with respect to recurrent infections and biomaterial usage within the urinary tract, significant progress has been made in understanding these dynamic microbial communities and novel approaches offer promise for their prevention and eradication. These include novel device designs, antimicrobials, anti-adhesive coatings, biodegradable polymers and biofilm-disrupting compounds and therapies.

  4. Involvement of Stress-Related Genes polB and PA14_46880 in Biofilm Formation of Pseudomonas aeruginosa

    PubMed Central

    Alshalchi, Sahar A.

    2014-01-01

    Chronic infections of Pseudomonas aeruginosa are generally established through production of biofilm. During biofilm formation, production of an extracellular matrix and establishment of a distinct bacterial phenotype make these infections difficult to eradicate. However, biofilm studies have been hampered by the fact that most assays utilize nonliving surfaces as biofilm attachment substrates. In an attempt to better understand the mechanisms behind P. aeruginosa biofilm formation, we performed a genetic screen to identify novel factors involved in biofilm formation on biotic and abiotic surfaces. We found that deletion of genes polB and PA14_46880 reduced biofilm formation significantly compared to that in the wild-type strain PA14 in an abiotic biofilm system. In a biotic biofilm model, wherein biofilms form on cultured airway cells, the ?polB and ?PA14_46880 strains showed increased cytotoxic killing of the airway cells independent of the total number of bacteria bound. Notably, deletion mutant strains were more resistant to ciprofloxacin treatment. This phenotype was linked to decreased expression of algR, an alginate transcriptional regulatory gene, under ciprofloxacin pressure. Moreover, we found that pyocyanin production was increased in planktonic cells of mutant strains. These results indicate that inactivation of polB and PA14_46880 may inhibit transition of P. aeruginosa from a more acute infection lifestyle to the biofilm phenotype. Future investigation of these genes may lead to a better understanding of P. aeruginosa biofilm formation and chronic biofilm infections. PMID:25156741

  5. Aquatic Plants Stimulate the Growth of and Biofilm Formation by Mycobacterium ulcerans in Axenic Culture and Harbor These Bacteria in the Environment

    PubMed Central

    Marsollier, Laurent; Stinear, Timothy; Aubry, Jacques; Saint André, Jean Paul; Robert, Raymond; Legras, Pierre; Manceau, Anne-Lise; Audrain, Christine; Bourdon, Sandra; Kouakou, Henri; Carbonnelle, Bernard

    2004-01-01

    Mycobacterium ulcerans is the causative agent of Buruli ulcer, one of the most common mycobacterial diseases of humans. Recent studies have implicated aquatic insects in the transmission of this pathogen, but the contributions of other elements of the environment remain largely unknown. We report here that crude extracts from two green algae added to the BACTEC 7H12B culture medium halved the doubling time of M. ulcerans and promoted biofilm formation. Using the 7H12B medium, modified by the addition of the algal extract, and immunomagnetic separation, we also demonstrate that M. ulcerans is associated with aquatic plants in an area of the Ivory Coast where Buruli ulcer is endemic. Genotype analysis showed that plant-associated M. ulcerans had the same profile as isolates recovered in the same region from both aquatic insects and clinical specimens. These observations implicate aquatic plants as a reservoir of M. ulcerans and add a new potential link in the chain of transmission of M. ulcerans to humans. PMID:14766593

  6. Resveratrol oligomers inhibit biofilm formation of Escherichia coli O157:H7 and Pseudomonas aeruginosa.

    PubMed

    Lee, Jin-Hyung; Kim, Yong-Guy; Ryu, Shi Yong; Cho, Moo Hwan; Lee, Jintae

    2014-01-24

    Biofilm formation is closely related to bacterial infection and is also a mechanism of antimicrobial resistance. Hence, the antibiofilm approach provides an alternative to an antibiotic strategy. In this study, the antibiofilm activities of resveratrol (1) and five of its oligomers, namely, ?-viniferin (2), suffruticosol A (3), suffruticosol B (4), vitisin A (5), and vitisin B (6), were investigated against enterohemorrhagic Escherichia coli O157:H7 and Pseudomonas aeruginosa PA14. Vitisin B (6), a stilbenoid tetramer, was found to inhibit biofilm formation by the two bacteria the most effectively and at 5 ?g/mL inhibited E. coli O157:H7 biofilm formation by more than 90%. PMID:24456071

  7. Inhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide.

    PubMed

    de la Fuente-Núñez, César; Korolik, Victoria; Bains, Manjeet; Nguyen, Uyen; Breidenstein, Elena B M; Horsman, Shawn; Lewenza, Shawn; Burrows, Lori; Hancock, Robert E W

    2012-05-01

    Biofilms cause up to 80% of infections and are difficult to treat due to their substantial multidrug resistance compared to their planktonic counterparts. Based on the observation that human peptide LL-37 is able to block biofilm formation at concentrations below its MIC, we screened for small peptides with antibiofilm activity and identified novel synthetic cationic peptide 1037 of only 9 amino acids in length. Peptide 1037 had very weak antimicrobial activity, but at 1/30th the MIC the peptide was able to effectively prevent biofilm formation (>50% reduction in cell biomass) by the Gram-negative pathogens Pseudomonas aeruginosa and Burkholderia cenocepacia and Gram-positive Listeria monocytogenes. Using a flow cell system and a widefield fluorescence microscope, 1037 was shown to significantly reduce biofilm formation and lead to cell death in biofilms. Microarray and follow-up studies showed that, in P. aeruginosa, 1037 directly inhibited biofilms by reducing swimming and swarming motilities, stimulating twitching motility, and suppressing the expression of a variety of genes involved in biofilm formation (e.g., PA2204). Comparison of microarray data from cells treated with peptides LL-37 and 1037 enabled the identification of 11 common P. aeruginosa genes that have a role in biofilm formation and are proposed to represent functional targets of these peptides. Peptide 1037 shows promise as a potential therapeutic agent against chronic, recurrent biofilm infections caused by a variety of bacteria. PMID:22354291

  8. Investigation of N-acyl homoserine lactone (AHL) molecule production in Gram-negative bacteria isolated from cooling tower water and biofilm samples.

    PubMed

    Haslan, Ezgi; Kimiran-Erdem, Ayten

    2013-09-01

    In this study, 99 Gram-negative rod bacteria were isolated from cooling tower water, and biofilm samples were examined for cell-to-cell signaling systems, N-acyl homoserine lactone (AHL) signal molecule types, and biofilm formation capacity. Four of 39 (10 %) strains isolated from water samples and 14 of 60 (23 %) strains isolated from biofilm samples were found to be producing a variety of AHL signal molecules. It was determined that the AHL signal molecule production ability and the biofilm formation capacity of sessile bacteria is higher than planktonic bacteria, and there was a statistically significant difference between the AHL signal molecule production of these two groups (p < 0.05). In addition, it was found that bacteria belonging to the same species isolated from cooling tower water and biofilm samples produced different types of AHL signal molecules and that there were different types of AHL signal molecules in an AHL extract of bacteria. In the present study, it was observed that different isolates of the same strains did not produce the same AHLs or did not produce AHL molecules, and bacteria known as AHL producers did not produce AHL. These findings suggest that detection of signal molecules in bacteria isolated from cooling towers may contribute to prevention of biofilm formation, elimination of communication among bacteria in water systems, and blockage of quorum-sensing controlled virulence of these bacteria. PMID:23250628

  9. Biofilm Formation by Otopathogenic Strains of P. aeruginosa is not Consistently Inhibited by EDTA

    PubMed Central

    Zenga, Joseph; Gagnon, Patricia M.; Vogel, Joseph; Chole, Richard A.

    2012-01-01

    Hypothesis Biofilm formation in otopathogenic of P. aeruginosa (OPPA) strains is inhibited by ethylenediaminetetraacetic acid (EDTA). Background EDTA, a widely used chelating agent, has been shown to inhibit biofilm formation in a number of bacteria. Since EDTA may be a well-tolerated reagent to inhibit biofilm formation in cases of suppurative otitis media, we asked if it might be effective in all OPPA strains isolated from chronically infected cholesteatomas. Methods OPPA strains were isolated from patients with infected cholesteatomas. These strains were grown into log phase then were placed in minimal media with varying concentrations of EDTA, and incubated for varying periods. Biofilm production was measured colorimetrically by staining with crystal violet. Results Without added EDTA, most otopathogenic PA exhibited a distinct, but varying, time-course of biofilm formation and dissolution with peak production at 12–18 hours. Addition of 1 mM EDTA resulted in a delay in the time to peak biofilm formation for most strains, although the amount of biofilm was not decreased. In contrast, some strains showed greater biofilm production with 1 mM EDTA compared to the untreated bacteria. Addition of 10 mM EDTA resulted in a similar effect. Some strains increased biofilm production over controls. Moreover, EDTA inhibited planktonic growth of all OPPA strains at the concentrations studied. Conclusion Our hypothesis was disproven: EDTA tends to delay biofilm development while it consistently inhibits planktonic growth. Since EDTA does not cause suppression of biofilm production in all isolates of OPPA, usefulness as an antimicrobial is questioned. PMID:22772018

  10. Specific plant induced biofilm formation in Methylobacterium species

    PubMed Central

    Rossetto, Priscilla B.; Dourado, Manuella N.; Quecine, Maria C.; Andreote, Fernando D.; Araújo, Welington L.; Azevedo, João L.; Pizzirani-Kleiner, Aline A.

    2011-01-01

    Two endophytic strains of Methylobacterium spp. were used to evaluate biofilm formation on sugarcane roots and on inert wooden sticks. Results show that biofilm formation is variable and that plant surface and possibly root exudates have a role in Methylobacterium spp. host recognition, biofilm formation and successful colonization as endophytes. PMID:24031703

  11. Investigation of Biofilm Formation in Clinical Isolates of Staphylococcus aureus

    PubMed Central

    Cassat, James E.; Lee, Chia Y.; Smeltzer, Mark S.

    2014-01-01

    Summary As with many other bacterial species, the most commonly used method to assess staphylococcal biofilm formation in vitro is the microtiter plate assay. This assay is particularly useful for comparison of multiple strains including large-scale screens of mutant libraries. When such screens are applied to the coagulase-negative staphylococci in general, and Staphylococcus epidermidis in particular, they are relatively straightforward by comparison with microtiter plate assays used to assess biofilm formation in other bacterial species. However, in the case of clinical isolates of Staphylococcus aureus, including methicillin-resistant S. aureus, we have found it necessary to employ specific modifications including precoating of the wells of the microtiter plate with plasma proteins and supplementation of the medium with both salt and glucose. In this chapter, we describe the microtiter plate assay in the specific context of clinical isolates of S. aureus and the use of these modifications. A second in vitro method, which also is generally dependent on coating with plasma proteins and supplementation of the growth medium, is the use of flow cells. In this method, bacteria are allowed to attach to a surface and then monitored with respect to their ability to remain attached to the substrate and differentiate into mature biofilms under the constant pressure of fluid shear force. Although flow cells are not applicable to large-scale screens, we have found that they provide a more reproducible and accurate assessment of the capacity of S. aureus clinical isolates to form a biofilm. They also provide a means of analyzing structural differences in biofilm architecture and isolating bacteria and/or spent media for analysis of physiological and metabolic changes associated with the adaptive response to growth in a biofilm. While a primary focus of this chapter is on the use of in vitro assays to assess biofilm formation in clinical isolates of S. aureus, it is important to emphasize two additional considerations. First, it has become increasingly evident that biofilm formation in S. epiderimidis and S. aureus is not equivalent. Additionally, to date, most studies with S. aureus have been done with a very limited number of strains, almost all of which are derived from the NCTC strain designated 8325, and we have found that these strains are not representative of the most relevant clinical isolates. As with the specific elements of our flow cell system, we have written this chapter to reflect our focus on clinical isolates of S. aureus and the specific methods that we have found most reliable in that context. Second, as is often the case, in vitro methods do not necessarily reflect events that occur in vivo. Several in vivo methods to assess biofilm formation have been described, and these generally fall into one of two categories. The first focuses directly on staphylococcal diseases that are generally thought to include a biofilm component (e.g., endocarditis, osteomyelitis, septic arthritis). A discussion of these models is also beyond the scope of this chapter, but examples are easily found in the staphylococcal literature. The second approach uses some form of implanted device in an attempt to focus more directly on implant-associated biofilms. We use a model in which a small piece of Teflon catheter is implanted subcutaneously in mice and used as a substrate for colonization. We have the advantage of using bioluminescent derivatives of S. aureus clinical isolates and the IVIS® imaging system. However, because this system is not generally available, we restrict technical comments in this chapter to our use of an implanted catheter model evaluated by direct microbiological analysis of explanted catheters (2). PMID:18025674

  12. Investigation of biofilm formation in clinical isolates of Staphylococcus aureus.

    PubMed

    Cassat, James E; Lee, Chia Y; Smeltzer, Mark S

    2007-01-01

    As with many other bacterial species, the most commonly used method to assess staphylococcal biofilm formation in vitro is the microtiter plate assay. This assay is particularly useful for comparison of multiple strains including large-scale screens of mutant libraries. When such screens are applied to the coagulase-negative staphylococci in general, and Staphylococcus epidermidis in particular, they are relatively straightforward by comparison with microtiter plate assays used to assess biofilm formation in other bacterial species. However, in the case of clinical isolates of Staphylococcus aureus, including methicillin-resistant S. aureus, we have found it necessary to employ specific modifications including precoating of the wells of the microtiter plate with plasma proteins and supplementation of the medium with both salt and glucose. In this chapter, we describe the microtiter plate assay in the specific context of clinical isolates of S. aureus and the use of these modifications. A second in vitro method, which also is generally dependent on coating with plasma proteins and supplementation of the growth medium, is the use of flow cells. In this method, bacteria are allowed to attach to a surface and then monitored with respect to their ability to remain attached to the substrate and differentiate into mature biofilms under the constant pressure of fluid shear force. Although flow cells are not applicable to large-scale screens, we have found that they provide a more reproducible and accurate assessment of the capacity of S. aureus clinical isolates to form a biofilm. They also provide a means of analyzing structural differences in biofilm architecture and isolating bacteria and/or spent media for analysis of physiological and metabolic changes associated with the adaptive response to growth in a biofilm. While a primary focus of this chapter is on the use of in vitro assays to assess biofilm formation in clinical isolates of S. aureus, it is important to emphasize two additional considerations. First, it has become increasingly evident that biofilm formation in S. epiderimidis and S. aureus is not equivalent. Additionally, to date, most studies with S. aureus have been done with a very limited number of strains, almost all of which are derived from the NCTC strain designated 8325, and we have found that these strains are not representative of the most relevant clinical isolates. As with the specific elements of our flow cell system, we have written this chapter to reflect our focus on clinical isolates of S. aureus and the specific methods that we have found most reliable in that context. Second, as is often the case, in vitro methods do not necessarily reflect events that occur in vivo. Several in vivo methods to assess biofilm formation have been described, and these generally fall into one of two categories. The first focuses directly on staphylococcal diseases that are generally thought to include a biofilm component (e.g., endocarditis, osteomyelitis, septic arthritis). A discussion of these models is also beyond the scope of this chapter, but examples are easily found in the staphylococcal literature. The second approach uses some form of implanted device in an attempt to focus more directly on implant-associated biofilms. We use a model in which a small piece of Teflon catheter is implanted subcutaneously in mice and used as a substrate for colonization. We have the advantage of using bioluminescent derivatives of S. aureus clinical isolates and the IVIS(R) imaging system. However, because this system is not generally available, we restrict technical comments in this chapter to our use of an implanted catheter model evaluated by direct microbio-logical analysis of explanted catheters (2). PMID:18025674

  13. Quorum sensing and biofilm formation investigated using laser-trapped bacterial arrays

    NASA Astrophysics Data System (ADS)

    Gordon, Vernita; Butler, John; Smalyukh, Ivan; Parsek, Matthew; Wong, Gerard

    2008-03-01

    Studies of individual, free-swimming (planktonic) bacteria have yielded much information about their genetic and phenotypic characteristics and about ``quorum sensing,'' the autoinducing process by which bacteria detect high concentrations of other bacteria. However, in most environments the majority of bacteria are not in the planktonic form but are rather in biofilms, which are highly-structured, dynamic communities of multiple bacteria that adhere to a surface and to each other using an extracellular polysaccharide matrix. Bacteria in biofilms are phenotypically very different from their genetically-identical planktonic counterparts. Among other characteristics, they are much more antibiotic-resistant and virulent. Such biofilms form persistent infections on medical implants and in the lungs of cystic fibrosis patients, where Pseudomonas aeruginosa biofilms are the leading cause of lung damage and, ultimately, death. To understand the importance of different extracellular materials, motility mechanisms, and quorum sensing for biofilm formation and stability, we use single-gene knockout mutants and an infrared laser trap to create a bacterial aggregate that serves as a model biofilm and allows us to measure the importance of these factors as a function of trapping time, surface, and nutritional environment.

  14. Native microflora in fresh-cut produce processing plants and their potentials for biofilm formation.

    PubMed

    Liu, Nancy T; Lefcourt, Alan M; Nou, Xiangwu; Shelton, Daniel R; Zhang, Guodong; Lo, Y Martin

    2013-05-01

    Representative food contact and nonfood contact surfaces in two mid-sized, fresh-cut processing facilities were sampled for microbiological analyses after routine daily sanitization. Mesophilic and psychrotrophic bacteria on the sampled surfaces were isolated by plating on nonselective bacterial media. Alternatively, bacteria were isolated after an incubation period that allowed the formation of heterogeneous biofilms on stainless steel beads. Of over 1,000 tested isolates, most were capable of forming biofilms, with approximately 30 % being strong or moderate biofilm formers. Selected isolates (117) were subjected to species identification by using the Biolog Gen III microbial identification system. They distributed among 23 genera, which included soil bacteria, plant-related bacteria, coliforms, and opportunistic plant- or human-pathogenic bacteria. The most commonly identified bacteria species were Pseudomonas fluorescens, Rahnella aquatilis, and Ralstonia insidiosa. The high prevalence of R. insidiosa, a strong biofilm former, and P. fluorescens, a moderate biofilm former, suggests that they were established residents in the sampled plants. These results suggest that native microflora capable of forming biofilms are widely distributed in fresh-produce processing environments. PMID:23643124

  15. Chemically Specific Cellular Imaging of Biofilm Formation

    SciTech Connect

    Herberg, J L; Schaldach, C; Horn, J; Gjersing, E; Maxwell, R

    2006-02-09

    This document and the accompanying manuscripts summarize the technical accomplishments for our one-year LDRD-ER effort. Biofilm forming microbes have existed on this planet for billions of years and make up 60% of the biological mass on earth. Such microbes exhibit unique biochemical pathways during biofilm formation and play important roles in human health and the environment. Microbial biofilms have been directly implicated in, for example, product contamination, energy losses, and medical infection that cost the loss of human lives and billions of dollars. In no small part due to the lack of detailed understanding, biofilms unfortunately are resistant to control, inhibition, and destruction, either through treatment with antimicrobials or immunological defense mechanisms of the body. Current biofilm research has concentrated on the study of biofilms in the bulk. This is primarily due to the lack of analytical and physical tools to study biofilms non-destructively, in three dimensions, and on the micron or sub-micron scale. This has hindered the development of a clear understanding of either the early stage mechanisms of biofilm growth or the interactions of biofilms with their environment. Enzymatic studies have deduced a biochemical reaction that results in the oxidation of reduced sulfur species with the concomitant reduction of nitrate, a common groundwater pollutant, to dinitrogen gas by the bacterium, Thiobacillus denitrificans (TD). Because of its unique involvement in biologically relevant environmental pathways, TD is scheduled for genome sequencing in the near future by the DOE's Joint Genome Institute and is of interest to DOE's Genomes to Life Program. As our ecosystem is exposed to more and more nitrate contamination large scale livestock and agricultural practices, a further understanding of biofilm formation by organisms that could alleviate these problems is necessary in order to protect out biosphere. However, in order to study this complicated organism, we needed to first turn our attention to a well understood organism. Pseudomonas aeruginosa (PA) is a well-studied organism and will be used to compare our results with others. Then, we will turn our attention to TD. It is expected that the research performed will provide key data to validate biochemical studies of TD and result in high profile publications in leading journals. For this project, our ultimate goal was to combine both Magnetic Resonance Imaging (MRI) and Nuclear Magnetic Resonance (NMR) experimental analysis with computer simulations to provide unique 3D molecular structural, dynamics, and functional information on the order of microns for this DOE mission relevant microorganism, T. denitrificans. For FY05, our goals were to: (1) Determine proper media for optimal growth of PA; growth rate measurements in that media and characterization of metabolite signatures during growth via {sup 1}H and {sup 13}C NMR, (2) Determine and build mineral, metal, and implant material surfaces to support growth of PA, (3) Implementing new MRI sequences to image biofilms more efficiently and increase resolution with new hardware design, (4) Develop further diffusion and flow MRI measurements of biofilms and biofilm formation with different MRI pulse sequences and different hardware design, and (5) Develop a zero dimension model of the rate of growth and the metabolite profiles of PA. Our major accomplishments are discussed in the following text. However, the bulk of this work is described in the attached manuscript entitled, ''NMR Metabolomics of Planktonic and Biofilm Modes of Growth in Pseudomonas aeruginosa''. This paper will be submitted to the Journal of Bacteriology in coming weeks. In addition, this one-year effort has lead to our incorporation into the Enhanced Surveillance Campaign during FY05 for some proof-of-principle MRI measurements on polymers. We are currently using similar methods to evaluate these polymers. In addition, this work on MRI measurements on polymers has lead to a paper entitled, ''Characterization of local deformation in filled

  16. Large Differences in the Fraction of Active Bacteria in Plankton, Sediments, and Biofilm

    Microsoft Academic Search

    A.-L. Haglund; E. Törnblom; B. Boström; L. Tranvik

    2002-01-01

    Generally, only a small fraction of free-living pelagic bacteria are metabolically active, while particle-associated bacteria usually exhibit a larger proportion of active bacteria. Most previous studies on the active fraction of bacteria focus on planktonic communities, and there are only a few studies on sediment and epiphytic biofilm bacteria. We compared the active fraction of the total number of bacteria

  17. Biofilm formation and local electrostatic force characteristics of Escherichia coli O157:H7 observed by electrostatic force microscopy

    NASA Astrophysics Data System (ADS)

    Oh, Y. J.; Jo, W.; Yang, Y.; Park, S.

    2007-04-01

    The authors report growth media dependence of electrostatic force characteristics in Escherichia coli O157:H7 biofilm through local measurement by electrostatic force microscopy (EFM). The difference values of electrostatic interaction between the bacterial surface and the abiotic surface show an exponential decay behavior during biofilm development. In the EFM data, the biofilm in the low nutrient media shows a faster decay than the biofilm in the rich media. The surface potential in the bacterial cells was changed from 957to149mV. Local characterization of extracellular materials extracted from the bacteria reveals the progress of the biofilm formation and functional complexities.

  18. Effect of serogroup, surface material and disinfectant on biofilm formation by avian pathogenic Escherichia coli.

    PubMed

    Oosterik, Leon H; Tuntufye, Huruma N; Butaye, Patrick; Goddeeris, Bruno M

    2014-12-01

    Avian pathogenic Escherichia coli (APEC) are responsible for significant economic losses in the poultry industry and are difficult to eradicate. Biofilm formation by APEC has the potential to reduce the efficacy of cleaning and disinfection. In this study, biofilm formation on materials used in poultry facilities by APEC strains from laying hens was determined. APEC strains were analysed for an association between biofilm forming capacity and O serogroup. The abilities of two routinely used disinfectants, hydrogen peroxide (H2O2) and a quaternary ammonium compound (QAC), to kill adherent cells of two strong APEC biofilm producers (05/503 and 04/40) and a non-biofilm producer (05/293) on polystyrene (PS) and polyvinylchloride (PVC) surfaces were tested. Most APEC strains were moderate (PS) or strong biofilm producers (polypropylene, PP, and PVC). Strains in serogroup O2 more often belonged to the moderate (PS) or strong (PP and PVC) biofilm producers than to other groups, while most O78 strains were weak biofilm producers. O78 strains were stronger biofilm producers on stainless steel than on PP and PVC, while O2 strains were stronger biofilm producers on PP and PVC. A concentration of 1% H2O2 killed all adherent bacteria of strains 05/503 and 04/40 on PP and PVC, while 0.5% H2O2 killed all adherent bacteria of strain 05/293. QAC at a concentration of 0.01% killed all adherent cells of strains 05/503, 04/40 and 05/293 under equal conditions. In conclusion, biofilm formation by APEC was affected by serogroup and surface material, and inactivation of APEC was dependent on the disinfectant and surface material. PMID:25455385

  19. Biofilm Formation Protects Escherichia coli against Killing by Caenorhabditis elegans and Myxococcus xanthus

    PubMed Central

    DePas, William H.; Syed, Adnan K.; Sifuentes, Margarita; Lee, John S.; Warshaw, David; Saggar, Vinay; Csankovszki, Györgyi; Boles, Blaise R.

    2014-01-01

    Enteric bacteria, such as Escherichia coli, are exposed to a variety of stresses in the nonhost environment. The development of biofilms provides E. coli with resistance to environmental insults, such as desiccation and bleach. We found that biofilm formation, specifically production of the matrix components curli and cellulose, protected E. coli against killing by the soil-dwelling nematode Caenorhabditis elegans and the predatory bacterium Myxococcus xanthus. Additionally, matrix-encased bacteria at the air-biofilm interface exhibited ?40-fold-increased survival after C. elegans and M. xanthus killing compared to the non-matrix-encased cells that populate the interior of the biofilm. To determine if nonhost Enterobacteriaceae reservoirs supported biofilm formation, we grew E. coli on media composed of pig dung or commonly contaminated foods, such as beef, chicken, and spinach. Each of these medium types provided a nutritional environment that supported matrix production and biofilm formation. Altogether, we showed that common, nonhost reservoirs of E. coli supported the formation of biofilms that subsequently protected E. coli against predation. PMID:25192998

  20. GENOMICS AND PROTEOMICS 5-Fluorouracil reduces biofilm formation

    E-print Network

    Wood, Thomas K.

    GENOMICS AND PROTEOMICS 5-Fluorouracil reduces biofilm formation in Escherichia coli K-12 through # Springer-Verlag 2009 Abstract The uracil analog, 5-fluorouracil (5-FU), reduces virulence and biofilm); the mechanism by which it functions was also examined. 5-FU decreased biofilm formation in a dose- dependent

  1. Detection of Bacteria Bearing Resistant Biofilm Forms, by Using the Universal and Specific PCR is Still Unhelpful in the Diagnosis of Periprosthetic Joint Infections

    PubMed Central

    Zegaer, Batool H.; Ioannidis, Anastasios; Babis, George C.; Ioannidou, Vassiliki; Kossyvakis, Athanassios; Bersimis, Sotiris; Papaparaskevas, Joseph; Petinaki, Efthimia; Pliatsika, Paraskevi; Chatzipanagiotou, Stylianos

    2014-01-01

    Intraoperative conventional bacteriological cultures were compared with different polymerase chain reaction (PCR) methods in patients with total joint arthroplasties. The isolated bacteria were investigated for biofilm formation, and the biofilm forming strains, in their planktonic and biofilm forms, were further tested for their antimicrobial resistance against several clinically important antimicrobials. Forty four bone and joint samples were included and classified as infected or non-infected according to standard criteria for periprosthetic hip and knee infections. For the bacteriological diagnosis, conventional culture, two types of universal PCR and species specific PCR for three selected pathogens (Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa) were applied. Biofilm formation determination was performed by the tissue culture plate method. Antimicrobial susceptibility of the planktonic bacteria was performed by the minimal inhibitory concentration determination and, of the biofilm forms, by the minimal inhibitory concentration for bacterial regrowth from the biofilm. Twenty samples were culture positive, with S. epidermidis, S. aureus, or P. aeruginosa. All PCR methods were very ineffective in detecting only one pathogen. All isolates were biofilm positive and their biofilm forms, were highly resistant. In this study, compared to PCR, culture remains the “gold standard.” The biofilm formation by the causative bacteria and the concomitant manifold increased antimicrobial resistance may explain the clinical failure of treatment in some cases and should be considered in the future for therapeutic planning. PMID:25593905

  2. Detection of Bacteria Bearing Resistant Biofilm Forms, by Using the Universal and Specific PCR is Still Unhelpful in the Diagnosis of Periprosthetic Joint Infections.

    PubMed

    Zegaer, Batool H; Ioannidis, Anastasios; Babis, George C; Ioannidou, Vassiliki; Kossyvakis, Athanassios; Bersimis, Sotiris; Papaparaskevas, Joseph; Petinaki, Efthimia; Pliatsika, Paraskevi; Chatzipanagiotou, Stylianos

    2014-01-01

    Intraoperative conventional bacteriological cultures were compared with different polymerase chain reaction (PCR) methods in patients with total joint arthroplasties. The isolated bacteria were investigated for biofilm formation, and the biofilm forming strains, in their planktonic and biofilm forms, were further tested for their antimicrobial resistance against several clinically important antimicrobials. Forty four bone and joint samples were included and classified as infected or non-infected according to standard criteria for periprosthetic hip and knee infections. For the bacteriological diagnosis, conventional culture, two types of universal PCR and species specific PCR for three selected pathogens (Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa) were applied. Biofilm formation determination was performed by the tissue culture plate method. Antimicrobial susceptibility of the planktonic bacteria was performed by the minimal inhibitory concentration determination and, of the biofilm forms, by the minimal inhibitory concentration for bacterial regrowth from the biofilm. Twenty samples were culture positive, with S. epidermidis, S. aureus, or P. aeruginosa. All PCR methods were very ineffective in detecting only one pathogen. All isolates were biofilm positive and their biofilm forms, were highly resistant. In this study, compared to PCR, culture remains the "gold standard." The biofilm formation by the causative bacteria and the concomitant manifold increased antimicrobial resistance may explain the clinical failure of treatment in some cases and should be considered in the future for therapeutic planning. PMID:25593905

  3. Biofilms Formed by Gram-Negative Bacteria Undergo Increased Lipid A Palmitoylation, Enhancing In Vivo Survival

    PubMed Central

    Chalabaev, Sabina; Chauhan, Ashwini; Novikov, Alexey; Iyer, Pavithra; Szczesny, Magdalena; Beloin, Christophe; Caroff, Martine

    2014-01-01

    ABSTRACT Bacterial biofilm communities are associated with profound physiological changes that lead to novel properties compared to the properties of individual (planktonic) bacteria. The study of biofilm-associated phenotypes is an essential step toward control of deleterious effects of pathogenic biofilms. Here we investigated lipopolysaccharide (LPS) structural modifications in Escherichia coli biofilm bacteria, and we showed that all tested commensal and pathogenic E. coli biofilm bacteria display LPS modifications corresponding to an increased level of incorporation of palmitate acyl chain (palmitoylation) into lipid A compared to planktonic bacteria. Genetic analysis showed that lipid A palmitoylation in biofilms is mediated by the PagP enzyme, which is regulated by the histone-like protein repressor H-NS and the SlyA regulator. While lipid A palmitoylation does not influence bacterial adhesion, it weakens inflammatory response and enhances resistance to some antimicrobial peptides. Moreover, we showed that lipid A palmitoylation increases in vivo survival of biofilm bacteria in a clinically relevant model of catheter infection, potentially contributing to biofilm tolerance to host immune defenses. The widespread occurrence of increased lipid A palmitoylation in biofilms formed by all tested bacteria suggests that it constitutes a new biofilm-associated phenotype in Gram-negative bacteria. PMID:25139899

  4. Biofilm formation by Chlorella vulgaris is affected by light quality.

    PubMed

    Hultberg, Malin; Asp, Håkan; Marttila, Salla; Bergstrand, Karl-Johan; Gustafsson, Susanne

    2014-11-01

    Formation of biofilm on surfaces is a common feature in aquatic environments. Major groups of inhabitants in conditions where light is present are photoautotrophic microorganisms, such as cyanobacteria and microalgae. This study examined the effect of light quality on growth and biofilm formation of the microalgal species Chlorella vulgaris. Dense biofilm formation and aggregated growth of cells were observed in treatments exposed to blue, purple and white light. Less dense biofilm formation and solitary growth of cells were observed in treatments exposed to red, yellow or green light. Microalgal biofilms are of high importance in many respects, not least from an economic perspective. One example is the intense efforts undertaken to control biofilm formation on technical surfaces such as ship hulls. The present study suggests that light quality plays a role in biofilm formation and that blue-light receptors may be involved. PMID:24985199

  5. Filaments in curved streamlines: Rapid formation of Staphylococcus aureus biofilm streamers.

    PubMed

    Kim, Minyoung Kevin; Drescher, Knut; Pak, On Shun; Bassler, Bonnie L; Stone, Howard A

    2014-06-26

    Biofilms are surface-associated conglomerates of bacteria that are highly resistant to antibiotics. These bacterial communities can cause chronic infections in humans by colonizing, for example, medical implants, heart valves, or lungs. Staphylococcus aureus, a notorious human pathogen, causes some of the most common biofilm-related infections. Despite the clinical importance of S. aureus biofilms, it remains mostly unknown how physical effects, in particular flow, and surface structure influence biofilm dynamics. Here we use model microfluidic systems to investigate how environmental factors, such as surface geometry, surface chemistry, and fluid flow affect biofilm development in S. aureus. We discovered that S. aureus rapidly forms flow-induced, filamentous biofilm streamers, and furthermore if surfaces are coated with human blood plasma, streamers appear within minutes and clog the channels more rapidly than if the channels are uncoated. To understand how biofilm streamer filaments reorient in flows with curved streamlines to bridge the distances between corners, we developed a mathematical model based on resistive force theory of slender filaments. Understanding physical aspects of biofilm formation in S. aureus may lead to new approaches for interrupting biofilm formation of this pathogen. PMID:25484614

  6. Filaments in curved flow: Rapid formation of Staphylococcus aureus biofilm streamers

    NASA Astrophysics Data System (ADS)

    Kim, Min Young; Drescher, Knut; Pak, On Shun; Bassler, Bonnie L.; Stone, Howard A.

    2014-03-01

    Biofilms are surface-associated conglomerates of bacteria that are highly resistant to antibiotics. These bacterial communities can cause chronic infections in humans by colonizing, for example, medical implants, heart valves, or lungs. Staphylococcus aureus, a notorious human pathogen, causes some of the most common biofilm-related infections. Despite the clinical importance of S. aureus biofilms, it remains mostly unknown how physical effects, in particular flow, and surface structure influence biofilm dynamics. Here we use model microfluidic systems to investigate how environmental factors, such as surface geometry, surface chemistry, and fluid flow affect biofilm development in S. aureus.We discovered that S. aureus rapidly forms flow-induced, filamentous biofilm streamers, and furthermore if surfaces are coated with human blood plasma, streamers appear within minutes and clog the channels more rapidly than if the channels are uncoated. To understand how biofilm streamer filaments reorient in curved flow to bridge the distances between corners, we developed a mathematical model based on resistive force theory and slender filaments. Understanding physical aspects of biofilm formation in S. aureus may lead to new approaches for interrupting biofilm formation of this pathogen.

  7. Filaments in curved streamlines: rapid formation of Staphylococcus aureus biofilm streamers

    NASA Astrophysics Data System (ADS)

    Kim, Minyoung Kevin; Drescher, Knut; Pak, On Shun; Bassler, Bonnie L.; Stone, Howard A.

    2014-06-01

    Biofilms are surface-associated conglomerates of bacteria that are highly resistant to antibiotics. These bacterial communities can cause chronic infections in humans by colonizing, for example, medical implants, heart valves, or lungs. Staphylococcus aureus, a notorious human pathogen, causes some of the most common biofilm-related infections. Despite the clinical importance of S. aureus biofilms, it remains mostly unknown how physical effects, in particular flow, and surface structure influence biofilm dynamics. Here we use model microfluidic systems to investigate how environmental factors, such as surface geometry, surface chemistry, and fluid flow affect biofilm development of S. aureus. We discovered that S. aureus rapidly forms flow-induced, filamentous biofilm streamers, and furthermore if surfaces are coated with human blood plasma, streamers appear within minutes and clog the channels more rapidly than if the channels are uncoated. To understand how biofilm streamer filaments reorient in flows with curved streamlines to bridge the distances between corners, we developed a mathematical model based on resistive force theory of slender filaments. Understanding physical aspects of biofilm formation of S. aureus may lead to new approaches for interrupting biofilm formation of this pathogen.

  8. Spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate Xylella fastidiosa adhesion and biofilm formation

    PubMed Central

    Janissen, Richard; Murillo, Duber M.; Niza, Barbara; Sahoo, Prasana K.; Nobrega, Marcelo M.; Cesar, Carlos L.; Temperini, Marcia L. A.; Carvalho, Hernandes F.; de Souza, Alessandra A.; Cotta, Monica A.

    2015-01-01

    Microorganism pathogenicity strongly relies on the generation of multicellular assemblies, called biofilms. Understanding their organization can unveil vulnerabilities leading to potential treatments; spatially and temporally-resolved comprehensive experimental characterization can provide new details of biofilm formation, and possibly new targets for disease control. Here, biofilm formation of economically important phytopathogen Xylella fastidiosa was analyzed at single-cell resolution using nanometer-resolution spectro-microscopy techniques, addressing the role of different types of extracellular polymeric substances (EPS) at each stage of the entire bacterial life cycle. Single cell adhesion is caused by unspecific electrostatic interactions through proteins at the cell polar region, where EPS accumulation is required for more firmly-attached, irreversibly adhered cells. Subsequently, bacteria form clusters, which are embedded in secreted loosely-bound EPS, and bridged by up to ten-fold elongated cells that form the biofilm framework. During biofilm maturation, soluble EPS forms a filamentous matrix that facilitates cell adhesion and provides mechanical support, while the biofilm keeps anchored by few cells. This floating architecture maximizes nutrient distribution while allowing detachment upon larger shear stresses; it thus complies with biological requirements of the bacteria life cycle. Using new approaches, our findings provide insights regarding different aspects of the adhesion process of X. fastidiosa and biofilm formation. PMID:25891045

  9. Manganese Ion Increases LAB-yeast Mixed-species Biofilm Formation

    PubMed Central

    NOZAKA, Soma; FURUKAWA, Soichi; SASAKI, Miwa; HIRAYAMA, Satoru; OGIHARA, Hirokazu; MORINAGA, Yasushi

    2014-01-01

    Remarkable LAB-yeast mixed-species biofilm was formed by lactic acid bacteria (LAB) Lactobacillus plantarum ML11-11 isolated from Fukuyama pot vinegar and Saccharomyces cerevisiae. This mixed-species biofilm formation increased in proportion to the YPD medium concentration but decreased in proportion to the MRS medium concentration. The effect of MRS components on mixed-species biofilm formation was investigated in a YPD medium environment, and it was clarified that beef extract (one of the MRS medium components) decreased mixed-species biofilm formation. On the other hand, manganese sulfate (another component in MRS) remarkably increased both LAB single- and LAB-yeast mixed-species biofilm formation. LAB single- and mixed-species biofilm formation were increased in proportion to the manganese sulfate concentration up to 1?mM and 100 ?M, respectively. The growth of L. plantarum ML11-11 was increased significantly by the addition of 10 ?M manganese sulfate and was resistant to higher concentration of up to 100?mM, but growth of S. cerevisiae was sensitive to manganese ion above 100 ?M. These results suggested that mixed-species biofilm formation could be controlled artificially by controlling the manganese ion level. PMID:25003021

  10. Inhibition of Salmonella enterica Biofilm Formation Using Small-Molecule Adenosine Mimetics

    PubMed Central

    Koopman, Jacob A.; Marshall, Joanna M.; Bhatiya, Aditi; Eguale, Tadesse; Kwiek, Jesse J.

    2014-01-01

    Biofilms have been widely implicated in chronic infections and environmental persistence of Salmonella enterica, facilitating enhanced colonization of surfaces and increasing the ability of the bacteria to be transmitted to new hosts. Salmonella enterica serovar Typhi biofilm formation on gallstones from humans and mice enhances gallbladder colonization and bacterial shedding, while Salmonella enterica serovar Typhimurium biofilms facilitate long-term persistence in a number of environments important to food, medical, and farming industries. Salmonella regulates expression of many virulence- and biofilm-related processes using kinase-driven pathways. Kinases play pivotal roles in phosphorylation and energy transfer in cellular processes and possess an ATP-binding pocket required for their functions. Many other cellular proteins also require ATP for their activity. Here we test the hypothesis that pharmacological interference with ATP-requiring enzymes utilizing adenosine mimetic compounds would decrease or inhibit bacterial biofilm formation. Through the screening of a 3,000-member ATP mimetic library, we identified a single compound (compound 7955004) capable of significantly reducing biofilm formation by S. Typhimurium and S. Typhi. The compound was not bactericidal or bacteriostatic toward S. Typhimurium or cytotoxic to mammalian cells. An ATP-Sepharose affinity matrix technique was used to discover potential protein-binding targets of the compound and identified GroEL and DeoD. Compound 7955004 was screened against other known biofilm-forming bacterial species and was found to potently inhibit biofilms of Acinetobacter baumannii as well. The identification of a lead compound with biofilm-inhibiting capabilities toward Salmonella provides a potential new avenue of therapeutic intervention against Salmonella biofilm formation, with applicability to biofilms of other bacterial pathogens. PMID:25313216

  11. Biofilms as sources of fecal bacteria contamination in the stormwater drainage system in Singapore

    E-print Network

    Burkhart, Tsung Hwa (Tsung Hwa Sophia)

    2013-01-01

    A study was performed to examine a possible source of fecal bacteria contamination originating from within the stormwater drainage system in Singapore. The extent of fecal bacteria presence in storm drain biofilms was ...

  12. Gene expression during S. epidermidis biofilm formation on biomaterials.

    PubMed

    Patel, Jasmine D; Colton, Erica; Ebert, Michael; Anderson, James M

    2012-11-01

    Biomaterial-centered infections are initiated by adhesion of bacteria to an implant, followed by colonization and mature biofilm formation. Staphylococcus epidermidis is commonly identified as the cause of these device-centered infections. This study used an in vitro model to evaluate temporal changes in the expression of genes-icaADBC, agrBDCA, aap, and atle-that have been identified to play a role in the pathogenesis of S. epidermidis infections. Real-time reverse transcription-polymerase chain reaction was used to determine changes in gene expression from S epidermidis biofilm grown on polyurethanes (Elasthane 80A, hydrophobic) modified with polyethylene oxide (Elasthane 80A-6PEO, hydrophilic) and fluorocarbon (Elasthane 80A-6F, hydrophobic). In vitro expression of the ica locus, which is involved in initial adhesion and intracellular aggregation, increased up to 100-fold from 2 to 48 h, whereas gene expression for autolysin AtlE decreased slightly from 2 to 12 h, followed by a 10-fold increase by 48 h. Upregulation of the aap gene associated with bacterial accumulation and the agr quorum-sensing system was observed during biofilm formation over 48 h. In addition, no correlation was observed between S. epidermidis gene expression and biomaterial surface chemistry. This study used an in vitro model to demonstrate that enhanced expression of the atle, aap, agr, and ica genes plays an important role in initial foreign body colonization and potentially in the establishment of a device-associated infection. PMID:22623350

  13. Biofilm formation of Clostridium perfringens and its exposure to low-dose antimicrobials

    PubMed Central

    Charlebois, Audrey; Jacques, Mario; Archambault, Marie

    2014-01-01

    Clostridium perfringens is an opportunistic pathogen that can cause food poisoning in humans and various enterotoxemia in animal species. Very little is known on the biofilm of C. perfringens and its exposure to subminimal inhibitory concentrations of antimicrobials. This study was undertaken to address these issues. Most of the C. perfringens human and animal isolates tested in this study were able to form biofilm (230/277). Porcine clinical isolates formed significantly more biofilm than the porcine commensal isolates. A subgroup of clinical and commensal C. perfringens isolates was randomly selected for further characterization. Biofilm was found to protect C. perfringens bacterial cells from exposure to high concentrations of tested antimicrobials. Exposure to low doses of some of these antimicrobials tended to lead to a diminution of the biofilm formed. However, a few isolates showed an increase in biofilm formation when exposed to low doses of tylosin, bacitracin, virginiamycin, and monensin. Six isolates were randomly selected for biofilm analysis using scanning laser confocal microscopy. Of those, four produced more biofilm in presence of low doses of bacitracin whereas biofilms formed without bacitracin were thinner and less elevated. An increase in the area occupied by bacteria in the biofilm following exposure to low doses of bacitracin was also observed in the majority of isolates. Morphology examination revealed flat biofilms with the exception of one isolate that demonstrated a mushroom-like biofilm. Matrix composition analysis showed the presence of proteins, beta-1,4 linked polysaccharides and extracellular DNA, but no poly-beta-1,6-N-acetyl-D-glucosamine. This study brings new information on the biofilm produced by C. perfringens and its exposure to low doses of antimicrobials. PMID:24795711

  14. inhibitory effects of citral, cinnamaldehyde, and tea polyphenols on mixed biofilm formation by foodborne Staphylococcus aureus and Salmonella enteritidis.

    PubMed

    Zhang, Hongmei; Zhou, Wenyuan; Zhang, Wenyan; Yang, Anlin; Liu, Yanlan; Jiang, Yan; Huang, Shaosong; Su, Jianyu

    2014-06-01

    Biofilms are significant hazards in the food industry. In this study, we investigated the effects of food additive such as citral, cinnamaldehyde, and tea polyphenols on mixed biofilm formation by foodborne Staphylococcus aureus and Salmonella serotype Enteritidis. The adhesion rates of mixed strains in sub-MIC of additives were determined by a microtiter plate assay and bacterial communication signal autoinducer 2 (AI-2) production via a bioluminescence reporter Vibrio harveyi BB170. The structure of mixed biofilm was analyzed using scanning electron microscopy. The effect of the disinfectants hydrogen peroxide, sodium hypochlorite, and peracetic acid was tested on the mixed biofilm. Our results demonstrated that citral, cinnamaldehyde, and tea polyphenols were able to significantly inhibit mixed biofilm formation, while citral could reduce the synthesis of AI-2. Conversely, we observed a significant increase in AI-2 mediated by cinnamaldehyde. Tea polyphenols at lower concentrations induced AI-2 synthesis; however, AI-2 synthesis was significantly inhibited at higher concentrations (300 m g/ml). Food additives inhibited the adhesion of mixed bacteria on stainless steel chips and increased the sensitivity of the mixed biofilm to disinfectants. In conclusion, citral, cinnamaldehyde, and tea polyphenols had strong inhibitory effects on mixed biofilm formation and also enhanced the effect of disinfectant on mixed biofilm formation. This study provides a scientific basis for the application of natural food additives to control biofilm formation of foodborne bacteria. PMID:24853514

  15. Establishment and Early Succession of a Multispecies Biofilm Composed of Soil Bacteria

    Microsoft Academic Search

    Mette Burmølle; Lars H. Hansen; Søren J. Sørensen

    2007-01-01

    Most soil bacteria are likely to be organized in biofilms on roots, litter, or soil particles. Studies of such biofilms are\\u000a complicated by the many nonculturable species present in soil, as well as the interspecific bacterial interactions affecting\\u000a biofilm biology. We in this study describe the development of a biofilm flow model and use this system to establish an early

  16. Influence of glucose concentrations on biofilm formation, motility, exoprotease production, and quorum sensing in Aeromonas hydrophila.

    PubMed

    Jahid, Iqbal Kabir; Lee, Na-Young; Kim, Anna; Ha, Sang-Do

    2013-02-01

    Aeromonas hydrophila recently has received increased attention because it is opportunistic and a primary human pathogen. A. hydrophila biofilm formation and its control are a major concern for food safety because biofilms are related to virulence. Therefore, we investigated biofilm formation, motility inhibition, quorum sensing, and exoprotease production of this opportunistic pathogen in response to various glucose concentrations from 0.05 to 2.5% (wt/vol). More than 0.05% glucose significantly impaired (P < 0.05) quorum sensing, biofilm formation, protease production, and swarming and swimming motility, whereas bacteria treated with 0.05% glucose had activity similar to that of the control (0% glucose). A stage shift biofilm assay revealed that the addition of glucose (2.5%) inhibited initial biofilm formation but not later stages. However, addition of quorum sensing molecules N-3-butanoyl-DL-homoserine lactone and N-3-hexanoyl homoserine lactone partially restored protease production, indicating that quorum sensing is controlled by glucose concentrations. Thus, glucose present in food or added as a preservative could regulate acyl-homoserine lactone quorum sensing molecules, which mediate biofilm formation and virulence in A. hydrophila. PMID:23433371

  17. FINGER FORMATION IN BIOFILM LAYERS J. DOCKERY AND I. KLAPPER

    E-print Network

    Klapper, Isaac

    FINGER FORMATION IN BIOFILM LAYERS J. DOCKERY AND I. KLAPPER SIAM J. APPL. MATH. c 2001 Society model of a growing biofilm layer is presented. One-dimensional moving front solutions are analyzed. Scaling laws for the biofilm growth rate and length scale are derived. The nonlinear evolution

  18. Pseudomonas Aeruginosa Biofilm Formation in Different Environments Mehdi Shadmand1

    E-print Network

    Zhou, Yaoqi

    Pseudomonas Aeruginosa Biofilm Formation in Different Environments Mehdi Shadmand1 , Gregory G materials. These structures are called biofilms. The goal of this research is to isolate P. aeruginosa from several soil samples and determine whether they are able to form biofilms in those environments. Another

  19. Examining the Relationship Between Iron Corrosion and the Disinfection of Biofilm Bacteria

    Microsoft Academic Search

    Mark W. LeChevallier; Cheryl D. Lowry; Ramon G. Lee; Donald L. Gibbon

    1993-01-01

    Previous research has shown a relationship between corrosion of an iron pipe and the protection of biofilm bacteria from disinfection. It is believed that the corrosion product reacts with chlorine disinfectants and prevents the biocide from penetrating the biofilm layer and inactivating the attached bacteria. The results of the current study show that even low levels of corrosion, i.e., <

  20. Environmental and genetic factors that contribute to Escherichia coli K-12 biofilm formation

    PubMed Central

    Prüß, Birgit M.; Verma, Karan; Samanta, Priyankar; Sule, Preeti; Kumar, Sunil; Wu, Jianfei; Christianson, David; Horne, Shelley M.; Stafslien, Shane J.; Wolfe, Alan J.; Denton, Anne

    2010-01-01

    Biofilms are communities of bacteria whose formation on surfaces requires a large portion of the bacteria’s transcriptional network. To identify environmental conditions and transcriptional regulators that contribute to sensing these conditions, we used a high-throughput approach to monitor biofilm biomass produced by an isogenic set of Escherichia coli K-12 strains grown under combinations of environmental conditions. Of the environmental combinationsd, growth in tryptic soy broth at 37°C supported the most biofilm production. To analyze the complex relationships between the diverse cell surface organelles, transcriptional regulators, and metabolic enzymes represented by the tested mutant set, we used a novel vector-item pattern-mining algorithm. The algorithm related biofilm amounts to the functional annotations of each mutated protein. The pattern with the best statistical significance was the gene ontology ‘pyruvate catabolic process,’ which is associated with enzymes of acetate metabolism. Phenotype microarray experiments illustrated that carbon sources that are metabolized to acetyl-coenzyme A, acetyl phosphate, and acetate are particularly supportive of biofilm formation. Scanning electron microscopy revealed structural differences between mutants that lack acetate metabolism enzymes and their parent and confirmed the quantitative differences. We conclude that acetate metabolism functions as a metabolic sensor, transmitting changes in environmental conditions to biofilm biomass and structure. PMID:20559621

  1. Novel application for the prevention and treatment of Staphylococcus aureus biofilm formation

    NASA Astrophysics Data System (ADS)

    Traba, Christian

    Formation of bacterial biofilms at solid-liquid interfaces creates numerous problems in both industrial and biomedical sciences. In this dissertation, the application of plasma from two very different facets was studied. In part one, the susceptibility of pre-formed Staphylococcus aureus biofilms on biomaterials to different plasmas was investigated. It was found that the distinct chemical/physical properties of plasmas generated from oxygen, nitrogen, and argon all demonstrated very potent but very different anti-biofilm mechanisms of action. An in depth analysis of these results show: 1) different reactive species produced in each plasma demonstrate specific activity, and 2) the commonly associated etching effect could be manipulated and even controlled, depending on experimental conditions and the discharge gas. These studies provide insights into the anti-biofilm mechanisms of plasma as well as the effects of different reactive species on biofilm inactivation. Under experimental parameters, bacterial cells in Staphylococcus aureus biofilms were killed (>99.9%) by plasmas within minutes of exposure and no bacteria nor biofilm re-growth from discharge gas treated biofilms was observed throughout the life-span of the re-growth experiment. The decontamination ability of plasmas for the treatment of biofilm related infections on biomedical materials was confirmed and novel applications involving the use of low power argon and oxygen for the treatment of biofilm contaminated biomaterials and indwelling devices is proposed. The second facet of this dissertation explores the interaction between biofilm forming Staphylococcus aureus bacteria on different antibacterial/anti-biofilm surfaces. The antibiotic-free anti-fouling surfaces constructed in this study were generated from the plasma-assisted graft polymerization technique. These sophisticated surfaces were stable, biocompatible and capable of preventing biofilm formation on biomaterials and medical devices. Under optimal experimental conditions, the antibacterial activities of these sophisticated surfaces had two distinct mechanisms: 1) reducing bacterial attachment and 2) eradicating adherent bacteria. The excellent antibacterial and anti-biofilm properties of these modified surfaces were initially tested in stationary cultures and later confirmed through a microfluidic cultivation system, which mimicked the in-vivo conditions of implanted catheters. Information gathered, suggests the graft polymerization of negatively charged monomers may be utilized to permanently prevent biofouling on inserted biomaterials, as well as implanted medical devices.

  2. Mechanisms and regulation of surface interactions and biofilm formation in Agrobacterium

    PubMed Central

    Heindl, Jason E.; Wang, Yi; Heckel, Brynn C.; Mohari, Bitan; Feirer, Nathan; Fuqua, Clay

    2014-01-01

    For many pathogenic bacteria surface attachment is a required first step during host interactions. Attachment can proceed to invasion of host tissue or cells or to establishment of a multicellular bacterial community known as a biofilm. The transition from a unicellular, often motile, state to a sessile, multicellular, biofilm-associated state is one of the most important developmental decisions for bacteria. Agrobacterium tumefaciens genetically transforms plant cells by transfer and integration of a segment of plasmid-encoded transferred DNA (T-DNA) into the host genome, and has also been a valuable tool for plant geneticists. A. tumefaciens attaches to and forms a complex biofilm on a variety of biotic and abiotic substrates in vitro. Although rarely studied in situ, it is hypothesized that the biofilm state plays an important functional role in the ecology of this organism. Surface attachment, motility, and cell division are coordinated through a complex regulatory network that imparts an unexpected asymmetry to the A. tumefaciens life cycle. In this review, we describe the mechanisms by which A. tumefaciens associates with surfaces, and regulation of this process. We focus on the transition between flagellar-based motility and surface attachment, and on the composition, production, and secretion of multiple extracellular components that contribute to the biofilm matrix. Biofilm formation by A. tumefaciens is linked with virulence both mechanistically and through shared regulatory molecules. We detail our current understanding of these and other regulatory schemes, as well as the internal and external (environmental) cues mediating development of the biofilm state, including the second messenger cyclic-di-GMP, nutrient levels, and the role of the plant host in influencing attachment and biofilm formation. A. tumefaciens is an important model system contributing to our understanding of developmental transitions, bacterial cell biology, and biofilm formation. PMID:24834068

  3. Voice prostheses, microbial colonization and biofilm formation.

    PubMed

    Leonhard, Matthias; Schneider-Stickler, Berit

    2015-01-01

    Total laryngectomy is performed in advanced laryngeal and hypopharyngeal cancer stages and results in reduced quality of life due to the loss of voice and smell, permanent tracheostoma and occasionally dysphagia. Therefore, successful voice rehabilitation is highly beneficial for the patients' quality of life after surgery. Over the past decades, voice prostheses have evolved to the gold standard in rehabilitation and allow faster and superior voicing results after laryngectomy compared to esophageal speech. Polyspecies biofilm formation has become the limiting factor for device lifetimes and causes prosthesis dysfunction, leakage and in consequence pneumonia, if not replaced immediately. Although major improvements in prosthesis design have been made and scientific insight in the complexity of biofilm evolution and material interaction progresses, the microbial colonization continues to restrict device lifetimes, causing patient discomfort and elevated health costs. However, present scientific findings and advances in technology yield promising future approaches to improve the situation for laryngectomized patients. PMID:25366225

  4. Non-invasive determination of conjugative transfer of plasmids bearing antibiotic-resistance genes in biofilm-bound bacteria: effects of substrate loading and antibiotic selection

    PubMed Central

    Ma, Hongyan; Bryers, James D.

    2012-01-01

    Biofilms cause much of all human microbial infections. Attempts to eradicate biofilm-based infections rely on disinfectants and antibiotics. Unfortunately, biofilm bacteria are significantly less responsive to antibiotic stressors than their planktonic counterparts. Sublethal doses of antibiotics can actually enhance biofilm formation. Here, we have developed a non-invasive microscopic image analyses to quantify plasmid conjugation within a developing biofilm. Corroborating destructive samples were analyzed by a cultivation-independent flow cytometry analysis and a selective plate count method to cultivate transconjugants. Increases in substrate loading altered biofilm 3-D architecture and subsequently affected the frequency of plasmid conjugation (decreases at least two times) in the absence of any antibiotic selective pressure. More importantly, donor populations in biofilms exposed to a sublethal dose of kanamycin exhibited enhanced transfer efficiency of plasmids containing the kanamycin resistance gene, up to tenfold. However, when stressed with a different antibiotic, imipenem, transfer of plasmids containing the kanR+ gene was not enhanced. These preliminary results suggest biofilm bacteria “sense” antibiotics to which they are resistant, which enhances the spread of that resistance. Confocal scanning microscopy coupled with our non-invasive image analysis was able to estimate plasmid conjugative transfer efficiency either averaged over the entire biofilm landscape or locally with individual biofilm clusters. PMID:22669634

  5. Sanitizing Effect of Ethanol Against Biofilms Formed by Three Gram-Negative Pathogenic Bacteria.

    PubMed

    Park, Han-Saem; Ham, Youngseok; Shin, Keum; Kim, Yeong-Suk; Kim, Tae-Jong

    2015-07-01

    Sanitizing effect of ethanol on a Yersinia enterocolitica biofilm was evaluated in terms of biomass removal and bactericidal activity. We found that 40 % ethanol was most effective for biofilm biomass removal; however, no significant difference was observed in bactericidal activity between treatment with 40 and 70 % ethanol. This unexpected low ethanol concentration requirement for biomass removal was confirmed using biofilms of two additional pathogenic bacteria, Aeromonas hydrophila and Xanthomonas oryzae. Although only three pathogenic Gram-negative bacteria were tested and the biofilm in nature was different from the biofilm in this study, the results in this study suggested the possible re-evaluation of the effective sanitizing ethanol concentration 70 %, which is the concentration commonly employed for sanitization, on bacteria in a biofilm. PMID:25941023

  6. Biofilm formation of Klebsiella pneumoniae on urethral catheters requires either type 1 or type 3 fimbriae

    PubMed Central

    Stahlhut, Steen G; Struve, Carsten; Krogfelt, Karen A; Reisner, Andreas

    2012-01-01

    Urinary catheters are standard medical devices utilized in both hospital and nursing home settings, but are associated with a high frequency of catheter-associated urinary tract infections (CAUTI). In particular, biofilm formation on the catheter surface by uropathogens such as Klebsiella pneumoniae causes severe problems. Here we demonstrate that type 1 and type 3 fimbriae expressed by K. pneumoniae enhance biofilm formation on urinary catheters in a catheterized bladder model that mirrors the physico-chemical conditions present in catheterized patients. Furthermore, we show that both fimbrial types are able to functionally compensate for each other during biofilm formation on urinary catheters. In situ monitoring of fimbrial expression revealed that neither of the two fimbrial types is expressed when cells are grown planktonically. Interestingly, during biofilm formation on catheters, both fimbrial types are expressed, suggesting that they are both important in promoting biofilm formation on catheters. Additionally, transformed into and expressed by a nonfimbriated Escherichia coli strain, both fimbrial types significantly increased biofilm formation on catheters compared with the wild-type E. coli strain. The widespread occurrence of the two fimbrial types in different species of pathogenic bacteria stresses the need for further assessment of their role during urinary tract infections. PMID:22448614

  7. The biocidal effect of a novel synthesized gemini surfactant on environmental sulfidogenic bacteria: planktonic cells and biofilms.

    PubMed

    Labena, A; Hegazy, M A; Horn, H; Müller, E

    2015-02-01

    A cationic gemini surfactant was synthesized and characterized. The surfactant was successfully applied as a biocide against environmental sulfidogenic bacteria in the bulk phase (planktonic) and on the surface (biofilm). The activity of the synthesized surfactant was discussed based on the redox potential and the sulfide productivity in the bulk phase. The cultivated biofilm structure analysis and corrosion rate were estimated on the metal surface. The lowest metal corrosion rate was recognized at a concentration of 1mM with a metal corrosion inhibition efficiency of 95%. The synthesized gemini surfactant prevented the biofilm formation at a concentration of 0.1mM. The synthesized gemini surfactant displayed a broad spectrum antibacterial activity against Gram-positive and Gram-negative bacteria. PMID:25492209

  8. Beta- lactam antibiotics stimulate biofilm formation in non-typeable haemophilus influenzae by up-regulating carbohydrate metabolism.

    PubMed

    Wu, Siva; Li, Xiaojin; Gunawardana, Manjula; Maguire, Kathleen; Guerrero-Given, Debbie; Schaudinn, Christoph; Wang, Charles; Baum, Marc M; Webster, Paul

    2014-01-01

    Non-typeable Haemophilus influenzae (NTHi) is a common acute otitis media pathogen, with an incidence that is increased by previous antibiotic treatment. NTHi is also an emerging causative agent of other chronic infections in humans, some linked to morbidity, and all of which impose substantial treatment costs. In this study we explore the possibility that antibiotic exposure may stimulate biofilm formation by NTHi bacteria. We discovered that sub-inhibitory concentrations of beta-lactam antibiotic (i.e., amounts that partially inhibit bacterial growth) stimulated the biofilm-forming ability of NTHi strains, an effect that was strain and antibiotic dependent. When exposed to sub-inhibitory concentrations of beta-lactam antibiotics NTHi strains produced tightly packed biofilms with decreased numbers of culturable bacteria but increased biomass. The ratio of protein per unit weight of biofilm decreased as a result of antibiotic exposure. Antibiotic-stimulated biofilms had altered ultrastructure, and genes involved in glycogen production and transporter function were up regulated in response to antibiotic exposure. Down-regulated genes were linked to multiple metabolic processes but not those involved in stress response. Antibiotic-stimulated biofilm bacteria were more resistant to a lethal dose (10 µg/mL) of cefuroxime. Our results suggest that beta-lactam antibiotic exposure may act as a signaling molecule that promotes transformation into the biofilm phenotype. Loss of viable bacteria, increase in biofilm biomass and decreased protein production coupled with a concomitant up-regulation of genes involved with glycogen production might result in a biofilm of sessile, metabolically inactive bacteria sustained by stored glycogen. These biofilms may protect surviving bacteria from subsequent antibiotic challenges, and act as a reservoir of viable bacteria once antibiotic exposure has ended. PMID:25007395

  9. Early biofilm formation on microtiter plates is not correlated with the invasive disease potential of Streptococcus pneumoniae

    PubMed Central

    Lizcano, Anel; Chin, Tiffany; Sauer, Karin; Tuomanen, Elaine I.; Orihuela, Carlos J.

    2010-01-01

    Biofilm formation has been suggested to play an important role during Streptococcus pneumoniae nasopharyngeal colonization and may facilitate progression to pneumonia. To test whether the ability of S. pneumoniae to form biofilms was important for virulence we screened the ability of 30 invasive and 22 non-invasive clinical isolates of serotype 6A and 6B to form early biofilms on polystyrene microtiter plates and infect mice following intranasal and intratracheal challenge. We first determined that no correlation existed between the ability to form early biofilms and whether isolates were collected from healthy carriers or individuals with invasive disease. A disconnect between biofilm forming ability and the capacity to colonize the nasopharynx, cause pneumonia, and enter the bloodstream was also observed in mice. Importantly, S. pneumoniae mutants deficient in the established virulence determinants pneumolysin, CbpA, and hydrogen peroxide formed biofilms normally. Incidentally, we determined that robust biofilm production was dependent on the formation and coalescing of bacteria aggregates on a thin layer of bacteria attached to the plate surface. In summary, these studies suggest that the ability to form early biofilms in vitro does not reflect virulence potential. More complex studies are required to determine if biofilm formation is important for virulence. PMID:20096771

  10. Exopolysaccharide Biosynthesis Enables Mature Biofilm Formation on Abiotic Surfaces by Herbaspirillum seropedicae

    PubMed Central

    Balsanelli, Eduardo; de Baura, Válter Antonio; Pedrosa, Fábio de Oliveira; de Souza, Emanuel Maltempi; Monteiro, Rose Adele

    2014-01-01

    H. seropedicae associates endophytically and epiphytically with important poaceous crops and is capable of promoting their growth. The molecular mechanisms involved in plant colonization by this microrganism are not fully understood. Exopolysaccharides (EPS) are usually necessary for bacterial attachment to solid surfaces, to other bacteria, and to form biofilms. The role of H. seropedicae SmR1 exopolysaccharide in biofilm formation on both inert and plant substrates was assessed by characterization of a mutant in the espB gene which codes for a glucosyltransferase. The mutant strain was severely affected in EPS production and biofilm formation on glass wool. In contrast, the plant colonization capacity of the mutant strain was not altered when compared to the parental strain. The requirement of EPS for biofilm formation on inert surface was reinforced by the induction of eps genes in biofilms grown on glass and polypropylene. On the other hand, a strong repression of eps genes was observed in H. seropedicae cells adhered to maize roots. Our data suggest that H. seropedicae EPS is a structural component of mature biofilms, but this development stage of biofilm is not achieved during plant colonization. PMID:25310013

  11. Cinnamon bark oil and its components inhibit biofilm formation and toxin production.

    PubMed

    Kim, Yong-Guy; Lee, Jin-Hyung; Kim, Soon-Il; Baek, Kwang-Hyun; Lee, Jintae

    2015-02-16

    The long-term usage of antibiotics has resulted in the evolution of multidrug resistant bacteria, and pathogenic biofilms contribute to reduced susceptibility to antibiotics. In this study, 83 essential oils were initially screened for biofilm inhibition against Pseudomonas aeruginosa. Cinnamon bark oil and its main constituent cinnamaldehyde at 0.05% (v/v) markedly inhibited P. aeruginosa biofilm formation. Furthermore, cinnamon bark oil and eugenol decreased the production of pyocyanin and 2-heptyl-3-hydroxy-4(1H)-quinolone, the swarming motility, and the hemolytic activity of P. aeruginosa. Also, cinnamon bark oil, cinnamaldehyde, and eugenol at 0.01% (v/v) significantly decreased biofilm formation of enterohemorrhagic Escherichia coli O157:H7 (EHEC). Transcriptional analysis showed that cinnamon bark oil down-regulated curli genes and Shiga-like toxin gene stx2 in EHEC. In addition, biodegradable poly(lactic-co-glycolic acid) film incorporating biofilm inhibitors was fabricated and shown to provide efficient biofilm control on solid surfaces. This is the first report that cinnamon bark oil and its components, cinnamaldehyde and eugenol, reduce the production of pyocyanin and PQS, the swarming motility, and the hemolytic activity of P. aeruginosa, and inhibit EHEC biofilm formation. PMID:25500277

  12. Prevention of Biofilm Formation and Removal of Existing Biofilms by Extracellular DNases of Campylobacter jejuni

    PubMed Central

    Brown, Helen L.; Reuter, Mark; Hanman, Kate; Betts, Roy P.; van Vliet, Arnoud H. M.

    2015-01-01

    The fastidious nature of the foodborne bacterial pathogen Campylobacter jejuni contrasts with its ability to survive in the food chain. The formation of biofilms, or the integration into existing biofilms by C. jejuni, is thought to contribute to food chain survival. As extracellular DNA (eDNA) has previously been proposed to play a role in C. jejuni biofilms, we have investigated the role of extracellular DNases (eDNases) produced by C. jejuni in biofilm formation. A search of 2791 C. jejuni genomes highlighted that almost half of C. jejuni genomes contains at least one eDNase gene, but only a minority of isolates contains two or three of these eDNase genes, such as C. jejuni strain RM1221 which contains the cje0256, cje0566 and cje1441 eDNase genes. Strain RM1221 did not form biofilms, whereas the eDNase-negative strains NCTC 11168 and 81116 did. Incubation of pre-formed biofilms of NCTC 11168 with live C. jejuni RM1221 or with spent medium from a RM1221 culture resulted in removal of the biofilm. Inactivation of the cje1441 eDNase gene in strain RM1221 restored biofilm formation, and made the mutant unable to degrade biofilms of strain NCTC 11168. Finally, C. jejuni strain RM1221 was able to degrade genomic DNA from C. jejuni NCTC 11168, 81116 and RM1221, whereas strain NCTC 11168 and the RM1221 cje1441 mutant were unable to do so. This was mirrored by an absence of eDNA in overnight cultures of C. jejuni RM1221. This suggests that the activity of eDNases in C. jejuni affects biofilm formation and is not conducive to a biofilm lifestyle. These eDNases do however have a potential role in controlling biofilm formation by C. jejuni strains in food chain relevant environments. PMID:25803828

  13. Metabolic profiling of biofilm bacteria known to cause microbial influenced corrosion.

    PubMed

    Beale, D J; Morrison, P D; Key, C; Palombo, E A

    2014-01-01

    This study builds upon previous research that demonstrated the simplicity of obtaining metabolite profiles of bacteria in urban water networks, by using the metabolic profile of bacteria extracted from a reticulation pipe biofilm, which is known to cause microbial influenced corrosion (MIC). The extracellular metabolites of the isolated bacteria, and those bacteria in consortium, were analysed in isolation, and after exposure to low levels of copper. Applying chemometric analytical methodologies to the metabolomic data, we were able to better understand the profile of the isolated biofilm bacteria, which were differentiated according to their activity and copper exposure. It was found that the metabolic activity of the isolated bacteria and the bacteria in consortium varied according to the bacterium's ability to metabolise copper. This demonstrates the power of metabolomic techniques for the discrimination of water reticulation biofilms comprising similar bacteria in consortium, but undergoing different physico-chemical activities, such as corrosion and corrosion inhibition. PMID:24434961

  14. Effects of biofilm formation on the electrochemical behavior of AISI 304 SS in board machine environment

    SciTech Connect

    Carp, L.; Hakkarainen, T. [VTT Manufacturing Technology (Finland); Raaska, L. [VTT Biotechnology and Food Research (Finland)

    1999-11-01

    The electrochemical behavior of and biofilm formation on AISI 304 stainless steel were studied in board machine environment with natural bacteria population. Open circuit potentials, redox-potential as well as different electrochemical measurements were performed. The biofilms formed were analyzed by microbial cultivation and by epifluorescence microscopy. The results of the measurements were compared with those performed both in sterilized white water and in artificial white water. The anodic polarization behavior of just immersed specimens was very similar in biotic (real), artificial and abiotic (sterilized) white water. Pitting initiated at very low potentials and continued to very negative values. The initiation of pitting became more difficult when the immersion time increased to 7 or 8 days in real, artificial or sterilized water. When the immersion time further increased, the pitting nucleated more easily in sterilized white water as well as in artificial white water than in biotic white water. In the laboratory equipment it was possible to maintain the biofilm already formed in the board mill, but the amount of sulfate reducing bacteria decreased and the amount of biofilm did not further increase. The composition and structure of the biofilm formed in laboratory differed from that formed in board mill conditions. The preliminary results indicate that the formation of biofilm in biotic white water rather inhibits than enhances the pitting corrosion of type AISI 304 stainless steel.

  15. An Expanded Regulatory Network Temporally Controls Candida albicans Biofilm Formation

    PubMed Central

    Fox, Emily P.; Bui, Catherine K.; Nett, Jeniel E.; Hartooni, Nairi; Mui, Michael M.; Andes, David R.; Nobile, Clarissa J.; Johnson, Alexander D.

    2015-01-01

    Summary Candida albicans biofilms are composed of highly adherent and densely arranged cells with properties distinct from those of free-floating (planktonic) cells. These biofilms are a significant medical problem because they commonly form on implanted medical devices, are drug resistant, and are difficult to remove. C. albicans biofilms are not static structures; rather they are dynamic and develop over time. Here we characterize gene expression in biofilms during their development, and by comparing them to multiple planktonic reference states, we identify patterns of gene expression relevant to biofilm formation. In particular, we document time-dependent changes in genes involved in adhesion and metabolism, both of which are at the core of biofilm development. Additionally, we identify three new regulators of biofilm formation, Flo8, Gal4, and Rfx2, which play distinct roles during biofilm development over time. Flo8 is required for biofilm formation at all timepoints, and Gal4 and Rfx2 are needed for proper biofilm formation at intermediate time points. PMID:25784162

  16. An expanded regulatory network temporally controls Candida albicans biofilm formation.

    PubMed

    Fox, Emily P; Bui, Catherine K; Nett, Jeniel E; Hartooni, Nairi; Mui, Michael C; Andes, David R; Nobile, Clarissa J; Johnson, Alexander D

    2015-06-01

    Candida albicans biofilms are composed of highly adherent and densely arranged cells with properties distinct from those of free-floating (planktonic) cells. These biofilms are a significant medical problem because they commonly form on implanted medical devices, are drug resistant and are difficult to remove. C.?albicans biofilms are not static structures; rather they are dynamic and develop over time. Here we characterize gene expression in biofilms during their development, and by comparing them to multiple planktonic reference states, we identify patterns of gene expression relevant to biofilm formation. In particular, we document time-dependent changes in genes involved in adhesion and metabolism, both of which are at the core of biofilm development. Additionally, we identify three new regulators of biofilm formation, Flo8, Gal4, and Rfx2, which play distinct roles during biofilm development over time. Flo8 is required for biofilm formation at all time points, and Gal4 and Rfx2 are needed for proper biofilm formation at intermediate time points. PMID:25784162

  17. Lrs14 transcriptional regulators influence biofilm formation and cell motility of Crenarchaea

    PubMed Central

    Orell, Alvaro; Peeters, Eveline; Vassen, Victoria; Jachlewski, Silke; Schalles, Sven; Siebers, Bettina; Albers, Sonja-Verena

    2013-01-01

    Like bacteria, archaea predominately exist as biofilms in nature. However, the environmental cues and the molecular mechanisms driving archaeal biofilm development are not characterized. Here we provide data suggesting that the transcriptional regulators belonging to the Lrs14-like protein family constitute a key regulatory factor during Sulfolobus biofilm development. Among the six lrs14-like genes encoded by Sulfolobus acidocaldarius, the deletion of three led to markedly altered biofilm phenotypes. Although ?saci1223 and ?saci1242 deletion mutants were impaired in biofilm formation, the ?saci0446 deletion strain exhibited a highly increased extracellular polymeric substance (EPS) production, leading to a robust biofilm structure. Moreover, although the expression of the adhesive pili (aap) genes was upregulated, the genes of the motility structure, the archaellum (fla), were downregulated rendering the ?saci0446 strain non-motile. Gel shift assays confirmed that Saci0446 bound to the promoter regions of fla and aap thus controlling the expression of both cell surface structures. In addition, genetic epistasis analysis using ?saci0446 as background strain identified a gene cluster involved in the EPS biosynthetic pathway of S. acidocaldarius. These results provide insights into both the molecular mechanisms that govern biofilm formation in Crenarchaea and the functionality of the Lrs14-like proteins, an archaea-specific class of transcriptional regulators. PMID:23657363

  18. Complex conductivity response to microbial growth and biofilm formation on phenanthrene spiked medium

    NASA Astrophysics Data System (ADS)

    Albrecht, Remy; Gourry, Jean Christophe; Simonnot, Marie-Odile; Leyval, Corinne

    2011-11-01

    Several laboratory studies have recently demonstrated the utility of geophysical methods for the investigation of microbial-induced changes over contaminated sites. However, it remains difficult to distinguish the effects due to the new physical properties imparted by microbial processes, to bacterial growth, or to the development of bacterial biofilm. We chose to study the influence of biofilm formation on geophysical response using complex conductivity measurements (0.1-1000 Hz) in phenanthrene-contaminated media. Biotic assays were conducted with two phenanthrene (PHE) degrading bacterial strains: Burkholderia sp (NAH1), which produced biofilm and Stenophomonas maltophilia (MATE10), which did not, and an abiotic control. Results showed that bacterial densities for NAH1 and MATE10 strains continuously increased at the same rate during the experiment. However, the complex conductivity signature showed noticeable differences between the two bacteria, with a phase shift of 50 mrad at 4 Hz for NAH1, which produced biofilm. Biofilm volume was quantified by Scanning Confocal Laser Microscopy (SCLM). Significant correlations were established between phase shift decrease and biofilm volume for NAH1 assays. Results suggest that complex conductivity measurements, specifically phase shift, can be a useful indicator of biofilm formation inside the overall signal of microbial activity on contaminated sites.

  19. An 18 kDa Scaffold Protein Is Critical for Staphylococcus epidermidis Biofilm Formation

    PubMed Central

    Zobiak, Melanie; Büttner, Henning; Franke, Gefion; Christner, Martin; Saß, Katharina; Zobiak, Bernd; Henke, Hanae A.; Horswill, Alexander R.; Bischoff, Markus; Bur, Stephanie; Hartmann, Torsten; Schaeffer, Carolyn R.; Fey, Paul D.; Rohde, Holger

    2015-01-01

    Virulence of the nosocomial pathogen Staphylococcus epidermidis is crucially linked to formation of adherent biofilms on artificial surfaces. Biofilm assembly is significantly fostered by production of a bacteria derived extracellular matrix. However, the matrix composition, spatial organization, and relevance of specific molecular interactions for integration of bacterial cells into the multilayered biofilm community are not fully understood. Here we report on the function of novel 18 kDa Small basic protein (Sbp) that was isolated from S. epidermidis biofilm matrix preparations by an affinity chromatographic approach. Sbp accumulates within the biofilm matrix, being preferentially deposited at the biofilm–substratum interface. Analysis of Sbp-negative S. epidermidis mutants demonstrated the importance of Sbp for sustained colonization of abiotic surfaces, but also epithelial cells. In addition, Sbp promotes assembly of S. epidermidis cell aggregates and establishment of multilayered biofilms by influencing polysaccharide intercellular-adhesin (PIA) and accumulation associated protein (Aap) mediated intercellular aggregation. While inactivation of Sbp indirectly resulted in reduced PIA-synthesis and biofilm formation, Sbp serves as an essential ligand during Aap domain-B mediated biofilm accumulation. Our data support the conclusion that Sbp serves as an S. epidermidis biofilm scaffold protein that significantly contributes to key steps of surface colonization. Sbp-negative S. epidermidis mutants showed no attenuated virulence in a mouse catheter infection model. Nevertheless, the high prevalence of sbp in commensal and invasive S. epidermidis populations suggests that Sbp plays a significant role as a co-factor during both multi-factorial commensal colonization and infection of artificial surfaces. PMID:25799153

  20. Comparison of Biofilm Formation between Major Clonal Lineages of Methicillin Resistant Staphylococcus aureus

    PubMed Central

    Pirici, Daniel; Lammens, Christine; Hernalsteens, Jean-Pierre; De Greve, Henri; Kumar-Singh, Samir; Goossens, Herman; Malhotra-Kumar, Surbhi

    2014-01-01

    Objectives Epidemic methicillin-resistant S. aureus (MRSA) clones cause infections in both hospital and community settings. As a biofilm phenotype further facilitates evasion of the host immune system and antibiotics, we compared the biofilm-forming capacities of various MRSA clones. Methods Seventy-six MRSA classified into 13 clones (USA300, EMRSA-15, Hungarian/Brazilian etc.), and isolated from infections or from carriers were studied for biofilm formation under static and dynamic conditions. Static biofilms in microtitre plates were quantified colorimetrically. Dynamic biofilms (Bioflux 200, Fluxion, USA) were studied by confocal laser-scanning and time-lapse microscopy, and the total volume occupied by live/dead bacteria quantified by Volocity 5.4.1 (Improvision, UK). Results MRSA harbouring SCCmec IV produced significantly more biomass under static conditions than SCCmec I–III (P?=?0.003), and those harbouring SCCmec II significantly less than those harbouring SCCmec I or III (P<0.001). In the dynamic model, SCCmec I–III harbouring MRSA were significantly better biofilm formers than SCCmec IV (P?=?0.036). Only 16 strains successfully formed biofilms under both conditions, of which 13 harboured SCCmec IV and included all tested USA300 strains (n?=?3). However, USA300 demonstrated remarkably lower percentages of cell-occupied space (6.6%) compared to the other clones (EMRSA-15?=?19.0%) under dynamic conditions. Time-lapse microscopy of dynamic biofilms demonstrated that USA300 formed long viscoelastic tethers that stretched far from the point of attachment, while EMRSA-15 consisted of micro-colonies attached densely to the surface. Conclusions MRSA harbouring SCCmec types IV and I–III demonstrate distinct biofilm forming capacities, possibly owing to their adaptation to the community and hospital settings, respectively. USA300 demonstrated abundant biofilm formation under both conditions, which probably confers a competitive advantage, contributing to its remarkable success as a pathogen. PMID:25105505

  1. Insights on Escherichia coli biofilm formation and inhibition from whole-transcriptome profiling

    E-print Network

    Wood, Thomas K.

    Minireview Insights on Escherichia coli biofilm formation and inhibition from whole University, College Station, TX 77843-3122, USA. Summary Biofilms transform independent cells into specialized cell communities. Here are presented some insights into biofilm formation ascertained

  2. The Carbon Monoxide Releasing Molecule CORM-2 Attenuates Pseudomonas aeruginosa Biofilm Formation

    E-print Network

    Dietrich, Lars

    The Carbon Monoxide Releasing Molecule CORM-2 Attenuates Pseudomonas aeruginosa Biofilm Formation, France Abstract Chronic infections resulting from biofilm formation are difficult to eradicate surface-associated growth of the Gram-negative pathogen Pseudomonas aeruginosa by both preventing biofilm

  3. Streptococcus thermophilus Biofilm Formation: A Remnant Trait of Ancestral Commensal Life?

    PubMed Central

    Gautier, Céline; Renault, Pierre; Briandet, Romain; Guédon, Eric

    2015-01-01

    Microorganisms have a long history of use in food production and preservation. Their adaptation to food environments has profoundly modified their features, mainly through genomic flux. Streptococcus thermophilus, one of the most frequent starter culture organisms consumed daily by humans emerged recently from a commensal ancestor. As such, it is a useful model for genomic studies of bacterial domestication processes. Many streptococcal species form biofilms, a key feature of the major lifestyle of these bacteria in nature. However, few descriptions of S. thermophilus biofilms have been reported. An analysis of the ability of a representative collection of natural isolates to form biofilms revealed that S. thermophilus was a poor biofilm producer and that this characteristic was associated with an inability to attach firmly to surfaces. The identification of three biofilm-associated genes in the strain producing the most biofilms shed light on the reasons for the rarity of this trait in this species. These genes encode proteins involved in crucial stages of biofilm formation and are heterogeneously distributed between strains. One of the biofilm genes appears to have been acquired by horizontal transfer. The other two are located in loci presenting features of reductive evolution, and are absent from most of the strains analyzed. Their orthologs in commensal bacteria are involved in adhesion to host cells, suggesting that they are remnants of ancestral functions. The biofilm phenotype appears to be a commensal trait that has been lost during the genetic domestication of S. thermophilus, consistent with its adaptation to the milk environment and the selection of starter strains for dairy fermentations. PMID:26035177

  4. Effects of Aronia melanocarpa constituents on biofilm formation of Escherichia coli and Bacillus cereus.

    PubMed

    Bräunlich, Marie; Økstad, Ole A; Slimestad, Rune; Wangensteen, Helle; Malterud, Karl E; Barsett, Hilde

    2013-01-01

    Many bacteria growing on surfaces form biofilms. Adaptive and genetic changes of the microorganisms in this structure make them resistant to antimicrobial agents. Biofilm-forming organisms on medical devices can pose serious threats to human health. Thus, there is a need for novel prevention and treatment strategies. This study aimed to evaluate the ability of Aronia melanocarpa extracts, subfractions and compounds to prevent biofilm formation and to inhibit bacterial growth of Escherichia coli and Bacillus cereus in vitro. It was found that several aronia substances possessed anti-biofilm activity, however, they were not toxic to the species screened. This non-toxic inhibition may confer a lower potential for resistance development compared to conventional antimicrobials. PMID:24317526

  5. Abolition of Biofilm Formation in Urinary Tract Escherichia coli and Klebsiella Isolates by Metal Interference through Competition for Fur ?

    PubMed Central

    Hancock, Viktoria; Dahl, Malin; Klemm, Per

    2010-01-01

    Bacterial biofilms are associated with a large number of persistent and chronic infections. Biofilm-dwelling bacteria are particularly resistant to antibiotics and immune defenses, which makes it hard if not impossible to eradicate biofilm-associated infections. In the urinary tract, free iron is strictly limited but is critical for bacterial growth. Biofilm-associated Escherichia coli cells are particularly desperate for iron. An attractive way of inhibiting biofilm formation is to fool the bacterial regulatory system for iron uptake. Here, we demonstrate that biofilm formation can be impaired by the addition of divalent metal ions, such as Zn(II) and Co(II), which inhibit iron uptake by virtue of their higher-than-iron affinity for the master controller protein of iron uptake, Fur. Reduced biofilm formation of urinary tract-infectious E. coli strains in the presence of Zn(II) was observed in microtiter plates and flow chambers as well as on urinary catheters. These results further support that iron uptake is indeed crucial for biofilm formation, and thereby, targeting these uptake systems might be an effective way to eradicate biofilms caused by infectious strains. PMID:20418434

  6. Nucleases in Bdellovibrio bacteriovorus contribute towards efficient self-biofilm formation and eradication of preformed prey biofilms.

    PubMed

    Lambert, Carey; Sockett, R Elizabeth

    2013-03-01

    Bdellovibrio bacteriovorus are predatory bacteria that burrow into prey bacteria and degrade their cell contents, including DNA and RNA, to grow. Their genome encodes diverse nucleases, some with potential export sequences. Transcriptomic analysis determined two candidate-predicted nuclease genes (bd1244, bd1934) upregulated upon contact with prey, which we hypothesised, may be involved in prey nucleic acid degradation. RT-PCR on total RNA from across the predatory cycle confirmed that the transcription of these genes peaks shortly after prey cell invasion, around the time that prey DNA is being degraded. We deleted bd1244 and bd1934 both singly and together and investigated their role in predation of prey cells and biofilms. Surprisingly, we found that the nuclease-mutant strains could still prey upon planktonic bacteria as efficiently as wild type and still degraded the prey genomic DNA. The Bdellovibrio nuclease mutants were less efficient at (self-) biofilm formation, and surprisingly, they showed enhanced predatory clearance of preformed prey cell biofilms relative to wild-type Bdellovibrio. PMID:23297829

  7. Inhibition of Streptococcus mutans biofilm formation by Streptococcus salivarius FruA.

    PubMed

    Ogawa, Ayako; Furukawa, Soichi; Fujita, Shuhei; Mitobe, Jiro; Kawarai, Taketo; Narisawa, Naoki; Sekizuka, Tsuyoshi; Kuroda, Makoto; Ochiai, Kuniyasu; Ogihara, Hirokazu; Kosono, Saori; Yoneda, Saori; Watanabe, Haruo; Morinaga, Yasushi; Uematsu, Hiroshi; Senpuku, Hidenobu

    2011-03-01

    The oral microbial flora consists of many beneficial species of bacteria that are associated with a healthy condition and control the progression of oral disease. Cooperative interactions between oral streptococci and the pathogens play important roles in the development of dental biofilms in the oral cavity. To determine the roles of oral streptococci in multispecies biofilm development and the effects of the streptococci in biofilm formation, the active substances inhibiting Streptococcus mutans biofilm formation were purified from Streptococcus salivarius ATCC 9759 and HT9R culture supernatants using ion exchange and gel filtration chromatography. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry analysis was performed, and the results were compared to databases. The S. salivarius HT9R genome sequence was determined and used to indentify candidate proteins for inhibition. The candidates inhibiting biofilms were identified as S. salivarius fructosyltransferase (FTF) and exo-beta-d-fructosidase (FruA). The activity of the inhibitors was elevated in the presence of sucrose, and the inhibitory effects were dependent on the sucrose concentration in the biofilm formation assay medium. Purified and commercial FruA from Aspergillus niger (31.6% identity and 59.6% similarity to the amino acid sequence of FruA from S. salivarius HT9R) completely inhibited S. mutans GS-5 biofilm formation on saliva-coated polystyrene and hydroxyapatite surfaces. Inhibition was induced by decreasing polysaccharide production, which is dependent on sucrose digestion rather than fructan digestion. The data indicate that S. salivarius produces large quantities of FruA and that FruA alone may play an important role in multispecies microbial interactions for sucrose-dependent biofilm formation in the oral cavity. PMID:21239559

  8. Effect of sub-minimum inhibitory concentrations of ciprofloxacin, amikacin and colistin on biofilm formation and virulence factors of Escherichia coli planktonic and biofilm forms isolated from human urine

    PubMed Central

    Wojnicz, Dorota; Tichaczek-Goska, Dorota

    2013-01-01

    The aim of this study was to determine the effect of subinhibitory concentrations (sub-MICs) of ciprofloxacin, amikacin and colistin on biofilm formation, motility, curli fimbriae formation by planktonic and biofilm cells of E. coli strains isolated from the urine of patients with various urinary system infections. Quantification of biofilm formation was carried out using a microtiter plate assay and a spectrophotometric method. Bacterial enumeration was used to assess the viability of bacteria in the biofilm. Curli expression was determined by using YESCA agar supplemented with congo red. Using motility agar the ability to move was examined. All the antibiotics used at sub-MICs reduced biofilm formation in vitro, decreased the survival of bacteria, but had no effect on the motility of planktonic as well as biofilm cells. The inhibitory effect of sub-MICs of antimicrobial agents on curli fimbriae formation was dependent on the form in which the bacteria occurred, incubation time and antibiotic used. Our results clearly show that all the three antibiotics tested reduce biofilm production, interfere with curli expression but do not influence motility. This study suggests that ciprofloxacin, amikacin and colistin may be useful in the treatment of biofilm-associated infections caused by E. coli strains. PMID:24159313

  9. Effect of sub-minimum inhibitory concentrations of ciprofloxacin, amikacin and colistin on biofilm formation and virulence factors of Escherichia coli planktonic and biofilm forms isolated from human urine.

    PubMed

    Wojnicz, Dorota; Tichaczek-Goska, Dorota

    2013-01-01

    The aim of this study was to determine the effect of subinhibitory concentrations (sub-MICs) of ciprofloxacin, amikacin and colistin on biofilm formation, motility, curli fimbriae formation by planktonic and biofilm cells of E. coli strains isolated from the urine of patients with various urinary system infections. Quantification of biofilm formation was carried out using a microtiter plate assay and a spectrophotometric method. Bacterial enumeration was used to assess the viability of bacteria in the biofilm. Curli expression was determined by using YESCA agar supplemented with congo red. Using motility agar the ability to move was examined. All the antibiotics used at sub-MICs reduced biofilm formation in vitro, decreased the survival of bacteria, but had no effect on the motility of planktonic as well as biofilm cells. The inhibitory effect of sub-MICs of antimicrobial agents on curli fimbriae formation was dependent on the form in which the bacteria occurred, incubation time and antibiotic used. Our results clearly show that all the three antibiotics tested reduce biofilm production, interfere with curli expression but do not influence motility. This study suggests that ciprofloxacin, amikacin and colistin may be useful in the treatment of biofilm-associated infections caused by E. coli strains. PMID:24159313

  10. Human secretory immunoglobulin A may contribute to biofilm formation in the gut

    PubMed Central

    Bollinger, R Randal; Everett, Mary Lou; Palestrant, Daniel; Love, Stephanie D; Lin, Shu S; Parker, William

    2003-01-01

    It is critical, both for the host and for the long-term benefit of the bacteria that colonize the gut, that bacterial overgrowth with subsequent bacterial translocation, which may lead to sepsis and death of the host, be avoided. Secretory IgA (sIgA) is known to be a key factor in this process, agglutinating bacteria and preventing their translocation in a process termed ‘immune exclusion’. To determine whether human sIgA might facilitate the growth of normal enteric bacteria under some conditions, the growth of human enteric bacteria on cultured, fixed human epithelial cells was evaluated in the presence of sIgA or various other proteins. Human sIgA was found to facilitate biofilm formation by normal human gut flora and by Escherichia coli on cultured human epithelial cell surfaces under conditions in which non-adherent bacteria were repeatedly washed away. In addition, the presence of sIgA resulted in a 64% increase in adherence of E. coli to live cultured epithelial cells over a 45-min period. Mucin, another defence factor thought to play a key role in immune exclusion, was found to facilitate biofilm formation by E. coli. Our findings suggest that sIgA may contribute to biofilm formation in the gut. PMID:12871226

  11. Molecular analysis of long-term biofilm formation on PVC and cast iron surfaces in drinking water distribution system.

    PubMed

    Liu, Ruyin; Zhu, Junge; Yu, Zhisheng; Joshi, DevRaj; Zhang, Hongxun; Lin, Wenfang; Yang, Min

    2014-04-01

    To understand the impacts of different plumbing materials on long-term biofilm formation in water supply system, we analyzed microbial community compositions in the bulk water and biofilms on faucets with two different materials-polyvinyl chloride (PVC) and cast iron, which have been frequently used for more than10 years. Pyrosequencing was employed to describe both bacterial and eukaryotic microbial compositions. Bacterial communities in the bulk water and biofilm samples were significantly different from each other. Specific bacterial populations colonized on the surface of different materials. Hyphomicrobia and corrosion associated bacteria, such as Acidithiobacillus spp., Aquabacterium spp., Limnobacter thiooxidans, and Thiocapsa spp., were the most dominant bacteria identified in the PVC and cast iron biofilms, respectively, suggesting that bacterial colonization on the material surfaces was selective. Mycobacteria and Legionella spp. were common potential pathogenic bacteria occurred in the biofilm samples, but their abundance was different in the two biofilm bacterial communities. In contrast, the biofilm samples showed more similar eukaryotic communities than the bulk water. Notably, potential pathogenic fungi, i.e., Aspergillus spp. and Candida parapsilosis, occurred in similar abundance in both biofilms. These results indicated that microbial community, especially bacterial composition was remarkably affected by the different pipe materials (PVC and cast iron). PMID:25079417

  12. Effect of cinnamon oil on icaA expression and biofilm formation by Staphylococcus epidermidis.

    PubMed

    Nuryastuti, Titik; van der Mei, Henny C; Busscher, Henk J; Iravati, Susi; Aman, Abu T; Krom, Bastiaan P

    2009-11-01

    Staphylococcus epidermidis is notorious for its biofilm formation on medical devices, and novel approaches to prevent and kill S. epidermidis biofilms are desired. In this study, the effect of cinnamon oil on planktonic and biofilm cultures of clinical S. epidermidis isolates was evaluated. Initially, susceptibility to cinnamon oil in planktonic cultures was compared to the commonly used antimicrobial agents chlorhexidine, triclosan, and gentamicin. The MIC of cinnamon oil, defined as the lowest concentration able to inhibit visible microbial growth, and the minimal bactericidal concentration, the lowest concentration required to kill 99.9% of the bacteria, were determined using the broth microdilution method and plating on agar. A checkerboard assay was used to evaluate the possible synergy between cinnamon oil and the other antimicrobial agents. The effect of cinnamon oil on biofilm growth was studied in 96-well plates and with confocal laser-scanning microscopy (CLSM). Biofilm susceptibility was determined using a metabolic 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Real-time PCR analysis was performed to determine the effect of sub-MIC concentrations of cinnamon oil on expression of the biofilm-related gene, icaA. Cinnamon oil showed antimicrobial activity against both planktonic and biofilm cultures of clinical S. epidermidis strains. There was only a small difference between planktonic and biofilm MICs, ranging from 0.5 to 1% and 1 to 2%, respectively. CLSM images indicated that cinnamon oil is able to detach and kill existing biofilms. Thus, cinnamon oil is an effective antimicrobial agent to combat S. epidermidis biofilms. PMID:19749058

  13. Effects of norspermidine and spermidine on biofilm formation by potentially pathogenic Escherichia coli and Salmonella enterica wild-type strains.

    PubMed

    Nesse, Live L; Berg, Kristin; Vestby, Lene K

    2015-03-01

    Polyamines are present in all living cells. In bacteria, polyamines are involved in a variety of functions, including biofilm formation, thus indicating that polyamines may have potential in the control of unwanted biofilm. In the present study, the effects of the polyamines norspermidine and spermidine on biofilms of 10 potentially pathogenic wild-type strains of Escherichia coli serotype O103:H2, Salmonella enterica subsp. enterica serovar Typhimurium, and S. enterica serovar Agona were investigated. We found that exogenously supplied norspermidine and spermidine did not mediate disassembly of preformed biofilm of any of the E. coli and S. enterica strains. However, the polyamines did affect biofilm production. Interestingly, the two species reacted differently to the polyamines. Both polyamines reduced the amount of biofilm formed by E. coli but tended to increase biofilm formation by S. enterica. Whether the effects observed were due to the polyamines specifically targeting biofilm formation, being toxic for the cells, or maybe a combination of the two, is not known. However, there were no indications that the effect was mediated through binding to exopolysaccharides, as earlier suggested for E. coli. Our results indicate that norspermidine and spermidine do not have potential as inhibitors of S. enterica biofilm. Furthermore, we found that the commercial polyamines used contributed to the higher pH of the test medium. Failure to acknowledge and control this important phenomenon may lead to misinterpretation of the results. PMID:25595767

  14. Biofilm Dispersal

    PubMed Central

    2010-01-01

    Like all sessile organisms, surface-attached communities of bacteria known as biofilms must release and disperse cells into the environment to colonize new sites. For many pathogenic bacteria, biofilm dispersal plays an important role in the transmission of bacteria from environmental reservoirs to human hosts, in horizontal and vertical cross-host transmission, and in the exacerbation and spread of infection within a host. The molecular mechanisms of bacterial biofilm dispersal are only beginning to be elucidated. Biofilm dispersal is a promising area of research that may lead to the development of novel agents that inhibit biofilm formation or promote biofilm cell detachment. Such agents may be useful for the prevention and treatment of biofilms in a variety of industrial and clinical settings. This review describes the current status of research on biofilm dispersal, with an emphasis on studies aimed to characterize dispersal mechanisms, and to identify environmental cues and inter- and intracellular signals that regulate the dispersal process. The clinical implications of biofilm dispersal and the potential therapeutic applications of some of the most recent findings will also be discussed. PMID:20139339

  15. [Methods for detection of biofilm formation in routine microbiological practice].

    PubMed

    R?zicka, F; Holá, V; Votava, M

    2006-02-01

    The increasing use of catheters, artificial implants and antimicrobials as well as high numbers of immunocompromised patients are major causes for concern over biofilm infections. These infections are characterized particularly by high resistance to antimicrobials and formation of persistent foci that may complicate therapy. Therefore, detection of biofilm formation is of high relevance to the clinician and his/her approach to the treatment. Reliable and sensitive methods for detection of this pathogenicity factor in clinically important organisms, suitable for use in routine microbiological laboratories, are needed for this purpose. Currently, a wide array of techniques are available for detection of this virulence factor, such as biofilm visualization by microscopy, culture detection, detection of particular components, detection of physical and chemical differences between biofilm-positive organisms and their planktonic forms and detection of genes responsible for biofilm formation. Since each of these methods has limitations, the best results can be achieved by combining different approaches. PMID:16528896

  16. Biofilm formation on nanostructured hydroxyapatite-coated titanium.

    PubMed

    Westas, Emma; Gillstedt, Martin; Lönn-Stensrud, Jessica; Bruzell, Ellen; Andersson, Martin

    2014-04-01

    Biofilm formation on medical devices is a common cause of implant failure, especially regarding implants that breach the epithelial tissue, so-called transcutaneous implants. Nanotechnology and the development of new nanomaterials have given the opportunity to design nanotextured implant surfaces. Such surfaces have been studied using various in vitro methods showing that nanosized features strongly benefit bone cell growth. However, little is known on how nanostructured features affect biofilm formation. The aim of this study was therefore to examine the shape- and chemical-dependent effect of a nanostructured hydroxyapatite (HA) coating on the degree of Staphylococcus epidermidis biofilm formation. Three different types of nanosized HA particles having different shapes and calcium to phosphate ratios were compared to uncoated turned titanium using safranin stain in a biofilm assay and confocal laser scanning microscopy (CLSM) for assessment of biofilm biomass and bacterial volume, respectively. No difference in biofilm biomass was detected for the various surfaces after 6 h incubation with S. epidermidis. Additionally, image analysis of CLSM Z-stacks confirmed the biofilm assay and showed similar results. In conclusion, the difference in nanomorphology and chemical composition of the surface coatings did not influence the adhesion and biofilm formation of S. epidermidis. PMID:23589449

  17. Enterococcal Surface Protein, Esp, Enhances Biofilm Formation by Enterococcus faecalis

    Microsoft Academic Search

    Preeti M. Tendolkar; Arto S. Baghdayan; Michael S. Gilmore; Nathan Shankar

    2004-01-01

    Enterococci play a dual role in human ecology. They serve as commensal organisms of the gastrointestinal tract and are also leading causes of multiple antibiotic-resistant hospital-acquired infection. Many nosocomial infections result from the ability of microorganisms to form biofilms. The molecular mechanisms involved in enterococcal biofilm formation are only now beginning to be understood. Enterococcal surface protein, Esp, has been

  18. Vaccination with SesC Decreases Staphylococcus epidermidis Biofilm Formation

    PubMed Central

    Shahrooei, Mohammad; Hira, Vishal; Khodaparast, Laleh; Khodaparast, Ladan; Stijlemans, Benoit; Kucharíková, So?a; Burghout, Peter; Hermans, Peter W. M.

    2012-01-01

    The increased use of medical implants has resulted in a concomitant rise in device-related infections. The majority of these infections are caused by Staphylococcus epidermidis biofilms. Immunoprophylaxis and immunotherapy targeting in vivo-expressed, biofilm-associated, bacterial cell surface-exposed proteins are promising new approaches to prevent and treat biofilm-related infections, respectively. Using an in silico procedure, we identified 64 proteins that are predicted to be S. epidermidis surface exposed (Ses), of which 36 were annotated as (conserved) hypothetical. Of these 36 proteins, 5 proteins—3 LPXTG motif-containing proteins (SesL, SesB, and SesC) and 2 of the largest ABC transporters (SesK and SesM)—were selected for evaluation as vaccine candidates. This choice was based on protein size, number of antigenic determinants, or the established role in S. epidermidis biofilm formation of the protein family to which the candidate protein belongs. Anti-SesC antibodies exhibited the greatest inhibitory effect on S. epidermidis biofilm formation in vitro and on colonization and infection in a mouse jugular vein catheter infection model that includes biofilms and organ infections. Active vaccination with a recombinant truncated SesC inhibited S. epidermidis biofilm formation in a rat model of subcutaneous foreign body infection. Antibodies to SesC were shown to be opsonic by an in vitro opsonophagocytosis assay. We conclude that SesC is a promising target for antibody mediated strategies against S. epidermidis biofilm formation. PMID:22802343

  19. Inhibition of Serratia marcescens Smj-11 biofilm formation by Alcaligenes faecalis STN17 crude extract

    NASA Astrophysics Data System (ADS)

    Lutfi, Zainal; Usup, Gires; Ahmad, Asmat

    2014-09-01

    Serratia marcescens biofilms are formed when they are bound to surfaces in aqueous environments. S. marcescens utilizes N-acylhomoserine lactone (AHL) as its quorum sensing signal molecule. The accumulation of AHL indicates the bacteria to produce matrices to form biofilms. Prodigiosin (2-methyl-3-pentyl-6-methoxyprodigiosin), which causes red pigmentation in the colonies, are also produced when the AHL reaches a certain threshold. The Alcaligenes faecalis STN17 crude extract is believed to inhibit quorum sensing in the S. marcescens Smj-11 and, thus, impedes its biofilm formation ability. A. faecalis STN17 was grown in marine broth, and ethyl acetate extraction was carried out. The crude compound of A. faecalis STN17 was diluted at high concentration (0.2-6.4 mg/mL) and was taken to confirm anti-biofilm activity through the crystal violet method in 96-wells plate. Then, the crude extract underwent purification using simple solvents partitioning test to discern the respective compounds that had the anti-biofilm activity under the crystal violet method. The crystal violet test showed that the crude did have anti-biofilm activity on S. marcescens Smj-11, but did not kill the cells. This finding signifies that the suppression of biofilm formation in S. marcescens by A. faecalis STN17 has a strong correlation. The partitioning test showed that A. faecalis STN17 crude extract has several compounds and only the compound(s) in chloroform showed activities. In conclusion, the crude extract of A. faecalis STN17 has the ability to inhibit S. marcescens Smj-11 biofilm formation.

  20. Inhibition of Serratia marcescens Smj-11 biofilm formation by Alcaligenes faecalis STN17 crude extract

    SciTech Connect

    Lutfi, Zainal; Ahmad, Asmat [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Usup, Gires [School of Environmental and Natural Resources Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia)

    2014-09-03

    Serratia marcescens biofilms are formed when they are bound to surfaces in aqueous environments. S. marcescens utilizes N-acylhomoserine lactone (AHL) as its quorum sensing signal molecule. The accumulation of AHL indicates the bacteria to produce matrices to form biofilms. Prodigiosin (2-methyl-3-pentyl-6-methoxyprodigiosin), which causes red pigmentation in the colonies, are also produced when the AHL reaches a certain threshold. The Alcaligenes faecalis STN17 crude extract is believed to inhibit quorum sensing in the S. marcescens Smj-11 and, thus, impedes its biofilm formation ability. A. faecalis STN17 was grown in marine broth, and ethyl acetate extraction was carried out. The crude compound of A. faecalis STN17 was diluted at high concentration (0.2-6.4 mg/mL) and was taken to confirm anti-biofilm activity through the crystal violet method in 96-wells plate. Then, the crude extract underwent purification using simple solvents partitioning test to discern the respective compounds that had the anti-biofilm activity under the crystal violet method. The crystal violet test showed that the crude did have anti-biofilm activity on S. marcescens Smj-11, but did not kill the cells. This finding signifies that the suppression of biofilm formation in S. marcescens by A. faecalis STN17 has a strong correlation. The partitioning test showed that A. faecalis STN17 crude extract has several compounds and only the compound(s) in chloroform showed activities. In conclusion, the crude extract of A. faecalis STN17 has the ability to inhibit S. marcescens Smj-11 biofilm formation.

  1. Alumina surfaces with nanoscale topography reduce attachment and biofilm formation by Escherichia coli and Listeria spp.

    PubMed

    Feng, Guoping; Cheng, Yifan; Wang, Shu-Yi; Hsu, Lillian C; Feliz, Yazmin; Borca-Tasciuc, Diana A; Worobo, Randy W; Moraru, Carmen I

    2014-01-01

    This work reports on a simple, robust and scientifically sound method to develop surfaces able to reduce microbial attachment and biofilm development, with possible applications in medicine, dentistry, food processing, or water treatment. Anodic surfaces with cylindrical nanopores 15 to 100 nm in diameter were manufactured and incubated with Escherichia coli ATCC 25922 and Listeria innocua. Surfaces with 15 and 25 nm pore diameters significantly repressed attachment and biofilm formation. Surface-bacteria interaction forces calculated using the extended Derjaguin Landau Verwey-Overbeek (XDLVO) theory indicate that reduction in attachment and biofilm formation is due to a synergy between electrostatic repulsion and surface effective free energy. An attachment study using E. coli K12 strains unable to express appendages also suggests that the small-pore surfaces may inhibit flagella-dependent attachment. These results can have immediate, far-reaching implications and commercial applications, with substantial benefits for human health and life. PMID:25427545

  2. Integration of non-oral bacteria into in vitro oral biofilms.

    PubMed

    Thurnheer, Thomas; Belibasakis, Georgios N

    2015-01-01

    Biofilms are polymicrobial communities that grow on surfaces in nature. Oral bacteria can spontaneously form biofilms on the surface of teeth, which may compromise the health of the teeth, or their surrounding (periodontal) tissues. While the oral bacteria exhibit high tropism for their specialized ecological niche, it is not clear if bacteria that are not part of the normal oral microbiota can efficiently colonize and grow within oral biofilms. By using an in vitro "supragingival" biofilm model of 6 oral species, this study aimed to investigate if 3 individual bacterial species that are not part of the normal oral microbiota (Eschericia coli, Staphylococcus aureus, Enterococcus faecails) and one not previously tested oral species (Aggregatibacter actinomycetemcomitans) can be incorporated into this established supragingival biofilm model. Staphylococcus aureus and A. actinomycetemcomitans were able to grow efficiently in the biofilm, without disrupting the growth of the remaining species. They localized in sparse small aggregates within the biofilm mass. Enterococcus faecalis and E. coli were both able to populate the biofilm at high numbers, and suppressed the growth of A. oris and S. mutants. Enterococcus faecalis was arranged in a chain-like conformation, whereas E. coli was densely and evenly spread throughout the biofilm mass. In conclusion, it is possible for selected species that are not part of the normal oral microbiota to be introduced into an oral biofilm, under the given experimental micro-environmental conditions. Moreover, the equilibrated incorporation of A. actinomycetemcomitans and S. aureus in this oral biofilm model could be a useful tool in the study of aggressive periodontitis and peri-implantitis, in which these organisms are involved, respectively. PMID:25483866

  3. Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms

    Microsoft Academic Search

    Thomas Schwartz; Wolfgang Kohnen; Bernd Jansen; Ursula Obst

    2003-01-01

    In view of the increasing interest in the possible role played by hospital and municipal wastewater systems in the selection of antibiotic-resistant bacteria, biofilms were investigated using enterococci, staphylococci, Enterobacteriaceae, and heterotrophic bacteria as indicator organisms. In addition to wastewater, biofilms were also investigated in drinking water from river bank filtrate to estimate the occurrence of resistant bacteria and their

  4. Biofilm Formation Caused by Clinical Acinetobacter baumannii Isolates Is Associated with Overexpression of the AdeFGH Efflux Pump.

    PubMed

    He, Xinlong; Lu, Feng; Yuan, Fenglai; Jiang, Donglin; Zhao, Peng; Zhu, Jie; Cheng, Huali; Cao, Jun; Lu, Guozhong

    2015-08-01

    Chronic wound infections are associated with biofilm formation, which in turn has been correlated with drug resistance. However, the mechanism by which bacteria form biofilms in clinical environments is not clearly understood. This study was designed to investigate the biofilm formation potency of Acinetobacter baumannii and the potential association of biofilm formation with genes encoding efflux pumps, quorum-sensing regulators, and outer membrane proteins. A total of 48 clinically isolated A. baumannii strains, identified by enterobacterial repetitive intergenic consensus (ERIC)-PCR as types A-II, A-III, and A-IV, were analyzed. Three representative strains, which were designated A. baumannii ABR2, ABR11, and ABS17, were used to evaluate antimicrobial susceptibility, biofilm inducibility, and gene transcription (abaI, adeB, adeG, adeJ, carO, and ompA). A significant increase in the MICs of different classes of antibiotics was observed in the biofilm cells. The formation of a biofilm was significantly induced in all the representative strains exposed to levofloxacin. The levels of gene transcription varied between bacterial genotypes, antibiotics, and antibiotic concentrations. The upregulation of adeG correlated with biofilm induction. The consistent upregulation of adeG and abaI was detected in A-III-type A. baumannii in response to levofloxacin and meropenem (1/8 to 1/2× the MIC), conditions which resulted in the greatest extent of biofilm induction. This study demonstrates a potential role of the AdeFGH efflux pump in the synthesis and transport of autoinducer molecules during biofilm formation, suggesting a link between low-dose antimicrobial therapy and a high risk of biofilm infections caused by A. baumannii. This study provides useful information for the development of antibiofilm strategies. PMID:26033730

  5. Biofilm formation of mucosa-associated methanoarchaeal strains

    PubMed Central

    Bang, Corinna; Ehlers, Claudia; Orell, Alvaro; Prasse, Daniela; Spinner, Marlene; Gorb, Stanislav N.; Albers, Sonja-Verena; Schmitz, Ruth A.

    2014-01-01

    Although in nature most microorganisms are known to occur predominantly in consortia or biofilms, data on archaeal biofilm formation are in general scarce. Here, the ability of three methanoarchaeal strains, Methanobrevibacter smithii and Methanosphaera stadtmanae, which form part of the human gut microbiota, and the Methanosarcina mazei strain Gö1 to grow on different surfaces and form biofilms was investigated. All three strains adhered to the substrate mica and grew predominantly as bilayers on its surface as demonstrated by confocal laser scanning microscopy analyses, though the formation of multi-layered biofilms of Methanosphaera stadtmanae and Methanobrevibacter smithii was observed as well. Stable biofilm formation was further confirmed by scanning electron microscopy analysis. Methanosarcina mazei and Methanobrevibacter smithii also formed multi-layered biofilms in uncoated plastic ?-dishesTM, which were very similar in morphology and reached a height of up to 40 ?m. In contrast, biofilms formed by Methanosphaera stadtmanae reached only a height of 2 ?m. Staining with the two lectins ConA and IB4 indicated that all three strains produced relatively low amounts of extracellular polysaccharides most likely containing glucose, mannose, and galactose. Taken together, this study provides the first evidence that methanoarchaea can develop and form biofilms on different substrates and thus, will contribute to our knowledge on the appearance and physiological role of Methanobrevibacter smithii and Methanosphaera stadtmanae in the human intestine. PMID:25071757

  6. A Differential Effect of E. coli Toxin-Antitoxin Systems on Cell Death in Liquid Media and Biofilm Formation

    PubMed Central

    Shlosberg-Fedida, Ayalla; Engelberg-Kulka, Hanna

    2009-01-01

    Toxin-antitoxin (TA) modules are gene pairs specifying for a toxin and its antitoxin and are found on the chromosomes of many bacteria including pathogens. Here we report how each of five such TA systems in E. coli affect bacterial cell death differently in liquid media and during biofilm formation. Of all these systems, only the TA system mazEF mediated cell death both in liquid media and during biofilm formation. At the other extreme, as our results have revealed here, the TA system dinJ-YafQ is unique in that it is involved only in the death process during biofilm formation. Cell death governed by mazEF and dinJ-YafQ seems to participate in biofilm formation through a novel mechanism. PMID:19707553

  7. Exoelectrogenic Biofilm as a Template for Sustainable Formation of a Catalytic

    E-print Network

    Exoelectrogenic Biofilm as a Template for Sustainable Formation of a Catalytic Mesoporous Structure synthesis techniques utilize expensive polymers and toxic chemicals. AGeobacter sulfurreducens biofilm for synthetic chemicals. The bulk of the biofilm material was removed by thermal treatments after nanoparticle

  8. Cold plasma inactivation of internalised bacteria and biofilms for Salmonella enterica serovar Typhimurium, Listeria monocytogenes and Escherichia coli.

    PubMed

    Ziuzina, Dana; Han, Lu; Cullen, Patrick J; Bourke, Paula

    2015-10-01

    Microbial biofilms and bacteria internalised in produce tissue may reduce the effectiveness of decontamination methods. In this study, the inactivation efficacy of in-package atmospheric cold plasma (ACP) afterglow was investigated against Salmonella Typhimurium, Listeria monocytogenes and Escherichia coli in the forms of planktonic cultures, biofilms formed on lettuce and associated bacteria internalised in lettuce tissue. Prepared lettuce broth (3%) was inoculated with bacteria resulting in a final concentration of ~7.0log10CFU/ml. For biofilm formation and internalisation, lettuce pieces (5×5cm) were dip-inoculated in bacterial suspension of ~7.0log10CFU/ml for 2h and further incubated for 0, 24 and 48h at either 4°C or room temperature (~22°C) in combination with light/dark photoperiod or at 4°C under dark conditions. Inoculated samples were sealed inside a rigid polypropylene container and indirectly exposed (i.e. placed outside plasma discharge) to a high voltage (80kVRMS) air ACP with subsequent storage for 24h at 4°C. ACP treatment for 30s reduced planktonic populations of Salmonella, L. monocytogenes and E. coli suspended in lettuce broth to undetectable levels. Depending on storage conditions, bacterial type and age of biofilm, 300s of treatment resulted in reduction of biofilm populations on lettuce by a maximum of 5log10CFU/sample. Scanning electron and confocal laser microscopy pointed to the incidence of bacterial internalisation and biofilm formation, which influenced the inactivation efficacy of ACP. Measured intracellular reactive oxygen species (ROS) revealed that the presence of organic matter in the bacterial suspension might present a protective effect against the action of ROS on bacterial cells. This study demonstrated that high voltage in-package ACP could be a potential technology to overcome bacterial challenges associated with food produce. However, the existence of biofilms and internalised bacteria should be considered for further optimisation of ACP treatment parameters in order to achieve an effective control of the realistic challenges posed by foodborne pathogens. PMID:26093991

  9. Spatial & Temporal Geophysical Monitoring of Microbial Growth and Biofilm Formation

    EPA Science Inventory

    Previous studies have examined the effect of biogenic gases and biomineralization on the acoustic properties of porous media. In this study, we investigated the spatiotemporal effect of microbial growth and biofilm formation on compressional waves and complex conductivity in sand...

  10. Staphylococcus aureus CcpA Affects Biofilm Formation?

    PubMed Central

    Seidl, Kati; Goerke, Christiane; Wolz, Christiane; Mack, Dietrich; Berger-Bächi, Brigitte; Bischoff, Markus

    2008-01-01

    Biofilm formation in Staphylococcus aureus under in vitro growth conditions is generally promoted by high concentrations of sugar and/or salts. The addition of glucose to routinely used complex growth media triggered biofilm formation in S. aureus strain SA113. Deletion of ccpA, coding for the catabolite control protein A (CcpA), which regulates gene expression in response to the carbon source, abolished the capacity of SA113 to form a biofilm under static and flow conditions, while still allowing primary attachment to polystyrene surfaces. This suggested that CcpA mainly affects biofilm accumulation and intercellular aggregation. trans-Complementation of the mutant with the wild-type ccpA allele fully restored the biofilm formation. The biofilm produced by SA113 was susceptible to sodium metaperiodate, DNase I, and proteinase K treatment, indicating the presence of polysaccharide intercellular adhesin (PIA), protein factors, and extracellular DNA (eDNA). The investigation of several factors which were reported to influence biofilm formation in S. aureus (arlRS, mgrA, rbf, sarA, atl, ica, citZ, citB, and cidABC) showed that CcpA up-regulated the transcription of cidA, which was recently shown to contribute to eDNA production. Moreover, we showed that CcpA increased icaA expression and PIA production, presumably over the down-regulation of the tricarboxylic acid cycle genes citB and citZ. PMID:18347047

  11. Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress

    PubMed Central

    Qurashi, Aisha Waheed; Sabri, Anjum Nasim

    2012-01-01

    To compensate for stress imposed by salinity, biofilm formation and exopolysaccharide production are significant strategies of salt tolerant bacteria to assist metabolism. We hypothesized that two previously isolated salt-tolerant strains Halomonas variabilis (HT1) and Planococcus rifietoensis (RT4) have an ability to improve plant growth, These strains can form biofilm and accumulate exopolysacharides at increasing salt stress. These results showed that bacteria might be involved in developing microbial communities under salt stress and helpful in colonizing of bacterial strains to plant roots and soil particles. Eventually, it can add to the plant growth and soil structure. We investigated the comparative effect of exopolysacharide and biofilm formation in two bacterial strains Halomonas variabilis (HT1) and Planococcus rifietoensis (RT4) in response to varying salt stress. We found that biofilm formation and exopolysaccharide accumulation increased at higher salinity. To check the effect of bacterial inoculation on the plant (Cicer arietinum Var. CM-98) growth and soil aggregation, pot experiment was conducted by growing seedlings under salt stress. Inoculation of both strains increased plant growth at elevated salt stress. Weight of soil aggregates attached with roots and present in soil were added at higher salt concentrations compared to untreated controls. Soil aggregation was higher at plant roots under salinity. These results suggest the feasibility of using above strains in improving plant growth and soil fertility under salinity. PMID:24031943

  12. Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress.

    PubMed

    Qurashi, Aisha Waheed; Sabri, Anjum Nasim

    2012-07-01

    To compensate for stress imposed by salinity, biofilm formation and exopolysaccharide production are significant strategies of salt tolerant bacteria to assist metabolism. We hypothesized that two previously isolated salt-tolerant strains Halomonas variabilis (HT1) and Planococcus rifietoensis (RT4) have an ability to improve plant growth, These strains can form biofilm and accumulate exopolysacharides at increasing salt stress. These results showed that bacteria might be involved in developing microbial communities under salt stress and helpful in colonizing of bacterial strains to plant roots and soil particles. Eventually, it can add to the plant growth and soil structure. We investigated the comparative effect of exopolysacharide and biofilm formation in two bacterial strains Halomonas variabilis (HT1) and Planococcus rifietoensis (RT4) in response to varying salt stress. We found that biofilm formation and exopolysaccharide accumulation increased at higher salinity. To check the effect of bacterial inoculation on the plant (Cicer arietinum Var. CM-98) growth and soil aggregation, pot experiment was conducted by growing seedlings under salt stress. Inoculation of both strains increased plant growth at elevated salt stress. Weight of soil aggregates attached with roots and present in soil were added at higher salt concentrations compared to untreated controls. Soil aggregation was higher at plant roots under salinity. These results suggest the feasibility of using above strains in improving plant growth and soil fertility under salinity. PMID:24031943

  13. Enhancing the formation and shear resistance of nitrifying biofilms on membranes by surface modification.

    PubMed

    Lackner, Susanne; Holmberg, Maria; Terada, Akihiko; Kingshott, Peter; Smets, Barth F

    2009-08-01

    Polypropylene (PP) membranes and polyethylene (PE) surfaces were modified to enhance formation and shear resistance of nitrifying biofilms for wastewater treatment applications. A combination of plasma polymerization and wet chemistry was employed to ultimately introduce poly(ethyleneglycol) (PEG) chains with two different functional groups (-PEG-NH(2) and -PEG-CH(3)). Biofilm growth experiments using a mixed nitrifying bacterial culture revealed that the specific combination of PEG chains with amino groups resulted in most biofilm formation on both PP and PE samples. Detachment experiments showed similar trends: biofilms on -PEG-NH(2) modified surfaces were much stronger compared to the other modifications and the unmodified reference surfaces. Electrostatic interactions between the protonated amino group and negatively charged bacteria as well as PEG chain density which can affect the surface structure might be possible explanations of the superiority of the -PEG-NH(2) modification. The success of the-PEG-NH(2) modification was independent of the original surface and might, therefore, be used in wastewater treatment bioreactors to improve reactor performance by making biofilm formation more stable and predictable. PMID:19576612

  14. Small Regulatory RNAs in the Control of Motility and Biofilm Formation in E. coli and Salmonella.

    PubMed

    Mika, Franziska; Hengge, Regine

    2013-01-01

    Biofilm formation in Escherichia coli and other enteric bacteria involves the inverse regulation of the synthesis of flagella and biofilm matrix components such as amyloid curli fibres, cellulose, colanic acid and poly-N-acetylglucosamine (PGA). Physiologically, these processes reflect the transition from growth to stationary phase. At the molecular level, they are tightly controlled by various sigma factors competing for RNA polymerase, a series of transcription factors acting in hierarchical regulatory cascades and several nucleotide messengers, including cyclic-di-GMP. In addition, a surprisingly large number of small regulatory RNAs (sRNAs) have been shown to directly or indirectly modulate motility and/or biofilm formation. This review aims at giving an overview of these sRNA regulators and their impact in biofilm formation in E. coli and Salmonella. Special emphasis will be put on sRNAs, that have known targets such as the mRNAs of the flagellar master regulator FlhDC, the stationary phase sigma factor ?S (RpoS) and the key biofilm regulator CsgD that have recently been shown to act as major hubs for regulation by multiple sRNAs. PMID:23443158

  15. Small Regulatory RNAs in the Control of Motility and Biofilm Formation in E. coli and Salmonella

    PubMed Central

    Mika, Franziska; Hengge, Regine

    2013-01-01

    Biofilm formation in Escherichia coli and other enteric bacteria involves the inverse regulation of the synthesis of flagella and biofilm matrix components such as amyloid curli fibres, cellulose, colanic acid and poly-N-acetylglucosamine (PGA). Physiologically, these processes reflect the transition from growth to stationary phase. At the molecular level, they are tightly controlled by various sigma factors competing for RNA polymerase, a series of transcription factors acting in hierarchical regulatory cascades and several nucleotide messengers, including cyclic-di-GMP. In addition, a surprisingly large number of small regulatory RNAs (sRNAs) have been shown to directly or indirectly modulate motility and/or biofilm formation. This review aims at giving an overview of these sRNA regulators and their impact in biofilm formation in E. coli and Salmonella. Special emphasis will be put on sRNAs, that have known targets such as the mRNAs of the flagellar master regulator FlhDC, the stationary phase sigma factor ?S (RpoS) and the key biofilm regulator CsgD that have recently been shown to act as major hubs for regulation by multiple sRNAs. PMID:23443158

  16. Mechanism of electrical enhancement of efficacy of antibiotics in killing biofilm bacteria.

    PubMed Central

    Costerton, J W; Ellis, B; Lam, K; Johnson, F; Khoury, A E

    1994-01-01

    The bioelectric effect, in which electric fields are used to enhance the efficacy of biocides and antibiotics in killing biofilm bacteria, has been shown to reduce the very high concentrations of these antibacterial agents needed to kill biofilm bacteria to levels very close to those needed to kill planktonic (floating) bacteria of the same species. In this report, we show that biofilm bacteria are readily killed by an antibiotic on all areas of the active electrodes and on the surfaces of conductive elements that lie within the electric field but do not themselves function as electrodes. Considerations of electrode geometry indicate that very low (< 100 microA/cm2) current densities may be effective in this electrical enhancement of antibiotic efficacy against biofilm bacteria, and flow experiments indicate that this bioelectric effect does not appear to depend entirely on the possible local electrochemical generation of antibacterial molecules or ions. These data are expected to facilitate the use of the bioelectric effect in the prevention and treatment of device-related bacterial infections that are caused by bacteria that grow in biofilms and thereby frustrate antibiotic chemotherapy. Images PMID:7695266

  17. Mechanism of electrical enhancement of efficacy of antibiotics in killing biofilm bacteria.

    PubMed

    Costerton, J W; Ellis, B; Lam, K; Johnson, F; Khoury, A E

    1994-12-01

    The bioelectric effect, in which electric fields are used to enhance the efficacy of biocides and antibiotics in killing biofilm bacteria, has been shown to reduce the very high concentrations of these antibacterial agents needed to kill biofilm bacteria to levels very close to those needed to kill planktonic (floating) bacteria of the same species. In this report, we show that biofilm bacteria are readily killed by an antibiotic on all areas of the active electrodes and on the surfaces of conductive elements that lie within the electric field but do not themselves function as electrodes. Considerations of electrode geometry indicate that very low (< 100 microA/cm2) current densities may be effective in this electrical enhancement of antibiotic efficacy against biofilm bacteria, and flow experiments indicate that this bioelectric effect does not appear to depend entirely on the possible local electrochemical generation of antibacterial molecules or ions. These data are expected to facilitate the use of the bioelectric effect in the prevention and treatment of device-related bacterial infections that are caused by bacteria that grow in biofilms and thereby frustrate antibiotic chemotherapy. PMID:7695266

  18. Two quorum sensing systems control biofilm formation and virulence in members of the Burkholderia cepacia complex.

    PubMed

    Suppiger, Angela; Schmid, Nadine; Aguilar, Claudio; Pessi, Gabriella; Eberl, Leo

    2013-07-01

    The Burkholderia cepacia complex (Bcc) consists of 17 closely related species that are problematic opportunistic bacterial pathogens for cystic fibrosis patients and immunocompromised individuals. These bacteria are capable of utilizing two different chemical languages: N-acyl homoserine lactones (AHLs) and cis-2-unsaturated fatty acids. Here we summarize the current knowledge of the underlying molecular architectures of these communication systems, showing how they are interlinked and discussing how they regulate overlapping as well as specific sets of genes. A particular focus is laid on the role of these signaling systems in the formation of biofilms, which are believed to be highly important for chronic infections. We review genes that have been implicated in the sessile lifestyle of this group of bacteria. The new emerging role of the intracellular second messenger cyclic dimeric guanosine monophosphate (c-di-GMP) as a downstream regulator of the fatty acid signaling cascade and as a key factor in biofilm formation is also discussed. PMID:23799665

  19. Biofilm formation and control in a simulated spacecraft water system - Interim results

    NASA Technical Reports Server (NTRS)

    Schultz, John R.; Taylor, Robert D.; Flanagan, David T.; Gibbons, Randall E.; Brown, Harlan D.; Sauer, Richard L.

    1989-01-01

    The ability of iodine to control microbial contamination and biofilm formation in spacecraft water distribution systems is studied using two stainless steel water subsystems. One subsystem has an iodine level of 2.5 mg/L maintained by an iodinated ion-exchange resin. The other subsystem has no iodine added. Stainless steel coupons are removed from each system to monitor biofilm formation. Results from the first six months of operation indicate that 2.5 mg/L of iodine has limited the number of viable bacteria that can be recovered from the iodinated subsystem. Epifluorescence microscopy of the coupons taken from this subsystem, however, indicates some evidence of microbial colonization after 15 weeks of operation. Numerous bacteria have been continually removed from both the water samples and the coupons taken from the noniodinated subsystem after only 3 weeks of operation.

  20. Extracellular polysaccharides produced by cooling water tower biofilm bacteria and their possible degradation

    Microsoft Academic Search

    Nur Ceyhan; Guven Ozdemir

    2008-01-01

    The extracellular polymers (EPS) of biofilm bacteria that can cause heat and mass transfer problems in cooling water towers in the petrochemical industry were investigated. In addition, these microorganisms were screened for their ability to grow and degrade their own EPS and the EPS of other species. Twelve bacteria producing the most EPS were isolated from cooling water towers and

  1. Enhanced Biofilm Formation by Escherichia coli LPS Mutants Defective in Hep Biosynthesis

    PubMed Central

    Nakao, Ryoma; Ramstedt, Madeleine; Wai, Sun Nyunt; Uhlin, Bernt Eric

    2012-01-01

    Lipopolysaccharide (LPS) is the major component of the surface of Gram-negative bacteria and its polysaccharide portion is situated at the outermost region. We investigated the relationship between the polysaccharide portion of LPS and biofilm formation using a series of Escherichia coli mutants defective in genes earlier shown to affect the LPS sugar compositions. Biofilm formation by a deep rough LPS mutant, the hldE strain, was strongly enhanced in comparison with the parental strain and other LPS mutants. The hldE strain also showed a phenotype of increased auto-aggregation and stronger cell surface hydrophobicity compared to the wild-type. Similar results were obtained with another deep rough LPS mutant, the waaC strain whose LPS showed same molecular mass as that of the hldE strain. Confocal laser scanning microscopy (CLSM) analysis and biofilm formation assay using DNase I revealed that biofilm formation by the hldE strain was dependent on extracellular DNA. Furthermore, a loss of flagella and an increase in amount of outer membrane vesicles in case of the hldE strain were also observed by transmission electron microscopy and atomic force microscopy, respectively. In addition, we demonstrated that a mutation in the hldE locus, which alters the LPS structure, caused changes in both expression and properties of several surface bacterial factors involved in biofilm formation and virulence. We suggest that the implication of these results should be considered in the context of biofilm formation on abiotic surfaces, which is frequently associated with nosocominal infections such as the catheter-associated infections. PMID:23284671

  2. The ?E Pathway Is Involved in Biofilm Formation by Crohn's Disease-Associated Adherent-Invasive Escherichia coli

    PubMed Central

    Chassaing, Benoit

    2013-01-01

    Ileal lesions of patients with Crohn's disease are colonized by adherent-invasive Escherichia coli (AIEC) bacteria that are able to adhere to and invade intestinal epithelial cells (IEC), to replicate within macrophages, and to form biofilm. Clinical observations showed that bacterial biofilms were associated with the mucosa of inflammatory bowel disease patients. In the present study, we analyzed the relationship between AIEC colonization of the gut and the formation of biofilm, focusing on the involvement of the ?E pathway in the AIEC-IEC interaction. We observed that ?E pathway inhibition in AIEC reference strain LF82 led to an impaired ability to adhere to and invade IEC but also induced a large decrease in the abilities to colonize the intestinal mucosa and form biofilm. This indicates that targeting of the ?E pathway could be a very potent therapeutic strategy by which to interfere with the ability of AIEC to form biofilm on the gut mucosa of Crohn's disease patients. PMID:23104802

  3. The ?E pathway is involved in biofilm formation by Crohn's disease-associated adherent-invasive Escherichia coli.

    PubMed

    Chassaing, Benoit; Darfeuille-Michaud, Arlette

    2013-01-01

    Ileal lesions of patients with Crohn's disease are colonized by adherent-invasive Escherichia coli (AIEC) bacteria that are able to adhere to and invade intestinal epithelial cells (IEC), to replicate within macrophages, and to form biofilm. Clinical observations showed that bacterial biofilms were associated with the mucosa of inflammatory bowel disease patients. In the present study, we analyzed the relationship between AIEC colonization of the gut and the formation of biofilm, focusing on the involvement of the ?(E) pathway in the AIEC-IEC interaction. We observed that ?(E) pathway inhibition in AIEC reference strain LF82 led to an impaired ability to adhere to and invade IEC but also induced a large decrease in the abilities to colonize the intestinal mucosa and form biofilm. This indicates that targeting of the ?(E) pathway could be a very potent therapeutic strategy by which to interfere with the ability of AIEC to form biofilm on the gut mucosa of Crohn's disease patients. PMID:23104802

  4. The EpsE Flagellar Clutch Is Bifunctional and Synergizes with EPS Biosynthesis to Promote Bacillus subtilis Biofilm Formation

    PubMed Central

    Guttenplan, Sarah B.; Blair, Kris M.; Kearns, Daniel B.

    2010-01-01

    Many bacteria inhibit motility concomitant with the synthesis of an extracellular polysaccharide matrix and the formation of biofilm aggregates. In Bacillus subtilis biofilms, motility is inhibited by EpsE, which acts as a clutch on the flagella rotor to inhibit motility, and which is encoded within the 15 gene eps operon required for EPS production. EpsE shows sequence similarity to the glycosyltransferase family of enzymes, and we demonstrate that the conserved active site motif is required for EPS biosynthesis. We also screen for residues specifically required for either clutch or enzymatic activity and demonstrate that the two functions are genetically separable. Finally, we show that, whereas EPS synthesis activity is dominant for biofilm formation, both functions of EpsE synergize to stabilize cell aggregates and relieve selective pressure to abolish motility by genetic mutation. Thus, the transition from motility to biofilm formation may be governed by a single bifunctional enzyme. PMID:21170308

  5. The EpsE flagellar clutch is bifunctional and synergizes with EPS biosynthesis to promote Bacillus subtilis biofilm formation.

    PubMed

    Guttenplan, Sarah B; Blair, Kris M; Kearns, Daniel B

    2010-01-01

    Many bacteria inhibit motility concomitant with the synthesis of an extracellular polysaccharide matrix and the formation of biofilm aggregates. In Bacillus subtilis biofilms, motility is inhibited by EpsE, which acts as a clutch on the flagella rotor to inhibit motility, and which is encoded within the 15 gene eps operon required for EPS production. EpsE shows sequence similarity to the glycosyltransferase family of enzymes, and we demonstrate that the conserved active site motif is required for EPS biosynthesis. We also screen for residues specifically required for either clutch or enzymatic activity and demonstrate that the two functions are genetically separable. Finally, we show that, whereas EPS synthesis activity is dominant for biofilm formation, both functions of EpsE synergize to stabilize cell aggregates and relieve selective pressure to abolish motility by genetic mutation. Thus, the transition from motility to biofilm formation may be governed by a single bifunctional enzyme. PMID:21170308

  6. Blocking of Bacterial Biofilm Formation by a Fish Protein Coating? †

    PubMed Central

    Vejborg, Rebecca Munk; Klemm, Per

    2008-01-01

    Bacterial biofilm formation on inert surfaces is a significant health and economic problem in a wide range of environmental, industrial, and medical areas. Bacterial adhesion is generally a prerequisite for this colonization process and, thus, represents an attractive target for the development of biofilm-preventive measures. We have previously found that the preconditioning of several different inert materials with an aqueous fish muscle extract, composed primarily of fish muscle ?-tropomyosin, significantly discourages bacterial attachment and adhesion to these surfaces. Here, this proteinaceous coating is characterized with regards to its biofilm-reducing properties by using a range of urinary tract infectious isolates with various pathogenic and adhesive properties. The antiadhesive coating significantly reduced or delayed biofilm formation by all these isolates under every condition examined. The biofilm-reducing activity did, however, vary depending on the substratum physicochemical characteristics and the environmental conditions studied. These data illustrate the importance of protein conditioning layers with respect to bacterial biofilm formation and suggest that antiadhesive proteins may offer an attractive measure for reducing or delaying biofilm-associated infections. PMID:18424549

  7. Effect of crude extracts of selected actinomycetes on biofilm formation of A. schindleri, M. aci, and B. cereus.

    PubMed

    Saleem, Hafiz Ghulam Murtaza; Aftab, Usman; Sajid, Imran; Abbas, Zaigham; Sabri, Anjum Nasim

    2015-05-01

    Actinomycetes are well known group of gram positive bacteria for their potential to produce antibiotics. This study sought to assess the ability of the selected actinomycetes to control biofilm forming bacteria isolated from different dental plaque samples. On the basis of morphological differences three out of ten different dental plaque bacterial isolates were selected for further study. These isolates were biochemically and genetically characterized and were identified as Acinetobacter schinndleri, Moraxella aci, and Bacillus cereus. Antibiotic resistant profile was measured through disc diffusion method and found that all three isolates were moderately sensitive to ofloxacin and erythromycin and resistant to trimethoprim. Antibacterial activity of ten different Streptomyces strains was assessed through an agar plug and well diffusion method against three dental biofilm forming bacteria. Two Streptomyces strains named as S. erythrogriseus and S. labedae showed good antibacterial activity against Moraxella and Acinetobacter strains. Ability of the four active antibiotic producing strains to inhibit biofilm formation was assessed using microtiter biofilm detection assay. It was found that biofilm forming ability of Acinetobacter and Moraxella was inhibited by S. labedae an antibiotic producing strain, while S. macrosporeus can only inhibit biofilm formation by B. cereus. PMID:25138589

  8. Apple Flavonoid Phloretin Inhibits Escherichia coli O157:H7 Biofilm Formation and Ameliorates Colon Inflammation in Rats ? †

    PubMed Central

    Lee, Jin-Hyung; Regmi, Sushil Chandra; Kim, Jung-Ae; Cho, Moo Hwan; Yun, Hyungdon; Lee, Chang-Soo; Lee, Jintae

    2011-01-01

    Pathogenic biofilms have been associated with persistent infections due to their high resistance to antimicrobial agents, while commensal biofilms often fortify the host's immune system. Hence, controlling biofilm formation of both pathogenic bacteria and commensal bacteria is important in bacterium-related diseases. We investigated the effect of plant flavonoids on biofilm formation of enterohemorrhagic Escherichia coli O157:H7. The antioxidant phloretin, which is abundant in apples, markedly reduced E. coli O157:H7 biofilm formation without affecting the growth of planktonic cells, while phloretin did not harm commensal E. coli K-12 biofilms. Also, phloretin reduced E. coli O157:H7 attachment to human colon epithelial cells. Global transcriptome analyses revealed that phloretin repressed toxin genes (hlyE and stx2), autoinducer-2 importer genes (lsrACDBF), curli genes (csgA and csgB), and dozens of prophage genes in E. coli O157:H7 biofilm cells. Electron microscopy confirmed that phloretin reduced fimbria production in E. coli O157:H7. Also, phloretin suppressed the tumor necrosis factor alpha-induced inflammatory response in vitro using human colonic epithelial cells. Moreover, in the rat model of colitis induced by trinitrobenzene sulfonic acid (TNBS), phloretin significantly ameliorated colon inflammation and body weight loss. Taken together, our results suggest that the antioxidant phloretin also acts as an inhibitor of E. coli O157:H7 biofilm formation as well as an anti-inflammatory agent in inflammatory bowel diseases without harming beneficial commensal E. coli biofilms. PMID:21930760

  9. Structural insights into the biogenesis and biofilm formation by the Escherichia coli common pilus

    PubMed Central

    Garnett, James A.; Martínez-Santos, Verónica I.; Saldaña, Zeus; Pape, Tillmann; Hawthorne, William; Chan, Jennifer; Simpson, Peter J.; Cota, Ernesto; Puente, José L.; Girón, Jorge A.; Matthews, Steve

    2012-01-01

    Bacteria have evolved a variety of mechanisms for developing community-based biofilms. These bacterial aggregates are of clinical importance, as they are a major source of recurrent disease. Bacterial surface fibers (pili) permit adherence to biotic and abiotic substrates, often in a highly specific manner. The Escherichia coli common pilus (ECP) represents a remarkable family of extracellular fibers that are associated with both disease-causing and commensal strains. ECP plays a dual role in early-stage biofilm development and host cell recognition. Despite being the most common fimbrial structure, relatively little is known regarding its biogenesis, architecture, and function. Here we report atomic-resolution insight into the biogenesis and architecture of ECP. We also derive a structural model for entwined ECP fibers that not only illuminates interbacteria communication during biofilm formation but also provides a useful foundation for the design of novel nanofibers. PMID:22355107

  10. Enzymatic catalysis of mercury methylation by planktonic and biofilm cultures of sulfate- reducing bacteria

    NASA Astrophysics Data System (ADS)

    Lin, C.; Kampalath, R.; Jay, J.

    2007-12-01

    While biofilms are now known to be the predominant form of microbial growth in nature, little is known about their role in environmental mercury (Hg) methylation. Due to its long-range atmospheric transport, Hg contamination of food chains is a worldwide problem, impacting even pristine areas. Among different forms of mercury species, methylmercury (MeHg) is an extremely neurotoxic and biomagnification-prone compound that can lead to severely adverse health effects on wildlife and humans. Considerable studies have shown that in the aquatic environment the external supply of MeHg is not sufficient to account for MeHg accumulation in biota and in situ biological MeHg formation plays a critical role in determining the amount of MeHg in food webs; moreover, sulfate-reducing bacteria (SRB) has been identified as the principal Hg-methylating organisms in nature. In a wide range of aquatic systems wetlands are considered important sites for Hg methylation mostly because of the environmental factors that promote microbial activity within, and biofilms are especially important in wetland ecosystems due to large amount of submerged surfaces. Although recent work has focused on the environmental factors that control MeHg production and the conditions that affect the availability of inorganic Hg to SRB, much remains to be understood about the biochemical mechanism of the Hg methylation process in SRB, especially in the biofilm-growth of these microbes. Data from our previous study with SRB strains isolated from a coastal wetland suggested that the specific Hg methylation rate found was approximately an order of magnitude higher in biofilm cells than in planktonic cells. In order to investigate possible reasons for this observed difference, and to test if this phenomenon is observed in other strains, we conducted chloroform, fluroacetate and molybdate inhibition assays in both complete and incomplete-oxidizing SRB species (Desulfovibrio desulfuricans M8, Desulfococcus sp. Desulfobactor sp. BG8) grown in planktonic and biofilm form, as the acetyl- coenzyme A pathway involved with cobalamin has been hypothesized to be the pathway for Hg methylation. The purpose of this study was to probe whether differences in the enzymatically catalyzed process caused differential methylation rates between the species and also between the different forms of culture growth. Any attempts to control the environmentally undesirable Hg methylation process would benefit from a better understanding of the biochemical mechanism involved.

  11. Cyclic-di-GMP signalling regulates motility and biofilm formation in Bordetella bronchiseptica

    PubMed Central

    Sisti, Federico; Ha, Dae-Gon; O'Toole, George A.; Hozbor, Daniela

    2013-01-01

    The signalling molecule bis-(3?–5?)-cyclic-dimeric guanosine monophosphate (c-di-GMP) is a central regulator of diverse cellular functions, including motility, biofilm formation, cell cycle progression and virulence, in bacteria. Multiple diguanylate cyclase and phosphodiesterase-domain-containing proteins (GGDEF and EAL/HD-GYP, respectively) modulate the levels of the second messenger c-di-GMP to transmit signals and obtain such specific cellular responses. In the genus Bordetella this c-di-GMP network is poorly studied. In this work, we evaluated the expression of two phenotypes in Bordetella bronchiseptica regulated by c-di-GMP, biofilm formation and motility, under the influence of ectopic expression of Pseudomonas aeruginosa proteins with EAL or GGDEF domains that regulates the c-di-GMP level. In agreement with previous reports for other bacteria, we observed that B. bronchiseptica is able to form biofilm and reduce its motility only when GGDEF domain protein is expressed. Moreover we identify a GGDEF domain protein (BB3576) with diguanylate cyclase activity that participates in motility and biofilm regulation in B. bronchiseptica. These results demonstrate for the first time, to our knowledge, the presence of c-di-GMP regulatory signalling in B. bronchiseptica. PMID:23475948

  12. Deletion of ?54 (rpoN) Alters the Rate of Autolysis and Biofilm Formation in Enterococcus faecalis

    PubMed Central

    Iyer, Vijayalakshmi S.

    2012-01-01

    Transcription initiation is a critical step in bacterial gene regulation and is often controlled by transcription regulators. The alternate sigma factor (?54) is one such regulator that facilitates activator-dependent transcription initiation and thus modulates the expression of a variety of genes involved in metabolism and pathogenesis in bacteria. This study describes the role of ?54 in the nosocomial pathogen Enterococcus faecalis. Biofilm formation is one of the important pathogenic mechanisms of E. faecalis, as it elevates the organism's potential to cause surgical site and urinary tract infections. Lysis of bacterial cells within the population contributes to biofilm formation by providing extracellular DNA (eDNA) as a key component of the biofilm matrix. Deletion of rpoN rendered E. faecalis resistant to autolysis, which in turn impaired eDNA release. Despite the significant reduction in eDNA levels compared to the parental strain, the rpoN mutant formed more robust biofilms as observed using laser scanning confocal microscopy and Comstat analysis, indicating and emphasizing the presence of other matrix components. Initial adherence to a polystyrene surface was also enhanced in the mutant. Proteinase K treatment at early stages of biofilm development significantly reduced the accumulation of biofilm by the rpoN mutant. In conclusion, our data indicate that other factors in addition to eDNA might contribute to the overall composition of the enterococcal biofilm and that the regulatory role of ?54 governs the nature and composition of the biofilm matrix. PMID:22081387

  13. Coexistence and survival of pathogenic leptospires by formation of biofilm with Azospirillum.

    PubMed

    Vinod Kumar, K; Lall, Chandan; Raj, R Vimal; Vedhagiri, K; Vijayachari, P

    2015-06-01

    Pathogenic Leptospira spp. represent one cause of leptospirosis worldwide and have long been regarded as solitary organisms in soil and aquatic environments. However, in the present study, Leptospira interrogans was observed to be associated with environmental biofilms with 21 bacterial isolates belonging to 10 genera. All 21 isolates were examined for their coaggregation and biofilm-forming ability with leptospires in vitro. Among these, Azospirillum brasilense RMRCPB showed maximum interspecies coaggregation with leptospiral strains (>75%, visual score of +4). Other significant coaggregating isolates belonged to the genera Sphingomonas, Micrococcus, Brevundimonas, Acinetobacter and Paracoccus. Biofilms of leptospires in combination with A. brasilense RMRCPB showed high resistance to penicillin G, ampicillin and tetracycline (minimum bactericidal concentration ?800 ?g/mL) and tolerance to UV radiation and high temperature (up to 49°C). This study hypothesized that biofilm formation with A. brasilense protects the pathogenic Leptospira from adverse environmental conditions/stress. This coexistence of pathogenic Leptospira with other bacteria may be the key factor for its persistence and survival. However, the mechanism of biofilm formation by leptospires needs to be explored to help devise an appropriate control strategy and reduce transmission of leptospires. PMID:25962762

  14. A Systems-Level Approach for Investigating Pseudomonas aeruginosa Biofilm Formation

    E-print Network

    Wood, Thomas K.

    A Systems-Level Approach for Investigating Pseudomonas aeruginosa Biofilm Formation Zhaobin Xu Prevention of the initiation of biofilm formation is the most important step for combating biofilm-associated pathogens, as the ability of pathogens to resist antibiotics is enhanced 10 to 1000 times once biofilms

  15. Antifouling potential of bacteria isolated from a marine biofilm

    NASA Astrophysics Data System (ADS)

    Gao, Min; Wang, Ke; Su, Rongguo; Li, Xuzhao; Lu, Wei

    2014-10-01

    Marine microorganisms are a new source of natural antifouling compounds. In this study, two bacterial strains, Kytococcus sedentarius QDG-B506 and Bacillus cereus QDG-B509, were isolated from a marine biofilm and identified. The bacteria fermentation broth could exert inhibitory effects on the growth of Skeletonema costatum and barnacle larvae. A procedure was employed to extract and identify the antifouling compounds. Firstly, a toxicity test was conducted by graduated pH and liquid-liquid extraction to determine the optimal extraction conditions. The best extraction conditions were found to be pH 2 and 100% petroleum ether. The EC 50 value of the crude extract of K. sedentarius against the test microalgae was 236.7 ± 14.08 ?g mL-1, and that of B. cereus was 290.6 ± 27.11 ?g mL-1. Secondly, HLB SPE columns were used to purify the two crude extracts. After purification, the antifouling activities of the two extracts significantly increased: the EC 50 of the K. sedentarius extract against the test microalgae was 86.4 ± 3.71 ?g mL-1, and that of B. cereus was 92.6 ± 1.47 ?g mL-1. These results suggest that the metabolites produced by the two bacterial strains are with high antifouling activities and they should be fatty acid compounds. Lastly, GC-MS was used for the structural elucidation of the compounds. The results show that the antifouling compounds produced by the two bacterial strains are myristic, palmitic and octadecanoic acids.

  16. Bactericidal Activity of N-Chlorotaurine against Biofilm-Forming Bacteria Grown on Metal Disks

    PubMed Central

    Ammann, Christoph G.; Fille, Manfred; Hausdorfer, Johann; Nogler, Michael

    2014-01-01

    Many orthopedic surgeons consider surgical irrigation and debridement with prosthesis retention as a treatment option for postoperative infections. Usually, saline solution with no added antimicrobial agent is used for irrigation. We investigated the activity of N-chlorotaurine (NCT) against various biofilm-forming bacteria in vitro and thereby gained significant information on its usability as a soluble and well-tolerated active chlorine compound in orthopedic surgery. Biofilms of Staphylococcus aureus were grown on metal alloy disks and in polystyrene dishes for 48 h. Subsequently, they were incubated for 15 min to 7 h in buffered solutions containing therapeutically applicable concentrations of NCT (1%, 0.5%, and 0.1%; 5.5 to 55 mM) at 37°C. NCT inactivated the biofilm in a time- and dose-dependent manner. Scanning electron microscopy revealed disturbance of the biofilm architecture by rupture of the extracellular matrix. Assays with reduction of carboxanilide (XTT) showed inhibition of the metabolism of the bacteria in biofilms. Quantitative cultures confirmed killing of S. aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa biofilms on metal alloy disks by NCT. Clinical isolates were slightly more resistant than ATCC type strains, but counts of CFU were reduced at least 10-fold by 1% NCT within 15 min in all cases. NCT showed microbicidal activity against various bacterial strains in biofilms. Whether this can be transferred to the clinical situation should be the aim of future studies. PMID:24492358

  17. Secretory IgA and mucin-mediated biofilm formation by environmental strains of Escherichia coli: role of type 1 pili.

    PubMed

    Bollinger, R Randal; Everett, Mary Lou; Wahl, Shaina D; Lee, Yu-Huei; Orndorff, Paul E; Parker, William

    2006-02-01

    Recent studies suggest the importance of secretory IgA (SIgA) and mucin in the mediation of biofilm formation by commensal bacteria within the mammalian gut. Studies using a variety of strains of Escherichia coli have indicated that the interaction between E. coli and SIgA is dependent on the type 1 pilus. In this study, the importance of the pilus in SIgA-mediated biofilm formation by a laboratory strain (MG1655) and environmental (fecal) strains of E. coli was evaluated. Transient expression of the type 1 pilus by the laboratory strain of E. coli failed to facilitate SIgA-mediated biofilm formation, whereas constitutive expression of the type 1 pilus by the laboratory strain was sufficient. In contrast, transient expression of the type 1 pilus was sufficient to facilitate SIgA-mediated biofilm formation by environmental isolates. The "threshold" for mucin-mediated biofilm formation appeared to be lower than that for SIgA-mediated biofilm formation, perhaps reflecting disparate roles of mucin and SIgA in mediating biofilm formation in the gut. These studies also provide the first procedures for the growth of bacterial biofilms on live epithelial cells in vitro, an important development that may facilitate future studies on the effects of bacterial biofilms on epithelial cells. PMID:16310051

  18. AI-2/LuxS Is Involved in Increased Biofilm Formation by Streptococcus intermedius in the Presence of Antibiotics?

    PubMed Central

    Ahmed, Nibras A.; Petersen, Fernanda C.; Scheie, Anne A.

    2009-01-01

    Bacteria utilize quorum-sensing communication to organize their behavior by monitoring the concentration of bacterial signals, referred to as autoinducers (AIs). The widespread detection of AI-2 signals and its enzymatic synthase (LuxS) in bacteria suggests that AI-2 is an inter- and intraspecies communication signal. We have previously shown that antibiotic susceptibility is affected by AI-2 signaling in Streptococcus anginosus. Since chronic infections involve persistent biofilms resilient to antibiotic treatment, we explored the role of AI-2/LuxS in Streptococcus intermedius biofilm formation and cell viability when the organism was exposed to sub-MICs of ampicillin, ciprofloxacin, or tetracycline. The S. intermedius wild type (WT) and its isogenic luxS mutant, strain SI006, were exposed to sub-MICs of ampicillin, ciprofloxacin, or tetracycline. Biofilms were formed on polystyrene discs in microtiter plates. To assess planktonic cell viability, the ATP microbial viability assay was performed and the numbers of CFU were determined. For complementation assays, the AI-2 precursor dihydroxy pentanedione (DPD) was used as a supplement for SI006. Relative luxS expression was quantified by real-time PCR. The sub-MICs of all three antibiotics increased biofilm formation in S. intermedius WT. However, biofilm formation by SI006 was either unaffected or reduced (P ? 0.05). Bacterial viability tests of biofilm and planktonic cell cultures indicated that SI006 was more susceptible to antibiotics than the WT. DPD complemented the luxS mutant phenotype. Real-time PCR revealed modest yet significant changes in luxS expression in the presence of antibiotic concentrations that increased biofilm formation. In conclusion, in S. intermedius, AI-2/LuxS was involved in antibiotic susceptibility and increased biofilm formation at sub-MICs of antibiotic. PMID:19596873

  19. AI-2/LuxS is involved in increased biofilm formation by Streptococcus intermedius in the presence of antibiotics.

    PubMed

    Ahmed, Nibras A; Petersen, Fernanda C; Scheie, Anne A

    2009-10-01

    Bacteria utilize quorum-sensing communication to organize their behavior by monitoring the concentration of bacterial signals, referred to as autoinducers (AIs). The widespread detection of AI-2 signals and its enzymatic synthase (LuxS) in bacteria suggests that AI-2 is an inter- and intraspecies communication signal. We have previously shown that antibiotic susceptibility is affected by AI-2 signaling in Streptococcus anginosus. Since chronic infections involve persistent biofilms resilient to antibiotic treatment, we explored the role of AI-2/LuxS in Streptococcus intermedius biofilm formation and cell viability when the organism was exposed to sub-MICs of ampicillin, ciprofloxacin, or tetracycline. The S. intermedius wild type (WT) and its isogenic luxS mutant, strain SI006, were exposed to sub-MICs of ampicillin, ciprofloxacin, or tetracycline. Biofilms were formed on polystyrene discs in microtiter plates. To assess planktonic cell viability, the ATP microbial viability assay was performed and the numbers of CFU were determined. For complementation assays, the AI-2 precursor dihydroxy pentanedione (DPD) was used as a supplement for SI006. Relative luxS expression was quantified by real-time PCR. The sub-MICs of all three antibiotics increased biofilm formation in S. intermedius WT. However, biofilm formation by SI006 was either unaffected or reduced (P < or = 0.05). Bacterial viability tests of biofilm and planktonic cell cultures indicated that SI006 was more susceptible to antibiotics than the WT. DPD complemented the luxS mutant phenotype. Real-time PCR revealed modest yet significant changes in luxS expression in the presence of antibiotic concentrations that increased biofilm formation. In conclusion, in S. intermedius, AI-2/LuxS was involved in antibiotic susceptibility and increased biofilm formation at sub-MICs of antibiotic. PMID:19596873

  20. Biofilm-forming bacteria can self-attract by chemotaxis, but only part of the population gets the message

    NASA Astrophysics Data System (ADS)

    Cai, Qiuxian; Ouyang, Qi; Gordon, Vernita

    2015-03-01

    Chemotaxis has been shown to be important for the formation of P. aeruginosa biofilms, but the specific role of chemotaxis in the biofilm-formation process has been unknown. Using a recently-developed microfluidic device for assaying chemotaxis, we show that P. aeruginosa will chemotax towards its own cellular products. This could act to magnify small heterogeneities in density and promote the accumulation of a high density of bacteria, as in a biofilm. The paradigmatic model organism for chemotaxis is E. coli. E. coli has multiple flagella and uses these to swim with a run-and-tumble random walk, biasing its runs towards chemoattractant. However, P. aeruginosa has only a single polar flagellum and therefore in a bulk fluid can only go forward and backward (with small changes in angle possible). This would seem to pose a significant barrier to efficient chemotaxis. We find that the efficiency of P. aeruginosa chemotaxis depends strongly on the initial swimming direction as well as the steepness of the sensed gradient of chemoattractant. Cells swimming up a sufficiently-steep gradient continue going up and do not reverse direction; the remainder show no chemotactally-directed motion. Thus, populations of P. aeruginosa show bimodal response to chemoattractant. Higher levels of chemoattractant increase overall chemotaxis not by increasing swimming speed but by increasing the proportion of bacteria that are in the chemotaxing sub-population.

  1. Nanostructured selenium for preventing biofilm formation on polycarbonate medical devices.

    PubMed

    Wang, Qi; Webster, Thomas J

    2012-12-01

    Biofilms are a common cause of persistent infections on medical devices as they are easy to form and hard to treat. The objective of this study was for the first time to coat selenium (a natural element in the body) nanoparticles on the surface of polycarbonate medical devices (such as those used for medical catheters) and to examine their effectiveness at preventing biofilm formation. The size and distribution of selenium coatings were characterized using scanning electron microscopy and atomic force microscopy. The strength of the selenium coating on polycarbonate was assessed by tape-adhesion tests followed by atomic absorption spectroscopy. Results showed that selenium nanoparticles had a diameter of 50-100 nm and were well distributed on the polycarbonate surface. In addition, more than 50% of the selenium coating survived the tape-adhesion test as larger nanoparticles had less adhesion strength to the underlying polycarbonate substrate than smaller selenium nanoparticles. Most significantly, the results of this in vitro study showed that the selenium coatings on polycarbonate significantly inhibited Staphylococcus aureus growth to 8.9% and 27% when compared with an uncoated polycarbonate surface after 24 and 72 h, respectively. Importantly, this was accomplished without using antibiotics but rather with an element (selenium) that is natural to the human body. Thus, this study suggests that coating polymers (particularly, polycarbonate) with nanostructured selenium is a fast and effective way to reduce bacteria functions that lead to medical device infections. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 100A: 3205-3210, 2012. PMID:22707390

  2. The Type II Secretion System Delivers Matrix Proteins for Biofilm Formation by Vibrio cholerae

    PubMed Central

    Johnson, Tanya L.; Fong, Jiunn C.; Rule, Chelsea; Rogers, Andrew; Yildiz, Fitnat H.

    2014-01-01

    Gram-negative bacteria have evolved several highly dedicated pathways for extracellular protein secretion, including the type II secretion (T2S) system. Since substrates secreted via the T2S system include both virulence factors and degradative enzymes, this secretion system is considered a major survival mechanism for pathogenic and environmental species. Previous analyses revealed that the T2S system mediates the export of ?20 proteins in Vibrio cholerae, a human pathogen that is indigenous to the marine environment. Here we demonstrate a new role in biofilm formation for the V. cholerae T2S system, since wild-type V. cholerae was found to secrete the biofilm matrix proteins RbmC, RbmA, and Bap1 into the culture supernatant, while an isogenic T2S mutant could not. In agreement with this finding, the level of biofilm formation in a static microtiter assay was diminished in T2S mutants. Moreover, inactivation of the T2S system in a rugose V. cholerae strain prevented the development of colony corrugation and pellicle formation at the air-liquid interface. In contrast, extracellular secretion of the exopolysaccharide VPS, an essential component of the biofilm matrix, remained unaffected in the T2S mutants. Our results indicate that the T2S system provides a mechanism for the delivery of extracellular matrix proteins known to be important for biofilm formation by V. cholerae. Because the T2S system contributes to the pathogenicity of V. cholerae by secreting proteins such as cholera toxin and biofilm matrix proteins, elucidation of the molecular mechanism of T2S has the potential to lead to the development of novel preventions and therapies. PMID:25266381

  3. Influence of curli expression on biofilm formation and attachment to plant surface by shiga toxigenic E. coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga-toxigenic Escherichia coli O157:H7 (STEC) outbreaks have been linked to consumption of fresh produce. Bacteria extracellular appendages, such as curli fibers and cellulose may play critical role in STEC biofilm formation and adherence to plant surface. We determined cellulose and curli product...

  4. Formation and regulation of Yersinia biofilms

    Microsoft Academic Search

    Dongsheng Zhou; Ruifu Yang

    2011-01-01

    Flea-borne transmission is a recent evolutionary adaptation that distinguishes the deadly Yersinia pestis from its progenitor Y. Pseudotuberculosis, a mild pathogen transmitted via the food-borne route. Y. Pestis synthesizes biofilms in the flea gut, which is important for fleaborne transmission. Yersinia biofilms are bacterial colonies surrounded by extracellular matrix primarily containing a homopolymer of N-acetyl-D-glucosamine that are synthesized by a

  5. A green biocide enhancer for the treatment of sulfate-reducing bacteria (SRB) biofilms on carbon steel surfaces using glutaraldehyde

    E-print Network

    Gu, Tingyue

    A green biocide enhancer for the treatment of sulfate-reducing bacteria (SRB) biofilms on carbon, was found to enhance the efficacy of glutaraldehyde in its treatment of sulfate- reducing bacteria (SRB dosages considerably in the inhibition of SRB biofilm establishment and the treatment of established

  6. Biofilm-forming bacteria with varying tolerance to peracetic acid from a paper machine.

    PubMed

    Rasimus, Stiina; Kolari, Marko; Rita, Hannu; Hoornstra, Douwe; Salkinoja-Salonen, Mirja

    2011-09-01

    Biofilms cause runnability problems in paper machines and are therefore controlled with biocides. Peracetic acid is usually effective in preventing bulky biofilms. This study investigated the microbiological status of a paper machine where low concentrations (? 15 ppm active ingredient) of peracetic acid had been used for several years. The paper machine contained a low amount of biofilms. Biofilm-forming bacteria from this environment were isolated and characterized by 16S rRNA gene sequencing, whole-cell fatty acid analysis, biochemical tests, and DNA fingerprinting. Seventy-five percent of the isolates were identified as members of the subclades Sphingomonas trueperi and S. aquatilis, and the others as species of the genera Burkholderia (B. cepacia complex), Methylobacterium, and Rhizobium. Although the isolation media were suitable for the common paper machine biofoulers Deinococcus, Meiothermus, and Pseudoxanthomonas, none of these were found, indicating that peracetic acid had prevented their growth. Spontaneous, irreversible loss of the ability to form biofilm was observed during subculturing of certain isolates of the subclade S. trueperi. The Sphingomonas isolates formed monoculture biofilms that tolerated peracetic acid at concentrations (10 ppm active ingredient) used for antifouling in paper machines. High pH and low conductivity of the process waters favored the peracetic acid tolerance of Sphingomonas sp. biofilms. This appears to be the first report on sphingomonads as biofilm formers in warm water using industries. PMID:21161323

  7. Resistance of Pseudomonas aeruginosa to liquid disinfectants on contaminated surfaces before formation of biofilms.

    PubMed

    Sagripanti, J L; Bonifacino, A

    2000-01-01

    A comparison was made of the effectiveness of popular disinfectants (Cavicide, Cidexplus, Clorox, Exspor, Lysol, Renalin, and Wavicide) under conditions prescribed for disinfection in the respective product labels on Pseudomonas aeruginosa either in suspension or deposited onto surfaces of metallic or polymeric plastic devices. The testing also included 7 nonformulated germicidal agents (glutaraldehyde, formaldehyde, peracetic acid, hydrogen peroxide, sodium hypochlorite, phenol, and cupric ascorbate) commonly used in disinfection and decontamination. Results showed that P. aeruginosa is on average 300-fold more resistant when present on contaminated surfaces than in suspension. This increase in resistance agrees with results reported in studies of biofilms, but unexpectedly, it precedes biofilm formation. The surface to which bacteria are attached can influence the effectiveness of disinfectants. Viable bacteria attached to devices may require dislodging through more than a one-step method for detection. The data, obtained with a sensitive and quantitative test, suggest that disinfectants are less effective on contaminated surfaces than generally acknowledged. PMID:11128146

  8. Biofilm streamer formation in a microfluidic porous media mimic

    NASA Astrophysics Data System (ADS)

    Kumar, Aloke; Valiei, Amin; Mukherjee, Partha; Liu, Yang; Thundat, Thomas

    2013-03-01

    Biofilm formation in porous media is of significant importance in many environmental and industrial processes such as bioremediation, oil recovery, and wastewater treatment. Among different biological and environmental factors, hydrodynamics is considered an important determinant of the dynamics of biofilm formation. In the present study, we fabricated a microfluidic porous media mimic and investigated how fluid flow influences the formation of filamentous structures, known as streamers, between porous media structures. Streamers are viscoelastic materials composed of extracellular polymeric substances (EPS) and bacterial cells, and these filamentous structures are typically tethered at either one of both ends to surfaces. We studied evolution of streamers in different flow rates and identified a tangible link between hydrodynamic conditions and development of these filamentous structures. Our results show that hydrodynamic conditions not only determine the limit of the streamers formation, but also influence both temporal evolution and spatial organization of biofilm streamers.

  9. Spatial and temporal dynamics of cellulose degradation and biofilm formation by Caldicellulosiruptor obsidiansis and Clostridium thermocellum Caldicellulosiruptor obsidiansis

    SciTech Connect

    Wang, Zhiwu [ORNL; Lee, Sueng-Hwan [National Institute of Advanced Industrial Science and Technology, Japan; Elkins, James G [ORNL; Morrell-Falvey, Jennifer L [ORNL

    2011-01-01

    Cellulose degradation is one of the major bottlenecks of a consolidated bioprocess that employs cellulolytic bacterial cells as catalysts to produce biofuels from cellulosic biomass. In this study, we investigated the spatial and temporal dynamics of cellulose degradation by Caldicellulosiruptor obsidiansis, which does not produce cellulosomes, and Clostridium thermocellum, which does produce cellulosomes. Results showed that the degradation of either regenerated or natural cellulose was synchronized with biofilm formation, a process characterized by the formation and fusion of numerous crater-like depressions on the cellulose surface. In addition, the dynamics of biofilm formation were similar in both bacteria, regardless of cellulosome production. Only the areas of cellulose surface colonized by microbes were significantly degraded, highlighting the essential role of the cellulolytic biofilm in cellulose utilization. After initial attachment, the microbial biofilm structure remained thin, uniform and dense throughout the experiment. A cellular automaton model, constructed under the assumption that the attached cells divide and produce daughter cells that contribute to the hydrolysis of the adjacent cellulose, can largely simulate the observed process of biofilm formation and cellulose degradation. This study presents a model, based on direct observation, correlating cellulolytic biofilm formation with cellulose degradation.

  10. fSpatial and temporal dynamics of cellulose degradation and biofilm formation by Caldicellulosiruptor obsidiansis and Clostridium thermocellum

    PubMed Central

    2011-01-01

    Cellulose degradation is one of the major bottlenecks of a consolidated bioprocess that employs cellulolytic bacterial cells as catalysts to produce biofuels from cellulosic biomass. In this study, we investigated the spatial and temporal dynamics of cellulose degradation by Caldicellulosiruptfor obsidiansis, which does not produce cellulosomes, and Clostridium thermocellum, which does produce cellulosomes. Results showed that the degradation of either regenerated or natural cellulose was synchronized with biofilm formation, a process characterized by the formation and fusion of numerous crater-like depressions on the cellulose surface. In addition, the dynamics of biofilm formation were similar in both bacteria, regardless of cellulosome production. Only the areas of cellulose surface colonized by microbes were significantly degraded, highlighting the essential role of the cellulolytic biofilm in cellulose utilization. After initial attachment, the microbial biofilm structure remained thin, uniform and dense throughout the experiment. A cellular automaton model, constructed under the assumption that the attached cells divide and produce daughter cells that contribute to the hydrolysis of the adjacent cellulose, can largely simulate the observed process of biofilm formation and cellulose degradation. This study presents a model, based on direct observation, correlating cellulolytic biofilm formation with cellulose degradation. PMID:21982458

  11. Inhibition of biofilm formation and antibacterial properties of a silver nano-coating on human dentine.

    PubMed

    Besinis, Alexandros; De Peralta, Tracy; Handy, Richard D

    2014-11-01

    The survival of pathogenic bacteria in the oral cavity depends on their successful adhesion to dental surfaces and their ability to develop into biofilms, known as dental plaque. Bacteria from the dental plaque are responsible for the development of dental caries, gingivitis, periodontitis, stomatitis and peri-implantitis. Certain metal nanoparticles have been suggested for infection control and the management of the oral biofilm. Here, it is shown that application of a silver nano-coating directly on dentine can successfully prevent the biofilm formation on dentine surfaces as well as inhibit bacterial growth in the surrounding media. This silver nano-coating was found to be stable (>98.8%) and to maintain its integrity in biological fluids. Its antibacterial activity was compared to silver nitrate and the widely used clinical antiseptic, chlorhexidine. The bacterial growth and cell viability were quantitatively assessed by measuring the turbidity, proportion of live and dead cells and lactate production. All three bioassays showed that silver nanoparticles and silver nitrate dentine coatings were equally highly bactericidal (>99.5%), while inhibiting bacterial adhesion. However, the latter caused significant dentine discolouration (?E* = 50.3). The chlorhexidine coating showed no antibacterial effect. Thus, silver nanoparticles may be a viable alternative to both chlorhexidine and silver nitrate, protecting from dental plaque and secondary caries when applied as a dentine coating, while they may provide the platform for creating anti-biofilm surfaces in medical devices and other biomedical applications. PMID:23875717

  12. Studies to control biofilm formation by coupling ultrasonication of natural waters and anodization of titanium.

    PubMed

    Nithila, S D Ruth; Anandkumar, B; Vanithakumari, S C; George, R P; Mudali, U Kamachi; Dayal, R K

    2014-01-01

    The main objective of this study was to investigate the combined effect of ultrasonication of natural waters and anodization of titanium on microbial density and biofilm formation tendency on titanium surfaces. Application of 24 kHz, 400 W high power ultrasound through a 14 mm horn type SS (stainless steel) Sonicator with medium amplitude of 60% for 30 min brought about three order decrease in total bacterial density of laboratory tap water, cooling tower water and reservoir water and two order decrease in seawater. Studies on the effect of ultrasonication on dilute pure cultures of Gram-negative and Gram-positive bacteria showed five order and three order decrease for Pseudomonas sp. and Flavobacterium sp. respectively and two order and less than one order decrease for Bacillus sp. and Micrococcus sp. respectively. Ultrasonication increased lag phase and reduced logarithmic population increase and specific growth rate of Gram-negative bacteria whereas for Gram-positive bacteria specific growth rate increased. Studies on the biofilm formation tendency of these ultrasonicated mediums on titanium surface showed one order reduction under all conditions. Detailed biofilm imaging by advanced microscopic techniques like AFM, SEM and epifluorescence microscopy clearly visualized the lysed/damaged cells and membrane perforations due to ultrasonication. Combination of ultrasonication and anodization brought about maximum decrease in bacterial density and biofilm formation with greater than two order decrease in seawater, two order decrease in Bacillus sp. culture and more than four order decrease in Flavobacterium sp. culture establishing the synergistic effect of anodization and ultrasonication in this study. PMID:23871547

  13. [Inhibitory effect of macrolide antibiotics on biofilm formation by Pseudomonas aeruginosa].

    PubMed

    Kondoh, K; Hashiba, M

    1998-01-01

    In recent years, various medical indwelling devices have been developed and used. Bacteria adhering to these devices often cause refractory infection. In the field of otolaryngology, refractory infection accompanying these medical indwelling devices such as middle ear ventilation tubes and artificial auditory ossicles has been reported. The concept of bacterial biofilm infection has been suggested as an explanation for the refractory infection. Furthermore it has been reported that a bacterial biofilm is involved in refractory infection unrelated to medical indwelling devices. Topical biofilm formation was detected in patients with chronic sinusitis, chronic purulent otitis media or habitual tonsillitis. In this study, we morphologically and quantitatively examined the biofilm-forming capacity of a clinically isolated strain of mucoid type Psecudomonas aeruginosa on Teflon to investigate the effects of macrolide antibiotics on bacterial biofilm formation. In the morphological examination, P.aeruginosa was cultured together with a Teflon sheet in minimal medium containing various concentrations of the macrolide antibiotics clarithromycin (CAM), erythromycin (EM) and midecamycin (MDM), at 37 degrees C for 7 days. The surfaces of the Teflon sheets were examined by electron microscopy. The adherent bacteria and biofilm formation on Teflon sheets soaked in minimal medium containing CAM or EM were found to be decreased in a dose-dependent manner. However, in the Teflon sheets soaked in minimal medium containing MDM, there was no decrease in biofilm formation regardless of the MDM concentration. In the quantitative examination, P. aeruginosa was cultured in minimal medium containing various concentrations of the macrolide antibiotics at 37 degrees C for 7 days together with Teflon beads. The levels of hexose, protein and alginate adhering to the Telfon beads were quantified as an estimation of biofilm formation. On Teflon beads treated with CAM or EM, there were dose-dependent decreases in hexose, protein and alginate levels. In particular, marked decreases were noted when CAM and EM concentrations were 10 micrograms/ml or more. Furthermore, there was no significant difference between CAM and EM. However, in the presence of MDM, there was no decrease in hexose, protein or alginate levels regardless of the MDM concentration. The minimal inhibitory concentration (MIC100) of each macrolide against P. aeruginosa used in this experiment was 100 micrograms/ml or more. There may be no bactericidal effect on this strain at the macrolide concentrations used in this experiment. However, this experiment used 7-day treatment. The long-term bactericidal activity of macrolides was examined. In the presence of CAM or MDM, bacterial levels after culture were similar to preculture levels or slightly lower than the preculture levels. In the presence of EM, bacterial levels were similar to the preculture levels. These results demonstrated that CAM and EM, which are 14-membered macrolides inhibited biofilm formation, while MDM which is 16-membered macrolide, did not. These inhibitory effects of CAM and EM may be related to actions other than bactericidal activity. In our experiment, CAM and EM inhibited biofilm formation at 10 micrograms/ml or more. This concentration corresponded to 1/20 x MIC. This concentration can be achieved in tissues, nasal discharge and sputum with actual clinical doses. Therefore, these agents may be effective against biofilm disease caused by P. aeruginosa in the field of otolaryngology. PMID:9493436

  14. Immobilization of Rhodococcus rhodochrous BX2 (an acetonitrile-degrading bacterium) with biofilm-forming bacteria for wastewater treatment.

    PubMed

    Li, Chunyan; Li, Yue; Cheng, Xiaosong; Feng, Liping; Xi, Chuanwu; Zhang, Ying

    2013-03-01

    In this study, a unique biofilm consisting of three bacterial strains with high biofilm-forming capability (Bacillus subtilis E2, E3, and N4) and an acetonitrile-degrading bacterium (Rhodococcus rhodochrous BX2) was established for acetonitrile-containing wastewater treatment. The results indicated that this biofilm exhibited strong resistance to acetonitrile loading shock and displayed a typical spatial and structural heterogeneity and completely depleted the initial concentration of acetonitrile (800mgL(-1)) within 24h in a moving-bed-biofilm reactor (MBBR) after operation for 30days. The immobilization of BX2 cells in the biofilm was confirmed by PCR-DGGE. It has been demonstrated that biofilm-forming bacteria can promote the immobilization of contaminant-degrading bacteria in the biofilms and can subsequently improve the degradation of contaminants in wastewater. This approach offers a novel strategy for enhancing biological oxidation of toxic pollutants in wastewater. PMID:23376196

  15. Effect of Nutrition on In Vitro Biofilm Formation of Gastrointestinal Associated Microbes 

    E-print Network

    Hokazono, Asuka

    2013-04-28

    behavior in response to nutrients that pass through the GI system, a high throughput system to assess biofilm formation was developed. Gastrointestinal-associated microbes, Escherichia coli and Enterococcus faecalis, were assayed for biofilm formation...

  16. Effect of Nutrition on In Vitro Biofilm Formation of Gastrointestinal Associated Microbes

    E-print Network

    Hokazono, Asuka

    2013-04-28

    behavior in response to nutrients that pass through the GI system, a high throughput system to assess biofilm formation was developed. Gastrointestinal-associated microbes, Escherichia coli and Enterococcus faecalis, were assayed for biofilm formation...

  17. Spatial Architecture of Nitrifying Bacteria Biofilm Immobilized on Polyurethane Foam in an Automatic Biodetector for Water Toxicity.

    PubMed

    Woznica, Andrzej; Karcz, Jagna; Nowak, Agnieszka; Gmur, Aleksander; Bernas, Tytus

    2010-09-01

    We describe the architecture of nitrifying bacteria biofilms immobilized on a three-dimensional (3D) polyurethane foam that permits efficient water flow through a bioreactor. The 3D spatial organization of immobilized bacterial colonies is characterized on three resolution levels with X-ray tomography, light confocal microscopy, and scanning electron microscopy (SEM). Using these techniques we demonstrate biofilm distribution in the foam and the existence of several modes of binding of bacteria to the foam. Computed X-ray tomography permits observation of the distribution of the biofilm in the whole open cellular polyurethane material volume and estimation of biofilm volume. SEM and confocal laser scanning microscopy techniques permit 3D visualization of biofilm structure. Three distinct immobilization patterns could be observed in the open cellular polyurethane material: (1) large irregular aggregates of bacterial biofilm that exist as irregular biofilm fragments, rope-like structures, or biofilm layers on the foam surface; (2) spherical (pom-pom) aggregates of bacteria localized on the external surface of biofilm; and (3) biofilm threads adherent to the surface of polyurethane foam. Finally, we demonstrate that immobilized bacteria exhibit metabolic activity and growth. PMID:20810011

  18. The formation of green rust induced by tropical river biofilm components

    E-print Network

    Paris-Sud XI, Université de

    The formation of green rust induced by tropical river biofilm components Running title: Green rust from ferruginous biofilms 5 Frédéric Jorand, Asfaw Zegeye, Jaafar Ghanbaja, Mustapha Abdelmoula), a dense red biofilm grows on flooded15 surfaces. In order to characterize the iron oxides in this biofilm

  19. Quorum Sensing Controls Biofilm Formation in Vibrio cholerae through Modulation of Cyclic Di-GMP Levels and Repression of vpsT

    Microsoft Academic Search

    Christopher M. Waters; Wenyun Lu; Joshua D. Rabinowitz; Bonnie L. Bassler

    2008-01-01

    Two chemical signaling systems, quorum sensing (QS) and 3,5-cyclic diguanylic acid (c-di-GMP), recip- rocally control biofilm formation in Vibrio cholerae. QS is the process by which bacteria communicate via the secretion and detection of autoinducers, and in V. cholerae, QS represses biofilm formation. c-di-GMP is an intracellular second messenger that contains information regarding local environmental conditions, and in V. cholerae,

  20. Current concepts in biofilm formation of Staphylococcus epidermidis

    PubMed Central

    Fey, Paul D; Olson, Michael E

    2010-01-01

    Staphylococcus epidermidis is a highly significant nosocomial pathogen mediating infections primarily associated with indwelling biomaterials (e.g., catheters and prostheses). In contrast to Staphylococcus aureus, virulence properties associated with S. epidermidis are few and biofilm formation is the defining virulence factor associated with disease, as demonstrated by animal models of biomaterial-related infections. However, other virulence factors, such as phenol-soluble modulins and poly-?-DL-glutamic acid, have been recently recognized that thwart innate immune system mechanisms. Formation of S. epidermidis biofilm is typically considered a four-step process consisting of adherence, accumulation, maturation and dispersal. This article will discuss recent advances in the study of these four steps, including accumulation, which can be either polysaccharide or protein mediated. It is hypothesized that studies focused on understanding the biological function of each step in staphylococcal biofilm formation will yield new treatment modalities to treat these recalcitrant infections. PMID:20521936

  1. Biofilm Formation by Mycobacterium bovis: Influence of Surface Kind and Temperatures of Sanitizer Treatments on Biofilm Control

    PubMed Central

    Adetunji, Victoria O.; Kehinde, Aderemi O.; Bolatito, Olayemi K.; Chen, Jinru

    2014-01-01

    Mycobacterium bovis causes classic bovine tuberculosis, a zoonosis which is still a concern in Africa. Biofilm forming ability of two Mycobacterium bovis strains was assessed on coupons of cement, ceramic, or stainless steel in three different microbiological media at 37°C with agitation for 2, 3, or 4 weeks to determine the medium that promotes biofilm. Biofilm mass accumulated on coupons was treated with 2 sanitizers (sanitizer A (5.5?mg?L?1 active iodine) and sanitizer B (170.6?g1 alkyl dimethylbenzyl ammonium chloride, 78?g?1 didecyldimethyl ammonium chloride, 107.25?g?L?1 glutaraldehyde, 146.25?g?L?1 isopropanol, and 20?g?L?1 pine oil) at 28 and 45°C and in hot water at 85°C for 5?min. Residual biofilms on treated coupons were quantified using crystal violet binding assay. The two strains had a similar ability to form biofilms on the three surfaces. More biofilms were developed in media containing 5% liver extract. Biofilm mass increased as incubation time increased till the 3rd week. More biofilms were formed on cement than on ceramic and stainless steel surfaces. Treatment with hot water at 85°C reduced biofilm mass, however, sanitizing treatments at 45°C removed more biofilms than at 28°C. However, neither treatment completely eliminated the biofilms. The choice of processing surface and temperatures used for sanitizing treatments had an impact on biofilm formation and its removal from solid surfaces. PMID:24991540

  2. Biofilm formation by Mycobacterium bovis: influence of surface kind and temperatures of sanitizer treatments on biofilm control.

    PubMed

    Adetunji, Victoria O; Kehinde, Aderemi O; Bolatito, Olayemi K; Chen, Jinru

    2014-01-01

    Mycobacterium bovis causes classic bovine tuberculosis, a zoonosis which is still a concern in Africa. Biofilm forming ability of two Mycobacterium bovis strains was assessed on coupons of cement, ceramic, or stainless steel in three different microbiological media at 37°C with agitation for 2, 3, or 4 weeks to determine the medium that promotes biofilm. Biofilm mass accumulated on coupons was treated with 2 sanitizers (sanitizer A (5.5?mg?L(-1) active iodine) and sanitizer B (170.6?g(1) alkyl dimethylbenzyl ammonium chloride, 78?g(-1) didecyldimethyl ammonium chloride, 107.25?g?L(-1) glutaraldehyde, 146.25?g?L(-1) isopropanol, and 20?g?L(-1) pine oil) at 28 and 45°C and in hot water at 85°C for 5?min. Residual biofilms on treated coupons were quantified using crystal violet binding assay. The two strains had a similar ability to form biofilms on the three surfaces. More biofilms were developed in media containing 5% liver extract. Biofilm mass increased as incubation time increased till the 3rd week. More biofilms were formed on cement than on ceramic and stainless steel surfaces. Treatment with hot water at 85°C reduced biofilm mass, however, sanitizing treatments at 45°C removed more biofilms than at 28°C. However, neither treatment completely eliminated the biofilms. The choice of processing surface and temperatures used for sanitizing treatments had an impact on biofilm formation and its removal from solid surfaces. PMID:24991540

  3. Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms

    Microsoft Academic Search

    R. I. Amann; J. Stromley; R. Devereux; D. A. Stahl

    1992-01-01

    The population architecture of sulfidogenic biofilms established in anaerobic fixed-bed bioreactors was characterized by selective polymerase chain reaction amplification and fluorescence microscopy. A region of the 16S rRNA common to resident sulfate-reducing bacteria was selectively amplified by the polymerase chain reaction. Sequences of amplification products, with reference to a collection of 16S rRNA sequences representing most characterized sulfate-reducing bacteria, were

  4. Impact of TiO2 Nanoparticles on Growth, Biofilm Formation, and Flavin Secretion in Shewanella oneidensis

    PubMed Central

    Maurer-Jones, Melissa A.; Gunsolus, Ian L.; Meyer, Ben M.; Christenson, Cole J.; Haynes, Christy L.

    2013-01-01

    Understanding of nanoparticle impacts on critical bacteria functions allows us to gain a mechanistic understanding of toxicity and guides us towards design rules for creating safe nanomaterials. Herein and using analytical techniques, biofilm formation, a general bacteria function, and riboflavin secretion, a species-specific function, were monitored in Shewanella oneidensis, a metal reducing bacterium, following exposure to a variety of TiO2 nanoparticle types (synthesized, Aeroxide P25, and T-Eco). TEM images show that dosed nanoparticles are in close proximity to the bacteria but they are not internalized. Using quartz crystal microbalance (QCM), it was revealed that S. oneidensis biofilm formation is slowed in the presence of nanoparticles. Though S. oneidensis grows more slowly in the presence of TiO2 nanoparticles, riboflavin secretion, a function related to the S. oneidensis metal reducing capacity, was increased significantly in a nanoparticle dose-dependent manner. Both changes in biofilm formation and riboflavin secretion are supported by changes in gene expression in nanoparticle-exposed S. oneidensis. This broad study of bacterial nanotoxicity, including use of sensitive analytical tools for functional assessments of biofilm formation, riboflavin secretion, and gene expression has implications for total ecosystem health as the use of engineered nanoparticles grows. PMID:23701037

  5. Type I and type IV pili of Xylella fastidiosa affect twitching motility, biofilm formation and cellcell

    E-print Network

    Meng, Yizhi

    Type I and type IV pili of Xylella fastidiosa affect twitching motility, biofilm formation and cell that type I and type IV pili of X. fastidiosa play different roles in twitching motility, biofilm formation and cell­cell aggregation. Type I pili are particularly important for biofilm formation and aggregation

  6. Connecting Quorum Sensing, c-di-GMP, Pel Polysaccharide, and Biofilm Formation in Pseudomonas

    E-print Network

    Wood, Thomas K.

    Connecting Quorum Sensing, c-di-GMP, Pel Polysaccharide, and Biofilm Formation in Pseudomonas on homoserine lactones was found to influence biofilm formation. Here we discern a mechanism by which quorum sensing controls biofilm formation by screening 5850 transposon mutants of P. aeruginosa PA14 for altered

  7. Adhesion and formation of microbial biofilms in complex microfluidic devices

    SciTech Connect

    Kumar, Aloke [ORNL; Karig, David K [ORNL; Neethirajan, Suresh [University of Guelph; Suresh, Anil K [ORNL; Srijanto, Bernadeta R [ORNL; Mukherjee, Partha P [ORNL; Retterer, Scott T [ORNL; Doktycz, Mitchel John [ORNL

    2012-01-01

    Shewanella oneidensis is a metal reducing bacterium, which is of interest for bioremediation and clean energy applications. S. oneidensis biofilms play a critical role in several situations such as in microbial energy harvesting devices. Here, we use a microfluidic device to quantify the effects of hydrodynamics on the biofilm morphology of S. oneidensis. For different rates of fluid flow through a complex microfluidic device, we studied the spatiotemporal dynamics of biofilms, and we quantified several morphological features such as spatial distribution, cluster formation and surface coverage. We found that hydrodynamics resulted in significant differences in biofilm dynamics. The baffles in the device created regions of low and high flow in the same device. At higher flow rates, a nonuniform biofilm develops, due to unequal advection in different regions of the microchannel. However, at lower flow rates, a more uniform biofilm evolved. This depicts competition between adhesion events, growth and fluid advection. Atomic force microscopy (AFM) revealed that higher production of extra-cellular polymeric substances (EPS) occurred at higher flow velocities.

  8. Inhibition of Gallic Acid on the Growth and Biofilm Formation of Escherichia coli and Streptococcus mutans.

    PubMed

    Shao, Dongyan; Li, Jing; Li, Ji; Tang, Ruihua; Liu, Liu; Shi, Junling; Huang, Qingsheng; Yang, Hui

    2015-06-01

    New strategies for biofilm inhibition are becoming highly necessary because of the concerns to synthetic additives. As gallic acid (GA) is a hydrolysated natural product of tannin in Chinese gall, this research studied the effects of GA on the growth and biofilm formation of bacteria (Escherichia coli [Gram-negative] and Streptococcus mutans [Gram-positive]) under different conditions, such as nutrient levels, temperatures (25 and 37 °C) and incubation times (24 and 48 h). The minimum antimicrobial concentration of GA against the two pathogenic organisms was determined as 8 mg/mL. GA significantly affected the growth curves of both test strains at 25 and 37 °C. The nutrient level, temperature, and treatment time influenced the inhibition activity of GA on both growth and biofim formation of tested pathogens. The inhibition effect of GA on biofilm could be due to other factors in addition to the antibacterial effect. Overall, GA was most effective against cultures incubated at 37 °C for 24 h and at 25 °C for 48 h in various concentrations of nutrients and in vegetable wash waters, which indicated the potential of GA as emergent sources of biofilm control products. PMID:25974286

  9. Triclosan causes toxic effects to algae in marine biofilms, but does not inhibit the metabolic activity of marine biofilm bacteria.

    PubMed

    Johansson, C Henrik; Janmar, Lisa; Backhaus, Thomas

    2014-07-15

    Effects of the antimicrobial agent triclosan to natural periphyton communities (biofilms, comprising primarily microalgae and bacteria) were assessed in two independent experiments during spring and summer. For that purpose a semi-static test system was used in which periphyton was exposed to a concentration range of 5-9054 nmol/L triclosan. Effects on algae were analyzed as content and composition of photosynthetic pigments. The corresponding EC50 values were 39.25 and 302.45 nmol/L for the spring and summer experiment, respectively. Effects on periphytic bacteria were assessed as effects on carbon utilization patterns, using Biolog Ecoplates. No inhibition of either total carbon utilization or functional diversity was observed, indicating a pronounced triclosan tolerance of the marine bacteria. In contrast, a small stimulation of the total carbon utilization was observed at triclosan concentrations exceeding 100 nmol/L. PMID:24928457

  10. Discovering Biofilms: Inquiry-Based Activities for the Classroom

    ERIC Educational Resources Information Center

    Redelman, Carly V.; Marrs, Kathleen; Anderson, Gregory G.

    2012-01-01

    In nature, bacteria exist in and adapt to different environments by forming microbial communities called "biofilms." We propose simple, inquiry-based laboratory exercises utilizing a biofilm formation assay, which allows controlled biofilm growth. Students will be able to qualitatively assess biofilm growth via staining. Recently, we developed a…

  11. Bacterial growth and biofilm formation in household-stored groundwater collected from public wells.

    PubMed

    Burkowska-But, Aleksandra; Kalwasi?ska, Agnieszka; Swiontek Brzezinska, Maria

    2015-06-01

    The research was aimed at assessing changes in the number of bacteria and evaluating biofilm formation in groundwater collected from public wells, both aspects directly related to the methods of household storage. In the research, water collected from Cretaceous aquifer wells in Toru? (Poland) was stored in a refrigerator and at room temperature. Microbiological parameters of the water were measured immediately after the water collection, and then after 3 and 7 days of storage under specified conditions. The microbiological examination involved determining the number of heterotrophic bacteria capable of growth at 22 and 37 °C, the number of spore-forming bacteria, and the total number of bacteria on membrane filters. The storage may affect water quality to such an extent that the water, which initially met the microbiological criteria for water intended for human consumption, may pose a health risk. The repeated use of the same containers for water storage results in biofilm formation containing live and metabolically active bacterial cells. PMID:26042968

  12. Biofilm in endodontics: A review

    PubMed Central

    Jhajharia, Kapil; Parolia, Abhishek; Shetty, K Vikram; Mehta, Lata Kiran

    2015-01-01

    Endodontic disease is a biofilm-mediated infection, and primary aim in the management of endodontic disease is the elimination of bacterial biofilm from the root canal system. The most common endodontic infection is caused by the surface-associated growth of microorganisms. It is important to apply the biofilm concept to endodontic microbiology to understand the pathogenic potential of the root canal microbiota as well as to form the basis for new approaches for disinfection. It is foremost to understand how the biofilm formed by root canal bacteria resists endodontic treatment measures. Bacterial etiology has been confirmed for common oral diseases such as caries and periodontal and endodontic infections. Bacteria causing these diseases are organized in biofilm structures, which are complex microbial communities composed of a great variety of bacteria with different ecological requirements and pathogenic potential. The biofilm community not only gives bacteria effective protection against the host's defense system but also makes them more resistant to a variety of disinfecting agents used as oral hygiene products or in the treatment of infections. Successful treatment of these diseases depends on biofilm removal as well as effective killing of biofilm bacteria. So, the fundamental to maintain oral health and prevent dental caries, gingivitis, and periodontitis is to control the oral biofilms. From these aspects, the formation of biofilms carries particular clinical significance because not only host defense mechanisms but also therapeutic efforts including chemical and mechanical antimicrobial treatment measures have the most difficult task of dealing with organisms that are gathered in a biofilm. The aim of this article was to review the mechanisms of biofilmsformation, their roles in pulpal and periapical pathosis, the different types of biofilms, the factors influencing biofilm formation, the mechanisms of their antimicrobial resistance, techniques to identify biofilms. PMID:25767760

  13. Polyphosphate Degradation in Stationary Phase Triggers Biofilm Formation via LuxS Quorum Sensing System in Escherichia coli

    PubMed Central

    Grillo-Puertas, Mariana; Villegas, Josefina M.; Rintoul, María R.; Rapisarda, Viviana A.

    2012-01-01

    In most natural environments, association with a surface in a structure known as biofilm is the prevailing microbial life-style of bacteria. Polyphosphate (polyP), an ubiquitous linear polymer of hundreds of orthophosphate residues, has a crucial role in stress responses, stationary-phase survival, and it was associated to bacterial biofilm formation and production of virulence factors. In previous work, we have shown that Escherichia coli cells grown in media containing a critical phosphate concentration >37 mM maintained an unusual high polyP level in stationary phase. The aim of the present work was to analyze if fluctuations in polyP levels in stationary phase affect biofilm formation capacity in E. coli. Polymer levels were modulated by the media phosphate concentration or using mutant strains in polyP metabolism. Cells grown in media containing phosphate concentrations higher than 25 mM were defective in biofilm formation. Besides, there was a disassembly of 24 h preformed biofilm by the addition of high phosphate concentration to the medium. These phenotypes were related to the maintenance or re-synthesis of polyP in stationary phase in static conditions. No biofilm formation was observed in ppk?ppx? or ppk?ppx?/ppk+ strains, deficient in polyP synthesis and hydrolysis, respectively. luxS and lsrK mutants, impaired in autoinducer-2 quorum sensing signal metabolism, were unable to form biofilm unless conditioned media from stationary phase wild type cells grown in low phosphate were used. We conclude that polyP degradation is required for biofilm formation in sufficient phosphate media, activating or triggering the production of autoinducer-2. According to our results, phosphate concentration of the culture media should be carefully considered in bacterial adhesion and virulence studies. PMID:23226268

  14. Effect of coating the wells of a polystyrene microtiter plate with xanthorrhizol on the biofilm formation of Streptococcus mutans.

    PubMed

    Rukayadi, Yaya; Hwang, Jae-Kwan

    2006-01-01

    Colonization on the surface of tooth by Streptococcus mutans is an important step in the initiation of dental plaque. Polystyrene microtiter plates have been employed to study bacterial colonization and biofilm formation of periodontal bacteria. The objective of this work was to evaluate the effect of coating the wells of a polystyrene microtiter plate with xanthorrhizol isolated from java turmeric (Curcuma xanthorrhiza Roxb.) on Strep. mutans biofilm formation. Our studies demonstrated that coating of a polystyrene microtiter plate with 5 microg/ml of xanthorrhizol resulted in significant (up to 60%) reduction of adherent cells compared to that of cells in uncoated wells. This result suggests that xanthorrhizol displays potent activity in preventing Strep. mutans biofilm formation. PMID:17009296

  15. Capillary Isoelectric Focusing — Useful tool for detection of the biofilm formation in Staphylococcus epidermidis

    Microsoft Academic Search

    Filip Ruzicka; Marie Horka; Veronika Hola; Miroslav Votava

    2007-01-01

    The biofilm formation is an important factor of S. epidermidis virulence. Biofilm-positive strains might be clinically more important than biofilm-negative ones. Unlike biofilm-negative staphylococci, biofilm-positive staphylococci are surrounded with an extracellular polysaccharide substance. The presence of this substance on the surface can affect physico-chemical properties of the bacterial cell, including surface charge. 73 S. epidermidis strains were examined for the

  16. Laminar flow around corners triggers the formation of biofilm streamers.

    PubMed

    Rusconi, Roberto; Lecuyer, Sigolene; Guglielmini, Laura; Stone, Howard A

    2010-09-01

    Bacterial biofilms have an enormous impact on medicine, industry and ecology. These microbial communities are generally considered to adhere to surfaces or interfaces. Nevertheless, suspended filamentous biofilms, or streamers, are frequently observed in natural ecosystems where they play crucial roles by enhancing transport of nutrients and retention of suspended particles. Recent studies in streamside flumes and laboratory flow cells have hypothesized a link with a turbulent flow environment. However, the coupling between the hydrodynamics and complex biofilm structures remains poorly understood. Here, we report the formation of biofilm streamers suspended in the middle plane of curved microchannels under conditions of laminar flow. Experiments with different mutant strains allow us to identify a link between the accumulation of extracellular matrix and the development of these structures. Numerical simulations of the flow in curved channels highlight the presence of a secondary vortical motion in the proximity of the corners, which suggests an underlying hydrodynamic mechanism responsible for the formation of the streamers. Our findings should be relevant to the design of all liquid-carrying systems where biofilms are potentially present and provide new insights on the origins of microbial streamers in natural and industrial environments. PMID:20356880

  17. Biofilm formation in clinical Candida isolates and its association with virulence

    Microsoft Academic Search

    Fahmi Hasan; Immaculata Xess; Xiabo Wang; Neena Jain; Bettina C. Fries

    2009-01-01

    Biofilm formation, an important virulence trait of Candida species was measured in 107 Candida isolates from 32 candidemic patients by XTT [2,3-bis (2-methoxy-4nitro-5-sulfo-phenyl)-2H-tetra-zolium-5-carboxanilide] activity and compared to biofilm formation of Candida isolates from oropharyngeal lesions of 19 AIDS patients. Biofilm formation by XTT varied among species and C. albicans; C. lusitaniae and C. krusei produced more biofilm than the other

  18. Characterization of Biofilm Formation and the Role of BCR1 in Clinical Isolates of Candida parapsilosis

    PubMed Central

    Pannanusorn, Srisuda; Ramírez-Zavala, Bernardo; Lünsdorf, Heinrich; Agerberth, Birgitta; Morschhäuser, Joachim

    2014-01-01

    In Candida parapsilosis, biofilm formation is considered to be a major virulence factor. Previously, we determined the ability of 33 clinical isolates causing bloodstream infection to form biofilms and identified three distinct groups of biofilm-forming strains (negative, low, and high). Here, we establish two different biofilm structures among strains forming large amounts of biofilm in which strains with complex spider-like structures formed robust biofilms on different surface materials with increased resistance to fluconazole. Surprisingly, the transcription factor Bcr1, required for biofilm formation in Candida albicans and C. parapsilosis, has an essential role only in strains with low capacity for biofilm formation. Although BCR1 leads to the formation of more and longer pseudohyphae, it was not required for initial adhesion and formation of mature biofilms in strains with a high level of biofilm formation. Furthermore, an additional phenotype affected by BCR1 was the switch in colony morphology from rough to crepe, but only in strains forming high levels of biofilm. All bcr1?/? mutants showed increased proteolytic activity and increased susceptibility to the antimicrobial peptides protamine and RP-1 compared to corresponding wild-type and complemented strains. Taken together, our results demonstrate that biofilm formation in clinical isolates of C. parapsilosis is both dependent and independent of BCR1, but even in strains which showed a BCR1-independent biofilm phenotype, BCR1 has alternative physiological functions. PMID:24297446

  19. Antibiotic-Loaded Synthetic Calcium Sulfate Beads for Prevention of Bacterial Colonization and Biofilm Formation in Periprosthetic Infections

    PubMed Central

    Howlin, R. P.; Brayford, M. J.; Webb, J. S.; Cooper, J. J.; Aiken, S. S.

    2014-01-01

    Periprosthetic infection (PI) causes significant morbidity and mortality after fixation and joint arthroplasty and has been extensively linked to the formation of bacterial biofilms. Poly(methyl methacrylate) (PMMA), as a cement or as beads, is commonly used for antibiotic release to the site of infection but displays variable elution kinetics and also represents a potential nidus for infection, therefore requiring surgical removal once antibiotics have eluted. Absorbable cements have shown improved elution of a wider range of antibiotics and, crucially, complete biodegradation, but limited data exist as to their antimicrobial and antibiofilm efficacy. Synthetic calcium sulfate beads loaded with tobramycin, vancomycin, or vancomycin-tobramycin dual treatment (in a 1:0.24 [wt/wt] ratio) were assessed for their abilities to eradicate planktonic methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis relative to that of PMMA beads. The ability of the calcium sulfate beads to prevent biofilm formation over multiple days and to eradicate preformed biofilms was studied using a combination of viable cell counts, confocal microscopy, and scanning electron microscopy of the bead surface. Biofilm bacteria displayed a greater tolerance to the antibiotics than their planktonic counterparts. Antibiotic-loaded beads were able to kill planktonic cultures of 106 CFU/ml, prevent bacterial colonization, and significantly reduce biofilm formation over multiple days. However, established biofilms were harder to eradicate. These data further demonstrate the difficulty in clearing established biofilms; therefore, early preventive measures are key to reducing the risk of PI. Synthetic calcium sulfate loaded with antibiotics has the potential to reduce or eliminate biofilm formation on adjacent periprosthetic tissue and prosthesis material and, thus, to reduce the rates of periprosthetic infection. PMID:25313221

  20. Analyses of spatial distributions of sulfate-reducing bacteria and their activity in aerobic wastewater biofilms

    SciTech Connect

    Okabe, Satoshi; Itoh, Tsukasa; Satoh, Hisashi; Watanabe, Yoshimasa

    1999-11-01

    The vertical distribution of sulfate-reducing bacteria (SRB) in aerobic wastewater biofilms grown on rotating disk reactors was investigated by fluorescent in situ hybridization (FISH) with 16S rRNA-targeted oligonucleotide probes. To correlate the vertical distribution of SRB populations with their activity, the microprofiles of O{sub 2}, H{sub 2}S, NO{sub 2}{minus}, NH{sub 2}{sup +}, and pH were measured with microelectrodes. In addition, a cross-evaluation of the FISH and microelectrode analyses was performed by comparing them with culture-based approaches and biogeochemical measurements. In situ hybridization revealed that a relatively high abundance of the probe SRB385-stained cells were evenly distributed throughout the biofilm, even in the toxic surface. The probe SRB660-stained Desulfobulbus spp. were found to be numerically important members of SRB populations. The result of microelectrode measurements showed that a high sulfate-reducing activity was found in a narrow anaerobic zone located about 150 to 300 {micro}m below the biofilm surface and above which an intensive sulfide oxidation zone was found. The biogeochemical measurements showed that elemental sulfur (S{degree}) was an important intermediate of the sulfide reoxidation in such thin wastewater biofilms, which accounted for about 75% of the total S pool in the biofilm. The contribution of an internal Fe-sulfur cycle to the overall sulfur cycle in aerobic wastewater biofilms was insignificant (less than 1%) due to the relatively high sulfate reduction rate.

  1. Biofilm formation by strains of Leuconostoc citreum and L. mesenteroides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: To compare for the first time biofilm formation among strains of Leuconostoc citreum and L. mesenteroides that produce varying types of extracellular glucans. Methods and Results: Twelve strains of Leuconostoc sp. that produce extracellular glucans were compared for their capacity to produ...

  2. Effect of Honey on Streptococcus mutans Growth and Biofilm Formation

    PubMed Central

    Li, Mingyun

    2012-01-01

    Because of the tradition of using honey as an antimicrobial medicament, we investigated the effect of natural honey (NH) on Streptococcus mutans growth, viability, and biofilm formation compared to that of an artificial honey (AH). AH contained the sugars at the concentrations reported for NH. NH and AH concentrations were obtained by serial dilution with tryptic soy broth (TSB). Several concentrations of NH and AH were tested for inhibition of bacterial growth, viability, and biofilm formation after inoculation with S. mutans UA159 in 96-well microtiter plates to obtain absorbance and CFU values. Overall, NH supported significantly less (P < 0.05) bacterial growth than AH at 25 and 12.5% concentrations. At 50 and 25% concentrations, both honey groups provided significantly less bacterial growth and biofilm formation than the TSB control. For bacterial viability, the results for all honey concentrations except 50% NH were not significantly different from those for the TSB control. NH was able to decrease the maximum velocity of S. mutans growth compared to AH. In summary, NH demonstrated more inhibition of bacterial growth, viability, and biofilm formation than AH. This study highlights the potential antibacterial properties of NH and could suggest that the antimicrobial mechanism of NH is not solely due to its high sugar content. PMID:22038612

  3. Inhibition of Biofilm Formation by Esomeprazole in Pseudomonas aeruginosa and Staphylococcus aureus

    PubMed Central

    Singh, Vandana; Arora, Vaneet; Alam, M. Jahangir

    2012-01-01

    Staphylococcus aureus and Pseudomonas aeruginosa are common nosocomial pathogens responsible for biofilm-associated infections. Proton pump inhibitors (PPI), such as esomeprazole, may have novel antimicrobial properties. The objective of this study was to assess whether esomeprazole prevents sessile bacterial growth and biofilm formation and whether it may have synergistic killing effects with standard antibiotics. The antibiofilm activity of esomeprazole at 0.25 mM was tested against two strains each of S. aureus and P. aeruginosa. Bacterial biofilms were prepared using a commercially available 96-peg-plate Calgary biofilm device. Sessile bacterial CFU counts and biomass were assessed during 72 hours of esomeprazole exposure. The killing activities after an additional 24 hours of vancomycin (against S. aureus) and meropenem (against P. aeruginosa) treatment with or without preexposure to esomeprazole were also assessed by CFU and biomass analyses. P. aeruginosa and S. aureus strains exposed to esomeprazole displayed decreased sessile bacterial growth and biomass (P < 0.001, each parameter). After 72 h of exposure, there was a 1-log10 decrease in the CFU/ml of esomeprazole-exposed P. aeruginosa and S. aureus strains compared to controls (P < 0.001). After 72 h of exposure, measured absorbance was 100% greater in P. aeruginosa control strains than in esomeprazole-exposed strains (P < 0.001). Increased killing and decreased biomass were observed for esomeprazole-treated bacteria compared to untreated controls exposed to conventional antibiotics (P < 0.001, each parameter). Reduced biofilm growth after 24 h was visibly apparent by light micrographs for P. aeruginosa and S. aureus isolates exposed to esomeprazole compared to untreated controls. In conclusion, esomeprazole demonstrated an antibiofilm effect against biofilm-producing S. aureus and P. aeruginosa. PMID:22664967

  4. Thiopeptide antibiotics stimulate biofilm formation in Bacillus subtilis.

    PubMed

    Bleich, Rachel; Watrous, Jeramie D; Dorrestein, Pieter C; Bowers, Albert A; Shank, Elizabeth A

    2015-03-10

    Bacteria have evolved the ability to produce a wide range of structurally complex natural products historically called "secondary" metabolites. Although some of these compounds have been identified as bacterial communication cues, more frequently natural products are scrutinized for antibiotic activities that are relevant to human health. However, there has been little regard for how these compounds might otherwise impact the physiology of neighboring microbes present in complex communities. Bacillus cereus secretes molecules that activate expression of biofilm genes in Bacillus subtilis. Here, we use imaging mass spectrometry to identify the thiocillins, a group of thiazolyl peptide antibiotics, as biofilm matrix-inducing compounds produced by B. cereus. We found that thiocillin increased the population of matrix-producing B. subtilis cells and that this activity could be abolished by multiple structural alterations. Importantly, a mutation that eliminated thiocillin's antibiotic activity did not affect its ability to induce biofilm gene expression in B. subtilis. We go on to show that biofilm induction appears to be a general phenomenon of multiple structurally diverse thiazolyl peptides and use this activity to confirm the presence of thiazolyl peptide gene clusters in other bacterial species. Our results indicate that the roles of secondary metabolites initially identified as antibiotics may have more complex effects--acting not only as killing agents, but also as specific modulators of microbial cellular phenotypes. PMID:25713360

  5. Studies on Biofilm Formation and Interactions of Salmonella enterica with Romaine-Lettuce Leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The association between biofilm formation and the interactions of Salmonella enterica serovars with cut-Romaine-lettuce leaves was investigated. Biofilm formation by 8 S. enterica serovars was tested on polystyrene microtiter plates in the presence of different growth media. Maximal biofilm mass was...

  6. MicroReview An intricate network of regulators controls biofilm formation

    E-print Network

    McFall-Ngai, Margaret

    MicroReview An intricate network of regulators controls biofilm formation and colonization proceeds via a biofilm-like bacterial aggregation, fol- lowed by entry and growth. A key regulator, the sensor kinase RscS, is critical for symbiotic biofilm formation and colonization. When introduced

  7. APPLIED GENETICS AND MOLECULAR BIOTECHNOLOGY PA2663 (PpyR) increases biofilm formation in Pseudomonas

    E-print Network

    Wood, Thomas K.

    APPLIED GENETICS AND MOLECULAR BIOTECHNOLOGY PA2663 (PpyR) increases biofilm formation inactivation, it caused 20-fold lower biofilm forma- tion (Attila et al., Microb Biotechnol, 2008). Here, we confirmed that PA2663 is related to biofilm formation by restoring the wild-type phenotype by complementing

  8. Supporting Information for: Exoelectrogenic biofilm as a template for sustainable formation of a catalytic

    E-print Network

    1 Supporting Information for: Exoelectrogenic biofilm as a template for sustainable formation structure (55,000 ×). (C) TEM image of an ultra-microtomed (70 nm) G. sulfurreducens biofilm showing palladium reduction within the biofilm as a precursor for mesoporous structure formation. (D) Low

  9. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge

    Microsoft Academic Search

    Yu Liu; Joo-Hwa Tay

    2002-01-01

    Biofilm and granular sludge processes are promising biotechnology for wastewater treatment. The formation, structure and metabolism of immobilized microbial community are associated very closely with hydrodynamic shear force in reactors. Therefore, this paper attempts to review the essential role of shear force in the formation and performance of biofilm and granular sludge. More compact, stable and denser biofilms, aerobic and

  10. Capillary isoelectric focusing--useful tool for detection of the biofilm formation in Staphylococcus epidermidis.

    PubMed

    Ruzicka, Filip; Horka, Marie; Hola, Veronika; Votava, Miroslav

    2007-03-01

    The biofilm formation is an important factor of S. epidermidis virulence. Biofilm-positive strains might be clinically more important than biofilm-negative ones. Unlike biofilm-negative staphylococci, biofilm-positive staphylococci are surrounded with an extracellular polysaccharide substance. The presence of this substance on the surface can affect physico-chemical properties of the bacterial cell, including surface charge. 73 S. epidermidis strains were examined for the presence of ica operon, for the ability to form biofilm by Christensen test tube method and for the production of slime by Congo red agar method. Isoelectric points (pI) of these strains were determined by means of Capillary Isoelectric Focusing. The biofilm negative strains focused near pI value 2.3, while the pI values of the biofilm positive strains were near 2.6. Isoelectric point is a useful criterion for the differentiation between biofilm-positive and biofilm-negative S. epidermidis strains. PMID:17157942

  11. Biofilm Formation Enhances Fomite Survival of Streptococcus pneumoniae and Streptococcus pyogenes

    PubMed Central

    Marks, Laura R.; Reddinger, Ryan M.

    2014-01-01

    Both Streptococcus pyogenes and Streptococcus pneumoniae are widely thought to rapidly die outside the human host, losing infectivity following desiccation in the environment. However, to date, all literature investigating the infectivity of desiccated streptococci has used broth-grown, planktonic populations. In this study, we examined the impact of biofilm formation on environmental survival of clinical and laboratory isolates of S. pyogenes and S. pneumoniae as both organisms are thought to colonize the human host as biofilms. Results clearly demonstrate that while planktonic cells that are desiccated rapidly lose viability both on hands and abiotic surfaces, such as plastic, biofilm bacteria remain viable over extended periods of time outside the host and remain infectious in a murine colonization model. To explore the level and extent of streptococcal fomite contamination that children might be exposed to naturally, direct bacteriologic cultures of items in a day care center were conducted, which demonstrated high levels of viable streptococci of both species. These findings raise the possibility that streptococci may survive in the environment and be transferred from person to person via fomites contaminated with oropharyngeal secretions containing biofilm streptococci. PMID:24371220

  12. From Nanowires to Biofilms: An Exploration of Novel Mechanisms of Uranium Transformation Mediated by Geobacter Bacteria

    SciTech Connect

    REGUERA, GEMMA [Michigan State University

    2014-01-16

    One promising strategy for the in situ bioremediation of radioactive groundwater contaminants that has been identified by the SBR Program is to stimulate the activity of dissimilatory metal-reducing microorganisms to reductively precipitate uranium and other soluble toxic metals. The reduction of U(VI) and other soluble contaminants by Geobacteraceae is directly dependent on the reduction of Fe(III) oxides, their natural electron acceptor, a process that requires the expression of Geobacter’s conductive pili (pilus nanowires). Expression of conductive pili by Geobacter cells leads to biofilm development on surfaces and to the formation of suspended biogranules, which may be physiological closer to biofilms than to planktonic cells. Biofilm development is often assumed in the subsurface, particularly at the matrix-well screen interface, but evidence of biofilms in the bulk aquifer matrix is scarce. Our preliminary results suggest, however, that biofilms develop in the subsurface and contribute to uranium transformations via sorption and reductive mechanisms. In this project we elucidated the mechanism(s) for uranium immobilization mediated by Geobacter biofilms and identified molecular markers to investigate if biofilm development is happening in the contaminated subsurface. The results provided novel insights needed in order to understand the metabolic potential and physiology of microorganisms with a known role in contaminant transformation in situ, thus having a significant positive impact in the SBR Program and providing novel concept to monitor, model, and predict biological behavior during in situ treatments.

  13. The Role of Antimicrobial Peptides in Preventing Multidrug-Resistant Bacterial Infections and Biofilm Formation

    PubMed Central

    Park, Seong-Cheol; Park, Yoonkyung; Hahm, Kyung-Soo

    2011-01-01

    Over the last decade, decreasing effectiveness of conventional antimicrobial-drugs has caused serious problems due to the rapid emergence of multidrug-resistant pathogens. Furthermore, biofilms, which are microbial communities that cause serious chronic infections and dental plaque, form environments that enhance antimicrobial resistance. As a result, there is a continuous search to overcome or control such problems, which has resulted in antimicrobial peptides being considered as an alternative to conventional drugs. Antimicrobial peptides are ancient host defense effector molecules in living organisms. These peptides have been identified in diverse organisms and synthetically developed by using peptidomimic techniques. This review was conducted to demonstrate the mode of action by which antimicrobial peptides combat multidrug-resistant bacteria and prevent biofilm formation and to introduce clinical uses of these compounds for chronic disease, medical devices, and oral health. In addition, combinations of antimicrobial peptides and conventional drugs were considered due to their synergetic effects and low cost for therapeutic treatment. PMID:22016639

  14. Impact of Bacterial Biofilm Formation on In Vitro and In Vivo Activities of Antibiotics

    PubMed Central

    Schwank, Silvia; Rajacic, Zarko; Zimmerli, Werner; Blaser, Jürg

    1998-01-01

    The impact of bacterial adherence on antibiotic activity was analyzed with two isogenic strains of Staphylococcus epidermidis that differ in the features of their in vitro biofilm formation. The eradication of bacteria adhering to glass beads by amikacin, levofloxacin, rifampin, or teicoplanin was studied in an animal model and in a pharmacokinetically matched in vitro model. The features of S. epidermidis RP62A that allowed it to grow on surfaces in multiple layers promoted phenotypic resistance to antibiotic treatment, whereas strain M7 failed to accumulate, despite initial adherence on surfaces and growth in suspension similar to those for RP62A. Biofilms of S. epidermidis M7 were better eradicated than those of strain RP62A in vitro (46 versus 31%; P < 0.05) as well as in the animal model (39 versus 9%; P < 0.01). PMID:9559803

  15. Impact of bacterial biofilm formation on in vitro and in vivo activities of antibiotics.

    PubMed

    Schwank, S; Rajacic, Z; Zimmerli, W; Blaser, J

    1998-04-01

    The impact of bacterial adherence on antibiotic activity was analyzed with two isogenic strains of Staphylococcus epidermidis that differ in the features of their in vitro biofilm formation. The eradication of bacteria adhering to glass beads by amikacin, levofloxacin, rifampin, or teicoplanin was studied in an animal model and in a pharmacokinetically matched in vitro model. The features of S. epidermidis RP62A that allowed it to grow on surfaces in multiple layers promoted phenotypic resistance to antibiotic treatment, whereas strain M7 failed to accumulate, despite initial adherence on surfaces and growth in suspension similar to those for RP62A. Biofilms of S. epidermidis M7 were better eradicated than those of strain RP62A in vitro (46 versus 31%; P < 0.05) as well as in the animal model (39 versus 9%; P < 0.01). PMID:9559803

  16. Effect of biofilm formation, and biocorrosion on denture base fractures

    PubMed Central

    Ergin, Alper; Ayyildiz, Simel; Cosgun, Erdal; Uzun, Gulay

    2013-01-01

    PURPOSE The aim of this study was to investigate the destructive effects of biofilm formation and/or biocorrosive activity of 6 different oral microorganisms. MATERIALS AND METHODS Three different heat polymerized acrylic resins (Ivocap Plus, Lucitone 550, QC 20) were used to prepare three different types of samples. Type "A" samples with "V" type notch was used to measure the fracture strength, "B" type to evaluate the surfaces with scanning electron microscopy and "C" type for quantitative biofilm assay. Development and calculation of biofilm covered surfaces on denture base materials were accomplished by SEM and quantitative biofilm assay. According to normality assumptions ANOVA or Kruskal-Wallis was selected for statistical analysis (?=0.05). RESULTS Significant differences were obtained among the adhesion potential of 6 different microorganisms and there were significant differences among their adhesion onto 3 different denture base materials. Compared to the control groups after contamination with the microorganisms, the three point bending test values of denture base materials decreased significantly (P<.05); microorganisms diffused at least 52% of the denture base surface. The highest median quantitative biofilm value within all the denture base materials was obtained with P. aeruginosa on Lucitone 550. The type of denture base material did not alter the diffusion potential of the microorganisms significantly (P>.05). CONCLUSION All the tested microorganisms had destructive effect over the structure and composition of the denture base materials. PMID:23755339

  17. Streptococcus pyogenes biofilms—formation, biology, and clinical relevance

    PubMed Central

    Fiedler, Tomas; Köller, Thomas; Kreikemeyer, Bernd

    2015-01-01

    Streptococcus pyogenes (group A streptococci, GAS) is an exclusive human bacterial pathogen. The virulence potential of this species is tremendous. Interactions with humans range from asymptomatic carriage over mild and superficial infections of skin and mucosal membranes up to systemic purulent toxic-invasive disease manifestations. Particularly the latter are a severe threat for predisposed patients and lead to significant death tolls worldwide. This places GAS among the most important Gram-positive bacterial pathogens. Many recent reviews have highlighted the GAS repertoire of virulence factors, regulators and regulatory circuits/networks that enable GAS to colonize the host and to deal with all levels of the host immune defense. This covers in vitro and in vivo studies, including animal infection studies based on mice and more relevant, macaque monkeys. It is now appreciated that GAS, like many other bacterial species, do not necessarily exclusively live in a planktonic lifestyle. GAS is capable of microcolony and biofilm formation on host cells and tissues. We are now beginning to understand that this feature significantly contributes to GAS pathogenesis. In this review we will discuss the current knowledge on GAS biofilm formation, the biofilm-phenotype associated virulence factors, regulatory aspects of biofilm formation, the clinical relevance, and finally contemporary treatment regimens and future treatment options. PMID:25717441

  18. Cyclic-di-GMP Regulates Extracellular Polysaccharide Production, Biofilm Formation, and Rugose Colony Development by Vibrio vulnificus?

    PubMed Central

    Nakhamchik, Alina; Wilde, Caroline; Rowe-Magnus, Dean A.

    2008-01-01

    Vibrio vulnificus is a human and animal pathogen that carries the highest death rate of any food-borne disease agent. It colonizes shellfish and forms biofilms on the surfaces of plankton, algae, fish, and eels. Greater understanding of biofilm formation by the organism could provide insight into approaches to decrease its load in filter feeders and on biotic surfaces and control the occurrence of invasive disease. The capsular polysaccharide (CPS), although essential for virulence, is not required for biofilm formation under the conditions used here. In other bacteria, increased biofilm formation often correlates with increased exopolysaccharide (EPS) production. We exploited the translucent phenotype of acapsular mutants to screen a V. vulnificus genomic library and identify genes that imparted an opaque phenotype to both CPS biosynthesis and transport mutants. One of these encoded a diguanylate cyclase (DGC), an enzyme that synthesizes bis-(3?-5?)-cyclic-di-GMP (c-di-GMP). This prompted us to use this DGC, DcpA, to examine the effect of elevated c-di-GMP levels on several developmental pathways in V. vulnificus. Increased c-di-GMP levels induced the production of an EPS that was distinct from the CPS and dramatically enhanced biofilm formation and rugosity in a CPS-independent manner. However, the EPS could not compensate for the loss of CPS production that is required for virulence. In contrast to V. cholerae, motility and virulence appeared unaffected by elevated levels of c-di-GMP. PMID:18487410

  19. Muramidases found in the foregut microbiome of the Tammar wallaby can direct cell aggregation and biofilm formation

    PubMed Central

    Pope, Phillip B; Totsika, Makrina; Aguirre de Carcer, Daniel; Schembri, Mark A; Morrison, Mark

    2011-01-01

    We describe here the role of muramidases present in clones of metagenomic DNA that result in cell aggregation and biofilm formation by Escherichia coli. The metagenomic clones were obtained from uncultured Lachnospiraceae-affiliated bacteria resident in the foregut microbiome of the Tammar wallaby. One of these fosmid clones (p49C2) was chosen for more detailed studies and a variety of genetic methods were used to delimit the region responsible for the phenotype to an open reading frame of 1425?bp. Comparative sequence analysis with other fosmid clones giving rise to the same phenotype revealed the presence of muramidase homologues with the same modular composition. Phylogenetic analysis of the fosmid sequence data assigned these fosmid inserts to recently identified, but uncultured, phylogroups of Lachnospiraceae believed to be numerically dominant in the foregut microbiome of the Tammar wallaby. The muramidase is a modular protein containing putative N-acetylmuramoyl--alanine amidase and an endo-?-N-acetylglucosaminidase catalytic module, with a similar organization and functional properties to some Staphylococcal autolysins that also confer adhesive properties and biofilm formation. We also show here that the cloned muramidases result in the production of extracellular DNA, which appears to be the key for biofilm formation and autoaggregation. Collectively, these findings suggest that biofilm formation and cell aggregation in gut microbiomes might occur via the concerted action of carbohydrate-active enzymes and the production of extracellular DNA to serve as a biofilm scaffold. PMID:20668486

  20. Biofilm formation by Bacillus subtilis: new insights into regulatory strategies and assembly mechanisms

    PubMed Central

    Cairns, Lynne S; Hobley, Laura; Stanley-Wall, Nicola R

    2014-01-01

    Biofilm formation is a social behaviour that generates favourable conditions for sustained survival in the natural environment. For the Gram-positive bacterium Bacillus subtilis the process involves the differentiation of cell fate within an isogenic population and the production of communal goods that form the biofilm matrix. Here we review recent progress in understanding the regulatory pathways that control biofilm formation and highlight developments in understanding the composition, function and structure of the biofilm matrix. PMID:24988880

  1. Escherichia coli toxin gene hipA affects biofilm formation and DNA release.

    PubMed

    Zhao, Junqiao; Wang, Qian; Li, Mingji; Heijstra, Björn D; Wang, Shengjun; Liang, Quanfeng; Qi, Qingsheng

    2013-03-01

    Toxin-antitoxin (TA) systems in Escherichia coli may play a role in biofilm formation, but the mechanism involved remains debatable. It is not known whether the TA systems are responsible for extracellular DNA (eDNA) in biofilms. In this study, we investigated the function of the hipBA TA system in biofilm formation by Escherichia coli strain BW25113. First, the deletion of the HipBA TA system in E. coli BW25113 significantly reduced the biofilm biomass without antibiotic stress. Second, treatment of the BW25113 biofilm with DNase I caused a major reduction in biofilm formation, whereas similar treatment of the hipA mutant biofilm had only a minor effect. Third, the inactivation of HipA reduced the level of eDNA present in biofilm formation, and addition of BW25113 genomic DNA stimulated biofilm formation for both the wild-type and hipA mutant. Fourth, the wild-type cells underwent significantly more cell lysis than the hipA mutant. These results suggest that hipA plays a significant role during biofilm development and that eDNA is an important structural component of E. coli BW25113 biofilms. Thus, the TA system may enhance biofilm formation through DNA release. PMID:23329678

  2. Oh What a Tangled Biofilm Web Bacteria Weave

    MedlinePLUS

    ... curvy, narrow tubes. Unlike many previous studies, these experiments more closely mimicked real-life conditions, using rough ... through the channel. Forty-three hours into the experiment, the researchers began flowing bacteria tagged with a ...

  3. Metal nanobullets for multidrug resistant bacteria and biofilms.

    PubMed

    Chen, Ching-Wen; Hsu, Chia-Yen; Lai, Syu-Ming; Syu, Wei-Jhe; Wang, Ting-Yi; Lai, Ping-Shan

    2014-11-30

    Infectious diseases were one of the major causes of mortality until now because drug-resistant bacteria have arisen under broad use and abuse of antibacterial drugs. These multidrug-resistant bacteria pose a major challenge to the effective control of bacterial infections and this threat has prompted the development of alternative strategies to treat bacterial diseases. Recently, use of metallic nanoparticles (NPs) as antibacterial agents is one of the promising strategies against bacterial drug resistance. This review first describes mechanisms of bacterial drug resistance and then focuses on the properties and applications of metallic NPs as antibiotic agents to deal with antibiotic-sensitive and -resistant bacteria. We also provide an overview of metallic NPs as bactericidal agents combating antibiotic-resistant bacteria and their potential in vivo toxicology for further drug development. PMID:25138828

  4. Characterization of Biofilm Formation by Borrelia burgdorferi In Vitro

    PubMed Central

    Sapi, Eva; Bastian, Scott L.; Mpoy, Cedric M.; Scott, Shernea; Rattelle, Amy; Pabbati, Namrata; Poruri, Akhila; Burugu, Divya; Theophilus, Priyanka A. S.; Pham, Truc V.; Datar, Akshita; Dhaliwal, Navroop K.; MacDonald, Alan; Rossi, Michael J.; Sinha, Saion K.; Luecke, David F.

    2012-01-01

    Borrelia burgdorferi, the causative agent of Lyme disease, has long been known to be capable of forming aggregates and colonies. It was recently demonstrated that Borrelia burgdorferi aggregate formation dramatically changes the in vitro response to hostile environments by this pathogen. In this study, we investigated the hypothesis that these aggregates are indeed biofilms, structures whose resistance to unfavorable conditions are well documented. We studied Borrelia burgdorferi for several known hallmark features of biofilm, including structural rearrangements in the aggregates, variations in development on various substrate matrices and secretion of a protective extracellular polymeric substance (EPS) matrix using several modes of microscopic, cell and molecular biology techniques. The atomic force microscopic results provided evidence that multilevel rearrangements take place at different stages of aggregate development, producing a complex, continuously rearranging structure. Our results also demonstrated that Borrelia burgdorferi is capable of developing aggregates on different abiotic and biotic substrates, and is also capable of forming floating aggregates. Analyzing the extracellular substance of the aggregates for potential exopolysaccharides revealed the existence of both sulfated and non-sulfated/carboxylated substrates, predominately composed of an alginate with calcium and extracellular DNA present. In summary, we have found substantial evidence that Borrelia burgdorferi is capable of forming biofilm in vitro. Biofilm formation by Borrelia species might play an important role in their survival in diverse environmental conditions by providing refuge to individual cells. PMID:23110225

  5. Cholate-Stimulated Biofilm Formation by Lactococcus lactis Cells ? †

    PubMed Central

    Zaidi, Arsalan Haseeb; Bakkes, Patrick J.; Krom, Bastiaan P.; van der Mei, Henny C.; Driessen, Arnold J. M.

    2011-01-01

    Bile acid resistance by Lactococcus lactis depends on the ABC-type multidrug transporter LmrCD. Upon deletion of the lmrCD genes, cells can reacquire bile acid resistance upon prolonged exposure to cholate, yielding the ?lmrCDr strain. The resistance mechanism in this strain is non-transporter based. Instead, cells show a high tendency to flocculate, suggesting cell surface alterations. Contact angle measurements demonstrate that the ?lmrCDr cells are equipped with an increased cell surface hydrophilicity compared to those of the parental and wild-type strains, while the surface hydrophilicity is reduced in the presence of cholate. ?lmrCDr cells are poor in biofilm formation on a hydrophobic polystyrene surface, but in the presence of subinhibitory concentrations of cholate, biofilm formation is strongly stimulated. Biofilm cells show an enhanced extracellular polymeric substance production and are highly resistant to bile acids. These data suggest that non-transporter-based cholate resistance in L. lactis is due to alterations in the cell surface that stimulate cells to form resistant biofilms. PMID:21335382

  6. Extracellular polysaccharides produced by cooling water tower biofilm bacteria and their possible degradation.

    PubMed

    Ceyhan, Nur; Ozdemir, Guven

    2008-01-01

    The extracellular polymers (EPS) of biofilm bacteria that can cause heat and mass transfer problems in cooling water towers in the petrochemical industry were investigated. In addition, these microorganisms were screened for their ability to grow and degrade their own EPS and the EPS of other species. Twelve bacteria producing the most EPS were isolated from cooling water towers and characterized biochemically by classic and commercial systems. These were species of Pseudomonas, Burkholderia, Aeromonas, Pasteurella, Pantoea, Alcaligenes and Sphingomonas. EPS of these species were obtained by propan-2-ol precipitation and centrifugation from bacterial cultures in media enriched with glucose, sucrose or galactose. EPS yields were of 1.68-4.95 g l(-1). These EPS materials were characterized for total sugar and protein contents. Their total sugar content ranged from 24 to 56% (g sugar g(-1) EPS), and their total protein content ranged from 10 to 28% (g protein g(-1) EPS). The monosaccharide compositions of EPS were determined by HPLC. Generally, these compositions were enriched in galactose and glucose, with lesser amounts of mannose, rhamnose, fructose and arabinose. All bacteria were investigated in terms of EPS degradation. Eight of the bacteria were able to utilize EPS from Burkholderia cepacia, seven of the bacteria were able to utilize EPS from Pseudomonas sp. and Sphingomonas paucimobilis. The greatest viscosity reduction of B. cepacia was obtained with Pseudomonas sp. The results show that the bacteria in this study are able to degrade EPS from biofilms in cooling towers. PMID:18256966

  7. A role for amyloid in cell aggregation and biofilm formation.

    PubMed

    Garcia, Melissa C; Lee, Janis T; Ramsook, Caleen B; Alsteens, David; Dufrêne, Yves F; Lipke, Peter N

    2011-01-01

    Cell adhesion molecules in Saccharomyces cerevisiae and Candida albicans contain amyloid-forming sequences that are highly conserved. We have now used site-specific mutagenesis and specific peptide perturbants to explore amyloid-dependent activity in the Candida albicans adhesin Als5p. A V326N substitution in the amyloid-forming region conserved secondary structure and ligand binding, but abrogated formation of amyloid fibrils in soluble Als5p and reduced cell surface thioflavin T fluorescence. When displayed on the cell surface, Als5p with this substitution prevented formation of adhesion nanodomains and formation of large cellular aggregates and model biofilms. In addition, amyloid nanodomains were regulated by exogenous peptides. An amyloid-forming homologous peptide rescued aggregation and biofilm activity of Als5p(V326N) cells, and V326N substitution peptide inhibited aggregation and biofilm activity in Als5p(WT) cells. Therefore, specific site mutation, inhibition by anti-amyloid peturbants, and sequence-specificity of pro-amyloid and anti-amyloid peptides showed that amyloid formation is essential for nanodomain formation and activation. PMID:21408122

  8. Signaling-mediated cross-talk modulates swarming and biofilm formation in a coral pathogen Serratia marcescens

    PubMed Central

    Alagely, Ali; Krediet, Cory J; Ritchie, Kim B; Teplitski, Max

    2011-01-01

    Interactions within microbial communities associated with marine holobionts contribute importantly to the health of these symbiotic organisms formed by invertebrates, dinoflagellates and bacteria. However, mechanisms that control invertebrate-associated microbiota are not yet fully understood. Hydrophobic compounds that were isolated from surfaces of asymptomatic corals inhibited biofilm formation by the white pox pathogen Serratia marcescens PDL100, indicating that signals capable of affecting the associated microbiota are produced in situ. However, neither the origin nor structures of these signals are currently known. A functional survey of bacteria recovered from coral mucus and from cultures of the dinoflagellate Symbiodinium spp. revealed that they could alter swarming and biofilm formation in S. marcescens. As swarming and biofilm formation are inversely regulated, the ability of some native ?-proteobacteria to affect both behaviors suggests that the ?-proteobacterial signal(s) target a global regulatory switch controlling the behaviors in the pathogen. Isolates of Marinobacter sp. inhibited both biofilm formation and swarming in S. marcescens PDL100, without affecting growth of the coral pathogen, indicative of the production of multiple inhibitors, likely targeting lower level regulatory genes or functions. A multi-species cocktail containing these strains inhibited progression of a disease caused by S. marcescens in a model polyp Aiptasia pallida. An ?-proteobacterial isolate 44B9 had a similar effect. Even though ?4% of native holobiont-associated bacteria produced compounds capable of triggering responses in well-characterized N-acyl homoserine lactone (AHL) biosensors, there was no strong correlation between the production of AHL-like signals and disruption of biofilms or swarming in S. marcescens. PMID:21509042

  9. Control of marine biofouling and medical biofilm formation with engineered topography

    NASA Astrophysics Data System (ADS)

    Schumacher, James Frederick

    Biofouling is the unwanted accumulation and growth of cells and organisms on clean surfaces. This process occurs readily on unprotected surfaces in both the marine and physiological environments. Surface protection in both systems has typically relied upon toxic materials and biocides. Metallic paints, based on tin and copper, have been extremely successful as antifouling coatings for the hulls of ships by killing the majority of fouling species. Similarly, antibacterial medical coatings incorporate metal-containing compounds such as silver or antibiotics that kill the bacteria. The environmental concerns over the use of toxic paints and biocides in the ocean, the developed antibiotic resistance of bacterial biofilms, and the toxicity concerns with silver suggest the need for non-toxic and non-kill solutions for these systems. The manipulation of surface topography on non-toxic materials at the size scale of the fouling species or bacteria is one approach for the development of alternative coatings. These surfaces would function simply as a physical deterrent of settlement of fouling organisms or a physical obstacle for the adequate formation of a bacterial biofilm without the need to kill the targeted microorganisms. Species-specific topographical designs called engineered topographies have been designed, fabricated and evaluated for potential applications as antifouling marine coatings and material surfaces capable of reducing biofilm formation. Engineered topographies fabricated on the surface of a non-toxic, polydimethylsiloxane elastomer, or silicone, were shown to significantly reduce the attachment of zoospores of a common ship fouling green algae (Ulva) in standard bioassays versus a smooth substrate. Other engineered topographies were effective at significantly deterring the settlement of the cyprids of barnacles (Balanus amphitrite). These results indicate the potential use of engineered topography applied to non-toxic materials as an environmentally friendly coating for antifouling applications in the ocean. In addition, a biomaterial-grade silicone modified with a tailored engineered topography significantly inhibited the bacterial biofilm growth from Staphylococcus aureus for up to 14 days exposure without the use of bactericidal agents. Mature biofilms were present on equivalently exposed smooth silicone surfaces. Engineered surface topographies present a promising means of blocking biofilm development on medical surfaces and reducing the rate of related infections.

  10. The low-molecular-weight fraction of exopolysaccharide II from Sinorhizobium meliloti is a crucial determinant of biofilm formation.

    PubMed

    Rinaudi, Luciana V; González, Juan E

    2009-12-01

    Sinorhizobium meliloti is a soil bacterium that elicits the formation of root organs called nodules on its host plant, Medicago sativa. Inside these structures, the bacteria are able to convert atmospheric nitrogen into ammonia, which is then used by the plant as a nitrogen source. The synthesis by S. meliloti of at least one exopolysaccharide, succinoglycan or EPS II, is essential for a successful symbiosis. While exopolysaccharide-deficient mutants induce the formation of nodules, they fail to invade them, and as a result, no nitrogen fixation occurs. Interestingly, the low-molecular-weight fractions of these exopolysaccharides are the symbiotically active forms, and it has been suggested that they act as signals to the host plant to initiate infection thread formation. In this work, we explored the role of these rhizobial exopolysaccharides in biofilm formation and their importance in the symbiotic relationship with the host. We showed that the ExpR/Sin quorum-sensing system controls biofilm formation in S. meliloti through the production of EPS II, which provides the matrix for the development of structured and highly organized biofilms. Moreover, the presence of the low-molecular-weight fraction of EPS II is vital for biofilm formation, both in vitro and in vivo. This is the first report where the symbiotically active fraction of EPS II is shown to be a critical factor for biofilm formation and root colonization. Thus, the ability of S. meliloti to properly attach to root surfaces and form biofilms conferred by the synthesis of exopolysaccharides may embody the main function of these symbiotically essential molecules. PMID:19783627

  11. Influence of topography and hydrophilicity on initial oral biofilm formation on microstructured titanium surfaces in vitro

    PubMed Central

    Almaguer-Flores, A.; Olivares-Navarrete, R.; Wieland, M.; Ximénez-Fyvie, L. A.; Schwartz, Z.; Boyan, B. D.

    2014-01-01

    Objectives The aim of this study was to analyse the influence of the microtopography and hydrophilicity of titanium (Ti) substrates on initial oral biofilm formation. Materials and methods Nine bacterial species belonging to the normal oral microbiota, including: Aggregatibacter actinomycetemcomitans, Actinomyces israelii, Campylobacter rectus, Eikenella corrodens, Fusobacterium nucleatum, Parvimonas micra, Porphyromonas gingivalis, Prevotella intermedia, and Streptococcus sanguinis were tested on Ti surfaces: pretreatment (PT [Ra<0.2 ?m]), acid-etched (A [Ra<0.8 ?m]), A modified to be hydrophilic (modA), sand-blasted/acid-etched (SLA [Ra = 4 ?m]), and hydrophilic SLA (modSLA). Disks were incubated for 24 h in anaerobic conditions using a normal culture medium (CM) or human saliva (HS). The total counts of bacteria and the proportion of each bacterial species were analysed by checkerboard DNA–DNA hybridization. Results: Higher counts of bacteria were observed on all surfaces incubated with CM compared with the samples incubated with HS. PT, SLA, and modSLA exhibited higher numbers of attached bacteria in CM, whereas SLA and modSLA had a significant increase in bacterial adhesion in HS. The proportion of the species in the initial biofilms was also influenced by the surface properties and the media used: SLA and modSLA increased the proportion of species like A. actinomycetemcomitans and S. sanguinis in both media, while the adhesion of A. israelii and P. gingivalis on the same surfaces was affected in the presence of saliva. Conclusions The initial biofilm formation and composition were affected by the microtopography and hydrophilicity of the surface and by the media used. PMID:21492236

  12. Antibacterial activity of Thymoquinone, an active principle of Nigella sativa and its potency to prevent bacterial biofilm formation

    PubMed Central

    2011-01-01

    Background Thymoquinone is an active principle of Nigella sativa seed known as "Habbah Al-Sauda" in Arabic countries and "Sinouj" in Tunisia. Bacterial biofilms tend to exhibit significant tolerance to antimicrobials drugs during infections. Methods The antibacterial activity of Thymoquinone (TQ) and its biofilm inhibition potencies were investigated on 11 human pathogenic bacteria. The growth and development of the biofilm were assessed using the crystal violet (CV) and the 2, 3-bis [2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide (XTT) reduction assay. Results TQ exhibited a significant bactericidal activity against the majority of the tested bacteria (MICs values ranged from 8 to 32 ?g/ml) especially Gram positive cocci (Staphylococcus aureus ATCC 25923 and Staphylococcus epidermidis CIP 106510). Crystal violet assay demonstrated that the minimum biofilm inhibition concentration (BIC50) was reached with 22 and 60 ?g/ml for Staphylococcus aureus ATCC 25923 and Staphylococcus epidermidis CIP 106510 respectively. In addition our data revealed that cells oxidative activity was influenced by TQ supplementation. In the same way, TQ prevented cell adhesion to glass slides surface. Conclusion The ability of TQ to prevent biofilm formation warrants further investigation to explore its use as bioactive substances with antibiofilm potential. PMID:21489272

  13. Physicochemical changes of microbe and solid surface properties during biofilm formation

    NASA Astrophysics Data System (ADS)

    Sfaelou, Stavroula; Vakros, John; Manariotis, Ioannis D.; Karapanagioti, Hrissi K.

    2013-04-01

    Cell immobilization is a promising biotechnology process. For example, entrapment of bacteria cells on synthetic polymeric matrices such as biocarriers is widely used for wastewater treatment because they have strong mechanical strength and durability in contrast to natural polymers. This method is based on the formation of biofilm on the surface of the used carriers and combines two different processes; attached and suspended biomass in a hybrid system. Previous studies have shown that immobilized cell systems have the potential to degrade toxic chemicals faster than conventional wastewater treatment systems because high densities of specialized microorganisms are used in immobilized cell systems. The present study elucidates the surface charge and properties of activated sludge and their role in the formation of biofilm. This information can be used for the optimization of the formation of biofilms as well as for the study of the transport of microorganisms in different environments. The two types of biocarriers that were used in this study are polyvinyl alcohol (PVA)-gel beads and Moving Bed Biofilm Reactor (MBBR) carriers. The sludge samples that were investigated were taken from the aeration tank of the wastewater treatment plant of University of Patras (Greece). Measurements of the surface charge of the sludge, the biocarriers and the formed biofilm, were performed using potentiometric mass titrations with different kinds of electrolytes (e.g. NaCl, NaNO3) and at pH ranging from 3 to 11. The determination of pzc and surface charge of activated sludge and biocarriers is significant, because it can provide new valuable informations about the interaction mechanisms and the formation of biofilms. In each case, the point of zero charge (pzc) was identified as the common intersection point of the potentiometric curve of the blank solution of the electrolyte with the corresponding curves of each material. The pzc value for the biofilm was 6.1 to 6.7 and 6.6 to 6.9 for PVA gel and MBBR, respectively. These values differ both from the pzc values found for PVA biocarriers (pzc = 9.4; no pzc value was obtained for MBBR as expected based on its hydrophobic nature and the absence of surface groups with acid-base behavior) and the pzc value of activated sludge (activated sludge mixed liquor: pzc = 8.0 to 8.2, solid activated sludge: pzc = 7.2 to 7.3). These results lead us to the conclusion that the formed biofilms have different acid-base behavior and properties in relation to the activated sludge and the biocarriers. This fact is in accordance to previous studies, where biofilm-associated cells can be differentiated from their suspended counterparts due to the generation of an extracellular polymeric substance (EPS) matrix. One other possible explanation is that the complicated processes of the biofilm formation can alter the distribution of different cells in the sludge compared with the cell distribution in the suspended unsupported sludge.

  14. Low Levels of ?-Lactam Antibiotics Induce Extracellular DNA Release and Biofilm Formation in Staphylococcus aureus

    PubMed Central

    Kaplan, Jeffrey B.; Izano, Era A.; Gopal, Prerna; Karwacki, Michael T.; Kim, Sangho; Bose, Jeffrey L.; Bayles, Kenneth W.; Horswill, Alexander R.

    2012-01-01

    ABSTRACT Subminimal inhibitory concentrations of antibiotics have been shown to induce bacterial biofilm formation. Few studies have investigated antibiotic-induced biofilm formation in Staphylococcus aureus, an important human pathogen. Our goal was to measure S. aureus biofilm formation in the presence of low levels of ?-lactam antibiotics. Fifteen phylogenetically diverse methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) strains were employed. Methicillin, ampicillin, amoxicillin, and cloxacillin were added to cultures at concentrations ranging from 0× to 1× MIC. Biofilm formation was measured in 96-well microtiter plates using a crystal violet binding assay. Autoaggregation was measured using a visual test tube settling assay. Extracellular DNA was quantitated using agarose gel electrophoresis. All four antibiotics induced biofilm formation in some strains. The amount of biofilm induction was as high as 10-fold and was inversely proportional to the amount of biofilm produced by the strain in the absence of antibiotics. MRSA strains of lineages USA300, USA400, and USA500 exhibited the highest levels of methicillin-induced biofilm induction. Biofilm formation induced by low-level methicillin was inhibited by DNase. Low-level methicillin also induced DNase-sensitive autoaggregation and extracellular DNA release. The biofilm induction phenotype was absent in a strain deficient in autolysin (atl). Our findings demonstrate that subminimal inhibitory concentrations of ?-lactam antibiotics significantly induce autolysin-dependent extracellular DNA release and biofilm formation in some strains of S. aureus. PMID:22851659

  15. Evidence of specialized bromate-reducing bacteria in a hollow fiber membrane biofilm reactor

    Microsoft Academic Search

    K. J. Martin; L. S. Downing; R. Nerenberg

    2009-01-01

    Bromate is a carcinogenic disinfection by-product formed from bromide during ozonation or advanced oxidation of drinking water. We previously observed bromate reduction in a hydrogen- based, denitrifying hollow fiber membrane biofilm reactor (MBfR). In this research, we investigated the potential existence of specialized bromate-reducing bacteria. Using denaturing gradient gel electrophoresis (DGGE), we compared the microbial ecology of two denitrifying MBfRs,

  16. Analyses of spatial distributions of sulfate-reducing bacteria and their activity in aerobic wastewater biofilms

    Microsoft Academic Search

    Satoshi Okabe; Tsukasa Itoh; Hisashi Satoh; Yoshimasa Watanabe

    1999-01-01

    The vertical distribution of sulfate-reducing bacteria (SRB) in aerobic wastewater biofilms grown on rotating disk reactors was investigated by fluorescent in situ hybridization (FISH) with 16S rRNA-targeted oligonucleotide probes. To correlate the vertical distribution of SRB populations with their activity, the microprofiles of Oâ, HâS, NOâ-, NHâ{sup +}, and pH were measured with microelectrodes. In addition, a cross-evaluation of the

  17. The Pho regulon influences biofilm formation and type three secretion in Pseudomonas aeruginosa.

    PubMed

    Haddad, Ahmed; Jensen, Vanessa; Becker, Tanja; Häussler, Susanne

    2009-12-01

    Research into the molecular mechanisms of the switch from highly motile to biofilm forming Pseudomonas fluorescens bacteria recently uncovered a role of inorganic phosphate as an important environmental regulatory factor to control c-di-GMP levels in the cell. In this study we present evidence that in the opportunistic pathogen P. aeruginosa the Pho regulon inhibits biofilm formation and is required for the repression of the type three secretion system. We furthermore identified an EAL domain protein as a downstream effector of the Pho regulon, which at least partially mediated the observed inhibition. Interestingly, inhibition of the P. aeruginosa virulence phenotype was Pho regulon-dependent in both a PA14 and a PAO1 strain background; however, in PA14 this inhibition was independent on the availability of inorganic phosphate, whereas in PAO1 phosphate enhanced biofilm formation independently of the inhibitory activity of the Pho regulon. These results clearly show that the Pho regulon contributes to the expression of the virulence phenotype in P. aeruginosa and add even more complexity to the strain-specific regulation of bacterial behaviour by environmental cues. PMID:23765926

  18. Secondary flow as a mechanism for the formation of biofilm streamers.

    PubMed

    Rusconi, Roberto; Lecuyer, Sigolene; Autrusson, Nicolas; Guglielmini, Laura; Stone, Howard A

    2011-03-16

    In most environments, such as natural aquatic systems, bacteria are found predominantly in self-organized sessile communities known as biofilms. In the presence of a significant flow, mature multispecies biofilms often develop into long filamentous structures called streamers, which can greatly influence ecosystem processes by increasing transient storage and cycling of nutrients. However, the interplay between hydrodynamic stresses and streamer formation is still unclear. Here, we show that suspended thread-like biofilms steadily develop in zigzag microchannels with different radii of curvature. Numerical simulations of a low-Reynolds-number flow around these corners indicate the presence of a secondary vortical motion whose intensity is related to the bending angle of the turn. We demonstrate that the formation of streamers is directly proportional to the intensity of the secondary flow around the corners. In addition, we show that a model of an elastic filament in a two-dimensional corner flow is able to explain how the streamers can cross fluid streamlines and connect corners located at the opposite sides of the channel. PMID:21402020

  19. Medicinal plants extracts affect virulence factors expression and biofilm formation by the uropathogenic Escherichia coli.

    PubMed

    Wojnicz, Dorota; Kucharska, Alicja Z; Sokó?-??towska, Anna; Kicia, Marta; Tichaczek-Goska, Dorota

    2012-12-01

    Medicinal plants are an important source for the therapeutic remedies of various diseases including urinary tract infections. This prompted us to perform research in this area. We decided to focus on medicinal plants species used in urinary tract infections prevention. The aim of our study was to determine the influence of Betula pendula, Equisetum arvense, Herniaria glabra, Galium odoratum, Urtica dioica, and Vaccinium vitis-idaea extracts on bacterial survival and virulence factors involved in tissue colonization and biofilm formation of the uropathogenic Escherichia coli rods. Qualitative and quantitative analysis of plant extracts were performed. Antimicrobial assay relied on the estimation of the colony forming unit number. Hydrophobicity of cells was established by salt aggregation test. Using motility agar, the ability of bacteria to move was examined. The erythrocyte hemagglutination test was used for fimbriae P screening. Curli expression was determined using YESCA agar supplemented with congo red. Quantification of biofilm formation was carried out using a microtiter plate assay and a spectrophotometric method. The results of the study indicate significant differences between investigated extracts in their antimicrobial activities. The extracts of H. glabra and V. vitis-idaea showed the highest growth-inhibitory effects (p < 0.05). Surface hydrophobicity of autoaggregating E. coli strain changed after exposure to all plant extracts, except V. vitis-idaea (p > 0.05). The B. pendula and U. dioica extracts significantly reduced the motility of the E. coli rods (p < 0.05). All the extracts exhibited the anti-biofilm activity. PMID:22915095

  20. Sfp-type PPTase inactivation promotes bacterial biofilm formation and ability to enhance wheat drought tolerance

    PubMed Central

    Timmusk, Salme; Kim, Seong-Bin; Nevo, Eviatar; Abd El Daim, Islam; Ek, Bo; Bergquist, Jonas; Behers, Lawrence

    2015-01-01

    Paenibacillus polymyxa is a common soil bacterium with broad range of practical applications. An important group of secondary metabolites in P. polymyxa are non-ribosomal peptide and polyketide derived metabolites (NRPs/PKs). Modular non-ribosomal peptide synthetases catalyze main steps in the biosynthesis of the complex secondary metabolites. Here we report on the inactivation of an A26 Sfp-type 4'-phosphopantetheinyl transferase (Sfp-type PPTase). The inactivation of the gene resulted in loss of NRPs/PKs production. In contrast to the former Bacillus spp. model the mutant strain compared to wild type showed greatly enhanced biofilm formation ability. A26?sfp biofilm promotion is directly mediated by NRPs/PKs, as exogenous addition of the wild type metabolite extracts restores its biofilm formation level. Wheat inoculation with bacteria that had lost their Sfp-type PPTase gene resulted in two times higher plant survival and about three times increased biomass under severe drought stress compared to wild type. Challenges with P. polymyxa genetic manipulation are discussed. PMID:26052312

  1. Vibriophages Differentially Influence Biofilm Formation by Vibrio anguillarum Strains.

    PubMed

    Tan, Demeng; Dahl, Amalie; Middelboe, Mathias

    2015-07-01

    Vibrio anguillarum is an important pathogen in marine aquaculture, responsible for vibriosis. Bacteriophages can potentially be used to control bacterial pathogens; however, successful application of phages requires a detailed understanding of phage-host interactions under both free-living and surface-associated growth conditions. In this study, we explored in vitro phage-host interactions in two different strains of V. anguillarum (BA35 and PF430-3) during growth in microcolonies, biofilms, and free-living cells. Two vibriophages, ?H20 (Siphoviridae) and KVP40 (Myoviridae), had completely different effects on the biofilm development. Addition of phage ?H20 to strain BA35 showed efficient control of biofilm formation and density of free-living cells. The interactions between BA35 and ?H20 were thus characterized by a strong phage control of the phage-sensitive population and subsequent selection for phage-resistant mutants. Addition of phage KVP40 to strain PF430-3 resulted in increased biofilm development, especially during the early stage. Subsequent experiments in liquid cultures showed that addition of phage KVP40 stimulated the aggregation of host cells, which protected the cells against phage infection. By the formation of biofilms, strain PF430-3 created spatial refuges that protected the host from phage infection and allowed coexistence between phage-sensitive cells and lytic phage KVP40. Together, the results demonstrate highly variable phage protection mechanisms in two closely related V. anguillarum strains, thus emphasizing the challenges of using phages to control vibriosis in aquaculture and adding to the complex roles of phages as drivers of prokaryotic diversity and population dynamics. PMID:25911474

  2. Viable but non-culturable (VBNC) bacteria: Gene expression in planktonic and biofilm cells.

    PubMed

    Trevors, J T

    2011-08-01

    Viable but non-culturable (VBNC) bacteria are common in nutrient poor and/or stressed environments as planktonic cells and biofilms. This article discusses approaches to researching VBNC bacteria to obtain knowledge that is lacking on their gene expression while in the VBNC state, and when they enter into and then recover from this state, when provided with the necessary nutrients and environmental conditions to support growth and cell division. Two-dimensional gel electrophoresis of proteins, global gene expression, reverse-transcription polymerase chain reaction (PCR) analysis and sequencing by synthesis coupled with data on cell numbers, viability and species present are central to understanding the VBNC state. PMID:21616099

  3. A Novel Two-Component Response Regulator Links rpf with Biofilm Formation and Virulence of Xanthomonas axonopodis pv. citri

    PubMed Central

    Huang, Tzu-Pi; Lu, Kuan-Min; Chen, Yu-Hsuan

    2013-01-01

    Citrus bacterial canker caused by Xanthomonas axonopodis pv. citri is a serious disease that impacts citrus production worldwide, and X. axonopodis pv. citri is listed as a quarantine pest in certain countries. Biofilm formation is important for the successful development of a pathogenic relationship between various bacteria and their host(s). To understand the mechanisms of biofilm formation by X. axonopodis pv. citri strain XW19, the strain was subjected to transposon mutagenesis. One mutant with a mutation in a two-component response regulator gene that was deficient in biofilm formation on a polystyrene microplate was selected for further study. The protein was designated as BfdR for biofilm formation defective regulator. BfdR from strain XW19 shares 100% amino acid sequence identity with XAC1284 of X. axonopodis pv. citri strain 306 and 30–100% identity with two-component response regulators in various pathogens and environmental microorganisms. The bfdR mutant strain exhibited significantly decreased biofilm formation on the leaf surfaces of Mexican lime compared with the wild type strain. The bfdR mutant was also compromised in its ability to cause canker lesions. The wild-type phenotype was restored by providing pbfdR in trans in the bfdR mutant. Our data indicated that BfdR did not regulate the production of virulence-related extracellular enzymes including amylase, lipase, protease, and lecithinase or the expression of hrpG, rfbC, and katE; however, BfdR controlled the expression of rpfF in XVM2 medium, which mimics cytoplasmic fluids in planta. In conclusion, biofilm formation on leaf surfaces of citrus is important for canker development in X. axonopodis pv. citri XW19. The process is controlled by the two-component response regulator BfdR via regulation of rpfF, which is required for the biosynthesis of a diffusible signal factor. PMID:23626857

  4. Biofilm formation as a novel phenotypic feature of adherent-invasive Escherichia coli (AIEC)

    Microsoft Academic Search

    Margarita Martinez-Medina; Plínio Naves; Jorge Blanco; Xavier Aldeguer; Jesus E Blanco; Miguel Blanco; Carmen Ponte; Francisco Soriano; Arlette Darfeuille-Michaud; L Jesus Garcia-Gil

    2009-01-01

    BACKGROUND: Crohn's disease (CD) is a high morbidity chronic inflammatory disorder of unknown aetiology. Adherent-invasive Escherichia coli (AIEC) has been recently implicated in the origin and perpetuation of CD. Because bacterial biofilms in the gut mucosa are suspected to play a role in CD and biofilm formation is a feature of certain pathogenic E. coli strains, we compared the biofilm

  5. Effect of Cinnamon Oil on icaA Expression and Biofilm Formation by Staphylococcus epidermidis

    Microsoft Academic Search

    Titik Nuryastuti; Henny C. van der Mei; Henk J. Busscher; Susi Iravati; Abu T. Aman; Bastiaan P. Krom

    2009-01-01

    Staphylococcus epidermidis is notorious for its biofilm formation on medical devices, and novel approaches to prevent and kill S. epidermidis biofilms are desired. In this study, the effect of cinnamon oil on planktonic and biofilm cultures of clinical S. epidermidis isolates was evaluated. Initially, susceptibility to cinnamon oil in planktonic cultures was compared to the commonly used antimicrobial agents chlorhexidine,

  6. Inhibition of Candida albicans Biofilm Formation by Farnesol, a Quorum-Sensing Molecule

    Microsoft Academic Search

    Gordon Ramage; Stephen P. Saville; Brian L. Wickes; J. L. Lopez-Ribot

    2002-01-01

    Farnesol is a quorum-sensing molecule that inhibits filamentation in Candida albicans. Both filamentation and quorum sensing are deemed to be important factors in C. albicans biofilm development. Here we examined the effect of farnesol on C. albicans biofilm formation. C. albicans adherent cell populations (after 0, 1, 2, and 4 h of adherence) and preformed biofilms (24 h) were treated

  7. Insights into Clostridium phytofermentans biofilm formation: aggregation, microcolony development and the role of extracellular DNA.

    PubMed

    Zuroff, Trevor R; Gu, Weimin; Fore, Rachel L; Leschine, Susan B; Curtis, Wayne R

    2014-06-01

    Biofilm formation is a critical component to the lifestyle of many naturally occurring cellulose-degrading microbes. In this work, cellular aggregation and biofilm formation of Clostridium phytofermentans, a cellulolytic anaerobic bacterium, was investigated using a combination of microscopy and analytical techniques. Aggregates included thread-like linkages and a DNA/protein-rich extracellular matrix when grown on soluble cellobiose. Similar dense biofilms formed on the surface of the model cellulosic substrate Whatman no. 1 filter paper. Following initially dispersed attachment, microcolonies of ~500 µm diameter formed on the filter paper after 6 days. Enzymic treatment of both the biofilm and cellular aggregates with DNase and proteinase resulted in significant loss of rigidity, pointing to the key role of extracellular DNA and proteins in the biofilm structure. A high-throughput biofilm assay was adapted for studying potential regulators of biofilm formation. Various media manipulations were shown to greatly impact biofilm formation, including repression in the presence of glucose but not the ?(1?4)-linked disaccharide cellobiose, implicating a balance of hydrolytic activity and assimilation to maintain biofilm integrity. Using the microtitre plate biofilm assay, DNase and proteinase dispersed ~60 and 30?% of mature biofilms, respectively, whilst RNase had no impact. This work suggests that Clostridium phytofermentans has evolved a DNA/protein-rich biofilm matrix complementing its cellulolytic nature. These insights add to our current understanding of natural ecosystems as well as strategies for efficient bioprocess design. PMID:24625451

  8. DOI: 10.1002/cplu.201200088 Biofilm Formation on Chromatic SolGel/Polydiacetylene

    E-print Network

    Jelinek, Raz

    DOI: 10.1002/cplu.201200088 Biofilm Formation on Chromatic Sol­Gel/Polydiacetylene Films Margarita] Introduction Bacterial biofilms are integrated communities of cells consist- ing of one or more species joined to the ecology and biology of most bacterial strains. Owing to the impregnable nature of biofilm frameworks

  9. The Effect of Nondialyzable Material (NDM) Cranberry Extract on Formation of Contact Lens Biofilm by

    E-print Network

    Jacob, Eshel Ben

    The Effect of Nondialyzable Material (NDM) Cranberry Extract on Formation of Contact Lens Biofilm PURPOSE. To assess the effects of NDM from cranberries on Staphylococcus epidermidis biofilm formed. RESULTS. NDM at 500 g/mL concentration caused a signifi- cant (P 0.01) reduction of biofilm. Scanning

  10. Muramidases found in the foregut microbiome of the Tammar wallaby can direct cell aggregation and biofilm formation

    Microsoft Academic Search

    Phillip B Pope; Makrina Totsika; Daniel Aguirre de Carcer; Mark A Schembri; Mark Morrison

    2011-01-01

    We describe here the role of muramidases present in clones of metagenomic DNA that result in cell aggregation and biofilm formation by Escherichia coli. The metagenomic clones were obtained from uncultured Lachnospiraceae-affiliated bacteria resident in the foregut microbiome of the Tammar wallaby. One of these fosmid clones (p49C2) was chosen for more detailed studies and a variety of genetic methods

  11. Flagellin and F4 fimbriae have opposite effects on biofilm formation and quorum sensing in F4ac+ enterotoxigenic Escherichia coli.

    PubMed

    Zhou, Mingxu; Guo, Zhiyan; Yang, Yang; Duan, Qiangde; Zhang, Qi; Yao, Fenghua; Zhu, Jun; Zhang, Xinjun; Hardwidge, Philip R; Zhu, Guoqiang

    2014-01-10

    Bacteria that form biofilms are often highly resistant to antibiotics and are capable of evading the host immune system. To evaluate the role of flagellin and F4 fimbriae on biofilm formation by enterotoxigenic Escherichia coli (ETEC), we deleted the fliC (encoding the major flagellin protein) and/or the faeG (encoding the major subunit of F4 fimbriae) genes from ETEC C83902. Biofilm formation was reduced in the fliC mutant but increased in the faeG mutant, as compared with the wild-type strain. The expression of AI-2 quorum sensing associated genes was regulated in the fliC and faeG mutants, consistent with the biofilm formation of these strains. But, deleting fliC and/or faeG also inhibited AI-2 quorum sensing activity. PMID:24238669

  12. Desiccation tolerance of iron bacteria biofilms on Mars regolith simulants

    Microsoft Academic Search

    Nina Feyh; Ulrich Szewzyk

    2010-01-01

    Iron oxidizing bacteria play an important role in the geological redox cycling of iron on earth. The redox change between Fe(II) and Fe(III) can be used for biological energy production [1]. Therefore iron oxidation in the iron rich martian soils may be or may have been microbially mediated. The microbial conversion of iron is considered to be an ancient form

  13. Chemoinformatics-assisted development of new anti-biofilm compounds

    Microsoft Academic Search

    Anna Dürig; Irene Kouskoumvekaki; Rebecca M. Vejborg; Per Klemm

    2010-01-01

    Bacterial biofilms are associated with a large number of infections. Biofilm-dwelling bacteria are particularly resistant\\u000a to antibiotics, making it hard to eradicate biofilm-associated infections. Here, we use a novel cross-disciplinary approach\\u000a combining microbiology and chemoinformatics to identify new and efficient anti-biofilm drugs. We found that ellagic acid (present\\u000a in green tea) significantly inhibited biofilm formation of Streptococcus dysgalactiae. Based on

  14. Pseudomonas aeruginosa promotes Escherichia coli biofilm formation in nutrient-limited medium.

    PubMed

    Culotti, Alessandro; Packman, Aaron I

    2014-01-01

    Biofilms have been implicated as an important reservoir for pathogens and commensal enteric bacteria such as Escherichia coli in natural and engineered water systems. However, the processes that regulate the survival of E. coli in aquatic biofilms have not been thoroughly studied. We examined the effects of hydrodynamic shear and nutrient concentrations on E. coli colonization of pre-established Pseudomonas aeruginosa biofilms, co-inoculation of E. coli and P. aeruginosa biofilms, and P. aeruginosa colonization of pre-established E. coli biofilms. In nutritionally-limited R2A medium, E. coli dominated biofilms when co-inoculated with P. aeruginosa, and successfully colonized and overgrew pre-established P. aeruginosa biofilms. In more enriched media, P. aeruginosa formed larger clusters, but E. coli still extensively overgrew and colonized the interior of P. aeruginosa clusters. In mono-culture, E. coli formed sparse and discontinuous biofilms. After P. aeruginosa was introduced to these biofilms, E. coli growth increased substantially, resulting in patterns of biofilm colonization similar to those observed under other sequences of organism introduction, i.e., E. coli overgrew P. aeruginosa and colonized the interior of P. aeruginosa clusters. These results demonstrate that E. coli not only persists in aquatic biofilms under depleted nutritional conditions, but interactions with P. aeruginosa can greatly increase E. coli growth in biofilms under these experimental conditions. PMID:25198725

  15. Disruption of E. coli amyloid-integrated biofilm formation at the air-liquid interface by a polysorbate surfactant

    PubMed Central

    Wu, Cynthia; Lim, Ji Youn; Fuller, Gerald G.; Cegelski, Lynette

    2013-01-01

    Functional amyloid fibers termed curli contribute to bacterial adhesion and biofilm formation in E. coli. We discovered that the nonionic surfactant Tween 20 inhibits biofilm formation by uropathogenic E. coli at the air-liquid interface, referred to as pellicle formation, and at the solid-liquid interface. At Tween 20 concentrations near and above the critical micelle concentration, the interfacial viscoelastic modulus is reduced to zero as cellular aggregates at the air-liquid interface are locally disconnected and eventually eliminated. Tween 20 does not inhibit the production of curli, but prevents curli-integrated film formation. Our results support a model in which the hydrophobic curli fibers associated with bacteria near the air-liquid interface require access to the gas phase to formed strong physical entanglements and to form a network that can support shear stress. PMID:23259693

  16. Disruption of Escherichia coli amyloid-integrated biofilm formation at the air-liquid interface by a polysorbate surfactant.

    PubMed

    Wu, Cynthia; Lim, Ji Youn; Fuller, Gerald G; Cegelski, Lynette

    2013-01-22

    Functional amyloid fibers termed curli contribute to bacterial adhesion and biofilm formation in Escherichia coli . We discovered that the nonionic surfactant Tween 20 inhibits biofilm formation by uropathogenic E. coli at the air-liquid interface, referred to as pellicle formation, and at the solid-liquid interface. At Tween 20 concentrations near and above the critical micelle concentration, the interfacial viscoelastic modulus is reduced to zero as cellular aggregates at the air-liquid interface are locally disconnected and eventually eliminated. Tween 20 does not inhibit the production of curli but prevents curli-integrated film formation. Our results support a model in which the hydrophobic curli fibers associated with bacteria near the air-liquid interface require access to the gas phase to formed strong physical entanglements and to form a network that can support shear stress. PMID:23259693

  17. Microbial biofilms in endodontic infections: an update review.

    PubMed

    Mohammadi, Zahed; Palazzi, Flavio; Giardino, Luciano; Shalavi, Sousan

    2013-01-01

    Biofilms and microbial aggregates are the common mechanisms for the survival of bacteria in nature. In other words, the ability to form biofilms has been regarded as a virulence factor. Microbial biofilms play an essential role in several infectious diseases such as pulp and periradicular pathosis. The aim of this article was to review the adaptation mechanisms of biofilms, their roles in pulpal and periapical pathosis, factors influencing biofilm formation, mechanisms of their antimicrobial resistance, models developed to create biofilms, observation techniques of endodontic biofilms, and the effects of root canal irrigants and medicaments as well as lasers on endodontic biofilms. The search was performed from 1982 to December 2010, and was limited to papers in English language. The keywords searched on Medline were "biofilms and endodontics," "biofilms and root canal irrigation," "biofilms and intra-canal medicament," and "biofilms and lasers." The reference section of each article was manually searched to find other suitable sources of information. PMID:23644234

  18. Lavage with Allicin in Combination with Vancomycin Inhibits Biofilm Formation by Staphylococcus epidermidis in a Rabbit Model of Prosthetic Joint Infection

    PubMed Central

    Zhai, Haohan; Pan, Jianchao; Pang, En; Bai, Bo

    2014-01-01

    Background and Aim The present anti-infection strategy for prosthetic joint infections (PJI) includes the use of antibiotics and surgical treatments, but the bacterial eradication rates are still low. One of the major challenges is the formation of biofilm causing poor bacterial eradication. Recently it has been reported that allicin (diallyl thiosulphinate), an antibacterial principle of garlic, can inhibit bacteria adherence and prevent biofilm formation in vitro. However, whether allicin could inhibit biofilm formation in vivo is unknown. The aim of this study was to investigate the effects of allicin on biofilm formation, and whether allicin could potentiate the bactericidal effect of vancomycin in a rabbit PJI model. Methods A sterile stainless-steel screw with a sterile ultra-high molecular weight polyethylene washer was inserted into the lateral femoral condyle of the right hind knee joint of rabbit, and 1 mL inoculum containing 104 colony-forming units of Staphylococcus epidermidis was inoculated into the knee joint (n?=?32). Fourteen days later, rabbits randomly received one of the following 4 treatments using continuous lavages: normal saline, vancomycin (20 mcg/mL), allicin (4 mg/L), or allicin (4 mg/L) plus vancomycin (20 mcg/mL). Three days later, the washer surface biofilm formation was examined by scanning electron microscopy (SEM). The bacterial counts within the biofilm of implanted screws were determined by bacterial culture. Results The lowest number of viable bacterial counts of Staphylococcus epidermidis recovered from the biofilm was in the rabbits treated with allicin plus vancomycin (P<0.01 vs. all other groups). The biofilm formation was significantly reduced or undetectable by SEM in rabbits receiving allicin or allicin plus vancomycin. Conclusion Intra-articular allicincan inhibit biofilm formation and enhance the bactericidal effect of vancomycin on implant surface in vivo. Allicin in combination with vancomycin may be a useful anti-infection strategy for the treatment of PJI. PMID:25025650

  19. Abiotic and Microbiotic Factors Controlling Biofilm Formation by Thermophilic Sporeformers

    PubMed Central

    Zhao, Yu; Caspers, Martien P. M.; Metselaar, Karin I.; de Boer, Paulo; Roeselers, Guus; Moezelaar, Roy; Nierop Groot, Masja; Montijn, Roy C.; Abee, Tjakko

    2013-01-01

    One of the major concerns in the production of dairy concentrates is the risk of contamination by heat-resistant spores from thermophilic bacteria. In order to acquire more insight in the composition of microbial communities occurring in the dairy concentrate industry, a bar-coded 16S amplicon sequencing analysis was carried out on milk, final products, and fouling samples taken from dairy concentrate production lines. The analysis of these samples revealed the presence of DNA from a broad range of bacterial taxa, including a majority of mesophiles and a minority of (thermophilic) spore-forming bacteria. Enrichments of fouling samples at 55°C showed the accumulation of predominantly Brevibacillus and Bacillus, whereas enrichments at 65°C led to the accumulation of Anoxybacillus and Geobacillus species. Bacterial population analysis of biofilms grown using fouling samples as an inoculum indicated that both Anoxybacillus and Geobacillus preferentially form biofilms on surfaces at air-liquid interfaces rather than on submerged surfaces. Three of the most potent biofilm-forming strains isolated from the dairy factory industrial samples, including Geobacillus thermoglucosidans, Geobacillus stearothermophilus, and Anoxybacillus flavithermus, have been characterized in detail with respect to their growth conditions and spore resistance. Strikingly, Geobacillus thermoglucosidans, which forms the most thermostable spores of these three species, is not able to grow in dairy intermediates as a pure culture but appears to be dependent for growth on other spoilage organisms present, probably as a result of their proteolytic activity. These results underscore the importance of abiotic and microbiotic factors in niche colonization in dairy factories, where the presence of thermophilic sporeformers can affect the quality of end products. PMID:23851093

  20. Control of biofilm formation and colonization in Vibrio fischeri: a role for partner switching?emi_2269 2051..2059

    E-print Network

    McFall-Ngai, Margaret

    Minireview Control of biofilm formation and colonization in Vibrio fischeri: a role for partner pro- ceeds via a transient biofilm formed by the bacterium. The production of this bacterial biofilm) gene locus. In addition to this transcriptional control, biofilm formation is regulated by two proteins

  1. Biofilm formation in clinical Candida isolates and its association with virulence.

    PubMed

    Hasan, Fahmi; Xess, Immaculata; Wang, Xiabo; Jain, Neena; Fries, Bettina C

    2009-01-01

    Biofilm formation, an important virulence trait of Candida species was measured in 107 Candida isolates from 32 candidemic patients by XTT [2,3-bis (2-methoxy-4nitro-5-sulfo-phenyl)-2H-tetra-zolium-5-carboxanilide] activity and compared to biofilm formation of Candida isolates from oropharyngeal lesions of 19 AIDS patients. Biofilm formation by XTT varied among species and C. albicans; C. lusitaniae and C. krusei produced more biofilm than the other Candida species. C. tropicalis was the most dominant species isolated from blood followed by C. albicans, and other non-albicans species whereas only C. albicans was recovered from oral lesions. Importantly, though Biofilm formation was variable within a species it was stable in sequential isolates during chronic infection. Sequential isolates exhibited identical Karyotype pattern or RAPD patterns unless patients were co-infected with more than one strain. High biofilm formation was associated with slow growth rate but not with adherence. Murine infection studies demonstrated that, degree of in-vitro biofilm formation was associated with virulence in mice, as mice infected both with no and low biofilm formers survived longer than mice infected with high biofilm former C. albicans (p< or =0.001). We conclude that biofilm formation is a stable but strain specific characteristic that can greatly vary among C. albicans and non-albicans strains, and plays an important role in persistence of infection. PMID:19409507

  2. Streptococcus parasanguis Fimbria-Associated Adhesin Fap1 Is Required for Biofilm Formation

    Microsoft Academic Search

    EUNICE H. FROELIGER; PAULA FIVES-TAYLOR

    2001-01-01

    The sanguis streptococci are primary colonizers of the tooth surface and thus form the foundation for the complex multiple species biofilm known as dental plaque. In addition, these bacteria can colonize native and prosthetic heart valves and are a common cause of endocarditis. Little is known about the molecular mech- anisms governing multiple or single species biofilm development within this

  3. Polysaccharides and Proteins Added to Flowing Drinking Water at Microgram-per-Liter Levels Promote the Formation of Biofilms Predominated by Bacteroidetes and Proteobacteria

    PubMed Central

    Sack, Eveline L. W.; van der Kooij, Dick

    2014-01-01

    Biopolymers are important substrates for heterotrophic bacteria in (ultra)oligotrophic freshwater environments, but information about their utilization at microgram-per-liter levels by attached freshwater bacteria is lacking. This study aimed at characterizing biopolymer utilization in drinking-water-related biofilms by exposing such biofilms to added carbohydrates or proteins at 10 ?g C liter?1 in flowing tap water for up to 3 months. Individually added amylopectin was not utilized by the biofilms, whereas laminarin, gelatin, and caseinate were. Amylopectin was utilized during steady-state biofilm growth with simultaneously added maltose but not with simultaneously added acetate. Biofilm formation rates (BFR) at 10 ?g C liter?1 per substrate were ranked as follows, from lowest to highest: blank or amylopectin (?6 pg ATP cm?2 day?1), gelatin or caseinate, laminarin, maltose, acetate alone or acetate plus amylopectin, and maltose plus amylopectin (980 pg ATP cm?2 day?1). Terminal restriction fragment length polymorphism (T-RFLP) and 16S rRNA gene sequence analyses revealed that the predominant maltose-utilizing bacteria also dominated subsequent amylopectin utilization, indicating catabolic repression and (extracellular) enzyme induction. The accelerated BFR with amylopectin in the presence of maltose probably resulted from efficient amylopectin binding to and hydrolysis by inductive enzymes attached to the bacterial cells. Cytophagia, Flavobacteriia, Gammaproteobacteria, and Sphingobacteriia grew during polysaccharide addition, and Alpha-, Beta-, and Gammaproteobacteria, Cytophagia, Flavobacteriia, and Sphingobacteriia grew during protein addition. The succession of bacterial populations in the biofilms coincided with the decrease in the specific growth rate during biofilm formation. Biopolymers can clearly promote biofilm formation at microgram-per-liter levels in drinking water distribution systems and, depending on their concentrations, might impair the biological stability of distributed drinking water. PMID:24487544

  4. The development of a small-scale biofilm model suitable for studying the effects of antibiotics on biofilms of gram-negative bacteria.

    PubMed

    Gander, S; Gilbert, P

    1997-09-01

    A method for the study of membrane-associated biofilm populations of Escherichia coli ATCC 8739 using modified Swinnex filter units was developed. Biofilms were established under carbon limitation in a chemically defined simple salts medium. Cells, pressure filtered on to cellulose nitrate membranes in situ, were perfused from the sterile side. Steady-state conditions were attained at which the growth rate of the sessile cells could be demonstrated to be proportional to the flow rate of medium. The antibiotic susceptibility of these biofilms was examined by including ciprofloxacin within the perfusing medium. Susceptibility of the biofilms to ciprofloxacin was found to be affected not only by its concentration, but also by the growth rate of the bacteria. PMID:9338483

  5. Spatial & Temporal Geophysical Monitoring of Microbial Growth and Biofilm Formation

    NASA Astrophysics Data System (ADS)

    Davis, C. A.; Pyrak-Nolte, L. J.; Atekwana, E. A.; Werkema, D. D.; Haugen, M. E.

    2009-12-01

    Previous studies have examined the effect of biogenic gases and biomineralization on the acoustic properties of porous media. In this study, we investigated the spatiotemporal effect of microbial growth and biofilm formation on compressional waves and complex conductivity in sand columns. A control column (non-biostimulated) and a biostimulated column were studied in a 2D acoustic scanning apparatus, and a second set of columns were constructed with Ag-AgCl electrodes for complex conductivity measurements. At the completion of the 29-day experiment, compressional wave amplitudes and arrival times for the control column were observed to be relatively uniform over the scanned 2D region. However, the biostimulated sample exhibited a high degree of spatial variability within the column for both the amplitude and arrival times. Furthermore, portions of the sample exhibited increased attenuation (~ 80%) concurrent with an increase in the arrival times, while other portions exhibited decreased attenuation (~ 45%) and decreased arrival time. The acoustic amplitude and arrival times changed significantly in the biostimulated column between Days 5 and 7 of the experiment and are consistent with a peak in the imaginary conductivity (?”) values. The ?” response corresponds to different stages of biofilm development. That is, we interpret the peak ?” with the maximum biofilm thickness and decreasing ?” due to cell death or detachment. Environmental scanning electron microscope (ESEM) imaging confirmed microbial cell attachment to sand surfaces in the biostimulated columns, showed apparent differences in the morphology of attached biomass between regions of increased and decreased attenuation, and indicated no mineral precipitation or biomineralization. The heterogeneity in the elastic properties arises from the differences in the morphology and structure of attached biofilms. These results suggest that combining acoustic imaging and complex conductivity techniques can provide a powerful tool for assessing microbial growth or biofilm formation and the associated changes in porous media, such as those that occur during bioremediation and microbial enhanced oil recovery. Furthermore, this study suggests microbial growth and biofilm development can yield a detectable geophysical response without biomineralization effects. Acknowledgments: This material is based in part on work supported by the National Science Foundation under Grant No. OCE-0729642, EAR 0722410 (MRI), EAR 0525316, and REU Award # 0552918, and EPA Student Services Contract EP07D000660. LJPN would like to acknowledge support from Geosciences Research Program, Office of Basic Energy Sciences, US Department of Energy (DEFG02-97ER14785 08).

  6. Diversity assessment of Listeria monocytogenes biofilm formation: impact of growth condition, serotype and strain origin.

    PubMed

    Kadam, Sachin R; den Besten, Heidy M W; van der Veen, Stijn; Zwietering, Marcel H; Moezelaar, Roy; Abee, Tjakko

    2013-08-01

    The foodborne pathogen Listeria monocytogenes has the ability to produce biofilms in food-processing environments and then contaminate food products, which is a major concern for food safety. The biofilm forming behavior of 143 L. monocytogenes strains was determined in four different media that were rich, moderate or poor in nutrients at 12°C, 20°C, 30°C and 37°C. The biofilm formation was mostly influenced by temperature, resulting in decreased biofilm formation with decreasing temperature. Biofilm formation was enhanced in nutrient-poor medium rather than in nutrient-rich medium, and especially in nutrient-poor medium significantly enhanced biofilm production was observed early in biofilm maturation underlining the effect of medium on biofilm formation rate. Also serotype had a significant effect on biofilm formation and was influenced by medium used because strains from both serotype 1/2b and 1/2a formed more biofilm than serotype 4b strains in nutrient-rich medium at 20°C, 30°C and 37°C, whereas in nutrient-poor medium the biofilm production levels of serotype 1/2a and 4b strains were rather similar and lower than serotype 1/2b strains. The strains used originated from various origins, including dairy, meat, industrial environment, human and animal, and the level of biofilm formation was not significantly affected by the origin of isolation, irrespective of medium used and temperature tested. A linear model was used to correlate crystal violet staining of biofilm production to the number of viable cells within the biofilm. This showed that crystal violet staining was poorly correlated to the number of viable cells in nutrient-poor medium, and LIVE/DEAD staining and DNase I treatment revealed that this could be attributed to the presence of non-viable cells and extracellular DNA in the biofilm matrix. The significant impact of intrinsic and extrinsic factors on biofilm production of L. monocytogenes underlined that niche-specific features determine the levels of biofilm produced, and insights in biofilm formation characteristics will allow us to further optimize strategies to control the biofilm formation of L. monocytogenes. PMID:23800738

  7. Efficacy of metal ions and isothiazolones in inhibiting Enterobacter cloacae BF-17 biofilm formation.

    PubMed

    Zhou, Gang; Li, Long-Jie; Shi, Qing-Shan; Ouyang, You-Sheng; Chen, Yi-Ben; Hu, Wen-Feng

    2014-01-01

    Enterobacter cloacae is a nosocomial pathogen. The E. cloacae strain BF-17, with a high capacity for biofilm formation, was screened and identified from industrially contaminated samples, carried out in our laboratory. To develop an efficient strategy to deal with biofilms, we investigated the effects of metal ions, including Na?, K?, Ca?, Mg?, Cu?, and Mn?, and 3 isothiazolones, on elimination of E. cloacae BF-17 biofilm formation by using a 0.1% crystal violet staining method. The results revealed that higher concentrations of Na? or K? significantly inhibited E. cloacae BF-17 biofilm development. Meanwhile, Ca²? and Mn²? stimulated biofilm formation at low concentration but exhibited a negative effect at high concentration. Moreover, biofilm formation decreased with increasing concentration of Mg²? and Cu²?. The isothiazolones Kathon (14%), 1,2-benzisothiazolin-3-one (11%), and 2-methyl-4-isothiazolin-3-one (10%) stimulated initial biofilm formation but not planktonic growth at low concentrations and displayed inhibitory effects on both biofilm formation and planktonic growth at higher concentrations. Unfortunately, the 3 isothiazolones exerted negligible effects on preformed or fully mature biofilms. Our findings suggest that Na?, K?, Mg²?, and isothiazolones could be used to prevent and eliminate E. cloacae BF-17 biofilms. PMID:24392921

  8. A previously uncharacterized gene, yjfO (bsmA), influences Escherichia coli biofilm formation and stress response

    PubMed Central

    Weber, Mary M.; French, Christa L.; Barnes, Mary B.; Siegele, Deborah A.; McLean, Robert J. C.

    2010-01-01

    Bacteria growing as surface-adherent biofilms are better able to withstand chemical and physical stresses than their unattached, planktonic counterparts. Using transcriptional profiling and quantitative PCR, we observed a previously uncharacterized gene, yjfO to be upregulated during Escherichia coli MG1655 biofilm growth in a chemostat on serine-limited defined medium. A yjfO mutant, developed through targeted-insertion mutagenesis, and a yjfO-complemented strain, were obtained for further characterization. While bacterial surface colonization levels (c.f.u. cm?2) were similar in all three strains, the mutant strain exhibited reduced microcolony formation when observed in flow cells, and greatly enhanced flagellar motility on soft (0.3?%) agar. Complementation of yjfO restored microcolony formation and flagellar motility to wild-type levels. Cell surface hydrophobicity and twitching motility were unaffected by the presence or absence of yjfO. In contrast to the parent strain, biofilms from the mutant strain were less able to resist acid and peroxide stresses. yjfO had no significant effect on E. coli biofilm susceptibility to alkali or heat stress. Planktonic cultures from all three strains showed similar responses to these stresses. Regardless of the presence of yjfO, planktonic E. coli withstood alkali stress better than biofilm populations. Complementation of yjfO restored viability following exposure to peroxide stress, but did not restore acid resistance. Based on its influence on biofilm maturation and stress response, and effects on motility, we propose renaming the uncharacterized gene, yjfO, as bsmA (biofilm stress and motility). PMID:19833773

  9. Potential mechanisms for the effects of tea extracts on the attachment, biofilm formation and cell size of Streptococcus mutans.

    PubMed

    Wang, Yi; Lee, Sui M; Dykes, Gary A

    2013-01-01

    Tea can inhibit the attachment of Streptococcus mutans to surfaces and subsequent biofilm formation. Five commercial tea extracts were screened for their ability to inhibit attachment and biofilm formation by two strains of S. mutans on glass and hydroxyapatite surfaces. The mechanisms of these effects were investigated using scanning electron microscopy (SEM) and phytochemical screening. The results indicated that extracts of oolong tea most effectively inhibited attachment and extracts of pu-erh tea most effectively inhibited biofilm formation. SEM images showed that the S. mutans cells treated with extracts of oolong tea, or grown in medium containing extracts of pu-erh tea, were coated with tea components and were larger with more rounded shapes. The coatings on the cells consisted of flavonoids, tannins and indolic compounds. The ratio of tannins to simple phenolics in each of the coating samples was ?3:1. This study suggests potential mechanisms by which tea components may inhibit the attachment and subsequent biofilm formation of S. mutans on tooth surfaces, such as modification of cell surface properties and blocking of the activity of proteins and the structures used by the bacteria to interact with surfaces. PMID:23528127

  10. IS256 abolishes gelatinase activity and biofilm formation in a mutant of the nosocomial pathogen Enterococcus faecalis V583.

    PubMed

    Perez, Marta; Calles-Enríquez, Marina; Del Rio, Beatriz; Ladero, Victor; Martín, María Cruz; Fernández, María; Alvarez, Miguel A

    2015-07-01

    Enterococcus faecalis is one of the most controversial species of lactic acid bacteria. Some strains are used as probiotics, while others are associated with severe and life-threatening nosocomial infections. Their pathogenicity depends on the acquisition of multidrug resistance and virulence factors. Gelatinase, which is required in the first steps of biofilm formation, is an important virulence determinant involved in E. faecalis pathogenesis, including endocarditis and peritonitis. The gene that codes for gelatinase (gelE) is controlled by the Fsr quorum-sensing system, whose encoding genes (fsrA, fsrB, fsrC, and fsrD) are located immediately upstream of gelE. The integration of a DNA fragment into the fsr locus of a derived mutant of E. faecalis V583 suppressed the gelatinase activity and prevented biofilm formation. Sequence analysis indicated the presence of IS256 integrated into the fsrC gene at nucleotide position 321. Interestingly, IS256 is also associated with biofilm formation in Staphylococcus epidermidis and Staphylococcus aureus. This is the first description of an insertion sequence that prevents biofilm formation in E. faecalis. PMID:25966618

  11. Polyspecies biofilm formation on implant surfaces with different surface characteristics

    PubMed Central

    SCHMIDLIN, Patrick R.; MÜLLER, Phillip; ATTIN, Thomas; WIELAND, Marco; HOFER, Deborah; GUGGENHEIM, Bernhard

    2013-01-01

    Objective: To investigate the microbial adherence and colonization of a polyspecies biofilm on 7 differently processed titanium surfaces. Material and Methods: Six-species biofilms were formed anaerobically on 5-mm-diameter sterilized, saliva-preconditioned titanium discs. Material surfaces used were either machined, stained, acid-etched or sandblasted/acid-etched (SLA). Samples of the latter two materials were also provided in a chemically modified form, with increased wettability characteristics. Surface roughness and contact angles of all materials were determined. The discs were then incubated anaerobically for up to 16.5 h. Initial microbial adherence was evaluated after 20 min incubation and further colonization after 2, 4, 8, and 16.5 h using non-selective and selective culture techniques. Results at different time points were compared using ANOVA and Scheffé post hoc analysis. Results: The mean differences in microorganisms colonizing after the first 20 min were in a very narrow range (4.5 to 4.8 log CFU). At up to 16.5 h, the modified SLA surface exhibited the highest values for colonization (6.9±0.2 log CFU, p<0.05) but increasing growth was observed on all test surfaces over time. Discrepancies among bacterial strains on the differently crafted titanium surfaces were very similar to those described for total log CFU. F. nucleatum was below the detection limit on all surfaces after 4 h. Conclusion: Within the limitations of this in vitro study, surface roughness had a moderate influence on biofilm formation, while wettability did not seem to influence biofilm formation under the experimental conditions described. The modified SLA surface showed the highest trend for bacterial colonization. PMID:23559112

  12. Identification of the genes involved in Riemerella anatipestifer biofilm formation by random transposon mutagenesis.

    PubMed

    Hu, Qinghai; Zhu, Yinyu; Tu, Jing; Yin, Yuncong; Wang, Xiaolan; Han, Xiangan; Ding, Chan; Zhang, Beimin; Yu, Shengqing

    2012-01-01

    Riemerella anatipestifer causes epizootics of infectious disease in poultry that result in serious economic losses to the duck industry. Our previous studies have shown that some strains of R. anatipestifer can form a biofilm, and this may explain the intriguing persistence of R. anatipestifer on duck farms post infection. In this study we used strain CH3, a strong producer of biofilm, to construct a library of random Tn4351 transposon mutants in order to investigate the genetic basis of biofilm formation by R. anatipestifer on abiotic surfaces. A total of 2,520 mutants were obtained and 39 of them showed a reduction in biofilm formation of 47%-98% using crystal violet staining. Genetic characterization of the mutants led to the identification of 33 genes. Of these, 29 genes are associated with information storage and processing, as well as basic cellular processes and metabolism; the function of the other four genes is currently unknown. In addition, a mutant strain BF19, in which biofilm formation was reduced by 98% following insertion of the Tn4351 transposon at the dihydrodipicolinate synthase (dhdps) gene, was complemented with a shuttle plasmid pCP-dhdps. The complemented mutant strain was restored to give 92.6% of the biofilm formation of the wild-type strain CH3, which indicates that the dhdp gene is associated with biofilm formation. It is inferred that such complementation applies also to other mutant strains. Furthermore, some biological characteristics of biofilm-defective mutants were investigated, indicating that the genes deleted in the mutant strains function in the biofilm formation of R. anatipestifer. Deletion of either gene will stall the biofilm formation at a specific stage thus preventing further biofilm development. In addition, the tested biofilm-defective mutants had different adherence capacity to Vero cells. This study will help us to understand the molecular mechanisms of biofilm development by R. anatipestifer and to study the pathogenesis of R. anatipestifer further. PMID:22768127

  13. Quaternized chitosan inhibits icaA transcription and biofilm formation by Staphylococcus on a titanium surface.

    PubMed

    Peng, Zhao-Xiang; Tu, Bing; Shen, Yang; Du, Lin; Wang, Ling; Guo, Sheng-Rong; Tang, Ting-Ting

    2011-02-01

    Our previous study (Z. X. Peng et al., Carbohydr. Polym. 81:275-283, 2010) demonstrated that water-soluble quaternary ammonium salts, which are produced by the reaction of chitosan with glycidyl trimethylammonium chloride, provide chitosan derivatives with enhanced antibacterial ability. Because biofilm formation is believed to comprise the key step in the development of orthopedic implant-related infections, we further evaluated the efficacy of hydroxypropyltrimethyl ammonium chloride chitosan (HACC) with different degrees of substitution (DS; referred to as HACC 6%, 18%, and 44%) in preventing biofilm formation on a titanium surface. We used a tissue culture plate method to quantify the biomass of Staphylococcus epidermidis and Staphylococcus aureus biofilms and found that HACC, especially HACC 18% and 44%, significantly inhibited biofilm formation compared to the untreated control, even at concentrations far below their MICs (P < 0.05). Scanning electron microscopy showed that inhibition of biofilm formation on titanium increased dramatically with increased DS and HACC concentrations. Confocal laser scanning microscopy indicated that growth of a preexisting biofilm on titanium was inhibited by concentrations of HACC 18% and 44% below their minimum biofilm eradication concentrations. We also demonstrated that HACC inhibited the expression of icaA, which mediates the production of extracellular polysaccharides, both in new biofilms and in preexisting biofilms on titanium. Our results indicate that HACC may serve as a new antibacterial agent to inhibit biofilm formation and prevent orthopedic implant-related infections. PMID:21135178

  14. Quaternized Chitosan Inhibits icaA Transcription and Biofilm Formation by Staphylococcus on a Titanium Surface ?

    PubMed Central

    Peng, Zhao-Xiang; Tu, Bing; Shen, Yang; Du, Lin; Wang, Ling; Guo, Sheng-Rong; Tang, Ting-Ting

    2011-01-01

    Our previous study (Z. X. Peng et al., Carbohydr. Polym. 81:275-283, 2010) demonstrated that water-soluble quaternary ammonium salts, which are produced by the reaction of chitosan with glycidyl trimethylammonium chloride, provide chitosan derivatives with enhanced antibacterial ability. Because biofilm formation is believed to comprise the key step in the development of orthopedic implant-related infections, we further evaluated the efficacy of hydroxypropyltrimethyl ammonium chloride chitosan (HACC) with different degrees of substitution (DS; referred to as HACC 6%, 18%, and 44%) in preventing biofilm formation on a titanium surface. We used a tissue culture plate method to quantify the biomass of Staphylococcus epidermidis and Staphylococcus aureus biofilms and found that HACC, especially HACC 18% and 44%, significantly inhibited biofilm formation compared to the untreated control, even at concentrations far below their MICs (P < 0.05). Scanning electron microscopy showed that inhibition of biofilm formation on titanium increased dramatically with increased DS and HACC concentrations. Confocal laser scanning microscopy indicated that growth of a preexisting biofilm on titanium was inhibited by concentrations of HACC 18% and 44% below their minimum biofilm eradication concentrations. We also demonstrated that HACC inhibited the expression of icaA, which mediates the production of extracellular polysaccharides, both in new biofilms and in preexisting biofilms on titanium. Our results indicate that HACC may serve as a new antibacterial agent to inhibit biofilm formation and prevent orthopedic implant-related infections. PMID:21135178

  15. Identification of natural compounds which inhibit biofilm formation in clinical isolates of Klebsiella pneumoniae.

    PubMed

    Magesh, H; Kumar, Arun; Alam, Ayesha; Priyam; Sekar, Uma; Sumantran, Venil N; Vaidyanathan, Rama

    2013-09-01

    Klebsiella pneumoniae, an important opportunistic pathogen, exists as a biofilm in persistent infections and in-dwelling medical devices. With the objective of identifying natural compounds inhibiting biofilm formation in K. pneumoniae, 35 clinical isolates were screened,out of which 7 strong biofilm producers were identified. Six natural compounds were tested for their inhibitory effects on bacterial growth and biofilm formation by determining the minimum inhibitory concentration and minimum concentration for biofilm inhibition (MBIC) for each compound. The results show that reserpine followed by linoleic acid, were the most potent biofilm inhibitors. Reserpine, an efflux pump inhibitor was effective at biofilm inhibition at a concentration of 0.0156 mg/mL, 64-fold lower concentration than its MIC. Linoleic acid, an essential fatty acid was effective as a biofilm inhibitor at 0.0312 mg/mL, which is 32-fold lower than its MIC. Berberine, another plant derived antimicrobial, chitosan and eugenol had an MBIC value of 0.0635 mg/mL. Curcumin, a natural phenolic compound was effective at biofilm inhibition at a concentration of 0.25 mg/mL, which is 50 fold less than its MIC. Notably, the MIC and MBIC data on these 6 natural compounds was reproducible in all seven high biofilm forming isolates of K. pneumoniae. The present report is a comprehensive comparative analysis of the dose dependent inhibition of various natural compounds on biofilm formation in K. pneumoniae. PMID:24377137

  16. Zinc enhances the phototoxic effect of blue light against malodour-producing bacteria in an experimental oral biofilm.

    PubMed

    Sterer, Nir; Jeffet, Uziel; Dadoun, Aurel; Greenstein, Ronit Bar-Ness; Kohavi, David

    2014-08-01

    Oral malodour is thought to be caused mainly by the production of volatile sulfide compounds (VSCs) by anaerobic Gram-negative oral bacteria. Previous studies have shown that these bacteria are susceptible to blue light (400-500 nm wavelength). In the present study, we tested the effect of blue light in the presence of zinc, erythrosine B or both on malodour production in an experimental oral biofilm. Biofilms were exposed to a plasma-arc light source for 30, 60 and 120 s (equal to energy fluxes of 41, 82 and 164 J cm(-2), respectively) with or without the addition of zinc acetate, erythrosine B or both. After the light exposure, biofilm samples were examined for malodour production (by an odour judge) and VSC production (with a Halimeter), and VSC-producing bacteria were quantified using a microscopy-based sulfide assay (MSA) and in situ confocal laser scanning microscopy (CLSM). Results showed that exposing experimental oral biofilm to both blue light and zinc reduced malodour production, which coincided with a reduction in VSC-producing bacteria in the biofilm. These results suggest that zinc enhances the phototoxicity of blue light against malodour-producing bacteria. PMID:24913560

  17. Tackling the minority: sulfate-reducing bacteria in an archaea-dominated subsurface biofilm

    PubMed Central

    Probst, Alexander J; Holman, Hoi-Ying N; DeSantis, Todd Z; Andersen, Gary L; Birarda, Giovanni; Bechtel, Hans A; Piceno, Yvette M; Sonnleitner, Maria; Venkateswaran, Kasthuri; Moissl-Eichinger, Christine

    2013-01-01

    Archaea are usually minor components of a microbial community and dominated by a large and diverse bacterial population. In contrast, the SM1 Euryarchaeon dominates a sulfidic aquifer by forming subsurface biofilms that contain a very minor bacterial fraction (5%). These unique biofilms are delivered in high biomass to the spring outflow that provides an outstanding window to the subsurface. Despite previous attempts to understand its natural role, the metabolic capacities of the SM1 Euryarchaeon remain mysterious to date. In this study, we focused on the minor bacterial fraction in order to obtain insights into the ecological function of the biofilm. We link phylogenetic diversity information with the spatial distribution of chemical and metabolic compounds by combining three different state-of-the-art methods: PhyloChip G3 DNA microarray technology, fluorescence in situ hybridization (FISH) and synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy. The results of PhyloChip and FISH technologies provide evidence for selective enrichment of sulfate-reducing bacteria, which was confirmed by the detection of bacterial dissimilatory sulfite reductase subunit B (dsrB) genes via quantitative PCR and sequence-based analyses. We further established a differentiation of archaeal and bacterial cells by SR-FTIR based on typical lipid and carbohydrate signatures, which demonstrated a co-localization of organic sulfate, carbonated mineral and bacterial signatures in the biofilm. All these results strongly indicate an involvement of the SM1 euryarchaeal biofilm in the global cycles of sulfur and carbon and support the hypothesis that sulfidic springs are important habitats for Earth's energy cycles. Moreover, these investigations of a bacterial minority in an Archaea-dominated environment are a remarkable example of the great power of combining highly sensitive microarrays with label-free infrared imaging. PMID:23178669

  18. Physicochemical characteristics and microbial community evolution of biofilms during the start-up period in a moving bed biofilm reactor.

    PubMed

    Zhu, Yan; Zhang, Yan; Ren, Hong-Qiang; Geng, Jin-Ju; Xu, Ke; Huang, Hui; Ding, Li-Li

    2015-03-01

    This study aimed to investigate biofilm properties evolution coupled with different ages during the start-up period in a moving bed biofilm reactor system. Physicochemical characteristics including adhesion force, extracellular polymeric substances (EPS), morphology as well as volatile solid and microbial community were studied. Results showed that the formation and development of biofilms exhibited four stages, including (I) initial attachment and young biofilm formation, (II) biofilms accumulation, (III) biofilm sloughing and updating, and (IV) biofilm maturation. During the whole start-up period, adhesion force was positively and significantly correlated with the contents of EPS, especially the content of polysaccharide. In addition, increased adhesion force and EPS were beneficial for biofilm retention. Gram-negative bacteria mainly including Sphaerotilus, Zoogloea and Haliscomenobacter were predominant in the initial stage. Actinobacteria was beneficial to resist sloughing. Furthermore, filamentous bacteria were dominant in maturation biofilm. PMID:25636169

  19. A Systems-Level Approach for Investigating Pseudomonas aeruginosa Biofilm Formation

    PubMed Central

    Xu, Zhaobin; Fang, Xin; Wood, Thomas K.; Huang, Zuyi Jacky

    2013-01-01

    Prevention of the initiation of biofilm formation is the most important step for combating biofilm-associated pathogens, as the ability of pathogens to resist antibiotics is enhanced 10 to 1000 times once biofilms are formed. Genes essential to bacterial growth in the planktonic state are potential targets to treat biofilm-associated pathogens. However, the biofilm formation capability of strains with mutations in these essential genes must be evaluated, since the pathogen might form a biofilm before it is eliminated. In order to address this issue, this work proposes a systems-level approach to quantifying the biofilm formation capability of mutants to determine target genes that are essential for bacterial metabolism in the planktonic state but do not induce biofilm formation in their mutants. The changes of fluxes through the reactions associated with the genes positively related to biofilm formation are used as soft sensors in the flux balance analysis to quantify the trend of biofilm formation upon the mutation of an essential gene. The essential genes whose mutants are predicted not to induce biofilm formation are regarded as gene targets. The proposed approach was applied to identify target genes to treat Pseudomonas aeruginosa infections. It is interesting to find that most essential gene mutants exhibit high potential to induce the biofilm formation while most non-essential gene mutants do not. Critically, we identified four essential genes, lysC, cysH, adk, and galU, that constitute gene targets to treat P. aeruginosa. They have been suggested by existing experimental data as potential drug targets for their crucial role in the survival or virulence of P. aeruginosa. It is also interesting to find that P. aeruginosa tends to survive the essential-gene mutation treatment by mainly enhancing fluxes through 8 metabolic reactions that regulate acetate metabolism, arginine metabolism, and glutamate metabolism. PMID:23451140

  20. Biofilm formation and virulence of uropathogenic Escherichia coli in urine after consumption of cranberry-lingonberry juice.

    PubMed

    Tapiainen, T; Jauhiainen, H; Jaakola, L; Salo, J; Sevander, J; Ikäheimo, I; Pirttilä, A M; Hohtola, A; Uhari, M

    2012-05-01

    Cranberry-lingonberry juice (CLJ) was effective in preventing urinary tract infections (UTIs) in our earlier randomized clinical trial. We aimed to test whether consumption of CLJ at a similar dose to earlier reduces the biofilm formation and virulence of uropathogenic Escherichia coli in urine. Twenty healthy women drank 100 ml of CLJ daily for two weeks. Urine samples were obtained 2-4 hours after the last dose. Control samples were taken after a one-week period without berry consumption. Biofilm formation of 20 E. coli strains was measured at 72 hours by the polystyrene microtitre plate method. Quantitative real-time PCR analyses were performed for selected genes. Four of the 20 clinical strains produced more biofilm in urine after CLJ consumption (P < 0.05) and one produced less. Expression levels of the pga, cpxA, fimA and papF genes did not differ between bacteria grown in control urine and urine obtained after CLJ consumption, except for pga gene expression, which was reduced in one strain after CLJ (P = 0.04). It appears that the effect of CLJ in preventing UTIs is not explained by mechanisms that reduce biofilm formation or the expression of selected virulence genes of Escherichia coli in urine. PMID:21822564

  1. D-amino acids indirectly inhibit biofilm formation in Bacillus subtilis by interfering with protein synthesis.

    PubMed

    Leiman, Sara A; May, Janine M; Lebar, Matthew D; Kahne, Daniel; Kolter, Roberto; Losick, Richard

    2013-12-01

    The soil bacterium Bacillus subtilis forms biofilms on surfaces and at air-liquid interfaces. It was previously reported that these biofilms disassemble late in their life cycle and that conditioned medium from late-stage biofilms inhibits biofilm formation. Such medium contained a mixture of D-leucine, D-methionine, D-tryptophan, and D-tyrosine and was reported to inhibit biofilm formation via the incorporation of these D-amino acids into the cell wall. Here, we show that L-amino acids were able to specifically reverse the inhibitory effects of their cognate D-amino acids. We also show that D-amino acids inhibited growth and the expression of biofilm matrix genes at concentrations that inhibit biofilm formation. Finally, we report that the strain routinely used to study biofilm formation has a mutation in the gene (dtd) encoding D-tyrosyl-tRNA deacylase, an enzyme that prevents the misincorporation of D-amino acids into protein in B. subtilis. When we repaired the dtd gene, B. subtilis became resistant to the biofilm-inhibitory effects of D-amino acids without losing the ability to incorporate at least one noncanonical D-amino acid, D-tryptophan, into the peptidoglycan peptide side chain. We conclude that the susceptibility of B. subtilis to the biofilm-inhibitory effects of D-amino acids is largely, if not entirely, due to their toxic effects on protein synthesis. PMID:24097941

  2. In vitro prevention of Pseudomonas aeruginosa early biofilm formation with antibiotics used in cystic fibrosis patients.

    PubMed

    Fernández-Olmos, Ana; García-Castillo, María; Maiz, Luis; Lamas, Adelaida; Baquero, Fernando; Cantón, Rafael

    2012-08-01

    The ability of antibiotics used in bronchopulmonary infections in cystic fibrosis (CF) patients to prevent Pseudomonas aeruginosa early biofilm formation was studied using a biofilm microtitre assay with 57 non-mucoid P. aeruginosa isolates (44 first colonisers and 13 recovered during the initial intermittent colonisation stage) obtained from 35 CF patients. Minimum biofilm inhibitory concentrations (BICs) of levofloxacin, ciprofloxacin, imipenem, ceftazidime, tobramycin, colistin and azithromycin were determined by placing a peg lid with a formed biofilm onto microplates containing antibiotics. A modification of this protocol consisting of antibiotic challenge during biofilm formation was implemented in order to determine the biofilm prevention concentration (BPC), i.e. the minimum concentration able to prevent biofilm formation. The lowest BPCs were for fluoroquinolones, tobramycin and colistin and the highest for ceftazidime and imipenem. The former antibiotics had BPCs identical to or only slightly higher than their minimum inhibitory concentrations (MICs) determined by standard Clinical and Laboratory Standards Institute (CLSI) microdilution and were also active on formed biofilms as reflected by their low BIC values. In contrast, ceftazidime and imipenem were less effective for prevention of biofilm formation and on formed biofilms. In conclusion, the new BPC parameter determined in non-mucoid P. aeruginosa isolates recovered during early colonisation stages in CF patients supports early aggressive antimicrobial treatment guidelines in first P. aeruginosa-colonised CF patients. PMID:22727530

  3. A Novel Model of Chronic Wounds: Importance of Redox Imbalance and Biofilm-Forming Bacteria for Establishment of Chronicity

    PubMed Central

    Dhall, Sandeep; Do, Danh; Garcia, Monika; Wijesinghe, Dayanjan Shanaka; Brandon, Angela; Kim, Jane; Sanchez, Antonio; Lyubovitsky, Julia; Gallagher, Sean; Nothnagel, Eugene A.; Chalfant, Charles E.; Patel, Rakesh P.; Schiller, Neal; Martins-Green, Manuela

    2014-01-01

    Chronic wounds have a large impact on health, affecting ?6.5 M people and costing ?$25B/year in the US alone [1]. We previously discovered that a genetically modified mouse model displays impaired healing similar to problematic wounds in humans and that sometimes the wounds become chronic. Here we show how and why these impaired wounds become chronic, describe a way whereby we can drive impaired wounds to chronicity at will and propose that the same processes are involved in chronic wound development in humans. We hypothesize that exacerbated levels of oxidative stress are critical for initiation of chronicity. We show that, very early after injury, wounds with impaired healing contain elevated levels of reactive oxygen and nitrogen species and, much like in humans, these levels increase with age. Moreover, the activity of anti-oxidant enzymes is not elevated, leading to buildup of oxidative stress in the wound environment. To induce chronicity, we exacerbated the redox imbalance by further inhibiting the antioxidant enzymes and by infecting the wounds with biofilm-forming bacteria isolated from the chronic wounds that developed naturally in these mice. These wounds do not re-epithelialize, the granulation tissue lacks vascularization and interstitial collagen fibers, they contain an antibiotic-resistant mixed bioflora with biofilm-forming capacity, and they stay open for several weeks. These findings are highly significant because they show for the first time that chronic wounds can be generated in an animal model effectively and consistently. The availability of such a model will significantly propel the field forward because it can be used to develop strategies to regain redox balance that may result in inhibition of biofilm formation and result in restoration of healthy wound tissue. Furthermore, the model can lead to the understanding of other fundamental mechanisms of chronic wound development that can potentially lead to novel therapies. PMID:25313558

  4. Modelling biofilm-induced formation damage and biocide treatment in subsurface geosystems

    PubMed Central

    Ezeuko, C C; Sen, A; Gates, I D

    2013-01-01

    Biofilm growth in subsurface porous media, and its treatment with biocides (antimicrobial agents), involves a complex interaction of biogeochemical processes which provide non-trivial mathematical modelling challenges. Although there are literature reports of mathematical models to evaluate biofilm tolerance to biocides, none of these models have investigated biocide treatment of biofilms growing in interconnected porous media with flow. In this paper, we present a numerical investigation using a pore network model of biofilm growth, formation damage and biocide treatment. The model includes three phases (aqueous, adsorbed biofilm, and solid matrix), a single growth-limiting nutrient and a single biocide dissolved in the water. Biofilm is assumed to contain a single species of microbe, in which each cell can be a viable persister, a viable non-persister, or non-viable (dead). Persisters describe small subpopulation of cells which are tolerant to biocide treatment. Biofilm tolerance to biocide treatment is regulated by persister cells and includes ‘innate’ and ‘biocide-induced’ factors. Simulations demonstrate that biofilm tolerance to biocides can increase with biofilm maturity, and that biocide treatment alone does not reverse biofilm-induced formation damage. Also, a successful application of biological permeability conformance treatment involving geologic layers with flow communication is more complicated than simply engineering the attachment of biofilm-forming cells at desired sites. PMID:23164434

  5. Modelling biofilm-induced formation damage and biocide treatment in subsurface geosystems.

    PubMed

    Ezeuko, C C; Sen, A; Gates, I D

    2013-01-01

    Biofilm growth in subsurface porous media, and its treatment with biocides (antimicrobial agents), involves a complex interaction of biogeochemical processes which provide non-trivial mathematical modelling challenges. Although there are literature reports of mathematical models to evaluate biofilm tolerance to biocides, none of these models have investigated biocide treatment of biofilms growing in interconnected porous media with flow. In this paper, we present a numerical investigation using a pore network model of biofilm growth, formation damage and biocide treatment. The model includes three phases (aqueous, adsorbed biofilm, and solid matrix), a single growth-limiting nutrient and a single biocide dissolved in the water. Biofilm is assumed to contain a single species of microbe, in which each cell can be a viable persister, a viable non-persister, or non-viable (dead). Persisters describe small subpopulation of cells which are tolerant to biocide treatment. Biofilm tolerance to biocide treatment is regulated by persister cells and includes 'innate' and 'biocide-induced' factors. Simulations demonstrate that biofilm tolerance to biocides can increase with biofilm maturity, and that biocide treatment alone does not reverse biofilm-induced formation damage. Also, a successful application of biological permeability conformance treatment involving geologic layers with flow communication is more complicated than simply engineering the attachment of biofilm-forming cells at desired sites. PMID:23164434

  6. Different sensitivity levels to norspermidine on biofilm formation in clinical and commensal Staphylococcus epidermidis strains.

    PubMed

    Ramón-Peréz, Miriam L; Díaz-Cedillo, Francisco; Contreras-Rodríguez, Araceli; Betanzos-Cabrera, Gabriel; Peralta, Humberto; Rodríguez-Martínez, Sandra; Cancino-Diaz, Mario E; Jan-Roblero, Janet; Cancino Diaz, Juan C

    2015-02-01

    Biofilm formation on medical and surgical devices is the main virulence factor of Staphylococcus epidermidis. A recent study has shown that norspermidine inhibits and disassembles the biofilm in the wild-type Bacillus subtilis NCBI3610 strain. In this study, the effect of norspermidine on S. epidermidis biofilm formation of clinical or commensal strains was tested. Biofilm producing strains of S. epidermidis were isolated from healthy skin (HS; n = 3), healthy conjunctiva (HC; n = 9) and ocular infection (OI; n = 19). All strains were treated with different concentrations of norspermidine, spermidine, putrescine, and cadaverine (1, 10, 25, 50 and 100 ?M), and the biofilm formation was tested on microtiter plate. Besides, cell-free supernatants of S. epidermidis growth at 4 h and 40 h were analyzed by gas chromatography coupled to mass spectrometry (GC-MS) to detect norspermidine. Results showed that norspermidine at 25 ?M and 100 ?M prevented the biofilm formation in 45.16% (14/31) and 16.13% (5/31), respectively; only in one isolate from OI, norspermidine did not have effect. Other polyamines as spermidine, putrescine and cadaverine did not have effect on the biofilm formation of the strains tested. Norspermidine was also capable to disassemble a biofilm already formed. Norspermidine was detected in the 40 h cell-free supernatant of S. epidermidis by GC-MS. Norspermidine inhibited the biofilm development of S. epidermidis on the surface of contact lens. In this work, it was demonstrated that S. epidermidis produces and releases norspermidine causing an inhibitory effect on biofilm formation. Moreover, this is the first time showing that clinical S. epidermidis strains have different sensitivity to norspermidine, which suggest that the composition and structure of the biofilms is varied. We propose that norspermidine could potentially be used in the pre-treating of medical and surgical devices to inhibit the biofilm formation. PMID:25549879

  7. External pH is a cue for the behavioral switch that determines surface motility and biofilm formation of Alicyclobacillus acidoterrestris.

    PubMed

    Shemesh, Moshe; Pasvolsky, Ronit; Zakin, Varda

    2014-08-01

    Bacteria use different strategies to survive unfavorable environmental conditions. Alicyclobacillus acidoterrestris is a bacterium capable of surviving extremely harsh conditions, for instance, during industrial food processing. A. acidoterrestris is a spore-forming, thermoacidophilic, nonpathogenic bacterium that commonly contaminates commercial pasteurized fruit juices and is, therefore, considered a major microbiological contaminant in the juice industry. The purpose of this study was to elucidate whether A. acidoterrestris is capable of multicellular behavior by testing its ability of biofilm formation and surface motility. A. acidoterrestris was found to be proficient in migration over a surface that is apparently powered by flagella. It was further shown that lowering the external pH leads to inhibition in surface motility of these bacteria. Concomitantly, the reduction in the external pH triggered biofilm formation of A. acidoterrestris cells. Thus, although no significant biofilm was formed at pH 4.5, robust cell adhesion and confluent biofilm formation was seen below the pH 3.6. These findings indicate that the reduction of external pH is an environmental cue for the behavioral switch that inhibits surface motility and triggers biofilm formation of A. acidoterrestris. Gaining insight into the multicellular behavior that facilitates A. acidoterrestris survival in food contact surfaces may contribute to the development of novel antimicrobial means to prevent cross-contamination caused by this bacterium. PMID:25198607

  8. The response regulator SypE controls biofilm formation and colonization through phosphorylation of the syp-encoded

    E-print Network

    McFall-Ngai, Margaret

    The response regulator SypE controls biofilm formation and colonization through phosphorylation with similarity to partner-switching proteins. SypE was previously shown to exert dual control over biofilmE controls biofilms in Vibrio fischeri by regu- lating the activity of SypA, a STAS (sulphate trans- porter

  9. Archaeal type IV pili and their involvement in biofilm formation

    PubMed Central

    Pohlschroder, Mechthild; Esquivel, Rianne N.

    2015-01-01

    Type IV pili are ancient proteinaceous structures present on the cell surface of species in nearly all bacterial and archaeal phyla. These filaments, which are required for a diverse array of important cellular processes, are assembled employing a conserved set of core components. While type IV pilins, the structural subunits of pili, share little sequence homology, their signal peptides are structurally conserved allowing for in silico prediction. Recently, in vivo studies in model archaea representing the euryarchaeal and crenarchaeal kingdoms confirmed that several of these pilins are incorporated into type IV adhesion pili. In addition to facilitating surface adhesion, these in vivo studies also showed that several predicted pilins are required for additional functions that are critical to biofilm formation. Examples include the subunits of Sulfolobus acidocaldarius Ups pili, which are induced by exposure to UV light and promote cell aggregation and conjugation, and a subset of the Haloferax volcanii adhesion pilins, which play a critical role in microcolony formation while other pilins inhibit this process. The recent discovery of novel pilin functions such as the ability of haloarchaeal adhesion pilins to regulate swimming motility may point to novel regulatory pathways conserved across prokaryotic domains. In this review, we will discuss recent advances in our understanding of the functional roles played by archaeal type IV adhesion pili and their subunits, with particular emphasis on their involvement in biofilm formation. PMID:25852657

  10. Isolation of biofilm-forming bacteria from a fresh-cut processing plant and co-culturing with E. coli O157:H7

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In produce processing plants, biofilms can theoretically provide a supporting environment for pathogenic bacteria that is resistant to cleaning and sanitizing efforts. The objective of this study was to recover bacteria from a commercial produce processing plant that have the ability to form biofilm...

  11. Proteins Exported via the PrsD-PrsE Type I Secretion System and the Acidic Exopolysaccharide Are Involved in Biofilm Formation by Rhizobium leguminosarum

    PubMed Central

    Russo, Daniela M.; Williams, Alan; Edwards, Anne; Posadas, Diana M.; Finnie, Christine; Dankert, Marcelo; Downie, J. Allan; Zorreguieta, Angeles

    2006-01-01

    The type I protein secretion system of Rhizobium leguminosarum bv. viciae encoded by the prsD and prsE genes is responsible for secretion of the exopolysaccharide (EPS)-glycanases PlyA and PlyB. The formation of a ring of biofilm on the surface of the glass in shaken cultures by both the prsD and prsE secretion mutants was greatly affected. Confocal laser scanning microscopy analysis of green-fluorescent-protein-labeled bacteria showed that during growth in minimal medium, R. leguminosarum wild type developed microcolonies, which progress to a characteristic three-dimensional biofilm structure. However, the prsD and prsE secretion mutants were able to form only an immature biofilm structure. A mutant disrupted in the EPS-glycanase plyB gene showed altered timing of biofilm formation, and its structure was atypical. A mutation in an essential gene for EPS synthesis (pssA) or deletion of several other pss genes involved in EPS synthesis completely abolished the ability of R. leguminosarum to develop a biofilm. Extracellular complementation studies of mixed bacterial cultures confirmed the role of the EPS and the modulation of the biofilm structure by the PrsD-PrsE secreted proteins. Protein analysis identified several additional proteins secreted by the PrsD-PrsE secretion system, and N-terminal sequencing revealed peptides homologous to the N termini of proteins from the Rap family (Rhizobium adhering proteins), which could have roles in cellular adhesion in R. leguminosarum. We propose a model for R. leguminosarum in which synthesis of the EPS leads the formation of a biofilm and several PrsD-PrsE secreted proteins are involved in different aspects of biofilm maturation, such as modulation of the EPS length or mediating attachment between bacteria. PMID:16740954

  12. D-Amino acids inhibit biofilm formation in Staphylococcus epidermidis strains from ocular infections.

    PubMed

    Ramón-Peréz, Miriam L; Diaz-Cedillo, Francisco; Ibarra, J Antonio; Torales-Cardeña, Azael; Rodríguez-Martínez, Sandra; Jan-Roblero, Janet; Cancino-Diaz, Mario E; Cancino-Diaz, Juan C

    2014-10-01

    Biofilm formation on medical and surgical devices is a major virulence determinant for Staphylococcus epidermidis. The bacterium S. epidermidis is able to produce biofilms on biotic and abiotic surfaces and is the cause of ocular infection (OI). Recent studies have shown that d-amino acids inhibit and disrupt biofilm formation in the prototype strains Bacillus subtilis NCBI3610 and Staphylococcus aureus SCO1. The effect of d-amino acids on S. epidermidis biofilm formation has yet to be tested for clinical or commensal isolates. S. epidermidis strains isolated from healthy skin (n?=?3), conjunctiva (n?=?9) and OI (n?=?19) were treated with d-Leu, d-Tyr, d-Pro, d-Phe, d-Met or d-Ala and tested for biofilm formation. The presence of d-amino acids during biofilm formation resulted in a variety of patterns. Some strains were sensitive to all amino acids tested, while others were sensitive to one or more, and one strain was resistant to all of them when added individually; in this way d-Met inhibited most of the strains (26/31), followed by d-Phe (21/31). Additionally, the use of d-Met inhibited biofilm formation on a contact lens. The use of l-isomers caused no defect in biofilm formation in all strains tested. In contrast, when biofilms were already formed d-Met, d-Phe and d-Pro were able to disrupt it. In summary, here we demonstrated the inhibitory effect of d-amino acids on biofilm formation in S. epidermidis. Moreover, we showed, for the first time, that S. epidermidis clinical strains have a different sensitivity to these compounds during biofilm formation. PMID:25001104

  13. Chemical analysis, inhibition of biofilm formation and biofilm eradication potential of Euphorbia hirta L. against clinical isolates and standard strains

    PubMed Central

    2013-01-01

    Background The frequent occurrences of antibiotic-resistant biofilm forming pathogens have become global issue since various measures that had been taken to curb the situation led to failure. Euphorbia hirta, is a well-known ethnomedicinal plant of Malaysia with diverse biological activities. This plant has been used widely in traditional medicine for the treatment of gastrointestinal, bronchial and respiratory ailments caused by infectious agents. Methods In the present study, chemical compositions of methanol extract of E. hirta L. aerial part was analyzed by gas chromatography and gas chromatography coupled to mass spectrometry. A relevant in vitro model was developed to assess the potency of the E. hirta extract to inhibit the bacterial biofilm formation as well as to eradicate the established biofilms. Besides biofilm, E. hirta extract was also evaluated for the inhibition efficacy on planktonic cells using tetrazolium microplate assay. For these purposes, a panel of clinically resistant pathogens and American type culture collection (ATCC) strains were used. Results The methanolic extract of aerial part of E. hirta was predominantly composed of terpenoid (60.5%) which is often regarded as an active entity accountable for the membrane destruction and biofilm cell detachment. The highest antibacterial effect of crude E. hirta extract was observed in the clinical isolates of Pseudomonas aeruginosa with minimum inhibitory concentration (MIC) value of 0.062 mg/ml. The extract also displayed potent biofilm inhibition and eradication activity against P. aeruginosa with minimum biofilm inhibition concentration (MBIC) and minimum biofilm eradication concentration (MBEC) values of 0.25 mg/ml and 0.5 mg/ml, respectively. Conclusions The crude methanol extract of E. hirta has proven to have interesting and potential anti-biofilm properties. The findings from this study will also help to establish a very promising anti-infective phytotherapeutical to be exploited in the pharmaceutical industries. PMID:24321370

  14. “In vitro” biofilm formation by Penicillum frequentans strains on sandstone, granite, and limestone

    Microsoft Academic Search

    M. A. de la Torre; G. Gomez-Alarcon; J. M. Palacios

    1993-01-01

    The appearance of crusts or patinas on surfaces of stone monuments are indicative signs of weathering. In many cases, microorganisms are mainly responsible for stone decay, giving rise to the formation of characteristic biodeteriorative patinas, called biofilms. In the present work, “in vitro” biofilm formation on sandstone, limestone, and granite block samples by Penicillium frequentans strains isolated from two Spanish

  15. The Intercellular Adhesion (ica) Locus Is Present in Staphylococcus aureus and Is Required for Biofilm Formation

    Microsoft Academic Search

    SARAH E. CRAMTON; CHRISTIANE GERKE; NORBERT F. SCHNELL; WRIGHT W. NICHOLS; FRIEDRICH GOTZ

    1999-01-01

    Nosocomial infections that result in the formation of biofilms on the surfaces of biomedical implants are a leading cause of sepsis and are often associated with colonization of the implants by Staphylococcus epidermidis. Biofilm formation is thought to require two sequential steps: adhesion of cells to a solid substrate followed by cell-cell adhesion, creating multiple layers of cells. Intercellular adhesion

  16. Biofilm Formation on Biotic and Abiotic Surfaces in the Presence of Antimicrobials by Escherichia coli Isolates from Cases of Bovine Mastitis

    PubMed Central

    Silva, Vitor O.; Soares, Larissa O.; Silva Júnior, Abelardo; Mantovani, Hilário C.; Chang, Yung-Fu

    2014-01-01

    Escherichia coli is a highly adaptive microorganism, and its ability to form biofilms under certain conditions can be critical for antimicrobial resistance. The adhesion of four E. coli isolates from bovine mastitis to bovine mammary alveolar (MAC-T) cells, biofilm production on a polystyrene surface, and the expression profiles of the genes fliC, csgA, fimA, and luxS in the presence of enrofloxacin, gentamicin, co-trimoxazole, and ampicillin at half of the MIC were investigated. Increased adhesion of E. coli isolates in the presence of antimicrobials was not observed; however, increased internalization of some isolates was observed by confocal microscopy. All of the antimicrobials induced the formation of biofilms by at least one isolate, whereas enrofloxacin and co-trimoxazole decreased biofilm formation by at least one isolate. Quantitative PCR analysis revealed that all four genes were differentially expressed when bacteria were exposed to subinhibitory concentrations of antimicrobials, with expression altered on the order of 1.5- to 22-fold. However, it was not possible to associate gene expression with induction or reduction of biofilm formation in the presence of the antimicrobials. Taken together, the results demonstrate that antimicrobials could induce biofilm formation by some isolates, in addition to inducing MAC-T cell invasion, a situation that might occur in vivo, potentially resulting in a bacterial reservoir in the udder, which might explain some cases of persistent mastitis in herds. PMID:25063668

  17. Biofilm formation on biotic and abiotic surfaces in the presence of antimicrobials by Escherichia coli Isolates from cases of bovine mastitis.

    PubMed

    Silva, Vitor O; Soares, Larissa O; Silva Júnior, Abelardo; Mantovani, Hilário C; Chang, Yung-Fu; Moreira, Maria Aparecida S

    2014-10-01

    Escherichia coli is a highly adaptive microorganism, and its ability to form biofilms under certain conditions can be critical for antimicrobial resistance. The adhesion of four E. coli isolates from bovine mastitis to bovine mammary alveolar (MAC-T) cells, biofilm production on a polystyrene surface, and the expression profiles of the genes fliC, csgA, fimA, and luxS in the presence of enrofloxacin, gentamicin, co-trimoxazole, and ampicillin at half of the MIC were investigated. Increased adhesion of E. coli isolates in the presence of antimicrobials was not observed; however, increased internalization of some isolates was observed by confocal microscopy. All of the antimicrobials induced the formation of biofilms by at least one isolate, whereas enrofloxacin and co-trimoxazole decreased biofilm formation by at least one isolate. Quantitative PCR analysis revealed that all four genes were differentially expressed when bacteria were exposed to subinhibitory concentrations of antimicrobials, with expression altered on the order of 1.5- to 22-fold. However, it was not possible to associate gene expression with induction or reduction of biofilm formation in the presence of the antimicrobials. Taken together, the results demonstrate that antimicrobials could induce biofilm formation by some isolates, in addition to inducing MAC-T cell invasion, a situation that might occur in vivo, potentially resulting in a bacterial reservoir in the udder, which might explain some cases of persistent mastitis in herds. PMID:25063668

  18. Influence of the hydrodynamics on the biofilm formation by mass transport analysis.

    PubMed

    Herbert-Guillou, D; Tribollet, B; Festy, D

    2001-01-01

    Biofilm are formed wherever there is some water in our environment: pipes, pipelines, tap water systems, air conditioning systems... Furthermore, the ecological and economical consequences are very important: energy losses, bacterial contamination, material deterioration. The aim of this work is to develop a new method to detect and monitor the biofilm formation. This method can also determine some mechanical properties of the biofilm. An application of this method is a realization of a biofilm sensor. Biofilm is considered as an inert porous layer with respect to mass transport. In our experiment, the biofilm is grown on a gold electrode in natural seawater. Its thickness is determined by considering the oxygen diffusion limiting current measured for different rotation speeds on this electrode. Two different incubators are used during the biofilm development: one, with a laminar flow, permits the rotation of the electrode during the biofilm formation, and for the second, a tube is used under turbulent conditions during the biofilm formation. This experiment allows us to characterize the mechanical behavior (thickness, elasticity, rigidity) of the biofilm in function of different conditions of development. PMID:11206919

  19. Biofilm Formation by the Fish Pathogen Flavobacterium columnare: Development and Parameters Affecting Surface Attachment

    PubMed Central

    Cai, Wenlong; De La Fuente, Leonardo

    2013-01-01

    Flavobacterium columnare is a bacterial fish pathogen that affects many freshwater species worldwide. The natural reservoir of this pathogen is unknown, but its resilience in closed aquaculture systems posits biofilm as the source of contagion for farmed fish. The objectives of this study were (i) to characterize the dynamics of biofilm formation and morphology under static and flow conditions and (ii) to evaluate the effects of temperature, pH, salinity, hardness, and carbohydrates on biofilm formation. Nineteen F. columnare strains, including representatives of all of the defined genetic groups (genomovars), were compared in this study. The structure of biofilm was characterized by light microscopy, confocal laser scanning microscopy, and scanning electron microscopy. F. columnare was able to attach to and colonize inert surfaces by producing biofilm. Surface colonization started within 6 h postinoculation, and microcolonies were observed within 24 h. Extracellular polysaccharide substances and water channels were observed in mature biofilms (24 to 48 h). A similar time course was observed when F. columnare formed biofilm in microfluidic chambers under flow conditions. The virulence potential of biofilm was confirmed by cutaneous inoculation of channel catfish fingerlings with mature biofilm. Several physicochemical parameters modulate attachment to surfaces, with the largest influence being exerted by hardness, salinity, and the presence of mannose. Maintenance of hardness and salinity values within certain ranges could prevent biofilm formation by F. columnare in aquaculture systems. PMID:23851087

  20. Nuclease Modulates Biofilm Formation in Community-Associated Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Kiedrowski, Megan R.; Kavanaugh, Jeffrey S.; Malone, Cheryl L.; Mootz, Joe M.; Voyich, Jovanka M.; Smeltzer, Mark S.; Bayles, Kenneth W.; Horswill, Alexander R.

    2011-01-01

    Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) is an emerging contributor to biofilm-related infections. We recently reported that strains lacking sigma factor B (sigB) in the USA300 lineage of CA-MRSA are unable to develop a biofilm. Interestingly, when spent media from a USA300 sigB mutant was incubated with other S. aureus strains, biofilm formation was inhibited. Following fractionation and mass spectrometry analysis, the major anti-biofilm factor identified in the spent media was secreted thermonuclease (Nuc). Considering reports that extracellular DNA (eDNA) is an important component of the biofilm matrix, we investigated the regulation and role of Nuc in USA300. The expression of the nuc gene was increased in a sigB mutant, repressed by glucose supplementation, and was unaffected by the agr quorum-sensing system. A FRET assay for Nuc activity was developed and confirmed the regulatory results. A USA300 nuc mutant was constructed and displayed an enhanced biofilm-forming capacity, and the nuc mutant also accumulated more high molecular weight eDNA than the WT and regulatory mutant strains. Inactivation of nuc in the USA300 sigB mutant background partially repaired the sigB biofilm-negative phenotype, suggesting that nuc expression contributes to the inability of the mutant to form biofilm. To test the generality of the nuc mutant biofilm phenotypes, the mutation was introduced into other S. aureus genetic backgrounds and similar increases in biofilm formation were observed. Finally, using multiple S. aureus strains and regulatory mutants, an inverse correlation between Nuc activity and biofilm formation was demonstrated. Altogether, our findings confirm the important role for eDNA in the S. aureus biofilm matrix and indicates Nuc is a regulator of biofilm formation. PMID:22096493

  1. Chicken Juice Enhances Surface Attachment and Biofilm Formation of Campylobacter jejuni

    PubMed Central

    Brown, Helen L.; Reuter, Mark; Salt, Louise J.; Cross, Kathryn L.; Betts, Roy P.

    2014-01-01

    The bacterial pathogen Campylobacter jejuni is primarily transmitted via the consumption of contaminated foodstuffs, especially poultry meat. In food processing environments, C. jejuni is required to survive a multitude of stresses and requires the use of specific survival mechanisms, such as biofilms. An initial step in biofilm formation is bacterial attachment to a surface. Here, we investigated the effects of a chicken meat exudate (chicken juice) on C. jejuni surface attachment and biofilm formation. Supplementation of brucella broth with ?5% chicken juice resulted in increased biofilm formation on glass, polystyrene, and stainless steel surfaces with four C. jejuni isolates and one C. coli isolate in both microaerobic and aerobic conditions. When incubated with chicken juice, C. jejuni was both able to grow and form biofilms in static cultures in aerobic conditions. Electron microscopy showed that C. jejuni cells were associated with chicken juice particulates attached to the abiotic surface rather than the surface itself. This suggests that chicken juice contributes to C. jejuni biofilm formation by covering and conditioning the abiotic surface and is a source of nutrients. Chicken juice was able to complement the reduction in biofilm formation of an aflagellated mutant of C. jejuni, indicating that chicken juice may support food chain transmission of isolates with lowered motility. We provide here a useful model for studying the interaction of C. jejuni biofilms in food chain-relevant conditions and also show a possible mechanism for C. jejuni cell attachment and biofilm initiation on abiotic surfaces within the food chain. PMID:25192991

  2. Virulence factors in Proteus bacteria from biofilm communities of catheter-associated urinary tract infections.

    PubMed

    Hola, Veronika; Peroutkova, Tereza; Ruzicka, Filip

    2012-07-01

    More than 40% of nosocomial infections are those of the urinary tract, most of these occurring in catheterized patients. Bacterial colonization of the urinary tract and catheters results not only in infection, but also various complications, such as blockage of catheters with crystalline deposits of bacterial origin, generation of gravels and pyelonephritis. The diversity of the biofilm microbial community increases with duration of catheter emplacement. One of the most important pathogens in this regard is Proteus mirabilis. The aims of this study were to identify and assess particular virulence factors present in catheter-associated urinary tract infection (CAUTI) isolates, their correlation and linkages: three types of motility (swarming, swimming and twitching), the ability to swarm over urinary catheters, biofilm production in two types of media, urease production and adherence of bacterial cells to various types of urinary tract catheters. We examined 102 CAUTI isolates and 50 isolates taken from stool samples of healthy people. Among the microorganisms isolated from urinary catheters, significant differences were found in biofilm-forming ability and the swarming motility. In comparison with the control group, the microorganisms isolated from urinary catheters showed a wider spectrum of virulence factors. The virulence factors (twitching motility, swimming motility, swarming over various types of catheters and biofilm formation) were also more intensively expressed. PMID:22533980

  3. Transcriptional profiling of Legionella pneumophila biofilm cells and the influence of iron on biofilm formation

    Microsoft Academic Search

    Thomas Hindre; Holger Bruggemann; Carmen Buchrieser; Yann Hechard

    2008-01-01

    In aquatic environments, biofilms constitute an ecological niche where Legionella pneumophila persists as sessile cells. However, very little information on the sessile mode of life of L. pneumophila is currently available. We report here the development of a model biofilm of L. pneumophila strain Lens and the first transcriptome analysis of L. pneumophila biofilm cells. Global gene expression analysis of

  4. Cranberry-derived proanthocyanidins prevent formation of Candida albicans biofilms in artificial urine through biofilm- and adherence-specific mechanisms

    PubMed Central

    Rane, Hallie S.; Bernardo, Stella M.; Howell, Amy B.; Lee, Samuel A.

    2014-01-01

    Objectives Candida albicans is a common cause of nosocomial urinary tract infections (UTIs) and is responsible for increased morbidity and healthcare costs. Moreover, the US Centers for Medicare & Medicaid Services no longer reimburse for hospital-acquired catheter-associated UTIs. Thus, development of specific approaches for the prevention of Candida urinary infections is needed. Cranberry juice-derived proanthocyanidins (PACs) have efficacy in the prevention of bacterial UTIs, partially due to anti-adherence properties, but there are limited data on their use for the prevention and/or treatment of Candida UTIs. Therefore, we sought to systematically assess the in vitro effect of cranberry-derived PACs on C. albicans biofilm formation in artificial urine. Methods C. albicans biofilms in artificial urine were coincubated with cranberry PACs at serially increasing concentrations and biofilm metabolic activity was assessed using the XTT assay in static microplate and silicone disc models. Results Cranberry PAC concentrations of ?16 mg/L significantly reduced biofilm formation in all C. albicans strains tested, with a paradoxical effect observed at high concentrations in two clinical isolates. Further, cranberry PACs were additive in combination with traditional antifungals. Cranberry PACs reduced C. albicans adherence to both polystyrene and silicone. Supplementation of the medium with iron reduced the efficacy of cranberry PACs against biofilms. Conclusions These findings indicate that cranberry PACs have excellent in vitro activity against C. albicans biofilm formation in artificial urine. We present preliminary evidence that cranberry PAC activity against C. albicans biofilm formation is due to anti-adherence properties and/or iron chelation. PMID:24114570

  5. Taking the starch out of oral biofilm formation: molecular basis and functional significance of salivary ?-amylase binding to oral streptococci.

    PubMed

    Nikitkova, Anna E; Haase, Elaine M; Scannapieco, Frank A

    2013-01-01

    ?-Amylase-binding streptococci (ABS) are a heterogeneous group of commensal oral bacterial species that comprise a significant proportion of dental plaque microfloras. Salivary ?-amylase, one of the most abundant proteins in human saliva, binds to the surface of these bacteria via specific surface-exposed ?-amylase-binding proteins. The functional significance of ?-amylase-binding proteins in oral colonization by streptococci is important for understanding how salivary components influence oral biofilm formation by these important dental plaque species. This review summarizes the results of an extensive series of studies that have sought to define the molecular basis for ?-amylase binding to the surface of the bacterium as well as the biological significance of this phenomenon in dental plaque biofilm formation. PMID:23144140

  6. Taking the Starch out of Oral Biofilm Formation: Molecular Basis and Functional Significance of Salivary ?-Amylase Binding to Oral Streptococci

    PubMed Central

    Nikitkova, Anna E.; Haase, Elaine M.

    2013-01-01

    ?-Amylase-binding streptococci (ABS) are a heterogeneous group of commensal oral bacterial species that comprise a significant proportion of dental plaque microfloras. Salivary ?-amylase, one of the most abundant proteins in human saliva, binds to the surface of these bacteria via specific surface-exposed ?-amylase-binding proteins. The functional significance of ?-amylase-binding proteins in oral colonization by streptococci is important for understanding how salivary components influence oral biofilm formation by these important dental plaque species. This review summarizes the results of an extensive series of studies that have sought to define the molecular basis for ?-amylase binding to the surface of the bacterium as well as the biological significance of this phenomenon in dental plaque biofilm formation. PMID:23144140

  7. Slow Release of Nitric Oxide from Charged Catheters and Its Effect on Biofilm Formation by Escherichia coli?

    PubMed Central

    Regev-Shoshani, Gilly; Ko, Mary; Miller, Chris; Av-Gay, Yossef

    2010-01-01

    Catheter-associated urinary tract infection is the most prevalent cause of nosocomial infections. Bacteria associated with biofilm formation play a key role in the morbidity and pathogenesis of these infections. Nitric oxide (NO) is a naturally produced free radical with proven bactericidal effect. In this study, Foley urinary catheters were impregnated with gaseous NO. The catheters demonstrated slow release of nitric oxide over a 14-day period. The charged catheters were rendered antiseptic, and as such, were able to prevent bacterial colonization and biofilm formation on their luminal and exterior surfaces. In addition, we observed that NO-impregnated catheters were able to inhibit the growth of Escherichia coli within the surrounding media, demonstrating the ability to eradicate a bacterial concentration of up to 104 CFU/ml. PMID:19884372

  8. Biofilm formation on a TiO2 nanotube with controlled pore diameter and surface wettability

    NASA Astrophysics Data System (ADS)

    Anitha, V. C.; Lee, Jin-Hyung; Lee, Jintae; Narayan Banerjee, Arghya; Joo, Sang Woo; Min, Bong Ki

    2015-02-01

    Titania (TiO2) nanotube arrays (TNAs) with different pore diameters (140 ? 20 nm) are fabricated via anodization using hydrofluoric acid (HF) containing ethylene glycol (EG) by changing the HF-to-EG volume ratio and the anodization voltage. To evaluate the effects of different pore diameters of TiO2 nanotubes on bacterial biofilm formation, Shewanella oneidensis (S. oneidensis) MR-1 cells and a crystal-violet biofilm assay are used. The surface roughness and wettability of the TNA surfaces as a function of pore diameter, measured via the contact angle and AFM techniques, are correlated with the controlled biofilm formation. Biofilm formation increases with the decreasing nanotube pore diameter, and a 20 nm TiO2 nanotube shows the maximum biofilm formation. The measurements revealed that 20 nm surfaces have the least hydrophilicity with the highest surface roughness of ˜17 nm and that they show almost a 90% increase in the effective surface area relative to the 140 nm TNAs, which stimulate the cells more effectively to produce the pili to attach to the surface for more biofilm formation. The results demonstrate that bacterial cell adhesion (and hence, biofilm formation) can effectively be controlled by tuning the roughness and wettability of TNAs via controlling the pore diameters of TNA surfaces. This biofilm formation as a function of the surface properties of TNAs can be a potential candidate for both medical applications and as electrodes in microbial fuel cells.

  9. Development of a biofilm formation method for waste forms stability evaluation.

    PubMed

    Idachaba, M A; Nyavor, K; Egiebor, N O; Rogers, R D

    2000-10-01

    The development of an accurate assessment protocol is critical for the prediction of long-term performance of waste disposal systems under field conditions. In this study, the development of a biofilm formation method for the evaluation of waste forms stability to microbially induced degradation (MID) is reported. The development process involved significant modifications to the existing Nuclear Regulatory Commission (NRC) approach. In the biofilm formation method, the control media and fermenter broths are designed to be of similar pH to avoid overestimation of the microbe's capability to degrade the waste forms. In the NRC approach, the pH values are different. The existing one-stage process of the NRC approach is also replaced with a two-stage process in the biofilm formation method. This is to ensure full evaluation of the microbe's involvement in waste forms degradation. The first stage of the two-stage process is for biofilm formation and the second is for biofilm evaluation. The use of a two-stage process eliminates the possibility of substrate limitation, resulting in values of degradation indices that are about two times higher than those obtained using the single-stage NRC approach. Two waste forms (100% Tuskegee cement and 21% cobalt chloride/79% cement) were used in the development of the biofilm formation method. Both waste forms showed evidence of biofilm formation. The formation of biofilm on the cobalt-containing waste form indicates a lack of anti-microbial capability of cobalt. PMID:10946124

  10. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation

    PubMed Central

    O’Loughlin, Colleen T.; Miller, Laura C.; Siryaporn, Albert; Drescher, Knut; Semmelhack, Martin F.; Bassler, Bonnie L.

    2013-01-01

    Quorum sensing is a chemical communication process that bacteria use to regulate collective behaviors. Disabling quorum-sensing circuits with small molecules has been proposed as a potential strategy to prevent bacterial pathogenicity. The human pathogen Pseudomonas aeruginosa uses quorum sensing to control virulence and biofilm formation. Here, we analyze synthetic molecules for inhibition of the two P. aeruginosa quorum-sensing receptors, LasR and RhlR. Our most effective compound, meta-bromo-thiolactone (mBTL), inhibits both the production of the virulence factor pyocyanin and biofilm formation. mBTL also protects Caenorhabditis elegans and human lung epithelial cells from killing by P. aeruginosa. Both LasR and RhlR are partially inhibited by mBTL in vivo and in vitro; however, RhlR, not LasR, is the relevant in vivo target. More potent antagonists do not exhibit superior function in impeding virulence. Because LasR and RhlR reciprocally control crucial virulence factors, appropriately tuning rather than completely inhibiting their activities appears to hold the key to blocking pathogenesis in vivo. PMID:24143808

  11. [Biofilms and public health].

    PubMed

    Choisy, Claude

    2011-01-01

    Micro-organisms do not always exist in planctonic forms (single cells or small groups). To survive, especially in limiting media, they may adhere to inert or living surfaces. This enables them to multiply within a community protected by an extracellular matrix, thus forming a biofilm which protects them from antimicrobials. Biofilms have many potential consequences for public health. Some are positive, such as the commensal biofilms that protect against pathogenic bacteria, while environmental biofilms may be a source of outbreaks of respiratory or gastrointestinal diseases or infections associated with implanted medical devices. Respiratory tract infection can be caused by aerosols of fragmented biofilms growing in warm humid conditions (air cooling towers, hot springs, showers, etc.). Digestive tract infection can arise from biofilms formed during food manufacturing or packaging processes. Colonized implanted medical devices can lead to sepsis. This article examines the role of central venous catheters, taking into account the surgical site. In vivo studies show that the source of catheter infection may be exogenous or endogenous, while in vitro studies of biofilms show that ablation of the device is the best solution. Prevention is difficult, as biofilm formation is multifactorial. Physical and biological knowledge of biofilms may help to limit their formation and growth. PMID:22375373

  12. Coryneform bacteria in human semen: inter-assay variability in species composition detection and biofilm production ability

    PubMed Central

    Türk, Silver; Mazzoli, Sandra; Štšepetova, Jelena; Kuznetsova, Julia; Mändar, Reet

    2014-01-01

    Background Coryneform bacteria constitute an important segment of male urogenital microbiota. They have been generally considered as saprophytes, although some species have been associated with prostatitis as well. At the same time, biofilm infections have been suspected as a cause of prostatitis. Objective To identify a set of coryneform bacteria isolated from semen of either healthy men or prostatitis patients applying different methods to reveal inter-assay variability and to determine their ability of adhesion and biofilm production. Design Coryneform bacteria were identified by API Coryne 2.0 biochemical identification system and 16S rDNA sequencing using different primer sets. Quantitative assessment of biofilm production was performed using crystal violet binding assay method. Results The most common species were Corynebacterium seminale, C. minutissimum, and Dermabacter hominis. Altogether 14 species and related genera were found. We observed the best inter-assay agreement when identifying C. seminale. Biofilm was observed in 7 out of 24 strains. The biofilm-producing strains belonged to Arthrobacter cumminsii, Dermabacter hominis, C. minutissimum, and Actinomyces neuii. No differences were found between the strains originating from prostatitis patients and healthy men. Dermabacter hominis strains were more potent biofilm producers than C. seminale strains (p=0.048). Conclusions We can conclude that a wide variety of coryneform bacteria can be found from the male genital tract, although their exact identification is problematic due to insufficient representation in databases. Nearly one third of the strains are able to form biofilm that may give them an advantage for surviving several host- and treatment-related conditions. PMID:24563649

  13. In vitro anti-biofilm activity of macelignan isolated from Myristica fragrans Houtt. against oral primary colonizer bacteria.

    PubMed

    Rukayadi, Yaya; Kim, Kyu-Hoi; Hwang, Jae-Kwan

    2008-03-01

    In early dental plaque formation, oral primary colonizers such as Streptococcus mutans, Streptococcus sanguis and Actinomyces viscosus are initially attached to the pellicle-coated tooth surface to form a biofilm. The study aimed to determine the efficacy of macelignan, isolated from nutmeg (Myristica fragrans Houtt.), in removing each single oral primary biofilm in vitro on a polystyrene 96-well microtiter plate. Four biofilm growth phases (4, 12, 20 and 24 h) were evaluated in this study after treatment with macelignan at various concentrations (0.2, 2 and 10 microg/mL) and exposure times (5, 10 and 30 min). Anti-biofilm activity of macelignan was measured as the percentage of the remaining biofilm absorbance after macelignan treatment in comparison with the untreated control. At 24 h of biofilm growth, S. mutans, A. viscosus and S. sanguis biofilms were reduced by up to 30%, 30% and 38%, respectively, after treatment with 10 microg/mL macelignan for 5 min. Increasing the treatment time to 30 min resulted in a reduction of more than 50% of each of the single primary biofilms. The results indicate that macelignan is a potent natural anti-biofilm agent against oral primary colonizers. PMID:17926328

  14. Biofilm Formation by Helicobacter pylori and Its Involvement for Antibiotic Resistance

    PubMed Central

    Yonezawa, Hideo; Osaki, Takako

    2015-01-01

    Bacterial biofilms are communities of microorganisms attached to a surface. Biofilm formation is critical not only for environmental survival but also for successful infection. Helicobacter pylori is one of the most common causes of bacterial infection in humans. Some studies demonstrated that this microorganism has biofilm forming ability in the environment and on human gastric mucosa epithelium as well as on in vitro abiotic surfaces. In the environment, H. pylori could be embedded in drinking water biofilms through water distribution system in developed and developing countries so that the drinking water may serve as a reservoir for H. pylori infection. In the human stomach, H. pylori forms biofilms on the surface of gastric mucosa, suggesting one possible explanation for eradication therapy failure. Finally, based on the results of in vitro analyses, H. pylori biofilm formation can decrease susceptibility to antibiotics and H. pylori antibiotic resistance mutations are more frequently generated in biofilms than in planktonic cells. These observations indicated that H. pylori biofilm formation may play an important role in preventing and controlling H. pylori infections. Therefore, investigation of H. pylori biofilm formation could be effective in elucidating the detailed mechanisms of infection and colonization by this microorganism. PMID:26078970

  15. Sulfate Reducing Bacteria and Mycobacteria Dominate the Biofilm Communities in a Chloraminated Drinking Water Distribution System.

    PubMed

    Gomez-Smith, C Kimloi; LaPara, Timothy M; Hozalski, Raymond M

    2015-07-21

    The quantity and composition of bacterial biofilms growing on 10 water mains from a full-scale chloraminated water distribution system were analyzed using real-time PCR targeting the 16S rRNA gene and next-generation, high-throughput Illumina sequencing. Water mains with corrosion tubercles supported the greatest amount of bacterial biomass (n = 25; geometric mean = 2.5 × 10(7) copies cm(-2)), which was significantly higher (P = 0.04) than cement-lined cast-iron mains (n = 6; geometric mean = 2.0 × 10(6) copies cm(-2)). Despite spatial variation of community composition and bacterial abundance in water main biofilms, the communities on the interior main surfaces were surprisingly similar, containing a core group of operational taxonomic units (OTUs) assigned to only 17 different genera. Bacteria from the genus Mycobacterium dominated all communities at the main wall-bulk water interface (25-78% of the community), regardless of main age, estimated water age, main material, and the presence of corrosion products. Further sequencing of the mycobacterial heat shock protein gene (hsp65) provided species-level taxonomic resolution of mycobacteria. The two dominant Mycobacteria present, M. frederiksbergense (arithmetic mean = 85.7% of hsp65 sequences) and M. aurum (arithmetic mean = 6.5% of hsp65 sequences), are generally considered to be nonpathogenic. Two opportunistic pathogens, however, were detected at low numbers: M. hemophilum (arithmetic mean = 1.5% of hsp65 sequences) and M. abscessus (arithmetic mean = 0.006% of hsp65 sequences). Sulfate-reducing bacteria from the genus Desulfovibrio, which have been implicated in microbially influenced corrosion, dominated all communities located underneath corrosion tubercules (arithmetic mean = 67.5% of the community). This research provides novel insights into the quantity and composition of biofilms in full-scale drinking water distribution systems, which is critical for assessing the risks to public health and to the water supply infrastructure. PMID:26098899

  16. [Bacterial biofilms: their importance in animal health and public health].

    PubMed

    Tremblay, Yannick D N; Hathroubi, Skander; Jacques, Mario

    2014-04-01

    Bacterial biofilms are structured communities of bacterial cells enclosed in a self-produced polymer matrix that is attached to a surface. Biofilms protect and allow bacteria to survive and thrive in hostile environments. Bacteria within biofilms can withstand host immune responses, and are much less susceptible to antibiotics and disinfectants when compared to their planktonic counterparts. The ability to form biofilms is now considered an attribute of many microorganisms. Diseases associated with biofilms require novel methods for their prevention, diagnosis and treatment; this is largely due to the properties of biofilms. Furthermore, the presence of biofilms on surfaces found at farms, slaughterhouses or food processing plants will have an impact on the efficacy of disinfection protocols. Surprisingly, biofilm formation by bacterial pathogens of veterinary or zoonotic importance has received relatively little attention. The objective of this brief Review article is to bring awareness about the importance of biofilms to animal health stakeholders.(Translated by the authors). PMID:24688172

  17. Rapid direct methods for enumeration of specific, active bacteria in water and biofilms

    NASA Technical Reports Server (NTRS)

    McFeters, G. A.; Pyle, B. H.; Lisle, J. T.; Broadaway, S. C.

    1999-01-01

    Conventional methods for detecting indicator and pathogenic bacteria in water may underestimate the actual population due to sublethal environmental injury, inability of the target bacteria to take up nutrients and other physiological factors which reduce bacterial culturability. Rapid and direct methods are needed to more accurately detect and enumerate active bacteria. Such a methodological advance would provide greater sensitivity in assessing the microbiological safety of water and food. The principle goal of this presentation is to describe novel approaches we have formulated for the rapid and simultaneous detection of bacteria plus the determination of their physiological activity in water and other environmental samples. The present version of our method involves the concentration of organisms by membrane filtration or immunomagnetic separation and combines an intracellular fluorochrome (CTC) for assessment of respiratory activity plus fluorescent-labelled antibody detection of specific bacteria. This approach has also been successfully used to demonstrate spatial and temporal heterogeneities of physiological activities in biofilms when coupled with cryosectioning. Candidate physiological stains include those capable of determining respiratory activity, membrane potential, membrane integrity, growth rate and cellular enzymatic activities. Results obtained thus far indicate that immunomagnetic separation can provide a high degree of sensitivity in the recovery of seeded target bacteria (Escherichia coli O157:H7) in water and hamburger. The captured and stained target bacteria are then enumerated by either conventional fluorescence microscopy or ChemScan(R), a new instrument that is very sensitive and rapid. The ChemScan(R) laser scanning instrument (Chemunex, Paris, France) provides the detection of individual fluorescently labelled bacterial cells using three emission channels in less than 5 min. A high degree of correlation has been demonstrated between results obtained with the ChemScan and traditional plate counts of mixed natural bacterial populations in water. The continuing evolution of these methods will be valuable in the rapid and accurate analysis of environmental samples.

  18. The Pseudomonas Quinolone Signal Inhibits Biofilm Development of Streptococcus mutans

    PubMed Central

    Inaba, Tomohiro; Oura, Hiromu; Morinaga, Kana; Toyofuku, Masanori; Nomura, Nobuhiko

    2015-01-01

    Bacteria often thrive in natural environments through a sessile mode of growth, known as the biofilm. Biofilms are well-structured communities and their formation is tightly regulated. However, the mechanisms by which interspecies interactions alter the formation of biofilms have not yet been elucidated in detail. We herein demonstrated that a quorum-sensing signal in Pseudomonas aeruginosa (the Pseudomonas quinolone signal; PQS) inhibited biofilm formation by Streptococcus mutans. Although the PQS did not affect cell growth, biofilm formation was markedly inhibited. Our results revealed a unique role for this multifunctional PQS and also indicated its application in the development of prophylactic agents against caries-causing S. mutans. PMID:25854411

  19. Role of (p)ppGpp in Biofilm Formation by Enterococcus faecalis

    PubMed Central

    Lemos, José A.; Wickström, Claes; Sedgley, Christine M.

    2012-01-01

    Enterococcus faecalis strain OG1RF and its (p)ppGpp-deficient ?relA, ?relQ, and ?relA ?relQ mutants were grown in biofilms and evaluated for growth profiles, biofilm morphology, cell viability, and proteolytic activity. E. faecalis lacking (p)ppGpp had a diminished capacity to sustain biofilm formation over an extended period of time and expressed abundant proteolytic activity. PMID:22179256

  20. Antibiotics promoting oxidative stress inhibit formation of Escherichia coli biofilm via indole signalling.

    PubMed

    Kuczy?ska-Wi?nik, Dorota; Matuszewska, Ewelina; Furmanek-Blaszk, Beata; Leszczy?ska, Daria; Grudowska, Alicja; Szczepaniak, Pawe?; Laskowska, Ewa

    2010-12-01

    Recent studies have revealed that antibiotics can promote the formation of reactive oxygen species which contribute to cell death. In this study, we report that five different antibiotics known to stimulate production of reactive oxygen species inhibited growth of Escherichia coli biofilm. We demonstrated that supression of biofilm formation was mainly a consequence of the increase in the extracellular concentration of indole, a signal molecule which suppresses growth of bacterial biofilm. Indole production was enhanced under antibiotic-mediated oxidative stress due to overexpression of tryptophanase (TnaA), which catalyzes synthesis of indole. We found that DMSO (dimethyl sulfoxide), a hydrogen peroxide scavenger, or the lack of trypthophanase, which catalyzes production of indole, partly restored formation of E. coli biofilm in the presence of antibiotics. In conclusion, these findings confirmed that antibiotics which promote formation of ROS (reactive oxygen species) can inhibit development of E. coli biofilm in an indole-dependent process. PMID:20868745

  1. Biofilm formation as a novel phenotypic feature of adherent-invasive Escherichia coli (AIEC)

    PubMed Central

    2009-01-01

    Background Crohn's disease (CD) is a high morbidity chronic inflammatory disorder of unknown aetiology. Adherent-invasive Escherichia coli (AIEC) has been recently implicated in the origin and perpetuation of CD. Because bacterial biofilms in the gut mucosa are suspected to play a role in CD and biofilm formation is a feature of certain pathogenic E. coli strains, we compared the biofilm formation capacity of 27 AIEC and 38 non-AIEC strains isolated from the intestinal mucosa. Biofilm formation capacity was then contrasted with the AIEC phenotype, the serotype, the phylotype, and the presence of virulence genes. Results Specific biofilm formation (SBF) indices were higher amongst AIEC than non-AIEC strains (P = 0.012). In addition, 65.4% of moderate to strong biofilms producers were AIEC, whereas 74.4% of weak biofilm producers were non-AIEC (P = 0.002). These data indicate that AIEC strains were more efficient biofilm producers than non-AIEC strains. Moreover, adhesion (P = 0.009) and invasion (P = 0.003) indices correlated positively with higher SBF indices. Additionally, motility (100%, P < 0.001), H1 type flagellin (53.8%, P < 0.001), serogroups O83 (19.2%, P = 0.008) and O22 (26.9%, P = 0.001), the presence of virulence genes such as sfa/focDE (38.5%, P = 0.003) and ibeA (26.9%, P = 0.017), and B2 phylotype (80.8%, P < 0.001) were frequent characteristics amongst biofilm producers. Conclusion The principal contribution of the present work is the finding that biofilm formation capacity is a novel, complementary pathogenic feature of the recently described AIEC pathovar. Characterization of AIEC specific genetic determinants, and the regulatory pathways, involved in biofilm formation will likely bring new insights into AIEC pathogenesis. PMID:19772580

  2. Extracellular DNA-dependent biofilm formation by Staphylococcus epidermidis RP62A in response to subminimal inhibitory concentrations of antibiotics

    PubMed Central

    Kaplan, Jeffrey B.; Jabbouri, Saïd; Sadovskaya, Irina

    2011-01-01

    We measured the ability of Staphylococcus epidermidis to form biofilms in the presence of subminimal inhibitory (sub-MIC) concentrations of vancomycin, tigecycline, linezolid and novobiocin. Six strains that produce different amounts of biofilm were tested. The three strains that produced the highest amounts of biofilm exhibited steady-state or decreased biofilm formation in the presence of sub-MIC antibiotics, whereas the three strains that produced lower amounts of biofilm exhibited up to 10-fold-increased biofilm formation in the presence of sub-MIC antibiotics. In two of the inducible strains (9142 and 456a), antibiotic-induced biofilm formation was inhibited by dispersin B, an enzyme that degrades poly-N-acetylglucosamine (PNAG) biofilm polysaccharide. In the third inducible strain (RP62A), dispersin B inhibited biofilm formation in response to sub-MIC vancomycin, but not to sub-MIC tigecycline. In contrast, DNase I efficiently inhibited biofilm formation by strain RP62A in response to sub-MIC tigecycline and vancomycin. DNase I had no effect on antibiotic-induced biofilm formation in strains 9142 and 456a. Our findings indicate that antibiotic-induced biofilm formation in S. epidermidis is both strain- and antibiotic-dependent and that S. epidermidis RP62A utilizes an extracellular DNA-dependent mechanism to form biofilms in response to sub-MIC antibiotics. PMID:21402153

  3. Extracellular DNA-dependent biofilm formation by Staphylococcus epidermidis RP62A in response to subminimal inhibitory concentrations of antibiotics.

    PubMed

    Kaplan, Jeffrey B; Jabbouri, Saïd; Sadovskaya, Irina

    2011-06-01

    We measured the ability of Staphylococcus epidermidis to form biofilms in the presence of subminimal inhibitory concentrations (sub-MICs) of vancomycin, tigecycline, linezolid and novobiocin. Six strains that produce different amounts of biofilm were tested. The three strains that produced the highest amounts of biofilm exhibited steady-state or decreased biofilm formation in the presence of sub-MIC antibiotics, whereas the three strains that produced lower amounts of biofilm exhibited up to 10-fold-increased biofilm formation in the presence of sub-MIC antibiotics. In two of the inducible strains (9142 and 456a), antibiotic-induced biofilm formation was inhibited by dispersin B, an enzyme that degrades poly-N-acetylglucosamine (PNAG) biofilm polysaccharide. In the third inducible strain (RP62A), dispersin B inhibited biofilm formation in response to sub-MIC vancomycin, but not to sub-MIC tigecycline. In contrast, DNase I efficiently inhibited biofilm formation by strain RP62A in response to sub-MIC tigecycline and vancomycin. DNase I had no effect on antibiotic-induced biofilm formation in strains 9142 and 456a. Our findings indicate that antibiotic-induced biofilm formation in S. epidermidis is both strain- and antibiotic-dependent and that S. epidermidis RP62A utilizes an extracellular DNA-dependent mechanism to form biofilms in response to sub-MIC antibiotics. PMID:21402153

  4. The monitoring of biofilm formation in a mulch biowall barrier and its effect on performance

    PubMed Central

    Seo, Youngwoo; Bishop, Paul L.

    2008-01-01

    Lab scale mulch-biofilm biowall barriers were constructed and tested to monitor the effect of biofilm formation on the performance of the biobarrier. Naphthalene, a two-ring polycyclic aromatic hydrocarbon (PAH), was used as the model compound. With column reactors, the amounts of viable naphthalene degraders and biofilm formation were monitored, as was the performance of the biobarrier. The sorption capacity of the mulch, the increase in biomass and the extracellular polymeric substance (EPS) content of the biofilm created a strong affinity for naphthalene and induced an increase in the number of slowly growing hydrocarbon degraders, resulting in a higher degradation rate and more stable PAH removal. Concentration profiles of pore water naphthalene and electron acceptors indicated that dissolved oxygen (DO) was preferentially used as the electron acceptor, and the greatest removal occurred at the inlet to the column reactor where DO was highest. However, when using nitrate as an alternative electron acceptor, both biofilm formation and continual degradation of naphthalene also occurred. Microprofiles of DO in the biofilm revealed that oxygen transport in the biofilm was limited, and there might be sequential utilization of nitrate for naphthalene removal in the anoxic zones of the biofilm. These results provide insight into the distribution of viable biomass and biofilm EPS production in engineered permeable reactive mulch biobarriers. PMID:17681588

  5. Effects of antibiotics on Pseudomonas aeruginosa NK125502 and Pseudomonas fluorescens MF0 biofilm formation on immobilized fibronectin.

    PubMed

    Gagnière, H; Di Martino, P

    2004-06-01

    The effect of subminimal inhibitory concentration (1/2 MIC) of antibiotics on the biofilm formation on immobilized fibronectin by Pseudomonas was investigated by examining the reference strains NK125502 P. aeruginosa and MF0 P. fluorescens in a microtiter plates assay. When the antibiotics were added during bacterial growth and biofilm development, gentamicin was the only antimicrobial agent tested which decreased significantly the biofilm formation by the two strains. Cefsulodin and chloramphenicol also decreased the P. aeruginosa biofilm development (P<0.01), whereas polymyxin B inhibited biofilm formation by P. fluorescens (p<0.05). When the antibiotics were only present during bacterial growth and not during biofilm development, gentamicin was the only antibiotic tested to decrease significantly the biofilm formation by P. aeruginosa for incubation times of 20 and 72h (P<0.01), whereas P. fluorescens was not affected. This persistent inhibition of P. aeruginosa biofilm formation may be interesting in intermittent antibiotherapy treatments. PMID:15330319

  6. Formation of O-Ethylhomoserine by Bacteria

    PubMed Central

    Murooka, Yoshikatsu; Harada, Tokuya

    1968-01-01

    Resting cells of Corynebacterium sp. E17 formed O-ethylhomoserine from ethyl alcohol for a few hours. Addition of l-homoserine greatly enhanced its formation. Thus, the formation of O-ethylhomoserine from ethyl alcohol by 27 bacteria, 6 yeasts, and 4 fungi was investigated by using growing cultures and resting cells in the presence of l-homoserine. The O-ethylhomoserine formed in the culture supernatant fluids or supernatant fluids of the reaction mixtures was identified by paper chromatography. Many organisms which were incapable of forming O-ethylhomoserine with growing cultures formed it with resting cells. The formation of O-ethylhomoserine appears to be restricted to strains of Brevibacterium, Corynebacterium, Bacillus, Mycobacterium, Nocardia, and Streptomyces. PMID:5674048

  7. Biofilm formation and adherence characteristics of an Elizabethkingia meningoseptica isolate from Oreochromis mossambicus

    PubMed Central

    2011-01-01

    Background Elizabethkingia spp. are opportunistic pathogens often found associated with intravascular device-related bacteraemias and ventilator-associated pneumonia. Their ability to exist as biofilm structures has been alluded to but not extensively investigated. Methods The ability of Elizabethkingia meningoseptica isolate CH2B from freshwater tilapia (Oreochromis mossambicus) and E. meningoseptica strain NCTC 10016T to adhere to abiotic surfaces was investigated using microtiter plate adherence assays following exposure to varying physico-chemical challenges. The role of cell-surface properties was investigated using hydrophobicity (bacterial adherence to hydrocarbons), autoaggregation and coaggregation assays. The role of extracellular components in adherence was determined using reversal or inhibition of coaggregation assays in conjunction with Listeria spp. isolates, while the role of cell-free supernatants, from diverse bacteria, in inducing enhanced adherence was investigated using microtitre plate assays. Biofilm architecture of isolate CH2B alone as well as in co-culture with Listeria monocytogenes was investigated using flow cells and microscopy. Results E. meningoseptica isolates CH2B and NCTC 10016T demonstrated stronger biofilm formation in nutrient-rich medium compared to nutrient-poor medium at both 21 and 37°C, respectively. Both isolates displayed a hydrophilic cell surface following the bacterial adherence to xylene assay. Varying autoaggregation and coaggregation indices were observed for the E. meningoseptica isolates. Coaggregation by isolate CH2B appeared to be strongest with foodborne pathogens like Enterococcus, Staphylococcus and Listeria spp. Partial inhibition of coaggregation was observed when isolate CH2B was treated with heat or protease exposure, suggesting the presence of heat-sensitive adhesins, although sugar treatment resulted in increased coaggregation and may be associated with a lactose-associated lectin or capsule-mediated attachment. Conclusions E. meningoseptica isolate CH2B and strain NCTC 10016T displayed a strong biofilm-forming phenotype which may play a role in its potential pathogenicity in both clinical and aquaculture environments. The ability of E. meningoseptica isolates to adhere to abiotic surfaces and form biofilm structures may result from the hydrophilic cell surface and multiple adhesins located around the cell. PMID:21545730

  8. Relationship of biofilm formation and different virulence genes in uropathogenic Escherichia coli isolates from Northwest Iran

    PubMed Central

    Fattahi, Sargol; Kafil, Hossein Samadi; Nahai, Mohammad Reza; Asgharzadeh, Mohammad; Nori, Roghaya; Aghazadeh, Mohammad

    2015-01-01

    Background and objectives: The Escherichia coli (E. coli) bacterium is one of the main causative agents of urinary tract infections (UTI) worldwide. The ability of this bacterium to form biofilms on medical devices such as catheters plays an important role in the development of UTI. The aim of the present study was to investigate the possible relationship between virulence factors and biofilm formation of E. coli isolates responsible for urinary tract infection. Materials and methods: A total of 100 E. coli isolates isolated from patients with UTI were collected and characterized by routine bacteriological methods. In vitro biofilm formation by these isolates was determined using the 96-well microtiter-plate test, and the presence of fimA, papC, and hly virulence genes was examined by PCR assay. Data analysis was performed using SPSS 16.0 software. Results: From 100 E. coli isolates isolated from UTIs, 92% were shown to be biofilm positive. The genes papC, fimA, and hly were detected in 43%, 94% and 26% of isolates, respectively. Biofilm formation in isolates that expressed papC, fimA, and hly genes was 100%, 93%, and 100%, respectively. A significant relationship was found between presence of the papC gene and biofilm formation in E. coli isolates isolated from UTI (P<0.01), but there was no statistically significant correlation between presence of fimA and hly genes with biofilm formation (P<0.072, P<0.104). Conclusion: Results showed that fimA and hly genes do not seem to be necessary or sufficient for the production of biofilm in E. coli, but the presence of papC correlates with increased biofilm formation of urinary tract isolates. Overall, the presence of fimA, papC, and hly virulence genes coincides with in vitro biofilm formation in uropathogenic E. coli isolates.

  9. Bacterial biofilms: from the Natural environment to infectious diseases

    Microsoft Academic Search

    Luanne Hall-Stoodley; J. William Costerton; Paul Stoodley

    2004-01-01

    Biofilms — matrix-enclosed microbial accretions that adhere to biological or non-biological surfaces — represent a significant and incompletely understood mode of growth for bacteria. Biofilm formation appears early in the fossil record (?3.25 billion years ago) and is common throughout a diverse range of organisms in both the Archaea and Bacteria lineages, including the 'living fossils' in the most deeply

  10. Top-down effects of a lytic bacteriophage and protozoa on bacteria in aqueous and biofilm phases.

    PubMed

    Zhang, Ji; Ormälä-Odegrip, Anni-Maria; Mappes, Johanna; Laakso, Jouni

    2014-12-01

    Lytic bacteriophages and protozoan predators are the major causes of bacterial mortality in natural microbial communities, which also makes them potential candidates for biological control of bacterial pathogens. However, little is known about the relative impact of bacteriophages and protozoa on the dynamics of bacterial biomass in aqueous and biofilm phases. Here, we studied the temporal and spatial dynamics of bacterial biomass in a microcosm experiment where opportunistic pathogenic bacteria Serratia marcescens was exposed to particle-feeding ciliates, surface-feeding amoebas, and lytic bacteriophages for 8 weeks, ca. 1300 generations. We found that ciliates were the most efficient enemy type in reducing bacterial biomass in the open water, but least efficient in reducing the biofilm biomass. Biofilm was rather resistant against bacterivores, but amoebae had a significant long-term negative effect on bacterial biomass both in the open-water phase and biofilm. Bacteriophages had only a minor long-term effect on bacterial biomass in open-water and biofilm phases. However, separate short-term experiments with the ancestral bacteriophages and bacteria revealed that bacteriophages crash the bacterial biomass dramatically in the open-water phase within the first 24 h. Thereafter, the bacteria evolve phage-resistance that largely prevents top-down effects. The combination of all three enemy types was most effective in reducing biofilm biomass, whereas in the open-water phase the ciliates dominated the trophic effects. Our results highlight the importance of enemy feeding mode on determining the spatial distribution and abundance of bacterial biomass. Moreover, the enemy type can be crucially important predictor of whether the rapid defense evolution can significantly affect top-down regulation of bacteria. PMID:25512841

  11. Top-down effects of a lytic bacteriophage and protozoa on bacteria in aqueous and biofilm phases

    PubMed Central

    Zhang, Ji; Örmälä-Odegrip, Anni-Maria; Mappes, Johanna; Laakso, Jouni

    2014-01-01

    Lytic bacteriophages and protozoan predators are the major causes of bacterial mortality in natural microbial communities, which also makes them potential candidates for biological control of bacterial pathogens. However, little is known about the relative impact of bacteriophages and protozoa on the dynamics of bacterial biomass in aqueous and biofilm phases. Here, we studied the temporal and spatial dynamics of bacterial biomass in a microcosm experiment where opportunistic pathogenic bacteria Serratia marcescens was exposed to particle-feeding ciliates, surface-feeding amoebas, and lytic bacteriophages for 8 weeks, ca. 1300 generations. We found that ciliates were the most efficient enemy type in reducing bacterial biomass in the open water, but least efficient in reducing the biofilm biomass. Biofilm was rather resistant against bacterivores, but amoebae had a significant long-term negative effect on bacterial biomass both in the open-water phase and biofilm. Bacteriophages had only a minor long-term effect on bacterial biomass in open-water and biofilm phases. However, separate short-term experiments with the ancestral bacteriophages and bacteria revealed that bacteriophages crash the bacterial biomass dramatically in the open-water phase within the first 24 h. Thereafter, the bacteria evolve phage-resistance that largely prevents top-down effects. The combination of all three enemy types was most effective in reducing biofilm biomass, whereas in the open-water phase the ciliates dominated the trophic effects. Our results highlight the importance of enemy feeding mode on determining the spatial distribution and abundance of bacterial biomass. Moreover, the enemy type can be crucially important predictor of whether the rapid defense evolution can significantly affect top-down regulation of bacteria. PMID:25512841

  12. Hha, YbaJ, and OmpA Regulate Escherichia coli K12 Biofilm Formation and Conjugation

    E-print Network

    Wood, Thomas K.

    Hha, YbaJ, and OmpA Regulate Escherichia coli K12 Biofilm Formation and Conjugation Plasmids hemolysin operon, and Hha and the contiguous YbaJ are both induced 30- fold in E. coli biofilms (Appl. Microbiol. Biotechnol. 64:515, 2004). Here it is shown that Hha and YbaJ regulate biofilm formation since

  13. OmpA influences Escherichia coli biofilm formation by repressing cellulose production through the CpxRA

    E-print Network

    Wood, Thomas K.

    OmpA influences Escherichia coli biofilm formation by repressing cellulose production through Previously we discovered that OmpA of Escherichia coli increases biofilm formation on polystyrene sur- faces (González Barrios et al., Biotechnol Bioeng, 93:188­200, 2006a). Here we show OmpA influences biofilm

  14. Eap1p, an Adhesin That Mediates Candida albicans Biofilm Formation In Vitro and In Vivo

    Microsoft Academic Search

    Fang Li; Michael J. Svarovsky; Amy J. Karlsson; Joel P. Wagner; Karen Marchillo; Philip Oshel; David Andes; Sean P. Palecek

    2007-01-01

    Received 19 February 2007\\/Accepted 26 March 2007 Candida albicans is the leading cause of systemic fungal infections in immunocompromised humans. The ability to form biofilms on surfaces in the host or on implanted medical devices enhances C. albicans virulence, leading to antimicrobial resistance and providing a reservoir for infection. Biofilm formation is a complex multicellular process consisting of cell adhesion,

  15. Silver as a Residual Disinfectant To Prevent Biofilm Formation in Water Distribution Systems?

    PubMed Central

    Silvestry-Rodriguez, Nadia; Bright, Kelly R.; Slack, Donald C.; Uhlmann, Donald R.; Gerba, Charles P.

    2008-01-01

    Biofilms can have deleterious effects on drinking water quality and may harbor pathogens. Experiments were conducted using 100 ?g/liter silver to prevent biofilm formation in modified Robbins devices with polyvinyl chloride and stainless steel surfaces. No significant difference was observed on either surface between the silver treatment and the control. PMID:18192431

  16. The Effect of Carbon Source and Fluoride Concentrations in the "Streptococcus Mutans" Biofilm Formation

    ERIC Educational Resources Information Center

    Paulino, Tony P.; Andrade, Ricardo O.; Bruschi-Thedei, Giuliana C. M.; Thedei, Geraldo, Jr.; Ciancaglini, Pietro

    2004-01-01

    The main objective of this class experiment is to show the influence of carbon source and of different fluoride concentrations on the biofilm formation by the bacterium "Streptococcus mutans." The observation of different biofilm morphology as a function of carbon source and fluoride concentration allows an interesting discussion regarding the…

  17. Phenotypic and genotypic characterization of bovine mastitis isolates of Staphylococcus aureus for biofilm formation

    Microsoft Academic Search

    Pradeep Vasudevan; Manoj Kumar Mohan Nair; Thirunavukkarasu Annamalai; Kumar S Venkitanarayanan

    2003-01-01

    Staphylococcus aureus is one of the most common pathogens responsible for contagious mastitis in ruminants. The ability of S. aureus to form biofilm in vivo is considered to be a major virulence factor influencing its pathogenesis in mastitis. The objectives of the study were to examine in vitro slime production, biofilm formation, and the presence of the ica gene locus

  18. Identification of Type 3 Fimbriae in Uropathogenic Escherichia coli Reveals a Role in Biofilm Formation

    Microsoft Academic Search

    Cheryl-Lynn Y. Ong; Glen C. Ulett; Amanda N. Mabbett; Scott A. Beatson; Richard I. Webb; Wayne Monaghan; Graeme R. Nimmo; David F. Looke; Alastair G. McEwan; Mark A. Schembri

    2008-01-01

    Catheter-associated urinary tract infection (CAUTI) is the most common nosocomial infection in the United States. Uropathogenic Escherichia coli (UPEC), the most common cause of CAUTI, can form biofilms on indwelling catheters. Here, we identify and characterize novel factors that affect biofilm formation by UPEC strains that cause CAUTI. Sixty-five CAUTI UPEC isolates were characterized for phenotypic markers of urovirulence, including

  19. Importance of biofilm formation and dipeptidyl peptidase IV for the pathogenicity of clinical Porphyromonas gingivalis isolates.

    PubMed

    Clais, Sofie; Boulet, Gaëlle; Kerstens, Monique; Horemans, Tessa; Teughels, Wim; Quirynen, Marc; Lanckacker, Ellen; De Meester, Ingrid; Lambeir, Anne-Marie; Delputte, Peter; Maes, Louis; Cos, Paul

    2014-04-01

    The ability of Porphyromonas gingivalis to cause adult periodontitis is determined by its arsenal of virulence factors. Here, we investigated the importance of biofilm formation and bacterial dipeptidyl peptidase IV (DPPIV) for the pathogenicity of clinical P. gingivalis isolates. In our study, the isolates with biofilm-forming capacity also showed high DPPIV activity in vitro. Moreover, DPPIV activity increased in P. gingivalis biofilms compared to planktonic cells. In a murine subcutaneous abscess model, the biofilm-forming isolates with high DPPIV activity proved to be pathogenic, while the nonbiofilm formers with low DPPIV activity did not induce abscesses. The biofilm-forming ATCC 33277 strain with low DPPIV activity was not pathogenic in mice either. Our results suggest that biofilm formation and DPPIV activity contribute to the pathogenic potential of P. gingivalis. Furthermore, we show that biofilm formation may enhance P. gingivalis virulence through an increased DPPIV activity. Because of their importance for bacterial colonization and growth, biofilm formation and DPPIV activity could present interesting therapeutic targets to tackle periodontitis. PMID:24532232

  20. YdgG (TqsA) Controls Biofilm Formation in Escherichia coli K-12 through Autoinducer 2 Transport

    PubMed Central

    Herzberg, Moshe; Kaye, Ian K.; Peti, Wolfgang; Wood, Thomas K.

    2006-01-01

    YdgG is an uncharacterized protein that is induced in Escherichia coli biofilms. Here it is shown that deletion of ydgG decreased extracellular and increased intracellular concentrations of autoinducer 2 (AI-2); hence, YdgG enhances transport of AI-2. Consistent with this hypothesis, deletion of ydgG resulted in a 7,000-fold increase in biofilm thickness and 574-fold increase in biomass in flow cells. Also consistent with the hypothesis, deletion of ydgG increased cell motility by increasing transcription of flagellar genes (genes induced by AI-2). By expressing ydgG in trans, the wild-type phenotypes for extracellular AI-2 activity, motility, and biofilm formation were restored. YdgG is also predicted to be a membrane-spanning protein that is conserved in many bacteria, and it influences resistance to several antimicrobials, including crystal violet and streptomycin (this phenotype could also be complemented). Deletion of ydgG also caused 31% of the bacterial chromosome to be differentially expressed in biofilms, as expected, since AI-2 controls hundreds of genes. YdgG was found to negatively modulate expression of flagellum- and motility-related genes, as well as other known products essential for biofilm formation, including operons for type 1 fimbriae, autotransporter protein Ag43, curli production, colanic acid production, and production of polysaccharide adhesin. Eighty genes not previously related to biofilm formation were also identified, including those that encode transport proteins (yihN and yihP), polysialic acid production (gutM and gutQ), CP4-57 prophage functions (yfjR and alpA), methionine biosynthesis (metR), biotin and thiamine biosynthesis (bioF and thiDFH), anaerobic metabolism (focB, hyfACDR, ttdA, and fumB), and proteins with unknown function (ybfG, yceO, yjhQ, and yjbE); 10 of these genes were verified through mutation to decrease biofilm formation by 40% or more (yfjR, bioF, yccW, yjbE, yceO, ttdA, fumB, yjiP, gutQ, and yihR). Hence, it appears YdgG controls the transport of the quorum-sensing signal AI-2, and so we suggest the gene name tqsA. PMID:16385049

  1. Gentamicin release from polymethylmethacrylate bone cements and Staphylococcus aureus biofilm formation

    Microsoft Academic Search

    Hilbrand van De Belt; Daniëlle Neut; Willem Schenk; Jim R van Horn; Henny C van Der Mei; Henk J Busscher

    2000-01-01

    We measured the formation of a Staphylo- coccus aureus biofilm in vitro on unloaded and gentami- cin-loaded bone cements (CMW3 and Palacos R) and re- lated the formation to antibiotic release rates. All experi- ments were done in triplicate. Microbial growth on gen- tamicin-loaded cements occurred despite the release of antibiotic. Biofilm formation on gentamicin loaded CMW3 bone cement was

  2. Comparative impact of diverse regulatory loci on Staphylococcus aureus biofilm formation

    PubMed Central

    Atwood, Danielle N; Loughran, Allister J; Courtney, Ashleah P; Anthony, Allison C; Meeker, Daniel G; Spencer, Horace J; Gupta, Ravi Kr; Lee, Chia Y; Beenken, Karen E; Smeltzer, Mark S

    2015-01-01

    The relative impact of 23 mutations on biofilm formation was evaluated in the USA300, methicillin-resistant strain LAC. Mutation of sarA, atl, codY, rsbU, and sigB limited biofilm formation in comparison to the parent strain, but the limitation imposed by mutation of sarA was greater than that imposed by mutation of any of these other genes. The reduced biofilm formation of all mutants other than the atl mutant was correlated with increased levels of extracellular proteases. Mutation of fur- and mgrA-enhanced biofilm formation but in LAC had no impact on protease activity, nuclease activity, or accumulation of the polysaccharide intercellular adhesin (PIA). The increased capacity of these mutants to form a biofilm was reversed by mutation of sarA, and this was correlated with increased protease production. Mutation of sarA, mgrA, and sigB had the same phenotypic effect in the methicillin-sensitive strain UAMS-1, but mutation of codY increased rather than decreased biofilm formation. As with the UAMS-1 mgrA mutant, this was correlated with increased production of PIA. Examination of four additional clinical isolates suggests that the differential impact of codY on biofilm formation may be a conserved characteristic of methicillin-resistant versus methicillin-sensitive strains. PMID:25810138

  3. Comparative impact of diverse regulatory loci on Staphylococcus aureus biofilm formation.

    PubMed

    Atwood, Danielle N; Loughran, Allister J; Courtney, Ashleah P; Anthony, Allison C; Meeker, Daniel G; Spencer, Horace J; Gupta, Ravi Kr; Lee, Chia Y; Beenken, Karen E; Smeltzer, Mark S

    2015-06-01

    The relative impact of 23 mutations on biofilm formation was evaluated in the USA300, methicillin-resistant strain LAC. Mutation of sarA, atl, codY, rsbU, and sigB limited biofilm formation in comparison to the parent strain, but the limitation imposed by mutation of sarA was greater than that imposed by mutation of any of these other genes. The reduced biofilm formation of all mutants other than the atl mutant was correlated with increased levels of extracellular proteases. Mutation of fur- and mgrA-enhanced biofilm formation but in LAC had no impact on protease activity, nuclease activity, or accumulation of the polysaccharide intercellular adhesin (PIA). The increased capacity of these mutants to form a biofilm was reversed by mutation of sarA, and this was correlated with increased protease production. Mutation of sarA, mgrA, and sigB had the same phenotypic effect in the methicillin-sensitive strain UAMS-1, but mutation of codY increased rather than decreased biofilm formation. As with the UAMS-1 mgrA mutant, this was correlated with increased production of PIA. Examination of four additional clinical isolates suggests that the differential impact of codY on biofilm formation may be a conserved characteristic of methicillin-resistant versus methicillin-sensitive strains. PMID:25810138

  4. Effect of biofilm formation by Bacillus subtilis natto on menaquinone-7 biosynthesis.

    PubMed

    Berenjian, Aydin; Chan, Natalie Li-Cheng; Mahanama, Raja; Talbot, Andrea; Regtop, Hubert; Kavanagh, John; Dehghani, Fariba

    2013-06-01

    Bacillus subtilis natto is the key microorganism for the industrial production of menaquinone-7. The fermentation of this bacterium in static culture is associated with biofilm formation. The objective of this study was to determine the effect of biofilm formation on menaquinone-7 production to develop a suitable bio-reactor for the production of menaquinone-7. In the static culture, menaquinone-7 biosynthesis showed a linear correlation with biofilm formation (R (2) = 0.67) and cell density (R (2) = 0.7). The amount of biofilm, cell density and menaquinone-7 formation were a function of nutrient and processing conditions. Glycerol, soy peptone, and yeast extract mixture and 40 °C were found to be the optimum nutrients and temperature for accelerating both biofilm and menaquinone-7 biosynthesis in static culture. However, glucose, mixture of soy peptone and yeast extract and 45 °C were found to be the optima for cell density. As compared to the static culture, the biofilm formation was significantly inhibited when a shaken fermentation was used. However, shaking caused only a small decrease on menaquinone-7 production. These results demonstrate that the biofilm formation is not essential for menaquinone-7 biosynthesis. This study underlines the feasibility of using large scale stirred fermentation process for menaquinone-7 production. PMID:22740166

  5. Cell Surface Attachment Structures Contribute to Biofilm Formation and Xylem Colonization by Erwinia amylovora?

    PubMed Central

    Koczan, Jessica M.; Lenneman, Bryan R.; McGrath, Molly J.; Sundin, George W.

    2011-01-01

    Biofilm formation plays a critical role in the pathogenesis of Erwinia amylovora and the systemic invasion of plant hosts. The functional role of the exopolysaccharides amylovoran and levan in pathogenesis and biofilm formation has been evaluated. However, the role of biofilm formation, independent of exopolysaccharide production, in pathogenesis and movement within plants has not been studied previously. Evaluation of the role of attachment in E. amylovora biofilm formation and virulence was examined through the analysis of deletion mutants lacking genes encoding structures postulated to function in attachment to surfaces or in cellular aggregation. The genes and gene clusters studied were selected based on in silico analyses. Microscopic analyses and quantitative assays demonstrated that attachment structures such as fimbriae and pili are involved in the attachment of E. amylovora to surfaces and are necessary for the production of mature biofilms. A time course assay indicated that type I fimbriae function earlier in attachment, while type IV pilus structures appear to function later in attachment. Our results indicate that multiple attachment structures are needed for mature biofilm formation and full virulence and that biofilm formation facilitates entry and is necessary for the buildup of large populations of E. amylovora cells in xylem tissue. PMID:21821744

  6. A Bacillus subtilis sensor kinase involved in triggering biofilm formation on the roots of tomato plants.

    PubMed

    Chen, Yun; Cao, Shugeng; Chai, Yunrong; Clardy, Jon; Kolter, Roberto; Guo, Jian-hua; Losick, Richard

    2012-08-01

    The soil bacterium Bacillus subtilis is widely used in agriculture as a biocontrol agent able to protect plants from a variety of pathogens. Protection is thought to involve the formation of bacterial communities - biofilms - on the roots of the plants. Here we used confocal microscopy to visualize biofilms on the surface of the roots of tomato seedlings and demonstrated that biofilm formation requires genes governing the production of the extracellular matrix that holds cells together. We further show that biofilm formation was dependent on the sensor histidine kinase KinD and in particular on an extracellular CACHE domain implicated in small molecule sensing. Finally, we report that exudates of tomato roots strongly stimulated biofilm formation ex planta and that an abundant small molecule in the exudates, (L) -malic acid, was able to stimulate biofilm formation at high concentrations in a manner that depended on the KinD CACHE domain. We propose that small signalling molecules released by the roots of tomato plants are directly or indirectly recognized by KinD, triggering biofilm formation. PMID:22716461

  7. A Porphyromonas gingivalis Mutant Defective in a Putative Glycosyltransferase Exhibits Defective Biosynthesis of the Polysaccharide Portions of Lipopolysaccharide, Decreased Gingipain Activities, Strong Autoaggregation, and Increased Biofilm Formation? †

    PubMed Central

    Yamaguchi, Mikiyo; Sato, Keiko; Yukitake, Hideharu; Noiri, Yuichiro; Ebisu, Shigeyuki; Nakayama, Koji

    2010-01-01

    The Gram-negative anaerobic bacterium Porphyromonas gingivalis is a major pathogen in periodontal disease, one of the biofilm-caused infectious diseases. The bacterium possesses potential virulence factors, including fimbriae, proteinases, hemagglutinin, lipopolysaccharide (LPS), and outer membrane vesicles, and some of these factors are associated with biofilm formation; however, the precise mechanism of biofilm formation is still unknown. Colonial pigmentation of the bacterium on blood agar plates is related to its virulence. In this study, we isolated a nonpigmented mutant that had an insertion mutation within the new gene PGN_1251 (gtfB) by screening a transposon insertion library. The gene shares homology with genes encoding glycosyltransferase 1 of several bacteria. The gtfB mutant was defective in biosynthesis of both LPSs containing O side chain polysaccharide (O-LPS) and anionic polysaccharide (A-LPS). The defect in the gene resulted in a complete loss of surface-associated gingipain proteinases, strong autoaggregation, and a marked increase in biofilm formation, suggesting that polysaccharide portions of LPSs influence attachment of gingipain proteinases to the cell surface, autoaggregation, and biofilm formation of P. gingivalis. PMID:20624909

  8. Swarming motility, secretion of type 3 effectors and biofilm formation phenotypes exhibited within a large cohort of Pseudomonas aeruginosa clinical isolates

    PubMed Central

    Murray, Thomas S.; Ledizet, Michel; Kazmierczak, Barbara I.

    2010-01-01

    Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen capable of acutely infecting or persistently colonizing susceptible hosts. P. aeruginosa colonizes surfaces in vitro by either biofilm formation or swarming motility. The choice of behaviour is influenced by the physical properties of the surface and specific nutrient availability, and subject to regulatory networks that also govern type 2 and type 3 protein secretion. Biofilm formation by clinical isolates has been well-studied. However, the swarming behaviour of human isolates has not been extensively analysed. We collected isolates from 237 hospitalized patients without cystic fibrosis and analysed motility and secretion phenotypes of each isolate. We found biofilm formation and swarming to be negatively associated, while swarming was positively associated with the secretion of both proteases and type 3 exoenzymes. Most isolates were capable of type 3 secretion and biofilm formation, even though these traits are considered to favour distinct modes of pathogenesis. Our data demonstrate that while clinical isolates display diverse motility, biofilm and secretion phenotypes, many of the predicted relationships between swarming motility and other phenotypes observed in laboratory strains also hold true for bacteria isolated from human patients. PMID:20093376

  9. Acid environments affect biofilm formation and gene expression in isolates of Salmonella enterica Typhimurium DT104.

    PubMed

    O'Leary, Denis; McCabe, Evonne M; McCusker, Matthew P; Martins, Marta; Fanning, Séamus; Duffy, Geraldine

    2015-08-01

    The aim of this study was to examine the survival and potential virulence of biofilm-forming Salmonella Typhimurium DT104 under mild acid conditions. Salmonella Typhimurium DT104 employs an acid tolerance response (ATR) allowing it to adapt to acidic environments. The threat that these acid adapted cells pose to food safety could be enhanced if they also produce biofilms in acidic conditions. The cells were acid-adapted by culturing them in 1% glucose and their ability to form biofilms on stainless steel and on the surface of Luria Bertani (LB) broth at pH7 and pH5 was examined. Plate counts were performed to examine cell survival. RNA was isolated from cells to examine changes in the expression of genes associated with virulence, invasion, biofilm formation and global gene regulation in response to acid stress. Of the 4 isolates that were examined only one (1481) that produced a rigid biofilm in LB broth at pH7 also formed this same structure at pH5. This indicated that the lactic acid severely impeded the biofilm producing capabilities of the other isolates examined under these conditions. Isolate 1481 also had higher expression of genes associated with virulence (hilA) and invasion (invA) with a 24.34-fold and 13.68-fold increase in relative gene expression respectively at pH5 compared to pH7. Although genes associated with biofilm formation had increased expression in response to acid stress for all the isolates this only resulted in the formation of a biofilm by isolate 1481. This suggests that in addition to the range of genes associated with biofilm production at neutral pH, there are genes whose protein products specifically aid in biofilm production in acidic environments. Furthermore, it highlights the potential for the use of lactic acid for the inhibition of Salmonella biofilms. PMID:25912312

  10. Essential Roles and Regulation of the Legionella pneumophila Collagen-Like Adhesin during Biofilm Formation

    PubMed Central

    Mallegol, Julia; Duncan, Carla; Prashar, Akriti; So, Jannice; Low, Donald E.; Terebeznik, Mauricio; Guyard, Cyril

    2012-01-01

    Legionellosis is mostly caused by Legionella pneumophila (Lp) and is defined by a severe respiratory illness with a case fatality rate ranging from 5 to 80%. In a previous study, we showed that a glycosaminoglycan (GAG)-binding adhesin of Lp, named Lcl, is produced during legionellosis and is unique to the L. pneumophila species. Importantly, a mutant depleted in Lcl (?lpg2644) is impaired in adhesion to GAGs and epithelial cells and in biofilm formation. Here, we examine the molecular function(s) of Lcl and the transcriptional regulation of its encoding gene during different stages of the biofilm development. We show that the collagen repeats and the C-terminal domains of Lcl are crucial for the production of biofilm. We present evidence that Lcl is involved in the early step of surface attachment but also in intercellular interactions. Furthermore, we address the relationship between Lcl gene regulation during biofilm formation and quorum sensing (QS). In a static biofilm assay, we show that Lcl is differentially regulated during growth phases and biofilm formation. Moreover, we show that the transcriptional regulation of lpg2644, mediated by a prototype of QS signaling homoserine lactone (3OC12-HSL), may play a role during the biofilm development. Thus, transcriptional down-regulation of lpg2644 may facilitate the dispersion of Lp to reinitiate biofilm colonization on a distal surface. PMID:23029523

  11. dsrAB-based analysis of sulphate-reducing bacteria in moving bed biofilm reactor (MBBR) wastewater treatment plants.

    PubMed

    Biswas, Kristi; Taylor, Michael W; Turner, Susan J

    2014-08-01

    Sulphate-reducing bacteria (SRB) are important members of the sulphur cycle in wastewater treatment plants (WWTPs). In this study, we investigate the diversity and activity of SRB within the developing and established biofilm of two moving bed biofilm reactor (MBBR) systems treating municipal wastewater in New Zealand. The larger of the two WWTPs (Moa Point) generates high levels of sulphide relative to the smaller Karori plant. Clone libraries of the dissimilatory (bi)sulphite reductase (dsrAB) genes and quantitative real-time PCR targeting dsrA transcripts were used to compare SRB communities between the two WWTPs. Desulfobulbus (35-53 % of total SRB sequences) and genera belonging to the family Desulfobacteraceae (27-41 %) dominated the SRB fraction of the developing biofilm on deployed plastic carriers at both sites, whereas Desulfovibrio and Desulfomicrobium were exclusively found at Moa Point. In contrast, the established biofilms from resident MBBR carriers were largely dominated by Desulfomonile tiedjei-like organisms (58-100 % of SRB sequences). The relative transcript abundance of dsrA genes (signifying active SRBs) increased with biofilm weight yet remained low overall, even in the mature biofilm stage. Our results indicate that although SRB are both present and active in the microbial community at both MBBR study sites, differences in the availability of sulphate may be contributing to the observed differences in sulphide production at these two plants. PMID:24788329

  12. Pilus Biogenesis in Lactococcus lactis: Molecular Characterization and Role in Aggregation and Biofilm Formation

    PubMed Central

    Oxaran, Virginie; Ledue-Clier, Florence; Dieye, Yakhya; Herry, Jean-Marie; Péchoux, Christine; Meylheuc, Thierry; Briandet, Romain; Juillard, Vincent; Piard, Jean-Christophe

    2012-01-01

    The genome of Lactococcus lactis strain IL1403 harbors a putative pilus biogenesis cluster consisting of a sortase C gene flanked by 3 LPxTG protein encoding genes (yhgD, yhgE, and yhhB), called here pil. However, pili were not detected under standard growth conditions. Over-expression of the pil operon resulted in production and display of pili on the surface of lactococci. Functional analysis of the pilus biogenesis machinery indicated that the pilus shaft is formed by oligomers of the YhgE pilin, that the pilus cap is formed by the YhgD pilin and that YhhB is the basal pilin allowing the tethering of the pilus fibers to the cell wall. Oligomerization of pilin subunits was catalyzed by sortase C while anchoring of pili to the cell wall was mediated by sortase A. Piliated L. lactis cells exhibited an auto-aggregation phenotype in liquid cultures, which was attributed to the polymerization of major pilin, YhgE. The piliated lactococci formed thicker, more aerial biofilms compared to those produced by non-piliated bacteria. This phenotype was attributed to oligomers of YhgE. This study provides the first dissection of the pilus biogenesis machinery in a non-pathogenic Gram-positive bacterium. Analysis of natural lactococci isolates from clinical and vegetal environments showed pili production under standard growth conditions. The identification of functional pili in lactococci suggests that the changes they promote in aggregation and biofilm formation may be important for the natural lifestyle as well as for applications in which these bacteria are used. PMID:23236417

  13. Colonization of biofilms by bacteria capable of biodegrading sodium dodecyl sulphate (SDS) at clean and polluted riverine sites

    Microsoft Academic Search

    Nicholas J. Russell; David J. Anderson; Martin J. Day; Graham F. White

    1991-01-01

    Biofilm formation on presterile slate-discs placed at a pristine source site and at three polluted sites located upstream\\u000a from, at, and down-stream from a sewage-works outfall in a South Wales river, was monitored over 14 days. Viable bacterial\\u000a cell densities in biofilms increased with time at all sites but more rapidly at the polluted sites, and stabilized after 1–4\\u000a days

  14. The influence of subminimal inhibitory concentrations of benzalkonium chloride on biofilm formation by Listeria monocytogenes.

    PubMed

    Ortiz, Sagrario; López, Victoria; Martínez-Suárez, Joaquín V

    2014-10-17

    Disinfectants, such as benzalkonium chloride (BAC), are commonly used to control Listeria monocytogenes and other pathogens in food processing plants. Prior studies have demonstrated that the resistance to BAC of L. monocytogenes was associated with the prolonged survival of three strains of molecular serotype 1/2a in an Iberian pork processing plant. Because survival in such environments is related to biofilm formation, we hypothesised that the influence of BAC on the biofilm formation potential of L. monocytogenes might differ between BAC-resistant strains (BAC-R, MIC?10mg/L) and BAC-sensitive strains (BAC-S, MIC?2.5mg/L). To evaluate this possibility, three BAC-R strains and eight BAC-S strains, which represented all of the molecular serotype 1/2a strains detected in the sampled plant, were compared. Biofilm production was measured using the crystal violet staining method in 96-well microtitre plates. The BAC-R strains produced significantly (p<0.05) less biofilm than the BAC-S in the absence of BAC, independent of the rate of planktonic growth. In contrast, when the biofilm values were measured in the presence of BAC, one BAC-R strain (S10-1) was able to form biofilm at 5mg/L of BAC, which prevented biofilm formation among the rest of the strains. A genetic determinant of BAC resistance recently described in L. monocytogenes (Tn6188) was detected in S10-1. When a BAC-S strain and its spontaneous mutant BAC-R derivative were compared, resistance to BAC led to biofilm formation at 5mg/L of BAC and to a significant (p<0.05) stimulation of biofilm formation at 1.25mg/L of BAC, which significantly (p<0.05) reduced the biofilm level in the parent BAC-S strain. Our results suggest that the effect of subminimal inhibitory concentrations of BAC on biofilm production by L. monocytogenes might differ between strains with different MICs and even between resistant strains with similar MICs but different genetic determinants of BAC resistance. For BAC-R strains similar to S10-1, subminimal inhibitory BAC may represent an advantage, compensating for the weak biofilm formation level that might be associated with resistance. Biofilm formation in the presence of increased subminimal inhibitory concentrations of the disinfectant may represent an important attribute among certain resistant and persistent strains of L. monocytogenes. PMID:25136789

  15. Comparative analysis of hydrogen-producing bacterial biofilms and granular sludge formed in continuous cultures of fermentative bacteria.

    PubMed

    Chojnacka, Aleksandra; B?aszczyk, Mieczys?aw K; Szcz?sny, Pawe?; Nowak, Kinga; Sumi?ska, Martyna; Tomczyk-?ak, Karolina; Zielenkiewicz, Urszula; Sikora, Anna

    2011-11-01

    A system for biohydrogen production was developed based on long-term continuous cultures grown on sugar beet molasses in packed bed reactors. In two separate cultures, consortia of fermentative bacteria developed as biofilms on granitic stones. In one of the cultures, a granular sludge was also formed. Metagenomic analysis of the microbial communities by 454-pyrosequencing of amplified 16S rDNA fragments revealed that the overall biodiversity of the hydrogen-producing cultures was quite small. The stone biofilm from the culture without granular sludge was dominated by Clostridiaceae and heterolactic fermentation bacteria, mainly Leuconostocaeae. Representatives of the Leuconostocaeae and Enterobacteriaceae were dominant in both the granules and the stone biofilm formed in the granular sludge culture. The culture containing granular sludge produced hydrogen significantly more effectively than that containing only the stone biofilm: 5.43 vs. 2.8 mol H(2)/mol sucrose from molasses, respectively. The speculations that lactic acid bacteria may favor hydrogen production are discussed. PMID:21908188

  16. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria

    NASA Astrophysics Data System (ADS)

    Gurunathan, Sangiliyandi; Han, Jae Woong; Kwon, Deug-Nam; Kim, Jin-Hoi

    2014-07-01

    Silver nanoparticles (AgNPs) have been used as antibacterial, antifungal, antiviral, anti-inflammtory, and antiangiogenic due to its unique properties such as physical, chemical, and biological properties. The present study was aimed to investigate antibacterial and anti-biofilm activities of silver nanoparticles alone and in combination with conventional antibiotics against various human pathogenic bacteria. Here, we show that a simple, reliable, cost effective and green method for the synthesis of AgNPs by treating silver ions with leaf extract of Allophylus cobbe. The A. cobbe-mediated synthesis of AgNPs (AgNPs) was characterized by ultraviolet-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the antibacterial and anti-biofilm activity of antibiotics or AgNPs, or combinations of AgNPs with an antibiotic was evaluated using a series of assays: such as in vitro killing assay, disc diffusion assay, biofilm inhibition, and reactive oxygen species generation in Pseudomonas aeruginosa, Shigella flexneri, Staphylococcus aureus, and Streptococcus pneumonia. The results suggest that, in combination with antibiotics, there were significant antimicrobial and anti-biofilm effects at lowest concentration of AgNPs using a novel plant extract of A. cobbe, otherwise sublethal concentrations of the antibiotics. The significant enhancing effects were observed for ampicillin and vancomycin against Gram-negative and Gram-positive bacteria, respectively. These data suggest that combining antibiotics and biogenic AgNPs can be used therapeutically for the treatment of infectious diseases caused by bacteria. This study presented evidence of antibacterial and anti-biofilm effects of A. cobbe-mediated synthesis of AgNPs and their enhanced capacity against various human pathogenic bacteria. These results suggest that AgNPs could be used as an adjuvant for the treatment of infectious diseases.

  17. Acoustic and Electrical Property Changes Due to Microbial Growth and Biofilm Formation in Porous Media

    EPA Science Inventory

    A laboratory study was conducted to investigate the effect of microbial growth and biofilm formation on compressional waves, and complex conductivity during stimulated microbial growth. Over the 29 day duration of the experiment, compressional wave amplitudes and arrival times f...

  18. Inter- and Intra-kingdom Signaling in Bacterial Chemotaxis, Biofilm Formation, and Virulence 

    E-print Network

    Hegde, Manjunath

    2012-02-14

    , colonization and biofilm formation, and virulence that are associated with infections caused by the human gastrointestinal (GI) tract pathogens. A part of our work also aimed at developing microfluidics-based models to study inter- and intra-kingdom signaling...

  19. INVESTIGATING THE EFFECT OF MICROBIAL GROWTH AND BIOFILM FORMATION ON SEISMIC WAVE PROPAGATION IN SEDIMENT

    EPA Science Inventory

    Previous laboratory investigations have demonstrated that the seismic methods are sensitive to microbially-induced changes in porous media through the generation of biogenic gases and biomineralization. The seismic signatures associated with microbial growth and biofilm formation...

  20. The clinical impact of bacterial biofilms

    PubMed Central

    Høiby, Niels; Ciofu, Oana; Johansen, Helle Krogh; Song, Zhi-jun; Moser, Claus; Jensen, Peter Østrup; Molin, Søren; Givskov, Michael; Tolker-Nielsen, Tim; Bjarnsholt, Thomas

    2011-01-01

    Bacteria survive in nature by forming biofilms on surfaces and probably most, if not all, bacteria (and fungi) are capable of forming biofilms. A biofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting of polysaccharide, protein and extracellular DNA. Bacterial biofilms are resistant to antibiotics, disinfectant chemicals and to phagocytosis and other components of the innate and adaptive inflammatory defense system of the body. It is known, for example, that persistence of staphylococcal infections related to foreign bodies is due to biofilm formation. Likewise, chronic Pseudomonas aeruginosa lung infections in cystic fibrosis patients are caused by biofilm growing mucoid strains. Gradients of nutrients and oxygen exist from the top to the bottom of biofilms and the bacterial cells located in nutrient poor areas have decreased metabolic activity and increased doubling times. These more or less dormant cells are therefore responsible for some of the tolerance to antibiotics. Biofilm growth is associated with an increased level of mutations. Bacteria in biofilms communicate by means of molecules, which activates certain genes responsible for production of virulence factors and, to some extent, biofilm structure. This phenomenon is called quorum sensing and depends upon the concentration of the quorum sensing molecules in a certain niche, which depends on the number of the bacteria. Biofilms can be prevented by antibiotic prophylaxis or early aggressive antibiotic therapy and they can be treated by chronic suppressive antibiotic therapy. Promising strategies may include the use of compounds which can dissolve the biofilm matrix and quorum sensing inhibitors, which increases biofilm susceptibility to antibiotics and phagocytosis. PMID:21485309

  1. Effect of Nitroxides on Swarming Motility and Biofilm Formation, Multicellular Behaviors in Pseudomonas aeruginosa

    PubMed Central

    de la Fuente-Núñez, César; Reffuveille, Fany; Fairfull-Smith, Kathryn E.

    2013-01-01

    The ability of nitric oxide (NO) to induce biofilm dispersion has been well established. Here, we investigated the effect of nitroxides (sterically hindered nitric oxide analogues) on biofilm formation and swarming motility in Pseudomonas aeruginosa. A transposon mutant unable to produce nitric oxide endogenously (nirS) was deficient in swarming motility relative to the wild type and the complemented strain. Moreover, expression of the nirS gene was upregulated by 9.65-fold in wild-type swarming cells compared to planktonic cells. Wild-type swarming levels were substantially restored upon the exogenous addition of nitroxide containing compounds, a finding consistent with the hypothesis that NO is necessary for swarming motility. Here, we showed that nitroxides not only mimicked the dispersal activity of NO but also prevented biofilms from forming in flow cell chambers. In addition, a nirS transposon mutant was deficient in biofilm formation relative to the wild type and the complemented strain, thus implicating NO in the formation of biofilms. Intriguingly, despite its stand-alone action in inhibiting biofilm formation and promoting dispersal, a nitroxide partially restored the ability of a nirS mutant to form biofilms. PMID:23877682

  2. Effect of nitroxides on swarming motility and biofilm formation, multicellular behaviors in Pseudomonas aeruginosa.

    PubMed

    de la Fuente-Núñez, César; Reffuveille, Fany; Fairfull-Smith, Kathryn E; Hancock, Robert E W

    2013-10-01

    The ability of nitric oxide (NO) to induce biofilm dispersion has been well established. Here, we investigated the effect of nitroxides (sterically hindered nitric oxide analogues) on biofilm formation and swarming motility in Pseudomonas aeruginosa. A transposon mutant unable to produce nitric oxide endogenously (nirS) was deficient in swarming motility relative to the wild type and the complemented strain. Moreover, expression of the nirS gene was upregulated by 9.65-fold in wild-type swarming cells compared to planktonic cells. Wild-type swarming levels were substantially restored upon the exogenous addition of nitroxide containing compounds, a finding consistent with the hypothesis that NO is necessary for swarming motility. Here, we showed that nitroxides not only mimicked the dispersal activity of NO but also prevented biofilms from forming in flow cell chambers. In addition, a nirS transposon mutant was deficient in biofilm formation relative to the wild type and the complemented strain, thus implicating NO in the formation of biofilms. Intriguingly, despite its stand-alone action in inhibiting biofilm formation and promoting dispersal, a nitroxide partially restored the ability of a nirS mutant to form biofilms. PMID:23877682

  3. Development of a poly (ether urethane) system for the controlled release of two novel anti-biofilm agents based on gallium or zinc and its efficacy to prevent bacterial biofilm formation

    PubMed Central

    Ma, Hongyan; Darmawan, Erica T.; Zhang, Min; Zhange, Lei; Bryers, James D.

    2013-01-01

    Traditional antibiotic therapy to control medical device-based infections typically fails to clear biofilm infections and may even promote the evolution of antibiotic resistant species. We report here the development of two novel antibiofilm agents; gallium (Ga) or zinc (Zn) complexed with protoporphyrin IX (PP) or mesoprotoporphyrin IX (MP) that are both highly effective in negating suspended bacterial growth and biofilm formation. These chelated gallium or zinc complexes act as iron siderophore analogs, surplanting the natural iron uptake of most bacteria. Poly (ether urethane) (PEU; Biospan®) polymer films were fabricated for the controlled sustained release of the Ga- or Zn-complexes, using an incorporated pore-forming agent, poly (ethylene glycol) (PEG). An optimum formulation containing 8% PEG (MW=1450) in the PEU polymer effectively sustained drug release for at least 3 months. All drug-loaded PEU films exhibited in vitro ? 90% reduction of Gram-positive (Staphylococcus epidermidis) and Gram-negative (Pseudomonas aeruginosa) bacteria in both suspended and biofilm culture versus the negative control PEU films releasing nothing. Cytotoxicity and endotoxin evaluation demonstrated no adverse responses to the Ga- or Zn-complex releasing PEU films. Finally, in vivo studies further substantiate the anti-biofilm efficacy of the PEU films releasing Ga- or Zn- complexes. PMID:24140747

  4. Biofilm Formation and Susceptibility to Amphotericin B and Fluconazole in Candida albicans

    PubMed Central

    Zarei Mahmoudabadi, Ali; Zarrin, Majid; Kiasat, Neda

    2014-01-01

    Background: The ability of Candida albicans to form biofilms and adhere to host tissues and biomaterial surfaces is an important factor in its pathogenesis. One of the main characteristics of biofilms is their resistance to broad-spectrum anti-microbial drugs. Objectives: In the present study the formation of biofilm by C. albicans from different sources was evaluated. In addition, the minimum biofilm inhibitory concentration (MBIC) for two antifungals was evaluated. Materials and Methods: In total, 120 isolates of C. albicans from different sources (patients with vaginitis, patients with candiduria, bucal cavity and environmental surfaces) were collected. Biofilm formation was determined by the 96-well micro-titeration plate method. MBIC testing was also performed, using the calorimetric indicator resazurin for amphotericin B and fluconazole. Results: The results indicated that 100% of C. albicans isolates from different sources had the ability to form biofilms in vitro. Amongst these isolates, 83.3% of isolates had the maximum potential (4+) to form biofilms, while only one (0.9%) of isolates had the minimum ability (1+) to form biofilms. Our results showed that 65.0% of the tested isolates are sensitive to amphotericin B at amounts lower than 10 µg/mL, while only 26.7% are sensitive to fluconazole (had MBIC < 10 µg/mL). Conclusions: Although biofilm formation was detected in all tested isolates, there were differences in the ability to form biofilms between isolates from different sources. In addition, there were differences in the MBIC against the two examined antifungals, amphotericin B and fluconazole. PMID:25368806

  5. Identification of Salmonella enterica serovar Typhimurium genes regulated during biofilm formation on cholesterol gallstone surfaces.

    PubMed

    Gonzalez-Escobedo, Geoffrey; Gunn, John S

    2013-10-01

    Salmonella spp. are able to form biofilms on abiotic and biotic surfaces. In vivo studies in our laboratory have shown that Salmonella can form biofilms on the surfaces of cholesterol gallstones in the gallbladders of mice and human carriers. Biofilm formation on gallstones has been demonstrated to be a mechanism of persistence. The purpose of this work was to identify and evaluate Salmonella sp. cholesterol-dependent biofilm factors. Differential gene expression analysis between biofilms on glass or cholesterol-coated surfaces and subsequent quantitative real-time PCR (qRT-PCR) revealed that type 1 fimbria structural genes and a gene encoding a putative outer membrane protein (ycfR) were specifically upregulated in Salmonella enterica serovar Typhimurium biofilms grown on cholesterol-coated surfaces. Spatiotemporal expression of ycfR and FimA verified their regulation during biofilm development on cholesterol-coated surfaces. Surprisingly, confocal and scanning electron microscopy demonstrated that a mutant of type 1 fimbria structural genes (?fimAICDHF) and a ycfR mutant showed increased biofilm formation on cholesterol-coated surfaces. In vivo experiments using Nramp1(+/+) mice harboring gallstones showed that only the ?ycfR mutant formed extensive biofilms on mouse gallstones at 7 and 21 days postinfection; ?fimAICDHF was not observed on gallstone surfaces after the 7-day-postinfection time point. These data suggest that in Salmonella spp., wild-type type 1 fimbriae are important for attachment to and/or persistence on gallstones at later points of chronic infection, whereas YcfR may represent a specific potential natural inhibitor of initial biofilm formation on gallstones. PMID:23897604

  6. Comparison of three methods to study biofilm formation by clinical strains of Escherichia coli.

    PubMed

    Crémet, Lise; Corvec, Stéphane; Batard, Eric; Auger, Myriam; Lopez, Irene; Pagniez, Fabrice; Dauvergne, Sandie; Caroff, Nathalie

    2013-03-01

    Biofilm formation seems to be a key factor in many bacterial infections, particularly those involving prosthetic implants or urinary catheters, where Escherichia coli is frequently involved. We have determined the ability to form biofilm in vitro of 34 E. coli isolates by 3 different methods (crystal violet staining, BioFilm Ring Test®, and resazurin assay) and tried to correlate biofilm production with phylogenetic background and with the presence of different genes involved in biofilm synthesis. Only 3 isolates (including positive control E. coli ATCC 25922) were classified as strong biofilm producers (1B1, 1D, and 1B2 = control) by the 3 methods, 2 isolates by 2 different methods, and 5 additional isolates by only 1 method. All isolates possessed the csgA gene belonging to the csgABC operon encoding curli, and its regulator csgD. By contrast, only 76% possessed pgaA gene which is part of the pgaABCD operon encoding a polysaccharide adhesin. Interestingly, one of the strong biofilm producers did not harbor pgaA. In the second part, we have selected 5 specific isolates to study the impact of various experimental conditions on biofilm formation. For all these isolates, biofilm production was decreased in anaerobiosis and increased in LB medium compared with brain heart infusion medium, but at various degrees for the different isolates. These results underline the problems encountered in comparing the different published studies using various methods to study biofilm formation in vitro and the great need of standardization. PMID:23313082

  7. Structure Formation by Self Attracting Bacteria

    NASA Astrophysics Data System (ADS)

    Betterton, Meredith; Brenner, Michael

    1998-11-01

    Consider a box of material (initially of constant density) which both attracts itself and has some dispersive character. Eventually the material will clump into high density regions. The question addressed in this talk is: what are the number and sizes of the clumps that are formed? We address this in the context of chemotactic collapse of e. Coli. Experiments have given a detailed picture of the collapse process, showing that the bacteria initially form cylindrical structures which then destabilize into spherical clumps. On the other hand, linear stability analysis predicts that the system should form spherical aggregates directly. Our theory for the structure formation develops a generalization of an idea of Zeldovich (invented for a problem in cosmology). We present various calculations and numerical simulations to explain the patterns observed in experiments.

  8. A role of Candida albicans CDC4 in the negative regulation of biofilm formation.

    PubMed

    Tseng, Tzu-Ling; Lai, Wei-Chung; Lee, Tai-Lin; Hsu, Wan Hua; Sun, Yu Wen; Li, Wan Chen; Cheng, Chun-Wen; Shieh, Jia-Ching

    2015-04-01

    The CDC4 gene is nonessential in Candida albicans and plays a role in suppressing filamentous growth, in contrast to its homologues, which are involved in the G1-S transition of the cell cycle. While characterizing the function of C. albicans CDC4 (CaCDC4), we found that the loss of CaCDC4 resulted in a reduction in cell flocculation, indicating a possible role for CaCDC4 in biofilm formation. To elucidate the role of CaCDC4 in biofilm formation, Cacdc4 null mutant strains were constructed by using the mini-Ura-blaster method. To create a CaCDC4 rescued strain, the plasmid p6HF-ACT1p-CaCDC4 capable of constitutively expressing CaCDC4 was introduced into the Cacdc4 homozygous null mutant. To determine the biofilm formation ability, an in vitro XTT (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium-5-carboxanilide) reduction assay was used. Compared with the parental auxotrophic strain BWP17, the Cacdc4 homozygous null mutant was able to enhance biofilm formation significantly. This enhancement of biofilm formation in the Cacdc4 homozygous null mutant could be reversed by constitutively expressing CaCDC4. We conclude that CaCDC4 has a role in suppressing biofilm formation in C. albicans. PMID:25719926

  9. The pgaABCD Locus of Escherichia coli Promotes the Synthesis of a Polysaccharide Adhesin Required for Biofilm Formation

    Microsoft Academic Search

    Xin Wang; James F. Preston III; Tony Romeo

    2004-01-01

    Production of a polysaccharide matrix is a hallmark of bacterial biofilms, but the composition of matrix polysaccharides and their functions are not widely understood. Previous studies of the regulation of Escherichia coli biofilm formation suggested the involvement of an unknown adhesin. We now establish that the pgaABCD (formerly ycdSRQP) locus affects biofilm development by promoting abiotic surface binding and intercellular

  10. Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm

    PubMed Central

    Hernandez-Delgadillo, Rene; Velasco-Arias, Donaji; Diaz, David; Arevalo-Niño, Katiushka; Garza-Enriquez, Marianela; De la Garza-Ramos, Myriam A; Cabral-Romero, Claudio

    2012-01-01

    Background and methods Despite continuous efforts, the increasing prevalence of resistance among pathogenic bacteria to common antibiotics has become one of the most significant concerns in modern medicine. Nanostructured materials are used in many fields, including biological sciences and medicine. While some bismuth derivatives has been used in medicine to treat vomiting, nausea, diarrhea, and stomach pain, the biocidal activity of zerovalent bismuth nanoparticles has not yet been studied. The objective of this investigation was to analyze the antimicrobial activity of bismuth nanoparticles against oral bacteria and their antibiofilm capabilities. Results Our results showed that stable colloidal bismuth nanoparticles had 69% antimicrobial activity against Streptococcus mutans growth and achieved complete inhibition of biofilm formation. These results are similar to those obtained with chlorhexidine, the most commonly used oral antiseptic agent. The minimal inhibitory concentration of bismuth nanoparticles that interfered with S. mutans growth was 0.5 mM. Conclusion These results suggest that zerovalent bismuth nanoparticles could be an interesting antimicrobial agent to be incorporated into an oral antiseptic preparation. PMID:22619547

  11. Biofilm Formation and the Presence of the Intercellular Adhesion Locus ica among Staphylococci from Food and Food Processing Environments

    PubMed Central

    Møretrø, Trond; Hermansen, Lene; Holck, Askild L.; Sidhu, Maan S.; Rudi, Knut; Langsrud, Solveig

    2003-01-01

    In clinical staphylococci, the presence of the ica genes and biofilm formation are considered important for virulence. Biofilm formation may also be of importance for survival and virulence in food-related staphylococci. In the present work, staphylococci from the food industry were found to differ greatly in their abilities to form biofilms on polystyrene. A total of 7 and 21 of 144 food-related strains were found to be strong and weak biofilm formers, respectively. Glucose and sodium chloride stimulated biofilm formation. The biofilm-forming strains belonged to nine different coagulase-negative species of Staphylococcus. The icaA gene of the intercellular adhesion locus was detected by Southern blotting and hybridization in 38 of 67 food-related strains tested. The presence of icaA was positively correlated with strong biofilm formation. The icaA gene was partly sequenced for 22 food-related strains from nine different species of Staphylococcus, and their icaA genes were found to have DNA similarities to previously sequenced icaA genes of 69 to 100%. Northern blot analysis indicated that the expression of the ica genes was higher in strong biofilm formers than that seen with strains not forming biofilms. Biofilm formation on polystyrene was positively correlated with biofilm formation on stainless steel and with resistance to quaternary ammonium compounds, a group of disinfectants. PMID:12957956

  12. Protective Mechanisms of Respiratory Tract Streptococci against Streptococcus pyogenes Biofilm Formation and Epithelial Cell Infection

    PubMed Central

    Fiedler, Tomas; Riani, Catur; Koczan, Dirk; Standar, Kerstin

    2013-01-01

    Streptococcus pyogenes (group A streptococci [GAS]) encounter many streptococcal species of the physiological microbial biome when entering the upper respiratory tract of humans, leading to the question how GAS interact with these bacteria in order to establish themselves at this anatomic site and initiate infection. Here we show that S. oralis and S. salivarius in direct contact assays inhibit growth of GAS in a strain-specific manner and that S. salivarius, most likely via bacteriocin secretion, also exerts this effect in transwell experiments. Utilizing scanning electron microscopy documentation, we identified the tested strains as potent biofilm producers except for GAS M49. In mixed-species biofilms, S. salivarius dominated the GAS strains, while S. oralis acted as initial colonizer, building the bottom layer in mixed biofilms and thereby allowing even GAS M49 to form substantial biofilms on top. With the exception of S. oralis, artificial saliva reduced single-species biofilms and allowed GAS to dominate in mixed biofilms, although the overall two-layer structure was unchanged. When covered by S. oralis and S. salivarius biofilms, epithelial cells were protected from GAS adherence, internalization, and cytotoxic effects. Apparently, these species can have probiotic effects. The use of Affymetrix array technology to assess HEp-2 cell transcription levels revealed modest changes after exposure to S. oralis and S. salivarius biofilms which could explain some of the protective effects against GAS attack. In summary, our study revealed a protection effect of respiratory tract bacteria against an important airway pathogen and allowed a first in vitro insight into local environmental processes after GAS enter the respiratory tract. PMID:23241973

  13. Inhibitors of biofilm formation by biofuel fermentation contaminants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofuel fermentation contaminants such as Lactobacillus sp. may persist in production facilities by forming recalcitrant biofilms. In this study, biofilm-forming strains of Lactobacillus brevis, L. fermentum, and L. plantarum were isolated and characterized from a dry-grind fuel ethanol plant. A var...

  14. Listeria monocytogenes Biofilm Formation on Silver Ion Impregnated Cutting Boards

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Listeria monocytogenes is a human pathogen that can be a member of a biofilm community attached to surfaces in poultry processing plants. When present as a biofilm on product contact surfaces, this organism can effectively cross contaminate fully cooked ready-to-eat meat. Plastic cutting boards ca...

  15. Reduced Staphylococcus aureus proliferation and biofilm formation on zinc oxide nanoparticle PVC composite surfaces

    Microsoft Academic Search

    Justin T. Seil; Thomas J. Webster

    2011-01-01

    Conventional particulate zinc oxide (ZnO) is a known antibacterial agent. Studies have shown that reducing the size of ZnO particles to nanoscale dimensions further enhances their antibacterial properties. Polymers, like all biomaterials, run the risk of harboring bacteria which may produce an antibiotic-resistant biofilm. The addition of ZnO nanoparticles to form a polymer composite material may thus reduce undesirable bacteria

  16. In Vitro Activities of Telavancin and Vancomycin against Biofilm-Producing Staphylococcus aureus, S. epidermidis, and Enterococcus faecalis Strains?

    PubMed Central

    LaPlante, Kerry L.; Mermel, Leonard A.

    2009-01-01

    We investigated the activities of telavancin and vancomycin against biofilm-producing Staphylococcus and Enterococcus strains. At clinically attainable concentrations, telavancin was active against bacteria embedded in biofilm (minimal biofilm eradication concentration [MBEC], 0.125 to 2 ?g/ml) and inhibited biofilm formation at concentrations below the MIC. Vancomycin did not demonstrate the same activity (MBEC, ?512 ?g/ml) against Staphylococcus aureus and Enterococcus faecalis. Telavancin may have a unique role in biofilm-associated infections. PMID:19451302

  17. LitR Is a Repressor of syp Genes and Has a Temperature-Sensitive Regulatory Effect on Biofilm Formation and Colony Morphology in Vibrio (Aliivibrio) salmonicida

    PubMed Central

    Bjelland, Ane Mohn; Ronessen, Maria; Robertsen, Espen; Willassen, Nils Peder

    2014-01-01

    Vibrio (Aliivibrio) salmonicida is the etiological agent of cold water vibriosis, a disease in farmed Atlantic salmon (Salmo salar) that is kept under control due to an effective vaccine. A seawater temperature below 12°C is normally required for disease development. Quorum sensing (QS) is a cell density-regulated communication system that bacteria use to coordinate activities involved in colonization and pathogenesis, and we have previously shown that inactivation of the QS master regulator LitR attenuates the V. salmonicida strain LFI1238 in a fish model. We show here that strain LFI1238 and a panel of naturally occurring V. salmonicida strains are poor biofilm producers. Inactivation of litR in the LFI1238 strain enhances medium- and temperature-dependent adhesion, rugose colony morphology, and biofilm formation. Chemical treatment and electron microscopy of the biofilm identified an extracellular matrix consisting mainly of a fibrous network, proteins, and polysaccharides. Further, by microarray analysis of planktonic and biofilm cells, we identified a number of genes regulated by LitR and, among these, were homologues of the Vibrio fischeri symbiosis polysaccharide (syp) genes. The syp genes were regulated by LitR in both planktonic and biofilm lifestyle analyses. Disruption of syp genes in the V. salmonicida ?litR mutant alleviated adhesion, rugose colony morphology, and biofilm formation. Hence, LitR is a repressor of syp transcription that is necessary for expression of the phenotypes examined. The regulatory effect of LitR on colony morphology and biofilm formation is temperature sensitive and weak or absent at temperatures above the bacterium's upper threshold for pathogenicity. PMID:24973072

  18. Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms.

    PubMed

    Kuiper, Irene; Lagendijk, Ellen L; Pickford, Russell; Derrick, Jeremy P; Lamers, Gerda E M; Thomas-Oates, Jane E; Lugtenberg, Ben J J; Bloemberg, Guido V

    2004-01-01

    Pseudomonas putida strain PCL1445 was isolated from roots of plants, grown on a site polluted with polycyclic aromatic hydrocarbons. PCL1445 produces biosurfactant activity at the end of the exponential growth phase. High-performance liquid chromatography (HPLC) analysis of supernatant extracts of PCL1445 showed two peaks with surface-tension reducing activity, tentatively assigned as biosurfactants putisolvin I and putisolvin II and was followed by structural analyses. A transposon mutant of PCL1445, strain PCL1436, which lacks the two surface-active peaks appeared to be mutated in an open reading frame (ORF) with amino acid homology to various lipopeptide synthetases. Structural analyses of the two biosurfactants of PCL1445 revealed that both are novel cyclic lipodepsipeptides with a hexanoic lipid chain connected to the N-terminus of a 12-amino-acid peptide moiety, in which the C-terminal carboxylic acid group forms an ester with the hydroxyl side-chain of Ser9. The difference between the two structures is located in the second amino acid from the C-terminus, being valine for putisolvin I, and leucine/isoleucine for putisolvin II. We show that these novel compounds lower the surface tension and influence the biofilm development on polyvinyl chloride (PVC). Biofilm formation of the bio-synthetic mutant PCL1436 was strongly increased containing more cells, which formed aggregates earlier as compared with wild-type PCL1445 biofilms. Using purified putisolvin I and II it was shown that biofilm formation of different Pseudomonas strains was inhibited and most interestingly, that both putisolvins are also able to break down existing Pseudomonas biofilms. PMID:14651614

  19. Enterococcus faecalis rnjB is required for pilin gene expression and biofilm formation

    Microsoft Academic Search

    Peng Gao; Kenneth L Pinkston; Sreedhar R Nallapareddy; Ambro van Hoof; Barbara E Murray; Barrett R Harvey

    2010-01-01

    Pili in Gram-positive bacteria play a major role in the colonization of host tissue and in the development of biofilms. They are promising candidates for vaccines or drug targets since they are highly immunogenic and share common structural and functional features among various Gram-positive pathogens. Numerous publications have helped build a detailed understanding of pilus surface assembly, yet regulation of

  20. Usnic Acid, a Natural Antimicrobial Agent Able To Inhibit Bacterial Biofilm Formation on Polymer Surfaces

    Microsoft Academic Search

    I. Francolini; P. Norris; A. Piozzi; G. Donelli; P. Stoodley

    2004-01-01

    In modern medicine, artificial devices are used for repair or replacement of damaged parts of the body, delivery of drugs, and monitoring the status of critically ill patients. However, artificial surfaces are often susceptible to colonization by bacteria and fungi. Once microorganisms have adhered to the surface, they can form biofilms, resulting in highly resistant local or systemic infections. At

  1. Biofilm formation by Listeria monocytogenes on stainless steel surface and biotransfer potential

    PubMed Central

    de Oliveira, Maíra Maciel Mattos; Brugnera, Danilo Florisvaldo; Alves, Eduardo; Piccoli, Roberta Hilsdorf

    2010-01-01

    An experimental model was proposed to study biofilm formation by Listeria monocytogenes ATCC 19117 on AISI 304 (#4) stainless steel surface and biotransfer potential during this process. In this model, biofilm formation was conducted on the surface of stainless steel coupons, set on a stainless steel base with 4 divisions, each one supporting 21 coupons. Trypic Soy Broth was used as bacterial growth substrate, with incubation at 37 °C and stirring of 50 rpm. The number of adhered cells was determined after 3, 48, 96, 144, 192 and 240 hours of biofilm formation and biotransfer potential from 96 hours. Stainless steel coupons were submitted to Scanning Electron Microscopy (SEM) after 3, 144 and 240 hours. Based on the number of adhered cells and SEM, it was observed that L. monocytogenes adhered rapidly to the stainless steel surface, with mature biofilm being formed after 240 hours. The biotransfer potential of bacterium to substrate occurred at all the stages analyzed. The rapid capacity of adhesion to surface, combined with biotransfer potential throughout the biofilm formation stages, make L. monocytogenes a potential risk to the food industry. Both the experimental model developed and the methodology used were efficient in the study of biofilm formation by L. monocytogenes on stainless steel surface and biotransfer potential. PMID:24031469

  2. Role of SFP1 in the Regulation of Candida albicans Biofilm Formation

    PubMed Central

    Chen, Hsueh-Fen; Lan, Chung-Yu

    2015-01-01

    Candida albicans is a major human fungal pathogen. One of the important features of C. albicans pathogenicity is the ability to form biofilms on mucosal surfaces and indwelling medical devices. Biofilm formation involves complex processes in C. albicans, including cell adhesion, filamentous growth, extracellular matrix secretion and cell dispersion. In this work, we characterized the role of the transcription factor Sfp1, particularly with respect to its function in the regulation of biofilm formation. The deletion of the SFP1 gene enhanced cell adhesion and biofilm formation in comparison to the wild-type strain. Interestingly, the sfp1-deleted mutant also exhibited an increase in the expression of the ALS1, ALS3 and HWP1 genes, which encode adhesin proteins. In addition, Sfp1 was demonstrated to function downstream of the Rhb1-TOR signaling pathway. Bcr1 and Efg1 are transcription factors that are critical for controlling biofilm formation, and Efg1 is also required for hyphal growth. Deleting either the BCR1 or EFG1 gene in the sfp1-null background led to reduced adhesin gene expression. As a result, the bcr1/sfp1 or efg1/sfp1 double deletion mutants exhibited dramatically reduced biofilm formation. The results indicated that Sfp1 negatively regulates the ALS1, ALS3 and HWP1 adhesin genes and that the repression of these genes is mediated by the inhibition of Bcr1 and Efg1. PMID:26087243

  3. Escherichia coli biofilm formation and recurrences of urinary tract infections in children.

    PubMed

    Tapiainen, T; Hanni, A-M; Salo, J; Ikäheimo, I; Uhari, M

    2014-01-01

    It has been suggested that biofilm formation by uropathogenic Escherichia coli (UPEC) isolates is associated with recurrence and persistence of urinary tract infection (UTI). We compared the in vitro biofilm formation of UPEC isolates from children with acute or recurrent UTI. Employing 206 consecutive clinical UPEC isolates from children with proven UTI, i.e., pyelonephritis (n?=?78), recurrent pyelonephritis (n?=?10), cystitis (n?=?84) or recurrent cystitis (n?=?34), we applied 1 % crystal violet staining to polystyrene microtitre plates at 72 h and measured the optical density (OD) values. The method had been validated to measure biofilm formation against confocal laser scanning microscopy and scanning electron microscopy. The OD values were lower in the recurrent cystitis group than in the other groups (mean OD 0.36, SD 0.21 vs mean 0.47, SD 0.36, P?=?0.04) and higher in the recurrent pyelonephritis group than in the other groups (mean OD 0.69, SD 0.33 vs mean OD 0.44, SD 0.34, P?=?0.006) indicating biofilm formation of strains causing recurrent pyelonephritis. It appears that the properties of UPEC isolates required for effective biofilm growth on an abiotic surface are important for recurrent pyelonephritis, but not for recurrent cystitis. It would be valuable in the future to analyze whether the biofilm properties of E. coli observed in vitro predict a slower clinical response to antimicrobial treatment and increased renal scar formation after UTI. PMID:23996047

  4. A mucosal model to study microbial biofilm development and anti-biofilm therapeutics

    PubMed Central

    Anderson, Michele J.; Parks, Patrick J.; Peterson, Marnie L.

    2013-01-01

    Biofilms are a sessile colony of bacteria which adhere to and persist on surfaces. The ability of bacteria to form biofilms is considered a virulence factor, and in fact is central to the pathogenesis of some organisms. Biofilms are inherently resistant to chemotherapy and host immune responses. Clinically, biofilms are considered a primary cause of a majority of infections, such as otitis media, pneumonia in cystic fibrosis patients and endocarditis. However, the vast majority of the data on biofilm formation comes from traditional microtiter-based or flow displacement assays with no consideration given to host factors. These assays, which have been a valuable tool in high-throughput screening for biofilm-related factors, do not mimic a host-pathogen interaction and may contribute to an inappropriate estimation of the role of some factors in clinical biofilm formation. We describe the development of a novel ex vivo model of biofilm formation on a mucosal surface by an important mucosal pathogen, methicillin resistant S. aureus (MRSA). This model is being used for the identification of microbial virulence factors important in mucosal biofilm formation and novel anti-biofilm therapies. PMID:23246911

  5. Studies of protein adsorption on implant materials in relation to biofilm formation I. Activity of Pseudomonas aeruginosa on Polypropylene and High density Polyethylene in presence of serum albumin

    E-print Network

    Sinha, S Dutta; Maity, P K; Tarafdar, S; Moulik, S P

    2014-01-01

    The surface of biomaterials used as implants are highly susceptible to bacterial colonization and subsequent infection. The amount of protein adsorption on biomaterials, among other factors, can affect the nature and quality of biofilms formed on them. The variation in the adsorption time of the protein on the biomaterial surface produces a phenotypic change in the bacteria by alteration of the production of EPS (exoplysaccharide) matrix. Knowledge of the effects of protein adsorption on implant infection will be very useful in understanding the chemistry of the biomaterial surfaces, which can deter the formation of biofilms. It is observed that the adsorption of BSA on the biomaterial surfaces increases with time and concentration, irrespective of their type and the nature of the EPS matrix of the bacterial biofilm is dependent on the amount of protein adsorbed on the biomaterial surface. The adsorption of protein (BSA) on the biomaterials, polypropylene (PP) and high density polyethylene (HDPE) has been stu...

  6. Salicylate increases the expression of marA and reduces in vitro biofilm formation in uropathogenic Escherichia coli by decreasing type 1 fimbriae expression

    PubMed Central

    Vila, Jordi; Soto, Sara M.

    2012-01-01

    Escherichia coli is one of the most frequent bacteria implicated in biofilm formation, which is a dynamic process whose first step consists in bacteria adhesion to surfaces through type 1 fimbriae. Salicylate induces a number of morphological and physiological alterations in bacteria including the activation of the transcriptional regulator MarA. In this report the effects of salicylate on biofilm formation and their relationship with MarA were studied. An inverse relationship was observed between in vitro biofilm formation and salicylate concentration added to the culture medium. Salicylate increases the expression of marA and decreases the expression of fimA and fimB genes in the wild-type strain. In addition, the fimA and fimB expression was decreased in a MarR mutant in which marA was also overexpressed. In conclusion, the expression of type 1 fimbriae in presence of salicylate may be regulated by the level of marA expression through fimB regulator, albeit through neither the ompX nor the tolC genes. PMID:22546909

  7. Gene expression profile of the plant pathogen Xylella fastidiosa during biofilm formation in vitro.

    PubMed

    de Souza, Alessandra A; Takita, Marco A; Coletta-Filho, Helvécio D; Caldana, Camila; Yanai, Giane M; Muto, Nair H; de Oliveira, Regina C; Nunes, Luiz R; Machado, Marcos A

    2004-08-15

    A biofilm is a community of microorganisms attached to a solid surface. Cells within biofilms differ from planktonic cells, showing higher resistance to biocides, detergent, antibiotic treatments and host defense responses. Even though there are a number of gene expression studies in bacterial biofilm formation, limited information is available concerning plant pathogen. It was previously demonstrated that the plant pathogen Xylella fastidiosa could grow as a biofilm, a possibly important factor for its pathogenicity. In this study we utilized analysis of microarrays to specifically identify genes expressed in X. fastidiosa cells growing in a biofilm, when compared to planktonic cells. About half of the differentially expressed genes encode hypothetical proteins, reflecting the large number of ORFs with unknown functions in bacterial genomes. However, under the biofilm condition we observed an increase in the expression of some housekeeping genes responsible for metabolic functions. We also found a large number of genes from the pXF51 plasmid being differentially expressed. Some of the overexpressed genes in the biofilm condition encode proteins involved in attachment to surfaces. Other genes possibly confer advantages to the bacterium in the environment that it colonizes. This study demonstrates that the gene expression in the biofilm growth condition of the plant pathogen X. fastidiosa is quite similar to other characterized systems. PMID:15321682

  8. Bacterial community structure and activity of sulfate reducing bacteria in a membrane aerated biofilm analyzed by microsensor and molecular techniques.

    PubMed

    Liu, Hong; Tan, Shuying; Sheng, Zhiya; Liu, Yang; Yu, Tong

    2014-11-01

    The activities and vertical spatial distribution of sulfate reducing bacteria (SRB) in an oxygen (O2 )-based membrane aerated biofilm (MAB) were investigated using microsensor (O2 and H2 S) measurements and molecular techniques (polymerase chain reaction-denaturing gradient gel electrophoresis [PCR-DGGE] and fluorescence in situ hybridization [FISH]). The O2 concentration profile revealed that O2 penetrated from the bottom (substratum) of the gas permeable membrane, and was gradually consumed within the biofilm until it was completely depleted near the biofilm/bulk liquid interface, indicating oxic and anoxic zone in the MAB. The H2 S concentration profile showed that H2 S production was found in the upper 285?µm of the biofilm, indicating a high activity of SRB in this region. The results from DGGE of the PCR-amplified dissimilatory sulfite reductase subunit B (dsrB) gene and FISH showed an uneven spatial distribution of SRB. The maximum SRB biomass was located in the upper biofilm. The information from the molecular analysis can be supplemented with that from microsensor measurements to better understand the microbial community and activity of SRB in the MAB. PMID:24890472

  9. Elucidating the genetic basis of crystalline biofilm formation in Proteus mirabilis.

    PubMed

    Holling, N; Lednor, D; Tsang, S; Bissell, A; Campbell, L; Nzakizwanayo, J; Dedi, C; Hawthorne, J A; Hanlon, G; Ogilvie, L A; Salvage, J P; Patel, B A; Barnes, L M; Jones, B V

    2014-04-01

    Proteus mirabilis forms extensive crystalline biofilms on urethral catheters that occlude urine flow and frequently complicate the management of long-term-catheterized patients. Here, using random transposon mutagenesis in conjunction with in vitro models of the catheterized urinary tract, we elucidate the mechanisms underpinning the formation of crystalline biofilms by P. mirabilis. Mutants identified as defective in blockage of urethral catheters had disruptions in genes involved in nitrogen metabolism and efflux systems but were unaffected in general growth, survival in bladder model systems, or the ability to elevate urinary pH. Imaging of biofilms directly on catheter surfaces, along with quantification of levels of encrustation and biomass, confirmed that the mutants were attenuated specifically in the ability to form crystalline biofilms compared with that of the wild type. However, the biofilm-deficient phenotype of these mutants was not due to deficiencies in attachment to catheter biomaterials, and defects in later stages of biofilm development were indicated. For one blocking-deficient mutant, the disrupted gene (encoding a putative multidrug efflux pump) was also found to be associated with susceptibility to fosfomycin, and loss of this system or general inhibition of efflux pumps increased sensitivity to this antibiotic. Furthermore, homologues of this system were found to be widely distributed among other common pathogens of the catheterized urinary tract. Overall, our findings provide fundamental new insight into crystalline biofilm formation by P. mirabilis, including the link between biofilm formation and antibiotic resistance in this organism, and indicate a potential role for efflux pump inhibitors in the treatment or prevention of P. mirabilis crystalline biofilms. PMID:24470471

  10. Elucidating the Genetic Basis of Crystalline Biofilm Formation in Proteus mirabilis

    PubMed Central

    Holling, N.; Lednor, D.; Tsang, S.; Bissell, A.; Campbell, L.; Nzakizwanayo, J.; Dedi, C.; Hawthorne, J. A.; Hanlon, G.; Ogilvie, L. A.; Salvage, J. P.; Patel, B. A.; Barnes, L. M.

    2014-01-01

    Proteus mirabilis forms extensive crystalline biofilms on urethral catheters that occlude urine flow and frequently complicate the management of long-term-catheterized patients. Here, using random transposon mutagenesis in conjunction with in vitro models of the catheterized urinary tract, we elucidate the mechanisms underpinning the formation of crystalline biofilms by P. mirabilis. Mutants identified as defective in blockage of urethral catheters had disruptions in genes involved in nitrogen metabolism and efflux systems but were unaffected in general growth, survival in bladder model systems, or the ability to elevate urinary pH. Imaging of biofilms directly on catheter surfaces, along with quantification of levels of encrustation and biomass, confirmed that the mutants were attenuated specifically in the ability to form crystalline biofilms compared with that of the wild type. However, the biofilm-deficient phenotype of these mutants was not due to deficiencies in attachment to catheter biomaterials, and defects in later stages of biofilm development were indicated. For one blocking-deficient mutant, the disrupted gene (encoding a putative multidrug efflux pump) was also found to be associated with susceptibility to fosfomycin, and loss of this system or general inhibition of efflux pumps increased sensitivity to this antibiotic. Furthermore, homologues of this system were found to be widely distributed among other common pathogens of the catheterized urinary tract. Overall, our findings provide fundamental new insight into crystalline biofilm formation by P. mirabilis, including the link between biofilm formation and antibiotic resistance in this organism, and indicate a potential role for efflux pump inhibitors in the treatment or prevention of P. mirabilis crystalline biofilms. PMID:24470471

  11. Biofilm Formation by Psychrobacter arcticus and the Role of a Large Adhesin in Attachment to Surfaces

    PubMed Central

    Koid, Cassandra; Tiedje, James M.; Schultzhaus, Janna N.

    2013-01-01

    Psychrobacter arcticus strain 273-4, an isolate from a Siberian permafrost core, is capable of forming biofilms when grown in minimal medium under laboratory conditions. Biofilms form at 4 to 22°C when acetate is supplied as the lone carbon source and with 1 to 7% sea salt. P. arcticus is also capable of colonizing quartz sand. Transposon mutagenesis identified a gene important for biofilm formation by P. arcticus. Four transposon mutants were mapped to a 20.1-kbp gene, which is predicted to encode a protein of 6,715 amino acids (Psyc_1601). We refer to this open reading frame as cat1, for cold attachment gene 1. The cat1 mutants are unable to form biofilms at levels equivalent to that of the wild type, and there is no impact on the planktonic growth characteristics of the strains, indicating a specific role in biofilm formation. Through time course studies of the static microtiter plate assay, we determined that cat1 mutants are unable to form biofilms equivalent to that of the wild type under all conditions tested. In flow cell experiments, cat1 mutants initially are unable to attach to the surface. Over time, however, they form microcolonies, an architecture very different from that produced by wild-type biofilms. Our results demonstrate that Cat1 is involved in the initial stages of bacterial attachment to surfaces. PMID:23603675

  12. Tina wooden vat biofilm: a safe and highly efficient lactic acid bacteria delivering system in PDO Ragusano cheese making.

    PubMed

    Lortal, Sylvie; Di Blasi, Annalisa; Madec, Marie-Noëlle; Pediliggieri, Concetta; Tuminello, Laura; Tanguy, Gaëlle; Fauquant, Jacques; Lecuona, Yohan; Campo, Patrizia; Carpino, Stefania; Licitra, Giuseppe

    2009-06-01

    In the Sicilian PDO Ragusano cheese making, raw milk is placed in a wooden vat called a Tina. As no starter is added, lactic acid is produced by milk flora and flora released from the Tina biofilm. The aim of this work was to assess the safety and efficiency of this natural inoculation system. From 15 Tinas' biofilms, bacteria total counts varied from 10(3) to 10(6) CFU/cm(2), with the predominance of thermophilic lactic acid bacteria. Low counts of yeasts and moulds were found in a few Tinas. Salmonella, Listeria monocytogenes, Escherichia coli O157:H7 were totally absent, as assessed by conventional plating and the Bax detection system after enrichment, highlighting the safety of the system. From four Tinas out of the 15, micropieces of wood were observed by confocal and scanning electron microscopy. The biofilm entrapped in a matrix covered almost entirely the surface of the wood. Polysaccharides were detected in the four Tinas. In three of the latter, cocci were predominant in the ecosystem whereas in the other one, cocci, bacilli, yeasts and moulds were observed. Fifty litres of microfiltrated milk (<10 CFU/mL) were poured in the four Tinas for 10 min of contact. Enumeration of lactic acid bacteria, yeasts and enterococci were performed in the milk after contact. Depending on the Tina, from 5.10(4) to 10(6) CFU/mL of Streptococcus thermophilus were released into the milk, and from 10(4) to 10(5) CFU/mL of thermophilic lactobacilli. Spontaneous acidification after contact confirmed the high efficiency of biofilm lactic acid bacteria delivery. PMID:19361876

  13. Comparative analysis of hydrogen-producing bacterial biofilms and granular sludge formed in continuous cultures of fermentative bacteria

    Microsoft Academic Search

    Aleksandra Chojnacka; Mieczys?aw K. B?aszczyk; Pawe? Szcz?sny; Kinga Nowak; Martyna Sumi?ska; Karolina Tomczyk-?ak; Urszula Zielenkiewicz; Anna Sikora

    2011-01-01

    A system for biohydrogen production was developed based on long-term continuous cultures grown on sugar beet molasses in packed bed reactors. In two separate cultures, consortia of fermentative bacteria developed as biofilms on granitic stones. In one of the cultures, a granular sludge was also formed. Metagenomic analysis of the microbial communities by 454-pyrosequencing of amplified 16S rDNA fragments revealed

  14. Polyphenols from olive mill waste affect biofilm formation and motility in Escherichia coli K-12

    PubMed Central

    Carraro, Lisa; Fasolato, Luca; Montemurro, Filomena; Martino, Maria Elena; Balzan, Stefania; Servili, Maurizio; Novelli, Enrico; Cardazzo, Barbara

    2014-01-01

    Olive mill wastes are sources of phenolic compounds with a wide array of biological activities, including antimicrobial effects. A potential option for bioremediation to overcome ecological problems is the reutilization of these natural compounds in food production. The aim of this work was to gain a better understanding of the antimicrobial mode of action of a phenols extract from olive vegetation water (PEOVW) at molecular level by studying Escherichia coli as a model microorganism. Genome-wide transcriptional analysis was performed on E.?coli?K-12 exposed to PEOVW. The repression of genes for flagellar synthesis and the involvement of genes linked to biofilm formation and stress response were observed. Sub-inhibitory concentrations of PEOVW significantly decreased biofilm formation, swarming and swimming motility, thus confirming the gene expression data. This study provides interesting insights on the molecular action of PEOVW on E.?coli?K-12. Given these anti-biofilm properties and considering that biofilm formation is a serious problem for the food industry and human health, PEOVW has proved to be a high-value natural product. Olive mill wastes are sources of phenolic compounds with a wide array of biological activities, including antimicrobial effects. Genome-wide transcriptional analysis was performed on E. coli K-12 exposed to phenols extract from olive vegetation water (PEOVW). Sub-inhibitory concentrations of PEOVW significantly decreased biofilm formation, swarming and swimming motility. Given these anti-biofilm properties PEOVW has proved to be a high-value natural product. PMID:24628798

  15. cspA influences biofilm formation and drug resistance in pathogenic fungus Aspergillus fumigatus.

    PubMed

    Fan, Zhongqi; Li, Zhe; Xu, Zongge; Li, Hongyan; Li, Lixiang; Ning, Cong; Ma, Lin; Xie, Xiangli; Wang, Guangyi; Yu, Huimei

    2015-01-01

    The microbial cell wall plays a crucial role in biofilm formation and drug resistance. cspA encodes a repeat-rich glycophosphatidylinositol-anchored cell wall protein in the pathogenic fungus Aspergillus fumigatus. To determine whether cspA has a significant impact on biofilm development and sensitivity to antifungal drugs in A. fumigatus, a ?cspA mutant was constructed by targeted gene disruption, and we then reconstituted the mutant to wild type by homologous recombination of a functional cspA gene. Deletion of cspA resulted in a rougher conidial surface, reduced biofilm formation, decreased resistance to antifungal agents, and increased internalization by A549 human lung epithelial cells, suggesting that cspA not only participates in maintaining the integrity of the cell wall, but also affects biofilm establishment, drug response, and invasiveness of A. fumigatus. PMID:25821832

  16. Evaluation of Zosteric Acid for Mitigating Biofilm Formation of Pseudomonas putida Isolated from a Membrane Bioreactor System

    PubMed Central

    Polo, Andrea; Foladori, Paola; Ponti, Benedetta; Bettinetti, Roberta; Gambino, Michela; Villa, Federica; Cappitelli, Francesca

    2014-01-01

    This study provides data to define an efficient biocide-free strategy based on zosteric acid to counteract biofilm formation on the membranes of submerged bioreactor system plants. 16S rRNA gene phylogenetic analysis showed that gammaproteobacteria was the prevalent taxa on fouled membranes of an Italian wastewater plant. Pseudomonas was the prevalent genus among the cultivable membrane-fouler bacteria and Pseudomonas putida was selected as the target microorganism to test the efficacy of the antifoulant. Zosteric acid was not a source of carbon and energy for P. putida cells and, at 200 mg/L, it caused a reduction of bacterial coverage by 80%. Biofilm experiments confirmed the compound caused a significant decrease in biomass (?97%) and thickness (?50%), and it induced a migration activity of the peritrichous flagellated P. putida over the polycarbonate surface not amenable to a biofilm phenotype. The low octanol-water partitioning coefficient and the high water solubility suggested a low bioaccumulation potential and the water compartment as its main environmental recipient and capacitor. Preliminary ecotoxicological tests did not highlight direct toxicity effects toward Daphnia magna. For green algae Pseudokirchneriella subcapitata an effect was observed at concentrations above 100 mg/L with a significant growth of protozoa that may be connected to a concurrent algal growth inhibition. PMID:24879523

  17. Role of Streptococcus gordonii Amylase-Binding Protein A in Adhesion to Hydroxyapatite, Starch Metabolism, and Biofilm Formation

    PubMed Central

    Rogers, Jeffrey D.; Palmer, Robert J.; Kolenbrander, Paul E.; Scannapieco, Frank A.

    2001-01-01

    Interactions between bacteria and salivary components are thought to be important in the establishment and ecology of the oral microflora. ?-Amylase, the predominant salivary enzyme in humans, binds to Streptococcus gordonii, a primary colonizer of the tooth. Previous studies have implicated this interaction in adhesion of the bacteria to salivary pellicles, catabolism of dietary starches, and biofilm formation. Amylase binding is mediated at least in part by the amylase-binding protein A (AbpA). To study the function of this protein, an erythromycin resistance determinant [erm(AM)] was inserted within the abpA gene of S. gordonii strains Challis and FAS4 by allelic exchange, resulting in abpA mutant strains Challis-E1 and FAS4-E1. Comparison of the wild-type and mutant strains did not reveal any significant differences in colony morphology, biochemical metabolic profiles, growth in complex or defined media, surface hydrophobicity, or coaggregation properties. Scatchard analysis of adhesion isotherms demonstrated that the wild-type strains adhered better to human parotid-saliva- and amylase-coated hydroxyapatite than did the AbpA mutants. In contrast, the mutant strains bound to whole-saliva-coated hydroxyapatite to a greater extent than did the wild-type strains. While the wild-type strains preincubated with purified salivary amylase grew well in defined medium with potato starch as the sole carbohydrate source, the AbpA mutants did not grow under the same conditions even after preincubation with amylase. In addition, the wild-type strain produced large microcolonies in a flow cell biofilm model, while the abpA mutant strains grew much more poorly and produced relatively small microcolonies. Taken together, these results suggest that AbpA of S. gordonii functions as an adhesin to amylase-coated hydroxyapatite, in salivary-amylase-mediated catabolism of dietary starches and in human saliva-supported biofilm formation by S. gordonii. PMID:11598080

  18. Role of Streptococcus gordonii amylase-binding protein A in adhesion to hydroxyapatite, starch metabolism, and biofilm formation.

    PubMed

    Rogers, J D; Palmer, R J; Kolenbrander, P E; Scannapieco, F A

    2001-11-01

    Interactions between bacteria and salivary components are thought to be important in the establishment and ecology of the oral microflora. alpha-Amylase, the predominant salivary enzyme in humans, binds to Streptococcus gordonii, a primary colonizer of the tooth. Previous studies have implicated this interaction in adhesion of the bacteria to salivary pellicles, catabolism of dietary starches, and biofilm formation. Amylase binding is mediated at least in part by the amylase-binding protein A (AbpA). To study the function of this protein, an erythromycin resistance determinant [erm(AM)] was inserted within the abpA gene of S. gordonii strains Challis and FAS4 by allelic exchange, resulting in abpA mutant strains Challis-E1 and FAS4-E1. Comparison of the wild-type and mutant strains did not reveal any significant differences in colony morphology, biochemical metabolic profiles, growth in complex or defined media, surface hydrophobicity, or coaggregation properties. Scatchard analysis of adhesion isotherms demonstrated that the wild-type strains adhered better to human parotid-saliva- and amylase-coated hydroxyapatite than did the AbpA mutants. In contrast, the mutant strains bound to whole-saliva-coated hydroxyapatite to a greater extent than did the wild-type strains. While the wild-type strains preincubated with purified salivary amylase grew well in defined medium with potato starch as the sole carbohydrate source, the AbpA mutants did not grow under the same conditions even after preincubation with amylase. In addition, the wild-type strain produced large microcolonies in a flow cell biofilm model, while the abpA mutant strains grew much more poorly and produced relatively small microcolonies. Taken together, these results suggest that AbpA of S. gordonii functions as an adhesin to amylase-coated hydroxyapatite, in salivary-amylase-mediated catabolism of dietary starches and in human saliva-supported biofilm formation by S. gordonii. PMID:11598080

  19. Role of a nosX Homolog in Streptococcus gordonii in Aerobic Growth and Biofilm Formation

    Microsoft Academic Search

    C. Y. Loo; K. Mitrakul; S. Jaafar; C. Gyurko; C. V. Hughes; N. Ganeshkumar

    2004-01-01

    Oral streptococci such as Streptococcus gordonii are facultative anaerobes that initiate biofilm formation on tooth surfaces. An isolated S. gordonii::Tn917-lac biofilm-defective mutant contained a transposon insertion in an open reading frame (ORF) encoding a homolog of NosX of Ralstonia eutropha, a putative maturation factor of nitrous oxide reductase. Located downstream are two genes, qor1 and qor2, predicted to encode two

  20. Nitrate Sensing and Metabolism Modulate Motility, Biofilm Formation, and Virulence in Pseudomonas aeruginosa

    Microsoft Academic Search

    Nadine E. Van Alst; Kristin F. Picardo; Barbara H. Iglewski; Constantine G. Haidaris

    2007-01-01

    Infection by the bacterial opportunist Pseudomonas aeruginosa frequently assumes the form of a biofilm, requiring motility for biofilm formation and dispersal and an ability to grow in nutrient- and oxygen-limited environments. Anaerobic growth by P. aeruginosa is accomplished through the denitrification enzyme pathway that catalyzes the sequential reduction of nitrate to nitrogen gas. Mutants mutated in the two-component nitrate sensor-response

  1. The effect of turbulent flow and surface roughness on biofilm formation in drinking water

    Microsoft Academic Search

    S L Percival; J S Knapp; D S Wales; R G J Edyvean

    1999-01-01

      There is considerable interest in both Europe and the USA in the effects of microbiological fouling on stainless steels in\\u000a potable water. However, little is known about the formation and effects of biofilms, on stainless steel in potable water environments,\\u000a particularly in turbulent flow regimes. Results are presented on the development of biofilms on stainless steel grades 304\\u000a and 316

  2. Comparative Effect of Chlorhexidine and Some Mouthrinses on Bacterial Biofilm Formation on Titanium Surface

    Microsoft Academic Search

    Wally Baffone; Gianfranco Sorgente; Raffaella Campana; Vania Patrone; Davide Sisti; Tania Falcioni

    2011-01-01

    The aim of the present study was to evaluate the effectiveness of chlorhexidine digluconate (CHX) and commonly used mouthrinses\\u000a to single- and poly-species biofilms by S. mutans, S. aureus and P. aeruginosa, on titanium discs of grade IV. The formation of single- and poly-species biofilms at 16.5, 40.5 and 64.5-h incubation on\\u000a titanium surface was evaluated by plate count (CFU ml?1)

  3. A Role for the Mannose-Sensitive Hemagglutinin in Biofilm Formation by Vibrio cholerae El Tor

    Microsoft Academic Search

    PAULA I. WATNICK; KARLA JEAN FULLNER; ROBERTO KOLTER

    1999-01-01

    While much has been learned regarding the genetic basis of host-pathogen interactions, less is known about the molecular basis of a pathogen's survival in the environment. Biofilm formation on abiotic surfaces represents a survival strategy utilized by many microbes. Here it is shown that Vibrio cholerae El Tor does not use the virulence-associated toxin-coregulated pilus to form biofilms on borosilicate

  4. Enhancing the formation and shear resistance of nitrifying biofilms on membranes by surface modification

    Microsoft Academic Search

    Susanne Lackner; Maria Holmberg; Akihiko Terada; Peter Kingshott; Barth F. Smets

    2009-01-01

    Polypropylene (PP) membranes and polyethylene (PE) surfaces were modified to enhance formation and shear resistance of nitrifying biofilms for wastewater treatment applications. A combination of plasma polymerization and wet chemistry was employed to ultimately introduce poly(ethyleneglycol) (PEG) chains with two different functional groups (–PEG–NH2 and –PEG–CH3).Biofilm growth experiments using a mixed nitrifying bacterial culture revealed that the specific combination of

  5. DNA Binding-Uptake System: a Link between Cell-to-Cell Communication and Biofilm Formation

    Microsoft Academic Search

    Fernanda C. Petersen; Lin Tao; Anne A. Scheie

    2005-01-01

    DNA has recently been described as a major structural component of the extracellular matrix in biofilms. In streptococci, the competence-stimulating peptide (CSP) cell-to-cell signal is involved in competence for genetic transformation, biofilm formation, and autolysis. Among the genes regulated in response to the CSP are those involved in binding and uptake of extracellular DNA. We show in this study that

  6. Temperature-Regulated Formation of Mycelial Mat-Like Biofilms by Legionella pneumophila

    PubMed Central

    Piao, Zhenyu; Sze, Chun Chau; Barysheva, Oksana; Iida, Ken-ichiro; Yoshida, Shin-ichi

    2006-01-01

    Fifty strains representing 38 species of the genus Legionella were examined for biofilm formation on glass, polystyrene, and polypropylene surfaces in static cultures at 25°C, 37°C, and 42°C. Strains of Legionella pneumophila, the most common causative agent of Legionnaires' disease, were found to have the highest ability to form biofilms among the test strains. The quantity, rate of formation, and adherence stability of L. pneumophila biofilms showed considerable dependence on both temperature and surface material. Glass and polystyrene surfaces gave between two- to sevenfold-higher yields of biofilms at 37°C or 42°C than at 25°C; conversely, polypropylene surface had between 2 to 16 times higher yields at 25°C than at 37°C or 42°C. On glass surfaces, the biofilms were formed faster but attached less stably at 37°C or 42°C than at 25°C. Both scanning electron microscopy and confocal laser scanning microscopy revealed that biofilms formed at 37°C or 42°C were mycelial mat like and were composed of filamentous cells, while at 25°C, cells were rod shaped. Planktonic cells outside of biofilms or in shaken liquid cultures were rod shaped. Notably, the filamentous cells were found to be multinucleate and lacking septa, but a recA null mutant of L. pneumophila was unaffected in its temperature-regulated filamentation within biofilms. Our data also showed that filamentous cells were able to rapidly give rise to a large number of short rods in a fresh liquid culture at 37°C. The possibility of this biofilm to represent a novel strategy by L. pneumophila to compete for proliferation among the environmental microbiota is discussed. PMID:16461717

  7. Effect of food preservatives on in situ biofilm formation

    Microsoft Academic Search

    Nicole Birgit Arweiler; Ronaldo Lenz; Anton Sculean; Ali Al-Ahmad; Elmar Hellwig; Thorsten Mathias Auschill

    2008-01-01

    The aim of this double-blind, controlled crossover study was to evaluate the influence of food preservatives on in situ dental\\u000a biofilm growth. Twenty-four volunteers wore appliances with six specimens each of bovine enamel to build up intra-oral biofilms.\\u000a During three test cycles, the subjects had to put one half of the appliance twice a day in one of the assigned

  8. Antimicrobial GL13K peptide coatings killed and ruptured the wall of Streptococcus gordonii and prevented formation and growth of biofilms.

    PubMed

    Chen, Xi; Hirt, Helmut; Li, Yuping; Gorr, Sven-Ulrik; Aparicio, Conrado

    2014-01-01

    Infection is one of the most prevalent causes for dental implant failure. We have developed a novel antimicrobial peptide coating on titanium by immobilizing the antimicrobial peptide GL13K. GL13K was developed from the human salivary protein BPIFA2. The peptide exhibited MIC of 8 µg/ml against planktonic Pseudonomas aeruginosa and their biofilms were reduced by three orders of magnitude with 100 µg/ml GL13K. This peptide concentration also killed 100% of Streptococcus gordonii. At 1 mg/ml, GL13K caused less than 10% lysis of human red blood cells, suggesting low toxicity to mammalian cells. Our GL13K coating has also previously showed bactericidal effect and inhibition of biofilm growth against peri-implantitis related pathogens, such as Porphyromonas gingivalis. The GL13K coating was cytocompatible with human fibroblasts and osteoblasts. However, the bioactivity of antimicrobial coatings has been commonly tested under (quasi)static culture conditions that are far from simulating conditions for biofilm formation and growth in the oral cavity. Oral salivary flow over a coating is persistent, applies continuous shear forces, and supplies sustained nutrition to bacteria. This accelerates bacteria metabolism and biofilm growth. In this work, the antimicrobial effect of the coating was tested against Streptococcus gordonii, a primary colonizer that provides attachment for the biofilm accretion by P. gingivalis, using a drip-flow biofilm bioreactor with media flow rates simulating salivary flow. The GL13K peptide coatings killed bacteria and prevented formation and growth of S. gordonii biofilms in the drip-flow bioreactor and under regular mild-agitation conditions. Surprisingly the interaction of the bacteria with the GL13K peptide coatings ruptured the cell wall at their septum or polar areas leaving empty shell-like structures or exposed protoplasts. The cell wall rupture was not detected under regular culture conditions, suggesting that cell wall rupture induced by GL13K peptides also requires media flow and possible attendant biological sequelae of the conditions in the bioreactor. PMID:25372402

  9. In-situ biofilm characterization in membrane systems using Optical Coherence Tomography: formation, structure, detachment and impact of flux change.

    PubMed

    Dreszer, C; Wexler, A D; Drusová, S; Overdijk, T; Zwijnenburg, A; Flemming, H-C; Kruithof, J C; Vrouwenvelder, J S

    2014-12-15

    Biofouling causes performance loss in spiral wound nanofiltration (NF) and reverse osmosis (RO) membrane operation for process and drinking water production. The development of biofilm formation, structure and detachment was studied in-situ, non-destructively with Optical Coherence Tomography (OCT) in direct relation with the hydraulic biofilm resistance and membrane performance parameters: transmembrane pressure drop (TMP) and feed-channel pressure drop (FCP). The objective was to evaluate the suitability of OCT for biofouling studies, applying a membrane biofouling test cell operated at constant crossflow velocity (0.1 m s(-1)) and permeate flux (20 L m(-2)h(-1)). In time, the biofilm thickness on the membrane increased continuously causing a decline in membrane performance. Local biofilm detachment was observed at the biofilm-membrane interface. A mature biofilm was subjected to permeate flux variation (20 to 60 to 20 L m(-2)h(-1)). An increase in permeate flux caused a decrease in biofilm thickness and an increase in biofilm resistance, indicating biofilm compaction. Restoring the original permeate flux did not completely restore the original biofilm parameters: After elevated flux operation the biofilm thickness was reduced to 75% and the hydraulic resistance increased to 116% of the original values. Therefore, after a temporarily permeate flux increase the impact of the biofilm on membrane performance was stronger. OCT imaging of the biofilm with increased permeate flux revealed that the biofilm became compacted, lost internal voids, and became more dense. Therefore, membrane performance losses were not only related to biofilm thickness but also to the internal biofilm structure, e.g. caused by changes in pressure. Optical Coherence Tomography proved to be a suitable tool for quantitative in-situ biofilm thickness and morphology studies which can be carried out non-destructively and in real-time in transparent membrane biofouling monitors. PMID:25282092

  10. The effect of PDT on H. influenzae biofilm in vitro

    NASA Astrophysics Data System (ADS)

    Rhee, C.-K.; Bae, S. H.; Lee, J. W.; Ahn, J. C.; Jung, J. Y.; Suh, M.-W.

    2009-02-01

    Biofilm formation has been demonstrated for many mucosal pathogens such as Haemophilus influenzae. The presence of mucosal biofilms with chronic otitis media with effusion (COME) suggests that bacteria do not clear by antibiotics. Aim: To test the effect of photodynamic therapy (PDT) on H. influenzae biofilm in vitro. Methods: Sixteen biofilms of H. influenzae were maintained on culture chamber with continuous flow cell system. The biofilms were divided into control, laser, photofrin, and PDT groups. For culture group, the biofilms were cultured. For laser group, 7.2 J/cm2 of 632 nm diode laser was irradiated to the biofilms. For photofrin group, photofrins 5 and 25ug/ml were added to the media. For PDT group, photofrins 5 and 25 ug/ml were added to the media following 632 nm diode laser was irradiated (7.2 J/cm2) to the biofilms. Live/Dead (DAPI/PI) stain was performed and biofilms were examined under confocal laser microscope for thickness and density of biofilms. Results: By DAPI/PI staining, significant reduction of biofilms thickness and complete killing of H. influenzae in PDT group with 25µg photofrin was noted while the biofilms were well maintained in the other groups. Conclusion: The results of this study demonstrated that PDT appears to be effective to photoinactivate experimental H. influenzae biofilms in vitro. Clinical implication: PDT can be a possible alternative treatment to antiobiotic treatment on otitis media with biofilm formation.

  11. Kinetic experiments for evaluating the Nernst-Monod model for anode-respiring bacteria (ARB) in a biofilm anode.

    PubMed

    Torres, César I; Marcus, Andrew Kato; Parameswaran, Prathap; Rittmann, Bruce E

    2008-09-01

    Anode-respiring bacteria (ARB) are able to transfer electrons from reduced substrates to a solid electrode. Previously, we developed a biofilm model based on the Nernst-Monod equation to describe the anode potential losses of ARB that transfer electrons through a solid conductive matrix. In this work, we develop an experimental setup to demonstrate how well the Nernst-Monod equation is able to represent anode potential losses in an ARB biofilm. We performed low-scan cyclic voltammetry (LSCV) throughout the growth phase of an ARB biofilm on a graphite electrode growing on acetate in continuous mode. The (j)V response of 9 LSCVs corresponded well to the Nernst-Monod equation, and the half-saturation potential (E(KA)) was -0.425 +/- 0.002 V vs Ag/AgCl at 30 degrees C (-0.155 +/- 0.002 V vs SHE). Anode-potential losses from the potential of acetate reached approximately 0.225 V at current density saturation, and this loss was determined by our microbial community's E(KA) value. The LSCVs at high current densities showed no significant deviation from the Nernst-Monod ideal shape, indicating that the conductivity of the biofilm matrix (kappa(bio)) was high enough (> or = 0.5 mS/cm) that potential loss did not affect the performance of the biofilm anode. Our results confirm the applicability of the Nernst-Monod equation for a conductive biofilm anode and give insights of the processes that dominate anode potential losses in microbial fuel cells. PMID:18800535

  12. Isolate-specific effects of patulin, penicillic Acid and EDTA on biofilm formation and growth of dental unit water line biofilm isolates.

    PubMed

    Liaqat, Iram; Bachmann, Robert Thomas; Sabri, Anjum Nasim; Edyvean, Robert G J

    2010-08-01

    Dental unit water line (DUWL) contamination by opportunistic pathogens has its significance in nosocomial infection of patients, health care workers, and life-threatening infections to immunocompromized persons. Recently, the quorum sensing (QS) system of DUWL isolates has been found to affect their biofilm-forming ability, making it an attractive target for antimicrobial therapy. In this study, the effect of two quorum-sensing inhibitory compounds (patulin; PAT, penicillic acid; PA) and EDTA on planktonic growth, AI-2 signalling and in vitro biofilm formation of Pseudomonas aeruginosa, Achromobacter xylosoxidans and Achromobacter sp. was monitored. Vibrio harveyi BB170 bioassay and crystal violet staining methods were used to detect the AI-2 monitoring and biofilm formation in DUWL isolates, respectively. The V. harveyi BB170 bioassay failed to induce bioluminescence in A. xylosoxidans and Achromobacter sp., while P. aeruginosa showed AI-2 like activity suggesting the need of some pretreatments prior to bioassay. All strains were found to form biofilms within 72 h of incubation. The QSIs/EDTA combination have isolate-specific effects on biofilm formation and in some cases it stimulated biofilm formation as often as it was inhibited. However, detailed information about the anti-biofilm effect of these compounds is still lacking. PMID:20111864

  13. Chlorhexidine Digluconate Effects on Planktonic Growth and Biofilm Formation in Some Field Isolates of Animal Bacterial Pathogens

    PubMed Central

    Ebrahimi, Azizollah; Hemati, Majid; Habibian Dehkordi, Saeed; Bahadoran, Shahab; Khoshnood, Sheida; Khubani, Shahin; Dokht Faraj, Mahdi; Hakimi Alni, Reza

    2014-01-01

    Background: To study chlorhexidine digluconate disinfectant effects on planktonic growth and biofilm formation in some bacterial field isolates from animals. Objectives: The current study investigated chlorhexidine digluconate effects on planktonic growth and biofilm formation in some field isolates of veterinary bacterial pathogens. Materials and Methods: Forty clinical isolates of Escherichia coli, Salmonella serotypes, Staphylococcus. aureus and Streptococcus agalactiae (10 isolates for each) were examined for chlorhexidine digluconate effects on biofilm formation and planktonic growth using microtiter plates. In all of the examined strains in the presence of chlorhexidine digluconate, biofilm development and planktonic growth were affected at the same concentrations of the disinfectant. Results: Chlorhexidine digluconate inhibited the planktonic growth of different bacterial species at sub-MICs. But they were able to induce biofilm development of the E. coli, Salmonella spp., S. aureus and Str. agalactiae strains. Conclusions: Bacterial resistance against chlorhexidine is increasing. Sub-MIC doses of chlorhexidine digluconate can stimulate the formation of biofilm strains. PMID:24872940

  14. Susceptibility of Staphylococcus aureus biofilms to reactive discharge gases

    PubMed Central

    Traba, Christian; Liang, Jun F.

    2011-01-01

    Formation of bacterial biofilms at solid-liquid interfaces creates numerous problems in both industrial and biomedical sciences. In this study, the susceptibility of Staphylococcus aureus biofilms to discharge gas generated from plasma was tested. It was found that despite distinct chemical/physical properties, discharge gases from oxygen, nitrogen, and argon demonstrated very potent and almost the same anti-biofilm activity. The bacterial cells in S. aureus biofilms were killed (>99.9%) by discharge gas within minutes of exposure. Under optimal experimental conditions, no bacteria and biofilm re-growth from discharge gas treated biofilms was found. Further studies revealed that the anti-biofilm activity of the discharge gas occurred by two distinct mechanisms: 1) killing bacteria in biofilms by causing severe cell membrane damage, and 2) damaging the extracellular polymeric matrix in the architecture of the biofilm to release biofilm from the surface of the solid substratum . Information gathered from this study provides an insight into the anti-biofilm mechanisms of plasma and confirms the applications of discharge gas in the treatment of biofilms and biofilm related bacterial infections. PMID:21774615

  15. Epistatic Relationships between sarA and agr in Staphylococcus aureus Biofilm Formation

    PubMed Central

    Griffin, Linda M.; Zielinska, Agnieszka K.; Shaw, Lindsey N.; Rice, Kelly C.; Horswill, Alexander R.; Bayles, Kenneth W.; Smeltzer, Mark S.

    2010-01-01

    Background The accessory gene regulator (agr) and staphylococcal accessory regulator (sarA) play opposing roles in Staphylococcus aureus biofilm formation. There is mounting evidence to suggest that these opposing roles are therapeutically relevant in that mutation of agr results in increased biofilm formation and decreased antibiotic susceptibility while mutation of sarA has the opposite effect. To the extent that induction of agr or inhibition of sarA could potentially be used to limit biofilm formation, this makes it important to understand the epistatic relationships between these two loci. Methodology/Principal Findings We generated isogenic sarA and agr mutants in clinical isolates of S. aureus and assessed the relative impact on biofilm formation. Mutation of agr resulted in