Note: This page contains sample records for the topic bacterial blight xanthomonas from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: August 15, 2014.
1

The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice  

Microsoft Academic Search

The nucleotide sequence was determined for the genome of Xanthomonas oryzae pathovar oryzae (Xoo) KACC10331, a bacterium that causes bacterial blight in rice (Oryza sativa L.). The genome is com- prised of a single, 4 941 439 bp, circular chromosome that is G 1 C rich (63.7%). The genome includes 4637 open reading frames (ORFs) of which 3340 (72.0%) could

Byoung-Moo Lee; Young-Jin Park; Dong-Suk Park; Hee-Wan Kang; Jeong-Gu Kim; Eun-Sung Song; In-Cheol Park; Ung-Han Yoon; Jang-Ho Hahn; Bon-Sung Koo; Gil-Bok Lee; Hyungtae Kim; Hyun-Seok Park; Kyong-Oh Yoon; Jeong-Hyun Kim; Chol-hee Jung; Nae-Hyung Koh; Jeong-Sun Seo; Seung-Joo Go

2005-01-01

2

Transcriptional profiling of indica rice cultivar IET8585 (Ajaya) infected with bacterial leaf blight pathogen Xanthomonas oryzae pv oryzae.  

PubMed

An indica rice cultivar IET8585 (Ajaya) resists diverse races of the Xanthomonas oryzae pv oryzae pathogen attack, and is often cultivated as bacterial leaf blight (blb) resistant check in India. Earlier we reported a recessive blb resistance gene mapped to the long arm of chromosome 5 in IET8585. Recessive gene-mediated blb resistance mechanism is not yet clearly understood. Here we analyzed the transcriptional profile of the blb infected resistant cultivar by rice 22K oligo array. Microarray analysis revealed differential expression of numerous genes at both early (6 h) and late (120 h) stages of infection in the resistant IET8585 cultivar over the susceptible IR24. Some of the differential gene expressions were validated by both RT-PCR and Western blot analysis. Higher expression of ethylene response element binding protein (EREBP) transcription factor along with lower expression of alcohol dehydrogenase gene and reactive oxygen species (ROS) scavenging system may be responsible for hypersensitive cell death in the resistant cultivar upon bacterial infection. Induction of glutathione-mediated detoxification and flavonoid biosynthetic pathways along with up-regulation of defense genes during infection may inhibit pathogen spread in the host tissues. In light of this and previous studies a mechanism of recessive gene-mediated bacterial blight resistance in indica rice is discussed. PMID:17870590

Kottapalli, Kameswara Rao; Rakwal, Randeep; Satoh, Kouji; Shibato, Junko; Kottapalli, Pratibha; Iwahashi, Hitoshi; Kikuchi, Shoshi

2007-01-01

3

Dynamics of Xanthomonas oryzae pv. oryzae Populations in Korea and Their Relationship to Known Bacterial Blight Resistance Genes.  

PubMed

ABSTRACT Developing resistant cultivars requires an understanding of the dynamics of the pathogen populations as well as the genetics of host resistance. Bacterial leaf blight (BB), caused by the vascular pathogen Xanthomonas oryzae pv. oryzae, has become one of the most devastating diseases of rice. We demonstrate here the quantitative analyses of responses of near-isogenic lines carrying various BB resistance (R) genes and R-gene combinations against 16 X. oryzae pv. oryzae isolates representing Korean BB pathotypes. The estimated main effects of each R gene against the 16 isolates identified prominent differences in BB pathotypes between Korea and other countries. Three major aspects of our quantitative observations and statistical analysis are (i) strong and broad resistance of xa5; (ii) independent and additive genetic actions of Xa4, xa5, and Xa21 under digenic or trigenic status; and (iii) a strong quantitative complementation effect contributed by the functional alleles of Xa4 and Xa21. We conclude that the pyramid line containing genes Xa4, xa5, and Xa21 would be the most promising and valuable genotype for improving Korean japonica cultivars for BB resistance. PMID:18943752

Jeung, J U; Heu, S G; Shin, M S; Vera Cruz, C M; Jena, K K

2006-08-01

4

Metabolomic and transcriptomic analysis of the rice response to the bacterial blight pathogen Xanthomonas oryzae pv. oryzae.  

PubMed

Bacterial leaf blight (BLB), caused by Xanthomonas oryzae pv. oryzae (Xoo), gives rise to devastating crop losses in rice. Disease resistant rice cultivars are the most economical way to combat the disease. The TP309 cultivar is susceptible to infection by Xoo strain PXO99. A transgenic variety, TP309_Xa21, expresses the pattern recognition receptor Xa21, and is resistant. PXO99 big up tri, openraxST, a strain lacking the raxST gene, is able to overcome Xa21-mediated immunity. We used a single extraction solvent to demonstrate comprehensive metabolomics and transcriptomics profiling under sample limited conditions, and analyze the molecular responses of two rice lines challenged with either PXO99 or PXO99 big up tri, openraxST. LC-TOF raw data file filtering resulted in better within group reproducibility of replicate samples for statistical analyses. Accurate mass match compound identification with molecular formula generation (MFG) ranking of 355 masses was achieved with the METLIN database. GC-TOF analysis yielded an additional 441 compounds after BinBase database processing, of which 154 were structurally identified by retention index/MS library matching. Multivariate statistics revealed that the susceptible and resistant genotypes possess distinct profiles. Although few mRNA and metabolite differences were detected in PXO99 challenged TP309 compared to mock, many differential changes occurred in the Xa21-mediated response to PXO99 and PXO99 big up tri, openraxST. Acetophenone, xanthophylls, fatty acids, alkaloids, glutathione, carbohydrate and lipid biosynthetic pathways were affected. Significant transcriptional induction of several pathogenesis related genes in Xa21 challenged strains, as well as differential changes to GAD, PAL, ICL1 and Glutathione-S-transferase transcripts indicated limited correlation with metabolite changes under single time point global profiling conditions. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11306-010-0218-7) contains supplementary material, which is available to authorized users. PMID:20676379

Sana, Theodore R; Fischer, Steve; Wohlgemuth, Gert; Katrekar, Anjali; Jung, Ki-Hong; Ronald, Pam C; Fiehn, Oliver

2010-09-01

5

Marker Assisted Selection of Bacterial Blight Resistance Genes in Rice  

Microsoft Academic Search

Bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae is one of the most important diseases affecting rice production in Asia. We were interested in surveying rice genotypes that are popularly used in the Indian breeding program for conferring resistance to bacterial blight, using 11 STMS and 6 STS markers. The basis of selection of these DNA markers was their

A. P. Davierwala; A. P. K. Reddy; M. D. Lagu; P. K. Ranjekar; V. S. Gupta

2001-01-01

6

Promoter elements of rice susceptibility genes are bound and activated by specific TAL effectors from the bacterial blight pathogen, Xanthomonas oryzae pv. oryzae.  

PubMed

*Plant pathogenic bacteria of the genus Xanthomonas inject transcription activator-like effector (TALe) proteins that bind to and activate host promoters, thereby promoting disease or inducing plant defense. TALes bind to corresponding UPT (up-regulated by TALe) promoter boxes via tandemly arranged 34/35-amino acid repeats. Recent studies uncovered the TALe code in which two amino acid residues of each repeat define specific pairing to UPT boxes. *Here we employed the TALe code to predict potential UPT boxes in TALe-induced host promoters and analyzed these via beta-glucuronidase (GUS) reporter and electrophoretic mobility shift assays (EMSA). *We demonstrate that the Xa13, OsTFX1 and Os11N3 promoters from rice are induced directly by the Xanthomonas oryzae pv. oryzae TALes PthXo1, PthXo6 and AvrXa7, respectively. We identified and functionally validated a UPT box in the corresponding rice target promoter for each TALe and show that box mutations suppress TALe-mediated promoter activation. Finally, EMSA demonstrate that code-predicted UPT boxes interact specifically with corresponding TALes. *Our findings show that variations in the UPT boxes of different rice accessions correlate with susceptibility or resistance of these accessions to the bacterial blight pathogen. PMID:20345643

Römer, Patrick; Recht, Sabine; Strauss, Tina; Elsaesser, Janett; Schornack, Sebastian; Boch, Jens; Wang, Shiping; Lahaye, Thomas

2010-09-01

7

ERIC-PCR-generated genomic fingerprints and their relationship with pathogenic variability of Xanthomonas campestris pv. punicae, the incitant of bacterial blight of pomegranate.  

PubMed

Bacterial blight caused by Xanthomonas campestris pv. punicae (Xcp) has emerged as a potential threat in pomegranate (Punica granatum) cultivation in India. Here, we report the genomic fingerprints and their correlation with virulence pattern of Xcp isolates from Maharashtra and Delhi. The genomic fingerprints of Xcp isolates were generated using enterobacterial repetitive intergenic consensus (ERIC) sequence-based primers, and virulence level was based on their reaction upon infiltration to susceptible pomegranate cultivar. Maharashtra isolate PGM1 showed only 50% similarity with Delhi isolate PGD8 forming a distinct genotype, whereas the Delhi isolates PGD5 and PGD6 form a cluster with Maharashtra isolates PGM2 and PGM4. The isolates PGM2, PGM4, PGD5, and PGD6 showing mean disease score of 7.47 were marked as group A or highly virulent. The moderately virulent or group B isolates PGM3 and PGD7 produced mean disease score of 4.19, whereas less virulent or group C isolates PGD8 and PGM1 gave mean disease intensity of 1.91. A correlation between genotypic groups based on ERIC fingerprints and pathogenicity of the isolates was established. The highly virulent isolates PGM2, PGM4, PGD5, and PGD6 formed a single cluster. A unique 900 bp amplicon present in all highly virulent isolates has been identified that can be used as genetic marker to screen isolates for virulence. The less virulent isolates PGD8 and PGM1 formed single cluster at 50% similarity coefficient. This seems to be the first report to establish a correlation between ERIC-PCR fingerprints and their corresponding virulence pattern of the pomegranate bacterial blight pathogen. PMID:19705201

Mondal, Kalyan K; Mani, C

2009-12-01

8

Diversity of Bacteriophages Infecting Xanthomonas oryzae pv. oryzae in Paddy Fields and Its Potential to Control Bacterial Leaf Blight of Rice.  

PubMed

Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is a very serious disease in rice-growing regions of the world. In spite of their economic importance, there are no effective ways of protecting rice plants from this disease. Bacteriophages infecting Xoo affect the population dynamics of the pathogen and consequently the occurrence of the disease. In this study, we investigated the diversity, host range, and infectivity of Xoo phages, and their use as a bicontrol agent on BLB was tested. Among the 34 phages that were isolated from floodwater in paddy fields, 29 belonged to the Myoviridae family, which suggests that the dominant phage in the ecosystem was Myoviridae. The isolated phages were classified into two groups based on plaque size produced on the lawn of Xoo. In general, there was a negative relationship between plaque size and host range, and interestingly the phages having a narrow host range had low efficiency of infectivity. The deduced protein sequence analysis of htf genes indicated that the gene was not a determinant of host specificity. Although the difference in host range and infectivity depending on morphotype needs to be addressed, the results revealed deeper understanding of the interaction between the phages and Xoo strains in floodwater and damp soil environments. The phage mixtures reduced the occurrence of BLB when they were treated with skim milk. The results indicate that the Xoo phages could be used as an alternative control method to increase the control efficacy and reduce the use of agrochemicals. PMID:24651644

Chae, Jong-Chan; Hung, Nguyen Bao; Yu, Sang-Mi; Lee, Ha Kyung; Lee, Yong Hoon

2014-06-28

9

Occurrence of Xanthomonas axonopodis pv. phaseoli, the causal agent of common bacterial blight disease, on seeds of common bean (Phaseolus vulgaris L.) in upper Egypt.  

PubMed

Common bean seed lots collected from different seed dealers and Malawii agriculture station were screened for the presence of Xanthomonas axonopodis pv. phaseoli. In the laboratory the pathogen was isolated following the routine laboratory assay method, i.e. direct plating method using yeast extract-dextrose-calcium carbonate agar medium (YDC). Yellow, convex, mucoid colonies of Xanthomonas were consistently isolated on YDC from seed samples. The presumptive pathogen was confirmed by isolation on semiselective medium, such as mTBM and MD5A. Further, the pathogen was confirmed by biochemical, physiological and, finally, the pathogenicity tests. Five samples out of seven were positive for Xanthomonas. The isolates were found to cause common blight of 3-week-old common bean plants by 7 d after inoculation. Bacteria with the same characteristics as those inoculated were re-isolated from the infected plants. PMID:20336504

Abd-Alla, M H; Bashandy, S R; Schnell, S

2010-01-01

10

Bacterial Blight in Carrot Seed Crops in the Pacific Northwest  

Microsoft Academic Search

du Toit, L. J., Crowe, F. J., Derie, M. L., Simmons, R. B., and Pelter, G. Q. 2005. Bacterial blight in carrot seed crops in the Pacific Northwest. Plant Dis. 89:896-907. Carrot (Daucus carota subsp. sativus) seed crops in Oregon and Washington were surveyed in 2001-02 and 2002-03 for development of Xanthomonas campestris pv. carotae, causal agent of bacterial blight.

Lindsey J. du Toit; Fred J. Crowe; Mike L. Derie; Rhonda B. Simmons; Gary Q. Pelter

2005-01-01

11

Management of Xanthomonas camprestris pv. malvacearum-induced blight of cotton through phenolics of cotton rhizobacterium.  

PubMed

Four major phenolics were demonstrated to be produced by Pseudomonas fluorescens strain CRb-26, a cotton rhizobacterium antagonistic to Xanthomonas camprestris pv. malvacearum (Xcm), the inducer of bacterial blight of cotton. Of these, compounds II (nonfluorescent) and IV(fluorescent) completely inhibited the growth of Xcm in vitro. Among these, compound IV was produced maximally (39% of the four phenolics), and it protected cotton leaves from blight infection better than compound II under glass-house conditions. Compound IV, identified as 2,4-diacetylphloroglucinol, was, therefore, concluded to be a key metabolite involved in disease suppression by strain CRb-26 of P. fluorescens, which could be used as an ecofriendly potential input in the integrated management of bacterial blight of cotton. PMID:11688797

Mondal, K K; Dureja, P; Verma, J P

2001-11-01

12

Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR  

Microsoft Academic Search

DNA marker-assisted selection was used to pyramid four bacterial blight resistance genes, Xa-4, xa-5, xa-13 and Xa-21. Breeding lines with two, three and four resistance genes were developed and tested for resistance to the bacterial blight\\u000a pathogen (Xanthomonas oryzae pv. oryzae). The pyramid lines showed a wider spectrum and a higher level of resistance than lines with only a single

N. Huang; E. R. Angeles; J. Domingo; G. Magpantay; S. Singh; G. Zhang; N. Kumaravadivel; J. Bennett; G. S. Khush

1997-01-01

13

Sensitive detection of Xanthomonas axonopodis pv. dieffenbachiae on Anthurium andreanum by immunocapture-PCR (IC-PCR) using primers designed from sequence characterized amplified regions (SCAR) of the blight pathogen  

Microsoft Academic Search

One of the most devastating Xanthomonas diseases affecting the Anthurium cut flower industry worldwide is the bacterial blight caused by Xanthomonas axonopodis pv. dieffenbachiae (Xad). The disease can be spread through latently infected tissue-cultured plants that are used for the propagation of Anthurium worldwide. Current disease diagnostic techniques involve the use of semi-selective media and serological tests. This study describes

M. H. R. Khoodoo; F. Sahin; Y. Jaufeerally-Fakim

2005-01-01

14

H-mutant Bacteriophages as a Potential Biocontrol of Bacterial Blight of Geranium  

Microsoft Academic Search

Bacteriophages specific to Xanthomonas compestris pv. pelargonii (Xcp), the causal agent of bacterial blight of geranium, Pelargonium ×hortorum L.H. Bailey, were isolated from soil and sludge samples from Florida, California, Minnesota, and Utah. Sixteen phages were evaluated for their potential to lyse 21 Xcp strains collected from around the world. The Xcp strains varied in their susceptibility to the phage

J. E. Flaherty; B. K. Harbaugh; J. B. Jones; G. C. Somodi; L. E. Jackson

15

Management of Xanthomonas Leaf Blight of Onion with a Plant Activator, Biological Control Agents, and Copper Bactericides  

Microsoft Academic Search

Gent, D. H., and Schwartz, H. F. 2005. Management of Xanthomonas leaf blight of onion with a plant activator, biological control agents, and copper bactericides. Plant Dis. 89:631-639. Xanthomonas leaf blight (Xanthomonas axonopodis pv. allii) is a yield-limiting disease of onion (Allium cepa) in the western United States. Frequent applications of copper-based bactericides amended with an ethylenebisdithiocarbamate fungicide (e.g., maneb

David H. Gent; Howard F. Schwartz

2005-01-01

16

Controlling rice bacterial blight in Africa: needs and prospects.  

PubMed

Rice cultivation has drastically increased in Africa over the last decade. During this time, the region has also seen a rise in the incidence of rice bacterial blight caused by the pathogen Xanthomonas oryzae pv. oryzae. The disease is expanding to new rice production areas and threatens food security in the region. Yield losses caused by X. oryzae pv. oryzae range from 20 to 30% and can be as high as 50% in some areas. Employing resistant cultivars is the most economical and effective way to control this disease. To facilitate development and strategic deployment of rice cultivars with resistance to bacterial blight, biotechnology tools and approaches, including marker-assisted breeding, gene combinations for disease control, and multiplex-PCR for pathogen diagnosis, have been developed. Although these technologies are routinely used elsewhere, their application in Africa remains limited, usually due to high cost and advanced technical skills required. To combat this problem, developers of the technologies at research institutions need to work with farmers from an early stage to create and promote the integration of successful, low cost applications of research biotech products. Here, we review the current knowledge and biotechnologies available to improve bacterial blight control. We will also discuss how to facilitate their application in Africa and delivery to the field. PMID:21963588

Verdier, Valérie; Vera Cruz, Casiana; Leach, Jan E

2012-06-30

17

Transfer of bacterial blight and blast resistance from the tetraploid wild rice Oryza minuta to cultivated rice, Oryza sativa  

Microsoft Academic Search

Oryza minuta J. S. Presl ex C. B. Presl is a tetraploid wild rice with resistance to several insects and diseases, including blast (caused by Pyricularia grisea) and bacterial blight (caused by Xanthomonas oryzae pv. oryzae). To transfer resistance from the wild species into the genome of cultivated rice (Oryza sativa L.), backcross progeny (BC1, BC2, and BC3) were produced

A. Amante-Bordeos; L. A. Sitch; R. Nelson; R. D. Dalmacio; N. P. Oliva; H. Aswidinnoor; H. Leung

1992-01-01

18

Combining bacterial blight resistance and Basmati quality characteristics by phenotypic and molecular marker-assisted selection in rice  

Microsoft Academic Search

Bacterial Blight (BB) caused by Xanthomonas oryzae pv. oryzae is a major disease of rice in tropical Asia. Since all the Basmati varieties are highly susceptible and the disease is prevalent in the entire Basmati growing region of India, BB is a severe constraint in Basmati rice production. The present study was undertaken with the objective of combining the important

M. Joseph; S. Gopalakrishnan; R. K. Sharma; V. P. Singh; A. K. Singh; N. K. Singh; T. Mohapatra

2004-01-01

19

MOLECULAR GENETIC ANALYSIS AND MARKER-ASSISTED SELECTION FOR RESTORER LINE AND BACTERIAL BLIGHT RESISTANCE IN HYBRID RICE  

Microsoft Academic Search

SUMMARY The yield potential of hybrid rice has not been fully exploited because of disease and insect problems. Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae is one of the most serious diseases of hybrid rice in Vietnam. Breeding for BB resistance could be an effective approach to realize the full potential of hybrid rice technology in the country.

NGUYEN THI LANG; BUI CHI BUU

20

Genetic mapping of resistance to bacterial blight disease in cassava ( Manihot esculenta Crantz)  

Microsoft Academic Search

Cassava bacterial blight (CBB), caused by Xanthomonas axonopodis pv. manihotis (Xam), is a major disease of cassava (Manihot esculenta Crantz) in Africa and South America. Planting resistant varieties is the preferred method of disease control. Recent genetic\\u000a mapping of an F1 cross (TMS 30572 ? CM 2177–2) led to the construction of the first molecular genetic map of cassava. To

V. Jorge; M. A. Fregene; M. C. Duque; M. W. Bonierbale; J. Tohme; V. Verdier

2000-01-01

21

Expression of Xa1, a Bacterial Blight-Resistance Gene in Rice, is Induced by Bacterial Inoculation  

Microsoft Academic Search

The Xa1 gene in rice confers resistance to Japanese race 1 of Xanthomonas oryzae pv. oryzae, the causal pathogen of bacterial blight (BB). We isolated the Xa1 gene by a map-based cloning strategy. The deduced amino acid sequence of the Xa1 gene product contains nucleotide binding sites (NBS) and a new type of leucine-rich repeats (LRR); thus, Xa1 is a

Satomi Yoshimura; Utako Yamanouchi; Yuichi Katayose; Seiichi Toki; Zi-Xuan Wang; Izumi Kono; Nori Kurata; Masahiro Yano; Nobuo Iwata; Takuji Sasaki

1998-01-01

22

Screening and identification of antimicrobial compounds from Streptomyces bottropensis suppressing rice bacterial blight.  

PubMed

Xanthomonas oryzae pv. oryzae (Xoo) is the most devastating pathogen to Oryza sativa and has been shown to cause bacterial blight. Two bioactive compounds showing antimicrobial activities against Xoo strain KACC 10331 were isolated from a Streptomyces bottropensis strain. The ethyl acetate extract was fractionated on a Sephadex LH-20 column, and then purified by preparative HPLC. The purified compounds were identified as bottromycin A2 and dunaimycin D3S by HR/MS and 1H NMR analyses. The MIC value against Xoo and the lowest concentration still capable of suppressing rice bacterial blight were 2 microgram/ml and 16 microgram/ml for bottromycin A2, and 64 microgram/ml and 0.06 microgram/ml for dunaimycin D3S, respectively. These two compounds were shown to exert different bioactivities in vitro and in rice leaf explants. PMID:22210608

Park, Sait Byul; Lee, In Ae; Suh, Joo-Won; Kim, Jeong-Gu; Lee, Choong Hwan

2011-12-01

23

MULTIPLE DISEASE RESISTANCE TO POWDERY MILDEW, BACTERIAL BLIGHT, AND ALTERNARIA BLIGHT IN LILACS (SYRINGA SPP.)  

Microsoft Academic Search

Fifty-six lilac accessions were evaluated in a 4-year study for resistance to powdery mildew caused by Microsphaera syringae, bacterial blight caused by Pseudomonas syringae pv. syringae, and Alternaria blight caused by Alternaria alternata. Accessions included 39 cultivars of Syringa vulgaris, four of S. prestoniae, three of S. hyacinthiflora, two of S. josiflexa, two of S. meyeri, two of S. reticulata,

Margaret T. Mmbaga; Roger J. Sauvé; Emmanuel Nnodu; Suping Zhou

2005-01-01

24

Improvement of Bacterial Blight Resistance in Rice Cultivars Jyothi and IR50 via Marker-Assisted Backcross Breeding  

Microsoft Academic Search

In pathogen population analysis of 208 Xanthomonas oryzae pv. oryzae(Xoo) strains that were assembled from different parts of India, 21 pathotypes were identified on the basis of disease reactions on near-isogenic lines (NILs) and 13 pathotypes, on rice differentials. Rice cultivars, Jyothi and IR50, which are high yielding but highly prone to bacterial blight (BB) caused by pathogen populations of

S. Bharathkumar; R. S. David Paulraj; P. V. Brindha; S. Kavitha; S. S. Gnanamanickam

2008-01-01

25

Genetic and functional characterization of the rice bacterial blight disease resistance gene xa5.  

PubMed

Xanthomonas oryzae pv. oryzae is the causal agent of rice bacterial blight, a destructive rice disease worldwide. The gene xa5 provides race-specific resistance to X. oryzae pv. oryzae, and encodes the small subunit of transcription factor IIA. How xa5 functions in bacterial blight resistance is not well understood, and its recessive gene action is disputed. Here we show that xa5 is inherited in a completely recessive manner and the susceptible allele Xa5 is fully dominant. In accordance with this, bacterial growth in heterozygous and homozygous susceptible lines is not significantly different. Further, one allele of Xa5 is sufficient to promote disease in previously resistant plants; additional copies are not predictive of increased lesion length. Surprisingly, a resistant nearly isogenic line (NIL) of an indica variety sustains high levels of bacterial populations compared to the susceptible NIL, yet the resistant plants restrict symptom expression. In contrast, in japonica NILs, bacterial population dynamics differ in resistant and susceptible genotypes. However, both resistant indica and japonica plants delay bacterial movement down the leaf. These results support a model in which xa5-mediated recessive resistance is the result of restricted bacterial movement, but not restricted multiplication. PMID:18944079

Iyer-Pascuzzi, A S; Jiang, H; Huang, L; McCouch, S R

2008-03-01

26

Biological control of rice bacterial blight by plant-associated bacteria producing 2,4-diacetylphloroglucinol.  

PubMed

Certain plant-associated strains of fluorescent Pseudomonas spp. are known to produce the antimicrobial antibiotic 2,4-diacetylphloroglucinol (DAPG). It has antibacterial, antifungal, antiviral, and antihelminthic properties and has played a significant role in the biological control of tobacco, wheat, and sugar beet diseases. It has never been reported from India and has not been implicated in the biological suppression of a major disease of the rice crop. Here, we report that a subpopulation of 27 strains of plant-associated Pseudomonas fluorescens screened in a batch of 278 strains of fluorescent pseudomonads produced DAPG. The DAPG production was detected by a PCR-based screening method that used primers Phl2a and Phl2b and amplified a 745-bp fragment characteristic of DAPG. HPLC, 1H NMR, and IR analyses provided further evidence for its production. We report also that this compound inhibited the growth of the devastating rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae in laboratory assays and suppressed rice bacterial blight up to 59%-64% in net-house and field experiments. Tn5 mutants defective in DAPG production (Phl-) of P. fluorescens PTB 9 were much less effective in their suppression of rice bacterial blight. PMID:16541159

Velusamy, Palaniyandi; Immanuel, J Ebenezar; Gnanamanickam, Samuel S; Thomashow, Linda

2006-01-01

27

Proteome analysis of probenazole-effect in rice-bacterial blight interactions.  

PubMed

To study the effect of probenazole on the induced systemic resistance mechanism of rice-bacterial interaction, a proteomic approach was applied. Oryza sativa cv. Java 14 seedlings were treated with probenazole, followed by inoculation with compatible (Xo7435) and incompatible (T7174) races of Xanthomonas oryzae pv. oryzae. Cytosolic proteins were fractionated from leaf blades, separated by two-dimensional polyacrylamide gel electrophoresis. Pathogenesis-related protein 5 (PR5) was significantly induced with probenazole treatment followed by inoculation with T7174 or Xo7435. The sense PR5 transgenic rice plants were more highly resistant than the susceptible vector control against Xo7435. These results indicate that probenazole strongly induces PR5 in the interaction between rice and X. oryzae pv. oryzae, and might be involved in the resistance mechanism of rice against bacterial blight. PMID:19799551

Mahmood, Tariq; Kakishima, Makoto; Komatsu, Setsuko

2009-01-01

28

MARKER ASSISTED SELECTION IN RICE BREEDING FOR BACTERIAL LEAF BLIGHT  

Microsoft Academic Search

One hundred and sixty six local accessions and 25 parent lines of hybrid rice were used as materials for screening leaf blight resistance using 10 international bacterial races in compared to check varieties. There were five local cultivars that resisted to bacterial races as IRBB21, three cultivars expressed resistant reaction as IRBB5 and 58 cultivars resisted to the race No

Nguyen Thi Pha; Nguyen Thi Lang

29

Development of an Engineered Bioluminescent Reporter Phage for Detection of Bacterial Blight of Crucifers  

PubMed Central

Bacterial blight, caused by the phytopathogen Pseudomonas cannabina pv. alisalensis, is an emerging disease afflicting important members of the Brassicaceae family. The disease is often misdiagnosed as pepper spot, a much less severe disease caused by the related pathogen Pseudomonas syringae pv. maculicola. We have developed a phage-based diagnostic that can both identify and detect the causative agent of bacterial blight and differentiate the two pathogens. A recombinant “light”-tagged reporter phage was generated by integrating bacterial luxAB genes encoding luciferase into the genome of P. cannabina pv. alisalensis phage PBSPCA1. The PBSPCA1::luxAB reporter phage is viable and stable and retains properties similar to those of the wild-type phage. PBSPCA1::luxAB rapidly and sensitively detects P. cannabina pv. alisalensis by conferring a bioluminescent signal response to cultured cells. Detection is dependent on cell viability. Other bacterial pathogens of Brassica species such as P. syringae pv. maculicola, Pseudomonas marginalis, Pectobacterium carotovorum, Xanthomonas campestris pv. campestris, and X. campestris pv. raphani either do not produce a response or produce significantly attenuated signals with the reporter phage. Importantly, the reporter phage detects P. cannabina pv. alisalensis on diseased plant specimens, indicating its potential for disease diagnosis.

Bull, Carolee T.; Rubio, Isael; Wechter, W. Patrick; Westwater, Caroline; Molineux, Ian J.

2012-01-01

30

Pyramiding three bacterial blight resistance genes (xa5, xa13 and Xa21) using marker-assisted selection into indica rice cultivar PR106  

Microsoft Academic Search

Bacterial blight (BB) of rice caused by Xanthomonas oryzae pv. oryzae (Xoo) is a major disease of rice in several countries. Three BB resistance genes, xa5, xa13 and Xa21, were pyramided into cv. PR106, which is widely grown in Punjab, India, using marker-assisted selection. Lines of PR106 with\\u000a pyramided genes were evaluated after inoculation with 17 isolates of the pathogen

S. Singh; J. S. Sidhu; N. Huang; Y. Vikal; Z. Li; D. S. Brar; H. S. Dhaliwal; G. S. Khush

2001-01-01

31

Marker-assisted improvement of bacterial blight resistance in parental lines of Pusa RH10, a superfine grain aromatic rice hybrid  

Microsoft Academic Search

Pusa RH10, the widely cultivated superfine grain aromatic rice hybrid, and its parental lines Pusa6B and PRR78 are susceptible\\u000a to bacterial blight (BB) disease caused by Xanthomonas oryzae pv. oryzae. Pusa1460, a Basmati rice variety, was utilized as the donor for introgressing BB resistance genes xa13 and Xa21 into Pusa6B and PRR78 using a marker-assisted backcross breeding program. The markers

S. H. Basavaraj; Vikas K. Singh; Ashok K. Singh; Ashutosh Singh; Anita Singh; Deepti Anand; Sheel Yadav; Ranjith K. Ellur; Devinder Singh; S. Gopala Krishnan; M. Nagarajan; T. Mohapatra; K. V. Prabhu

2010-01-01

32

A Case Study of Bacterial Leaf Blight of Wetland Rice.  

National Technical Information Service (NTIS)

Cases of bacterial leaf blight of wetland rice and resulting crop damage have been reported from various parts of the country from year to year. With respect to this particular disease, there have been reports from Nakada and Ishiyama, and also the Aichi,...

G. Kondo T. Harada

1966-01-01

33

Detection of bacterial blight resistance genes in basmati rice landraces.  

PubMed

Aromatic basmati rice is vulnerable to bacterial blight disease. Genes conferring resistance to bacterial blight have been identified in coarse rice; however, their incorporation into basmati varieties compromises the prized basmati aroma. We identified bacterial blight resistance genes Xa4, xa5, Xa7, and xa13 in 52 basmati landraces and five basmati cultivars using PCR markers. The Xa7 gene was found to be the most prevalent among the cultivars and landraces. The cultivars Basmati-385 and Basmati-2000 also contained the Xa4 gene; however, xa5 and xa13 were confined to landraces only. Ten landraces were found to have multiple resistance genes. Landraces Basmati-106, Basmati-189 and Basmati-208 contained Xa4 and Xa7 genes. Whereas, landraces Basmati-122, Basmati-427, Basmati-433 were observed to have xa5 and Xa7 genes. Landraces Basmati-48, Basmati-51A, Basmati-334, and Basmati-370A possessed Xa7 and xa13 genes. The use of landraces containing recessive genes xa5 and xa13 as donor parents in hybridization with cultivars Basmati-385 and Basmati-2000, which contain the genes Xa4 and Xa7, will expedite efforts to develop bacterial blight-resistant basmati rice cultivars through marker assisted selection, based on a pyramiding approach, without compromising aroma and grain quality. PMID:22869552

Ullah, I; Jamil, S; Iqbal, M Z; Shaheen, H L; Hasni, S M; Jabeen, S; Mehmood, A; Akhter, M

2012-01-01

34

Genomic Survey of Pathogenicity Determinants and VNTR Markers in the Cassava Bacterial Pathogen Xanthomonas axonopodis pv. Manihotis Strain CIO151  

PubMed Central

Xanthomonas axonopodis pv. manihotis (Xam) is the causal agent of bacterial blight of cassava, which is among the main components of human diet in Africa and South America. Current information about the molecular pathogenicity factors involved in the infection process of this organism is limited. Previous studies in other bacteria in this genus suggest that advanced draft genome sequences are valuable resources for molecular studies on their interaction with plants and could provide valuable tools for diagnostics and detection. Here we have generated the first manually annotated high-quality draft genome sequence of Xam strain CIO151. Its genomic structure is similar to that of other xanthomonads, especially Xanthomonas euvesicatoria and Xanthomonas citri pv. citri species. Several putative pathogenicity factors were identified, including type III effectors, cell wall-degrading enzymes and clusters encoding protein secretion systems. Specific characteristics in this genome include changes in the xanthomonadin cluster that could explain the lack of typical yellow color in all strains of this pathovar and the presence of 50 regions in the genome with atypical nucleotide composition. The genome sequence was used to predict and evaluate 22 variable number of tandem repeat (VNTR) loci that were subsequently demonstrated as polymorphic in representative Xam strains. Our results demonstrate that Xanthomonas axonopodis pv. manihotis strain CIO151 possesses ten clusters of pathogenicity factors conserved within the genus Xanthomonas. We report 126 genes that are potentially unique to Xam, as well as potential horizontal transfer events in the history of the genome. The relation of these regions with virulence and pathogenicity could explain several aspects of the biology of this pathogen, including its ability to colonize both vascular and non-vascular tissues of cassava plants. A set of 16 robust, polymorphic VNTR loci will be useful to develop a multi-locus VNTR analysis scheme for epidemiological surveillance of this disease.

Arrieta-Ortiz, Mario L.; Rodriguez-R, Luis M.; Perez-Quintero, Alvaro L.; Poulin, Lucie; Diaz, Ana C.; Arias Rojas, Nathalia; Trujillo, Cesar; Restrepo Benavides, Mariana; Bart, Rebecca; Boch, Jens; Boureau, Tristan; Darrasse, Armelle; David, Perrine; Duge de Bernonville, Thomas; Fontanilla, Paula; Gagnevin, Lionel; Guerin, Fabien; Jacques, Marie-Agnes; Lauber, Emmanuelle; Lefeuvre, Pierre; Medina, Cesar; Medina, Edgar; Montenegro, Nathaly; Munoz Bodnar, Alejandra; Noel, Laurent D.; Ortiz Quinones, Juan F.; Osorio, Daniela; Pardo, Carolina; Patil, Prabhu B.; Poussier, Stephane; Pruvost, Olivier; Robene-Soustrade, Isabelle; Ryan, Robert P.; Tabima, Javier; Urrego Morales, Oscar G.; Verniere, Christian; Carrere, Sebastien; Verdier, Valerie; Szurek, Boris; Restrepo, Silvia; Lopez, Camilo

2013-01-01

35

Proteomic analysis of bacterial-blight defense-responsive proteins in rice leaf blades.  

PubMed

Plants exhibit resistance against incompatible pathogens, via localized and systemic responses as part of an integrated defense mechanism. To study the compatible and incompatible interactions between rice and bacteria, a proteomic approach was applied. Rice cv. Java 14 seedlings were inoculated with compatible (Xo7435) and incompatible (T7174) races of Xanthomonas oryzae pv. oryzae (Xoo). Cytosolic and membrane proteins were fractionated from the leaf blades and separated by 2-D PAGE. From 366 proteins analyzed, 20 were differentially expressed in response to bacterial inoculation. These proteins were categorized into classes related to energy (30%), metabolism (20%), and defense (20%). Among the 20 proteins, ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (RuBisCO LSU) was fragmented into two smaller proteins by T7174 and Xo7435 inoculation. Treatment with jasmonic acid (JA), a signaling molecule in plant defense responses, changed the level of protein accumulation for 5 of the 20 proteins. Thaumatin-like protein and probenazole-inducible protein (PBZ) were commonly up-regulated by T7174 and Xo7435 inoculation and JA treatment. These results suggest that synthesis of the defense-related thaumatin-like protein and PBZ are stimulated by JA in the defense response pathway of rice against bacterial blight. PMID:17051650

Mahmood, Tariq; Jan, Asad; Kakishima, Makoto; Komatsu, Setsuko

2006-11-01

36

Epidemiological study of hazelnut bacterial blight in central Italy by using laboratory analysis and geostatistics.  

PubMed

Incidence of Xanthomonas arboricola pv. corylina, the causal agent of hazelnut bacterial blight, was analyzed spatially in relation to the pedoclimatic factors. Hazelnut grown in twelve municipalities situated in the province of Viterbo, central Italy was studied. A consistent number of bacterial isolates were obtained from the infected tissues of hazelnut collected in three years (2010-2012). The isolates, characterized by phenotypic tests, did not show any difference among them. Spatial patterns of pedoclimatic data, analyzed by geostatistics showed a strong positive correlation of disease incidence with higher values of rainfall, thermal shock and soil nitrogen; a weak positive correlation with soil aluminium content and a strong negative correlation with the values of Mg/K ratio. No correlation of the disease incidence was found with soil pH. Disease incidence ranged from very low (<1%) to very high (almost 75%) across the orchards. Young plants (4-year old) were the most affected by the disease confirming a weak negative correlation of the disease incidence with plant age. Plant cultivars did not show any difference in susceptibility to the pathogen. Possible role of climate change on the epidemiology of the disease is discussed. Improved management practices are recommended for effective control of the disease. PMID:23424654

Lamichhane, Jay Ram; Fabi, Alfredo; Ridolfi, Roberto; Varvaro, Leonardo

2013-01-01

37

Epidemiological Study of Hazelnut Bacterial Blight in Central Italy by Using Laboratory Analysis and Geostatistics  

PubMed Central

Incidence of Xanthomonas arboricola pv. corylina, the causal agent of hazelnut bacterial blight, was analyzed spatially in relation to the pedoclimatic factors. Hazelnut grown in twelve municipalities situated in the province of Viterbo, central Italy was studied. A consistent number of bacterial isolates were obtained from the infected tissues of hazelnut collected in three years (2010–2012). The isolates, characterized by phenotypic tests, did not show any difference among them. Spatial patterns of pedoclimatic data, analyzed by geostatistics showed a strong positive correlation of disease incidence with higher values of rainfall, thermal shock and soil nitrogen; a weak positive correlation with soil aluminium content and a strong negative correlation with the values of Mg/K ratio. No correlation of the disease incidence was found with soil pH. Disease incidence ranged from very low (<1%) to very high (almost 75%) across the orchards. Young plants (4-year old) were the most affected by the disease confirming a weak negative correlation of the disease incidence with plant age. Plant cultivars did not show any difference in susceptibility to the pathogen. Possible role of climate change on the epidemiology of the disease is discussed. Improved management practices are recommended for effective control of the disease.

Lamichhane, Jay Ram; Fabi, Alfredo; Ridolfi, Roberto; Varvaro, Leonardo

2013-01-01

38

Suppression of the Bacterial Spot Pathogen Xanthomonas euvesicatoria on Tomato Leaves by an Attenuated Mutant of Xanthomonas perforans  

Microsoft Academic Search

A bacteriocin-producing strain of the bacterial spot of tomato plant pathogen, Xanthomonas perforans, with attenuated pathogenicity was deployed for biocontrol of a bacteriocin-sensitive strain of the genetically closely related bacterial spot of tomato plant pathogen, X. euvesicatoria. The attenuated mutant (91-118opgHbcnB) of X. perforans was tested in leaf tissue and shown to significantly inhibit internal populations of the wild-type X.

A. P. Hert; M. Marutani; M. T. Momol; P. D. Roberts; S. M. Olson; J. B. Jones

2009-01-01

39

Proteomic analysis of rice plasma membrane reveals proteins involved in early defense response to bacterial blight.  

PubMed

Plant plasma membrane (PM) proteins play important roles in signal transduction during defense response to an attacking pathogen. By using an improved method of PM protein preparation and PM-bound green fluorescent protein fusion protein as a visible marker, we conducted PM proteomic analysis of the rice suspension cells expressing the disease resistance gene Xa21, to identify PM components involved in the early defense response to bacterial blight (Xanthomonas oryzae pv. oryzae). A total of 20 regulated protein spots were observed on 2-D gels of PM fractions at 12 and 24 h after pathogen inoculation, of which some were differentially regulated between the incompatible and compatible interactions mediated by Xa21, with good correlation between biological repeats. Eleven protein spots with predicted functions in plant defense were identified by MS/MS, including nine putative PM-associated proteins H+-ATPase, protein phosphatase, hypersensitive-induced response protein (OsHIR1), prohibitin (OsPHB2), zinc finger and C2 domain protein, universal stress protein (USP), and heat shock protein. OsHIR1 was modified by the microbial challenge, leading to two differentially accumulated protein spots. Transcript analysis showed that most of the genes were also regulated at transcriptional levels. Our study would provide a starting point for functionality of PM proteins in the rice defense. PMID:17407182

Chen, Fang; Yuan, Yuexing; Li, Qun; He, Zuhua

2007-05-01

40

Code-assisted discovery of TAL effector targets in bacterial leaf streak of rice reveals contrast with bacterial blight and a novel susceptibility gene.  

PubMed

Bacterial leaf streak of rice, caused by Xanthomonas oryzae pv. oryzicola (Xoc) is an increasingly important yield constraint in this staple crop. A mesophyll colonizer, Xoc differs from X. oryzae pv. oryzae (Xoo), which invades xylem to cause bacterial blight of rice. Both produce multiple distinct TAL effectors, type III-delivered proteins that transactivate effector-specific host genes. A TAL effector finds its target(s) via a partially degenerate code whereby the modular effector amino acid sequence identifies nucleotide sequences to which the protein binds. Virulence contributions of some Xoo TAL effectors have been shown, and their relevant targets, susceptibility (S) genes, identified, but the role of TAL effectors in leaf streak is uncharacterized. We used host transcript profiling to compare leaf streak to blight and to probe functions of Xoc TAL effectors. We found that Xoc and Xoo induce almost completely different host transcriptional changes. Roughly one in three genes upregulated by the pathogens is preceded by a candidate TAL effector binding element. Experimental analysis of the 44 such genes predicted to be Xoc TAL effector targets verified nearly half, and identified most others as false predictions. None of the Xoc targets is a known bacterial blight S gene. Mutational analysis revealed that Tal2g, which activates two genes, contributes to lesion expansion and bacterial exudation. Use of designer TAL effectors discriminated a sulfate transporter gene as the S gene. Across all targets, basal expression tended to be higher than genome-average, and induction moderate. Finally, machine learning applied to real vs. falsely predicted targets yielded a classifier that recalled 92% of the real targets with 88% precision, providing a tool for better target prediction in the future. Our study expands the number of known TAL effector targets, identifies a new class of S gene, and improves our ability to predict functional targeting. PMID:24586171

Cernadas, Raul A; Doyle, Erin L; Niño-Liu, David O; Wilkins, Katherine E; Bancroft, Timothy; Wang, Li; Schmidt, Clarice L; Caldo, Rico; Yang, Bing; White, Frank F; Nettleton, Dan; Wise, Roger P; Bogdanove, Adam J

2014-02-01

41

Isolation and characterization of bacteriophages infecting Xanthomonas arboricola pv. juglandis, the causal agent of walnut blight disease.  

PubMed

Walnut orchards suffer from a blight caused by the bacteria Xanthomonas arboricola pv. juglandis. These bacteria can be infected by viral bacteriophages and this study was carried out to isolate and characterize bacteriophages from walnut orchards located throughout the South Island of New Zealand. Twenty six X. arboricola phages were isolated from three hundred and twenty six samples of plant material representing phyllosphere and rhizosphere ecosystems. The phage isolates were characterized by host-range, plaque and particle morphology, restriction digest and phylogenetic analysis and stability under various storage conditions. From capsid and tail dimensions the bacteriophages were considered to belong to the double-stranded DNA families Podoviridae and Siphoviridae. Of the twenty six bacteriophages, sixteen belonged to Podoviridae and were found both in the phyllosphere and rhizosphere. In contrast, Siphoviridae were present only in the rhizosphere isolates. Phage genome sizes ranged from 38.0 to 52.0 kb from a Hind III restriction digestion and had in common a 400 kb fragment that was identical at the DNA level. Despite the similar restriction patterns, maximum parsimony bootstrap analysis showed that the phage were members of different groups. Finally, we hypothesise that these phage might have use in a biocontrol strategy and therefore storage stability and efficacy was tested. Titres declined more than 50% over a 12-months storage period. Deep-freezing temperatures (-34°C) increased while chloroform decreased the stability. PMID:22806014

Romero-Suarez, Sandra; Jordan, Brian; Heinemann, Jack A

2012-05-01

42

Antimicrobial activity and induction of systemic resistance in rice by leaf extract of Datura metel against Rhizoctonia solani and Xanthomonas oryzae pv. oryzae  

Microsoft Academic Search

The leaf extracts of Datura metel significantly reduced the in vitro growth of Rhizoctonia solani (RS7, Anastomosis group AG1) and Xanthomonas oryzae pv. oryzae (Xoo). Methanol extract exhibited the best control of the pathogens recording 10–35% more toxicity than aqueous extract. Foliar application of leaf extracts effectively reduced the incidence of sheath blight and bacterial blight diseases of rice under

Sateesh Kagale; T. Marimuthu; B. Thayumanavan; R. Nandakumar; R. Samiyappan

2004-01-01

43

Addition of transcription activator-like effector binding sites to a pathogen strain-specific rice bacterial blight resistance gene makes it effective against additional strains and against bacterial leaf streak.  

PubMed

Xanthomonas transcription activator-like (TAL) effectors promote disease in plants by binding to and activating host susceptibility genes. Plants counter with TAL effector-activated executor resistance genes, which cause host cell death and block disease progression. We asked whether the functional specificity of an executor gene could be broadened by adding different TAL effector binding elements (EBEs) to it. We added six EBEs to the rice Xa27 gene, which confers resistance to strains of the bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) that deliver the TAL effector AvrXa27. The EBEs correspond to three other effectors from Xoo strain PXO99(A) and three from strain BLS256 of the bacterial leaf streak pathogen Xanthomonas oryzae pv. oryzicola (Xoc). Stable integration into rice produced healthy lines exhibiting gene activation by each TAL effector, and resistance to PXO99(A) , a PXO99(A) derivative lacking AvrXa27, and BLS256, as well as two other Xoo and 10 Xoc strains virulent toward wildtype Xa27 plants. Transcripts initiated primarily at a common site. Sequences in the EBEs were found to occur nonrandomly in rice promoters, suggesting an overlap with endogenous regulatory sequences. Thus, executor gene specificity can be broadened by adding EBEs, but caution is warranted because of the possible coincident introduction of endogenous regulatory elements. PMID:22747776

Hummel, Aaron W; Doyle, Erin L; Bogdanove, Adam J

2012-09-01

44

Development of candidate gene markers associated to common bacterial blight resistance in common bean.  

PubMed

Common bacterial blight (CBB), caused by Xanthomonas axonopodis pv. phaseoli (Xap), is a major yield-limiting factor of common bean (Phaseolus vulgaris L.) production around the world. Two major CBB-resistant quantitative trait loci (QTL), linked to the sequence characterized amplified region markers BC420 and SU91, are located at chromosomes 6 and 8, respectively. Using map-based cloning approach, four bacterial artificial chromosome (BAC) clones from the BC420-QTL locus and one BAC clone containing SU91 were sequenced by Roche 454 technique and subsequently assembled using merged assemblies from three different programs. Based on the quality of the assembly, only the sequences of BAC 32H6 and 4K7 were used for candidate gene marker (CGM) development and candidate gene (CG) selection. For the BC420-QTL locus, 21 novel genes were predicted in silico by FGENESH using Medicago gene model, whereas 16 genes were identified in the SU91-QTL locus. For each putative gene, one or more primer pairs were designed and tested in the contrasting near isogenic lines. Overall, six and nine polymorphic markers were found in the SU91- and BC420-QTL loci, respectively. Afterwards, association mapping was conducted in a breeding population of 395 dry bean lines to discover marker-trait associations. Two CGMs per each locus showed better association with CBB resistance than the BC420 and SU91 markers, which include BC420-CG10B and BC420-CG14 for BC420_QTL locus, and SU91-CG10 and SU91-CG11 for SU91_QTL locus. The strong associations between CBB resistance and the CGs 10 and 14 from BC420_QTL locus and the CGs 10 and 11 from SU91_QTL locus indicate that the genes 10 and 14 from the BC420 locus are potential CGs underlying the BC420_QTL locus, whereas the genes 10 and 11 from the SU91 locus are potential CGs underlying the SU91_QTL locus. The superiority of SU91-CG11 was further validated in a recombinant inbred line population Sanilac × OAC 09-3. Thus, co-dominant CGMs, BC420-CG14 and SU91-CG11, are recommended to replace BC420 and SU91 for marker-assisted selection of common bean with resistance to CBB. PMID:22798059

Shi, Chun; Yu, Kangfu; Xie, Weilong; Perry, Gregory; Navabi, Alireza; Pauls, K Peter; Miklas, Phillip N; Fourie, Deidré

2012-11-01

45

Association mapping of common bacterial blight resistance QTL in Ontario bean breeding populations  

PubMed Central

Background Common bacterial blight (CBB), incited by Xanthomonas axonopodis pv. phaseoli (Xap), is a major yield-limiting factor of common bean (Phaseolus vulgaris L.) production around the world. Host resistance is practically the most effective and environmentally-sound approach to control CBB. Unlike conventional QTL discovery strategies, in which bi-parental populations (F2, RIL, or DH) need to be developed, association mapping-based strategies can use plant breeding populations to synchronize QTL discovery and cultivar development. Results A population of 469 dry bean lines of different market classes representing plant materials routinely developed in a bean breeding program were used. Of them, 395 lines were evaluated for CBB resistance at 14 and 21 DAI (Days After Inoculation) in the summer of 2009 in an artificially inoculated CBB nursery in south-western Ontario. All lines were genotyped using 132 SNPs (Single Nucleotide Polymorphisms) evenly distributed across the genome. Of the 132 SNPs, 26 SNPs had more than 20% missing data, 12 SNPs were monomorphic, and 17 SNPs had a MAF (Minor Allelic Frequency) of less than 0.20, therefore only 75 SNPs were used for association study, based on one SNP per locus. The best possible population structure was to assign 36% and 64% of the lines into Andean and Mesoamerican subgroups, respectively. Kinship analysis also revealed complex familial relationships among all lines, which corresponds with the known pedigree history. MLM (Mixed Linear Model) analysis, including population structure and kinship, was used to discover marker-trait associations. Eighteen and 22 markers were significantly associated with CBB rating at 14 and 21 DAI, respectively. Fourteen markers were significant for both dates and the markers UBC420, SU91, g321, g471, and g796 were highly significant (p ? 0.001). Furthermore, 12 significant SNP markers were co-localized with or close to the CBB-QTLs identified previously in bi-parental QTL mapping studies. Conclusions This study demonstrated that association mapping using a reasonable number of markers, distributed across the genome and with application of plant materials that are routinely developed in a plant breeding program can detect significant QTLs for traits of interest.

2011-01-01

46

Rice xa13 Recessive Resistance to Bacterial Blight Is Defeated by Induction of the Disease Susceptibility Gene Os-11N3[W][OA  

PubMed Central

The rice (Oryza sativa) gene xa13 is a recessive resistance allele of Os-8N3, a member of the NODULIN3 (N3) gene family, located on rice chromosome 8. Os-8N3 is a susceptibility (S) gene for Xanthomonas oryzae pv oryzae, the causal agent of bacterial blight, and the recessive allele is defeated by strains of the pathogen producing any one of the type III effectors AvrXa7, PthXo2, or PthXo3, which are all members of the transcription activator-like (TAL) effector family. Both AvrXa7 and PthXo3 induce the expression of a second member of the N3 gene family, here named Os-11N3. Insertional mutagenesis or RNA-mediated silencing of Os-11N3 resulted in plants with loss of susceptibility specifically to strains of X. oryzae pv oryzae dependent on AvrXa7 or PthXo3 for virulence. We further show that AvrXa7 drives expression of Os-11N3 and that AvrXa7 interacts and binds specifically to an effector binding element within the Os-11N3 promoter, lending support to the predictive models for TAL effector binding specificity. The result indicates that variations in the TAL effector repetitive domains are driven by selection to overcome both dominant and recessive forms of resistance to bacterial blight in rice. The finding that Os-8N3 and Os-11N3 encode closely related proteins also provides evidence that N3 proteins have a specific function in facilitating bacterial blight disease.

Antony, Ginny; Zhou, Junhui; Huang, Sheng; Li, Ting; Liu, Bo; White, Frank; Yang, Bing

2010-01-01

47

Effective strategy for pyramiding three bacterial blight resistance genes into fine grain rice cultivar, Samba Mahsuri, using sequence tagged site markers.  

PubMed

Bacterial leaf blight (BB) of rice is a major disease limiting rice production in several rice growing regions of the world. The pathogen, Xanthomonas oryzae pv oryzae, causing the disease is highly virulent to rice crops and is capable of evolving new races. Breeding efforts to incorporate single BB resistant gene often leads to resistance breakdown within a short period. To overcome such breakdown of resistance and develop germplasm with durable disease resistance, we have introgressed three bacterial blight resistance genes, xa5, xa13, and Xa21 into a fine grain rice variety, Samba Mahsuri, using sequence tagged site (STS) markers linked to these genes. Since the efficiency of the STS markers linked to recessive genes to detect homozygotes is less than 100%, we adopted four different pyramiding schemes to minimize loss of recessive resistance genes in advanced backcross generations. Pyramiding scheme A in which a two-gene Samba Mahsuri pyramid line containing Xa21 and xa5 genes was crossed with the Samba Mahsuri line having xa13 gene alone was found to be most effective in preventing the loss of an important recessive gene xa13. We further demonstrated that there was no yield penalty due to pyramiding of multiple genes into the elite indica rice variety. PMID:20349335

Kottapalli, Kameswara Rao; Lakshmi Narasu, M; Jena, Kshirod K

2010-07-01

48

Bacterial Blight of Soybean: Regulation of a Pathogen Gene Determining Host Cultivar Specificity  

Microsoft Academic Search

Soybean cultivars resistant to Pseudomonas syringae pathovar glycinea (Psg), the causal agent of bacterial blight, exhibit a hypersensitive (necrosis) reaction (HR) to infection. Psg strains carrying the avrB gene elicit the HR in soybean cultivars carrying the resistance gene Rpg1. Psg expressing avrB at a high level and capable of eliciting the HR in the absence of de novo bacterial

Thanh V. Huynh; Douglas Dahlbeck; Brian J. Staskawicz

1989-01-01

49

Production of bacterial blight resistant lines from somatichybridization between Oryza sativa L. and Oryza meyeriana L.*  

PubMed Central

Novel bacterial blight (BB) resistance gene(s) for rice was (were) introduced into a cultivated japonica rice variety Oryza sativa (cv. 8411), via somatic hybridization using the wild rice Oryza meyeriana as the donor of the resistance gene(s). Twenty-nine progenies of somatically hybridized plants were obtained. Seven somatically hybridized plants and their parents were used for AFLP (amplified fragment length polymorphism) analysis using 8 primer pairs. Results confirmed that these plants were somatic hybrids containing the characteristic bands of both parents. The morphology of the regenerated rice showed characters of both O. sativa and O. meyeriana. Two somatic hybrids showed highest BB resistance and the other 8 plants showed moderate resistance. The new germplasms with highest resistance have been used in the rice breeding program for the improvement of bacterial blight resistance.

Yan, Cheng-qi; Qian, Kai-xian; Xue, Gang-ping; Wu, Zhong-chang; Chen, Yue-lei; Yan, Qiu-sheng; Zhang, Xue-qing; Wu, Ping

2004-01-01

50

Marker assisted introgression of bacterial blight resistance in Samba Mahsuri, an elite indica rice variety  

Microsoft Academic Search

Samba Mahsuri (BPT5204) is a medium slender grain indica rice variety that is very popular with farmers and consumers across\\u000a India because of its high yield and excellent cooking quality. However, the variety is susceptible to several diseases and\\u000a pests, including bacterial blight (BB). We have used PCR based molecular markers in a backcross-breeding program to introgress\\u000a three major BB

Raman M. Sundaram; Manne R. Vishnupriya; Sunil K. Biradar; Gouri S. Laha; Gajjala Ashok Reddy; N. Shobha Rani; Nukala P. Sarma; Ramesh Venkata Sonti

2008-01-01

51

Sequence Tagged Site Marker-Assisted Selection for Three Bacterial Blight Resistance Genes in Rice  

Microsoft Academic Search

identification of DNA markers linked to desirable genes or QTL affecting target traits is a prerequisite for MAS. IR65598-112 and the two sister lines IR65600-42 and IR65600-96 Conventional breeding brought major increases in are promising new plant type (NPT) rice lines with high yield potential. rice production through the modern high-yielding varie- However, these lines are susceptible to bacterial blight

A. C. Sanchez; D. S. Brar; N. Huang; Z. Li; G. S. Khush

2000-01-01

52

Bacterial blight of soybean: Regulation of a pathogen gene determining host cultivar specificity  

SciTech Connect

Soybean cultivars resistant to Pseudomonas syringae pathovar glycinea (Psg), the causal agent of bacterial blight, exhibit a hypersensitive (necrosis) reaction (HR) to infection. Psg strains carrying the avrB gene elicit the HR in soybean cultivars carrying the resistance gene Rpg1. Psg expressing avrB at a high level and capable of eliciting the HR in the absence of de novo bacterial RNA synthesis have been obtained in in vitro culture. Nutritional signals and regions within the Psg hrp gene cluster, an approximately 20-kilobase genomic region also necessary for pathogenicity, control avrB transcription.

Huynh, T.V.; Dahlbeck, D.; Staskawicz, B.J. (Univ. of California, Berkeley (USA))

1989-09-22

53

Genetic Diversity ofXanthomonas oryzaepv. oryzae in Asia  

Microsoft Academic Search

Restriction fragment length polymorphism and virulence analyses were used to evaluate the population structure of Xanthomonas oryzae pv. oryzae, the rice bacterial blight pathogen, from several rice-growing countries in Asia. Two DNA sequences fromX. oryzaepv. oryzae, IS1112, an insertion sequence, andavrXa10, amemberofafamilyofavirulencegenes,wereusedasprobestoanalyzethegenomesof308strainsofX.oryzae pv. oryzae collected from China, India, Indonesia, Korea, Malaysia, Nepal, and the Philippines. On the basis of the

T. B. Adhikari; C. M. Vera Cruz; Q. Zhang; R. J. Nelson; D. Z. Skinner; T. W. Mew; Andj. E. Leach

1995-01-01

54

The rsmA-like gene rsmA(Xoo) of Xanthomonas oryzae pv. oryzae regulates bacterial virulence and production of diffusible signal factor.  

PubMed

The plant-pathogenic prokaryote Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight, one of the most destructive diseases of rice. A nonpolar mutant of the rsmA-like gene rsmA(Xoo) of the Xoo Chinese strain 13751 was constructed by homologous integration with a suicide plasmid. Virulence tests on a host plant, namely the hybrid rice cultivar Teyou 63, showed that the mutant had lost its virulence almost completely, whereas tests on a nonhost, namely castor-oil plant (Ricinus communis), showed that the mutant had also lost the ability to induce a hypersensitive response in the nonhost. In addition, the rsmA(Xoo) mutant produced significantly smaller amounts of the diffusible signal factor, extracellular endoglucanase, amylase and extracellular polysaccharide, but showed significantly higher glycogen accumulation, bacterial aggregation and cell adhesion. The expression of most hrp genes, genes encoding AvrBs3/PthA family members, rpfB, xrvA, glgA, eglXoB and XOO0175 (encoding an ?-amylase) was down-regulated in the rsmA(Xoo) mutant. All phenotypes and expression levels of the tested genes in the rsmA(Xoo) mutant were restored to their levels in the wild-type by the presence of rsmA(Xoo) in trans. These results indicate that rsmA(Xoo) is essential for the virulence of Xoo. PMID:21355995

Zhu, Pei-Liang; Zhao, Shuai; Tang, Ji-Liang; Feng, Jia-Xun

2011-04-01

55

Draft Genome Sequence of Xanthomonas arboricola pv. pruni Strain Xap33, Causal Agent of Bacterial Spot Disease on Almond.  

PubMed

We report the annotated genome sequence of Xanthomonas arboricola pv. pruni strain Xap33, isolated from almond leaves showing bacterial spot disease symptoms in Spain. The availability of this genome sequence will aid our understanding of the infection mechanism of this bacterium as well as its relationship to other species of the same genus. PMID:24903863

Garita-Cambronero, J; Sena-Vélez, M; Palacio-Bielsa, A; Cubero, J

2014-01-01

56

Draft Genome Sequence of Xanthomonas arboricola pv. pruni Strain Xap33, Causal Agent of Bacterial Spot Disease on Almond  

PubMed Central

We report the annotated genome sequence of Xanthomonas arboricola pv. pruni strain Xap33, isolated from almond leaves showing bacterial spot disease symptoms in Spain. The availability of this genome sequence will aid our understanding of the infection mechanism of this bacterium as well as its relationship to other species of the same genus.

Garita-Cambronero, J.; Sena-Velez, M.; Palacio-Bielsa, A.

2014-01-01

57

[Polyvalence of bacteriophages isolated from fruit trees, affected by bacterial fire blight].  

PubMed

Phage populations appearing as a result of a pathogenic process caused by Erwinia amylovora have been discovered and described. They accompany bacterial fire blight development in the process of quince, pear and apple trees vegetation in Zakarpattya region of Ukraine. Phage isolates of the affected pear and quince include polyvalent virulent phages able to develop on bacterial strains associated with plants--E. amylovora. E. "horticola" and Pantoea agglomerans. E. amylovora isolated from the plant tissues affected by the fire blight and detected at the same time as phages proved to be resistant to the viral infection. It is hard to explain now this characteristic however it was noticed that resistance to phages can change drastically in case of dissociation, lysogenization and mutagenesis of erwinia in laboratory conditions. Phage population study shows that they are heterogeneous and can obviously include not only polyvalent but also specific viruses. Further studies of biology and molecular genetics of pure lines of isolated phages will help to get closer to understanding the place and role of bacteriophages in the complicated network of relations between bacterial pathogens and plants. PMID:23720968

Tovkach, F I; Moroz, S N; Korol', N A; Fa?diuk, Iu V; Kushkina, A I

2013-01-01

58

Oscyp71Z2 involves diterpenoid phytoalexin biosynthesis that contributes to bacterial blight resistance in rice.  

PubMed

Bacterial blight is one of the most destructive rice diseases, which caused by Xoo, and results in yield losses, endangering worldwide food security. Diterpenoid phytoalexins, a type of antimicrobials produced in rice, are critical for resistance to fungal and bacterial pathogens. This article reports the characterization of the cytochrome P450 gene Oscyp71Z2, which belongs to the CYP71Z subfamily. Overexpression of Oscyp71Z2 in rice enhanced resistance to Xoo at the booting stage. The accumulation of phytoalexins was rapidly and strongly induced in Oscyp71Z2-overexpressing plants, and the transcript levels of genes related to the phytoalexin biosynthesis pathway were elevated. The H?O? concentration in Oscyp71Z2-overexpressing plants was reduced in accordance with the increase in ROS-scavenging ability due to the induction of SOD as well as POD and CAT activation. We also showed that suppression of Oscyp71Z2 had no significantly effect on disease resistance to Xoo in rice. These results demonstrated that Oscyp71Z2 plays an important role in bacterial blight resistance by regulating the diterpenoid phytoalexin biosynthesis and H?O? generation. PMID:23602104

Li, Wenqi; Shao, Min; Yang, Jie; Zhong, Weigong; Okada, Kazunori; Yamane, Hisakazu; Qian, Guoliang; Liu, Fengquan

2013-06-01

59

Persistence of Xanthomonas axonopodis pv. vignicola in weeds and crop debris and identification of Sphenostylis stenocarpa as a potential new host  

Microsoft Academic Search

The survival of Xanthomonas axonopodis pv. vignicola, incitant of cowpea bacterial blight and pustule, in residues of infested cowpea leaves was studied in the field in the forest savanna transition zone of South Benin and under variable controlled conditions. The pathogen survived for up to 60 days when placed on the soil surface, and up to 45 days buried at

Rachidatou Sikirou; Kerstin Wydra

2004-01-01

60

Xanthomonas oryzae pathovars: model pathogens of a model crop.  

PubMed

SUMMARY Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola cause bacterial blight and bacterial leaf streak of rice (Oryza sativa), which constrain production of this staple crop in much of Asia and parts of Africa. Tremendous progress has been made in characterizing the diseases and breeding for resistance. X. oryzae pv. oryzae causes bacterial blight by invading the vascular tissue, while X. oryzae pv. oryzicola causes bacterial leaf streak by colonizing the parenchyma. In rice there are 29 major genes for resistance to bacterial blight, but so far only a few quantitative resistance loci for bacterial leaf streak. Over 30 races of X. oryzae pv. oryzae have been reported. Both pathogens exhibit genetic variation among isolates. Mechanisms of pathogenesis and resistance have begun to be elucidated. Members of the AvrBs3/PthA family of transcription activator-like effectors play a major role in the virulence of X. oryzae pv. oryzae and possibly X. oryzae pv. oryzicola. Cloning of six rice resistance genes for bacterial blight and one from maize effective against bacterial leaf streak has uncovered a diversity of structure and function, some shared by genes involved in defence in animals. This article reviews research that spans a century. It also presents a perspective on challenges for sustainable control, and opportunities that interactions of X. oryzae pathovars with rice present as models for understanding fundamental aspects of bacterial pathogenesis of plants and plant disease resistance, as well as other aspects of plant and microbial biology, with implications also for animal innate immunity. PMID:20507449

Niño-Liu, David O; Ronald, Pamela C; Bogdanove, Adam J

2006-09-01

61

Pathogenesis-related proteins in somatic hybrid rice induced by bacterial blight.  

PubMed

Rice bacterial blight, caused by Xanthomonasoryzae pv. Oryzae (Xoo), is one of the most serious rice diseases worldwide. The bacterial blight resistance trait from Oryza meyeriana, a wild rice species, was introduced into an elite japonica rice cultivar using asymmetric somatic hybridization. This study was carried out with the intention of understanding the molecular mechanism of incompatible interaction between Xoo and the stable somatic hybrids by using proteomic analyses. Proteins were extracted from leaves at 24, 48, and 72 h after Xoo inoculation and separated by 2-DE. A total of 77 protein spots changed their intensities significantly (p<0.05) by more than 1.5-fold at least at one time point. Sixty-four protein spots were successfully identified by MS analysis. Among them, 51 were known to be involved in photosynthesis. Up-regulation of Rubisco large subunit (RcbL) small fragments and down-regulation of RcbL big fragments indicated that intact RcbL and RcbL big fragments degraded following Xoo attack, which was further confirmed by Western blot analysis. The differential expression of proteins related to signal transduction, antioxidant defense, photosynthesis, metabolism, and protein turnover during the Xoo infection, suggests the existence of a complex regulatory network in the somatic hybrid rice that increases resistance toward Xoo infection and damage. PMID:18534637

Yu, Chu L; Yan, Shun P; Wang, Chang C; Hu, Hai T; Sun, Wei N; Yan, Cheng Q; Chen, Jian P; Yang, Ling

2008-07-01

62

Differentiation of xanthomonads causing the bacterial leaf spot of poinsettia in China from the pathotype strain of Xanthomonas axonopodis pv. poinsettiicola.  

PubMed

In October 2003, a new bacterial disease with symptoms similar to those caused by Xanthomonas axonopodis pv. poinsettiicola was observed on poinsettia leaves at a flower nursery in Zhejiang Province of China. Three Xanthomonas strains were isolated from infected plants and classified as X. axonopodis. They were differentiated from the pathotype strain LMG849 of X. axonopodis pv. poinsettiicola causing bacterial leaf spot of poinsettia by comparison of pathogenicity, substrate utilization and BOX-PCR genomic fingerprints. PMID:15909325

Li, Bin; Xie, Guan-lin; Swings, J

2005-06-01

63

Abscisic Acid Promotes Susceptibility to the Rice Leaf Blight Pathogen Xanthomonas oryzae pv oryzae by Suppressing Salicylic Acid-Mediated Defenses  

PubMed Central

The plant hormone abscisic acid (ABA) is involved in a wide variety of plant processes, including the initiation of stress-adaptive responses to various environmental cues. Recently, ABA also emerged as a central factor in the regulation and integration of plant immune responses, although little is known about the underlying mechanisms. Aiming to advance our understanding of ABA-modulated disease resistance, we have analyzed the impact, dynamics and interrelationship of ABA and the classic defense hormone salicylic acid (SA) during progression of rice infection by the leaf blight pathogen Xanthomonas oryzae pv. oryzae (Xoo). Consistent with ABA negatively regulating resistance to Xoo, we found that exogenously administered ABA renders rice hypersusceptible to infection, whereas chemical and genetic disruption of ABA biosynthesis and signaling, respectively, led to enhanced Xoo resistance. In addition, we found successful Xoo infection to be associated with extensive reprogramming of ABA biosynthesis and response genes, suggesting that ABA functions as a virulence factor for Xoo. Interestingly, several lines of evidence indicate that this immune-suppressive effect of ABA is due at least in part to suppression of SA-mediated defenses that normally serve to limit pathogen growth. Resistance induced by the ABA biosynthesis inhibitor fluridone, however, appears to operate in a SA-independent manner and is likely due to induction of non-specific physiological stress. Collectively, our findings favor a scenario whereby virulent Xoo hijacks the rice ABA machinery to cause disease and highlight the importance of ABA and its crosstalk with SA in shaping the outcome of rice-Xoo interactions.

Xu, Jing; Audenaert, Kris

2013-01-01

64

Genetic diversity of the conserved motifs of six bacterial leaf blight resistance genes in a set of rice landraces  

PubMed Central

Background Bacterial leaf blight (BLB) caused by the vascular pathogen Xanthomonas oryzae pv. oryzae (Xoo) is one of the most serious diseases leading to crop failure in rice growing countries. A total of 37 resistance genes against Xoo has been identified in rice. Of these, ten BLB resistance genes have been mapped on rice chromosomes, while 6 have been cloned, sequenced and characterized. Diversity analysis at the resistance gene level of this disease is scanty, and the landraces from West Bengal and North Eastern states of India have received little attention so far. The objective of this study was to assess the genetic diversity at conserved domains of 6 BLB resistance genes in a set of 22 rice accessions including landraces and check genotypes collected from the states of Assam, Nagaland, Mizoram and West Bengal. Results In this study 34 pairs of primers were designed from conserved domains of 6 BLB resistance genes; Xa1, xa5, Xa21, Xa21(A1), Xa26 and Xa27. The designed primer pairs were used to generate PCR based polymorphic DNA profiles to detect and elucidate the genetic diversity of the six genes in the 22 diverse rice accessions of known disease phenotype. A total of 140 alleles were identified including 41 rare and 26 null alleles. The average polymorphism information content (PIC) value was 0.56/primer pair. The DNA profiles identified each of the rice landraces unequivocally. The amplified polymorphic DNA bands were used to calculate genetic similarity of the rice landraces in all possible pair combinations. The similarity among the rice accessions ranged from 18% to 89% and the dendrogram produced from the similarity values was divided into 2 major clusters. The conserved domains identified within the sequenced rare alleles include Leucine-Rich Repeat, BED-type zinc finger domain, sugar transferase domain and the domain of the carbohydrate esterase 4 superfamily. Conclusions This study revealed high genetic diversity at conserved domains of six BLB resistance genes in a set of 22 rice accessions. The inclusion of more genotypes from remote ecological niches and hotspots holds promise for identification of further genetic diversity at the BLB resistance genes.

2014-01-01

65

Recessive bacterial leaf blight resistance in rice: complexity, challenges and strategy.  

PubMed

Physical mapping and map-based cloning strategies are routinely used for identification of candidate genes for major qualitative traits in rice. Such strategies have enabled mapping and characterization of dominant bacterial leaf blight (blb) resistance genes, but little progress has been made in case of the recessive resistance genes. Two recent studies on map-based cloning of xa5 and xa13 recessive blb resistance genes identified the general transcription factor IIA gamma subunit (TFIIAgamma) and the nodulin MtN21 as candidates, respectively. Subsequently, two other reports have raised discussion on whether the identified candidates are indeed recessive resistance genes, and are sufficient to confer blb resistance in rice. Based on published evidence, and our extensive in silico analyses of the genomic environment around xa5 and xa13 regions, we propose that the recessive gene mediated resistance mechanism is more complex and might not be governed by a single gene. PMID:17307154

Kottapalli, Kameswara R; Kottapalli, Pratibha; Agrawal, Ganesh K; Kikuchi, Shoshi; Rakwal, Randeep

2007-04-01

66

Disease-reducing effect of Chromolaena odorata extract on sheath blight and other rice diseases.  

PubMed

Sheath blight caused by Rhizoctonia solani (teleomorph: Thanatephorus cucumeris) is a major cause of crop loss in intensive rice production systems. No economically viable control methods have been developed. We screened aqueous extracts of common herbal plants that could reduce sheath blight lesions and found that foliar spraying and seed soaking application of extracts of either fresh or dried leaves of Chromolaena odorata gave up to 68% reduction in sheath blight lesion lengths under controlled and semi-field conditions. The observed reductions were not dependent on growth conditions of C. odorata and rice cultivar. The effect was observed until 21 days after inoculation and was not dependent on microbial activity. Under semi-field conditions, extracts also reduced severity of other important rice diseases, i.e., blast (Pyricularia oryzae) using foliar spray (up to 45%), brown spot (Bipolaris oryzae) using seed treatment (up to 57%), and bacterial blight (Xanthomonas oryzae pv. oryzae) using both application methods (up to 50%). PMID:20839964

Khoa, Nguyen ?ac; Thuy, Phan Thi Hong; Thuy, Tran Thi Thu; Collinge, David B; Jørgensen, Hans Jørgen Lyngs

2011-02-01

67

Genomic and phenotypic characterization of Xanthomonas cynarae sp. nov., a new species that causes bacterial bract spot of artichoke (Cynara scolymus L.)  

Microsoft Academic Search

A bacterial disease of artichoke (Cynara scolymus L.) was first observed in 1954 in Brittany and the Loire Valley, France. This disease causes water-soaked spots on bracts and depreciates marketability of the harvest. Ten strains of the pathogen causing bacterial spot of artichoke, previously identified as a member of the genus Xanthomonas, were characterized and compared with type and pathotype

Louis Gardan; Charles Manceau; Jean-Luc Tanguy; Yves Tirilly

68

Fine mapping of the rice bacterial blight resistance gene Xa-4 and its co-segregation marker  

Microsoft Academic Search

An F2 population developed from theXa-4 near isogenic lines, IR24 and IRBB4, was used for fine mapping of the rice bacterial blight resistance gene,Xa-4. Some restriction fragment length polymorphism (RFLP) markers on the high-density map constructed by Harushima et al. and\\u000a the amplified DNA fragments homologous to the conserved domains of plant disease resistance (R) genes were used to construct

Wenming Wang; Yongli Zhou; Guanhuai Jiang; Bojun Ma; Xuewei Chen; Qi Zhang; Lihuang Zhu; Wenxue Zhai

2000-01-01

69

STS and microsatellite marker-assisted selection for bacterial blight resistance and waxy genes in rice, Oryza sativa L  

Microsoft Academic Search

DNA marker-assisted selection was employed to select Xa-21 bacterial blight resistance and waxy (Wx) genes. Genotypes with both genes were selected from four F2 populations involving indica × indica, indica × intermediate and japonica × indica crosses. With the assistance of PCR marker,\\u000a 13 true breeding lines carrying Xa-21 were identified from F2 generation of IRBB 21 × G 11353

J. Ramalingam; H. S. Basharat; G. Zhang

2002-01-01

70

Pyramiding of two bacterial blight resistance and a semidwarfing gene in Type 3 Basmati using marker-assisted selection  

Microsoft Academic Search

A traditional Type 3 Basmati rice cultivar grown in India is tall and lodges even under low nitrogen fertilizer dose. In addition\\u000a to lodging, it is highly susceptible to several diseases and pests including bacterial blight (BB). BB resistance genes (Xa21 and xa13) and a semidwarfing gene (sd-1) were pyramided in Type 3 Basmati from a rice cultivar PR106-P2 using

Deepak Rajpurohit; Rahul Kumar; Mankesh Kumar; Priyanka Paul; Anjali Awasthi; P. Osman Basha; Anju Puri; Tripta Jhang; Kuldeep Singh; Harcharan Singh Dhaliwal

2011-01-01

71

Inheritance of bacterial blight resistance in the rice cultivar Ajaya and high-resolution mapping of a major QTL associated with resistance.  

PubMed

The cultivar Ajaya (IET 8585) exhibits durable broad-spectrum resistance to bacterial blight (BB) disease of rice and is widely used as a resistance donor. The present study was carried out to decipher the genetics of BB resistance in Ajaya and map the gene(s) conferring resistance. Genetic analysis in the F2 indicated a quantitative/additive nature of resistance governed by two loci with equal effects. Linked marker analysis and allelic tests revealed that one of the resistance genes is xa5. Sequence analysis of a 244 bp region of the second exon of the gene-encoding Transcription factor IIA? (the candidate gene for xa5) confirmed the presence of xa5. Bulked-segregant analysis (BSA) revealed the putative location of the two quantitative trait loci (QTLs)/genes associated with resistance on chromosomes 5 and 8. Composite interval mapping located the first locus on Chr. 5S exactly in the genomic region spanned by xa5 and the second locus (qtl BBR 8.1) on Chr. 8L. Owing to its differential disease reaction with a set of seven hyper-virulent isolates of Xanthomonas oryzae, a map location on Chr. 8L, which was distinct from xa13 and data from allelism tests, the second resistance locus in Ajaya was determined to be novel and was designated as xaAj. A contig map spanning xaAj was constructed in silico and the genomic region was delimited to a 13.5 kb physical interval. In silico analysis of the genomic region spanning xaAj identified four putatively expressed candidate genes, one of which could be involved in imparting BB resistance in Ajaya along with xa5. PMID:22189605

Sujatha, K; Natarajkumar, P; Laha, G S; Mishra, B; Rao, K Srinivasa; Viraktamath, B C; Kirti, P B; Hari, Y; Balachandran, S M; Rajendrakumar, P; Ram, T; Hajira, S K; Madhav, M Sheshu; Neeraja, C N; Sundaram, R M

2011-12-01

72

Metabolite profiles of rice cultivars containing bacterial blight-resistant genes are distinctive from susceptible rice.  

PubMed

The metabolic changes of bacterial blight-resistant line C418/Xa23 generated by molecular marker-assisted selection (n= 12), transgenic variety C418-Xa21 generated by using the Agrobacterium-mediated system (n= 12), and progenitor cultivar C418 (n= 12) were monitored using gas chromatography/mass spectrometry. The validation, discrimination, and establishment of correlative relationships between metabolite signals were performed by cluster analysis, principal component analysis, and partial least squares-discriminant analysis. Significant and unintended changes were observed in 154 components in C418/Xa23 and 48 components in C418-Xa21 compared with C418 (P< 0.05, Fold change > 2.0). The most significant decreases detected (P< 0.001) in both C418/Xa23 and C418-Xa21 were in three amino acids: glycine, tyrosine, and alanine, and four identified metabolites: malic acid, ferulic acid, succinic acid, and glycerol. Linoleic acid was increased specifically in C418/Xa23 which was derived from traditional breeding. This line, possessing a distinctive metabolite profile as a positive control, shows more differences vs. the parental than the transgenic line. Only succinic acid that falls outside the boundaries of natural variability between the two non-transgenic varieties C418 and C418/Xa23 should be further investigated with respect to safety or nutritional impact. PMID:22687573

Wu, Jiao; Yu, Haichuan; Dai, Haofu; Mei, Wenli; Huang, Xin; Zhu, Shuifang; Peng, Ming

2012-08-01

73

Genomic Variability of the Xanthomonas Pathovar mangiferaeindicae, Agent of Mango Bacterial Black Spot  

PubMed Central

The genetic diversity of 138 strains of the Xanthomonas pathovar mangiferaeindicae, which were isolated from three different hosts (mango, ambarella, and pepper tree) in 14 different countries, was assessed with restriction fragment length polymorphism markers. An analysis of patterns obtained by hybridization with an hrp cluster probe from Xanthomonas oryzae pv. oryzae separated 11 of the strains from all of the other strains, which suggested that these 11 strains may not be Xanthomonas pv. mangiferaeindicae strains. Hybridization with an avirulence gene from X. oryzae pv. oryzae and a repetitive DNA fragment from Xanthomonas pv. mangiferaeindicae separated the remaining 127 strains into four groups that were consistent with both geographic and host origins. The group with the greatest diversity consisted of strains from Southeast Asia, where mango originated. Other groups and subgroups contained strains that were either from widely separated countries, which suggested that wide dissemination from a single site occurred, or from localized areas, which suggested that evolution of separate lineages of strains occurred. One group of strains contained only strains isolated from pepper trees in Reunion, indicating that pepper tree may not be an alternate host for Xanthomonas pv. mangiferaeindicae strains.

Gagnevin, L.; Leach, J. E.; Pruvost, O.

1997-01-01

74

Detection of Xanthomonas oryzae pv. oryzae in seeds using a specific TaqMan probe.  

PubMed

Xanthomonas oryzae pv. oryzae is the pathogen that causes bacterial leaf blight in rice. Bacterial leaf blight is the main cause for severe rice underproduction in many countries. However, with conventional methods it is difficult to quickly and reliably distinguish this pathogen from other closely related pathogenic bacteria, especially X. oryzae pv. oryzicola, the causal organism of bacterial leaf streak in rice. We have developed a novel and highly sensitive real-time method for the identification of this specific bacteria based on a TaqMan probe. This probe is designed to recognize the sequence of a putative siderophore receptor gene cds specific to X. oryzae pv. oryzae, and can be identified from either a bacterial culture or naturally infected rice seeds and leaves in only 2 h. The sensitivity of the method is 100 times higher than that of the current polymerase chain reaction (PCR) gel electrophoresis method for diagnosis. PMID:17435277

Zhao, Wen-Jun; Zhu, Shui-Fang; Liao, Xiao-Lan; Chen, Hong-Yun; Tan, Tian-Wei

2007-02-01

75

Genetic and physical analysis of the rice bacterial blight disease resistance locus, Xa21  

Microsoft Academic Search

Nearly isogenic lines (NILs) of rice (Oryza sativa) differing at a locus conferring resistance to the pathogen Xanthomonas oryzae pv. oryzae were surveyed with 123 DNA markers and 985 random primers using restriction fragment length plymorphism (RFLP) and random amplified polymorphic DNA (RAPD) analysis. One chromosome 11 marker (RG103) detected polymorphism between the NILs that cosegregated with Xa21. All other

Pamela C. Ronald; Beng Albano; Rodante Tabien; Lleva Abenes; Kung-sheng Wu; Susan McCouch; Steven D. Tanksley

1992-01-01

76

Application of Antibiotics to the Bacterial Leaf Blight of Rice Plant.  

National Technical Information Service (NTIS)

Permeation of antibiotics in rice plants was found. It seemed that the effect lasted approximately 15 days. From an application of antibiotics after inoculation with blight bacteria, the growth of bacteria was repressed. The effect was best up to 17 days ...

M. Seki T. Mizukami

1966-01-01

77

On the Effects of Some Fungicides Upon the Infection and the Development of Lesions of the Bacterial Leaf Blight of the Rice Plant.  

National Technical Information Service (NTIS)

Fungicides for use against the bacterial leaf blight of the rice plant are still in the experimental stage of development, and it is important that the effectiveness of these chemicals be tested under as near real conditions as possible. From this standpo...

T. Mizukami M. Seki

1968-01-01

78

Studies on the Bacterial Leaf Blight of Rice Plant. On the Distribution of Bacterium Oryzae (Ueda et Ishiyama) Nakata Upon the Rice Plants (Preliminary Report).  

National Technical Information Service (NTIS)

The report contains a study of an outbreak of bacterial leaf blight of rice plants. An investigation of the primary source was made. Knowledge of the distribution of infective agent on rice plants, when the primary infection occurs and before the appearan...

T. Mizukami M. Seki

1966-01-01

79

Improvement of Bacterial Blight Resistance of `Minghui 63', an Elite Restorer Line of Hybrid Rice, by Molecular Marker-Assisted Selection  

Microsoft Academic Search

during the period of extensive cultivation as a result of evolution of the pathogen population. 'Minghui 63' is a restorer line widely used in hybrid rice production A large number of genes for BB resistance have been in China. However, this line has become increasingly susceptible to identified that are available for cultivar improvement bacterial blight (BB), resulting in a

Sheng Chen; X. H. Lin; C. G. Xu; Qifa Zhang

2000-01-01

80

Expression of a bacterial effector, harpin N, causes increased resistance to fire blight in Pyrus communis  

Microsoft Academic Search

The rapid and effective activation of disease resistance responses is essential for plant defense against pathogen attack.\\u000a These responses are initiated when pathogen-derived molecules (elicitors) are recognized by the host. In order to create novel\\u000a mechanisms for fire blight resistance in pear, we have generated transgenic pears expressing the elicitor harpin Nea from Erwinia amylovora under the control of the

M. Malnoy; J. S. Venisse; E. Chevreau

2005-01-01

81

Genome-wide gene responses in a transgenic rice line carrying the maize resistance gene Rxo1 to the rice bacterial streak pathogen, Xanthomonas oryzae pv. oryzicola  

Microsoft Academic Search

BACKGROUND: Non-host resistance in rice to its bacterial pathogen, Xanthomonas oryzae pv. oryzicola (Xoc), mediated by a maize NBS-LRR type R gene, Rxo1 shows a typical hypersensitive reaction (HR) phenotype, but the molecular mechanism(s) underlying this type of non-host resistance remain largely unknown. RESULTS: A microarray experiment was performed to reveal the molecular mechanisms underlying HR of rice to Xoc

Yong-Li Zhou; Mei-Rong Xu; Ming-Fu Zhao; Xue-Wen Xie; Ling-Hua Zhu; Bin-Ying Fu; Zhi-Kang Li

2010-01-01

82

Crystallization and preliminary crystallographic studies of CbsA, a secretory exoglucanase from Xanthomonas oryzae pv. oryzae.  

PubMed

The bacterial pathogen Xanthomonas oryzae pv. oryzae causes bacterial leaf blight, a serious disease of rice. The secreted exoglucanase CbsA is an important virulence factor of this pathogen. It belongs to the glycosyl hydrolase 6 family of proteins based on the carbohydrate-active enzyme (CAZY) classification. In this study, CbsA has been overexpressed, purified and crystallized. The crystal diffracted to a resolution of 1.86?Å and belonged to space group P2(1)2(1)2(1). It contained one monomer per asymmetric unit, with a solvent content of 45.8%. PMID:23027745

Kumar, Sushil; Haque, Asfarul S; Jha, Gopaljee; Sonti, Ramesh V; Sankaranarayanan, Rajan

2012-10-01

83

Mechanistically compatible mixtures of bacterial antagonists improve biological control of fire blight of pear.  

PubMed

Mixtures of biological control agents can be superior to individual agents in suppressing plant disease, providing enhanced efficacy and reliability from field to field relative to single biocontrol strains. Nonetheless, the efficacy of combinations of Pseudomonas fluorescens A506, a commercial biological control agent for fire blight of pear, and Pantoea vagans strain C9-1 or Pantoea agglomerans strain Eh252 rarely exceeds that of individual strains. A506 suppresses growth of the pathogen on floral colonization and infection sites through preemptive exclusion. C9-1 and Eh252 produce peptide antibiotics that contribute to disease control. In culture, A506 produces an extracellular protease that degrades the peptide antibiotics of C9-1 and Eh252. We hypothesized that strain A506 diminishes the biological control activity of C9-1 and Eh252, thereby reducing the efficacy of biocontrol mixtures. This hypothesis was tested in five replicated field trials comparing biological control of fire blight using strain A506 and A506 aprX::Tn5, an extracellular protease-deficient mutant, as individuals and combined with C9-1 or Eh252. On average, mixtures containing A506 aprX::Tn5 were superior to those containing the wild-type strain, confirming that the extracellular protease of A506 diminished the biological control activity of C9-1 and Eh252 in situ. Mixtures of A506 aprX::Tn5 and C9-1 or Eh252 were superior to oxytetracycline or single biocontrol strains in suppressing fire blight of pear. These experiments demonstrate that certain biological control agents are mechanistically incompatible, in that one strain interferes with the mechanism by which a second strain suppresses plant disease. Mixtures composed of mechanistically compatible strains of biological control agents can suppress disease more effectively than individual biological control agents. PMID:20839962

Stockwell, V O; Johnson, K B; Sugar, D; Loper, J E

2011-01-01

84

Genome-wide analysis of defense-responsive genes in bacterial blight resistance of rice mediated by the recessive R gene xa13  

Microsoft Academic Search

Defense responses triggered by dominant and recessive disease resistance ( R) genes are presumed to be regulated by different molecular mechanisms. In order to characterize the genes activated in defense responses against bacterial blight mediated by the recessive R gene xa13, two pathogen-induced subtraction cDNA libraries were constructed using the resistant rice line IRBB13—which carries xa13 —and its susceptible, near-isogenic,

Z. Chu; Y. Ouyang; J. Zhang; H. Yang; S. Wang

2004-01-01

85

Particle-bombardment-mediated co-transformation of elite Chinese rice cultivars with genes conferring resistance to bacterial blight and sap-sucking insect pests  

Microsoft Academic Search

.   Transgenic rice plants were generated using particle bombardment to simultaneously introduce the rice Xa21 gene effective against bacterial blight and the Galanthus nivalis agglutinin (snowdrop lectin; gna) gene effective against sap-sucking insect pests, specifically the brown plant hopper. Using three plasmids, we co-transformed\\u000a 5- to 10-d-old, mature seed-derived rice (Oryza sativa L.) callus of two elite Chinese rice cultivars,

Kexuan Tang; Porntip Tinjuangjun; Yanan Xu; Xiaofen Sun; John A. Gatehouse; Pamela C. Ronald; Huaxiong Qi; Xinggui Lu; Paul Christou; Ajay Kohli

1999-01-01

86

Testifying the rice bacterial blight resistance gene xa5 by genetic complementation and further analyzing xa5 ( Xa5 ) in comparison with its homolog TFIIA?1  

Microsoft Academic Search

The recessive gene xa5 for resistance to bacterial blight resistance of rice is located on chromosome 5, and evidence based on genetic recombination\\u000a has been shown to encode a small subunit of the basal transcription factor IIA (Iyer and McCouch in MPMI 17(12):1348–1354,\\u000a 2004). However, xa5 has not been demonstrated by a complementation test. In this study, we introduced the

Guang-Huai Jiang; Zhi-Hui Xia; Yong-Li Zhou; Jia Wan; Da-Yong Li; Run-Sheng Chen; Wen-Xue Zhai; Li-Huang Zhu

2006-01-01

87

Bacterial leaf blight resistance genes (Xa21, xa13 and xa5) pyramiding through molecular marker assisted selection into rice cultivars  

Microsoft Academic Search

Marker assisted selection was employed to pyramid three bacterial blight resistance genes Xa21, xa13 and xa5 into high yielding susceptible rice cultivars ADT43 and ADT47. With the assistance of PCR markers, homozygous and heterozygous genotypes were identified in F2 generation of two crosses (ADT43 × IRBB60 and ADT47 × IRBB60) and goodness of fit was tested. Eighty nine plants from F3 generation of ADT43 × IRBB60

M. Bharani; P. Nagarajan; R. Rabindran; R. Saraswathi; P. Balasubramanian; J. Ramalingam

2010-01-01

88

Analysis of T-DNA- Xa21 loci and bacterial blight resistance effects of the transgene Xa21 in transgenic rice  

Microsoft Academic Search

The genetic loci and phenotypic effects of the transgene Xa21, a bacterial blight (BB) resistance gene cloned from rice, were investigated in transgenic rice produced through an Agrobacterium-mediated transformation system. The flanking sequences of integrated T-DNAs were isolated from Xa21 transgenic rice lines using thermal asymmetric interlaced PCR. Based on the analysis of 24 T-DNA- Xa21 flanking sequences, T-DNA loci

Wenxue Zhai; Caiyan Chen; Xuefeng Zhu; Xuewei Chen; Dechun Zhang; Xiaobing Li; Lihuang Zhu

2004-01-01

89

Genetic enhancement of host plant-resistance of the Lalat cultivar of rice against bacterial blight employing marker-assisted selection.  

PubMed

To incorporate durable resistance against bacterial blight, a major disease rice, three resistance genes, xa 5, xa13 and Xa21, from IRBB 60 were transferred through marker-assisted backcrossing using RG 556, RG 136 and pTA248 markers linked to the three genes to supplement the Xa4 gene present in Lalat, a popular rice cultivar. Effective selection enabled the transfer in three back-crosses and a generation of selfing and background selection employing morphological and grain quality traits and molecular markers, led to >90 % recovery of the recurrent parental genome. The gene pyramids exhibited high levels of resistance against the pathogen in multi-location evaluation trials conducted over several locations of bacterial blight in India. IL-2 (CRMAS2621-7-1), a gene pyramid, was identified as being promising for several endemic regions of bacterial blight and was released as Improved Lalat in one of the identified regions. The success of the study demonstrates the vast potential of marker-assisted selection for gene stacking and recovery of the parental genome with high precision. PMID:23690028

Dokku, Prasad; Das, K M; Rao, G J N

2013-08-01

90

On the Relation Between the Kinds of Winter Crops and the Occurrence of the Bacterial Leaf Blight of Rice Plant.  

National Technical Information Service (NTIS)

The present report, as a part of the research on the ecology of rice leaf blight, is the result of an investigation to determine whether there was a difference in the occurrence of rice leaf blight on the post-winter crop-fields according to the variety o...

T. Kiryu S. Kuhara

1966-01-01

91

Transgenic rice plants expressing the ferredoxin-like protein (AP1) from sweet pepper show enhanced resistance to Xanthomonas oryzae pv. oryzae.  

PubMed

We used particle bombardment to cotransform mature seed-derived rice callus (Oryza sativa L., ssp. japonica, cv. Eyi 105) with plasmids containing the linked marker genes gusA and hpt, and the ap1 gene encoding an amphipathic protein previously shown to delay the hypersensitive response induced in non-host plants by the pathogen Pseudomonas syringae pv. syringae (Pss). Thirty-two independent lines of transgenic rice plants were regenerated, and 27 of these lines carried all three transgenes as shown by molecular analysis. A bacterial blight inoculation test was carried out on ten lines. In each case, plants carrying the ap1 gene showed enhanced resistance to Xanthomonas oryzae pv. oryzae (Xoo) race 6 at various levels. This suggests the ap1 gene could be a useful candidate for genetic engineering strategies in rice to provide bacterial blight resistance. PMID:11297801

Tang, K; Sun, X; Hu, Q; Wu, A; Lin, C -H.; Lin, H -J.; Twyman, R M.; Christou, P; Feng, T

2001-04-01

92

Close linkage of a blast resistance gene, Pias(t), with a bacterial leaf blight resistance gene, Xa1-as(t), in a rice cultivar 'Asominori'.  

PubMed

It has long been known that a bacterial leaf blight-resistant line in rice obtained from a crossing using 'Asominori' as a resistant parent also has resistance to blast, but a blast resistance gene in 'Asominori' has not been investigated in detail. In the present study, a blast resistance gene in 'Asominori', tentatively named Pias(t), was revealed to be located within 162-kb region between DNA markers YX4-3 and NX4-1 on chromosome 4 and to be linked with an 'Asominori' allele of the bacterial leaf blight resistance gene Xa1, tentatively named Xa1-as(t). An 'Asominori' allele of Pias(t) was found to be dominant and difference of disease severity between lines having the 'Asominori' allele of Pias(t) and those without it was 1.2 in disease index from 0 to 10. Pias(t) was also closely linked with the Ph gene controlling phenol reaction, suggesting the possibility of successful selection of blast resistance using the phenol reaction. Since blast-resistant commercial cultivars have been developed using 'Asominori' as a parent, Pias(t) is considered to be a useful gene in rice breeding for blast resistance. PMID:23341747

Endo, Takashi; Yamaguchi, Masayuki; Kaji, Ryota; Nakagomi, Koji; Kataoka, Tomomori; Yokogami, Narifumi; Nakamura, Toshiki; Ishikawa, Goro; Yonemaru, Jun-Ichi; Nishio, Takeshi

2012-12-01

93

Functional analysis of the aroC gene encoding chorismate synthase from Xanthomonas oryzae pathovar oryzae.  

PubMed

Xanthomonas oryzae pv. oryzae causes bacterial blight in rice, and this bacterial blight has been widely found in the major rice-growing areas. We constructed a transposon mutagenesis library of X. oryzae pv. oryzae and identified a mutant strain (KXOM9) that is deficient for pigment production and virulence. Furthermore, the KXOM9 mutant was unable to grow in minimal medium lacking aromatic amino acids. Thermal asymmetric interlaced-PCR and sequence analysis of KXOM9 revealed that the transposon was inserted into the aroC gene, which encodes a chorismate synthase in various bacterial pathogens. In planta growth assays revealed that bacterial growth of the KXOM9 mutant in rice leaves was severely reduced. Genetic complementation of this mutant with a 7.9-kb fragment containing aroC restored virulence, pigmentation, and prototrophy. These results suggest that the aroC gene plays a crucial role in the growth, attenuation of virulence, and pigment production of X. oryzae pv. oryzae. PMID:22169355

Song, Eun-Sung; Park, Young-Jin; Noh, Tae-Hwan; Kim, Yeong-Tae; Kim, Jeong-Gu; Cho, Heejung; Lee, Byoung-Moo

2012-06-20

94

Mutagenesis of 18 type III effectors reveals virulence function of XopZ(PXO99) in Xanthomonas oryzae pv. oryzae.  

PubMed

Xanthomonas oryzae pv. oryzae depends on a type III secretion system (T3SS) to translocate effectors into host cells for its ability to cause bacterial blight of rice. All type III (T3) effectors with known function in X. oryzae pv. oryzae belong to a family of transcription activator-like (TAL) effectors. However, other, non-TAL-related effector genes are present in the genome, although their role in virulence and their mode of action have yet to be elucidated. Here, we report the generation of mutants for 18 non-TAL T3 effector genes and the identification of one that contributes to the virulence of strain PXO99(A). XopZ(PXO99) encodes a predicted 1,414-amino-acid protein of unknown function. PXO99(A) contains two identical copies of the gene due to a duplication of 212 kb in the genome. Strains with knockout mutations of one copy of XopZ(PXO99) did not exhibit any visible virulence defect. However, strains with mutations in both copies of XopZ(PXO99) displayed reduced virulence in terms of lesion length and bacterial multiplication compared with PXO99(A). The introduction of one genomic copy of XopZ(PXO99) restores the mutant to full virulence. Transient expression of XopZ(PXO99) in Nicotiana benthamiana leaves suppresses host basal defense, which is otherwise induced by a T3SS mutant of PXO99(A), suggesting a role for XopZ(PXO99) in interfering with host innate immunity during X. oryzae pv. oryzae infection. XopZ(PXO99)-related genes are found in all Xanthomonas spp. whose genomic sequences have been determined, suggesting a conserved role for this type of effector gene in pathogenesis of Xanthomonas spp. Our results indicate that XopZ(PXO99) encodes a novel T3 effector and contributes virulence to X. oryzae pv. oryzae strains for bacterial blight of rice. PMID:20521952

Song, Congfeng; Yang, Bing

2010-07-01

95

A mutation in the Xanthomonas oryzae pv. oryzae wxoD gene affects xanthan production and chemotaxis.  

PubMed

Xanthomonas oryzae pv. oryzae causes bacterial blight in rice (Oryza sativa L.). The effect of a mutation in the wxoD gene, that encodes a putative O-antigen acetylase, on xanthan production as well as bacterial chemotaxis was investigated. The mutation increased xanthan production by 52 %. The mutant strain was non-motile on semi-solid agar swarm plates. In addition, several genes involved in chemotaxis, including the cheW, cheV, cheR, and cheD genes, were down-regulated by a mutation in the wxoD gene. Thus, the mutation in the wxoD gene affects xanthan production as well as bacterial chemotaxis. However, the wxoD gene is not essential for the virulence of X. oryzae. PMID:23881323

Nam, Jae-Young; Kim, Hong-Il; Lee, Chang-Soo; Park, Young-Jin

2013-11-01

96

Role of the FeoB protein and siderophore in promoting virulence of Xanthomonas oryzae pv. oryzae on rice.  

PubMed

Xanthomonas oryzae pv. oryzae causes bacterial blight, a serious disease of rice. Our analysis revealed that the X. oryzae pv. oryzae genome encodes genes responsible for iron uptake through FeoB (homolog of the major bacterial ferrous iron transporter) and a siderophore. A mutation in the X. oryzae pv. oryzae feoB gene causes severe virulence deficiency, growth deficiency in iron-limiting medium, and constitutive production of a siderophore. We identified an iron regulated xss gene cluster, in which xssABCDE (Xanthomonas siderophore synthesis) and xsuA (Xanthomonas siderophore utilization) genes encode proteins involved in biosynthesis and utilization of X. oryzae pv. oryzae siderophore. Mutations in the xssA, xssB, and xssE genes cause siderophore deficiency and growth restriction under iron-limiting conditions but are virulence proficient. An xsuA mutant displayed impairment in utilization of native siderophore, suggesting that XsuA acts as a specific receptor for a ferric-siderophore complex. Histochemical and fluorimetric assays with gusA fusions indicate that, during in planta growth, the feoB gene is expressed and that the xss operon is not expressed. This study represents the first report describing a role for feoB in virulence of any plant-pathogenic bacterium and the first functional characterization of a siderophore-biosynthetic gene cluster in any xanthomonad. PMID:20382771

Pandey, Alok; Sonti, Ramesh V

2010-06-01

97

Xa3, conferring resistance for rice bacterial blight and encoding a receptor kinase-like protein, is the same as Xa26.  

PubMed

Xa3-mediated resistance for rice bacterial blight, one of the most devastating rice diseases worldwide, is influenced by genetic background. Xa3 is genetically tightly linked to Xa26, another gene for bacterial blight resistance. Xa26 belongs to a clustered multigene family encoding leucine-rich repeat (LRR) receptor kinase-like proteins. To characterize Xa3, we fine mapped it using a population segregating for only one resistance gene and markers developed from Xa26 family. Genetic analysis showed that Xa3 co-segregated with the marker of Xa26 gene and segregated from the markers of other members of Xa26 family. DNA fingerprinting revealed that rice line IRBB3 carrying Xa3 had the same copy numbers of Xa26 family members as rice line Minghui 63 carrying Xa26. Phenotypic comparison showed that all the rice lines carrying either Xa3 or Xa26 developed dark brown deposition at the border between the lesion caused by incompatible-pathogen infection and health leaf tissue, while other rice lines did not show this dark brown deposition in either incompatible or compatible interactions. These results suggest that Xa3 and Xa26 is the same gene. We name it Xa3/Xa26 to indicate the relationship between the two gene symbols. The putative encoding products of Xa3/Xa26 and its susceptible allele xa3/xa26 shared 92% sequence identity. The sequence difference occurred in the LRR domains, specifically at the solvent-exposed amino acid residues, might be the major cause that differentiates the resistant and susceptible proteins. PMID:16932879

Xiang, Yi; Cao, Yinglong; Xu, Caiguo; Li, Xianghua; Wang, Shiping

2006-11-01

98

In silico insight into two rice chromosomal regions associated with submergence tolerance and resistance to bacterial leaf blight and gall midge.  

PubMed

Plants respond to both biotic and abiotic stresses through a common signaling system to provide defense and protection against many adverse environments. Many genes/QTLs governing resistance to both biotic and abiotic stresses have been studied and mapped in rice. Sub1, a major QTL for submergence tolerance is collocated with a gene Gm1 for gall midge resistance on chromosome 9 (Region 1). Likewise a bigger region on chromosome 5 (Region 2) has a minor QTL for submergence tolerance collocated with genes for bacterial blight resistance. Utilizing the rice sequence and annotation data (TIGR) and rice genome annotation project database (RAP-DB), we wanted to know the kinds of genes underlying these two chromosomal regions where genes/QTL governing tolerance to both biotic and abiotic stresses are collocated. We also analyzed the pattern of distribution of these genes across the BAC/PAC clones spanning the region so that candidate genes can be short listed for a functional analysis. Genes known to have a role in submergence tolerance were present in both the regions. Region 1, had a unique transcription factor like trithorax protein, which is a positional candidate gene for submergence tolerance. Pyruvate decarboxylase (PDC) gene for alcohol fermentation and cation transporting ATPase c-terminal domain are likely candidates for submergence QTL in Region 2. Genes such as SKP1 and elicitor induced cytochrome p450 associated with tissue necrosis and insect resistance were found in region 1. Multiple copies of ORFs for signal transduction proteins, transcription factors, genes for systemic acquired resistance, Ubiquitin proteins and pathogen elicitor identification and degrading proteins were located as a cluster in Region 2, where bacterial blight resistance genes mapped. Validation of the data obtained from TIGR with other databases (RAP and KOME) confirmed our findings. The functional role of some of the significant candidate genes needs to be established. Allele/gene specific markers can then be designed for use in MAS thus enhancing durable tolerance/resistance faster. PMID:16887318

Kottapalli, Kameswara Rao; Sarla, N; Kikuchi, Shoshi

2006-01-01

99

Testifying the rice bacterial blight resistance gene xa5 by genetic complementation and further analyzing xa5 (Xa5) in comparison with its homolog TFIIAgamma1.  

PubMed

The recessive gene xa5 for resistance to bacterial blight resistance of rice is located on chromosome 5, and evidence based on genetic recombination has been shown to encode a small subunit of the basal transcription factor IIA (Iyer and McCouch in MPMI 17(12):1348-1354, 2004). However, xa5 has not been demonstrated by a complementation test. In this study, we introduced the dominant allele Xa5 into a homozygous xa5-line, which was developed from a cross between IRBB5 (an indica variety with xa5) and Nipponbare (a japonica variety with Xa5). Transformation of Xa5 and subsequent segregation analysis confirmed that xa5 is a V39E substitution variant of the gene for TFIIAgamma on chromosome 5 (TFIIAgamma5 or Xa5). The rice has an addition gene for TFIIAgamma exists on chromosome 1 (TFIIAgamma1). Analysis of the expression patterns of Xa5 (TFIIAgamma5)/xa5 and TFIIAgamma1 revealed that both the genes are constitutively expressed in different rice organs. However, no expression of TFIIAgamma1 could be detected in the panicle by reverse transcriptase-polymerase chain reaction. To compare the structural difference between the Xa5/xa5 and TFIIAgamma1 proteins, 3-D structures were predicted using computer-aided modeling techniques. The modeled structures of Xa5 (xa5) and TFIIAgamma1 fit well with the structure of TFIIA small subunit from human, suggesting that they may all act as a small subunit of TFIIA. The E39V substitution in the xa5 protein occurs in the alpha-helix domain, a supposed conservative substitutable site, which should not affect the basal transcription function of TFIIAgamma. The structural analysis indicates that xa5 and Xa5 potentially retain their basic transcription factor function, which, in turn, may mediate the novel pathway for bacterial blight resistance and susceptibility, respectively. PMID:16614777

Jiang, Guang-Huai; Xia, Zhi-Hui; Zhou, Yong-Li; Wan, Jia; Li, Da-Yong; Chen, Run-Sheng; Zhai, Wen-Xue; Zhu, Li-Huang

2006-04-01

100

A proteomic study of Xanthomonas oryzae pv. oryzae in rice xylem sap.  

PubMed

Xanthomonas oryzae pv. oryzae (Xoo) is the second most important rice pathogen, causing a disease called bacterial leaf blight. Xoo colonizes and infects the vascular tissue resulting in tissue necrosis and wilting causing significant yield losses worldwide. In this study Xoo infected vascular fluid (xylem sap) was recovered and analyzed for secreted Xoo proteins. Three independent experiments resulted in the identification of 324 different proteins, 64 proteins were found in all three samples which included many of the known virulence-associated factors. In addition, 10 genes encoding for the identified proteins were inactivated and one mutant displayed statistically a significant loss in virulence when compared to the wild type Xoo, suggesting that a new virulence-associated factor has been revealed. The usefulness of this approach in understanding the lifestyle and unraveling the virulence-associated factors of phytopathogenic vascular bacteria is discussed. PMID:22835776

González, Juan F; Degrassi, Giuliano; Devescovi, Giulia; De Vleesschauwer, David; Höfte, Monica; Myers, Michael P; Venturi, Vittorio

2012-10-22

101

Photocatalysis: effect of light-activated nanoscale formulations of TiO(2) on Xanthomonas perforans and control of bacterial spot of tomato.  

PubMed

Protection of crops from bacterial diseases presents a continuing challenge, mandating the development of novel agents and approaches. Photocatalysis is a process where chemically reactive oxygen species are catalytically generated by certain minerals in the presence of light. These reactive oxygen species have the capacity to destroy organic molecular structures critical to pathogen viability. In this study, the antibacterial potential of photocatalytic nanoscale titanium dioxide (TiO(2)), nanoscale TiO(2) doped (incorporation of other materials into the structure of TiO(2)) with silver (TiO(2)/Ag), and nanoscale TiO(2) doped with zinc (TiO(2)/Zn; AgriTitan) was evaluated against Xanthomonas perforans, the causal agent for bacterial spot disease of tomato. In vitro experiments on photocatalytic activity and dose dependency were conducted on glass cover slips coated with the nanoscale formulations by adding a known population of X. perforans strain Xp-F7 and illuminating the cover slips under a visible light source. TiO(2)/Ag and TiO(2)/Zn had high photocatalytic activity against X. perforans within 10 min of exposure to 3 × 10(4) lux. Greenhouse studies on naturally and artificially infected transplants treated with TiO(2)/Zn at ?500 to 800 ppm significantly reduced bacterial spot severity compared with untreated and copper control. Protection was similar to the grower standard, copper + mancozeb. The use of TiO(2)/Zn at ?500 to 800 ppm significantly reduced disease incidence in three of the four trials compared with untreated and copper control, and was comparable to or better than the grower standard. The treatments did not cause any adverse effects on tomato yield in any of the field trials. PMID:23190116

Paret, Mathews L; Vallad, Gary E; Averett, Devron R; Jones, Jeffrey B; Olson, Stephen M

2013-03-01

102

Comparison of the genomes of two Xanthomonas pathogens with differing host specificities  

Microsoft Academic Search

The genus Xanthomonas is a diverse and economically important group of bacterial phytopathogens, belonging to the gamma-subdivision of the Proteobacteria. Xanthomonas axonopodis pv. citri (Xac) causes citrus canker, which affects most commercial citrus cultivars, resulting in significant losses worldwide. Symptoms include canker lesions, leading to abscission of fruit and leaves and general tree decline. Xanthomonas campestris pv. campestris (Xcc) causes

A. C. R. da Silva; J. A. Ferro; F. C. Reinach; C. S. Farah; L. R. Furlan; R. B. Quaggio; C. B. Monteiro-Vitorello; M. A. Van Sluys; N. F. Almeida; L. M. C. Alves; A. M. do Amaral; M. C. Bertolini; L. E. A. Camargo; G. Camarotte; F. Cannavan; J. Cardozo; F. Chambergo; L. P. Ciapina; R. M. B. Cicarelli; L. L. Coutinho; J. R. Cursino-Santos; H. El-Dorry; J. B. Faria; A. J. S. Ferreira; R. C. C. Ferreira; M. I. T. Ferro; E. F. Formighieri; M. C. Franco; C. C. Greggio; A. Gruber; A. M. Katsuyama; L. T. Kishi; R. P. Leite; E. G. M. Lemos; M. V. F. Lemos; E. C. Locali; A. M. B. N. Madeira; N. M. Martinez-Rossi; E. C. Martins; J. Meidanis; C. F. M. Menck; C. Y. Miyaki; D. H. Moon; L. M. Moreira; M. T. M. Novo; V. K. Okura; M. C. Oliveira; V. R. Oliveira; H. A. Pereira; A. Rossi; J. A. D. Sena; C. Silva; R. F. de Souza; L. A. F. Spinola; M. A. Takita; E. C. Teixeira; R. I. D. Tezza; M. Trindade dos Santos; D. Truffi; S. M. Tsai; F. F. White; J. C. Setubal; J. P. Kitajima

2002-01-01

103

Multiple adhesin-like functions of Xanthomonas oryzae pv. oryzae are involved in promoting leaf attachment, entry, and virulence on rice.  

PubMed

Xanthomonas oryzae pv. oryzae is the causal agent of bacterial blight of rice. We have used enhanced green fluorescent protein-tagged X. oryzae pv. oryzae cells in conjunction with confocal microscopy to monitor the role of several adhesin-like functions in bacterial adhesion to leaf surface and early stages of leaf entry. Mutations in genes encoding either the Xanthomonas adhesin-like protein A (XadA) or its paralog, Xanthomonas adhesin-like protein B (XadB), as well as the X. oryzae pv. oryzae homolog of Yersinia autotransporter-like protein H (YapH), exhibit deficiencies in leaf attachment or entry. A mutation in the X. oryzae pv. oryzae pilQ gene, which is predicted to encode the type IV pilus secretin, appears to have no effect on leaf attachment or entry. The xadA- mutant is deficient in the ability to cause disease following surface inoculation while the XadB, YapH, and PilQ functions are less important than XadA for this process. The xadA- and xadB- mutants have no effect on virulence following wound inoculation whereas the yapH- and pilQ- mutants are always virulence deficient following wound inoculation. Overall, these results indicate that multiple adhesin-like functions are involved in promoting virulence of X. oryzae pv. oryzae, with preferential involvement of individual functions at different stages of the disease process. PMID:19061404

Das, Amit; Rangaraj, Nandini; Sonti, Ramesh V

2009-01-01

104

Further Characterization of Xanthomonas campestris pv. mang feraeindicae  

Microsoft Academic Search

The classification of the causal organism of bacterial black spot of mango has long been an issue. A total of 15 strains, including the type strain, were subjected to 156 tests used for species identification of members of Xanthomonas and Pseudomonas. The current classification of this organism as Xanthomonas campestris pv. mangiferaeindicae (ISPP list, 1980) is confirmed, and the description

B. Q. MANICOM; F. M. WALLIS

1984-01-01

105

Population typing of the causal agent of cassava bacterial blight in the Eastern Plains of Colombia using two types of molecular markers  

PubMed Central

Background Molecular typing of pathogen populations is an important tool for the development of effective strategies for disease control. Diverse molecular markers have been used to characterize populations of Xanthomonas axonopodis pv. manihotis (Xam), the main bacterial pathogen of cassava. Recently, diversity and population dynamics of Xam in the Colombian Caribbean coast were estimated using AFLPs, where populations were found to be dynamic, diverse and with haplotypes unstable across time. Aiming to examine the current state of pathogen populations located in the Colombian Eastern Plains, we also used AFLP markers and we evaluated the usefulness of Variable Number Tandem Repeats (VNTRs) as new molecular markers for the study of Xam populations. Results The population analyses showed that AFLP and VNTR provide a detailed and congruent description of Xam populations from the Colombian Eastern Plains. These two typing strategies clearly separated strains from the Colombian Eastern Plains into distinct populations probably because of geographical distance. Although the majority of analyses were congruent between typing markers, fewer VNTRs were needed to detect a higher number of genetic populations of the pathogen as well as a higher genetic flow among sampled locations than those detected by AFLPs. Conclusions This study shows the advantages of VNTRs over AFLPs in the surveillance of pathogen populations and suggests the implementation of VNTRs in studies that involve large numbers of Xam isolates in order to obtain a more detailed overview of the pathogen to improve the strategies for disease control.

2014-01-01

106

Combining in silico mapping and arraying: an approach to identifying common candidate genes for submergence tolerance and resistance to bacterial leaf blight in rice.  

PubMed

Several genes/QTLs governing resistance/tolerance to abiotic and biotic stresses have been reported and mapped in rice. A QTL for submergence tolerance was found to be co-located with a major QTL for broad-spectrum bacterial leaf blight (bs-blb) resistance on the long arm of chromosome 5 in indica cultivars FR13A and IET8585. Using the Nipponbare (japonica) and 93-11 (indica) genome sequences, we identified, in silico, candidate genes in the chromosomal region [Kottapalli et al. (2006)]. Transcriptional profiling of FR13A and IET8585 using a rice 22K oligo array validated the above findings. Based on in silico analysis and arraying we observed that both cultivars respond to the above stresses through a common signaling system involving protein kinases, adenosine mono phosphate kinase, leucine rich repeat, PDZ/DHR/GLGF, and response regulator receiver protein. The combined approaches suggest that transcription factor EREBP on long arm of chromosome 5 regulates both submergence tolerance and blb resistance. Pyruvate decarboxylase and alcohol dehydrogenase, co-located in the same region, are candidate downstream genes for submergence tolerance at the seedling stage, and t-snare for bs-blb resistance. We also detected up-regulation of novel defense/stress-related genes including those encoding fumaryl aceto acetate (FAA) hydrolase, scramblase, and galactose oxidase, in response to the imposed stresses. PMID:18182856

Kottapalli, Kameswara Rao; Satoh, Kouji; Rakwal, Randeep; Shibato, Junko; Doi, Koji; Nagata, Toshifumi; Kikuchi, Shoshi

2007-12-31

107

Do transgenesis and marker-assisted backcross breeding produce substantially equivalent plants? - A comparative study of transgenic and backcross rice carrying bacterial blight resistant gene Xa21  

PubMed Central

Background The potential impact of genetically modified (GM) plants on human health has attracted much attention worldwide, and the issue remains controversial. This is in sharp contrast to the broad acceptance of plants produced by breeding through Marker Assisted Backcrossing (MAB). Results Focusing on transcriptome variation and perturbation to signaling pathways, we assessed the molecular and biological aspects of substantial equivalence, a general principle for food safety endorsed by the Food and Agricultural Organization and the World Health Organization, between a transgenic crop and a plant from MAB breeding. We compared a transgenic rice line (DXT) and a MAB rice line (DXB), both of which contain the gene Xa21 providing resistance to bacterial leaf blight. By using Next-Generation sequencing data of DXT, DXB and their parental line (D62B), we compared the transcriptome variation of DXT and DXB. Remarkably, DXT had 43% fewer differentially expressed genes (DEGs) than DXB. The genes exclusively expressed in DXT and in DXB have pathogen and stress defense functions. Functional categories of DEGs in DXT were comparable to that in DXB, and seven of the eleven pathways significantly affected by transgenesis were also perturbed by MAB breeding. Conclusions These results indicated that the transgenic rice and rice from MAB breeding are substantial equivalent at the transcriptome level, and paved a way for further study of transgenic rice, e.g., understanding the chemical and nutritional properties of the DEGs identified in the current study.

2013-01-01

108

Construction and characterization of a copy number-inducible fosmid library of Xanthomonas oryzae pathovar oryzae MAFF311018.  

PubMed

A fosmid library of Xanthomonas oryzae pathovar oryzae MAFF311018 (T7174), the causative agent of bacterial blight on rice, was constructed and characterized. The average fosmid library insert size was >34kb, and 967 clones were uniquely positioned on its sequenced genome. The entire Xoo MAFF311018 genome was covered by end-sequenced clones with at least 5kb of overlap. The fosmid vector contains both the single-copy Escherichia coli fertility factor origin, which enhances fosmid stability, and the multi-copy IncP? origin, allowing amplification of copy number upon induction with l-arabinose. Real-time quantitative PCR on 12 randomly picked fosmid library clones determined that fosmid copy number increased 8- to 58-fold after 5hour induction. This library provides a new resource for complementation experiments and systematic functional studies in Xoo and related species. PMID:24835513

Ichida, Hiroyuki; Sun, Xiaoying; Imanaga, Suguru; Ito, Yasuhiro; Yoneyama, Katsuyoshi; Kuwata, Shigeru; Ohsato, Shuichi

2014-08-01

109

Comparative Transcriptome Profiling Reveals Different Expression Patterns in Xanthomonas oryzae pv. oryzae Strains with Putative Virulence-Relevant Genes  

PubMed Central

Xanthomonas oryzae pv. oryzae (Xoo) is the causal agent of rice bacterial blight, which is a major rice disease in tropical Asian countries. An attempt has been made to investigate gene expression patterns of three Xoo strains on the minimal medium XOM2, PXO99 (P6) and PXO86 (P2) from the Philippines, and GD1358 (C5) from China, which exhibited different virulence in 30 rice varieties, with putative virulence factors using deep sequencing. In total, 4,781 transcripts were identified in this study, and 1,151 and 3,076 genes were differentially expressed when P6 was compared with P2 and with C5, respectively. Our results indicated that Xoo strains from different regions exhibited distinctly different expression patterns of putative virulence-relevant genes. Interestingly, 40 and 44 genes involved in chemotaxis and motility exhibited higher transcript alterations in C5 compared with P6 and P2, respectively. Most other genes associated with virulence, including exopolysaccharide (EPS) synthesis, Hrp genes and type III effectors, including Xanthomonas outer protein (Xop) effectors and transcription activator-like (TAL) effectors, were down-regulated in C5 compared with P6 and P2. The data were confirmed by real-time quantitative RT-PCR, tests of bacterial motility, and enzyme activity analysis of EPS and xylanase. These results highlight the complexity of Xoo and offer new avenues for improving our understanding of Xoo-rice interactions and the evolution of Xoo virulence.

Zhang, Fan; Du, Zhenglin; Huang, Liyu; Cruz, Casiana Vera; Zhou, Yongli; Li, Zhikang

2013-01-01

110

Genomic comparison between Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola, using suppression-subtractive hybridization.  

PubMed

Xanthomonas oryzae pathovar oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc) cause bacterial diseases in rice: leaf blight and leaf streak, respectively. Although both the Asian and the African strains of Xoo induce similar symptoms, they are genetically different, with the African Xoo strains being more closely related to the Asian Xoc. To identify the sequences responsible for differences between African and Asian Xoo strains and their relatedness to Xoc strains, a suppression-subtractive hybridization (SSH) procedure was performed, using the African Xoo MAI1 strain as a tester and the Philippine Xoo PXO86 strain and Xoc BLS256 strain as drivers. A nonredundant set of 134 sequences from MAI1 was generated. Several DNA fragments isolated by SSH were similar to genes of unknown function, hypothetical proteins, genes related to the type III secretion system, and other pathogenicity-related genes. The specificity of various fragments was validated by Southern blot analysis. SSH sequences were compared with several xanthomonad genomes. In silico analysis revealed SSH sequences as specific to strain MAI1, revealing their potential as specific markers for further epidemiological and diagnostic studies. SSH proved to be a useful method for rapidly identifying specific genes among closely related X. oryzae strains. PMID:20487016

Soto-Suárez, Mauricio; González, Carolina; Piégu, Benoît; Tohme, Joe; Verdier, Valérie

2010-07-01

111

Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A  

PubMed Central

Background Xanthomonas oryzae pv. oryzae causes bacterial blight of rice (Oryza sativa L.), a major disease that constrains production of this staple crop in many parts of the world. We report here on the complete genome sequence of strain PXO99A and its comparison to two previously sequenced strains, KACC10331 and MAFF311018, which are highly similar to one another. Results The PXO99A genome is a single circular chromosome of 5,240,075 bp, considerably longer than the genomes of the other strains (4,941,439 bp and 4,940,217 bp, respectively), and it contains 5083 protein-coding genes, including 87 not found in KACC10331 or MAFF311018. PXO99A contains a greater number of virulence-associated transcription activator-like effector genes and has at least ten major chromosomal rearrangements relative to KACC10331 and MAFF311018. PXO99A contains numerous copies of diverse insertion sequence elements, members of which are associated with 7 out of 10 of the major rearrangements. A rapidly-evolving CRISPR (clustered regularly interspersed short palindromic repeats) region contains evidence of dozens of phage infections unique to the PXO99A lineage. PXO99A also contains a unique, near-perfect tandem repeat of 212 kilobases close to the replication terminus. Conclusion Our results provide striking evidence of genome plasticity and rapid evolution within Xanthomonas oryzae pv. oryzae. The comparisons point to sources of genomic variation and candidates for strain-specific adaptations of this pathogen that help to explain the extraordinary diversity of Xanthomonas oryzae pv. oryzae genotypes and races that have been isolated from around the world.

Salzberg, Steven L; Sommer, Daniel D; Schatz, Michael C; Phillippy, Adam M; Rabinowicz, Pablo D; Tsuge, Seiji; Furutani, Ayako; Ochiai, Hirokazu; Delcher, Arthur L; Kelley, David; Madupu, Ramana; Puiu, Daniela; Radune, Diana; Shumway, Martin; Trapnell, Cole; Aparna, Gudlur; Jha, Gopaljee; Pandey, Alok; Patil, Prabhu B; Ishihara, Hiromichi; Meyer, Damien F; Szurek, Boris; Verdier, Valerie; Koebnik, Ralf; Dow, J Maxwell; Ryan, Robert P; Hirata, Hisae; Tsuyumu, Shinji; Won Lee, Sang; Ronald, Pamela C; Sonti, Ramesh V; Van Sluys, Marie-Anne; Leach, Jan E; White, Frank F; Bogdanove, Adam J

2008-01-01

112

Xanthan production by Xanthomonas albilineans infecting sugarcane stalks.  

PubMed

Xanthomonas albilineans is the causal organism of leaf scald, a bacterial vascular disease of sugarcane. Xanthomonas may invade the parenchyma between the bundles and cause reddened pockets of gum, identified as a xanthan-like polysaccharide. Since xanthan contains glucuronic acid, the ability of Xanthomonas to produce an active UDP glucose dehydrogenase is often seen as a virulence factor. X. albilineans axenically cultured did not secrete xanthans to Willbrink liquid media, but the use of inoculated sugarcane tissues for producing and characterizing xanthans has been required. A hypothesis about the role of sugarcane polysaccharides to assure the production of bacterial xanthan is discussed. PMID:17646030

Blanch, María; Legaz, María-Estrella; Vicente, Carlos

2008-03-13

113

The Xanthomonas oryzae pv. oryzae eglXoB endoglucanase gene is required for virulence to rice.  

PubMed

Xanthomonas oryzae pv. oryzae (Xoo) is the causal agent of bacterial leaf blight, a serious disease of rice worldwide. A Tn5-based transposon randomly insertional mutant library was previously constructed. By screening mutants against susceptible rice cultivar IR24, four mutants were identified with reduced virulence on rice plants and were found to have Tn5 transposon inserted at an endo-1,4-beta-D glucanase (E.C. 3.2.1.4) gene eglXoB. In planta growth analysis indicated that multiplication of the mutants in rice leaves was greatly reduced comparing to the Xoo wild-type strain. Reverse transcriptase polymerase chain reaction (RT-PCR) showed that the expression of eglXoB was induced in planta. Genetic complementation of these mutants with a functional eglXoB gene restored both virulence and in planta growth, suggesting that the eglXoB gene was required for virulence. Ectopic expression of eglXoB in Escherichia coli demonstrated its endoglucanase activity. Otherwise, the growth of the mutants in synthetic medium containing cellulose as the sole sugar source was not affected. Data of this study suggested eglXoB gene is required for pathogenesis of rice bacterial blight disease. PMID:17326805

Hu, Jun; Qian, Wei; He, Chaozu

2007-04-01

114

Measurement of haplotypic variation in Xanthomonas oryzae pv. oryzae within a single field by rep-PCR and RFLP analyses  

SciTech Connect

The haplotypic variation of Xanthomonas oryzae pv. oryzae in a farmer;s field that had endemic bacterial blight in the Philippines was evaluated at a single time. The genomic structure of the field population was analyzed by repetitive sequence-based polymerase chain reaction with oligonucleotide primers corresponding to interspersed repeated sequences in prokaryotic genomes and restriction fragment length polymorphism (RFLP) with the insertion sequence IS1113. The techniques and specific probes and primers were selected because they grouped consistently into the same lineages a set of 30 selected X. oryzae pv. oryzae strains that represented the four distinct RFLP lineages found in the Philippines did. Strains (155) were systematically collected from a field planted to rice cv. Sinandomeng, which is susceptible to the indigenous pathogen population. Two of the four Philippine lineages, B and C, which included race 2 and races 3 and 9, respectively, were detected in the field. Lineage C was the predominant population (74.8%). The haplotypic diversities of 10 of the 25 blocks were significantly greater than the total haplotypic diversity of the collection in the entire field; however, between individual blocks the haplotypic diversities were not significantly different. Haplo-types from both lineages were distributed randomly across the field. Analysis of genetic diversity at the microgeographic scale provided insights into the finer scale of variation of X. oryzae pv. oryzae, which are useful in designing experiments to study effects of host resistance on the population structure of the bacterial blight pathogen. 46 refs., 4 figs., 2 tabs.

Vera Cruz, C.M.; Leach, J.E. [Kansas State Univ., Manhattan, KS (United States); Ardales, E.Y.; Talag, J. [International Rice Research Institute, Manila (Philippines)] [and others

1996-12-01

115

A bacterial artificial chromosome library for 'Jefferson' hazelnut and identification of clones associated with eastern filbert blight resistance and pollen-stigma incompatibility.  

PubMed

European hazelnut (Corylus avellana L.) is the only economically important nut crop in the family Betulaceae. Because of its small genome size (~385 Mb / 1C), relatively short life cycle, availability of a dense linkage map, and amenability to transformation by Agrobacterium, the European hazelnut could serve as a model plant for the Betulaceae. Here we report the construction of a bacterial artificial chromosome (BAC) library for 'Jefferson' hazelnut using the cloning enzyme MboI and the vector pECBAC1 (BamHI site). The library consists of 39,936 clones arrayed in 104,384-well microtitre plates with a mean insert size of 117 kb. The genomic coverage of the library is estimated to be about 12 genome equivalents. This library provides a valuable resource for the map-based cloning of two important genes, the resistance gene from 'Gasaway' that confers resistance to eastern filbert blight caused by the fungus Anisogramma anomala (Peck) E. Müller and the S locus that controls pollen-stigma incompatibility. Fine-resolution mapping near the two loci was carried out using random amplified polymorphic DNA (RAPD) and simple sequence repeat (SSR) markers. Fine mapping at the disease resistance locus showed that markers W07-375 and X01-825 flanked the resistance locus at distances of 0.06 and 0.05 cM, respectively. The S locus is flanked by markers 204-950 and KG819-200 at distances of 0.14 and 0.24 cM, respectively. Assuming that 1 cM corresponds to a physical distance of 430 kb, it will take approximately two to three chromosome walks to assemble BAC contigs that span both loci. PMID:21936690

Sathuvalli, Vidyasagar R; Mehlenbacher, Shawn A

2011-10-01

116

Comparative genomic and transcriptome analyses of pathotypes of Xanthomonas citri subsp. citri provide insights into mechanisms of bacterial virulence and host range  

PubMed Central

Background Citrus bacterial canker is a disease that has severe economic impact on citrus industries worldwide and is caused by a few species and pathotypes of Xanthomonas. X. citri subsp. citri strain 306 (XccA306) is a type A (Asiatic) strain with a wide host range, whereas its variant X. citri subsp. citri strain Aw12879 (Xcaw12879, Wellington strain) is restricted to Mexican lime. Results To characterize the mechanism for the differences in host range of XccA and Xcaw, the genome of Xcaw12879 that was completed recently was compared with XccA306 genome. Effectors xopAF and avrGf1 are present in Xcaw12879, but were absent in XccA306. AvrGf1 was shown previously for Xcaw to cause hypersensitive response in Duncan grapefruit. Mutation analysis of xopAF indicates that the gene contributes to Xcaw growth in Mexican lime but does not contribute to the limited host range of Xcaw. RNA-Seq analysis was conducted to compare the expression profiles of Xcaw12879 and XccA306 in Nutrient Broth (NB) medium and XVM2 medium, which induces hrp gene expression. Two hundred ninety two and 281 genes showed differential expression in XVM2 compared to in NB for XccA306 and Xcaw12879, respectively. Twenty-five type 3 secretion system genes were up-regulated in XVM2 for both XccA and Xcaw. Among the 4,370 common genes of Xcaw12879 compared to XccA306, 603 genes in NB and 450 genes in XVM2 conditions were differentially regulated. Xcaw12879 showed higher protease activity than XccA306 whereas Xcaw12879 showed lower pectate lyase activity in comparison to XccA306. Conclusions Comparative genomic analysis of XccA306 and Xcaw12879 identified strain specific genes. Our study indicated that AvrGf1 contributes to the host range limitation of Xcaw12879 whereas XopAF contributes to virulence. Transcriptome analyses of XccA306 and Xcaw12879 presented insights into the expression of the two closely related strains of X. citri subsp. citri. Virulence genes including genes encoding T3SS components and effectors are induced in XVM2 medium. Numerous genes with differential expression in Xcaw12879 and XccA306 were identified. This study provided the foundation to further characterize the mechanisms for virulence and host range of pathotypes of X. citri subsp. citri.

2013-01-01

117

Development of multilocus variable-number tandem repeat analysis (MLVA) for Xanthomonas arboricola pathovars.  

PubMed

Xanthomonas arboricola is an important bacterial species, the pathovars of which are responsible for bacterial blight diseases on stone fruit, hazelnut, Persian walnut, poplar, strawberry, poinsettia and banana. In this study, we evaluated variable number tandem repeats (VNTR) as a molecular typing tool for assessing the genetic diversity within pathovars of X. arboricola. Screening of the X. arboricola pv. pruni genome sequence (CFBP5530 strain) predicted 51 candidate VNTR loci. Primer pairs for polymerase chain reaction (PCR) amplification of all 51 loci were designed, and their discriminatory power was initially evaluated with a core collection of 8 X. arboricola strains representative of the different pathovars. Next, the 26 polymorphic VNTR loci present in all strains were used for genotyping a collection of 61 strains. MLVA is a typing method that clearly differentiates X. arboricola strains. The MLVA scheme described in this study is a rapid and reliable molecular typing tool that can be used for further epidemiological studies of bacterial diseases caused by X. arboricola pathovars. PMID:24631558

Cesbron, Sophie; Pothier, Joel; Gironde, Sophie; Jacques, Marie-Agnès; Manceau, Charles

2014-05-01

118

Corn blight watch experiment  

NASA Technical Reports Server (NTRS)

The corn blight problem is briefly described how the experiment was organized and conducted, the effect of the blight on the 1971 crop, and some conclusions that may be drawn as a result of the experiment. The information is based on preliminary reports of the Corn Blight Watch Steering Committee and incorporates much illustrative material conceived at Purdue University.

1974-01-01

119

Ketoglutarate transport protein KgtP is secreted through the type III secretion system and contributes to virulence in Xanthomonas oryzae pv. oryzae.  

PubMed

The phytopathogenic prokaryote Xanthomonas oryzae pv. oryzae is the causal agent of bacterial leaf blight (BB) of rice and utilizes a type III secretion system (T3SS) to deliver T3SS effectors into rice cells. In this report, we show that the ketoglutarate transport protein (KgtP) is secreted in an HpaB-independent manner through the T3SS of X. oryzae pv. oryzae PXO99(A) and localizes to the host cell membrane for ?-ketoglutaric acid export. kgtP contained an imperfect PIP box (plant-inducible promoter) in the promoter region and was positively regulated by HrpX and HrpG. A kgtP deletion mutant was impaired in bacterial virulence and growth in planta; furthermore, the mutant showed reduced growth in minimal media containing ?-ketoglutaric acid or sodium succinate as the sole carbon source. The reduced virulence and the deficiency in ?-ketoglutaric acid utilization by the kgtP mutant were restored to wild-type levels by the presence of kgtP in trans. The expression of OsIDH, which is responsible for the synthesis of ?-ketoglutaric acid in rice, was enhanced when KgtP was present in the pathogen. To our knowledge, this is the first report demonstrating that KgtP, which is regulated by HrpG and HrpX and secreted by the T3SS in Xanthomonas oryzae pv. oryzae, transports ?-ketoglutaric acid when the pathogen infects rice. PMID:22685129

Guo, Wei; Cai, Lu-Lu; Zou, Hua-Song; Ma, Wen-Xiu; Liu, Xi-Ling; Zou, Li-Fang; Li, Yu-Rong; Chen, Xiao-Bin; Chen, Gong-You

2012-08-01

120

PCR-Based Assay for Rapid and Specific Detection of the New Xanthomonas oryzae pv. oryzae K3a Race Using an AFLP-Derived Marker.  

PubMed

We describe the development of a polymerase chain reaction method for the rapid, precise, and specific detection of the Xanthomonas oryzae pv. oryzae (Xoo) K3a race, the bacterial blight pathogen of rice. The specific primer set was designed to amplify a genomic locus derived from an amplified fragment length polymorphism specific for the K3a race. The 1,024 bp amplicon was generated from the DNA of 13 isolates of Xoo K3a races out of 119 isolates of other races, pathovars, and Xanthomonas species. The assay does not require isolated bacterial cells or DNA extraction. Moreover, the pathogen was quickly detected in rice leaf 2 days after inoculation with bacteria and at a distance of 8 cm from the rice leaf 5 days later. The results suggest that this PCR-based assay will be a useful and powerful tool for the detection and identification of the Xoo K3a race in rice plants as well as for early diagnosis of infection in paddy fields. PMID:24572275

Song, Eun-Sung; Kim, Song-Yi; Noh, Tae-Hwan; Cho, Heejung; Chae, Soo-Cheon; Lee, Byoung-Moo

2014-06-28

121

Novel Roles of SoxR, a Transcriptional Regulator from Xanthomonas campestris, in Sensing Redox-Cycling Drugs and Regulating a Protective Gene That Have Overall Implications for Bacterial Stress Physiology and Virulence on a Host Plant  

PubMed Central

In Xanthomonas campestris pv. campestris, SoxR likely functions as a sensor of redox-cycling drugs and as a transcriptional regulator. Oxidized SoxR binds directly to its target site and activates the expression of xcc0300, a gene that has protective roles against the toxicity of redox-cycling compounds. In addition, SoxR acts as a noninducible repressor of its own expression. X. campestris pv. campestris requires SoxR both for protection against redox-cycling drugs and for full virulence on a host plant. The X. campestris model of the gene regulation and physiological roles of SoxR represents a novel variant of existing bacterial SoxR models.

Mahavihakanont, Aekkapol; Charoenlap, Nisanart; Namchaiw, Poommaree; Eiamphungporn, Warawan; Chattrakarn, Sorayut

2012-01-01

122

Studies on the Bacterial Leaf Blight Region of Rice Plant from the Viewpoint of Soil and Manure. I. On the Outline of Soils.  

National Technical Information Service (NTIS)

Heretofore in the usual locality where wet-land rice leaf blight occurs, flooded areas were considered the normal condition. However, above and beyond this, in Saga prefecture, there were some areas where the usual outbreak occur. Considering this in the ...

M. Yoshino M. Nakahara

1966-01-01

123

Small, stable shuttle vectors for use in Xanthomonas.  

PubMed

Plasmids from three broad-host-range (bhr) incompatibility groups (Inc) were evaluated for use as cloning vectors in Xanthomonas campestris pv. malvacearum (Xcm), the causal agent of bacterial blight of cotton. The IncP vectors pLAFR3 and pVK102 could not be introduced into Xcm at a significant frequency (less than 1 x 10(-10] and IncQ vectors such as pKT210 were unstable in their maintenance and tended to delete cloned inserts. IncW vectors such as pSa747 also were lost readily from Xcm in the absence of selection pressure. We constructed two plasmids, pUFR027 and a cosmid derivative, pUFR034, which have proven useful as cloning vectors in Xcm and other xanthomonads. They contain the pSa origin of DNA replication, the partition locus parA from the Agrobacterium plasmid pTAR, a neomycin-resistance selection marker, and alacZ alpha cassette with cloning sites. pUFR027 is 9.3 kb, and pUFR034 is 8.7 kb in size. They can be mobilized by conjugation into Xcm at a frequency of approx. 1 x 10(-6) per recipient and are maintained stably (greater than 95% retention over 36 generations without selection pressure) in both broth culture and in planta. The plasmids were introduced and maintained stably in X. citri, and in X. campestris pathovars campestris, citrumelo, vesicatoria and translucens, and were moderately stable in X. phaseoli. No effects of the plasmids on pathogenicity have been observed. PMID:2341039

DeFeyter, R; Kado, C I; Gabriel, D W

1990-03-30

124

Multiplex nested PCR for detection of Xanthomonas axonopodis pv. allii from onion seeds.  

PubMed

Bacterial blight of onion (BBO) is an emerging disease that is present in many onion-producing areas. The causal agent, Xanthomonas axonopodis pv. allii, is seed transmitted. A reliable and sensitive diagnostic tool for testing seed health is needed. Detection of X. axonopodis pv. allii was achieved using a multiplex nested PCR assay developed using two randomly amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) sequences corresponding to pilus assembly genes (pilW and pilX) and the avrRxv gene, respectively. The multiplex nested PCR was used with a large collection of X. axonopodis pv. allii strains pathogenic to onion and/or other Allium species isolated in different regions of the world. The internal primers used in the multiplex PCR assay directed amplification for all 86 X. axonopodis pv. allii strains tested, resulting in a 401-bp amplicon, a 444- to 447-bp amplicon, or both amplicons, depending on the strain. No amplification was obtained for 41 unrelated phytopathogenic bacteria and for 14 saprophytic bacteria commonly isolated from onion leaves and seeds. Most Xanthomonas strains also did not produce amplicons, except for nine strains classified in X. axonopodis genetic subgroup 9.1 or 9.2 and not pathogenic to onion. Nevertheless, sequence signatures distinguished most of these strains from X. axonopodis pv. allii. The assay detected X. axonopodis pv. allii in seed lots with contamination levels of 5 x 10(2) CFU g(-1) or higher. The sensitivity threshold of the multiplex nested PCR assay was found to be 1 infected seed in 27,340 seeds. This PCR-based assay should be useful for certifying that commercial seed lots are free of this important seed-borne pathogen. PMID:20208024

Robène-Soustrade, Isabelle; Legrand, Delphine; Gagnevin, Lionel; Chiroleu, Frédéric; Laurent, Annie; Pruvost, Olivier

2010-05-01

125

MultiLocus Sequence Analysis- and Amplified Fragment Length Polymorphism-based characterization of xanthomonads associated with bacterial spot of tomato and pepper and their relatedness to Xanthomonas species.  

PubMed

MultiLocus Sequence Analysis (MLSA) and Amplified Fragment Length Polymorphism (AFLP) were used to measure the genetic relatedness of a comprehensive collection of xanthomonads pathogenic to solaneous hosts to Xanthomonas species. The MLSA scheme was based on partial sequences of four housekeeping genes (atpD, dnaK, efp and gyrB). Globally, MLSA data unambiguously identified strains causing bacterial spot of tomato and pepper at the species level and was consistent with AFLP data. Genetic distances derived from both techniques showed a close relatedness of (i) X. euvesicatoria, X. perforans and X. alfalfae and (ii) X. gardneri and X. cynarae. Maximum likelihood tree topologies derived from each gene portion and the concatenated data set for species in the X. campestris 16S rRNA core (i.e. the species cluster comprising all strains causing bacterial spot of tomato and pepper) were not congruent, consistent with the detection of several putative recombination events in our data sets by several recombination search algorithms. One recombinant region in atpD was identified in most strains of X. euvesicatoria including the type strain. PMID:22336775

Hamza, A A; Robene-Soustrade, I; Jouen, E; Lefeuvre, P; Chiroleu, F; Fisher-Le Saux, M; Gagnevin, L; Pruvost, O

2012-05-01

126

XadM, a novel adhesin of Xanthomonas oryzae pv. oryzae, exhibits similarity to Rhs family proteins and is required for optimum attachment, biofilm formation, and virulence.  

PubMed

By screening a transposon-induced mutant library of Xanthomonas oryzae pv. oryzae, the bacterial blight pathogen of rice, we have identified a novel 5.241-kb open reading frame (ORF) named xadM that is required for optimum virulence and colonization. This ORF encodes a protein, XadM, of 1,746 amino acids that exhibits significant similarity to Rhs family proteins. The XadM protein contains several repeat domains similar to a wall-associated surface protein of Bacillus subtilis, which has been proposed to be involved in carbohydrate binding. The role of XadM in X. oryzae pv. oryzae adhesion was demonstrated by the impaired ability of an xadM mutant strain to attach and form biofilms. Furthermore, we show that XadM is exposed on the cell surface and its expression is regulated by growth conditions and plays an important role in the early attachment and entry inside rice leaves. Interestingly, XadM homologs are present in several diverse bacteria, including many Xanthomonas spp. and animal-pathogenic bacteria belonging to Burkholderia spp. This is the first report of a role for XadM, an Rhs family protein, in adhesion and virulence of any pathogenic bacteria. PMID:22571817

Pradhan, Binod B; Ranjan, Manish; Chatterjee, Subhadeep

2012-09-01

127

Development and validation of a Xanthomonas axonopodis pv. citri DNA microarray platform (XACarray) generated from the shotgun libraries previously used in the sequencing of this bacterial genome  

PubMed Central

Background From shotgun libraries used for the genomic sequencing of the phytopathogenic bacterium Xanthomonas axonopodis pv. citri (XAC), clones that were representative of the largest possible number of coding sequences (CDSs) were selected to create a DNA microarray platform on glass slides (XACarray). The creation of the XACarray allowed for the establishment of a tool that is capable of providing data for the analysis of global genome expression in this organism. Findings The inserts from the selected clones were amplified by PCR with the universal oligonucleotide primers M13R and M13F. The obtained products were purified and fixed in duplicate on glass slides specific for use in DNA microarrays. The number of spots on the microarray totaled 6,144 and included 768 positive controls and 624 negative controls per slide. Validation of the platform was performed through hybridization of total DNA probes from XAC labeled with different fluorophores, Cy3 and Cy5. In this validation assay, 86% of all PCR products fixed on the glass slides were confirmed to present a hybridization signal greater than twice the standard deviation of the deviation of the global median signal-to-noise ration. Conclusions Our validation of the XACArray platform using DNA-DNA hybridization revealed that it can be used to evaluate the expression of 2,365 individual CDSs from all major functional categories, which corresponds to 52.7% of the annotated CDSs of the XAC genome. As a proof of concept, we used this platform in a previously work to verify the absence of genomic regions that could not be detected by sequencing in related strains of Xanthomonas.

2010-01-01

128

Stationary-phase variation due to transposition of novel insertion elements in Xanthomonas oryzae pv. oryzae.  

PubMed

Xanthomonas oryzae pv. oryzae causes bacterial leaf blight, a serious disease of rice. Spontaneous mutants which are deficient for virulence and extracellular polysaccharide (Eps) production accumulate in large numbers in stationary-phase cultures of this bacterium, a phenomenon which we have called stationary-phase variation. A clone (pSD1) carrying the Eps biosynthetic gene (gum) cluster of X. oryzae pv. oryzae restored Eps production and virulence to several spv (for stationary-phase variation) mutants. Data from localized recombination analysis, Southern hybridization, PCR amplification, and sequence analysis showed that the mutations are due to insertion of either one of two novel endogenous insertion sequence (IS) elements, namely, ISXo1 and ISXo2, into gumM, the last gene of the gum gene cluster. The results of Southern analysis indicate the presence of multiple copies of both IS elements in the genome of X. oryzae pv. oryzae. These results demonstrate the role of IS elements in stationary-phase variation in X. oryzae pv. oryzae. PMID:10940020

Rajeshwari, R; Sonti, R V

2000-09-01

129

PhyA, a secreted protein of Xanthomonas oryzae pv. oryzae, is required for optimum virulence and growth on phytic acid as a sole phosphate source.  

PubMed

Xanthomonas oryzae pv. oryzae causes bacterial leaf blight, a serious disease of rice. We have identified a novel virulence deficient mutant (BXO1691) of X. oryzae pv. oryzae that has a Tn5 insertion in an open reading frame (phyA; putative phytase A) encoding a 373-amino acid (aa) protein containing a 28-aa predicted signal peptide. Extracellular protein profiles revealed that a 38-kDa band is absent in phyA mutants as compared with phyA+ strains. A BLAST search with phyA and its deduced polypeptide sequence indicated significant similarity with conserved hypothetical proteins in Xanthomonas axonopodis pv. citri and Xanthomonas campestris pv. campestris and limited homology to secreted phytases of Bacillus species. Homology modeling with a Bacillus phytase as the template suggests that the PhyA protein has a similar six-bladed beta-propeller architecture and exhibits conservation of certain critical active site residues. Phytases are enzymes that are involved in degradation of phytic acid (inositol hexaphosphate), a stored form of phosphate in plants. The phyA mutants exhibit a growth deficiency in media containing phytic acid as a sole phosphate source. Exogenous phosphate supplementation promotes migration of phyA X. oryzae pv. oryzae mutants in rice leaves. These results suggest that the virulence deficiency of phyA mutants is, at least in part, due to inability to use host phytic acid as a source of phosphate. phyA-like genes have not been previously reported to be involved in the virulence of any plant pathogenic bacterium. PMID:14601665

Chatterjee, Subhadeep; Sankaranarayanan, Rajan; Sonti, Ramesh V

2003-11-01

130

Crystallization and preliminary crystallographic studies of LipA, a secretory lipase/esterase from Xanthomonas oryzae pv. oryzae.  

PubMed

Xanthomonas oryzae pv. oryzae is the causal agent of bacterial leaf blight, a serious disease of rice. Several enzymes that are secreted through the type II secretion system of this bacterium play an important role in the plant-microbe interaction, being important for virulence and also being able to induce potent host defence responses. One of these enzymes is a secretory lipase/esterase, LipA, which shows a very weak homology to other bacterial lipases and gives a positive tributyrin plate assay. In this study, LipA was purified from the culture supernatant of an overexpressing clone of X. oryzae pv. oryzae and two types of crystals belonging to space group C2 but with two different unit-cell parameters were obtained using the hanging-drop vapour-diffusion method. Type I crystals diffract to a maximum resolution of 1.89 A and have unit-cell parameters a = 93.1, b = 62.3, c = 66.1 A, beta = 90.8 degrees . Type II crystals have unit-cell parameters a = 103.6, b = 54.6, c = 66.3 A, beta = 92.6 degrees and diffract to 1.86 A. Solvent-content analysis shows one monomer in the asymmetric unit in both the crystal forms. PMID:17671374

Aparna, Gudlur; Chatterjee, Avradip; Jha, Gopaljee; Sonti, Ramesh V; Sankaranarayanan, Rajan

2007-08-01

131

Zinc uptake regulator (zur) gene involved in zinc homeostasis and virulence of Xanthomonas oryzae pv. oryzae in rice.  

PubMed

Xanthomonas oryzae pv. oryzae causes bacterial leaf blight, one of the most widespread and destructive bacterial diseases in rice. In order to understand the gene of zinc uptake regulator (zur) involved in virulence of the pathogen in rice, we generated a mutant OSZRM by homologous suicide plasmid integration. The mutant failed to grow in NYGB medium supplemented with Zn(2+) or Fe(3+) at a concentration of 500 muM or 6 mM, whereas the wild-type strain grew well at the same conditions. The zur mutant was hypersensitive to hydrogen peroxide and exhibited reduction catalase activity and the production of extracellular polysaccharide (EPS). Interestingly, the mutant showed a reduction in virulence on rice but still kept triggering hypersensitive response (HR) in tobacco. When the mutant was complemented with the zur gene, the response was recovered to wild-type. These results suggested that zur gene is a functional member of the Zur regulator family that controls zinc and iron homeostasis, oxidative stress, and EPS production, which is necessary for virulence in X. oryzae pv. oryzae. PMID:17375359

Yang, Wanfeng; Liu, Yan; Chen, Lei; Gao, Tongchun; Hu, Baishi; Zhang, Dongfang; Liu, Fengquan

2007-04-01

132

Identification and molecular characterization of twin-arginine translocation system (Tat) in Xanthomonas oryzae pv. oryzae strain PXO99.  

PubMed

Xanthomonas oryzae pv. oryzae causes bacterial leaf blight, one of the most widespread and destructive bacterial diseases in rice. This study identified and characterized the contribution of the twin-arginine translocation (Tat) pathway to motility, chemotaxis, extracellular polysaccharide (EPS) production and virulence in X. oryzae pv. oryzae strain PXO99. The tatC disruption mutant (strain TCM) of strain PXO99 were generated, and confirmed both by PCR and Southern blotting. Strain PXO99 cells were highly motile in NYGB 0.3% soft agar plate. In contrast, the tatC mutation impaired motility. Furthermore, strain TCM cells lacked detectable flagella and exhibited almost no chemotaxis toward glucose under aerobic conditions, indicating that the Tat secretion pathway contributed to flagellar biogenesis and chemotactic responses. It was also observed that strain TCM exhibited a reductive production of extracellular polysaccharide (EPS) and a significant reduction of virulence on rice plants when compared with the wild type PXO99. However, the tatC mutation in strain PXO99 did not affect growth rate and the ability to induce hypersensitive response (HR) in nonhost tobacco (Nicotiana tabacum L. cv. Samsun). Our findings indicated that the Tat system of X. oryzae pv. oryzae played an important role in the pathogen's virulence. PMID:18998110

Chen, Lei; Hu, Baishi; Qian, Guoliang; Wang, Chen; Yang, Wanfeng; Han, Zhicheng; Liu, Fengquan

2009-02-01

133

Constitutive heterologous expression of avrXa27 in rice containing the R gene Xa27 confers enhanced resistance to compatible Xanthomonas oryzae strains.  

PubMed

The vascular pathogen Xanthomonas oryzae pv. oryzae (Xoo) and nonvascular pathogen Xanthomonas oryzae pv. oryzicola (Xoc) cause bacterial blight (BB) and bacterial leaf streak (BLS) diseases of rice, respectively. We have previously identified the avirulence gene avrXa27 from Xoo PXO99(A), which specifically induces the expression of the rice resistance gene Xa27, ultimately leading to resistance against BB disease in rice. In this study, we have generated a transgenic rice line (L24) that expresses avrXa27 constitutively under the control of the PR1 promoter, and have examined its role in the host-pathogen interaction. L24 is not more susceptible to BB, indicating that avrXa27 does not contribute to virulence. AvrXa27 retains avirulence activity in L24 and, after crossing with a line containing Xa27, progeny display phenotypic changes including inhibition of tillering, delay in flowering, stiff leaves, early leaf senescence and activation of pathogenesis-related (PR) genes. On challenge with a variety of compatible strains of Xoo and Xoc strain L8, lines with both avrXa27 and Xa27 also show enhanced resistance to bacterial infection. The induction of Xa27 and subsequent inhibition of Xoc growth in Xa27 plants are observed on inoculation with Xoc L8 harbouring avrXa27. Our results indicate that the heterologous expression of avrXa27 in rice containing Xa27 triggers R gene-specific resistance and, at the same time, confers enhanced resistance to compatible strains of Xoo and Xoc. The expression of AvrXa27 and related proteins in plants has the potential to generate broad resistance in plants. PMID:19161350

Tian, Dongsheng; Yin, Zhongchao

2009-01-01

134

Functional interplay between two Xanthomonas oryzae pv,. oryzae secretion systems in modulating virulence on rice.  

PubMed

The type II (T2S) and type III (T3S) secretion systems are important for virulence of Xanthomonas oryzae pv. oryzae, causal agent of bacterial leaf blight of rice. The T3S of gram-negative bacterial plant pathogens has been shown to suppress host defense responses, including programmed cell death reactions, whereas the T2S is involved in secreting cell-wall-degrading enzymes. Here, we show that a T3S-deficient (T3S-) mutant of X. oryzae pv. oryzae can induce a basal plant defense response seen as callose deposition, immunize rice against subsequent X. oryzae pv. oryzae infection, and cause cell-death-associated nuclear fragmentation. A T2S- T3S- double mutant exhibited a substantial reduction in the ability to evoke these responses. We purified two major effectors of the X. oryzae pv. oryzae T2S and characterized them to be a cellulase (ClsA) and a putative cellobiosidase (CbsA). The purified ClsA, CbsA, and lipase/esterase (LipA; a previously identified T2S effector) proteins induced rice defense responses that were suppressible by X. oryzae pv. oryzae in a T3S-dependent manner. These defense responses also were inducible by the products of the action of these purified proteins on rice cell walls. We further show that a CbsA- mutant or a ClsA- LipA- double mutant are severely virulence deficient. These results indicate that the X. oryzae pv. oryzae T2S secretes important virulence factors, which induce innate rice defense responses that are suppressed by T3S effectors to enable successful infection. PMID:17249420

Jha, Gopaljee; Rajeshwari, Ramanan; Sonti, Ramesh V

2007-01-01

135

Comparison of Genomes of Three Xanthomonas oryzae Bacteriophages  

PubMed Central

Background Xp10 and OP1 are phages of Xanthomonas oryzae pv. oryzae (Xoo), the causative agent of bacterial leaf blight in rice plants, which were isolated in 1967 in Taiwan and in 1954 in Japan, respectively. We recently isolated the Xoo phage Xop411. Results The linear Xop411 genome (44,520 bp, 58 ORFs) sequenced here is 147 bp longer than that of Xp10 (60 ORFs) and 735 bp longer than that of OP1 (59 ORFs). The G+C contents of OP1 (51%) and Xop411 and Xp10 (52% each) are less than that of the host (65%). The 9-bp 3'-overhangs (5'-GGACAGTCT-3') in Xop411 and Xp10 are absent from OP1. More of the deduced Xop411 proteins share higher degrees of identity with Xp10 than with OP1 proteins, while the right end of the genomes of Xp10 and OP1, containing all predicted promoters, share stronger homology. Xop411, Xp10, and OP1 contain 8, 7, and 6 freestanding HNH endonuclease genes, respectively. These genes can be classified into five groups depending on their possession of the HNH domain (HNN or HNH type) and/or AP2 domain in intact or truncated forms. While the HNN-AP2 type endonuclease genes dispersed in the genome, the HNH type endonuclease genes, each with a unique copy, were located within the same genome context. Mass spectrometry and N-terminal sequencing showed nine Xop411 coat proteins, among which three were identified, six were assigned as coat proteins (4) and conserved phage proteins (2) in Xp10. The major coat protein, in which only the N-terminal methionine is removed, appears to exist in oligomeric forms containing 2 to 6 subunits. The three phages exhibit different patterns of domain duplication in the N-terminus of the tail fiber, which are involved in determination of the host range. Many short repeated sequences are present in and around the duplicated domains. Conclusion Geographical separation may have confined lateral gene transfer among the Xoo phages. The HNN-AP2 type endonucleases were more likely to transfer their genes randomly in the genome and may degenerate after successful transmission. Some repeated sequences may be involved in duplication/loss of the domains in the tail fiber genes.

Lee, Chia-Ni; Hu, Rouh-Mei; Chow, Teh-Yuan; Lin, Juey-Wen; Chen, Hui-Yi; Tseng, Yi-Hsiung; Weng, Shu-Fen

2007-01-01

136

Two coiled-coil regions of Xanthomonas oryzae pv. oryzae harpin differ in oligomerization and hypersensitive response induction.  

PubMed

Hpa1(Xoo) (harpin) is a type III secreted protein of the rice blight bacterial pathogen Xanthomonas oryzae pv. oryzae that elicits a hypersensitive response (HR) in nonhost tobacco. Hpa1(Xoo) is predicted to contain two potential coiled-coil (CC) regions, one at the N-terminus with a high probability of formation, and one at the C-terminus with a lower probability of formation. We constructed several CC-equivalent peptides by a chemosynthetic method, and investigated the structure-function of the predicted Hpa1(Xoo) CC regions, using biophysical and biochemical approaches. Both peptides elicited an HR in tobacco. Mutant versions of the N- and C-terminal peptides that were predicted to disrupt or favor CC formation were generated. The resulting altered HR activity and oligomerization indicated that the N-terminal CC region is essential for eliciting HR, but the C-terminus is not. The results also indicate that a 14-residue fragment (LDQLLCQLISALLQ) within the N-terminal CC region is a minimal and independent functional element for HR-induction in tobacco leaves. We propose that HR-induction requires a specific oligomerization of the CC regions of Hpa1(Xoo). PMID:20532949

Ji, Zhaolin; Song, Congfeng; Lu, Xuzhong; Wang, Jinsheng

2011-02-01

137

Virulence analysis and gene expression profiling of the pigment-deficient mutant of Xanthomonas oryzae pathovar oryzae.  

PubMed

Xanthomonas oryzae pathovar oryzae (Xoo) causes bacterial blight disease in rice (Oryza sativa L.). For a study of function, we constructed a random insertion mutant library of Xoo using a Tn5 transposon and isolated the mutant strain (M11; aroK::Tn5) that had extremely low pigment production. In addition, M11 had decreased virulence against the susceptible rice cultivar IR24. Thermal asymmetric interlaced-PCR and sequence analysis of M11 revealed that the transposon was inserted into the aroK gene (which encodes a shikimate kinase). To investigate the expression patterns of the pigment- and virulence-deficient mutant, DNA microarray analysis was performed. In addition, reverse transcriptase-PCR was performed to confirm the expression levels of several genes, including the aro genes of the aroK mutant. Our findings reveal that several crucial genes for virulence, including cellulase and hypersensitive response and pathogenicity (hrp) genes, were regulated by mutations in the aroK gene. PMID:20132309

Park, Young-Jin; Song, Eun-Sung; Noh, Tae-Hwan; Kim, Hyungtae; Yang, Kap-Seok; Hahn, Jang-Ho; Kang, Hee-Wan; Lee, Byoung-Moo

2009-12-01

138

Fire Blight: Its Nature, Prevention, and Control. A Practical Guide to Integrated Disease Management.  

National Technical Information Service (NTIS)

Fire blight is a serious bacterial disease of apples, pears, quinces, and several plants in the rose family (Rosaceae), including hawthorn, cotoneaster, firethorn (pyracantha), mountainash, blackberry, and raspberry. Outbreaks of this disease are usually ...

T. van der Zwet S. V. Beer

1992-01-01

139

XA27 depends on an amino-terminal signal-anchor-like sequence to localize to the apoplast for resistance to Xanthomonas oryzae pv oryzae.  

PubMed

The rice (Oryza sativa) gene Xa27 confers resistance to Xanthomonas oryzae pv oryzae, the causal agent of bacterial blight disease in rice. Sequence analysis of the deduced XA27 protein provides little or no clue to its mode of action, except that a signal-anchor-like sequence is predicted at the amino (N)-terminal region of XA27. As part of an effort to characterize the biochemical function of XA27, we decided to determine its subcellular localization. Initial studies showed that a functional XA27-green fluorescent protein fusion protein accumulated in vascular elements, the host sites where the bacterial blight pathogens multiply. The localization of XA27-green fluorescent protein to the apoplast was verified by detection of the protein on cell walls of leaf sheath and root cells after plasmolysis. Similarly, XA27-FLAG localizes to xylem vessels and cell walls of xylem parenchyma cells, revealed by immunogold electron microscopy. XA27-FLAG could be secreted from electron-dense vesicles in cytoplasm to the apoplast via exocytosis. The signal-anchor-like sequence has an N-terminal positively charged region including a triple arginine motif followed by a hydrophobic region. Deletion of the hydrophobic region or substitution of the triple arginine motif with glycine or lysine residues abolished the localization of the mutated proteins to the cell wall and impaired the plant's resistance to X. oryzae pv oryzae. These results indicate that XA27 depends on the N-terminal signal-anchor-like sequence to localize to the apoplast and that this localization is important for resistance to X. oryzae pv oryzae. PMID:18784285

Wu, Lifang; Goh, Mei Ling; Sreekala, Chellamma; Yin, Zhongchao

2008-11-01

140

Late Blight of Potato.  

National Technical Information Service (NTIS)

Epiphytotic development of late blight of potatoes (Phytophthora infestans D.B.) has been registered in the Far Eastern zone and here and there in the Non-Chernozem zones, as well as in Western Siberia and in the Urals. Foci of intensive affection have be...

A. E. Chumakov, T. A. Guseva

1968-01-01

141

Pythium blight of turfgrass  

NSDL National Science Digital Library

This plant disease lesson on Pythium blight of turfgrass (caused by Pythium aphanidermatum and Pythium ultimum) includes information on symptoms and signs, pathogen biology, disease cycle and epidemiology, disease management, and the significance of the disease. Selected references are listed and a glossary is also available for use with this resource.

Tom W. Allen (University of Georgia, Griffen Campus;); Alfredo Martinez (University of Georgia, Griffen Campus;); Lee L. Burpee (University of Georgia, Griffen Campus;)

2005-01-01

142

XopR, a type III effector secreted by Xanthomonas oryzae pv. oryzae, suppresses microbe-associated molecular pattern-triggered immunity in Arabidopsis thaliana.  

PubMed

Xanthomonas oryzae pv. oryzae is the causal agent of bacterial blight of rice. The XopR protein, secreted into plant cells through the type III secretion apparatus, is widely conserved in xanthomonads and is predicted to play important roles in bacterial pathogenicity. Here, we examined the function of XopR by constructing transgenic Arabidopsis thaliana plants expressing it under control of the dexamethasone (DEX)-inducible promoter. In the transgenic plants treated with DEX, slightly delayed growth and variegation on leaves were observed. Induction of four microbe-associated molecular pattern (MAMP)-specific early-defense genes by a nonpathogenic X. campestris pv. campestris hrcC deletion mutant were strongly suppressed in the XopR-expressing plants. XopR expression also reduced the deposition of callose, an immune response induced by flg22. When transiently expressed in Nicotiana benthamiana, a XopR::Citrine fusion gene product localized to the plasma membrane. The deletion of XopR in X. oryzae pv. oryzae resulted in reduced pathogenicity on host rice plants. Collectively, these results suggest that XopR inhibits basal defense responses in plants rapidly after MAMP recognition. PMID:22204644

Akimoto-Tomiyama, Chiharu; Furutani, Ayako; Tsuge, Seiji; Washington, Erica J; Nishizawa, Yoko; Minami, Eiichi; Ochiai, Hirokazu

2012-04-01

143

A novel two-component system PdeK/PdeR regulates c-di-GMP turnover and virulence of Xanthomonas oryzae pv. oryzae.  

PubMed

Two-component systems (TCS) consisting of histidine kinases (HK) and response regulators (RR) play essential roles in bacteria to sense environmental signals and regulate cell functions. One type of RR is involved in metabolism of cyclic diguanylate (c-di-GMP), a ubiquitous bacterial second messenger. Although genomic studies predicted a large number of them existing in different bacteria, only a few have been studied. In this work, we characterized a novel TCS consisting of PdeK(PXO_01018)/PdeR(PXO_ 01019) from Xanthomonas oryzae pv. oryzae, which causes the bacterial leaf blight of rice. PdeR (containing GGDEF, EAL, and REC domains) was shown to have phosphodiesterase (PDE) activity in vitro by colorimetric assays and high-performance liquid chromatography analysis. The PDE activity of full-length PdeR needs to be triggered by HK PdeK. Deletion of pdeK or pdeR in X. oryzae pv. oryzae PXO99(A) had attenuated its virulence on rice. ?pdeK and ?pdeR secreted less exopolysaccharide than the wild type but there were no changes in terms of motility or extracellular cellulase activity, suggesting the activity of PdeK/PdeR might be specific. PMID:22712508

Yang, Fenghuan; Tian, Fang; Sun, Lei; Chen, Huamin; Wu, Maosen; Yang, Ching-Hong; He, Chenyang

2012-10-01

144

Increased Activity of a Cationic Peroxidase Associated with an Incompatible Interaction Between Xanthomonas oryzae pv oryzae and Rice (Oryza sativa) 1  

PubMed Central

Rice (Oryza sativa L.) cultivar Cas 209 carries the gene Xa-10 for resistance to race 2 of Xanthomonas oryzae pv oryzae, the bacterial blight pathogen. When seedling leaves of Cas 209 plants were infiltrated with bacterial cell suspensions of strain PXO86Rif (race 2, incompatible), total peroxidase activity in extracts from extracellular spaces increased almost threefold between 16 and 24 hours after inoculation. The increase in total peroxidase activity in extracellular extracts was correlated with the appearance of a 43-kilodalton peroxidase isoenzyme with an isoelectric point of 8.6. Increases in the activities of two anionic peroxidase isoenzymes also were associated with the incompatible interaction. Later during the interactions, total peroxidase activities increased in both compatible (cv Cas 209 infiltrated with race 1, PXO61Sm) and control (Cas 209 infiltrated with water) treatments, but final activity levels were less than that observed in the incompatible combination. Similarly, the cationic peroxidase was detected in all three treatments by 48 hours after infiltration, but at reduced levels in compatible and water-infiltrated control treatments relative to the incompatible combination. Accumulation of this peroxidase in extracellular spaces thus may play a role in the defense response in cultivar Cas 209. ImagesFigure 2Figure 3Figure 4Figure 5

Reimers, Peter J.; Guo, Ailan; Leach, Jan E.

1992-01-01

145

Biological control of post-harvest late blight of potatoes  

Microsoft Academic Search

Introduction of US-8 genotypes of Phytophthora infestans has coincided with an increase in severity of potato late blight in North America. As alternatives to chemical fungicides, 18 bacterial strains patented as biological control agents (BCA) of both sprouting and Fusarium dry rot were cultivated in three liquid media and screened in wounded potato bioassays for their ability to suppress late

Patricia J. Slininger; David A. Schisler; Linda D. Ericsson; Tina L. Brandt; Mary Jo Frazier; Lynn K. Woodell; Nora L. Olsen; Gale E. Kleinkopf

2007-01-01

146

The complete genome sequence of Xanthomonas albilineans provides new insights into the reductive genome evolution of the xylem-limited Xanthomonadaceae  

Microsoft Academic Search

BACKGROUND: The Xanthomonadaceae family contains two xylem-limited plant pathogenic bacterial species, Xanthomonas albilineans and Xylella fastidiosa. X. fastidiosa was the first completely sequenced plant pathogen. It is insect-vectored, has a reduced genome and does not possess hrp genes which encode a Type III secretion system found in most plant pathogenic bacteria. X. fastidiosa was excluded from the Xanthomonas group based

Isabelle Pieretti; Monique Royer; Valérie Barbe; Sébastien Carrere; Ralf Koebnik; Stéphane Cociancich; Arnaud Couloux; Armelle Darrasse; Jérôme Gouzy; Marie-Agnès Jacques; Emmanuelle Lauber; Charles Manceau; Sophie Mangenot; Stéphane Poussier; Béatrice Segurens; Boris Szurek; Valérie Verdier; Matthieu Arlat; Philippe Rott

2009-01-01

147

The bacterial effector DspA/E is toxic in Arabidopsis thaliana and is required for multiplication and survival of fire blight pathogen.  

PubMed

The type III effector DspA/E is an essential pathogenicity factor of the phytopathogenic bacterium Erwinia amylovora. We showed that DspA/E was required for transient bacterial growth in nonhost Arabidopsis thaliana leaves, as an E.?amylovora dspA/E mutant was unable to grow. We expressed DspA/E in A.?thaliana transgenic plants under the control of an oestradiol-inducible promoter, and found that DspA/E expressed in?planta restored the growth of a dspA/E mutant. DspA/E expression in these transgenic plants led to the modulation by at least two-fold of the expression of 384 genes, mostly induced (324 genes). Both induced and repressed genes contained high proportions of defence genes. DspA/E expression ultimately resulted in plant cell death without requiring a functional salicylic acid signalling pathway. Analysis of A.?thaliana transgenic seedlings expressing a green fluorescent protein (GFP):DspA/E fusion indicated that the fusion protein could only be detected in a few cells per seedling, suggesting the degradation or absence of accumulation of DspA/E in plant cells. Consistently, we found that DspA/E repressed plant protein synthesis when injected by E.?amylovora or when expressed in transgenic plants. Thus, we conclude that DspA/E is toxic to A.?thaliana: it promotes modifications, among which the repression of protein synthesis could be determinant in the facilitation of necrosis and bacterial growth. PMID:23634775

Degrave, Alexandre; Moreau, Manon; Launay, Alban; Barny, Marie-Anne; Brisset, Marie-Noëlle; Patrit, Oriane; Taconnat, Ludivine; Vedel, Regine; Fagard, Mathilde

2013-06-01

148

OryR is a LuxR-family protein involved in interkingdom signaling between pathogenic Xanthomonas oryzae pv. oryzae and rice.  

PubMed

Xanthomonas oryzae pv. oryzae, the causal agent of bacterial leaf blight in rice, contains a regulator that is encoded in the genome, designated OryR, which belongs to the N-acyl homoserine lactone (AHL)-dependent quorum-sensing LuxR subfamily of proteins. However, we previously reported that X. oryzae pv. oryzae does not make AHLs and does not possess a LuxI-family AHL synthase and that the OryR protein is solubilized by a compound present in rice. In this study we obtained further evidence that OryR interacts with a rice signal molecule (RSM) and that the OryR concentration increases when rice is infected with X. oryzae pv. oryzae. We also describe three OryR target promoters which are regulated differently: (i) the neighboring proline iminopeptidase (pip) virulence gene, which is positively regulated by OryR in the presence of the RSM; (ii) the oryR promoter, which is negatively autoregulated independent of the RSM; and (iii) the 1,4-beta-cellobiosidase cbsA gene, which is positively regulated by OryR independent of the RSM. We also found that the RSM for OryR is small, is not related to AHLs, and is not able to activate the broad-range AHL biosensor Agrobacterium tumefaciens NT1(pZLQR). Furthermore, OryR does not regulate production of the quorum-sensing diffusible signal factor present in the genus Xanthomonas. Therefore, OryR has unique features and is an important regulator involved in interkingdom communication between the host and the pathogen. PMID:19028884

Ferluga, Sara; Venturi, Vittorio

2009-02-01

149

OryR Is a LuxR-Family Protein Involved in Interkingdom Signaling between Pathogenic Xanthomonas oryzae pv. oryzae and Rice ?  

PubMed Central

Xanthomonas oryzae pv. oryzae, the causal agent of bacterial leaf blight in rice, contains a regulator that is encoded in the genome, designated OryR, which belongs to the N-acyl homoserine lactone (AHL)-dependent quorum-sensing LuxR subfamily of proteins. However, we previously reported that X. oryzae pv. oryzae does not make AHLs and does not possess a LuxI-family AHL synthase and that the OryR protein is solubilized by a compound present in rice. In this study we obtained further evidence that OryR interacts with a rice signal molecule (RSM) and that the OryR concentration increases when rice is infected with X. oryzae pv. oryzae. We also describe three OryR target promoters which are regulated differently: (i) the neighboring proline iminopeptidase (pip) virulence gene, which is positively regulated by OryR in the presence of the RSM; (ii) the oryR promoter, which is negatively autoregulated independent of the RSM; and (iii) the 1,4-?-cellobiosidase cbsA gene, which is positively regulated by OryR independent of the RSM. We also found that the RSM for OryR is small, is not related to AHLs, and is not able to activate the broad-range AHL biosensor Agrobacterium tumefaciens NT1(pZLQR). Furthermore, OryR does not regulate production of the quorum-sensing diffusible signal factor present in the genus Xanthomonas. Therefore, OryR has unique features and is an important regulator involved in interkingdom communication between the host and the pathogen.

Ferluga, Sara; Venturi, Vittorio

2009-01-01

150

Plant Disease Lesson: Southern blight, Southern stem blight, White mold  

NSDL National Science Digital Library

This plant disease lesson on southern blight, Southern stem blight, white mold (caused by the fungus Sclerotium rolfsii (teleomorph: Athelia rolfsii)) includes information on symptoms and signs, pathogen biology, disease cycle and epidemiology, disease management, and the significance of the disease. Selected references are listed and a glossary is also available for use with this resource.

Jackie Mullen (Auburn University;)

2001-01-04

151

The Degenerate EAL-GGDEF Domain Protein Filp Functions as a Cyclic di-GMP Receptor and Specifically Interacts with the PilZ-Domain Protein PXO_02715 to Regulate Virulence in Xanthomonas oryzae pv. oryzae.  

PubMed

Degenerate GGDEF and EAL domain proteins represent major types of cyclic diguanylic acid (c-di-GMP) receptors in pathogenic bacteria. Here, we characterized a FimX-like protein (Filp) which possesses both GGDEF and EAL domains in Xanthomonas oryzae pv. oryzae, the causal agent of bacterial blight of rice. Both in silico analysis and enzyme assays indicated that the GGDEF and EAL domains of Filp were degenerate and enzymatically inactive. However, Filp bound to c-di-GMP efficiently within the EAL domain, where Q(477), E(653), and F(654) residues were crucial for the binding. Deletion of the filp gene in X. oryzae pv. oryzae resulted in attenuated virulence in rice and reduced type III secretion system (T3SS) gene expression. Complementation analysis with different truncated proteins indicated that REC, PAS, and EAL domains but not the GGDEF domain were required for the full activity of Filp in vivo. In addition, a PilZ-domain protein (PXO_02715) was identified as a Filp interactor by yeast two-hybrid and glutathione-S-transferase pull-down assays. Deletion of the PXO_02715 gene demonstrated changes in bacterial virulence and T3SS gene expression similar to ?filp. Moreover, both mutants were impaired in their ability to induce hypersensitive response in nonhost plants. Thus, we concluded that Filp was a novel c-di-GMP receptor of X. oryzae pv. oryzae, and its function to regulate bacterial virulence expression might be via the interaction with PXO_02715. PMID:24548063

Yang, Fenghuan; Tian, Fang; Li, Xiaotong; Fan, Susu; Chen, Huamin; Wu, Maosen; Yang, Ching-Hong; He, Chenyang

2014-06-01

152

A novel manganese efflux system, YebN, is required for virulence by Xanthomonas oryzae pv. oryzae.  

PubMed

Manganese ions (Mn(2+)) play a crucial role in virulence and protection against oxidative stress in bacterial pathogens. Such pathogens appear to have evolved complex mechanisms for regulating Mn(2+) uptake and efflux. Despite numerous studies on Mn(2+) uptake, however, only one efflux system has been identified to date. Here, we report on a novel Mn(2+) export system, YebN, in Xanthomonas oryzae pv. oryzae (Xoo), the causative agent of bacterial leaf blight. Compared with wild-type PXO99, the yebN mutant was highly sensitive to Mn(2+) and accumulated high concentrations of intracellular manganese. In addition, we found that expression of yebN was positively regulated by Mn(2+) and the Mn(2+)-dependent transcription regulator, MntR. Interestingly, the yebN mutant was more tolerant to methyl viologen and H(2)O(2) in low Mn(2+) medium than PXO99, but more sensitive in high Mn(2+) medium, implying that YebN plays an important role in Mn(2+) homoeostasis and detoxification of reactive oxygen species (ROS). Notably, deletion of yebN rendered Xoo sensitive to hypo-osmotic shock, suggesting that YebN may protect against such stress. That mutation of yebN substantially reduced the Xoo growth rate and lesion formation in rice implies that YebN could be involved in Xoo fitness in host. Although YebN has two DUF204 domains, it lacks homology to any known metal transporter. Hence, this is the first report of a novel metal export system that plays essential roles in hypo-osmotic and oxidative stress, and virulence. Our results lay the foundations for elucidating the complex and fascinating relationship between metal homeostasis and host-pathogen interactions. PMID:21789199

Li, Chunxia; Tao, Jun; Mao, Daqing; He, Chaozu

2011-01-01

153

In planta gene expression analysis of Xanthomonas oryzae pathovar oryzae, African strain MAI1  

PubMed Central

Background Bacterial leaf blight causes significant yield losses in rice crops throughout Asia and Africa. Although both the Asian and African strains of the pathogen, Xanthomonas oryzae pv. oryzae (Xoo), induce similar symptoms, they are nevertheless genetically different, with the African strains being more closely related to the Asian X. oryzae pv. oryzicola (Xoc). Results Changes in gene expression of the African Xoo strain MAI1 in the susceptible rice cultivar Nipponbare were profiled, using an SSH Xoo DNA microarray. Microarray hybridization was performed comparing bacteria recovered from plant tissues at 1, 3, and 6 days after inoculation (dai) with bacteria grown in vitro. A total of 710 bacterial genes were found to be differentially expressed, with 407 up-regulated and 303 down-regulated. Expression profiling indicated that less than 20% of the 710 bacterial transcripts were induced in the first 24 h after inoculation, whereas 63% were differentially expressed at 6 dai. The 710 differentially expressed genes were one-end sequenced. 535 sequences were obtained from which 147 non-redundant sequences were identified. Differentially expressed genes were related to metabolism, secretion and transport, pathogen adherence to plant tissues, plant cell-wall degradation, IS elements, and virulence. In addition, various other genes encoding proteins with unknown function or showing no similarity to other proteins were also induced. The Xoo MAI1 non-redundant set of sequences was compared against several X. oryzae genomes, revealing a specific group of genes that was present only in MAI1. Numerous IS elements were also found to be differentially expressed. Quantitative real-time PCR confirmed 86% of the identified profile on a set of 14 genes selected according to the microarray analysis. Conclusions This is the first report to compare the expression of Xoo genes in planta across different time points during infection. This work shows that as-yet-unidentified and potentially new virulence factors are appearing in an emerging African pathogen. It also confirms that African Xoo strains do differ from their Asian counterparts, even at the transcriptional level.

2010-01-01

154

StoS, a hybrid histidine kinase sensor of xanthomonas oryzae pv. oryzae, is activated by sensing low O? concentration and is involved in stress tolerance and virulence.  

PubMed

Bacteria have two-component signal transduction systems (TCSTS), which are important devices for receiving various environmental signals. A TCSTS generally consists of a sensor histidine kinase (HK) and a response regulator (RR) that contains a receiver domain. There are also hybrid-type HK (HyHK) that comprise a HK with a receiver domain within one molecule. In this study, we show that the deletion mutant of a HyHK XOO_0635 (StoS) of Xanthomonas oryzae pv. oryzae, the causal agent of bacterial leaf blight of rice, had decreased stress tolerance to high osmolarity, sodium, and H?O?. Growth of the StoS mutant was delayed, and viability was lower than the wild type in medium and in rice leaves. We found that StoS regulates the expression of various genes including XOO_3715, XOO_0131, and stoS itself. A domain search revealed a PAS domain with a heme pocket in StoS, implying that the HyHK functions as an O? sensor. When the bacteria were incubated in low oxygen, the StoS-dependent expression of XOO_0131 and XOO_3715 became higher. Therefore, StoS is activated by sensing a low O2 concentration in its environs and is involved in gene expression for adapting to various stressful conditions. PMID:24520898

Ikawa, Yumi; Furutani, Ayako; Ochiai, Hirokazu; Tsuge, Seiji

2014-06-01

155

Distribution and biological role of the oligopeptide-binding protein (OppA) in Xanthomonas species.  

PubMed

In this study we investigated the prevalence of the oppA gene, encoding the oligopeptide binding protein (OppA) of the major bacterial oligopeptide uptake system (Opp), in different species of the genus Xanthomonas. The oppA gene was detected in two Xanthomonas axonopodis strains among eight tested Xanthomonas species. The generation of an isogenic oppA-knockout derivative of the Xac 306 strain, showed that the OppA protein neither plays a relevant role in oligopeptide uptake nor contributes to the infectivity and multiplication of the bacterial strain in leaves of sweet orange (Citrus sinensis) and Rangpur lime (Citrus limonia). Taken together these results suggest that the oppA gene has a recent evolutionary history in the genus and does not contribute in the physiology or pathogenesis of X. axonopodis. PMID:21637492

Oshiro, Elisa E; Tavares, Milene B; Suzuki, Celso F; Pimenta, Daniel C; Angeli, Claudia B; de Oliveira, Julio C F; Ferro, Maria I T; Ferreira, Luis C S; Ferreira, Rita C C

2010-04-01

156

Distribution and biological role of the oligopeptide-binding protein (OppA) in Xanthomonas species  

PubMed Central

In this study we investigated the prevalence of the oppA gene, encoding the oligopeptide binding protein (OppA) of the major bacterial oligopeptide uptake system (Opp), in different species of the genus Xanthomonas. The oppA gene was detected in two Xanthomonas axonopodis strains among eight tested Xanthomonas species. The generation of an isogenic oppA-knockout derivative of the Xac 306 strain, showed that the OppA protein neither plays a relevant role in oligopeptide uptake nor contributes to the infectivity and multiplication of the bacterial strain in leaves of sweet orange (Citrus sinensis) and Rangpur lime (Citrus limonia). Taken together these results suggest that the oppA gene has a recent evolutionary history in the genus and does not contribute in the physiology or pathogenesis of X. axonopodis.

2010-01-01

157

Characterization of phenotypically distinct strains of Xanthomonas axonopodis pv. citri from Southwest Asia  

Microsoft Academic Search

Strains of Xanthomonas axonopodis pv. citri were isolated from Mexican lime (Citrus aurantifolia) trees in several countries in southwest Asia. These strains produced typical erumpent bacterial canker lesions on Mexican lime but not on grapefruit (C. paradisi). Lesions on grapefruit were watersoaked and blister-like in contrast to the typical erumpent lesions seen after artificial inoculation with all described pathotypes of

C. Vernière; J. S. Hartung; O. P. Pruvost; E. L. Civerolo; A. M. Alvarez; P. Maestri; J. Luisetti

1998-01-01

158

Development of late blight resistant potatoes by cisgene stacking  

PubMed Central

Background Phytophthora infestans, causing late blight in potato, remains one of the most devastating pathogens in potato production and late blight resistance is a top priority in potato breeding. The introduction of multiple resistance (R) genes with different spectra from crossable species into potato varieties is required. Cisgenesis is a promising approach that introduces native genes from the crops own gene pool using GM technology, thereby retaining favourable characteristics of established varieties. Results We pursued a cisgenesis approach to introduce two broad spectrum potato late blight R genes, Rpi-sto1 and Rpi-vnt1.1 from the crossable species Solanum stoloniferum and Solanum venturii, respectively, into three different potato varieties. First, single R gene-containing transgenic plants were produced for all varieties to be used as references for the resistance levels and spectra to be expected in the respective genetic backgrounds. Next, a construct containing both cisgenic late blight R genes (Rpi-vnt1.1 and Rpi-sto1), but lacking the bacterial kanamycin resistance selection marker (NPTII) was transformed to the three selected potato varieties using Agrobacterium-mediated transformation. Gene transfer events were selected by PCR among regenerated shoots. Through further analyses involving morphological evaluations in the greenhouse, responsiveness to Avr genes and late blight resistance in detached leaf assays, the selection was narrowed down to eight independent events. These cisgenic events were selected because they showed broad spectrum late blight resistance due to the activity of both introduced R genes. The marker-free transformation was compared to kanamycin resistance assisted transformation in terms of T-DNA and vector backbone integration frequency. Also, differences in regeneration time and genotype dependency were evaluated. Conclusions We developed a marker-free transformation pipeline to select potato plants functionally expressing a stack of late blight R genes. Marker-free transformation is less genotype dependent and less prone to vector backbone integration as compared to marker-assisted transformation. Thereby, this study provides an important tool for the successful deployment of R genes in agriculture and contributes to the production of potentially durable late blight resistant potatoes.

2014-01-01

159

OsEDR1 negatively regulates rice bacterial resistance via activation of ethylene biosynthesis.  

PubMed

Rice OsEDR1 is a sequence ortholog of Arabidopsis EDR1. However, its molecular function is unknown. We show here that OsEDR1-suppressing/knockout (KO) plants, which developed spontaneous lesions on the leaves, have enhanced resistance to Xanthomonas oryzae pv. oryzae (Xoo) causing bacterial blight disease. This resistance was associated with increased accumulation of salicylic acid (SA) and jasmonic acid (JA), induced expression of SA- and JA-related genes and suppressed accumulation of 1-aminocyclopropane-1-carboxylic acid (ACC), the direct precursor of ethylene, and expression of ethylene-related genes. OsEDR1-KO plants also showed suppressed production of ethylene. Knockout of OsEDR1 suppressed the ACC synthase (ACS) gene family, which encodes the rate-limiting enzymes of ethylene biosynthesis by catalysing the formation of ACC. The lesion phenotype and enhanced bacterial resistance of the OsEDR1-KO plants was partly complemented by the treatment with ACC. ACC treatment was associated with decreased SA and JA biosynthesis in OsEDR1-KO plants. In contrast, aminoethoxyvinylglycine, the inhibitor of ethylene biosynthesis, promoted expression of SA and JA synthesis-related genes in OsEDR1-KO plants. These results suggest that ethylene is a negative signalling molecule in rice bacterial resistance. In the rice-Xoo interaction, OsEDR1 transcriptionally promotes the synthesis of ethylene that, in turn, suppresses SA- and JA-associated defence signalling. PMID:20807375

Shen, Xiangling; Liu, Hongbo; Yuan, Bin; Li, Xianghua; Xu, Caiguo; Wang, Shiping

2011-02-01

160

Genome mining reveals the genus Xanthomonas to be a promising reservoir for new bioactive non-ribosomally synthesized peptides  

PubMed Central

Background Various bacteria can use non-ribosomal peptide synthesis (NRPS) to produce peptides or other small molecules. Conserved features within the NRPS machinery allow the type, and sometimes even the structure, of the synthesized polypeptide to be predicted. Thus, bacterial genome mining via in silico analyses of NRPS genes offers an attractive opportunity to uncover new bioactive non-ribosomally synthesized peptides. Xanthomonas is a large genus of Gram-negative bacteria that cause disease in hundreds of plant species. To date, the only known small molecule synthesized by NRPS in this genus is albicidin produced by Xanthomonas albilineans. This study aims to estimate the biosynthetic potential of Xanthomonas spp. by in silico analyses of NRPS genes with unknown function recently identified in the sequenced genomes of X. albilineans and related species of Xanthomonas. Results We performed in silico analyses of NRPS genes present in all published genome sequences of Xanthomonas spp., as well as in unpublished draft genome sequences of Xanthomonas oryzae pv. oryzae strain BAI3 and Xanthomonas spp. strain XaS3. These two latter strains, together with X. albilineans strain GPE PC73 and X. oryzae pv. oryzae strains X8-1A and X11-5A, possess novel NRPS gene clusters and share related NRPS-associated genes such as those required for the biosynthesis of non-proteinogenic amino acids or the secretion of peptides. In silico prediction of peptide structures according to NRPS architecture suggests eight different peptides, each specific to its producing strain. Interestingly, these eight peptides cannot be assigned to any known gene cluster or related to known compounds from natural product databases. PCR screening of a collection of 94 plant pathogenic bacteria indicates that these novel NRPS gene clusters are specific to the genus Xanthomonas and are also present in Xanthomonas translucens and X. oryzae pv. oryzicola. Further genome mining revealed other novel NRPS genes specific to X. oryzae pv. oryzicola or Xanthomonas sacchari. Conclusions This study revealed the significant potential of the genus Xanthomonas to produce new non-ribosomally synthesized peptides. Interestingly, this biosynthetic potential seems to be specific to strains of Xanthomonas associated with monocotyledonous plants, suggesting a putative involvement of non-ribosomally synthesized peptides in plant-bacteria interactions.

2013-01-01

161

Molecular Characterization of Copper Resistance Genes from Xanthomonas citri subsp. citri and Xanthomonas alfalfae subsp. citrumelonis?  

PubMed Central

Copper sprays have been widely used for control of endemic citrus canker caused by Xanthomonas citri subsp. citri in citrus-growing areas for more than 2 decades. Xanthomonas alfalfae subsp. citrumelonis populations were also exposed to frequent sprays of copper for several years as a protective measure against citrus bacterial spot (CBS) in Florida citrus nurseries. Long-term use of these bactericides has led to the development of copper-resistant (Cur) strains in both X. citri subsp. citri and X. alfalfae subsp. citrumelonis, resulting in a reduction of disease control. The objectives of this study were to characterize for the first time the genetics of copper resistance in X. citri subsp. citri and X. alfalfae subsp. citrumelonis and to compare these organisms to other Cur bacteria. Copper resistance determinants from X. citri subsp. citri strain A44(pXccCu2) from Argentina and X. alfalfae subsp. citrumelonis strain 1381(pXacCu2) from Florida were cloned and sequenced. Open reading frames (ORFs) related to the genes copL, copA, copB, copM, copG, copC, copD, and copF were identified in X. citri subsp. citri A44. The same ORFs, except copC and copD, were also present in X. alfalfae subsp. citrumelonis 1381. Transposon mutagenesis of the cloned copper resistance determinants in pXccCu2 revealed that copper resistance in X. citri subsp. citri strain A44 is mostly due to copL, copA, and copB, which are the genes in the cloned cluster with the highest nucleotide homology (?92%) among different Cur bacteria.

Behlau, Franklin; Canteros, Blanca I.; Minsavage, Gerald V.; Jones, Jeffrey B.; Graham, James H.

2011-01-01

162

Complete Genome Sequence for the Fusarium Head Blight Antagonist Bacillus amyloliquefaciens Strain TrigoCor 1448.  

PubMed

We present the complete genome sequence for Bacillus amyloliquefaciens TrigoCor 1448 (ATCC 202152), a bacterial biological control agent for Fusarium head blight in wheat. We compare it to its closest relative, B. amyloliquefaciens strain AS43.3. PMID:24675861

Nelson, Beth A; Ramaiya, Preethi; Lopez de Leon, Alfredo; Kumar, Ravi; Crinklaw, Austin; Jolkovsky, Eliana; Crane, Julia M; Bergstrom, Gary C; Rey, Michael W

2014-01-01

163

????????????????????????????? ??????????????????????????? ????? ???????????????????? ??????????????? Xanthomonas axonopodis pv.citri Efficacy of Crude Extract form Beleric Myrobalan, Chebulic Myrobalan and Nut Gall Fruit on the Symptom Development of Kaffir lime Canker Caused by Xanthomonas axonopodis pv.citri  

Microsoft Academic Search

The efficacy of crude extract from beleric myrobalan, chebulic myrobalan and nut gall fruit on the symptom development of kaffir lime canker caused by Xanthomonas axonopodis pv.citri was studied. The crude extract of plants were extracted by 95% ethyl alcohol and evaporated the solvent by Rotary vacuum evaporator.The bacterial suspension was inoculated on 15 month kaffir lime leaves in the

Sasitorn Vudhivanich

164

Genetic Diversity of Transcriptional Activator-Like Effector Genes in Chinese Isolates of Xanthomonas oryzae pv. oryzicola.  

PubMed

ABSTRACT Xanthomonas oryzae pv. oryzicola causes bacterial leaf streak (BLS), a devastating disease of rice in Asia countries. X. oryzae pv. oryzicola utilizes repertoires of transcriptional activator-like effectors (TALEs) to manipulate host resistance or susceptibility; thus, TALEs can determine the outcome of BLS. In this report, we studied genetic diversity in putative tale genes of 65 X. oryzae pv. oryzicola strains that originated from nine provinces of southern China. Genomic DNAs from the 65 strains were digested with BamHI and hybridized with an internal fragment of avrXa3, a tale gene originating from the related pathogen, X. oryzae pv. oryzae, which causes bacterial leaf blight (BLB). Southern blot analysis indicated that the strains contained a variable number (9 to 22) of avrXa3-hybridizing fragments (e.g., putative tale genes). Based on the number and size of hybridizing bands, strains were classified into 14 genotypes (designated 1 to 14), and genotypes 3 and 10 represented 29.23 and 24.64% of the total, respectively. A high molecular weight BamHI fragment (HMWB; ?6.0 kb) was present in 12 of the 14 genotypes, and sequence analysis of the HMWB revealed the presence of a C-terminally truncated tale, an insertion element related to IS1403, and genes encoding phosphoglycerate mutase and endonuclease V. Primers were developed from the 6.0-kb HMWB fragment and showed potential in genotyping X. oryzae pv. oryzicola strains by polymerase chain reaction. Virulence of X. oryzae pv. oryzicola strains was assessed on 23 rice cultivars containing different resistance genes for BLB. The X. oryzae pv. oryzicola strains could be grouped into 14 pathotypes (I to XIV), and the grouping of strains was almost identical to the categories determined by genotypic analysis. In general, strains containing higher numbers of putative tale genes were more virulent on rice than strains containing fewer tales. The results also indicate that there are no gene-for-gene relationships between the tested rice lines and X. oryzae pv. oryzicola strains. To our knowledge, this is the first description of genetic diversity of X. oryzae pv. oryzicola strains based on tale gene analysis. PMID:24423401

Ji, Zhi-Yuan; Zakria, Muhammad; Zou, Li-Fang; Xiong, Li; Li, Zheng; Ji, Guang-Hai; Chen, Gong-You

2014-07-01

165

Plasmid-DNA Based Probes and Procedure for Rapid and Specific Detection of Xanthomonas Campestris pv. Citri.  

National Technical Information Service (NTIS)

Citrus bacterial canker disease (CBCD) is a serious disease of citrus, and the causal pathogen, Xanthomonas campestris pv. citri (X.c. citri) is the subject of international quarantine. Although eradicated from the United States at great cost in the first...

J. S. Hartung O. P. Pruvost

1992-01-01

166

Controlling Potato Blight: Past, Present, and Future  

NSDL National Science Digital Library

Potato late blight, Phytophthora infestans, has an infamous past, yet it continues to present a challenge to modern day farmers. Historical scenarios in the LateBlight simulation help us define the impact of this disease before the interactions between this microbe and the potato were understood. Modern scenarios enable us to investigate current strategies to control this pathogen from the management of cull piles to the use of genetically engineered potatoes. A life cycle model, Potato Late Blight, provides an additional method for exploring microbial interactions. * make a profit or lose the farm as you investigate the economic consequences of using chemical control approaches to managing late blight in potatoes

Ethel D. Stanley (Beloit College;Biology)

2006-05-20

167

Are the dominant and recessive plant disease resistance genes similar? A case study of rice R genes and Xanthomonas oryzae pv. oryzae races.  

PubMed Central

The resistance of rice to its bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) has both qualitative and quantitative components that were investigated using three near-isogenic line sets for four resistance (R) genes (Xa4, xa5, xa13, and Xa21) and 12 Xoo races. Our results indicate that these two resistance components of rice plants were associated with the properties of the R genes. The qualitative component of the R genes was reflected by their large effects against corresponding avirulent Xoo races. The quantitative component of the R genes was their residual effects against corresponding virulent races and their epistatic effects, which together could lead to high-level resistance in a race-specific manner. Our results revealed important differences between the different types of R genes. Two R genes, Xa4 and Xa21, showed complete dominance against the avirulent Xoo races and had large residual effects against virulent ones. They acted independently and cumulatively, suggesting they are involved in different pathways of the rice defensive system. The third R gene, xa5, showed partial dominance or additivity to the avirulent Xoo races and had relatively small but significant residual effects against the virulent races. In contrast, xa13 was completely recessive, had no residual effects against the virulent races, and showed more pronounced race specificity. There was a strong interaction leading to increased resistance between xa13 and xa5 and between either of them and Xa4 or Xa21, suggesting their regulatory roles in the rice defensive pathway(s). Our results indicated that high-level and durable resistance to Xoo should be more efficiently achieved by pyramiding different types of R genes.

Li, Z K; Sanchez, A; Angeles, E; Singh, S; Domingo, J; Huang, N; Khush, G S

2001-01-01

168

Identificaci—n de fuentes de resistencia a Xanthomonas campestris en Brachiaria spp  

Microsoft Academic Search

Identification of sources of resistance to Xanthomonas campestris in Brachiaria spp. In 1997 bacterial wilting was observed in some the Brachiaria accessions of the Improvement Program of the International Center of Tropical Agriculture (CIAT), in Palmira,Colombia,both in the greenhouse in Palmira (Valle) and in the field in Puerto L—pez (Meta). Samples of Brachiaria CIAT 1051 were collected with typical symptoms

Carolina Zuleta; S. Kelemu; Oscar Cardozo

169

Structural model and ligand interactions of the Xanthomonas axonopodis pv . citri oligopeptide binding protein  

Microsoft Academic Search

The oligopeptide-binding protein, OppA, ushers oligo- peptide substrates to the membrane-associated oligopeptide permease (Opp), a multi-component ABC-type transporter involved in the uptake of oligopeptides by several bacterial species. In the present study, we report a structural model and an oligopeptide docking analysis of the OppA protein expressed by Xanthomonas axonopodis pv. citri (X. citri), the etiological agent of citrus canker.

A. Moutran; A. Balan; L. C. S. Ferreira; A. Giorgetti; A. Tramontano

170

Computational and Biochemical Analysis of the Xanthomonas Effector AvrBs2 and Its Role in the Modulation of Xanthomonas Type Three Effector Delivery  

PubMed Central

Effectors of the bacterial type III secretion system provide invaluable molecular probes to elucidate the molecular mechanisms of plant immunity and pathogen virulence. In this report, we focus on the AvrBs2 effector protein from the bacterial pathogen Xanthomonas euvesicatoria (Xe), the causal agent of bacterial spot disease of tomato and pepper. Employing homology-based structural analysis, we generate a three-dimensional structural model for the AvrBs2 protein and identify catalytic sites in its putative glycerolphosphodiesterase domain (GDE). We demonstrate that the identified catalytic region of AvrBs2 was able to functionally replace the GDE catalytic site of the bacterial glycerophosphodiesterase BhGlpQ cloned from Borrelia hermsii and is required for AvrBs2 virulence. Mutations in the GDE catalytic domain did not disrupt the recognition of AvrBs2 by the cognate plant resistance gene Bs2. In addition, AvrBs2 activation of Bs2 suppressed subsequent delivery of other Xanthomonas type III effectors into the host plant cells. Investigation of the mechanism underlying this modulation of the type III secretion system may offer new strategies to generate broad-spectrum resistance to bacterial pathogens.

Zhao, Bingyu; Dahlbeck, Douglas; Krasileva, Ksenia V.; Fong, Richard W.; Staskawicz, Brian J.

2011-01-01

171

Ectopic expression of Hrf1 enhances bacterial resistance via regulation of diterpene phytoalexins, silicon and reactive oxygen species burst in rice.  

PubMed

Harpin proteins as elicitor derived from plant gram negative bacteria such as Xanthomonas oryzae pv. oryzae (Xoo), Erwinia amylovora induce disease resistance in plants by activating multiple defense responses. However, it is unclear whether phytoalexin production and ROS burst are involved in the disease resistance conferred by the expression of the harpin(Xoo) protein in rice. In this article, ectopic expression of hrf1 in rice enhanced resistance to bacterial blight. Accompanying with the activation of genes related to the phytoalexin biosynthesis pathway in hrf1-transformed rice, phytoalexins quickly and consistently accumulated concurrent with the limitation of bacterial growth rate. Moreover, the hrf1-transformed rice showed an increased ability for ROS scavenging and decreased hydrogen peroxide (H(2)O(2)) concentration. Furthermore, the localization and relative quantification of silicon deposition in rice leaves was detected by scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometer (EDS). Finally, the transcript levels of defense response genes increased in transformed rice. These results show a correlation between Xoo resistance and phytoalexin production, H(2)O(2), silicon deposition and defense gene expression in hrf1-transformed rice. These data are significant because they provide evidence for a better understanding the role of defense responses in the incompatible interaction between bacterial disease and hrf1-transformed plants. These data also supply an opportunity for generating nonspecific resistance to pathogens. PMID:22970151

Li, Wenqi; Shao, Min; Zhong, Weigong; Yang, Jie; Okada, Kazunori; Yamane, Hisakazu; Zhang, Lei; Wang, Guang; Wang, Dong; Xiao, Shanshan; Chang, Shanshan; Qian, Guoliang; Liu, Fengquan

2012-01-01

172

Iron homeostasis and fire blight susceptibility in transgenic pear plants overexpressing a pea ferritin gene.  

PubMed

The bacterial pathogen Erwinia amylovora causes the devastating disease known as fire blight in some rosaceous plants including apple and pear. One of the pathogenicity factors affecting fire blight development is the production of a siderophore, desferrioxamine, which overcomes the limiting conditions in plant tissues and also protects bacteria against active oxygen species. In this paper we examine the effect of an iron chelator protein encoded by the pea ferritin gene on the fire blight susceptibility of pear (Pyrus communis). Transgenic pear clones expressing this gene controlled either by the constitutive promoter CaMV 35S or by the inducible promoter sgd24 promoter were produced. The transgenic clones produced were analysed by Q-RT-PCR to determine the level of expression of the pea transgene. A pathogen-inducible pattern of expression of the pea transgene was observed in sgd24-promoter transformants. Adaptation to iron deficiency in vitro was tested in some transgenic clones and different iron metabolism parameters were measured. No strong effect on iron and chlorophyll content, root reductase activity and fire blight susceptibility was detected in the transgenic lines tested. No transformants showed a significant reduction in susceptibility to fire blight in greenhouse conditions when inoculated with E. amylovora. PMID:21421420

Djennane, Samia; Cesbron, Colette; Sourice, Sophie; Cournol, Raphael; Dupuis, Fabrice; Eychenne, Magali; Loridon, Karine; Chevreau, Elisabeth

2011-05-01

173

Validation of tuber blight ( Phytophthora infestans) prediction model  

Microsoft Academic Search

Potato tuber blight caused by Phytophthora infestans accounts for significant losses of tubers in storage. Despite research on infection and management of tuber blight, there is paucity of information on the prediction of the occurrence tuber blight or modelling of tuber infection by P. infestans under field conditions. A tuber blight prediction model was developed in New York in experiments

R. O. Nyankanga; O. M. Olanya; P. S. Ojiambo; H. C. Wien; C. W. Honeycutt; W. W. Kirk

2011-01-01

174

Blighted ovum: ultrasonic, histopathologic and hormonal considerations.  

PubMed

Thirty women experiencing early pregnancy failure (blighted ovum) were studied at frequent intervals with serial measurements of serum human chorionic gonadotropin (beta-hCG), progesterone (P4) and estradiol (E2). The diagnosis of blighted ovum had previously been made by careful ultrasonic examination (s). Histopathologic findings in the placenta were studied in all cases. Hormonal levels were variable and in most of the cases indistinguishable from normal pregnancies. In only 50% of the cases the histopathologic examination revealed findings compatible for the blighted ovum criteria. PMID:1280538

Liapis, A; Kassanos, D; Hassiakos, D; Vitoratos, N; Kondi-Paphiti, A; Zourlas, P A

1992-01-01

175

Glutamate transport and xanthan gum production in the plant pathogen Xanthomonas axonopodis pv. citri.  

PubMed

L-glutamate plays a central role in nitrogen metabolism in all living organisms. In the genus Xanthomonas, the nitrogen nutrition is an important factor involved in the xanthan gum production, an important exopolysaccharide with various industrial and biotechnological applications. In this report, we demonstrate that the use of L-glutamate by the phytopathogen Xanthomonas axonopodis pv. citri as a nitrogen source in defined medium significantly increases the production of xanthan gum. This increase is dependent on the L-glutamate concentration. In addition, we have also characterized a glutamate transport system that is dependent on a proton gradient and on ATP and is modulated by amino acids that are structurally related to glutamate. This is the first biochemical characterization of an energy substrate transport system observed in a bacterial phytopathogen with a broad economic and industrial impact due to xanthan gum production. PMID:23719672

Rojas, Robert; Nishidomi, Sabrina; Nepomuceno, Roberto; Oshiro, Elisa; de Cassia Café Ferreira, Rita

2013-11-01

176

Xanthomonas axonopodis pv. citri uses a plant natriuretic peptide-like protein to modify host homeostasis  

PubMed Central

Plant natriuretic peptides (PNPs) are a class of extracellular, systemically mobile molecules that elicit a number of plant responses important in homeostasis and growth. The bacterial citrus pathogen, Xanthomonas axonopodis pv. citri, also contains a gene encoding a PNP-like protein, XacPNP, that shares significant sequence similarity and identical domain organization with plant PNPs but has no homologues in other bacteria. We have expressed and purified XacPNP and demonstrated that the bacterial protein alters physiological responses including stomatal opening in plants. Although XacPNP is not expressed under standard nutrient rich culture conditions, it is strongly induced under conditions that mimic the nutrient poor intercellular apoplastic environment of leaves, as well as in infected tissue, suggesting that XacPNP transcription can respond to the host environment. To characterize the role of XacPNP during bacterial infection, we constructed a XacPNP deletion mutant. The lesions caused by this mutant were more necrotic than those observed with the wild-type, and bacterial cell death occurred earlier in the mutant. Moreover, when we expressed XacPNP in Xanthomonas axonopodis pv. vesicatoria, the transgenic bacteria caused less necrotic lesions in the host than the wild-type. In conclusion, we present evidence that a plant-like bacterial PNP can enable a plant pathogen to modify host responses to create conditions favorable to its own survival.

Gottig, Natalia; Garavaglia, Betiana S.; Daurelio, Lucas D.; Valentine, Alex; Gehring, Chris; Orellano, Elena G.; Ottado, Jorgelina

2008-01-01

177

The Phytoalexin-Inducible Multidrug Efflux Pump AcrAB Contributes to Virulence in the Fire Blight Pathogen, Erwinia amylovora  

Microsoft Academic Search

The enterobacterium Erwinia amylovora causes fire blight on members of the family Rosaceae, with economic impor- tance on apple and pear. During pathogenesis, the bacte- rium is exposed to a variety of plant-borne antimicrobial compounds. In plants of Rosaceae, many constitutively syn- thesized isoflavonoids affecting microorganisms were iden- tified. Bacterial multidrug efflux transporters which medi- ate resistance toward structurally unrelated

Antje Burse; Helge Weingart; Matthias S. Ullrich

2004-01-01

178

Placenta increta occurring in a blighted ovum.  

PubMed

We present a rare case of placenta increta, confirmed postoperatively by pathologic analysis, occurring before 20 weeks' gestation in a blighted ovum. Hysterectomy was necessary for control of hemorrhage. PMID:8638190

Gist, R S; Vuong, V; Brody, S; Rees, P; Landry, A D

1996-05-01

179

Identification of specific fragments of HpaG Xooc, a harpin from Xanthomonas oryzae pv. oryzicola, that induce disease resistance and enhance growth in plants.  

PubMed

Harpin proteins from gram-negative plant-pathogenic bacteria can stimulate hypersensitive cell death (HCD) and pathogen defense as well as enhance growth in plants. Two of these diverse activities clearly are beneficial and may depend on particular functional regions of the proteins. Identification of beneficial and deleterious regions might facilitate the beneficial use of harpin-related proteins on crops without causing negative effects like cell death. Here, we report the identification and testing of nine functional fragments of HpaG(Xooc), a 137-amino-acid harpin protein from Xanthomonas oryzae pv. oryzicola, the pathogen that causes bacterial leaf streak of rice. Polymerase chain reaction-based mutagenesis generated nine proteinaceous fragments of HpaG(Xooc); these caused different responses following their application to Nicotiana tabacum (tobacco) and Oryza sativa (rice). Fragment HpaG62-137, which spans the indicated amino acid residues of the HpaG, induced more intense HCD; in contrast, HpaG10-42 did not cause evident cell death in tobacco. However, both fragments stimulated stronger defense responses and enhanced more growth in rice than the full-length parent protein, HpaG(Xooc). Of the nine fragments, the parent protein and one deletion mutant of HpaG(Xooc) tested, HpaG10-42, stimulated higher levels of rice growth and resulted in greater levels of resistance to X. oryzae pv. oryzae and Magnaporthe grisea. These pathogens cause bacterial leaf blight and rice blast, respectively, the two most important diseases of rice world-wide. HpaG10-42 was more active than HpaG(Xooc) in inducing expression of several genes that regulate rice defense and growth processes and activating certain signaling pathways, which may explain the greater beneficial effects observed from treatment with that fragment. Overall, our results suggest that HpaG10-42 holds promise for practical agricultural use to induce disease resistance and enhance growth of rice. PMID:18943254

Chen, Lei; Qian, Jun; Qu, Shuping; Long, Juying; Yin, Qian; Zhang, Chunling; Wu, Xiaojing; Sun, Feng; Wu, Tingquan; Hayes, Marshall; Beer, Steven V; Dong, Hansong

2008-07-01

180

Rootstock-regulated gene expression patterns associated with fire blight resistance in apple  

PubMed Central

Background Desirable apple varieties are clonally propagated by grafting vegetative scions onto rootstocks. Rootstocks influence many phenotypic traits of the scion, including resistance to pathogens such as Erwinia amylovora, which causes fire blight, the most serious bacterial disease of apple. The purpose of the present study was to quantify rootstock-mediated differences in scion fire blight susceptibility and to identify transcripts in the scion whose expression levels correlated with this response. Results Rootstock influence on scion fire blight resistance was quantified by inoculating three-year old, orchard-grown apple trees, consisting of 'Gala' scions grafted to a range of rootstocks, with E. amylovora. Disease severity was measured by the extent of shoot necrosis over time. 'Gala' scions grafted to G.30 or MM.111 rootstocks showed the lowest rates of necrosis, while 'Gala' on M.27 and B.9 showed the highest rates of necrosis. 'Gala' scions on M.7, S.4 or M.9F56 had intermediate necrosis rates. Using an apple DNA microarray representing 55,230 unique transcripts, gene expression patterns were compared in healthy, un-inoculated, greenhouse-grown 'Gala' scions on the same series of rootstocks. We identified 690 transcripts whose steady-state expression levels correlated with the degree of fire blight susceptibility of the scion/rootstock combinations. Transcripts known to be differentially expressed during E. amylovora infection were disproportionately represented among these transcripts. A second-generation apple microarray representing 26,000 transcripts was developed and was used to test these correlations in an orchard-grown population of trees segregating for fire blight resistance. Of the 690 transcripts originally identified using the first-generation array, 39 had expression levels that correlated with fire blight resistance in the breeding population. Conclusions Rootstocks had significant effects on the fire blight susceptibility of 'Gala' scions, and rootstock-regulated gene expression patterns could be correlated with differences in susceptibility. The results suggest a relationship between rootstock-regulated fire blight susceptibility and sorbitol dehydrogenase, phenylpropanoid metabolism, protein processing in the endoplasmic reticulum, and endocytosis, among others. This study illustrates the utility of our rootstock-regulated gene expression data sets for candidate trait-associated gene data mining.

2012-01-01

181

Effect of 6-Methoxybenzoxazolinone on the Growth of Xanthomonas stewartii (Erw. Smith) Dowson and its Presence in Sweet Corn (Zea mays var. saccharata Bailey)  

Microsoft Academic Search

PREVIOUSLY1 it was reported that 6-methoxy-benzoxazolinone (MBOA) inhibited growth of fungi associated with root and stalk rot of field corn. This communication reports the inhibitory effect of MBOA on Xanthomonas stewartii, the causal organism of bacterial wilt (Stewart's disease), and the presence of this compound in the sweet corn plant.

N. J. Whitney; C. G. Mortimore

1961-01-01

182

Draft Genome Sequences of Xanthomonas sacchari and Two Banana-Associated Xanthomonads Reveal Insights into the Xanthomonas Group 1 Clade.  

PubMed

We present draft genome sequences for three strains of Xanthomonas species, each of which was associated with banana plants (Musa species) but is not closely related to the previously sequenced banana-pathogen Xanthomonas campestris pathovar musacearum. Strain NCPPB4393 had been deposited as Xanthomonas campestris pathovar musacearum but in fact falls within the species Xanthomonas sacchari. Strain NCPPB1132 is more distantly related to Xanthomonas sacchari whilst strain NCPPB 1131 grouped in a distinct species-level clade related to X. sacchari, along with strains from ginger, rice, cotton and sugarcane. These three newly sequenced strains share many genomic features with the previously sequenced Xanthomonas albilineans, for example possessing an unsual metE allele and lacking the Hrp type III secretion system. However, they are distinct from Xanthomonas albilineans in many respects, for example showing little evidence of genome reduction. They also lack the SPI-1 type III secretion system found in Xanthomonas albilineans. Unlike X. albilineans, all three strains possess a gum gene cluster. The data reported here provide the first genome-wide survey of non-Hrp Xanthomonas species other than Xanthomonas albilineans, which is an atypical member of this group. We hope that the availability of complete sequence data for this group of organisms is the first step towards understanding their interactions with plants and identifying potential virulence factors. PMID:24710305

Studholme, David J; Wasukira, Arthur; Paszkiewicz, Konrad; Aritua, Valente; Thwaites, Richard; Smith, Julian; Grant, Murray

2011-01-01

183

Epidemiology of bacterial leaf stripe disease of arecanut palm  

Microsoft Academic Search

Bacterial leaf stripe caused by Xanthomonas campestris pv. arecae is a disease of arecanut palm (Areca catechu L.) in Karnataka, India. Disease outbreaks are confined to the monsoon season, i.e., July to October. Studies on the epidemiology of bacterial leaf stripe showed that disease incidence and severity are high when there are more than ten rainy days per month in

S. N. S. Kumar

1983-01-01

184

Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight.  

PubMed

Late blight, caused by the oomycete pathogen Phytophthora infestans, is the most devastating potato disease in the world. Control of late blight in the United States and other developed countries relies extensively on fungicide application. We previously demonstrated that the wild diploid potato species Solanum bulbocastanum is highly resistant to all known races of P. infestans. Potato germplasm derived from S. bulbocastanum has shown durable and effective resistance in the field. Here we report the cloning of the major resistance gene RB in S. bulbocastanum by using a map-based approach in combination with a long-range (LR)-PCR strategy. A cluster of four resistance genes of the CC-NBS-LRR (coiled coil-nucleotide binding site-Leu-rich repeat) class was found within the genetically mapped RB region. Transgenic plants containing a LR-PCR product of one of these four genes displayed broad spectrum late blight resistance. The cloned RB gene provides a new resource for developing late blight-resistant potato varieties. Our results also demonstrate that LR-PCR is a valuable approach to isolate genes that cannot be maintained in the bacterial artificial chromosome system. PMID:12872003

Song, Junqi; Bradeen, James M; Naess, S Kristine; Raasch, John A; Wielgus, Susan M; Haberlach, Geraldine T; Liu, Jia; Kuang, Hanhui; Austin-Phillips, Sandra; Buell, C Robin; Helgeson, John P; Jiang, Jiming

2003-08-01

185

Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight  

PubMed Central

Late blight, caused by the oomycete pathogen Phytophthora infestans, is the most devastating potato disease in the world. Control of late blight in the United States and other developed countries relies extensively on fungicide application. We previously demonstrated that the wild diploid potato species Solanum bulbocastanum is highly resistant to all known races of P. infestans. Potato germplasm derived from S. bulbocastanum has shown durable and effective resistance in the field. Here we report the cloning of the major resistance gene RB in S. bulbocastanum by using a map-based approach in combination with a long-range (LR)-PCR strategy. A cluster of four resistance genes of the CC-NBS-LRR (coiled coil–nucleotide binding site–Leu-rich repeat) class was found within the genetically mapped RB region. Transgenic plants containing a LR-PCR product of one of these four genes displayed broad spectrum late blight resistance. The cloned RB gene provides a new resource for developing late blight-resistant potato varieties. Our results also demonstrate that LR-PCR is a valuable approach to isolate genes that cannot be maintained in the bacterial artificial chromosome system.

Song, Junqi; Bradeen, James M.; Naess, S. Kristine; Raasch, John A.; Wielgus, Susan M.; Haberlach, Geraldine T.; Liu, Jia; Kuang, Hanhui; Austin-Phillips, Sandra; Buell, C. Robin; Helgeson, John P.; Jiang, Jiming

2003-01-01

186

Fusarium head blight and mycotoxin contamination of wheat, a review  

Microsoft Academic Search

Summary An infection of bread wheat by fusarium head blight contaminates the crop with mycotoxins, particularly deoxynivalenol (DON) and nivalenol (NIV). The toxicity and natural occurrence of these mycotoxins in wheat are reviewed. Based on 8 years data of fusarium head blight epidemics of wheat in the Netherlands, DON contamination of the grain was estimated. Fusarium head blight ratings averaged

C. H. A. Snijders

1990-01-01

187

Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR.  

PubMed Central

DNA primers corresponding to conserved motifs in bacterial repetitive (REP, ERIC, and BOX) elements and PCR were used to show that REP-, ERIC-, and BOX-like DNA sequences are widely distributed in phytopathogenic Xanthomonas and Pseudomonas strains. REP-, ERIC, and BOX-PCR (collectively known as rep-PCR) were used to generate genomic fingerprints of a variety of Xanthomonas and Pseudomonas isolates and to identify pathovars and strains that were previously not distinguishable by other classification methods. Analogous rep-PCR-derived genomic fingerprints were generated from purified genomic DNA, colonies on agar plates, liquid cultures, and directly from lesions on infected plants. REP, ERIC, and BOX-PCR-generated fingerprints of specific Xanthomonas and Pseudomonas strains were found to yield similar conclusions wtih regard to the identity of and relationship between these strains. This suggests that the distribution of REP-, ERIC, and BOX-like sequences in these strains is a reflection of their genomic structure. Thus, the rep-PCR technique appears to be a rapid, simple, and reproducible method to identify and classify Xanthomonas and Pseudomonas strains, and it may be a useful diagnostic tool for these important plant pathogens. Images

Louws, F J; Fulbright, D W; Stephens, C T; de Bruijn, F J

1994-01-01

188

Two novel type III-secreted proteins of Xanthomonas campestris pv. vesicatoria are encoded within the hrp pathogenicity island.  

PubMed

The Hrp type III protein secretion system (TTSS) is essential for pathogenicity of gram-negative plant pathogen Xanthomonas campestris pv. vesicatoria. cDNA-amplified fragment length polymorphism and reverse transcription-PCR analyses identified new genes, regulated by key hrp regulator HrpG, in the regions flanking the hrp gene cluster. Sequence analysis revealed genes encoding HpaG, a predicted leucine-rich repeat-containing protein, the lysozyme-like HpaH protein, and XopA and XopD, which are similar in sequence to Hpa1 from Xanthomonas oryzae pv. oryzae and PsvA from Pseudomonas syringae, respectively. XopA and XopD (Xanthomonas outer proteins) are secreted by the Xanthomonas Hrp TTSS and thus represent putative effector proteins. Mutations in xopA, but not in xopD, resulted in reduced bacterial growth in planta and delayed plant reactions in susceptible and resistant host plants. Since the xopD promoter contains a putative hrp box, which is characteristic of hrpL-regulated genes in P. syringae and Erwinia spp., the gene was probably acquired by horizontal gene transfer. Interestingly, the regions flanking the hrp gene cluster also contain insertion sequences and genes for a putative transposase and a tRNA(Arg). These features suggest that the hrp gene cluster of X. campestris pv. vesicatoria is part of a pathogenicity island. PMID:11844763

Noël, Laurent; Thieme, Frank; Nennstiel, Dirk; Bonas, Ulla

2002-03-01

189

Serological classification of Xanthomonas maltophilia (Pseudomonas maltophilia) based on heat-stable O antigens.  

PubMed Central

Twenty-six serotypes of Xanthomonas maltophilia were defined by using 15 antisera described by Hugh and Ryschenkow (R. Hugh and E. Ryschenkow, J. Gen. Microbiol. 26:123-132, 1961) and 11 new antisera. The antisera were prepared by immunizing rabbits with bacterial strains heated at 100 degrees C for 2 h. Twelve antisera required adsorptions with cross-reacting heterologous immunizing strains. We tested 275 clinical and environmental strains of X. maltophilia with 26 antisera by the slide agglutination technique. A total of 259 (94.2%) strains were typeable, with 137 (49.8%) strains agglutinating in three antisera.

Schable, B; Rhoden, D L; Hugh, R; Weaver, R E; Khardori, N; Smith, P B; Bodey, G P; Anderson, R L

1989-01-01

190

Race nonspecific resistance for potato late blight.  

PubMed

The late blight fungus (Phytophthora infestans) rots susceptible species of potato plants. None of the major varieties of potato (Solanum tuberosum) grown in the USA is resistant to US-8, the most prevalent genotype of the fungus. Now, Junqi Song, James Bradeen and colleagues have cloned the RB gene from the wild diploid potato species, Solanum bulbocastanum, using a map-based approach in combination with long-range PCR. Transgenic plants containing the gene, normally fully susceptible, displayed broad-spectrum late blight resistance. PMID:14729211

Staples, Richard C

2004-01-01

191

Specific detection of Xanthomonas oryzae pv. oryzicola in infected rice plant by use of PCR assay targeting a membrane fusion protein gene.  

PubMed

Successful control of Xanthomonas oryzae pv. oryzicola, the causal agent of bacterial leaf streak, requires a specific and reliable diagnostic tool. A pathovar-specific PCR assay was developed for the rapid and accurate detection of the plant pathogenic bacterium Xanthomonas oryzae pv. oryzicola in diseased plant. Based on differences in a membrane fusion protein gene of Xanthomonas oryzae pv. oryzicola and other microorganisms, which was generated from NCBI (http://www.ncbi.nlm.nih.gov/) and CMR (http://cmr.tigr.org/) BLAST searches, one pair of pathovar-specific primers, XOCMF/XOCMR, was synthesized. Primers XOCMF and XOCMR from a membrane fusion protein gene were used to amplify a 488-bp DNA fragment. The PCR product was only produced from 4 isolates of Xanthomonas oryzae pv. oryzicola among 37 isolates of other pathovars and species of Xanthomonas, Pectobacterium, Pseudomonas, Burkholderia, Escherichia coli, and Fusarium oxysporum f.sp. dianthi. The results suggested that the assay detected the pathogen more rapidly and accurately than standard isolation methods. PMID:18852502

Kang, Man Jung; Shim, Jae Kyung; Cho, Min Seok; Seol, Young Joo; Hahn, Jang Ho; Hwang, Duk Ju; Park, Dong Suk

2008-09-01

192

Identification of Xanthomonas fragariae, Xanthomonas axonopodis pv. phaseoli, and Xanthomonas fuscans subsp. fuscans with Novel Markers and Using a Dot Blot Platform Coupled with Automatic Data Analysis ? †  

PubMed Central

Phytosanitary regulations and the provision of plant health certificates still rely mainly on long and laborious culture-based methods of diagnosis, which are frequently inconclusive. DNA-based methods of detection can circumvent many of the limitations of currently used screening methods, allowing a fast and accurate monitoring of samples. The genus Xanthomonas includes 13 phytopathogenic quarantine organisms for which improved methods of diagnosis are needed. In this work, we propose 21 new Xanthomonas-specific molecular markers, within loci coding for Xanthomonas-specific protein domains, useful for DNA-based methods of identification of xanthomonads. The specificity of these markers was assessed by a dot blot hybridization array using 23 non-Xanthomonas species, mostly soil dwelling and/or phytopathogens for the same host plants. In addition, the validation of these markers on 15 Xanthomonas spp. suggested species-specific hybridization patterns, which allowed discrimination among the different Xanthomonas species. Having in mind that DNA-based methods of diagnosis are particularly hampered for unsequenced species, namely, Xanthomonas fragariae, Xanthomonas axonopodis pv. phaseoli, and Xanthomonas fuscans subsp. fuscans, for which comparative genomics tools to search for DNA signatures are not yet applicable, emphasis was given to the selection of informative markers able to identify X. fragariae, X. axonopodis pv. phaseoli, and X. fuscans subsp. fuscans strains. In order to avoid inconsistencies due to operator-dependent interpretation of dot blot data, an image-processing algorithm was developed to analyze automatically the dot blot patterns. Ultimately, the proposed markers and the dot blot platform, coupled with automatic data analyses, have the potential to foster a thorough monitoring of phytopathogenic xanthomonads.

Albuquerque, Pedro; Caridade, Cristina M. R.; Marcal, Andre R. S.; Cruz, Joana; Cruz, Leonor; Santos, Catarina L.; Mendes, Marta V.; Tavares, Fernando

2011-01-01

193

Xanthomonas oryzae pv. oryzae Type III Effector XopN Targets OsVOZ2 and a Putative Thiamine Synthase as a Virulence Factor in Rice  

PubMed Central

Xanthomonasoryzae pv. oryzae (Xoo) is spread systemically through the xylem tissue and causes bacterial blight in rice. We evaluated the roles of Xanthomonas outer proteins (Xop) in the Xoo strain KXO85 in a Japonica-type rice cultivar, Dongjin. Five xop gene knockout mutants (xopQKXO85, xopXKXO85, xopP1KXO85, xopP2KXO85, and xopNKXO85) were generated by EZ-Tn5 mutagenesis, and their virulence was assessed in 3-month-old rice leaves. Among these mutants, the xopNKXO85 mutant appeared to be less virulent than the wild-type KXO85; however, the difference was not statistically significant. In contrast, the xopNKXO85 mutant exhibited significantly less virulence in flag leaves after flowering than the wild-type KXO85. These observations indicate that the roles of Xop in Xoo virulence are dependent on leaf stage. We chose the xopN gene for further characterization because the xopNKXO85 mutant showed the greatest influence on virulence. We confirmed that XopNKXO85 is translocated into rice cells, and its gene expression is positively regulated by HrpX. Two rice proteins, OsVOZ2 and a putative thiamine synthase (OsXNP), were identified as targets of XopNKXO85 by yeast two-hybrid screening. Interactions between XopNKXO85 and OsVOZ2 and OsXNP were further confirmed in planta by bimolecular fluorescence complementation and in vivo pull-down assays. To investigate the roles of OsVOZ2 in interactions between rice and Xoo, we evaluated the virulence of the wild-type KXO85 and xopNKXO85 mutant in the OsVOZ2 mutant line PFG_3A-07565 of Dongjin. The wild-type KXO85 and xopNKXO85 mutant were significantly less virulent in the mutant rice line. These results indicate that XopNKXO85 and OsVOZ2 play important roles both individually and together for Xoo virulence in rice.

Cheong, Hoon; Kim, Chi-Yeol; Jeon, Jong-Seong; Lee, Byoung-Moo; Sun Moon, Jae; Hwang, Ingyu

2013-01-01

194

Phacidium snow blight in the Baltic countries  

Microsoft Academic Search

Distribution of a polemic in Baltic countries forest disease - snow blight and its agent Phacidium infestans Karst. (Phacidiales, Ascomycota ) are discussed on the base of the investigations carried out during several decades. Baltic countries lie in the zone of southern border of the huge natural distribution area of this fungus. Only occasional damages to the forest nurseries and

Märt Hanso

195

The early days of late blight.  

PubMed

Large-scale DNA sequencing of samples of foliage collected in the 19th century from plants infected with late blight has shown that the potato famines of the 1840s were triggered by a single clonal lineage of Phytophthora infestans, called HERB-1, which persisted for at least 50 years. PMID:23795302

Birch, Paul Rj; Cooke, David El

2013-01-01

196

Evolutionary History of the Plant Pathogenic Bacterium Xanthomonas axonopodis  

PubMed Central

Deciphering mechanisms shaping bacterial diversity should help to build tools to predict the emergence of infectious diseases. Xanthomonads are plant pathogenic bacteria found worldwide. Xanthomonas axonopodis is a genetically heterogeneous species clustering, into six groups, strains that are collectively pathogenic on a large number of plants. However, each strain displays a narrow host range. We address the question of the nature of the evolutionary processes – geographical and ecological speciation – that shaped this diversity. We assembled a large collection of X. axonopodis strains that were isolated over a long period, over continents, and from various hosts. Based on the sequence analysis of seven housekeeping genes, we found that recombination occurred as frequently as point mutation in the evolutionary history of X. axonopodis. However, the impact of recombination was about three times greater than the impact of mutation on the diversity observed in the whole dataset. We then reconstructed the clonal genealogy of the strains using coalescent and genealogy approaches and we studied the diversification of the pathogen using a model of divergence with migration. The suggested scenario involves a first step of generalist diversification that spanned over the last 25 000 years. A second step of ecology-driven specialization occurred during the past two centuries. Eventually, secondary contacts between host-specialized strains probably occurred as a result of agricultural development and intensification, allowing genetic exchanges of virulence-associated genes. These transfers may have favored the emergence of novel pathotypes. Finally, we argue that the largest ecological entity within X. axonopodis is the pathovar.

Mhedbi-Hajri, Nadia; Hajri, Ahmed; Boureau, Tristan; Darrasse, Armelle; Durand, Karine; Brin, Chrystelle; Saux, Marion Fischer-Le; Manceau, Charles; Poussier, Stephane; Pruvost, Olivier

2013-01-01

197

Construction of two BAC libraries from the wild Mexican diploid potato, Solanum pinnatisectum, and the identification of clones near the late blight and Colorado potato beetle resistance loci  

Microsoft Academic Search

To facilitate isolation and characterization of disease and insect resistance genes important to potato, two bacterial artificial chromosome (BAC) libraries were constructed from genomic DNA of the Mexican wild diploid species, Solanum pinnatisectum, which carries high levels of resistance to the most important potato pathogen and pest, the late blight and the Colorado potato beetle (CPB). One of the libraries

Q. Chen; S. Sun; Q. Ye; S. McCuine; E. Huff; H.-B. Zhang

2004-01-01

198

Heterogeneity of Xanthomonas campestris pv. hederae Strains from Araliaceous Hosts.  

PubMed

ABSTRACT Xanthomonas campestris pv. hederae (synonym X. hortorum pv. hederae) strains (59 total) were collected from plants in the araliaceae family. Strains were isolated from Hedera helix, Schefflera arboricola, Brassaia actinophylla, and Polyscias spp. from Florida, California, Hawaii, and New Zealand. All strains produced yellow mucoid growth; hydrolyzed esculin, starch, casein and gelatin; were pectolytic; produced urease; and grew on minimal media containing asparagine. All bacterial strains were pathogenic on H. helix (English ivy), B. actinophylla (dwarf schefflera), and Polyscias fruticosa (ming aralia). No differences in symptomatology were detected among strains; however, severity of symptoms usually was greatest on the host of origin. In planta growth rates of representative strains isolated from H. helix, B. actinophylla, and Polyscias spp. also were compared among these three hosts. In all cases, populations grew more rapidly when strains were inoculated to their original host species. All 59 bacterial strains were compared by 95-carbon source GN microplate, fatty acid methyl ester (FAME), and restriction fragment-length polymorphisms (RFLP), with the pulse-field gel electrophoresis method, analyses. All three analyses grouped strains into two distinct groups that correlated with the host of origin. Using metabolic profiles, 75% of the H. helix strains were separated from strains isolated from Brassaia and Schefflera and 95% of the Polyscias strains. FAME analysis separated strains into two distinct groups, with 96% of the H. helix strains placed in one group. RFLP analysis placed all of the H. helix and Schefflera strains in one group, as well as 33% of the Brassaia strains, whereas the other group contained all of the Polyscias strains and the remainder of the Brassaia strains. It is apparent that the pathovar hederae is made up of heterogeneous populations that can be separated by biochemical, pathological, genetic, and physiological analyses into two groups that are closely associated with the host of origin. PMID:18944676

Norman, D J; Chase, A R; Stall, R E; Jones, J B

1999-08-01

199

Biological control of fusarium seedling blight disease of wheat and barley.  

PubMed

ABSTRACT Fusarium fungi, including F. culmorum, cause seedling blight, foot rot, and head blight diseases of cereals, resulting in yield loss. In a screen for potential disease control organisms and agents, Pseudomonas fluorescens strains MKB 100 and MKB 249, P. frederiksbergensis strain 202, Pseudomonas sp. strain MKB 158, and chitosan all significantly reduced the extent of both wheat coleoptile growth retardation and wheat and barley seedling blight caused by F. culmorum (by 53 to 91%). Trichodiene synthase is a Fusarium enzyme necessary for trichothecene mycotoxin biosynthesis; expression of the gene encoding this enzyme in wheat was 33% lower in stem base tissue coinoculated with Pseudomonas sp. strain MKB 158 and F. culmorum than in wheat treated with bacterial culture medium and F. culmorum. When wheat and barley were grown in soil amended with either chitosan, P. fluorescens strain MKB 249, Pseudomonas sp. strain MKB 158, or culture filtrates of these bacteria, the level of disease symptoms on F. culmorum-inoculated stem base tissue (at 12 days post- F. culmorum inoculation) was >/=31% less than the level on F. culmorum-inoculated plants grown in culture medium-amended soil. It seems likely that at least part of the biocontrol activity of these bacteria and chitosan may be due to the induction of systemic disease resistance in host plants. Also, in coinoculation studies, Pseudomonas sp. strain MKB 158 induced the expression of a wheat class III plant peroxidase gene (a pathogenesis-related gene). PMID:18943420

Khan, Mojibur R; Fischer, Sven; Egan, Damian; Doohan, Fiona M

2006-04-01

200

Genetics of ascochyta blight resistance in chickpea  

Microsoft Academic Search

Genetics of resistance to ascochyta blight was studied using different generations of fifteen crosses of chickpea (Cicer arietinum L.). Six parents comprising two susceptible varieties GL 769, C 214 and four resistant lines GG 1267, GL 90168, GL 96010\\u000a and GL 98010 were used to develop one S × S, eight S × R and six R × R crosses and some of the back crosses

R. Bhardwaj; J. S. Sandhu; Livinder Kaur; S. K. Gupta; P. M. Gaur; R. Varshney

2010-01-01

201

Resistance to late blight in Andigena potatoes  

Microsoft Academic Search

Andigena clones derived from mass-selected seedling populations which had been subjected to several generations of natural selection in the field for late blight resistance were studied. The average level of resistance (score about 3 on scale 1–5) was better than a sample ofTuberosum potatoes (score about 4) and the best individual clones were very resistant indeed. It is concluded thatAndigena

N. W. Simmonds; J. F. Malcolmson

1967-01-01

202

Sequence analysis of a gene product synthesized by Xanthomonas sp. during growth on natural rubber latex.  

PubMed

Xanthomonas sp. secretes an extracellular protein (Mr approximately 70+/-5 kDa) during growth on purified natural rubber [poly(1,4-cis-isoprene)] but not during growth on water-soluble carbon sources such as glucose or gluconate. A 1.3 kbp DNA fragment coding for an internal part of the structural gene of the 70 kDa protein was amplified by nested polymerase chain reaction (PCR) using amino acid sequence information obtained after Edman degradation of selected trypsin-generated peptides of the purified 70 kDa protein. The PCR product was used as a DNA probe to clone the complete structural gene from genomic DNA of Xanthomonas sp. The sequenced DNA contained a 2037 bp open reading frame which coded for a polypeptide of 678 amino acids (Mr 74.6 kDa) and which included the features of the N-terminal signal peptidase cleavage site (Mr approximately 72.9 kDa for the mature protein). Analysis of the amino acid sequence revealed the presence of two heme binding motifs (CXXCH) and a approximately 20 amino acids long sequence that is conserved in the Paracoccus denitrificans and Pseudomonas aeruginosa diheme cytochrome c peroxidases (CCPs). This region includes a histidine residue (H519 in Xanthomonas sp. and H265 and H271 in the Pseudomonas strains, respectively) that is essential for activity in CCPs and that is also conserved in other bacterial oxidases. Blast analysis confirmed the relatedness of the 70 kDa protein to heme-containing oxidases and suggested that it is a member of a new family of relatively large (approximately 500 to approximately 1000 amino acids) extracellular proteins with so far unknown function being only far related in amino acid sequence to P. denitrificans and P. aeruginosa CCPs. PMID:12855168

Jendrossek, Dieter; Reinhardt, Simone

2003-07-15

203

Integron variability in Xanthomonas arboricola pv. juglandis and Xanthomonas arboricola pv. pruni strains.  

PubMed

The integron platform and the gene cassette arrays of 34 Xanthomonas arboricola pv. juglandis and of 47 Xanthomonas arboricola pv. pruni strains isolated from different geographical areas were screened to check their variability. Genetic variability of the strains was also tested by means of BOX-PCR. For two representative strains of the two pathovars, the integrase gene intI and part of the flanking gene ilvD were also cloned and sequenced. Whereas X. a. pv. pruni strains did not show relevant variability, six X. a. pv. juglandis strains isolated in Australia showed some differences in the gene sequences. The CLUSTALW algorithm indicated that the majority of the X. a. pv. juglandis strains are closely related to X. a. pv. pruni, whereas the X. a. pv. juglandis strains isolated in Australia were more similar to Xanthomonas hortorum pv. pelargonii. Similarly, the gene cassette array pattern of the Australian strains, as well as that of the oldest strain maintained in culture, was different from the other strains. Also, three X. a. pv. pruni strains showed a different cassette array pattern when compared with the majority of other strains but no relationships with geographical area of isolation or host plant was revealed. This study confirmed that in addition to species, integrons may generate diversity also within two X. arboricola pathovars. PMID:18785932

Barionovi, Daniela; Scortichini, Marco

2008-11-01

204

Within-Species Flagellin Polymorphism in Xanthomonas campestris pv campestris and Its Impact on Elicitation of Arabidopsis FLAGELLIN SENSING2Dependent Defenses  

Microsoft Academic Search

Bacterial flagellins have been portrayed as a relatively invariant pathogen-associated molecular pattern. We have found within-species, within-pathovar variation for defense-eliciting activity of flagellins among Xanthomonas campestris pv campestris (Xcc) strains. Arabidopsis thaliana FLAGELLIN SENSING2 (FLS2), a transmembrane leucine-rich repeat kinase, confers flagellin responsiveness. The flg22 region was the only Xcc flagellin region responsible for detectable elicitation of Arabidopsis defense responses.

Wenxian Sun; F. Mark Dunning; Christine Pfund; Rebecca Weingarten; Andrew F. Bent

2006-01-01

205

The type III protein secretion system contributes to Xanthomonas citri subsp. citri biofilm formation  

PubMed Central

Background Several bacterial plant pathogens colonize their hosts through the secretion of effector proteins by a Type III protein secretion system (T3SS). The role of T3SS in bacterial pathogenesis is well established but whether this system is involved in multicellular processes, such as bacterial biofilm formation has not been elucidated. Here, the phytopathogen Xanthomonas citri subsp. citri (X. citri) was used as a model to gain further insights about the role of the T3SS in biofilm formation. Results The capacity of biofilm formation of different X. citri T3SS mutants was compared to the wild type strain and it was observed that this secretion system was necessary for this process. Moreover, the T3SS mutants adhered proficiently to leaf surfaces but were impaired in leaf-associated growth. A proteomic study of biofilm cells showed that the lack of the T3SS causes changes in the expression of proteins involved in metabolic processes, energy generation, exopolysaccharide (EPS) production and bacterial motility as well as outer membrane proteins. Furthermore, EPS production and bacterial motility were also altered in the T3SS mutants. Conclusions Our results indicate a novel role for T3SS in X. citri in the modulation of biofilm formation. Since this process increases X. citri virulence, this study reveals new functions of T3SS in pathogenesis.

2014-01-01

206

Establishment of an inducing medium for type III effector secretion in Xanthomonas campestris pv. campestris  

PubMed Central

It is well known that the type III secretion system (T3SS) and type III (T3) effectors are essential for the pathogenicity of most bacterial phytopathogens and that the expression of T3SS and T3 effectors is suppressed in rich media but induced in minimal media and plants. To facilitate in-depth studies on T3SS and T3 effectors, it is crucial to establish a medium for T3 effector expression and secretion. Xanthomonas campestris pv. campestris (Xcc) is a model bacterium for studying plant-pathogen interactions. To date no medium for Xcc T3 effector secretion has been defined. Here, we compared four minimal media (MME, MMX, XVM2, and XOM2) which are reported for T3 expression induction in Xanthomonas spp. and found that MME is most efficient for expression and secretion of Xcc T3 effectors. By optimization of carbon and nitrogen sources and pH value based on MME, we established XCM1 medium, which is about 3 times stronger than MME for Xcc T3 effectors secretion. We further optimized the concentration of phosphate, calcium, and magnesium in XCM1 and found that XCM1 with a lower concentration of magnesium (renamed as XCM2) is about 10 times as efficient as XCM1 (meanwhile, about 30 times stronger than MME). Thus, we established an inducing medium XCM2 which is preferred for T3 effector secretion in Xcc.

Jiang, Guo-Feng; Jiang, Bo-Le; Yang, Mei; Liu, San; Liu, Jiao; Liang, Xiao-Xia; Bai, Xian-Fang; Tang, Dong-Jie; Lu, Guang-Tao; He, Yong-Qiang; Yu, Di-Qiu; Tang, Ji-Liang

2013-01-01

207

Bacterial degradation of dehydropolymers of coniferyl alcohol  

Microsoft Academic Search

A bacterial isolate identified as Xanthomonas sp. proved to be ligninolytic due to its ability to degrade 14C-labeled dehydropolymers of coniferyl alcohol (DHP) and [14C]lignocellulose complexes from corn plants (Zea mays). Several parameters of ligninolysis were evaluated and it was shown that resting cells degrade DHP as sole carbon source. Enhancement of DHP degradation in the presence of ferulic acid

Hartmut W. Kern

1984-01-01

208

Draft genome sequence of Xanthomonas axonopodis pv. glycines 8ra possessing transcription activator-like effectors used for genetic engineering.  

PubMed

Xanthomonas axonopodis pv. glycines 8ra is a causal agent of bacterial pustule disease in soybean. This bacterium possesses transcription activator-like (TAL) effectors which are useful for genetic/protein engineering applications in higher organisms including plants and humans. Here, we report that the draft genome sequence consists of 5,337,885-bp double-stranded DNA encoding 4674 open reading frames (ORFs) in 13 different contigs. This genome sequence would be useful in applications of TAL effectors in genetic engineering and in elucidating virulence factors against plants. PMID:24657734

Lee, Ju-Hoon; Shin, Hakdong; Park, Hye-Jee; Ryu, Sangryeol; Han, Sang-Wook

2014-06-10

209

Real Time Live Imaging of Phytopathogenic Bacteria Xanthomonas campestris pv. campestris MAFF106712 in 'Plant Sweet Home'  

PubMed Central

Xanthomonas is one of the most widespread phytobacteria, causing diseases on a variety of agricultural plants. To develop novel control techniques, knowledge of bacterial behavior inside plant cells is essential. Xanthomonas campestris pv. campestris, a vascular pathogen, is the causal agent of black rot on leaves of Brassicaceae, including Arabidopsis thaliana. Among the X. campestris pv. campestris stocks in the MAFF collection, we selected XccMAFF106712 as a model compatible pathogen for the A. thaliana reference ecotype Columbia (Col-0). Using modified green fluorescent protein (AcGFP) as a reporter, we observed real time XccMAFF106712 colonization in planta with confocal microscopy. AcGFP-expressing bacteria colonized the inside of epidermal cells and the apoplast, as well as the xylem vessels of the vasculature. In the case of the type III mutant, bacteria colonization was never detected in the xylem vessel or apoplast, though they freely enter the xylem vessel through the wound. After 9 days post inoculation with XccMAFF106712, the xylem vessel became filled with bacterial aggregates. This suggests that Xcc colonization can be divided into main four steps, (1) movement in the xylem vessel, (2) movement to the next cell, (3) adhesion to the host plant cells, and (4) formation of bacterial aggregates. The type III mutant abolished at least steps (1) and (2). Better understanding of Xcc colonization is essential for development of novel control techniques for black rot.

Akimoto-Tomiyama, Chiharu; Furutani, Ayako; Ochiai, Hirokazu

2014-01-01

210

Potent and specific bactericidal effect of juglone (5-hydroxy-1,4-naphthoquinone) on the fire blight pathogen Erwinia amylovora.  

PubMed

A screening of plant quinones for inhibiting effects on the bacterial fire blight pathogen Erwinia amylovora was performed. The most active compound, juglone from walnuts, has a potent and specific bactericidal effect on E. amylovora and minimal inhibitory concentrations of only 2.5-10 ?M, with stronger effects at lower, but still physiological, pH values. In vitro tests with juglone and inoculated flowers of apple (Malus domestica) showed an efficacy of 67% in preventing infection. In two years of field tests juglone had variable degrees of efficacy ranging from 40 to 82%, seemingly due to environmental conditions. A phytotoxic reaction to juglone, which is known for its allelopathic effect on plants, was restricted to browning of petals; later fruit russeting was not observed. Juglone is a promising candidate for the development of a new environmentally friendly plant protectant to replace the antibiotic streptomycin currently used in fire blight control. PMID:23163769

Fischer, Thilo Christopher; Gosch, Christian; Mirbeth, Beate; Gselmann, Markus; Thallmair, Veronika; Stich, Karl

2012-12-12

211

Fortunella margarita Transcriptional Reprogramming Triggered by Xanthomonas citri subsp. citri  

PubMed Central

Background Citrus canker disease caused by the bacterial pathogen Xanthomonas citri subsp. citri (Xcc) has become endemic in areas where high temperature, rain, humidity, and windy conditions provide a favourable environment for the dissemination of the bacterium. Xcc is pathogenic on many commercial citrus varieties but appears to elicit an incompatible reaction on the citrus relative Fortunella margarita Swing (kumquat), in the form of a very distinct delayed necrotic response. We have developed subtractive libraries enriched in sequences expressed in kumquat leaves during both early and late stages of the disease. The isolated differentially expressed transcripts were subsequently sequenced. Our results demonstrate how the use of microarray expression profiling can help assign roles to previously uncharacterized genes and elucidate plant pathogenesis-response related mechanisms. This can be considered to be a case study in a citrus relative where high throughput technologies were utilized to understand defence mechanisms in Fortunella and citrus at the molecular level. Results cDNAs from sequenced kumquat libraries (ESTs) made from subtracted RNA populations, healthy vs. infected, were used to make this microarray. Of 2054 selected genes on a customized array, 317 were differentially expressed (P < 0.05) in Xcc challenged kumquat plants compared to mock-inoculated ones. This study identified components of the incompatible interaction such as reactive oxygen species (ROS) and programmed cell death (PCD). Common defence mechanisms and a number of resistance genes were also identified. In addition, there were a considerable number of differentially regulated genes that had no homologues in the databases. This could be an indication of either a specialized set of genes employed by kumquat in response to canker disease or new defence mechanisms in citrus. Conclusion Functional categorization of kumquat Xcc-responsive genes revealed an enhanced defence-related metabolism as well as a number of resistant response-specific genes in the kumquat transcriptome in response to Xcc inoculation. Gene expression profile(s) were analyzed to assemble a comprehensive and inclusive image of the molecular interaction in the kumquat/Xcc system. This was done in order to elucidate molecular mechanisms associated with the development of the hypersensitive response phenotype in kumquat leaves. These data will be used to perform comparisons among citrus species to evaluate means to enhance the host immune responses against bacterial diseases.

2011-01-01

212

New genes of Xanthomonas citri subsp. citri involved in pathogenesis and adaptation revealed by a transposon-based mutant library  

PubMed Central

Background Citrus canker is a disease caused by the phytopathogens Xanthomonas citri subsp. citri, Xanthomonas fuscans subsp. aurantifolli and Xanthomonas alfalfae subsp. citrumelonis. The first of the three species, which causes citrus bacterial canker type A, is the most widely spread and severe, attacking all citrus species. In Brazil, this species is the most important, being found in practically all areas where citrus canker has been detected. Like most phytobacterioses, there is no efficient way to control citrus canker. Considering the importance of the disease worldwide, investigation is needed to accurately detect which genes are related to the pathogen-host adaptation process and which are associated with pathogenesis. Results Through transposon insertion mutagenesis, 10,000 mutants of Xanthomonas citri subsp. citri strain 306 (Xcc) were obtained, and 3,300 were inoculated in Rangpur lime (Citrus limonia) leaves. Their ability to cause citrus canker was analyzed every 3 days until 21 days after inoculation; a set of 44 mutants showed altered virulence, with 8 presenting a complete loss of causing citrus canker symptoms. Sequencing of the insertion site in all 44 mutants revealed that 35 different ORFs were hit, since some ORFs were hit in more than one mutant, with mutants for the same ORF presenting the same phenotype. An analysis of these ORFs showed that some encoded genes were previously known as related to pathogenicity in phytobacteria and, more interestingly, revealed new genes never implicated with Xanthomonas pathogenicity before, including hypothetical ORFs. Among the 8 mutants with no canker symptoms are the hrpB4 and hrpX genes, two genes that belong to type III secretion system (TTSS), two hypothetical ORFS and, surprisingly, the htrA gene, a gene reported as involved with the virulence process in animal-pathogenic bacteria but not described as involved in phytobacteria virulence. Nucleic acid hybridization using labeled cDNA probes showed that some of the mutated genes are differentially expressed when the bacterium is grown in citrus leaves. Finally, comparative genomic analysis revealed that 5 mutated ORFs are in new putative pathogenicity islands. Conclusion The identification of these new genes related with Xcc infection and virulence is a great step towards the understanding of plant-pathogen interactions and could allow the development of strategies to control citrus canker.

2009-01-01

213

Xanthan Gum Removal for 1H-NMR Analysis of the Intracellular Metabolome of the Bacteria Xanthomonas axonopodis pv. citri 306  

PubMed Central

Xanthomonas is a genus of phytopathogenic bacteria, which produces a slimy, polysaccharide matrix known as xanthan gum, which involves, protects and helps the bacteria during host colonization. Although broadly used as a stabilizer and thickener in the cosmetic and food industries, xanthan gum can be a troubling artifact in molecular investigations due to its rheological properties. In particular, a cross-reaction between reference compounds and the xanthan gum could compromise metabolic quantification by NMR spectroscopy. Aiming at an efficient gum extraction protocol, for a 1H-NMR-based metabolic profiling study of Xanthomonas, we tested four different interventions on the broadly used methanol-chloroform extraction protocol for the intracellular metabolic contents observation. Lower limits for bacterial pellet volumes for extraction were also probed, and a strategy is illustrated with an initial analysis of X. citri’s metabolism by 1H-NMR spectroscopy.

Pegos, Vanessa R.; Canevarolo, Rafael R.; Sampaio, Aline P.; Balan, Andrea; Zeri, Ana C. M.

2014-01-01

214

Xanthan Gum Removal for 1H-NMR Analysis of the Intracellular Metabolome of the Bacteria Xanthomonas axonopodis pv. citri 306.  

PubMed

Xanthomonas is a genus of phytopathogenic bacteria, which produces a slimy, polysaccharide matrix known as xanthan gum, which involves, protects and helps the bacteria during host colonization. Although broadly used as a stabilizer and thickener in the cosmetic and food industries, xanthan gum can be a troubling artifact in molecular investigations due to its rheological properties. In particular, a cross-reaction between reference compounds and the xanthan gum could compromise metabolic quantification by NMR spectroscopy. Aiming at an efficient gum extraction protocol, for a 1H-NMR-based metabolic profiling study of Xanthomonas, we tested four different interventions on the broadly used methanol-chloroform extraction protocol for the intracellular metabolic contents observation. Lower limits for bacterial pellet volumes for extraction were also probed, and a strategy is illustrated with an initial analysis of X. citri's metabolism by 1H-NMR spectroscopy. PMID:24957023

Pegos, Vanessa R; Canevarolo, Rafael R; Sampaio, Aline P; Balan, Andrea; Zeri, Ana C M

2014-01-01

215

Transition from normal early pregnancy to blighted ovum.  

PubMed

Four cases of blighted ovum which had normal pregnancies by earlier ultrasound including embryonic heart activity are presented. There was no unique karyotype associated with this phenomenon. PMID:1683306

Witter, F R; Blakemore, K J; Callan, N A

1991-09-01

216

Stem Rice Blight and Secrets for Its Prevention.  

National Technical Information Service (NTIS)

The occurrence of rice blight, as has been known since ancient times, varies with the weather (atmospheric temperature, sunshine, and rainfall), variety of rice, cultivation and control methods. The foremost condition for the frequent occurrence of stem r...

O. Kosaburo

1966-01-01

217

Characterization of a variant of Xanthomonas citri subsp. citri that triggers a host-specific defense response.  

PubMed

Citrus is an economically important fruit crop that is severely afflicted by Asiatic citrus bacterial canker (CBC), a disease caused by the phytopathogen Xanthomonas citri subsp. citri (X. citri). To gain insight into the molecular epidemiology of CBC, 42 Xanthomonas isolates were collected from a range of Citrus spp. across 17 different orchards in Tucumán, Argentina and subjected to molecular, biochemical, and pathogenicity tests. Analysis of genome-specific X. citri markers and DNA polymorphisms based on repetitive elements-based polymerase chain reaction showed that all 42 isolates belonged to X. citri. Interestingly, pathogenicity tests showed that one isolate, which shares >90% genetic similarity to the reference strain X. citri T, has host range specificity. This new variant of X. citri subsp. citri, named X. citri A(T), which is deficient in xanthan production, induces an atypical, noncankerous chlorotic phenotype in Citrus limon and C. paradisi and weak cankerous lesions in C. aurantifolia and C. clementina leaves. In C. limon, suppression of canker development is concomitant with an oxidative burst; xanthan is not implicated in the phenotype induced by this interaction, suggesting that other bacterial factors would be involved in triggering the defense response. PMID:23268580

Chiesa, María A; Siciliano, María F; Ornella, Leonardo; Roeschlin, Roxana A; Favaro, María A; Delgado, Natalia Pino; Sendín, Lorena N; Orce, Ingrid G; Ploper, L Daniel; Vojnov, Adrian A; Vacas, José Gadea; Filippone, María P; Castagnaro, Atilio P; Marano, María R

2013-06-01

218

Hypersensitive response and acyl-homoserine lactone production of the fire blight antagonists Erwinia tasmaniensis and Erwinia billingiae.  

PubMed

Fire blight caused by the Gram-negative bacterium Erwinia amylovora can be controlled by antagonistic microorganisms. We characterized epiphytic bacteria isolated from healthy apple and pear trees in Australia, named Erwinia tasmaniensis, and the epiphytic bacterium Erwinia billingiae from England for physiological properties, interaction with plants and interference with growth of E. amylovora. They reduced symptom formation by the fire blight pathogen on immature pears and the colonization of apple flowers. In contrast to E. billingiae, E. tasmaniensis strains induced a hypersensitive response in tobacco leaves and synthesized levan in the presence of sucrose. With consensus primers deduced from lsc as well as hrpL, hrcC and hrcR of the hrp region of E. amylovora and of related bacteria, these genes were successfully amplified from E. tasmaniensis DNA and alignment of the encoded proteins to other Erwinia species supported a role for environmental fitness of the epiphytic bacterium. Unlike E. tasmaniensis, the epiphytic bacterium E. billingiae produced an acyl-homoserine lactone for bacterial cell-to-cell communication. Their competition with the growth of E. amylovora may be involved in controlling fire blight. PMID:21261861

Jakovljevic, Vladimir; Jock, Susanne; Du, Zhiqiang; Geider, Klaus

2008-09-01

219

Hypersensitive response and acyl-homoserine lactone production of the fire blight antagonists Erwinia tasmaniensis and Erwinia billingiae  

PubMed Central

Summary Fire blight caused by the Gram?negative bacterium Erwinia amylovora can be controlled by antagonistic microorganisms. We characterized epiphytic bacteria isolated from healthy apple and pear trees in Australia, named Erwinia tasmaniensis, and the epiphytic bacterium Erwinia billingiae from England for physiological properties, interaction with plants and interference with growth of E. amylovora. They reduced symptom formation by the fire blight pathogen on immature pears and the colonization of apple flowers. In contrast to E. billingiae, E. tasmaniensis strains induced a hypersensitive response in tobacco leaves and synthesized levan in the presence of sucrose. With consensus primers deduced from lsc as well as hrpL, hrcC and hrcR of the hrp region of E. amylovora and of related bacteria, these genes were successfully amplified from E. tasmaniensis DNA and alignment of the encoded proteins to other Erwinia species supported a role for environmental fitness of the epiphytic bacterium. Unlike E. tasmaniensis, the epiphytic bacterium E. billingiae produced an acyl?homoserine lactone for bacterial cell?to?cell communication. Their competition with the growth of E. amylovora may be involved in controlling fire blight.

Jakovljevic, Vladimir; Jock, Susanne; Du, Zhiqiang; Geider, Klaus

2008-01-01

220

Insights into xanthomonas axonopodis pv. citri biofilm through proteomics  

PubMed Central

Background Xanthomonas axonopodis pv. citri (X. a. pv. citri) causes citrus canker that can result in defoliation and premature fruit drop with significant production losses worldwide. Biofilm formation is an important process in bacterial pathogens and several lines of evidence suggest that in X. a. pv. citri this process is a requirement to achieve maximal virulence since it has a major role in host interactions. In this study, proteomics was used to gain further insights into the functions of biofilms. Results In order to identify differentially expressed proteins, a comparative proteomic study using 2D difference gel electrophoresis was carried out on X. a. pv. citri mature biofilm and planktonic cells. The biofilm proteome showed major variations in the composition of outer membrane proteins and receptor or transport proteins. Among them, several porins and TonB-dependent receptor were differentially regulated in the biofilm compared to the planktonic cells, indicating that these proteins may serve in maintaining specific membrane-associated functions including signaling and cellular homeostasis. In biofilms, UDP-glucose dehydrogenase with a major role in exopolysaccharide production and the non-fimbrial adhesin YapH involved in adherence were over-expressed, while a polynucleotide phosphorylase that was demonstrated to negatively control biofilm formation in E. coli was down-regulated. In addition, several proteins involved in protein synthesis, folding and stabilization were up-regulated in biofilms. Interestingly, some proteins related to energy production, such as ATP-synthase were down-regulated in biofilms. Moreover, a number of enzymes of the tricarboxylic acid cycle were differentially expressed. In addition, X. a. pv. citri biofilms also showed down-regulation of several antioxidant enzymes. The respective gene expression patterns of several identified proteins in both X. a. pv. citri mature biofilm and planktonic cells were evaluated by quantitative real-time PCR and shown to consistently correlate with those deduced from the proteomic study. Conclusions Differentially expressed proteins are enriched in functional categories. Firstly, proteins that are down-regulated in X. a. pv. citri biofilms are enriched for the gene ontology (GO) terms ‘generation of precursor metabolites and energy’ and secondly, the biofilm proteome mainly changes in ‘outer membrane and receptor or transport’. We argue that the differentially expressed proteins have a critical role in maintaining a functional external structure as well as enabling appropriate flow of nutrients and signals specific to the biofilm lifestyle.

2013-01-01

221

Preparation and evaluation of Bacillus megaterium-alginate microcapsules for control of rice sheath blight disease.  

PubMed

Bacillus megaterium encapsulated in calcium alginate microcapsules was prepared and tested for its efficacy against sheath blight disease of rice. In laboratory conditions, the aqueous suspension (1:100, v/v in potato dextrose agar) of the bacterial microcapsules (10(10) spores/ml) inhibited mycelial growth of Rhizoctonia solani (>99 %) after the microcapsules were produced and stored for 12 months at room temperature (28 ± 2 °C). The survival of the bacterium in the microcapsules in response to ultraviolet (u.v.) irradiation and high temperature was investigated. The survivability of the bacterium in the encapsulated form was greater than that of the fresh cells when it was subjected to u.v. (20-W General electric u.v. lamp from a 25 cm distance for 48 h) and a high temperature treatment (80 °C for 48 h). Cells of the bacterium were detected by scanning electron microscope on both the leaf sheath and the leaf blade (in pot tests in a greenhouse) after spraying encapsulated product. The number of bacteria on the surface of both rice tissues (5 Log. number/g of plant) after spraying with encapsulated product was not significantly different from that after spraying with fresh cells onto the rice seedlings. Spraying the encapsulated B. megaterium on rice plants in the greenhouse was as effective as spraying a chemical fungicide for suppressing rice sheath blight disease. PMID:23508397

Wiwattanapatapee, R; Chumthong, A; Pengnoo, A; Kanjanamaneesathian, M

2013-08-01

222

Development of an efficient real-time quantitative PCR protocol for detection of Xanthomonas arboricola pv. pruni in Prunus species.  

PubMed

Xanthomonas arboricola pv. pruni, the causal agent of bacterial spot disease of stone fruit, is considered a quarantine organism by the European Union and the European and Mediterranean Plant Protection Organization (EPPO). The bacterium can undergo an epiphytic phase and/or be latent and can be transmitted by plant material, but currently, only visual inspections are used to certify plants as being X. arboricola pv. pruni free. A novel and highly sensitive real-time TaqMan PCR detection protocol was designed based on a sequence of a gene for a putative protein related to an ABC transporter ATP-binding system in X. arboricola pv. pruni. Pathogen detection can be completed within a few hours with a sensitivity of 10(2) CFU ml(-1), thus surpassing the sensitivity of the existing conventional PCR. Specificity was assessed for X. arboricola pv. pruni strains from different origins as well as for closely related Xanthomonas species, non-Xanthomonas species, saprophytic bacteria, and healthy Prunus samples. The efficiency of the developed protocol was evaluated with field samples of 14 Prunus species and rootstocks. For symptomatic leaf samples, the protocol was very efficient even when washed tissues of the leaves were directly amplified without any previous DNA extraction. For samples of 117 asymptomatic leaves and 285 buds, the protocol was more efficient after a simple DNA extraction, and X. arboricola pv. pruni was detected in 9.4% and 9.1% of the 402 samples analyzed, respectively, demonstrating its frequent epiphytic or endophytic phase. This newly developed real-time PCR protocol can be used as a quantitative assay, offers a reliable and sensitive test for X. arboricola pv. pruni, and is suitable as a screening test for symptomatic as well as asymptomatic plant material. PMID:21037298

Palacio-Bielsa, Ana; Cubero, Jaime; Cambra, Miguel A; Collados, Raquel; Berruete, Isabel M; López, María M

2011-01-01

223

Chestnut blight in Europe: Diversity of Cryphonectria parasitica, hypovirulence and biocontrol  

Microsoft Academic Search

Review article) A review of the chestnut blight situation in Europe is given. Since its introduction in 1938 into Italy, the blight has spread throughout Europe with the exception of the UK, the Netherlands and northern France. Recently the blight has begun to have much more impact on chestnut in north- west Spain and Portugal. Hypovirulence is widespread. In most

Cécile Robin; Ursula Heiniger

2001-01-01

224

Estimating the global severity of potato late blight with GIS-linked disease forecast models  

Microsoft Academic Search

Global severity of potato late blight was estimated by linking two disease forecast models, Blitecast and Simcast, to a climate data base in a geographic information system (GIS). The disease forecast models indirectly estimate late blight severity by determining how many sprays are needed during a growing season as a function of the weather. Global zonation of estimated late blight

R. J. Hijmans; G. A. Forbes; T. S. Walker

2000-01-01

225

Isolation and analysis of the Xanthomonas alkyl hydroperoxide reductase gene and the peroxide sensor regulator genes ahpC and ahpF-oxyR-orfX.  

PubMed Central

From Xanthomonas campestris pv. phaseoli, we have isolated by two independent methods genes involved in peroxide detoxification (ahpC and ahpF), a gene involved in peroxide sensing and transcription regulation (oxyR), and a gene of unknown function (orfX). Amino acid sequence analysis of AhpC, AhpF, and OxyR showed high identity with bacterial homologs. OrfX was a small cysteine-rich protein with no significant homology to known proteins. The genes ahpC, ahpF, oxyR, and orfX were arranged in a head-to-tail fashion. This unique arrangement was conserved in all of the Xanthomonas strains tested. The functionalities of both the ahpC and oxyR genes were demonstrated. In X. campestris pv. phaseoli, increased expression of ahpC alone conferred partial protection against growth retardation and killing by organic hydroperoxides but not by H2O2 or superoxide generators. These genes are likely to have important physiological roles in protection against peroxide toxicity in Xanthomonas.

Loprasert, S; Atichartpongkun, S; Whangsuk, W; Mongkolsuk, S

1997-01-01

226

Genome-enabled determination of amino acid biosynthesis in Xanthomonas campestris pv. campestris and identification of biosynthetic pathways for alanine, glycine, and isoleucine by 13 C-isotopologue profiling  

Microsoft Academic Search

To elucidate the biosynthetic pathways for all proteinogenic amino acids in Xanthomonas campestris pv. campestris, this study combines results obtained by in silico genome analysis and by 13C-NMR-based isotopologue profiling to provide a panoramic view on a substantial section of bacterial metabolism. Initially,\\u000a biosynthesis pathways were reconstructed from an improved annotation of the complete genome of X. campestris pv. campestris B100. This

Sarah Schatschneider; Frank-Jörg Vorhölter; Christian Rückert; Anke Becker; Wolfgang Eisenreich; Alfred Pühler; Karsten Niehaus

227

Xanthan gum production from cassava bagasse hydrolysate with Xanthomonas campestris using alternative sources of nitrogen.  

PubMed

Cassava bagasse was hydrolyzed using HCl and the hydrolysate was used for the production of xanthan gum using a bacterial culture of Xanthomonas campestris. Cassava bagasse hydrolysate with an initial concentration of approx 20 g of glucose/L proved to be the best substrate concentration for xanthan gum production. Among the organic and inorganic nitrogen sources tested to supplement the medium-urea, yeast extract, peptone, potassium nitrate, and ammonium sulfate-potassium nitrate was most suitable. Ammonium sulfate was the least effective for xanthan gum production, and it affected sugar utilization by the bacterial culture. In media with an initial sugar concentration of 48.6 and 40.4 g/L, at the end of fermentation about 30 g/L of sugars was unused. Maximum xanthan gum (about 14 g/L) was produced when fermentation was carried out with a medium containing 19.8 g/L of initial reducing sugars supplemented with potassium nitrate and fermented for 72 h, and it remained almost the same until the end of fermentation (i.e., 96 h). PMID:15304758

Woiciechowski, Adenise L; Soccol, Carlos R; Rocha, Saul N; Pandey, Ashok

2004-01-01

228

Insertion sequence- and tandem repeat-based genotyping techniques for Xanthomonas citri pv. mangiferaeindicae.  

PubMed

Molecular fingerprinting techniques that have the potential to identify or subtype bacteria at the strain level are needed for improving diagnosis and understanding of the epidemiology of pathogens such as Xanthomonas citri pv. mangiferaeindicae, which causes mango bacterial canker disease. We developed a ligation-mediated polymerase chain reaction targeting the IS1595 insertion sequence as a means to differentiate pv. mangiferaeindicae from the closely related pv. anacardii (responsible for cashew bacterial spot), which has the potential to infect mango but not to cause significant disease. This technique produced weakly polymorphic fingerprints composed of ?70 amplified fragments per strain for a worldwide collection of X. citri pv. mangiferaeindicae but produced no or very weak amplification for pv. anacardii strains. Together, 12 tandem repeat markers were able to subtype X. citri pv. mangiferaeindicae at the strain level, distinguishing 231 haplotypes from a worldwide collection of 299 strains. Multilocus variable number of tandem repeats analysis (MLVA), IS1595-ligation-mediated polymerase chain reaction, and amplified fragment length polymorphism showed differences in discriminatory power and were congruent in describing the diversity of this strain collection, suggesting low levels of recombination. The potential of the MLVA scheme for molecular epidemiology studies of X. citri pv. mangiferaeindicae is discussed. PMID:21323466

Pruvost, O; Vernière, C; Vital, K; Guérin, F; Jouen, E; Chiroleu, F; Ah-You, N; Gagnevin, L

2011-07-01

229

[Cloning and characterization of an harpin-encoding gene from Xanthomonas axonopodis pv. glycines required for hypersensitive response on nonhost plant tobacco].  

PubMed

An hpa1 gene was cloned into an expression vector, pET30a(+), from the genomic DNA of Xanthomonas axonopodis pv. glycines (Xag), the causal agent of soybean bacterial pustule, with degenerated primers by polymerase amplification reaction (PCR). The gene product was extracted from the conjugate (BHR-3) of BL21 (DES) with the recombined vector pHR3 after the engineering strain was induced by IPTG in LB medium. The SDS-PAGE gel showed that the gene product was 15.1kD. The product was heat-stable (10 min at 100 degrees C), protease K sensitive, and able to trigger hypersensitive response (HR) in common tobacco, but was unable to elicit HR in NahG transgenic tobacco in which salicylic acid accumulation was abolished. Moreover, the HR elicitation of the protein in tobacco was dispelled by eukayotic metabolic inhibitors, actinomycin D, cycloheximide and LaCl3. The 402 bp hpa1 gene in this study putatively encoded a 133 ammonia acid protein of which glycine (G) was rich with 21.1%. Sequence comparison indicated that the hpa1 gene and its protein was 51.4% - 93.8% identity with those of Xanthomonas oryzae pv. oryzae and other Xanthomonas species and pathovars. Alignments of harpin proteins of Xanthomonas genus displayed that the glycine-rich region with GGG-GG motif was variable. The comparison also showed that the harpin-encoding gene of Xag (nominated here as hpa1(Xag)) did not possess any similarity with that of Erwinia amylovora, Pseudomonas syringae and Ralstonia solanacearum at nucleotide and protein levels. It is concluded that hpa1(Xag) gene encodes an harpin protein which elicits a typical HR in nonhost tobacco. PMID:16245857

Chen, Gong-You; Zhang, Bing; Wu, Xiao-Min; Zhao, Mei-Qin

2005-08-01

230

Genomic Analysis of Xanthomonas translucens Pathogenic on Wheat and Barley Reveals Cross-Kingdom Gene Transfer Events and Diverse Protein Delivery Systems  

PubMed Central

In comparison to dicot-infecting bacteria, only limited numbers of genome sequences are available for monocot-infecting and in particular cereal-infecting bacteria. Herein we report the characterisation and genome sequence of Xanthomonas translucens isolate DAR61454 pathogenic on wheat and barley. Based on phylogenetic analysis of the ATP synthase beta subunit (atpD) gene, DAR61454 is most closely related to other X. translucens strains and the sugarcane- and banana- infecting Xanthomonas strains, but shares a type III secretion system (T3SS) with X. translucens pv. graminis and more distantly related xanthomonads. Assays with an adenylate cyclase reporter protein demonstrate that DAR61454's T3SS is functional in delivering proteins to wheat cells. X. translucens DAR61454 also encodes two type VI secretion systems with one most closely related to those found in some strains of the rice infecting strain X. oryzae pv. oryzae but not other xanthomonads. Comparative analysis of 18 different Xanthomonas isolates revealed 84 proteins unique to cereal (i.e. rice) infecting isolates and the wheat/barley infecting DAR61454. Genes encoding 60 of these proteins are found in gene clusters in the X. translucens DAR61454 genome, suggesting cereal-specific pathogenicity islands. However, none of the cereal pathogen specific proteins were homologous to known Xanthomonas spp. effectors. Comparative analysis outside of the bacterial kingdom revealed a nucleoside triphosphate pyrophosphohydrolase encoding gene in DAR61454 also present in other bacteria as well as a number of pathogenic Fusarium species, suggesting that this gene may have been transmitted horizontally from bacteria to the Fusarium lineage of pathogenic fungi. This example further highlights the importance of horizontal gene acquisition from bacteria in the evolution of fungi.

Gardiner, Donald M.; Upadhyaya, Narayana M.; Stiller, Jiri; Ellis, Jeff G.; Dodds, Peter N.; Kazan, Kemal; Manners, John M.

2014-01-01

231

The complete genome sequence of Xanthomonas albilineans provides new insights into the reductive genome evolution of the xylem-limited Xanthomonadaceae  

PubMed Central

Background The Xanthomonadaceae family contains two xylem-limited plant pathogenic bacterial species, Xanthomonas albilineans and Xylella fastidiosa. X. fastidiosa was the first completely sequenced plant pathogen. It is insect-vectored, has a reduced genome and does not possess hrp genes which encode a Type III secretion system found in most plant pathogenic bacteria. X. fastidiosa was excluded from the Xanthomonas group based on phylogenetic analyses with rRNA sequences. Results The complete genome of X. albilineans was sequenced and annotated. X. albilineans, which is not known to be insect-vectored, also has a reduced genome and does not possess hrp genes. Phylogenetic analysis using X. albilineans genomic sequences showed that X. fastidiosa belongs to the Xanthomonas group. Order of divergence of the Xanthomonadaceae revealed that X. albilineans and X. fastidiosa experienced a convergent reductive genome evolution during their descent from the progenitor of the Xanthomonas genus. Reductive genome evolutions of the two xylem-limited Xanthomonadaceae were compared in light of their genome characteristics and those of obligate animal symbionts and pathogens. Conclusion The two xylem-limited Xanthomonadaceae, during their descent from a common ancestral parent, experienced a convergent reductive genome evolution. Adaptation to the nutrient-poor xylem elements and to the cloistered environmental niche of xylem vessels probably favoured this convergent evolution. However, genome characteristics of X. albilineans differ from those of X. fastidiosa and obligate animal symbionts and pathogens, indicating that a distinctive process was responsible for the reductive genome evolution in this pathogen. The possible role in genome reduction of the unique toxin albicidin, produced by X. albilineans, is discussed.

2009-01-01

232

pigB determines a diffusible factor needed for extracellular polysaccharide slime and xanthomonadin production in Xanthomonas campestris pv. campestris.  

PubMed Central

Seven xanthomonadin transcriptional units (pigA through pigG) were identified by transposon saturation mutagenesis within an 18.6-kbp portion of the previously identified 25.4-kbp pig region from Xanthomonas campestris pv. campestris (strain B-24). Since marker exchange mutant strains with insertions in one 3.7-kbp portion of pig could not be obtained, mutations in this region may be lethal to the bacterium. Complementation analyses with different insertion mutations further defined and confirmed the seven transcriptional units. Insertional inactivation of one of the transcriptional units, pigB, resulted in greatly reduced levels of both xanthomonadins and extracellular polysaccharide slime, and a pigB-encoding plasmid restored both traits to these strains. pigB mutant strains could also be restored extracellularly by growth adjacent to strains with insertion mutations in any of the other six xanthomonadin transcriptional units, the parent strain (B-24), or strains of five different species of Xanthomonas. Strain B-24 produced a nontransforming diffusible factor (DF), which could be restored to pigB mutants by the pigB-encoding plasmid. Several lines of evidence indicate that DF is a novel bacterial pheromone, different from the known signal molecules of Vibrio, Agrobacterium, Erwinia, Pseudomonas, and Burkholderia spp.

Poplawsky, A R; Chun, W

1997-01-01

233

Regulation of Resistance to Copper in Xanthomonas axonopodis pv. vesicatoria  

Microsoft Academic Search

Copper-resistant strains of Xanthomonas axonopodis pv. vesicatoria were previously shown to carry plasmid- borne copper resistance genes related to the cop and pco operons of Pseudomonas syringae and Escherichia coli, respectively. However, instead of the two-component (copRS and pcoRS) systems determining copper-inducible expression of the operons in P. syringae and E. coli, a novel open reading frame, copL, was found

Andreas E. Voloudakis; Therese M. Reignier; Donald A. Cooksey

2005-01-01

234

Phosphomannose isomerase of Xanthomonas campestris: A zinc activated enzyme  

Microsoft Academic Search

Phosphomannose isomerase (pmi, EC 5.3.1.8) was purified to homogeneity from a wild strain of Xanthomonas campestris. The apparent molecular weight as determined by SDS-PAGE and Sephadex G-100 Superfine was found to be 58 kDa. The purified enzyme showed a single band on acrylamide gel electrophocusing with pI = 5.25. The optimum pH was 7.0 and the Km for D-mannose-6-phosphate was

Stamatia V. Papoutsopoulou; Dimitrios A. Kyriakidis

1997-01-01

235

Plant Disease Lesson: Fusarium head blight (FHB) or scab  

NSDL National Science Digital Library

This plant disease lesson on Fusarium head blight (FHB) or scab (caused by the fungus Fusarium graminearum (anamorph) Gibberella zeae (teleomorph)) includes information on symptoms and signs, pathogen biology, disease cycle and epidemiology, disease management, and the significance of the disease. Selected references are listed and a glossary is also available for use with this resource.

David G. Schmale III (Cornell University;); Gary C. Bergstrom (Cornell University;)

2003-06-12

236

Plant Disease Lesson: Fire blight of apple and pear  

NSDL National Science Digital Library

This plant disease lesson on Fire blight of apple and pear (caused by Erwinia amylovora) includes information on symptoms and signs, pathogen biology, disease cycle and epidemiology, disease management, and the significance of the disease. Selected references are listed and a glossary is also available for use with this resource.

Kenneth B. Johnson, (Oregon State University;)

2000-07-26

237

Antagonism of Gluconacetobacter diazotrophicus (a sugarcane endosymbiont) against Xanthomonas albilineans (pathogen) studied in alginate-immobilized sugarcane stalk tissues.  

PubMed

Xanthomonas albilineans, a pathogenic bacterium that produces leaf scald disease of sugarcane, secretes a xanthan-like gum that invades both xylem and phloem of the host. Xanthan production has been verified after experimental infection of stalk segments of healthy plants. Moreover, Gluconacetobacter diazotrophicus is a nitrogen-fixing endosymbiont of sugarcane plants that antagonizes with X. albilineans by impeding the production of the bacterial gum. The physiological basis of this antagonism has been studied using tissues of sugarcane stalks previously inoculated with the endosymbiont, then immobilized in calcium alginate and maintained in a culture medium for Gluconacetobacter. Under these conditions, bacteria infecting immobilized tissues are able to secrete to the medium a lysozyme-like bacteriocin that inhibits the growth of X. albilineans. PMID:16233803

Blanco, Yolanda; Blanch, María; Piñón, Dolores; Legaz, María-Estrella; Vicente, Carlos

2005-04-01

238

A LOV Protein Modulates the Physiological Attributes of Xanthomonas axonopodis pv. citri Relevant for Host Plant Colonization  

PubMed Central

Recent studies have demonstrated that an appropriate light environment is required for the establishment of efficient vegetal resistance responses in several plant-pathogen interactions. The photoreceptors implicated in such responses are mainly those belonging to the phytochrome family. Data obtained from bacterial genome sequences revealed the presence of photosensory proteins of the BLUF (Blue Light sensing Using FAD), LOV (Light, Oxygen, Voltage) and phytochrome families with no known functions. Xanthomonas axonopodis pv. citri is a Gram-negative bacterium responsible for citrus canker. The in silico analysis of the X. axonopodis pv. citri genome sequence revealed the presence of a gene encoding a putative LOV photoreceptor, in addition to two genes encoding BLUF proteins. This suggests that blue light sensing could play a role in X. axonopodis pv. citri physiology. We obtained the recombinant Xac-LOV protein by expression in Escherichia coli and performed a spectroscopic analysis of the purified protein, which demonstrated that it has a canonical LOV photochemistry. We also constructed a mutant strain of X. axonopodis pv. citri lacking the LOV protein and found that the loss of this protein altered bacterial motility, exopolysaccharide production and biofilm formation. Moreover, we observed that the adhesion of the mutant strain to abiotic and biotic surfaces was significantly diminished compared to the wild-type. Finally, inoculation of orange (Citrus sinensis) leaves with the mutant strain of X. axonopodis pv. citri resulted in marked differences in the development of symptoms in plant tissues relative to the wild-type, suggesting a role for the Xac-LOV protein in the pathogenic process. Altogether, these results suggest the novel involvement of a photosensory system in the regulation of physiological attributes of a phytopathogenic bacterium. A functional blue light receptor in Xanthomonas spp. has been described for the first time, showing an important role in virulence during citrus canker disease.

Kraiselburd, Ivana; Alet, Analia I.; Tondo, Maria Laura; Petrocelli, Silvana; Daurelio, Lucas D.; Monzon, Jesica; Ruiz, Oscar A.; Losi, Aba; Orellano, Elena G.

2012-01-01

239

The late blight resistance locus Rpi-blb3 from Solanum bulbocastanum belongs to a major late blight R gene cluster on chromosome 4 of potato  

Microsoft Academic Search

Late blight, caused by Phytophthora infestans, is one of the most devastating diseases in cultivated potato. Breeding of new potato cultivars with high levels of resistance to P. infestans is considered the most durable strategy for future potato cultivation. In this study, we report the identification of a new late-blight resistance (R) locus from the wild potato species Solanum bulbocastanum.

Tae-Ho Park; J. Gross; Anne Sikkema; Vivianne G. A. A. Vleeshouwers; Marielle Muskens; Sjefke Allefs; Evert Jacobsen; Richard G. F. Visser; Vossen van der E. A. G

2005-01-01

240

Biofilm formation, epiphytic fitness, and canker development in Xanthomonas axonopodis pv. citri.  

PubMed

The phytopathogenic bacterium Xanthomonas axonopodis pv. citri is responsible for the canker disease affecting citrus plants throughout the world. Here, we have evaluated the role of bacterial attachment and biofilm formation in leaf colonization during canker development on lemon leaves. Crystal violet staining and confocal laser scanning microscopy analysis of X. axonopodis pv. citri strains expressing the green fluorescent protein were used to evaluate attachment and biofilm formation on abiotic and biotic (leaf) surfaces. Wild-type X. axonopodis pv. citri attached to and formed a complex, structured biofilm on glass in minimal medium containing glucose. Similar attachment and structured biofilm formation also were seen on lemon leaves. An X. axonopodis pv. citri gumB mutant strain, defective in production of the extracellular polysaccharide xanthan, did not form a structured biofilm on either abiotic or biotic surfaces. In addition, the X. axonopodis pv. citri gumB showed reduced growth and survival on leaf surfaces and reduced disease symptoms. These findings suggest an important role for formation of biofilms in the epiphytic survival of X. axonopodis pv. citri prior to development of canker disease. PMID:17918624

Rigano, Luciano A; Siciliano, Florencia; Enrique, Ramón; Sendín, Lorena; Filippone, Paula; Torres, Pablo S; Qüesta, Julia; Dow, J Maxwell; Castagnaro, Atilio P; Vojnov, Adrián A; Marano, María Rosa

2007-10-01

241

Subcellular localization of proteins labeled with GFP in Xanthomonas citri ssp. citri: targeting the division septum.  

PubMed

Xanthomonas citri ssp. citri (Xac) is the causal agent of citrus canker, an economically important disease that affects citrus worldwide. To initiate the characterization of essential biological processes of Xac, we constructed integrative plasmids for the ectopic expression of green fluorescent protein (GFP)-labeled proteins within this bacterium. Here, we show that the disruption of the alpha-amylase gene (amy), the site of plasmid integration into the bacterial chromosome, does not alter its pathogenesis while abolishing completely the ability of Xac to degrade starch. Furthermore, our GFP expression system was used to characterize ORF XAC3408, a hypothetical protein encoded by Xac that shares significant homology to the FtsZ-stabilizing factor ZapA from Bacillus subtilis (ZapA(Bsu)). GFP-XAC3408 expressed in Xac exhibited a septal localization pattern typical of GFP-ZapA(Bsu), which indicates that XAC3408 is the Xac orthologue of the cell division protein ZapA(Bsu). The results demonstrate the potential of GFP labeling for protein functional characterizations in Xac, and, in addition, the Xac mutant strain labeled at the septum constitutes a biological model for the exploration of antibacterial compounds able to inhibit cell division in this plant pathogen. PMID:20629754

Martins, Paula M M; Lau, Ivy F; Bacci, Maurício; Belasque, José; do Amaral, Alexandre M; Taboga, Sebastião R; Ferreira, Henrique

2010-09-01

242

Role of blossom colonization in pepper seed infestation by Xanthomonas euvesicatoria.  

PubMed

Colonization of Xanthomonas euvesicatoria was investigated in pepper blossoms and the relationship between inoculum concentrations and seed infestation was determined. Inoculation of blossoms resulted in asymptomatic pepper fruit. However, real-time polymerase chain reaction detected X. euvesicatoria in 39% of the seed lots assayed and viable colonies were recovered from 35% of them. Successful transmission occurred in 16% of the seed lots tested. In a separate experiment, X. euvesicatoria reached populations of up to 1 × 10(5) CFU/blossom on stigmas 96 h after inoculation. Bacteria colonized stylar and ovary tissues with populations ranging from 1 × 10(5) to 1 × 10(6) CFU/blossom 96 h after inoculation. A positive correlation existed between inoculum concentration and percentage of infested seedlots. Blossoms inoculated with Acidovorax citrulli also resulted in infested pepper seedlots. Furthermore, A. citrulli colonized pepper blossoms significantly better than X. euvesicatoria by 96 h postinoculation. It was concluded that pepper blossoms can be a potential site of ingress for X. euvesicatoria into seed, and blossom colonization may be involved in pepper seed infestation. Data also indicated that seed infestation via blossoms may be nonspecific because nonhost plants can be colonized by incompatible pathogens. Thus, host-pathogen interactions may not be important for bacterial ingress through blossoms. PMID:24111576

Dutta, B; Gitaitis, R; Sanders, H; Booth, C; Smith, S; Langston, D B

2014-03-01

243

Genetic diversity and a PCR-based method for Xanthomonas axonopodis detection in passion fruit.  

PubMed

Xanthomonas axonopodis pv. passiflorae causes bacterial spot in passion fruit. It attacks the purple and yellow passion fruit as well as the sweet passion fruit. The diversity of 87 isolates of pv. passiflorae collected from across 22 fruit orchards in Brazil was evaluated using molecular profiles and statistical procedures, including an unweighted pair-group method with arithmetical averages-based dendrogram, analysis of molecular variance (AMOVA), and an assigning test that provides information on genetic structure at the population level. Isolates from another eight pathovars were included in the molecular analyses and all were shown to have a distinct repetitive sequence-based polymerase chain reaction profile. Amplified fragment length polymorphism technique revealed considerable diversity among isolates of pv. passiflorae, and AMOVA showed that most of the variance (49.4%) was due to differences between localities. Cluster analysis revealed that most genotypic clusters were homogeneous and that variance was associated primarily with geographic origin. The disease adversely affects fruit production and may kill infected plants. A method for rapid diagnosis of the pathogen, even before the disease symptoms become evident, has value for producers. Here, a set of primers (Xapas) was designed by exploiting a single-nucleotide polymorphism between the sequences of the intergenic 16S-23S rRNA spacer region of the pathovars. Xapas was shown to effectively detect all pv. passiflorae isolates and is recommended for disease diagnosis in passion fruit orchards. PMID:21077774

Munhoz, C F; Weiss, B; Hanai, L R; Zucchi, M I; Fungaro, M H P; Oliveira, A L M; Monteiro-Vitorello, C B; Vieira, M L C

2011-04-01

244

Pathogenic Interactions Between Xanthomonas axonopodis pv. citri and Cultivars of Pummelo (Citrus grandis).  

PubMed

ABSTRACT The aggressiveness of strains of Xanthomonas axonopodis pv. citri on seven Citrus species, including Citrus sinensis (navel orange), C. paradisi (grapefruit), C. unshiu (Satsuma mandarin), C. junos (Yuzu), C. aurantifolia ('Mexican' lime), C. tachibana (Tachibana), and C. grandis (pummelo: 'Otachibana', 'Banpeiyu', and 'Anseikan'), were assessed by comparing lesion expansion and growth in planta, using a prick inoculation method. The existence of two groups distinct in aggressiveness was demonstrated on the pummelo cultivars, whereas the remaining species tested were uniformly susceptible. The two groups of strains were distinct in lesion expansion and growth in planta; however, both caused canker lesions on the 'Otachibana' pummelo. The sensitivity of the bacterial strains to phages Cp1 and Cp2 was associated with differences in aggressiveness. Namely, all the strains sensitive to Cp2 but resistant to Cp1 were aggressive to 'Otachibana', whereas all the strains sensitive to Cp1 but resistant to Cp2 were weakly aggressive. When a repetitive sequence-based polymerase chain reaction amplification was carried out by enterobacterial repetitive intergeneric consensus (ERIC) sequences (ERIC1R and ERIC2) as the primers, these two groups were also distinguishable by the presence or absence of a 1.8-kb DNA fragment among otherwise identical fragments. The 1.8-kb fragment was amplified only from the strains aggressive to C. grandis. PMID:18943380

Shiotani, H; Ozaki, K; Tsuyumu, S

2000-12-01

245

[A virulence gene from Xanthomonas campestris pv. campestris homologous to the avrBs2 locus is recognized in race-specific reaction by two different resistance genes in Brassica plant species].  

PubMed

Race-specific interaction between the Brassica plants and Xanthomonas compestris pv. campestris bacteria follows the "gene-for-gene" rule. Expression of the avirulence genes recognized by two dominant resistance genes of Brassica, Rxc1 in plants with the BB genome, and Rxc3 in the CC plants, was lost after bacterial mutation in planta. The mutation was distinguished by the elongation of CGCGC pentanucleotide repeat in the gene, which was designated as avrRxc1/3. This gene displayed strong structural similarity to the avrBs2 locus from the related species X. vesicatoria. Thus, it is the first description of the avrRxc1/3 avirulence gene conferring race-specific interaction between X. campestris pv. campestris and Brassica plants. Structural homologues of the avrBs2 are found in many Xanthomonas species, but in all cases except X. vesicatoria, their function remains unknown. PMID:12575451

Ignatov, A N; Monakhos, G F; Dzhalilov, F S; Pozmogova, G V

2002-12-01

246

Isolation and partial characterization of antibacterial lipopeptide produced by Paenibacillus polymyxa HKA-15 against phytopathogen Xanthomonas campestris pv. phaseoli M-5.  

PubMed

An antibacterial metabolite was isolated from Paenibacillus polymyxa HKA-15, a soybean bacterial endophyte. The purification of the crude metabolite from Paenibacillus polymyxa HKA-15 was done by column chromatography. In TLC, a spot with an R ( f ) value of 0.86 (±0.02) from the purified fraction showed bioactivity against Xanthomonas campestris pv. phaseoli M-5. In SDS-PAGE, the purified antibiotic was separated in the molecular weight range of 3.5 kDa. The exact molecular weight of the active compound was identified as 1,347.7 Da using MS-MS analysis. Infra red spectrum and (1)H NMR analysis showed the presence of amino acids and fatty acids in the active compound. The characterization of the antibacterial compound revealed its lipopeptide nature. In an agar diffusion assay, the crude metabolite showed a broad spectrum of activity, being able to inhibit the growth of the fungal pathogen, Rhizoctonia bataticola, Macrophomina phaseolina and Fusarium udum. A stronger inhibition was observed against bacterial pathogens viz., X. campestris pv.phaseoli M-5, X. campestris pv. phaseoli CP-1-1, Xanthomonas oryzae, Ralstonia solanacearum and Micrococcus luteus. PMID:22805811

Mageshwaran, Vellaichamy; Walia, Suresh; Annapurna, Kannepalli

2012-03-01

247

HrcQ Provides a Docking Site for Early and Late Type III Secretion Substrates from Xanthomonas  

PubMed Central

Pathogenicity of many Gram-negative bacteria depends on a type III secretion (T3S) system which translocates bacterial effector proteins into eukaryotic cells. The membrane-spanning secretion apparatus is associated with a cytoplasmic ATPase complex and a predicted cytoplasmic (C) ring structure which is proposed to provide a substrate docking platform for secreted proteins. In this study, we show that the putative C ring component HrcQ from the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria is essential for bacterial pathogenicity and T3S. Fractionation studies revealed that HrcQ localizes to the cytoplasm and associates with the bacterial membranes under T3S-permissive conditions. HrcQ binds to the cytoplasmic T3S-ATPase HrcN, its predicted regulator HrcL and the cytoplasmic domains of the inner membrane proteins HrcV and HrcU. Furthermore, we observed an interaction between HrcQ and secreted proteins including early and late T3S substrates. HrcQ might therefore act as a general substrate acceptor site of the T3S system and is presumably part of a larger protein complex. Interestingly, the N-terminal export signal of the T3S substrate AvrBs3 is dispensable for the interaction with HrcQ, suggesting that binding of AvrBs3 to HrcQ occurs after its initial targeting to the T3S system.

Lorenz, Christian; Hausner, Jens; Buttner, Daniela

2012-01-01

248

Managing Foliar Blights on Carrot Using Copper, Azoxystrobin, and Chlorothalonil Applied According to TOM-CAST  

Microsoft Academic Search

Dorman, E. A., Webster, B. J., and Hausbeck, M. K. 2009. Managing foliar blights on carrot using copper, azoxystrobin, and chlorothalonil applied according to TOM-CAST. Plant Dis. 93:402-407. Alternaria dauci and Cercospora carotae cause foliar blight on carrot, causing yield reductions in severely blighted fields. Currently, fungicides are used on either a 7-day schedule or according to the TOM-CAST disease

E. A. Dorman; B. J. Webster; M. K. Hausbeck

2009-01-01

249

Fire blight: applied genomic insights of the pathogen and host.  

PubMed

The enterobacterial phytopathogen Erwinia amylovora causes fire blight, an invasive disease that threatens a wide range of commercial and ornamental Rosaceae host plants. The response elicited by E. amylovora in its host during disease development is similar to the hypersensitive reaction that typically leads to resistance in an incompatible host-pathogen interaction, yet no gene-for-gene resistance has been described for this host-pathogen system. Comparative genomic analysis has found an unprecedented degree of genetic uniformity among strains of E. amylovora, suggesting that the pathogen has undergone a recent genetic bottleneck. The genome of apple, an important host of E. amylovora, has been sequenced, creating new opportunities for the study of interactions between host and pathogen during fire blight development and for the identification of resistance genes. This review includes recent advances in the genomics of both host and pathogen. PMID:22702352

Malnoy, Mickael; Martens, Stefan; Norelli, John L; Barny, Marie-Anne; Sundin, George W; Smits, Theo H M; Duffy, Brion

2012-01-01

250

Mapping and validation of QTLs for rice sheath blight resistance  

PubMed Central

Sheath blight, caused by Rhizoctonia solani, is one of the most serious diseases of rice. Among 33 rice accessions, mainly from National Institute of Agrobiological Sciences (NIAS) Core Collection, we found three landraces from the Himalayas—Jarjan, Nepal 555 and Nepal 8—with resistance to sheath blight in 3 years’ field testing. Backcrossed inbred lines (BILs) derived from a cross between Jarjan and the leading Japanese cultivar Koshihikari were used in QTL analyses. Since later-heading lines show fewer lesions, we used only earlier-heading BILs to avoid association with heading date. We detected eight QTLs; the Jarjan allele of three of these increased resistance. Only one QTL, on chromosome 9 (between markers Nag08KK18184 and Nag08KK18871), was detected in all 3 years. Chromosome segment substitution lines (CSSLs) carrying it showed resistance in field tests. Thirty F2 lines derived from a cross between Koshihikari and one CSSL supported the QTL.

Taguchi-Shiobara, Fumio; Ozaki, Hidenobu; Sato, Hiroyuki; Maeda, Hiroaki; Kojima, Yoichiro; Ebitani, Takeshi; Yano, Masahiro

2013-01-01

251

Confirmation of ray blight disease of pyrethrum in Australia  

Microsoft Academic Search

Isolations from affected plant parts of pyrethrum exhibiting flower bud abortion and necrotic symptoms consistently yielded\\u000a a Phoma sp., identified as the anamorph of Didpella ligulicola, the causal agent of ray blight of chrysanthemum. Pathogenicity of both mycelial and conidial inoculum of the isolated fungus\\u000a to pyrethrum was proven. Infection of stem pieces occurred by direct penetration of the fungal

S. J. Pethybridge; C. R. Wilson

1998-01-01

252

Sheath-blight resistance QTLS in japonica rice germplasm  

Microsoft Academic Search

Sheath blight (SB), caused by Rhizoctonia solani, is a serious disease of cultivated rice (Oryza sativa L.) for which genetic resistance is in demand by breeders. With the goal of resistance (SBR)-QTL discovery in U. S. japonica breeding material, 197 doubled-haploid lines from a cross between MCR10277 (resistant) and Cocodrie (susceptible) were evaluated\\u000a in field and greenhouse assays with U.

J. C. Nelson; J. H. Oard; D. Groth; H. S. Utomo; Y. Jia; G. Liu; K. A. K. Moldenhauer; F. J. Correa-Victoria; R. G. Fjellstrom; B. Scheffler; G. A. Prado

253

Testing potatoes for field resistance to late blight  

Microsoft Academic Search

Summary  Selection of potato clones for field resistance to late blight was made satisfactoly in the field by inoculating 3-hill units\\u000a with zoospores ofPhytophthora infestans. More precise comparisons were made in replicated 15-hill plots by measuring the spread of the disease from a single inoculated\\u000a plant in the center of each plot. Certain selections made in the 3-hill plots proved to

Carl J. Eide; Florian I. Lauer

1967-01-01

254

Testing for late blight resistance in the potato in Canada  

Microsoft Academic Search

Summary  A resume is presented of the testing for late blight resistance conducted at Fredericton, New Brunswick, Canada during the\\u000a past twenty years. The account is mainly concerned with the testing ofS. demissum x S. tuberosum hybrids.\\u000a \\u000a Prior to 1949 there was little evidence for the existence of specialized races ofP. infestans and it is assumed that only the so-called common

J. L. Howatt; W. A. Hodgson

1954-01-01

255

Integrated disease management of ascochyta blight in pulse crops  

Microsoft Academic Search

Ascochyta blight causes significant yield loss in pulse crops worldwide. Integrated disease management is essential to take\\u000a advantage of cultivars with partial resistance to this disease. The most effective practices, established by decades of research,\\u000a use a combination of disease-free seed, destruction or avoidance of inoculum sources, manipulation of sowing dates, seed and\\u000a foliar fungicides, and cultivars with improved resistance.

Jennifer Anne Davidson; Rohan B. E. Kimber

2007-01-01

256

Structural and Physiological Analyses of the Alkanesulphonate-Binding Protein (SsuA) of the Citrus Pathogen Xanthomonas citri  

PubMed Central

Background The uptake of sulphur-containing compounds plays a pivotal role in the physiology of bacteria that live in aerobic soils where organosulfur compounds such as sulphonates and sulphate esters represent more than 95% of the available sulphur. Until now, no information has been available on the uptake of sulphonates by bacterial plant pathogens, particularly those of the Xanthomonas genus, which encompasses several pathogenic species. In the present study, we characterised the alkanesulphonate uptake system (Ssu) of Xanthomonas axonopodis pv. citri 306 strain (X. citri), the etiological agent of citrus canker. Methodology/Principal Findings A single operon-like gene cluster (ssuEDACB) that encodes both the sulphur uptake system and enzymes involved in desulphurisation was detected in the genomes of X. citri and of the closely related species. We characterised X. citri SsuA protein, a periplasmic alkanesulphonate-binding protein that, together with SsuC and SsuB, defines the alkanesulphonate uptake system. The crystal structure of SsuA bound to MOPS, MES and HEPES, which is herein described for the first time, provides evidence for the importance of a conserved dipole in sulphate group coordination, identifies specific amino acids interacting with the sulphate group and shows the presence of a rather large binding pocket that explains the rather wide range of molecules recognised by the protein. Isolation of an isogenic ssuA-knockout derivative of the X. citri 306 strain showed that disruption of alkanesulphonate uptake affects both xanthan gum production and generation of canker lesions in sweet orange leaves. Conclusions/Significance The present study unravels unique structural and functional features of the X. citri SsuA protein and provides the first experimental evidence that an ABC uptake system affects the virulence of this phytopathogen.

Tofoli de Araujo, Fabiano; Bolanos-Garcia, Victor M.; Pereira, Cristiane T.; Sanches, Mario; Oshiro, Elisa E.; Ferreira, Rita C. C.; Chigardze, Dimitri Y.; Barbosa, Joao Alexandre Goncalves; de Souza Ferreira, Luis Carlos; Benedetti, Celso E.; Blundell, Tom L.; Balan, Andrea

2013-01-01

257

Novel demonstration of RNAi in citrus reveals importance of citrus callose synthase in defence against Xanthomonas citri subsp. citri.  

PubMed

Citrus is an economically important fruit crop that is severely afflicted by citrus canker, a disease caused by the bacterial phytopathogen, Xanthomonas citri subsp. citri (Xcc). GenBank houses a large collection of Expressed Sequence Tags (ESTs) enriched with transcripts generated during the defence response against this pathogen; however, there are currently no strategies in citrus to assess the function of candidate genes. This has greatly limited research as defence signalling genes are often involved in multiple pathways. In this study, we demonstrate the efficacy of RNA interference (RNAi) as a functional genomics tool to assess the function of candidate genes involved in the defence response of Citrus limon against the citrus canker pathogen. Double-stranded RNA expression vectors, encoding hairpin RNAs for citrus host genes, were delivered to lemon leaves by transient infiltration with transformed Agrobacterium. As proof of principle, we have established silencing of citrus phytoene desaturase (PDS) and callose synthase (CalS1) genes. Phenotypic and molecular analyses showed that silencing vectors were functional not only in lemon plants but also in other species of the Rutaceae family. Using silencing of CalS1, we have demonstrated that plant cell wall-associated defence is the principal initial barrier against Xanthomonas infection in citrus plants. Additionally, we present here results that suggest that H?O? accumulation, which is suppressed by xanthan from Xcc during pathogenesis, contributes to inhibition of xanthan-deficient Xcc mutant growth either in wild-type or CalS1-silenced plants. With this work, we have demonstrated that high-throughput reverse genetic analysis is feasible in citrus. PMID:20809929

Enrique, Ramón; Siciliano, Florencia; Favaro, María Alejandra; Gerhardt, Nadia; Roeschlin, Roxana; Rigano, Luciano; Sendin, Lorena; Castagnaro, Atilio; Vojnov, Adrian; Marano, María Rosa

2011-04-01

258

A MLVA Genotyping Scheme for Global Surveillance of the Citrus Pathogen Xanthomonas citri pv. citri Suggests a Worldwide Geographical Expansion of a Single Genetic Lineage  

PubMed Central

MultiLocus Variable number of tandem repeat Analysis (MLVA) has been extensively used to examine epidemiological and evolutionary issues on monomorphic human pathogenic bacteria, but not on bacterial plant pathogens of agricultural importance albeit such tools would improve our understanding of their epidemiology, as well as of the history of epidemics on a global scale. Xanthomonas citri pv. citri is a quarantine organism in several countries and a major threat for the citrus industry worldwide. We screened the genomes of Xanthomonas citri pv. citri strain IAPAR 306 and of phylogenetically related xanthomonads for tandem repeats. From these in silico data, an optimized MLVA scheme was developed to assess the global diversity of this monomorphic bacterium. Thirty-one minisatellite loci (MLVA-31) were selected to assess the genetic structure of 129 strains representative of the worldwide pathological and genetic diversity of X. citri pv. citri. Based on Discriminant Analysis of Principal Components (DAPC), four pathotype-specific clusters were defined. DAPC cluster 1 comprised strains that were implicated in the major geographical expansion of X. citri pv. citri during the 20th century. A subset of 12 loci (MLVA-12) resolved 89% of the total diversity and matched the genetic structure revealed by MLVA-31. MLVA-12 is proposed for routine epidemiological identification of X. citri pv. citri, whereas MLVA-31 is proposed for phylogenetic and population genetics studies. MLVA-31 represents an opportunity for international X. citri pv. citri genotyping and data sharing. The MLVA-31 data generated in this study was deposited in the Xanthomonas citri genotyping database (http://www.biopred.net/MLVA/).

Boyer, Karine; Leduc, Alice; Tourterel, Christophe; Drevet, Christine; Ravigne, Virginie; Gagnevin, Lionel; Guerin, Fabien; Chiroleu, Frederic; Koebnik, Ralf; Verdier, Valerie; Verniere, Christian

2014-01-01

259

Characterization of Serracin P, a Phage-Tail-Like Bacteriocin, and Its Activity against Erwinia amylovora, the Fire Blight Pathogen  

PubMed Central

Serratia plymithicum J7 culture supernatant displayed activity against many pathogenic strains of Erwinia amylovora, the causal agent of the most serious bacterial disease of apple and pear trees, fire blight, and against Klebsiella pneumoniae, Serratia liquefaciens, Serratia marcescens, and Pseudomonas fluorescens. This activity increased significantly upon induction with mitomycin C. A phage-tail-like bacteriocin, named serracin P, was purified from an induced culture supernatant of S. plymithicum J7. It was found to be the only compound involved in the antibacterial activity against sensitive strains. The N-terminal amino acid sequence analysis of the two major subunits (23 and 43 kDa) of serracin P revealed high homology with the Fels-2 prophage of Salmonella enterica, the coliphages P2 and 168, the ?CTX prophage of Pseudomonas aeruginosa, and a prophage of Yersinia pestis. This strongly suggests a common ancestry for serracin P and these bacteriophages.

Jabrane, Abdelhamid; Sabri, Ahmed; Compere, Philippe; Jacques, Philippe; Vandenberghe, Isabel; Van Beeumen, Jozef; Thonart, Philippe

2002-01-01

260

A newly isolated heterotrophic bacterium, Xanthomonas sp. DY44, to oxidize hydrogen sulfide to polysulfide  

Microsoft Academic Search

Summary A newly isolated heterotrophic bacterium,Xanthomonas sp. DY44, was found to be capable of oxidizing hydrogen sulfide (H2S). Cells made non-viable by heat treatment (120°C, 20 min) did not show H2S oxidation. However, both cells sterilized by ?-rays irradiation and cell-free extract oxidized H2S, suggesting the existence of the heat-labile intracellular enzymatic system for H2S oxidation. AsXanthomonas sp. DY44 exhibited

Kyeoung-suk Cho; Isao Kuniyosl-d; Mitsuyo Hirai; Makoto Shoda

1991-01-01

261

Climatic risk for potato late blight in the Andes region of Venezuela  

Microsoft Academic Search

Potato is an important crop for Venezuelan agriculture. However, its production is highly affected by late blight (Phytophtora infestans), since weather is commonly favorable for this disease. The aim of this study was to determine the sowing dates of low climatic risk for potato late blight in the Andes region of Venezuela, with an agrometeorological disease model and geographical information

Beatriz Ibet Lozada Garcia; Paulo Cesar Sentelhas; Luciano Roberto Tapia; Gerd Sparovek

2008-01-01

262

Search for resistance to gummy stem blight ( Didymella bryoniae ) in cucumber ( Cucumis sativus L.)  

Microsoft Academic Search

Resistance to gummy stem blight (Didymella bryoniae) was not detected among 1208 cucumber lines of diverse origin when cotyledons of four-day-old seedlings were inoculated with an aqueous suspension of 5000 spores of D. bryoniae delivered to freshly crushed tissue, followed by 48 h incubation at 20°C and 100% RH in the dark. Among 49 lots evaluated for gummy stem blight

Anna J. Wyszogrodzka; Paul H. Williams; Clinton E. Peterson

1986-01-01

263

A genetic analysis of quantitative resistance to late blight in potato: towards marker-assisted selection  

Microsoft Academic Search

Late blight caused by the oomycete Phytophthora infestans is the most important fungal disease in potato cultivation worldwide. Resistance to late blight is controlled by a few major genes (R genes) which can be easily overcome by new races of P. infestans and\\/or by an unknown number of genes expressing a quantitative type of resistance which may be more durable. Quantitative

Petra Oberhagemann; Catherine Chatot-Balandras; Ralf Schäfer-Pregl; Dorothee Wegener; Carmen Palomino; Francesco Salamini; Eric Bonnel; Christiane Gebhardt

1999-01-01

264

Sugarcane glycoproteins may act as signals for the production of xanthan in the plant-associated bacterium Xanthomonas albilineans.  

PubMed

Visual symptoms of leaf scald necrosis in sugarcane (Saccharum officinarum) leaves develop in parallel to the accumulation of a fibrous material invading exocellular spaces and both xylem and phloem. These fibers are produced and secreted by the plant-associated bacterium Xanthomonas albilineans. Electron microscopy and specific staining methods for polysaccharides reveal the polysaccharidic nature of this material. These polysaccharides are not present in healthy leaves or in those from diseased plants without visual symptoms of leaf scald. Bacteria in several leaf tissues have been detected by immunogold labelling. The bacterial polysaccharide is not produced in axenic culture but it is actively synthesized when the microbes invade the host plant. This finding may be due to the production of plant glycoproteins after bacteria infection, which inhibit microbial proteases. In summary, our data are consistent with the existence of a positive feedback loop in which plant-produced glycoproteins act as a cell-to-bacteria signal that promotes xanthan production, by protecting some enzymes of xanthan biosynthesis against from bacterial proteolytic degradation.  PMID:21791980

Legaz, María-Estrella; Blanch, María; Piñón, Dolores; Santiago, Rocío; Fontaniella, Blanca; Blanco, Yolanda; Solas, María-Teresa; Vicente, Carlos

2011-08-01

265

Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans.  

PubMed

Bacterial spot caused by Xanthomonas perforans is a major disease of tomatoes, leading to reduction in production by 10-50%. While copper (Cu)-based bactericides have been used for disease management, most of the X. perforans strains isolated from tomatoes in Florida and other locations worldwide are Cu-resistant. We have developed DNA-directed silver (Ag) nanoparticles (NPs) grown on graphene oxide (GO). These Ag@dsDNA@GO composites effectively decrease X. perforans cell viability in culture and on plants. At the very low concentration of 16 ppm of Ag@dsDNA@GO, composites show excellent antibacterial capability in culture with significant advantages in improved stability, enhanced antibacterial activity, and stronger adsorption properties. Application of Ag@dsDNA@GO at 100 ppm on tomato transplants in a greenhouse experiment significantly reduced the severity of bacterial spot disease compared to untreated plants, giving results similar to those of the current grower standard treatment, with no phytotoxicity. PMID:24016217

Ocsoy, Ismail; Paret, Mathews L; Ocsoy, Muserref Arslan; Kunwar, Sanju; Chen, Tao; You, Mingxu; Tan, Weihong

2013-10-22

266

Genetic and proteomic analyses of a Xanthomonas campestris pv. campestris purC mutant deficient in purine biosynthesis and virulence.  

PubMed

Bacterial proliferation in hosts requires activation of a number of housekeeping pathways, including purine de novo biosynthesis. Although inactivation of purine biosynthesis genes can attenuate virulence, it is unclear which biochemical or virulence factors are associated with the purine biosynthesis pathway in vivo. We report that inactivation of purC, a gene encoding phosphoribosylaminoimidazole-succinocarboxamide synthase, caused complete loss of virulence in Xanthomonas campestris pv. campestris, the causal agent of black rot disease of cruciferous plants. The purC mutant was a purine auxotroph; it could not grow on minimal medium, whereas addition of purine derivatives, such as hypoxanthine or adenine plus guanine, restored growth of the mutant. The purC mutation also significantly enhanced the production of an unknown purine synthesis associated pigment and extracellular polysaccharides by the bacterium. In addition, comparative proteomic analyses of bacteria grown on rich and minimal media revealed that the purC mutation affected the expression levels of diverse proteins involved in purine and pyrimidine synthesis, carbon and energy metabolisms, iron uptake, proteolysis, protein secretion, and signal transduction. These results provided clues to understanding the contributions of purine synthesis to bacterial virulence and interactions with host immune systems. PMID:24053949

Yuan, Zhihui; Wang, Li; Sun, Shutao; Wu, Yao; Qian, Wei

2013-09-20

267

Sugarcane glycoproteins may act as signals for the production of xanthan in the plant-associated bacterium Xanthomonas albilineans  

PubMed Central

Visual symptoms of leaf scald necrosis in sugarcane (Saccharum officinarum) leaves develop in parallel to the accumulation of a fibrous material invading exocellular spaces and both xylem and phloem. These fibers are produced and secreted by the plant-associated bacterium Xanthomonas albilineans. Electron microscopy and specific staining methods for polysaccharides reveal the polysaccharidic nature of this material. These polysaccharides are not present in healthy leaves or in those from diseased plants without visual symptoms of leaf scald. Bacteria in several leaf tissues have been detected by immunogold labeling. The bacterial polysaccharide is not produced in axenic culture but it is actively synthesized when the microbes invade the host plant. This finding may be due to the production of plant glycoproteins, after bacteria infection which inhibit microbial proteases. In summary, our data are consistent with the existence of a positive feedback loop in which plant-produced glycoproteins act as a cell-to-bacteria signal that promotes xanthan production, by protecting some enzymes of xanthan biosynthesis against from bacterial proteolytic degradation.

Legaz, Maria-Estrella; Blanch, Maria; Pinon, Dolores; Santiago, Rocio; Fontaniella, Blanca; Blanco, Yolanda; Solas, Maria-Teresa

2011-01-01

268

Construction of EGFP-labeling system for visualizing the infection process of Xanthomonas axonopodis pv. citri in planta.  

PubMed

Xanthomonas axonopodis pv. citri (Xac) is the causal agent of citrus bacterial canker, an economically important disease to world citrus industry. To monitor the infection process of Xac in different citrus plants, the enhanced green florescent protein (EGFP) visualizing system was constructed to visualize the propagation and localization in planta. First, the wild-type Xac was isolated from the diseased leaves of susceptible 'Bingtang' sweet orange, and then the isolated Xac was labeled with EGFP by triparental mating. After PCR identification, the growth kinetics and pathogenicity of the transformants were analyzed in comparison with the wild-type Xac. The EGFP-labeled bacteria were inoculated by spraying on the surface and infiltration in the mesophyll of 'Bingtang' sweet orange leaves. The bacterial cell multiplication and diffusion processes were observed directly under confocal laser scanning microscope at different intervals after inoculation. The results indicated that the EGFP-labeled Xac releasing clear green fluorescence light under fluorescent microscope showed the infection process and had the same pathogenicity as the wild type to citrus. Consequently, the labeled Xac demonstrated the ability as an efficient tool to monitor the pathogen infection. PMID:22674174

Liu, Li-Ping; Deng, Zi-Niu; Qu, Jin-Wang; Yan, Jia-Wen; Catara, Vittoria; Li, Da-Zhi; Long, Gui-You; Li, Na

2012-09-01

269

The parental origin of hydatidiform moles and blighted ova: molecular probing with hypervariable DNA polymorphisms.  

PubMed

The androgenetic origin of hydatidiform moles, due to a monospermic or dispermic mechanism, has been reported, and a possible pathogenetic relation with blighted ova suggested. To evaluate the origin of hydatidiform moles and their genetic relationship with blighted ova we investigated a series of samples, utilizing several hypervariable DNA polymorphisms by Southern blotting or PCR. Seven complete or partial hydatidiform mole and 49 blighted ovum cases were investigated. The results confirm the androgenetic origin of complete hydatidiform moles, which were always due in our sample to a monospermic mechanism. Our data exclude a relationship between hydatidiform moles and blighted ova, as in the latter a mixed paternal and maternal DNA contribution was always shown. A high incidence of chromosomal abnormalities in blighted ova was also found. PMID:8232349

Trabetti, E; Galavotti, R; Zanini, L; Zardini, E; Zatti, N; Bernardi, F; Notarangelo, A; Croce, A I; Pignatti, P F; Gasparini, P

1993-08-01

270

Fine mapping of a resistance gene to bacterial leaf pustule in soybean  

Microsoft Academic Search

Soybean bacterial leaf pustule (BLP) is a prevalent disease caused by Xanthomonas axonopodis pv. glycines. Fine mapping of the BLP resistant gene, rxp, is needed to select BLP resistant soybean cultivars by marker-assisted selection (MAS). We used a total of 227 recombinant\\u000a inbred lines (RILs) derived from a cross between ‘Taekwangkong’ (BLP susceptible) and ‘Danbaekkong’ (BLP resistant) for rxp fine

Dong Hyun Kim; Kil Hyun Kim; Kyujung Van; Moon Young Kim; Suk-Ha Lee

2010-01-01

271

Virulence characteristics accounting for fire blight disease severity in apple trees and seedlings.  

PubMed

The gram-negative bacterium Erwinia amylovora is the causal agent of fire blight, the most destructive bacterial disease of rosaceous plants, including apple and pear. Here, we compared the virulence levels of six E. amylovora strains (Ea273, CFBP1367, Ea581a, E2002a, E4001a, and HKN06P1) on apple trees and seedlings. The strains produced a range of disease severity, with HKN06P1 producing the greatest disease severity in every assay. We then compared virulence characteristic expression among the six strains, including growth rates in immature apple fruit, amylovoran production, levansucrase activity, biofilm formation, carbohydrate utilization, hypersensitive cell death elicitation in tobacco leaves, and protein secretion profiles. Multiple regression analysis indicated that three of the virulence characteristics (amylovoran production, biofilm formation, and growth in immature apple fruit) accounted for >70% of the variation in disease severity on apple seedlings. Furthermore, in greenhouse-grown 'Gala' trees, >75% of the variation in disease severity was accounted for by five of the virulence characteristics: amylovoran production, biofilm formation, growth in immature apple fruit, hypersensitive cell death elicitation, and sorbitol utilization. This study demonstrates that virulence factor expression levels account for differences in disease severity caused by wild isolates of E. amylovora on apple trees. PMID:20465409

Lee, Steven A; Ngugi, Henry K; Halbrendt, Noemi O; O'Keefe, Grace; Lehman, Brian; Travis, James W; Sinn, Judith P; McNellis, Timothy W

2010-06-01

272

Controlled release of Pantoea agglomerans E325 for biocontrol of fire blight disease of apple.  

PubMed

Microencapsulation and controlled release of the biocontrol agent Pantoea agglomerans strain E325 (E325), an antagonist to the bacterial plant pathogen Erwinia amylovora that causes fire blight, a devastating disease of apple and pear, have been investigated. Uniform core-shell alginate microcapsules (AMCs), 60-300 ?m in diameter, were fabricated to encapsulate E325 within the core, along with nutrients, to preserve viability and promote proliferation. Controlled release of E325 was achieved by separately adjusting alginate concentrations in the shell and core solutions, and by modifying the AMC size. Viability of E325 was monitored via fluorescent staining, revealing either lack of or minimal stress during or after encapsulation. Proliferation of E325 within AMCs, followed by their subsequent release, and colonization activities within confines of apple flowers were studied under different encapsulation conditions using rfp-labeled E325 to obtain highly promising results. This study provided a 'proof of concept' of the successful use of a microencapsulated biocontrol agent, E325, against E. amylovora, and could serve as a model for further studies on the development of effective plant disease management strategies. PMID:22516094

Kim, In-Yong; Pusey, Paul Lawrence; Zhao, Youfu; Korban, Schuyler S; Choi, Hyungsoo; Kim, Kyekyoon Kevin

2012-07-10

273

The filamentous phage XacF1 causes loss of virulence in Xanthomonas axonopodis pv. citri, the causative agent of citrus canker disease  

PubMed Central

In this study, filamentous phage XacF1, which can infect Xanthomonas axonopodis pv. citri (Xac) strains, was isolated and characterized. Electron microscopy showed that XacF1 is a member of the family Inoviridae and is about 600 nm long. The genome of XacF1 is 7325 nucleotides in size, containing 13 predicted open reading frames (ORFs), some of which showed significant homology to Ff-like phage proteins such as ORF1 (pII), ORF2 (pV), ORF6 (pIII), and ORF8 (pVI). XacF1 showed a relatively wide host range, infecting seven out of 11 strains tested in this study. Frequently, XacF1 was found to be integrated into the genome of Xac strains. This integration occurred at the host dif site (attB) and was mediated by the host XerC/D recombination system. The attP sequence was identical to that of Xanthomonas phage Cf1c. Interestingly, infection by XacF1 phage caused several physiological changes to the bacterial host cells, including lower levels of extracellular polysaccharide production, reduced motility, slower growth rate, and a dramatic reduction in virulence. In particular, the reduction in virulence suggested possible utilization of XacF1 as a biological control agent against citrus canker disease.

Ahmad, Abdelmonim Ali; Askora, Ahmed; Kawasaki, Takeru; Fujie, Makoto; Yamada, Takashi

2014-01-01

274

Xanthomonas campestris atcc 31601 and process for use  

SciTech Connect

A degenerative-resistant strain of Xanthomonas campestris has been developed and a process for using this strain to effectively overcome the problems of continuous xanthan production. This strain of X. campestris, designated X. campestris XCP-19 ATCC 31601, is capable of continuously producing xanthan at high specific productivities, i.e., 0.24 to 0.32 gm xanthan/gm cells/hr, for several hundred hours without culture degeneration from inexpensive aqueous nutrient media such as, for example, a minimal medium consisting primarily of inorganic salts, glucose, and NH4Cl. The medium may or may not also contain a yeast extract or yeast autolysate as a supplemental nitrogen source. Any medium having assimilable sources of carbon, nitrogen, and inorganic substances will serve satisfactorily for use with this new organism. 14 claims.

Weisrock, W.P.; McCarthy, E.F.

1983-11-29

275

Regulation of Tryptophan Pyrrolase Activity in Xanthomonas pruni1  

PubMed Central

Tryptophan pyrrolase was studied in partially purified extracts of Xanthomonas pruni. The dialyzed enzyme required both heme and ascorbate for maximal activity. Other reducing agents were able to substitute for ascorbate. Protoporphyrin competed with heme for the enzyme, suggesting that the native enzyme is a hemoprotein. The enzyme exhibited sigmoid saturation kinetics. Reduced nicotinamide adenine dinucleotide (NADH), reduced nicotinamide adenine dinucleotide phosphate (NADPH), nicotinic acid mononucleotide, and anthranilic acid enhanced the sigmoid kinetics and presumably bound to allosteric sites on the enzyme. The sigmoid kinetics were diminished in the presence of ?-methyltryptophan. NAD, NADP, nicotinic acid, nicotinamide, nicotinamide mononucleotide, and several other related compounds were without effect on the activity of the enzyme. These data indicate that the activity of the enzyme is under feedback regulation by the ultimate end products of the pathway leading to NAD biosynthesis, as well as by certain intermediates of this pathway.

Wagner, Conrad; Brown, Albert T.

1970-01-01

276

Analysis of the type IV fimbrial-subunit gene fimA of Xanthomonas hyacinthi: application in PCR-mediated detection of yellow disease in Hyacinths.  

PubMed

A sensitive and specific detection method was developed for Xanthomonas hyacinthi; this method was based on amplification of a subsequence of the type IV fimbrial-subunit gene fimA from strain S148. The fimA gene was amplified by PCR with degenerate DNA primers designed by using the N-terminal and C-terminal amino acid sequences of trypsin fragments of FimA. The nucleotide sequence of fimA was determined and compared with the nucleotide sequences coding for the fimbrial subunits in other type IV fimbria-producing bacteria, such as Xanthomonas campestris pv. vesicatoria, Neisseria gonorrhoeae, and Moraxella bovis. In a PCR internal primers JAAN and JARA, designed by using the nucleotide sequences of the variable central and C-terminal region of fimA, amplified a 226-bp DNA fragment in all X. hyacinthi isolates. This PCR was shown to be pathovar specific, as assessed by testing 71 Xanthomonas pathovars and bacterial isolates belonging to other genera, such as Erwinia and Pseudomonas. Southern hybridization experiments performed with the labelled 226-bp DNA amplicon as a probe suggested that there is only one structural type IV fimbrial-gene cluster in X. hyacinthi. Only two Xanthomonas translucens pathovars cross-reacted weakly in PCR. Primers amplifying a subsequence of the fimA gene of X. campestris pv. vesicatoria (T. Ojanen-Reuhs, N. Kalkkinen, B. Westerlund-Wikström, J. van Doorn, K. Haahtela, E.-L. Nurmiaho-Lassila, K. Wengelink, U. Bonas, and T. K. Korhonen, J. Bacteriol. 179: 1280-1290, 1997) were shown to be pathovar specific, indicating that the fimbrial-subunit sequences are more generally applicable in xanthomonads for detection purposes. Under laboratory conditions, approximately 1,000 CFU of X. hyacinthi per ml could be detected. In inoculated leaves of hyacinths the threshold was 5,000 CFU/ml. The results indicated that infected hyacinths with early symptoms could be successfully screened for X. hyacinthi with PCR. PMID:11157222

van Doorn, J; Hollinger, T C; Oudega, B

2001-02-01

277

Proteome of the phytopathogen Xanthomonas citri subsp. citri: a global expression profile  

PubMed Central

Background Citrus canker is a disease caused by Xantomonas citri subsp.citri (Xac), and has emerged as one of the major threats to the worldwide citrus crop because it affects all commercial citrus varieties, decreases the production and quality of the fruits and can spread rapidly in citrus growing areas. In this work, the first proteome of Xac was analyzed using two methodologies, two-dimensional liquid chromatography (2D LC) and tandem mass spectrometry (MS/MS). Results In order to gain insight into the metabolism of Xac, cells were grown on two different media (NB - Nutrient Broth and TSE - Tryptone Sucrose broth enriched with glutamic acid), and proteins were proteolyzed with trypsin and examined by 2D LC-MS/MS. Approximately 39% of all predicted proteins by annotation of Xac were identified with their component peptides unambiguously assigned to tandem mass spectra. The proteins, about 1,100, were distributed in all annotated functional categories. Conclusions This is the first proteomic reference map for the most aggressive strain of Xanthomonas pathogen of all orange varieties. The compilation of metabolic pathways involved with bacterial growth showed that Xac expresses a complete central and intermediary metabolism, replication, transcription and translation machineries and regulation factors, distinct membrane transporters (ABC, MFS and pumps) and receptors (MCP, TonB dependent and metabolites acquisition), two-component systems (sensor and regulatory components) and response regulators. These data corroborate the growth curve in vitro and are the first reports indicating that many of these genome annotated genes are translated into operative in Xac. This proteomic analysis also provided information regarding the influence of culture medium on growth and protein expression of Xac.

2010-01-01

278

Phosphate regulated proteins of Xanthomonas citri subsp. citri: A proteomic approach.  

PubMed

Xanthomonas citri subsp. citri (X. citri) is the causative agent of the citrus canker, a disease that affects several citrus plants in Brazil and across the world. Although many studies have demonstrated the importance of genes for infection and pathogenesis in this bacterium, there are no data related to phosphate uptake and assimilation pathways. To identify the proteins that are involved in the phosphate response, we performed a proteomic analysis of X. citri extracts after growth in three culture media with different phosphate concentrations. Using mass spectrometry and bioinformatics analysis, we showed that X. citri conserved orthologous genes from Pho regulon in Escherichia coli, including the two-component system PhoR/PhoB, ATP binding cassette (ABC transporter) Pst for phosphate uptake, and the alkaline phosphatase PhoA. Analysis performed under phosphate starvation provided evidence of the relevance of the Pst system for phosphate uptake, as well as both periplasmic binding proteins, PhoX and PstS, which were formed in high abundance. The results from this study are the first evidence of the Pho regulon activation in X. citri and bring new insights for studies related to the bacterial metabolism and physiology. Biological significance Using proteomics and bioinformatics analysis we showed for the first time that the phytopathogenic bacterium X. citri conserves a set of proteins that belong to the Pho regulon, which are induced during phosphate starvation. The most relevant in terms of conservation and up-regulation were the periplasmic-binding proteins PstS and PhoX from the ABC transporter PstSBAC for phosphate, the two-component system composed by PhoR/PhoB and the alkaline phosphatase PhoA. PMID:24846853

Pegos, Vanessa Rodrigues; Nascimento, Jéssica Faria; Sobreira, Tiago José Paschoal; Pauletti, Bianca Alves; Paes-Leme, Adriana; Balan, Andrea

2014-08-28

279

Rhizobacterial induction of systemic resistance in tomato plants: non-specific protection and increase in enzyme activities  

Microsoft Academic Search

Rhizobacteria B101R, B212R, and A068R, selected as inducers of systemic resistance against Pseudomonas syringae pv. tomato, were tested individually for biological control of multiple pathogens causing foliar diseases in tomato plants. Greenhouse bioassays were carried with five pathogens—Alternaria solani (early blight), Corynespora cassiicola (foliar blight), Oidium lycopersici (powdery mildew), Stemphilium solani (leaf spot), and Xanthomonas campestris pv. vesicatoria (bacterial spot).

Harllen Sandro Alves Silva; Reginaldo da Silva Romeiro; Dirceu Macagnan; Bernardo de Almeida Halfeld-Vieira; Maria Cristina Baracat Pereira; Ann Mounteer

2004-01-01

280

Cytogenetic findings in echographically defined blighted ovum abortions.  

PubMed

A sample of 52 spontaneous blighted ovum abortions (BO) was examined cytogenetically and compared with a sample of abortions with echographic evidence of the embryo (AE). Abnormal karyotypes were 67% in the BO sample and 53% in the AE sample, a non significant difference. In the BO abortions trisomies were 74% of the abnormal karyotypes but 35% in the AE abortion, and the 45,X karyotype was absent among the BO but was found in 10 cases of AE. The prevalence of trisomies 16 and 22 in the BO abortions indicates that genes on these chromosome may be responsible for the early arrest of embryonic development. PMID:8215215

Minelli, E; Buchi, C; Granata, P; Meroni, E; Righi, R; Portentoso, P; Giudici, A; Ercoli, A; Sartor, M G; Rossi, A

1993-01-01

281

Chestnut resistance to the blight disease: insights from transcriptome analysis  

PubMed Central

Background A century ago, Chestnut Blight Disease (CBD) devastated the American chestnut. Backcross breeding has been underway to introgress resistance from Chinese chestnut into surviving American chestnut genotypes. Development of genomic resources for the family Fagaceae, has focused in this project on Castanea mollissima Blume (Chinese chestnut) and Castanea dentata (Marsh.) Borkh (American chestnut) to aid in the backcross breeding effort and in the eventual identification of blight resistance genes through genomic sequencing and map based cloning. A previous study reported partial characterization of the transcriptomes from these two species. Here, further analyses of a larger dataset and assemblies including both 454 and capillary sequences were performed and defense related genes with differential transcript abundance (GDTA) in canker versus healthy stem tissues were identified. Results Over one and a half million cDNA reads were assembled into 34,800 transcript contigs from American chestnut and 48,335 transcript contigs from Chinese chestnut. Chestnut cDNA showed higher coding sequence similarity to genes in other woody plants than in herbaceous species. The number of genes tagged, the length of coding sequences, and the numbers of tagged members within gene families showed that the cDNA dataset provides a good resource for studying the American and Chinese chestnut transcriptomes. In silico analysis of transcript abundance identified hundreds of GDTA in canker versus healthy stem tissues. A significant number of additional DTA genes involved in the defense-response not reported in a previous study were identified here. These DTA genes belong to various pathways involving cell wall biosynthesis, reactive oxygen species (ROS), salicylic acid (SA), ethylene, jasmonic acid (JA), abscissic acid (ABA), and hormone signalling. DTA genes were also identified in the hypersensitive response and programmed cell death (PCD) pathways. These DTA genes are candidates for host resistance to the chestnut blight fungus, Cryphonectria parasitica. Conclusions Our data allowed the identification of many genes and gene network candidates for host resistance to the chestnut blight fungus, Cryphonectria parasitica. The similar set of GDTAs in American chestnut and Chinese chestnut suggests that the variation in sensitivity to this pathogen between these species may be the result of different timing and amplitude of the response of the two to the pathogen infection. Resources developed in this study are useful for functional genomics, comparative genomics, resistance breeding and phylogenetics in the Fagaceae.

2012-01-01

282

Hyperspectral recognition of processing tomato early blight based on GA and SVM  

NASA Astrophysics Data System (ADS)

Processing tomato early blight seriously affect the yield and quality of its.Determine the leaves spectrum of different disease severity level of processing tomato early blight.We take the sensitive bands of processing tomato early blight as support vector machine input vector.Through the genetic algorithm(GA) to optimize the parameters of SVM, We could recognize different disease severity level of processing tomato early blight.The result show:the sensitive bands of different disease severity levels of processing tomato early blight is 628-643nm and 689-692nm.The sensitive bands are as the GA and SVM input vector.We get the best penalty parameters is 0.129 and kernel function parameters is 3.479.We make classification training and testing by polynomial nuclear,radial basis function nuclear,Sigmoid nuclear.The best classification model is the radial basis function nuclear of SVM. Training accuracy is 84.615%,Testing accuracy is 80.681%.It is combined GA and SVM to achieve multi-classification of processing tomato early blight.It is provided the technical support of prediction processing tomato early blight occurrence, development and diffusion rule in large areas.

Yin, Xiaojun; Zhao, SiFeng

2013-03-01

283

Bacterial Vaginosis  

MedlinePLUS

... vaginosis can increase your chance of getting an STD. What is bacterial vaginosis? Bacterial vaginosis (BV) is ... contributes to BV. BV is not considered an STD, but having BV can increase your chances of ...

284

Development of a semi-selective medium for isolation of Xanthomonas campestris pv . musacearum from banana plants  

Microsoft Academic Search

Banana Xanthomonas wilt, caused by Xanthomonas campestris pv. musacearum, is a new threat to banana cultivation in eastern Africa. The causal bacterium grows slowly in culture and is easily overgrown\\u000a by contaminants. A selective culture medium for isolation of X. c. pv. musacearum will facilitate disease study. A medium that suppressed saprophytic growth and possessed diagnostic characters for the pathogen

Leena Tripathi; Jaindra Nath Tripathi; Wilberforce Kateera Tushemereirwe; Ranajit Bandyopadhyay

2007-01-01

285

Modifications of Xanthomonas axonopodis pv. citri Lipopolysaccharide Affect the Basal Response and the Virulence Process during Citrus Canker  

PubMed Central

Xanthomonas axonopodis pv. citri (Xac) is the phytopathogen responsible for citrus canker, one of the most devastating citrus diseases in the world. A broad range of pathogens is recognized by plants through so-called pathogen-associated molecular patterns (PAMPs), which are highly conserved fragments of pathogenic molecules. In plant pathogenic bacteria, lipopolisaccharyde (LPS) is considered a virulence factor and it is being recognized as a PAMP. The study of the participation of Xac LPS in citrus canker establishment could help to understand the molecular bases of this disease. In the present work we investigated the role of Xac LPS in bacterial virulence and in basal defense during the interaction with host and non host plants. We analyzed physiological features of Xac mutants in LPS biosynthesis genes (wzt and rfb303) and the effect of these mutations on the interaction with orange and tobacco plants. Xac mutants showed an increased sensitivity to external stresses and differences in bacterial motilities, in vivo and in vitro adhesion and biofilm formation. Changes in the expression levels of the LPS biosynthesis genes were observed in a medium that mimics the plant environment. Xacwzt exhibited reduced virulence in host plants compared to Xac wild-type and Xacrfb303. However, both mutant strains produced a lower increase in the expression levels of host plant defense-related genes respect to the parental strain. In addition, Xac LPS mutants were not able to generate HR during the incompatible interaction with tobacco plants. Our findings indicate that the structural modifications of Xac LPS impinge on other physiological attributes and lead to a reduction in bacterial virulence. On the other hand, Xac LPS has a role in the activation of basal defense in host and non host plants.

Petrocelli, Silvana; Tondo, Maria Laura; Daurelio, Lucas D.; Orellano, Elena G.

2012-01-01

286

Passing GO (gene ontology) in plant pathogen biology: a report from the Xanthomonas Genomics Conference.  

PubMed

In mid-July a workshop entitled the 'Xanthomonas Genomics Conference' took place at the stunning location of Pingree Park, Colorado State University, USA. This meeting, which was supported this time round by United States Department of Agriculture and US National Science Foundation, was the third official workshop dedicated to the study of phytopathogens belonging to the species Xanthomonas. One of the major goals of this meeting was to discuss the insight that comparative analysis of Xanthomonas genomes has given both to an understanding of the ability of this important group of bacteria to exploit an extraordinary diversity of plant hosts and host tissues, and to the development of needed improvements in disease control and prevention. In this report we give an overview of recent developments in this field that were presented during the meeting. These highlights included the unveiling of 11 new Xanthomonas genomic sequences, structural and functional insights into the peptide Ax21 elicitor, the first description of small non-coding RNAs in Xanthomonas and the role they play in the regulation of virulence, as well as a description of novel type III-secreted effectors which target different hosts. PMID:19804485

Ryan, Robert P; Koebnik, Ralf; Szurek, Boris; Boureau, Tristan; Bernal, Adriana; Bogdanove, Adam; Dow, J Maxwell

2009-12-01

287

Bacterial Sialidase  

NASA Technical Reports Server (NTRS)

Data shows that elevated sialidase in bacterial vaginosis patients correlates to premature births in women. Bacterial sialidase also plays a significant role in the unusual colonization of Pseudomonas aeruginosa in cystic fibrosis patients. Crystals of Salmonella sialidase have been reproduced and are used for studying the inhibitor-enzyme complexes. These inhibitors may also be used to inhibit a trans-sialidase of Trypanosome cruzi, a very similar enzyme to bacterial sialidase, therefore preventing T. cruzi infection, the causitive agent of Chagas' disease. The Center for Macromolecular Crystallography suggests that inhibitors of bacterial sialidases can be used as prophylactic drugs to prevent bacterial infections in these critical cases.

2004-01-01

288

KdgR, an IClR family transcriptional regulator, inhibits virulence mainly by repression of hrp genes in Xanthomonas oryzae pv. oryzae.  

PubMed

KdgR has been reported to negatively regulate the genes involved in degradation and metabolization of pectic acid and other extracellular enzymes in soft-rotting Erwinia spp. through direct binding to their promoters. The possible involvement of a KdgR orthologue in virulence by affecting the expression of extracellular enzymes in Xanthomonas oryzae pv. oryzae, the causal agent of rice blight disease, was examined by comparing virulence and regulation of extracellular enzymes between the wild type (WT) and a strain carrying a mutation in putative kdgR (?Xoo0310 mutant). This putative kdgR mutant of X. oryzae pv. oryzae showed increased pathogenicity on rice without affecting the regulation of extracellular enzymes, such as amylase, cellulase, xylanase, and protease. However, the mutant carrying a mutation in an ortholog of xpsL, which encodes the functional secretion machinery for the extracellular enzymes, showed a dramatic decrease in pathogenicity on rice. Both mutants of kdgR and of xpsL orthologs showed higher expression of two major hrp regulatory genes, hrpG and hrpX, and the genes in the hrp operons when grown in hrp-inducing medium. Thus, both genes were shown to be involved in repression of hrp genes. The kdgR ortholog was thought to suppress virulence mainly by repressing the expression of hrp genes without affecting the expression of extracellular enzymes, unlike findings for the kdgR gene in soft-rotting Erwinia spp. On the other hand, xpsL was confirmed to be involved in virulence by promoting the secretion of extracellular enzymes in spite of repressing the expression of the hrp genes. PMID:21984784

Lu, Yao; Rashidul, Islam M; Hirata, Hisae; Tsuyumu, Shinji

2011-12-01

289

Morphological, Pathogenic, and Molecular Characterization of Alternaria Isolates Associated with Alternaria Late Blight of Pistachio  

Microsoft Academic Search

ABSTRACT Pryor, B. M., and Michailides, T. J. 2002. Morphological, pathogenic, and molecular characterization of ,Alternaria isolates associated with Alternaria late blight of pistachio. Phytopathology 92:406-416. Alternaria isolates ,were ,obtained from ,various pistachio tissues

Barry M. Pryor; Themis J. Michailides

2002-01-01

290

A bacteriophage transcription regulator inhibits bacterial transcription initiation by ?-factor displacement  

PubMed Central

Bacteriophages (phages) appropriate essential processes of bacterial hosts to benefit their own development. The multisubunit bacterial RNA polymerase (RNAp) enzyme, which catalyses DNA transcription, is targeted by phage-encoded transcription regulators that selectively modulate its activity. Here, we describe the structural and mechanistic basis for the inhibition of bacterial RNAp by the transcription regulator P7 encoded by Xanthomonas oryzae phage Xp10. We reveal that P7 uses a two-step mechanism to simultaneously interact with the catalytic ? and ?’ subunits of the bacterial RNAp and inhibits transcription initiation by inducing the displacement of the ?70-factor on initial engagement of RNAp with promoter DNA. The new mode of interaction with and inhibition mechanism of bacterial RNAp by P7 underscore the remarkable variety of mechanisms evolved by phages to interfere with host transcription.

Liu, Bing; Shadrin, Andrey; Sheppard, Carol; Mekler, Vladimir; Xu, Yingqi; Severinov, Konstantin; Matthews, Steve; Wigneshweraraj, Sivaramesh

2014-01-01

291

A bacteriophage transcription regulator inhibits bacterial transcription initiation by ?-factor displacement.  

PubMed

Bacteriophages (phages) appropriate essential processes of bacterial hosts to benefit their own development. The multisubunit bacterial RNA polymerase (RNAp) enzyme, which catalyses DNA transcription, is targeted by phage-encoded transcription regulators that selectively modulate its activity. Here, we describe the structural and mechanistic basis for the inhibition of bacterial RNAp by the transcription regulator P7 encoded by Xanthomonas oryzae phage Xp10. We reveal that P7 uses a two-step mechanism to simultaneously interact with the catalytic ? and ?' subunits of the bacterial RNAp and inhibits transcription initiation by inducing the displacement of the ?(70)-factor on initial engagement of RNAp with promoter DNA. The new mode of interaction with and inhibition mechanism of bacterial RNAp by P7 underscore the remarkable variety of mechanisms evolved by phages to interfere with host transcription. PMID:24482445

Liu, Bing; Shadrin, Andrey; Sheppard, Carol; Mekler, Vladimir; Xu, Yingqi; Severinov, Konstantin; Matthews, Steve; Wigneshweraraj, Sivaramesh

2014-04-01

292

Genetic Diversity among Xanthomonas campestris Strains Pathogenic for Small Grains  

PubMed Central

A collection of 51 Xanthomonas campestris strains from throughout the world was studied to detect and assess genetic diversity among pathogens of small grains. Isolates from barley, bread wheat, bromegrass, canary grass, cassava, maize, orchard grass, rice, rough-stalked meadow grass, rye, timothy, and triticale were analyzed by pathogenicity tests on bread wheat cv. Alondra and barley cv. Corona, indirect immunofluorescence, and restriction fragment length polymorphism (RFLP). Three probes were used for the RFLP analysis. They were an acetylaminofluorene-labelled 16S+23S rRNA probe from Escherichia coli and two (sup32)P-labelled restriction fragments from either plasmidic (pBSF2) or chromosomal (pBS8) DNA of X. campestris pv. manihotis. Strains clustered in 9 and 20 groups with the rRNA probe and the pBSF2 DNA probe, respectively. Strains of X. campestris pv. graminis, X. campestris pv. phleipratensis, and X. campestris pv. poae are shown to be related but are also distinguishable by RFLP patterns, serology, and pathogenicity on bread wheat. Strains pathogenic only for barley and not for wheat grouped together. Another group is temporarily designated deviant X. campestris pv. undulosa. These South American isolates from bread wheat did not react by indirect immunofluorescence and produced atypical lesions in pathogenicity tests. The results stress the need to perform pathogenicity tests before strains are named at the pathovar level. The importance of the different probes used for epidemiological studies or phylogenetic studies of closely related strains is underlined.

Bragard, C.; Verdier, V.; Maraite, H.

1995-01-01

293

The folate precursor para-aminobenzoic acid elicits induced resistance against Cucumber mosaic virus and Xanthomonas axonopodis  

PubMed Central

Background and Aims The use of vitamins including vitamin B1, B2 and K3 for the induction of systemic acquired resistance (SAR) to protect crops against plant pathogens has been evaluated previously. The use of vitamins is beneficial because it is cost effective and safe for the environment. The use of folate precursors, including ortho-aminobenzoic acid, to induce SAR against a soft-rot pathogen in tobacco has been reported previously. Methods In the present study, para-aminobenzoic acid (PABA, also referred to as vitamin Bx) was selected owing to its effect on the induction of SAR against Xanthomonas axonopodis pv. vesicatoria in pepper plants through greenhouse screening. Key Results Dipping of pepper seedlings in a 1 mm PABA solution in field trials induced SAR against artificially infiltrated X. axonopodis pv. vesicatoria and naturally occurring cucumber mosaic virus. Expression of the Capsicum annuum pathogenesis-related 4 gene was primed in response to pathogen infection as assessed by quantitative real-time PCR. The accumulation of cucumber mosaic virus RNA was reduced in PABA-treated pepper plants at 40 and 105 d post-treatment. Unexpectedly, fruit yield was increased in PABA-treated plants, indicating that PABA-mediated SAR successfully protected pepper plants from infection by bacterial and viral pathogens without significant fitness allocation costs. Conclusions The present study is the first to demonstrate the effective elicitation of SAR by a folate precursor under field conditions.

Song, Geun Cheol; Choi, Hye Kyung; Ryu, Choong-Min

2013-01-01

294

Effector genes of Xanthomonas axonopodis pv. vesicatoria promote transmission and enhance other fitness traits in the field.  

PubMed Central

Establishing durable disease resistance in agricultural crops, where much of the plant defense is provided through effector-R gene interactions, is complicated by the ability of pathogens to overcome R gene resistance by losing the corresponding effector gene. Many proposed methods to maintain disease resistance in the field depend on the idea that effector gene loss results in a fitness cost to the pathogen. In this article we test for fitness costs of effector gene function loss. We created directed knockouts of up to four effector genes from the bacterial plant pathogen Xanthomonas axonopodis pv. vesicatoria (Xav) and examined the effect of the loss of a functional gene product on several important fitness parameters in the field. These traits included transmission, lesion development, and epiphytic survival. We found that the products of all four effector genes had significant and often additive effects on fitness traits. Additional greenhouse tests revealed costs of effector gene loss on in planta growth and further showed that the effects on lesion development were separable from the effects on growth. Observable fitness effects of the three plasmid-borne effector genes were dependent upon the loss of functional avrBs2, indicating that complex functional interactions exist among effector genes with Xav.

Wichmann, Gale; Bergelson, Joy

2004-01-01

295

Diversity, distribution, and evolution of Solanum bulbocastanum late blight resistance genes  

Microsoft Academic Search

Knowledge on the evolution and distribution of late blight resistance genes is important for a better understanding of the dynamics of these genes in nature. We analyzed the presence and allelic diversity of the late blight resistance genes Rpi-blb1, Rpi-blb2, and Rpi-blb3, originating from Solanum bulbocastanum, in a set of tuber-bearing Solanum species comprising 196 different taxa. The three genes

Anoma A. Lokossou; Hendrik Rietman; Miqia Wang; Pavel Krenek; Schoot van der J; G. Henken; Roel Hoekstra; Vivianne G. A. A. Vleeshouwers; Vossen van der E. A. G; Richard G. F. Visser; Evert Jacobsen; Ben Vosman

2010-01-01

296

Involvement of quorum sensing and RpoS in rice seedling blight caused by Burkholderia plantarii.  

PubMed

Burkholderia plantarii is a plant pathogen responsible for causing rice seedling blight. The molecular mechanisms responsible for this pathogenicity are currently unknown. In this study, we report the identification and characterization of N-acyl homoserine lactone quorum sensing and the stationary phase RpoS sigma factor of B. plantarii. Both global regulatory systems are involved in causing rice seedling blight. This is the first report of gene regulators of B. plantarii implicated in the disease. PMID:16684109

Solis, Renando; Bertani, Iris; Degrassi, Giuliano; Devescovi, Giulia; Venturi, Vittorio

2006-06-01

297

A locus conferring effective late blight resistance in potato cultivar Sárpo Mira maps to chromosome XI.  

PubMed

Late blight of potato, caused by Phytophthora infestans, is one of the most economically important diseases worldwide, resulting in substantial yield losses when not adequately controlled by fungicides. Late blight was a contributory factor in The Great Irish Famine, and breeding for resistance to the disease began soon after. Several disease-resistant cultivars have subsequently been obtained, and amongst them Sárpo Mira is currently one of the most effective. The aim of this work was to extend the knowledge about the genetic basis of the late blight resistance in Sárpo Mira and to identify molecular markers linked to the resistance locus which would be useful for marker-assisted selection. A tetraploid mapping population from a Sárpo Mira × Maris Piper cross was phenotyped for foliar late blight resistance using detached leaflet tests. A locus with strong effect on late blight resistance was mapped at the end of chromosome XI in the vicinity of the R3 locus. Sárpo Mira's genetic map of chromosome XI contained 11 markers. Marker 45/XI exhibited the strongest linkage to the resistance locus and accounted for between 55.8 and 67.9% of variance in the mean resistance scores noted in the detached leaflet assays. This marker was used in molecular marker-facilitated gene pyramiding. Ten breeding lines containing a late blight resistance locus from cultivar Sárpo Mira and the Rpi-phu1 gene originating from the late blight resistant accession of Solanum phureja were obtained. These lines have extended the spectrum of late blight resistance compared with Sárpo Mira and it is expected that resistance in plants containing this gene pyramid will have enhanced durability. PMID:24343200

Tomczy?ska, Iga; Stefa?czyk, Emil; Chmielarz, Marcin; Karasiewicz, Beata; Kami?ski, Piotr; Jones, Jonathan D G; Lees, Alison K; Sliwka, Jadwiga

2014-03-01

298

Induced Systemic Protection Against Tomato Late Blight Elicited by Plant Growth-Promoting Rhizobacteria  

Microsoft Academic Search

Yan, Z., Reddy, M. S., Ryu, C.-M., McInroy, J. A., Wilson, M., and Kloepper, J. W. 2002. Induced systemic protection against tomato late blight elicited by plant growth-promoting rhizobacteria. Phytopathology 92:1329-1333. Two strains of plant growth-promoting rhizobacteria (PGPR), Bacillus pumilus SE34 and Pseudomonas fluorescens 89B61, elicited systemic protection against late blight on tomato and reduced disease severity by a level

Zhinong Yan; M. S. Reddy; Choong-Min Ryu; John A. McInroy; Mark Wilson; Joseph W. Kloepper

2002-01-01

299

A Study of the relationship of late blight resistance to glycoalkaloid content in fifteen potato clones  

Microsoft Academic Search

Tuber glycoalkaloid (TGA) content, leaf glycoalkaloid (LGA) content, and the level of multigenic resistance to late blight\\u000a were determined for 15 potato clones. There was no association between the level of blight resistance and the TGA or LGA contents\\u000a in these clones. However, TGA and LGA contents were highly correlated. The genotypic correlation coefficient between TGA and\\u000a LGA contents for

K. L. Deahl; R. J. Young; S. L. Sinden

1973-01-01

300

Societal Costs of Late Blight in Potato and Prospects of Durable Resistance Through Cisgenic Modification  

Microsoft Academic Search

In the European Union almost 6 Mha of potatoes are grown representing a value of close to €6,000,000,000. Late blight caused\\u000a by Phytophthora infestans causes annual losses (costs of control and damage) estimated at more than €1,000,000,000. Chemical control is under pressure\\u000a as late blight becomes increasingly aggressive and there is societal resistance against the use of environmentally unfriendly\\u000a chemicals. Breeding

A. J. Haverkort; P. M. Boonekamp; R. C. B. Hutten; E. Jacobsen; L. A. P. Lotz; G. J. T. Kessel; R. G. F. Visser; E. A. G. van der Vossen

2008-01-01

301

Neofusicoccum parvum associated with fruit rot and shoot blight of peaches in Greece  

Microsoft Academic Search

Shoot blights and fruit rots comprise the most serious diseases of peaches in Greece. In this study, the importance of the\\u000a fungus Neofusicoccum parvum as a casual agent of a fruit rot and shoot blight of peach trees in Greece was investigated. This pathogen was isolated from\\u000a both immature and mature peach fruit of the cultivar “Catherine” and later on

Thomas Thomidis; Themis J. Michailides; Efstathia Exadaktylou

302

[Study on a bacterial strain Bt8 for biocontrol against citrus bacterial canker].  

PubMed

Citrus bacterial canker is an important disease of Citrus species in China. The disease severely occurs especially in the coastal area. Integrated control system has been used for the control of the disease, in which chemotherapy plays an important role at present. The chemotherapy-dominant control system brought many problems to the environment, such as chemical residua in the products and induction of resistance to fungicide(s) by the pathogen. To solve these problems, an intensive study on biocontrol of citrus bacterial canker is needed. Isolations and characterizations of biocontrol agents are the basis for biocontrol of the disease. A bacterial strain Bt8 with strong inhibiting ability against Xanthomonas axonopodis pv. citri (Hasse) Vauterin, was isolated from citrus orchard soil in Nanning, China. The isolated bacterial strain was identified and characterized as Acinetobacter baumannii Bouvet et Grimont on the base of its morphology and 16S rDNA sequence analysis as well as physiological and biochemical characters. The inhibiting activity of the bacterium suspension against the pathogen was significantly influenced by environmental factors, such as temperatures, pHs and media. At temperatures of 18 degrees C to 33 degrees C, both the inhibiting activity of the bacterium suspension and the biomass of the bacterium increased with the increases of temperatures, suggesting that the influence of temperature on inhibiting activity of the bacterium suspension was in dependence on the bacterial biomass. In NA liquid medium of pH 10, the bacterium suspension showed the highest inhibiting activity against Xanthomonas axonopodis pv. citri, which was not in dependence on biomass of the bacterium. The bacterium suspension provided 55.2% inhibition against bacterial canker under greenhouse conditions. The results showed that Acinetobacter baumannii has potential as biocontrol agent against bacterial canker disease. Acinetobacter baumannii was reported as the pathogens infecting human and animals. The present study enriched the understanding on biological diversity in Acinetobacter baumannii to sciences. This is the first report on the isolation of Acinetobacter baumannii with strong inhibiting ability against plant pathogen. PMID:16736594

Tan, Xiao-Yan; Huang, Si-Liang; Ren, Jian-Guo; Yan, Wei-Hong; Cen, Zhen-Lu

2006-04-01

303

The LOV Protein of Xanthomonas citri subsp. citri Plays a Significant Role in the Counteraction of Plant Immune Responses during Citrus Canker  

PubMed Central

Pathogens interaction with a host plant starts a set of immune responses that result in complex changes in gene expression and plant physiology. Light is an important modulator of plant defense response and recent studies have evidenced the novel influence of this environmental stimulus in the virulence of several bacterial pathogens. Xanthomonas citri subsp. citri is the bacterium responsible for citrus canker disease, which affects most citrus cultivars. The ability of this bacterium to colonize host plants is influenced by bacterial blue-light sensing through a LOV-domain protein and disease symptoms are considerably altered upon deletion of this protein. In this work we aimed to unravel the role of this photoreceptor during the bacterial counteraction of plant immune responses leading to citrus canker development. We performed a transcriptomic analysis in Citrus sinensis leaves inoculated with the wild type X. citri subsp. citri and with a mutant strain lacking the LOV protein by a cDNA microarray and evaluated the differentially regulated genes corresponding to specific biological processes. A down-regulation of photosynthesis-related genes (together with a corresponding decrease in photosynthesis rates) was observed upon bacterial infection, this effect being more pronounced in plants infected with the lov-mutant bacterial strain. Infection with this strain was also accompanied with the up-regulation of several secondary metabolism- and defense response-related genes. Moreover, we found that relevant plant physiological alterations triggered by pathogen attack such as cell wall fortification and tissue disruption were amplified during the lov-mutant strain infection. These results suggest the participation of the LOV-domain protein from X. citri subsp. citri in the bacterial counteraction of host plant defense response, contributing in this way to disease development.

Kraiselburd, Ivana; Daurelio, Lucas D.; Tondo, Maria Laura; Merelo, Paz; Cortadi, Adriana A.; Talon, Manuel; Tadeo, Francisco R.; Orellano, Elena G.

2013-01-01

304

Bacterial Leaf Blight and Sheath Spot of Rice Plant in Flooded Districts of Kumamoto Prefecture.  

National Technical Information Service (NTIS)

The present study was an attempt to investigate the extent of the 26 June flood damage on rice from the standpoint of crop disease according to the meteriological report of 1953 covering the growth period of rice. The weather was conductive to the outbrea...

K. Kobayashi T. Tamura T. Shigenaga

1966-01-01

305

Quantification of rice sheath blight progression caused by Rhizoctonia solani.  

PubMed

Rhizoctonia solani has a wide host range, including almost all cultivated crops and its subgroup anastomosis group (AG)-1 IA causes sheath blight in rice. An accurate measurement of pathogen's biomass is a convincing tool for enumeration of this disease. Mycological characteristics and molecular diagnosis simultaneously supported that all six strains in this study were R. solani AG-1 IA. Heterokaryons between strains Rs40104, Rs40105, and Rs45811 were stable and viable, whereas Rs40103 and Rs40106 did not form viable fused cells, except for the combination of Rs40106 and Rs40104. A primer pair was highly specific to RsAROM gene of R. solani strains and the amplified fragment exists as double copies within fungal genome. The relationship between crossing point (CP) values and the amount of fungal DNA was reliable (R (2) >0.99). Based on these results, we determined R. solani's proliferation within infected stems through real time PCR using a primer pair and a Taqman probe specific to the RsAROM gene. The amount of fungal DNA within the 250 ng of tissue DNA from rice cv. Dongjin infected with Rs40104, Rs40105, and Rs45811 were 7.436, 5.830, and 5.085 ng, respectively. In contrast, the fungal DNAs within the stems inoculated with Rs40103 and Rs40106 were 0.091 and 0.842 ng. The sheath blight symptom progression approximately coincided with the amount of fungal DNA within the symptoms. In summary, our quantitative evaluation method provided reliable and objective results reflecting the amount of fungal biomass within the infected tissues and would be useful for evaluation of resistance germplasm or fungicides and estimation of inoculum potential. PMID:23812819

Su'udi, Mukhamad; Park, Jong-Mi; Kang, Woo-Ri; Hwang, Duk-Ju; Kim, Soonok; Ahn, Il-Pyung

2013-06-01

306

Bacterial Overgrowth  

Microsoft Academic Search

\\u000a The human gastrointestinal tract typically contains 300–500 bacterial species. Most bacterial species are acquired during\\u000a the birth process and although some changes to the flora may occur during later stages of life, the composition of the intestinal\\u000a microflora remains relatively constant. Small bowel bacterial overgrowth (SBBO) is defined as an excessive increase in the\\u000a number of bacteria in the upper

Rosemary J. Young; Jon A. Vanderhoof

307

Resistance to Fusarium head blight and seedling blight in wheat is associated with activation of a cytochrome p450 gene.  

PubMed

ABSTRACT One plant genotype displays a resistance phenotype at one development stage but a susceptible reaction to the same pathogen at another stage, which is referred to here as resistance inversion. In wheat, Fusarium head blight (FHB)-resistant cv. Sumai3 showed a Fusarium seedling blight (FSB)-susceptible reaction whereas FHB-susceptible cv. Annong8455 exhibited FSB resistance when challenged with a Fusarium asiaticum strain that produces deoxynivalenol (DON). The resistance to FHB and FSB in wheat was closely associated with expression of a plant cytochrome P450 gene in response to FHB pathogens and mycotoxins. Quantitative real-time polymerase chain reaction analyses showed that expression of nine defense-related genes in spikes and seedlings was induced by the fungal infection, in which a massive accumulation of a plant cytochrome P450 gene, CYP709C1, was clearly associated with the resistance reaction in both seedling and spike. The FHB-resistant Sumai3 accumulated 7-fold more P450 transcripts than did the FHB-susceptible Annong8455, while 84-fold more P450 transcripts were accumulated in the FSB-resistant Annong8455 than the FSB-susceptible Sumai3. A Fusarium strain with a disrupted Tri5 gene, which is not able to produce the first enzyme essential for trichothecene mycotoxin biosynthesis, also induced more P450 transcripts in FHB- and FSB-resistant cultivars. The fungal activation of the P450 gene was more profound in the FSB-resistant reaction than the FHB-resistant reaction relative to their susceptible counterparts. DON triggered a differential expression of the P450 gene with comparable patterns in spikes and seedlings in a resistance-dependent manner. These results may provide a basis for dissecting mechanisms underlying FHB and FSB resistance reactions in wheat and revealing functions of the cytochrome P450 in plant detoxification and defense. PMID:20055652

Li, X; Zhang, J B; Song, B; Li, H P; Xu, H Q; Qu, B; Dang, F J; Liao, Y C

2010-02-01

308

Type Three Effector Gene Distribution and Sequence Analysis Provide New Insights into the Pathogenicity of Plant-Pathogenic Xanthomonas arboricola  

PubMed Central

Xanthomonas arboricola is a complex bacterial species which mainly attacks fruit trees and is responsible for emerging diseases in Europe. It comprises seven pathovars (X. arboricola pv. pruni, X. arboricola pv. corylina, X. arboricola pv. juglandis, X. arboricola pv. populi, X. arboricola pv. poinsettiicola, X. arboricola pv. celebensis, and X. arboricola pv. fragariae), each exhibiting characteristic disease symptoms and distinct host specificities. To better understand the factors underlying this ecological trait, we first assessed the phylogenetic relationships among a worldwide collection of X. arboricola strains by sequencing the housekeeping gene rpoD. This analysis revealed that strains of X. arboricola pathovar populi are divergent from the main X. arboricola cluster formed by all other strains. Then, we investigated the distribution of 53 type III effector (T3E) genes in a collection of 57 X. arboricola strains that are representative of the main X. arboricola cluster. Our results showed that T3E repertoires vary greatly between X. arboricola pathovars in terms of size. Indeed, X. arboricola pathovars pruni, corylina, and juglandis, which are responsible for economically important stone fruit and nut diseases in Europe, harbored the largest T3E repertoires, whereas pathovars poinsettiicola, celebensis, and fragariae harbored the smallest. We also identified several differences in T3E gene content between X. arboricola pathovars pruni, corylina, and juglandis which may account for their differing host specificities. Further, we examined the allelic diversity of eight T3E genes from X. arboricola pathovars. This analysis revealed very limited allelic variations at the different loci. Altogether, the data presented here provide new insights into the evolution of pathogenicity and host range of X. arboricola and are discussed in terms of emergence of new diseases within this bacterial species.

Hajri, Ahmed; Pothier, Joel F.; Fischer-Le Saux, Marion; Bonneau, Sophie; Poussier, Stephane; Boureau, Tristan; Duffy, Brion

2012-01-01

309

Comparative RNA-Seq Analysis of Early-Infected Peach Leaves by the Invasive Phytopathogen Xanthomonas arboricola pv. pruni  

PubMed Central

Xanthomonas arboricola pv. pruni is a quarantine bacterial pathogen that threatens peach production by causing necrotic spots on leaves and fruits, thus with the potential of severely reducing yields. The current understanding of the host plant defense responses to the pathogen is very limited. Using whole transcriptome sequencing, differential gene expression was analyzed at two time points, 2 h and 12 h post inoculation (hpi), by comparing the inoculated samples to their respective controls. On the total of 19,781 known peach genes that were expressed in all time points and conditions, 34 and 263 were differentially expressed at 2 and 12 hpi, respectively. Of those, 82% and 40% were up-regulated, respectively; and 18% and 60% were down-regulated, respectively. The functional annotation based on gene ontology (GO) analysis highlighted that genes involved in metabolic process and response to stress were particularly represented at 2 hpi whereas at 12 hpi cellular and metabolic processes were the categories with the highest number of genes differentially expressed. Of particular interest among the differentially expressed genes identified were several pathogen-associated molecular pattern (PAMP) receptors, disease resistance genes including several RPM1-like and pathogenesis related thaumatin encoding genes. Other genes involved in photosynthesis, in cell wall reorganization, in hormone signaling pathways or encoding cytochrome were also differentially expressed. In addition, novel transcripts were identified, providing another basis for further characterization of plant defense-related genes. Overall, this study gives a first insight of the peach defense mechanisms during the very early stages of infection with a bacterial disease in the case of a compatible interaction.

Socquet-Juglard, Didier; Kamber, Tim; Pothier, Joel F.; Christen, Danilo; Gessler, Cesare; Duffy, Brion; Patocchi, Andrea

2013-01-01

310

Metabolic Versatility and Antibacterial Metabolite Biosynthesis Are Distinguishing Genomic Features of the Fire Blight Antagonist Pantoea vagans C9-1  

PubMed Central

Background Pantoea vagans is a commercialized biological control agent used against the pome fruit bacterial disease fire blight, caused by Erwinia amylovora. Compared to other biocontrol agents, relatively little is currently known regarding Pantoea genetics. Better understanding of antagonist mechanisms of action and ecological fitness is critical to improving efficacy. Principal Findings Genome analysis indicated two major factors contribute to biocontrol activity: competition for limiting substrates and antibacterial metabolite production. Pathways for utilization of a broad diversity of sugars and acquisition of iron were identified. Metabolism of sorbitol by P. vagans C9-1 may be a major metabolic feature in biocontrol of fire blight. Biosynthetic genes for the antibacterial peptide pantocin A were found on a chromosomal 28-kb genomic island, and for dapdiamide E on the plasmid pPag2. There was no evidence of potential virulence factors that could enable an animal or phytopathogenic lifestyle and no indication of any genetic-based biosafety risk in the antagonist. Conclusions Identifying key determinants contributing to disease suppression allows the development of procedures to follow their expression in planta and the genome sequence contributes to rationale risk assessment regarding the use of the biocontrol strain in agricultural systems.

Smits, Theo H. M.; Rezzonico, Fabio; Kamber, Tim; Blom, Jochen; Goesmann, Alexander; Ishimaru, Carol A.; Frey, Jurg E.; Stockwell, Virginia O.; Duffy, Brion

2011-01-01

311

Xanthomonas oryzae pv oryzae triggers immediate transcriptomic modulations in rice  

PubMed Central

Background Xanthomonas oryzae pv oryzae is a devastating pathogen of rice and has been extensively studied as a model pathogen of monocotyledons. Expressional studies in both the contenders have been undertaken in past to understand the molecular mechanism underlying the compatible and incompatible interactions in the pathosystem. Continuous update on database and gene annotations necessitates constant updating on the roles of the new entities as well as reinterpretation of regulations of the previous ones. Moreover the past endeavors have addressed the middle or late defense responses of the rice plant whereas in the present study an attempt has been made to investigate the early defense responses taking place immediately after inoculation. Results Microarray was used to study the transcriptional modulations in eighteen days old rice seedling leaves of both susceptible and resistant genotypes one hour after inoculation. In resistant plants as compared to susceptible ones 274 genes were found to be differentially expressed. Annotations could be assigned to 112 up- and 73 down-regulated transcripts and gene interaction maps were generated for 86 transcripts. Expressional data and interaction maps were used to develop a hypothetical scheme of the molecular events taking place during early defense response. Network analysis with the differential transcripts showed up-regulation of major clusters of cell signaling proteins and transcription factors while growth and basal metabolic components were largely found to be down-regulated. Conclusions This study provides an understanding of the early defense signaling in rice cells. Components of the calcium and lipid signaling as well as MAPK cascade were modulated, by signals from surface receptors and cytosolic R-proteins, to arouse jasmonic acid and ethylene signaling and suppress auxin signaling through various transcription factors. Abscisic acid modulation was also evident through the expression regulation of transcription factors involved with its functions. Moreover adjustments in expression levels of components of primary as well as secondary metabolism, protein trafficking and turnout were apparent, highlighting the complexity of defense response.

2012-01-01

312

Xanthan production by Xanthomonas campestris using whey permeate medium.  

PubMed

Xanthan gum is a polysaccharide that is widely used as stabilizer and thickener with many industrial applications in food industry. Our aim was to estimate the ability of Xanthomonas campestris ATCC 13951 for the production of xanthan gum by using whey as a growth medium, a by-product of dairy industry. X. campestris ATCC 13951 has been studied in batch cultures using a complex medium for the determination of the optimal concentration of glucose, galactose and lactose. In addition, whey was used under various treatment procedures (de-proteinated, partially hydrolyzed by ?-lactamase and partially hydrolyzed and de-proteinated) as culture medium, to study the production of xanthan in a 2 l bioreactor with constant stirring and aeration. A production of 28 g/l was obtained when partially hydrolysed ?-lactamase was used, which proved to be one of the highest xanthan gum production reported so far. At the same time, an effort has been made for the control and selection of the most appropriate procedure for the preservation of the strain and its use as inoculant in batch cultures, without loss of its viability and its capability of xanthan gum production. The pre-treatment of whey (whey permeate medium hydrolyzed, WPH) was very important for the production of xanthan by the strain X. campestris ATCC 13951 during batch culture conditions in a 2 l bioreactor. Preservation methods such as lyophilization, cryopreservation at various glycerol solution and temperatures have been examined. The results indicated that the best preservation method for the producing strain X. campestris ATCC 13951 was the lyophilization. Taking into account that whey permeate is a low cost by-product of the dairy industry, the production of xanthan achieved under the studied conditions was considered very promising for industrial application. PMID:22806202

Savvides, A L; Katsifas, E A; Hatzinikolaou, D G; Karagouni, A D

2012-08-01

313

Effect of Growth Conditions on the Production, Composition and Viscosity of Xanthomonas campestris Exopolysaccharide  

Microsoft Academic Search

A streptomycin-resistant variant of Xanthomonas campestris was grown in defined nutrient- deficient media in both batch and continuous culture. The production, composition and viscosity of the extracellular polysaccharide (xanthan) synthesized by this strain were influenced by the fermentation time and nutrient exhaustion in batch culture and by the dilution rate in continuous culture. The specific rate of exopolysaccharide synthesis was

M. I. Tait; I. W. Sutherland; A. J. Clarke-Sturman

1986-01-01

314

A homolog of an Escherichia coli phosphate-binding protein gene from Xanthomonas oryzae pv. oryzae  

NASA Technical Reports Server (NTRS)

A Xanthomonas oryzae pv. oryzae gene with sequence similarity to an Escherichia coli phosphate-binding protein gene (phoS) produces a periplasmic protein of apparent M(r) 35,000 when expressed in E. coli. Amino terminal sequencing revealed that a signal peptide is removed during transport to the periplasm in E. coli.

Hopkins, C. M.; White, F. F.; Heaton, L. A.; Guikema, J. A.; Leach, J. E.; Spooner, B. S. (Principal Investigator)

1995-01-01

315

Xanthomonas campestris strain selection for xanthan production from olive mill wastewaters.  

PubMed

Four Xanthomonas campestris strains were tested in olive mill wastewaters (OMW) for xanthan production. Differences among strains were found in the range of tolerance to OMW concentration and xanthan amount obtained. X. campestris NRRL B-1459 S4LII was chosen by its capability for xanthan production from 50-60% OMW as the sole nutrient source. PMID:11329685

López, M J; Moreno, J; Ramos-Cormenzana, A

2001-05-01

316

Genome Sequence of Xanthomonas arboricola pv. Corylina, Isolated from Turkish Filbert in Colorado  

PubMed Central

Previously, we reported the isolation of a bacterium producing leaf spots in Turkish filbert. Here, we present the draft genome assembly of the bacterium identified as Xanthomonas arboricola pv. corylina. To our knowledge, this is the first published genome of this pathovar of X. arboricola.

Ibarra Caballero, Jorge; Zerillo, Marcelo M.; Snelling, Jacob; Boucher, Christina

2013-01-01

317

Use of bioluminescence for detection of genetically engineered microorganisms released into the environment. [Xanthomonas campestris  

Microsoft Academic Search

The persistence and movement of strain JS414 of Xanthomonas campestris pv. campestris, which was genetically engineered to bioluminesce, were monitored during a limited field introduction. Bioluminescence and traditional dilution plate counts were determined. Strain JS414 was applied to cabbage plants and surrounding soil by mist inoculation, by wound inoculation, by scattering infested debris among plants, and by incorporating bacteria into

J. J. Shaw; F. Dane; D. Geiger; J. W. Kloepper

1992-01-01

318

Genome Sequence of Xanthomonas arboricola pv. Corylina, Isolated from Turkish Filbert in Colorado.  

PubMed

Previously, we reported the isolation of a bacterium producing leaf spots in Turkish filbert. Here, we present the draft genome assembly of the bacterium identified as Xanthomonas arboricola pv. corylina. To our knowledge, this is the first published genome of this pathovar of X. arboricola. PMID:23704178

Ibarra Caballero, Jorge; Zerillo, Marcelo M; Snelling, Jacob; Boucher, Christina; Tisserat, Ned

2013-01-01

319

The effect of harvest date and the interval between harvest and inoculation on the assessment of the resistance of potato tubers to late blight  

Microsoft Academic Search

Breeders' selections are routinely assessed for resistance to tuber blight at the Scottish Crop Research Institute by inoculating freshly dug tubers with a suspension ofPhytophthora infestans, and observing the percentage of blighted tubers after two weeks.

Helen E. Stewart; D. C. McCalmont; R. L. Wastie

1983-01-01

320

The late blight resistance locus Rpi-bib3 from Solanum bulbocastanum belongs to a major late blight R gene cluster on chromosome 4 of potato.  

PubMed

Late blight, caused by Phytophthora infestans, is one of the most devastating diseases in cultivated potato. Breeding of new potato cultivars with high levels of resistance to P. infestans is considered the most durable strategy for future potato cultivation. In this study, we report the identification of a new late-blight resistance (R) locus from the wild potato species Solanum bulbocastanum. Using several different approaches, a high-resolution genetic map of the new locus was generated, delimiting Rpi-blb3 to a 0.93 cM interval on chromosome 4. One amplification fragment length polymorphism marker was identified that cosegregated in 1,396 progeny plants of an intraspecific mapping population with Rpi-blb3. For comparative genomics purposes, markers linked to Rpi-blb3 were tested in mapping populations used to map the three other late-blight R loci Rpi-abpt, R2, and R2-like also to chromosome 4. Marker order and allelic conservation suggest that Rpi-blb3, Rpi-abpt, R2, and R2-like reside in the same R gene cluster on chromosome 4 and likely belong to the same gene family. Our findings provide novel insights in the evolution of R gene clusters conferring late-blight resistance in Solanum spp. PMID:16042018

Park, Tae-Ho; Gros, Jack; Sikkema, Anne; Vleeshouwers, Vivianne G A A; Muskens, Marielle; Allefs, Sjefke; Jacobsen, Evert; Visser, Richard G F; van der Vossen, Edwin A G

2005-07-01

321

Bacterial pathogens.  

PubMed

Bacterial infections are frequent complications among patients treated for cancer. The type, severity, and treatment of bacterial infections vary and depend upon the specific malignancy, associated chemotherapies, and transplantation. This chapter discusses commonly encountered bacterial pathogens as well as Nocardia and mycobacteria in patients with cancer and addresses the clinical syndromes and management. Drug-resistant bacteria are becoming an increasingly recognized problem in patients with cancer. Antimicrobial resistance in select gram-positive and gram-negative bacteria are discussed along with the mechanisms of resistance and recommended therapies. PMID:24706222

Wilson, John W

2014-01-01

322

Requirement of the Lipopolysaccharide O-Chain Biosynthesis Gene wxocB for Type III Secretion and Virulence of Xanthomonas oryzae pv. Oryzicola  

PubMed Central

Xanthomonas oryzae pv. oryzicola causes bacterial leaf streak of rice. A mutant disrupted in wxocB, predicted to encode an enzyme for lipopolysaccharide (LPS) synthesis, was previously shown to suffer reduced virulence. Here, we confirm a role for wxocB in virulence and demonstrate its requirement for LPS O-chain assembly. Structure analysis indicated that wild-type LPS contains a polyrhamnose O chain with irregular, variant residues and a core oligosaccharide identical to that of other Xanthomonas spp. and that the wxocB mutant lacks the O chain. The mutant also showed moderate impairment in exopolysaccharide (EPS) production, but comparison with an EPS-deficient mutant demonstrated that this impairment could not account entirely for the reduced virulence. The wxocB mutant was not detectably different from the wild type in its induction of pathogenesis-related rice genes, type II secretion competence, flagellar motility, or resistance to two phytoalexins or resveratrol, and it was more, not less, resistant to oxidative stress and a third phytoalexin, indicating that none of these properties is involved. The mutant was more sensitive to SDS and to novobiocin, so increased sensitivity to some host-derived antimicrobials cannot be ruled out. However, the mutant showed a marked decrease in type III secretion into plant cells. This was not associated with any change in expression of genes for type III secretion or the ability to attach to plant cells in suspension. Thus, virulence of the wxocB mutant is likely reduced due primarily to a direct, possibly structural, effect of the loss of the O chain on type III delivery of effector proteins.

Wang, Li; Vinogradov, Evgeny V.

2013-01-01

323

Development and application of pathovar-specific monoclonal antibodies that recognize the lipopolysaccharide O antigen and the type IV fimbriae of Xanthomonas hyacinthi.  

PubMed

The objective of this study was to develop a specific immunological diagnostic assay for yellow disease in hyacinths, using monoclonal antibodies (MAbs). Mice were immunized with a crude cell wall preparation (shear fraction) from Xanthomonas hyacinthi and with purified type IV fimbriae. Hybridomas were screened for a positive reaction with X. hyacinthi cells or fimbriae and for a negative reaction with X. translucens pv. graminis or Erwinia carotovora subsp. carotovora. Nine MAbs recognized fimbrial epitopes, as shown by immunoblotting, immunofluorescence, enzyme-linked immunosorbent assay (ELISA), and immunoelectron microscopy; however, three of these MAbs had weak cross-reactions with two X. translucens pathovars in immunoblotting experiments. Seven MAbs reacted with lipopolysaccharides and yielded a low-mobility ladder pattern on immunoblots. Subsequent analysis of MAb 2E5 showed that it specifically recognized an epitope on the O antigen, which was found to consist of rhamnose and fucose in a 2:1 molar ratio. The cross-reaction of MAb 2E5 with all X. hyacinthi strains tested showed that this O antigen is highly conserved within this species. MAb 1B10 also reacted with lipopolysaccharides. MAbs 2E5 and 1B10 were further tested in ELISA and immunoblotting experiments with cells and extracts from other pathogens. No cross-reaction was found with 27 other Xanthomonas pathovars tested or with 14 other bacterial species from other genera, such as Erwinia and Pseudomonas, indicating the high specificity of these antibodies. MAbs 2E5 and 1B10 were shown to be useful in ELISA for the detection of X. hyacinthi in infected hyacinths. PMID:10473431

van Doorn, J; Ojanen-Reuhs, T; Hollinger, T C; Reuhs, B L; Schots, A; Boonekamp, P M; Oudega, B

1999-09-01

324

Multilocus sequence analysis and type III effector repertoire mining provide new insights into the evolutionary history and virulence of Xanthomonas oryzae.  

PubMed

Multilocus sequence analysis (MLSA) and type III effector (T3E) repertoire mining were performed to gain new insights into the genetic relatedness of Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), two major bacterial pathogens of rice. Based on a collection of 45 African and Asian strains, we first sequenced and analysed three housekeeping genes by MLSA, Bayesian clustering and a median-joining network approach. Second, we investigated the distribution of 32 T3E genes, which are known to be major virulence factors of plant pathogenic bacteria, in all selected strains, by polymerase chain reaction and dot-blot hybridization methods. The diversity observed within housekeeping genes, as well as within T3E repertoires, clearly showed that both pathogens belong to closely related, but distinct, phylogenetic groups. Interestingly, these evolutionary groups are differentiated according to the geographical origin of the strains, suggesting that populations of Xoo and Xoc might be endemic in Africa and Asia, and thus have evolved separately. We further revealed that T3E gene repertoires of both pathogens comprise core and variable gene suites that probably have distinct roles in pathogenicity and different evolutionary histories. In this study, we carried out a functional analysis of xopO, a differential T3E gene between Xoo and Xoc, to determine the involvement of this gene in tissue specificity. Altogether, our data contribute to a better understanding of the evolutionary history of Xoo and Xoc in Africa and Asia, and provide clues for functional studies aiming to understand the virulence, host and tissue specificity of both rice pathogens. PMID:21929565

Hajri, Ahmed; Brin, Chrystelle; Zhao, Shuai; David, Perrine; Feng, Jia-Xun; Koebnik, Ralf; Szurek, Boris; Verdier, Valérie; Boureau, Tristan; Poussier, Stephane

2012-04-01

325

Development and Application of Pathovar-Specific Monoclonal Antibodies That Recognize the Lipopolysaccharide O Antigen and the Type IV Fimbriae of Xanthomonas hyacinthi  

PubMed Central

The objective of this study was to develop a specific immunological diagnostic assay for yellow disease in hyacinths, using monoclonal antibodies (MAbs). Mice were immunized with a crude cell wall preparation (shear fraction) from Xanthomonas hyacinthi and with purified type IV fimbriae. Hybridomas were screened for a positive reaction with X. hyacinthi cells or fimbriae and for a negative reaction with X. translucens pv. graminis or Erwinia carotovora subsp. carotovora. Nine MAbs recognized fimbrial epitopes, as shown by immunoblotting, immunofluorescence, enzyme-linked immunosorbent assay (ELISA), and immunoelectron microscopy; however, three of these MAbs had weak cross-reactions with two X. translucens pathovars in immunoblotting experiments. Seven MAbs reacted with lipopolysaccharides and yielded a low-mobility ladder pattern on immunoblots. Subsequent analysis of MAb 2E5 showed that it specifically recognized an epitope on the O antigen, which was found to consist of rhamnose and fucose in a 2:1 molar ratio. The cross-reaction of MAb 2E5 with all X. hyacinthi strains tested showed that this O antigen is highly conserved within this species. MAb 1B10 also reacted with lipopolysaccharides. MAbs 2E5 and 1B10 were further tested in ELISA and immunoblotting experiments with cells and extracts from other pathogens. No cross-reaction was found with 27 other Xanthomonas pathovars tested or with 14 other bacterial species from other genera, such as Erwinia and Pseudomonas, indicating the high specificity of these antibodies. MAbs 2E5 and 1B10 were shown to be useful in ELISA for the detection of X. hyacinthi in infected hyacinths.

van Doorn, J.; Ojanen-Reuhs, T.; Hollinger, T. C.; Reuhs, B. L.; Schots, A.; Boonekamp, P. M.; Oudega, B.

1999-01-01

326

Development and application of pathovar-specific monoclonal antibodies that recognize the lipopolysaccharide O antigen and the type IV fimbriae of Xanthomonas hyacinthi  

SciTech Connect

The objective of this study was to develop a specific immunological diagnostic assay for yellow disease in hyacinths, using monoclonal antibodies (MAbs). Mice were immunized with a crude cell wall preparation (shear fraction) from Xanthomonas hyacinthi and with purified type IV fimbriae. Hybridomas were screened for a positive reaction with X. hyacinthi cells or fimbriae and for a negative reaction with X. translucens pv. graminis or Erwinia carotovora subsp. carotovora. Nine MAbs recognized fimbrial epitopes, as shown by immunoblotting, immunofluorescence, enzyme-linked immunosorbent assay (ELISA), and immunoelectron microscopy; however, three of these MAbs had weak cross-reactions with two X. translucens pathovars in immunoblotting experiments. Seven MAbs reacted with lipopolysaccharides and yielded a low-mobility ladder pattern on immunoblots. Subsequent analysis of MAb 2E5 showed that it specifically recognized an epitope on the O antigen, which was found to consist of rhamnose and fucose in a 2:1 molar ratio. The cross-reaction of MAb 2E5 with all X. hyacinthi strains tested showed that this O antigen is highly conserved within this species. MAb 1B10 also reacted with lipopolysaccharides. MAbs 2E5 and 1B10 were further tested in ELISA and immunoblotting experiments with cells and extracts from other pathogens. No cross-reaction was found with 27 other Xanthomonas pathovars tested or with 14 other bacterial species from other genera, such as Erwinia and Pseudomonas, indicating the high specificity of these antibodies. MAbs 2E5 and 1B10 were shown to be useful in ELISA for the detection of X. hyacinthi in infected hyacinths.

Doorn, J. van; Ojanen-Reuhs, T.; Hollinger, T.C.; Reuhs, B.L.; Schots, A.; Boonekamp, P.M.; Oudega, B.

1999-09-01

327

GIS-based climatic regionalization of potato late blight in mountain areas of Southwest Sichuan  

NASA Astrophysics Data System (ADS)

Through the geographic insemination test in installments on five phases of potato late blight in four areas of Mianning and Zhaojue with the altitude of 1,600m, 1,800m, 2,100m and 2,500m respectively, this paper researches the meteorological causes, leading factors and climatic indexes for potato late blight in mountain areas of southwest Sichuan in detail. Based on that, short-term section climatic inspection data of mountain areas, observation data from meteorological post and latest data from automatic weather station are extensively collected, organized and processed by extension, based on which the Spatial Distribution Model of climatic indexes for potato late blight in mountain areas of southwest Sichuan is established in association with the routine surface observation data, y=f(h,?,l,?). With the geographic information data of 1:250000 and GIS technology, southwest Sichuan is divided into climatic liable region of potato blight, climatic secondary liable region and climatic non-liable region by factor setting and optimization method. Providing scientific basis for selection, distribution and prevention decision making for late blight resistant species of potato in southwest Sichuan, it has important value for production and application.

Luo, Qing; Peng, Guozhao; Ruan, Jun; Cao, Yanqiu; Fang, Peng; Li, Dazhong; Armuzhong, .; Huang, Doumin; Hu, Qiaojuan; Chen, Yuanzhi

2008-10-01

328

Predicting fusarium head blight epidemics with boosted regression trees.  

PubMed

ABSTRACT Predicting major Fusarium head blight (FHB) epidemics allows for the judicious use of fungicides in suppressing disease development. Our objectives were to investigate the utility of boosted regression trees (BRTs) for predictive modeling of FHB epidemics in the United States, and to compare the predictive performances of the BRT models with those of logistic regression models we had developed previously. The data included 527 FHB observations from 15 states over 26 years. BRTs were fit to a training data set of 369 FHB observations, in which FHB epidemics were classified as either major (severity ? 10%) or non-major (severity < 10%), linked to a predictor matrix consisting of 350 weather-based variables and categorical variables for wheat type (spring or winter), presence or absence of corn residue, and cultivar resistance. Predictive performance was estimated on a test (holdout) data set consisting of the remaining 158 observations. BRTs had a misclassification rate of 0.23 on the test data, which was 31% lower than the average misclassification rate over 15 logistic regression models we had presented earlier. The strongest predictors were generally one of mean daily relative humidity, mean daily temperature, and the number of hours in which the temperature was between 9 and 30°C and relative humidity ? 90% simultaneously. Moreover, the predicted risk of major epidemics increased substantially when mean daily relative humidity rose above 70%, which is a lower threshold than previously modeled for most plant pathosystems. BRTs led to novel insights into the weather-epidemic relationship. PMID:24450462

Shah, D A; De Wolf, E D; Paul, P A; Madden, L V

2014-07-01

329

Efficacy of fungicide combinations, phosphoric acid and plant extract from stinging nettle on potato late blight management and tuber yield  

Microsoft Academic Search

Late blight caused by Phytophthora infestans is a major constraint to potato production. Inadequate control of the disease has often resulted in potato yield losses. We assessed the efficacy of fungicides, phosphoric acid and stinging nettle extract combinations for late blight control at two locations in Kenya. Disease severity, relative area under disease progress curves (RAUDPC), pathogen lesions and tuber

R. Nyankanga; M. Njogu; J. Muthomi; M. Olanya

2012-01-01

330

Differential Control of Head Blight Pathogens of Wheat by Fungicides and Consequences for Mycotoxin Contamination of Grain  

Microsoft Academic Search

Fusarium head blight of wheat is caused by a disease complex comprised of toxigenic pathogens, predominantly Fusarium spp., and a non-toxigenic pathogen Microdochium nivale, which causes symptoms visually indistinguishable from Fusarium and is often included as a causal agent of Fusarium head blight. Four field trials are reported here, including both naturally and artificially inoculated trials in which the effect

Duncan R. Simpson; Gillian E. Weston; Judith A. Turner; Philip Jennings; Paul Nicholson

2001-01-01

331

Deletion and Complementation of the Mating Type (MAT) Locus of the Wheat Head Blight Pathogen Gibberella zeae  

Microsoft Academic Search

Gibberella zeae, a self-fertile, haploid filamentous ascomycete, causes serious epidemics of wheat (Triticum aestivum) head blight worldwide and contaminates grain with trichothecene mycotoxins. Anecdotal evidence dating back to the late 19th century indicates that G. zeae ascospores (sexual spores) are a more important inoculum source than are macroconidia (asexual spores), although the fungus can produce both during wheat head blight

A. E. Desjardins; D. W. Brown; S.-H. Yun; R. H. Proctor; T. Lee; R. D. Plattner; S.-W. Lu; B. G. Turgeon

2004-01-01

332

Somatic hybrids between Solanum brevidens and Solanum tuberosum : Expression of a late blight resistance gene and potato leaf roll resistance  

Microsoft Academic Search

Hexaploid somatic hybrids resulting from mesophyll protoplast fusions between Solanum brevidens Phil., PI 218228, and Solanum tuberosum L., PI 203900 were tested for late blight resistance using two races of Phytophthora infestans Monte., de Bary. The S. tuberosum parent was a “late blight differential” possessing the R4 gene which confers resistance to race 0. The S. brevidens parent is resistant

J. P. Helgeson; G. J. Hunt; Geraldine T. Haberlach; Sandra Austin

1986-01-01

333

Comparison of two culture media for determination of the copper resistance of Xanthomonas strains and their usefulness for prediction of control with copper bactericides  

Microsoft Academic Search

Two bacteriological culture media were compared for determination of copper resistance among strains of Xanthomonas euvesicatoria and Xanthomonas perforans from pepper and tomato and Xanthomonas campestris pv. vitians from lettuce. Of 94 strains tested, 73 grew on glucose-nutrient agar (GNA) amended with 200?gml?1 of copper sulfate. None of the 94 strains grew on modified casitone-yeast extract (CYE) agar amended with

Ken Pernezny; Russell Nagata; Nikol Havranek; Jairo Sanchez

2008-01-01

334

The Periplasmic HrpB1 Protein from Xanthomonas spp. Binds to Peptidoglycan and to Components of the Type III Secretion System  

PubMed Central

The plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria employs a type III secretion (T3S) system to translocate bacterial effector proteins into eukaryotic host cells. The membrane-spanning secretion apparatus consists of 11 core components and several associated proteins with yet unknown functions. In this study, we analyzed the role of HrpB1, which was previously shown to be essential for T3S and the formation of the extracellular T3S pilus. We provide experimental evidence that HrpB1 localizes to the bacterial periplasm and binds to peptidoglycan, which is in agreement with its predicted structural similarity to the putative peptidoglycan-binding domain of the lytic transglycosylase Slt70 from Escherichia coli. Interaction studies revealed that HrpB1 forms protein complexes and binds to T3S system components, including the inner membrane protein HrcD, the secretin HrcC, the pilus protein HrpE, and the putative inner rod protein HrpB2. The analysis of deletion and point mutant derivatives of HrpB1 led to the identification of amino acid residues that contribute to the interaction of HrpB1 with itself and HrcD and/or to protein function. The finding that HrpB1 and HrpB2 colocalize to the periplasm and both interact with HrcD suggests that they are part of a periplasmic substructure of the T3S system.

Hausner, Jens; Hartmann, Nadine; Lorenz, Christian

2013-01-01

335

The periplasmic HrpB1 protein from Xanthomonas spp. binds to peptidoglycan and to components of the type III secretion system.  

PubMed

The plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria employs a type III secretion (T3S) system to translocate bacterial effector proteins into eukaryotic host cells. The membrane-spanning secretion apparatus consists of 11 core components and several associated proteins with yet unknown functions. In this study, we analyzed the role of HrpB1, which was previously shown to be essential for T3S and the formation of the extracellular T3S pilus. We provide experimental evidence that HrpB1 localizes to the bacterial periplasm and binds to peptidoglycan, which is in agreement with its predicted structural similarity to the putative peptidoglycan-binding domain of the lytic transglycosylase Slt70 from Escherichia coli. Interaction studies revealed that HrpB1 forms protein complexes and binds to T3S system components, including the inner membrane protein HrcD, the secretin HrcC, the pilus protein HrpE, and the putative inner rod protein HrpB2. The analysis of deletion and point mutant derivatives of HrpB1 led to the identification of amino acid residues that contribute to the interaction of HrpB1 with itself and HrcD and/or to protein function. The finding that HrpB1 and HrpB2 colocalize to the periplasm and both interact with HrcD suggests that they are part of a periplasmic substructure of the T3S system. PMID:23934485

Hausner, Jens; Hartmann, Nadine; Lorenz, Christian; Büttner, Daniela

2013-10-01

336

A novel antimicrobial protein for plant protection consisting of a Xanthomonas oryzae harpin and active domains of cecropin A and melittin  

PubMed Central

Summary Discoveries about antimicrobial peptides and plant defence activators have made possible the de novo and rational design of novel peptides for use in crop protection. Here we report a novel chimeric protein, Hcm1, which was made by linking the active domains of cecropin A and melittin to the hypersensitive response (HR)?elicitor Hpa1 of Xanthomonas oryzae pv. oryzicola, the causal agent of rice bacterial leaf streak. The resulting chimeric protein maintained not only the HR?inducing property of the harpin, but also the antimicrobial activity of the cecropin A?melittin hybrid. Hcm1 was purified from engineered Escherichia coli and evaluated in terms of the minimal inhibitory concentration (MIC) and the 50% effective dose (ED50) against important plant pathogenic bacteria and fungi. Importantly, the protein acted as a potential pesticide by inducing disease resistance for viral, bacterial and fungal pathogens. This designed drug can be considered as a lead compound for use in plant protection, either for the development of new broad?spectrum pesticides or for expression in transgenic plants.

Che, Yi-Zhou; Li, Yu-Rong; Zou, Hua-Song; Zou, Li-Fang; Zhang, Bing; Chen, Gong-You

2011-01-01

337

The solution structure of the outer membrane lipoprotein OmlA from Xanthomonas axonopodis pv. citri reveals a protein fold implicated in protein-protein interaction.  

PubMed

The outer membrane lipoprotein A (OmlA) belongs to a family of bacterial small lipoproteins widely distributed across the beta and gamma proteobacteria. Although the role of numerous bacterial lipoproteins is known, the biological function of OmlA remains elusive. We found that in the citrus canker pathogen, Xanthomonas axonopodis pv. citri (X. citri), OmlA is coregulated with the ferric uptake regulator (Fur) and their expression is enhanced when X. citri is grown on citrus leaves, suggesting that these proteins are involved in plant-pathogen interaction. To gain insights into the function of OmlA, its conformational and dynamic features were determined by nuclear magnetic resonance. The protein has highly flexible N- and C- termini and a structurally well defined core composed of three beta-strands and two small alpha-helices, which pack against each other forming a two-layer alpha/beta scaffold. This protein fold resembles the domains of the beta-lactamase inhibitory protein BLIP, involved in protein-protein binding. In conclusion, the structure of OmlA does suggest that this protein may be implicated in protein-protein interactions required during X. citri infection. PMID:18186471

Vanini, Marina Marques Teixeira; Spisni, Alberto; Sforça, Maurício Luis; Pertinhez, Thelma Aguiar; Benedetti, Celso Eduardo

2008-06-01

338

The phytoalexin-inducible multidrug efflux pump AcrAB contributes to virulence in the fire blight pathogen, Erwinia amylovora.  

PubMed

The enterobacterium Erwinia amylovora causes fire blight on members of the family Rosaceae, with economic importance on apple and pear. During pathogenesis, the bacterium is exposed to a variety of plant-borne antimicrobial compounds. In plants of Rosaceae, many constitutively synthesized isoflavonoids affecting microorganisms were identified. Bacterial multidrug efflux transporters which mediate resistance toward structurally unrelated compounds might confer tolerance to these phytoalexins. To prove this hypothesis, we cloned the acrAB locus from E. amylovora encoding a resistance nodulation division-type transport system. In Escherichia coli, AcrAB of E. amylovora conferred resistance to hydrophobic and amphiphilic toxins. An acrB-deficient E. amylovora mutant was impaired in virulence on apple rootstock MM 106. Furthermore, it was susceptible toward extracts of leaves of MM 106 as well as to the apple phytoalexins phloretin, naringenin, quercetin, and (+)-catechin. The expression of acrAB was determined using the promoterless reporter gene egfp. The acrAB operon was up-regulated in vitro by the addition of phloretin and naringenin. The promoter activity of acrR, encoding a regulatory protein involved in acrAB expression, was increased by naringenin. In planta, an induction of acrAB was proved by confocal laser scanning microscopy. Our results strongly suggest that the AcrAB transport system plays an important role as a protein complex required for virulence of E. amylovora in resistance toward apple phytoalexins and that it is required for successful colonization of a host plant. PMID:14714867

Burse, Antje; Weingart, Helge; Ullrich, Matthias S

2004-01-01

339

Verification of carrier status for Becker muscular dystrophy from analysis of a blighted ovum.  

PubMed

The polymerase chain reaction (PCR) was used on material from a blighted ovum to confirm indirectly the carrier status of a woman with a family history of Becker muscular dystrophy. Conventional testing including creatine kinase levels, muscle biopsy, and EMG had been inconclusive, and on the basis of one elevated creatine kinase level, the woman had been designated a possible carrier. Ultrasound examination at 10 weeks of pregnancy indicated a blighted ovum, from which DNA was subsequently extracted and subjected to PCR testing for determination of sex and genotypic status with respect to the known familial deletion of the dystrophin gene. The blighted ovum was found to have a Y chromosome and also to be deleted for at least exon 6 of the dystrophin gene, indirectly indicating that the mother most likely carried the family mutation for Becker muscular dystrophy. PMID:8284293

Wilton, S D; Goldblatt, J; Laing, N G

1993-08-01

340

Fingerprinting Closely Related Xanthomonas Pathovars with Random Nonamer Oligonucleotide Microarrays  

SciTech Connect

Current bacterial DNA typing methods are typically based upon gel-based fingerprinting methods. As such, they access a limited complement of genetic information and many independent restriction enzymes or probes is required to achieve statistical rigor and confidence in the resulting pattern of DNA fragments.

Kingsley, Mark T.; Straub, Tim M.; Call, Douglas R.; Daly, Don S.; Wunschel, Sharon C.; Chandler, Darrell P.

2002-12-01

341

Bacterial rheotaxis  

PubMed Central

The motility of organisms is often directed in response to environmental stimuli. Rheotaxis is the directed movement resulting from fluid velocity gradients, long studied in fish, aquatic invertebrates, and spermatozoa. Using carefully controlled microfluidic flows, we show that rheotaxis also occurs in bacteria. Excellent quantitative agreement between experiments with Bacillus subtilis and a mathematical model reveals that bacterial rheotaxis is a purely physical phenomenon, in contrast to fish rheotaxis but in the same way as sperm rheotaxis. This previously unrecognized bacterial taxis results from a subtle interplay between velocity gradients and the helical shape of flagella, which together generate a torque that alters a bacterium's swimming direction. Because this torque is independent of the presence of a nearby surface, bacterial rheotaxis is not limited to the immediate neighborhood of liquid–solid interfaces, but also takes place in the bulk fluid. We predict that rheotaxis occurs in a wide range of bacterial habitats, from the natural environment to the human body, and can interfere with chemotaxis, suggesting that the fitness benefit conferred by bacterial motility may be sharply reduced in some hydrodynamic conditions.

Marcos; Fu, Henry C.; Powers, Thomas R.; Stocker, Roman

2012-01-01

342

Bacteriosis en Cilantro (Coriandrum sativum L.) Causada por Xanthomonas campestris (Pammel) Dowson en Venezuela  

Microsoft Academic Search

In coriander (Coriandrum sativum) plants from commercial fields in the area of San Vicente, Aragua state, Venezuela, water-soaked, dark-brown angular spots were observed on leaf surface and distributed along the veins; as symptoms progressed, they caused leaf blight. Isolates obtained from diseased tissue on nutrient agar persistently produced light yellow colonies. Pathogenicity tests were performed by spray inoculation of a

Yolanda Guevara; Anna Maselli

343

Bacterial decontamination of DUWL biofilm using Oxygenal 6.  

PubMed

The aim of this study was bacteriological assessment of the dental unit waterlines (DUWL) biofilm - concentration and composition of the aerobe and facultative anaerobe bacterial microflora, and evaluation of the influence of a disinfecting product, Oxygenal 6, on the biofilm composition. Tubing fragments were taken from 25 units twice, before and after disinfection, and bacterial suspension of the biofilm was obtained from the samples. The bacterial flora was determined with the plate culture method. Bacteria were identified with biochemical microtests: API 20E, API 20NE (bioMerieux, France) and GP2 MicroPlate(TM) (BIOLOG, USA). Before disinfection, the following bacteria were identified: Gram-negative bacteria - Ralstonia pickettii, Pseudomonas vesicularis, Sphingomonas paucimobilis, Xanthomonas maltophilia; Gram-positive cocci - Micrococcus luteus, Micrococcus lylae, Staphylococcus cohnii, Staphylococcus lentus, Staphylococcus spp., Streptococcus spp.; Actinomycetes - Streptomyces albus. The prevailing bacteria were: Ralstonia pickettii (78.62%), found in all the units, and Sphingomonas paucimobilis (20.45%). After DUWL disinfection, Sphingomonas paucimobilis (88.79%) dominated in the biofilm, Staphylococcus spp. - 5.61% and Pseudomonas spp. - 3.74% were next most frequently occurring bacteria, and in more than a half of the biofilm samples 100% reduction of the bacterial microflora occurred. This study confirms effectiveness of Oxygenal 6 in bacterial decontamination of the DUWL biofilm. PMID:16841887

Szyma?ska, Jolanta

2006-01-01

344

A Novel Two-Component Response Regulator Links rpf with Biofilm Formation and Virulence of Xanthomonas axonopodis pv. citri  

PubMed Central

Citrus bacterial canker caused by Xanthomonas axonopodis pv. citri is a serious disease that impacts citrus production worldwide, and X. axonopodis pv. citri is listed as a quarantine pest in certain countries. Biofilm formation is important for the successful development of a pathogenic relationship between various bacteria and their host(s). To understand the mechanisms of biofilm formation by X. axonopodis pv. citri strain XW19, the strain was subjected to transposon mutagenesis. One mutant with a mutation in a two-component response regulator gene that was deficient in biofilm formation on a polystyrene microplate was selected for further study. The protein was designated as BfdR for biofilm formation defective regulator. BfdR from strain XW19 shares 100% amino acid sequence identity with XAC1284 of X. axonopodis pv. citri strain 306 and 30–100% identity with two-component response regulators in various pathogens and environmental microorganisms. The bfdR mutant strain exhibited significantly decreased biofilm formation on the leaf surfaces of Mexican lime compared with the wild type strain. The bfdR mutant was also compromised in its ability to cause canker lesions. The wild-type phenotype was restored by providing pbfdR in trans in the bfdR mutant. Our data indicated that BfdR did not regulate the production of virulence-related extracellular enzymes including amylase, lipase, protease, and lecithinase or the expression of hrpG, rfbC, and katE; however, BfdR controlled the expression of rpfF in XVM2 medium, which mimics cytoplasmic fluids in planta. In conclusion, biofilm formation on leaf surfaces of citrus is important for canker development in X. axonopodis pv. citri XW19. The process is controlled by the two-component response regulator BfdR via regulation of rpfF, which is required for the biosynthesis of a diffusible signal factor.

Huang, Tzu-Pi; Lu, Kuan-Min; Chen, Yu-Hsuan

2013-01-01

345

Identification of a host 14-3-3 Protein that Interacts with Xanthomonas effector AvrRxv.  

PubMed

AvrRxv is a member of a family of pathogen effectors present in pathogens of both plant and mammalian species. Xanthomonas campestris pv. vesicatoria strains carrying AvrRxv induce a hypersensitive response (HR) in the tomato cultivar Hawaii 7998. Using a yeast two-hybrid screen, we identified a 14-3-3 protein from tomato that interacts with AvrRxv called AvrRxv Interactor 1 (ARI1). The interaction was confirmed in vitro with affinity chromatography. Using mutagenesis, we identified a 14-3-3-binding domain in AvrRxv and demonstrated that a mutant in that domain showed concomitant loss of interaction with ARI1 and HR-inducing activity in tomato. These results demonstrate that the AvrRxv bacterial effector recruits 14-3-3 proteins for its function within host cells. AvrRxv homologues YopP and YopJ from Yersinia do not have AvrRxv-specific HR-inducing activity when delivered into tomato host cells by Agrobacterium. Although YopP itself cannot induce HR, its C-terminal domain containing the catalytic residues can replace that of AvrRxv in an AvrRxv-YopP chimera for HR-inducing activity. Phylogenetic analysis indicates that the sequences encoding the C-termini of family members are evolving independently from those encoding the N-termini. Our results support a model in which there are three functional domains in proteins of the family, translocation, interaction, and catalytic. PMID:21796232

Whalen, Maureen; Richter, Todd; Zakhareyvich, Kseniya; Yoshikawa, Masayasu; Al-Azzeh, Dana; Adefioye, Adeshola; Spicer, Greg; Mendoza, Laura L; Morales, Christine Q; Klassen, Vicki; Perez-Baron, Gina; Toebe, Carole S; Tzovolous, Ageliki; Gerstman, Emily; Evans, Erika; Thompson, Cheryl; Lopez, Mary; Ronald, Pamela C

2008-01-01

346

The opsX locus of Xanthomonas campestris affects host range and biosynthesis of lipopolysaccharide and extracellular polysaccharide.  

PubMed Central

Xanthomonas campestris pv. citrumelo strain 3048 is the causal agent of citrus bacterial leaf spot disease and has a wide host range that includes rutaceous and leguminous plants. A spontaneous prototrophic mutant of strain 3048 (strain M28) that had lost virulence on citrus but retained virulence on bean plants was recovered. Growth studies in planta showed that M28 cells died rapidly in citrus leaves but grew normally in bean leaves. In addition to the loss of citrus-specific virulence, M28 displayed the following mutant phenotypes in culture: decreased growth rate, reduction of the amount of exopolysaccharide (to ca. 25% of the amount in 3048), loss of capsules, and significant alterations of the two 3048 lipopolysaccharide (LPS) bands visualized by silver stain on polyacrylamide gels, consistent with a defect(s) in LPS assembly. A 38-kb DNA fragment from a 3048 total DNA library that complemented the mutant phenotypes of M28 was identified. The 38-kb fragment did not hybridize to two similarly sized fragments carrying different hrp (hypersensitive response and pathogenicity) genes cloned from 3048. Subcloning, DNA sequence analyses, and gene disruption experiments were used to identify a single gene, opsX (for outer-membrane polysaccharide), responsible for the mutant phenotypes of M28. At least one other gene downstream from opsX also affected the same phenotypes and may be part of a gene cluster. We report here the DNA sequence and transcriptional start site of opsX. A search of protein sequence data bases with the predicted 31.3-kDa OpsX sequence found strong similarity to Lsi-1 of Neisseria gonorrhoeae and RfaQ of Escherichia coli (both are involved in LPS core assembly). The host-specific virulence function of opsX appears to involve biosynthesis of the extracellular polysaccharide and a complete LPS. Both may be needed in normal amounts for protection from citrus, but not bean, defense compounds. Images

Kingsley, M T; Gabriel, D W; Marlow, G C; Roberts, P D

1993-01-01

347

Amplified fragment length polymorphism and multilocus sequence analysis-based genotypic relatedness among pathogenic variants of Xanthomonas citri pv. citri and Xanthomonas campestris pv. bilvae.  

PubMed

Three pathogenic variants (i.e. pathotypes) have been described within Xanthomonas citri pv. citri, the causal agent of Asiatic citrus canker. Pathotype A strains naturally infect a wide range of Citrus species and members of some related genera. In contrast, pathotypes A* and A(w) have narrow host ranges within the genus Citrus and have been isolated from Mexican lime (Citrus aurantifolia L.) and from Mexican lime and alemow (Citrus macrophylla L.), respectively. We used amplified fragment length polymorphism (AFLP) and multilocus sequence analysis (MLSA) based on four partial housekeeping gene sequences (atpD, dnaK, efp and gyrB ) for the genotypic classification of Xanthomonas citri pv. citri and the poorly characterized citrus pathogen Xanthomonas campestris pv. bilvae. A Mantel test showed that genetic distances derived from AFLP and MLSA were highly correlated. X. campestris pv. bilvae showed a close relatedness to the type strain of X. citri, indicating that this pathovar should be reclassified as X. citri pv. bilvae. All pathotype A* and A(w) strains were most closely related to X. citri pv. citri strains with a wide host range (pathotype A), confirming previous DNA-DNA hybridization data. Pathotype A(w) should be considered a junior synonym of pathotype A* on the basis of pathogenicity tests, AFLP, MLSA and PCR using pathovar-specific primers. Evolutionary genome divergences computed from AFLP data suggested that pathotype A* (including A(w) strains) is a group of strains that shows a wider genetic diversity than pathotype A. PMID:19654364

Bui Thi Ngoc, Lan; Vernière, Christian; Jouen, Emmanuel; Ah-You, Nathalie; Lefeuvre, Pierre; Chiroleu, Frédéric; Gagnevin, Lionel; Pruvost, Olivier

2010-03-01

348

Mutational analysis of the gum gene cluster required for xanthan biosynthesis in Xanthomonas oryzae pv oryzae.  

PubMed

Genome sequence analysis of Xanthomonas oryzae pv. oryzae has revealed a cluster of 12 ORFs that are closely related to the gum gene cluster of Xanthomonas campestris pv. campestris. The gum gene cluster of X. oryzae encodes proteins involved in xanthan production; however, there is little experimental evidence supporting this. In this study, biochemical analyses of xanthan produced by a defined set of X. oryzae gum mutant strains allowed us to preliminarily assign functions to most of the gum gene products: biosynthesis of the pentasaccharide repeating unit for GumD, GumM, GumH, GumK, and GumI, xanthan polymerization and transport for GumB, GumC, GumE, and GumJ, and modification of the pentasaccharide repeating unit for GumF, GumG, and GumL. In addition, we found that the exopolysaccharides are essential but not specific for the virulence of X. oryzae. PMID:18854951

Kim, Sang-Yoon; Kim, Jeong-Gu; Lee, Byoung-Moo; Cho, Jae-Yong

2009-02-01

349

Genetic analyses of Xanthomonas axonopodis pv. dieffenbachiae strains reveal distinct phylogenetic groups.  

PubMed

A comprehensive analysis of 175 Xanthomonas axonopodis pv. dieffenbachiae strains isolated from 10 Araceae hosts was done to identify pathogen variation. The strains were subjected to repetitive extragenic palindromic sequence polymerase chain reaction and four major phylogenetic clusters were generated. A subset of 40 strains isolated from Anthurium, Dieffenbachia, and Syngonium was further defined by amplified fragment length polymorphism and fatty acid methyl ester analysis and the same four phylogenetic clusters were observed. Comparison of representative strains in the first three clusters using DNA-DNA hybridization and multilocus sequence analysis supports the previous reclassification of strains in cluster I, including the X. axonopodis pv. dieffenbachiae pathovar reference strain (LMG695), to X. citri. Our research findings indicate that strains in cluster I, isolated primarily from anthurium, probably represent an undescribed pathovar. Other phylogenetic subclusters consisting primarily of strains isolated from xanthosoma and philodendron in clusters III and IV, respectively, may yet represent other undescribed species or pathovars of Xanthomonas. PMID:23134337

Donahoo, R S; Jones, J B; Lacy, G H; Stromberg, V K; Norman, D J

2013-03-01

350

Characterization of a Unique Chromosomal Copper Resistance Gene Cluster from Xanthomonas campestris pv. vesicatoria  

Microsoft Academic Search

We characterized the copper resistance genes in strain XvP26 of Xanthomonas campestris pv. vesicatoria, which was originally isolated from a pepper plant in Taiwan. The copper resistance genes were localized to a 7,652-bp region which, based on pulsed-field gel electrophoresis and Southern hybridization, was determined to be located on the chromosome. These genes hybridized only weakly, as determined by Southern

Huseyin Basim; Gerald V. Minsavage; Robert E. Stall; Jaw-Fen Wang; Savita Shanker; Jeffrey B. Jones

2005-01-01

351

Cloning and characterization of the glutamate 1-semialdehyde aminomutase gene from Xanthomonas campestris pv. phaseoli  

Microsoft Academic Search

The gene from Xanthomonas campestris pv. phaseoli for glutamate 1-semialdehyde (GSA) aminomutase, which is involved in the C5 pathway for synthesis of d-aminolevulinic acid (ALA), was cloned onto a multicopy plasmid, pUC18, by the complementation of an ALA-deficient mutant (hemL) of Escherichia coli. Subcloning of deletion fragments from the initial 3.5-kb chromosomal fragment allowed the isolation of a 1.7-kb fragment

Katsuji Murakami; Sunee Korbsrisate; Norio Asahara; Yoshiteru Hashimoto; Yoshikatu Murooka

1993-01-01

352

Production of xanthan gum by Sphingomonas bacteria carrying genes from Xanthomonas campestris  

Microsoft Academic Search

  Twelve genes coding for assembly, acetylation, pyruvylation, polymerization, and secretion of the polysaccharide xanthan\\u000a gum are clustered together on the chromosome of the bacterium Xanthomonas campestris. These genes (gumBCDEFGHIJKLM) are sufficient for synthesis of xanthan gum when placed in bacteria from a different genus, Sphingomonas. The polysaccharide from the recombinant microorganism is largely indistinguishable, structurally and functionally, from\\u000a native xanthan

T J Pollock; M Mikolajczak; M Yamazaki; L Thorne; R W Armentrout

1997-01-01

353

Antimicrobial activity of oil-mill waste water polyphenols on the phytopathogen Xanthomonas campestris spp  

Microsoft Academic Search

The paper reports a study on the inhibitory activity of the polyphenols present in the oil mill waste water (OMWW) on the crucifer seed-borne phytopathogen Xanthomonas campestris. The laboratory tests showed that the minimal inhibitory concentration, on aver- age, was equal to 2.5 mg mL-1 of total polyphenols expressed as caffeic acid. The trials per- formed by placing the polyphenols

G. CIAFARDINI; B. A. ZULLO

354

Promoter analysis of the Xanthomonas campestris pv. campestris gum operon directing biosynthesis of the xanthan polysaccharide.  

PubMed Central

The Xanthomonas campestris gum gene cluster is composed of 12 genes designated gumB, -C, -D, -E, -F, -G, -H, -I, -J, -K, -L, and -M. The transcriptional organization of this gene cluster was analyzed by the construction of gum-lacZ transcriptional fusions in association with plasmid integration mutagenesis. This analysis, coupled with primer extension assays, indicated that the gum region was mainly expressed as an operon from a promoter located upstream of the first gene, gumB.

Katzen, F; Becker, A; Zorreguieta, A; Puhler, A; Ielpi, L

1996-01-01

355

Bacterial Biofertilizers  

Microsoft Academic Search

Many bacteria and fungi can enhance plant growth. The present review is limited to plant growth promoting rhizobacteria (PGPR). However, it includes endophytic bacteria that show plant growth enhancing activity as well. Also the best studied bacterial mechanisms of plant growth promotion are discussed, with a special emphasis on biological nitrogen fixation and synthesis of phytohormones, including less understood mechanisms

LUIS E. FUENTES-RAMIREZ; Jesus Caballero-Mellado

356

Bacterial vaginosis  

Microsoft Academic Search

Bacterial vaginosis is the commonest cause of abnormal vaginal discharge in women of childbearing age, with a prevalence as high as 50% in some communities. The symptoms of discharge and offensive smell can cause considerable distress, although 50% of women are asymptomatic when diagnosed. Microbiologically the usually dominant lactobacillus flora is overwhelmed by an overgrowth of predominantly anaerobic organisms, accompanied

Phillip Hay

2010-01-01

357

Genome-wide sequencing data reveals virulence factors implicated in banana Xanthomonas wilt.  

PubMed

Banana Xanthomonas wilt is a newly emerging disease that is currently threatening the livelihoods of millions of farmers in East Africa. The causative agent is Xanthomonas campestris pathovar musacearum (Xcm), but previous work suggests that this pathogen is much more closely related to species Xanthomonas vasicola than to X. campestris. We have generated draft genome sequences for a banana-pathogenic strain of Xcm isolated in Uganda and for a very closely related strain of X. vasicola pathovar vasculorum, originally isolated from sugarcane, that is nonpathogenic on banana. The draft sequences revealed overlapping but distinct repertoires of candidate virulence effectors in the two strains. Both strains encode homologues of the Pseudomonas syringae effectors HopW, HopAF1 and RipT from Ralstonia solanacearum. The banana-pathogenic and non-banana-pathogenic strains also differed with respect to lipopolysaccharide synthesis and type-IV pili, and in at least several thousand single-nucleotide polymorphisms in the core conserved genome. We found evidence of horizontal transfer between X. vasicola and very distantly related bacteria, including members of other divisions of the Proteobacteria. The availability of these draft genomes will be an invaluable tool for further studies aimed at understanding and combating this important disease. PMID:20695894

Studholme, David J; Kemen, Eric; MacLean, Daniel; Schornack, Sebastian; Aritua, Valente; Thwaites, Richard; Grant, Murray; Smith, Julian; Jones, Jonathan D G

2010-09-01

358

[Cloning, sequencing and fuctional study of gacA gene from Xanthomonas oryzae pv. oryzicola].  

PubMed

A gacA homologue, designated gacA(Xooc), was cloned from Xanthomonas oryzae pv. oryzicola (Xooc), a bacterium that causes leaf streak of rice, with degenerated primers by polymerase amplification reaction (PCR). NCBI blast search indicated that GacA(Xooc) had a similar structure to that of other GacA proteins, and had a CheB (Chemotaxis response regulator containing a CheY-like receiver domain)domain. Sequence comparison showed that the gacA(Xooc) was conserved in the Xanthomonas genus. Homology search revealed that the gacA(Xooc) was 99.7% similarities to gacA (AY870457, this lab) of Xanthomonas oryzae pv. oryzae (Xoo). A gacA(Xooc), disruption mutant was successfully generated by a single cross-over event, and confirmed by PCR and Southern blot. But the mutant still had strong pathogenicity,and its virulence was not obviously different from that of wild type strain. The gacA did not globally regulate metabolism in Xooc, which was different from DC3000 of P. syringae pv. tomato, CHAO of P. fluorescens and IC1270 of Serratia plymuthica. Chemotaxis to 0.1% tryptone of the mutants was reduced compared to wild type strain. The results suggest that gacA(X00c) is involved chemotaxis of Xooc. Nevertheless, how gacA to regulate chemotaxis of Xooc, transcription and expression of genes involved in regulation still need to be further studied. PMID:17552221

Yang, Wan-feng; Chen, Lei; Liu, Hong-xia; Hu, Bai-shi; Liu, Feng-quan

2007-04-01

359

A multiplex-PCR assay for identification of the quarantine plant pathogen Xanthomonas axonopodis pv. phaseoli.  

PubMed

In this study we developed an algorithm to screen for all exact molecular signatures of the quarantine pathogen Xanthomonas axonopodis pv. phaseoli (Xap), based on available data of the presence or absence of virulence-associated genes. The simultaneous presence of genes avrBsT and xopL is specific to Xap. Therefore we developed a multiplex PCR assay targeting avrBsT and xopL for the molecular identification of Xap. The specificity of this multiplex was validated by comparison to that of other molecular identification assays aimed at Xap, on a wide collection of reference strains. This multiplex was further validated on a blind collection of Xanthomonas isolates for which pathogenicity was assayed by stem wounding and by dipping leaves into calibrated inocula. This multiplex was combined to the previously described X4c/X4e molecular identification assay for Xap. Such a combination enables the molecular identification of all strains of Xanthomonas pathogenic on bean. Results also show that assay by stem wounding does not give reliable results in the case of Xap, and that pathogenicity assays by dipping should be preferred. PMID:23142341

Boureau, T; Kerkoud, M; Chhel, F; Hunault, G; Darrasse, A; Brin, C; Durand, K; Hajri, A; Poussier, S; Manceau, C; Lardeux, F; Saubion, F; Jacques, M-A

2013-01-01

360

A novel regulatory role of HrpD6 in regulating hrp-hrc-hpa genes in Xanthomonas oryzae pv. oryzicola.  

PubMed

Xanthomonas oryzae pv. oryzicola, the causal agent of bacterial leaf streak in the model plant rice, possesses a hypersensitive response and pathogenicity (hrp), hrp-conserved (hrc), hrp-associated (hpa) cluster (hrp-hrc-hpa) that encodes a type III secretion system (T3SS) through which T3SS effectors are injected into host cells to cause disease or trigger plant defenses. Mutations in this cluster usually abolish the bacterial ability to cause hypersensitive response in nonhost tobacco and pathogenicity in host rice. In Xanthomonas spp., these genes are generally assumed to be regulated by the key master regulators HrpG and HrpX. However, we present evidence that, apart from HrpG and HrpX, HrpD6 is also involved in regulating the expression of hrp genes. Interestingly, the expression of hpa2, hpa1, hpaB, hrcC, and hrcT is positively controlled by HrpD6. Transcriptional expression assays demonstrated that the expression of the hrcC, hrpD5, hrpE, and hpa3 genes was not completely abolished by hrpG and hrpX mutations. As observed in analysis of their corresponding mutants, HrpG and HrpX exhibit contrasting gene regulation, particularly for hpa2 and hrcT. Other two-component system regulators (Zur, LrpX, ColR/S, and Trh) did not completely inhibit the expression of hrcC, hrpD5, hrpE, and hpa3. Immunoblotting assays showed that the secretion of HrpF, which is an HpaB-independent translocator, is not affected by the mutation in hrpD6. However, the mutation in hrpD6 affects the secretion of an HpaB-dependent TAL effector, AvrXa27. These novel findings suggest that, apart from HrpG and HrpX, HrpD6 plays important roles not only in the regulation of hrp genes but also in the secretion of TAL effectors. PMID:21615204

Li, Yu-Rong; Zou, Hua-Song; Che, Yi-Zhou; Cui, Yi-Ping; Guo, Wei; Zou, Li-Fang; Chatterjee, Subhadeep; Biddle, Eulandria M; Yang, Ching-Hong; Chen, Gong-You

2011-09-01

361

StCDPK5 confers resistance to late blight pathogen but increases susceptibility to early blight pathogen in potato via reactive oxygen species burst.  

PubMed

• Potato (Solanum tuberosum) calcium-dependent protein kinase (StCDPK5) has been shown to phosphorylate the N-terminal region of plasma membrane RBOH (respiratory burst oxidase homolog) proteins, and participate in StRBOHB-mediated reactive oxygen species (ROS) burst. The constitutively active form, StCDPK5VK, provides a useful tool for gain-of-function analysis of RBOH in defense responses. • StCDPK5- and StCDPK5VK-green fluorescent protein fusion proteins were predominantly targeted to the plasma membrane, and conditional expression of StCDPK5VK activated StRBOHA-D. The interaction was confirmed by bimolecular fluorescence complementation assay. We generated transgenic potato plants containing StCDPK5VK under the control of a pathogen-inducible promoter to investigate the role of ROS burst on defense responses to blight pathogens. • Virulent isolates of the late blight pathogen Phytophthora infestans and the early blight pathogen Alternaria solani induced hypersensitive response-like cell death accompanied by ROS production at the infection sites of transgenic plants. Transgenic plants showed resistance to the near-obligate hemibiotrophic pathogen P. infestans and, by contrast, increased susceptibility to the necrotrophic pathogen A. solani. • These results indicate that RBOH-dependent ROS contribute to basal defense against near-obligate pathogens, but have a negative role in resistance or have a positive role in expansion of disease lesions caused by necrotrophic pathogens. PMID:22783903

Kobayashi, Michie; Yoshioka, Miki; Asai, Shuta; Nomura, Hironari; Kuchimura, Kazuo; Mori, Hitoshi; Doke, Noriyuki; Yoshioka, Hirofumi

2012-10-01

362

Effect of Fungicides on Fusarium Head Blight and Deoxynivalenol Content in Durum Wheat Grain  

Microsoft Academic Search

In 1998–99 and 1999–2000 six trials were conducted to evaluate the effect of fungicides on Fusarium head blight in the field, on infected kernels and deoxynivalenol (DON) concentration in grain. A single application of prochloraz, tebuconazole, epoxiconazole or bromuconazole, applied to durum wheat varieties at the manufacturer's recommended dose at the beginning of anthesis stage, provided good control of the

Anna Maria Menniti; Davide Pancaldi; Massimo Maccaferri; Lucia Casalini

2003-01-01

363

Effect of Trichothecenes Produced by Fusarium graminearum during Fusarium Head Blight Development in Six Cereal Species  

Microsoft Academic Search

Fusarium head blight (FHB) is a complex cereal disease associated with trichothecene production; these mycotoxins are factors of aggressiveness in wheat. Six species (bread and durum wheat, triticale, rye, barley and oats) were submitted to point inoculations with two isogenic strains of Fusarium graminearum; a wild strain (Tri5 +) produced trichothecenes and the mutated strain (Tri5 -) did not. The

François Langevin; François Eudes; André Comeau

2004-01-01

364

A new species of Alternaria causing blight of coriandrum sativum L  

Microsoft Academic Search

A crop of Coriander (Coriandrum sativum L.) growing in an experimental area ill Poona was found to be badly affected by a blight disease during September-October 1962, a preliminary account of which has been already reported by the writer (1963). The disease is a new outbreak, not previously reported in literature and has been proved to be incited by an

T. Raghunath

1963-01-01

365

Molecular mapping of Thinopyrum -derived Fusarium head blight resistance in common wheat  

Microsoft Academic Search

Resistance to Fusarium head blight (FHB) caused by Fusarium graminearum Schwabe in wheat (Triticum aestivum L.) was identified in disomic chromosome substitution and translocation lines, into which chromosome 7el2 had been introgressed from wheatgrass, Thinopyrum ponticum. In this study, two chromosome substitution lines with different origins (designated as el1 and el2) and with different reactions to infection by F. graminearum

Xiaorong Shen; Herbert Ohm

2007-01-01

366

Return of an Old Problem: Fusarium Head Blight of Small Grains  

NSDL National Science Digital Library

This article describes the ongoing problems associated with Fusarium Head Blight of Small Grains. Specifically, issues with F. graminearum (FG), which has caused most of the recent outbreaks of FHB in the USA and Canada, as well as other countries. Suggested disease control mechanisms are also presented.

Robert W. Stack (North Dakota State Univ;)

2000-06-22

367

Widespread Distribution of Fungivorus Aphelenchoides spp. in Blight Cankers on American Chestnut Trees  

PubMed Central

Previously we showed in laboratory studies that the fungivorus nematode, Aphelenchoides hylurgi, was attracted to and fed upon the chestnut blight fungus, Cryphonectria parasitica, from American chestnut bark cankers and was a carrier of biocontrol, white hypovirulent C. parasitica strains. In the present field study, we recovered Aphelenchoides spp. in almost all (97.0 %) of 133 blight canker tissue assays (three 5-g samples each) from four eastern states. High mean population densities (227 to 474 nematodes per 5 g tissue) of Aphelenchoides spp. were recovered from cankers in Virginia, West Virginia, and Tennessee but not from New Hampshire (mean = 75 nematodes per 5 g tissue). Overall, most canker assays yielded population densities less than 200 nematodes per 5 g tissue. All of 12 very small or young cankers yielded a few to many Aphelenchoides spp. Regression analysis indicated greatest recovery of Aphelenchoides spp. occurred in the month of May (r = 0.94). The results indicate that Aphelenchoides spp. appear to be widespread in blight cankers on American chestnut trees and could play a role in biocontrol of chestnut blight.

Griffin, G. J.; Eisenback, J. D.; Oldham, K.

2012-01-01

368

Dothistroma (red-band) needle blight of pines and the dothistromin toxin: a review  

Microsoft Academic Search

Summary Dothistroma (red-band) needle blight has been a problem in plantations of exotic pines in the southern hemisphere for many decades. The prevalence of this disease is currently increasing in the northern hemisphere and is now affecting trees in their native ranges. The fungal pathogen Mycosphaerella pini with its anamorph Dothistroma pini, which is responsible for the disease, produces a

R. E. Bradshaw

2004-01-01

369

[Normal pregnancy after laser salpingostomy, blighted ovum, and right tubal pregnancy treated with methotrexate].  

PubMed

The 8-years lasting primary infertility in 28 years old woman was caused by bilateral hydrosalpinx, anovulation and husband's oligozoospermia. CO2 laser salpingostomy, treatment of the husband and ovulation induction with clomiphene citrate were successful. The consecutive pregnancies were achieved: 1. blighted ovum, 2. right tubal pregnancy cured with (MTX), 3. normal pregnancy. PMID:10895288

Cyrkowicz, A; Czeka?ski, A; Cyrkowicz, A; Kula, K

1999-06-01

370

Karyotype analysis of blighted ova in pregnancies achieved by in vitro fertilization.  

PubMed

Pregnancies achieved by IVF and resulting in blighted ovum were karyotyped. The rate of aneuploidy was found to be 38% (5/13). In vitro fertilization does not appear to be a risk factor for chromosome anomaly in live births or miscarriages, and the data reported so far may suggest that aneuploid rates are actually lower for pregnancies achieved by IVF. PMID:2721723

Roesler, M; Wise, L; Katayama, K P

1989-06-01

371

The breeding values of potato parents for field resistance to late blight measured by whole seedlings  

Microsoft Academic Search

Parents used in a potato breeding programme were intercrossed in a multiple mating scheme. The resulting progenies were assessed for resistance to late blight, using as criteria the size and frequencies of lesions on leaves, on petioles and on stems, and an overall score. Analysis of variance showed that all the statistically significant genetic variation was attributable to general combining

Jean F. Malcolmson; R. J. Killick

1980-01-01

372

QTL for field resistance to late blight in potato are strongly correlated with maturity and vigour  

Microsoft Academic Search

Field resistance to Phytophthora infestans, the causal agent of foliage and tuber blight in cultivated potatoes, earliness (maturity) and vigour, were examined in a diploid segregating potato population grown in replicated trials over three consecutive growing seasons. A genetic linkage map of this population was constructed in parallel using PCR-based SSR, AFLP and CAPS markers. Analysis of the trait scores

A. Collins; D. Milbourne; L. Ramsay; R. Meyer; C. Chatot-Balandras; P. Oberhagemann; W. De Jong; C. Gebhardt; E. Bonnel; R. Waugh

1999-01-01

373

Estimating general combining ability of potato parents for field resistance to late blight  

Microsoft Academic Search

Data from greenhouse studies of late blight resistance in seedlings of 34 crosses were used to estimate the gereral combining ability of 20 potato parents. Each parent was used two to nine times in the crosses and the number of seedlings in a cross ranged from 25 to 740. The general combining ability for each of the 20 parents was

G. C. C. Tai; W. A. Hodgson

1975-01-01

374

Long-term results of a tuber slice test for relative resistance to late blight  

Microsoft Academic Search

Since 1967, Lapwood's (1965) tuber slice test has been used in a modified form by workers of the Institute of Potato Research Gross Lüsewitz for testing more than 2000 clones a year for resistance to late blight. At a sample size of eight slices per clone differences of ?1.7 scores can thus be distinguished. The tests are best done at

U. Darsow

1987-01-01

375

Fine mapping of the Ph-3 gene conferring resistance to late blight (Phytophthora infestans) in tomato.  

PubMed

Late blight, caused by the oomycete pathogen Phytophthora infestans (Mont.) de Bary, is a devastating disease for tomato and potato crops. In the past decades, many late blight resistance (R) genes have been characterized in potato. In contrast, less work has been conducted on tomato. The Ph-3 gene from Solanum pimpinellifolium was introgressed into cultivated tomatoes and conferred broad-spectrum resistance to P. infestans. It was previously assigned to the long arm of chromosome 9. In this study, a high-resolution genetic map covering the Ph-3 locus was constructed using an F2 population of a cross between Solanum lycopersicum CLN2037B (containing Ph-3) and S. lycopersicum LA4084. Ph-3 was mapped in a 0.5 cM interval between two markers, Indel_3 and P55. Eight putative genes were found in the corresponding 74 kb region of the tomato Heinz1706 reference genome. Four of these genes are resistance gene analogs (RGAs) with a typical nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4 domain. Each RGA showed high homology to the late blight R gene Rpi-vnt1.1 from Solanum venturii. Transient gene silencing indicated that a member of this RGA family is required for Ph-3-mediated resistance to late blight in tomato. Furthermore, this RGA family was also found in the potato genome, but the number of the RGAs was higher than in tomato. PMID:23921955

Zhang, Chunzhi; Liu, Lei; Zheng, Zheng; Sun, Yuyan; Zhou, Longxi; Yang, Yuhong; Cheng, Feng; Zhang, Zhonghua; Wang, Xiaowu; Huang, Sanwen; Xie, Bingyan; Du, Yongchen; Bai, Yuling; Li, Junming

2013-10-01

376

Field resistance to late blight and potato root eelworm in group tuberosum dihaploids  

Microsoft Academic Search

An examination of the feasibility of obtaining dihaploids with high levels of field resistance to important potato pathogens, showed that dihaploids may be produced which are more resistant to late blight or to potato root eelworm pathotype E than are their tetraploid parents. The significance of this is discussed in relation to the possible types of gene action involved in

M. J. Maine

1978-01-01

377

Antifungal compounds from Melia azedarach leaves for management of Ascochyta rabiei, the cause of chickpea blight  

Microsoft Academic Search

The antifungal activity of Melia azedarach L. leaves was investigated against Ascochyta rabiei (Pass.) Lab., the cause of destructive blight disease of chickpea (Cicer arietinum L.). Bioassay guided fractionation revealed that the chloroform fraction of the methanolic extract of M. azedarach leaves was highly effective against A. rabiei. Six compounds, namely ?-sitosterol (1), ?-amyrin (2), ursolic acid (3), benzoic acid

Khajista Jabeen; Arshad Javaid; Ejaz Ahmad; Makshoof Athar

2011-01-01

378

Analysis of proteins differentially accumulated during potato late blight resistance mediated by the RB resistance gene  

Microsoft Academic Search

The RB gene, cloned from the wild diploid potato species Solanum bulbocastanum, confers resistance against the late blight pathogen, Phytophthora infestans. We examined changes in the proteome of potato leaves in response to inoculation with P. infestans. A nearly isogenic system comprised of susceptible Solanum tuberosum cultivar ‘Katahdin’ and resistant transgenic potato (cv. ‘Katahdin’) carrying a single copy of RB

Zhenyu Liu; Dennis Halterman

2009-01-01

379

Efficacy of different fungicides against Rhizoctonia brown patch and Pythium blight on turfgrass in Italy.  

PubMed

Brown patch, incited by Rhizoctonia solani Kuhn, and Pythium blight, caused by Pythium spp. are two of the diseases most frequently observed on turfgrass in high maintenance stands, as on golf courses. In such conditions the control strategies, based on chemicals, are particularly difficult due to the scarcity of fungicides registered for turf in Italy. The results obtained in experimental trials carried out to evaluate the efficacy of chemical and biological products against brown patch and Pythium blight are reported. On mature turfgrass, maintained under fairway conditions, azoxystrobin, and trifoxystrobin, not yet registered on turf, were very effective against brown patch. Tebuconazole, applied in three different formulations, was very effective against R. solani, while Trichoderma spp. and azadiractine did not control the pathogen. In greenhouse conditions on Agrostis stolonifera, in the presence of severe disease incidence, due to artificial inoculation, benalaxyl-M satisfactorily controlled Pythium blight; Trichoderma spp. as well as a commercial formulation of T. harzianum, applied one week before the inoculation, were not effective. Among the fungicides not yet registered for use on turfgrass in Italy, metalaxyl-M + mancozeb was effective against Pythium blight. PMID:15151284

Mocioni, M; Titone, P; Garibaldi, A; Gullino, M L

2003-01-01

380

Assessment of Dothistroma Needle Blight of Pinus radiata Using Airborne Hyperspectral Imagery.  

PubMed

ABSTRACT Dothistroma needle blight is a serious foliar disease in Australian Pinus radiata plantations causing defoliation, decreased productivity and, in extreme cases, tree death. Conventional methods of monitoring forest health such as aerial survey and ground assessments are labor intensive, time consuming, and subjective. Remote sensing provides a synoptic view of the canopy and can indicate areas affected by damaging agents such as pests and pathogens. Hyperspectral airborne remote sensing imagery (CASI-2) was acquired over pine stands in southern New South Wales, Australia which had been ground assessed and ranked on an individual tree basis, according to the extent of Dothistroma needle blight. A series of spectral indices were tested using two different approaches for extracting crown-scale reflectance measurements and relating these to ground-based estimates of severity. Dothistroma needle blight is most severe in the lower crown and statistically significant relationships were found between crown reflectance values and ground estimates using a 'halo' approach (which ignored each tree crown's brightest central pixels). Independent accuracy assessment of the method indicated that the technique could successfully detect three levels of Dothistroma needle blight infection with an accuracy of over 70%. PMID:18943616

Coops, N; Stanford, M; Old, K; Dudzinski, M; Culvenor, D; Stone, C

2003-12-01

381

Validation of quantitative trait loci for Fusarium head blight and kernel discoloration in barley  

Microsoft Academic Search

Validation of quantitative trait loci (QTLs) is a prerequisite to marker assisted selection (MAS), however, only a fraction of QTLs identified for important plant traits have been independently tested for validation. Resistance to the diseases kernel discoloration (KD) and Fusarium head blight (FHB) in barley is complex and technically difficult to assess, and therefore QTLs for these traits are suitable

Paulo C. Canci; Lexingtons M. Nduulu; Gary J. Muehlbauer; Ruth Dill-Macky; Donald C. Rasmusson; Kevin P. Smith

2004-01-01

382

Exploiting selective genotyping to study genetic diversity of resistance to Fusarium head blight in barley  

Microsoft Academic Search

Numerous barley cultivars from around the world have been identified as potential sources of Fusarium head blight (FHB) resistance genes. All of these cultivars exhibit partial resistance, and several mapping studies have shown that resistance to FHB is controlled by multiple genes. Successful development of barley cultivars with high levels of FHB resistance will require combining genes from multiple sources.

W. J. Wingbermuehle; C. Gustus; K. P. Smith

2004-01-01

383

Visual and Radiometric Assessments for Yield Losses Caused by Ray Blight in Pyrethrum  

Microsoft Academic Search

The potential of remote sensing to nondestruc- tively measure relationships between ray blight disease (caused by Phoma ligulicola), plant measurements and components of pyrethrum (Tanacetum cinerariifolium (Trevir.) Sch. Bip.) bio- mass and yield using a hand-held multispectral radiometer was examined. A range of disease intensities were generated using fungicides in three fi elds over two years. Nondestructive assessments were obtained

Sarah J. Pethybridge; Frank Hay; Paul Esker; Tim Groom; Calum Wilson; Forrest W. Nutter

2008-01-01

384

RAPD markers linked to eastern filbert blight resistance in Corylus avellana  

Microsoft Academic Search

A total of 1,110 decamer primers were screened for RAPD markers linked to a dominant allele in hazelnut ( Corylus avellana) that confers resistance to eastern filbert blight caused by Anisogramma anomala. Twenty RAPD markers linked in coupling, and five markers linked in repulsion, were found. A seedling population was used to construct a linkage map of the region flanking

S. A. Mehlenbacher; R. N. Brown; J. W. Davis; H. Chen; N. V. Bassil; D. C. Smith; T. L. Kubisiak

2004-01-01

385

Detection and identification of phytopathogenic Xanthomonas strains by amplification of DNA sequences related to the hrp genes of Xanthomonas campestris pv. vesicatoria.  

PubMed Central

Three pairs of oligonucleotide primers specific for different regions of the hrp gene (hypersensitive reaction and pathogenicity) cluster of Xanthomonas campestris pv. vesicatoria were designed and tested for amplification of DNA isolated from a large number of different bacteria. DNA sequences related to the hrp genes were successfully amplified from X. fragariae and from 28 pathovars of X. campestris. No DNA amplification occurred with genomic DNA from phytopathogenic strains of X. campestris pv. secalis, X. campestris pv. translucens, and X. albilineans or from nonpathogenic opportunistic xanthomonads and phytopathogenic strains of the genera Acidovorax, Agrobacterium, Clavibacter, Erwinia, Pseudomonas, and Xylella. The DNA from those bacteria also failed to hybridize to hrp-specific fragments in Southern blot analysis. DNA fragments amplified with a particular primer pair were of identical size from each of the different phytopathogenic xanthomonads. However, restriction analysis of these fragments by using frequently cutting endonucleases revealed variation in the pattern for these hrp-related fragments amplified from the different Xanthomonas strains. The restriction patterns generated for the different fragments allowed distinction of the strains representing a pathovar or species of phytopathogenic xanthomonads. We believe that DNA amplification with hrp-specific oligonucleotide primers is a highly sensitive and specific method that can be applied for detection and identification of phytopathogenic xanthomonads. Images

Leite, R P; Minsavage, G V; Bonas, U; Stall, R E

1994-01-01

386

Real time expression of ACC oxidase and PR-protein genes mediated by Methylobacterium spp. in tomato plants challenged with Xanthomonas campestris pv. vesicatoria.  

PubMed

Biotic stress like pathogenic infection increases ethylene biosynthesis in plants and ethylene inhibitors are known to alleviate the severity of plant disease incidence. This study aimed to reduce the bacterial spot disease incidence in tomato plants caused by Xanthomonas campestris pv. vesicatoria (XCV) by modulating stress ethylene with 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity of Methylobacterium strains. Under greenhouse condition, Methylobacterium strains inoculated and pathogen challenged tomato plants had low ethylene emission compared to pathogen infected ones. ACC accumulation and ACC oxidase (ACO) activity with ACO related gene expression increased in XCV infected tomato plants over Methylobacterium strains inoculated plants. Among the Methylobacterium spp., CBMB12 resulted lowest ACO related gene expression (1.46 Normalized Fold Expression), whereas CBMB20 had high gene expression (3.42 Normalized Fold Expression) in pathogen challenged tomato. But a significant increase in ACO gene expression (7.09 Normalized Fold Expression) was observed in the bacterial pathogen infected plants. In contrast, Methylobacterium strains enhanced ?-1,3-glucanase and phenylalanine ammonia-lyase (PAL) enzyme activities in pathogen challenged tomato plants. The respective increase in ?-1,3-glucanase related gene expressions due to CBMB12, CBMB15, and CBMB20 strains were 66.3, 25.5 and 10.4% higher over pathogen infected plants. Similarly, PAL gene expression was high with 0.67 and 0.30 Normalized Fold Expression, in pathogen challenged tomato plants inoculated with CBMB12 and CBMB15 strains. The results suggest that ethylene is a crucial factor in bacterial spot disease incidence and that methylobacteria with ACC deaminase activity can reduce the disease severity with ultimate pathogenesis-related protein increase in tomato. PMID:24974333

Yim, W J; Kim, K Y; Lee, Y W; Sundaram, S P; Lee, Y; Sa, T M

2014-07-15

387

Bacterial microcompartments.  

PubMed

Bacterial microcompartments (BMCs) are organelles composed entirely of protein. They promote specific metabolic processes by encapsulating and colocalizing enzymes with their substrates and cofactors, by protecting vulnerable enzymes in a defined microenvironment, and by sequestering toxic or volatile intermediates. Prototypes of the BMCs are the carboxysomes of autotrophic bacteria. However, structures of similar polyhedral shape are being discovered in an ever-increasing number of heterotrophic bacteria, where they participate in the utilization of specialty carbon and energy sources. Comparative genomics reveals that the potential for this type of compartmentalization is widespread across bacterial phyla and suggests that genetic modules encoding BMCs are frequently laterally transferred among bacteria. The diverse functions of these BMCs suggest that they contribute to metabolic innovation in bacteria in a broad range of environments. PMID:20825353

Kerfeld, Cheryl A; Heinhorst, Sabine; Cannon, Gordon C

2010-01-01

388

Bacterial morphogenes  

Microsoft Academic Search

Cell shape is not the product of a particular gene or protein, but the result of the collective actions of many of them. These\\u000a are involved in several processes, including peptidoglycan precursor synthesis, peptidoglycan synthesis and recycling, cell\\u000a elongation, cell septation and division site selection. The analysis of the “morphogene” content of several bacterial genomes\\u000a suggests that there are three

Jesús Mingorance; Anabel Rico; Paulino GÓmez-Puertas

389

Genetic Studies and Breeding for Stable Late Blight Resistance of Potato in the United States and Mexico  

Microsoft Academic Search

Lozoya-Saldaña, H., Hernández-Vilchis, A. Garay-Serrano, E., Brown, C.R., Grünwald, N. and Helgeson, J.P. 2001. Genetic studies and breeding for stable late blight resistance of potato in the United States and Mexico. Revista Mexicana de Fitopatología 19:253-259. New forms of the potato late blight pathogen (Phytophthora infestans) have recently migrated from Mexico to the rest of the world. The best long

Héctor Lozoya-Saldaña; Alejandro Hernández-Vilchis; Edith Garay-Serrano; Charles R. Brown; Niklaus Grünwald; John P. Helgeson

390

Biosynthesis of the antimetabolite 6-thioguanine in Erwinia amylovora plays a key role in fire blight pathogenesis.  

PubMed

Sulfur for fire: The molecular basis for the biosynthesis of the antimetabolite 6-thioguanine (6TG) was unveiled in Erwinia amylovora, the causative agent of fire blight. Bioinformatics, heterologous pathway reconstitution in E. coli, and mutational analyses indicate that the protein YcfA mediates guanine thionation in analogy to 2-thiouridylase. Assays in planta and in cell cultures reveal for the first time a crucial role of 6TG in fire blight pathogenesis. PMID:24038828

Coyne, Sébastien; Chizzali, Cornelia; Khalil, Mohammed N A; Litomska, Agnieszka; Richter, Klaus; Beerhues, Ludger; Hertweck, Christian

2013-09-27

391

Relationship between resistance to late blight in potato foliage and tubers of cultivars and breeding selections with different resistance levels  

Microsoft Academic Search

Due to changes in the pathogen population, late blight of potatoes caused byPhytophthora infestans has become a more difficult disease to manage and there is a need for new potato cultivars with greater and more stable disease\\u000a resistance. Field studies are required to identify and characterize host resistance to late blight in both foliage and tubers\\u000a but, as epidemics vary

George Tai

1998-01-01

392

Control of potato early blight with triazole fungicide using preventive and curative spraying, or a forecasting system  

Microsoft Academic Search

J.D. Mantecón. 2009. Control of potato early blight with triazole fungicide using preventive and curative spraying, or a forecasting system. Cien. Inv. Agr. 36(2):291-296. During the 2005 and 2006 growing seasons, two fi eld trials were conducted at the INTA Balcarce Experimental Station (Argentina) to study the control of potato early blight (Alternaria solani). Uncut virus-free seed tubers of potato

Jorge D. Mantecón

2009-01-01

393

A three-component signalling system fine-tunes expression kinetics of HPPK responsible for folate synthesis by positive feedback loop during stress response of Xanthomonas campestris.  

PubMed

During adaptation to environments, bacteria employ two-component signal transduction systems, which contain histidine kinases and response regulators, to sense and respond to exogenous and cellular stimuli in an accurate spatio-temporal manner. Although the protein phosphorylation process between histidine kinase and response regulator has been well documented, the molecular mechanism fine-tuning phosphorylation levels of response regulators is comparatively less studied. Here we combined genetic and biochemical approaches to reveal that a hybrid histidine kinase, SreS, is involved in the SreK-SreR phosphotransfer process to control salt stress response in the bacterium Xanthomonas campestris. The N-terminal receiver domain of SreS acts as a phosphate sink by competing with the response regulator SreR to accept the phosphoryl group from the latter's cognate histidine kinase SreK. This regulatory process is critical for bacterial survival because the dephosphorylated SreR protein participates in activating one of the tandem promoters (P2) at the 5' end of the sreK-sreR-sreS-hppK operon, and then modulates a transcriptional surge of the stress-responsive gene hppK, which is required for folic acid synthesis. Therefore, our study dissects the biochemical process of a positive feedback loop in which a 'three-component' signalling system fine-tunes expression kinetics of downstream genes. PMID:24119200

Wang, Fang-Fang; Deng, Chao-Ying; Cai, Zhen; Wang, Ting; Wang, Li; Wang, Xiao-Zheng; Chen, Xiao-Ying; Fang, Rong-Xiang; Qian, Wei

2014-07-01

394

The Xanthomonas Ax21 protein is processed by the general secretory system and is secreted in association with outer membrane vesicles  

PubMed Central

Pattern recognition receptors (PRRs) play an important role in detecting invading pathogens and mounting a robust defense response to restrict infection. In rice, one of the best characterized PRRs is XA21, a leucine rich repeat receptor-like kinase that confers broad-spectrum resistance to multiple strains of the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo). In 2009 we reported that an Xoo protein, called Ax21, is secreted by a type I-secretion system and that it serves to activate XA21-mediated immunity. This report has recently been retracted. Here we present data that corrects our previous model. We first show that Ax21 secretion does not depend on the predicted type I secretion system and that it is processed by the general secretion (Sec) system. We further show that Ax21 is an outer membrane protein, secreted in association with outer membrane vesicles. Finally, we provide data showing that ax21 knockout strains do not overcome XA21-mediated immunity.

Luu, Dee Dee; Schwessinger, Benjamin; Daudi, Arsalan; Liu, Furong; Ruan, Randy; Fontaine-Bodin, Lisa; Koebnik, Ralf

2014-01-01

395

Evidence for a role for the gumB and gumC gene products in the formation of xanthan from its pentasaccharide repeating unit by Xanthomonas campestris.  

PubMed

The biosynthesis of the extracellular polysaccharide xanthan in Xanthomonas campestris pv. campestris is directed by a cluster of 12 genes, gumB-gumM. Several xanthan-deficient mutants of the wild-type strain 8004 have previously been described which carry Tn5 insertions in this region of the chromosome. Here it is shown that the transposon insertion in one of these mutants, strain 8397, is located 15 bp upstream of the translational start site of the gumB gene. EDTA-treated cells of strain 8397 were able to synthesize the lipid-linked pentasaccharide repeating unit of xanthan from the three nucleotide sugar donors (UDP-glucose, GDP-mannose and UDP-glucuronic acid) but were unable to polymerize the pentasaccharide into mature xanthan. A subclone of the gum gene cluster carrying gumB and gumC restored xanthan production to strain 8397 to levels approximately 28% of the wild-type. In contrast, subclones carrying gumB or gumC alone were not effective. These results are discussed with reference to previous speculations, based on computer analysis, that gumB and gumC are both involved in the translocation of xanthan across the bacterial membranes. PMID:9639919

Vojnov, A A; Zorreguieta, A; Dow, J M; Daniels, M J; Dankert, M A

1998-06-01

396

The xylan utilization system of the plant pathogen Xanthomonas campestris pv campestris controls epiphytic life and reveals common features with oligotrophic bacteria and animal gut symbionts.  

PubMed

Xylan is a major structural component of plant cell wall and the second most abundant plant polysaccharide in nature. Here, by combining genomic and functional analyses, we provide a comprehensive picture of xylan utilization by Xanthomonas campestris pv campestris (Xcc) and highlight its role in the adaptation of this epiphytic phytopathogen to the phyllosphere. The xylanolytic activity of Xcc depends on xylan-deconstruction enzymes but also on transporters, including two TonB-dependent outer membrane transporters (TBDTs) which belong to operons necessary for efficient growth in the presence of xylo-oligosaccharides and for optimal survival on plant leaves. Genes of this xylan utilization system are specifically induced by xylo-oligosaccharides and repressed by a LacI-family regulator named XylR. Part of the xylanolytic machinery of Xcc, including TBDT genes, displays a high degree of conservation with the xylose-regulon of the oligotrophic aquatic bacterium Caulobacter crescentus. Moreover, it shares common features, including the presence of TBDTs, with the xylan utilization systems of Bacteroides ovatus and Prevotella bryantii, two gut symbionts. These similarities and our results support an important role for TBDTs and xylan utilization systems for bacterial adaptation in the phyllosphere, oligotrophic environments and animal guts. PMID:23442088

Déjean, Guillaume; Blanvillain-Baufumé, Servane; Boulanger, Alice; Darrasse, Armelle; Dugé de Bernonville, Thomas; Girard, Anne-Laure; Carrére, Sébastien; Jamet, Stevie; Zischek, Claudine; Lautier, Martine; Solé, Magali; Büttner, Daniela; Jacques, Marie-Agnès; Lauber, Emmanuelle; Arlat, Matthieu

2013-05-01

397

An Improved Method for TAL Effectors DNA-Binding Sites Prediction Reveals Functional Convergence in TAL Repertoires of Xanthomonas oryzae Strains  

PubMed Central

Transcription Activators-Like Effectors (TALEs) belong to a family of virulence proteins from the Xanthomonas genus of bacterial plant pathogens that are translocated into the plant cell. In the nucleus, TALEs act as transcription factors inducing the expression of susceptibility genes. A code for TALE-DNA binding specificity and high-resolution three-dimensional structures of TALE-DNA complexes were recently reported. Accurate prediction of TAL Effector Binding Elements (EBEs) is essential to elucidate the biological functions of the many sequenced TALEs as well as for robust design of artificial TALE DNA-binding domains in biotechnological applications. In this work a program with improved EBE prediction performances was developed using an updated specificity matrix and a position weight correction function to account for the matching pattern observed in a validation set of TALE-DNA interactions. To gain a systems perspective on the large TALE repertoires from X. oryzae strains, this program was used to predict rice gene targets for 99 sequenced family members. Integrating predictions and available expression data in a TALE-gene network revealed multiple candidate transcriptional targets for many TALEs as well as several possible instances of functional convergence among TALEs.

Perez-Quintero, Alvaro L.; Rodriguez-R, Luis M.; Dereeper, Alexis; Lopez, Camilo; Koebnik, Ralf; Szurek, Boris; Cunnac, Sebastien

2013-01-01

398

Rice Snl6, a Cinnamoyl-CoA Reductase-Like Gene Family Member, Is Required for NH1-Mediated Immunity to Xanthomonas oryzae pv. oryzae  

PubMed Central

Rice NH1 (NPR1 homolog 1) is a key mediator of innate immunity. In both plants and animals, the innate immune response is often accompanied by rapid cell death at the site of pathogen infection. Over-expression of NH1 in rice results in resistance to the bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo), constitutive expression of defense related genes and enhanced benzothiadiazole (BTH)- mediated cell death. Here we describe a forward genetic screen that identified a suppressor of NH1-mediated lesion formation and resistance, snl6. Comparative genome hybridization and fine mapping rapidly identified the genomic location of the Snl6 gene. Snl6 is a member of the cinnamoyl-CoA reductase (CCR)-like gene family. We show that Snl6 is required for NH1-mediated resistance to Xoo. Further, we show that Snl6 is required for pathogenesis-related gene expression. In contrast to previously described CCR family members, disruption of Snl6 does not result in an obvious morphologic phenotype. Snl6 mutants have reduced lignin content and increased sugar extractability, an important trait for the production of cellulosic biofuels. These results suggest the existence of a conserved group of CCR-like genes involved in the defense response, and with the potential to alter lignin content without affecting development.

Vega-Sanchez, Miguel E.; Canlas, Patrick; Ronald, Pamela C.

2010-01-01

399

Identification of Genes Differentially Expressed between Resistant and Susceptible Tomato Lines during Time-Course Interactions with Xanthomonas perforans Race T3  

PubMed Central

Bacterial spot caused by several Xanthomonas sp. is one of the most devastating diseases in tomato (Solanum lycopersicum L.). The genetics of hypersensitive resistance to X. perforans race T3 has been intensively investigated and regulatory genes during the infection of race T3 have been identified through transcriptional profiling. However, no work on isolating regulatory genes for field resistance has been reported. In this study, cDNA-amplified fragment length polymorphism technique was used to identify differentially expressed transcripts between resistant tomato accession PI 114490 and susceptible variety OH 88119 at 3, 4 and 5 days post-inoculation of the pathogen. Using 256 selective primer combinations, a total of 79 differentially expressed transcript-derived fragments (TDFs) representing 71 genes were obtained. Of which, 60 were up-regulated and 4 were down-regulated in both tomato lines, 4 were uniquely up-regulated and 2 were uniquely down-regulated in PI 114490, and 1 was specifically up-regulated in OH 88119. The expression patterns of 19 representative TDFs were further confirmed by semi-quantitative and/or quantitative real time RT-PCR. These results suggested that the two tomato lines activated partly similar defensive mechanism in response to race T3 infection. The data obtained here will provide some fundamental information for elucidating the molecular mechanism of response to race T3 infection in tomato plants with field resistance.

Wang, Yuqing; Yang, Wencai

2014-01-01

400

Genetic characterization of the HrpL regulon of the fire blight pathogen Erwinia amylovora reveals novel virulence factors.  

PubMed

The bacterial pathogen Erwinia amylovora is the causal agent of fire blight, an economically significant disease of apple and pear. Disease initiation by E. amylovora requires the translocation of effector proteins into host cells via the hypersensitive response and pathogenicity (hrp) type III secretion system (T3SS). The alternative sigma factor HrpL positively regulates the transcription of structural and translocated components of the T3SS via hrp promoter elements. To characterize genome-wide HrpL-dependent gene expression in E. amylovora Ea1189, wild-type and Ea1189?hrpL strains were cultured in hrp-inducing minimal medium, and total RNA was compared using a custom microarray designed to represent the annotated genes of E. amylovora ATCC 49946. The results revealed 24 genes differentially regulated in Ea1189?hrpL relative to Ea1189 with fold-change expression ratios greater than 1.5; of these, 19 genes exhibited decreased transcript abundance and five genes showed increased transcript abundance relative to Ea1189. To expand our understanding of the HrpL regulon and to elucidate direct versus indirect HrpL-mediated effects on gene expression, the genome of E. amylovora ATCC 49946 was examined in silico using a hidden Markov model assembled from known Erwinia spp. hrp promoters. This technique identified 15 putative type III novel hrp promoters, seven of which were validated with quantitative polymerase chain reaction based on expression analyses. It was found that HrpL-regulated genes encode all known components of the hrp T3SS, as well as five putative type III effectors. Eight genes displayed apparent indirect HrpL regulation, suggesting that the HrpL regulon is connected to downstream signalling networks. The construction of deletion mutants of three novel HrpL-regulated genes resulted in the identification of additional virulence factors as well as mutants displaying abnormal motility and biofilm phenotypes. PMID:21831138

McNally, R Ryan; Toth, Ian K; Cock, Peter J A; Pritchard, Leighton; Hedley, Pete E; Morris, Jenny A; Zhao, Youfu; Sundin, George W

2012-02-01

401

Bacterial olfaction.  

PubMed

Sensing their environment is a crucial ability of all life forms. In higher eukaryotes the sensing of airborne volatile compounds, or olfaction, is well developed. In plants, slime moulds and yeast there is also compelling evidence that these organisms can smell their environment and respond accordingly. Here we show that bacteria are also capable of olfaction. Bacillus licheniformis was able to sense airborne volatile metabolites produced by neighbouring bacterial cultures and cells could respond to this chemical information in a coordinated way. When Bacillus licheniformis was grown in a microtitre plate adjacent to a bacterial culture of the same or a different species, growing in complex medium, biofilm formation and pigment production were elicited by volatile molecules. A weaker response occurred in increasingly distant wells. The emitted volatile molecule was identified as ammonia. These data demonstrate that B. licheniformis has evolved the ability collect information about its environment from the surrounding air and physiologically respond to it in a manner similar to olfaction. This is the first time that a behavioural response triggered by odorant molecules received through the gas phase is described in bacteria. PMID:20721987

Nijland, Reindert; Burgess, J Grant

2010-09-01

402

Characterization of Novel Virulent Broad-Host-Range Phages of Xylella fastidiosa and Xanthomonas  

PubMed Central

The xylem-limited bacterium Xylella fastidiosa is the causal agent of several plant diseases, most notably Pierce's disease of grape and citrus variegated chlorosis. We report the isolation and characterization of the first virulent phages for X. fastidiosa, siphophages Sano and Salvo and podophages Prado and Paz, with a host range that includes Xanthomonas spp. Phages propagated on homologous hosts had observed adsorption rate constants of ?4 × 10?12 ml cell?1 min?1 for X. fastidiosa strain Temecula 1 and ?5 × 10?10 to 7 × 10?10 ml cell?1 min?1 for Xanthomonas strain EC-12. Sano and Salvo exhibit >80% nucleotide identity to each other in aligned regions and are syntenic to phage BcepNazgul. We propose that phage BcepNazgul is the founding member of a novel phage type, to which Sano and Salvo belong. The lysis genes of the Nazgul-like phage type include a gene that encodes an outer membrane lipoprotein endolysin and also spanin gene families that provide insight into the evolution of the lysis pathway for phages of Gram-negative hosts. Prado and Paz, although exhibiting no significant DNA homology to each other, are new members of the phiKMV-like phage type, based on the position of the single-subunit RNA polymerase gene. The four phages are type IV pilus dependent for infection of both X. fastidiosa and Xanthomonas. The phages may be useful as agents for an effective and environmentally responsible strategy for the control of diseases caused by X. fastidiosa.

Ahern, Stephen J.; Das, Mayukh; Bhowmick, Tushar Suvra; Young, Ry

2014-01-01

403

Involvement of Proline Oxidase (PutA) in Programmed Cell Death of Xanthomonas  

PubMed Central

Xanthomonas campestris strains have been reported to undergo programmed cell death (PCD) in a protein rich medium. Protein hydrolysates used in media such as nutrient broth comprise of casein digest with abundance of proline and glutamate. In the current study, X. campestris pv. campestris (Xcc) cells displayed PCD when grown in PCD inducing medium (PIM) containing casein tryptic digest. This PCD was also observed in PCD non-inducing carbohydrate rich medium (PNIM) fortified with either proline or proline along with glutamate. Surprisingly, no PCD was noticed in PNIM fortified with glutamate alone. Differential role of proline or glutamate in inducing PCD in Xcc cells growing in PNIM was studied. It was found that an intermediate product of this oxidation was involved in initiation of PCD. Proline oxidase also called as proline utilization A (PutA), catalyzes the two step oxidation of proline to glutamate. Interestingly, higher PutA activity was noticed in cells growing in PIM, and PCD was found to be inhibited by tetrahydro-2-furoic acid, a competitive inhibitor of this enzyme. Further, PCD was abolished in Xcc ?putA strain generated using a pKNOCK suicide plasmid, and restored in Xcc ?putA strain carrying functional PutA in a plasmid vector. Xanthomonas cells growing in PIM also displayed increased generation of ROS, as well as cell filamentation (a probable indication of SOS response). These filamented cells also displayed enhanced caspase-3-like activity during in situ labeling using a fluorescent tagged caspase-3 inhibitor (FITC-DEVD-FMK). The extent of PCD associated markers such as DNA damage, phosphatidylserine externalization and membrane depolarization were found to be significantly enhanced in wild type cells, but drastically reduced in Xcc ?putA cells. These findings thus establish the role of PutA mediated proline oxidation in regulating death in stressed Xanthomonas cells.

Wadhawan, Surbhi; Gautam, Satyendra; Sharma, Arun

2014-01-01

404

Identification of a putative cognate sensor kinase for the two-component response regulator HrpG, a key regulator controlling the expression of the hrp genes in Xanthomonas campestris pv. campestris.  

PubMed

The bacterial phytopathogen Xanthomonas campestris pv. campestris (Xcc) relies on the hrp (hypersensitive response and pathogenicity) genes to cause disease and induce hypersensitive response (HR). The hrp genes of bacterial phytopathogens are divided into two groups. Xcc hrp genes belong to group II. It has long been known that the group II hrp genes are activated by an AraC-type transcriptional regulator whose expression is controlled by a two-component system (TCS) response regulator (named HrpG in Xcc). However, no cognate sensor kinase has yet been identified. Here, we present evidence showing that the Xcc open-reading frame XC_3670 encodes a TCS sensor kinase (named HpaS). Mutation of hpaS almost completely abolished the HR induction and virulence. Bacterial two-hybrid and protein pull-down assays revealed that HpaS physically interacted with HrpG. Phos-tag™ SDS-PAGE analysis showed that mutation in hpaS reduced markedly the phosphorylation of HrpG?in vivo. These data suggest that HpaS and HrpG are most likely to form a TCS. We also showed that XC_3669 (named hpaR2), which is adjacent to hpaS and encodes a putative TCS response regulator, is required for full virulence but not HR induction. HpaR2 also physically interacted with HpaS, suggesting that HpaS may also form another TCS with HpaR2. PMID:23906314

Li, Rui-Fang; Lu, Guang-Tao; Li, Lei; Su, Hui-Zhao; Feng, Guo-Fang; Chen, Ya; He, Yong-Qiang; Jiang, Bo-Le; Tang, Dong-Jie; Tang, Ji-Liang

2014-07-01

405

The gpsX gene encoding a glycosyltransferase is important for polysaccharide production and required for full virulence in Xanthomonas citri subsp. citri  

PubMed Central

Background The Gram-negative bacterium Xanthomonas citri subsp. citri (Xac) causes citrus canker, one of the most destructive diseases of citrus worldwide. In our previous work, a transposon mutant of Xac strain 306 with an insertion in the XAC3110 locus was isolated in a screening that aimed at identifying genes related to biofilm formation. The XAC3110 locus was named as bdp24 for biofilm-defective phenotype and the mutant was observed to be affected in extracellular polysaccharide (EPS) and lipopolysaccharide (LPS) biosynthesis and cell motility. In this study, we further characterized the bdp24 (XAC3110) gene (designated as gpsX) using genetic complementation assays and expanded the knowledge about the function of the gpsX gene in Xac pathogenesis by investigating the roles of gpsX in EPS and LPS production, cell motility, biofilm formation on host leaves, stress tolerance, growth in planta, and host virulence of the citrus canker bacterium. Results The gpsX gene encodes a putative glycosyltransferase, which is highly conserved in the sequenced strains of Xanthomonas. Mutation of gpsX resulted in a significant reduction of the amount of EPS and loss of two LPS bands visualized on sodium dodecylsulphate- polyacrylamide gels. Biofilm assays revealed that the gpsX mutation affected biofilm formation by Xac on abiotic and biotic surfaces. The gpsX mutant showed delayed bacterial growth and caused reduced development of disease symptoms in susceptible citrus leaves. The gpsX mutant was more sensitive than the wild-type strain to various stresses, including the H2O2 oxidative stress. The mutant also showed attenuated ability in cell motility but not in flagellar formation. Quantitative reverse transcription-PCR assays indicated that mutation of gpsX did not affect the expression of virulence genes such as pthA in Xac strain 306. The affected phenotypes of the gpsX mutant could be complemented to wild-type levels by the intact gpsX gene. Conclusions Taken together, our data confirm that the gpsX gene is involved in EPS and LPS synthesis and biofilm formation in Xac and suggest that the gpsX gene contributes to the adaptation of Xac to the host microenvironments at early stage of infection and thus is required for full virulence on host plants.

2012-01-01

406

Effect of Cultural Practices, Soil Phosphorus, Potassium, and pH on the Incidence of Fusarium Head Blight and Deoxynivalenol Levels in Wheat  

PubMed Central

In a survey conducted in 1984 in Essex, Lambton, and Middlesex Counties of Ontario, Canada, greater incidences of head blight and greater concentrations of deoxynivalenol in grain were observed in fields of winter wheat planted after corn than in those planted after soybeans, barley, and mixed grains. Neither head blight nor deoxynivalenol level were correlated significantly with soil P, K, or pH. Head blight was reduced in wheat planted after corn where the residues from a preceding corn crop were plowed down or where seed was treated with Vitaflo 280. However, head blight and deoxynivalenol levels were not affected significantly by the level of N application, cultivar, other diseases or herbicides.

Teich, A. H.; Hamilton, J. R.

1985-01-01

407

Prevalence of serotypes of Xanthomonas maltophilia from world-wide sources.  

PubMed Central

Since its development in 1988, a serologic typing scheme for Xanthomonas maltophilia, based on 31 O antigens, has been successfully used to serotype isolates involved in nosocomial outbreaks in the United States. To determine if this serotyping scheme would be useful in typing X. maltophilia isolates from world-wide sources, we obtained additional isolates from 10 countries; of 900 isolates tested, 795 (88.3%) were typable. In order of predominance, the three most common serotypes were 10, 3 and 19. These three serotypes were most frequently associated with respiratory and blood isolates. This serotyping system is useful as an epidemiologic screening method for universal typing of outbreaks of X. maltophilia infections.

Schable, B.; Rhoden, D. L.; Jarvis, W. R.; Miller, J. M.

1992-01-01

408

Maintenance procedures for the curtailment of genetic instability: Xanthomonas campestris NRRL B-1459.  

PubMed Central

Characteristics are described of small-colony variants of Xanthomonas campestris NRRL B-1459 which are frequently encountered when routine culture maintenance procedures are employed. In contrast to the parental type, smallcolony variants were shown to be resistant to a number of antibiotics, to acridine orange, and to phage which are virulent for the parent colony type. Sensitivity to ultraviolet radiation was similar in both colony types. A simple method for preservation of viable cells is described. The suitability of the method for providing reproducible inocula free from variant cell types is examined.

Kidby, D; Sandford, P; Herman, A; Cadmus, M

1977-01-01

409

Production of xanthan gum by Sphingomonas bacteria carrying genes from Xanthomonas campestris.  

PubMed

Twelve genes coding for assembly, acetylation, pyruvylation, polymerization, and secretion of the polysaccharide xanthan gum are clustered together on the chromosome of the bacterium Xanthomonas campestris. These genes (gumBCDEFGHIJKLM) are sufficient for synthesis of xanthan gum when placed in bacteria from a different genus, Sphingomonas. The polysaccharide from the recombinant microorganism is largely indistinguishable, structurally and functionally, from native xanthan gum. These results demonstrate that a complex pathway for biosynthesis of a specific polysaccharide can be acquired by a single inter-generic transfer of genes between bacteria. This suggests the biological and commercial feasibility of synthesizing xanthan gum or other polysaccharides in non-native hosts. PMID:9366091

Pollock, T J; Mikolajczak, M; Yamazaki, M; Thorne, L; Armentrout, R W

1997-08-01

410

Selective medium for isolation of Xanthomonas maltophilia from soil and rhizosphere environments.  

PubMed Central

A selective medium (XMSM) was developed for isolation of Xanthomonas maltophilia from bulk soil and plant rhizosphere environments. The XMSM basal medium contained maltose, tryptone, bromthymol blue, and agar. Antibiotics added to select for X. maltophilia were cycloheximide, nystatin, cephalexin, bacitracin, penicillin G, novobiocin, neomycin sulfate, and tobramycin. A comparison was made between XMSM and 1/10-strength tryptic soy broth agar for recovery of X. maltophilia from sterile and nonsterile soil infested with known X. maltophilia isolates. A recovery rate of 97% or greater for XMSM was demonstrated. XMSM was used to isolate X. maltophilia from a variety of soil and rhizosphere environments.

Juhnke, M E; des Jardin, E

1989-01-01

411

DNA probes for detection of copper resistance genes in Xanthomonas campestris pv. vesicatoria.  

PubMed Central

The copper resistance (Cur) genes encoded on pXV10A, a 190-kb plasmid in Xanthomonas campestris pv. vesicatoria XV10, were isolated on a 44-kb cosmid clone designated pCuR1. Tn5 mutagenesis of pCuR1 indicated that a 4.0-kb region was required for copper resistance. Three restriction fragments located within the 4.0-kb region demonstrated high specificity for the Cur genes present in X. campestris pv. vesicatoria and will be useful in monitoring the presence of these genes in the environment. Images

Garde, S; Bender, C L

1991-01-01

412