Science.gov

Sample records for bacterial blight xanthomonas

  1. Dominant gene for common bean resistance to common bacterial blight caused by Xanthomonas axonopodis pv. phaseoli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The common bacterial blight pathogen [Xanthomonas axonopodis pv. phaseoli (Xap)] is a limiting factor for common bean (Phaseolus vulgaris L.) production worldwide and resistance to the pathogen in most commercial cultivars is inadequate. Variability in virulence of the bacterial pathogen has been ob...

  2. XANTHOMONAS LEAF BLIGHT OF ONION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Xanthomonas leaf blight, caused by the bacterium Xanthomonas axonopodis pv. allii, is a common foliar disease of onion. This extension bulletin presents a review of disease symptomology, etiology, epidemiology, and management. The association of environment, host, and cultural and disease severity ...

  3. Inheritance of high levels of resistance to common bacterial blight caused by Xanthomonas Axonopodis pv. Phaseoli in common bean (Phaseolus vulgaris L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Common bacterial blight caused by the pathogen Xanthomonas axonopodis pv. phaseoli (Xap) is an important biotic factor limiting common bean (Phaseolus vulgaris L.) production. A few interspecific bean breeding lines such as VAX 6 exhibit a high level of resistance to a wide range of Xap strains repr...

  4. First report of bacterial blight of carrot in Indiana caused by Xanthomonas hortorum pv. carotae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In summer 2012, bacterial blight symptoms were observed on leaves of carrot plants in 7 out of 70 plots of carrot breeding lines at the Purdue University Meig Horticulture Research Farm, Lafayette, IN. Symptoms included small to large, variably shaped, water soaked to dry, necrotic lesions, with or ...

  5. Testing the model for a dominant resistance gene expresed on leaves of Phaseolus vulgaris F2 (0313-58 X Rosada Nativa) to the common bacterial blight pathogen, Xanthomonas axonopodis pv. Phaseoli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The common bean bacterial blight pathogen, Xanthomonas axonopodis pv. phaseoli, is a limiting factor for bean, Phaseolus vulgaris, production worldwide and resistance to the pathogen in commercial varieties is inadequate. To test the hypothesis of the presence of strain specific genes for resistance...

  6. The RpfB-Dependent Quorum Sensing Signal Turnover System Is Required for Adaptation and Virulence in Rice Bacterial Blight Pathogen Xanthomonas oryzae pv. oryzae.

    PubMed

    Wang, Xing-Yu; Zhou, Lian; Yang, Jun; Ji, Guang-Hai; He, Ya-Wen

    2016-03-01

    Xanthomonas oryzae pv. oryzae, the bacterial blight pathogen of rice, produces diffusible signal factor (DSF) family quorum sensing signals to regulate virulence. The biosynthesis and perception of DSF family signals require components of the rpf (regulation of pathogenicity factors) cluster. In this study, we report that RpfB plays an essential role in DSF family signal turnover in X. oryzae pv. oryzae PXO99A. The production of DSF family signals was boosted by deletion of the rpfB gene and was abolished by its overexpression. The RpfC/RpfG-mediated DSF signaling system negatively regulates rpfB expression via the global transcription regulator Clp, whose activity is reversible in the presence of cyclic diguanylate monophosphate. These findings indicate that the DSF family signal turnover system in PXO99A is generally consistent with that in Xanthomonas campestris pv. campestris. Moreover, this study has revealed several specific roles of RpfB in PXO99A. First, the rpfB deletion mutant produced high levels of DSF family signals but reduced extracellular polysaccharide production, extracellular amylase activity, and attenuated pathogenicity. Second, the rpfB/rpfC double-deletion mutant was partially deficient in xanthomonadin production. Taken together, the RpfB-dependent DSF family signal turnover system is a conserved and naturally presenting signal turnover system in Xanthomonas spp., which plays unique roles in X. oryzae pv. oryzae adaptation and pathogenesis. PMID:26667598

  7. Niclosamide inhibits leaf blight caused by Xanthomonas oryzae in rice.

    PubMed

    Kim, Sung-Il; Song, Jong Tae; Jeong, Jin-Yong; Seo, Hak Soo

    2016-01-01

    Rice leaf blight, which is caused by the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo), results in huge losses in grain yield. Here, we show that Xoo-induced rice leaf blight is effectively controlled by niclosamide, an oral antihelminthic drug and molluscicide, which also functions as an anti-tumor agent. Niclosamide directly inhibited the growth of the three Xoo strains PXO99, 10208 and K3a. Niclosamide moved long distances from the site of local application to distant rice tissues. Niclosamide also increased the levels of salicylate and induced the expression of defense-related genes such as OsPR1 and OsWRKY45, which suppressed Xoo-induced leaf wilting. Niclosamide had no detrimental effects on vegetative/reproductive growth and yield. These combined results indicate that niclosamide can be used to block bacterial leaf blight in rice with no negative side effects. PMID:26879887

  8. Niclosamide inhibits leaf blight caused by Xanthomonas oryzae in rice

    PubMed Central

    Kim, Sung-Il; Song, Jong Tae; Jeong, Jin-Yong; Seo, Hak Soo

    2016-01-01

    Rice leaf blight, which is caused by the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo), results in huge losses in grain yield. Here, we show that Xoo-induced rice leaf blight is effectively controlled by niclosamide, an oral antihelminthic drug and molluscicide, which also functions as an anti-tumor agent. Niclosamide directly inhibited the growth of the three Xoo strains PXO99, 10208 and K3a. Niclosamide moved long distances from the site of local application to distant rice tissues. Niclosamide also increased the levels of salicylate and induced the expression of defense-related genes such as OsPR1 and OsWRKY45, which suppressed Xoo-induced leaf wilting. Niclosamide had no detrimental effects on vegetative/reproductive growth and yield. These combined results indicate that niclosamide can be used to block bacterial leaf blight in rice with no negative side effects. PMID:26879887

  9. SCREENING OF TRANSGENIC ANTHURIUMS FOR BACTERIAL BLIGHT AND NEMATODE RESISTANCE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anthuriums exhibit limited resistance to bacterial blight caused by Xanthomonas axonopodis pv. dieffenbachiae and to the nematodes Radopholus simile and Meloidogyne javanica. Agrobacterium tumefaciens transformation of embryogenic calli with strains LBA4404, EHA105, and AGLO resulted in transgenic p...

  10. Diversity of bacteriophages infecting Xanthomonas oryzae pv. oryzae in paddy fields and its potential to control bacterial leaf blight of rice.

    PubMed

    Chae, Jong-Chan; Hung, Nguyen Bao; Yu, Sang-Mi; Lee, Ha Kyung; Lee, Yong Hoon

    2014-06-28

    Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is a very serious disease in rice-growing regions of the world. In spite of their economic importance, there are no effective ways of protecting rice plants from this disease. Bacteriophages infecting Xoo affect the population dynamics of the pathogen and consequently the occurrence of the disease. In this study, we investigated the diversity, host range, and infectivity of Xoo phages, and their use as a bicontrol agent on BLB was tested. Among the 34 phages that were isolated from floodwater in paddy fields, 29 belonged to the Myoviridae family, which suggests that the dominant phage in the ecosystem was Myoviridae. The isolated phages were classified into two groups based on plaque size produced on the lawn of Xoo. In general, there was a negative relationship between plaque size and host range, and interestingly the phages having a narrow host range had low efficiency of infectivity. The deduced protein sequence analysis of htf genes indicated that the gene was not a determinant of host specificity. Although the difference in host range and infectivity depending on morphotype needs to be addressed, the results revealed deeper understanding of the interaction between the phages and Xoo strains in floodwater and damp soil environments. The phage mixtures reduced the occurrence of BLB when they were treated with skim milk. The results indicate that the Xoo phages could be used as an alternative control method to increase the control efficacy and reduce the use of agrochemicals. PMID:24651644

  11. [Identification of a resistance gene to bacterial blight (Xanthomonas oryzae pv. oryzae) in a somaclonal mutant HX-3 of indica rice].

    PubMed

    Gao, Dong-Ying; Xu, Zhi-Gang; Chen, Zhi-Yi; Sun, Li-Hua; Sun, Qi-Ming; Lu, Fan; Hu, Bai-Shi; Liu, Yong-Feng

    2002-02-01

    Using the mature embryo of a susceptible rice variety Minghui 63 as the explant, we have obtained a somaclonal mutant HX-3 through selection in vitro, which has showed resistance to bacterial blight. In 8 successive years, the resistance of R1 to R9 generations of HX-3 was identified by ZJ173, a typical bacterial blight strain in Yangtsu River valley, and the results showed that the resistance of HX-3 was stable and heritable. Genetic analysis also indicated that the resistance of HX-3 to bacterial blight was under a dominant gene controlling. Using 32 bacterial blight strains collected in China, Philippines and Japan, the resistance spectrum of HX-3 and other 13 testers with different major dominant resistance genes were tested. Results of 2 years (1999-2000) experiment showed that HX-3 had a broad resistance spectrum, which seemed to be different with those of the other dominant resistance genes identified. Allelic tests were also conducted by crossing HX-3 with IRBB4, IRBB7, CBB12 and IRBB21, and the F2 populations of each of the 4 crosses demonstrated resistant and susceptible plant segregation, indicating that the resistance gene in HX-3 different from Xa-4, Xa-7, Xa-12 and Xa-21. All these results proved that there was a new resistance gene in HX-3. We have designated the new gene as Xa-25(t). PMID:11901997

  12. New Multilocus Variable-Number Tandem-Repeat Analysis Tool for Surveillance and Local Epidemiology of Bacterial Leaf Blight and Bacterial Leaf Streak of Rice Caused by Xanthomonas oryzae

    PubMed Central

    Poulin, L.; Grygiel, P.; Magne, M.; Rodriguez-R, L. M.; Forero Serna, N.; Zhao, S.; El Rafii, M.; Dao, S.; Tekete, C.; Wonni, I.; Koita, O.; Pruvost, O.; Verdier, V.; Vernière, C.

    2014-01-01

    Multilocus variable-number tandem-repeat analysis (MLVA) is efficient for routine typing and for investigating the genetic structures of natural microbial populations. Two distinct pathovars of Xanthomonas oryzae can cause significant crop losses in tropical and temperate rice-growing countries. Bacterial leaf streak is caused by X. oryzae pv. oryzicola, and bacterial leaf blight is caused by X. oryzae pv. oryzae. For the latter, two genetic lineages have been described in the literature. We developed a universal MLVA typing tool both for the identification of the three X. oryzae genetic lineages and for epidemiological analyses. Sixteen candidate variable-number tandem-repeat (VNTR) loci were selected according to their presence and polymorphism in 10 draft or complete genome sequences of the three X. oryzae lineages and by VNTR sequencing of a subset of loci of interest in 20 strains per lineage. The MLVA-16 scheme was then applied to 338 strains of X. oryzae representing different pathovars and geographical locations. Linkage disequilibrium between MLVA loci was calculated by index association on different scales, and the 16 loci showed linear Mantel correlation with MLSA data on 56 X. oryzae strains, suggesting that they provide a good phylogenetic signal. Furthermore, analyses of sets of strains for different lineages indicated the possibility of using the scheme for deeper epidemiological investigation on small spatial scales. PMID:25398857

  13. TRANSFORMATION OF ANTHURIUM WITH TRANSGENES FOR BACTERIAL BLIGHT AND NEMATODE RESISTANCE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anthurium transformation was undertaken to engineer plants for resistance to bacterial blight caused by Xanthomonas axonopodis pv. dieffenbachiae and to the nematodes Radopholus simile and Meloidogyne javanica. Agrobacterium tumefaciens transformation of embryogenic calli of ‘Marian Seefurth’ was sh...

  14. TAL effector-mediated susceptibility to bacterial blight of cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial blight of cotton (BBC) caused by Xanthomonas campestris pv. malvacearum (Xcm) is a destructive disease that has recently re-emerged in the U.S. Xcm injects transcription activator-like (TAL) effectors that directly induce the expression of host susceptibility (S) or resistance (R) genes. ...

  15. Draft Genome Sequences of Four Xanthomonas arboricola pv. juglandis Strains Associated with Walnut Blight in Chile

    PubMed Central

    Higuera, Gastón; González-Escalona, Narjol; Véliz, Camila; Vera, Francisca

    2015-01-01

    Xanthomonas arboricola pv. juglandis is an important pathogen responsible for walnut blight outbreaks globally. Here, we report four draft genome sequences of X. arboricola pv. juglandis strains isolated from Chilean walnut trees. PMID:26450732

  16. Registration of Common Bacterial Blight Resistant White Kidney Bean Germplasm Line USWK-CBB-17

    Technology Transfer Automated Retrieval System (TEKTRAN)

    White kidney bean germplasm line USWK-CBB-17 was developed by USDA-ARS in cooperation with the Idaho Agricultural Experiment Station and released in 2006. This line was bred with a high level of resistance to common bacterial blight caused by Xanthomonas axonopodis pv. phaseoli (Xap). Common bacteri...

  17. Draft genome sequence of XANTHOMONAS ARBORICOLA strain 3004, causal agent of bacterial disease on barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report here the annotated genome sequence of XANTHOMONAS ARBORICOLA str. 3004, a Gram-negative phytopathogenic bacteria that includes several pathovars characterized by virulence specificity. Strain 3004 was isolated from barley leaves with symptoms of streak (bacterial blight) and also can infec...

  18. Microarray analysis of the semi-compatible pathogenic response and recovery of leafy spurge inoculated with the Cassava bacterial blight pathogen Xanthomonas axonopodis pv. manihotis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infection by Xanthomonas axonopodis pv. manihotis (Xam)of the model perennial range land weed leafy spurge was tested to see if Xam might serve a potential biological control agent for this invasive weed. Although leafy spurge was susceptible to Xam infection, it recovered with 21 days after inocula...

  19. Registration of Common Bacterial Blight Resistant Dark Red Kidney Bean Germplasm Line USDK-CBB-15

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dark red kidney bean (Phaseolus vulgaris L.) germplasm line USDK-CBB-15 was developed by USDA-ARS in cooperation with the Idaho Agricultural Experiment Station and released in 2005. This line was bred specifically for a high level of resistance to common bacterial blight (Xanthomonas axonopodis pv. ...

  20. RELEASE OF COMMON BACTERIAL BLIGHT RESISTANT WHITE KIDNEY BEAN GERMPLASM LINE USWK-CBB-17

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Agricultural Research Service, U.S. Department of Agriculture, and the Idaho Agricultural Experiment Station announce the release of USWK-CBB-17 white kidney (Phaseolus vulgaris L.) germplasm line with a high level of resistance to common bacterial blight caused by Xanthomonas axonopodis pv. ph...

  1. EFFECT OF NITROGEN FERTILIZATION AND SEED CONTAMINATION ON EPIPHYTIC POPULATIONS OF XANTHOMONAS AXONOPODIS PV. ALLII AND DEVELOPMENT OF XANTHOMONAS LEAF BLIGHT OF ONION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Xanthomonas leaf blight of onion, caused by Xanthomonas axonopodis pv. allii, is a yield-limiting disease in Colorado, for which few effective management strategies are available. The effects of rates of nitrogen fertilization and levels of seed contamination by X. axonopodis pv. allii on epiphytic...

  2. MANAGEMENT OF XANTHOMONAS LEAF BLIGHT OF ONION WITH A PLANT ACTIVATOR, BIOLOGICAL CONTROL AGENTS, AND COPPER BACTERICIDES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Xanthomonas leaf blight (Xanthomonas axonopodis pv. allii) is a yield-limiting disease of onion in the western U.S. Frequent applications of copper-based bactericides amended with an ethylenebisdithiocarbamate fungicide (e.g., maneb or mancozeb, class B2 carcinogens) provide some disease suppressio...

  3. Two independent QTL in dry bean conditioning resistance to common bacterial blight express recessive epistasis when combined

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Common bacterial blight (CBB) caused by (Xanthomonas axonopodis pv. phaseoli) is a major seed-borne disease limiting commercial yield and disease-free seed production of dry bean (Phaseolus vulgaris) worldwide. Genetic resistance is the most effective control method but is difficult to incorporate b...

  4. Registration of Common Bacterial Blight, Rust and Bean Common Mosaic Resistant Great Northern Bean Germplasm Line ABC - Weihing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Great northern common bean (Phaseolus vulgaris L.) germplasm line ABC-Weihing was developed specifically for enhanced resistance to common bacterial blight (CBB), a major disease of common bean caused by the seedborne bacteria Xanthomonas campestris pv. phaseoli (Xcp) and the brown-pigmented variant...

  5. RELEASE OF COMMON BACTERIAL BLIGHT RESISTANT PINTO BEAN GERMPLASM LINES USPT-CBB-5 AND USPT-CBB-6

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Agricultural Research Service, U.S. Department of Agriculture, and the Idaho Agricultural Experiment Station announce the release of USPT-CBB-5 and USPT-CBB-6 pinto bean (Phaseolus vulgaris L.) germplasm lines with high levels of resistance to common bacterial blight caused by Xanthomonas axonop...

  6. Development of an Engineered Bioluminescent Reporter Phage for Detection of Bacterial Blight of Crucifers

    PubMed Central

    Bull, Carolee T.; Rubio, Isael; Wechter, W. Patrick; Westwater, Caroline; Molineux, Ian J.

    2012-01-01

    Bacterial blight, caused by the phytopathogen Pseudomonas cannabina pv. alisalensis, is an emerging disease afflicting important members of the Brassicaceae family. The disease is often misdiagnosed as pepper spot, a much less severe disease caused by the related pathogen Pseudomonas syringae pv. maculicola. We have developed a phage-based diagnostic that can both identify and detect the causative agent of bacterial blight and differentiate the two pathogens. A recombinant “light”-tagged reporter phage was generated by integrating bacterial luxAB genes encoding luciferase into the genome of P. cannabina pv. alisalensis phage PBSPCA1. The PBSPCA1::luxAB reporter phage is viable and stable and retains properties similar to those of the wild-type phage. PBSPCA1::luxAB rapidly and sensitively detects P. cannabina pv. alisalensis by conferring a bioluminescent signal response to cultured cells. Detection is dependent on cell viability. Other bacterial pathogens of Brassica species such as P. syringae pv. maculicola, Pseudomonas marginalis, Pectobacterium carotovorum, Xanthomonas campestris pv. campestris, and X. campestris pv. raphani either do not produce a response or produce significantly attenuated signals with the reporter phage. Importantly, the reporter phage detects P. cannabina pv. alisalensis on diseased plant specimens, indicating its potential for disease diagnosis. PMID:22427491

  7. Development of an engineered bioluminescent reporter phage for detection of bacterial blight of crucifers.

    PubMed

    Schofield, David A; Bull, Carolee T; Rubio, Isael; Wechter, W Patrick; Westwater, Caroline; Molineux, Ian J

    2012-05-01

    Bacterial blight, caused by the phytopathogen Pseudomonas cannabina pv. alisalensis, is an emerging disease afflicting important members of the Brassicaceae family. The disease is often misdiagnosed as pepper spot, a much less severe disease caused by the related pathogen Pseudomonas syringae pv. maculicola. We have developed a phage-based diagnostic that can both identify and detect the causative agent of bacterial blight and differentiate the two pathogens. A recombinant "light"-tagged reporter phage was generated by integrating bacterial luxAB genes encoding luciferase into the genome of P. cannabina pv. alisalensis phage PBSPCA1. The PBSPCA1::luxAB reporter phage is viable and stable and retains properties similar to those of the wild-type phage. PBSPCA1::luxAB rapidly and sensitively detects P. cannabina pv. alisalensis by conferring a bioluminescent signal response to cultured cells. Detection is dependent on cell viability. Other bacterial pathogens of Brassica species such as P. syringae pv. maculicola, Pseudomonas marginalis, Pectobacterium carotovorum, Xanthomonas campestris pv. campestris, and X. campestris pv. raphani either do not produce a response or produce significantly attenuated signals with the reporter phage. Importantly, the reporter phage detects P. cannabina pv. alisalensis on diseased plant specimens, indicating its potential for disease diagnosis. PMID:22427491

  8. Decision tools for bacterial blight resistance gene deployment in rice-based agricultural ecosystems

    PubMed Central

    Dossa, Gerbert S.; Sparks, Adam; Cruz, Casiana Vera; Oliva, Ricardo

    2015-01-01

    Attempting to achieve long-lasting and stable resistance using uniformly deployed rice varieties is not a sustainable approach. The real situation appears to be much more complex and dynamic, one in which pathogens quickly adapt to resistant varieties. To prevent disease epidemics, deployment should be customized and this decision will require interdisciplinary actions. This perspective article aims to highlight the current progress on disease resistance deployment to control bacterial blight in rice. Although the model system rice-Xanthomonas oryzae pv. oryzae has distinctive features that underpin the need for a case-by-case analysis, strategies to integrate those elements into a unique decision tool could be easily extended to other crops. PMID:25999970

  9. Rice Xa21 primed genes and pathways that are critical for combating bacterial blight infection

    PubMed Central

    Peng, Hai; Chen, Zheng; Fang, Zhiwei; Zhou, Junfei; Xia, Zhihui; Gao, Lifen; Chen, Lihong; Li, Lili; Li, Tiantian; Zhai, Wenxue; Zhang, Weixiong

    2015-01-01

    Rice bacterial blight (BB) is a devastating rice disease. The Xa21 gene confers a broad and persistent resistance against BB. We introduced Xa21 into Oryza sativa L ssp indica (rice 9311), through multi-generation backcrossing, and generated a nearly isogenic, blight-resistant 9311/Xa21 rice. Using next-generation sequencing, we profiled the transcriptomes of both varieties before and within four days after infection of bacterium Xanthomonas oryzae pv. oryzae. The identified differentially expressed (DE) genes and signaling pathways revealed insights into the functions of Xa21. Surprisingly, before infection 1,889 genes on 135 of the 316 signaling pathways were DE between the 9311/Xa21 and 9311 plants. These Xa21-mediated basal pathways included mainly those related to the basic material and energy metabolisms and many related to phytohormones such as cytokinin, suggesting that Xa21 triggered redistribution of energy, phytohormones and resources among essential cellular activities before invasion. Counter-intuitively, after infection, the DE genes between the two plants were only one third of that before the infection; other than a few stress-related pathways, the affected pathways after infection constituted a small subset of the Xa21-mediated basal pathways. These results suggested that Xa21 primed critically important genes and signaling pathways, enhancing its resistance against bacterial infection. PMID:26184504

  10. Genomic survey of pathogenicity determinants and VNTR markers in the cassava bacterial pathogen Xanthomonas axonopodis pv. Manihotis strain CIO151.

    PubMed

    Arrieta-Ortiz, Mario L; Rodríguez-R, Luis M; Pérez-Quintero, Álvaro L; Poulin, Lucie; Díaz, Ana C; Arias Rojas, Nathalia; Trujillo, Cesar; Restrepo Benavides, Mariana; Bart, Rebecca; Boch, Jens; Boureau, Tristan; Darrasse, Armelle; David, Perrine; Dugé de Bernonville, Thomas; Fontanilla, Paula; Gagnevin, Lionel; Guérin, Fabien; Jacques, Marie-Agnès; Lauber, Emmanuelle; Lefeuvre, Pierre; Medina, Cesar; Medina, Edgar; Montenegro, Nathaly; Muñoz Bodnar, Alejandra; Noël, Laurent D; Ortiz Quiñones, Juan F; Osorio, Daniela; Pardo, Carolina; Patil, Prabhu B; Poussier, Stéphane; Pruvost, Olivier; Robène-Soustrade, Isabelle; Ryan, Robert P; Tabima, Javier; Urrego Morales, Oscar G; Vernière, Christian; Carrere, Sébastien; Verdier, Valérie; Szurek, Boris; Restrepo, Silvia; López, Camilo; Koebnik, Ralf; Bernal, Adriana

    2013-01-01

    Xanthomonas axonopodis pv. manihotis (Xam) is the causal agent of bacterial blight of cassava, which is among the main components of human diet in Africa and South America. Current information about the molecular pathogenicity factors involved in the infection process of this organism is limited. Previous studies in other bacteria in this genus suggest that advanced draft genome sequences are valuable resources for molecular studies on their interaction with plants and could provide valuable tools for diagnostics and detection. Here we have generated the first manually annotated high-quality draft genome sequence of Xam strain CIO151. Its genomic structure is similar to that of other xanthomonads, especially Xanthomonas euvesicatoria and Xanthomonas citri pv. citri species. Several putative pathogenicity factors were identified, including type III effectors, cell wall-degrading enzymes and clusters encoding protein secretion systems. Specific characteristics in this genome include changes in the xanthomonadin cluster that could explain the lack of typical yellow color in all strains of this pathovar and the presence of 50 regions in the genome with atypical nucleotide composition. The genome sequence was used to predict and evaluate 22 variable number of tandem repeat (VNTR) loci that were subsequently demonstrated as polymorphic in representative Xam strains. Our results demonstrate that Xanthomonas axonopodis pv. manihotis strain CIO151 possesses ten clusters of pathogenicity factors conserved within the genus Xanthomonas. We report 126 genes that are potentially unique to Xam, as well as potential horizontal transfer events in the history of the genome. The relation of these regions with virulence and pathogenicity could explain several aspects of the biology of this pathogen, including its ability to colonize both vascular and non-vascular tissues of cassava plants. A set of 16 robust, polymorphic VNTR loci will be useful to develop a multi-locus VNTR analysis scheme for epidemiological surveillance of this disease. PMID:24278159

  11. Genomic Survey of Pathogenicity Determinants and VNTR Markers in the Cassava Bacterial Pathogen Xanthomonas axonopodis pv. Manihotis Strain CIO151

    PubMed Central

    Arrieta-Ortiz, Mario L.; Rodríguez-R, Luis M.; Pérez-Quintero, Álvaro L.; Poulin, Lucie; Díaz, Ana C.; Arias Rojas, Nathalia; Trujillo, Cesar; Restrepo Benavides, Mariana; Bart, Rebecca; Boch, Jens; Boureau, Tristan; Darrasse, Armelle; David, Perrine; Dugé de Bernonville, Thomas; Fontanilla, Paula; Gagnevin, Lionel; Guérin, Fabien; Jacques, Marie-Agnès; Lauber, Emmanuelle; Lefeuvre, Pierre; Medina, Cesar; Medina, Edgar; Montenegro, Nathaly; Muñoz Bodnar, Alejandra; Noël, Laurent D.; Ortiz Quiñones, Juan F.; Osorio, Daniela; Pardo, Carolina; Patil, Prabhu B.; Poussier, Stéphane; Pruvost, Olivier; Robène-Soustrade, Isabelle; Ryan, Robert P.; Tabima, Javier; Urrego Morales, Oscar G.; Vernière, Christian; Carrere, Sébastien; Verdier, Valérie; Szurek, Boris; Restrepo, Silvia; López, Camilo

    2013-01-01

    Xanthomonas axonopodis pv. manihotis (Xam) is the causal agent of bacterial blight of cassava, which is among the main components of human diet in Africa and South America. Current information about the molecular pathogenicity factors involved in the infection process of this organism is limited. Previous studies in other bacteria in this genus suggest that advanced draft genome sequences are valuable resources for molecular studies on their interaction with plants and could provide valuable tools for diagnostics and detection. Here we have generated the first manually annotated high-quality draft genome sequence of Xam strain CIO151. Its genomic structure is similar to that of other xanthomonads, especially Xanthomonas euvesicatoria and Xanthomonas citri pv. citri species. Several putative pathogenicity factors were identified, including type III effectors, cell wall-degrading enzymes and clusters encoding protein secretion systems. Specific characteristics in this genome include changes in the xanthomonadin cluster that could explain the lack of typical yellow color in all strains of this pathovar and the presence of 50 regions in the genome with atypical nucleotide composition. The genome sequence was used to predict and evaluate 22 variable number of tandem repeat (VNTR) loci that were subsequently demonstrated as polymorphic in representative Xam strains. Our results demonstrate that Xanthomonas axonopodis pv. manihotis strain CIO151 possesses ten clusters of pathogenicity factors conserved within the genus Xanthomonas. We report 126 genes that are potentially unique to Xam, as well as potential horizontal transfer events in the history of the genome. The relation of these regions with virulence and pathogenicity could explain several aspects of the biology of this pathogen, including its ability to colonize both vascular and non-vascular tissues of cassava plants. A set of 16 robust, polymorphic VNTR loci will be useful to develop a multi-locus VNTR analysis scheme for epidemiological surveillance of this disease. PMID:24278159

  12. Identification of an emergent bacterial blight of garlic in Brazil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Outbreaks of a bacterial blight disease occurred on garlic (Allium sativum) cultivars Roxo Caxiense, Quiteria and Cacador in Southern Brazil, and threatened the main production regions of Rio Grande do Sul State. Symptoms were characterized by watersoaked reddish streaks along the leaf midrib, follo...

  13. Data set from a comprehensive phosphoproteomic analysis of rice variety IRBB5 in response to bacterial blight

    PubMed Central

    Hou, Yuxuan; Tong, Xiaohong; Wang, Yifeng; Qiu, Jiehua; Li, Zhiyong; Zhang, Wen; Huang, Shiwen; Zhang, Jian

    2015-01-01

    Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) has become one of the most devastating diseases for rice, a major food source for over half of the world populations. To investigate the roles of protein phosphorylation in rice bacterial blight resistance, a quantitative phosphoproteomic study was conducted in rice variety IRBB5 at 0 h and 24 h after Xoo infection. 2367 and 2223 phosphosites on 1334 and 1297 representative proteins were identified in 0 h and 24 h after Xoo infection, respectively, out of which 762 proteins were found to be differentially phosphorylated. In associated with the published article “A comprehensive quantitative phosphoproteome analysis of rice in response to bacterial blight” in BMC Plant Biology (Hou et al., 2015) [1], this dataset article provided the detailed information of experimental designing, methods, features as well as the raw data of mass spectrometry (MS) identification. The MS proteomics data could be fully accessed from the ProteomeXchange Consortium with the dataset identifier PXD002222.

  14. Data set from a comprehensive phosphoproteomic analysis of rice variety IRBB5 in response to bacterial blight.

    PubMed

    Hou, Yuxuan; Tong, Xiaohong; Wang, Yifeng; Qiu, Jiehua; Li, Zhiyong; Zhang, Wen; Huang, Shiwen; Zhang, Jian

    2016-03-01

    Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) has become one of the most devastating diseases for rice, a major food source for over half of the world populations. To investigate the roles of protein phosphorylation in rice bacterial blight resistance, a quantitative phosphoproteomic study was conducted in rice variety IRBB5 at 0 h and 24 h after Xoo infection. 2367 and 2223 phosphosites on 1334 and 1297 representative proteins were identified in 0 h and 24 h after Xoo infection, respectively, out of which 762 proteins were found to be differentially phosphorylated. In associated with the published article "A comprehensive quantitative phosphoproteome analysis of rice in response to bacterial blight" in BMC Plant Biology (Hou et al., 2015) [1], this dataset article provided the detailed information of experimental designing, methods, features as well as the raw data of mass spectrometry (MS) identification. The MS proteomics data could be fully accessed from the ProteomeXchange Consortium with the dataset identifier PXD002222. PMID:26862573

  15. A SNP Haplotype Associated with a gene resistant to Xanthomonas axonopodis pv. malvacearum in Upland Cotton (Gossyium hirsutum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An F5 population of 285 families with each tracing back to a different F2 plant , derived from a cotton bacterial blight resistant line ‘DeltaOpal’ and a susceptible line ‘DP388’, was artificially inoculated with bacterial blight race 18 (Xanthomonas campestris pv. Malvacearum) to assay their resist...

  16. INHERITANCE OF RESISTANCE IN STRAWBERRY TO BACTERIAL ANGUALAR LEAFSOPT DISEASE CAUSED BY XANTHOMONAS FRAGARIAE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial angular leafspot disease (Xanthomonas fragariae Kennedy and King) of strawberry (Fragaria species and F. × ananassa Duch. cultivars) has become increasingly important to strawberry fruit and plant production. Strawberry cultivars and species vary in susceptibility to infection. However, ...

  17. Characterization of the pigment xanthomonadin in the bacterial genus Xanthomonas using micro- and resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Paret, Mathews L.; Sharma, Shiv K.; Misra, Anupam K.; Acosta, Tayro; deSilva, Asoka S.; Vowell, Tomie; Alvarez, Anne M.

    2012-06-01

    We used micro- and resonance Raman spectroscopy with 785 nm and 514.5 nm laser excitation, respectively, to characterize a plant pathogenic bacteria, Xanthomonas axonopodis pv. dieffenbachiae D150. The bacterial genus Xathomonas is closely related to bacterial genus Stenotrophomonas that causes an infection in humans. This study has identified for the first time the unique Raman spectra of the carotenoid-like pigment xanthomonadin of the Xanthomonas strain. Xanthomonadin is a brominated aryl-polyene pigment molecule similar to carotenoids. Further studies were conducted using resonance Raman spectroscopy with 514.5 nm laser excitation on several strains of the bacterial genus Xanthomonas isolated from numerous plants from various geographical locations. The current study revealed that the Raman bands representing the vibrations (v1, v2, v3) of the polyene chain of xanthomonadin are 1003-1005 (v3), 1135-1138 (v2), and 1530 (v1). Overtone bands representing xanthomonadin were identified as 2264-2275 (2v2), and combinational bands at 2653-2662 (v1+ v2). The findings from this study validate our previous finding that the Raman fingerprints of xanthomonadin are unique for the genus Xanthomonas. This facilitates rapid identification (~5 minutes) of Xanthomonas spp. from bacterial culture plates. The xanthomonadin marker is different from Raman markers of many other bacterial genus including Agrobacterium, Bacillus, Clavibacter, Enterobacter, Erwinia, Microbacterium, Paenibacillus, and Ralstonia. This study also identified Xanthomonas spp. from bacterial strains isolated from a diseased wheat sample on a culture plate.

  18. Epidemiological Study of Hazelnut Bacterial Blight in Central Italy by Using Laboratory Analysis and Geostatistics

    PubMed Central

    Lamichhane, Jay Ram; Fabi, Alfredo; Ridolfi, Roberto; Varvaro, Leonardo

    2013-01-01

    Incidence of Xanthomonas arboricola pv. corylina, the causal agent of hazelnut bacterial blight, was analyzed spatially in relation to the pedoclimatic factors. Hazelnut grown in twelve municipalities situated in the province of Viterbo, central Italy was studied. A consistent number of bacterial isolates were obtained from the infected tissues of hazelnut collected in three years (2010–2012). The isolates, characterized by phenotypic tests, did not show any difference among them. Spatial patterns of pedoclimatic data, analyzed by geostatistics showed a strong positive correlation of disease incidence with higher values of rainfall, thermal shock and soil nitrogen; a weak positive correlation with soil aluminium content and a strong negative correlation with the values of Mg/K ratio. No correlation of the disease incidence was found with soil pH. Disease incidence ranged from very low (<1%) to very high (almost 75%) across the orchards. Young plants (4-year old) were the most affected by the disease confirming a weak negative correlation of the disease incidence with plant age. Plant cultivars did not show any difference in susceptibility to the pathogen. Possible role of climate change on the epidemiology of the disease is discussed. Improved management practices are recommended for effective control of the disease. PMID:23424654

  19. Epidemiological study of hazelnut bacterial blight in central Italy by using laboratory analysis and geostatistics.

    PubMed

    Lamichhane, Jay Ram; Fabi, Alfredo; Ridolfi, Roberto; Varvaro, Leonardo

    2013-01-01

    Incidence of Xanthomonas arboricola pv. corylina, the causal agent of hazelnut bacterial blight, was analyzed spatially in relation to the pedoclimatic factors. Hazelnut grown in twelve municipalities situated in the province of Viterbo, central Italy was studied. A consistent number of bacterial isolates were obtained from the infected tissues of hazelnut collected in three years (2010-2012). The isolates, characterized by phenotypic tests, did not show any difference among them. Spatial patterns of pedoclimatic data, analyzed by geostatistics showed a strong positive correlation of disease incidence with higher values of rainfall, thermal shock and soil nitrogen; a weak positive correlation with soil aluminium content and a strong negative correlation with the values of Mg/K ratio. No correlation of the disease incidence was found with soil pH. Disease incidence ranged from very low (<1%) to very high (almost 75%) across the orchards. Young plants (4-year old) were the most affected by the disease confirming a weak negative correlation of the disease incidence with plant age. Plant cultivars did not show any difference in susceptibility to the pathogen. Possible role of climate change on the epidemiology of the disease is discussed. Improved management practices are recommended for effective control of the disease. PMID:23424654

  20. Bean common bacterial blight: pathogen epiphytic life and effect of irrigation practices.

    PubMed

    Akhavan, Alireza; Bahar, Masoud; Askarian, Homa; Lak, Mohammad Reza; Nazemi, Abolfazl; Zamani, Zahra

    2013-12-01

    In recent years, bean common bacterial blight (CBB) caused by Xanthomonas axonopodis pv. phaseoli (Xap) has caused serious yield losses in several countries. CBB is considered mainly a foliar disease in which symptoms initially appear as small water-soaked spots that then enlarge and become necrotic and usually bordered by a chlorotic zone. Xap epiphytic population community has a critical role in the development of the disease and subsequent epidemics. The epiphytic population of Xap in the field has two major parts; solitary cells (potentially planktonic) and biofilms which are sources for providing and refreshing the solitary cell components. Irrigation type has a significant effect on epiphytic population of Xap. The mean epiphytic population size in the field with an overhead sprinkler irrigation system is significantly higher than populations under furrow irrigation. A significant positive correlation between the epiphytic population size of Xap and disease severity has been reported in both the overhead irrigated (r=0.64) and the furrow irrigated (r= 0.44) fields. PMID:23539532

  1. Code-Assisted Discovery of TAL Effector Targets in Bacterial Leaf Streak of Rice Reveals Contrast with Bacterial Blight and a Novel Susceptibility Gene

    PubMed Central

    Cernadas, Raul A.; Doyle, Erin L.; Niño-Liu, David O.; Wilkins, Katherine E.; Bancroft, Timothy; Wang, Li; Schmidt, Clarice L.; Caldo, Rico; Yang, Bing; White, Frank F.; Nettleton, Dan; Wise, Roger P.; Bogdanove, Adam J.

    2014-01-01

    Bacterial leaf streak of rice, caused by Xanthomonas oryzae pv. oryzicola (Xoc) is an increasingly important yield constraint in this staple crop. A mesophyll colonizer, Xoc differs from X. oryzae pv. oryzae (Xoo), which invades xylem to cause bacterial blight of rice. Both produce multiple distinct TAL effectors, type III-delivered proteins that transactivate effector-specific host genes. A TAL effector finds its target(s) via a partially degenerate code whereby the modular effector amino acid sequence identifies nucleotide sequences to which the protein binds. Virulence contributions of some Xoo TAL effectors have been shown, and their relevant targets, susceptibility (S) genes, identified, but the role of TAL effectors in leaf streak is uncharacterized. We used host transcript profiling to compare leaf streak to blight and to probe functions of Xoc TAL effectors. We found that Xoc and Xoo induce almost completely different host transcriptional changes. Roughly one in three genes upregulated by the pathogens is preceded by a candidate TAL effector binding element. Experimental analysis of the 44 such genes predicted to be Xoc TAL effector targets verified nearly half, and identified most others as false predictions. None of the Xoc targets is a known bacterial blight S gene. Mutational analysis revealed that Tal2g, which activates two genes, contributes to lesion expansion and bacterial exudation. Use of designer TAL effectors discriminated a sulfate transporter gene as the S gene. Across all targets, basal expression tended to be higher than genome-average, and induction moderate. Finally, machine learning applied to real vs. falsely predicted targets yielded a classifier that recalled 92% of the real targets with 88% precision, providing a tool for better target prediction in the future. Our study expands the number of known TAL effector targets, identifies a new class of S gene, and improves our ability to predict functional targeting. PMID:24586171

  2. High-resolution genetic mapping of rice bacterial blight resistance gene Xa23.

    PubMed

    Wang, Chunlian; Fan, Yinglun; Zheng, Chongke; Qin, Tengfei; Zhang, Xiaoping; Zhao, Kaijun

    2014-10-01

    Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is the most devastating bacterial disease of rice (Oryza sativa L.), a staple food crop that feeds half of the world's population. In management of this disease, the most economical and effective approach is cultivating resistant varieties. Due to rapid change of pathogenicity in the pathogen, it is necessary to identify and characterize more host resistance genes for breeding new resistant varieties. We have previously identified the BB resistance (R) gene Xa23 that confers the broadest resistance to Xoo strains isolated from different rice-growing regions and preliminarily mapped the gene within a 1.7 cm region on the long arm of rice chromosome 11. Here, we report fine genetic mapping and in silico analysis of putative candidate genes of Xa23. Based on F2 mapping populations derived from crosses between Xa23-containing rice line CBB23 and susceptible varieties JG30 or IR24, six new STS markers Lj36, Lj46, Lj138, Lj74, A83B4, and Lj13 were developed. Linkage analysis revealed that the new markers were co-segregated with or closely linked to the Xa23 locus. Consequently, the Xa23 gene was mapped within a 0.4 cm region between markers Lj138 and A83B4, in which the co-segregating marker Lj74 was identified. The corresponding physical distance between Lj138 and A83B4 on Nipponbare genome is 49.8 kb. Six Xa23 candidate genes have been annotated, including four candidate genes encoding hypothetical proteins and the other two encoding a putative ADP-ribosylation factor protein and a putative PPR protein. These results will facilitate marker-assisted selection of Xa23 in rice breeding and molecular cloning of this valuable R gene. PMID:24715026

  3. Molecular characterization of Xanthomonas strains responsible for bacterial leaf spot of tomato in Ethiopia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial spot of tomato (BST) is a major constraint to tomato production in Ethiopia and many other countries leading to significant crop losses. In the present study, using pathogenicity tests, sensitivity to copper and streptomycin, and multilocus sequence analysis, a diverse group of Xanthomonas...

  4. A novel Xanthomonas sp. causes bacterial spot of rose (Rosa spp.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A severe bacterial spot of rose (Rosa spp.) caused by a xanthomonad was observed in Florida and Texas. A total of 11 strains were collected from the two states. Multilocus sequence typing and analysis (MLST/MLSA) and pathogenicity tests were conducted to characterize the Xanthomonas strains. The MLS...

  5. Mapping quantitative trait loci associated with resistance to bacterial spot (Xanthomonas arboricola pv. pruni) in peach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial spot, caused by Xanthomonas arboricola pv. pruni (Xap), is a serious disease that can affect peach fruit quality and production worldwide. This disease causes severe defoliation and blemishing of fruit, particularly in areas with high rainfall, strong winds, high humidity, and sandy soil. ...

  6. Breeding Common Bean for resistance to Common Blight: A review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Common blight {caused by Xanthomonas campestris pv. phaseoli Smith (Dye) is a major bacterial disease causing >40% seed yield and quality losses in common bean (Phaseolus vulgaris L.) worldwide. Use of resistant cultivars is crucial for its effective, economical, and environment friendly integarated...

  7. Interaction of common bacterial blight bacteria with disease resistance quantitative trait loci in common bean.

    PubMed

    Duncan, Robert W; Singh, Shree P; Gilbertson, Robert L

    2011-04-01

    Common bacterial blight (CBB) of common bean (Phaseolus vulgaris L.) is caused by Xanthomonas campestris pv. phaseoli and X. fuscans subsp. fuscans, and is the most important bacterial disease of this crop in many regions of the world. In 2005 and 2006, dark red kidney bean fields in a major bean-growing region in central Wisconsin were surveyed for CBB incidence and representative symptomatic leaves collected. Xanthomonad-like bacteria were isolated from these leaves and characterized based upon phenotypic (colony) characteristics, pathogenicity on common bean, polymerase chain reaction (PCR) with X. campestris pv. phaseoli- and X. fuscans subsp. fuscans-specific primers, and repetitive-element PCR (rep-PCR) and 16S-28S ribosomal RNA spacer region sequence analyses. Of 348 isolates that were characterized, 293 were identified as common blight bacteria (i.e., pathogenic on common bean and positive in PCR tests with the X. campestris pv. phaseoli- and X. fuscans subsp. fuscans-specific primers), whereas the other isolates were nonpathogenic xanthomonads. Most (98%) of the pathogenic xanthomonads were X. campestris pv. phaseoli, consistent with the association of this bacterium with CBB in large-seeded bean cultivars of the Andean gene pool. Two types of X. campestris pv. phaseoli were involved with CBB in this region: typical X. campestris pv. phaseoli (P) isolates with yellow mucoid colonies, no brown pigment production, and a typical X. campestris pv. phaseoli rep-PCR fingerprint (60% of strains); and a new phenotype and genotype (Px) with an X. campestris pv. phaseoli-type fingerprint and less mucoid colonies that produced brown pigment (40% of strains). In addition, a small number of X. fuscans subsp. fuscans strains, representing a new genotype (FH), were isolated from two fields in 2005. Representative P and Px X. campestris pv. phaseoli strains, an FH X. fuscans subsp. fuscans strain, plus five previously characterized X. campestris pv. phaseoli and X. fuscans subsp. fuscans genotypes were inoculated onto 28 common bean genotypes having various combinations of known CBB resistance quantitative trait loci (QTL) and associated sequence-characterized amplified region markers. Different levels of virulence were observed for X. campestris pv. phaseoli strains, whereas X. fuscans subsp. fuscans strains were similar in virulence. The typical X. campestris pv. phaseoli strain from Wisconsin was most virulent, whereas X. campestris pv. phaseoli genotypes from East Africa were the least virulent. Host genotypes having the SU91 marker-associated resistance and one or more other QTL (i.e., pyramided resistance), such as the VAX lines, were highly resistant to all genotypes of common blight bacteria tested. This information will help in the development of CBB resistance-breeding strategies for different common bean market classes in different geographical regions, as well as the identification of appropriate pathogen genotypes for screening for resistance. PMID:21391823

  8. Biological Control Activities of Rice-Associated Bacillus sp. Strains against Sheath Blight and Bacterial Panicle Blight of Rice

    PubMed Central

    Shrestha, Bishnu K.; Karki, Hari Sharan; Groth, Donald E.; Jungkhun, Nootjarin; Ham, Jong Hyun

    2016-01-01

    Potential biological control agents for two major rice diseases, sheath blight and bacterial panicle blight, were isolated from rice plants in this study. Rice-associated bacteria (RABs) isolated from rice plants grown in the field were tested for their antagonistic activities against the rice pathogens, Rhizoctonia solani and Burkholderia glumae, which cause sheath blight and bacterial panicle blight, respectively. Twenty-nine RABs were initially screened based on their antagonistic activities against both R. solani and B. glumae. In follow-up retests, 26 RABs of the 29 RABs were confirmed to have antimicrobial activities, but the rest three RABs did not reproduce any observable antagonistic activity against R. solani or B. glumae. According to16S rDNA sequence identity, 12 of the 26 antagonistic RABs were closest to Bacillus amyloliquefaciens, while seven RABs were to B. methylotrophicus and B, subtilis, respectively. The 16S rDNA sequences of the three non-antagonistic RABs were closest to Lysinibacillus sphaericus (RAB1 and RAB12) and Lysinibacillus macroides (RAB5). The five selected RABs showing highest antimicrobial activities (RAB6, RAB9, RAB16, RAB17S, and RAB18) were closest to B. amyloliquefaciens in DNA sequence of 16S rDNA and gyrB, but to B. subtilis in that of recA. These RABs were observed to inhibit the sclerotial germination of R. solani on potato dextrose agar and the lesion development on detached rice leaves by artificial inoculation of R. solani. These antagonistic RABs also significantly suppressed the disease development of sheath blight and bacterial panicle blight in a field condition, suggesting that they can be potential biological control agents for these rice diseases. However, these antagonistic RABs showed diminished disease suppression activities in the repeated field trial conducted in the following year probably due to their reduced antagonistic activities to the pathogens during the long-term storage in -70C, suggesting that development of proper storage methods to maintain antagonistic activity is as crucial as identification of new biological control agents. PMID:26765124

  9. Biological Control Activities of Rice-Associated Bacillus sp. Strains against Sheath Blight and Bacterial Panicle Blight of Rice.

    PubMed

    Shrestha, Bishnu K; Karki, Hari Sharan; Groth, Donald E; Jungkhun, Nootjarin; Ham, Jong Hyun

    2016-01-01

    Potential biological control agents for two major rice diseases, sheath blight and bacterial panicle blight, were isolated from rice plants in this study. Rice-associated bacteria (RABs) isolated from rice plants grown in the field were tested for their antagonistic activities against the rice pathogens, Rhizoctonia solani and Burkholderia glumae, which cause sheath blight and bacterial panicle blight, respectively. Twenty-nine RABs were initially screened based on their antagonistic activities against both R. solani and B. glumae. In follow-up retests, 26 RABs of the 29 RABs were confirmed to have antimicrobial activities, but the rest three RABs did not reproduce any observable antagonistic activity against R. solani or B. glumae. According to16S rDNA sequence identity, 12 of the 26 antagonistic RABs were closest to Bacillus amyloliquefaciens, while seven RABs were to B. methylotrophicus and B, subtilis, respectively. The 16S rDNA sequences of the three non-antagonistic RABs were closest to Lysinibacillus sphaericus (RAB1 and RAB12) and Lysinibacillus macroides (RAB5). The five selected RABs showing highest antimicrobial activities (RAB6, RAB9, RAB16, RAB17S, and RAB18) were closest to B. amyloliquefaciens in DNA sequence of 16S rDNA and gyrB, but to B. subtilis in that of recA. These RABs were observed to inhibit the sclerotial germination of R. solani on potato dextrose agar and the lesion development on detached rice leaves by artificial inoculation of R. solani. These antagonistic RABs also significantly suppressed the disease development of sheath blight and bacterial panicle blight in a field condition, suggesting that they can be potential biological control agents for these rice diseases. However, these antagonistic RABs showed diminished disease suppression activities in the repeated field trial conducted in the following year probably due to their reduced antagonistic activities to the pathogens during the long-term storage in -70C, suggesting that development of proper storage methods to maintain antagonistic activity is as crucial as identification of new biological control agents. PMID:26765124

  10. Optimization of late blight and bacterial wilt management in potato production systems in the highland tropics of Africa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Late blight and bacterial wilt are two formidable disease constraints on potato and account for significant losses in Sub-Saharan Africa (SSA).In this chapter, various management techniques for late blight and bacterial wilt diseases are highlighted and discussed with examples drawn from diverse res...

  11. Rubber-degrading enzyme from a bacterial culture. [Xanthomonas sp

    SciTech Connect

    Tsuchii, A.; Takeda, K. )

    1990-01-01

    Rubber-degrading activity was found in the extracellular culture medium of Xanthomonas sp. strain 35Y which was grown on natural rubber latex. Natural rubber in the latex state was degraded by the crude enzyme, and two fractions were separately observed by gel permeation chromatography of the reaction products. One fraction was of higher molecular weight (HMW) with a very wide MW distribution from 10{sup 3} to 10{sup 5}, and the other fraction was of lower molecular weight (LMW) with a MW of a few hundred. {sup 1}H-nuclear magnetic resonance spectra of the partially purified fractions were those expected of cis-1,4-polyisoprene mixtures with the structure OHC-CH{sub 2}-(-CH{sub 2}-C(-CH{sub 3})=CH-CH{sub 2}-){sub n}-CH{sub 2}-C(=O)-CH{sub 3}, with average values of n of about 113 and 2 for HMW and LMW fractions, respectively. The LMW fraction consisted mostly of one component in gas-liquid chromatography as well as in gel permeation chromatography, and the main component was identified as 12-oxo-4,8-dimethyl trideca-4,8-diene-1-al (acetonyl diprenyl acetoaldehyde, A{sub L}P{sub 2}A{sub t}) by {sup 13}C-nuclear magnetic resonance and gas chromatography-mass spectra. Not only the lattices of natural and synthetic isoprene rubber, but also some kinds of low-MW polyisoprene compounds of cis-1,4 type, were degraded by the crude enzyme. The rubber-degrading reaction was found to be at least partly oxygenase catalyzed from the incorporation of {sup 18}O into A{sub L}P{sub 2}A{sub t} under an {sup 18}O{sub 2} atmosphere.

  12. Virtual Lesion Extension: A Measure to Quantify the Effects of Bacterial Blight on Rice Leaf CO(2) Exchange.

    PubMed

    Elings, A; Rossing, W A; van der Werf, W

    1999-09-01

    ABSTRACT Virtual lesion extension was proposed as a measure to summarize the effects of foliar diseases with single spreading lesions on CO(2)-exchange parameters at the whole-leaf level. Visible lesion plus virtual lesion extension constitute a virtual lesion, in which CO(2) exchange was postulated to be nil. Virtual lesion extension can be derived for each photosynthesis parameter from gas-exchange measurements. Using a leaf-shape function, one-dimensional lesion length was translated into two-dimensional lesion area, and a relationship between visible and virtual severity can be established. The model was applied to measurements of leaf CO(2) exchange in rice leaves infected with Xanthomonas campestris pv. oryzae, the causal organism of rice bacterial blight. The model resulted in a virtual lesion extension of 1.1 cm for the gross CO(2)-exchange rate at light saturation, -3.9 cm for dark respiration rate, and 0 for initial light use efficiency. Reduced light interception due to a visible lesion caused reductions in net CO(2) assimilation, and small virtual lesion extensions only marginally reduced net CO(2) assimilation further. The additional reduction was smaller in case of longer leaves. Measurement of net photosynthesis rate along a transect from the base to the tip of infected leaves indicated that the location on the leaf blade where net photosynthesis decreased from normal to nil was centered around the lesion tip. PMID:18944707

  13. Association mapping of common bacterial blight resistance QTL in Ontario bean breeding populations

    PubMed Central

    2011-01-01

    Background Common bacterial blight (CBB), incited by Xanthomonas axonopodis pv. phaseoli (Xap), is a major yield-limiting factor of common bean (Phaseolus vulgaris L.) production around the world. Host resistance is practically the most effective and environmentally-sound approach to control CBB. Unlike conventional QTL discovery strategies, in which bi-parental populations (F2, RIL, or DH) need to be developed, association mapping-based strategies can use plant breeding populations to synchronize QTL discovery and cultivar development. Results A population of 469 dry bean lines of different market classes representing plant materials routinely developed in a bean breeding program were used. Of them, 395 lines were evaluated for CBB resistance at 14 and 21 DAI (Days After Inoculation) in the summer of 2009 in an artificially inoculated CBB nursery in south-western Ontario. All lines were genotyped using 132 SNPs (Single Nucleotide Polymorphisms) evenly distributed across the genome. Of the 132 SNPs, 26 SNPs had more than 20% missing data, 12 SNPs were monomorphic, and 17 SNPs had a MAF (Minor Allelic Frequency) of less than 0.20, therefore only 75 SNPs were used for association study, based on one SNP per locus. The best possible population structure was to assign 36% and 64% of the lines into Andean and Mesoamerican subgroups, respectively. Kinship analysis also revealed complex familial relationships among all lines, which corresponds with the known pedigree history. MLM (Mixed Linear Model) analysis, including population structure and kinship, was used to discover marker-trait associations. Eighteen and 22 markers were significantly associated with CBB rating at 14 and 21 DAI, respectively. Fourteen markers were significant for both dates and the markers UBC420, SU91, g321, g471, and g796 were highly significant (p ? 0.001). Furthermore, 12 significant SNP markers were co-localized with or close to the CBB-QTLs identified previously in bi-parental QTL mapping studies. Conclusions This study demonstrated that association mapping using a reasonable number of markers, distributed across the genome and with application of plant materials that are routinely developed in a plant breeding program can detect significant QTLs for traits of interest. PMID:21435233

  14. Antibacterial Activity and Mechanism of Action of Sulfone Derivatives Containing 1,3,4-Oxadiazole Moieties on Rice Bacterial Leaf Blight.

    PubMed

    Shi, Li; Li, Pei; Wang, Wenli; Gao, Manni; Wu, Zengxue; Song, Xianpeng; Hu, Deyu

    2015-01-01

    In this study, sulfone derivatives containing 1,3,4-oxadiazole moieties indicated good antibacterial activities against rice bacterial leaf blight caused by the pathogen Xanthomonas oryzaepv. pv. oryzae (Xoo). In particular, 2-(methylsulfonyl)-5-(4-fluorobenzyl)-1,3,4-oxadiazole revealed the best antibacterial activity against Xoo, with a half-maximal effective concentration (EC50) of 9.89 ?g/mL, which was better than those of the commercial agents of bismerthiazole (92.61 ?g/mL) and thiodiazole copper (121.82 ?g/mL). In vivo antibacterial activity tests under greenhouse conditions and field trials demonstrated that 2-(methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole was effective in reducing rice bacterial leaf blight. Meanwhile, 2-(methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole stimulate the increase in superoxide dismutase (SOD) and peroxidase (POD) activities in rice, causing marked enhancement of plant resistance against rice bacterial leaf blight. It could also improve the chlorophyll content and restrain the increase in the malondialdehyde (MDA) content in rice to considerably reduce the amount of damage caused by Xoo. Moreover, 2-(methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole, at a concentration of 20 ?g/mL, could inhibit the production of extracellular polysaccharide (EPS) with an inhibition ratio of 94.52%, and reduce the gene expression levels of gumB, gumG, gumM, and xanA, with inhibition ratios of 94.88%, 68.14%, 86.76%, and 79.21%, respectively. PMID:26114927

  15. Factors influencing efficacy of plastic shelters for control of bacterial blight of lilac

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plastic shelters are thought to manage bacterial blight by protecting plants from rain and/or frost. In February to April 2008 and 2009, we studied the contribution of frost protection to efficacy of this cultural control practice. Lilacs in 1-gallon pots were exposed to four treatments: 1) plants...

  16. Registration of common bacterial blight resistant cranberry dry bean germplasm line USCR-CBB-20

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Common bacterial blight is a serious disease of dry edible beans in warm humid climates. The disease is most prominent east of the continental divide in the U.S. Large seeded dry beans from the Andean gene pool, such as those in the cranberry bean market class are very susceptible to this disease. ...

  17. EPISTATIC INTERACTION BETWEEN TWO MAJOR QTL CONDITIONING RESISTANCE TO COMMON BACTERIAL BLIGHT IN COMMON BEAN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistance to common bacterial blight in common bean is a complex trait that is quantitatively inherited. Combining QTL is the current strategy for improving resistance, but interactions among different QTL are unknown. We examined the interaction between two independent QTL present in dry bean bre...

  18. Characterization of the bacterial stem blight pathogen of alfalfa, Pseudomonas syringae pv. syringae ALF3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial stem blight of alfalfa occurs sporadically in the central and western U.S. Yield losses of up to 50% of the first harvest can occur with some cultivars. Developing resistant cultivars is hampered by lack of information on the pathogen and a standard test for evaluating plant germplasm. Bac...

  19. Development of an engineered ‘bioluminescent’ reporter phage for the detection of bacterial blight of crucifers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial blight, caused by the phytopathogen Pseudomonas cannabina pv. alisalensis, is an emerging disease afflicting important members of the Brassica family. The disease is often misdiagnosed as peppery leaf spot, a much less severe disease caused by the closely related pathogen Pseudomonas syrin...

  20. EMERGENCE OF BACTERIAL BLIGHT OF CRUCIFERS IN CALIFORNIA AND THE U.S.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since its initial appearance in 1995 on broccoli raab (Brassica rapa subsp. rapa) in the Salinas Valley of California, Pseudomonas syringae pv. alisalensis has been shown to cause bacterial blights on a variety of crucifers in California and other states. In addition to published reports of outbreak...

  1. Severe outbreak of bacterial panicle blight across Texas Rice Belt in 2010

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial panicle blight symptoms have been observed in rice fields in Texas for many years, but it was not until 1996 that Burkholderia glumae was identified as the causal agent. Although it is generally considered a minor disease, there have been years where significant losses to yield and milling...

  2. Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens

    PubMed Central

    Wu, Liming; Wu, Huijun; Chen, Lina; Yu, Xinfang; Borriss, Rainer; Gao, Xuewen

    2015-01-01

    Bacterial blight and bacterial leaf streak are serious, economically damaging, diseases of rice caused by the bacteria Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola. Bacillus amyloliquefaciens FZB42 was shown to possess biocontrol activity against these Xanthomonas strains by producing the antibiotic compounds difficidin and bacilysin. Analyses using fluorescence, scanning electron and transmission electron microscopy revealed difficidin and bacilysin caused changes in the cell wall and structure of Xanthomonas. Biological control experiments on rice plants demonstrated the ability of difficidin and bacilysin to suppress disease. Difficidin and bacilysin caused downregulated expression of genes involved in Xanthomonas virulence, cell division, and protein and cell wall synthesis. Taken together, our results highlight the potential of B. amyloliquefaciens FZB42 as a biocontrol agent against bacterial diseases of rice, and the utility of difficidin and bacilysin as antimicrobial compounds. PMID:26268540

  3. Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens.

    PubMed

    Wu, Liming; Wu, Huijun; Chen, Lina; Yu, Xinfang; Borriss, Rainer; Gao, Xuewen

    2015-01-01

    Bacterial blight and bacterial leaf streak are serious, economically damaging, diseases of rice caused by the bacteria Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola. Bacillus amyloliquefaciens FZB42 was shown to possess biocontrol activity against these Xanthomonas strains by producing the antibiotic compounds difficidin and bacilysin. Analyses using fluorescence, scanning electron and transmission electron microscopy revealed difficidin and bacilysin caused changes in the cell wall and structure of Xanthomonas. Biological control experiments on rice plants demonstrated the ability of difficidin and bacilysin to suppress disease. Difficidin and bacilysin caused downregulated expression of genes involved in Xanthomonas virulence, cell division, and protein and cell wall synthesis. Taken together, our results highlight the potential of B. amyloliquefaciens FZB42 as a biocontrol agent against bacterial diseases of rice, and the utility of difficidin and bacilysin as antimicrobial compounds. PMID:26268540

  4. Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice.

    PubMed

    Zhou, Junhui; Peng, Zhao; Long, Juying; Sosso, Davide; Liu, Bo; Eom, Joon-Seob; Huang, Sheng; Liu, Sanzhen; Vera Cruz, Casiana; Frommer, Wolf B; White, Frank F; Yang, Bing

    2015-05-01

    Bacterial blight of rice is caused by the ?-proteobacterium Xanthomonas oryzae pv. oryzae, which utilizes a group of type III TAL (transcription activator-like) effectors to induce host gene expression and condition host susceptibility. Five SWEET genes are functionally redundant to support bacterial disease, but only two were experimentally proven targets of natural TAL effectors. Here, we report the identification of the sucrose transporter gene OsSWEET13 as the disease-susceptibility gene for PthXo2 and the existence of cryptic recessive resistance to PthXo2-dependent X. oryzae pv. oryzae due to promoter variations of OsSWEET13 in japonica rice. PthXo2-containing strains induce OsSWEET13 in indica rice IR24 due to the presence of an unpredicted and undescribed effector binding site not present in the alleles in japonica rice Nipponbare and Kitaake. The specificity of effector-associated gene induction and disease susceptibility is attributable to a single nucleotide polymorphism (SNP), which is also found in a polymorphic allele of OsSWEET13 known as the recessive resistance gene xa25 from the rice cultivar Minghui 63. The mutation of OsSWEET13 with CRISPR/Cas9 technology further corroborates the requirement of OsSWEET13 expression for the state of PthXo2-dependent disease susceptibility to X. oryzae pv. oryzae. Gene profiling of a collection of 104 strains revealed OsSWEET13 induction by 42 isolates of X. oryzae pv. oryzae. Heterologous expression of OsSWEET13 in Nicotiana benthamiana leaf cells elevates sucrose concentrations in the apoplasm. The results corroborate a model whereby X. oryzae pv. oryzae enhances the release of sucrose from host cells in order to exploit the host resources. PMID:25824104

  5. Draft Genome Sequence of Xanthomonas arboricola pv. pruni Strain Xap33, Causal Agent of Bacterial Spot Disease on Almond

    PubMed Central

    Garita-Cambronero, J.; Sena-Vélez, M.; Palacio-Bielsa, A.

    2014-01-01

    We report the annotated genome sequence of Xanthomonas arboricola pv. pruni strain Xap33, isolated from almond leaves showing bacterial spot disease symptoms in Spain. The availability of this genome sequence will aid our understanding of the infection mechanism of this bacterium as well as its relationship to other species of the same genus. PMID:24903863

  6. Mapping quantitative trait loci associated with resistance to bacterial spot (Xanthomonas arboricola pv. pruni)in peach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial spot, caused by Xanthomonas arboricola pv. pruni (Xap), is a serious disease that can affect peach fruit quality and production worldwide. This disease causes severe defoliation and blemishing of fruit, particularly in areas with high rainfall, strong winds, high humidity, and sandy soil. ...

  7. Baby leaf lettuce germplasm enhancement: developing diverse populations with resistance to bacterial leaf spot caused by Xanthomonas campestris pv. vitians

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Baby leaf lettuce cultivars with resistance to bacterial leaf spot (BLS) caused by Xanthomonas campestris pv. vitians (Xcv) are needed to reduce crop losses. The objectives of this research were to assess the genetic diversity for BLS resistance in baby leaf lettuce cultivars and to select early gen...

  8. Genetic Diversity of Lettuce (Lactuca sativa) for Resistance to Bacterial Leaf Spot Caused by Xanthomonas campestris pv. vitians.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lettuce plants were artificially inoculated with three isolates of Xanthomonas campestris pv. vitians in field and greenhouse evaluations for genetic variation in resistance to bacterial leaf spot. The cultivar Little Gem had the least amount of disease, whether evaluated for disease severity or dis...

  9. The inheritance of resistance to bacterial leaf spot of lettuce caused by Xanthomonas campestris pv. vitians in three lettuce cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lettuce yields can be reduced by the disease bacterial leaf spot (BLS) caused by the pathogen Xanthomonas campestris pv. vitians (Xcv) and host resistance is the most feasible method to reduce disease losses. The cultivars La Brillante, Pavane, and Little Gem express an incompatible host-pathogen in...

  10. Role of rpfF in Virulence and Exoenzyme Production of Xanthomonas axonopodis pathovar glycines, the Causal Agent of Bacterial Pustule of Soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ten strains of Xanthomonas axonopodis pv. glycines, the causal agent of bacterial pustule of soybean, obtained from various soybean growing regions of Thailand produced an extracellular diffusible factor (DSF) related to a well-characterized quorum sensing molecule produced by other Xanthomonas spp....

  11. Improvement of Basmati rice varieties for resistance to blast and bacterial blight diseases using marker assisted backcross breeding.

    PubMed

    Ellur, Ranjith K; Khanna, Apurva; Yadav, Ashutosh; Pathania, Sandeep; Rajashekara, H; Singh, Vikas K; Gopala Krishnan, S; Bhowmick, Prolay K; Nagarajan, M; Vinod, K K; Prakash, G; Mondal, Kalyan K; Singh, Nagendra K; Vinod Prabhu, K; Singh, Ashok K

    2016-01-01

    Marker assisted backcross breeding was employed to incorporate the blast resistance genes, Pi2 and Pi54 and bacterial blight (BB) resistance genes xa13 and Xa21 into the genetic background of Pusa Basmati 1121 (PB1121) and Pusa Basmati 6. Foreground selection for target gene(s) was followed by arduous phenotypic and background selection which fast-tracked the recovery of recurrent parent genome (RPG) to an extent of 95.8% in one of the near-isogenic lines (NILs) namely, Pusa 1728-23-33-31-56, which also showed high degree of resemblance to recurrent parent, PB6 in phenotype. The phenotypic selection prior to background selection provided an additional opportunity for identifying the novel recombinants viz., Pusa 1884-9-12-14 and Pusa 1884-3-9-175, superior to parental lines in terms of early maturity, higher yield and improved quality parameters. There was no significant difference between the RPG recovery estimated based on SSR or SNP markers, however, the panel of SNPs markers was considered as the better choice for background selection as it provided better genome coverage and included SNPs in the genic regions. Multi-location evaluation of NILs depicted their stable and high mean performance in comparison to the respective recurrent parents. The Pi2+Pi54 carrying NILs were effective in combating a pan-India panel of Magnaporthe oryzae isolates with high level of field resistance in northern, eastern and southern parts of India. Alongside, the PB1121-NILs and PB6-NILs carrying BB resistance genes xa13+Xa21 were resistant against Xanthomonas oryzae pv. oryzae races of north-western, southern and eastern parts of the country. Three of NILs developed in this study, have been promoted to final stage of testing during the ​Kharif 2015 in the Indian National Basmati Trial. PMID:26566849

  12. Bacterial blight of soybean: Regulation of a pathogen gene determining host cultivar specificity

    SciTech Connect

    Huynh, T.V.; Dahlbeck, D.; Staskawicz, B.J. )

    1989-09-22

    Soybean cultivars resistant to Pseudomonas syringae pathovar glycinea (Psg), the causal agent of bacterial blight, exhibit a hypersensitive (necrosis) reaction (HR) to infection. Psg strains carrying the avrB gene elicit the HR in soybean cultivars carrying the resistance gene Rpg1. Psg expressing avrB at a high level and capable of eliciting the HR in the absence of de novo bacterial RNA synthesis have been obtained in in vitro culture. Nutritional signals and regions within the Psg hrp gene cluster, an approximately 20-kilobase genomic region also necessary for pathogenicity, control avrB transcription.

  13. Foliage, pod and internal seed infection of selected common bean lines when inoculated with two strains of Xanthomonas axonopodis pv. phaseoli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Common bacterial blight (CBB) is an important foliar and seed-borne disease of common bean (Phaseolus vulgaris L.) grown in tropical, subtropical and temperate areas caused by Xanthomonas axonopodis pv. phaseoli (Xap). In this study, the resistance to CBB was evaluated in advanced breeding lines us...

  14. Molecular Phylogeny, Homology Modeling, and Molecular Dynamics Simulation of Race-Specific Bacterial Blight Disease Resistance Protein (xa5) of Rice: A Comparative Agriproteomics Approach

    PubMed Central

    Dehury, Budheswar; Sahu, Mousumi; Sarma, Kishore; Sahu, Jagajjit; Sen, Priyabrata; Modi, Mahendra Kumar; Sharma, Gauri Dutta; Choudhury, Manabendra Dutta

    2013-01-01

    Abstract Rice (Oryza sativa L.), a model plant belonging to the family Poaceae, is a staple food for a majority of the people worldwide. Grown in the tropical and subtropical regions of the world, this important cereal crop is under constant and serious threat from both biotic and abiotic stresses. Among the biotic threats, Xanthomonas oryzae pv. oryzae, causing the damaging bacterial blight disease in rice, is a prominent pathogen. The xa5 gene in the host plant rice confers race-specific resistance to this pathogen. This recessive gene belongs to the Xa gene family of rice and encodes a gamma subunit of transcription factor IIA (TFIIA?). In view of the importance of this gene in conferring resistance to the devastating disease, we reconstructed the phylogenetic relationship of this gene, developed a three-dimensional protein model, followed by long-term molecular dynamics simulation studies to gain a better understanding of the evolution, structure, and function of xa5. The modeled structure was found to fit well with the small subunit of TFIIA from human, suggesting that it may also act as a small subunit of TFIIA in rice. The model had a stable conformation in response to the atomic flexibility and interaction, when subjected to MD simulation at 20 nano second in aqueous solution. Further structural analysis of xa5 indicated that the protein retained its basic transcription factor function, suggesting that it might govern a novel pathway responsible for bacterial blight resistance. Future molecular docking studies of xa5 underway with its corresponding avirulence gene is expected to shed more direct light into plant–pathogen interactions at the molecular level and thus pave the way for richer agriproteomic insights. PMID:23758479

  15. Abscisic Acid Promotes Susceptibility to the Rice Leaf Blight Pathogen Xanthomonas oryzae pv oryzae by Suppressing Salicylic Acid-Mediated Defenses

    PubMed Central

    Xu, Jing; Audenaert, Kris

    2013-01-01

    The plant hormone abscisic acid (ABA) is involved in a wide variety of plant processes, including the initiation of stress-adaptive responses to various environmental cues. Recently, ABA also emerged as a central factor in the regulation and integration of plant immune responses, although little is known about the underlying mechanisms. Aiming to advance our understanding of ABA-modulated disease resistance, we have analyzed the impact, dynamics and interrelationship of ABA and the classic defense hormone salicylic acid (SA) during progression of rice infection by the leaf blight pathogen Xanthomonas oryzae pv. oryzae (Xoo). Consistent with ABA negatively regulating resistance to Xoo, we found that exogenously administered ABA renders rice hypersusceptible to infection, whereas chemical and genetic disruption of ABA biosynthesis and signaling, respectively, led to enhanced Xoo resistance. In addition, we found successful Xoo infection to be associated with extensive reprogramming of ABA biosynthesis and response genes, suggesting that ABA functions as a virulence factor for Xoo. Interestingly, several lines of evidence indicate that this immune-suppressive effect of ABA is due at least in part to suppression of SA-mediated defenses that normally serve to limit pathogen growth. Resistance induced by the ABA biosynthesis inhibitor fluridone, however, appears to operate in a SA-independent manner and is likely due to induction of non-specific physiological stress. Collectively, our findings favor a scenario whereby virulent Xoo hijacks the rice ABA machinery to cause disease and highlight the importance of ABA and its crosstalk with SA in shaping the outcome of rice-Xoo interactions. PMID:23826294

  16. Oscyp71Z2 involves diterpenoid phytoalexin biosynthesis that contributes to bacterial blight resistance in rice.

    PubMed

    Li, Wenqi; Shao, Min; Yang, Jie; Zhong, Weigong; Okada, Kazunori; Yamane, Hisakazu; Qian, Guoliang; Liu, Fengquan

    2013-06-01

    Bacterial blight is one of the most destructive rice diseases, which caused by Xoo, and results in yield losses, endangering worldwide food security. Diterpenoid phytoalexins, a type of antimicrobials produced in rice, are critical for resistance to fungal and bacterial pathogens. This article reports the characterization of the cytochrome P450 gene Oscyp71Z2, which belongs to the CYP71Z subfamily. Overexpression of Oscyp71Z2 in rice enhanced resistance to Xoo at the booting stage. The accumulation of phytoalexins was rapidly and strongly induced in Oscyp71Z2-overexpressing plants, and the transcript levels of genes related to the phytoalexin biosynthesis pathway were elevated. The H₂O₂ concentration in Oscyp71Z2-overexpressing plants was reduced in accordance with the increase in ROS-scavenging ability due to the induction of SOD as well as POD and CAT activation. We also showed that suppression of Oscyp71Z2 had no significantly effect on disease resistance to Xoo in rice. These results demonstrated that Oscyp71Z2 plays an important role in bacterial blight resistance by regulating the diterpenoid phytoalexin biosynthesis and H₂O₂ generation. PMID:23602104

  17. [Polyvalence of bacteriophages isolated from fruit trees, affected by bacterial fire blight].

    PubMed

    Tovkach, F I; Moroz, S N; Korol', N A; Fa?diuk, Iu V; Kushkina, A I

    2013-01-01

    Phage populations appearing as a result of a pathogenic process caused by Erwinia amylovora have been discovered and described. They accompany bacterial fire blight development in the process of quince, pear and apple trees vegetation in Zakarpattya region of Ukraine. Phage isolates of the affected pear and quince include polyvalent virulent phages able to develop on bacterial strains associated with plants--E. amylovora. E. "horticola" and Pantoea agglomerans. E. amylovora isolated from the plant tissues affected by the fire blight and detected at the same time as phages proved to be resistant to the viral infection. It is hard to explain now this characteristic however it was noticed that resistance to phages can change drastically in case of dissociation, lysogenization and mutagenesis of erwinia in laboratory conditions. Phage population study shows that they are heterogeneous and can obviously include not only polyvalent but also specific viruses. Further studies of biology and molecular genetics of pure lines of isolated phages will help to get closer to understanding the place and role of bacteriophages in the complicated network of relations between bacterial pathogens and plants. PMID:23720968

  18. Floating pellets containing bacterial antagonist for control sheath blight of rice: formulations, viability and bacterial release studies.

    PubMed

    Wiwattanapatapee, R; Pengnoo, A; Kanjanamaneesathian, M; Matchavanich, W; Nilratana, L; Jantharangsri, A

    2004-03-24

    Floating pellets containing spores of bacterial biological control agent, Bacillus megaterium were prepared by extrusion-spheronization process. The formulations composed of hydrogenated vegetable oil (HVO), lactose, microcrystalline cellulose (Avicel(R) PH101), and a disintegrant; cross-linked sodium carboxymethylcellulose (Ac-Di-Sol(R)). The finishing pellets contained bacteria ranging from 10(7) to 10(8) CFU/g and the viability of bacteria in all formulations remained high after 6 months storage. The scanning electron microscope (SEM) was used to observe endospores of B. megaterium on both the surface and the inside of the pellets. The formulations were tested for their physical properties, floating ability and bacterial release. The level of disintegrant in the formulations influenced the floating ability and the liberation of antagonistic bacteria from pellets. The bacterial pellets showed promising result in suppression of the development of sheath blight lesions in greenhouse experiment. PMID:15023457

  19. Draft Genome Sequence of Xanthomonas arboricola Strain 3004, a Causal Agent of Bacterial Disease on Barley

    PubMed Central

    Kyrova, Elena I.; Vinogradova, Svetlana V.; Kamionskaya, Anastasia M.; Schaad, Norman W.; Luster, Douglas G.

    2015-01-01

    We report here the annotated genome sequence of Xanthomonas arboricola strain 3004, isolated from barley leaves with symptoms of streak and capable of infecting other plant species. We sequenced the genome of X. arboricola strain 3004 to improve the understanding of molecular mechanisms of the pathogenesis and evolution of the genus Xanthomonas. PMID:25700410

  20. Code-assisted discovery of TAL effector targets in bacterial leaf streak of rice reveals contrast with bacterial blight and a novel susceptibility gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcription activator-like (TAL) effectors found in Xanthomonas spp. promote bacterial growth and plant susceptibility by binding specific DNA sequences or, effector-binding elements (EBEs), and inducing host gene expression. In this study, we have found substantially different transcriptional pro...

  1. Genetic diversity of the conserved motifs of six bacterial leaf blight resistance genes in a set of rice landraces

    PubMed Central

    2014-01-01

    Background Bacterial leaf blight (BLB) caused by the vascular pathogen Xanthomonas oryzae pv. oryzae (Xoo) is one of the most serious diseases leading to crop failure in rice growing countries. A total of 37 resistance genes against Xoo has been identified in rice. Of these, ten BLB resistance genes have been mapped on rice chromosomes, while 6 have been cloned, sequenced and characterized. Diversity analysis at the resistance gene level of this disease is scanty, and the landraces from West Bengal and North Eastern states of India have received little attention so far. The objective of this study was to assess the genetic diversity at conserved domains of 6 BLB resistance genes in a set of 22 rice accessions including landraces and check genotypes collected from the states of Assam, Nagaland, Mizoram and West Bengal. Results In this study 34 pairs of primers were designed from conserved domains of 6 BLB resistance genes; Xa1, xa5, Xa21, Xa21(A1), Xa26 and Xa27. The designed primer pairs were used to generate PCR based polymorphic DNA profiles to detect and elucidate the genetic diversity of the six genes in the 22 diverse rice accessions of known disease phenotype. A total of 140 alleles were identified including 41 rare and 26 null alleles. The average polymorphism information content (PIC) value was 0.56/primer pair. The DNA profiles identified each of the rice landraces unequivocally. The amplified polymorphic DNA bands were used to calculate genetic similarity of the rice landraces in all possible pair combinations. The similarity among the rice accessions ranged from 18% to 89% and the dendrogram produced from the similarity values was divided into 2 major clusters. The conserved domains identified within the sequenced rare alleles include Leucine-Rich Repeat, BED-type zinc finger domain, sugar transferase domain and the domain of the carbohydrate esterase 4 superfamily. Conclusions This study revealed high genetic diversity at conserved domains of six BLB resistance genes in a set of 22 rice accessions. The inclusion of more genotypes from remote ecological niches and hotspots holds promise for identification of further genetic diversity at the BLB resistance genes. PMID:25016378

  2. First report of bacterial blight of cabbage (Brassica oleracea var. capitata L.) caused by Pseudomonas cannabina pv. alisalensis in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel bacterial leaf blight was seen in field grown cabbage (Brassica oleracea var. capitata L.) in Monterey County, California in 2006. Koch’s postulates were completed and etiology of the pathogen was determined. Physiological and molecular characterization showed that the pathogen was Pseudomon...

  3. FIRST REPORT OF BACTERIAL BLIGHT OF CAULIFLOWER (BRASSICA OLERACEA VAR. BOTRYTIS) CAUSED BY PSEUDOMONAS SYRINGAE PV. ALISALENSIS IN CALIFORNIA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel bacterial blight commercial romanesca (green) cauliflower (Brassica oleracea var. botrytis) was seen for the first time in coastal California in 2005. Koch’s postulates were completed and the etiology of the pathogen was determined. Characterization showed that pathogen was Pseudomonas syrin...

  4. Bacterial panicle blight resistance QTL in rice (Oryza sativa L.) and their association with resistance to other diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial panicle blight (BPB) of rice (Oryza sativa L.) occurs when the bacterium Burkholderia glumae infects and colonizes emerging and flowering panicles, causing kernels to abort. To identify quantitative trait loci (QTL) for BPB resistance, a population of 300 recombinant inbred lines (RILs) d...

  5. FIRST REPORT OF BACTERIAL BLIGHT OF RUTABAGA (BRASSICA NAPUS VAR. NAPOBRASSICA) CAUSED BY PSEUDOMONAS SYRINGAE PV. ALISALENSIS IN CALIFORNIA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel bacterial blight on commercial organically grown rutabaga (Brassica napus var. napobrassica) was seen for the first time in coastal California in 2005. Koch’s postulates were completed and the etiology of the pathogen was elucidated. Characterization showed that pathogen was Pseudomonas syri...

  6. Development of practical diagnostic methods for monitoring rice bacterial panicle blight disease and evaluation of rice germplasm for resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was initiated to understand Burkholderia glumae (major causal agent for bacterial panicle blight disease of rice) to develop practical diagnostic methods for monitoring the disease; and to evaluate rice germplasm for resistance. B. glumae was frequently isolated from symptomatic panicles on...

  7. Development of practical diagnostic methods for monitoring rice bacterial panicle blight disease and evaluation of rice germplasm for resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was initiated to understand Burkholderia glumae, the major causal agent for bacterial panicle blight disease of rice; to develop practical diagnostic methods for monitoring the disease; and to evaluate rice germplasm for resistance. Burkholderia glumae was frequently isolated from infected p...

  8. Effervescent fast-disintegrating bacterial formulation for biological control of rice sheath blight.

    PubMed

    Wiwattanapatapee, R; Chumthong, A; Pengnoo, A; Kanjanamaneesathian, M

    2007-06-01

    A lack of effective, easily applied and stable formulation has been a major obstacle to widespread use of biocontrol agents for control of rice sheath blight. In this study, effervescent fast-disintegrating granules containing endospores of Bacillus megaterium were developed for use either by broadcast or spray application. The formulation composed of lactose, polyvinyl pyrrolidone K-30 (PVP, K-30) and effervescent base (citric acid, tartaric acid and sodium bicarbonate). The number of living bacteria in effervescent granules that performed mycelial growth inhibition was in the range of 10(9) CFU/g after 12 months storage at room temperature. The number of viable bacteria after applying into the water and spraying on the rice seedling for 7 days in the greenhouse tests were also satisfactory high (10(9) CFU/g of granules and 10(6) CFU/g of plant, respectively). The scanning electron microscope (SEM) was used to observe bacterial antagonist on the surface of leaf sheath and leaf blade after spraying with formulation. Effervescent formulation applied either broadcasting or spraying reduced incidence of sheath blight disease in the greenhouse experiments. PMID:17428569

  9. Genomic Variability of the Xanthomonas Pathovar mangiferaeindicae, Agent of Mango Bacterial Black Spot

    PubMed Central

    Gagnevin, L.; Leach, J. E.; Pruvost, O.

    1997-01-01

    The genetic diversity of 138 strains of the Xanthomonas pathovar mangiferaeindicae, which were isolated from three different hosts (mango, ambarella, and pepper tree) in 14 different countries, was assessed with restriction fragment length polymorphism markers. An analysis of patterns obtained by hybridization with an hrp cluster probe from Xanthomonas oryzae pv. oryzae separated 11 of the strains from all of the other strains, which suggested that these 11 strains may not be Xanthomonas pv. mangiferaeindicae strains. Hybridization with an avirulence gene from X. oryzae pv. oryzae and a repetitive DNA fragment from Xanthomonas pv. mangiferaeindicae separated the remaining 127 strains into four groups that were consistent with both geographic and host origins. The group with the greatest diversity consisted of strains from Southeast Asia, where mango originated. Other groups and subgroups contained strains that were either from widely separated countries, which suggested that wide dissemination from a single site occurred, or from localized areas, which suggested that evolution of separate lineages of strains occurred. One group of strains contained only strains isolated from pepper trees in Reunion, indicating that pepper tree may not be an alternate host for Xanthomonas pv. mangiferaeindicae strains. PMID:16535490

  10. Reduction in bacterial ooze formation on immature fruitlets after preventive treatments of Fosethyl-Al against fire blight Erwinia amylovora.

    PubMed

    Deckers, T; Schoofs, H; Verjans, W; De Maeyer, L

    2010-01-01

    Fire blight, caused by the bacterium Erwinia amylovora (Burill Winslow et al.), is a very important bacterial disease on apple and pear orchards with devastating effects in some production area and in some years. Fire blight control consists in a whole strategy of measures that should start with control measures in and around the fruit tree nurseries. Only the use of Vacciplant (Laminarin), an inducer of the self-defence mechanism, is registered in Belgium since 2009. In other European countries Fosethyl-Al has been registered for fire blight control. Recently, research trials have been done at Pcfruit research station for several years on the activity of ALiette (fosethyl-Al) against fire blight. Fosethyl-Al, also a plant defence enhancing molecule, applied preventively 3 times at a dose of 3.75 kg/ha standard orchard (3 x 3000 g a.i./ha standard orchard), showed a reduction in the host susceptibility and decreased the disease development on artificial inoculated flower clusters and shoots. Also a clear reduction in the ooze droplet formation on artificially inoculated immature fruitlets has been observed with this molecule. This reduction in the bacterial ooze formation is considered as a very important factor in the spread of the disease in the orchard. PMID:21534464

  11. Gene silencing using the recessive rice bacterial blight resistance gene xa13 as a new paradigm in plant breeding.

    PubMed

    Li, Changyan; Wei, Jing; Lin, Yongjun; Chen, Hao

    2012-05-01

    Resistant germplasm resources are valuable for developing resistant varieties in agricultural production. However, recessive resistance genes are usually overlooked in hybrid breeding. Compared with dominant traits, however, they may confer resistance to different pathogenic races or pest biotypes with different mechanisms of action. The recessive rice bacterial blight resistance gene xa13, also involved in pollen development, has been cloned and its resistance mechanism has been recently characterized. This report describes the conversion of bacterial blight resistance mediated by the recessive xa13 gene into a dominant trait to facilitate its use in a breeding program. This was achieved by knockdown of the corresponding dominant allele Xa13 in transgenic rice using recently developed artificial microRNA technology. Tissue-specific promoters were used to exclude most of the expression of artificial microRNA in the anther to ensure that Xa13 functioned normally during pollen development. A battery of highly bacterial blight resistant transgenic plants with normal seed setting rates were acquired, indicating that highly specific gene silencing had been achieved. Our success with xa13 provides a paradigm that can be adapted to other recessive resistance genes. PMID:22218673

  12. A comparison of the molecular organization of genomic regions associated with resistance to common bacterial blight in two Phaseolus vulgaris genotypes

    PubMed Central

    Perry, Gregory; DiNatale, Claudia; Xie, Weilong; Navabi, Alireza; Reinprecht, Yarmilla; Crosby, William; Yu, Kangfu; Shi, Chun; Pauls, K. Peter

    2013-01-01

    Resistance to common bacterial blight, caused by Xanthomonas axonopodis pv. phaseoli, in Phaseolus vulgaris is conditioned by several loci on different chromosomes. Previous studies with OAC-Rex, a CBB-resistant, white bean variety of Mesoamerican origin, identified two resistance loci associated with the molecular markers Pv-CTT001 and SU91, on chromosome 4 and 8, respectively. Resistance to CBB is assumed to be derived from an interspecific cross with Phaseolus acutifolius in the pedigree of OAC-Rex. Our current whole genome sequencing effort with OAC-Rex provided the opportunity to compare its genome in the regions associated with CBB resistance with the v1.0 release of the P. vulgaris line G19833, which is a large seeded bean of Andean origin, and (assumed to be) CBB susceptible. In addition, the genomic regions containing SAP6, a marker associated with P. vulgaris-derived CBB-resistance on chromosome 10, were compared. These analyses indicated that gene content was highly conserved between G19833 and OAC-Rex across the regions examined (>80%). However, fifty-nine genes unique to OAC Rex were identified, with resistance gene homologues making up the largest category (10 genes identified). Two unique genes in OAC-Rex located within the SU91 resistance QTL have homology to P. acutifolius ESTs and may be potential sources of CBB resistance. As the genomic sequence assembly of OAC-Rex is completed, we expect that further comparisons between it and the G19833 genome will lead to a greater understanding of CBB resistance in bean. PMID:24009615

  13. Southern leaf blight disease severity is correlated with decreased maize leaf epiphytic bacterial species richness and the phyllosphere bacterial diversity decline is enhanced by nitrogen fertilization

    PubMed Central

    Manching, Heather C.; Balint-Kurti, Peter J.; Stapleton, Ann E.

    2014-01-01

    Plant leaves are inhabited by a diverse group of microorganisms that are important contributors to optimal growth. Biotic and abiotic effects on plant growth are usually studied in controlled settings examining response to variation in single factors and in field settings with large numbers of variables. Multi-factor experiments with combinations of stresses bridge this gap, increasing our understanding of the genotype-environment-phenotype functional map for the host plant and the affiliated epiphytic community. The maize inbred B73 was exposed to single and combination abiotic and the biotic stress treatments: low nitrogen fertilizer and high levels of infection with southern leaf blight (causal agent Cochliobolus heterostrophus). Microbial epiphyte samples were collected at the vegetative early-season phase and species composition was determined using 16S ribosomal intergenic spacer analysis. Plant traits and level of southern leaf blight disease were measured late-season. Bacterial diversity was different among stress treatment groups (P < 0.001). Lower species richness—alpha diversity—was correlated with increased severity of southern leaf blight disease when disease pressure was high. Nitrogen fertilization intensified the decline in bacterial alpha diversity. While no single bacterial ribotype was consistently associated with disease severity, small sets of ribotypes were good predictors of disease levels. Difference in leaf bacterial-epiphyte diversity early in the season were correlated with plant disease severity, supporting further tests of microbial epiphyte-disease correlations for use in predicting disease progression. PMID:25177328

  14. Southern leaf blight disease severity is correlated with decreased maize leaf epiphytic bacterial species richness and the phyllosphere bacterial diversity decline is enhanced by nitrogen fertilization.

    PubMed

    Manching, Heather C; Balint-Kurti, Peter J; Stapleton, Ann E

    2014-01-01

    Plant leaves are inhabited by a diverse group of microorganisms that are important contributors to optimal growth. Biotic and abiotic effects on plant growth are usually studied in controlled settings examining response to variation in single factors and in field settings with large numbers of variables. Multi-factor experiments with combinations of stresses bridge this gap, increasing our understanding of the genotype-environment-phenotype functional map for the host plant and the affiliated epiphytic community. The maize inbred B73 was exposed to single and combination abiotic and the biotic stress treatments: low nitrogen fertilizer and high levels of infection with southern leaf blight (causal agent Cochliobolus heterostrophus). Microbial epiphyte samples were collected at the vegetative early-season phase and species composition was determined using 16S ribosomal intergenic spacer analysis. Plant traits and level of southern leaf blight disease were measured late-season. Bacterial diversity was different among stress treatment groups (P < 0.001). Lower species richness-alpha diversity-was correlated with increased severity of southern leaf blight disease when disease pressure was high. Nitrogen fertilization intensified the decline in bacterial alpha diversity. While no single bacterial ribotype was consistently associated with disease severity, small sets of ribotypes were good predictors of disease levels. Difference in leaf bacterial-epiphyte diversity early in the season were correlated with plant disease severity, supporting further tests of microbial epiphyte-disease correlations for use in predicting disease progression. PMID:25177328

  15. Genome sequencing reveals a new lineage associated with lablab bean and genetic exchange between Xanthomonas axonopodis pv. phaseoli and Xanthomonas fuscans subsp. fuscans

    PubMed Central

    Aritua, Valente; Harrison, James; Sapp, Melanie; Buruchara, Robin; Smith, Julian; Studholme, David J.

    2015-01-01

    Common bacterial blight is a devastating seed-borne disease of common beans that also occurs on other legume species including lablab and Lima beans. We sequenced and analyzed the genomes of 26 strains of Xanthomonas axonopodis pv. phaseoli and X. fuscans subsp. fuscans, the causative agents of this disease, collected over four decades and six continents. This revealed considerable genetic variation within both taxa, encompassing both single-nucleotide variants and differences in gene content, that could be exploited for tracking pathogen spread. The bacterial strain from Lima bean fell within the previously described Genetic Lineage 1, along with the pathovar type strain (NCPPB 3035). The strains from lablab represent a new, previously unknown genetic lineage closely related to strains of X. axonopodis pv. glycines. Finally, we identified more than 100 genes that appear to have been recently acquired by Xanthomonas axonopodis pv. phaseoli from X. fuscans subsp. fuscans. PMID:26500625

  16. Genome sequencing reveals a new lineage associated with lablab bean and genetic exchange between Xanthomonas axonopodis pv. phaseoli and Xanthomonas fuscans subsp. fuscans.

    PubMed

    Aritua, Valente; Harrison, James; Sapp, Melanie; Buruchara, Robin; Smith, Julian; Studholme, David J

    2015-01-01

    Common bacterial blight is a devastating seed-borne disease of common beans that also occurs on other legume species including lablab and Lima beans. We sequenced and analyzed the genomes of 26 strains of Xanthomonas axonopodis pv. phaseoli and X. fuscans subsp. fuscans, the causative agents of this disease, collected over four decades and six continents. This revealed considerable genetic variation within both taxa, encompassing both single-nucleotide variants and differences in gene content, that could be exploited for tracking pathogen spread. The bacterial strain from Lima bean fell within the previously described Genetic Lineage 1, along with the pathovar type strain (NCPPB 3035). The strains from lablab represent a new, previously unknown genetic lineage closely related to strains of X. axonopodis pv. glycines. Finally, we identified more than 100 genes that appear to have been recently acquired by Xanthomonas axonopodis pv. phaseoli from X. fuscans subsp. fuscans. PMID:26500625

  17. Quantitative Trait Loci Mapping for Bacterial Blight Resistance in Rice Using Bulked Segregant Analysis

    PubMed Central

    Han, Xueying; Yang, Yong; Wang, Xuming; Zhou, Jie; Zhang, Wenhao; Yu, Chulang; Cheng, Chen; Cheng, Ye; Yan, Chengqi; Chen, Jianping

    2014-01-01

    Oryza meyeriana is highly resistant to rice bacterial blight (BB) and this resistance trait has been transferred to cultivated rice (O. sativa) using asymmetric somatic hybridization. However, no resistance genes have yet been cloned. In the present study, a progeny of the somatic hybridization with high BB resistance was crossed with a rice cultivar with high BB susceptibility to develop an F2 population. Using bulked segregant analysis (BSA), 17 polymorphic markers that were linked to rice BB resistance were obtained through scanning a total of 186 simple sequence repeats (SSR) and sequence-tagged site (STS) markers, evenly distributed on 12 chromosomes. A genetic linkage map was then constructed based on the 17 linkage markers and the F2 segregating population, which was followed by mapping for quantitative trait loci (QTLs) for BB resistance. Three QTLs were identified on chromosomes 1, 3 and 5, respectively, and the alleles of the resistant parent at any of the QTLs increased BB resistance. All of the three QTLs had a strong effect on resistance, explaining about 21.5%, 12.3% and 39.2% of the resistance variance, respectively. These QTLs were different from the loci of the BB resistance genes that have been identified in previous studies. The QTLs mapped in this work will facilitate the isolation of novel BB resistance genes and their utilization in rice resistance breeding. PMID:24995697

  18. Complete Genome Sequence of the African Strain AXO1947 of Xanthomonas oryzae pv. oryzae.

    PubMed

    Huguet-Tapia, J C; Peng, Z; Yang, B; Yin, Z; Liu, S; White, F F

    2016-01-01

    Xanthomonas oryzae pv. oryzae is the etiological agent of bacterial rice blight. Three distinct clades of X. oryzae pv. oryzae are known. We present the complete annotated genome of the African clade strain AXO194 using long-read single-molecule PacBio sequencing technology. The genome comprises a single chromosome of 4,674,975 bp and encodes for nine transcriptional activator-like (TAL) effectors. The approach and data presented in this announcement provide information for complex bacterial genome organization and the discovery of new virulence effectors, and they facilitate target characterization of TAL effectors. PMID:26868406

  19. Complete Genome Sequence of the African Strain AXO1947 of Xanthomonas oryzae pv. oryzae

    PubMed Central

    Huguet-Tapia, J. C.; Peng, Z.; Yang, B.; Yin, Z.; Liu, S.

    2016-01-01

    Xanthomonas oryzae pv. oryzae is the etiological agent of bacterial rice blight. Three distinct clades of X. oryzae pv. oryzae are known. We present the complete annotated genome of the African clade strain AXO194 using long-read single-molecule PacBio sequencing technology. The genome comprises a single chromosome of 4,674,975 bp and encodes for nine transcriptional activator-like (TAL) effectors. The approach and data presented in this announcement provide information for complex bacterial genome organization and the discovery of new virulence effectors, and they facilitate target characterization of TAL effectors. PMID:26868406

  20. PSEUDOMONAS SYRINGAE PV. ALISALENSIS PV. NOV., A NEW PATHOVAR PROPOSED FOR THE CAUSAL AGENT OF BACTERIAL BLIGHT OF BROCCOLI AND BROCCOLI RAAB

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The etiology of three foliar bacterial diseases of crucifers and the relationships between their causal agents were evaluated. Data from LOPAT and carbon utilization tests, and fatty acid analysis indicated that bacterial blights of broccoli and broccoli raab, and leaf spot of broccolini, were cause...

  1. Development of a Model to Predict the Primary Infection Date of Bacterial Spot (Xanthomonas campestris pv. vesicatoria) on Hot Pepper.

    PubMed

    Kim, Ji-Hoon; Kang, Wee-Soo; Yun, Sung-Chul

    2014-06-01

    A population model of bacterial spot caused by Xanthomonas campestris pv. vesicatoria on hot pepper was developed to predict the primary disease infection date. The model estimated the pathogen population on the surface and within the leaf of the host based on the wetness period and temperature. For successful infection, at least 5,000 cells/ml of the bacterial population were required. Also, wind and rain were necessary according to regression analyses of the monitored data. Bacterial spot on the model is initiated when the pathogen population exceeds 10(15) cells/g within the leaf. The developed model was validated using 94 assessed samples from 2000 to 2007 obtained from monitored fields. Based on the validation study, the predicted initial infection dates varied based on the year rather than the location. Differences in initial infection dates between the model predictions and the monitored data in the field were minimal. For example, predicted infection dates for 7 locations were within the same month as the actual infection dates, 11 locations were within 1 month of the actual infection, and only 3 locations were more than 2 months apart from the actual infection. The predicted infection dates were mapped from 2009 to 2012; 2011 was the most severe year. Although the model was not sensitive enough to predict disease severity of less than 0.1% in the field, our model predicted bacterial spot severity of 1% or more. Therefore, this model can be applied in the field to determine when bacterial spot control is required. PMID:25288995

  2. Genetic diversity and association mapping of bacterial blight and other horticulturally important traits with microsatellite markers in pomegranate from India.

    PubMed

    Singh, Nripendra Vikram; Abburi, Venkata Lakshmi; Ramajayam, D; Kumar, Ravinder; Chandra, Ram; Sharma, Kuldeep Kumar; Sharma, Jyotsana; Babu, K Dhinesh; Pal, Ram Krishna; Mundewadikar, Dhananjay M; Saminathan, Thangasamy; Cantrell, Robert; Nimmakayala, Padma; Reddy, Umesh K

    2015-08-01

    This genetic diversity study aimed to estimate the population structure and explore the use of association mapping strategies to identify linked markers for bacterial resistance, growth and fruit quality in pomegranate collections from India. In total, 88 accessions including 37 cultivated types were investigated. A total of 112 alleles were amplified by use of 44 publicly available microsatellites for estimating molecular genetic diversity and population structure. Neighbor-joining analysis, model-based population structure and principal component analysis corroborated the genetic relationships among wild-type and cultivated pomegranate collections from India. Our study placed all 88 germplasm into four clusters. We identified a cultivated clade of pomegranates in close proximity to Daru types of wild-type pomegranates that grow naturally near the foothills of the Himalayas. Admixture analysis sorted various lineages of cultivated pomegranates to their respective ancestral forms. We identified four linked markers for fruit weight, titratable acidity and bacterial blight severity. PGCT001 was found associated with both fruit weight and bacterial blight, and the association with fruit weight during both seasons analyzed was significant after Bonferroni correction. This research demonstrates effectiveness of microsatellites to resolve population structure among the wild and cultivar collection of pomegranates and future use for association mapping studies. PMID:25675870

  3. Transgenic banana plants expressing Xanthomonas wilt resistance genes revealed a stable non-target bacterial colonization structure.

    PubMed

    Nimusiima, Jean; Köberl, Martina; Tumuhairwe, John Baptist; Kubiriba, Jerome; Staver, Charles; Berg, Gabriele

    2015-01-01

    Africa is among the continents where the battle over genetically modified crops is currently being played out. The impact of GM in Africa could potentially be very positive. In Uganda, researchers have developed transgenic banana lines resistant to banana Xanthomonas wilt. The transgenic lines expressing hrap and pflp can provide a timely solution to the pandemic. However, the impact of the transgenes expression on non-target microorganisms has not yet been investigated. To study this effect, transgenic and control lines were grown under field conditions and their associated microbiome was investigated by 16S rRNA gene profiling combining amplicon sequencing and molecular fingerprinting. Three years after sucker planting, no statistically significant differences between transgenic lines and their non-modified predecessors were detected for their associated bacterial communities. The overall gammaproteobacterial rhizosphere microbiome was highly dominated by Xanthomonadales, while Pseudomonadales and Enterobacteriales were accumulated in the pseudostem. Shannon indices revealed much higher diversity in the rhizosphere than in the pseudostem endosphere. However, the expression of the transgenes did not result in changes in the diversity of Gammaproteobacteria, the closest relatives of the target pathogen. In this field experiment, the expression of the resistance genes appears to have no consequences for non-target rhizobacteria and endophytes. PMID:26657016

  4. Transgenic banana plants expressing Xanthomonas wilt resistance genes revealed a stable non-target bacterial colonization structure

    PubMed Central

    Nimusiima, Jean; Köberl, Martina; Tumuhairwe, John Baptist; Kubiriba, Jerome; Staver, Charles; Berg, Gabriele

    2015-01-01

    Africa is among the continents where the battle over genetically modified crops is currently being played out. The impact of GM in Africa could potentially be very positive. In Uganda, researchers have developed transgenic banana lines resistant to banana Xanthomonas wilt. The transgenic lines expressing hrap and pflp can provide a timely solution to the pandemic. However, the impact of the transgenes expression on non-target microorganisms has not yet been investigated. To study this effect, transgenic and control lines were grown under field conditions and their associated microbiome was investigated by 16S rRNA gene profiling combining amplicon sequencing and molecular fingerprinting. Three years after sucker planting, no statistically significant differences between transgenic lines and their non-modified predecessors were detected for their associated bacterial communities. The overall gammaproteobacterial rhizosphere microbiome was highly dominated by Xanthomonadales, while Pseudomonadales and Enterobacteriales were accumulated in the pseudostem. Shannon indices revealed much higher diversity in the rhizosphere than in the pseudostem endosphere. However, the expression of the transgenes did not result in changes in the diversity of Gammaproteobacteria, the closest relatives of the target pathogen. In this field experiment, the expression of the resistance genes appears to have no consequences for non-target rhizobacteria and endophytes. PMID:26657016

  5. Transcriptome Alterations Resulting From Infection And Recovery Of Leafy Spurge To Cassava Bacterial Blight (Xanthomonas axonopodis pv. Manihotis)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leafy spurge is a perennial rangeland weed that has been developed as a model weed system. An extensive EST database and cDNA microarrays containing more than 23,000 unigenes have been developed and used to characterize a variety of physiological processes from bud dormancy to drought stress and rec...

  6. Registration of Great Northern Common Bean Cultivar NE1-06-12 with Enhanced Disease Resistance to Common Bacterial Blight and Bean Rust

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Great northern common bean (Phaseolus vulgaris L.) cultivar NE1-06-12, developed by the University of Nebraska Agricultural Research Division and released in 2008, was bred specifically for enhanced resistance to common bacterial blight, a major disease of common bean caused by the seed borne bacter...

  7. First report of bacterial blight of Brussels sprouts (Brassica oleracea L. var. gemmifera) caused by Pseudomonas cannabina pv. alisalensis in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel bacterial leaf blight was seen in commercial Brussels sprout (Brassica oleracea L. var. gemmifera) transplant production in 2006. Koch’s postulates were completed and etiology of the pathogen was determined. Physiological and molecular characterization showed that the pathogen was Pseudomona...

  8. Interactions Between QTL SAP6 and SU91 on Resistance to Common Bacterial Blight in Red Kidney Bean and Pinto Bean Populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistance to common bacterial blight in common bean is a complex trait that is quantitatively inherited. We examined the interaction between two independent QTL, SAP6 and SU91, which condition resistance to CBB.The QTL were studied in a pinto bean F2 population a cross between Othello (sap6 sap6 //...

  9. Pathovars of Pseudomonas syringae Causing Bacterial Brown Spot and Halo Blight in Phaseolus vulgaris L. Are Distinguishable by Ribotyping

    PubMed Central

    González, Ana J.; Landeras, Elena; Mendoza, M. Carmen

    2000-01-01

    Ribotyping was evaluated as a method to differentiate between Pseudomonas syringae pv. phaseolicola and pv. syringae strains causing bacterial brown spot and halo blight diseases in Phaseolus vulgaris L. Ribotyping, with restriction enzymes BglI and SalI and using the Escherichia coli rrnB operon as the probe, differentiated 11 and 14 ribotypes, respectively, and a combination of data from both procedures yielded 19 combined ribotypes. Cluster analysis of the combined ribotypes differentiated the pathovars phaseolicola and syringae, as well as different clonal lineages within these pathovars. The potential of ribotyping to screen for correlations between lineages and factors such as geographical region and/or bean varieties is also reported. PMID:10653764

  10. Characterization of Novel Bacteriophages for Biocontrol of Bacterial Blight in Leek Caused by Pseudomonas syringae pv. porri

    PubMed Central

    Rombouts, Sofie; Volckaert, Anneleen; Venneman, Sofie; Declercq, Bart; Vandenheuvel, Dieter; Allonsius, Camille N.; Van Malderghem, Cinzia; Jang, Ho B.; Briers, Yves; Noben, Jean P.; Klumpp, Jochen; Van Vaerenbergh, Johan; Maes, Martine; Lavigne, Rob

    2016-01-01

    Pseudomonas syringae pv. porri, the causative agent of bacterial blight in leek (Allium porrum), is increasingly frequent causing problems in leek cultivation. Because of the current lack of control measures, novel bacteriophages were isolated to control this pathogen using phage therapy. Five novel phages were isolated from infected fields in Flanders (vB_PsyM_KIL1, vB_PsyM_KIL2, vB_PsyM_KIL3, vB_PsyM_KIL4, and vB_PsyM_KIL5), and were complemented with one selected host range mutant phage (vB_PsyM_KIL3b). Genome analysis of the phages revealed genome sizes between 90 and 94 kb and an average GC-content of 44.8%. Phylogenomic networking classified them into a novel clade, named the “KIL-like viruses,” related to the Felixounalikevirus genus, together with phage phiPsa374 from P. syringae pv. actinidiae. In vitro characterization demonstrated the stability and lytic potential of these phages. Host range analysis confirmed heterogeneity within P. syringae pv. porri, leading to the development of a phage cocktail with a range that covers the entire set of 41 strains tested. Specific bio-assays demonstrated the in planta efficacy of phages vB_PsyM_KIL1, vB_PsyM_KIL2, vB_PsyM_KIL3, and vB_PsyM_KIL3b. In addition, two parallel field trial experiments on three locations using a phage cocktail of the six phages showed variable results. In one trial, symptom development was attenuated. These data suggest some potential for phage therapy in controlling bacterial blight of leek, pending optimization of formulation and application methods. PMID:27014204

  11. Differentiation of Xanthomonas spp. Causing Bacterial Spot in Bulgaria Based on Biolog System

    PubMed Central

    Stoyanova, Mariya; Vancheva, Taca; Moncheva, Penka; Bogatzevska, Nevena

    2014-01-01

    During the last 20 years, the causative agents of bacterial spot of tomato and pepper have been subjected to many studies and reclassifications. According to the current data, the species are four (X. euvesicatoria, X. vesicatoria, X. gardneri, and X. perforans) and cause similar symptoms in plants but possess different phenotypic properties. This work provides the full metabolic characteristics obtained by Biolog system of bacterial spot's xanthomonads based on a large selection of strains from different vegetable-producing regions of Bulgaria with accent on their major differentiating properties which could be used for species differentiation by metabolic profiles. The results are compared to the data available in the literature in order to clarify the strong features of each species and distinguish the variable ones. Simple characteristics like amylase activity and utilization of cis-aconitate cannot serve alone for differentiation. PMID:25197281

  12. Small scale production and characterization of xanthan gum synthesized by local isolates of Xanthomonas campestris.

    PubMed

    Barua, Rajesh; Alam, Md Jahangir; Salim, Mohammad; Ashrafee, Tamzida Shamim

    2016-02-01

    Xanthan gum is a commercially important microbial exopolysaccharide (EPS) produced by Xanthomonas campestris. X. campestris is a plant pathogen causing various plant diseases such as black rot of crucifers, bacterial leaf blight and citrus canker disease resulting in crop damage. In this study, we isolated efficient local bacterial isolates which are capable to produce xanthan gum utilizing different sources of carbon (maltose, sucrose and glucose). Bacterial isolates from different plant leaves and fruits were identified as Xanthomonas campestris based on their morphological and biochemical characteristics. Among the 23 isolates, 70% were capable of producing gum. Taro plant, considered as new bacterial host, also have the capability to produce xanthan gum. Production conditions of xanthan gum and their relative viscosity by these bacterial isolates were optimized using basal medium containing commercial carbon and nitrogen sources and various temperature and rotation. Highest level of xanthan gum (18.286 g/l) with relative viscosity (7.2) was produced (Host, Citrus macroptera) at 28 degrees C, pH 7.0, 150 rpm using sucrose as a carbon source at orbital shaker. Whereas, in lab fermenter, same conditions gave best result (19.587 g/l gum) with 7.8 relative viscosity. Chilled alcohol (96%) was used to recover the xanthan gum. FTIR studies also carried out for further confirmation of compatibility by detecting the chemical groups. PMID:26934783

  13. First report of bacterial leaf blight on mustard greens (Brassica juncea) caused by pseudomonas cannabina pv. alisalensis in Mississippi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2010, a brassica leafy greens grower in Sunflower County, Mississippi, observed scattered outbreaks of a leaf blight disease on mustard greens (Brassica juncea) in a 180-hectare field. A severe outbreak of leaf blight occurred on mustard greens and turnip greens (Brassica rapa) in the same field...

  14. Identification of plant-induced genes of the bacterial pathogen Xanthomonas campestris pathovar campestris using a promoter-probe plasmid

    PubMed Central

    Osbourn, A.E.; Barber, C.E.; Daniels, M.J.

    1987-01-01

    A promoter-probe plasmid suitable for use in Xanthomonas campestris pathovar campestris (causal agent of crucifer black rot) was constructed by ligating a broad host range IncQ replicon into the promoter-probe plasmid pKK232-8, which contains a promoterless chloramphenicol acetyltransferase gene. Xanthomonas chromosomal DNA fragments were `shotgun' cloned into a restriction site in front of this gene, and the resulting library was transferred en masse into Xanthomonas. Individual transconjugants possessing DNA insertions with promoter activity in plants were identified by virtue of their ability to infect chloramphenicol-treated turnip seedlings. Of 19 transconjugants identified in this way five were chloramphenicol resistant both in turnip seedlings and on agar plates. However the remaining 14 were only chloramphenicol resistant in planta, and thus apparently contained plant-inducible promoter fragments. Resistance to chloramphenicol was correlated with increased chloramphenicol acetyltransferase activity for the transconjugants assayed. The promoter fragments were used to isolate genomic clones from a library, and the role of the genes contained in these clones in pathogenicity is being investigated. ImagesFig. 2. PMID:15981331

  15. The rice bacterial pathogen Xanthomonas oryzae pv. oryzae produces 3-hydroxybenzoic acid and 4-hydroxybenzoic acid via XanB2 for use in xanthomonadin, ubiquinone, and exopolysaccharide biosynthesis.

    PubMed

    Zhou, Lian; Huang, Tin-Wei; Wang, Jia-Yuan; Sun, Shuang; Chen, Gongyou; Poplawsky, Alan; He, Ya-Wen

    2013-10-01

    Xanthomonas oryzae pv. oryzae, the causal agent of rice bacterial blight, produces membrane-bound yellow pigments, referred to as xanthomonadins. Xanthomonadins protect the pathogen from photodamage and host-induced perioxidation damage. They are also required for epiphytic survival and successful host plant infection. Here, we show that XanB2 encoded by PXO_3739 plays a key role in xanthomonadin and coenzyme Q8 biosynthesis in X. oryzae pv. oryzae PXO99A. A xanB2 deletion mutant exhibits a pleiotropic phenotype, including xanthomonadin deficiency, producing less exopolysaccharide (EPS), lower viability and H2O2 resistance, and lower virulence. We further demonstrate that X. oryzae pv. oryzae produces 3-hydroxybenzoic acid (3-HBA) and 4-hydroxybenzoic acid (4-HBA) via XanB2. 3-HBA is associated with xanthomonadin biosynthesis while 4-HBA is mainly used as a precursor for coenzyme Q (CoQ)8 biosynthesis. XanB2 is the alternative source of 4-HBA for CoQ8 biosynthesis in PXO99A. These findings suggest that the roles of XanB2 in PXO99A are generally consistent with those in X. campestris pv. campestris. The present study also demonstrated that X. oryzae pv. oryzae PXO99A has evolved several specific features in 3-HBA and 4-HBA signaling. First, our results showed that PXO99A produces less 3-HBA and 4-HBA than X. campestris pv. campestris and this is partially due to a degenerated 4-HBA efflux pump. Second, PXO99A has evolved unique xanthomonadin induction patterns via 3-HBA and 4-HBA. Third, our results showed that 3-HBA or 4-HBA positively regulates the expression of gum cluster to promote EPS production in PXO99A. Taken together, the results of this study indicate that XanB2 is a key metabolic enzyme linking xanthomonadin, CoQ, and EPS biosynthesis, which are collectively essential for X. oryzae pv. oryzae pathogenesis. PMID:23718125

  16. Management of Bacterial Blight of Lilac Caused by Pseudomonas syringae by Growing Plants under Plastic Shelters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas syringae pv. syringae causes some of the most economically-important bacterial diseases affecting woody perennials grown by the nursery industry in the Pacific Northwest of the United States. In this study, we evaluated a cultural control practice, placement of plants in plastic shelter...

  17. Photocatalysis: effect of light-activated nanoscale formulations of TiO(2) on Xanthomonas perforans and control of bacterial spot of tomato.

    PubMed

    Paret, Mathews L; Vallad, Gary E; Averett, Devron R; Jones, Jeffrey B; Olson, Stephen M

    2013-03-01

    Protection of crops from bacterial diseases presents a continuing challenge, mandating the development of novel agents and approaches. Photocatalysis is a process where chemically reactive oxygen species are catalytically generated by certain minerals in the presence of light. These reactive oxygen species have the capacity to destroy organic molecular structures critical to pathogen viability. In this study, the antibacterial potential of photocatalytic nanoscale titanium dioxide (TiO(2)), nanoscale TiO(2) doped (incorporation of other materials into the structure of TiO(2)) with silver (TiO(2)/Ag), and nanoscale TiO(2) doped with zinc (TiO(2)/Zn; AgriTitan) was evaluated against Xanthomonas perforans, the causal agent for bacterial spot disease of tomato. In vitro experiments on photocatalytic activity and dose dependency were conducted on glass cover slips coated with the nanoscale formulations by adding a known population of X. perforans strain Xp-F7 and illuminating the cover slips under a visible light source. TiO(2)/Ag and TiO(2)/Zn had high photocatalytic activity against X. perforans within 10 min of exposure to 3 × 10(4) lux. Greenhouse studies on naturally and artificially infected transplants treated with TiO(2)/Zn at ?500 to 800 ppm significantly reduced bacterial spot severity compared with untreated and copper control. Protection was similar to the grower standard, copper + mancozeb. The use of TiO(2)/Zn at ?500 to 800 ppm significantly reduced disease incidence in three of the four trials compared with untreated and copper control, and was comparable to or better than the grower standard. The treatments did not cause any adverse effects on tomato yield in any of the field trials. PMID:23190116

  18. First Report of Bacterial Leaf Blight on Broccoli and Cabbage Caused by Pseudomonas syringae pv. alisalensis in South Carolina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In May 2009, leaf spot and leaf blight symptoms were observed on broccoli (B. oleracea var. italica) and cabbage (Brassica oleracea var. capitata) on several farms in Lexington County, the major brassica-growing region of South Carolina. Affected areas ranged from scattered disease foci within fiel...

  19. Highly polymorphic markers reveal the establishment of an invasive lineage of the citrus bacterial pathogen Xanthomonas citri pv. citri in its area of origin.

    PubMed

    Vernière, Christian; Bui Thi Ngoc, Lan; Jarne, Philippe; Ravigné, Virginie; Guérin, Fabien; Gagnevin, Lionel; Le Mai, Nhat; Chau, Nguyen M; Pruvost, Olivier

    2014-07-01

    Investigating the population biology of plant pathogens in their native areas is essential to understand the factors that shape their population structure and favour their spread. Monomorphic pathogens dispatch extremely low genetic diversity in invaded areas, and native areas constitute a major reservoir for future emerging strains. One of these, the gammaproteobacterium Xanthomonas citri pv. citri, causes Asiatic canker and is a considerable threat to citrus worldwide. We studied its population genetic structure by genotyping 555 strains from 12 Vietnam provinces at 14 tandem repeat loci and insertion sequences. Discriminant analysis of principal components identified six clusters. Five of them were composed of endemic strains distributed heterogeneously across sampled provinces. A sixth cluster, VN6, displayed a much lower diversity and a clonal expansion structure, suggesting recent epidemic spread. No differences in aggressiveness on citrus or resistance to bactericides were detected between VN6 and other strains. VN6 likely represents a case of bioinvasion following introduction in a native area likely through contaminated plant propagative material. Highly polymorphic markers are useful for revealing migration patterns of recently introduced populations of a monomorphic bacterial plant pathogen. PMID:24373118

  20. Secretome analysis of the rice bacterium Xanthomonas oryzae (Xoo) using in vitro and in planta systems.

    PubMed

    Wang, Yiming; Kim, Sang Gon; Wu, Jingni; Huh, Hyun-Hye; Lee, Su-Ji; Rakwal, Randeep; Agrawal, Ganesh Kumar; Park, Zee-Yong; Young Kang, Kyu; Kim, Sun Tae

    2013-06-01

    Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight disease in rice, and that severely affects yield loss (upto 50%) of total rice production. Here, we report a proteomics investigation of Xoo (compatible race K3)-secreted proteins, isolated from its in vitro culture and in planta infected rice leaves. 2DE coupled with MALDI-TOF-MS and/or nLC-ESI-MS/MS approaches identified 139 protein spots (out of 153 differential spots), encoding 109 unique proteins. Identified proteins belonged to multiple biological and molecular functions. Metabolic and nutrient uptake proteins were common up to both in vitro and in planta secretomes. However, pathogenicity, protease/peptidase, and host defense-related proteins were highly or specifically expressed during in planta infection. A good correlation was observed between protein and transcript abundances for nine proteins secreted in planta as per semiquantitative RT-PCR analysis. Transgenic rice leaf sheath (carrying PBZ1 promoter::GFP cell death reporter), when used to express a few of the identified secretory proteins, showed a direct activation of cell death signaling, suggesting their involvement in pathogenicity related with secretion effectors. This work furthers our understanding of rice bacterial blight disease, and serves as a resource for possible translation in generating disease resistant rice plants for improved seed yield. PMID:23512849

  1. Genome sequence of Xanthomonas fuscans subsp. fuscans strain 4834-R reveals that flagellar motility is not a general feature of xanthomonads

    PubMed Central

    2013-01-01

    Background Xanthomonads are plant-associated bacteria responsible for diseases on economically important crops. Xanthomonas fuscans subsp. fuscans (Xff) is one of the causal agents of common bacterial blight of bean. In this study, the complete genome sequence of strain Xff 4834-R was determined and compared to other Xanthomonas genome sequences. Results Comparative genomics analyses revealed core characteristics shared between Xff 4834-R and other xanthomonads including chemotaxis elements, two-component systems, TonB-dependent transporters, secretion systems (from T1SS to T6SS) and multiple effectors. For instance a repertoire of 29 Type 3 Effectors (T3Es) with two Transcription Activator-Like Effectors was predicted. Mobile elements were associated with major modifications in the genome structure and gene content in comparison to other Xanthomonas genomes. Notably, a deletion of 33 kbp affects flagellum biosynthesis in Xff 4834-R. The presence of a complete flagellar cluster was assessed in a collection of more than 300 strains representing different species and pathovars of Xanthomonas. Five percent of the tested strains presented a deletion in the flagellar cluster and were non-motile. Moreover, half of the Xff strains isolated from the same epidemic than 4834-R was non-motile and this ratio was conserved in the strains colonizing the next bean seed generations. Conclusions This work describes the first genome of a Xanthomonas strain pathogenic on bean and reports the existence of non-motile xanthomonads belonging to different species and pathovars. Isolation of such Xff variants from a natural epidemic may suggest that flagellar motility is not a key function for in planta fitness. PMID:24195767

  2. Comparative Genomics of Pathogenic and Nonpathogenic Strains of Xanthomonas arboricola Unveil Molecular and Evolutionary Events Linked to Pathoadaptation

    PubMed Central

    Cesbron, Sophie; Briand, Martial; Essakhi, Salwa; Gironde, Sophie; Boureau, Tristan; Manceau, Charles; Fischer-Le Saux, Marion; Jacques, Marie-Agnès

    2015-01-01

    The bacterial species Xanthomonas arboricola contains plant pathogenic and nonpathogenic strains. It includes the pathogen X. arboricola pv. juglandis, causing the bacterial blight of Juglans regia. The emergence of a new bacterial disease of J. regia in France called vertical oozing canker (VOC) was previously described and the causal agent was identified as a distinct genetic lineage within the pathovar juglandis. Symptoms on walnut leaves and fruits are similar to those of a bacterial blight but VOC includes also cankers on trunk and branches. In this work, we used comparative genomics and physiological tests to detect differences between four X. arboricola strains isolated from walnut tree: strain CFBP 2528 causing walnut blight (WB), strain CFBP 7179 causing VOC and two nonpathogenic strains, CFBP 7634 and CFBP 7651, isolated from healthy walnut buds. Whole genome sequence comparisons revealed that pathogenic strains possess a larger and wider range of mobile genetic elements than nonpathogenic strains. One pathogenic strain, CFBP 7179, possessed a specific integrative and conjugative element (ICE) of 95 kb encoding genes involved in copper resistance, transport and regulation. The type three effector repertoire was larger in pathogenic strains than in nonpathogenic strains. Moreover, CFBP 7634 strain lacked the type three secretion system encoding genes. The flagellar system appeared incomplete and nonfunctional in the pathogenic strain CFBP 2528. Differential sets of chemoreceptor and different repertoires of genes coding adhesins were identified between pathogenic and nonpathogenic strains. Besides these differences, some strain-specific differences were also observed. Altogether, this study provides valuable insights to highlight the mechanisms involved in ecology, environment perception, plant adhesion and interaction, leading to the emergence of new strains in a dynamic environment. PMID:26734033

  3. FIRE BLIGHT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fire blight, caused by the bacterium Erwinia amylovora, is a destructive disease of apple, pears and woody ornamentals of the rose family. The disease is indigenous to North America and has been studied for more than one century. E. amylovora can infect blossoms, stems, immature fruits, woody branch...

  4. Alternaria blight

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alternaria blight of chickpea is caused by the fungal pathogen Alternaria alternata. The pathogen has wide host range, and affects all above ground parts of the plant. The disease occurs sporadically and occasionally could be economically important and causes significant damage. The pathogen can ...

  5. Population typing of the causal agent of cassava bacterial blight in the Eastern Plains of Colombia using two types of molecular markers

    PubMed Central

    2014-01-01

    Background Molecular typing of pathogen populations is an important tool for the development of effective strategies for disease control. Diverse molecular markers have been used to characterize populations of Xanthomonas axonopodis pv. manihotis (Xam), the main bacterial pathogen of cassava. Recently, diversity and population dynamics of Xam in the Colombian Caribbean coast were estimated using AFLPs, where populations were found to be dynamic, diverse and with haplotypes unstable across time. Aiming to examine the current state of pathogen populations located in the Colombian Eastern Plains, we also used AFLP markers and we evaluated the usefulness of Variable Number Tandem Repeats (VNTRs) as new molecular markers for the study of Xam populations. Results The population analyses showed that AFLP and VNTR provide a detailed and congruent description of Xam populations from the Colombian Eastern Plains. These two typing strategies clearly separated strains from the Colombian Eastern Plains into distinct populations probably because of geographical distance. Although the majority of analyses were congruent between typing markers, fewer VNTRs were needed to detect a higher number of genetic populations of the pathogen as well as a higher genetic flow among sampled locations than those detected by AFLPs. Conclusions This study shows the advantages of VNTRs over AFLPs in the surveillance of pathogen populations and suggests the implementation of VNTRs in studies that involve large numbers of Xam isolates in order to obtain a more detailed overview of the pathogen to improve the strategies for disease control. PMID:24946775

  6. Measurement of haplotypic variation in Xanthomonas oryzae pv. oryzae within a single field by rep-PCR and RFLP analyses

    SciTech Connect

    Vera Cruz, C.M.; Leach, J.E.; Ardales, E.Y.; Talag, J.

    1996-12-01

    The haplotypic variation of Xanthomonas oryzae pv. oryzae in a farmer;s field that had endemic bacterial blight in the Philippines was evaluated at a single time. The genomic structure of the field population was analyzed by repetitive sequence-based polymerase chain reaction with oligonucleotide primers corresponding to interspersed repeated sequences in prokaryotic genomes and restriction fragment length polymorphism (RFLP) with the insertion sequence IS1113. The techniques and specific probes and primers were selected because they grouped consistently into the same lineages a set of 30 selected X. oryzae pv. oryzae strains that represented the four distinct RFLP lineages found in the Philippines did. Strains (155) were systematically collected from a field planted to rice cv. Sinandomeng, which is susceptible to the indigenous pathogen population. Two of the four Philippine lineages, B and C, which included race 2 and races 3 and 9, respectively, were detected in the field. Lineage C was the predominant population (74.8%). The haplotypic diversities of 10 of the 25 blocks were significantly greater than the total haplotypic diversity of the collection in the entire field; however, between individual blocks the haplotypic diversities were not significantly different. Haplo-types from both lineages were distributed randomly across the field. Analysis of genetic diversity at the microgeographic scale provided insights into the finer scale of variation of X. oryzae pv. oryzae, which are useful in designing experiments to study effects of host resistance on the population structure of the bacterial blight pathogen. 46 refs., 4 figs., 2 tabs.

  7. Comparative genomic and transcriptome analyses of pathotypes of Xanthomonas citri subsp. citri provide insights into mechanisms of bacterial virulence and host range

    PubMed Central

    2013-01-01

    Background Citrus bacterial canker is a disease that has severe economic impact on citrus industries worldwide and is caused by a few species and pathotypes of Xanthomonas. X. citri subsp. citri strain 306 (XccA306) is a type A (Asiatic) strain with a wide host range, whereas its variant X. citri subsp. citri strain Aw12879 (Xcaw12879, Wellington strain) is restricted to Mexican lime. Results To characterize the mechanism for the differences in host range of XccA and Xcaw, the genome of Xcaw12879 that was completed recently was compared with XccA306 genome. Effectors xopAF and avrGf1 are present in Xcaw12879, but were absent in XccA306. AvrGf1 was shown previously for Xcaw to cause hypersensitive response in Duncan grapefruit. Mutation analysis of xopAF indicates that the gene contributes to Xcaw growth in Mexican lime but does not contribute to the limited host range of Xcaw. RNA-Seq analysis was conducted to compare the expression profiles of Xcaw12879 and XccA306 in Nutrient Broth (NB) medium and XVM2 medium, which induces hrp gene expression. Two hundred ninety two and 281 genes showed differential expression in XVM2 compared to in NB for XccA306 and Xcaw12879, respectively. Twenty-five type 3 secretion system genes were up-regulated in XVM2 for both XccA and Xcaw. Among the 4,370 common genes of Xcaw12879 compared to XccA306, 603 genes in NB and 450 genes in XVM2 conditions were differentially regulated. Xcaw12879 showed higher protease activity than XccA306 whereas Xcaw12879 showed lower pectate lyase activity in comparison to XccA306. Conclusions Comparative genomic analysis of XccA306 and Xcaw12879 identified strain specific genes. Our study indicated that AvrGf1 contributes to the host range limitation of Xcaw12879 whereas XopAF contributes to virulence. Transcriptome analyses of XccA306 and Xcaw12879 presented insights into the expression of the two closely related strains of X. citri subsp. citri. Virulence genes including genes encoding T3SS components and effectors are induced in XVM2 medium. Numerous genes with differential expression in Xcaw12879 and XccA306 were identified. This study provided the foundation to further characterize the mechanisms for virulence and host range of pathotypes of X. citri subsp. citri. PMID:23941402

  8. The thiG Gene Is Required for Full Virulence of Xanthomonas oryzae pv. oryzae by Preventing Cell Aggregation

    PubMed Central

    Yu, Xiaoyue; Liang, Xiaoyu; Liu, Kexue; Dong, Wenxia; Wang, Jianxin; Zhou, Ming-guo

    2015-01-01

    Bacterial blight of rice is an important serious bacterial diseases of rice in many rice-growing regions, caused by Xanthomonas oryzae pv. oryzae (Xoo). The thiG gene from Xoo strain ZJ173, which is involved with thiazole moiety production in the thiamine biosynthesis pathway, is highly conserved among the members of Xanthomonas. The thiG deletion mutant displayed impaired virulence and growth in thiamine-free medium but maintained its normal growth rate in the rice tissues, indicating that the thiG gene is involved in Xoo virulence. Compared to the wild type strain, the formation of cell-cell aggregates was affected in thiG deletion mutants. Although biofilm formation was promoted, motility and migration in rice leaves were repressed in the thiG mutants, and therefore limited the expansion of pathogen infection in rice. Quorum sensing and extracellular substance are two key factors that contribute to the formation of cell-cell aggregates. Our study found that in the thiG mutant the expression of two genes, rpfC and rpfG, which form a two-component regulatory signal system involved in the regulation of biofilm formation by a second messenger cyclic di-GMP is down-regulated. In addition, our study showed that xanthan production was not affected but the expression of some genes associated with xanthan biosynthesis, like gumD, gumE, gumH and gumM, were up-regulated in thiG mutants. Taken together, these findings are the first to demonstrate the role of the thiazole biosynthsis gene, thiG, in virulence and the formation of aggregates in Xanthomonas oryzae pv. oryzae. PMID:26222282

  9. Do transgenesis and marker-assisted backcross breeding produce substantially equivalent plants? - A comparative study of transgenic and backcross rice carrying bacterial blight resistant gene Xa21

    PubMed Central

    2013-01-01

    Background The potential impact of genetically modified (GM) plants on human health has attracted much attention worldwide, and the issue remains controversial. This is in sharp contrast to the broad acceptance of plants produced by breeding through Marker Assisted Backcrossing (MAB). Results Focusing on transcriptome variation and perturbation to signaling pathways, we assessed the molecular and biological aspects of substantial equivalence, a general principle for food safety endorsed by the Food and Agricultural Organization and the World Health Organization, between a transgenic crop and a plant from MAB breeding. We compared a transgenic rice line (DXT) and a MAB rice line (DXB), both of which contain the gene Xa21 providing resistance to bacterial leaf blight. By using Next-Generation sequencing data of DXT, DXB and their parental line (D62B), we compared the transcriptome variation of DXT and DXB. Remarkably, DXT had 43% fewer differentially expressed genes (DEGs) than DXB. The genes exclusively expressed in DXT and in DXB have pathogen and stress defense functions. Functional categories of DEGs in DXT were comparable to that in DXB, and seven of the eleven pathways significantly affected by transgenesis were also perturbed by MAB breeding. Conclusions These results indicated that the transgenic rice and rice from MAB breeding are substantial equivalent at the transcriptome level, and paved a way for further study of transgenic rice, e.g., understanding the chemical and nutritional properties of the DEGs identified in the current study. PMID:24165682

  10. Sensitive Detection of Xanthomonas oryzae Pathovars oryzae and oryzicola by Loop-Mediated Isothermal Amplification

    PubMed Central

    Lang, Jillian M.; Langlois, Paul; Nguyen, Marian Hanna R.; Triplett, Lindsay R.; Purdie, Laura; Holton, Timothy A.; Djikeng, Appolinaire; Vera Cruz, Casiana M.; Verdier, Valérie

    2014-01-01

    Molecular diagnostics for crop diseases can enhance food security by enabling the rapid identification of threatening pathogens and providing critical information for the deployment of disease management strategies. Loop-mediated isothermal amplification (LAMP) is a PCR-based tool that allows the rapid, highly specific amplification of target DNA sequences at a single temperature and is thus ideal for field-level diagnosis of plant diseases. We developed primers highly specific for two globally important rice pathogens, Xanthomonas oryzae pv. oryzae, the causal agent of bacterial blight (BB) disease, and X. oryzae pv. oryzicola, the causal agent of bacterial leaf streak disease (BLS), for use in reliable, sensitive LAMP assays. In addition to pathovar distinction, two assays that differentiate X. oryzae pv. oryzae by African or Asian lineage were developed. Using these LAMP primer sets, the presence of each pathogen was detected from DNA and bacterial cells, as well as leaf and seed samples. Thresholds of detection for all assays were consistently 104 to 105 CFU ml−1, while genomic DNA thresholds were between 1 pg and 10 fg. Use of the unique sequences combined with the LAMP assay provides a sensitive, accurate, rapid, simple, and inexpensive protocol to detect both BB and BLS pathogens. PMID:24837384

  11. Novel lead compound optimization and synthesized based on the target structure of Xanthomonas oryzae pv. oryzae GlmU.

    PubMed

    Qi, Xiaojuan; Deng, Wenjun; Gao, Min; Mao, Bangqiang; Xu, Shengzhen; Chen, Changshui; Zhang, Qingye

    2015-07-01

    Bacterial leaf blight, caused by Xanthomonas oryzae pv. oryzae, is one of the most destructive diseases of rice worldwide. N-acetylglucosamine-1-phosphate uridyltransferase (GlmU) was an attractive target for the development of antimicrobial agents. To develop novel, more potent and even more selective inhibitors of the uridyltransferase activity of Xanthomonas oryzae pv. oryzae GlmU (Xo-GlmU), three types of novel target compounds were optimized and synthesized based on the Xo-GlmU structure in this study. The biological testing results showed that all of the target compounds displayed the higher inhibition than the lead compound with the IC50 values in the 10.82-23.31?µM range, and the inhibition rates were increased by 30%-67%. The binding mode and the possible inhibitory mechanism of the target compounds in the active site were also analyzed by the molecular docking based on the uridyltransferase active site of Xo-GlmU. PMID:26071803

  12. First report of bacterial blight of sugar beet caused by Pseudomonas syringae pv. aptata in Georgia, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarbeet [Beta vulgaris L.] is not currently a commercial crop in Georgia, but experimental plantings as a winter rotational crop are promising in terms of yield and industrial sugar production. A disease outbreak of suspected bacterial origin occurred in some plots of sugarbeet [experimental lin...

  13. First Report of Bacterial Blight on Conventionally and Organically Grown Arugula in Nevada Caused by Pseudomonas syringae pv. alisalensis.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel bacterial leaf spot was detected in commercial organic and conventional plantings of the arugula (Eruca vesicaria spp. sativa) cv. My Way in 2007. Koch’s postulates were completed and etiology of the pathogen was determined. Physiological and molecular characterization showed that the pathog...

  14. PXO_00987, a putative acetyltransferase, is required for flagellin glycosylation, and regulates flagellar motility, exopolysaccharide production, and biofilm formation in Xanthomonas oryzae pv. oryzae.

    PubMed

    Li, Haiyun; Yu, Chao; Chen, Huamin; Tian, Fang; He, Chenyang

    2015-08-01

    Acetyltransferases catalyze an important process for sugar or protein modification. In the genome of Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial blight of rice, there are 32 acetyltransferase-encoding genes belonging to different families. In this work, we focused on PXO_00987, which encodes a putative acetyltransferase in the flagellar regulon. We found that mutation of PXO_00987 gene abolished the glycosylation of wild-type flagellin protein of Xoo. In addition, the PXO_00987 mutant showed enhanced swimming motility, and decreased exopolysaccharide production and biofilm formation. Virulence assays demonstrated that the PXO_00987 mutant caused shorter disease length on rice leaves, suggesting that the function of PXO_00987 contributes to the pathogenesis of Xoo. PMID:26065383

  15. Genetic Structure and Population Dynamics of Xanthomonas axonopodis pv. manihotis in Colombia from 1995 to 1999

    PubMed Central

    Restrepo, Silvia; Velez, Claudia M.; Duque, Myriam C.; Verdier, Valérie

    2004-01-01

    Restriction fragment length polymorphisms (RFLPs) were used to study the population genetics and temporal dynamics of the cassava bacterial pathogen Xanthomonas axonopodis pv. manihotis. The population dynamics were addressed by comparing samples collected from 1995 to 1999 from six locations, spanning four different edaphoclimatic zones (ECZs). Forty-five different X. axonopodis pv. manihotis RFLP types or haplotypes were identified between 1995 and 1999. High genetic diversity of the X. axonopodis pv. manihotis strains was evident within most of the fields sampled. In all but one site, diversity decreased over time within fields. Haplotype frequencies significantly differed over the years in all but one location. Studies of the rate of change of X. axonopodis pv. manihotis populations during the cropping cycle in two sites showed significant changes in the haplotype frequencies but not composition. However, variations in pathotype composition were observed from one year to the next at a single site in ECZs 1 and 2 and new pathotypes were described after 1997 in these ECZs, thus revealing the dramatic change in the pathogen population structure of X. axonopodis pv. manihotis. Disease incidence was used to show the progress of cassava bacterial blight in Colombia during the 5-year period in different ecosystems. Low disease incidence values were correlated with low rainfall in 1997 in ECZ 1. PMID:14711649

  16. Unconventional membrane lipid biosynthesis in Xanthomonas campestris.

    PubMed

    Aktas, Meriyem; Narberhaus, Franz

    2015-09-01

    All bacteria are surrounded by at least one bilayer membrane mainly composed of phospholipids (PLs). Biosynthesis of the most abundant PLs phosphatidylethanolamine (PE), phosphatidylglycerol (PG) and cardiolipin (CL) is well understood in model bacteria such as Escherichia coli. It recently emerged, however, that the diversity of bacterial membrane lipids is huge and that not yet explored biosynthesis pathways exist, even for the common PLs. A good example is the plant pathogen Xanthomonas campestris pv. campestris. It contains PE, PG and CL as major lipids and small amounts of the N-methylated PE derivatives monomethyl PE and phosphatidylcholine (PC = trimethylated PE). Xanthomonas campestris uses a repertoire of canonical and non-canonical enzymes for the synthesis of its membrane lipids. In this minireview, we briefly recapitulate standard pathways and integrate three recently discovered pathways into the overall picture of bacterial membrane biosynthesis. PMID:26119594

  17. Draft Genome Sequence of the Xanthomonas cassavae Type Strain CFBP 4642.

    PubMed

    Bolot, Stéphanie; Munoz Bodnar, Alejandra; Cunnac, Sébastien; Ortiz, Erika; Szurek, Boris; Noël, Laurent D; Arlat, Matthieu; Jacques, Marie-Agnès; Gagnevin, Lionel; Portier, Perrine; Fischer-Le Saux, Marion; Carrere, Sébastien; Koebnik, Ralf

    2013-01-01

    We report the draft genome sequence of the Xanthomonas cassavae type strain CFBP 4642, the causal agent of bacterial necrosis on cassava plants. These data will allow the comparison of this nonvascular pathogen with the vascular pathogen Xanthomonas axonopodis pv. manihotis, both infecting the same host, which will facilitate the development of diagnostic tools. PMID:23990580

  18. Draft Genome Sequence of the Xanthomonas cassavae Type Strain CFBP 4642

    PubMed Central

    Bolot, Stéphanie; Munoz Bodnar, Alejandra; Cunnac, Sébastien; Ortiz, Erika; Szurek, Boris; Noël, Laurent D.; Arlat, Matthieu; Jacques, Marie-Agnès; Gagnevin, Lionel; Portier, Perrine; Fischer-Le Saux, Marion; Carrere, Sébastien

    2013-01-01

    We report the draft genome sequence of the Xanthomonas cassavae type strain CFBP 4642, the causal agent of bacterial necrosis on cassava plants. These data will allow the comparison of this nonvascular pathogen with the vascular pathogen Xanthomonas axonopodis pv. manihotis, both infecting the same host, which will facilitate the development of diagnostic tools. PMID:23990580

  19. Complete Genome Sequence of Xanthomonas arboricola pv. juglandis 417, a Copper-Resistant Strain Isolated from Juglans regia L.

    PubMed Central

    Pereira, Ulisses P.; Gouran, Hossein; Nascimento, Rafael; Adaskaveg, James E.; Goulart, Luiz Ricardo

    2015-01-01

    Here, we report the complete genome sequence of Xanthomonas arboricola pv. juglandis 417, a copper-resistant strain isolated from a blighted walnut fruit (Juglans regia L. cv. Chandler). The genome consists of a single chromosome (5,218 kb). PMID:26430043

  20. Corn blight watch experiment

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The corn blight problem is briefly described how the experiment was organized and conducted, the effect of the blight on the 1971 crop, and some conclusions that may be drawn as a result of the experiment. The information is based on preliminary reports of the Corn Blight Watch Steering Committee and incorporates much illustrative material conceived at Purdue University.

  1. Development and validation of a Xanthomonas axonopodis pv. citri DNA microarray platform (XACarray) generated from the shotgun libraries previously used in the sequencing of this bacterial genome

    PubMed Central

    2010-01-01

    Background From shotgun libraries used for the genomic sequencing of the phytopathogenic bacterium Xanthomonas axonopodis pv. citri (XAC), clones that were representative of the largest possible number of coding sequences (CDSs) were selected to create a DNA microarray platform on glass slides (XACarray). The creation of the XACarray allowed for the establishment of a tool that is capable of providing data for the analysis of global genome expression in this organism. Findings The inserts from the selected clones were amplified by PCR with the universal oligonucleotide primers M13R and M13F. The obtained products were purified and fixed in duplicate on glass slides specific for use in DNA microarrays. The number of spots on the microarray totaled 6,144 and included 768 positive controls and 624 negative controls per slide. Validation of the platform was performed through hybridization of total DNA probes from XAC labeled with different fluorophores, Cy3 and Cy5. In this validation assay, 86% of all PCR products fixed on the glass slides were confirmed to present a hybridization signal greater than twice the standard deviation of the deviation of the global median signal-to-noise ration. Conclusions Our validation of the XACArray platform using DNA-DNA hybridization revealed that it can be used to evaluate the expression of 2,365 individual CDSs from all major functional categories, which corresponds to 52.7% of the annotated CDSs of the XAC genome. As a proof of concept, we used this platform in a previously work to verify the absence of genomic regions that could not be detected by sequencing in related strains of Xanthomonas. PMID:20507617

  2. A Cell Wall–Degrading Esterase of Xanthomonas oryzae Requires a Unique Substrate Recognition Module for Pathogenesis on Rice[W

    PubMed Central

    Aparna, Gudlur; Chatterjee, Avradip; Sonti, Ramesh V.; Sankaranarayanan, Rajan

    2009-01-01

    Xanthomonas oryzae pv oryzae (Xoo) causes bacterial blight, a serious disease of rice (Oryza sativa). LipA is a secretory virulence factor of Xoo, implicated in degradation of rice cell walls and the concomitant elicitation of innate immune responses, such as callose deposition and programmed cell death. Here, we present the high-resolution structural characterization of LipA that reveals an all-helical ligand binding module as a distinct functional attachment to the canonical hydrolase catalytic domain. We demonstrate that the enzyme binds to a glycoside ligand through a rigid pocket comprising distinct carbohydrate-specific and acyl chain recognition sites where the catalytic triad is situated 15 Å from the anchored carbohydrate. Point mutations disrupting the carbohydrate anchor site or blocking the pocket, even at a considerable distance from the enzyme active site, can abrogate in planta LipA function, exemplified by loss of both virulence and the ability to elicit host defense responses. A high conservation of the module across genus Xanthomonas emphasizes the significance of this unique plant cell wall–degrading function for this important group of plant pathogenic bacteria. A comparison with the related structural families illustrates how a typical lipase is recruited to act on plant cell walls to promote virulence, thus providing a remarkable example of the emergence of novel functions around existing scaffolds for increased proficiency of pathogenesis during pathogen-plant coevolution. PMID:19525415

  3. A New Bacterial Agglutinin from Soybean

    PubMed Central

    Fett, William F.; Sequeira, Luis

    1980-01-01

    The activity of a bacterial agglutinin from soybean seed [Glycine max (L.) Merrill cv. Clark] against two bacterial pathogens, Pseudomonas glycinea (causal agent of bacterial blight) and Xanthomonas phaseoli var. sojensis (causal agent of bacterial pustule) was determined. The agglutinin was active against several strains of X. phaseoli var. sojensis grown on nutrient agar, but there was no correlation between pathogenicity and agglutination. Agglutination was affected by the age of the bacterial cells and the growth medium used. None of seven strains of P. glycinea was agglutinated. Bacterial agglutination was inhibited by both purified lipopolysaccharide and extracellular polysaccharide from five strains of X. phaseoli var. sojensis. The lipopolysaccharides and extracellular polysaccharides from other species of bacteria were ineffective. Ultrastructural studies showed that an avirulent strain of X. phaseoli var. sojensis was attached to leaf mesophyll cell walls of the susceptible cultivar Clark by 34 hours after vacuum infiltration. Cells of this avirulent strain were enveloped by fibrillar and granular material at the mesophyll cell wall. In contrast, cells of a virulent strain were not attached or enveloped, and they remained free to multiply in the intercellular spaces. Images PMID:16661541

  4. Enterobacterial repetitive intergenic consensus (ERIC) PCR based genetic diversity of Xanthomonas spp. and its relation to xanthan production

    PubMed Central

    Asgarani, Ezat; Ghashghaei, Tahereh; Soudi, Mohammad Reza; Alimadadi, Nayyereh

    2015-01-01

    Background and Objective: The genus Xanthomonas is composed of phytopathogenic bacterial species. In addition to causing crops diseases, most of the Xanthomonas species especially Xanthomonas campestris produce xanthan gum via an aerobic fermentation process. Xanthan gum is, an important exopolysaccharide from Xanthomonas campestris, mainly used in the food, petroleum and other industries. the purpose of this study was assessment of relationship between genetic diversity and xanthan production in Xanthomonas spp. Materials and Methods: In this study 15 strains of Xanthomonas spp. which had previously been isolated from soils of vegetable farms, were discriminated from each other using Enterobacterial Repetitive Intergenic Consensus (ERIC) PCR and 16S rDNA sequencing methods. Xanthan production of strains was measured in 250 ml flask. The results of ERIC PCR and xanthan production was compared. Results: ERIC-PCR patterns not only could differentiate all Xanthomonas campestis from the control i.e. Xanthomonas translucent but also discriminate strains of Xanthomonas to three clusters with 40% similarity based on Jaccard’s coefficient. This clustering of the strains was in agreement with other characteristics including xanthan production and biochemical features. Discussion: The results showed that genomic fingerprinting conferred adequate genetic data for discriminating between strains of the species Xanthomonas campestris. The data indicated a partial relationship between ERIC-PCR patterns and xanthan production by the strains. Conclusion: Further development of experiments may result in making good prediction about xanthan production capability of the Xanthomonas strains on the basis of ERIC-PCR method. PMID:26644872

  5. AFLP fingerprinting: an efficient technique for detecting genetic variation of Xanthomonas axonopodis pv. manihotis.

    PubMed

    Restrepo, S; Duque, M; Tohme, J; Verdier, V

    1999-01-01

    Xanthomonas axonopodis pv. manihotis (Xam) is the causative agent of cassava bacterial blight (CBB), a worldwide disease that is particularly destructive in South America and Africa. CBB is controlled essentially through the use of resistant varieties. To develop an appropriate disease management strategy, the genetic diversity of the pathogen's populations must be assessed. Until now, the genetic diversity of Xam was characterized by RFLP analyses using ribotyping, and plasmid and genomic Xam probes. We used AFLP (amplified fragment length polymorphism), a novel PCR-based technique, to characterize the genetic diversity of Colombian Xam isolates. Six Xam strains were tested with 65 AFLP primer combinations to identify the best selective primers. Eight primer combinations were selected according to their reproducibility, number of polymorphic bands and polymorphism detected between Xam strains. Forty-seven Xam strains, originating from different Colombian ecozones, were analysed with the selected combinations. Results obtained with AFLP are consistent with those obtained with RFLP, using plasmid DNA as a probe. Some primer combinations differentiated Xam strains that were not distinguished by RFLP analyses, thus AFLP fingerprinting allowed a better definition of the genetic relationships between Xam strains. PMID:10206688

  6. Dynamic and Coordinated Expression Changes of Rice Small RNAs in Response to Xanthomonas oryzae pv. oryzae.

    PubMed

    Zhao, Ying-Tao; Wang, Meng; Wang, Zhi-Min; Fang, Rong-Xiang; Wang, Xiu-Jie; Jia, Yan-Tao

    2015-11-20

    Endogenous small RNAs are newly identified players in plant immune responses, yet their roles in rice (Oryza sativa) responding to pathogens are still less understood, especially for pathogens that can cause severe yield losses. We examined the small RNA expression profiles of rice leaves at 2, 6, 12, and 24 hours post infection of Xanthomonas oryzae pv. oryzae (Xoo) virulent strain PXO99, the causal agent of rice bacterial blight disease. Dynamic expression changes of some miRNAs and trans-acting siRNAs were identified, together with a few novel miRNA targets, including an RLK gene targeted by osa-miR159a.1. Coordinated expression changes were observed among some small RNAs in response to Xoo infection, with small RNAs exhibiting the same expression pattern tended to regulate genes in the same or related signaling pathways, including auxin and GA signaling pathways, nutrition and defense-related pathways. These findings reveal the dynamic and complex roles of small RNAs in rice-Xoo interactions, and identify new targets for regulating plant responses to Xoo. PMID:26674380

  7. Reducing Xanthomonas from surfaces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Removal of the citrus canker organism, Xanthomonas axonopodis pv citri , from the surfaces of packinglines is just as important an issue facing the citrus fresh fruit packers as removing the bacteria from the fruit surfaces. Current allowable washes and rinses do not adequately clean the lines and ...

  8. SCREENING CITRUS GERMPLASM FOR RESISTANCE TO XANTHOMONAS ANONOPODIS PV. CITRI

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citrus bacterial canker (causal agent Xanthomonas axonopodis pv. citri (Xac)) is a serious threat to the citrus industry. Currently there are no effective means to control citrus canker. Our objective was to determine the resistance of selected Citrus species, citrus hybrids, and citrus relatives to...

  9. Lettuce cultivar influences Xanthomonas campestris pv. vitians population levels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial Leaf Spot, caused by Xanthomonas campestris pv. vitians (Xcv), is a widespread and economically important disease of lettuce. Cultivars with resistance to Xcv have been identified, but mechanisms for resistance in this pathosystem have not been investigated. We hypothesized that susceptibl...

  10. Crystallization and preliminary crystallographic studies of LipA, a secretory lipase/esterase from Xanthomonas oryzae pv. oryzae

    SciTech Connect

    Aparna, Gudlur; Chatterjee, Avradip; Jha, Gopaljee; Sonti, Ramesh V.; Sankaranarayanan, Rajan

    2007-08-01

    The crystallization and preliminary crystallographic studies of LipA, a lipase/esterase secreted by X. oryzae pv. oryzae during its infection of rice plants, are reported. Xanthomonas oryzae pv. oryzae is the causal agent of bacterial leaf blight, a serious disease of rice. Several enzymes that are secreted through the type II secretion system of this bacterium play an important role in the plant–microbe interaction, being important for virulence and also being able to induce potent host defence responses. One of these enzymes is a secretory lipase/esterase, LipA, which shows a very weak homology to other bacterial lipases and gives a positive tributyrin plate assay. In this study, LipA was purified from the culture supernatant of an overexpressing clone of X. oryzae pv. oryzae and two types of crystals belonging to space group C2 but with two different unit-cell parameters were obtained using the hanging-drop vapour-diffusion method. Type I crystals diffract to a maximum resolution of 1.89 Å and have unit-cell parameters a = 93.1, b = 62.3, c = 66.1 Å, β = 90.8°. Type II crystals have unit-cell parameters a = 103.6, b = 54.6, c = 66.3 Å, β = 92.6° and diffract to 1.86 Å. Solvent-content analysis shows one monomer in the asymmetric unit in both the crystal forms.

  11. The Type III Secretion System of Xanthomonas fuscans subsp. fuscans Is Involved in the Phyllosphere Colonization Process and in Transmission to Seeds of Susceptible Beans?

    PubMed Central

    Darsonval, A.; Darrasse, A.; Meyer, D.; Demarty, M.; Durand, K.; Bureau, C.; Manceau, C.; Jacques, M.-A.

    2008-01-01

    Understanding the survival, multiplication, and transmission to seeds of plant pathogenic bacteria is central to study their pathogenesis. We hypothesized that the type III secretion system (T3SS), encoded by hrp genes, could have a role in host colonization by plant pathogenic bacteria. The seed-borne pathogen Xanthomonas fuscans subsp. fuscans causes common bacterial blight of bean (Phaseolus vulgaris). Directed mutagenesis in strain CFBP4834-R of X. fuscans subsp. fuscans and bacterial population density monitoring on bean leaves showed that strains with mutations in the hrp regulatory genes, hrpG and hrpX, were impaired in their phyllospheric growth, as in the null interaction with Escherichia coli C600 and bean. In the compatible interaction, CFBP4834-R reached high phyllospheric population densities and was transmitted to seeds at high frequencies with high densities. Strains with mutations in structural hrp genes maintained the same constant epiphytic population densities (1 × 105 CFU g?1 of fresh weight) as in the incompatible interaction with Xanthomonas campestris pv. campestris ATCC 33913 and the bean. Low frequencies of transmission to seeds and low bacterial concentrations were recorded for CFBP4834-R hrp mutants and for ATCC 33913, whereas E. coli C600 was not transmitted. Moreover, unlike the wild-type strain, strains with mutations in hrp genes were not transmitted to seeds by vascular pathway. Transmission to seeds by floral structures remained possible for both. This study revealed the involvement of the X. fuscans subsp. fuscans T3SS in phyllospheric multiplication and systemic colonization of bean, leading to transmission to seeds. Our findings suggest a major contribution of hrp regulatory genes in host colonization processes. PMID:18326683

  12. Constitutive heterologous expression of avrXa27 in rice containing the R gene Xa27 confers enhanced resistance to compatible Xanthomonas oryzae strains.

    PubMed

    Tian, Dongsheng; Yin, Zhongchao

    2009-01-01

    The vascular pathogen Xanthomonas oryzae pv. oryzae (Xoo) and nonvascular pathogen Xanthomonas oryzae pv. oryzicola (Xoc) cause bacterial blight (BB) and bacterial leaf streak (BLS) diseases of rice, respectively. We have previously identified the avirulence gene avrXa27 from Xoo PXO99(A), which specifically induces the expression of the rice resistance gene Xa27, ultimately leading to resistance against BB disease in rice. In this study, we have generated a transgenic rice line (L24) that expresses avrXa27 constitutively under the control of the PR1 promoter, and have examined its role in the host-pathogen interaction. L24 is not more susceptible to BB, indicating that avrXa27 does not contribute to virulence. AvrXa27 retains avirulence activity in L24 and, after crossing with a line containing Xa27, progeny display phenotypic changes including inhibition of tillering, delay in flowering, stiff leaves, early leaf senescence and activation of pathogenesis-related (PR) genes. On challenge with a variety of compatible strains of Xoo and Xoc strain L8, lines with both avrXa27 and Xa27 also show enhanced resistance to bacterial infection. The induction of Xa27 and subsequent inhibition of Xoc growth in Xa27 plants are observed on inoculation with Xoc L8 harbouring avrXa27. Our results indicate that the heterologous expression of avrXa27 in rice containing Xa27 triggers R gene-specific resistance and, at the same time, confers enhanced resistance to compatible strains of Xoo and Xoc. The expression of AvrXa27 and related proteins in plants has the potential to generate broad resistance in plants. PMID:19161350

  13. Involvement of bacterial TonB-dependent signaling in the generation of an oligogalacturonide damage-associated molecular pattern from plant cell walls exposed to Xanthomonas campestris pv. campestris pectate lyases

    PubMed Central

    2012-01-01

    Background Efficient perception of attacking pathogens is essential for plants. Plant defense is evoked by molecules termed elicitors. Endogenous elicitors or damage-associated molecular patterns (DAMPs) originate from plant materials upon injury or pathogen activity. While there are comparably well-characterized examples for DAMPs, often oligogalacturonides (OGAs), generated by the activity of fungal pathogens, endogenous elicitors evoked by bacterial pathogens have been rarely described. In particular, the signal perception and transduction processes involved in DAMP generation are poorly characterized. Results A mutant strain of the phytopathogenic bacterium Xanthomonas campestris pv. campestris deficient in exbD2, which encodes a component of its unusual elaborate TonB system, had impaired pectate lyase activity and caused no visible symptoms for defense on the non-host plant pepper (Capsicum annuum). A co-incubation of X. campestris pv. campestris with isolated cell wall material from C. annuum led to the release of compounds which induced an oxidative burst in cell suspension cultures of the non-host plant. Lipopolysaccharides and proteins were ruled out as elicitors by polymyxin B and heat treatment, respectively. After hydrolysis with trifluoroacetic acid and subsequent HPAE chromatography, the elicitor preparation contained galacturonic acid, the monosaccharide constituent of pectate. OGAs were isolated from this crude elicitor preparation by HPAEC and tested for their biological activity. While small OGAs were unable to induce an oxidative burst, the elicitor activity in cell suspension cultures of the non-host plants tobacco and pepper increased with the degree of polymerization (DP). Maximal elicitor activity was observed for DPs exceeding 8. In contrast to the X. campestris pv. campestris wild type B100, the exbD2 mutant was unable to generate elicitor activity from plant cell wall material or from pectin. Conclusions To our knowledge, this is the second report on a DAMP generated by bacterial features. The generation of the OGA elicitor is embedded in a complex exchange of signals within the framework of the plant-microbe interaction of C. annuum and X. campestris pv. campestris. The bacterial TonB-system is essential for the substrate-induced generation of extracellular pectate lyase activity. This is the first demonstration that a TonB-system is involved in bacterial trans-envelope signaling in the context of a pathogenic interaction with a plant. PMID:23082751

  14. Novel insights into rice innate immunity against bacterial and fungal pathogens.

    PubMed

    Liu, Wende; Liu, Jinling; Triplett, Lindsay; Leach, Jan E; Wang, Guo-Liang

    2014-01-01

    Rice feeds more than half of the world's population. Rice blast, caused by the fungal pathogen Magnaporthe oryzae, and bacterial blight, caused by the bacterial pathogen Xanthomonas oryzae pv. oryzae, are major constraints to rice production worldwide. Genome sequencing and extensive molecular analysis has led to the identification of many new pathogen-associated molecular patterns (PAMPs) and avirulence and virulence effectors in both pathogens, as well as effector targets and receptors in the rice host. Characterization of these effectors, host targets, and resistance genes has provided new insight into innate immunity in plants. Some of the new findings, such as the binding activity of X. oryzae transcriptional activator-like (TAL) effectors to specific rice genomic sequences, are being used for the development of effective disease control methods and genome modification tools. This review summarizes the recent progress toward understanding the recognition and signaling events that govern rice innate immunity. PMID:24906128

  15. Rhizoctonia web blight

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia web blight, caused by several Rhizoctonia spp., is an important disease of evergreen azaleas and other ornamental plants in nurseries. The primary pathogens causing web blight are binucleate Rhizoctonia anastomosis groups (AG) (= Ceratobasidium D.P. Rogers, teleomorph). In southern AL an...

  16. A rare sugar, d-allose, confers resistance to rice bacterial blight with upregulation of defense-related genes in Oryza sativa.

    PubMed

    Kano, Akihito; Gomi, Kenji; Yamasaki-Kokudo, Yumiko; Satoh, Masaru; Fukumoto, Takeshi; Ohtani, Kouhei; Tajima, Shigeyuki; Izumori, Ken; Tanaka, Keiji; Ishida, Yutaka; Tada, Yasuomi; Nishizawa, Yoko; Akimitsu, Kazuya

    2010-01-01

    We investigated responses of rice plant to three rare sugars, d-altrose, d-sorbose, and d-allose, due to establishment of mass production methods for these rare sugars. Root growth and shoot growth were significantly inhibited by d-allose but not by the other rare sugars. A large-scale gene expression analysis using a rice microarray revealed that d-allose treatment causes a high upregulation of many defense-related, pathogenesis-related (PR) protein genes in rice. The PR protein genes were not upregulated by other rare sugars. Furthermore, d-allose treatment of rice plants conferred limited resistance of the rice against the pathogen Xanthomonas oryzae pv. oryzae but the other tested sugars did not. These results indicate that d-allose has a growth inhibitory effect but might prove to be a candidate elicitor for reducing disease development in rice. PMID:19968553

  17. Development and validation of a real-time quantitative PCR assay to detect Xanthomonas axonopodis pv. allii from onion seed.

    PubMed

    Robène, Isabelle; Perret, Marion; Jouen, Emmanuel; Escalon, Aline; Maillot, Marie-Véronique; Chabirand, Aude; Moreau, Aurélie; Laurent, Annie; Chiroleu, Frédéric; Pruvost, Olivier

    2015-07-01

    Bacterial blight of onion is an emerging disease threatening world onion production. The causal agent Xanthomonas axonopodis pv. allii is seed transmitted and a reliable and sensitive tool is needed to monitor seed exchanges. A triplex quantitative real-time PCR assay was developed targeting two X. axonopodis pv. allii-specific markers and an internal control chosen in 5.8S rRNA gene from Alliaceae. Amplification of at least one marker indicates the presence of the bacterium in seed extracts. This real-time PCR assay detected all the 79 X. axonopodis pv. allii strains tested and excluded 85.2% of the 135 non-target strains and particularly all 39 saprophytic and pathogenic bacteria associated with onion. Cross-reactions were mainly obtained for strains assigned to nine phylogenetically related X. axonopodis pathovars. The cycle cut-off was estimated statistically at 36.3 considering a risk of false positive of 1%. The limit of detection obtained in at least 95% of the time (LOD 95%) was 5×10(3) CFU/g (colony forming unit/g). The sensitivity threshold was found to be 1 infected seed in 32,790 seeds. This real-time PCR assay should be useful for preventing the long-distance spread of X. axonopodis pv. allii via contaminated seed lots and determining the epidemiology of the bacterium. PMID:25940928

  18. Transcriptome-Based Identification of Differently Expressed Genes from Xanthomonas oryzae pv. oryzae Strains Exhibiting Different Virulence in Rice Varieties

    PubMed Central

    Noh, Tae-Hwan; Song, Eun-Sung; Kim, Hong-Il; Kang, Mi-Hyung; Park, Young-Jin

    2016-01-01

    Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight (BB) in rice (Oryza sativa L.). In this study, we investigated the genome-wide transcription patterns of two Xoo strains (KACC10331 and HB1009), which showed different virulence patterns against eight rice cultivars, including IRBB21 (carrying Xa21). In total, 743 genes showed a significant change (p-value < 0.001 in t-tests) in their mRNA expression levels in the HB1009 (K3a race) strain compared with the Xoo KACC10331 strain (K1 race). Among them, four remarkably enriched GO terms, DNA binding, transposition, cellular nitrogen compound metabolic process, and cellular macromolecule metabolic process, were identified in the upregulated genes. In addition, the expression of 44 genes was considerably higher (log2 fold changes > 2) in the HB1009 (K3a race) strain than in the Xoo KACC10331 (K1 race) strain. Furthermore, 13 and 12 genes involved in hypersensitive response and pathogenicity (hrp) and two-component regulatory systems (TCSs), respectively, were upregulated in the HB1009 (K3a race) strain compared with the Xoo KACC10331 (K1 race) strain, which we determined using either quantitative real-time PCR analysis or next-generation RNA sequencing. These results will be helpful to improve our understanding of Xoo and to gain a better insight into the Xoo–rice interactions. PMID:26907259

  19. Transcriptome-Based Identification of Differently Expressed Genes from Xanthomonas oryzae pv. oryzae Strains Exhibiting Different Virulence in Rice Varieties.

    PubMed

    Noh, Tae-Hwan; Song, Eun-Sung; Kim, Hong-Il; Kang, Mi-Hyung; Park, Young-Jin

    2016-01-01

    Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight (BB) in rice (Oryza sativa L.). In this study, we investigated the genome-wide transcription patterns of two Xoo strains (KACC10331 and HB1009), which showed different virulence patterns against eight rice cultivars, including IRBB21 (carrying Xa21). In total, 743 genes showed a significant change (p-value < 0.001 in t-tests) in their mRNA expression levels in the HB1009 (K3a race) strain compared with the Xoo KACC10331 strain (K1 race). Among them, four remarkably enriched GO terms, DNA binding, transposition, cellular nitrogen compound metabolic process, and cellular macromolecule metabolic process, were identified in the upregulated genes. In addition, the expression of 44 genes was considerably higher (log2 fold changes > 2) in the HB1009 (K3a race) strain than in the Xoo KACC10331 (K1 race) strain. Furthermore, 13 and 12 genes involved in hypersensitive response and pathogenicity (hrp) and two-component regulatory systems (TCSs), respectively, were upregulated in the HB1009 (K3a race) strain compared with the Xoo KACC10331 (K1 race) strain, which we determined using either quantitative real-time PCR analysis or next-generation RNA sequencing. These results will be helpful to improve our understanding of Xoo and to gain a better insight into the Xoo-rice interactions. PMID:26907259

  20. Ascochyta blight of peas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identification, taxonomy & nomenclature, epidemiology, symptoms, host ranges, and management are described for three fungal pathogens which collectively and individually cause Ascochyta blight of field pea (Pisum sativum): Ascochyta pisi, Ascochyta pinodes, and Ascochyta pinodella. The first two are...

  1. Expression, crystallization and preliminary X-ray crystallographic analysis of XometC, a cystathionine γ-lyase-like protein from Xanthomonas oryzae pv. oryzae

    SciTech Connect

    Ngo, Phuong-Thuy Ho; Kim, Jin-Kwang; Kim, Hyesoon; Jung, Junho; Ahn, Yeh-Jin; Kim, Jeong-Gu; Lee, Byoung-Moo; Kang, Hee-Wan; Kang, Lin-Woo

    2008-08-01

    XometC, a cystathionine γ-lyase-like protein from X. oryzae pv. oryzae and an antibacterial drug-target protein against bacterial blight, was cloned, purified and crystallized. Preliminary X-ray crystallographic analysis of XometC crystals was carried out. Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight of rice (Oryza sativa L.), one of the most devastating diseases of rice in most rice-growing countries. XometC, a cystathionine γ-lyase (CGL) like protein that is an antibacterial drug-target protein against Xoo, was cloned, expressed, purified and crystallized. CGL catalyzes the second step in the reverse-transsulfuration pathway, which is essential for the metabolic interconversion of the sulfur-containing amino acids cysteine and methionine. Crystals of two different shapes, plate-shaped and pyramid-shaped, diffracted to 2.9 and 3.2 Å resolution and belonged to the primitive orthogonal space group P2{sub 1}2{sub 1}2{sub 1} and the tetragonal space group P4{sub 1} (or P4{sub 3}), with unit-cell parameters a = 73.0, b = 144.9, c = 152.3 Å and a = b = 78.2, c = 300.7 Å, respectively. For the P2{sub 1}2{sub 1}2{sub 1} crystals, three or four monomers exist in the asymmetric unit with a corresponding V{sub M} of 3.02 or 2.26 Å{sup 3} Da{sup −1} and a solvent content of 59.3 or 45.7%. For the P4{sub 1} (or P4{sub 3}) crystals, four or five monomers exist in the asymmetric unit with a corresponding V{sub M} of 2.59 or 2.09 Å{sup 3} Da{sup −1} and a solvent content of 52.5 or 40.6%.

  2. Dispersal of Xanthomonas citri subsp. citri bacteria downwind from harvested, infected fruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citrus canker (Xanthomonas axonopodis pv. citri , Xac) is a bacterial disease that severely damages citrus crops. Its recent introduction to Florida has created difficulties with international and domestic trade and movement of citrus material. This study examined the potential dispersal of bacteri...

  3. Identification of ta-siRNAs and Cis-nat-siRNAs in Cassava and Their Roles in Response to Cassava Bacterial Blight

    PubMed Central

    Quintero, Andrés; Pérez-Quintero, Alvaro L.; López, Camilo

    2013-01-01

    Trans-acting small interfering RNAs (ta-siRNAs) and natural cis-antisense siRNAs (cis-nat-siRNAs) are recently discovered small RNAs (sRNAs) involved in post-transcriptional gene silencing. ta-siRNAs are transcribed from genomic loci and require processing by microRNAs (miRNAs). cis-nat-siRNAs are derived from antisense RNAs produced by the simultaneous transcription of overlapping antisense genes. Their roles in many plant processes, including pathogen response, are mostly unknown. In this work, we employed a bioinformatic approach to identify ta-siRNAs and cis-nat-siRNAs in cassava from two sRNA libraries, one constructed from healthy cassava plants and one from plants inoculated with the bacterium Xanthomonas axonopodis pv. manihotis (Xam). A total of 54 possible ta-siRNA loci were identified in cassava, including a homolog of TAS3, the best studied plant ta-siRNA. Fifteen of these loci were induced, while 39 were repressed in response to Xam infection. In addition, 15 possible cis-natural antisense transcript (cis-NAT) loci producing siRNAs were identified from overlapping antisense regions in the genome, and were found to be differentially expressed upon Xam infection. Roles of sRNAs were predicted by sequence complementarity and our results showed that many sRNAs identified in this work might be directed against various transcription factors. This work represents a significant step toward understanding the roles of sRNAs in the immune response of cassava. PMID:23665476

  4. AnnoTALE: bioinformatics tools for identification, annotation, and nomenclature of TALEs from Xanthomonas genomic sequences

    PubMed Central

    Grau, Jan; Reschke, Maik; Erkes, Annett; Streubel, Jana; Morgan, Richard D.; Wilson, Geoffrey G.; Koebnik, Ralf; Boch, Jens

    2016-01-01

    Transcription activator-like effectors (TALEs) are virulence factors, produced by the bacterial plant-pathogen Xanthomonas, that function as gene activators inside plant cells. Although the contribution of individual TALEs to infectivity has been shown, the specific roles of most TALEs, and the overall TALE diversity in Xanthomonas spp. is not known. TALEs possess a highly repetitive DNA-binding domain, which is notoriously difficult to sequence. Here, we describe an improved method for characterizing TALE genes by the use of PacBio sequencing. We present ‘AnnoTALE’, a suite of applications for the analysis and annotation of TALE genes from Xanthomonas genomes, and for grouping similar TALEs into classes. Based on these classes, we propose a unified nomenclature for Xanthomonas TALEs that reveals similarities pointing to related functionalities. This new classification enables us to compare related TALEs and to identify base substitutions responsible for the evolution of TALE specificities. PMID:26876161

  5. AnnoTALE: bioinformatics tools for identification, annotation, and nomenclature of TALEs from Xanthomonas genomic sequences.

    PubMed

    Grau, Jan; Reschke, Maik; Erkes, Annett; Streubel, Jana; Morgan, Richard D; Wilson, Geoffrey G; Koebnik, Ralf; Boch, Jens

    2016-01-01

    Transcription activator-like effectors (TALEs) are virulence factors, produced by the bacterial plant-pathogen Xanthomonas, that function as gene activators inside plant cells. Although the contribution of individual TALEs to infectivity has been shown, the specific roles of most TALEs, and the overall TALE diversity in Xanthomonas spp. is not known. TALEs possess a highly repetitive DNA-binding domain, which is notoriously difficult to sequence. Here, we describe an improved method for characterizing TALE genes by the use of PacBio sequencing. We present 'AnnoTALE', a suite of applications for the analysis and annotation of TALE genes from Xanthomonas genomes, and for grouping similar TALEs into classes. Based on these classes, we propose a unified nomenclature for Xanthomonas TALEs that reveals similarities pointing to related functionalities. This new classification enables us to compare related TALEs and to identify base substitutions responsible for the evolution of TALE specificities. PMID:26876161

  6. Identification and Characterization of Two Novel DSF-Controlled Virulence-Associated Genes Within the nodB-rhgB Locus of Xanthomonas oryzae pv. oryzicola Rs105.

    PubMed

    Song, Zhiwei; Zhao, Yancun; Zhou, Xingyang; Wu, Guichun; Zhang, Yuqiang; Qian, Guoliang; Liu, Fengquan

    2015-05-01

    Xanthomonas oryzae pv. oryzicola and X. oryzae pv. oryzae are two pathovars of X. oryzae that cause leaf streak and blight in rice, respectively. These two bacterial pathogens cause different disease symptoms by utilizing different infection sites on rice. Compared with X. oryzae pv. oryzae, the molecular virulence mechanism of X. oryzae pv. oryzicola remains largely unknown. Previously, we identified a unique diffusible signal factor (DSF)-controlled virulence-related gene (hshB) in X. oryzae pv. oryzicola Rs105 located in the nodB-rghB locus, which is absent in X. oryzae pv. oryzae PXO99(A). In the present study, we identified two additional genes within this locus (hshA and hshC) that were unique to X. oryzae pv. oryzicola Rs105 compared with X. oryzae pv. oryzae PXO99(A), and we found that the transcription of these genes was regulated by DSF signaling in X. oryzae pv. oryzicola. The mutation of these genes impaired the virulence of the wild-type Rs105 when using a low inoculation density of X. oryzae pv. oryzicola. In contrast to hshB, the mutation of these genes did not have any visible effect on characterized virulence-related functions, including in vitro growth, extracellular polysaccharide production, extracellular protease activity, and antioxidative ability. However, we found that mutation of hshA or hshC significantly reduced the in planta growth ability and epiphytic survival level of X. oryzae pv. oryzicola cells, which was the probable mechanisms of involvement of these two genes in virulence. Collectively, our studies of X. oryzae pv. oryzicola have identified two novel DSF-controlled virulence-associated genes (hshA and hshC), which will add to our understanding of the regulatory mechanisms of conserved DSF virulence signaling in Xanthomonas species. PMID:26020828

  7. Rootstock-regulated gene expression patterns associated with fire blight resistance in apple

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Desirable apple varieties are clonally propagated by grafting vegetative scions onto rootstocks. Rootstocks influence many phenotypic traits of the scion, including resistance to pathogens such as Erwinia amylovora, which causes fire blight, the most serious bacterial disease of apple....

  8. Potential for Control of Seedling Blight of Wheat Caused by Fusarium graminearum and Related Species Using the Bacterial Endophyte Bacillus mojavensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium infected-wheat seed decreases germination, seedling emergence, and causes post emergence seedling death, and can contribute to wheat scab and ear rot of maize, with consequent production of mycotoxins such as deoxynivalenol and zearalenone. A patented endophytic bacterial strain, Bacillus ...

  9. Ascochyta blight of chickpeas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chickpea is becoming increasingly important as a rotational crop in cereal production systems. Ascochyta blight is the most devastating disease of chickpea and must be appropriately managed to minimize its damage to crops and increase chickpea yield. The disease is caused by the fungus Ascochyta r...

  10. Disease Alert: Stemphylium Blight

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lentil leaves showing symptoms of Stemphylium blight were collected from a lentil field northeast of Garfield (near Idaho border) on July 8, 2013, and incubation of the diseased leaves showed typical spores of the pathogen Stemphylium botryosum or other Stemphylium sp. The field was planted with ‘Mo...

  11. Botryosphaeria Stem Blight

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stem blight, commonly referred to as dieback, is a destructive disease of highbush and rabbiteye blueberry primarily in the southeastern United States extending north into New Jersey. Losses are most severe in young fields where plants often become infected and die in the first two years. In older...

  12. Ascochyta blight of chickpea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ascochyta blight of chickpea is caused by the necrotrophic pathogen Ascochyta rabiei. The disease is a serious yield constraint of chickpea worldwide. The pathogen causes necrotic lesions on leaves, stems, flowers, pod and seeds under cool and humid conditions. The pathogen survives in crop debri...

  13. “Genetic Species” Concept in Xanthomonas

    PubMed Central

    Friedman, S.; De Ley, J.

    1965-01-01

    Friedman, S. (State University, Ghent, Belgium), and J. De Ley. “Genetic species” concept in Xanthomonas. J. Bacteriol. 89:95–100. 1965.—Deuterated, N15-labeled deoxyribonucleic acid (DNA) from Xanthomonas pelargonii forms distinct hybrids with ordinary DNA from X. hederae, X. juglandis, and X. carotae. Hybridization is less pronounced with X. phaseoli and X. begoniae. There is evidence that some hybridization occurs with X. vesicatoria, X. campestris, and X. tamarindi. These results favor the concept of a “genetic species,” rather than a division of the genus into many separate species based almost entirely on phytopathogenic host specificity. PMID:14255686

  14. Biological control of post-harvest late blight of potatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction of US-8 genotypes of Phytophthora infestans has coincided with an increase in severity of potato late blight in North America. As alternatives to chemical fungicides, 18 bacterial strains patented as biological control agents (BCA) of both sprouting and Fusarium dry rot were cultivated...

  15. Putative resistance gene markers associated with quantitative trait loci for fire blight resistance in Malus 'Robusta 5' accessions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Breeding of fire blight resistant scions and rootstocks is a goal of several international apple breeding programs, as options are limited for management of this destructive disease caused by the bacterial pathogen Erwinia amylovora. A broad, large effect QTL for fire blight resistance has been pre...

  16. The bacterial effector DspA/E is toxic in Arabidopsis thaliana and is required for multiplication and survival of fire blight pathogen.

    TOXLINE Toxicology Bibliographic Information

    Degrave A; Moreau M; Launay A; Barny MA; Brisset MN; Patrit O; Taconnat L; Vedel R; Fagard M

    2013-06-01

    The type III effector DspA/E is an essential pathogenicity factor of the phytopathogenic bacterium Erwinia amylovora. We showed that DspA/E was required for transient bacterial growth in nonhost Arabidopsis thaliana leaves, as an E. amylovora dspA/E mutant was unable to grow. We expressed DspA/E in A. thaliana transgenic plants under the control of an oestradiol-inducible promoter, and found that DspA/E expressed in planta restored the growth of a dspA/E mutant. DspA/E expression in these transgenic plants led to the modulation by at least two-fold of the expression of 384 genes, mostly induced (324 genes). Both induced and repressed genes contained high proportions of defence genes. DspA/E expression ultimately resulted in plant cell death without requiring a functional salicylic acid signalling pathway. Analysis of A. thaliana transgenic seedlings expressing a green fluorescent protein (GFP):DspA/E fusion indicated that the fusion protein could only be detected in a few cells per seedling, suggesting the degradation or absence of accumulation of DspA/E in plant cells. Consistently, we found that DspA/E repressed plant protein synthesis when injected by E. amylovora or when expressed in transgenic plants. Thus, we conclude that DspA/E is toxic to A. thaliana: it promotes modifications, among which the repression of protein synthesis could be determinant in the facilitation of necrosis and bacterial growth.

  17. The bacterial effector DspA/E is toxic in Arabidopsis thaliana and is required for multiplication and survival of fire blight pathogen.

    PubMed

    Degrave, Alexandre; Moreau, Manon; Launay, Alban; Barny, Marie-Anne; Brisset, Marie-Noëlle; Patrit, Oriane; Taconnat, Ludivine; Vedel, Regine; Fagard, Mathilde

    2013-06-01

    The type III effector DspA/E is an essential pathogenicity factor of the phytopathogenic bacterium Erwinia amylovora. We showed that DspA/E was required for transient bacterial growth in nonhost Arabidopsis thaliana leaves, as an E. amylovora dspA/E mutant was unable to grow. We expressed DspA/E in A. thaliana transgenic plants under the control of an oestradiol-inducible promoter, and found that DspA/E expressed in planta restored the growth of a dspA/E mutant. DspA/E expression in these transgenic plants led to the modulation by at least two-fold of the expression of 384 genes, mostly induced (324 genes). Both induced and repressed genes contained high proportions of defence genes. DspA/E expression ultimately resulted in plant cell death without requiring a functional salicylic acid signalling pathway. Analysis of A. thaliana transgenic seedlings expressing a green fluorescent protein (GFP):DspA/E fusion indicated that the fusion protein could only be detected in a few cells per seedling, suggesting the degradation or absence of accumulation of DspA/E in plant cells. Consistently, we found that DspA/E repressed plant protein synthesis when injected by E. amylovora or when expressed in transgenic plants. Thus, we conclude that DspA/E is toxic to A. thaliana: it promotes modifications, among which the repression of protein synthesis could be determinant in the facilitation of necrosis and bacterial growth. PMID:23634775

  18. Predisposition of citrus foliage to infection with Xanthomonas citri subsp. citri.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citrus canker (caused by Xanthomonas citri subsp. citri, Xcc) is a serious disease of susceptible citrus in Florida and other citrus-growing areas of the world. The specific effects of predisposing factors for bacterial penetration of leaves are poorly characterized. Experiments were designed to inv...

  19. Pathogenic and genetic diversity of Xanthomonas translucens pv. undulosa populations in North Dakota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Xanthomonas translucens pv. undulosa causes bacterial leaf streak (BLS) disease in wheat (Triticum aestivum L.). In recent years, severe BLS outbreaks have been reported in the Upper Midwest of the United States, particularly in North Dakota and adjacent wheat growing states. To assess pathogenic an...

  20. Draft genome of the xanthan producer Xanthomonas campestris NRRL B-1459 (ATCC 13951).

    PubMed

    Wibberg, Daniel; Alkhateeb, Rabeaa S; Winkler, Anika; Albersmeier, Andreas; Schatschneider, Sarah; Albaum, Stefan; Niehaus, Karsten; Hublik, Gerd; Pühler, Alfred; Vorhölter, Frank-Jörg

    2015-06-20

    Xanthomonas campestris NRRL B-1459 was used in pioneering studies related to the biotechnological production of xanthan, the commercially most important polysaccharide of bacterial origin. The analysis of its genome revealed a 5.1Mb chromosome plus the first complete plasmid of an X. campestris strain applied in biotechnology. PMID:25865276

  1. Draft Genome Sequence of Xanthomonas translucens pv. graminis Pathotype Strain CFBP 2053.

    PubMed

    Pesce, Céline; Bolot, Stéphanie; Berthelot, Edwige; Bragard, Claude; Cunnac, Sébastien; Fischer-Le Saux, Marion; Portier, Perrine; Arlat, Matthieu; Gagnevin, Lionel; Jacques, Marie-Agnès; Noël, Laurent D; Carrère, Sébastien; Koebnik, Ralf

    2015-01-01

    Strains of Xanthomonas translucens pv. graminis cause bacterial wilt on several forage grasses. A draft genome sequence of pathotype strain CFBP 2053 was generated to facilitate the discovery of new pathogenicity factors and to develop diagnostic tools for the species X. translucens. PMID:26450740

  2. Identification of New Sources of Resistance to Xanthomonas translucens pv. undulosa in Winter Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    : Bacterial leaf streak (BLS) caused by Xanthomonas translucens pv. undulosa, has emerged as an important disease of wheat in the United States. Planting resistant varieties offers the best strategy to manage BLS in the absence of effective bactericides. However, most of the wheat varieties current...

  3. Draft Genome Sequence of Xanthomonas translucens pv. graminis Pathotype Strain CFBP 2053

    PubMed Central

    Pesce, Céline; Bolot, Stéphanie; Berthelot, Edwige; Bragard, Claude; Cunnac, Sébastien; Fischer-Le Saux, Marion; Portier, Perrine; Arlat, Matthieu; Gagnevin, Lionel; Jacques, Marie-Agnès; Noël, Laurent D.; Carrère, Sébastien

    2015-01-01

    Strains of Xanthomonas translucens pv. graminis cause bacterial wilt on several forage grasses. A draft genome sequence of pathotype strain CFBP 2053 was generated to facilitate the discovery of new pathogenicity factors and to develop diagnostic tools for the species X. translucens. PMID:26450740

  4. High-Quality Draft Genome Sequence of the Xanthomonas translucens pv. cerealis Pathotype Strain CFBP 2541

    PubMed Central

    Pesce, Céline; Bolot, Stéphanie; Cunnac, Sébastien; Portier, Perrine; Fischer-Le Saux, Marion; Jacques, Marie-Agnès; Arlat, Matthieu; Noël, Laurent D.; Carrère, Sébastien; Bragard, Claude

    2015-01-01

    Xanthomonas translucens pv. cerealis is the causal agent of bacterial leaf streak on true grasses. The genome of the pathotype strain CFBP 2541 was sequenced in order to decipher mechanisms that provoke disease and to elucidate the role of transcription activator-like (TAL) type III effectors in pathogenicity. PMID:25676771

  5. Chemical products induce resistance to Xanthomonas perforans in tomato

    PubMed Central

    Itako, Adriana Terumi; Tolentino, João Batista; da Silva, Tadeu Antônio Fernandes; Soman, José Marcelo; Maringoni, Antonio Carlos

    2015-01-01

    The bacterial spot of tomato, caused by Xanthomonas spp., is a very important disease, especially in the hot and humid periods of the year. The chemical control of the disease has not been very effective for a number of reasons. This study aimed to evaluate, under greenhouse conditions, the efficacy of leaf-spraying chemicals (acibenzolar-S-methyl (ASM) (0.025 g.L−1), fluazinam (0.25 g.L−1), pyraclostrobin (0.08 g.L−1), pyraclostrobin + methiran (0.02 g.L−1 + 2.2 g.L−1), copper oxychloride (1.50 g.L−1), mancozeb + copper oxychloride (0.88 g.L−1 + 0.60 g.L−1), and oxytetracycline (0.40 g.L−1)) on control of bacterial spot. Tomatoes Santa Clara and Gisele cultivars were pulverized 3 days before inoculation with Xanthomonas perforans. The production of enzymes associated with resistance induction (peroxidase, polyphenol oxidase, phenylalanine ammonia-lyase, β-1,3-glucanase, and protease) was quantified from leaf samples collected 24 hours before and 24 hours after chemical spraying and at 1, 2, 4, 6, and 8 days after bacterial inoculation. All products tested controlled bacterial spot, but only ASM, pyraclostrobin, and pyraclostrobin + metiram increased the production of peroxidase in the leaves of the two tomato cultivars, and increased the production of polyphenol oxidase and β-1,3-glucanase in the Santa Clara cultivar. PMID:26413050

  6. Chemical products induce resistance to Xanthomonas perforans in tomato.

    PubMed

    Itako, Adriana Terumi; Tolentino Júnior, João Batista; Silva Júnior, Tadeu Antônio Fernandes da; Soman, José Marcelo; Maringoni, Antonio Carlos

    2015-01-01

    The bacterial spot of tomato, caused by Xanthomonas spp., is a very important disease, especially in the hot and humid periods of the year. The chemical control of the disease has not been very effective for a number of reasons. This study aimed to evaluate, under greenhouse conditions, the efficacy of leaf-spraying chemicals (acibenzolar-S-methyl (ASM) (0.025 g.L(-1)), fluazinam (0.25 g.L(-1)), pyraclostrobin (0.08 g.L(-1)), pyraclostrobin + methiran (0.02 g.L(-1) + 2.2 g.L(-1)), copper oxychloride (1.50 g.L(-1)), mancozeb + copper oxychloride (0.88 g.L(-1) + 0.60 g.L(-1)), and oxytetracycline (0.40 g.L(-1))) on control of bacterial spot. Tomatoes Santa Clara and Gisele cultivars were pulverized 3 days before inoculation with Xanthomonas perforans. The production of enzymes associated with resistance induction (peroxidase, polyphenol oxidase, phenylalanine ammonia-lyase, ?-1,3-glucanase, and protease) was quantified from leaf samples collected 24 hours before and 24 hours after chemical spraying and at 1, 2, 4, 6, and 8 days after bacterial inoculation. All products tested controlled bacterial spot, but only ASM, pyraclostrobin, and pyraclostrobin + metiram increased the production of peroxidase in the leaves of the two tomato cultivars, and increased the production of polyphenol oxidase and ?-1,3-glucanase in the Santa Clara cultivar. PMID:26413050

  7. Chickpea Ascochyta blight and insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early symptoms of Acochyta blight and insect damages were detected in the Paliuse region.This article informs chickpea scientists and growers about current disease and insect pest problems in the Palouse region. Ascochyta blight appeared in many chickpea fields and was severe in some fields. Insec...

  8. Evidence for HrpXo-Dependent Expression of Type II Secretory Proteins in Xanthomonas oryzae pv. oryzae

    PubMed Central

    Furutani, Ayako; Tsuge, Seiji; Ohnishi, Kouhei; Hikichi, Yasufumi; Oku, Takashi; Tsuno, Kazunori; Inoue, Yasuhiro; Ochiai, Hirokazu; Kaku, Hisatoshi; Kubo, Yasuyuki

    2004-01-01

    Xanthomonas oryzae pv. oryzae is a causal agent of bacterial leaf blight of rice. Recently, an efficient hrp-inducing medium, XOM2, was established for this bacterium. In this medium, more than 10 proteins were secreted from the wild-type strain of X. oryzae pv. oryzae. Many of these proteins disappeared or decreased in amount in culture on XOM2 when incubated with the strain that has a mutation in the hrp regulatory gene. Interestingly, the secretory protein profile of a mutant lacking a type III secretion system (TTSS), components of which are encoded by hrp genes, was similar to that of the wild-type strain except that a few proteins had disappeared. This finding suggests that many HrpXo-dependent secretory proteins are secreted via systems other than the TTSS. By isolating mutant strains lacking a type II secretion system, we examined this hypothesis. As expected, many of the HrpXo-dependent secretory proteins disappeared or decreased when the mutant was cultured in XOM2. By determining the N-terminal amino acid sequence, we identified one of the type II secretory proteins as a cysteine protease homolog, CysP2. Nucleotide sequence analysis revealed that cysP2 has an imperfect plant-inducible-promoter box, a consensus sequence which HrpXo regulons possess in the promoter region, and a deduced signal peptide sequence at the N terminus. By reverse transcription-PCR analysis and examination of the expression of CysP2 by using a plasmid harboring a cysP2::gus fusion gene, HrpXo-dependent expression of CysP2 was confirmed. Here, we reveal that the hrp regulatory gene hrpXo is also involved in the expression of not only hrp genes and type III secretory proteins but also some type II secretory proteins. PMID:14973015

  9. Ortholog Alleles at Xa3/Xa26 Locus Confer Conserved Race-Specific Resistance against Xanthomonas oryzae in Rice

    PubMed Central

    Xiao, Jing-Hua; Wing, Rod A.; Wang, Shi-Ping

    2012-01-01

    The rice disease resistance (R) gene Xa3/Xa26 (having also been named Xa3 and Xa26) against Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial blight disease, belongs to a multiple gene family clustered in chromosome 11 and is from an AA genome rice cultivar (Oryza sativa L.). This family encodes leucine-rich repeat (LRR) receptor kinase-type proteins. Here, we show that the orthologs (alleles) of Xa3/Xa26, Xa3/Xa26-2, and Xa3/Xa26-3, from wild Oryza species O. officinalis (CC genome) and O. minuta (BBCC genome), respectively, were also R genes against Xoo. Xa3/Xa26-2 and Xa3/Xa26-3 conferred resistance to 16 of the 18 Xoo strains examined. Comparative sequence analysis of the Xa3/Xa26 families in the two wild Oryza species showed that Xa3/Xa26-3 appeared to have originated from the CC genome of O. minuta. The predicted proteins encoded by Xa3/Xa26, Xa3/Xa26-2, and Xa3/Xa26-3 share 91–99% sequence identity and 94–99% sequence similarity. Transgenic plants carrying a single copy of Xa3/Xa26, Xa3/Xa26-2, or Xa3/Xa26-3, in the same genetic background, showed a similar resistance spectrum to a set of Xoo strains, although plants carrying Xa3/Xa26-2 or Xa3/Xa26-3 showed lower resistance levels than the plants carrying Xa3/Xa26. These results suggest that the Xa3/Xa26 locus predates the speciation of A and C genome, which is approximately 7.5 million years ago. Thus, the resistance specificity of this locus has been conserved for a long time. PMID:21930802

  10. Virulence and in planta movement of Xanthomonas hortorum pv. pelargonii are affected by the diffusible signal factor (DSF)-dependent quorum sensing system.

    PubMed

    Barel, Victoria; Chalupowicz, Laura; Barash, Isaac; Sharabani, Galit; Reuven, Michal; Dror, Orit; Burdman, Saul; Manulis-Sasson, Shulamit

    2015-09-01

    Xanthomonas hortorum pv. pelargonii (Xhp), the causal agent of bacterial blight in pelargonium, is the most threatening bacterial disease of this ornamental worldwide. To gain an insight into the regulation of virulence in Xhp, we have disrupted the quorum sensing (QS) genes, which mediate the biosynthesis and sensing of the diffusible signal factor (DSF). Mutations in rpfF (encoding the DSF synthase) and rpfC (encoding the histidine sensor kinase of the two-component system RfpC/RpfG) and overexpression of rpfF showed a significant reduction in incidence and severity of the disease on pelargonium. Confocal laser scanning microscopy images of inoculated plants with a green fluorescent protein (GFP)-labelled wild-type strain showed that the pathogen is homogeneously dispersed in the lumen of xylem vessels, reaching the apex and invading the intercellular spaces of the leaf mesophyll tissue within 21 days. In contrast, the rpfF and rpfC knockout mutants, as well as the rpfF-overexpressing strain, remained confined to the vicinity of the inoculation site. The rpfF and rpfC mutants formed large incoherent aggregates in the xylem vessels that might interfere with upward movement of the bacterium within the plant. Both mutants also formed extended aggregates under in vitro conditions, whereas the wild-type strain formed microcolonies. Expression levels of putative virulence genes in planta were substantially reduced within 48 h after inoculation with the QS mutants when compared with the wild-type. The results presented indicate that an optimal DSF concentration is crucial for successful colonization and virulence of Xhp in pelargonium. PMID:25530086

  11. Meningitis due to Xanthomonas maltophilia.

    PubMed

    Girijaratnakumari, T; Raja, A; Ramani, R; Antony, B; Shivananda, P G

    1993-01-01

    During 1st week of post-operative period, a 28 year old female patient operated for left cerebellopontine angle tumor, continued to get fever. Lumbar puncture did not reveal any organisms. She responded to ciprofloxacin. Two months later, she was readmitted with signs and symptoms of meningitis. The CSF tapped on lumbar puncture grew Xanthomonas maltophilia, Gram negative bacilli, sensitive to various antibiotics, ciprofloxacin being one of them. The patient was given ciprofloxacin for 3 weeks. On follow up, a year later she was found to be asymptomatic. PMID:8051648

  12. Restoration of pathogenicity of avirulent Xanthomonas oryzae pv. oryzae and X. campestris pathovars by reciprocal complementation with the hrpXo and hrpXc genes and identification of HrpX function by sequence analyses.

    PubMed Central

    Kamdar, H V; Kamoun, S; Kado, C I

    1993-01-01

    The molecular basis of pathogenesis by Xanthomonas oryzae pv. oryzae has been partly elucidated by the identification of a gene, hrpXo, required for bacterial blight on rice. A mutation in hrpXo results in the loss of pathogenicity on rice and the loss of hypersensitivity on nonhosts such as Datura stramonium and radishes. Pathogenicity and its ability to cause the hypersensitive reaction is restored by complementing the mutant with the heterologous hrpXc gene derived from X. campestris pv. campestris. Conversely, hrpXo complements nonpathogenic mutants of X. campestris pv. campestris and X. campetstris pv, armoraciae. Mutants bearing the heterologous hrpX gene are restored in their abilities to cause diseases typical of their chromosomal background and not the hypersensitive reaction on their respective hosts. The hrpXo and hrpXc genes are therefore functionally equivalent, and this functional equivalence extends into X. campestris pv. armoraciae and possibly into other X. campestris pathovars, since this gene is highly conserved among eight other pathovars tested. Sequence analyses of hrpXo revealed an open reading frame of 1,452 bp with a coding capacity for a protein of 52.3 kDa. The protein contains a consensus domain for possible protein myristoylation whose consequence may result in a loss of recognition by host defense and surveillance systems. Images PMID:8458844

  13. Development of late blight resistant potatoes by cisgene stacking

    PubMed Central

    2014-01-01

    Background Phytophthora infestans, causing late blight in potato, remains one of the most devastating pathogens in potato production and late blight resistance is a top priority in potato breeding. The introduction of multiple resistance (R) genes with different spectra from crossable species into potato varieties is required. Cisgenesis is a promising approach that introduces native genes from the crops own gene pool using GM technology, thereby retaining favourable characteristics of established varieties. Results We pursued a cisgenesis approach to introduce two broad spectrum potato late blight R genes, Rpi-sto1 and Rpi-vnt1.1 from the crossable species Solanum stoloniferum and Solanum venturii, respectively, into three different potato varieties. First, single R gene-containing transgenic plants were produced for all varieties to be used as references for the resistance levels and spectra to be expected in the respective genetic backgrounds. Next, a construct containing both cisgenic late blight R genes (Rpi-vnt1.1 and Rpi-sto1), but lacking the bacterial kanamycin resistance selection marker (NPTII) was transformed to the three selected potato varieties using Agrobacterium-mediated transformation. Gene transfer events were selected by PCR among regenerated shoots. Through further analyses involving morphological evaluations in the greenhouse, responsiveness to Avr genes and late blight resistance in detached leaf assays, the selection was narrowed down to eight independent events. These cisgenic events were selected because they showed broad spectrum late blight resistance due to the activity of both introduced R genes. The marker-free transformation was compared to kanamycin resistance assisted transformation in terms of T-DNA and vector backbone integration frequency. Also, differences in regeneration time and genotype dependency were evaluated. Conclusions We developed a marker-free transformation pipeline to select potato plants functionally expressing a stack of late blight R genes. Marker-free transformation is less genotype dependent and less prone to vector backbone integration as compared to marker-assisted transformation. Thereby, this study provides an important tool for the successful deployment of R genes in agriculture and contributes to the production of potentially durable late blight resistant potatoes. PMID:24885731

  14. Late blight – Is resistance futile?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article will provide an overview of late blight resistance research that has been done within the USDA/ARS and the University of Wisconsin-Madison. The article is meant to be an informative look at the history of late blight resistance and the ability of the late blight pathogen to overcome res...

  15. Draft Genome Sequences of Two New Zealand Xanthomonas campestris pv. campestris Isolates, ICMP 4013 and ICMP 21080

    PubMed Central

    Desai, Dhairyasheel; Li, Jin-Hua; van Zijll de Jong, Eline; Braun, Robert; Pitman, Andrew; Visnovsky, Sandra; Hampton, John

    2015-01-01

    Xanthomonas campestris pv. campestris is a necrotrophic bacterial pathogen of crucifers. We report here the draft genome sequences of isolates ICMP 4013 and ICMP 21080 from New Zealand. These sequences will facilitate the identification of race-specific factors in X. campestris pv. campestris. PMID:26514760

  16. FaRXf1: a locus conferring resistance to angular leaf spot caused by Xanthomonas fragariae in octoploid strawberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Angular leaf spot caused by Xanthomonas fragariae is the only major bacterial disease of cultivated strawberry (Fragaria ×ananassa). While this disease may cause reductions of up to 8 % of marketable yield in Florida winter annual production, no resistant cultivars have been commercialized. Wild acc...

  17. Influence of epidemiological factors on the bioherbicidal efficacy of a Xanthomonas capestris isolate on common cocklebur (Xanthium strumarium)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse and controlled-environment studies were conducted to determine the effects of incubation temperature, dew period temperature and duration, plant growth stage, and cell concentration on the bioherbicidal efficacy of a highly virulent isolate (LVA987) of the bacterial pathogen, Xanthomonas ...

  18. Draft Genome Sequences of Two New Zealand Xanthomonas campestris pv. campestris Isolates, ICMP 4013 and ICMP 21080.

    PubMed

    Desai, Dhairyasheel; Li, Jin-Hua; van Zijll de Jong, Eline; Braun, Robert; Pitman, Andrew; Visnovsky, Sandra; Hampton, John; Christey, Mary

    2015-01-01

    Xanthomonas campestris pv. campestris is a necrotrophic bacterial pathogen of crucifers. We report here the draft genome sequences of isolates ICMP 4013 and ICMP 21080 from New Zealand. These sequences will facilitate the identification of race-specific factors in X. campestris pv. campestris. PMID:26514760

  19. Construction of a genetic linkage map for identification of molecular markers associated with resistance to Xanthomonas arboriciola pv. pruni in peach [Prunus persica (L.) Batsch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial spot, caused by Xanthomonas campestris pv. pruni, is a serious disease that can affect peach fruit quality and production. The molecular basis of its tolerance and susceptibility is yet to be understood. To study the genetics of the peach in response to bacterial spot, an F2 population of ...

  20. The Xanthomonas oryzae pv. oryzae PilZ Domain Proteins Function Differentially in Cyclic di-GMP Binding and Regulation of Virulence and Motility.

    PubMed

    Yang, Fenghuan; Tian, Fang; Chen, Huamin; Hutchins, William; Yang, Ching-Hong; He, Chenyang

    2015-07-01

    The PilZ domain proteins have been demonstrated to be one of the major types of receptors mediating cyclic di-GMP (c-di-GMP) signaling pathways in several pathogenic bacteria. However, little is known about the function of PilZ domain proteins in c-di-GMP regulation of virulence in the bacterial blight pathogen of rice Xanthomonas oryzae pv. oryzae. Here, the roles of PilZ domain proteins PXO_00049 and PXO_02374 in c-di-GMP binding, regulation of virulence and motility, and subcellular localization were characterized in comparison with PXO_02715, identified previously as an interactor with the c-di-GMP receptor Filp to regulate virulence. The c-di-GMP binding motifs in the PilZ domains were conserved in PXO_00049 and PXO_02374 but were less well conserved in PXO_02715. PXO_00049 and PXO_02374 but not PXO_02715 proteins bound to c-di-GMP with high affinity in vitro, and the R(141) and R(10) residues in the PilZ domains of PXO_00049 and PXO_02374, respectively, were crucial for c-di-GMP binding. Gene deletion of PXO_00049 and PXO_02374 resulted in significant increases in virulence and hrp gene transcription, indicating their negative regulation of virulence via type III secretion system expression. All mutants showed significant changes in sliding motility but not exopolysaccharide production and biofilm formation. In trans expression of the full-length open reading frame (ORF) of each gene in the relevant mutants led to restoration of the phenotype to wild-type levels. Moreover, PXO_00049 and PXO_02374 displayed mainly multisite subcellular localizations, whereas PXO_02715 showed nonpolar distributions in the X. oryzae pv. oryzae cells. Therefore, this study demonstrated the different functions of the PilZ domain proteins in mediation of c-di-GMP regulation of virulence and motility in X. oryzae pv. oryzae. PMID:25911481

  1. The Xanthomonas oryzae pv. oryzae PilZ Domain Proteins Function Differentially in Cyclic di-GMP Binding and Regulation of Virulence and Motility

    PubMed Central

    Yang, Fenghuan; Tian, Fang; Chen, Huamin; Hutchins, William; Yang, Ching-Hong

    2015-01-01

    The PilZ domain proteins have been demonstrated to be one of the major types of receptors mediating cyclic di-GMP (c-di-GMP) signaling pathways in several pathogenic bacteria. However, little is known about the function of PilZ domain proteins in c-di-GMP regulation of virulence in the bacterial blight pathogen of rice Xanthomonas oryzae pv. oryzae. Here, the roles of PilZ domain proteins PXO_00049 and PXO_02374 in c-di-GMP binding, regulation of virulence and motility, and subcellular localization were characterized in comparison with PXO_02715, identified previously as an interactor with the c-di-GMP receptor Filp to regulate virulence. The c-di-GMP binding motifs in the PilZ domains were conserved in PXO_00049 and PXO_02374 but were less well conserved in PXO_02715. PXO_00049 and PXO_02374 but not PXO_02715 proteins bound to c-di-GMP with high affinity in vitro, and the R141 and R10 residues in the PilZ domains of PXO_00049 and PXO_02374, respectively, were crucial for c-di-GMP binding. Gene deletion of PXO_00049 and PXO_02374 resulted in significant increases in virulence and hrp gene transcription, indicating their negative regulation of virulence via type III secretion system expression. All mutants showed significant changes in sliding motility but not exopolysaccharide production and biofilm formation. In trans expression of the full-length open reading frame (ORF) of each gene in the relevant mutants led to restoration of the phenotype to wild-type levels. Moreover, PXO_00049 and PXO_02374 displayed mainly multisite subcellular localizations, whereas PXO_02715 showed nonpolar distributions in the X. oryzae pv. oryzae cells. Therefore, this study demonstrated the different functions of the PilZ domain proteins in mediation of c-di-GMP regulation of virulence and motility in X. oryzae pv. oryzae. PMID:25911481

  2. Xanthomonas citri subsp. citri type IV Pilus is required for twitching motility, biofilm development, and adherence.

    PubMed

    Dunger, German; Guzzo, Cristiane R; Andrade, Maxuel O; Jones, Jeffrey B; Farah, Chuck S

    2014-10-01

    Bacterial type IV pili (T4P) are long, flexible surface filaments that consist of helical polymers of mostly pilin subunits. Cycles of polymerization, attachment, and depolymerization mediate several pilus-dependent bacterial behaviors, including twitching motility, surface adhesion, pathogenicity, natural transformation, escape from immune system defense mechanisms, and biofilm formation. The Xanthomonas citri subsp. citri strain 306 genome codes for a large set of genes involved in T4P biogenesis and regulation and includes several pilin homologs. We show that X. citri subsp. citri can exhibit twitching motility in a manner similar to that observed in other bacteria such as Pseudomonas aeruginosa and Xylella fastidiosa and that this motility is abolished in Xanthomonas citri subsp. citri knockout strains in the genes coding for the major pilin subunit PilAXAC3241, the ATPases PilBXAC3239 and PilTXAC2924, and the T4P biogenesis regulators PilZXAC1133 and FimXXAC2398. Microscopy analyses were performed to compare patterns of bacterial migration in the wild-type and knockout strains and we observed that the formation of mushroom-like structures in X. citri subsp. citri biofilm requires a functional T4P. Finally, infection of X. citri subsp. citri cells by the bacteriophage (?Xacm4-11 is T4P dependent. The results of this study improve our understanding of how T4P influence Xanthomonas motility, biofilm formation, and susceptibility to phage infection. PMID:25180689

  3. Integrated Control of Fire Blight

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the Northwest United States, the antibiotic streptomycin provided excellent control of fire blight until resistant isolates of the pathogen arose. Oxytetracycline (Mycoshield) is now sprayed as an alternative antibiotic, but it is considerably less effective than streptomycin when the latter was...

  4. Rhizoctonia web blight on azalea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Currently, fungicides are the only useful control for azalea web blight, but fungicides do not eliminate the pathogen. We have discovered that Rhizoctonia colonizes the entire azalea plant 12 months of the year in the Gulf Coast climate. This results in healthy appearing stems collected for propagat...

  5. Controlled release of Pantoea agglomerans E325 for biocontrol of fire blight

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microencapsulation and controlled release of Pantoea agglomerans strain E325 (E325), which is an antagonist to bacterial pathogen (Erwinia amylovora) of fire blight, a devastating disease of apple and pear, have been investigated. Uniform core-shell alginate microcapsules (AMCs), 60-300 µm in diamet...

  6. Computational Identification of Candidate Genes Involved in Response to Fire Blight in Apples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fire blight (Erwinia amylovora) is a destructive bacterial disease affecting plants in the Rosaceae including apple, pear, and quince. The disease is common in North America, and kills blossoms, shoots, limbs, and, sometimes, entire trees. Bioinformatics tools were used in collaboration with a NRI-f...

  7. Late blight and early blight resistance from Solanum hougasii introgressed into Solanum tuberosum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Late blight, caused by Phytophthora infestans, and early blight, incited by Alternaria solani, are the two most widely occurring foliar diseases of potato in the U.S. Resistance to both diseases is necessary if growers are to reduce fungicide applications. Field resistance to late blight has previou...

  8. Virulence of Xanthomonas translucens pv. poae Isolated from Poa annua

    PubMed Central

    Chaves, Arielle; Mitkowski, Nathaniel

    2013-01-01

    Bacterial wilt is a vascular wilt disease caused by Xanthomonas translucens pv. poae that infects Poa annua, a grass that is commonly found on golf course greens throughout the world. Bacterial wilt causes symptoms of etiolation, wilting, and foliar necrosis. The damage is most prevalent during the summer and the pathogen can kill turf under conditions optimal for disease development. Fifteen isolates of X. translucens pv. poae were collected from northern regions in the United States and tested for virulence against P. annua. All 15 isolates were pathogenic on P. annua, but demonstrated variable levels of virulence when inoculated onto P. annua under greenhouse conditions. The isolates were divided into two virulence groups. The first group containing four isolates generally resulted in less than 40% mortality following inoculation. The second group, containing the other eleven isolates, produced between 90 and 100% mortality following inoculation. These results suggest that differences in the virulence of bacterial populations present on a golf course may result in more or less severe amounts of observed disease. PMID:25288933

  9. Antibiosis Contributes to Biological Control of Fire Blight by Pantoea agglomerans Strain Eh252 in Orchards.

    PubMed

    Stockwell, V O; Johnson, K B; Sugar, D; Loper, J E

    2002-11-01

    ABSTRACT Fire blight, caused by Erwinia amylovora, is the most serious bacterial disease of pear and apple trees. Biological control with strains of Pantoea agglomerans (syn. Erwinia herbicola) may provide an effective disease management strategy for fire blight. Most strains of P. agglomerans evaluated for suppression of fire blight produce compounds that inhibit the growth of E. amylovora in culture. The role of these inhibitory compounds in fire blight suppression in orchard environments has not been studied. In seven field trials in Oregon, we compared the population dynamics and disease suppression with P. agglomerans Eh252, a strain that produces a single antibiotic, with its near-isogenic antibiotic-deficient derivative, strain 10:12. Water or suspensions of Eh252 or 10:12 (1 x 10(8) CFU/ml) were applied at 30 and 70% bloom to pear or apple trees. Aqueous suspensions of freeze-dried cells of E. amylovora (3 x 10(5) CFU/ml) were applied at full bloom. Additional trees were treated with streptomycin or oxytetracycline at 30 and 70% bloom and in some experiments, 1 day after application of the pathogen. Population sizes of Eh252 or 10:12 on pear blossoms were estimated by spreading dilutions of blossom washes on culture media. Average population sizes of Eh252 and 10:12 on blossoms ranged from 10(5) to 10(7) CFU, and in five of six trials, the relative area under the population curve of Eh252 was not significantly different than that of its derivative 10:12. Both Eh252 and 10:12 reduced the growth of the pathogen on blossoms compared with inoculated water-treated controls. Eh252 significantly decreased the incidence of fire blight in six of seven field trials compared with the incidence on water-treated trees, and 10:12 similarly reduced the incidence of fire blight in four of seven trials. In three of seven field trials, trees treated with Eh252 had a significantly lower incidence of fire blight compared with trees treated 3 with 10:12. Overall,3 Eh252 reduced the incidence of fire blight by 55 +/- 8%, 10:12 by 30 +/- 6%, streptomycin by 75 +/- 4%, and oxytetracycline by 16 +/- 14%. The effectiveness of strain 10:12 compared with water treatment indicates that other mechanisms (e.g., competitive exclusion or habitat modification) also contribute to disease suppression by P. agglomerans. The increased suppression of fire blight by the parental strain Eh252 compared with the antibiotic-deficient mutant 10:12 indicates that antibiosis is an important mechanism of biological control of fire blight. PMID:18944246

  10. Draft Genome Sequences of Xanthomonas sacchari and Two Banana-Associated Xanthomonads Reveal Insights into the Xanthomonas Group 1 Clade.

    PubMed

    Studholme, David J; Wasukira, Arthur; Paszkiewicz, Konrad; Aritua, Valente; Thwaites, Richard; Smith, Julian; Grant, Murray

    2011-01-01

    We present draft genome sequences for three strains of Xanthomonas species, each of which was associated with banana plants (Musa species) but is not closely related to the previously sequenced banana-pathogen Xanthomonas campestris pathovar musacearum. Strain NCPPB4393 had been deposited as Xanthomonas campestris pathovar musacearum but in fact falls within the species Xanthomonas sacchari. Strain NCPPB1132 is more distantly related to Xanthomonas sacchari whilst strain NCPPB 1131 grouped in a distinct species-level clade related to X. sacchari, along with strains from ginger, rice, cotton and sugarcane. These three newly sequenced strains share many genomic features with the previously sequenced Xanthomonas albilineans, for example possessing an unsual metE allele and lacking the Hrp type III secretion system. However, they are distinct from Xanthomonas albilineans in many respects, for example showing little evidence of genome reduction. They also lack the SPI-1 type III secretion system found in Xanthomonas albilineans. Unlike X. albilineans, all three strains possess a gum gene cluster. The data reported here provide the first genome-wide survey of non-Hrp Xanthomonas species other than Xanthomonas albilineans, which is an atypical member of this group. We hope that the availability of complete sequence data for this group of organisms is the first step towards understanding their interactions with plants and identifying potential virulence factors. PMID:24710305

  11. Draft Genome Sequences of Xanthomonas sacchari and Two Banana-Associated Xanthomonads Reveal Insights into the Xanthomonas Group 1 Clade

    PubMed Central

    Studholme, David J.; Wasukira, Arthur; Paszkiewicz, Konrad; Aritua, Valente; Thwaites, Richard; Smith, Julian; Grant, Murray

    2011-01-01

    We present draft genome sequences for three strains of Xanthomonas species, each of which was associated with banana plants (Musa species) but is not closely related to the previously sequenced banana-pathogen Xanthomonas campestris pathovar musacearum. Strain NCPPB4393 had been deposited as Xanthomonas campestris pathovar musacearum but in fact falls within the species Xanthomonas sacchari. Strain NCPPB1132 is more distantly related to Xanthomonas sacchari whilst strain NCPPB 1131 grouped in a distinct species-level clade related to X. sacchari, along with strains from ginger, rice, cotton and sugarcane. These three newly sequenced strains share many genomic features with the previously sequenced Xanthomonas albilineans, for example possessing an unsual metE allele and lacking the Hrp type III secretion system. However, they are distinct from Xanthomonas albilineans in many respects, for example showing little evidence of genome reduction. They also lack the SPI-1 type III secretion system found in Xanthomonas albilineans. Unlike X. albilineans, all three strains possess a gum gene cluster. The data reported here provide the first genome-wide survey of non-Hrp Xanthomonas species other than Xanthomonas albilineans, which is an atypical member of this group. We hope that the availability of complete sequence data for this group of organisms is the first step towards understanding their interactions with plants and identifying potential virulence factors. PMID:24710305

  12. Iron homeostasis and fire blight susceptibility in transgenic pear plants overexpressing a pea ferritin gene.

    PubMed

    Djennane, Samia; Cesbron, Colette; Sourice, Sophie; Cournol, Raphael; Dupuis, Fabrice; Eychenne, Magali; Loridon, Karine; Chevreau, Elisabeth

    2011-05-01

    The bacterial pathogen Erwinia amylovora causes the devastating disease known as fire blight in some rosaceous plants including apple and pear. One of the pathogenicity factors affecting fire blight development is the production of a siderophore, desferrioxamine, which overcomes the limiting conditions in plant tissues and also protects bacteria against active oxygen species. In this paper we examine the effect of an iron chelator protein encoded by the pea ferritin gene on the fire blight susceptibility of pear (Pyrus communis). Transgenic pear clones expressing this gene controlled either by the constitutive promoter CaMV 35S or by the inducible promoter sgd24 promoter were produced. The transgenic clones produced were analysed by Q-RT-PCR to determine the level of expression of the pea transgene. A pathogen-inducible pattern of expression of the pea transgene was observed in sgd24-promoter transformants. Adaptation to iron deficiency in vitro was tested in some transgenic clones and different iron metabolism parameters were measured. No strong effect on iron and chlorophyll content, root reductase activity and fire blight susceptibility was detected in the transgenic lines tested. No transformants showed a significant reduction in susceptibility to fire blight in greenhouse conditions when inoculated with E. amylovora. PMID:21421420

  13. Biotechnological approaches to enhance fire blight resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fire blight, caused by the bacterium Erwinia amylovora, is the most serious disease of apples, pears, and quince, most major fruit and rootstock cultivars being susceptible. Modern plant biotechnologies provide methods of enhancing the resistance to fire blight in apples and pears of existing scion...

  14. HISTOLOGY AND PHYSIOLOGY OF FUSARIUM HEAD BLIGHT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight re-emerged as a devastating disease of wheat and barley in the 1990s in the midwestern U.S. Research efforts to control the disease have been hampered by limited knowledge of how the fungal head blight pathogens infect and damage head tissue and what natural defenses the plant h...

  15. Positive selection is the main driving force for evolution of citrus canker-causing Xanthomonas.

    PubMed

    Zhang, Yunzeng; Jalan, Neha; Zhou, Xiaofeng; Goss, Erica; Jones, Jeffrey B; Setubal, João C; Deng, Xiaoling; Wang, Nian

    2015-10-01

    Understanding the evolutionary history and potential of bacterial pathogens is critical to prevent the emergence of new infectious bacterial diseases. Xanthomonas axonopodis subsp. citri (Xac) (synonym X. citri subsp. citri), which causes citrus canker, is one of the hardest-fought plant bacterial pathogens in US history. Here, we sequenced 21 Xac strains (14 XacA, 3 XacA* and 4 XacA(w)) with different host ranges from North America and Asia and conducted comparative genomic and evolutionary analyses. Our analyses suggest that acquisition of beneficial genes and loss of detrimental genes most likely allowed XacA to infect a broader range of hosts as compared with XacA(w) and XacA*. Recombination was found to have occurred frequently on the relative ancient branches, but rarely on the young branches of the clonal genealogy. The ratio of recombination/mutation ?/? was 0.0790±0.0005, implying that the Xac population was clonal in structure. Positive selection has affected 14% (395 out of 2822) of core genes of the citrus canker-causing Xanthomonas. The genes affected are enriched in 'carbohydrate transport and metabolism' and 'DNA replication, recombination and repair' genes (P<0.05). Many genes related to virulence, especially genes involved in the type III secretion system and effectors, are affected by positive selection, further highlighting the contribution of positive selection to the evolution of citrus canker-causing Xanthomonas. Our results suggest that both metabolism and virulence genes provide advantages to endow XacA with higher virulence and a wider host range. Our analysis advances our understanding of the genomic basis of specialization by positive selection in bacterial evolution. PMID:25689023

  16. Light filtering by epidermal flavonoids during the resistant response of cotton to Xanthomonas protects leaf tissue from light-dependent phytoalexin toxicity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    2,7-Dihydroxycadalene and lacinilene C, sesquiterpenoid phytoalexins that accumulate at infection sites during the hypersensitive resistant response of cotton foliage to Xanthomonas campestris pv. malvacearum, have light-dependent toxicity toward host cells, as well as toward the bacterial pathogen....

  17. Schematic Models for Potato Tuber Blight Infection Based on Foliar Blight Severity, Cultivar Resistance, Soil and Atmospheric Variables

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato tuber blight caused by Phytophthora infestans accounts for significant losses in storage tubers. Despite research on infection and management of tuber blight, there is limited published data on models predicting tuber blight infection or development. We modeled the dynamics of tuber blight in...

  18. Phylogenomics of Xanthomonas field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity.

    PubMed

    Schwartz, Allison R; Potnis, Neha; Timilsina, Sujan; Wilson, Mark; Patané, José; Martins, Joaquim; Minsavage, Gerald V; Dahlbeck, Douglas; Akhunova, Alina; Almeida, Nalvo; Vallad, Gary E; Barak, Jeri D; White, Frank F; Miller, Sally A; Ritchie, David; Goss, Erica; Bart, Rebecca S; Setubal, João C; Jones, Jeffrey B; Staskawicz, Brian J

    2015-01-01

    Bacterial spot disease of pepper and tomato is caused by four distinct Xanthomonas species and is a severely limiting factor on fruit yield in these crops. The genetic diversity and the type III effector repertoires of a large sampling of field strains for this disease have yet to be explored on a genomic scale, limiting our understanding of pathogen evolution in an agricultural setting. Genomes of 67 Xanthomonas euvesicatoria (Xe), Xanthomonas perforans (Xp), and Xanthomonas gardneri (Xg) strains isolated from diseased pepper and tomato fields in the southeastern and midwestern United States were sequenced in order to determine the genetic diversity in field strains. Type III effector repertoires were computationally predicted for each strain, and multiple methods of constructing phylogenies were employed to understand better the genetic relationship of strains in the collection. A division in the Xp population was detected based on core genome phylogeny, supporting a model whereby the host-range expansion of Xp field strains on pepper is due, in part, to a loss of the effector AvrBsT. Xp-host compatibility was further studied with the observation that a double deletion of AvrBsT and XopQ allows a host range expansion for Nicotiana benthamiana. Extensive sampling of field strains and an improved understanding of effector content will aid in efforts to design disease resistance strategies targeted against highly conserved core effectors. PMID:26089818

  19. Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR

    SciTech Connect

    Louws, F.J.; Stephens, C.T.; Fulbright, D.W.

    1994-07-01

    DNA primers corresponding to conserved motifs in bacterial repetitive (REP, ERIC, and BOX) elements and PCR were used to show that REP-, ERIC-, and BOX-like DNA sequences are widely distributed in phytopathogenic Xanthomonas and Pseudomonas strains. REP-, ERIC-, and BOX-PCR (collectively known as rep-PCR) were used to generate genomic fingerprints of a variety of Xanthomonas and Pseudomonas isolates and to to identify pathovars and strains that were previously not distinguishable by other classification methods. Analogous rep-PCR-derived genomic fingerprints were generated from purified genomic DNA, colonies on agar plates, liquid cultures, and directly from lesions on infected plants. REP-, ERIC-, and BOX-PCR-generated fingerprints of specific Xanthomonas and Pseudomonas strains were found to yield similar conclusions with regard to the identity of and relationship between these strains. This suggests that the distribution of REP-, ERIC-, and BOX-like sequences in these strains is a reflection of their genomic structure. Thus, the rep-PCR technique appears to be a rapid, simple, and reproducible method to identify and classify Xanthomonas and Pseudomonas strains, and it may be a useful diagnostic tool for these important plant pathogens. 70 refs., 5 figs., 1 tab.

  20. Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR.

    PubMed Central

    Louws, F J; Fulbright, D W; Stephens, C T; de Bruijn, F J

    1994-01-01

    DNA primers corresponding to conserved motifs in bacterial repetitive (REP, ERIC, and BOX) elements and PCR were used to show that REP-, ERIC-, and BOX-like DNA sequences are widely distributed in phytopathogenic Xanthomonas and Pseudomonas strains. REP-, ERIC, and BOX-PCR (collectively known as rep-PCR) were used to generate genomic fingerprints of a variety of Xanthomonas and Pseudomonas isolates and to identify pathovars and strains that were previously not distinguishable by other classification methods. Analogous rep-PCR-derived genomic fingerprints were generated from purified genomic DNA, colonies on agar plates, liquid cultures, and directly from lesions on infected plants. REP, ERIC, and BOX-PCR-generated fingerprints of specific Xanthomonas and Pseudomonas strains were found to yield similar conclusions wtih regard to the identity of and relationship between these strains. This suggests that the distribution of REP-, ERIC, and BOX-like sequences in these strains is a reflection of their genomic structure. Thus, the rep-PCR technique appears to be a rapid, simple, and reproducible method to identify and classify Xanthomonas and Pseudomonas strains, and it may be a useful diagnostic tool for these important plant pathogens. Images PMID:8074510

  1. Phylogenomics of Xanthomonas field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity

    PubMed Central

    Schwartz, Allison R.; Potnis, Neha; Timilsina, Sujan; Wilson, Mark; Patané, José; Martins, Joaquim; Minsavage, Gerald V.; Dahlbeck, Douglas; Akhunova, Alina; Almeida, Nalvo; Vallad, Gary E.; Barak, Jeri D.; White, Frank F.; Miller, Sally A.; Ritchie, David; Goss, Erica; Bart, Rebecca S.; Setubal, João C.; Jones, Jeffrey B.; Staskawicz, Brian J.

    2015-01-01

    Bacterial spot disease of pepper and tomato is caused by four distinct Xanthomonas species and is a severely limiting factor on fruit yield in these crops. The genetic diversity and the type III effector repertoires of a large sampling of field strains for this disease have yet to be explored on a genomic scale, limiting our understanding of pathogen evolution in an agricultural setting. Genomes of 67 Xanthomonas euvesicatoria (Xe), Xanthomonas perforans (Xp), and Xanthomonas gardneri (Xg) strains isolated from diseased pepper and tomato fields in the southeastern and midwestern United States were sequenced in order to determine the genetic diversity in field strains. Type III effector repertoires were computationally predicted for each strain, and multiple methods of constructing phylogenies were employed to understand better the genetic relationship of strains in the collection. A division in the Xp population was detected based on core genome phylogeny, supporting a model whereby the host-range expansion of Xp field strains on pepper is due, in part, to a loss of the effector AvrBsT. Xp-host compatibility was further studied with the observation that a double deletion of AvrBsT and XopQ allows a host range expansion for Nicotiana benthamiana. Extensive sampling of field strains and an improved understanding of effector content will aid in efforts to design disease resistance strategies targeted against highly conserved core effectors. PMID:26089818

  2. Method for improving Xanthan yield. [Xanthomonas sp

    SciTech Connect

    Weisrock, W.P.

    1981-11-17

    A process is provided for producing heteropolysaccharides by culturing a microorganism of genus Xanthomonas in a nutrient medium and recovering the heteropolysaccharide containing product. The method covers culturing the microorganism in the presence of a sufficient amount of an additive compound selected from a group consisting of deoxycholic acid, cholic acid, salts thereof, and mixtures thereof, whereby the yield of the heteropolysaccharide produced is increased. 11 claims.

  3. Method for improving xanthan yield. [Xanthomonas sp

    SciTech Connect

    Weisrock, W.P.

    1981-11-17

    A process is provided for producing heteropolysaccharides by culturing a microorganism of genus Xanthomonas in a nutrient medium and recovering the heteropolysaccharide containing product. The method covers culturing the microorganism in the presence of a sufficient amount of an additive compound selected from a group consisting of deoxycholic acid, cholic acid, salts thereof, and mixtures thereof, whereby the yield of the heteropolysaccharide produced is increased. 11 claims.

  4. What makes Xanthomonas albilineans unique amongst xanthomonads?

    PubMed Central

    Pieretti, Isabelle; Pesic, Alexander; Petras, Daniel; Royer, Monique; Süssmuth, Roderich D.; Cociancich, Stéphane

    2015-01-01

    Xanthomonas albilineans causes leaf scald, a lethal disease of sugarcane. Compared to other species of Xanthomonas, X. albilineans exhibits distinctive pathogenic mechanisms, ecology and taxonomy. Its genome, which has experienced significant erosion, has unique genomic features. It lacks two loci required for pathogenicity in other plant pathogenic species of Xanthomonas: the xanthan gum biosynthesis and the Hrp-T3SS (hypersensitive response and pathogenicity-type three secretion system) gene clusters. Instead, X. albilineans harbors in its genome an SPI-1 (Salmonella pathogenicity island-1) T3SS gene cluster usually found in animal pathogens. X. albilineans produces a potent DNA gyrase inhibitor called albicidin, which blocks chloroplast differentiation, resulting in the characteristic white foliar stripe symptoms. The antibacterial activity of albicidin also confers on X. albilineans a competitive advantage against rival bacteria during sugarcane colonization. Recent chemical studies have uncovered the unique structure of albicidin and allowed us to partially elucidate its fascinating biosynthesis apparatus, which involves an enigmatic hybrid PKS/NRPS (polyketide synthase/non-ribosomal peptide synthetase) machinery. PMID:25964795

  5. Isolation and identification of antagonistic bacteria from phylloplane of rice as biocontrol agents for sheath blight.

    PubMed

    Akter, Shamima; Kadir, Jugah; Juraimi, Abdul Shukor; Saud, Halimi Mohd; Elmahdi, Salha

    2014-11-01

    A total of 325 bacteria were isolated from both healthy and sheath blight infected leaf samples of rice plants, collected from different places of Malaysia, following dilution technique. Sheath blight pathogen was isolated from infected samples by tissue plating method. Out of 325, 14 isolates were found to be antagonist against the pathogen in pre evaluation test. All the 14 isolates were morphologically characterized. Antagonistic activity of these isolates was further confirmed by adopting the standard dual culture and extracellular metabolite tests. The best isolates were selected, based on the results. In dual culture test, the selected bacterial isolates KMB25, TMB33, PMB38, UMB20 and BMB42 showed 68.44%, 60.89%, 60.22%, 50.00% and 48.22% fungal growth inhibition, respectively and in extracellular metabolite test these bacterial isolates exhibited 93.33%, 84.26%, 69.82%, 67.96% and 39.26% of the same, respectively. Biochemical tests of selected isolates were performed following standard procedure. These bacterial isolates were tentatively identified as fluorescent pseudomonas by morphological and biochemical characterization. The identities were further confirmed by Biolog microstation system as P. fluorescens (UMB20), P. aeruginosa (KMB25, TMB33 and PMB38) and P. asplenii (BMB42) with similarity index ranging from 0.517 to 0.697. The effective bacterial isolates obtained from the present study can be used in the management of soil borne fungal pathogen Rhizoctonia solani, causing sheath blight of rice. PMID:25522511

  6. Serological classification of Xanthomonas maltophilia (Pseudomonas maltophilia) based on heat-stable O antigens.

    PubMed Central

    Schable, B; Rhoden, D L; Hugh, R; Weaver, R E; Khardori, N; Smith, P B; Bodey, G P; Anderson, R L

    1989-01-01

    Twenty-six serotypes of Xanthomonas maltophilia were defined by using 15 antisera described by Hugh and Ryschenkow (R. Hugh and E. Ryschenkow, J. Gen. Microbiol. 26:123-132, 1961) and 11 new antisera. The antisera were prepared by immunizing rabbits with bacterial strains heated at 100 degrees C for 2 h. Twelve antisera required adsorptions with cross-reacting heterologous immunizing strains. We tested 275 clinical and environmental strains of X. maltophilia with 26 antisera by the slide agglutination technique. A total of 259 (94.2%) strains were typeable, with 137 (49.8%) strains agglutinating in three antisera. PMID:2473089

  7. Genetic engineering to contain the Vitreoscilla hemoglobin gene enhances degradation of benzoic acid by Xanthomonas maltophilia

    SciTech Connect

    Liu, S.C.; Webster, D.A.; Wei, M.L.; Stark, B.C.

    1996-01-05

    Xanthomonas maltophilia was transformed with the gene encoding Vitreoscilla (bacterial) hemoglobin, vgb, and the growth of the engineered strain was compared with that of the untransformed strain using benzoic acid as the sole carbon source. In general, growth of the engineered strain was greater than that of the untransformed strain; this was true for experiments using both overnight cultures and log phase cells as inocula, but particularly for the latter. In both cases the engineered strain was also more efficiency than the untransformed strain in converting benzoic acid into biomass.

  8. TRANSGENIC EXPRESSION OF THE ERWINIA AMYLOVORA (FIRE BLIGHT) EFFECTOR PROTEIN EOP1 SUPRESSES HOST BASAL DEFENSE MECHANISMS IN MALUS (APPLE)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Erwinia amylovora (Ea) is the causative agent of fire blight, a devastating disease of apple and pear. Like many other plant and animal bacterial pathogens Ea utilizes a type three secretion system (TTSS) to deliver effector proteins into plant host cells. Once inside the host cell, effector protei...

  9. Genomic analysis of Bacillus subtilis OH 131.1 and coculturing with Cryptococcus flavescens for control of fusarium head blight

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacillus subtilis OH131.1 is a bacterial antagonist of Fusarium graminearum, a plant pathogen which causes Fusarium head blight in wheat. The genome of B. subtilis OH131.1 was sequenced, annotated and analyzed to understand its potential to produce bioactive metabolites. The analysis identified 6 sy...

  10. Tagging and mapping Pse-1 gene for resistance to halo blight in common bean differential cultivar UI-3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Halo blight [caused by Pseudomonas syringae pv. phaseolicola (Psp)] is a serious seed-borne bacterial disease of common bean (Phaseolus vulgaris L.). A few R genes and QTL provide control to one or more races of the pathogen. To better understand monogenic resistance and improve breeding efficienc...

  11. Rootstock-regulated gene expression patterns associated with fire blight resistance in apple

    PubMed Central

    2012-01-01

    Background Desirable apple varieties are clonally propagated by grafting vegetative scions onto rootstocks. Rootstocks influence many phenotypic traits of the scion, including resistance to pathogens such as Erwinia amylovora, which causes fire blight, the most serious bacterial disease of apple. The purpose of the present study was to quantify rootstock-mediated differences in scion fire blight susceptibility and to identify transcripts in the scion whose expression levels correlated with this response. Results Rootstock influence on scion fire blight resistance was quantified by inoculating three-year old, orchard-grown apple trees, consisting of 'Gala' scions grafted to a range of rootstocks, with E. amylovora. Disease severity was measured by the extent of shoot necrosis over time. 'Gala' scions grafted to G.30 or MM.111 rootstocks showed the lowest rates of necrosis, while 'Gala' on M.27 and B.9 showed the highest rates of necrosis. 'Gala' scions on M.7, S.4 or M.9F56 had intermediate necrosis rates. Using an apple DNA microarray representing 55,230 unique transcripts, gene expression patterns were compared in healthy, un-inoculated, greenhouse-grown 'Gala' scions on the same series of rootstocks. We identified 690 transcripts whose steady-state expression levels correlated with the degree of fire blight susceptibility of the scion/rootstock combinations. Transcripts known to be differentially expressed during E. amylovora infection were disproportionately represented among these transcripts. A second-generation apple microarray representing 26,000 transcripts was developed and was used to test these correlations in an orchard-grown population of trees segregating for fire blight resistance. Of the 690 transcripts originally identified using the first-generation array, 39 had expression levels that correlated with fire blight resistance in the breeding population. Conclusions Rootstocks had significant effects on the fire blight susceptibility of 'Gala' scions, and rootstock-regulated gene expression patterns could be correlated with differences in susceptibility. The results suggest a relationship between rootstock-regulated fire blight susceptibility and sorbitol dehydrogenase, phenylpropanoid metabolism, protein processing in the endoplasmic reticulum, and endocytosis, among others. This study illustrates the utility of our rootstock-regulated gene expression data sets for candidate trait-associated gene data mining. PMID:22229964

  12. Disease Alert: Chickpea Ascochyta blight has shown up early

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The manuscript describes the early appearance of Ascochyta blight in north Idaho, provides pictorial guide for identification of the disease, discusses the disease cycle, and advises chickpea growers options in managing Ascochyta blight....

  13. Xanthomonas perforans Colonization Influences Salmonella enterica in the Tomato Phyllosphere

    PubMed Central

    Potnis, Neha; Soto-Arias, José Pablo; Cowles, Kimberly N.; van Bruggen, Ariena H. C.; Jones, Jeffrey B.

    2014-01-01

    Salmonella enterica rarely grows on healthy, undamaged plants, but its persistence is influenced by bacterial plant pathogens. The interactions between S. enterica, Xanthomonas perforans (a tomato bacterial spot pathogen), and tomato were characterized. We observed that virulent X. perforans, which establishes disease by suppressing pathogen-associated molecular pattern (PAMP)-triggered immunity that leads to effector-triggered susceptibility, created a conducive environment for persistence of S. enterica in the tomato phyllosphere, while activation of effector-triggered immunity by avirulent X. perforans resulted in a dramatic reduction in S. enterica populations. S. enterica populations persisted at ∼10 times higher levels in leaves coinoculated with virulent X. perforans than in those where S. enterica was applied alone. In contrast, S. enterica populations were ∼5 times smaller in leaves coinoculated with avirulent X. perforans than in leaves inoculated with S. enterica alone. Coinoculation with virulent X. perforans increased S. enterica aggregate formation; however, S. enterica was not found in mixed aggregates with X. perforans. Increased aggregate formation by S. enterica may serve as the mechanism of persistence on leaves cocolonized by virulent X. perforans. S. enterica association with stomata was altered by X. perforans; however, it did not result in appreciable populations of S. enterica in the apoplast even in the presence of large virulent X. perforans populations. Gene-for-gene resistance against X. perforans successively restricted S. enterica populations. Given the effect of this interaction, breeding for disease-resistant cultivars may be an effective strategy to limit both plant disease and S. enterica populations and, consequently, human illness. PMID:24632252

  14. Results of the 1971 Corn Blight Watch experiment

    NASA Technical Reports Server (NTRS)

    Macdonald, R. B.; Allen, R. D.; Bauer, M. E.; Clifton, J. W.; Frickson, J. D.; Landgrebe, D. A.

    1972-01-01

    Advanced remote sensing techniques are used to: (1)Detect development and spread of corn leaf blight during the growing season; (2) assess the extent and severity of blight infection; (3) assess the impact of blight on corn production; and (4) estimate the applicability of these techniques to similar situations occurring in the future.

  15. Validation of a tuber blight (Phytophthora infestans) prediction model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato tuber blight caused by Phytophthora infestans accounts for significant losses in storage. There is limited published quantitative data on predicting tuber blight. We validated a tuber blight prediction model developed in New York with cultivars Allegany, NY 101, and Katahdin using independent...

  16. Improved Transformation of Anthurium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methods to increase transformation efficiency and yields of transgenic Anthurium andraeanum Linden ex. André hybrids were sought while effecting gene transfer for resistance to the two most important pests, bacterial blight (Xanthomonas axonopodis pv. dieffenbachiae) and nematodes (Radopholus simili...

  17. Method for improving specific xanthan productivity during continuous fermentation. [Xanthomonas sp. , Xanthomonas campestris

    SciTech Connect

    Weisrock, W.P.

    1982-01-19

    The heteropolysaccharides produced by the action of Xanthomonas bacteria on carbohydrate media have a potential application as film forming agents and as thickeners for oil field drilling fluids, fracturing liquids, and emulsifying, stabilizing, and sizing agents. Heteropolysaccharides, particularly xanthan gum, have significant potential as mobility control agents in micellar polymer flooding. Xanthan gum has excellent viscosifying properties at low concentration; it is resistant to shear degradation and exhibits only minimal losses in viscosity as a function of temperature, pH, and ionic strength. During continuous culture, the concentration of biomass is set by the concentration of the limiting nutrient being fed with the medium and biomass concentration is varied by raising or lowering the limiting nutrient concentration. By growing a species of the genus Xanthomonas such as Xanthomonas campestris, in continuous culture in a medium containing glucose, mineral salts, and NH/sub 4/Cl and either glutamate or glutamate plus yeast extract, the specific productivity is improved by first operating and then raising the cell concentration. 16 claims.

  18. Method for improving specific Xanthan productivity during continuous fermentation. [Xanthomonas sp. , Xanthomonas campestris

    SciTech Connect

    Weisrock, W.P.

    1982-01-19

    The heteropolysaccharides produced by the action of Xanthomonas bacteria on carbohydrate media have a potential application as film forming agents and as thickeners for oil field drilling fluids, fracturing liquids, and emulsifying, stabilizing, and sizing agents. Heteropolysaccharides, particularly xanthan gum, have significant potential as mobility control agents in micellar polymer flooding. Xanthan gum has excellent viscosifying properties at low concentration; it is resistant to shear degradation and exhibits only minimal losses in viscosity as a function of temperature, pH, and ionic strength. During continuous culture, the concentration of biomass is set by the concentration of the limiting nutrient being fed with the medium and biomass concentration is varied by raising or lowering the limiting nutrient concentration. By growing a species of the genus Xanthomonas such as Xanthomonas campestris, in continuous culture in a medium containing glucose, mineral salts, and NH/sub 4/Cl and either glutamate or glutamate plus yeast extract, the specific productivity is improved by first operating and then raising the cell concentration. 16 claims.

  19. A genetic screen to isolate type III effectors translocated into pepper cells during Xanthomonas infection

    PubMed Central

    Roden, Julie Anne; Belt, Brandis; Ross, Jason Barzel; Tachibana, Thomas; Vargas, Joe; Mudgett, Mary Beth

    2004-01-01

    The bacterial pathogen Xanthomonas campestris pv. vesicatoria (Xcv) uses a type III secretion system (TTSS) to translocate effector proteins into host plant cells. The TTSS is required for Xcv colonization, yet the identity of many proteins translocated through this apparatus is not known. We used a genetic screen to functionally identify Xcv TTSS effectors. A transposon 5 (Tn5)-based transposon construct including the coding sequence for the Xcv AvrBs2 effector devoid of its TTSS signal was randomly inserted into the Xcv genome. Insertion of the avrBs2 reporter gene into Xcv genes coding for proteins containing a functional TTSS signal peptide resulted in the creation of chimeric TTSS effector::AvrBs2 fusion proteins. Xcv strains containing these fusions translocated the AvrBs2 reporter in a TTSS-dependent manner into resistant BS2 pepper cells during infection, activating the avrBs2-dependent hypersensitive response (HR). We isolated seven chimeric fusion proteins and designated the identified TTSS effectors as Xanthomonas outer proteins (Xops). Translocation of each Xop was confirmed by using the calmodulin-dependent adenylate cydase reporter assay. Three xop genes are Xanthomonas spp.-specific, whereas homologs for the rest are found in other phytopathogenic bacteria. XopF1 and XopF2 define an effector gene family in Xcv. XopN contains a eukaryotic protein fold repeat and is required for full Xcv pathogenicity in pepper and tomato. The translocated effectors identified in this work expand our knowledge of the diversity of proteins that Xcv uses to manipulate its hosts. PMID:15545602

  20. A genetic screen to isolate type III effectors translocated into pepper cells during Xanthomonas infection

    SciTech Connect

    Julie Anne Roden, Branids Belt, Jason Barzel Ross, Thomas Tachibana, Joe Vargas, Mary Beth Mudgett

    2004-11-23

    The bacterial pathogen Xanthomonas campestris pv. vesicatoria (Xcv) uses a type III secretion system (TTSS) to translocate effector proteins into host plant cells. The TTSS is required for Xcv colonization, yet the identity of many proteins translocated through this apparatus is not known. We used a genetic screen to functionally identify Xcv TTSS effectors. A transposon 5 (Tn5)-based transposon construct including the coding sequence for the Xcv AvrBs2 effector devoid of its TTSS signal was randomly inserted into the Xcv genome. Insertion of the avrBs2 reporter gene into Xcv genes coding for proteins containing a functional TTSS signal peptide resulted in the creation of chimeric TTSS effector::AvrBs2 fusion proteins. Xcv strains containing these fusions translocated the AvrBs2 reporter in a TTSS-dependent manner into resistant BS2 pepper cells during infection, activating the avrBs2-dependent hypersensitive response (HR). We isolated seven chimeric fusion proteins and designated the identified TTSS effectors as Xanthomonas outer proteins (Xops). Translocation of each Xop was confirmed by using the calmodulin-dependent adenylate cydase reporter assay. Three xop genes are Xanthomonas spp.-specific, whereas homologs for the rest are found in other phytopathogenic bacteria. XopF1 and XopF2 define an effector gene family in Xcv. XopN contains a eukaryotic protein fold repeat and is required for full Xcv pathogenicity in pepper and tomato. The translocated effectors identified in this work expand our knowledge of the diversity of proteins that Xcv uses to manipulate its hosts.

  1. Immunodiffusion Analysis of Isolates of Xanthomonas cyamopsidis

    PubMed Central

    Orellana, R. G.; Weber, D. F.

    1971-01-01

    Immunodiffusion analysis of intact, sonically treated, and sonically treated and heat-treated cell antigen preparations of isolates of races 0 and 1 of Xanthomonas cyamopsidis of guar, Cyamopsis tetragonoloba, indicated that these races differ from one another antigenically. The differentiating precipitin reactions are believed to have been brought about by specific heat-stable surface antigens, possibly similar to lipopolysaccaride somatic antigens of other slime-producing xanthomonads. Because differences in host reaction to inoculation with the two isolates of race 1 were known to be minor, these isolates are considered to represent serotypes of the race rather than distinct separate races. This conclusion is supported by the antigenic behavior of isolates 14 and 19 to antiserum 19. The applicability of immunodiffusion analysis for the study of pathogenic variability in X. cyamopsidis is demonstrated. Images PMID:5002141

  2. Genome Sequencing of Xanthomonas vasicola Pathovar vasculorum Reveals Variation in Plasmids and Genes Encoding Lipopolysaccharide Synthesis, Type-IV Pilus and Type-III Secretion Effectors.

    PubMed

    Wasukira, Arthur; Coulter, Max; Al-Sowayeh, Noorah; Thwaites, Richard; Paszkiewicz, Konrad; Kubiriba, Jerome; Smith, Julian; Grant, Murray; Studholme, David J

    2014-01-01

    Xanthomonas vasicola pathovar vasculorum (Xvv) is the bacterial agent causing gumming disease in sugarcane. Here, we compare complete genome sequences for five isolates of Xvv originating from sugarcane and one from maize. This identified two distinct types of lipopolysaccharide synthesis gene clusters among Xvv isolates: one is similar to that of Xanthomonas axonopodis pathovar citri (Xac) and is probably the ancestral type, while the other is similar to those of the sugarcane-inhabiting species, Xanthomonas sacchari. Four of six Xvv isolates harboured sequences similar to the Xac plasmid, pXAC47, and showed a distinct Type-IV pilus (T4P) sequence type, whereas the T4P locus of the other two isolates resembled that of the closely related banana pathogen, Xanthomonas campestris pathovar musacearum (Xcm). The Xvv isolate from maize has lost a gene encoding a homologue of the virulence effector, xopAF, which was present in all five of the sugarcane isolates, while xopL contained a premature stop codon in four out of six isolates. These findings shed new light on evolutionary events since the divergence of Xvv and Xcm, as well as further elucidating the relationships between the two closely related pathogens. PMID:25437615

  3. Genome Sequencing of Xanthomonas vasicola Pathovar vasculorum Reveals Variation in Plasmids and Genes Encoding Lipopolysaccharide Synthesis, Type-IV Pilus and Type-III Secretion Effectors

    PubMed Central

    Wasukira, Arthur; Coulter, Max; Al-Sowayeh, Noorah; Thwaites, Richard; Paszkiewicz, Konrad; Kubiriba, Jerome; Smith, Julian; Grant, Murray; Studholme, David J.

    2014-01-01

    Xanthomonas vasicola pathovar vasculorum (Xvv) is the bacterial agent causing gumming disease in sugarcane. Here, we compare complete genome sequences for five isolates of Xvv originating from sugarcane and one from maize. This identified two distinct types of lipopolysaccharide synthesis gene clusters among Xvv isolates: one is similar to that of Xanthomonas axonopodis pathovar citri (Xac) and is probably the ancestral type, while the other is similar to those of the sugarcane-inhabiting species, Xanthomonas sacchari. Four of six Xvv isolates harboured sequences similar to the Xac plasmid, pXAC47, and showed a distinct Type-IV pilus (T4P) sequence type, whereas the T4P locus of the other two isolates resembled that of the closely related banana pathogen, Xanthomonas campestris pathovar musacearum (Xcm). The Xvv isolate from maize has lost a gene encoding a homologue of the virulence effector, xopAF, which was present in all five of the sugarcane isolates, while xopL contained a premature stop codon in four out of six isolates. These findings shed new light on evolutionary events since the divergence of Xvv and Xcm, as well as further elucidating the relationships between the two closely related pathogens. PMID:25437615

  4. The type III protein secretion system contributes to Xanthomonas citri subsp. citri biofilm formation

    PubMed Central

    2014-01-01

    Background Several bacterial plant pathogens colonize their hosts through the secretion of effector proteins by a Type III protein secretion system (T3SS). The role of T3SS in bacterial pathogenesis is well established but whether this system is involved in multicellular processes, such as bacterial biofilm formation has not been elucidated. Here, the phytopathogen Xanthomonas citri subsp. citri (X. citri) was used as a model to gain further insights about the role of the T3SS in biofilm formation. Results The capacity of biofilm formation of different X. citri T3SS mutants was compared to the wild type strain and it was observed that this secretion system was necessary for this process. Moreover, the T3SS mutants adhered proficiently to leaf surfaces but were impaired in leaf-associated growth. A proteomic study of biofilm cells showed that the lack of the T3SS causes changes in the expression of proteins involved in metabolic processes, energy generation, exopolysaccharide (EPS) production and bacterial motility as well as outer membrane proteins. Furthermore, EPS production and bacterial motility were also altered in the T3SS mutants. Conclusions Our results indicate a novel role for T3SS in X. citri in the modulation of biofilm formation. Since this process increases X. citri virulence, this study reveals new functions of T3SS in pathogenesis. PMID:24742141

  5. Evolutionary History of the Plant Pathogenic Bacterium Xanthomonas axonopodis

    PubMed Central

    Mhedbi-Hajri, Nadia; Hajri, Ahmed; Boureau, Tristan; Darrasse, Armelle; Durand, Karine; Brin, Chrystelle; Saux, Marion Fischer-Le; Manceau, Charles; Poussier, Stéphane; Pruvost, Olivier

    2013-01-01

    Deciphering mechanisms shaping bacterial diversity should help to build tools to predict the emergence of infectious diseases. Xanthomonads are plant pathogenic bacteria found worldwide. Xanthomonas axonopodis is a genetically heterogeneous species clustering, into six groups, strains that are collectively pathogenic on a large number of plants. However, each strain displays a narrow host range. We address the question of the nature of the evolutionary processes – geographical and ecological speciation – that shaped this diversity. We assembled a large collection of X. axonopodis strains that were isolated over a long period, over continents, and from various hosts. Based on the sequence analysis of seven housekeeping genes, we found that recombination occurred as frequently as point mutation in the evolutionary history of X. axonopodis. However, the impact of recombination was about three times greater than the impact of mutation on the diversity observed in the whole dataset. We then reconstructed the clonal genealogy of the strains using coalescent and genealogy approaches and we studied the diversification of the pathogen using a model of divergence with migration. The suggested scenario involves a first step of generalist diversification that spanned over the last 25 000 years. A second step of ecology-driven specialization occurred during the past two centuries. Eventually, secondary contacts between host-specialized strains probably occurred as a result of agricultural development and intensification, allowing genetic exchanges of virulence-associated genes. These transfers may have favored the emergence of novel pathotypes. Finally, we argue that the largest ecological entity within X. axonopodis is the pathovar. PMID:23505513

  6. Genomic Insights into the Evolutionary Origin of Xanthomonas axonopodis pv. citri and Its Ecological Relatives

    PubMed Central

    Midha, Samriti

    2014-01-01

    Xanthomonas axonopodis pv. citri (Xac) is the causal agent of citrus bacterial canker (CBC) and is a serious problem worldwide. Like CBC, several important diseases in other fruits, such as mango, pomegranate, and grape, are also caused by Xanthomonas pathovars that display remarkable specificity toward their hosts. While citrus and mango diseases were documented more than 100 years ago, the pomegranate and grape diseases have been known only since the 1950s and 1970s, respectively. Interestingly, diseases caused by all these pathovars were noted first in India. Our genome-based phylogenetic studies suggest that these diverse pathogens belong to a single species and these pathovars may be just a group of rapidly evolving strains. Furthermore, the recently reported pathovars, such as those infecting grape and pomegranate, form independent clonal lineages, while the citrus and mango pathovars that have been known for a long time form one clonal lineage. Such an understanding of their phylogenomic relationship has further allowed us to understand major and unique variations in the lineages that give rise to these pathovars. Whole-genome sequencing studies including ecological relatives from their putative country of origin has allowed us to understand the evolutionary history of Xac and other pathovars that infect fruits. PMID:25085494

  7. Evolutionary and Experimental Assessment of Novel Markers for Detection of Xanthomonas euvesicatoria in Plant Samples

    PubMed Central

    Albuquerque, Pedro; Caridade, Cristina M. R.; Rodrigues, Arlete S.; Marcal, Andre R. S.; Cruz, Joana; Cruz, Leonor; Santos, Catarina L.; Mendes, Marta V.; Tavares, Fernando

    2012-01-01

    Background Bacterial spot-causing xanthomonads (BSX) are quarantine phytopathogenic bacteria responsible for heavy losses in tomato and pepper production. Despite the research on improved plant spraying methods and resistant cultivars, the use of healthy plant material is still considered as the most effective bacterial spot control measure. Therefore, rapid and efficient detection methods are crucial for an early detection of these phytopathogens. Methodology In this work, we selected and validated novel DNA markers for reliable detection of the BSX Xanthomonas euvesicatoria (Xeu). Xeu-specific DNA regions were selected using two online applications, CUPID and Insignia. Furthermore, to facilitate the selection of putative DNA markers, a customized C program was designed to retrieve the regions outputted by both databases. The in silico validation was further extended in order to provide an insight on the origin of these Xeu-specific regions by assessing chromosomal location, GC content, codon usage and synteny analyses. Primer-pairs were designed for amplification of those regions and the PCR validation assays showed that most primers allowed for positive amplification with different Xeu strains. The obtained amplicons were labeled and used as probes in dot blot assays, which allowed testing the probes against a collection of 12 non-BSX Xanthomonas and 23 other phytopathogenic bacteria. These assays confirmed the specificity of the selected DNA markers. Finally, we designed and tested a duplex PCR assay and an inverted dot blot platform for culture-independent detection of Xeu in infected plants. Significance This study details a selection strategy able to provide a large number of Xeu-specific DNA markers. As demonstrated, the selected markers can detect Xeu in infected plants both by PCR and by hybridization-based assays coupled with automatic data analysis. Furthermore, this work is a contribution to implement more efficient DNA-based methods of bacterial diagnostics. PMID:22655073

  8. FUSARIUM HEAD BLIGHT OF WHEAT AND BARLEY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight re-emerged in the 1990s as a devastating disease of wheat and barley in the mid-western United States. Few diseases of modern times have been so severe. This book contains a comprehensive compilation of scientific knowledge of the disease. Included are 18 chapters by world autho...

  9. Developing Fusarium head blight resistant wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight, caused by Fusarium graminearum, is a major disease problem in wheat and barley around the world. During infection, F. graminearum produces trichothecene mycotoxins that act as virulence factors and cause a reduction in grain quality. Therefore, developing approaches to detoxi...

  10. Pseudomonas blight discovered on raspberry in Watsonville

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the winter (February) of 2013, a field of raspberries in Watsonville was discovered to be infected with Pseudomonas syringae, the causal agent of Pseudomonas blight disease. This was the first documentation of this disease on raspberry in our region. The infection of raspberry plants is manifeste...

  11. Research on Rhizoctonia Web Blight on Azalea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia web blight is a reoccurring problem in compact varieties of container-grown azalea (Rhododendron sp.) in the Gulf Coast States. During the summers of 2002 and 2003, disease severity was measured weekly in the inoculated center plant of plots consisting of 49 ‘Gumpo’ azalea plants. Plant ...

  12. Research on Rhizoctonia Web Blight on Azalea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia web blight is a reoccurring problem in compact varieties of container-grown azalea (Rhododendron sp.) in the Gulf Coast States. During the summers of 2002 and 2003, disease severity was measured weekly in the inoculated center plant of plots consisting of 49 ‘Gumpo’ azalea plants. Plant ...

  13. SHEATH BLIGHT RESISTANCE IN SOUTHERN RICE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sheath blight is a serious fungal disease problem in southern US rice production, making it necessary for rice farmers to diligently use fungicides for its control. There are no long grain rice varieties adapted to commercial production in the southern US that have adequate resistance to sheath bli...

  14. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Xanthomonas campestris pv. vesicatoria... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1261 Xanthomonas campestris pv... a tolerance is established for residues of Xanthomonas campestris pv. vesicatoria and...

  15. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Xanthomonas campestris pv. vesicatoria... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1261 Xanthomonas campestris pv... a tolerance is established for residues of Xanthomonas campestris pv. vesicatoria and...

  16. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Xanthomonas campestris pv. vesicatoria... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1261 Xanthomonas campestris pv... a tolerance is established for residues of Xanthomonas campestris pv. vesicatoria and...

  17. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Xanthomonas campestris pv. vesicatoria... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1261 Xanthomonas campestris pv... a tolerance is established for residues of Xanthomonas campestris pv. vesicatoria and...

  18. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Xanthomonas campestris pv. vesicatoria... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1261 Xanthomonas campestris pv... a tolerance is established for residues of Xanthomonas campestris pv. vesicatoria and...

  19. Significant alterations in anisotropic ice growth rate induced by the ice nucleation-active bacteria Xanthomonas campestris

    NASA Astrophysics Data System (ADS)

    Nada, Hiroki; Zepeda, Salvador; Miura, Hitoshi; Furukawa, Yoshinori

    2010-09-01

    In the present study, we found that the ice nucleation-active bacteria Xanthomonas campestris significantly altered anisotropic ice growth rate. Results of ice growth experiments in the presence of X. campestris showed that this bacterium decreased the ice crystal growth rate in the c-axis, whereas it increased growth rates in directions normal to the c-axis. These results indicate that these alterations in anisotropic growth rate are the result of selective binding of bacterial ice-nucleating proteins along the {0 0 0 1} basal plane.

  20. Cloning and Characterization of a Late Blight Resistance Gene (Rpi-bt1) and other Resistance Gene Analogs from Solanum bulbocastanum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora infestans, the causal agent of late blight is the most devastating pathogen of potatoes. Utilizing map based chromosome walking a genomic region containing a cluster of six nucleotide binding site-leucine-rich repeat resistance gene analogs was isolated from a bacterial artificial chro...

  1. Real Time Live Imaging of Phytopathogenic Bacteria Xanthomonas campestris pv. campestris MAFF106712 in ‘Plant Sweet Home’

    PubMed Central

    Akimoto-Tomiyama, Chiharu; Furutani, Ayako; Ochiai, Hirokazu

    2014-01-01

    Xanthomonas is one of the most widespread phytobacteria, causing diseases on a variety of agricultural plants. To develop novel control techniques, knowledge of bacterial behavior inside plant cells is essential. Xanthomonas campestris pv. campestris, a vascular pathogen, is the causal agent of black rot on leaves of Brassicaceae, including Arabidopsis thaliana. Among the X. campestris pv. campestris stocks in the MAFF collection, we selected XccMAFF106712 as a model compatible pathogen for the A. thaliana reference ecotype Columbia (Col-0). Using modified green fluorescent protein (AcGFP) as a reporter, we observed real time XccMAFF106712 colonization in planta with confocal microscopy. AcGFP-expressing bacteria colonized the inside of epidermal cells and the apoplast, as well as the xylem vessels of the vasculature. In the case of the type III mutant, bacteria colonization was never detected in the xylem vessel or apoplast, though they freely enter the xylem vessel through the wound. After 9 days post inoculation with XccMAFF106712, the xylem vessel became filled with bacterial aggregates. This suggests that Xcc colonization can be divided into main four steps, (1) movement in the xylem vessel, (2) movement to the next cell, (3) adhesion to the host plant cells, and (4) formation of bacterial aggregates. The type III mutant abolished at least steps (1) and (2). Better understanding of Xcc colonization is essential for development of novel control techniques for black rot. PMID:24736478

  2. The Xanthomonas campestris effector protein XopDXcc8004 triggers plant disease tolerance by targeting DELLA proteins.

    PubMed

    Tan, Leitao; Rong, Wei; Luo, Hongli; Chen, Yinhua; He, Chaozu

    2014-11-01

    Plants protect themselves from the harmful effects of pathogens by resistance and tolerance. Disease resistance, which eliminates pathogens, can be modulated by bacterial type III effectors. Little is known about whether disease tolerance, which sustains host fitness with a given pathogen burden, is regulated by effectors. Here, we examined the effects of the Xanthomonas effector protein XopDXcc8004 on plant disease defenses by constructing knockout and complemented Xanthomonas strains, and performing inoculation studies in radish (Raphanus sativus L. var. radiculus XiaoJinZhong) and Arabidopsis plants. XopDXcc8004 suppresses disease symptoms without changing bacterial titers in infected leaves. In Arabidopsis, XopDXcc8004 delays the hormone gibberellin (GA)-mediated degradation of RGA (repressor of ga1-3), one of five DELLA proteins that repress GA signaling and promote plant tolerance under biotic and abiotic stresses. The ERF-associated amphiphilic repression (EAR) motif-containing region of XopDXcc8004 interacts with the DELLA domain of RGA and might interfere with the GA-induced binding of GID1, a GA receptor, to RGA. The EAR motif was found to be present in a number of plant transcriptional regulators. Thus, our data suggest that bacterial pathogens might have evolved effectors, which probably mimic host components, to initiate disease tolerance and enhance their survival. PMID:25040905

  3. Bacterial Leaf Spot of Lettuce: Request for Samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial leaf spot of lettuce caused by by Xanthomonas campestris pv. vitians has been affecting coastal California crops for many years and has become a chronic problem. Differences in pathogen genotypes have been demonstrated and correlated to disease responses on resistant and susceptible cultiv...

  4. Genetics and breeding of bacterial leaf spot resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial leaf spot (BLS) caused by the pathogen Xanthomonas campestris pv. vitians (Xcv) is a globally important disease of whole head and baby leaf lettuce that reduces crop yield and quality. Host resistance is the most feasible method to reduce disease losses. Screening Lactuca accessions has id...

  5. [Bacterial diseases of rape].

    PubMed

    Zakharova, O M; Mel'nychuk, M D; Dankevych, L A; Patyka, V P

    2012-01-01

    Bacterial destruction of the culture was described and its agents identified in the spring and winter rape crops. Typical symptoms are the following: browning of stem tissue and its mucilagization, chlorosis of leaves, yellowing and beginning of soft rot in the place of leaf stalks affixion to stems, loss of pigmentation (violet). Pathogenic properties of the collection strains and morphological, cultural, physiological, and biochemical properties of the agents of rape's bacterial diseases isolated by the authors have been investigated. It was found that all the isolates selected by the authors are highly or moderately aggressive towards different varieties of rape. According to the complex of phenotypic properties 44% of the total number of isolates selected by the authors are related to representatives of the genus Pseudomonas, 37% - to Xanthomonas and 19% - to Pectobacterium. PMID:23293826

  6. Fortunella margarita Transcriptional Reprogramming Triggered by Xanthomonas citri subsp. citri

    PubMed Central

    2011-01-01

    Background Citrus canker disease caused by the bacterial pathogen Xanthomonas citri subsp. citri (Xcc) has become endemic in areas where high temperature, rain, humidity, and windy conditions provide a favourable environment for the dissemination of the bacterium. Xcc is pathogenic on many commercial citrus varieties but appears to elicit an incompatible reaction on the citrus relative Fortunella margarita Swing (kumquat), in the form of a very distinct delayed necrotic response. We have developed subtractive libraries enriched in sequences expressed in kumquat leaves during both early and late stages of the disease. The isolated differentially expressed transcripts were subsequently sequenced. Our results demonstrate how the use of microarray expression profiling can help assign roles to previously uncharacterized genes and elucidate plant pathogenesis-response related mechanisms. This can be considered to be a case study in a citrus relative where high throughput technologies were utilized to understand defence mechanisms in Fortunella and citrus at the molecular level. Results cDNAs from sequenced kumquat libraries (ESTs) made from subtracted RNA populations, healthy vs. infected, were used to make this microarray. Of 2054 selected genes on a customized array, 317 were differentially expressed (P < 0.05) in Xcc challenged kumquat plants compared to mock-inoculated ones. This study identified components of the incompatible interaction such as reactive oxygen species (ROS) and programmed cell death (PCD). Common defence mechanisms and a number of resistance genes were also identified. In addition, there were a considerable number of differentially regulated genes that had no homologues in the databases. This could be an indication of either a specialized set of genes employed by kumquat in response to canker disease or new defence mechanisms in citrus. Conclusion Functional categorization of kumquat Xcc-responsive genes revealed an enhanced defence-related metabolism as well as a number of resistant response-specific genes in the kumquat transcriptome in response to Xcc inoculation. Gene expression profile(s) were analyzed to assemble a comprehensive and inclusive image of the molecular interaction in the kumquat/Xcc system. This was done in order to elucidate molecular mechanisms associated with the development of the hypersensitive response phenotype in kumquat leaves. These data will be used to perform comparisons among citrus species to evaluate means to enhance the host immune responses against bacterial diseases. PMID:22078099

  7. Influence of molecular size and ligninase pretreatment on degradation of lignins by Xanthomonas sp. strain 99

    SciTech Connect

    Kern, H.W.; Kirk, T.K.

    1987-09-01

    The purpose of this study was to examine the relationship between the molecular size of lignin in several preparations and extent of degradation (mineralization) by Xanthomonas sp. strain 99. The influence of ligninase pretreatment was also examined. Five synthetic lignins and one /sup 14/C-methylated spruce lignin were used. The extent of mineralization to /sup 14/CO/sub 2/ was greatest for the samples containing the most low-molecular-weight material, and the low-molecular-weight portions were preferentially (or perhaps solely) degraded. Pretreatment of the five synthetic lignins with crude ligninase increased their molecular size and decreased their degradability by the xanthomonad. Pretreatment of the methylated spruce lignin with crude ligninase caused both polymerization and depolymerization but resulted in a net decrease in bacterial degradability. Their results suggest that the xanthomonad can degrade lignins only up to a molecular weight of 600 to 1000.

  8. Production of xanthan gum by free and immobilized cells of Xanthomonas campestris and Xanthomonas pelargonii.

    PubMed

    Niknezhad, Seyyed Vahid; Asadollahi, Mohammad Ali; Zamani, Akram; Biria, Davoud

    2016-01-01

    Production of xanthan gum using immobilized cells of Xanthomonas campestris and Xanthomonas pelargonii grown on glucose or hydrolyzed starch as carbon sources was investigated. Calcium alginate (CA) and calcium alginate-polyvinyl alcohol-boric acid (CA-PVA) beads were used for the immobilization of cells. Xanthan titers of 8.2 and 9.2g/L were obtained for X. campestris cells immobilized in CA-PVA beads using glucose and hydrolyzed starch, respectively, whereas those for X. pelargonii were 8 and 7.9g/L, respectively. Immobilized cells in CA-PVA beads were successfully employed in three consecutive cycles for xanthan production without any noticeable degradation of the beads whereas the CA beads were broken after the first cycle. The results of this study suggested that immobilized cells are advantageous over the free cells for xanthan production. Also it was shown that the cells immobilized in CA-PVA beads are more efficient than cells immobilized in CA beads for xanthan production. PMID:26526173

  9. Medfly Ceratitis capitata as Potential Vector for Fire Blight Pathogen Erwinia amylovora: Survival and Transmission.

    PubMed

    Ordax, Mónica; Piquer-Salcedo, Jaime E; Santander, Ricardo D; Sabater-Muñoz, Beatriz; Biosca, Elena G; López, María M; Marco-Noales, Ester

    2015-01-01

    Monitoring the ability of bacterial plant pathogens to survive in insects is required for elucidating unknown aspects of their epidemiology and for designing appropriate control strategies. Erwinia amylovora is a plant pathogenic bacterium that causes fire blight, a devastating disease in apple and pear commercial orchards. Studies on fire blight spread by insects have mainly focused on pollinating agents, such as honeybees. However, the Mediterranean fruit fly (medfly) Ceratitis capitata (Diptera: Tephritidae), one of the most damaging fruit pests worldwide, is also common in pome fruit orchards. The main objective of the study was to investigate whether E. amylovora can survive and be transmitted by the medfly. Our experimental results show: i) E. amylovora can survive for at least 8 days inside the digestive tract of the medfly and until 28 days on its external surface, and ii) medflies are able to transmit the bacteria from inoculated apples to both detached shoots and pear plants, being the pathogen recovered from lesions in both cases. This is the first report on E. amylovora internalization and survival in/on C. capitata, as well as the experimental transmission of the fire blight pathogen by this insect. Our results suggest that medfly can act as a potential vector for E. amylovora, and expand our knowledge on the possible role of these and other insects in its life cycle. PMID:25978369

  10. Medfly Ceratitis capitata as Potential Vector for Fire Blight Pathogen Erwinia amylovora: Survival and Transmission

    PubMed Central

    Ordax, Mónica; Piquer-Salcedo, Jaime E.; Santander, Ricardo D.; Sabater-Muñoz, Beatriz; Biosca, Elena G.; López, María M.; Marco-Noales, Ester

    2015-01-01

    Monitoring the ability of bacterial plant pathogens to survive in insects is required for elucidating unknown aspects of their epidemiology and for designing appropriate control strategies. Erwinia amylovora is a plant pathogenic bacterium that causes fire blight, a devastating disease in apple and pear commercial orchards. Studies on fire blight spread by insects have mainly focused on pollinating agents, such as honeybees. However, the Mediterranean fruit fly (medfly) Ceratitis capitata (Diptera: Tephritidae), one of the most damaging fruit pests worldwide, is also common in pome fruit orchards. The main objective of the study was to investigate whether E. amylovora can survive and be transmitted by the medfly. Our experimental results show: i) E. amylovora can survive for at least 8 days inside the digestive tract of the medfly and until 28 days on its external surface, and ii) medflies are able to transmit the bacteria from inoculated apples to both detached shoots and pear plants, being the pathogen recovered from lesions in both cases. This is the first report on E. amylovora internalization and survival in/on C. capitata, as well as the experimental transmission of the fire blight pathogen by this insect. Our results suggest that medfly can act as a potential vector for E. amylovora, and expand our knowledge on the possible role of these and other insects in its life cycle. PMID:25978369

  11. Putative resistance gene markers associated with quantitative trait loci for fire blight resistance in Malus ‘Robusta 5’ accessions

    PubMed Central

    2012-01-01

    Background Breeding of fire blight resistant scions and rootstocks is a goal of several international apple breeding programs, as options are limited for management of this destructive disease caused by the bacterial pathogen Erwinia amylovora. A broad, large-effect quantitative trait locus (QTL) for fire blight resistance has been reported on linkage group 3 of Malus ‘Robusta 5’. In this study we identified markers derived from putative fire blight resistance genes associated with the QTL by integrating further genetic mapping studies with bioinformatics analysis of transcript profiling data and genome sequence databases. Results When several defined E.amylovora strains were used to inoculate three progenies from international breeding programs, all with ‘Robusta 5’ as a common parent, two distinct QTLs were detected on linkage group 3, where only one had previously been mapped. In the New Zealand ‘Malling 9’ X ‘Robusta 5’ population inoculated with E. amylovora ICMP11176, the proximal QTL co-located with SNP markers derived from a leucine-rich repeat, receptor-like protein ( MxdRLP1) and a closely linked class 3 peroxidase gene. While the QTL detected in the German ‘Idared’ X ‘Robusta 5’ population inoculated with E. amylovora strains Ea222_JKI or ICMP11176 was approximately 6?cM distal to this, directly below a SNP marker derived from a heat shock 90 family protein gene ( HSP90). In the US ‘Otawa3’ X ‘Robusta5’ population inoculated with E. amylovora strains Ea273 or E2002a, the position of the LOD score peak on linkage group 3 was dependent upon the pathogen strains used for inoculation. One of the five MxdRLP1 alleles identified in fire blight resistant and susceptible cultivars was genetically associated with resistance and used to develop a high resolution melting PCR marker. A resistance QTL detected on linkage group 7 of the US population co-located with another HSP90 gene-family member and a WRKY transcription factor previously associated with fire blight resistance. However, this QTL was not observed in the New Zealand or German populations. Conclusions The results suggest that the upper region of ‘Robusta 5’ linkage group 3 contains multiple genes contributing to fire blight resistance and that their contributions to resistance can vary depending upon pathogen virulence and other factors. Mapping markers derived from putative fire blight resistance genes has proved a useful aid in defining these QTLs and developing markers for marker-assisted breeding of fire blight resistance. PMID:22471693

  12. XocR, a LuxR solo required for virulence in Xanthomonas oryzae pv. oryzicola

    PubMed Central

    Xu, Huiyong; Zhao, Yancun; Qian, Guoliang; Liu, Fengquan

    2015-01-01

    Xanthomonas oryzae pv. oryzicola (Xoc) causes bacterial leaf streak (BLS) in rice, a serious bacterial disease of rice in Asia and parts of Africa. The virulence mechanisms of Xoc are not entirely clear and control measures for BLS are poorly developed. The solo LuxR proteins are widespread and shown to be involved in virulence in some plant associated bacteria (PAB). Here, we have cloned and characterized a PAB LuxR solo from Xoc, named as XocR. Mutation of xocR almost completely impaired the virulence ability of Xoc on host rice, but did not alter the ability to trigger HR (hypersensitive response, a programmed cell death) on non-host (plant) tobacco, suggesting the diversity of function of xocR in host and non-host plants. We also provide evidence to show that xocR is involved in the regulation of growth-independent cell motility in response to a yet-to-be-identified rice signal, as mutation of xocR impaired cell swimming motility of wild-type Rs105 in the presence but not absence of rice macerate. We further found that xocR regulated the transcription of two characterized virulence-associated genes (recN and trpE) in the presence of rice macerate. The promoter regions of recN and trpE possessed a potential binding motif (an imperfect pip box-like element) of XocR, raising the possibility that XocR might directly bind the promoter regions of these two genes to regulate their transcriptional activity. Our studies add a new member of PAB LuxR solos and also provide new insights into the role of PAB LuxR solo in the virulence of Xanthomonas species. PMID:25932456

  13. Detection of Xanthomonas arboricola pv. pruni by PCR using primers based on DNA sequences related to the hrp genes.

    PubMed

    Park, So Yeon; Lee, Young Sun; Koh, Young Jin; Hur, Jae-Sun; Jung, Jae Sung

    2010-10-01

    Efficient control of Xanthomonas arboricola pv. pruni, the causal agent of bacterial spot on stone fruit, requires a sensitive and reliable diagnostic tool. A PCR detection method that utilizes primers to target the hrp gene cluster region was developed in this study. The nucleotide sequence of the PCR product amplified with primers specific for the hrp region of the xanthomonads and genomic DNA of X. arboricola pv. pruni was determined, and the sequence was aligned with that of X. campestris pv. campestris, which was obtained from the GenBank database. On the basis of the sequence of the amplified hrp region, a PCR primer set of XapF/R specific to X. arboricola pv. pruni was designed. This primer set yielded a 243-bp product from the genomic DNA of X. aboricola pv. pruni strains, but no products from other 21 strains of Xanthomonas or from two epiphytic bacterial species. Southern blot hybridization with the probe derived from the PCR product with the primer set and X. aboricola pv. pruni DNA confirmed the PCR results. The Xap primer system was successfully applied to detect the pathogen from infected peach fruits. When it was applied in field samples, the primer set was proved as a reliable diagnostic tool for specific detection of X. aboricola pv. pruni from peach orchards. PMID:21046331

  14. Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. oryzae.

    PubMed

    Streubel, Jana; Pesce, Céline; Hutin, Mathilde; Koebnik, Ralf; Boch, Jens; Szurek, Boris

    2013-11-01

    Bacterial plant-pathogenic Xanthomonas strains translocate transcription activator-like (TAL) effectors into plant cells to function as specific transcription factors. Only a few plant target genes of TAL effectors have been identified, so far. Three plant SWEET genes encoding putative sugar transporters are known to be induced by TAL effectors from rice-pathogenic Xanthomonas oryzae pv. oryzae (Xoo). We predict and validate that expression of OsSWEET14 is induced by a novel TAL effector, Tal5, from an African Xoo strain. Artificial TAL effectors (ArtTALs) were constructed to individually target 20 SWEET orthologs in rice. They were used as designer virulence factors to study which rice SWEET genes can support Xoo virulence. The Tal5 target box differs from those of the already known TAL effectors TalC, AvrXa7 and PthXo3, which also induce expression of OsSWEET14, suggesting evolutionary convergence on key targets. ArtTALs efficiently complemented an Xoo talC mutant, demonstrating that specific induction of OsSWEET14 is the key target of TalC. ArtTALs that specifically target individual members of the rice SWEET family revealed three known and two novel SWEET genes to support bacterial virulence. Our results demonstrate that five phylogenetically close SWEET proteins, which presumably act as sucrose transporters, can support Xoo virulence. PMID:23879865

  15. Draft genome sequence for virulent and avirulent strains of Xanthomonas arboricola isolated from Prunus spp. in Spain.

    PubMed

    Garita-Cambronero, Jerson; Palacio-Bielsa, Ana; López, María M; Cubero, Jaime

    2016-01-01

    Xanthomonas arboricola is a species in genus Xanthomonas which is mainly comprised of plant pathogens. Among the members of this taxon, X. arboricola pv. pruni, the causal agent of bacterial spot disease of stone fruits and almond, is distributed worldwide although it is considered a quarantine pathogen in the European Union. Herein, we report the draft genome sequence, the classification, the annotation and the sequence analyses of a virulent strain, IVIA 2626.1, and an avirulent strain, CITA 44, of X. arboricola associated with Prunus spp. The draft genome sequence of IVIA 2626.1 consists of 5,027,671 bp, 4,720 protein coding genes and 50 RNA encoding genes. The draft genome sequence of strain CITA 44 consists of 4,760,482 bp, 4,250 protein coding genes and 56 RNA coding genes. Initial comparative analyses reveals differences in the presence of structural and regulatory components of the type IV pilus, the type III secretion system, the type III effectors as well as variations in the number of the type IV secretion systems. The genome sequence data for these strains will facilitate the development of molecular diagnostics protocols that differentiate virulent and avirulent strains. In addition, comparative genome analysis will provide insights into the plant-pathogen interaction during the bacterial spot disease process. PMID:26823958

  16. Fungicide timing rules to prevent azalea web blight damage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article provides directions for timing fungicide applications to control Rhizoctonia web blight. Research has shown that many azalea cultivars are infested with the web blight pathogen (binucleate Rhizoctonia). The fungus lives 12 months of the year on azaleas, yet does not harm the plant most...

  17. The 2009 late blight pandemic in eastern USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The tomato late blight pandemic of 2009 made late blight into a household term in much of the eastern United States. Many home gardeners and organic producers lost most, if not all, of their tomato crop, and their experiences were reported in the mainstream press. This article, which is written for ...

  18. Examination of Early Blight Resistance Derived From S. Raphanifolium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early blight of potato (Solanum tuberosum L.), caused by Alternaria solani is a major cause of economic losses in many potato growing regions. Growers and breeders are interested in the development of potato cultivars with resistance to early blight as a means to decrease usage of fungicide applica...

  19. Analysis of fire blight shott infection epidemics on apple

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fire blight incidence and spread of the shoot blight phase of the disease was studied in four apple cultivars in replicated blocks over four years (1994 - 1997). The cultivar ‘York’ was highly susceptible, followed by ‘Fuji’ and ‘Golden Delicious’ which were moderately susceptible, and ‘Liberty’ wh...

  20. Timing of fungicide sprays to prevent azalea web blight symptoms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Azalea web blight is an annual problem on evergreen azalea cultivars grown in containerized nursery production in the southern and eastern United States. Fungicides are the only approach currently used to control Rhizoctonia web blight; however, control is poor in some years because the specifics of...

  1. Timing of fungicide sprays to prevent azalea web blight symptoms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several fungicides will control web blight, but guidelines about when to spray have not been clearly understood. Previous research has shown that a maximum daily temperatures greater than 95°F and minimum daily temperatures less than 68°F slow web blight development, but weather conditions are not s...

  2. Fungicide timing rules to prevent azalea web blight damage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article provides directions for timing fungicide applications to control Rhizoctonia web blight. Research has shown that many azalea cultivars are infested with the web blight pathogen (binucleate Rhizoctonia). The fungus lives 12 months of the year on azaleas, yet does not harm the plant most ...

  3. Functional genomic response of apple to fire blight

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of this project is to use a functional genomic analysis to characterize the response of apple (Malus x domestica) to fire blight disease and in doing so, identify new opportunities for improving fire blight resistance. cDNA suppression subtractive hybridization and cDNA-AFLP analysis were ...

  4. Enhancing Potato System Sustainability: Microclimate, Early Blight and Late Blight Potential

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop and soil management may modify canopy and below ground microclimate; however, their effects on potential development and control of early and late blight are not well documented. Crop management systems (Status Quo (SQ), Soil Conserving (SC), Soil Improving (SI), Disease Suppressive (DS), and c...

  5. Enhancing Potato System Sustainability: Microclimate, Early Blight and Late Blight Potential

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop and soil management may modify canopy and below ground microclimate; however, their effects on potential development and control of early and late blight are not well documented. Crop management systems (Status Quo (SQ), Soil Conserving (SC), Soil Improving (SI), Disease Suppressive (DS), and ...

  6. Detection of early blight and late blight diseases on tomato leaves using hyperspectral imaging

    PubMed Central

    Xie, Chuanqi; Shao, Yongni; Li, Xiaoli; He, Yong

    2015-01-01

    This study investigated the potential of using hyperspectral imaging for detecting different diseases on tomato leaves. One hundred and twenty healthy, one hundred and twenty early blight and seventy late blight diseased leaves were selected to obtain hyperspectral images covering spectral wavelengths from 380 to 1023 nm. An extreme learning machine (ELM) classifier model was established based on full wavelengths. Successive projections algorithm (SPA) was used to identify the most important wavelengths. Based on the five selected wavelengths (442, 508, 573, 696 and 715 nm), an ELM model was re-established. Then, eight texture features (mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment and correlation) based on gray level co-occurrence matrix (GLCM) at the five effective wavelengths were extracted to establish detection models. Among the models which were established based on spectral information, all performed excellently with the overall classification accuracy ranging from 97.1% to 100% in testing sets. Among the eight texture features, dissimilarity, second moment and entropy carried most of the effective information with the classification accuracy of 71.8%, 70.9% and 69.9% in the ELM models. The results demonstrated that hyperspectral imaging has the potential as a non-invasive method to identify early blight and late blight diseases on tomato leaves. PMID:26572857

  7. Registration of PR0401-259 and PR0650-31 Dry Bean Germplasm Lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Web blight, caused by Thanatephorus cucumeris (Frank) Donk (anamorph: Rhizoctonia solani Kühn), is a serious disease in the humid tropics that reduces both yield and seed quality. Common bacterial blight (CBB), caused by Xanthomonas axonopodis pv. phaseoli (Smith) Vauterin et al., and Bean common m...

  8. Effects of Mulch and Potato Hilling on Development of Foliar Blight (Phytophthora infestans) and Control of Tuber Blight Infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foliar and tuber blight caused by Phytophthora infestans accounts for significant losses in potatoes in field and storage, however; limited research has documented the effect of cultural practices on late blight control. Field experiments were conducted for two years on Howard gravely loam soil in N...

  9. Full Genome Sequence Analysis of Two Isolates Reveals a Novel Xanthomonas Species Close to the Sugarcane Pathogen Xanthomonas albilineans.

    PubMed

    Pieretti, Isabelle; Cociancich, Stéphane; Bolot, Stéphanie; Carrère, Sébastien; Morisset, Alexandre; Rott, Philippe; Royer, Monique

    2015-01-01

    Xanthomonas albilineans is the bacterium responsible for leaf scald, a lethal disease of sugarcane. Within the Xanthomonas genus, X. albilineans exhibits distinctive genomic characteristics including the presence of significant genome erosion, a non-ribosomal peptide synthesis (NRPS) locus involved in albicidin biosynthesis, and a type 3 secretion system (T3SS) of the Salmonella pathogenicity island-1 (SPI-1) family. We sequenced two X. albilineans-like strains isolated from unusual environments, i.e., from dew droplets on sugarcane leaves and from the wild grass Paspalum dilatatum, and compared these genomes sequences with those of two strains of X. albilineans and three of Xanthomonas sacchari. Average nucleotide identity (ANI) and multi-locus sequence analysis (MLSA) showed that both X. albilineans-like strains belong to a new species close to X. albilineans that we have named "Xanthomonas pseudalbilineans". X. albilineans and "X. pseudalbilineans" share many genomic features including (i) the lack of genes encoding a hypersensitive response and pathogenicity type 3 secretion system (Hrp-T3SS), and (ii) genome erosion that probably occurred in a common progenitor of both species. Our comparative analyses also revealed specific genomic features that may help X. albilineans interact with sugarcane, e.g., a PglA endoglucanase, three TonB-dependent transporters and a glycogen metabolism gene cluster. Other specific genomic features found in the "X. pseudalbilineans" genome may contribute to its fitness and specific ecological niche. PMID:26213974

  10. Molecular detection of Xanthomonas oryzae pv. oryzae, Xanthomonas oryzae pv. oryzicola, and Burkholderia glumae in infected rice seeds and leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polymerase chain reaction (PCR) is particularly useful for plant pathogen detection. In the present study, multiplex PCR and SYBR green real-time PCR were developed to facilitate simultaneous detection of three important rice pathogens, Xanthomonas oryzae pv. oryzae, X. oryzae pv. oryzicola, and Bur...

  11. Full Genome Sequence Analysis of Two Isolates Reveals a Novel Xanthomonas Species Close to the Sugarcane Pathogen Xanthomonas albilineans

    PubMed Central

    Pieretti, Isabelle; Cociancich, Stéphane; Bolot, Stéphanie; Carrère, Sébastien; Morisset, Alexandre; Rott, Philippe; Royer, Monique

    2015-01-01

    Xanthomonas albilineans is the bacterium responsible for leaf scald, a lethal disease of sugarcane. Within the Xanthomonas genus, X. albilineans exhibits distinctive genomic characteristics including the presence of significant genome erosion, a non-ribosomal peptide synthesis (NRPS) locus involved in albicidin biosynthesis, and a type 3 secretion system (T3SS) of the Salmonella pathogenicity island-1 (SPI-1) family. We sequenced two X. albilineans-like strains isolated from unusual environments, i.e., from dew droplets on sugarcane leaves and from the wild grass Paspalum dilatatum, and compared these genomes sequences with those of two strains of X. albilineans and three of Xanthomonas sacchari. Average nucleotide identity (ANI) and multi-locus sequence analysis (MLSA) showed that both X. albilineans-like strains belong to a new species close to X. albilineans that we have named “Xanthomonas pseudalbilineans”. X. albilineans and “X. pseudalbilineans” share many genomic features including (i) the lack of genes encoding a hypersensitive response and pathogenicity type 3 secretion system (Hrp-T3SS), and (ii) genome erosion that probably occurred in a common progenitor of both species. Our comparative analyses also revealed specific genomic features that may help X. albilineans interact with sugarcane, e.g., a PglA endoglucanase, three TonB-dependent transporters and a glycogen metabolism gene cluster. Other specific genomic features found in the “X. pseudalbilineans” genome may contribute to its fitness and specific ecological niche. PMID:26213974

  12. Populations of Xanthomonas citri pv. mangiferaeindicae from asymptomatic mango leaves are primarily endophytic.

    PubMed

    Pruvost, Olivier; Savelon, Caroline; Boyer, Claudine; Chiroleu, Frédéric; Gagnevin, Lionel; Jacques, Marie-Agnès

    2009-07-01

    Epiphytic survival of several Xanthomonas pathovars has been reported, but most studies failed to determine whether such populations were resident epiphytes, resulting from latent infections, or casual epiphytes. This study aimed at understanding the nature of Xanthomonas citri pv. mangiferaeindicae populations associated with asymptomatic leaves. When spray-inoculated on mango leaves cv. Maison Rouge, the pathogen multiplied markedly in association with juvenile leaves, but was most often detected as low population sizes (<1 x 10(3) cfu g(-1)) in association with mature leaves. Our results suggest a very low biological significance of biofilm-associated populations of X. citri pv. mangiferaeindicae, while saprophytic microbiota associated with mango leaves survived frequently as biofilms. A chloroform vapor-based disinfestation assay which kills cells specifically located on the leaf surface and not those located within the leaf mesophyll was developed. When applied to spray-inoculated leaves maintained under controlled environmental conditions, 155 out of the 168 analyzed datasets collected over three assessment dates for seven bacterial strains representative of the genetic diversity of the pathogen failed to demonstrate a significant X. citri pv. mangiferaeindicae population decrease on chloroform treated leaves up to 13 days after inoculation. We conclude that an efficient survival of X. citri pv. mangiferaeindicae present on mango leaf surfaces following a limited dissemination event is largely dependent on the availability of juvenile plant tissues. The bacterium gains access to protected sites (e.g., mesophyll) through stomata where it becomes endophytic and eventually causes disease. Chloroform vapor-based disinfestation assays should be useful for further studies aiming at evaluating survival sites of bacteria associated with the phyllosphere. PMID:19139953

  13. Enhanced Biological Control of Phytophthora Blight of Pepper by Biosurfactant-Producing Pseudomonas

    PubMed Central

    Özyilmaz, Ümit; Benlioglu, Kemal

    2013-01-01

    Pseudomonas isolates from different crop plants were screened for in vitro growth inhibition of Phytophthora capsici and production of biosurfactant. Two in vivo experiments were performed to determine the efficacy of selected Pseudomonas strains against Phytophthora blight of pepper by comparing two fungicide treatments [acibenzolar-S-methyl (ASM) and ASM + mefenoxam]. Bacterial isolates were applied by soil drenching (1 × 109 cells/ml), ASM (0.1 μg a.i./ml) and ASM + mefenoxam (0.2 mg product/ml) were applied by foliar spraying, and P. capsici inoculum was incorporated into the pot soil three days after treatments. In the first experiment, four Pseudomonas strains resulted in significant reduction from 48.4 to 61.3% in Phytophthora blight severity. In the second experiment, bacterial treatments combining with olive oil (5 mL per plant) significantly enhanced biological control activity, resulting in a reduction of disease level ranging from 56.8 to 81.1%. ASM + mefenoxam was the most effective treatment while ASM alone was less effective in both bioassays. These results indicate that our Pseudomonas fluorescens strains (6L10, 6ba6 and 3ss9) that have biosurfactant-producing abilities are effective against P. capsici on pepper, and enhanced disease suppression could be achieved when they were used in combination with olive oil. PMID:25288970

  14. Biocontrol of Phytophthora Blight and Anthracnose in Pepper by Sequentially Selected Antagonistic Rhizobacteria against Phytophthora capsici.

    PubMed

    Sang, Mee Kyung; Shrestha, Anupama; Kim, Du-Yeon; Park, Kyungseok; Pak, Chun Ho; Kim, Ki Deok

    2013-06-01

    We previously developed a sequential screening procedure to select antagonistic bacterial strains against Phytophthora capsici in pepper plants. In this study, we used a modified screening procedure to select effective biocontrol strains against P. capsici; we evaluated the effect of selected strains on Phytophthora blight and anthracnose occurrence and fruit yield in pepper plants under field and plastic house conditions from 2007 to 2009. We selected four potential biocontrol strains (Pseudomonas otitidis YJR27, P. putida YJR92, Tsukamurella tyrosinosolvens YJR102, and Novosphingobium capsulatum YJR107) among 239 bacterial strains. In the 3-year field tests, all the selected strains significantly (P < 0.05) reduced Phytophthora blight without influencing rhizosphere microbial populations; they showed similar or better levels of disease suppressions than in metalaxyl treatment in the 2007 and 2009 tests, but not in the 2008 test. In the 2-year plastic house tests, all the selected strains significantly (P < 0.05) reduced anthracnose incidence in at least one of the test years, but their biocontrol activities were variable. In addition, strains YJR27, YJR92, and YJR102, in certain harvests, increased pepper fruit numbers in field tests and red fruit weights in plastic house tests. Taken together, these results indicate that the screening procedure is rapid and reliable for the selection of potential biocontrol strains against P. capsici in pepper plants. In addition, these selected strains exhibited biocontrol activities against anthracnose, and some of the strains showed plant growth-promotion activities on pepper fruit. PMID:25288942

  15. Biocontrol of Phytophthora Blight and Anthracnose in Pepper by Sequentially Selected Antagonistic Rhizobacteria against Phytophthora capsici

    PubMed Central

    Sang, Mee Kyung; Shrestha, Anupama; Kim, Du-Yeon; Park, Kyungseok; Pak, Chun Ho; Kim, Ki Deok

    2013-01-01

    We previously developed a sequential screening procedure to select antagonistic bacterial strains against Phytophthora capsici in pepper plants. In this study, we used a modified screening procedure to select effective biocontrol strains against P. capsici; we evaluated the effect of selected strains on Phytophthora blight and anthracnose occurrence and fruit yield in pepper plants under field and plastic house conditions from 2007 to 2009. We selected four potential biocontrol strains (Pseudomonas otitidis YJR27, P. putida YJR92, Tsukamurella tyrosinosolvens YJR102, and Novosphingobium capsulatum YJR107) among 239 bacterial strains. In the 3-year field tests, all the selected strains significantly (P < 0.05) reduced Phytophthora blight without influencing rhizosphere microbial populations; they showed similar or better levels of disease suppressions than in metalaxyl treatment in the 2007 and 2009 tests, but not in the 2008 test. In the 2-year plastic house tests, all the selected strains significantly (P < 0.05) reduced anthracnose incidence in at least one of the test years, but their biocontrol activities were variable. In addition, strains YJR27, YJR92, and YJR102, in certain harvests, increased pepper fruit numbers in field tests and red fruit weights in plastic house tests. Taken together, these results indicate that the screening procedure is rapid and reliable for the selection of potential biocontrol strains against P. capsici in pepper plants. In addition, these selected strains exhibited biocontrol activities against anthracnose, and some of the strains showed plant growth-promotion activities on pepper fruit. PMID:25288942

  16. Potent and specific bactericidal effect of juglone (5-hydroxy-1,4-naphthoquinone) on the fire blight pathogen Erwinia amylovora.

    PubMed

    Fischer, Thilo Christopher; Gosch, Christian; Mirbeth, Beate; Gselmann, Markus; Thallmair, Veronika; Stich, Karl

    2012-12-12

    A screening of plant quinones for inhibiting effects on the bacterial fire blight pathogen Erwinia amylovora was performed. The most active compound, juglone from walnuts, has a potent and specific bactericidal effect on E. amylovora and minimal inhibitory concentrations of only 2.5-10 ?M, with stronger effects at lower, but still physiological, pH values. In vitro tests with juglone and inoculated flowers of apple (Malus domestica) showed an efficacy of 67% in preventing infection. In two years of field tests juglone had variable degrees of efficacy ranging from 40 to 82%, seemingly due to environmental conditions. A phytotoxic reaction to juglone, which is known for its allelopathic effect on plants, was restricted to browning of petals; later fruit russeting was not observed. Juglone is a promising candidate for the development of a new environmentally friendly plant protectant to replace the antibiotic streptomycin currently used in fire blight control. PMID:23163769

  17. Development of an Efficient Real-Time Quantitative PCR Protocol for Detection of Xanthomonas arboricola pv. pruni in Prunus Species ? †

    PubMed Central

    Palacio-Bielsa, Ana; Cubero, Jaime; Cambra, Miguel A.; Collados, Raquel; Berruete, Isabel M.; López, María M.

    2011-01-01

    Xanthomonas arboricola pv. pruni, the causal agent of bacterial spot disease of stone fruit, is considered a quarantine organism by the European Union and the European and Mediterranean Plant Protection Organization (EPPO). The bacterium can undergo an epiphytic phase and/or be latent and can be transmitted by plant material, but currently, only visual inspections are used to certify plants as being X. arboricola pv. pruni free. A novel and highly sensitive real-time TaqMan PCR detection protocol was designed based on a sequence of a gene for a putative protein related to an ABC transporter ATP-binding system in X. arboricola pv. pruni. Pathogen detection can be completed within a few hours with a sensitivity of 102 CFU ml?1, thus surpassing the sensitivity of the existing conventional PCR. Specificity was assessed for X. arboricola pv. pruni strains from different origins as well as for closely related Xanthomonas species, non-Xanthomonas species, saprophytic bacteria, and healthy Prunus samples. The efficiency of the developed protocol was evaluated with field samples of 14 Prunus species and rootstocks. For symptomatic leaf samples, the protocol was very efficient even when washed tissues of the leaves were directly amplified without any previous DNA extraction. For samples of 117 asymptomatic leaves and 285 buds, the protocol was more efficient after a simple DNA extraction, and X. arboricola pv. pruni was detected in 9.4% and 9.1% of the 402 samples analyzed, respectively, demonstrating its frequent epiphytic or endophytic phase. This newly developed real-time PCR protocol can be used as a quantitative assay, offers a reliable and sensitive test for X. arboricola pv. pruni, and is suitable as a screening test for symptomatic as well as asymptomatic plant material. PMID:21037298

  18. Identification of Xanthomonas fragariae, Xanthomonas axonopodis pv. phaseoli, and Xanthomonas fuscans subsp. fuscans with Novel Markers and Using a Dot Blot Platform Coupled with Automatic Data Analysis ▿ †

    PubMed Central

    Albuquerque, Pedro; Caridade, Cristina M. R.; Marcal, Andre R. S.; Cruz, Joana; Cruz, Leonor; Santos, Catarina L.; Mendes, Marta V.; Tavares, Fernando

    2011-01-01

    Phytosanitary regulations and the provision of plant health certificates still rely mainly on long and laborious culture-based methods of diagnosis, which are frequently inconclusive. DNA-based methods of detection can circumvent many of the limitations of currently used screening methods, allowing a fast and accurate monitoring of samples. The genus Xanthomonas includes 13 phytopathogenic quarantine organisms for which improved methods of diagnosis are needed. In this work, we propose 21 new Xanthomonas-specific molecular markers, within loci coding for Xanthomonas-specific protein domains, useful for DNA-based methods of identification of xanthomonads. The specificity of these markers was assessed by a dot blot hybridization array using 23 non-Xanthomonas species, mostly soil dwelling and/or phytopathogens for the same host plants. In addition, the validation of these markers on 15 Xanthomonas spp. suggested species-specific hybridization patterns, which allowed discrimination among the different Xanthomonas species. Having in mind that DNA-based methods of diagnosis are particularly hampered for unsequenced species, namely, Xanthomonas fragariae, Xanthomonas axonopodis pv. phaseoli, and Xanthomonas fuscans subsp. fuscans, for which comparative genomics tools to search for DNA signatures are not yet applicable, emphasis was given to the selection of informative markers able to identify X. fragariae, X. axonopodis pv. phaseoli, and X. fuscans subsp. fuscans strains. In order to avoid inconsistencies due to operator-dependent interpretation of dot blot data, an image-processing algorithm was developed to analyze automatically the dot blot patterns. Ultimately, the proposed markers and the dot blot platform, coupled with automatic data analyses, have the potential to foster a thorough monitoring of phytopathogenic xanthomonads. PMID:21705524

  19. Cell-cell signalling promotes ferric iron uptake in Xanthomonas oryzae pv. oryzicola that contribute to its virulence and growth inside rice.

    PubMed

    Rai, Rikky; Javvadi, Sreegowrinadh; Chatterjee, Subhadeep

    2015-05-01

    Cell-cell communication mediated by diffusible signal factor (DSF) plays an important role in virulence of several Xanthomonas group of plant pathogens. In the bacterial pathogen of rice, Xanthomonas oryzae pv. oryzicola, DSF is required for virulence and in planta growth. In order to understand the role of DSF in promoting in planta growth and virulence, we have characterized the DSF deficient mutant of X. oryzae pv. oryzicola. Mutant analysis by expression analysis, radiolabelled iron uptake studies and growth under low-iron conditions indicated that DSF positively regulates ferric iron uptake. Further, the DSF deficient mutant of X. oryzae pv. oryzicola exhibited a reduced capacity to use ferric form of iron for growth under low-iron conditions. Exogenous iron supplementation in the rice leaves rescued the in planta growth deficiency of the DSF deficient mutant. These data suggest that DSF promotes in planta growth of X. oryzae pv. oryzicola by positively regulating functions involved in ferric iron uptake which is important for its virulence. Our results also indicate that requirement of iron uptake strategies to utilize either Fe(3+) or Fe(2+) form of iron for colonization may vary substantially among closely related members of the Xanthomonas group of plant pathogens. PMID:25656587

  20. Isolation and analysis of the Xanthomonas alkyl hydroperoxide reductase gene and the peroxide sensor regulator genes ahpC and ahpF-oxyR-orfX.

    PubMed Central

    Loprasert, S; Atichartpongkun, S; Whangsuk, W; Mongkolsuk, S

    1997-01-01

    From Xanthomonas campestris pv. phaseoli, we have isolated by two independent methods genes involved in peroxide detoxification (ahpC and ahpF), a gene involved in peroxide sensing and transcription regulation (oxyR), and a gene of unknown function (orfX). Amino acid sequence analysis of AhpC, AhpF, and OxyR showed high identity with bacterial homologs. OrfX was a small cysteine-rich protein with no significant homology to known proteins. The genes ahpC, ahpF, oxyR, and orfX were arranged in a head-to-tail fashion. This unique arrangement was conserved in all of the Xanthomonas strains tested. The functionalities of both the ahpC and oxyR genes were demonstrated. In X. campestris pv. phaseoli, increased expression of ahpC alone conferred partial protection against growth retardation and killing by organic hydroperoxides but not by H2O2 or superoxide generators. These genes are likely to have important physiological roles in protection against peroxide toxicity in Xanthomonas. PMID:9190810

  1. Breeding lines and host QTL interaction with bacterial strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistance to common bacterial blight (CBB) is controlled by more than 20 QTL (Miklas and Singh, 2007). A QTL on Pv10 linked to SAP6 SCAR markers is derived from common bean. Higher levels of resistance associated with BC420 QTL on Pv06 (Yu et al., 2000) and SU91-CG11 QTL on Pv08 (Pedraza et al., 20...

  2. Hot Acidified Cupric Acetate Soaks for Eradication of Xanthomonas campestris from Crucifer Seeds

    PubMed Central

    Schaad, N. W.; Gabrielson, R. L.; Mulanax, M. W.

    1980-01-01

    Acidified cupric acetate soaks were tested for eradication of Xanthomonas campestris from naturally infected crucifer seeds. The pathogen was eradicated from seeds by soaking in 0.5% cupric acetate dissolved in 0.005 N acetic acid for 20 min at 35, 40, 45, and 50°C but not 25°C. Moreover, normal bacterial flora of crucifer seeds and the seed-borne Phoma lingam and Alternaria spp. were reduced by 95, 92, and 81%, respectively, after the cupric acetate treatment at 40°C. The seed germination percentage was generally reduced, but the amount of reduction depended upon the treatment temperature and plant cultivar. At 50°C, less than 50% of the seed of all 12 cultivars tested germinated, whereas at 40°C more than 50% of the seeds of most cultivars germinated. Treating seeds in cupric acetate at 40°C should prove useful for eradicating X. campestris from seeds of breeding lines and stock seed used for hybrid seed production. Furthermore, a significant reduction in total bacterial flora and seed-borne fungi suggests the usefulness of the treatment for other microorganisms associated with other seeds or foodstuffs. PMID:16345544

  3. Genomic Relatedness of Xanthomonas campestris Strains Causing Diseases of Citrus †

    PubMed Central

    Egel, D. S.; Graham, J. H.; Stall, R. E.

    1991-01-01

    Xanthomonas campestris strains that cause disease in citrus were compared by restriction endonuclease analysis of DNA fragments separated by pulsed-field gel electrophoresis and by DNA reassociation. Strains of X. campestris pv. citrumelo, which cause citrus bacterial spot, were, on average, 88% related to each other by DNA reassociation, although these strains exhibited diverse restriction digest patterns. In contrast, strains of X. campestris pv. citri groups A and B, which cause canker A and canker B, respectively, had relatively homogeneous restriction digest patterns. The groups of strains causing these three different citrus diseases were examined by DNA reassociation and were found to be from 55 to 63% related to one another. Several pathovars of X. campestris, previously shown to cause weakly aggressive symptoms on citrus, ranged from 83 to 90% similar to X. campestris pv. citrumelo by DNA reassociation. The type strain of X. campestris pv. campestris ranged from 30 to 40% similar in DNA reassociation experiments to strains of X. campestris pv. citrumelo and X. campestris pv. citri groups A and B. Whereas DNA reassociation quantified the difference between relatively unrelated groups of bacterial strains, restriction endonuclease analysis distinguished between closely related strains. Images PMID:16348555

  4. Host Genotype and Hypersensitive Reaction Influence Population Levels of Xanthomonas campestris pv. vitians in Lettuce.

    PubMed

    Bull, Carolee T; Gebben, Samantha J; Goldman, Polly H; Trent, Mark; Hayes, Ryan J

    2015-03-01

    Dynamics of population sizes of Xanthomonas campestris pv. vitians inoculated onto or into lettuce leaves were monitored on susceptible and resistant cultivars. In general, population growth was greater for susceptible (Clemente, Salinas 88, Vista Verde) than resistant (Batavia Reine des Glaces, Iceberg, Little Gem) cultivars. When spray-inoculated or infiltrated, population levels of X. campestris pv. vitians were consistently significantly lower on Little Gem than on susceptible cultivars, while differences in the other resistant cultivars were not consistently statistically significant. Populations increased at an intermediate rate on cultivars Iceberg and Batavia Reine des Glaces. There were significant positive correlations between bacterial concentration applied and disease severity for all cultivars, but bacterial titer had a significantly greater influence on disease severity in the susceptible cultivars than in Little Gem and an intermediate influence in Iceberg and Batavia Reine des Glaces. Infiltration of X. campestris pv. vitians strains into leaves of Little Gem resulted in an incompatible reaction, whereas compatible reactions were observed in all other cultivars. It appears that the differences in the relationship between population dynamics for Little Gem and the other cultivars tested were due to the hypersensitive response in cultivar Little Gem. These findings have implications for disease management and lettuce breeding because X. campestris pv. vitians interacts differently with cultivars that differ for resistance mechanisms. PMID:25302523

  5. The complete genome sequence of Xanthomonas albilineans provides new insights into the reductive genome evolution of the xylem-limited Xanthomonadaceae

    PubMed Central

    2009-01-01

    Background The Xanthomonadaceae family contains two xylem-limited plant pathogenic bacterial species, Xanthomonas albilineans and Xylella fastidiosa. X. fastidiosa was the first completely sequenced plant pathogen. It is insect-vectored, has a reduced genome and does not possess hrp genes which encode a Type III secretion system found in most plant pathogenic bacteria. X. fastidiosa was excluded from the Xanthomonas group based on phylogenetic analyses with rRNA sequences. Results The complete genome of X. albilineans was sequenced and annotated. X. albilineans, which is not known to be insect-vectored, also has a reduced genome and does not possess hrp genes. Phylogenetic analysis using X. albilineans genomic sequences showed that X. fastidiosa belongs to the Xanthomonas group. Order of divergence of the Xanthomonadaceae revealed that X. albilineans and X. fastidiosa experienced a convergent reductive genome evolution during their descent from the progenitor of the Xanthomonas genus. Reductive genome evolutions of the two xylem-limited Xanthomonadaceae were compared in light of their genome characteristics and those of obligate animal symbionts and pathogens. Conclusion The two xylem-limited Xanthomonadaceae, during their descent from a common ancestral parent, experienced a convergent reductive genome evolution. Adaptation to the nutrient-poor xylem elements and to the cloistered environmental niche of xylem vessels probably favoured this convergent evolution. However, genome characteristics of X. albilineans differ from those of X. fastidiosa and obligate animal symbionts and pathogens, indicating that a distinctive process was responsible for the reductive genome evolution in this pathogen. The possible role in genome reduction of the unique toxin albicidin, produced by X. albilineans, is discussed. PMID:20017926

  6. Genomic Analysis of Xanthomonas translucens Pathogenic on Wheat and Barley Reveals Cross-Kingdom Gene Transfer Events and Diverse Protein Delivery Systems

    PubMed Central

    Gardiner, Donald M.; Upadhyaya, Narayana M.; Stiller, Jiri; Ellis, Jeff G.; Dodds, Peter N.; Kazan, Kemal; Manners, John M.

    2014-01-01

    In comparison to dicot-infecting bacteria, only limited numbers of genome sequences are available for monocot-infecting and in particular cereal-infecting bacteria. Herein we report the characterisation and genome sequence of Xanthomonas translucens isolate DAR61454 pathogenic on wheat and barley. Based on phylogenetic analysis of the ATP synthase beta subunit (atpD) gene, DAR61454 is most closely related to other X. translucens strains and the sugarcane- and banana- infecting Xanthomonas strains, but shares a type III secretion system (T3SS) with X. translucens pv. graminis and more distantly related xanthomonads. Assays with an adenylate cyclase reporter protein demonstrate that DAR61454's T3SS is functional in delivering proteins to wheat cells. X. translucens DAR61454 also encodes two type VI secretion systems with one most closely related to those found in some strains of the rice infecting strain X. oryzae pv. oryzae but not other xanthomonads. Comparative analysis of 18 different Xanthomonas isolates revealed 84 proteins unique to cereal (i.e. rice) infecting isolates and the wheat/barley infecting DAR61454. Genes encoding 60 of these proteins are found in gene clusters in the X. translucens DAR61454 genome, suggesting cereal-specific pathogenicity islands. However, none of the cereal pathogen specific proteins were homologous to known Xanthomonas spp. effectors. Comparative analysis outside of the bacterial kingdom revealed a nucleoside triphosphate pyrophosphohydrolase encoding gene in DAR61454 also present in other bacteria as well as a number of pathogenic Fusarium species, suggesting that this gene may have been transmitted horizontally from bacteria to the Fusarium lineage of pathogenic fungi. This example further highlights the importance of horizontal gene acquisition from bacteria in the evolution of fungi. PMID:24416331

  7. pigB determines a diffusible factor needed for extracellular polysaccharide slime and xanthomonadin production in Xanthomonas campestris pv. campestris.

    PubMed Central

    Poplawsky, A R; Chun, W

    1997-01-01

    Seven xanthomonadin transcriptional units (pigA through pigG) were identified by transposon saturation mutagenesis within an 18.6-kbp portion of the previously identified 25.4-kbp pig region from Xanthomonas campestris pv. campestris (strain B-24). Since marker exchange mutant strains with insertions in one 3.7-kbp portion of pig could not be obtained, mutations in this region may be lethal to the bacterium. Complementation analyses with different insertion mutations further defined and confirmed the seven transcriptional units. Insertional inactivation of one of the transcriptional units, pigB, resulted in greatly reduced levels of both xanthomonadins and extracellular polysaccharide slime, and a pigB-encoding plasmid restored both traits to these strains. pigB mutant strains could also be restored extracellularly by growth adjacent to strains with insertion mutations in any of the other six xanthomonadin transcriptional units, the parent strain (B-24), or strains of five different species of Xanthomonas. Strain B-24 produced a nontransforming diffusible factor (DF), which could be restored to pigB mutants by the pigB-encoding plasmid. Several lines of evidence indicate that DF is a novel bacterial pheromone, different from the known signal molecules of Vibrio, Agrobacterium, Erwinia, Pseudomonas, and Burkholderia spp. PMID:8990296

  8. Xanthomonas and the TAL Effectors: Nature's Molecular Biologist.

    PubMed

    White, Frank

    2016-01-01

    Agrobacterium, due to the transfer of T-DNA to the host genome, is known as nature's genetic engineer. Once again, bacteria have led the way to newfound riches in biotechnology. Xanthomonas has emerged as nature's molecular biologist as the functional domains of the sequence-specific DNA transcription factors known as TAL effectors were characterized and associated with the cognate disease susceptibility and resistance genes of plants. PMID:26443209

  9. Evaluation of Glyphosate-Resistant Soybean Cultivars for Resistance to Bacterial Pustule

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Xanthomonas axonopodis pv. glycines causes bacterial pustule of soybean, which is a common disease in many soybean-growing areas of the world and is controlled by a single recessive gene that was commonly found in many conventional glyphosate-sensitive soybean cultivars. Since glyphosate-resistant c...

  10. IDENTIFICATION OF SOURCES OF RESITANCE TO BACTERIAL ANGULAR LEAFSPOT DISEASE OF STRAWBERRY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial angular leafspot disease (BALD) of cultivated strawberry, caused by the bacterium Xanthomonas fragariae, has become an increasingly serious disease problem. It is of particular concern because it is readily transmitted through asymptomatic nursery plants. Until now, there have been no s...

  11. IDENTIFICATION OF SOURCES OF RESISTENCE TO BACTERIAL ANGULAR LEAFSPOT DISEASE OF STRAWBERRY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial angular leafspot disease (BALD) of cultivated strawberry, caused by the bacterium Xanthomonas fragariae, has become an increasingly serious disease problem. It is of particular concern because it is readily transmitted through asymptomatic nursery plants. Until now, there have been no s...

  12. Investigating alternative strategies for managing bacterial angular leaf spot in strawberry nursery production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The focus of this article is to discuss some of the approaches we have tested for managing the bacterial pathogen Xanthomonas fragariae in infected strawberry nursery stock. X. fragariae causes angular leaf spot (ALS) in strawberry. The pathogen is transmitted to production fields almost exclusively...

  13. Antagonistic activity of Bacillus subtilis SB1 and its biocontrol effect on tomato bacterial wilt

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A potential biocontrol agent of bacterial wilt, Bacillus subtilis SB1, isolated from tomato roots, showed a broad-spectrum of antimicrobial activity in in vitro experiments. It inhibited the growth of many plant pathogens, including Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, Fusarium ox...

  14. Genetic diversity of citrus bacterial canker pathogens preserved in herbarium specimens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citrus bacterial canker (CBC) caused by Xanthomonas axonopodis pv. citri (Xac) was first documented in India and Java in the mid 19th century. Since that time the known distribution of the disease has steadily increased. Concurrent with the dispersion of the pathogen, the diversity of described str...

  15. Hypersensitive response and acyl?homoserine lactone production of the fire blight antagonists Erwinia tasmaniensis and Erwinia billingiae

    PubMed Central

    Jakovljevic, Vladimir; Jock, Susanne; Du, Zhiqiang; Geider, Klaus

    2008-01-01

    Summary Fire blight caused by the Gram?negative bacterium Erwinia amylovora can be controlled by antagonistic microorganisms. We characterized epiphytic bacteria isolated from healthy apple and pear trees in Australia, named Erwinia tasmaniensis, and the epiphytic bacterium Erwinia billingiae from England for physiological properties, interaction with plants and interference with growth of E. amylovora. They reduced symptom formation by the fire blight pathogen on immature pears and the colonization of apple flowers. In contrast to E. billingiae, E. tasmaniensis strains induced a hypersensitive response in tobacco leaves and synthesized levan in the presence of sucrose. With consensus primers deduced from lsc as well as hrpL, hrcC and hrcR of the hrp region of E. amylovora and of related bacteria, these genes were successfully amplified from E. tasmaniensis DNA and alignment of the encoded proteins to other Erwinia species supported a role for environmental fitness of the epiphytic bacterium. Unlike E. tasmaniensis, the epiphytic bacterium E. billingiae produced an acyl?homoserine lactone for bacterial cell?to?cell communication. Their competition with the growth of E. amylovora may be involved in controlling fire blight. PMID:21261861

  16. Preliminary results on the ability of pentatomidae to transfer fire blight Erwinia amylovora under controlled conditions.

    PubMed

    Peusens, G; Schoofs, H; Deckers, T; Belien, T

    2013-01-01

    With their piercing-sucking mouthparts stink bugs (Heteroptera: Pentatomidae), a major pest in especially organic orchards, create wounds in fruit of pear trees. As Erwinia amylovora (Burrill, Winslow et al.), a wide spread bacterial disease affecting many rosaceous plants including pome fruit trees and hawthorn, enters through openings in flowers, leaves, shoots and fruit, feeding punctures caused by these bugs might be inoculated with Erwinia bacteria. In order to investigate the ability of the bugs Pentotoma rufipes L. and Polomena prasina L. to transmit fire blight, insects were caught in an organically managed orchard without fire blight, brought into contact with artificially inoculated immature pear fruit/slices and transferred to healthy, mechanically wounded pear fruit/slices. After an incubation period potential transmission of bacteria was examined by evaluation of symptom expression (necrosis, ooze production). To assess the presence of bacteria on the exoskeleton of the tested bugs, all bugs were forced to walk on a semiselective nutrient agar medium. In another experiment the viability of Ea on the exoskeleton was tested -after previous contact with ooze- through washing and plating of the wash water. All experiments were conducted under optimal climatological conditions and according to quarantine standards. Results demonstrated the ability of stink bugs to transfer E. amylovora to fruit and the viability of bacteria on stink bugs externally - both under lab conditions. PMID:25145257

  17. A LOV Protein Modulates the Physiological Attributes of Xanthomonas axonopodis pv. citri Relevant for Host Plant Colonization

    PubMed Central

    Kraiselburd, Ivana; Alet, Analía I.; Tondo, María Laura; Petrocelli, Silvana; Daurelio, Lucas D.; Monzón, Jesica; Ruiz, Oscar A.; Losi, Aba; Orellano, Elena G.

    2012-01-01

    Recent studies have demonstrated that an appropriate light environment is required for the establishment of efficient vegetal resistance responses in several plant-pathogen interactions. The photoreceptors implicated in such responses are mainly those belonging to the phytochrome family. Data obtained from bacterial genome sequences revealed the presence of photosensory proteins of the BLUF (Blue Light sensing Using FAD), LOV (Light, Oxygen, Voltage) and phytochrome families with no known functions. Xanthomonas axonopodis pv. citri is a Gram-negative bacterium responsible for citrus canker. The in silico analysis of the X. axonopodis pv. citri genome sequence revealed the presence of a gene encoding a putative LOV photoreceptor, in addition to two genes encoding BLUF proteins. This suggests that blue light sensing could play a role in X. axonopodis pv. citri physiology. We obtained the recombinant Xac-LOV protein by expression in Escherichia coli and performed a spectroscopic analysis of the purified protein, which demonstrated that it has a canonical LOV photochemistry. We also constructed a mutant strain of X. axonopodis pv. citri lacking the LOV protein and found that the loss of this protein altered bacterial motility, exopolysaccharide production and biofilm formation. Moreover, we observed that the adhesion of the mutant strain to abiotic and biotic surfaces was significantly diminished compared to the wild-type. Finally, inoculation of orange (Citrus sinensis) leaves with the mutant strain of X. axonopodis pv. citri resulted in marked differences in the development of symptoms in plant tissues relative to the wild-type, suggesting a role for the Xac-LOV protein in the pathogenic process. Altogether, these results suggest the novel involvement of a photosensory system in the regulation of physiological attributes of a phytopathogenic bacterium. A functional blue light receptor in Xanthomonas spp. has been described for the first time, showing an important role in virulence during citrus canker disease. PMID:22675525

  18. The chemically inducible expression of Erwinia amylovora bacterial effectors EopB1 and HopCEa in apple

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Erwinia amylovora, the causal agent of fire blight disease, utilizes a type three secretion system to deliver effector proteins into plant host cells. To investigate the role of individual bacterial effector proteins, we have engineered an apple host that transgenically expresses the bacterial effe...

  19. A Highly-Conserved Single-Stranded DNA-Binding Protein in Xanthomonas Functions as a Harpin-Like Protein to Trigger Plant Immunity

    PubMed Central

    Che, Yi-Zhou; Zou, Li-Fang; Zakria, Muhammad; Zou, Hua-Song; Chen, Gong-You

    2013-01-01

    Harpins are produced by Gram-negative phytopathogenic bacteria and typically elicit hypersensitive response (HR) in non-host plants. The characterization of harpins in Xanthomonas species is largely unexplored. Here we demonstrate that Xanthomonas produce a highly conserved single-stranded DNA-binding protein (SSBX) that elicits HR in tobacco as by harpin Hpa1. SSBX, like Hpa1, is an acidic, glycine-rich, heat-stable protein that lacks cysteine residues. SSBX-triggered HR in tobacco, as by Hpa1, is characterized by the oxidative burst, the expression of HR markers (HIN1, HSR203J), pathogenesis-related genes, and callose deposition. Both SSBX- and Hpa1-induced HRs can be inhibited by general metabolism inhibitors actinomycin D, cycloheximide, and lanthanum chloride. Furthermore, those HRs activate the expression of BAK1 and BIK1 genes that are essential for induction of mitogen-activated protein kinase (MAPK) and salicylic acid pathways. Once applied to plants, SSBX induces resistance to the fungal pathogen Alternaria alternata and enhances plant growth. When ssbX was deleted in X. oryzae pv. oryzicola, the causal agent of bacterial leaf streak in rice, the resulting ssbXoc mutant was reduced in virulence and bacterial growth in planta, but retained its ability to trigger HR in tobacco. Interestingly, ssbXoc contains an imperfect PIP-box (plant-inducible promoter) and the expression of ssbXoc is regulated by HrpX, which belongs to the AraC family of transcriptional activators. Immunoblotting evidence showed that SSBx secretion requires a functional type-III secretion system as Hpa1 does. This is the first report demonstrating that Xanthomonas produce a highly-conserved SSBX that functions as a harpin-like protein for plant immunity. PMID:23418541

  20. A Novel Periplasmic Protein, VrpA, Contributes to Efficient Protein Secretion by the Type III Secretion System in Xanthomonas spp.

    PubMed

    Zhou, Xiaofeng; Hu, Xiufang; Li, Jinyun; Wang, Nian

    2015-02-01

    Efficient secretion of type III effector proteins from the bacterial cytoplasm to host cell cytosol via a type III secretion system (T3SS) is crucial for virulence of plant-pathogenic bacterium. Our previous study revealed a conserved hypothetical protein, virulence-related periplasm protein A (VrpA), which was identified as a critical virulence factor for Xanthomonas citri subsp. citri. In this study, we demonstrate that mutation of vrpA compromises X. citri subsp. citri virulence and hypersensitive response induction. This deficiency is also observed in the X. campestris pv. campestris strain, suggesting a functional conservation of VrpA in Xanthomonas spp. Our study indicates that VrpA is required for efficient protein secretion via T3SS, which is supported by multiple lines of evidence. A CyaA reporter assay shows that VrpA is involved in type III effector secretion; quantitative reverse-transcription polymerase chain reaction analysis suggests that the vrpA mutant fails to activate citrus-canker-susceptible gene CsLOB1, which is transcriptionally activated by transcription activator-like effector PthA4; in vitro secretion study reveals that VrpA plays an important role in secretion of T3SS pilus, translocon, and effector proteins. Our data also indicate that VrpA in X. citri subsp. citri localizes to bacterial periplasmic space and the periplasmic localization is required for full function of VrpA and X. citri subsp. citri virulence. Protein-protein interaction studies show that VrpA physically interacts with periplasmic T3SS components HrcJ and HrcC. However, the mutation of VrpA does not affect T3SS gene expression. Additionally, VrpA is involved in X. citri subsp. citri tolerance of oxidative stress. Our data contribute to the mechanical understanding of an important periplasmic protein VrpA in Xanthomonas spp. PMID:25338144

  1. A locus determining pathogenicity of Xanthomonas campestris is involved in lipopolysaccharide biosynthesis.

    PubMed

    Dow, J M; Osbourn, A E; Wilson, T J; Daniels, M J

    1995-01-01

    A pathogenicity locus in Xanthomonas campestris pv. campestris has been shown to comprise two genes which mediate biosynthesis of the bacterial lipopolysaccharide (LPS) but not extracellular polysaccharide. Mutants with Tn5 insertions in either gene showed alterations in the electrophoretic patterns of both water-soluble and phenol-soluble LPS forms, which suggested defects in the biosynthesis of the core oligosaccharide component. On gel chromatography, core oligosaccharides of the mutants were of apparently lower molecular weight than those from the wild type. Furthermore, the content of mannose and glucose, sugars characteristic of the core oligosaccharide, were significantly lower in the water-soluble LPS of the mutants. Because of their role in LPS core biosynthesis, the two genes were called rfaX and rfaY. rfaX mutants show altered behavior in a range of host and non-host plants such that the number of recoverable bacteria drop within the first 24 h after inoculation. In contrast, the behavior of rfaY mutants only differed from the wild type in Datura, a non-host plant in which the growth of the wild type is severely attenuated. The predicted protein RfaY showed significant sequence homology to a sub-family of RNA polymerase sigma factors which are involved in extracytoplasmic functions. PMID:7579621

  2. Subcellular localization of proteins labeled with GFP in Xanthomonas citri ssp. citri: targeting the division septum.

    PubMed

    Martins, Paula M M; Lau, Ivy F; Bacci, Maurício; Belasque, José; do Amaral, Alexandre M; Taboga, Sebastião R; Ferreira, Henrique

    2010-09-01

    Xanthomonas citri ssp. citri (Xac) is the causal agent of citrus canker, an economically important disease that affects citrus worldwide. To initiate the characterization of essential biological processes of Xac, we constructed integrative plasmids for the ectopic expression of green fluorescent protein (GFP)-labeled proteins within this bacterium. Here, we show that the disruption of the alpha-amylase gene (amy), the site of plasmid integration into the bacterial chromosome, does not alter its pathogenesis while abolishing completely the ability of Xac to degrade starch. Furthermore, our GFP expression system was used to characterize ORF XAC3408, a hypothetical protein encoded by Xac that shares significant homology to the FtsZ-stabilizing factor ZapA from Bacillus subtilis (ZapA(Bsu)). GFP-XAC3408 expressed in Xac exhibited a septal localization pattern typical of GFP-ZapA(Bsu), which indicates that XAC3408 is the Xac orthologue of the cell division protein ZapA(Bsu). The results demonstrate the potential of GFP labeling for protein functional characterizations in Xac, and, in addition, the Xac mutant strain labeled at the septum constitutes a biological model for the exploration of antibacterial compounds able to inhibit cell division in this plant pathogen. PMID:20629754

  3. Characterization of genes encoding proteins containing HD-related output domain in Xanthomonas campestris pv. campestris.

    PubMed

    Lee, Hsien-Ming; Liao, Chao-Tsai; Chiang, Ying-Chuan; Chang, Yu-Yin; Yeh, Yu-Tzu; Du, Shin-Chiao; Hsiao, Yi-Min

    2016-04-01

    The Gram-negative plant pathogen Xanthomonas campestris pv. campestris (Xcc) is the causative agent of black rot in crucifers. The production of Xcc virulence factors is regulated by Clp and RpfF. HD-related output domain (HDOD) is a protein domain of unknown biochemical function. The genome of Xcc encodes three proteins (GsmR, HdpA, and HdpB) with an HDOD. The GsmR has been reported to play a role in the general stress response and cell motility and its expression is positively regulated by Clp. Here, the function and transcription of hdpA and hdpB were characterized. Mutation of hdpA resulted in enhanced bacterial attachment. In addition, the expression of hdpA was positively regulated by RpfF but not by Clp, subject to catabolite repression and affected by several stress conditions. However, mutational analysis and reporter assay showed that hdpB had no effect on the production of a range of virulence factors and its expression was independent of Clp and RpfF. The results shown here not only extend the previous work on RpfF regulation to show that it influences the expression of hdpA in Xcc, but also expand knowledge of the function of the HDOD containing proteins in bacteria. PMID:26821378

  4. An ent-kaurene-derived diterpenoid virulence factor from Xanthomonas oryzae pv. oryzicola.

    PubMed

    Lu, Xuan; Hershey, David M; Wang, Li; Bogdanove, Adam J; Peters, Reuben J

    2015-04-01

    Both plants and fungi produce ent-kaurene as a precursor to the gibberellin plant hormones. A number of rhizobia contain functionally conserved, sequentially acting ent-copalyl diphosphate and ent-kaurene synthases (CPS and KS, respectively), which are found within a well-conserved operon that may lead to the production of gibberellins. Intriguingly, the rice bacterial leaf streak pathogen Xanthomonas oryzae pv. oryzicola (Xoc) contains a homologous operon. Here, we report biochemical characterization of the encoded CPS and KS, and the impact of insertional mutagenesis on virulence and the plant defense response for these genes, as well as that for one of the cytochromes P450 (CYP112) found in the operon. Activity of the CPS and KS found in this phytopathogen was verified - that is, Xoc is capable of producing ent-kaurene. Moreover, knocking out CPS, KS or CYP112 led to mutant Xoc that exhibited reduced virulence. Investigation of the effect on marker gene transcript levels suggests that the Xoc diterpenoid affects the plant defense response, most directly that mediated by jasmonic acid (JA). Xoc produces an ent-kaurene-derived diterpenoid as a virulence factor, potentially a gibberellin phytohormone, which is antagonistic to JA, consistent with the recent recognition of opposing effects for these phytohormones on the microbial defense response. PMID:25406717

  5. Cougarblight EZ, a substantial update of the Cougarblight fire blight infection risk model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of practical, but reasonably accurate fire blight infection risk models is considered a critical factor in the management of fire blight. Cougarblight, an empirically designed fire blight infection risk assessment model, was originally developed prior to significant recent advances ...

  6. The American Chestnut Blight: An Agent of Biological and Cultural Catastrophe.

    ERIC Educational Resources Information Center

    Lunsford, Eddie

    1999-01-01

    Reviews the history and habits of the fungus commonly referred to as the "chestnut blight." Considers the impact of the blight and efforts to control it, offers personal and cultural reflections on the blight, and gives tips for incorporating the information into cross-disciplinary lessons. Contains 17 references. (WRM)

  7. In vitro control of plant pathogenic Xanthomonas spp. using Poncirus trifoliata Rafin

    PubMed Central

    Rahman, Atiqur; Islam, Rafiquel; Al-Reza, Sharif M.; Kang, Sun Chul

    2014-01-01

    The secondary metabolites such as essential oil and pure compounds (limonin and imperatorin) from Poncirus trifoliata Rafin were tested for in vitro control of phytopathogenic bacteria of Xanthomonas spp. In vitro studies showed that the oil had inhibitory effect on Xanthomonas campestris pv. compestris KC94-17-XCC, Xanthomonas campestris pv. vesicatoria YK93-4-XCV, Xanthomonas oryzae pv. oryzae KX019-XCO and Xanthomonas sp. SK12 with their inhibition zones and minimum inhibitory concentration (MIC) values ranging from 13.1~22.1 mm and 62.5~125 μg/ml, respectively. Limonin and imperatorin also had in vitro antibacterial potential (MIC: 15.62~62.5 μg/ml) against all the tested Xanthomonas spp. Furthermore, the SEM studies demonstrated that limonin and imperatorin caused morphological changes of Xanthomonas sp. SK12 at the minimum inhibitory concentration (15.62 μg/ml). These results of this study support the possible use of essential oil and natural compounds from P. Trifoliata in agriculture and agro-industries to control plant pathogenic microorganisms. PMID:26417325

  8. Development of Tuber Blight (Phytophthora infestans) on Potato Cultivars Based on In-Vitro Assays and Field Evaluations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tuber blight may result from infection of wounded or unwounded potato tubers, exposed to sporangia from foliar blight, soil, or blighted tubers. However, there is limited data on the prediction of tuber blight in field or storage environments based on in-vitro assays. To assess this relationship, po...

  9. Association mapping of quantitative trait loci responsible for resistance to Bacterial Leaf Streak and Spot Blotch in spring wheat landraces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial leaf streak (BLS), caused by Xanthomonas translucens pv. undulosa, and spot blotch (SB), caused by Cochliobolus sativus are two major diseases of wheat (Triticum aestivum L.). Planting resistant cultivars is the best approach to manage these diseases and identifying new sources of resistan...

  10. ROLE OF CROP DEBRIS AND WEEDS IN THE EPIDEMIOLOGY OF BACTERIAL LEAF SPOT OF LETTUCE IN CALIFORNIA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial leaf spot of lettuce (BLS), caused by Xanthomonas campestris pv. vitians, has increased in importance in California over the past 5 years. The pathogen can be seedborne, but it was not recovered from selected commercial lettuce seed lots planted during this time. Survival of X. campestri...

  11. Metabolic Response of Strawberry (Fragaria x ananassa) Leaves Exposed to the Angular Leaf Spot Bacterium (Xanthomonas fragariae).

    PubMed

    Kim, Min-Sun; Jin, Jong Sung; Kwak, Youn-Sig; Hwang, Geum-Sook

    2016-03-01

    Plants have evolved various defense mechanisms against biotic stress. The most common mechanism involves the production of metabolites that act as defense compounds. Bacterial angular leaf spot disease (Xanthomonas fragariae) of the strawberry (Fragaria x ananassa) has become increasingly destructive to strawberry leaves and plant production. In this study, we examined metabolic changes associated with the establishment of long-term bacterial disease stress using UPLC-QTOF mass spectrometry. Infected leaves showed decreased levels of gallic acid derivatives and ellagitannins, which are related to the plant defense system. The levels of phenylalanine, tryptophan, and salicylic acid as precursors of aromatic secondary metabolites were increased in inoculated leaves, whereas levels of coumaric acid, quinic acid, and flavonoids were decreased in infected plants, which are involved in the phenylpropanoid pathway. In addition, phenylalanine ammonia-lyase (PAL) activity, a key enzyme in the phenylpropanoid pathway, was decreased following infection. These results suggest that long-term bacterial disease stress may lead to down-regulation of select molecules of the phenylpropanoid metabolic pathway in strawberry leaves. This approach could be applied to explore the metabolic pathway associated with plant protection/breeding in strawberry leaves. PMID:26890088

  12. The crystallization of apo-form UMP kinase from Xanthomonas campestris is significantly improved in a strong magnetic field

    SciTech Connect

    Tu, Jhe-Le; Chin, Ko-Hsin; Wang, Andrew H.-J.; Chou, Shan-Ho

    2007-05-01

    A bacterial UMP kinase from the plant pathogen X. campestris pathovar campestris has been overexpressed in E. coli, purified and crystallized in a strong magnetic field. The crystals diffracted to 2.35 Å. Bacterial UMP kinases (UMPKs) are crucial enzymes that are responsible for microbial UTP biosynthesis. Interestingly, eukaryotic and prokaryotic cells use different enzymes for UMP-phosphorylation reactions. Prokaryotic UMPKs are thus believed to be potential targets for antimicrobial drug development. Here, the cloning, expression and crystallization of SeMet-substituted XC1936, a bacterial UMPK from Xanthomonas campestris pathovar campestris, are reported. The crystallization of the apo-form UMPK was found to be significantly improved in a strong magnetic field; the crystals diffracted to a resolution of 2.35 Å, a dramatic improvement over the original value of 3.6 Å. Preliminary structural analyses of apo-form XC1936 using crystals grown in a strong magnetic field clearly reveal well defined loop regions involved in substrate-analogue binding that were previously not visible. Crystallization in a strong magnetic field thus was found to be indispensable in determining the flexible region of the XC1936 UMPK structure.

  13. Identification of novel Xanthomonas euvesicatoria type III effector proteins by a machine-learning approach.

    PubMed

    Teper, Doron; Burstein, David; Salomon, Dor; Gershovitz, Michael; Pupko, Tal; Sessa, Guido

    2016-04-01

    The Gram-negative bacterium Xanthomonas euvesicatoria (Xcv) is the causal agent of bacterial spot disease in pepper and tomato. Xcv pathogenicity depends on a type III secretion (T3S) system that delivers effector proteins into host cells to suppress plant immunity and promote disease. The pool of known Xcv effectors includes approximately 30 proteins, most identified in the 85-10 strain by various experimental and computational techniques. To identify additional Xcv 85-10 effectors, we applied a genome-wide machine-learning approach, in which all open reading frames (ORFs) were scored according to their propensity to encode effectors. Scoring was based on a large set of features, including genomic organization, taxonomic dispersion, hypersensitive response and pathogenicity (hrp)-dependent expression, 5' regulatory sequences, amino acid composition bias and GC content. Thirty-six predicted effectors were tested for translocation into plant cells using the hypersensitive response (HR)-inducing domain of AvrBs2 as a reporter. Seven proteins (XopAU, XopAV, XopAW, XopAP, XopAX, XopAK and XopAD) harboured a functional translocation signal and their translocation relied on the HrpF translocon, indicating that they are bona fide T3S effectors. Remarkably, four belong to novel effector families. Inactivation of the xopAP gene reduced the severity of disease symptoms in infected plants. A decrease in cell death and chlorophyll content was observed in pepper leaves inoculated with the xopAP mutant when compared with the wild-type strain. However, populations of the xopAP mutant in infected leaves were similar in size to those of wild-type bacteria, suggesting that the reduction in virulence was not caused by impaired bacterial growth. PMID:26104875

  14. Draft genome sequence of Xanthomonas axonopodis pathovar vasculorum NCPPB 900.

    PubMed

    Harrison, James; Studholme, David J

    2014-11-01

    Xanthomonas axonopodis pathovar vasculorum strain NCPPB 900 was isolated from sugarcane on Reunion island in 1960. Consistent with its belonging to fatty-acid type D, multi-locus sequence analysis confirmed that NCPPB 900 falls within the species X. axonopodis. This genome harbours sequences similar to plasmids pXCV183 from X. campestris pv. vesicatoria 85-10 and pPHB194 from Burkholderia pseudomallei. Its repertoire of predicted effectors includes homologues of XopAA, XopAD, XopAE, XopB, XopD, XopV, XopZ, XopC and XopI and transcriptional activator-like effectors and it is predicted to encode a novel phosphonate natural product also encoded by the genome of the phylogenetically distant X. vasicola pv. vasculorum. Availability of this novel genome sequence may facilitate the study of interactions between xanthomonads and sugarcane, a host-pathogen system that appears to have evolved several times independently within the genus Xanthomonas and may also provide a source of target sequences for molecular detection and diagnostics PMID:25263632

  15. [Mineral nutrition niche of rice sheath blight fungus].

    PubMed

    Wang, Zi-ying; Tan, Gen-jia

    2008-01-01

    By using the principles and methods of niche, this paper studied the mineral nutrition niche of rice sheath blight fungus. The results showed that the mineral nutrition niche breadth of the fungus at rice tillering, booting, heading, and waxing stages was 0.2710, 0.3865, 0.4252 and 0.4817, respectively, i.e., increased with rice growth, but still comparatively narrower, indicating that rice sheath blight fungus only utilized smaller parts of mineral nutrients at various growth stages of rice. The fungus always gave priority to occupy the nutrition niches where Mg, Zn and Si contents were lower, suggesting that Mg, Zn and Si contents had close relations to the resistance of rice against rice sheath blight. PMID:18419098

  16. A «Repertoire for Repertoire» Hypothesis: Repertoires of Type Three Effectors are Candidate Determinants of Host Specificity in Xanthomonas

    PubMed Central

    Hajri, Ahmed; Brin, Chrystelle; Hunault, Gilles; Lardeux, Frédéric; Lemaire, Christophe; Manceau, Charles

    2009-01-01

    Background The genetic basis of host specificity for animal and plant pathogenic bacteria remains poorly understood. For plant pathogenic bacteria, host range is restricted to one or a few host plant species reflecting a tight adaptation to specific hosts. Methodology/Principal Findings Two hypotheses can be formulated to explain host specificity: either it can be explained by the phylogenetic position of the strains, or by the association of virulence genes enabling a pathological convergence of phylogenically distant strains. In this latter hypothesis, host specificity would result from the interaction between repertoires of bacterial virulence genes and repertoires of genes involved in host defences. To challenge these two hypotheses, we selected 132 Xanthomonas axonopodis strains representative of 18 different pathovars which display different host range. First, the phylogenetic position of each strain was determined by sequencing the housekeeping gene rpoD. This study showed that many pathovars of Xanthomonas axonopodis are polyphyletic. Second, we investigated the distribution of 35 type III effector genes (T3Es) in these strains by both PCR and hybridization methods. Indeed, for pathogenic bacteria T3Es were shown to trigger and to subvert host defences. Our study revealed that T3E repertoires comprise core and variable gene suites that likely have distinct roles in pathogenicity and different evolutionary histories. Our results showed a correspondence between composition of T3E repertoires and pathovars of Xanthomonas axonopodis. For polyphyletic pathovars, this suggests that T3E genes might explain a pathological convergence of phylogenetically distant strains. We also identified several DNA rearrangements within T3E genes, some of which correlate with host specificity of strains. Conclusions/Significance These data provide insight into the potential role played by T3E genes for pathogenic bacteria and support a “repertoire for repertoire” hypothesis that may explain host specificity. Our work provides resources for functional and evolutionary studies aiming at understanding host specificity of pathogenic bacteria, functional redundancy between T3Es and the driving forces shaping T3E repertoires. PMID:19680562

  17. XANTHOMONAS AXONOPODIS PV. CITRI: FACTORS AFFECTING SUCCESSFUL ERADICATION OF CITRUS CANKER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Taxonomic status: Bacteria, Proteobacteria, gamma subdivision, Xanthomodales, Xanthomonas group, axonopodis DNA homology group, X. axonopodis pv. citri (Hasse) Vauterin et al. Microbiological properties: Gram negative, slender, rod-shaped, aerobic, motile by a single polar flagellum, produces slo...

  18. Identification and characterization of naturally occurring DSF-family quorum sensing signal turnover system in the phytopathogen Xanthomonas.

    PubMed

    Zhou, Lian; Wang, Xing-Yu; Sun, Shuang; Yang, Li-Chao; Jiang, Bo-Le; He, Ya-Wen

    2015-11-01

    Molecules of the diffusible signal factor (DSF)-family are a class of quorum sensing (QS) signals used by the phytopathogens Xanthomonas. Studies during the last decade have outlined how Xanthomonas cells enter the QS phase. However, information on the mechanism underlying its exit from the QS phase is limited. RpfB has recently been reported as a fatty acyl-CoA ligase (FCL) that activates a wide range of fatty acids to their CoA esters in vitro. Here, we establish an improved quantification assay for DSF-family signals using liquid chromatography-mass spectrometry in X. campestris pv. campestris (Xcc). We first demonstrated that RpfB represents a naturally occurring DSF-family signal turnover system. RpfB effectively turns over DSF-family signals DSF and BDSF in vivo. RpfB FCL enzymatic activity is required for DSF and BDSF turnover. Deletion of rpfB slightly increased Xcc virulence in the Chinese radish and overexpression of rpfB significantly decreased virulence. We further showed that the expression of rpfB is growth phase-dependent, and its expression is significantly enhanced when Xcc cells enter the stationary phase. DSF regulates rpfB expression in a concentration-dependent manner. rpfB expression is also negatively regulated by the DSF signalling components RpfC, RpfG and Clp. The global transcription factor Clp directly binds to the AATGC-tgctgc-GCATC motif in the promoter region of rpfB to repress its expression. Finally, RpfB-dependent signal turnover system was detected in a wide range of bacterial species, suggesting that it is a conserved mechanism. PMID:26234930

  19. A MLVA Genotyping Scheme for Global Surveillance of the Citrus Pathogen Xanthomonas citri pv. citri Suggests a Worldwide Geographical Expansion of a Single Genetic Lineage

    PubMed Central

    Boyer, Karine; Leduc, Alice; Tourterel, Christophe; Drevet, Christine; Ravigné, Virginie; Gagnevin, Lionel; Guérin, Fabien; Chiroleu, Frédéric; Koebnik, Ralf; Verdier, Valérie; Vernière, Christian

    2014-01-01

    MultiLocus Variable number of tandem repeat Analysis (MLVA) has been extensively used to examine epidemiological and evolutionary issues on monomorphic human pathogenic bacteria, but not on bacterial plant pathogens of agricultural importance albeit such tools would improve our understanding of their epidemiology, as well as of the history of epidemics on a global scale. Xanthomonas citri pv. citri is a quarantine organism in several countries and a major threat for the citrus industry worldwide. We screened the genomes of Xanthomonas citri pv. citri strain IAPAR 306 and of phylogenetically related xanthomonads for tandem repeats. From these in silico data, an optimized MLVA scheme was developed to assess the global diversity of this monomorphic bacterium. Thirty-one minisatellite loci (MLVA-31) were selected to assess the genetic structure of 129 strains representative of the worldwide pathological and genetic diversity of X. citri pv. citri. Based on Discriminant Analysis of Principal Components (DAPC), four pathotype-specific clusters were defined. DAPC cluster 1 comprised strains that were implicated in the major geographical expansion of X. citri pv. citri during the 20th century. A subset of 12 loci (MLVA-12) resolved 89% of the total diversity and matched the genetic structure revealed by MLVA-31. MLVA-12 is proposed for routine epidemiological identification of X. citri pv. citri, whereas MLVA-31 is proposed for phylogenetic and population genetics studies. MLVA-31 represents an opportunity for international X. citri pv. citri genotyping and data sharing. The MLVA-31 data generated in this study was deposited in the Xanthomonas citri genotyping database (http://www.biopred.net/MLVA/). PMID:24897119

  20. Evaluation of kasugamycin for fire blight management, effect on nontarget bacteria, and assessment of kasugamycin resistance potential in Erwinia amylovora.

    PubMed

    McGhee, Gayle C; Sundin, George W

    2011-02-01

    The emergence and spread of streptomycin-resistant strains of Erwinia amylovora in Michigan has necessitated the evaluation of new compounds effective for fire blight control. The aminoglycoside antibiotic kasugamycin (Ks) targets the bacterial ribosome and is particularly active against E. amylovora. The efficacy of Ks formulated as Kasumin 2L for control of fire blight was evaluated in six experiments conducted over four field seasons in our experimental orchards in East Lansing, MI. Blossom blight control was statistically equivalent to the industry standard streptomycin in all experiments. E. amylovora populations remained constant on apple flower stigmas pretreated with Kasumin and were ?100-fold lower than on stigmas treated with water. Kasumin applied to apple trees in the field also resulted in a 100-fold reduced total culturable bacterial population compared with trees treated with water. We performed a prospective analysis of the potential for kasugamycin resistance (Ks(R)) development in E. amylovora which focused on spontaneous resistance development and acquisition of a transferrable Ks(R) gene. In replicated lab experiments, the development of spontaneous resistance in E. amylovora to Ks at 250 or 500 ppm was not observed when cells were directly plated on medium containing high concentrations of the antibiotic. However, exposure to increasing concentrations of Ks in media (initial concentration 25 ?g ml(-1)) resulted in the selection of Ks resistance (at 150 ?g ml(-1)) in the E. amylovora strains Ea110, Ea273, and Ea1189. Analysis of mutants indicated that they harbored mutations in the kasugamycin target ksgA gene and that all mutants were impacted in relative fitness observable through a reduced growth rate in vitro and decreased virulence in immature pear fruit. The possible occurrence of a reservoir of Ks(R) genes in orchard environments was also examined. Culturable gram-negative bacteria were surveyed from six experimental apple orchards that had received at least one Kasumin application. In total, 401 Ks(R) isolates (42 different species) were recovered from apple flowers and leaves and orchard soil samples. Although we have not established the presence of a transferrable Ks(R) gene in orchard bacteria, the frequency, number of species, and presence of Ks(R) enterobacterial species in orchard samples suggests the possible role of nontarget bacteria in the future transfer of a Ks(R) gene to E. amylovora. Our data confirm the importance of kasugamycin as an alternate antibiotic for fire blight management and lay the groundwork for the development and incorporation of resistance management strategies. PMID:20923369

  1. FIELD EVALUATION OF CHEMICALS IN CONTROLLING CHICKPEA ASCOCHYTA BLIGHT, 2002

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effectiveness of five chemicals (four fungicides and one laboratory chemical) in controlling Ascochyta blight of chickpea was evaluated at two locations. The five chemicals and their applied full rates were Headline (10.4 fl oz/A), Bravo Weather Stik (1.4 pt/A), Quadris SC (9.2 fl oz/A), Tilt (...

  2. Integrated Control of Fire Blight with Antagonists and Oxytetracycline

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the Pacific Northwest of the United States, the antibiotic streptomycin provided excellent control of fire blight until resistant isolates of Erwinia amylovora arose. Oxytetracycline (Mycoshield) is now sprayed as an alternative antibiotic. We found that the duration of inhibitory activity of o...

  3. Integrated Control of Fire Blight with Antagonists and Oxytetracycline

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the Northwest United States, the antibiotic streptomycin provided excellent control of fire blight until resistant isolates of the pathogen arose. Oxytetracycline (Mycoshield) is now sprayed as an alternative antibiotic. We found that the durability of inhibitory activity of oxytetracycline is ...

  4. Flower biology and biologically-based integrated fire blight management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fire blight infection is generally initiated in flowers, and thus, research has been directed to the biology and microbial ecology of flowers as related to this disease. In addition to investigations involving apple and pear flowers, Manchurian crab apple (Malus manchurica), closely related to appl...

  5. Towards Managing Stemphylium Blight of Lentil in the Pacific Northwest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stemphylium blight of lentil, caused by the fungus Stemphylium botryosum, has recently emerged as a disease problem in the Pacific Northwest, particularly on the recently released lentil cultivar ‘Morena’. The first step toward managing the disease is to correctly identify early signs of the diseas...

  6. Fire blight: applied genomic insights of the pathogen and host

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The enterobacterial phytopathogen, Erwinia amylovora, causes fire blight, an invasive disease that threatens a wide range of commercial and ornamental Rosaceae host plants. The response elicited by E. amylovora in its host during disease development is similar to the hypersensitive reaction that ty...

  7. Pseudomonas blight caused by Pseudomonas syringae on raspberry in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plantings of red raspberry (Rubus idaeus var. strigosus) exhibited symptoms of a previously undocumented disease. Lesions were observable from both adaxial and abaxial leaf surfaces. As disease progressed, lesions enlarged and coalesced, resulting in significant dark brown to black blighting of the ...

  8. A ROLE FOR ASCOSPORES IN WHEAT HEAD BLIGHT EPIDEMICS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Ascomycete Gibberella zeae (asexual state Fusarium graminearum) causes serious epidemics of wheat head blight worldwide and contaminates grain with trichothecene mycotoxins that are harmful to human and animal health. Anecdotal evidence dating back to the 19th century indicates that G. zeae asc...

  9. Prospects for advanced late blight resistance breeding in potato

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potato late blight pathogen, Phytophthora infestans, is able to rapidly evolve to overcome resistance genes. The pathogen accomplishes this by secreting an arsenal of proteins, termed effectors, that function to modify host cells. Although hundreds of candidate effectors have been identified in ...

  10. Quince (Cydonia oblonga) emerges from the ashes of fire blight

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The two-decade history of fire blight in Bulgaria revealed quince as one of the most frequently attacked hosts and its production on a large scale has almost been entirely eliminated. Nevertheless, this species will play an important epidemiological role as a permanent source of inoculum for other p...

  11. Late Blight Resistance of RB Transgenic Potato Lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Late blight of potato, caused by Phytophthora infestans, is a devastating disease effecting tuber yield and storage. Recent work has isolated a resistance gene, RB, from the wild species Solanum bulbocastanum. Field evaluations with a RB containing somatic hybrid have reported significant levels of ...

  12. LATE BLIGHT DEVELOPMENT ON HAIRY NIGHTSHADE AND POTENTIAL DISEASE RISKS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The presence of alternate hosts of late blight can interfere with current disease management strategies by providing additional sources of inoculum, increased pathogen survival, and/or undetected refuges from which Phytophthora infestans may be disseminated to potato crops. To evaluate the significa...

  13. Management of gummy stem blight of cantaloupe in south Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the Lower Rio Grande Valley of Texas (LRGV), Didymella bryoniae (Auersw.) Rehm commonly causes lesions in the crown and foliage of cantaloupe (Cucumis melo L.) but only occasionally on fruit. In Spring-1997, a severe gummy stem blight (GSB) epidemic occurred resulting in numerous corky-brown les...

  14. Resistance to ascochyta blights of cool season food legumes.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ascochyta blight is the most important disease problem of the cool season food legumes (peas, lentils, chickpeas, and faba beans) and is found in nearly all production regions around the world. Despite of the same common disease name, the pathogen species differ for each of the crops. These disease...

  15. Genetic Characterization of Early Blight Resistance in Interspecific Potato Hybrids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early blight, caused by the fungal pathogen Alternaria solani Sorauer, is a serious foliar disease of potato and tomato worldwide. It is characterized by substantial yield loss resulting from severe defoliation, especially under hot, humid conditions. Fungicides are the main method of control, how...

  16. Genetic variability in the pistachio late blight fungus, Alternaria alternata

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic variation in the pistachio late blight fungus, Alternaria alternata, was investigated by restriction fragment length polymorphism (RFLP) in the rDNA region. Southern hybridization of EcoRI, HindIII, and Xbal digested fungal DNA with a RNA probe derived from Alt1, an rDNA clone isolated from ...

  17. Occurrence of Sclerotinia blight on peanut in Lee County, Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A peanut field, north of Giddings in Lee County, TX, planted with the peanut cv. OLin in 2009 had about 5% incidence of Sclerotinia blight on October 29. Diseased stems of peanut plants were collected, and a culture of Sclerotinia minor (SM.TX1) was generated from a single sclerotium, and maintaine...

  18. MICROCLIMATE AND POTENTIAL FOR LATE BLIGHT DEVELOPMENT IN IRRIGATED POTATO

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Application of irrigation water can improve potato growth and tuber yield during periods of deficit rainfall. A variety of water application techniques exists; however, little is known of their relative impacts on potato late blight potential. The effects of sprinkler, sub-surface drip, and surface ...

  19. SUSCEPTIBILITY OF SOUTHERN HIGHBUSH BLUEBERRY CULTIVARS TO STEM BLIGHT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stem blight, caused by the fungus Botryosphaeria dothidea, is a widespread and destructive disease of rabbiteye blueberries (V. ashei Reade) in the southeastern United States. Plants that become infected may die within the first two years of planting. In older plants the initial infection of a ste...

  20. TEMPORAL RESPONSE OF APPLE (MALUS) TO FIRE BLIGHT DISEASE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fire blight, caused by the bacterium Erwinia amylovora, is a destructive disease of apple, pear, and other plants in the subfamily Maloideae of the Rosaceae. The goal of this study was to use a global analysis of gene expression to characterize the temporal response of apple to infection by E. amyl...

  1. Sheath-blight resistance QTLs and in japonica rice germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sheath blight (SB), caused by Rhizoctonia solani, is one of the most serious diseases of cultivated rice (Oryza sativa L.) and genetic resistance is in demand by rice breeders. With the goal of resistance-QTL discovery in U. S. japonica breeding material, a set of 197 F1 doubled-haploid lines (DHLs)...

  2. Ascochyta blight and insect pests of chickpeas in the Palouse

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This newsletter article informs chickpea growers in the Palouse region about current disease and insect pest problems. Ascochyta blight appeared in many chickpea fields and was severe in some fields. Insect pests including loopers and armyworms were rampant. Appropriate management practices for t...

  3. Fusarium stalk blight and rot in sugar beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium stalk blight of sugar beet can cause reductions or complete loss of seed production. The causal agent is Fusarium oxysporum. In addition, Fusarium solani has been demonstrated to cause a rot of sugar beet seed stalk, and other species have been reported associated with sugar beet fruit, but...

  4. MANAGEMENT OF SCLEROTINIA BLIGHT AND VERTICILLIUM WILT IN PEANUTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some of the objectives of this research are to study the biology of economically important peanut pathogens including Tomato Spotted Wilt Virus (TSWV), and to determine the role of disease resistance in managing soil-borne peanut pathogens, particularly Sclerotinia blight, Verticillium wilt, and Sou...

  5. Budagovsky 9 rootstock: uncovering a novel resistance to fire blight

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Budagovsky 9 (B.9) apple rootstock, displayed a high level of susceptibility (similar to M.9 rootstock) to fire blight bacteria (Erwinia amylovora) when leaves of non-grafted B.9 plants were inoculated. However, when older B.9 rootstock tissue was inoculated directly with E. amylovora, rootstock tis...

  6. Transcriptional response in apple to fire blight disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fire blight, caused by the bacterium Erwinia amylovora, is a destructive disease of apple, pear, and other plants in the subfamily Maloideae of the Rosaceae. The goal of this study was to use a global analysis of gene expression to characterize the temporal response of apple to infection by E. amyl...

  7. Characterization of Early Blight Resistance in Interspecific Potato Hybrids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early blight, caused by the fungal pathogen Alternaria solani Sorauer, is a serious foliar disease of potato and tomato worldwide. It is characterized by severe defoliation resulting in significant losses in yield. Fungicides are the main method of control; however, they are undesirable due to their...

  8. Evaluation of Commercial Watermelon Rootstocks for Tolerance to Phytophthora Blight

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora blight and fruit rot caused by Phytophthora capsici is becoming an important and emerging disease of watermelons (Citrullus lanatus). The disease mainly occurs in low lying areas of the fields where water logged conditions may be present. In recent years, the practice of grafting seed...

  9. BACTERIAL ARTIFICIAL CHROMOSOME-BASED PHYSICAL MAP OF GIBBERELLA ZEAE (FUSARIUM GRAMINEARUM)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium graminearum is the primary causal pathogen of Fusarium head blight of wheat and barley, a major disease problem in the wheat and barley growing regions of the world. To accelerate genomic analysis of F. graminearum, we developed a bacterial artificial chromosome (BAC)-based physical map and...

  10. Analysis of apple (Malus) responses to bacterial pathogens using an oligo microarray

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fire blight is a devastating disease of apple (Malus x domestica) caused by the bacterial pathogen Erwinia amylovora (Ea). When infiltrated into host leaves, Ea induces reactions similar to a hypersensitive response (HR). Type III (T3SS) associated effectors, especially DspA/E, are suspected to ha...

  11. Xanthomonas campestris atcc 31601 and process for use

    SciTech Connect

    Weisrock, W.P.; McCarthy, E.F.

    1983-11-29

    A degenerative-resistant strain of Xanthomonas campestris has been developed and a process for using this strain to effectively overcome the problems of continuous xanthan production. This strain of X. campestris, designated X. campestris XCP-19 ATCC 31601, is capable of continuously producing xanthan at high specific productivities, i.e., 0.24 to 0.32 gm xanthan/gm cells/hr, for several hundred hours without culture degeneration from inexpensive aqueous nutrient media such as, for example, a minimal medium consisting primarily of inorganic salts, glucose, and NH4Cl. The medium may or may not also contain a yeast extract or yeast autolysate as a supplemental nitrogen source. Any medium having assimilable sources of carbon, nitrogen, and inorganic substances will serve satisfactorily for use with this new organism. 14 claims.

  12. Molecular mechanisms associated with xylan degradation by Xanthomonas plant pathogens.

    PubMed

    Santos, Camila Ramos; Hoffmam, Zaira Bruna; de Matos Martins, Vanesa Peixoto; Zanphorlin, Leticia Maria; de Paula Assis, Leandro Henrique; Honorato, Rodrigo Vargas; Lopes de Oliveira, Paulo Sérgio; Ruller, Roberto; Murakami, Mario Tyago

    2014-11-14

    Xanthomonas pathogens attack a variety of economically relevant plants, and their xylan CUT system (carbohydrate utilization with TonB-dependent outer membrane transporter system) contains two major xylanase-related genes, xynA and xynB, which influence biofilm formation and virulence by molecular mechanisms that are still elusive. Herein, we demonstrated that XynA is a rare reducing end xylose-releasing exo-oligoxylanase and not an endo-?-1,4-xylanase as predicted. Structural analysis revealed that an insertion in the ?7-?7 loop induces dimerization and promotes a physical barrier at the +2 subsite conferring this unique mode of action within the GH10 family. A single mutation that impaired dimerization became XynA active against xylan, and high endolytic activity was achieved when this loop was tailored to match a canonical sequence of endo-?-1,4-xylanases, supporting our mechanistic model. On the other hand, the divergent XynB proved to be a classical endo-?-1,4-xylanase, despite the low sequence similarity to characterized GH10 xylanases. Interestingly, this enzyme contains a calcium ion bound nearby to the glycone-binding region, which is required for catalytic activity and structural stability. These results shed light on the molecular basis for xylan degradation by Xanthomonas and suggest how these enzymes synergistically assist infection and pathogenesis. Our findings indicate that XynB contributes to breach the plant cell wall barrier, providing nutrients and facilitating the translocation of effector molecules, whereas the exo-oligoxylanase XynA possibly participates in the suppression of oligosaccharide-induced immune responses. PMID:25266726

  13. Molecular Mechanisms Associated with Xylan Degradation by Xanthomonas Plant Pathogens*

    PubMed Central

    Santos, Camila Ramos; Hoffmam, Zaira Bruna; de Matos Martins, Vanesa Peixoto; Zanphorlin, Leticia Maria; de Paula Assis, Leandro Henrique; Honorato, Rodrigo Vargas; Lopes de Oliveira, Paulo Sérgio; Ruller, Roberto; Murakami, Mario Tyago

    2014-01-01

    Xanthomonas pathogens attack a variety of economically relevant plants, and their xylan CUT system (carbohydrate utilization with TonB-dependent outer membrane transporter system) contains two major xylanase-related genes, xynA and xynB, which influence biofilm formation and virulence by molecular mechanisms that are still elusive. Herein, we demonstrated that XynA is a rare reducing end xylose-releasing exo-oligoxylanase and not an endo-β-1,4-xylanase as predicted. Structural analysis revealed that an insertion in the β7-α7 loop induces dimerization and promotes a physical barrier at the +2 subsite conferring this unique mode of action within the GH10 family. A single mutation that impaired dimerization became XynA active against xylan, and high endolytic activity was achieved when this loop was tailored to match a canonical sequence of endo-β-1,4-xylanases, supporting our mechanistic model. On the other hand, the divergent XynB proved to be a classical endo-β-1,4-xylanase, despite the low sequence similarity to characterized GH10 xylanases. Interestingly, this enzyme contains a calcium ion bound nearby to the glycone-binding region, which is required for catalytic activity and structural stability. These results shed light on the molecular basis for xylan degradation by Xanthomonas and suggest how these enzymes synergistically assist infection and pathogenesis. Our findings indicate that XynB contributes to breach the plant cell wall barrier, providing nutrients and facilitating the translocation of effector molecules, whereas the exo-oligoxylanase XynA possibly participates in the suppression of oligosaccharide-induced immune responses. PMID:25266726

  14. Hpa2 Required by HrpF To Translocate Xanthomonas oryzae Transcriptional Activator-Like Effectors into Rice for Pathogenicity?†

    PubMed Central

    Li, Yu-Rong; Che, Yi-Zhou; Zou, Hua-Song; Cui, Yi-Ping; Guo, Wei; Zou, Li-Fang; Biddle, Eulandria M.; Yang, Ching-Hong; Chen, Gong-You

    2011-01-01

    Xanthomonas oryzae pv. oryzicola, the causative agent of bacterial leaf streak, injects a plethora of effectors through the type III secretion system (T3SS) into rice cells to cause disease. The T3SS, encoded by the hrp genes, is essential for the pathogen to elicit the hypersensitive response (HR) in nonhost tobacco and for pathogenicity in host rice. Whether or not a putative lytic transglycosylase, Hpa2, interacts with a translocon protein, HrpF, to facilitate bacterial pathogenicity remains unknown. Here we demonstrated that both the hpa2 and hrpF genes are required for the pathogenicity of X. oryzae pv. oryzicola strain RS105 in rice but not for HR induction in tobacco. The expression of hpa2 was positively regulated by HrpG and HrpD6 but not by HrpX. In vivo secretion and subcellular localization analyses confirmed that Hpa2 secretion is dependent on HpaB (a T3SS exit protein) and that Hpa2 binds to the host cell membrane. Protein-protein assays demonstrated that Hpa2 interacts with HrpF. In planta translocation of AvrXa10 indicated that the mutation in hpa2 and hrpF inhibits the injection of the HpaB-dependent transcriptional activator-like (TAL) effector into rice. These findings suggest that Hpa2 and HrpF form a complex to translocate T3S effectors into plant cells for pathogenesis in host rice. PMID:21478322

  15. Surface polysaccharides and quorum sensing are involved in the attachment and survival of Xanthomonas albilineans on sugarcane leaves.

    PubMed

    Mensi, Imene; Daugrois, Jean-Heinrich; Pieretti, Isabelle; Gargani, Daniel; Fleites, Laura A; Noell, Julie; Bonnot, Francois; Gabriel, Dean W; Rott, Philippe

    2016-02-01

    Xanthomonas albilineans, the causal agent of sugarcane leaf scald, is a bacterial plant pathogen that is mainly spread by infected cuttings and contaminated harvesting tools. However, some strains of this pathogen are known to be spread by aerial means and are able to colonize the phyllosphere of sugarcane before entering the host plant and causing disease. The objective of this study was to identify the molecular factors involved in the survival or growth of X. albilineans on sugarcane leaves. We developed a bioassay to test for the attachment of X. albilineans on sugarcane leaves using tissue-cultured plantlets grown in vitro. Six mutants of strain XaFL07-1 affected in surface polysaccharide production completely lost their capacity to survive on the sugarcane leaf surface. These mutants produced more biofilm in vitro and accumulated more cellular poly-β-hydroxybutyrate than the wild-type strain. A mutant affected in the production of small molecules (including potential biosurfactants) synthesized by non-ribosomal peptide synthetases (NRPSs) attached to the sugarcane leaves as well as the wild-type strain. Surprisingly, the attachment of bacteria on sugarcane leaves varied among mutants of the rpf gene cluster involved in bacterial quorum sensing. Therefore, quorum sensing may affect polysaccharide production, or both polysaccharides and quorum sensing may be involved in the survival or growth of X. albilineans on sugarcane leaves. PMID:25962850

  16. Nanotechnology in Plant Disease Management: DNA-Directed Silver Nanoparticles on Graphene Oxide as an Antibacterial Against Xanthomonas Perforans

    PubMed Central

    Ocsoy, Ismail; Paret, Mathews L.; Ocsoy, Muserref Arslan; Kunwar, Sanju; Chen, Tao; You, Mingxu; Tan, Weihong

    2013-01-01

    Bacterial spot caused by Xanthomonas perforans is a major disease of tomatoes, leading to reduction in production by 10–50%. While copper (Cu)-based bactericides have been used for disease management, most of the X. perforans strains isolated from tomatoes in Florida and other locations worldwide are Cu-resistant. We have developed DNA-directed silver (Ag) nanoparticles (NPs) grown on graphene oxide (GO). These Ag@dsDNA@GO composites effectively decrease X. perforans cell viability in culture and on plants. At the very low concentration of 16 ppm of Ag@dsDNA@GO, composites show excellent antibacterial capability in culture with significant advantages in improved stability, enhanced antibacterial activity and stronger adsorption properties. Application of Ag@dsDNA@GO at 100 ppm on tomato transplants in a greenhouse experiment significantly reduced the severity of bacterial spot disease compared to untreated plants, giving results similar to those of the current grower standard treatment, with no phytotoxicity. PMID:24016217

  17. Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans.

    PubMed

    Ocsoy, Ismail; Paret, Mathews L; Ocsoy, Muserref Arslan; Kunwar, Sanju; Chen, Tao; You, Mingxu; Tan, Weihong

    2013-10-22

    Bacterial spot caused by Xanthomonas perforans is a major disease of tomatoes, leading to reduction in production by 10-50%. While copper (Cu)-based bactericides have been used for disease management, most of the X. perforans strains isolated from tomatoes in Florida and other locations worldwide are Cu-resistant. We have developed DNA-directed silver (Ag) nanoparticles (NPs) grown on graphene oxide (GO). These Ag@dsDNA@GO composites effectively decrease X. perforans cell viability in culture and on plants. At the very low concentration of 16 ppm of Ag@dsDNA@GO, composites show excellent antibacterial capability in culture with significant advantages in improved stability, enhanced antibacterial activity, and stronger adsorption properties. Application of Ag@dsDNA@GO at 100 ppm on tomato transplants in a greenhouse experiment significantly reduced the severity of bacterial spot disease compared to untreated plants, giving results similar to those of the current grower standard treatment, with no phytotoxicity. PMID:24016217

  18. Analysis of the Type IV Fimbrial-Subunit Gene fimA of Xanthomonas hyacinthi: Application in PCR-Mediated Detection of Yellow Disease in Hyacinths

    PubMed Central

    van Doorn, J.; Hollinger, T. C.; Oudega, B.

    2001-01-01

    A sensitive and specific detection method was developed for Xanthomonas hyacinthi; this method was based on amplification of a subsequence of the type IV fimbrial-subunit gene fimA from strain S148. The fimA gene was amplified by PCR with degenerate DNA primers designed by using the N-terminal and C-terminal amino acid sequences of trypsin fragments of FimA. The nucleotide sequence of fimA was determined and compared with the nucleotide sequences coding for the fimbrial subunits in other type IV fimbria-producing bacteria, such as Xanthomonas campestris pv. vesicatoria, Neisseria gonorrhoeae, and Moraxella bovis. In a PCR internal primers JAAN and JARA, designed by using the nucleotide sequences of the variable central and C-terminal region of fimA, amplified a 226-bp DNA fragment in all X. hyacinthi isolates. This PCR was shown to be pathovar specific, as assessed by testing 71 Xanthomonas pathovars and bacterial isolates belonging to other genera, such as Erwinia and Pseudomonas. Southern hybridization experiments performed with the labelled 226-bp DNA amplicon as a probe suggested that there is only one structural type IV fimbrial-gene cluster in X. hyacinthi. Only two Xanthomonas translucens pathovars cross-reacted weakly in PCR. Primers amplifying a subsequence of the fimA gene of X. campestris pv. vesicatoria (T. Ojanen-Reuhs, N. Kalkkinen, B. Westerlund-Wikström, J. van Doorn, K. Haahtela, E.-L. Nurmiaho-Lassila, K. Wengelink, U. Bonas, and T. K. Korhonen, J. Bacteriol. 179: 1280–1290, 1997) were shown to be pathovar specific, indicating that the fimbrial-subunit sequences are more generally applicable in xanthomonads for detection purposes. Under laboratory conditions, approximately 1,000 CFU of X. hyacinthi per ml could be detected. In inoculated leaves of hyacinths the threshold was 5,000 CFU/ml. The results indicated that infected hyacinths with early symptoms could be successfully screened for X. hyacinthi with PCR. PMID:11157222

  19. Aconitase B is required for optimal growth of Xanthomonas campestris pv. vesicatoria in pepper plants.

    PubMed

    Kirchberg, Janine; Büttner, Daniela; Thiemer, Barbara; Sawers, R Gary

    2012-01-01

    The aerobic plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) colonizes the intercellular spaces of pepper and tomato. One enzyme that might contribute to the successful proliferation of Xcv in the host is the iron-sulfur protein aconitase, which catalyzes the conversion of citrate to isocitrate in the tricarboxylic acid (TCA) cycle and might also sense reactive oxygen species (ROS) and changes in cellular iron levels. Xcv contains three putative aconitases, two of which, acnA and acnB, are encoded by a single chromosomal locus. The focus of this study is aconitase B (AcnB). acnB is co-transcribed with two genes, XCV1925 and XCV1926, encoding putative nucleic acid-binding proteins. In vitro growth of acnB mutants was like wild type, whereas in planta growth and symptom formation in pepper plants were impaired. While acnA, XCV1925 or XCV1926 mutants showed a wild-type phenotype with respect to bacterial growth and in planta symptom formation, proliferation of the acnB mutant in susceptible pepper plants was significantly impaired. Furthermore, the deletion of acnB led to reduced HR induction in resistant pepper plants and an increased susceptibility to the superoxide-generating compound menadione. As AcnB complemented the growth deficiency of an Escherichia coli aconitase mutant, it is likely to be an active aconitase. We therefore propose that optimal growth and survival of Xcv in pepper plants depends on AcnB, which might be required for the utilization of citrate as carbon source and could also help protect the bacterium against oxidative stress. PMID:22493725

  20. Phosphate regulated proteins of Xanthomonas citri subsp. citri: a proteomic approach.

    PubMed

    Pegos, Vanessa Rodrigues; Nascimento, Jéssica Faria; Sobreira, Tiago José Paschoal; Pauletti, Bianca Alves; Paes-Leme, Adriana; Balan, Andrea

    2014-08-28

    Xanthomonas citri subsp. citri (X. citri) is the causative agent of the citrus canker, a disease that affects several citrus plants in Brazil and across the world. Although many studies have demonstrated the importance of genes for infection and pathogenesis in this bacterium, there are no data related to phosphate uptake and assimilation pathways. To identify the proteins that are involved in the phosphate response, we performed a proteomic analysis of X. citri extracts after growth in three culture media with different phosphate concentrations. Using mass spectrometry and bioinformatics analysis, we showed that X. citri conserved orthologous genes from Pho regulon in Escherichia coli, including the two-component system PhoR/PhoB, ATP binding cassette (ABC transporter) Pst for phosphate uptake, and the alkaline phosphatase PhoA. Analysis performed under phosphate starvation provided evidence of the relevance of the Pst system for phosphate uptake, as well as both periplasmic binding proteins, PhoX and PstS, which were formed in high abundance. The results from this study are the first evidence of the Pho regulon activation in X. citri and bring new insights for studies related to the bacterial metabolism and physiology. Biological significance Using proteomics and bioinformatics analysis we showed for the first time that the phytopathogenic bacterium X. citri conserves a set of proteins that belong to the Pho regulon, which are induced during phosphate starvation. The most relevant in terms of conservation and up-regulation were the periplasmic-binding proteins PstS and PhoX from the ABC transporter PstSBAC for phosphate, the two-component system composed by PhoR/PhoB and the alkaline phosphatase PhoA. PMID:24846853

  1. Aconitase B Is Required for Optimal Growth of Xanthomonas campestris pv. vesicatoria in Pepper Plants

    PubMed Central

    Kirchberg, Janine; Büttner, Daniela; Thiemer, Barbara; Sawers, R. Gary

    2012-01-01

    The aerobic plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) colonizes the intercellular spaces of pepper and tomato. One enzyme that might contribute to the successful proliferation of Xcv in the host is the iron-sulfur protein aconitase, which catalyzes the conversion of citrate to isocitrate in the tricarboxylic acid (TCA) cycle and might also sense reactive oxygen species (ROS) and changes in cellular iron levels. Xcv contains three putative aconitases, two of which, acnA and acnB, are encoded by a single chromosomal locus. The focus of this study is aconitase B (AcnB). acnB is co-transcribed with two genes, XCV1925 and XCV1926, encoding putative nucleic acid-binding proteins. In vitro growth of acnB mutants was like wild type, whereas in planta growth and symptom formation in pepper plants were impaired. While acnA, XCV1925 or XCV1926 mutants showed a wild-type phenotype with respect to bacterial growth and in planta symptom formation, proliferation of the acnB mutant in susceptible pepper plants was significantly impaired. Furthermore, the deletion of acnB led to reduced HR induction in resistant pepper plants and an increased susceptibility to the superoxide-generating compound menadione. As AcnB complemented the growth deficiency of an Escherichia coli aconitase mutant, it is likely to be an active aconitase. We therefore propose that optimal growth and survival of Xcv in pepper plants depends on AcnB, which might be required for the utilization of citrate as carbon source and could also help protect the bacterium against oxidative stress. PMID:22493725

  2. Xanthomonas campestris lipooligosaccharides trigger innate immunity and oxidative burst in Arabidopsis.

    PubMed

    Proietti, S; Giangrande, C; Amoresano, A; Pucci, P; Molinaro, A; Bertini, L; Caporale, C; Caruso, C

    2014-12-01

    Plants lack the adaptive immunity mechanisms of jawed vertebrates, so they rely on innate immune responses to defense themselves from pathogens. The plant immune system perceives the presence of pathogens by recognition of molecules known as pathogen-associated molecular patterns (PAMPs). PAMPs have several common characteristics, including highly conserved structures, essential for the microorganism but absent in host organisms. Plants can specifically recognize PAMPs using a large set of receptors and can respond with appropriate defenses by activating a multicomponent and multilayered response. Lipopolysaccharides (LPSs) and lipooligosaccharides (LOSs) are major components of the cell surface of Gram-negative bacteria with diverse roles in bacterial pathogenesis of animals and plants that include elicitation of host defenses. Little is known on the mechanisms of perception of these molecules by plants and the associated signal transduction pathways that trigger plant immunity.Here we addressed the question whether the defense signaling pathway in Arabidopsis thaliana was triggered by LOS from Xanthomonas campestris pv. campestris (Xcc), using proteomic and transcriptomic approaches. By using affinity capture strategies with immobilized LOS and LC-MS/MS analyses, we identified 8 putative LOS protein ligands. Further investigation of these interactors led to the definition that LOS challenge is able to activate a signal transduction pathway that uses nodal regulators in common with salicylic acid-mediated pathway. Moreover, we proved evidence that Xcc LOS are responsible for oxidative burst in Arabidopsis either in infiltrated or systemic leaves. In addition, gene expression studies highlighted the presence of gene network involved in reactive oxygen species transduction pathway. PMID:25394800

  3. The Xanthomonas Type III Effector XopD Targets the Arabidopsis Transcription Factor MYB30 to Suppress Plant Defense[W

    PubMed Central

    Canonne, Joanne; Marino, Daniel; Jauneau, Alain; Pouzet, Cécile; Brière, Christian; Roby, Dominique; Rivas, Susana

    2011-01-01

    Plant and animal pathogens inject type III effectors (T3Es) into host cells to suppress host immunity and promote successful infection. XopD, a T3E from Xanthomonas campestris pv vesicatoria, has been proposed to promote bacterial growth by targeting plant transcription factors and/or regulators. Here, we show that XopD from the B100 strain of X. campestris pv campestris is able to target MYB30, a transcription factor that positively regulates Arabidopsis thaliana defense and associated cell death responses to bacteria through transcriptional activation of genes related to very-long-chain fatty acid (VLCFA) metabolism. XopD specifically interacts with MYB30, resulting in inhibition of the transcriptional activation of MYB30 VLCFA-related target genes and suppression of Arabidopsis defense. The helix-loop-helix domain of XopD is necessary and sufficient to mediate these effects. These results illustrate an original strategy developed by Xanthomonas to subvert plant defense and promote development of disease. PMID:21917550

  4. The filamentous phage XacF1 causes loss of virulence in Xanthomonas axonopodis pv. citri, the causative agent of citrus canker disease

    PubMed Central

    Ahmad, Abdelmonim Ali; Askora, Ahmed; Kawasaki, Takeru; Fujie, Makoto; Yamada, Takashi

    2014-01-01

    In this study, filamentous phage XacF1, which can infect Xanthomonas axonopodis pv. citri (Xac) strains, was isolated and characterized. Electron microscopy showed that XacF1 is a member of the family Inoviridae and is about 600 nm long. The genome of XacF1 is 7325 nucleotides in size, containing 13 predicted open reading frames (ORFs), some of which showed significant homology to Ff-like phage proteins such as ORF1 (pII), ORF2 (pV), ORF6 (pIII), and ORF8 (pVI). XacF1 showed a relatively wide host range, infecting seven out of 11 strains tested in this study. Frequently, XacF1 was found to be integrated into the genome of Xac strains. This integration occurred at the host dif site (attB) and was mediated by the host XerC/D recombination system. The attP sequence was identical to that of Xanthomonas phage Cf1c. Interestingly, infection by XacF1 phage caused several physiological changes to the bacterial host cells, including lower levels of extracellular polysaccharide production, reduced motility, slower growth rate, and a dramatic reduction in virulence. In particular, the reduction in virulence suggested possible utilization of XacF1 as a biological control agent against citrus canker disease. PMID:25071734

  5. Development of a Species-specific PCR Assay for Three Xanthomonas Species, Causing Bulb and Flower Diseases, Based on Their Genome Sequences

    PubMed Central

    Back, Chang-Gi; Lee, Seung-Yeol; Lee, Boo-Ja; Yea, Mi-Chi; Kim, Sang-Mok; Kang, In-Kyu; Cha, Jae-Soon; Jung, Hee-Young

    2015-01-01

    In this study, we developed a species-specific PCR assay for rapid and accurate detection of three Xanthomonas species, X. axonopodis pv. poinsettiicola (XAP), X. hyacinthi (XH) and X. campestris pv. zantedeschiae (XCZ), based on their draft genome sequences. XAP, XH and XCZ genomes consist of single chromosomes that contain 5,221, 4,395 and 7,986 protein coding genes, respectively. Species-specific primers were designed from variable regions of the draft genome sequence data and assessed by a PCR-based detection method. These primers were also tested for specificity against 17 allied Xanthomonas species as well as against the host DNA and the microbial community of the host surface. Three primer sets were found to be very specific and no amplification product was obtained with the host DNA and the microbial community of the host surface. In addition, a detection limit of 1 pg/μl per PCR reaction was detected when these primer sets were used to amplify corresponding bacterial DNAs. Therefore, these primer sets and the developed species-specific PCR assay represent a valuable, sensitive, and rapid diagnostic tool that can be used to detect three specific pathogens at early stages of infection and may help control diseases. PMID:26361469

  6. Development of a Species-specific PCR Assay for Three Xanthomonas Species, Causing Bulb and Flower Diseases, Based on Their Genome Sequences.

    PubMed

    Back, Chang-Gi; Lee, Seung-Yeol; Lee, Boo-Ja; Yea, Mi-Chi; Kim, Sang-Mok; Kang, In-Kyu; Cha, Jae-Soon; Jung, Hee-Young

    2015-09-01

    In this study, we developed a species-specific PCR assay for rapid and accurate detection of three Xanthomonas species, X. axonopodis pv. poinsettiicola (XAP), X. hyacinthi (XH) and X. campestris pv. zantedeschiae (XCZ), based on their draft genome sequences. XAP, XH and XCZ genomes consist of single chromosomes that contain 5,221, 4,395 and 7,986 protein coding genes, respectively. Species-specific primers were designed from variable regions of the draft genome sequence data and assessed by a PCR-based detection method. These primers were also tested for specificity against 17 allied Xanthomonas species as well as against the host DNA and the microbial community of the host surface. Three primer sets were found to be very specific and no amplification product was obtained with the host DNA and the microbial community of the host surface. In addition, a detection limit of 1 pg/μl per PCR reaction was detected when these primer sets were used to amplify corresponding bacterial DNAs. Therefore, these primer sets and the developed species-specific PCR assay represent a valuable, sensitive, and rapid diagnostic tool that can be used to detect three specific pathogens at early stages of infection and may help control diseases. PMID:26361469

  7. Xanthomonas campestris cell–cell signalling molecule DSF (diffusible signal factor) elicits innate immunity in plants and is suppressed by the exopolysaccharide xanthan

    PubMed Central

    Kakkar, Akanksha; Nizampatnam, Narasimha Rao; Kondreddy, Anil; Pradhan, Binod Bihari; Chatterjee, Subhadeep

    2015-01-01

    Several secreted and surface-associated conserved microbial molecules are recognized by the host to mount the defence response. One such evolutionarily well-conserved bacterial process is the production of cell–cell signalling molecules which regulate production of multiple virulence functions by a process known as quorum sensing. Here it is shown that a bacterial fatty acid cell–cell signalling molecule, DSF (diffusible signal factor), elicits innate immunity in plants. The DSF family of signalling molecules are highly conserved among many phytopathogenic bacteria belonging to the genus Xanthomonas as well as in opportunistic animal pathogens. Using Arabidopsis, Nicotiana benthamiana, and rice as model systems, it is shown that DSF induces a hypersensitivity reaction (HR)-like response, programmed cell death, the accumulation of autofluorescent compounds, hydrogen peroxide production, and the expression of the PATHOGENESIS-RELATED1 (PR-1) gene. Furthermore, production of the DSF signalling molecule in Pseudomonas syringae, a non-DSF-producing plant pathogen, induces the innate immune response in the N. benthamiana host plant and also affects pathogen growth. By pre- and co-inoculation of DSF, it was demonstrated that the DSF-induced plant defence reduces disease severity and pathogen growth in the host plant. In this study, it was further demonstrated that wild-type Xanthomonas campestris suppresses the DSF-induced innate immunity by secreting xanthan, the main component of extracellular polysaccharide. The results indicate that plants have evolved to recognize a widely conserved bacterial communication system and may have played a role in the co-evolution of host recognition of the pathogen and the communication machinery. PMID:26248667

  8. Xanthomonas campestris cell-cell signalling molecule DSF (diffusible signal factor) elicits innate immunity in plants and is suppressed by the exopolysaccharide xanthan.

    PubMed

    Kakkar, Akanksha; Nizampatnam, Narasimha Rao; Kondreddy, Anil; Pradhan, Binod Bihari; Chatterjee, Subhadeep

    2015-11-01

    Several secreted and surface-associated conserved microbial molecules are recognized by the host to mount the defence response. One such evolutionarily well-conserved bacterial process is the production of cell-cell signalling molecules which regulate production of multiple virulence functions by a process known as quorum sensing. Here it is shown that a bacterial fatty acid cell-cell signalling molecule, DSF (diffusible signal factor), elicits innate immunity in plants. The DSF family of signalling molecules are highly conserved among many phytopathogenic bacteria belonging to the genus Xanthomonas as well as in opportunistic animal pathogens. Using Arabidopsis, Nicotiana benthamiana, and rice as model systems, it is shown that DSF induces a hypersensitivity reaction (HR)-like response, programmed cell death, the accumulation of autofluorescent compounds, hydrogen peroxide production, and the expression of the PATHOGENESIS-RELATED1 (PR-1) gene. Furthermore, production of the DSF signalling molecule in Pseudomonas syringae, a non-DSF-producing plant pathogen, induces the innate immune response in the N. benthamiana host plant and also affects pathogen growth. By pre- and co-inoculation of DSF, it was demonstrated that the DSF-induced plant defence reduces disease severity and pathogen growth in the host plant. In this study, it was further demonstrated that wild-type Xanthomonas campestris suppresses the DSF-induced innate immunity by secreting xanthan, the main component of extracellular polysaccharide. The results indicate that plants have evolved to recognize a widely conserved bacterial communication system and may have played a role in the co-evolution of host recognition of the pathogen and the communication machinery. PMID:26248667

  9. Association analysis of bacterial leaf spot resistance and SNP markers derived from expressed sequence tags (ESTs) in lettuce (Lactuca sativa L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial leaf spot of lettuce, caused by Xanthomonas campestris pv. vitians, is a devastating disease of lettuce worldwide. Since there are no chemicals available for effective control of the disease, host-plant resistance is highly desirable to protect lettuce production. A total of 179 lettuce ge...

  10. Control of litchi downy blight by zeamines produced by Dickeya zeae

    PubMed Central

    Liao, Lisheng; Zhou, Jianuan; Wang, Huishan; He, Fei; Liu, Shiyin; Jiang, Zide; Chen, Shaohua; Zhang, Lian-Hui

    2015-01-01

    Zeamines (ZMS), a class of polyamine-polyketide-nonribosomal peptide produced by bacterial isolate Dickeya zeae, were shown recently to be potent antibiotics against some bacterial pathogens. In this study, the results indicated that ZMS showed antifungal activity against Peronophythora litchii and other fungal pathogens. The activity of ZMS against the oomycete pathogen P. litchi, which causes the devastating litchi downy blight, was further investigated under in vitro and in vivo conditions. ZMS displayed potent inhibitory activity against the mycelial growth and sporangia germination of P. litchii. At a concentration of 2 μg/mL, about 99% of the sporangia germination was inhibited. Scanning electron microscopy and transmission electron microscopy analyses showed that treatment with ZMS could cause substantial damages to the oomycete endomembrane system. Furthermore, treatment of litchi fruits with ZMS solution significantly (P < 0.05) reduced the fruits decay and peel browning caused by P. litchii infection during storage at 28 °C. Taken together, our results provide useful clues on the antifungal mechanisms of ZMS, and highlight the promising potentials of ZMS as a fungicide, which in particular, may be useful for prevention and control of litchi fruits decay and browning caused by P. litchii infection during storage and transportation. PMID:26499339

  11. Comparative genomics of a cannabis pathogen reveals insight into the evolution of pathogenicity in Xanthomonas.

    PubMed

    Jacobs, Jonathan M; Pesce, Céline; Lefeuvre, Pierre; Koebnik, Ralf

    2015-01-01

    Pathogenic bacteria in the genus Xanthomonas cause diseases on over 350 plant species, including cannabis (Cannabis sativa L.). Because of regulatory limitations, the biology of the Xanthomonas-cannabis pathosystem remains largely unexplored. To gain insight into the evolution of Xanthomonas strains pathogenic to cannabis, we sequenced the genomes of two geographically distinct Xanthomonas strains, NCPPB 3753 and NCPPB 2877, which were previously isolated from symptomatic plant tissue in Japan and Romania. Comparative multilocus sequence analysis of housekeeping genes revealed that they belong to Group 2, which comprises most of the described species of Xanthomonas. Interestingly, both strains lack the Hrp Type III secretion system and do not contain any of the known Type III effectors. Yet their genomes notably encode two key Hrp pathogenicity regulators HrpG and HrpX, and hrpG and hrpX are in the same genetic organization as in the other Group 2 xanthomonads. Promoter prediction of HrpX-regulated genes suggests the induction of an aminopeptidase, a lipase and two polygalacturonases upon plant colonization, similar to other plant-pathogenic xanthomonads. Genome analysis of the distantly related Xanthomonas maliensis strain 97M, which was isolated from a rice leaf in Mali, similarly demonstrated the presence of HrpG, HrpX, and a HrpX-regulated polygalacturonase, and the absence of the Hrp Type III secretion system and known Type III effectors. Given the observation that some Xanthomonas strains across distinct taxa do not contain hrpG and hrpX, we speculate a stepwise evolution of pathogenicity, which involves (i) acquisition of key regulatory genes and cell wall-degrading enzymes, followed by (ii) acquisition of the Hrp Type III secretion system, which is ultimately accompanied by (iii) successive acquisition of Type III effectors. PMID:26136759

  12. Comparative genomics of a cannabis pathogen reveals insight into the evolution of pathogenicity in Xanthomonas

    PubMed Central

    Jacobs, Jonathan M.; Pesce, Céline; Lefeuvre, Pierre; Koebnik, Ralf

    2015-01-01

    Pathogenic bacteria in the genus Xanthomonas cause diseases on over 350 plant species, including cannabis (Cannabis sativa L.). Because of regulatory limitations, the biology of the Xanthomonas-cannabis pathosystem remains largely unexplored. To gain insight into the evolution of Xanthomonas strains pathogenic to cannabis, we sequenced the genomes of two geographically distinct Xanthomonas strains, NCPPB 3753 and NCPPB 2877, which were previously isolated from symptomatic plant tissue in Japan and Romania. Comparative multilocus sequence analysis of housekeeping genes revealed that they belong to Group 2, which comprises most of the described species of Xanthomonas. Interestingly, both strains lack the Hrp Type III secretion system and do not contain any of the known Type III effectors. Yet their genomes notably encode two key Hrp pathogenicity regulators HrpG and HrpX, and hrpG and hrpX are in the same genetic organization as in the other Group 2 xanthomonads. Promoter prediction of HrpX-regulated genes suggests the induction of an aminopeptidase, a lipase and two polygalacturonases upon plant colonization, similar to other plant-pathogenic xanthomonads. Genome analysis of the distantly related Xanthomonas maliensis strain 97M, which was isolated from a rice leaf in Mali, similarly demonstrated the presence of HrpG, HrpX, and a HrpX-regulated polygalacturonase, and the absence of the Hrp Type III secretion system and known Type III effectors. Given the observation that some Xanthomonas strains across distinct taxa do not contain hrpG and hrpX, we speculate a stepwise evolution of pathogenicity, which involves (i) acquisition of key regulatory genes and cell wall-degrading enzymes, followed by (ii) acquisition of the Hrp Type III secretion system, which is ultimately accompanied by (iii) successive acquisition of Type III effectors. PMID:26136759

  13. Relative importance of bacteriocin-like genes in antagonism of Xanthomonas perforans tomato race 3 to Xanthomonas euvesicatoria tomato race 1 strains.

    PubMed

    Hert, A P; Roberts, P D; Momol, M T; Minsavage, G V; Tudor-Nelson, S M; Jones, J B

    2005-07-01

    In a previous study, tomato race 3 (T3) strains of Xanthomonas perforans became predominant in fields containing both X. euvesicatoria and X. perforans races T1 and T3, respectively. This apparent ability to take over fields led to the discovery that there are three bacteriocin-like compounds associated with T3 strains. T3 strain 91-118 produces at least three different bacteriocin-like compounds (BCN-A, BCN-B, and BCN-C) antagonistic toward T1 strains. We determined the relative importance of the bacteriocin-like compounds by constructing the following mutant forms of a wild-type (WT) T3 strain to evaluate the antagonism to WT T1 strains: Mut-A (BCN-A-), Mut-B (BCN-B-), Mut-C (BCN-C-), Mut-AB, Mut-BC, and Mut-ABC. Although all mutant and WT T3 strains reduced the T1 populations in in planta growth room experiments, Mut-B and WT T3 were significantly more effective. Mutants expressing BCN-B and either BCN-A or BCN-C reduced T1 populations less than mutants expressing only BCN-A or BCN-C. The triple-knockout mutant Mut-ABC also had a significant competitive advantage over the T1 strain. In pairwise-inoculation field experiments where plants were coinoculated with an individual mutant or WT T3 strain and the T1 strain, the mutant strains and the WT T3 strain were reisolated from more than 70% of the lesions. WT T3 and Mut-B were the most frequently reisolated strains. In field experiments where plants were group inoculated with Mut-A, Mut-B, Mut-C, Mut-ABC, and WT T1 and T3 strains, Mut-B populations dominated all three seasons. In greenhouse and field experiments, the WT and mutant T3 strains had a selective advantage over T1 strains. Bacterial strains expressing both BCN-A and BCN-C appeared to have a competitive advantage over all other mutant and WT strains. Furthermore, BCN-B appeared to be a negative factor, with mutant T3 strains lacking BCN-B having a selective advantage in the field. PMID:16000765

  14. Control of fire blight by Pseudomonas fluorescens A506 and Pantoea vagans C9-1 applied as single strains and mixed inocula.

    PubMed

    Stockwell, V O; Johnson, K B; Sugar, D; Loper, J E

    2010-12-01

    The biological control agents Pseudomonas fluorescens A506 and Pantoea vagans C9-1 were evaluated individually and in combination for the suppression of fire blight of pear or apple in 10 field trials inoculated with the pathogen Erwinia amylovora. The formulation of pathogen inoculum applied to blossoms influenced establishment of the pathogen and the efficacy of biological control. Pantoea vagans C9-1 suppressed fire blight in all five trials in which the pathogen was applied as lyophilized cells but in none of the trials in which the pathogen was applied as freshly harvested cells. In contrast, Pseudomonas fluorescens A506 reduced disease significantly in only one trial. A mixture of the two strains also suppressed fire blight, but the magnitude of disease suppression over all field trials (averaging 32%) was less than that attained by C9-1 alone (42%). The two biological control agents did not antagonize one another on blossom surfaces, and application of the mixture of A506 and C9-1 to blossoms resulted in a greater proportion of flowers having detectable populations of at least one bacterial antagonist than the application of individual strains. Therefore, the mixture of A506 and C9-1 provided less disease control than expected based upon the epiphytic population sizes of the antagonists on blossom surfaces. We speculate that the biocontrol mixture was less effective than anticipated due to incompatibility between the mechanisms by which A506 and C9-1 suppress disease. PMID:20839963

  15. Xanthomonas campestris pv. vesicatoria Secretes Proteases and Xylanases via the Xps Type II Secretion System and Outer Membrane Vesicles

    PubMed Central

    Solé, Magali; Scheibner, Felix; Hoffmeister, Anne-Katrin; Hartmann, Nadine; Hause, Gerd; Rother, Annekatrin; Jordan, Michael; Lautier, Martine; Arlat, Matthieu

    2015-01-01

    ABSTRACT Many plant-pathogenic bacteria utilize type II secretion (T2S) systems to secrete degradative enzymes into the extracellular milieu. T2S substrates presumably mediate the degradation of plant cell wall components during the host-pathogen interaction and thus promote bacterial virulence. Previously, the Xps-T2S system from Xanthomonas campestris pv. vesicatoria was shown to contribute to extracellular protease activity and the secretion of a virulence-associated xylanase. The identities and functions of additional T2S substrates from X. campestris pv. vesicatoria, however, are still unknown. In the present study, the analysis of 25 candidate proteins from X. campestris pv. vesicatoria led to the identification of two type II secreted predicted xylanases, a putative protease and a lipase which was previously identified as a virulence factor of X. campestris pv. vesicatoria. Studies with mutant strains revealed that the identified xylanases and the protease contribute to virulence and in planta growth of X. campestris pv. vesicatoria. When analyzed in the related pathogen X. campestris pv. campestris, several T2S substrates from X. campestris pv. vesicatoria were secreted independently of the T2S systems, presumably because of differences in the T2S substrate specificities of the two pathogens. Furthermore, in X. campestris pv. vesicatoria T2S mutants, secretion of T2S substrates was not completely absent, suggesting the contribution of additional transport systems to protein secretion. In line with this hypothesis, T2S substrates were detected in outer membrane vesicles, which were frequently observed for X. campestris pv. vesicatoria. We, therefore, propose that extracellular virulence-associated enzymes from X. campestris pv. vesicatoria are targeted to the Xps-T2S system and to outer membrane vesicles. IMPORTANCE The virulence of plant-pathogenic bacteria often depends on TS2 systems, which secrete degradative enzymes into the extracellular milieu. T2S substrates are being studied in several plant-pathogenic bacteria, including Xanthomonas campestris pv. vesicatoria, which causes bacterial spot disease in tomato and pepper. Here, we show that the T2S system from X. campestris pv. vesicatoria secretes virulence-associated xylanases, a predicted protease, and a lipase. Secretion assays with the related pathogen X. campestris pv. campestris revealed important differences in the T2S substrate specificities of the two pathogens. Furthermore, electron microscopy showed that T2S substrates from X. campestris pv. vesicatoria are targeted to outer membrane vesicles (OMVs). Our results, therefore, suggest that OMVs provide an alternative transport route for type II secreted extracellular enzymes. PMID:26124239

  16. Bacterial gastroenteritis

    MedlinePLUS

    Infectious diarrhea - bacterial gastroenteritis; Acute gastroenteritis; Gastroenteritis - bacterial ... the sickness. All types of food poisoning cause diarrhea . Other symptoms include: Abdominal cramps Abdominal pain Bloody ...

  17. Effects of sulfur dioxide on expansion of lesions caused by Corynebacterium nebraskense in maize and by Xanthomonas phaseoli var. sojensis in soybean

    SciTech Connect

    Laurence, J.A.; Aluisio, A.L.

    1981-01-01

    In order to assess the effects of air pollution on plant disease development, the authors investigated the effects of SO/sub 2/ on lesion development by two bacterial pathogens. Maize or soybean plants were exposed to sulfur dioxide (SO/sub 2/) at 524 ..mu..g m/sup -3/ or 262 ..mu..g m/sup -3/ before, after or before and after inoculation with Corynebacterium nebraskense or Xanthomonas phaseoli var. sojensis, respectively. Lesion development was inhibited in both cases, regardless of when the exposures occurred. The time of exposure, however, altered the subsequent effect on lesion size. Dry weight and sulfur content of host tissue were not altered by the joint effects of the pollutant and the pathogens.

  18. Bacterial leaf spot of radicchio (Cichorium intybus) is caused by Xanthomonas hortorum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beginning in 2002 a leaf spot disease of radicchio (Cichorium intybus) was observed in Monterey County, California. Lesions were maroon to dark brown in color; in some cases the margins of brown lesions became dark maroon with aging. Each leaf spot was observable from both adaxial and abaxial leaf s...

  19. Pressate from peat dewatering as a substrate for bacterial growth. [Rhizopus arrhizus; Xanthomonas campestris; Aureobasidium

    SciTech Connect

    Mulligan, C.N.; Cooper, D.G.

    1985-07-01

    This study considered the possibility of using water expressed during the drying of fuel-grade peat as a substrate for microbial growth. Highly humified peat pressed for 2.5 min at 1.96 MPa produced water with a chemical oxygen demand of 690 mg/liter. Several biological compounds could be produced by using the organic matter inexpressed peat water as a substrate. These included polymers such as chitosan, contained in the cell wall of Rhizopus arrhizus, and two extracellular polysaccharides, xanthan gum and pullulan, produced by Bacillus subtilis grown in the expressed water. Small additions of nutrients to the peat pressate were necessary to obtain substantial yields of products. The addition of peptone, yeast extract, and glucose improved production of the various compounds. Biological treatment improved the quality of the expressed water to the extent that in an industrial process it could be returned to the environment.

  20. Outer Membrane Proteins and Lipopolysaccharides in Pathovars of Xanthomonas campestris

    PubMed Central

    Ojanen, Tuula; Helander, Ilkka M.; Haahtela, Kielo; Korhonen, Timo K.; Laakso, Tuula

    1993-01-01

    Variations in the outer membrane proteins (OMPs) and lipopolysaccharides (LPSs) of 54 isolates belonging to 16 different pathovars of Xanthomonas campestris were characterized. OMP samples prepared by sarcosyl extraction of cell walls and LPS samples prepared by proteinase K treatment of sonicated cells were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence of 4 M urea. In general, the OMP and LPS profiles within each pathovar were very similar but different from the profiles of other pathovars. Heterogeneity in OMP and LPS profiles was observed within X. campestris pv. campestris, X. campestris pv. translucens, and X. campestris pv. vesicatoria. LPSs were isolated from six X. campestris pathovars, which fell into two major groups on the basis of O antigenicity. The O antigens of X. campestris pv. begoniae, X. campestris pv. graminis, and X. campestris pv. translucens cross-reacted with each other; the other group consisted of X. campestris pv. campestris, X. campestris pv. pelargonii, and X. campestris pv. vesicatoria. A chemical analysis revealed a significant difference between the compositions of the neutral sugars of the LPSs of those two groups; the LPSs of the first group contained xylose and a 6-deoxy-3-O-methyl hexose, whereas the LPSs of the other group lacked both sugars. Images PMID:16349114

  1. Antibacterial Activity of Alkyl Gallates against Xanthomonas citri subsp. citri

    PubMed Central

    Silva, I. C.; Regasini, L. O.; Petrônio, M. S.; Silva, D. H. S.; Bolzani, V. S.; Belasque, J.; Sacramento, L. V. S.

    2013-01-01

    The plant-pathogenic bacterium Xanthomonas citri subsp. citri is the causal agent of Asiatic citrus canker, a serious disease that affects all the cultivars of citrus in subtropical citrus-producing areas worldwide. There is no curative treatment for citrus canker; thus, the eradication of infected plants constitutes the only effective control of the spread of X. citri subsp. citri. Since the eradication program in the state of São Paulo, Brazil, is under threat, there is a clear risk of X. citri subsp. citri becoming endemic in the main orange-producing area in the world. Here we evaluated the potential use of alkyl gallates to prevent X. citri subsp. citri growth. These esters displayed a potent anti-X. citri subsp. citri activity similar to that of kanamycin (positive control), as evaluated by the resazurin microtiter assay (REMA). The treatment of X. citri subsp. citri cells with these compounds induced altered cell morphology, and investigations of the possible intracellular targets using X. citri subsp. citri strains labeled for the septum and centromere pointed to a common target involved in chromosome segregation and cell division. Finally, the artificial inoculation of citrus with X. citri subsp. citri cells pretreated with alkyl gallates showed that the bacterium loses the ability to colonize its host, which indicates the potential of these esters to protect citrus plants against X. citri subsp. citri infection. PMID:23104804

  2. Previous reports of bacterial diseases on crucifers attributed to Pseuomonas syringae pv. maculicola were caused by P. cannabina pv. alisalensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas cannabina pv. alisalensis (Pca) causes bacterial blight on crucifers, which can reduce crucifer yields and result in economic losses in the US. Prior to the late 1990s Pca was not distinguished from the pepper spot pathogen of crucifers, Pseudomonas syringae pv. maculicola (Psm), althoug...

  3. KdgR, an IClR family transcriptional regulator, inhibits virulence mainly by repression of hrp genes in Xanthomonas oryzae pv. oryzae.

    PubMed

    Lu, Yao; Rashidul, Islam M; Hirata, Hisae; Tsuyumu, Shinji

    2011-12-01

    KdgR has been reported to negatively regulate the genes involved in degradation and metabolization of pectic acid and other extracellular enzymes in soft-rotting Erwinia spp. through direct binding to their promoters. The possible involvement of a KdgR orthologue in virulence by affecting the expression of extracellular enzymes in Xanthomonas oryzae pv. oryzae, the causal agent of rice blight disease, was examined by comparing virulence and regulation of extracellular enzymes between the wild type (WT) and a strain carrying a mutation in putative kdgR (ΔXoo0310 mutant). This putative kdgR mutant of X. oryzae pv. oryzae showed increased pathogenicity on rice without affecting the regulation of extracellular enzymes, such as amylase, cellulase, xylanase, and protease. However, the mutant carrying a mutation in an ortholog of xpsL, which encodes the functional secretion machinery for the extracellular enzymes, showed a dramatic decrease in pathogenicity on rice. Both mutants of kdgR and of xpsL orthologs showed higher expression of two major hrp regulatory genes, hrpG and hrpX, and the genes in the hrp operons when grown in hrp-inducing medium. Thus, both genes were shown to be involved in repression of hrp genes. The kdgR ortholog was thought to suppress virulence mainly by repressing the expression of hrp genes without affecting the expression of extracellular enzymes, unlike findings for the kdgR gene in soft-rotting Erwinia spp. On the other hand, xpsL was confirmed to be involved in virulence by promoting the secretion of extracellular enzymes in spite of repressing the expression of the hrp genes. PMID:21984784

  4. A Statistical Comparison of the Blossom Blight Forecasts of MARYBLYT and Cougarblight with Receiver Operating Characteristic Curve Analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blossom blight forecasting is an important aspect of fire blight, caused by Erwinia amylovora, management for both apple and pear. A comparison of the forecast accuracy of two common fire blight forecasters, MARYBLYT and Cougarblight, was performed with receiver operating characteristic (ROC) curve ...

  5. Reaction of the core collection of peanut germplasm to Sclerotinia blight and pepper spot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2001, entries from the peanut core collection, a subset of the USDA peanut germplasm collection, were planted in non-replicated plots in a field with a history of Sclerotinia blight. Variability existed among entries for reaction to Sclerotinia blight. Of the 744 entries evaluated, 11% had no d...

  6. Site-specific risk factors for ray blight in Tasmanian pyrethrum fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ray blight of pyrethrum, caused by Phoma ligulicola var. inoxydablis can cause significant reductions in crop growth and pyrethrin yield. Weather and site-specific disease risk factors for ray blight have not been identified or quantified in terms of relative risk, which has limited the efficiency ...

  7. Leaf Petiole and Stem Blight Disease of Sweet Potato Caused by Alternaria Bataticola in Uganda

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alternaria leaf petiole and stem blight is an important disease of sweet potato (Ipomoea batatus (L.) Lam.) in tropical and sub-tropical regions. In surveys conducted in Uganda from 2001 to 2003, disease incidence ranged from 0-49%. Symptoms of Alternaria leaf and stem blight disease consisted of sm...

  8. The 2009 late blight pandemic in eastern USA – causes and results

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The tomato late blight pandemic of 2009 made late blight into a household term in much of the Eastern United States. Many home gardeners and organic producers lost most if not all of their tomato crop, and their experiences were reported in the mainstream press. Some CSAs (Community Supported Agricu...

  9. Survival potential of Phytophthora infestans in relation to environmental factors and late blight occurrence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato is an important crop globally and late blight (Phytophthora infestans) often results in severe crop loss. The cost for late blight control can be in excess of $210 million in the United States. We utilized a non-parametric density distribution analysis of local temperature (Temp) and relative...

  10. Fusarium Head Blight resistance QTL in the NC-Neuse / AGS2000 recombinant inbred population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Breeding for resistance to Fusarium Head Blight is of major importance as the disease can have serious negative impacts on wheat production in warm and humid regions of the world, including the state of North Carolina. Fusarium Head Blight can cause significant grain yield reduction, but also severe...

  11. Using functional genomics to identify molecular markers for fire blight resistance (Erwinia amylovora) in apple (Malus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fire blight, caused by Erwinia amylovora (Ea), is a destructive disease of apple (Malus), pear (Pyrus) and some woody ornamentals in the rose family (Rosaceae). The goal of this project is to use a functional genomics approach to develop tools to breed fire blight resistant apples. Six hundred fifty...

  12. Development and characterization of RiceCAP QTL mapping population for sheath blight resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RiceCAP is a USDA CSREES funded project that has as one of its main objectives developing genetic markers associated with sheath blight resistance. Sheath blight, caused by Rhizoctonia solani, is an important disease of rice in the southern US. Tolerance to the disease is quantitatively inherited an...

  13. Development of early and late blight under different cropping systems and irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop and soil management may influence development and control of early and late blight; however, their effects are not well documented. From 2006-2008, we evaluated the effects of cropping system and irrigation on incidence and severity of early and late blight of potato, and on microclimatic param...

  14. Functional genomic analysis of apple (Malus) EST's associated with fire blight (Erwinia amylovora)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of this project is to use a functional genomic analysis to characterize the response of apple to fire blight disease and thereby, identify new opportunities for improving fire blight resistance. Expressed sequence tags (ESTs) are derived from the mRNA isolated from a tissue and provide a c...

  15. Azalea Web Blight Control: Fungicide Timing in the Nursery and Hot Water Treatment of Stem Cuttings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Azalea web blight is an annual problem on some evergreen azalea cultivars grown in containerized nursery production in the southern and eastern United States. Multiple control strategies are being investigated to control the binucleate Rhizoctonia species that cause web blight. The disease will deve...

  16. In vitro identification of cultivar responses to rice sheath blight pathogen Rhizoctonia solani

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of this project is to identify critical genes for the control of sheath blight disease. To this end, an in vitro method to examine interactions of rice with the rice sheath blight pathogen Rhizocotnia solani was developed. The initial analysis of R. solani isolates from the Arkansas rice ...

  17. MOLECULAR AND PATHOLOGICAL CHARACTERIZATION OF THE RICE SHEATH BLIGHT PATHOGEN RHIZOCTONIA SOLANI IN ARKANSAS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice sheath blight, caused by the fungal pathogen Rhizoctonia solani (AG1-IA), is an economically important disease in Arkansas. To identify the sheath blight resistance gene(s) an extensive molecular and pathological characterization of R., solani was initiated. A wide range of pathogen isolates ...

  18. Occurrence of Late Blight caused by Phytophthora infestans on Potato and Tomato in Alaska

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato late blight, a disease caused by the plant pathogen Phytophthora infestans, is a recent, sporadic problem for commercial growers in Alaska. Since the 1930’s potato has been the main vegetable crop produced in Alaska, however late blight outbreaks have occurred only recently. The 1995 outbreak...

  19. PROTEOMIC ANALYSIS OF POTATO LATE BLIGHT RESISTANCE MEDIATED BY THE RB RESISTANCE GENE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Late blight, caused by the oomycete pathogen, Phytophthora infestans, is a devastating disease of potatoes and tomatoes. A gene RB, cloned from the Mexican diploid potato species Solanum bulbocastanum, confers robust resistance to potato late blight. RB encodes a protein belonging to the CC-NBS-LRR ...

  20. Breeding for Early Blight Resistance in Potato Using the Wild Species Solanum Raphanifolium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early blight of potato (Solanum tuberosum L.), caused by Alternaria solani is a major cause of economic losses in many potato growing regions. Growers are interested in the development of potato cultivars with resistance to early blight as a means to decrease usage of fungicide applications. Using w...

  1. Candidate fire blight resistance genes in Malus identified with the use of genomic tools and approaches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of this research is to utilize current advances in Rosaceae genomics to identify DNA markers for use in marker-assisted selection of durable resistance to fire blight. Candidate fire blight resistance genes were selected and ranked based upon differential expression after inoculation with ...

  2. INTERRELATIONSHIP OF TEMPERATURE, FLOWER DEVELOPMENT, AND BIOLOGICAL CONTROL OF FIRE BLIGHT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BlightBan (a.i., Pseudomonas fluorescens strain A506) has been available in recent years and other biological agents (e.g., Pantoea agglomerans strains C9-1 and E325) are being developed for fire blight control. Advances will partly depend on an understanding of interrelationships involving environ...

  3. Segregation of progeny of Solanum tuberosum subsp. andigena for foliar and tuber resistance to late blight.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Breeding solely for foliar resistance to late blight without emphasis on tuber resistance has the potential to exacerbate tuber infection. Wild potato species are valuable sources of foliar and tuber blight resistance. However, most species are difficult to sexually hybridize with cultivated potat...

  4. Allelic analysis of sheath blight resistance with association mapping in rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sheath blight is one of the most devastating diseases world-wide in rice. For the first time, we adopted association mapping to identify quantitative trait loci for sheath blight resistance from the USDA rice mini-core collection. The phenotyping was conducted with a newly developed micro-chamber me...

  5. Confirming QTLs and finding additional loci responsible for resistance to rice sheath blight disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice sheath blight disease (Rhizoctonia solani AG1-1AKühn) is one of the most destructive rice diseases worldwide. Utilization of host resistance is the most economical and environmentally sound strategy in managing sheath blight (ShB). Ten ShB-QTLs were previously mapped in a LJRIL population using...

  6. The Xanthomonas effector XopJ triggers a conditional hypersensitive response upon treatment of N. benthamiana leaves with salicylic acid

    PubMed Central

    Üstün, Suayib; Bartetzko, Verena; Börnke, Frederik

    2015-01-01

    XopJ is a Xanthomonas type III effector protein that promotes bacterial virulence on susceptible pepper plants through the inhibition of the host cell proteasome and a resultant suppression of salicylic acid (SA) – dependent defense responses. We show here that Nicotiana benthamiana leaves transiently expressing XopJ display hypersensitive response (HR) –like symptoms when exogenously treated with SA. This apparent avirulence function of XopJ was further dependent on effector myristoylation as well as on an intact catalytic triad, suggesting a requirement of its enzymatic activity for HR-like symptom elicitation. The ability of XopJ to cause a HR-like symptom development upon SA treatment was lost upon silencing of SGT1 and NDR1, respectively, but was independent of EDS1 silencing, suggesting that XopJ is recognized by an R protein of the CC-NBS-LRR class. Furthermore, silencing of NPR1 abolished the elicitation of HR-like symptoms in XopJ expressing leaves after SA application. Measurement of the proteasome activity indicated that proteasome inhibition by XopJ was alleviated in the presence of SA, an effect that was not observed in NPR1 silenced plants. Our results suggest that XopJ – triggered HR-like symptoms are closely related to the virulence function of the effector and that XopJ follows a two-signal model in order to elicit a response in the non-host plant N. benthamiana. PMID:26284106

  7. The structure of a Xanthomonas general stress protein involved in citrus canker reveals its flavin-binding property.

    PubMed

    Hilario, Eduardo; Li, Yang; Niks, Dimitri; Fan, Li

    2012-07-01

    Xanthomonas citri pv. citri (Xac) causes citrus canker and affects citrus agriculture worldwide. Functional genetic analysis has indicated that a putative general stress protein (XacGSP) encoded by the Xac2369 gene is involved in the bacterial infection. In this report, the crystal structure of XacGSP was determined to 2.5?Å resolution. There are four XacGSP molecules in the crystal asymmetric unit. Each XacGSP monomer folds into a six-stranded antiparallel ?-barrel flanked by five ?-helices. A C-terminal extension protrudes from the sixth ?-strand of the ?-barrel and pairs with its counterpart from another monomer to form a bridge between the two subunits of an XacGSP dimer. Two XacGSP dimers cross over each other to form a tetramer; the ?-barrels from one dimer contact the ?-barrels of the other, while the two bridges are distant from each other and do not make contacts. The three-dimensional structure of the XacGSP monomer is very similar to those of pyridoxine 5-phosphate oxidases, a group of enzymes that use flavin mononucleotide (FMN) as a cofactor. Consistent with this, purified XacGSP protein binds to both FMN and flavin adenine dinucleotide (FAD), suggesting that XacGSP may help the bacteria to react against the oxidative stress induced by the defense mechanisms of the plant. PMID:22751670

  8. The folate precursor para-aminobenzoic acid elicits induced resistance against Cucumber mosaic virus and Xanthomonas axonopodis

    PubMed Central

    Song, Geun Cheol; Choi, Hye Kyung; Ryu, Choong-Min

    2013-01-01

    Background and Aims The use of vitamins including vitamin B1, B2 and K3 for the induction of systemic acquired resistance (SAR) to protect crops against plant pathogens has been evaluated previously. The use of vitamins is beneficial because it is cost effective and safe for the environment. The use of folate precursors, including ortho-aminobenzoic acid, to induce SAR against a soft-rot pathogen in tobacco has been reported previously. Methods In the present study, para-aminobenzoic acid (PABA, also referred to as vitamin Bx) was selected owing to its effect on the induction of SAR against Xanthomonas axonopodis pv. vesicatoria in pepper plants through greenhouse screening. Key Results Dipping of pepper seedlings in a 1 mm PABA solution in field trials induced SAR against artificially infiltrated X. axonopodis pv. vesicatoria and naturally occurring cucumber mosaic virus. Expression of the Capsicum annuum pathogenesis-related 4 gene was primed in response to pathogen infection as assessed by quantitative real-time PCR. The accumulation of cucumber mosaic virus RNA was reduced in PABA-treated pepper plants at 40 and 105 d post-treatment. Unexpectedly, fruit yield was increased in PABA-treated plants, indicating that PABA-mediated SAR successfully protected pepper plants from infection by bacterial and viral pathogens without significant fitness allocation costs. Conclusions The present study is the first to demonstrate the effective elicitation of SAR by a folate precursor under field conditions. PMID:23471007

  9. Xanthomonas campestris pv. vesicatoria effector AvrBsT induces cell death in pepper, but suppresses defense responses in tomato.

    PubMed

    Kim, Nak Hyun; Choi, Hyong Woo; Hwang, Byung Kook

    2010-08-01

    A type III effector protein, AvrBsT, is secreted into plant cells from Xanthomonas campestris pv. vesicatoria Bv5-4a, which causes bacterial spot disease on pepper (Capsicum annuum) and tomato (Solanum lycopersicum). To define the function and recognition of AvrBsT in the two host plants, avrBsT was introduced into the virulent pepper strain X. campestris pv. vesicatoria Ds1. Expression of AvrBsT in Ds1 rendered the strain avirulent to pepper plants. Infection of pepper leaves with Ds1 (avrBsT) expressing AvrBsT but not with near-isogenic control strains triggered a hypersensitive response (HR) accompanied by strong H(2)O(2) generation, callose deposition, and defense-marker gene expressions. Mutation of avrBsT, however, compromised HR induction by X. campestris pv. vesicatoria Bv5-4a, suggesting its avirulence function in pepper plants. In contrast, AvrBsT acted as a virulence factor in tomato plants. Growth of strains Ds1 (avrBsT) and Bv5-4a DeltaavrBsT was significantly enhanced and reduced, respectively, in tomato leaves. X. campestris pv. vesicatoria-expressed AvrBsT also significantly compromised callose deposition and defense-marker gene expression in tomato plants. Together, these results suggest that the X. campestris pv. vesicatoria type III effector AvrBsT is differentially recognized by pepper and tomato plants. PMID:20615117

  10. Insights into the genome of the xanthan-producing phytopathogen Xanthomonas arboricola pv. pruni 109 by comparative genomic hybridization.

    PubMed

    Mayer, Laurí; Vendruscolo, Claire Tondo; Silva, Wladimir Padilha da; Vorhölter, Frank-Jörg; Becker, Anke; Pühler, Alfred

    2011-08-20

    The phytopathogenic bacterium Xanthomonas arboricola pv. pruni is the causal agent of Prunus Bacterial Spot disease that infects cultivated Prunus species and their hybrids. Furthermore, X. arboricola pv. pruni (Xap) plays a role in biotechnology since it produces xanthan gum, an important biopolymer used mainly in the food, oil, and cosmetics industry. To gain first insights into the genome composition of this pathovar, genomic DNA of X. arboricola pv. pruni strains was compared to the genomes of reference strains X. campestris pv. campestris B100 (Xcc B100) and X. campestris pv. vesicatoria 85-10 (Xcv 85-10) applying microarray-based comparative genomic hybridizations (CGH). The results implied that X. arboricola pv. pruni 109 lacks 6.67% and 5.21% of the genes present in the reference strains Xcc B100 and Xcv 85-10, respectively. Most of the missing genes were found to be organized in clusters and do not belong to the core genome of the two reference strains. Often they encode mobile genetic elements. Furthermore, the absence of gene clusters coding for the lipopolysaccharide (LPS) O-antigens of Xcc B100 and Xcv 85-10 indicates that the structure of the O-antigen of X. arboricola pv. pruni 109 differs from that of Xcc B100 and Xcv 85-10. PMID:21539867

  11. Cloning, purification, crystallization and preliminary X-ray analysis of XC229, a conserved hypothetical protein from Xanthomonas campestris

    SciTech Connect

    Chin, Ko-Hsin; Kuo, Wei-Tien; Chou, Chia-Cheng; Shr, Hui-Lin; Lyu, Ping-Chiang; Wang, Andrew H.-J.; Chou, Shan-Ho

    2005-07-01

    A conserved hypothetical protein XC229 from X. campestris pv. campestris has been overexpressed in E. coli, purified and crystallized. A crystal of the purified recombinant protein diffracted to a resolution of 1.80 Å. Xanthomonas campestris pv. campestris is a Gram-negative yellow-pigmented pathogenic bacterium that causes black rot, one of the major worldwide diseases of cruciferous crops. Its genome contains approximately 4500 genes, roughly one third of which have no known structure and/or function. However, some of these unknown genes are highly conserved among several different bacterial genuses. XC229 is one such protein containing 134 amino acids. It was overexpressed in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. The crystal diffracted to a resolution of at least 1.80 Å. It is cubic and belongs to space group I2{sub x}3, with unit-cell parameters a = b = c = 106.8 Å. It contains one or two molecules per asymmetric unit.

  12. Expression, purification, crystallization and preliminary X-ray analysis of YaeQ (XAC2396) from Xanthomonas axonopodis pv. citri

    SciTech Connect

    Guzzo, Cristiane R.; Nagem, Ronaldo A. P.; Galvão-Botton, Leonor M. P.; Guimarães, Beatriz G.; Medrano, Francisco J.; Barbosa, João A. R. G.; Farah, Chuck S.

    2005-05-01

    The first crystallographic study of a member of the YaeQ family of proteins, which are conserved in a small group of Gram-negative bacteria, most of which are animal or plant pathogens, is reported. Diffraction data were collected to 1.9 Å resolution and an interpretable electron-density map was obtained. Xanthomonas axonopodis pv. citri YaeQ (XAC2396) is a member of a family of bacterial proteins conserved in several Gram-negative pathogens. Here, the cloning, expression, purification and crystallization of the 182-residue (20.6 kDa) YaeQ protein are described. Recombinant YaeQ containing selenomethionine was crystallized in space group P2{sub 1} and crystals diffracted to 1.9 Å resolution at a synchrotron source. The unit-cell parameters are a = 39.75, b = 91.88, c = 48.03 Å, β = 108.37°. The calculated Matthews coefficient suggests the presence of two YaeQ molecules in the asymmetric unit. Initial experimental phases were calculated by the multiple-wavelength anomalous dispersion technique and an interpretable electron-density map was obtained.

  13. Preparation, crystallization and preliminary X-ray characterization of a conserved hypothetical protein XC1692 from Xanthomonas campestris

    SciTech Connect

    Chin, Ko-Hsin; Huang, Zhao-Wei; Wei, Kun-Chou; Chou, Chia-Cheng; Lee, Cheng-Chung; Shr, Hui-Lin; Gao, Fei Philip; Lyu, Ping-Chiang; Wang, Andrew H.-J.; Chou, Shan-Ho

    2005-07-01

    A conserved hypothetical protein XC1692 from X. campestris pv. campestris has been overexpressed in E. coli. The purified recombinant protein crystallized in a variety of forms and diffracted to a resolution of at least 1.45 Å. Xanthomonas campestris pv. campestris strain 17 is a Gram-negative yellow-pigmented pathogenic bacterium that causes black rot, one of the major worldwide diseases of cruciferous crops. Its genome contains approximately 4500 genes, one third of which have no known structure and/or function yet are highly conserved among several different bacterial genuses. One of these gene products is XC1692 protein, containing 141 amino acids. It was overexpressed in Escherichia coli, purified and crystallized in a variety of forms using the hanging-drop vapour-diffusion method. The crystals diffract to at least 1.45 Å resolution. They are hexagonal and belong to space group P6{sub 3}, with unit-cell parameters a = b = 56.9, c = 71.0 Å. They contain one molecule per asymmetric unit.

  14. Cloning, purification crystallization and preliminary X-ray characterization of a conserved hypothetical protein XC6422 from Xanthomonas campestris

    SciTech Connect

    Yang, Chao-Yu; Chin, Ko-Hsin; Chou, Chia-Cheng; Shr, Hui-Lin; Gao, Fei Philip; Lyu, Ping-Chiang; Wang, Andrew H.-J.; Chou, Shan-Ho

    2005-07-01

    A conserved hypothetical protein XC6422 from X. campestris pv. campestris has been overexpressed in E. coli, purified and crystallized. Crystals obtained from the purified recombinant protein showed a variety of forms that diffracted to at least 1.6 Å resolution. Xanthomonas campestris pv. campestris is a Gram-negative yellow-pigmented pathogenic bacterium that causes black rot, one of the major worldwide diseases of cruciferous crops. Its genome contains approximately 4500 genes, roughly one third of which have no known structure and/or function. However, some genes of unknown function are highly conserved among several different bacterial genuses. XC6422 is one such conserved hypothetical protein and has been overexpressed in Escherichia coli, purified and crystallized in a variety of forms using the hanging-drop vapour-diffusion method. Crystals grew to approximately 2 × 1.5 × 0.4 mm in size after one week and diffracted to at least 1.6 Å resolution. They belong to the monoclinic space group C2, with one molecule per asymmetric unit and unit-cell parameters a = 75.8, b = 79.3, c = 38.2 Å, β = 109.4°. Determination of this structure may provide insights into the protein’s function.

  15. Effect of X-irradiation on Citrus Canker Pathogen Xanthomonas citri subsp. citri of Satsuma Mandarin Fruits

    PubMed Central

    Song, Min-A; Park, Jae Sin; Kim, Ki Deok; Jeun, Yong Chull

    2015-01-01

    Citrus canker caused by Xanthomonas citri subsp. citri (Xcc) is one of the most important bacterial diseases of citrus. Because citrus canker is not found in many countries including European Union and Australia, Xcc is strictly regulated in order to prevent its spread. In this study, the effects of X-irradiation on Xcc growth either in the suspension or on the surface of citrus fruits were investigated. The suspension containing 1×107 cfu/ml of Xcc was irradiated with different absorbed doses of X-irradiation ranging from 50 to 400 Gy. The results showed that Xcc was fully dead at 400 Gy of X-irradiation. To determine the effect of X-irradiation on quarantine, the Xcc-inoculated citrus fruits were irradiated with different X-ray doses at which Xcc was completely inhibited by an irradiation dose of 250 Gy. The D10 value for Xcc on citrus fruits was found to be 97 Gy, indicating the possibility of direct application on citrus quarantine without any side sterilizer. Beside, presence of Xcc on the surface of asymptomatic citrus fruits obtained from citrus canker-infected orchards was noted. It indicated that the exporting citrus fruits need any treatment so that Xcc on the citrus fruits should be completely eliminated. Based on these results, ionizing radiation can be considered as an alternative method of eradicating Xcc for export of citrus fruits. PMID:26672670

  16. Effect of X-irradiation on Citrus Canker Pathogen Xanthomonas citri subsp. citri of Satsuma Mandarin Fruits.

    PubMed

    Song, Min-A; Park, Jae Sin; Kim, Ki Deok; Jeun, Yong Chull

    2015-12-01

    Citrus canker caused by Xanthomonas citri subsp. citri (Xcc) is one of the most important bacterial diseases of citrus. Because citrus canker is not found in many countries including European Union and Australia, Xcc is strictly regulated in order to prevent its spread. In this study, the effects of X-irradiation on Xcc growth either in the suspension or on the surface of citrus fruits were investigated. The suspension containing 1×10(7) cfu/ml of Xcc was irradiated with different absorbed doses of X-irradiation ranging from 50 to 400 Gy. The results showed that Xcc was fully dead at 400 Gy of X-irradiation. To determine the effect of X-irradiation on quarantine, the Xcc-inoculated citrus fruits were irradiated with different X-ray doses at which Xcc was completely inhibited by an irradiation dose of 250 Gy. The D10 value for Xcc on citrus fruits was found to be 97 Gy, indicating the possibility of direct application on citrus quarantine without any side sterilizer. Beside, presence of Xcc on the surface of asymptomatic citrus fruits obtained from citrus canker-infected orchards was noted. It indicated that the exporting citrus fruits need any treatment so that Xcc on the citrus fruits should be completely eliminated. Based on these results, ionizing radiation can be considered as an alternative method of eradicating Xcc for export of citrus fruits. PMID:26672670

  17. Identification of bacterial guanylate cyclases

    PubMed Central

    Ryu, Min-Hyung; Youn, Hwan; Kang, In-Hye; Gomelsky, Mark

    2015-01-01

    The ability of bacteria to use cGMP as a second messenger has been controversial for decades. Recently, nucleotide cyclases from Rhodospirillum centenum, GcyA, and Xanthomonas campestris, GuaX, have been shown to possess guanylate cyclase activities. Enzymatic activities of these guanylate cyclases measured in vitro were low, which makes interpretation of the assays ambiguous. Protein sequence analysis at present is insufficient to distinguish between bacterial adenylate and guanylate cyclases, both of which belong to nucleotide cyclases of type III. We developed a simple method for discriminating between guanylate and adenylate cyclase activities in a physiologically relevant bacterial system. The method relies on the use of a mutant cAMP receptor protein, CRPG, constructed here. While wild-type CRP is activated exclusively by cAMP,_CRPG can be activated by either cAMP or cGMP. Using CRP- and CRPG-dependent lacZ expression in two E. coli strains, we verified that R. centenum GcyA and X. campestris GuaX have primarily guanylate cyclase activities. Among two other bacterial nucleotide cyclases tested, one, GuaA from Azospillrillum sp. B510, proved to have guanylate cyclase activity, while the other one, Bradyrhizobium japonicum CyaA, turned out to function as an adenylate cyclase. The results obtained with this reporter system were in excellent agreement with direct measurements of cyclic nucleotides secreted by E. coli expressing nucleotide cyclase genes. The simple genetic screen developed here is expected to facilitate identification of bacterial guanylate cyclases and engineering of guanylate cyclases with desired properties. PMID:25645367

  18. Identification of bacterial guanylate cyclases.

    PubMed

    Ryu, Min-Hyung; Youn, Hwan; Kang, In-Hye; Gomelsky, Mark

    2015-05-01

    The ability of bacteria to use cGMP as a second messenger has been controversial for decades. Recently, nucleotide cyclases from Rhodospirillum centenum, GcyA, and Xanthomonas campestris, GuaX, have been shown to possess guanylate cyclase activities. Enzymatic activities of these guanylate cyclases measured in vitro were low, which makes interpretation of the assays ambiguous. Protein sequence analysis at present is insufficient to distinguish between bacterial adenylate and guanylate cyclases, both of which belong to nucleotide cyclases of type III. We developed a simple method for discriminating between guanylate and adenylate cyclase activities in a physiologically relevant bacterial system. The method relies on the use of a mutant cAMP receptor protein, CRPG , constructed here. While wild-type CRP is activated exclusively by cAMP, CRPG can be activated by either cAMP or cGMP. Using CRP- and CRPG -dependent lacZ expression in two E. coli strains, we verified that R. centenum GcyA and X. campestris GuaX have primarily guanylate cyclase activities. Among two other bacterial nucleotide cyclases tested, one, GuaA from Azospillrillum sp. B510, proved to have guanylate cyclase activity, while the other one, Bradyrhizobium japonicum CyaA, turned out to function as an adenylate cyclase. The results obtained with this reporter system were in excellent agreement with direct measurements of cyclic nucleotides secreted by E. coli expressing nucleotide cyclase genes. The simple genetic screen developed here is expected to facilitate identification of bacterial guanylate cyclases and engineering of guanylate cyclases with desired properties. PMID:25645367

  19. Effects of early and late harvest on agronomic performance and stability of late blight resistant (R-gene free) potato genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To assess the effectiveness of genotype resistance to potato late blight, foliar blight development, area under disease progress curves (AUDPC) and tuber blight were quantified. Late blight resistant potato genotypes (R-gene free) were assessed for yield performance and stability at early (90 days) ...

  20. Biological Efficacy of Streptomyces sp. Strain BN1 against the Cereal Head Blight Pathogen Fusarium graminearum

    PubMed Central

    Jung, Boknam; Park, Sook-Young; Lee, Yin-Won; Lee, Jungkwan

    2013-01-01

    Fusarium head blight (FHB) caused by the filamentous fungus Fusarium graminearum is one of the most severe diseases threatening the production of small grains. Infected grains are often contaminated with mycotoxins such as zearalenone and trichothecences. During survey of contamination by FHB in rice grains, we found a bacterial isolate, designated as BN1, antagonistic to F. graminearum. The strain BN1 had branching vegetative hyphae and spores, and its aerial hyphae often had long, straight filaments bearing spores. The 16S rRNA gene of BN1 had 100% sequence identity with those found in several Streptomyces species. Phylogenetic analysis of ITS regions showed that BN1 grouped with S. sampsonii with 77% bootstrap value, suggesting that BN1 was not a known Streptomyces species. In addition, the efficacy of the BN1 strain against F. graminearum strains was tested both in vitro and in vivo. Wheat seedling length was significantly decreased by F. graminearum infection. However, this effect was mitigated when wheat seeds were treated with BN1 spore suspension prior to F. graminearum infection. BN1 also significantly decreased FHB severity when it was sprayed onto wheat heads, whereas BN1 was not effective when wheat heads were point inoculated. These results suggest that spraying of BN1 spores onto wheat heads during the wheat flowering season can be efficient for plant protection. Mechanistic studies on the antagonistic effect of BN1 against F. graminearum remain to be analyzed. PMID:25288928

  1. The LOV Protein of Xanthomonas citri subsp. citri Plays a Significant Role in the Counteraction of Plant Immune Responses during Citrus Canker

    PubMed Central

    Kraiselburd, Ivana; Daurelio, Lucas D.; Tondo, María Laura; Merelo, Paz; Cortadi, Adriana A.; Talón, Manuel; Tadeo, Francisco R.; Orellano, Elena G.

    2013-01-01

    Pathogens interaction with a host plant starts a set of immune responses that result in complex changes in gene expression and plant physiology. Light is an important modulator of plant defense response and recent studies have evidenced the novel influence of this environmental stimulus in the virulence of several bacterial pathogens. Xanthomonas citri subsp. citri is the bacterium responsible for citrus canker disease, which affects most citrus cultivars. The ability of this bacterium to colonize host plants is influenced by bacterial blue-light sensing through a LOV-domain protein and disease symptoms are considerably altered upon deletion of this protein. In this work we aimed to unravel the role of this photoreceptor during the bacterial counteraction of plant immune responses leading to citrus canker development. We performed a transcriptomic analysis in Citrus sinensis leaves inoculated with the wild type X. citri subsp. citri and with a mutant strain lacking the LOV protein by a cDNA microarray and evaluated the differentially regulated genes corresponding to specific biological processes. A down-regulation of photosynthesis-related genes (together with a corresponding decrease in photosynthesis rates) was observed upon bacterial infection, this effect being more pronounced in plants infected with the lov-mutant bacterial strain. Infection with this strain was also accompanied with the up-regulation of several secondary metabolism- and defense response-related genes. Moreover, we found that relevant plant physiological alterations triggered by pathogen attack such as cell wall fortification and tissue disruption were amplified during the lov-mutant strain infection. These results suggest the participation of the LOV-domain protein from X. citri subsp. citri in the bacterial counteraction of host plant defense response, contributing in this way to disease development. PMID:24260514

  2. Registration of TARS-MST1 and SB-DT1 multiple-stress tolerant black bean germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High-ambient-temperature stress, drought stress, root rot disease, and common bacterial blight [CBB; caused by Xanthomonas axonopodis pv. phaseoli (Smith) Dye] cause widespread yield reductions in common bean (Phaseolus vulgaris L.) worldwide. TARS-MST1 (Reg. No. GP-284, PI 661512) and SB-DT1 (Reg. ...

  3. Rice Xb15, a protein phosphatase 2C, negatively regulates Xa21-mediated resistance and programmed cell death

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rice pathogen recognition receptor, XA21, confers resistance to specific races of Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial blight disease. A yeast-two-hybrid screen using the intracellular portion of XA21, including the juxtamembrane (JM) and kinase domain as a bait, i...

  4. Glucose-6-phosphate dehydrogenase is required for extracellular polysaccharide production, cell motility and the full virulence of Xanthomonas oryzae pv. oryzicola.

    PubMed

    Guo, Wei; Zou, Li-Fang; Cai, Lu-Lu; Chen, Gong-You

    2015-01-01

    Glucose-6-phosphate dehydrogenase (Zwf) catalyzes conversion of glucose 6-phosphate into gluconate 6-phosphate for Entner-Doudoroff (ED) and pentose phosphate pathways in living organisms. However, it is unclear whether the Zwf-coding gene is involved in pathogenesis of phytopathogenic bacterium. In this report, we found that deletion mutation in zwf of Xanthomonas oryzae pv. oryzicola (Xoc), led the pathogen unable to effectively utilize glucose, sucrose, fructose, mannose and galactose for growth. The transcript level of zwf was strongly induced by glucose, sucrose, fructose, mannose and galactose than that by the NY medium (non sugar). The deletion mutagenesis in zwf also altered the transcript level of key genes, such as rpfF, rpfG and clp, in diffusible signal factor (DSF)-signaling network. In addition, the deletion mutation in zwf impaired bacterial virulence and growth capability in rice leaves, reduced bacterial cell motility and extracellular polysaccharide (EPS) production. The lost properties mentioned above in the zwf deletion mutant were completely restored to the wild-type level by the presence of zwf in trans. All these results suggest that zwf is required for the full virulence of Xoc in rice leaves by involving carbohydrate metabolisms that impact bacterial DSF-signaling network. PMID:25450881

  5. Xanthomonas axonopodis pv. phaseoli var. fuscans is aggregated in stable biofilm population sizes in the phyllosphere of field-grown beans.

    PubMed

    Jacques, M-A; Josi, K; Darrasse, A; Samson, R

    2005-04-01

    The occurrence of "Xanthomonas axonopodis pv. phaseoli var. fuscans" (proposed name) populations as biofilms on bean leaves was investigated during three field experiments on plots established with naturally contaminated bean seeds. Behavior of aggregated versus solitary populations was determined by quantification of culturable cells in different fractions of the epiphytic population separated by particle size. X. axonopodis pv. phaseoli var. fuscans population dynamic studies confirmed an asymptomatic and epiphytic colonization of the bean phyllosphere. For all years of experiment and cultivars tested, biofilms and solitary components of the populations were always detected. Biofilm population sizes remained stable throughout the growing season (around 10(5) CFU/g of fresh weight) while solitary population sizes were more abundant and varied with climate. According to enterobacterial repetitive intergenic consensus fingerprinting, aggregated bacterial isolates were not different from solitary isolates. In controlled conditions, application of a hydric stress resulted in a decrease of the solitary populations on the leaf surface while the biofilm fraction remained stable. Suppression of the hydric stress allowed solitary bacterial populations to increase again. Aggregation in biofilms on leaf surfaces provides protection to the bacterial cells against hydric stress. PMID:15812033

  6. Comparative RNA-Seq Analysis of Early-Infected Peach Leaves by the Invasive Phytopathogen Xanthomonas arboricola pv. pruni

    PubMed Central

    Socquet-Juglard, Didier; Kamber, Tim; Pothier, Joël F.; Christen, Danilo; Gessler, Cesare; Duffy, Brion; Patocchi, Andrea

    2013-01-01

    Xanthomonas arboricola pv. pruni is a quarantine bacterial pathogen that threatens peach production by causing necrotic spots on leaves and fruits, thus with the potential of severely reducing yields. The current understanding of the host plant defense responses to the pathogen is very limited. Using whole transcriptome sequencing, differential gene expression was analyzed at two time points, 2 h and 12 h post inoculation (hpi), by comparing the inoculated samples to their respective controls. On the total of 19,781 known peach genes that were expressed in all time points and conditions, 34 and 263 were differentially expressed at 2 and 12 hpi, respectively. Of those, 82% and 40% were up-regulated, respectively; and 18% and 60% were down-regulated, respectively. The functional annotation based on gene ontology (GO) analysis highlighted that genes involved in metabolic process and response to stress were particularly represented at 2 hpi whereas at 12 hpi cellular and metabolic processes were the categories with the highest number of genes differentially expressed. Of particular interest among the differentially expressed genes identified were several pathogen-associated molecular pattern (PAMP) receptors, disease resistance genes including several RPM1-like and pathogenesis related thaumatin encoding genes. Other genes involved in photosynthesis, in cell wall reorganization, in hormone signaling pathways or encoding cytochrome were also differentially expressed. In addition, novel transcripts were identified, providing another basis for further characterization of plant defense-related genes. Overall, this study gives a first insight of the peach defense mechanisms during the very early stages of infection with a bacterial disease in the case of a compatible interaction. PMID:23342103

  7. Type Three Effector Gene Distribution and Sequence Analysis Provide New Insights into the Pathogenicity of Plant-Pathogenic Xanthomonas arboricola

    PubMed Central

    Hajri, Ahmed; Pothier, Joël F.; Fischer-Le Saux, Marion; Bonneau, Sophie; Poussier, Stéphane; Boureau, Tristan; Duffy, Brion

    2012-01-01

    Xanthomonas arboricola is a complex bacterial species which mainly attacks fruit trees and is responsible for emerging diseases in Europe. It comprises seven pathovars (X. arboricola pv. pruni, X. arboricola pv. corylina, X. arboricola pv. juglandis, X. arboricola pv. populi, X. arboricola pv. poinsettiicola, X. arboricola pv. celebensis, and X. arboricola pv. fragariae), each exhibiting characteristic disease symptoms and distinct host specificities. To better understand the factors underlying this ecological trait, we first assessed the phylogenetic relationships among a worldwide collection of X. arboricola strains by sequencing the housekeeping gene rpoD. This analysis revealed that strains of X. arboricola pathovar populi are divergent from the main X. arboricola cluster formed by all other strains. Then, we investigated the distribution of 53 type III effector (T3E) genes in a collection of 57 X. arboricola strains that are representative of the main X. arboricola cluster. Our results showed that T3E repertoires vary greatly between X. arboricola pathovars in terms of size. Indeed, X. arboricola pathovars pruni, corylina, and juglandis, which are responsible for economically important stone fruit and nut diseases in Europe, harbored the largest T3E repertoires, whereas pathovars poinsettiicola, celebensis, and fragariae harbored the smallest. We also identified several differences in T3E gene content between X. arboricola pathovars pruni, corylina, and juglandis which may account for their differing host specificities. Further, we examined the allelic diversity of eight T3E genes from X. arboricola pathovars. This analysis revealed very limited allelic variations at the different loci. Altogether, the data presented here provide new insights into the evolution of pathogenicity and host range of X. arboricola and are discussed in terms of emergence of new diseases within this bacterial species. PMID:22101042

  8. Bioinformatic identification of cassava miRNAs differentially expressed in response to infection by Xanthomonas axonopodis pv. manihotis

    PubMed Central

    2012-01-01

    Background microRNAs (miRNAs) are short RNA molecules that control gene expression by silencing complementary mRNA. They play a crucial role in stress response in plants, including biotic stress. Some miRNAs are known to respond to bacterial infection in Arabidopsis thaliana but it is currently unknown whether these responses are conserved in other plants and whether novel species-specific miRNAs could have a role in defense. Results This work addresses the role of miRNAs in the Manihot esculenta (cassava)-Xanthomonas axonopodis pv. manihotis (Xam) interaction. Next-generation sequencing was used for analyzing small RNA libraries from cassava tissue infected and non-infected with Xam. A full repertoire of cassava miRNAs was characterized, which included 56 conserved families and 12 novel cassava-specific families. Endogenous targets were predicted in the cassava genome for many miRNA families. Some miRNA families' expression was increased in response to bacterial infection, including miRNAs known to mediate defense by targeting auxin-responding factors as well as some cassava-specific miRNAs. Some bacteria-repressed miRNAs included families involved in copper regulation as well as families targeting disease resistance genes. Putative transcription factor binding sites (TFBS) were identified in the MIRNA genes promoter region and compared to promoter regions in miRNA target genes and protein coding genes, revealing differences between MIRNA gene transcriptional regulation and other genes. Conclusions Taken together these results suggest that miRNAs in cassava play a role in defense against Xam, and that the mechanism is similar to what's known in Arabidopsis and involves some of the same families. PMID:22361011

  9. Purification and Characterization of OleA from Xanthomonas campestris and Demonstration of a Non-decarboxylative Claisen Condensation Reaction

    SciTech Connect

    Frias, JA; Richman, JE; Erickson, JS; Wackett, LP

    2011-03-25

    OleA catalyzes the condensation of fatty acyl groups in the first step of bacterial long-chain olefin biosynthesis, but the mechanism of the condensation reaction is controversial. In this study, OleA from Xanthomonas campestris was expressed in Escherichia coli and purified to homogeneity. The purified protein was shown to be active with fatty acyl-CoA substrates that ranged from C(8) to C(16) in length. With limiting myristoyl-CoA (C(14)), 1 mol of the free coenzyme A was released/mol of myristoyl-CoA consumed. Using [(14)C] myristoyl-CoA, the other products were identified as myristic acid, 2-myristoylmyristic acid, and 14-heptacosanone. 2-Myristoylmyristic acid was indicated to be the physiologically relevant product of OleA in several ways. First, 2-myristoylmyristic acid was the major condensed product in short incubations, but over time, it decreased with the concomitant increase of 14-heptacosanone. Second, synthetic 2-myristoylmyristic acid showed similar decarboxylation kinetics in the absence of OleA. Third, 2-myristoylmyristic acid was shown to be reactive with purified OleC and OleD to generate the olefin 14-heptacosene, a product seen in previous in vivo studies. The decarboxylation product, 14-heptacosanone, did not react with OleC and OleD to produce any demonstrable product. Substantial hydrolysis of fatty acyl-CoA substrates to the corresponding fatty acids was observed, but it is currently unclear if this occurs in vivo. In total, these data are consistent with OleA catalyzing a non-decarboxylative Claisen condensation reaction in the first step of the olefin biosynthetic pathway previously found to be present in at least 70 different bacterial strains.

  10. Involvement of Phaseolotoxin in Halo Blight of Beans

    PubMed Central

    Mitchell, Robin E.; Bieleski, Roderick L.

    1977-01-01

    Phaseolotoxin ([N?-phosphosulfamyl]ornithylalanylhomoarginine) is produced by Pseudomonas phaseolicola (Burkh.) Dows. in liquid culture. When phaseolotoxin was applied to leaves of bean (Phaseolus vulgaris L.) at 0.1 to 1 nmoles/g fresh weight of leaf by a prick-assay procedure, the characteristic “halo” symptom of bean halo blight disease developed after 24 to 48 hours. At higher concentrations (10-100 nmoles/g fresh weight) the systemic symptoms, which are commonly a feature of diseased plants, also developed after 24 to 48 hours. When applied to bean leaves, phaseolotoxin was rapidly broken down by the sequential removal of homoarginine and alanine. N?-Phosphosulfamylornithine was the major product formed, although phosphosulfamate and unreacted phaseolotoxin were also present. When P. phaseolicola infected bean plants, very little phaseolotoxin was detected within the plant, but the amount of N?-phosphosulfamylornithine formed was sufficient to account for the observed chlorosis, the ornithine accumulation, and the systemic symptoms. N?-Phosphosulfamylornithine therefore seemed to be the main functional phytotoxin of bean halo blight disease. When 35S-phaseolotoxin was applied to primary leaves, 35S (assumed to be a mixture of phaseolotoxin, N?-phosphosulfamylornithine, and phosphosulfamate) was actively loaded into the fine veins of the leaf and moved through the plant in the vascular system at a speed greater than 3 cm/hour, particularly toward the apical and lateral buds and the root tips. Certain factors which affect pholem transport (arsenate, cold) affected toxin movement and the expression of systemic symptoms. Autoradiography suggested that the 35S was transported in the phloem. A model for the involvement of phaseolotoxin in halo blight disease is presented. Images PMID:16660172

  11. DISEASE DEVELOPMENT AND SYMPTOM EXPRESSION OF XANTHOMONAS AXONOPODIS PV. CITRI IN VARIOUS CITRUS PLANT TISSUES.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experimental inoculations of Xanthomonas axonopodis pv. citri (Xac) in different tissues of Tahiti lime and Pineapple sweet orange were conducted monthly under natural conditions in Réunion Island. The interactions between a set of environmental and epidemic variables associated with disease express...

  12. Resistance of sweet orange Pera (Citrus sinensis) genotypes to Xanthomonas citri subsp. citri under field conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citrus canker control is based on protection measures and eradication of plants infected with Xanthomonas citri subsp. citri. Although these measures show satisfactory results, the use of resistant genotypes is an important alternative for citrus canker control. The aim of this study was to evaluate...

  13. Predisposition of citrus foliage to infection with Xanthomonas citri subsp. citri

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citrus canker (caused by Xanthomonas citri subsp. citri, Xcc) is a serious disease of susceptible citrus in Florida and other citrus-growing areas of the world. The effect of leaf preconditioning as a route for entry of the bacteria is poorly characterized. A series of experiments were designed to i...

  14. First report of citrus canker caused by Xanthomonas citri in Somalia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Xanthomonas citri, causal agent of citrus canker, has been reported in several countries in Africa, but not Somalia. During 2006 and 2007, hyperplasia-type lesions, often surrounded by a water-soaked margin and yellow halo, typical of citrus canker caused by X. citri, were found on 8-10 year-old gr...

  15. Draft Genome Sequences of Two Strains of Xanthomonas arboricola pv. celebensis Isolated from Banana Plants.

    PubMed

    Harrison, James; Grant, Murray R; Studholme, David J

    2016-01-01

    We report here the annotated draft genome sequences of strains Xanthomonas arboricola pv. celebensis NCPPB 1832 and NCPPB 1630 (NCPPB, National Collection of Plant Pathogenic Bacteria), both isolated from Musa species in New Zealand. This will allow the comparison of genomes between phylogenetically distant xanthomonads that have independently converged with the ability to colonize banana plants. PMID:26868395

  16. A comparison of the bioassay test and culture to detect Xanthomonas citri subsp. citri

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citrus canker (caused by Xanthomonas citri subsp. citri [Xcc]) can cause yield loss of susceptible citrus and result in trade restrictions of fresh fruit. For both regulatory purposes and epidemiological studies, accurate detection and quantification of viable inoculum is critical. Two accepted meth...

  17. Draft Genome Sequences of Two Strains of Xanthomonas arboricola pv. celebensis Isolated from Banana Plants

    PubMed Central

    Harrison, James; Grant, Murray R.

    2016-01-01

    We report here the annotated draft genome sequences of strains Xanthomonas arboricola pv. celebensis NCPPB 1832 and NCPPB 1630 (NCPPB, National Collection of Plant Pathogenic Bacteria), both isolated from Musa species in New Zealand. This will allow the comparison of genomes between phylogenetically distant xanthomonads that have independently converged with the ability to colonize banana plants. PMID:26868395

  18. A homolog of an Escherichia coli phosphate-binding protein gene from Xanthomonas oryzae pv. oryzae

    NASA Technical Reports Server (NTRS)

    Hopkins, C. M.; White, F. F.; Heaton, L. A.; Guikema, J. A.; Leach, J. E.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    A Xanthomonas oryzae pv. oryzae gene with sequence similarity to an Escherichia coli phosphate-binding protein gene (phoS) produces a periplasmic protein of apparent M(r) 35,000 when expressed in E. coli. Amino terminal sequencing revealed that a signal peptide is removed during transport to the periplasm in E. coli.

  19. Genetic diversity in populations of Xanthomonas campestris pv. camestris in cruciferous weeds in central coastal California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Xanthomonas campestris pv. campestris infects a large number of cruciferous plants, including weeds. California has one of the largest and most diverse populations of wild cruciferous plants in the world. Although considerable information is available on the genetic diversity of X. campestris pv. ca...

  20. Host genotype and hypersensitive reaction influence population levels of Xanthomonas campestris pv. vitians in lettuce

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Population dynamics of Xanthomonas campestris pv. vitians spray inoculated on or infiltrated into lettuce leaves were monitored on cultivars that were well characterized for resistance or susceptibility to the pathogen. In general, population growth was greater for susceptible (Clemente, Salinas 88,...

  1. Complete Genome Sequence of Xanthomonas campestris pv. campestris Strain 17 from Taiwan.

    PubMed

    Liu, Yi-Chung; Wang, Shiuh-Chaun; Yu, Yu-Jen; Fung, Kit-Man; Yang, Ming-Te; Tseng, Yi-Hsiung; Tsai, Shih-Feng; Sun, H Sunny; Lyu, Ping-Chiang; Chou, Shan-Ho

    2015-01-01

    Xanthomonas campestris pv. campestris 17 is a Gram-negative bacterium that is phytopathogenic to cruciferous plants in Taiwan. The 4,994,426-bp-long genome consists of 24 contigs with 4,050 protein-coding genes, 1 noncoding RNA (ncRNA) gene, 6 rRNA genes, and 55 tRNA genes. PMID:26679582

  2. Complete Genome Sequence of Xanthomonas campestris pv. campestris Strain 17 from Taiwan

    PubMed Central

    Liu, Yi-Chung; Wang, Shiuh-Chaun; Yu, Yu-Jen; Fung, Kit-Man; Yang, Ming-Te; Tseng, Yi-Hsiung; Tsai, Shih-Feng; Sun, H. Sunny

    2015-01-01

    Xanthomonas campestris pv. campestris 17 is a Gram-negative bacterium that is phytopathogenic to cruciferous plants in Taiwan. The 4,994,426-bp-long genome consists of 24 contigs with 4,050 protein-coding genes, 1 noncoding RNA (ncRNA) gene, 6 rRNA genes, and 55 tRNA genes. PMID:26679582

  3. GENETIC DIVERSITY IN POPULATIONS OF XANTHOMONAS CAMPESTRIS PV. CAMPESTRIS IN CRUCIFEROUS WEEDS IN CENTRAL COASTAL CALIFORNIA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Xanthomonas campestris pv. campestris (Xcc) infects a large number of cruciferous plants, including weeds. California has one of the largest and most diverse populations of wild cruciferous plants in the world. Although considerable information is available on the genetic diversity of Xcc in commerc...

  4. Reduced susceptibility to Xanthomonas citri in transgenic citrus expressing the FLS2 receptor from Nicotiana benthamiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Overexpression of plant pattern-recognition receptors (PRRs) by genetic engineering provides a novel approach to enhance plant immunity and broad-spectrum disease resistance. The citrus canker disease associated with Xanthomonas citri is one of the important diseases damaging citrus production world...

  5. Chestnut resistance to the blight disease: insights from transcriptome analysis

    PubMed Central

    2012-01-01

    Background A century ago, Chestnut Blight Disease (CBD) devastated the American chestnut. Backcross breeding has been underway to introgress resistance from Chinese chestnut into surviving American chestnut genotypes. Development of genomic resources for the family Fagaceae, has focused in this project on Castanea mollissima Blume (Chinese chestnut) and Castanea dentata (Marsh.) Borkh (American chestnut) to aid in the backcross breeding effort and in the eventual identification of blight resistance genes through genomic sequencing and map based cloning. A previous study reported partial characterization of the transcriptomes from these two species. Here, further analyses of a larger dataset and assemblies including both 454 and capillary sequences were performed and defense related genes with differential transcript abundance (GDTA) in canker versus healthy stem tissues were identified. Results Over one and a half million cDNA reads were assembled into 34,800 transcript contigs from American chestnut and 48,335 transcript contigs from Chinese chestnut. Chestnut cDNA showed higher coding sequence similarity to genes in other woody plants than in herbaceous species. The number of genes tagged, the length of coding sequences, and the numbers of tagged members within gene families showed that the cDNA dataset provides a good resource for studying the American and Chinese chestnut transcriptomes. In silico analysis of transcript abundance identified hundreds of GDTA in canker versus healthy stem tissues. A significant number of additional DTA genes involved in the defense-response not reported in a previous study were identified here. These DTA genes belong to various pathways involving cell wall biosynthesis, reactive oxygen species (ROS), salicylic acid (SA), ethylene, jasmonic acid (JA), abscissic acid (ABA), and hormone signalling. DTA genes were also identified in the hypersensitive response and programmed cell death (PCD) pathways. These DTA genes are candidates for host resistance to the chestnut blight fungus, Cryphonectria parasitica. Conclusions Our data allowed the identification of many genes and gene network candidates for host resistance to the chestnut blight fungus, Cryphonectria parasitica. The similar set of GDTAs in American chestnut and Chinese chestnut suggests that the variation in sensitivity to this pathogen between these species may be the result of different timing and amplitude of the response of the two to the pathogen infection. Resources developed in this study are useful for functional genomics, comparative genomics, resistance breeding and phylogenetics in the Fagaceae. PMID:22429310

  6. Bacterial Vaginosis

    MedlinePLUS

    ... vaginosis can increase your chance of getting an STD. What is bacterial vaginosis? Bacterial vaginosis (BV) is ... contributes to BV. BV is not considered an STD, but having BV can increase your chances of ...

  7. Biochemical and molecular tools reveal two diverse Xanthomonas groups in bananas.

    PubMed

    Adriko, J; Aritua, V; Mortensen, C N; Tushemereirwe, W K; Mulondo, A L; Kubiriba, J; Lund, O S

    2016-02-01

    Xanthomonas campestris pv. musacearum (Xcm) causing the banana Xanthomonas wilt (BXW) disease has been the main xanthomonad associated with bananas in East and Central Africa based on phenotypic and biochemical characteristics. However, biochemical methods cannot effectively distinguish between pathogenic and non-pathogenic xanthomonads. In this study, gram-negative and yellow-pigmented mucoid bacteria were isolated from BXW symptomatic and symptomless bananas collected from different parts of Uganda. Biolog, Xcm-specific (GspDm), Xanthomonas vasicola species-specific (NZ085) and Xanthomonas genus-specific (X1623) primers in PCR, and sequencing of ITS region were used to identify and characterize the isolates. Biolog tests revealed several isolates as xanthomonads. The GspDm and NZ085 primers accurately identified three isolates from diseased bananas as Xcm and these were pathogenic when re-inoculated into bananas. DNA from more isolates than those amplified by GspDm and NZ085 primers were amplified by the X1623 primers implying they are xanthomonads, these were however non-pathogenic on bananas. In the 16-23 ITS sequence based phylogeny, the pathogenic bacteria clustered together with the Xcm reference strain, while the non-pathogenic xanthomonads isolated from both BXW symptomatic and symptomless bananas clustered with group I xanthomonads. The findings reveal dynamic Xanthomonas populations in bananas, which can easily be misrepresented by only using phenotyping and biochemical tests. A combination of tools provides the most accurate identity and characterization of these plant associated bacteria. The interactions between the pathogenic and non-pathogenic xanthomonads in bananas may pave way to understanding effect of microbial interactions on BXW disease development and offer clues to biocontrol of Xcm. PMID:26805624

  8. Bacterial Sialidase

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Data shows that elevated sialidase in bacterial vaginosis patients correlates to premature births in women. Bacterial sialidase also plays a significant role in the unusual colonization of Pseudomonas aeruginosa in cystic fibrosis patients. Crystals of Salmonella sialidase have been reproduced and are used for studying the inhibitor-enzyme complexes. These inhibitors may also be used to inhibit a trans-sialidase of Trypanosome cruzi, a very similar enzyme to bacterial sialidase, therefore preventing T. cruzi infection, the causitive agent of Chagas' disease. The Center for Macromolecular Crystallography suggests that inhibitors of bacterial sialidases can be used as prophylactic drugs to prevent bacterial infections in these critical cases.

  9. Novel species of Botryosphaeriaceae associated with shoot blight of pistachio.

    PubMed

    Chen, ShuaiFei; Li, GuoQing; Liu, FeiFei; Michailides, Themis J

    2015-01-01

    Various species of phytopathogenic Botryosphaeriaceae were identified previously from pistachio trees worldwide. Disease symptoms caused by pathogens in Botryosphaeriaceae on pistachio include panicle and shoot blight, leaf defoliation, fruit discoloration and decay. In this study species of Botryosphaeriaceae were collected from blighted pistachio shoots in Arizona, USA, and Greece. The aims of this study were to identify these Botryosphaeriaceae isolates and to test their pathogenicity to pistachio. The fungi were identified based on comparisons of DNA sequence data of the nuclear rDNA internal transcribed spacer region (ITS), a partial translation elongation factor 1-alpha gene (TEF1), a partial β-tubulin gene (TUB2) and morphological characteristics. Results indicated that some isolates collected from pistachio represent two previously undescribed species, which we described here as Lasiodiplodia americana sp. nov. from the United States and Neofusicoccum hellenicum sp. nov. from Greece. Field inoculations of L. americana and N. hellenicum on branches of four pistachio cultivars showed that both L. americana and N. hellenicum are pathogenic on pistachio. The four pistachio cultivars differed in their susceptibility to the Botryosphaeriaceae species. Results of this study suggested that the two new species of Botryosphaeriaceae need to be monitored carefully to determine the distribution of these pathogens and the possible spread to other areas. PMID:25977211

  10. Fusarium head blight: distribution in wheat in Latvia.

    PubMed

    Treikale, O; Priekule, I; Javoisha, B; Lazareva, L

    2010-01-01

    Fusarium head blight (FHB) of wheat has, in recent years, been a very important worldwide disease in intensive growing of cereal. The objectives of this study were to evaluate the occurrence of FHB in wheat in Latvia and to identify the Fusarium species involved. This paper describes the distribution of Fusarium species that were isolated from samples representing winter and spring wheat varieties in Latvia, identified both by the classical morphological analyses of J. Leslie and B. Summerell (2006) and by PCR. The FHB incidence range in winter wheat was 1-20%, in spring wheat was 1-42%. The most significant factor affecting the incidence of fusarial head blight in wheat in Latvia was heightened temperature at the time of an thesis of wheat. In winter wheat 9 Fusarium species caused FHB: F. culmorum, F. avenaceum, F. graminearum, F. equiseti, F. poae, F. oxysporum, F. cerealis, F. sporotrichoides and F. verticillioides were identified by morphological characterization, and 5 were confirmed by PCR-analysis. After experience of 5 years, it can be concluded that the most frequent in winter wheat were F. poae and F. culmorum. In spring wheat from F. culmorum was dominant among 8 Fusarium species. Among 13 varieties of spring wheat, three were sensitive ('Chamsin', 'W 166', 'Azurite') and one was resistant ('Granny') to FHB in conditions of high natural infection in 2009. The monitoring surveys demonstrate a significant presence of FHB in spring wheat in conditions of heightened temperature at the time of flowering in Latvia. PMID:21534469

  11. A novel bifunctional N-acetylglutamate synthase-kinase from Xanthomonas campestris that is closely related to mammalian N-acetylglutamate synthase

    PubMed Central

    Qu, Qiuhao; Morizono, Hiroki; Shi, Dashuang; Tuchman, Mendel; Caldovic, Ljubica

    2007-01-01

    Background In microorganisms and plants, the first two reactions of arginine biosynthesis are catalyzed by N-acetylglutamate synthase (NAGS) and N-acetylglutamate kinase (NAGK). In mammals, NAGS produces an essential activator of carbamylphosphate synthetase I, the first enzyme of the urea cycle, and no functional NAGK homolog has been found. Unlike the other urea cycle enzymes, whose bacterial counterparts could be readily identified by their sequence conservation with arginine biosynthetic enzymes, mammalian NAGS gene was very divergent, making it the last urea cycle gene to be discovered. Limited sequence similarity between E. coli NAGS and fungal NAGK suggests that bacterial and eukaryotic NAGS, and fungal NAGK arose from the fusion of genes encoding an ancestral NAGK (argB) and an acetyltransferase. However, mammalian NAGS no longer retains any NAGK catalytic activity. Results We identified a novel bifunctional N-acetylglutamate synthase and kinase (NAGS-K) in the Xanthomonadales order of gamma-proteobacteria that appears to resemble this postulated primordial fusion protein. Phylogenetic analysis indicated that xanthomonad NAGS-K is more closely related to mammalian NAGS than to other bacterial NAGS. We cloned the NAGS-K gene from Xanthomonas campestis, and characterized the recombinant NAGS-K protein. Mammalian NAGS and its bacterial homolog have similar affinities for substrates acetyl coenzyme A and glutamate as well as for their allosteric regulator arginine. Conclusion The close phylogenetic relationship and similar biochemical properties of xanthomonad NAGS-K and mammalian NAGS suggest that we have identified a close relative to the bacterial antecedent of mammalian NAGS and that the enzyme from X. campestris could become a good model for mammalian NAGS in structural, biochemical and biophysical studies. PMID:17425781

  12. Requirement of the Lipopolysaccharide O-Chain Biosynthesis Gene wxocB for Type III Secretion and Virulence of Xanthomonas oryzae pv. Oryzicola

    PubMed Central

    Wang, Li; Vinogradov, Evgeny V.

    2013-01-01

    Xanthomonas oryzae pv. oryzicola causes bacterial leaf streak of rice. A mutant disrupted in wxocB, predicted to encode an enzyme for lipopolysaccharide (LPS) synthesis, was previously shown to suffer reduced virulence. Here, we confirm a role for wxocB in virulence and demonstrate its requirement for LPS O-chain assembly. Structure analysis indicated that wild-type LPS contains a polyrhamnose O chain with irregular, variant residues and a core oligosaccharide identical to that of other Xanthomonas spp. and that the wxocB mutant lacks the O chain. The mutant also showed moderate impairment in exopolysaccharide (EPS) production, but comparison with an EPS-deficient mutant demonstrated that this impairment could not account entirely for the reduced virulence. The wxocB mutant was not detectably different from the wild type in its induction of pathogenesis-related rice genes, type II secretion competence, flagellar motility, or resistance to two phytoalexins or resveratrol, and it was more, not less, resistant to oxidative stress and a third phytoalexin, indicating that none of these properties is involved. The mutant was more sensitive to SDS and to novobiocin, so increased sensitivity to some host-derived antimicrobials cannot be ruled out. However, the mutant showed a marked decrease in type III secretion into plant cells. This was not associated with any change in expression of genes for type III secretion or the ability to attach to plant cells in suspension. Thus, virulence of the wxocB mutant is likely reduced due primarily to a direct, possibly structural, effect of the loss of the O chain on type III delivery of effector proteins. PMID:23435979

  13. Development and application of pathovar-specific monoclonal antibodies that recognize the lipopolysaccharide O antigen and the type IV fimbriae of Xanthomonas hyacinthi

    SciTech Connect

    Doorn, J. van; Ojanen-Reuhs, T.; Hollinger, T.C.; Reuhs, B.L.; Schots, A.; Boonekamp, P.M.; Oudega, B.

    1999-09-01

    The objective of this study was to develop a specific immunological diagnostic assay for yellow disease in hyacinths, using monoclonal antibodies (MAbs). Mice were immunized with a crude cell wall preparation (shear fraction) from Xanthomonas hyacinthi and with purified type IV fimbriae. Hybridomas were screened for a positive reaction with X. hyacinthi cells or fimbriae and for a negative reaction with X. translucens pv. graminis or Erwinia carotovora subsp. carotovora. Nine MAbs recognized fimbrial epitopes, as shown by immunoblotting, immunofluorescence, enzyme-linked immunosorbent assay (ELISA), and immunoelectron microscopy; however, three of these MAbs had weak cross-reactions with two X. translucens pathovars in immunoblotting experiments. Seven MAbs reacted with lipopolysaccharides and yielded a low-mobility ladder pattern on immunoblots. Subsequent analysis of MAb 2E5 showed that it specifically recognized an epitope on the O antigen, which was found to consist of rhamnose and fucose in a 2:1 molar ratio. The cross-reaction of MAb 2E5 with all X. hyacinthi strains tested showed that this O antigen is highly conserved within this species. MAb 1B10 also reacted with lipopolysaccharides. MAbs 2E5 and 1B10 were further tested in ELISA and immunoblotting experiments with cells and extracts from other pathogens. No cross-reaction was found with 27 other Xanthomonas pathovars tested or with 14 other bacterial species from other genera, such as Erwinia and Pseudomonas, indicating the high specificity of these antibodies. MAbs 2E5 and 1B10 were shown to be useful in ELISA for the detection of X. hyacinthi in infected hyacinths.

  14. Fingerprinting Closely Related Xanthomonas Pathovars with Random Nonamer Oligonucleotide Microarrays

    SciTech Connect

    Kingsley, Mark T.; Straub, Tim M.; Call, Douglas R.; Daly, Don S.; Wunschel, Sharon C.; Chandler, Darrell P.

    2002-12-01

    Current bacterial DNA typing methods are typically based upon gel-based fingerprinting methods. As such, they access a limited complement of genetic information and many independent restriction enzymes or probes is required to achieve statistical rigor and confidence in the resulting pattern of DNA fragments.

  15. Packingline treatments and their effects on Xanthomonas axonopodis pv citri

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Florida citrus industry still remains under quarantine for the shipment of fruit to citrus growing areas. This is because of the fear the fruit going through the packing line from a canker infected grove will carry viable bacterial cells that can cause new infections where there was no disease p...

  16. Bioherbicidal potential of Xanthomonas campestris for controlling Conyza canadensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse and controlled-environment studies were conducted to determine the effects of incubation temperature, dew period temperature, dew period duration, plant growth stage, and inoculum concentration on the bioherbicidal efficacy of a highly virulent isolate (LVA987) of the bacterial pathogen, ...

  17. Evaluation of the BlightPro Decision Support System for Management of Potato Late Blight Using Computer Simulation and Field Validation.

    PubMed

    Small, Ian M; Joseph, Laura; Fry, William E

    2015-12-01

    The objective of this study was to evaluate the utility of the BlightPro decision support system (DSS) for late blight management using computer simulation and field tests. Three fungicide schedules were evaluated: (i) calendar-based (weekly) applications, (ii) applications according to the DSS, or (iii) no fungicide. Simulation experiments utilized 14 years of weather data from 59 locations in potato-producing states. In situations with unfavorable weather for late blight, the DSS recommended fewer fungicide applications with no loss of disease suppression; and, in situations of very favorable weather for late blight, the DSS recommended more fungicide applications but with improved disease suppression. Field evaluation was conducted in 2010, 2011, 2012, and 2013. All experiments involved at least two cultivars with different levels of resistance. DSS-guided and weekly scheduled fungicide treatments were successful at protecting against late blight in all field experiments. As expected, DSS-guided schedules were influenced by prevailing weather (observed and forecast) and host resistance and resulted in schedules that maintained or improved disease suppression and average fungicide use efficiency relative to calendar-based applications. The DSS provides an interactive system that helps users maximize the efficiency of their crop protection strategy by enabling well-informed decisions. PMID:26312965

  18. Antifungal Action of Ginkgo biloba Outer Seedcoat on Rice Sheath blight.

    PubMed

    Oh, Tae-Seok; Koo, Han-Mo; Yoon, Hei-Ryeo; Jeong, Nam-Su; Kim, Yeong-Jin; Kim, Chang-Ho

    2015-03-01

    From study of antifungal actions on the rice sheath blight by using the extract of Ginkgo biloba outer seedcoats, we found that the extracts of Ginkgo biloba outer seedcoats of all treatment concentrations had inhibited the rice sheath blight. Among them, the most effective concentration was 250 mg/l at which the growth of microbe was 26 mm and even at the packaging test, when sprayed the G. biloba outer seedcoats at the level of 250 mg/l, the damage rate of the rice sheath blight was identified as 13%. As a result investigating the antifungal activity by separating polysaccharides from G. biloba outer seedcoats, it showed that the clear zone of 14 mm or more was formed at the concentration of 250 mg/l or higher. Based on these results, we concluded that the G. biloba outer seedcoat is a natural substance with the antifungal activity on the rice sheath blight. PMID:25774111

  19. First Report of Foliar Blight on Dendropanax morbifera Caused by Alternaria panax

    PubMed Central

    Deng, Jian Xin; Kim, Chang Sun; Oh, Eun Sung

    2010-01-01

    Leaf spot and blight disease was observed on two-year-old seedlings of Dendropanax morbifera (Korean name: Hwangchil tree) during July of 2008 in Jindo Island, Korea. Symptoms included yellow-brown to dark brown irregularly enlarged spots frequently located along the veins of leaves. The lesions were often surrounded by chlorotic haloes. Severe leaf blight and subsequent defoliation occurred when conditions favored disease outbreak. The causal organism of the disease was identified as Alternaria panax based on morphological characteristics and sequence analysis of the internal transcribed spacer region of rDNA. A. panax isolates induced leaf spots and blight symptoms not only on D. morbifera but also on the other members of Araliaceae tested. This is the first report of foliar blight caused by A. panax on D. morbifera. PMID:23956672

  20. Antifungal Action of Ginkgo biloba Outer Seedcoat on Rice Sheath blight

    PubMed Central

    Oh, Tae-Seok; Koo, Han-Mo; Yoon, Hei-Ryeo; Jeong, Nam-Su; Kim, Yeong-Jin; Kim, Chang-Ho

    2015-01-01

    From study of antifungal actions on the rice sheath blight by using the extract of Ginkgo biloba outer seedcoats, we found that the extracts of Ginkgo biloba outer seedcoats of all treatment concentrations had inhibited the rice sheath blight. Among them, the most effective concentration was 250 mg/l at which the growth of microbe was 26 mm and even at the packaging test, when sprayed the G. biloba outer seedcoats at the level of 250 mg/l, the damage rate of the rice sheath blight was identified as 13%. As a result investigating the antifungal activity by separating polysaccharides from G. biloba outer seedcoats, it showed that the clear zone of 14 mm or more was formed at the concentration of 250 mg/l or higher. Based on these results, we concluded that the G. biloba outer seedcoat is a natural substance with the antifungal activity on the rice sheath blight. PMID:25774111

  1. Characterization of the spatiotemporal attributes of Sclerotinia flower blight epidemics in a perennial pyrethrum pathosystem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sclerotinia flower blight, caused by Sclerotinia sclerotiorum causes substantial direct crop losses from reductions in the numbers of harvestable flowers in Australian pyrethrum fields. The pathogen can also cause plant death from crown rot through myceliogenic germination. The spatiotemporal char...

  2. Avirulence proteins AvrBs7 from Xanthomonas gardneri and AvrBs1.1 from Xanthomonas euvesicatoria contribute to a novel gene-for-gene interaction in pepper.

    PubMed

    Potnis, Neha; Minsavage, Gerald; Smith, J Kennon; Hurlbert, Jason C; Norman, David; Rodrigues, Rosana; Stall, Robert E; Jones, Jeffrey B

    2012-03-01

    A novel hypersensitive resistance (HR) in Capsicum baccatum var. pendulum against the bacterial spot of pepper pathogen, Xanthomonas gardneri, was introgressed into C. annuum cv. Early Calwonder (ECW) to create the near-isogenic line designated as ECW-70R. A corresponding avirulence gene avrBs7, in X. gardneri elicited a strong HR in ECW-70R. A homolog of avrBs7, avrBs1.1, was found in X. euvesicatoria 85-10, which showed delayed HR on ECW-70R leaves. Genetic analysis confirmed the presence of a single dominant resistance gene, Bs7, corresponding to the two avr genes. Both AvrBs7 and AvrBs1.1 share a consensus protein tyrosine phosphatase (PTP) active site domain and can dephosphorylate para-nitrophenyl phosphate. Mutation of Cys(265) to Ser in the PTP domain and subsequent loss of enzymatic activity and HR activity indicated the importance of the PTP domain in the recognition of the Avr protein by the Bs7 gene transcripts. Superpositioning of AvrBs7 and AvrBs1.1 homology models indicated variation in the geometry of the loops adjacent to the active sites. These predicted structural differences might be responsible for the differences in HR timing due to differential activation of the resistance gene. Mutating the PTP domain of AvrBs1.1 to match that of AvrBs7 failed to activate HR on ECW-70R, indicating the possibility of differential substrate specificities between AvrBs1.1 and AvrBs7. PMID:22112215

  3. Bacterial Proteasomes

    PubMed Central

    Jastrab, Jordan B.; Darwin, K. Heran

    2015-01-01

    Interest in bacterial proteasomes was sparked by the discovery that proteasomal degradation is required for the pathogenesis of Mycobacterium tuberculosis, one of the world's deadliest pathogens. Although bacterial proteasomes are structurally similar to their eukaryotic and archaeal homologs, there are key differences in their mechanisms of assembly, activation, and substrate targeting for degradation. In this article, we compare and contrast bacterial proteasomes with their archaeal and eukaryotic counterparts, and we discuss recent advances in our understanding of how bacterial proteasomes function to influence microbial physiology. PMID:26488274

  4. Bacterial Endocarditis

    MedlinePLUS

    ... skin, mouth, intestines or urinary tract enter the bloodstream (usually during a dental or medical procedure) and infect the heart. Causes & Risk Factors Who gets bacterial endocarditis? Although ...

  5. Autoinduction in Erwinia amylovora: Evidence of an Acyl-Homoserine Lactone Signal in the Fire Blight Pathogen

    PubMed Central

    Molina, Lázaro; Rezzonico, Fabio; Défago, Geneviève; Duffy, Brion

    2005-01-01

    Erwinia amylovora causes fire blight disease of apple, pear, and other members of the Rosaceae. Here we present the first evidence for autoinduction in E. amylovora and a role for an N-acyl-homoserine lactone (AHL)-type signal. Two major plant virulence traits, production of extracellular polysaccharides (amylovoran and levan) and tolerance to free oxygen radicals, were controlled in a bacterial-cell-density-dependent manner. Two standard autoinducer biosensors, Agrobacterium tumefaciens NTL4 and Vibrio harveyi BB886, detected AHL in stationary-phase cultures of E. amylovora. A putative AHL synthase gene, eamI, was partially sequenced, which revealed homology with autoinducer genes from other bacterial pathogens (e.g., carI, esaI, expI, hsII, yenI, and luxI). E. amylovora was also found to carry eamR, a convergently transcribed gene with homology to luxR AHL activator genes in pathogens such as Erwinia carotovora. Heterologous expression of the Bacillus sp. strain A24 acyl-homoserine lactonase gene aiiA in E. amylovora abolished induction of AHL biosensors, impaired extracellular polysaccharide production and tolerance to hydrogen peroxide, and reduced virulence on apple leaves. PMID:15838048

  6. Biocontrol of Late Blight (Phytophthora capsici) Disease and Growth Promotion of Pepper by Burkholderia cepacia MPC-7

    PubMed Central

    Sopheareth, Mao; Chan, Sarun; Naing, Kyaw Wai; Lee, Yong Seong; Hyun, Hae Nam; Kim, Young Cheol; Kim, Kil Yong

    2013-01-01

    A chitinolytic bacterial strain having strong antifungal activity was isolated and identified as Burkholderia cepacia MPC-7 based on 16S rRNA gene analysis. MPC-7 solubilized insoluble phosphorous in hydroxyapatite agar media. It produced gluconic acid and 2-ketogluconic acid related to the decrease in pH of broth culture. The antagonist produced benzoic acid (BA) and phenylacetic acid (PA). The authentic compounds, BA and PA, showed a broad spectrum of antimicrobial activity against yeast, several bacterial and fungal pathogens in vitro. To demonstrate the biocontrol efficiency of MPC-7 on late blight disease caused by Phytophthora capsici, pepper plants in pot trials were treated with modified medium only (M), M plus zoospore inoculation (MP), MPC-7 cultured broth (B) and B plus zoospore inoculation (BP). With the sudden increase in root mortality, plants in MP wilted as early as five days after pathogen inoculation. However, plant in BP did not show any symptom of wilting until five days. Root mortality in BP was markedly reduced for as much as 50%. Plants in B had higher dry weight, P concentration in root, and larger leaf area compared to those in M and MP. These results suggested that B. cepacia MPC-7 should be considered as a candidate for the biological fertilizer as well as antimicrobial agent for pepper plants. PMID:25288930

  7. Biocontrol of Late Blight (Phytophthora capsici) Disease and Growth Promotion of Pepper by Burkholderia cepacia MPC-7.

    PubMed

    Sopheareth, Mao; Chan, Sarun; Naing, Kyaw Wai; Lee, Yong Seong; Hyun, Hae Nam; Kim, Young Cheol; Kim, Kil Yong

    2013-03-01

    A chitinolytic bacterial strain having strong antifungal activity was isolated and identified as Burkholderia cepacia MPC-7 based on 16S rRNA gene analysis. MPC-7 solubilized insoluble phosphorous in hydroxyapatite agar media. It produced gluconic acid and 2-ketogluconic acid related to the decrease in pH of broth culture. The antagonist produced benzoic acid (BA) and phenylacetic acid (PA). The authentic compounds, BA and PA, showed a broad spectrum of antimicrobial activity against yeast, several bacterial and fungal pathogens in vitro. To demonstrate the biocontrol efficiency of MPC-7 on late blight disease caused by Phytophthora capsici, pepper plants in pot trials were treated with modified medium only (M), M plus zoospore inoculation (MP), MPC-7 cultured broth (B) and B plus zoospore inoculation (BP). With the sudden increase in root mortality, plants in MP wilted as early as five days after pathogen inoculation. However, plant in BP did not show any symptom of wilting until five days. Root mortality in BP was markedly reduced for as much as 50%. Plants in B had higher dry weight, P concentration in root, and larger leaf area compared to those in M and MP. These results suggested that B. cepacia MPC-7 should be considered as a candidate for the biological fertilizer as well as antimicrobial agent for pepper plants. PMID:25288930

  8. A plant natriuretic peptide-like molecule of the pathogen Xanthomonas axonopodis pv. citri causes rapid changes in the proteome of its citrus host

    PubMed Central

    2010-01-01

    Background Plant natriuretic peptides (PNPs) belong to a novel class of peptidic signaling molecules that share some structural similarity to the N-terminal domain of expansins and affect physiological processes such as water and ion homeostasis at nano-molar concentrations. The citrus pathogen Xanthomonas axonopodis pv. citri possesses a PNP-like peptide (XacPNP) uniquely present in this bacteria. Previously we observed that the expression of XacPNP is induced upon infection and that lesions produced in leaves infected with a XacPNP deletion mutant were more necrotic and lead to earlier bacterial cell death, suggesting that the plant-like bacterial PNP enables the plant pathogen to modify host responses in order to create conditions favorable to its own survival. Results Here we measured chlorophyll fluorescence parameters and water potential of citrus leaves infiltrated with recombinant purified XacPNP and demonstrate that the peptide improves the physiological conditions of the tissue. Importantly, the proteomic analysis revealed that these responses are mirrored by rapid changes in the host proteome that include the up-regulation of Rubisco activase, ATP synthase CF1 ? subunit, maturase K, and ?- and ?-tubulin. Conclusions We demonstrate that XacPNP induces changes in host photosynthesis at the level of protein expression and in photosynthetic efficiency in particular. Our findings suggest that the biotrophic pathogen can use the plant-like hormone to modulate the host cellular environment and in particular host metabolism and that such modulations weaken host defence. PMID:20302677

  9. BIOLOGICAL CONTROL OF RICE BACTERIAL BLIGHT BY PLANT-ASSOCIATED BACTERIA PRODUCING 2,4-DIACETYLPHLOROGLUCINOL.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Certain plant-associated strains of fluorescent Pseudomonas spp. are known to produce the antimicrobial antibiotic 2,4-diacetylphloroglucinol (DAPG). It has antibacterial, antifungal, antiviral, and antihelminthic properties and has played a significant role in the biological control of tobacco, whe...

  10. A Benefit of High Temperature: Increased Effectiveness of a Rice Bacterial Blight Disease Resistance Gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High temperatures promote development of many plant diseases and reduce effectiveness of disease resistance (R) genes. In many rice producing countries, two crops of rice are produced, with more disease occurring in the season with higher day/night temperatures. While studying the factors that influ...

  11. Influence of temperature regimes on resistance gene-mediated response to rice bacterial blight

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing temperatures could reduce yield growth rate of rice by 10% in several rice production areas. Similarly, higher temperatures are predicted to accelerate the breakdown of plant disease resistance through higher disease pressure or altered resistance (R) gene effectiveness in many host-path...

  12. First report of bacterial blight of crucifers caused by Pseudomonas cannabina pv. alisalensis in Australia.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas cannabina pv. alisalensis is a severe pathogen of crucifers across the U.S. Strains isolated from diseased white mustard (Brassica hirta), Brassica nigra (black mustard) and rape (Brassica napus var. napus) in Australia were reported to be similar to a pathogen recently transferred to P....

  13. Influence of Rice Development on the Function of Bacterial Blight Resistance Genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disease resistance genes most commonly used in breeding programs are single, dominant, resistance (R) genes with relative effectiveness influenced by plant developmental stage. Knowing the developmental stages at which an R gene is functional is important for disease management. In rice, resistanc...

  14. Field evaluation of brassica lines for resistance to bacterial blight in Charleston, South Carolina, 2010

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Twelve leafy green Brassica entries (including turnip, mustard, and collard greens) were evaluated for response to inoculation with Pseudomonas syringae pv. alisalensis (Psa) in an experiment conducted at the Clemson University Coastal Research and Education Center in Charleston, SC. On 21 Septembe...

  15. Mechanistically compatible mixtures of bacterial antagonists improve biological control of fire blight of pear

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mixtures of biological control agents can be superior to individual agents in suppressing plant disease, providing enhanced efficacy and reliability from field to field relative to single biocontrol strains. Nonetheless, the efficacy of combinations of Pseudomonas fluorescens A506, a commercial bio...

  16. The draft genome sequence of Xanthomonas species strain Nyagatare, isolated from diseased bean in Rwanda.

    PubMed

    Aritua, Valente; Musoni, Augustine; Kabeja, Alice; Butare, Louis; Mukamuhirwa, Floride; Gahakwa, Daphrose; Kato, Fred; Abang, Mathew M; Buruchara, Robin; Sapp, Melanie; Harrison, James; Studholme, David J; Smith, Julian

    2015-02-01

    We announce the genome sequence for Xanthomonas species strain Nyagatare, isolated from beans showing unusual disease symptoms in Rwanda. This strain represents the first sequenced genome belonging to an as-yet undescribed Xanthomonas species known as species-level clade 1. It has at least 100 kb of genomic sequence that shows little or no sequence similarity to other xanthomonads, including a unique lipopolysaccharide synthesis gene cluster. At least one genomic region appears to have been acquired from relatives of Agrobacterium or Rhizobium species. The genome encodes homologues of only three known type-three secretion system effectors: AvrBs2, XopF1 and AvrXv4. Availability of the genome sequence will facilitate development of molecular tools for detection and diagnostics for this newly discovered pathogen of beans and facilitate epidemiological investigations of a potential causal link between this pathogen and the disease outbreak. PMID:25688063

  17. Rapid and efficient genome-wide characterization of Xanthomonas TAL effector genes

    PubMed Central

    Yu, Yan-Hua; Lu, Ye; He, Yong-Qiang; Huang, Sheng; Tang, Ji-Liang

    2015-01-01

    Xanthomonas TALE transcriptional activators act as virulence or avirulence factors by activating host disease susceptibility or resistance genes. Their specificity is determined by a tandem repeat domain. Some Xanthomonas pathogens contain 10–30 TALEs per strain. Although TALEs play critical roles in pathogenesis, their studies have so far been limited to a few examples, due to their highly repetitive gene structure and extreme similarity among different members, which constrict sequencing and assembling. To facilitate TALE studies, we developed an efficient and rapid pipeline for genome-wide cloning of tal genes as many as possible from a strain. Here, we report the pipeline and its use to identify all 18 tal genes from a newly isolated strain of the rice pathogen Xathomonas oryzae. Target prediction revealed a number of potential rice targets including several notable genes such as genes encoding SWEET, WRKY, Hen1, and BAK1 proteins, which provide candidates for further experimental functional analysis of the TALEs. PMID:26271455

  18. Host to a Stranger: Arabidopsis and Fusarium Ear Blight.

    PubMed

    Brewer, Helen C; Hammond-Kosack, Kim E

    2015-10-01

    Fusarium ear blight (FEB) is a devastating fungal disease of cereal crops. Outbreaks are sporadic and current control strategies are severely limited. This review highlights the use of Arabidopsis to study plant-FEB interactions. Use of this pathosystem has identified natural variation in Fusarium susceptibility in Arabidopsis, and native plant genes and signalling processes modulating the interaction. Recent breakthroughs include the identification of plant- and insect-derived small molecules which increase disease resistance, and the use of a host-induced gene silencing (HIGS) construct to silence an important Fusarium gene to prevent infection. Arabidopsis has also been used to study other fungi that cause cereal diseases. These findings offer the potential for translational research in cereals which could yield much-needed novel control strategies. PMID:26440434

  19. The opsX locus of Xanthomonas campestris affects host range and biosynthesis of lipopolysaccharide and extracellular polysaccharide.

    PubMed Central

    Kingsley, M T; Gabriel, D W; Marlow, G C; Roberts, P D

    1993-01-01

    Xanthomonas campestris pv. citrumelo strain 3048 is the causal agent of citrus bacterial leaf spot disease and has a wide host range that includes rutaceous and leguminous plants. A spontaneous prototrophic mutant of strain 3048 (strain M28) that had lost virulence on citrus but retained virulence on bean plants was recovered. Growth studies in planta showed that M28 cells died rapidly in citrus leaves but grew normally in bean leaves. In addition to the loss of citrus-specific virulence, M28 displayed the following mutant phenotypes in culture: decreased growth rate, reduction of the amount of exopolysaccharide (to ca. 25% of the amount in 3048), loss of capsules, and significant alterations of the two 3048 lipopolysaccharide (LPS) bands visualized by silver stain on polyacrylamide gels, consistent with a defect(s) in LPS assembly. A 38-kb DNA fragment from a 3048 total DNA library that complemented the mutant phenotypes of M28 was identified. The 38-kb fragment did not hybridize to two similarly sized fragments carrying different hrp (hypersensitive response and pathogenicity) genes cloned from 3048. Subcloning, DNA sequence analyses, and gene disruption experiments were used to identify a single gene, opsX (for outer-membrane polysaccharide), responsible for the mutant phenotypes of M28. At least one other gene downstream from opsX also affected the same phenotypes and may be part of a gene cluster. We report here the DNA sequence and transcriptional start site of opsX. A search of protein sequence data bases with the predicted 31.3-kDa OpsX sequence found strong similarity to Lsi-1 of Neisseria gonorrhoeae and RfaQ of Escherichia coli (both are involved in LPS core assembly). The host-specific virulence function of opsX appears to involve biosynthesis of the extracellular polysaccharide and a complete LPS. Both may be needed in normal amounts for protection from citrus, but not bean, defense compounds. Images PMID:8376331

  20. A Novel Two-Component Response Regulator Links rpf with Biofilm Formation and Virulence of Xanthomonas axonopodis pv. citri

    PubMed Central

    Huang, Tzu-Pi; Lu, Kuan-Min; Chen, Yu-Hsuan

    2013-01-01

    Citrus bacterial canker caused by Xanthomonas axonopodis pv. citri is a serious disease that impacts citrus production worldwide, and X. axonopodis pv. citri is listed as a quarantine pest in certain countries. Biofilm formation is important for the successful development of a pathogenic relationship between various bacteria and their host(s). To understand the mechanisms of biofilm formation by X. axonopodis pv. citri strain XW19, the strain was subjected to transposon mutagenesis. One mutant with a mutation in a two-component response regulator gene that was deficient in biofilm formation on a polystyrene microplate was selected for further study. The protein was designated as BfdR for biofilm formation defective regulator. BfdR from strain XW19 shares 100% amino acid sequence identity with XAC1284 of X. axonopodis pv. citri strain 306 and 30–100% identity with two-component response regulators in various pathogens and environmental microorganisms. The bfdR mutant strain exhibited significantly decreased biofilm formation on the leaf surfaces of Mexican lime compared with the wild type strain. The bfdR mutant was also compromised in its ability to cause canker lesions. The wild-type phenotype was restored by providing pbfdR in trans in the bfdR mutant. Our data indicated that BfdR did not regulate the production of virulence-related extracellular enzymes including amylase, lipase, protease, and lecithinase or the expression of hrpG, rfbC, and katE; however, BfdR controlled the expression of rpfF in XVM2 medium, which mimics cytoplasmic fluids in planta. In conclusion, biofilm formation on leaf surfaces of citrus is important for canker development in X. axonopodis pv. citri XW19. The process is controlled by the two-component response regulator BfdR via regulation of rpfF, which is required for the biosynthesis of a diffusible signal factor. PMID:23626857