Science.gov

Sample records for bacterial drug resistance

  1. Drug resistance analysis of bacterial strains isolated from burn patients.

    PubMed

    Wang, L F; Li, J L; Ma, W H; Li, J Y

    2014-01-01

    This study aimed to analyze the spectrum and drug resistance of bacteria isolated from burn patients to provide a reference for rational clinical use of antibiotics. Up to 1914 bacterial strain specimens isolated from burn patients admitted to hospital between 2001 and 2010 were subjected to resistance monitoring by using the K-B paper disk method. Retrospective analysis was performed on drug resistance analysis of burn patients. The top eight bacterium strains according to detection rate. A total of 1355 strains of Gram-negative (G(-)) bacteria and 559 strains of Gram-positive (G(+)) bacteria were detected. The top eight bacterium strains, according to detection rate, were Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Staphylococcus epidermidis, Klebsiella pneumoniae, Enterobacter cloacae, and Enterococcus. Drug resistance rates were higher than 90% in A. baumannii, P. aeruginosa, S. epidermidis, and S. aureus, which accounted for 52.2, 21.7, 27.8, and 33.3%, respectively, of the entire sample. Those with drug resistance rates lower than 30% accounted for 4.3, 30.4, 16.7, and 16.7%, respectively. Multidrug-resistant S. aureus (MRSA) and methicillin-resistant S. epidermidis (MRSE) accounted for 49.2 and 76.4% of the S. epidermis and S. aureus resistance, respectively. Antibacterial drugs that had drug resistance rates to MRSE and MRSA higher than 90% accounted for 38.9 and 72.2%, respectively, whereas those with lower than 30% drug resistance rates accounted for 11.1 and 16.7%, respectively. The burn patients enrolled in the study were mainly infected with G(-) bacteria. These results strongly suggest that clinicians should practice rational use of antibiotics based on drug susceptibility test results. PMID:24535909

  2. Bacterial recombination promotes the evolution of multi-drug-resistance in functionally diverse populations

    PubMed Central

    Perron, Gabriel G.; Lee, Alexander E. G.; Wang, Yun; Huang, Wei E.; Barraclough, Timothy G.

    2012-01-01

    Bacterial recombination is believed to be a major factor explaining the prevalence of multi-drug-resistance (MDR) among pathogenic bacteria. Despite extensive evidence for exchange of resistance genes from retrospective sequence analyses, experimental evidence for the evolutionary benefits of bacterial recombination is scarce. We compared the evolution of MDR between populations of Acinetobacter baylyi in which we manipulated both the recombination rate and the initial diversity of strains with resistance to single drugs. In populations lacking recombination, the initial presence of multiple strains resistant to different antibiotics inhibits the evolution of MDR. However, in populations with recombination, the inhibitory effect of standing diversity is alleviated and MDR evolves rapidly. Moreover, only the presence of DNA harbouring resistance genes promotes the evolution of resistance, ruling out other proposed benefits for recombination. Together, these results provide direct evidence for the fitness benefits of bacterial recombination and show that this occurs by mitigation of functional interference between genotypes resistant to single antibiotics. Although analogous to previously described mechanisms of clonal interference among alternative beneficial mutations, our results actually highlight a different mechanism by which interactions among co-occurring strains determine the benefits of recombination for bacterial evolution. PMID:22048956

  3. Drug Resistance

    MedlinePlus

    HIV Treatment Drug Resistance (Last updated 3/1/2016; last reviewed 3/1/2016) Key Points As HIV multiplies in the ... the risk of drug resistance. What is HIV drug resistance? Once a person becomes infected with HIV, ...

  4. Antibacterial activity and mechanism of action of auranofin against multi-drug resistant bacterial pathogens.

    PubMed

    Thangamani, Shankar; Mohammad, Haroon; Abushahba, Mostafa F N; Sobreira, Tiago J P; Hedrick, Victoria E; Paul, Lake N; Seleem, Mohamed N

    2016-01-01

    Traditional methods employed to discover new antibiotics are both a time-consuming and financially-taxing venture. This has led researchers to mine existing libraries of clinical molecules in order to repurpose old drugs for new applications (as antimicrobials). Such an effort led to the discovery of auranofin, a drug initially approved as an anti-rheumatic agent, which also possesses potent antibacterial activity in a clinically achievable range. The present study demonstrates auranofin's antibacterial activity is a complex process that involves inhibition of multiple biosynthetic pathways including cell wall, DNA, and bacterial protein synthesis. We also confirmed that the lack of activity of auranofin observed against Gram-negative bacteria is due to the permeability barrier conferred by the outer membrane. Auranofin's ability to suppress bacterial protein synthesis leads to significant reduction in the production of key methicillin-resistant Staphylococcus aureus (MRSA) toxins. Additionally, auranofin is capable of eradicating intracellular MRSA present inside infected macrophage cells. Furthermore, auranofin is efficacious in a mouse model of MRSA systemic infection and significantly reduces the bacterial load in murine organs including the spleen and liver. Collectively, this study provides valuable evidence that auranofin has significant promise to be repurposed as a novel antibacterial for treatment of invasive bacterial infections. PMID:26936660

  5. Antibacterial activity and mechanism of action of auranofin against multi-drug resistant bacterial pathogens

    PubMed Central

    Thangamani, Shankar; Mohammad, Haroon; Abushahba, Mostafa F. N.; Sobreira, Tiago J. P.; Hedrick, Victoria E.; Paul, Lake N.; Seleem, Mohamed N.

    2016-01-01

    Traditional methods employed to discover new antibiotics are both a time-consuming and financially-taxing venture. This has led researchers to mine existing libraries of clinical molecules in order to repurpose old drugs for new applications (as antimicrobials). Such an effort led to the discovery of auranofin, a drug initially approved as an anti-rheumatic agent, which also possesses potent antibacterial activity in a clinically achievable range. The present study demonstrates auranofin’s antibacterial activity is a complex process that involves inhibition of multiple biosynthetic pathways including cell wall, DNA, and bacterial protein synthesis. We also confirmed that the lack of activity of auranofin observed against Gram-negative bacteria is due to the permeability barrier conferred by the outer membrane. Auranofin’s ability to suppress bacterial protein synthesis leads to significant reduction in the production of key methicillin-resistant Staphylococcus aureus (MRSA) toxins. Additionally, auranofin is capable of eradicating intracellular MRSA present inside infected macrophage cells. Furthermore, auranofin is efficacious in a mouse model of MRSA systemic infection and significantly reduces the bacterial load in murine organs including the spleen and liver. Collectively, this study provides valuable evidence that auranofin has significant promise to be repurposed as a novel antibacterial for treatment of invasive bacterial infections. PMID:26936660

  6. Mechanisms of action of systemic antibiotics used in periodontal treatment and mechanisms of bacterial resistance to these drugs

    PubMed Central

    SOARES, Geisla Mary Silva; FIGUEIREDO, Luciene Cristina; FAVERI, Marcelo; CORTELLI, Sheila Cavalca; DUARTE, Poliana Mendes; FERES, Magda

    2012-01-01

    Antibiotics are important adjuncts in the treatment of infectious diseases, including periodontitis. The most severe criticisms to the indiscriminate use of these drugs are their side effects and, especially, the development of bacterial resistance. The knowledge of the biological mechanisms involved with the antibiotic usage would help the medical and dental communities to overcome these two problems. Therefore, the aim of this manuscript was to review the mechanisms of action of the antibiotics most commonly used in the periodontal treatment (i.e. penicillin, tetracycline, macrolide and metronidazole) and the main mechanisms of bacterial resistance to these drugs. Antimicrobial resistance can be classified into three groups: intrinsic, mutational and acquired. Penicillin, tetracycline and erythromycin are broad-spectrum drugs, effective against gram-positive and gram-negative microorganisms. Bacterial resistance to penicillin may occur due to diminished permeability of the bacterial cell to the antibiotic; alteration of the penicillin-binding proteins, or production of β-lactamases. However, a very small proportion of the subgingival microbiota is resistant to penicillins. Bacteria become resistant to tetracyclines or macrolides by limiting their access to the cell, by altering the ribosome in order to prevent effective binding of the drug, or by producing tetracycline/macrolide-inactivating enzymes. Periodontal pathogens may become resistant to these drugs. Finally, metronidazole can be considered a prodrug in the sense that it requires metabolic activation by strict anaerobe microorganisms. Acquired resistance to this drug has rarely been reported. Due to these low rates of resistance and to its high activity against the gram-negative anaerobic bacterial species, metronidazole is a promising drug for treating periodontal infections. PMID:22858695

  7. Origin and Proliferation of Multiple-Drug Resistance in Bacterial Pathogens

    PubMed Central

    Chang, Hsiao-Han; Cohen, Ted; Grad, Yonatan H.; Hanage, William P.; O'Brien, Thomas F.

    2015-01-01

    SUMMARY Many studies report the high prevalence of multiply drug-resistant (MDR) strains. Because MDR infections are often significantly harder and more expensive to treat, they represent a growing public health threat. However, for different pathogens, different underlying mechanisms are traditionally used to explain these observations, and it is unclear whether each bacterial taxon has its own mechanism(s) for multidrug resistance or whether there are common mechanisms between distantly related pathogens. In this review, we provide a systematic overview of the causes of the excess of MDR infections and define testable predictions made by each hypothetical mechanism, including experimental, epidemiological, population genomic, and other tests of these hypotheses. Better understanding the cause(s) of the excess of MDR is the first step to rational design of more effective interventions to prevent the origin and/or proliferation of MDR. PMID:25652543

  8. The population genetics of drug resistance evolution in natural populations of viral, bacterial and eukaryotic pathogens.

    PubMed

    Wilson, Benjamin A; Garud, Nandita R; Feder, Alison F; Assaf, Zoe J; Pennings, Pleuni S

    2016-01-01

    Drug resistance is a costly consequence of pathogen evolution and a major concern in public health. In this review, we show how population genetics can be used to study the evolution of drug resistance and also how drug resistance evolution is informative as an evolutionary model system. We highlight five examples from diverse organisms with particular focus on: (i) identifying drug resistance loci in the malaria parasite Plasmodium falciparum using the genomic signatures of selective sweeps, (ii) determining the role of epistasis in drug resistance evolution in influenza, (iii) quantifying the role of standing genetic variation in the evolution of drug resistance in HIV, (iv) using drug resistance mutations to study clonal interference dynamics in tuberculosis and (v) analysing the population structure of the core and accessory genome of Staphylococcus aureus to understand the spread of methicillin resistance. Throughout this review, we discuss the uses of sequence data and population genetic theory in studying the evolution of drug resistance. PMID:26578204

  9. Aminomethyl spectinomycins as therapeutics for drug-resistant respiratory tract and sexually transmitted bacterial infections.

    PubMed

    Bruhn, David F; Waidyarachchi, Samanthi L; Madhura, Dora B; Shcherbakov, Dimitri; Zheng, Zhong; Liu, Jiuyu; Abdelrahman, Yasser M; Singh, Aman P; Duscha, Stefan; Rathi, Chetan; Lee, Robin B; Belland, Robert J; Meibohm, Bernd; Rosch, Jason W; Böttger, Erik C; Lee, Richard E

    2015-05-20

    The antibiotic spectinomycin is a potent inhibitor of bacterial protein synthesis with a unique mechanism of action and an excellent safety index, but it lacks antibacterial activity against most clinically important pathogens. A series of N-benzyl-substituted 3'-(R)-3'-aminomethyl-3'-hydroxy spectinomycins was developed on the basis of a computational analysis of the aminomethyl spectinomycin binding site and structure-guided synthesis. These compounds had ribosomal inhibition values comparable to spectinomycin but showed increased potency against the common respiratory tract pathogens Streptococcus pneumoniae, Haemophilus influenzae, Legionella pneumophila, and Moraxella catarrhalis, as well as the sexually transmitted bacteria Neisseria gonorrhoeae and Chlamydia trachomatis. Non-ribosome-binding 3'-(S) isomers of the lead compounds demonstrated weak inhibitory activity in in vitro protein translation assays and poor antibacterial activity, indicating that the antibacterial activity of the series remains on target against the ribosome. Compounds also demonstrated no mammalian cytotoxicity, improved microsomal stability, and favorable pharmacokinetic properties in rats. The lead compound from the series exhibited excellent chemical stability superior to spectinomycin; no interaction with a panel of human receptors and drug metabolism enzymes, suggesting low potential for adverse reactions or drug-drug interactions in vivo; activity in vitro against a panel of penicillin-, macrolide-, and cephalosporin-resistant S. pneumoniae clinical isolates; and the ability to cure mice of fatal pneumococcal pneumonia and sepsis at a dose of 5 mg/kg. Together, these studies indicate that N-benzyl aminomethyl spectinomycins are suitable for further development to treat drug-resistant respiratory tract and sexually transmitted bacterial infections. PMID:25995221

  10. Aminomethyl Spectinomycins as Novel Therapeutics for Drug Resistant Respiratory Tract and Sexually Transmitted Bacterial Infections

    PubMed Central

    Madhura, Dora B.; Shcherbakov, Dimitri; Zheng, Zhong; Liu, Jiuyu; Abdelrahman, Yasser M.; Singh, Aman P.; Duscha, Stefan; Rathi, Chetan; Lee, Robin B.; Belland, Robert J.; Meibohm, Bernd; Rosch, Jason W.; Böttger, Erik C.; Lee, Richard E.

    2015-01-01

    The antibiotic spectinomycin is a potent inhibitor of bacterial protein synthesis with a unique mechanism of action and an excellent safety index, but it lacks antibacterial activity against most clinically important pathogens. A novel series of N-benzyl substituted 3'-(R)- 3'-aminomethyl-3'-hydroxy spectinomycins was developed based on a computational analysis of the aminomethyl spectinomycin binding site and structure guided synthesis. These compounds had ribosomal inhibition values comparable to spectinomycin but showed increased potency against common respiratory tract pathogens Streptococcus pneumoniae, Haemophilus influenzae, Legionella pneumophila, and Moraxella catarrhalis as well as the sexually transmitted bacteria Neisseria gonorrhoeae and Chlamydia trachomatis. Non-ribosome binding 3'-(S) isomers of the leads demonstrated weak inhibitory activity in in vitro protein translation assays and poor antibacterial activity, indicating that the antibacterial activity of the series remains on target. In addition to improved antibacterial potency, compounds also demonstrated no mammalian cytotoxicity, improved microsomal stability, and favorable pharmacokinetic properties in rats. The lead compound from the series, compound 1, exhibited excellent chemical stability, which was superior to spectinomycin and had no significant interaction with a panel of human receptors and drug metabolism enzymes suggesting low potential for adverse reactions or drug-drug interactions in vivo. Compound 1 was active in vitro against a panel of penicillin, macrolide, and cephalosporin resistant S. pneumoniae clinical isolates and cured mice of fatal pneumococcal pneumonia and sepsis at a dose of 5 mg/kg. Together, these studies indicate N-benzyl aminomethyl spectinomycins possess suitable properties for further development as novel antibacterial agents to treat drug resistant respiratory tract and sexually transmitted bacterial infections. PMID:25995221

  11. Interactions of Antibiotics and Methanolic Crude Extracts of Afzelia Africana (Smith.) Against Drug Resistance Bacterial Isolates

    PubMed Central

    Aiyegoro, Olayinka; Adewusi, Adekanmi; Oyedemi, Sunday; Akinpelu, David; Okoh, Anthony

    2011-01-01

    Infection due to multidrug resistance pathogens is difficult to manage due to bacterial virulence factors and because of a relatively limited choice of antimicrobial agents. Thus, it is imperative to discover fresh antimicrobials or new practices that are effective for the treatment of infectious diseases caused by drug-resistant microorganisms. The objective of this experiment is to investigate for synergistic outcomes when crude methanolic extract of the stem bark of Afzelia africana and antibiotics were combined against a panel of antibiotic resistant bacterial strains that have been implicated in infections. Standard microbiological protocols were used to determine the minimum inhibitory concentrations (MICs) of the extract and antibiotics, as well as to investigate the effect of combinations of the methanolic extract of A. africana stem bark and selected antibiotics using the time-kill assay method. The extract of Afzelia africana exhibited antibacterial activities against both Gram-negative and Gram-positive bacteria made up of environmental and standard strains at a screening concentration of 5 mg/mL. The MICs of the crude extracts and the antibiotics varied between 1 μg/mL and 5.0 mg/mL. Overall, synergistic response constituted about 63.79% of all manner of combinations of extract and antibiotics against all test organisms; antagonism was not detected among the 176 tests carried out. The extract from A. africana stem bark showed potentials of synergy in combination with antibiotics against strains of pathogenic bacteria. The detection of synergy between the extract and antibiotics demonstrates the potential of this plant as a source of antibiotic resistance modulating compounds. PMID:21845091

  12. Inhibition of bacterial growth by iron oxide nanoparticles with and without attached drug: Have we conquered the antibiotic resistance problem?

    NASA Astrophysics Data System (ADS)

    Armijo, Leisha M.; Jain, Priyanka; Malagodi, Angelina; Fornelli, F. Zuly; Hayat, Allison; Rivera, Antonio C.; French, Michael; Smyth, Hugh D. C.; Osiński, Marek

    2015-03-01

    Pseudomonas aeruginosa is among the top three leading causative opportunistic human pathogens, possessing one of the largest bacterial genomes and an exceptionally large proportion of regulatory genes therein. It has been known for more than a decade that the size and complexity of the P. aeruginosa genome is responsible for the adaptability and resilience of the bacteria to include its ability to resist many disinfectants and antibiotics. We have investigated the susceptibility of P. aeruginosa bacterial biofilms to iron oxide (magnetite) nanoparticles (NPs) with and without attached drug (tobramycin). We also characterized the susceptibility of zero-valent iron NPs, which are known to inactivate microbes. The particles, having an average diameter of 16 nm were capped with natural alginate, thus doubling the hydrodynamic size. Nanoparticle-drug conjugates were produced via cross-linking drug and alginate functional groups. Drug conjugates were investigated in the interest of determining dosage, during these dosage-curve experiments, NPs unbound to drug were tested in cultures as a negative control. Surprisingly, we found that the iron oxide NPs inhibited bacterial growth, and thus, biofilm formation without the addition of antibiotic drug. The inhibitory dosages of iron oxide NPs were investigated and the minimum inhibitory concentrations are presented. These findings suggest that NP-drug conjugates may overcome the antibiotic drug resistance common in P. aeruginosa infections.

  13. Antimicrobial potential of Halophilic actinomycetes against multi drug resistant (MDR) ventilator associated pneumonia causing bacterial pathogens.

    PubMed

    Aslam, Sana; Sajid, Imran

    2016-03-01

    A collection of forty halophilic actinomycetes isolated from water and mud samples of the saline lake at Kalar Kahar, salt range, Pakistan, was screened to investigate their antimicrobial potential against multi drug resistant (MDR) ventilator associated pneumonia causing bacterial pathogens. The isolates exhibited significant tolerance to alkaline conditions and grew well at pH 9-11. The taxonomic status of the isolated strains was determined by morphological, biochemical and physiological characterization and by 16s rRNA gene sequencing. The results revealed that majority of the isolates (90%) belong to the genus Streptomyces. Most of the isolates exhibited remarkable antimicrobial activity up to 20mm zone of inhibition against MDR ventilator associated pneumonia causing bacteria including Staphylococcus aureus, Pseudomonas aeruginosa, Proteus vulgaris, Klebsiella pneumoniae, Escherichia coli, Enterobacter and Acinetobacter spp. Additionally the isolates showed moderate to high cytotoxicity in the range of 40 to 80% larval mortality against Artemia salina in a micro well cytotoxicity assay. The chemical screening or the so called metabolic fingerprinting of the methanolic extracts of each isolate, by thin layer chromatography (TLC) using various staining reagents and by high performance liquid chromatography (HPLC-UV), indicated an impressive diversity of the compounds produced by these strains. The study reveals that these halophilic actinomycetes are a promising source of bioactive compounds. The preparative scale fermentation, isolation, purification and structure elucidation of the compounds produced by them may yield novel antimicrobial or chemotherapeutic agents. PMID:27087086

  14. Drug resistance of bacterial dental biofilm and the potential use of natural compounds as alternative for prevention and treatment.

    PubMed

    Kouidhi, Bochra; Al Qurashi, Yasir Mohammed A; Chaieb, Kamel

    2015-03-01

    Oral diseases, such as dental caries and periodontal disease are directly linked with the ability of bacteria to form biofilm. The development of dental caries involves acidogenic and aciduric Gram-positive bacteria colonizing the supragingival biofilm (Streptococcus, Lactobacillus and Actinomycetes). Periodontal diseases have been linked to anaerobic Gram-negative bacteria forming a subgingival plaque (Porphyromonas gingivalis, Actinobacillus, Prevotella and Fusobacterium). Cells embedded in biofilm are up to 1000-fold more resistant to antibiotics compared to their planctonic ones. Several mechanisms have been proposed to explain biofilms drug resistance. Given the increased bacterial resistance to antibiotics currently used in dentistry, a great importance is given to natural compounds for the prevention of oral bacterial growth, adhesion and colonization. Over the past decade, interest in drugs derived from medicinal plants has markedly increased. It has been well documented that medicinal plants and natural compounds confer considerable antibacterial activity against various microorganisms including cariogenic and periodontal pathogens. This paper provides a review of the literature focusing on the studies on (i) biofilm in the oral cavity, (ii) drug resistance of bacterial biofilm and (iii) the potential use of plant extracts, essential oils and natural compounds as biofilm preventive agents in dentistry, involving their origin and their mechanism of biofilm inhibition. PMID:25708507

  15. Interspecific bacterial sensing through airborne signals modulates locomotion and drug resistance.

    PubMed

    Kim, Kwang-sun; Lee, Soohyun; Ryu, Choong-Min

    2013-01-01

    Bacteria use chemical signals to sense each other and to regulate various physiological functions. Although it is known that some airborne volatile organic compounds function as bacterial signalling molecules, their identities and effects on global gene expression and bacterial physiological processes remain largely unknown. Here we perform microarray analyses of Escherichia coli exposed to volatile organic compounds emitted from Bacillus subtilis. We find that 2,3-butanedione and glyoxylic acid mediate global changes in gene expression related to motility and antibiotic resistance. Volatile organic compound-dependent phenotypes are conserved among bacteria and are regulated by the previously uncharacterized ypdB gene product through the downstream transcription factors soxS, rpoS or yjhU. These results strongly suggest that bacteria use airborne volatile organic compounds to sense other bacteria and to change master regulatory gene activity to adapt. PMID:23651997

  16. Drug Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drug resistance refers to both intrinsic and acquired abilities of cells or organisms to become insensitive or refractory to chemotherapeutic intervention. The advent of antibiotics is considered one of the most important medicinal developments in human history, which has led to significantly reduce...

  17. Predominance of multi-drug resistant bacterial pathogens causing surgical site infections in Muhimbili national hospital, Tanzania

    PubMed Central

    2014-01-01

    Background Surgical site infections (SSIs) remain a common and widespread problem contributing to a significant morbidity and mortality, attributed partly by the increase in antimicrobial resistance among the etiological agents. This study was done to determine the spectrum of bacterial isolates and their susceptibility patterns causing SSIs at Muhimbili National Hospital, Tanzania. Methods This descriptive cross sectional study was conducted between September, 2011 and February, 2012. Pus swabs or pus were cultured on blood agar (Oxoid, UK) and MacConkey agar (Oxoid, UK) and incubated aerobically at 37°C for 18–24 hours. Bacterial identification was done using API 20E and VITEK and antimicrobial susceptibility was determined by Kirby Bauer disc diffusion. Results Of the 100 patients, from whom wound swabs were collected, 90 (90%) had positive aerobic bacterial growth. A total of 147 pathogenic bacteria were isolated, including 114 (77.5%) gram negative and 33(22.5%) gram positive organisms. The most prevalent bacterial species were Pseudomonas aeruginosa (16.3%), followed by Staphylococcus aureus (12.2%) and Klebsiella pneumoniae (10.8%). Of the 18 S. aureus , 8 (44%) were methicillin resistant Staphylococcus aureus (MRSA) and three of them (17%) were carrying both MRSA and induced clindamycin resistance (ICR). Extended spectrum beta-lactamase (ESBL) producing Enterobacteriaceae were observed in 23 (79.3%) of the 29 isolates tested. Majority of Escherichia coli 12 (92.3%) and K. pneumoniae 11 (69%) isolates were ESBL producers. About 63% (93/147) were multiple-drug resistance (MDR) isolates, and the overall MDR among Gram positive and Gram negative bacteria was 60.6% (20/33) and 61.4%, (73/114), respectively. The prevalence of MDR for E. coli, A. baumannii and P. stuartii was 100% each. Majority (97%) of the Gram negative bacteria were resistant to more than four categories (classes) of antibiotics. Conclusion A high proportion (63%) of the isolates causing

  18. Antimicrobial (Drug) Resistance

    MedlinePlus

    ... Antimicrobial (Drug) Resistance Antibiotic-Resistant Mycobacterium tuberculosis (TB) Methicillin-Resistant Staphylococcus aureus (MRSA) Vancomycin-Resistant Enterococci (VRE) Multidrug-Resistant Neisseria ...

  19. Globally dispersed mobile drug-resistance genes in Gram-negative bacterial isolates from patients with bloodstream infections in a US urban general hospital

    PubMed Central

    Adams-Sapper, S.; Sergeevna-Selezneva, J.; Tartof, S.; Raphael, E.; Diep, B. An; Perdreau-Remington, F.

    2012-01-01

    Mobile drug-resistance genes with identical nucleic acid sequences carried by multidrug-resistant Escherichia coli strains that cause community-acquired infections are becomingly increasingly dispersed worldwide. Over a 2-year period, we analysed Gram-negative bacterial (GNB) pathogens from the blood of inpatients at an urban public hospital to determine what proportion of these isolates carried such globally dispersed drug-resistance genes. Of 376 GNB isolates, 167 (44 %) were Escherichia coli, 50 (13 %) were Klebsiella pneumoniae, 25 (7 %) were Pseudomonas aeruginosa, 25 (7 %) were Proteus mirabilis and 20 (5 %) were Enterobacter cloacae; the remainder (24 %) comprised 26 different GNB species. Among E. coli isolates, class 1 integrons were detected in 64 (38 %). The most common integron gene cassette configuration was dfrA17-aadA5, found in 30 (25 %) of 119 drug-resistant E. coli isolates and in one isolate of Moraxella morganii. Extended-spectrum β-lactamase (ESBL) genes were found in 16 E. coli isolates (10 %). These genes with identical sequences were found in nearly 40 % of bloodstream E. coli isolates in the study hospital, as well as in a variety of bacterial species from clinical and non-clinical sources worldwide. Thus, a substantial proportion of bloodstream infections among hospitalized patients were caused by E. coli strains carrying drug-resistance genes that are dispersed globally in a wide variety of bacterial species. PMID:22493279

  20. Mechanisms of drug resistance: quinolone resistance

    PubMed Central

    Hooper, David C.; Jacoby, George A.

    2015-01-01

    Quinolone antimicrobials are synthetic and widely used in clinical medicine. Resistance emerged with clinical use and became common in some bacterial pathogens. Mechanisms of resistance include two categories of mutation and acquisition of resistance-conferring genes. Resistance mutations in one or both of the two drug target enzymes, DNA gyrase and DNA topoisomerase IV, are commonly in a localized domain of the GyrA and ParE subunits of the respective enzymes and reduce drug binding to the enzyme-DNA complex. Other resistance mutations occur in regulatory genes that control the expression of native efflux pumps localized in the bacterial membrane(s). These pumps have broad substrate profiles that include quinolones as well as other antimicrobials, disinfectants, and dyes. Mutations of both types can accumulate with selection pressure and produce highly resistant strains. Resistance genes acquired on plasmids can confer low-level resistance that promotes the selection of mutational high-level resistance. Plasmid-encoded resistance is due to Qnr proteins that protect the target enzymes from quinolone action, one mutant aminoglycoside-modifying enzyme that also modifies certain quinolones, and mobile efflux pumps. Plasmids with these mechanisms often encode additional antimicrobial resistances and can transfer multidrug resistance that includes quinolones. Thus, the bacterial quinolone resistance armamentarium is large. PMID:26190223

  1. Mechanisms of drug resistance: quinolone resistance.

    PubMed

    Hooper, David C; Jacoby, George A

    2015-09-01

    Quinolone antimicrobials are synthetic and widely used in clinical medicine. Resistance emerged with clinical use and became common in some bacterial pathogens. Mechanisms of resistance include two categories of mutation and acquisition of resistance-conferring genes. Resistance mutations in one or both of the two drug target enzymes, DNA gyrase and DNA topoisomerase IV, are commonly in a localized domain of the GyrA and ParE subunits of the respective enzymes and reduce drug binding to the enzyme-DNA complex. Other resistance mutations occur in regulatory genes that control the expression of native efflux pumps localized in the bacterial membrane(s). These pumps have broad substrate profiles that include quinolones as well as other antimicrobials, disinfectants, and dyes. Mutations of both types can accumulate with selection pressure and produce highly resistant strains. Resistance genes acquired on plasmids can confer low-level resistance that promotes the selection of mutational high-level resistance. Plasmid-encoded resistance is due to Qnr proteins that protect the target enzymes from quinolone action, one mutant aminoglycoside-modifying enzyme that also modifies certain quinolones, and mobile efflux pumps. Plasmids with these mechanisms often encode additional antimicrobial resistances and can transfer multidrug resistance that includes quinolones. Thus, the bacterial quinolone resistance armamentarium is large. PMID:26190223

  2. Aloe vera extract functionalized zinc oxide nanoparticles as nanoantibiotics against multi-drug resistant clinical bacterial isolates.

    PubMed

    Ali, Khursheed; Dwivedi, Sourabh; Azam, Ameer; Saquib, Quaiser; Al-Said, Mansour S; Alkhedhairy, Abdulaziz A; Musarrat, Javed

    2016-06-15

    ZnO nanoparticles (ZnONPs) were synthesised through a simple and efficient biogenic synthesis approach, exploiting the reducing and capping potential of Aloe barbadensis Miller (A. vera) leaf extract (ALE). ALE-capped ZnO nanoparticles (ALE-ZnONPs) were characterized using UV-Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) analyses. XRD analysis provided the average size of ZnONPs as 15 nm. FTIR spectral analysis suggested the role of phenolic compounds, terpenoids and proteins present in ALE, in nucleation and stability of ZnONPs. Flow cytometry and atomic absorption spectrophotometry (AAS) data analyses revealed the surface binding and internalization of ZnONPs in Gram +ve (Staphylococcus aureus) and Gram -ve (Escherichia coli) cells, respectively. Significant antibacterial activity of ALE-ZnONPs was observed against extended spectrum beta lactamases (ESBL) positive E. coli, Pseudomonas aeruginosa, and methicillin resistant S. aureus (MRSA) clinical isolates exhibiting the MIC and MBC values of 2200, 2400 μg/ml and 2300, 2700 μg/ml, respectively. Substantial inhibitory effects of ALE-ZnONPs on bacterial growth kinetics, exopolysaccharides and biofilm formation, unequivocally suggested the antibiotic and anti-biofilm potential. Overall, the results elucidated a rapid, environmentally benign, cost-effective, and convenient method for ALE-ZnONPs synthesis, for possible applications as nanoantibiotics or drug carriers. PMID:27031596

  3. Bacterial strategies of resistance to antimicrobial peptides.

    PubMed

    Joo, Hwang-Soo; Fu, Chih-Iung; Otto, Michael

    2016-05-26

    Antimicrobial peptides (AMPs) are a key component of the host's innate immune system, targeting invasive and colonizing bacteria. For successful survival and colonization of the host, bacteria have a series of mechanisms to interfere with AMP activity, and AMP resistance is intimately connected with the virulence potential of bacterial pathogens. In particular, because AMPs are considered as potential novel antimicrobial drugs, it is vital to understand bacterial AMP resistance mechanisms. This review gives a comparative overview of Gram-positive and Gram-negative bacterial strategies of resistance to various AMPs, such as repulsion or sequestration by bacterial surface structures, alteration of membrane charge or fluidity, degradation and removal by efflux pumps.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. PMID:27160595

  4. Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells.

    PubMed

    Sanyasi, Sridhar; Majhi, Rakesh Kumar; Kumar, Satish; Mishra, Mitali; Ghosh, Arnab; Suar, Mrutyunjay; Satyam, Parlapalli Venkata; Mohapatra, Harapriya; Goswami, Chandan; Goswami, Luna

    2016-01-01

    Development of effective anti-microbial therapeutics has been hindered by the emergence of bacterial strains with multi-drug resistance and biofilm formation capabilities. In this article, we report an efficient green synthesis of silver nanoparticle (AgNP) by in situ reduction and capping with a semi-synthetic polysaccharide-based biopolymer (carboxymethyl tamarind polysaccharide). The CMT-capped AgNPs were characterized by UV, DLS, FE-SEM, EDX and HR-TEM. These AgNPs have average particle size of ~20-40 nm, and show long time stability, indicated by their unchanged SPR and Zeta-potential values. These AgNPs inhibit growth and biofilm formation of both Gram positive (B. subtilis) and Gram negative (E. coli and Salmonella typhimurium) bacterial strains even at concentrations much lower than the minimum inhibitory concentration (MIC) breakpoints of antibiotics, but show reduced or no cytotoxicity against mammalian cells. These AgNPs alter expression and positioning of bacterial cytoskeletal proteins FtsZ and FtsA. CMT-capped AgNPs can effectively block growth of several clinical isolates and MDR strains representing different genera and resistant towards multiple antibiotics belonging to different classes. We propose that the CMT-capped AgNPs can have potential bio-medical application against multi-drug-resistant microbes with minimal cytotoxicity towards mammalian cells. PMID:27125749

  5. Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells

    NASA Astrophysics Data System (ADS)

    Sanyasi, Sridhar; Majhi, Rakesh Kumar; Kumar, Satish; Mishra, Mitali; Ghosh, Arnab; Suar, Mrutyunjay; Satyam, Parlapalli Venkata; Mohapatra, Harapriya; Goswami, Chandan; Goswami, Luna

    2016-04-01

    Development of effective anti-microbial therapeutics has been hindered by the emergence of bacterial strains with multi-drug resistance and biofilm formation capabilities. In this article, we report an efficient green synthesis of silver nanoparticle (AgNP) by in situ reduction and capping with a semi-synthetic polysaccharide-based biopolymer (carboxymethyl tamarind polysaccharide). The CMT-capped AgNPs were characterized by UV, DLS, FE-SEM, EDX and HR-TEM. These AgNPs have average particle size of ~20–40 nm, and show long time stability, indicated by their unchanged SPR and Zeta-potential values. These AgNPs inhibit growth and biofilm formation of both Gram positive (B. subtilis) and Gram negative (E. coli and Salmonella typhimurium) bacterial strains even at concentrations much lower than the minimum inhibitory concentration (MIC) breakpoints of antibiotics, but show reduced or no cytotoxicity against mammalian cells. These AgNPs alter expression and positioning of bacterial cytoskeletal proteins FtsZ and FtsA. CMT-capped AgNPs can effectively block growth of several clinical isolates and MDR strains representing different genera and resistant towards multiple antibiotics belonging to different classes. We propose that the CMT-capped AgNPs can have potential bio-medical application against multi-drug-resistant microbes with minimal cytotoxicity towards mammalian cells.

  6. Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells

    PubMed Central

    Sanyasi, Sridhar; Majhi, Rakesh Kumar; Kumar, Satish; Mishra, Mitali; Ghosh, Arnab; Suar, Mrutyunjay; Satyam, Parlapalli Venkata; Mohapatra, Harapriya; Goswami, Chandan; Goswami, Luna

    2016-01-01

    Development of effective anti-microbial therapeutics has been hindered by the emergence of bacterial strains with multi-drug resistance and biofilm formation capabilities. In this article, we report an efficient green synthesis of silver nanoparticle (AgNP) by in situ reduction and capping with a semi-synthetic polysaccharide-based biopolymer (carboxymethyl tamarind polysaccharide). The CMT-capped AgNPs were characterized by UV, DLS, FE-SEM, EDX and HR-TEM. These AgNPs have average particle size of ~20–40 nm, and show long time stability, indicated by their unchanged SPR and Zeta-potential values. These AgNPs inhibit growth and biofilm formation of both Gram positive (B. subtilis) and Gram negative (E. coli and Salmonella typhimurium) bacterial strains even at concentrations much lower than the minimum inhibitory concentration (MIC) breakpoints of antibiotics, but show reduced or no cytotoxicity against mammalian cells. These AgNPs alter expression and positioning of bacterial cytoskeletal proteins FtsZ and FtsA. CMT-capped AgNPs can effectively block growth of several clinical isolates and MDR strains representing different genera and resistant towards multiple antibiotics belonging to different classes. We propose that the CMT-capped AgNPs can have potential bio-medical application against multi-drug-resistant microbes with minimal cytotoxicity towards mammalian cells. PMID:27125749

  7. Evolution and Impact of Bacterial Drug Resistance in the Context of Cystic Fibrosis Disease and Nosocomial Settings

    PubMed Central

    Sriramulu, Dinesh

    2013-01-01

    The use of antibiotics is unavoidable in trying to treat acute infections and in the prevention and control of chronic infections. Over the years, an ever increasing number of infections has escalated the use of antibiotics, which has necessitated action against an emerging bacterial resistance. There seems to be a continuous acquisition of new resistance mechanisms among bacteria that switch niches between human, animals, and the environment. An antibiotic resistant strain emerges when it acquires the DNA that confers the added capacity needed to survive in an unusual niche. Once acquired, a new resistance mechanism evolves according to the dynamics of the microenvironment; there is then a high probability that it is transferred to other species or to an avirulent strain of the same species. A well understood model for studying emerging antibiotic resistance and its impact is Pseudomonas aeruginosa, an opportunistic pathogen which is able to cause acute and chronic infections in nosocomial settings. This bacterium has a huge genetic repertoire consisting of genes that encode both innate and acquired antibiotic resistance traits. Besides acute infections, chronic colonization of P. aeruginosa in the lungs of cystic fibrosis (CF) patients plays a significant role in morbidity and mortality. Antibiotics used in the treatment of such infections has increased the longevity of patients over the last several decades. However, emerging multidrug resistant strains and the eventual increase in the dosage of antibiotic(s) is of major concern. Though there are various infections that are treated by single/combined antibiotics, the particular case of P. aeruginosa infection in CF patients serves as a reference for understanding the impact of overuse of antibiotics and emerging antibiotic resistant strains. This mini review presents the need for judicious use of antibiotics to treat various types of infections, protecting patients and the environment, as well as achieving a

  8. Bacterial resistance to antimicrobial peptides: an evolving phenomenon.

    PubMed

    Fleitas, Osmel; Agbale, Caleb M; Franco, Octavio L

    2016-01-01

    Bacterial resistance to conventional antibiotics is currently a real problem all over the world, making novel antimicrobial compounds a real research priority. Some of the most promising compounds found to date are antimicrobial peptides (AMPs). The benefits of these drugs include their broad spectrum of activity that affects several microbial processes, making the emergence of resistance less likely. However, bacterial resistance to AMPs is an evolving phenomenon that compromises the therapeutic potential of these compounds. Therefore, it is mandatory to understand bacterial mechanisms of resistance to AMPs in depth, in order to develop more powerful AMPs that overcome the bacterial resistance response. PMID:27100488

  9. Transfer between an Algerian and a French hospital of four multi-drug resistant bacterial strains together via a single patient

    PubMed Central

    Moissenet, Didier; Richard, Patrick; Granados, Maria; Mérens, Audrey; Fournier, Damien; Fines-Guyon, Marguerite; Arlet, Guillaume; Vu-Thien, Hoang

    2015-01-01

    A 5 years-old girl, seriously burnt with fire, was first hospitalized during four days in an hospital at Alger, and then transferred to our hospital at Paris. Admitted in our intensive care burns unit, she was third degree burnt on 78% of total body surface area, already treated with imipenem and vancomycin at her arrival. Clinical aggravation was rapidly observed and death occurred within 24 hours. Cultures of blood and multiple wound swabs yielded 3 multi-drug resistant bacterial strains: Acinetobacter baumannii with carbapenemase OXA-23, Pseudomonas aeruginosa serotype O11 with metallo-ß-lactamase VIM-4 and Klebsiella pneumoniae with CTX-M-15 extended-spectrum ß-lactamase. Culture of a rectal swab showed colonization by Enterococcus faecium with vanA glycopeptides resistance. Patients colonized with one or two multi-drug-resistant strains were not rare in our burns unit, especially those transferred from Algeria, but this case of a single patient harboring four multi-drug-resistant strains is exceptional. PMID:26550534

  10. Bacterial resistance to uncouplers.

    PubMed

    Lewis, K; Naroditskaya, V; Ferrante, A; Fokina, I

    1994-12-01

    Uncoupler resistance presents a potential challenge to the conventional chemiosmotic coupling mechanism. In E. coli, an adaptive response to uncouplers was found in cell growing under conditions requiring oxidative phosphorylation. It is suggested that uncoupler-resistant mutants described in the earlier literature might represent a constitutive state of expression of this "low energy shock" adaptive response. In the environment, bacteria are confronted by nonclassical uncoupling factors such as organic solvents, heat, and extremes of pH. It is suggested that the low energy shock response will aid the cell in coping with the effects of natural uncoupling factors. The genetic analysis of uncoupler resistance has only recently began, and is yielding interesting and largely unexpected results. In Bacillus subtilis, a mutation in fatty acid desaturase causes an increased content of saturated fatty acids in the membrane and increased uncoupler resistance. The protonophoric efficiency of uncouplers remains unchanged in the mutants, inviting nonorthodox interpretations of the mechanism of resistance. In E. coli, two loci conferring resistance to CCCP and TSA were cloned and were found to encode multidrug resistance pumps. Resistance to one of the uncouplers, TTFB, remained unchanged in strains mutated for the MDRs, suggesting a resistance mechanism different from uncoupler extrusion. PMID:7721726

  11. Bacterial multi-drug efflux transporters

    PubMed Central

    Delmar, Jared A.; Su, Chih-Chia; Yu, Edward W.

    2016-01-01

    Infections caused by bacteria remain a leading cause of death worldwide. While antibiotics remain a key clinical therapy, their effectiveness has been severely compromised by the development of drug resistance in these pathogens. A common and powerful resistance mechanism, multi-drug efflux transporters are capable of extruding a number of structurally unrelated antimicrobials from the bacterial cell, including antibiotics and toxic heavy metal ions, facilitating their survival in noxious environments. Those transporters belonging to the resistance-nodulation-cell division (RND) superfamily typically assemble as tripartite efflux complexes, spanning the inner and outer membranes of the cell envelope. In Escherichia coli, the CusCFBA complex, which mediates resistance to copper(I) and silver(I) ions, is the only known RND transporter with a specificity for heavy metals. Herein, we describe the current knowledge of individual pump components of the Cus system, a paradigm for efflux machinery, and speculate on how RND pumps assemble to fight diverse antimicrobials. PMID:24702006

  12. Who possesses drug resistance genes in the aquatic environment?: sulfamethoxazole (SMX) resistance genes among the bacterial community in water environment of Metro-Manila, Philippines

    PubMed Central

    Suzuki, Satoru; Ogo, Mitsuko; Miller, Todd W.; Shimizu, Akiko; Takada, Hideshige; Siringan, Maria Auxilia T.

    2013-01-01

    Recent evidence has shown that antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are ubiquitous in natural environments, including sites considered pristine. To understand the origin of ARGs and their dynamics, we must first define their actual presence in the natural bacterial assemblage. Here we found varying distribution profiles of sul genes in “colony forming bacterial assemblages” and “natural bacterial assemblages.” Our monitoring for antibiotic contamination revealed that sulfamethoxazole (SMX) is a major contaminant in aquatic environments of Metro-Manila, which would have been derived from human and animal use, and subsequently decreased through the process of outflow from source to the sea. The SMX-resistant bacterial rate evaluated by the colony forming unit showed 10 to 86% of the total colony numbers showed higher rates from freshwater sites compared to marine sites. When sul genes were quantified by qPCR, colony-forming bacteria conveyed sul1 and sul2 genes in freshwater and seawater (10−5–10−2 copy/16S) but not sul3. Among the natural bacterial assemblage, all sul1, sul2, and sul3 were detected (10−5–10−3 copy/16S), whereas all sul genes were at an almost non-detectable level in the freshwater assemblage. This study suggests that sul1 and sul2 are main sul genes in culturable bacteria, whereas sul3 is conveyed by non-culturable bacteria in the sea. As a result marine bacteria possess sul1, sul2 and sul3 genes in the marine environment. PMID:23641240

  13. Bacterial cheating limits antibiotic resistance

    NASA Astrophysics Data System (ADS)

    Xiao Chao, Hui; Yurtsev, Eugene; Datta, Manoshi; Artemova, Tanya; Gore, Jeff

    2012-02-01

    The widespread use of antibiotics has led to the evolution of resistance in bacteria. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removing the antibiotic. The cooperative nature of this growth suggests that a cheater strain---which does not contribute to breaking down the antibiotic---may be able to take advantage of cells cooperatively inactivating the antibiotic. Here we find experimentally that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We observe stable coexistence between the two strains and find that a simple model successfully explains the behavior as a function of antibiotic concentration and cell density. We anticipate that our results will provide insight into the evolutionary origin of phenotypic diversity and cooperative behaviors.

  14. Influence of First-Line Antibiotics on the Antibacterial Activities of Acetone Stem Bark Extract of Acacia mearnsii De Wild. against Drug-Resistant Bacterial Isolates

    PubMed Central

    Olajuyigbe, Olufunmiso O.; Coopoosamy, Roger M.

    2014-01-01

    Background. This study was aimed at evaluating the antibacterial activity of the acetone extract of A. mearnsii and its interactions with antibiotics against some resistant bacterial strains. Methods. The antibacterial susceptibility testing was determined by agar diffusion and macrobroth dilution methods while the checkerboard method was used for the determination of synergy between the antibiotics and the extract. Results. The results showed that the susceptibility of the different bacterial isolates was concentration dependent for the extract and the different antibiotics. With the exception of S. marcescens, the inhibition zones of the extract produced by 20 mg/mL ranged between 18 and 32 mm. While metronidazole did not inhibit any of the bacterial isolates, all the antibiotics and their combinations, except for ciprofloxacin and its combination, did not inhibit Enterococcus faecalis. The antibacterial combinations were more of being antagonistic than of being synergistic in the agar diffusion assay. From the macrobroth dilution, the extract and the antibiotics exerted a varied degree of inhibitory effect on the test organisms. The MIC values of the acetone extract which are in mg/mL are lower than those of the different antibiotics which are in μg/mL. From the checkerboard assay, the antibacterial combinations showed varied degrees of interactions including synergism, additive, indifference, and antagonism interactions. While antagonistic and additive interactions were 14.44%, indifference interaction was 22.22% and synergistic interaction was 37.78% of the antibacterial combinations against the test isolates. While the additivity/indifference interactions indicated no interactions, the antagonistic interaction may be considered as a negative interaction that could result in toxicity and suboptimal bioactivity. Conclusion. The synergistic effects of the herbal-drug combinations may be harnessed for the discovery and development of more rational evidence

  15. Drug Resistance in Leishmaniasis

    PubMed Central

    Chakravarty, Jaya; Sundar, Shyam

    2010-01-01

    The treatment options of leishmaniasis are limited and far from satisfactory. For more than 60 years, treatment of leishmaniasis has centered around pentavalent antimonials (Sbv). Widespread misuse has led to the emergence of Sbv resistance in the hyperendemic areas of North Bihar. Other antileishmanials could also face the same fate, especially in the anthroponotic cycle. The HIV/ visceral leishmaniasis (VL) coinfected patients are another potential source for the emergence of drug resistance. At present no molecular markers of resistance are available and the only reliable method for monitoring resistance of isolates is the technically demanding in vitro amastigote-macrophage model. As the armametrium of drugs for leishmaniasis is limited, it is important that effective monitoring of drug use and response should be done to prevent the spread of resistance. Regimens of simultaneous or sequential combinations should be seriously considered to limit the emergence of resistance. PMID:20606973

  16. Bacterial Enzymes and Antibiotic Resistance- Oral Presentation

    SciTech Connect

    Maltz, Lauren

    2015-08-25

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β-lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes.

  17. PCR amplfication on a microarray of gel-immobilized oligonucleotides : detection of bacterial toxin- and drug-resistent genes and their mutations.

    SciTech Connect

    Strizhkov, B. N.; Drobyshev, A. L.; Mikhailovich, V. M.; Mirzabekov, A. D.; Biochip Technology Center; Engelhardt Inst. of Molecular Biology

    2000-10-01

    PCR amplification on a microarray of gel-immobilized primers (microchip) has been developed. One of a pair of PCR primers was immobilized inside a separate microchip polyacrylamide porous gel pad of 0.1 x 0.1 x 0.02 (or 0.04) micron in size and 0.2 (or 0.4) nL in volume. The amplification was carried out simultaneously both in solution covering the microchip array and inside gel pads. Each gel pad contained the immobilized forward primers, while the fluorescently labeled reverse primers, as well as all components of the amplification reaction, diffused into the gel pads from the solution. To increase the amplification efficiency, the forward primers were also added into the solution. The kinetics of amplification was measured in real time in parallel for all gel pads with a fluorescent microscope equipped with a charge-coupled device (CCD) camera. The accuracy of the amplification was assessed by using the melting curves obtained for the duplexes formed by the labeled amplification product and the gel-immobilized primers during the amplification process; alternatively, the duplexes were produced by hybridization of the extended immobilized primers with labeled oligonucleotide probes. The on-chip amplification was applied to detect the anthrax toxin genes and the plasmid-borne beta-lactamase gene responsible for bacterial ampicillin resistance. The allele-specific type of PCR amplification was used to identify the Shiga toxin gene and discriminate it from the Shiga-like one. The genomic mutations responsible for rifampicin resistance of the Mycobacterium tuberculosis strains were detected by the same type of PCR amplification of the rpoB gene fragment isolated from sputum of tuberculosis patients. The on-chip PCR amplification has been shown to be a rapid, inexpensive and powerful tool to test genes responsible for bacterial toxin production and drug resistance, as well as to reveal point nucleotide mutations.

  18. Extensively drug-resistant bacteria are an independent predictive factor of mortality in 130 patients with spontaneous bacterial peritonitis or spontaneous bacteremia

    PubMed Central

    Alexopoulou, Alexandra; Vasilieva, Larisa; Agiasotelli, Danai; Siranidi, Kyriaki; Pouriki, Sophia; Tsiriga, Athanasia; Toutouza, Marina; Dourakis, Spyridon P

    2016-01-01

    AIM: To evaluate the epidemiology and outcomes of culture-positive spontaneous bacterial peritonitis (SBP) and spontaneous bacteremia (SB) in decompensated cirrhosis. METHODS: We prospectively collected clinical, laboratory characteristics, type of administered antibiotic, susceptibility and resistance of bacteria to antibiotics in one hundred thirty cases (68.5% males) with positive ascitic fluid and/or blood cultures during the period from January 1, 2012 to May 30, 2014. All patients with SBP had polymorphonuclear cell count in ascitic fluid > 250/mm3. In patients with SB a thorough study did not reveal any other cause of bacteremia. The patients were followed-up for a 30-d period following diagnosis of the infection. The final outcome of the patients was recorded in the end of follow-up and comparison among 3 groups of patients according to the pattern of drug resistance was performed. RESULTS: Gram-positive-cocci (GPC) were found in half of the cases. The most prevalent organisms in a descending order were Escherichia coli (33), Enterococcus spp (30), Streptococcus spp (25), Klebsiella pneumonia (16), S. aureus (8), Pseudomanas aeruginosa (5), other Gram-negative-bacteria (GNB) (11) and anaerobes (2). Overall, 20.8% of isolates were multidrug-resistant (MDR) and 10% extensively drug-resistant (XDR). Health-care-associated (HCA) and/or nosocomial infections were present in 100% of MDR/XDR and in 65.5% of non-DR cases. Meropenem was the empirically prescribed antibiotic in HCA/nosocomial infections showing a drug-resistance rate of 30.7% while third generation cephalosporins of 43.8%. Meropenem was ineffective on both XDR bacteria and Enterococcus faecium (E. faecium). All but one XDR were susceptible to colistin while all GPC (including E. faecium) and the 86% of GNB to tigecycline. Overall 30-d mortality was 37.7% (69.2% for XDR and 34.2% for the rest of the patients) (log rank, P = 0.015). In multivariate analysis, factors adversely affecting outcome included

  19. Clinical management of resistance evolution in a bacterial infection

    PubMed Central

    Woods, Robert J.; Read, Andrew F.

    2015-01-01

    We report the case of a patient with a chronic bacterial infection that could not be cured. Drug treatment became progressively less effective due to antibiotic resistance, and the patient died, in effect from overwhelming evolution. Even though the evolution of drug resistance was recognized as a major threat, and the fundamentals of drug resistance evolution are well understood, it was impossible to make evidence-based decisions about the evolutionary risks associated with the various treatment options. We present this case to illustrate the urgent need for translational research in the evolutionary medicine of antibiotic resistance. PMID:26454762

  20. Drug resistance in leishmaniasis.

    PubMed

    Croft, Simon L; Sundar, Shyam; Fairlamb, Alan H

    2006-01-01

    Leishmaniasis is a complex disease, with visceral and cutaneous manifestations, and is caused by over 15 different species of the protozoan parasite genus Leishmania. There are significant differences in the sensitivity of these species both to the standard drugs, for example, pentavalent antimonials and miltefosine, and those on clinical trial, for example, paromomycin. Over 60% of patients with visceral leishmaniasis in Bihar State, India, do not respond to treatment with pentavalent antimonials. This is now considered to be due to acquired resistance. Although this class of drugs has been used for over 60 years for leishmaniasis treatment, it is only in the past 2 years that the mechanisms of action and resistance have been identified, related to drug metabolism, thiol metabolism, and drug efflux. With the introduction of new therapies, including miltefosine in 2002 and paromomycin in 2005-2006, it is essential that there be a strategy to prevent the emergence of resistance to new drugs; combination therapy, monitoring of therapy, and improved diagnostics could play an essential role in this strategy. PMID:16418526

  1. Multidrug Resistant and Extensively Drug Resistant Bacteria: A Study

    PubMed Central

    Basak, Silpi; Singh, Priyanka; Rajurkar, Monali

    2016-01-01

    Background and Objective. Antimicrobial resistance is now a major challenge to clinicians for treating patients. Hence, this short term study was undertaken to detect the incidence of multidrug-resistant (MDR), extensively drug-resistant (XDR), and pandrug-resistant (PDR) bacterial isolates in a tertiary care hospital. Material and Methods. The clinical samples were cultured and bacterial strains were identified in the department of microbiology. The antibiotic susceptibility profile of different bacterial isolates was studied to detect MDR, XDR, and PDR bacteria. Results. The antibiotic susceptibility profile of 1060 bacterial strains was studied. 393 (37.1%) bacterial strains were MDR, 146 (13.8%) strains were XDR, and no PDR was isolated. All (100%) Gram negative bacterial strains were sensitive to colistin whereas all (100%) Gram positive bacterial strains were sensitive to vancomycin. Conclusion. Close monitoring of MDR, XDR, or even PDR must be done by all clinical microbiology laboratories to implement effective measures to reduce the menace of antimicrobial resistance. PMID:26942013

  2. Dramatic increase of third-generation cephalosporin-resistant E. coli in German intensive care units: secular trends in antibiotic drug use and bacterial resistance, 2001 to 2008

    PubMed Central

    2010-01-01

    Introduction The objective of the present study was to analyse secular trends in antibiotic consumption and resistance data from a network of 53 intensive care units (ICUs). Methods The study involved prospective unit and laboratory-based surveillance in 53 German ICUs from 2001 through 2008. Data were calculated on the basis of proportions of nonduplicate resistant isolates, resistance densities (that is, the number of resistant isolates of a species per 1,000 patient-days) and an antimicrobial usage density (AD) expressed as daily defined doses (DDD) and normalised per 1,000 patient-days. Results Total mean antibiotic use remained stable over time and amounted to 1,172 DDD/1,000 patient-days (range 531 to 2,471). Carbapenem use almost doubled to an AD of 151 in 2008. Significant increases were also calculated for quinolone (AD of 163 in 2008) and third-generation and fourth-generation cephalosporin use (AD of 117 in 2008). Aminoglycoside consumption decreased substantially (AD of 86 in 2001 and 24 in 2008). Resistance proportions were as follows in 2001 and 2008, respectively: methicillin-resistant Staphylococcus aureus (MRSA) 26% and 20% (P = 0.006; trend test showed a significant decrease), vancomycin-resistant enterococcus (VRE) faecium 2.3% and 8.2% (P = 0.008), third-generation cephalosporin (3GC)-resistant Escherichia. coli 1.2% and 19.7% (P < 0.001), 3GC-resistant Klebsiella pneumoniae 3.8% and 25.5% (P < 0.001), imipenem-resistant Acinetobacter baumannii 1.1% and 4.5% (P = 0.002), and imipenem-resistant K. pneumoniae 0.4% and 1.1%. The resistance densities did not change for MRSA but increased significantly for VRE faecium and 3GC-resistant E. coli and K. pneumoniae. In 2008, the resistance density for MRSA was 3.73, 0.48 for VRE, 1.39 for 3GC-resistant E. coli and 0.82 for K. pneumoniae. Conclusions Although total antibiotic use did not change over time in German ICUs, carbapenem use doubled. This is probably due to the rise in 3GC-resistant E. coli and

  3. Antibacterial drug discovery in the resistance era.

    PubMed

    Brown, Eric D; Wright, Gerard D

    2016-01-21

    The looming antibiotic-resistance crisis has penetrated the consciousness of clinicians, researchers, policymakers, politicians and the public at large. The evolution and widespread distribution of antibiotic-resistance elements in bacterial pathogens has made diseases that were once easily treatable deadly again. Unfortunately, accompanying the rise in global resistance is a failure in antibacterial drug discovery. Lessons from the history of antibiotic discovery and fresh understanding of antibiotic action and the cell biology of microorganisms have the potential to deliver twenty-first century medicines that are able to control infection in the resistance era. PMID:26791724

  4. Bacteremia and Antimicrobial Drug Resistance over Time, Ghana

    PubMed Central

    Amuzu, Sylvarius K.; de Ciman, Ring; Kassimova, Iparkhan; Groß, Lisa; Rabsch, Wolfgang; Rosenberg, Ulrike; Schulze, Marco; Stich, August; Zimmermann, Ortrud

    2011-01-01

    Bacterial distribution and antimicrobial drug resistance were monitored in patients with bacterial bloodstream infections in rural hospitals in Ghana. In 2001–2002 and in 2009, Salmonella enterica serovar Typhi was the most prevalent pathogen. Although most S. enterica serovar Typhi isolates were chloramphenicol resistant, all isolates tested were susceptible to ciprofloxacin. PMID:22000360

  5. Evolution of Drug Resistance in Bacteria.

    PubMed

    Waclaw, B

    2016-01-01

    Resistance to antibiotics is an important and timely problem of contemporary medicine. Rapid evolution of resistant bacteria calls for new preventive measures to slow down this process, and a longer-term progress cannot be achieved without a good understanding of the mechanisms through which drug resistance is acquired and spreads in microbial populations. Here, we discuss recent experimental and theoretical advances in our knowledge how the dynamics of microbial populations affects the evolution of antibiotic resistance . We focus on the role of spatial and temporal drug gradients and show that in certain situations bacteria can evolve de novo resistance within hours. We identify factors that lead to such rapid onset of resistance and discuss their relevance for bacterial infections. PMID:27193537

  6. Antimalarial drug resistance: An overview.

    PubMed

    Antony, Hiasindh Ashmi; Parija, Subhash Chandra

    2016-01-01

    Malaria is a major public health burden throughout the world. Resistance to the antimalarial drugs has increased the mortality and morbidity rate that is achieved so far through the malaria control program. Monitoring the drug resistance to the available antimalarial drugs helps to implement effective drug policy, through the in vivo efficacy studies, in vitro drug susceptibility tests and detection of molecular markers. It is important to understand the mechanism of the antimalarial drugs, as it is one of the key factors in the emergence and spread of drug resistance. This review summarizes the commonly used antimalarial drugs, their mechanism of action and the genetic markers validated so far for the detection of drug-resistant parasites. PMID:26998432

  7. Antimalarial drug resistance: An overview

    PubMed Central

    Antony, Hiasindh Ashmi; Parija, Subhash Chandra

    2016-01-01

    Malaria is a major public health burden throughout the world. Resistance to the antimalarial drugs has increased the mortality and morbidity rate that is achieved so far through the malaria control program. Monitoring the drug resistance to the available antimalarial drugs helps to implement effective drug policy, through the in vivo efficacy studies, in vitro drug susceptibility tests and detection of molecular markers. It is important to understand the mechanism of the antimalarial drugs, as it is one of the key factors in the emergence and spread of drug resistance. This review summarizes the commonly used antimalarial drugs, their mechanism of action and the genetic markers validated so far for the detection of drug-resistant parasites. PMID:26998432

  8. Modulation of Bacterial Multidrug Resistance Efflux Pumps of the Major Facilitator Superfamily

    PubMed Central

    Kumar, Sanath; Mukherjee, Mun Mun; Varela, Manuel F.

    2013-01-01

    Bacterial infections pose a serious public health concern, especially when an infectious disease has a multidrug resistant causative agent. Such multidrug resistant bacteria can compromise the clinical utility of major chemotherapeutic antimicrobial agents. Drug and multidrug resistant bacteria harbor several distinct molecular mechanisms for resistance. Bacterial antimicrobial agent efflux pumps represent a major mechanism of clinical resistance. The major facilitator superfamily (MFS) is one of the largest groups of solute transporters to date and includes a significant number of bacterial drug and multidrug efflux pumps. We review recent work on the modulation of multidrug efflux pumps, paying special attention to those transporters belonging primarily to the MFS. PMID:25750934

  9. Bacterial resistance in biofilm-associated bacteria.

    PubMed

    Venkatesan, Nandakumar; Perumal, Govindaraj; Doble, Mukesh

    2015-01-01

    Biofilms are structured groups of different bacterial species that are responsible for most chronic and recurrent infections. Biofilm-related infections reoccur in approximately 65-80% of cases. Bacteria associated with the biofilm are highly resistant to antibiotics. Knowledge of biofilm formation, its propagation and the resistance associated with it is scant and a multidisciplinary approach is followed to understand the science and develop strategies to address this problem. This article discusses the role of various biochemical factors, molecular mechanisms and altered host environment causes associated with bacterial resistance in biofilm. It also reveals the target sites and different multidisciplinary strategies adapted for destroying or preventing the formation of biofilms. PMID:26517598

  10. Important aspects of nosocomial bacterial resistance and its management.

    PubMed

    Kandelaki, G; Tsertsvadze, T; Macharashvili, N; Esugbaia, M; Gogichaishvili, Sh

    2008-12-01

    The article reviews management of nosocomial bacterial resistance aspects. Nosocomial infections are associated with substantial morbidity, mortality and cost. During the last several decades multi-drug resistant organisms increased in number considerably. Methicillin-resistant staphylococcus aureus, Vancomycin-intermediately resistant staphylococcus aureus and fully vancomycin-resistant staphylococcus aureus evolved as a consequence of methicillin and vancomycin use. The introduction of third generation cephalosporins were followed by emergence of extended spectrum and AMP-C -lactamases among gram negative bacteria, and carbapenems were targeted by carbapenemases. The poor diagnostic yield of current microbiologic methods in identifying certain resistant organisms, combined with decreasing numbers of newly developed antibiotics pose a significant challenge to physicians. We reviewed some of the approaches which can be followed to maximize the positive clinical outcome in patients with resistant nosocomial infections, using currently available antibiotics. More sensitive microbiological methods and new types of antibiotics are needed to adequately address the problem in the future. PMID:19124917

  11. Antimicrobial Drugs in Fighting against Antimicrobial Resistance

    PubMed Central

    Cheng, Guyue; Dai, Menghong; Ahmed, Saeed; Hao, Haihong; Wang, Xu; Yuan, Zonghui

    2016-01-01

    The outbreak of antimicrobial resistance, together with the lack of newly developed antimicrobial drugs, represents an alarming signal for both human and animal healthcare worldwide. Selection of rational dosage regimens for traditional antimicrobial drugs based on pharmacokinetic/pharmacodynamic principles as well as development of novel antimicrobials targeting new bacterial targets or resistance mechanisms are key approaches in tackling AMR. In addition to the cellular level resistance (i.e., mutation and horizontal gene transfer of resistance determinants), the community level resistance (i.e., bilofilms and persisters) is also an issue causing antimicrobial therapy difficulties. Therefore, anti-resistance and antibiofilm strategies have currently become research hotspot to combat antimicrobial resistance. Although metallic nanoparticles can both kill bacteria and inhibit biofilm formation, the toxicity is still a big challenge for their clinical applications. In conclusion, rational use of the existing antimicrobials and combinational use of new strategies fighting against antimicrobial resistance are powerful warranties to preserve potent antimicrobial drugs for both humans and animals. PMID:27092125

  12. Antibiotics and Bacterial Resistance in the 21st Century

    PubMed Central

    Fair, Richard J; Tor, Yitzhak

    2014-01-01

    Dangerous, antibiotic resistant bacteria have been observed with increasing frequency over the past several decades. In this review the factors that have been linked to this phenomenon are addressed. Profiles of bacterial species that are deemed to be particularly concerning at the present time are illustrated. Factors including economic impact, intrinsic and acquired drug resistance, morbidity and mortality rates, and means of infection are taken into account. Synchronously with the waxing of bacterial resistance there has been waning antibiotic development. The approaches that scientists are employing in the pursuit of new antibacterial agents are briefly described. The standings of established antibiotic classes as well as potentially emerging classes are assessed with an emphasis on molecules that have been clinically approved or are in advanced stages of development. Historical perspectives, mechanisms of action and resistance, spectrum of activity, and preeminent members of each class are discussed. PMID:25232278

  13. Potential of novel antimicrobial peptide P3 from bovine erythrocytes and its analogs to disrupt bacterial membranes in vitro and display activity against drug-resistant bacteria in a mouse model.

    PubMed

    Zhang, Qinghua; Xu, Yanzhao; Wang, Qing; Hang, Bolin; Sun, Yawei; Wei, Xiaoxiao; Hu, Jianhe

    2015-05-01

    With the emergence of many antibiotic-resistant strains worldwide, antimicrobial peptides (AMPs) are being evaluated as promising alternatives to conventional antibiotics. P3, a novel hemoglobin peptide derived from bovine erythrocytes, exhibited modest antimicrobial activity in vitro. We evaluated the antimicrobial activities of P3 and an analog, JH-3, both in vitro and in vivo. The MICs of P3 and JH-3 ranged from 3.125 μg/ml to 50 μg/ml when a wide spectrum of bacteria was tested, including multidrug-resistant strains. P3 killed bacteria within 30 min by disrupting the bacterial cytoplasmic membrane and disturbing the intracellular calcium balance. Circular dichroism (CD) spectrometry showed that P3 assumed an α-helical conformation in bacterial lipid membranes, which was indispensable for antimicrobial activity. Importantly, the 50% lethal dose (LD50) of JH-3 was 180 mg/kg of mouse body weight after intraperitoneal (i.p.) injection, and no death was observed at any dose up to 240 mg/kg body weight following subcutaneous (s.c.) injection. Furthermore, JH-3 significantly decreased the bacterial count and rescued infected mice in a model of mouse bacteremia. In conclusion, P3 and an analog exhibited potent antimicrobial activities and relatively low toxicities in a mouse model, indicating that they may be useful for treating infections caused by drug-resistant bacteria. PMID:25753638

  14. [Resistance to the antimalarial drugs].

    PubMed

    Venanzi, E; López-Vélez, R

    2016-09-01

    Malaria is one of the most widespread infectious diseases around the world with 214 million cases and 438,000 deaths in 2015. In the early twentieth century it was described for the first time the resistance to quinine and, since then, drug resistance to antimalarial drugs has spread up to represent a global challenge in the fight and control of malaria. Understanding the mechanisms, geography and monitoring tools that we can act against resistance to antimalarial drugs is critical to prevent its expansion. PMID:27608319

  15. Mechanisms and consequences of bacterial resistance to antimicrobial peptides.

    PubMed

    Andersson, D I; Hughes, D; Kubicek-Sutherland, J Z

    2016-05-01

    Cationic antimicrobial peptides (AMPs) are an intrinsic part of the human innate immune system. Over 100 different human AMPs are known to exhibit broad-spectrum antibacterial activity. Because of the increased frequency of resistance to conventional antibiotics there is an interest in developing AMPs as an alternative antibacterial therapy. Several cationic peptides that are derivatives of AMPs from the human innate immune system are currently in clinical development. There are also ongoing clinical studies aimed at modulating the expression of AMPs to boost the human innate immune response. In this review we discuss the potential problems associated with these therapeutic approaches. There is considerable experimental data describing mechanisms by which bacteria can develop resistance to AMPs. As for any type of drug resistance, the rate by which AMP resistance would emerge and spread in a population of bacteria in a natural setting will be determined by a complex interplay of several different factors, including the mutation supply rate, the fitness of the resistant mutant at different AMP concentrations, and the strength of the selective pressure. Several studies have already shown that AMP-resistant bacterial mutants display broad cross-resistance to a variety of AMPs with different structures and modes of action. Therefore, routine clinical administration of AMPs to treat bacterial infections may select for resistant bacterial pathogens capable of better evading the innate immune system. The ramifications of therapeutic levels of exposure on the development of AMP resistance and bacterial pathogenesis are not yet understood. This is something that needs to be carefully studied and monitored if AMPs are used in clinical settings. PMID:27180309

  16. How drug resistance takes shape

    PubMed Central

    Jeselsohn, Rinath

    2016-01-01

    Mutations in a hormone receptor can lead to therapeutic resistance by making it less able to bind and respond to hormone blocking drugs and by making it active, even when the hormome is not present. PMID:27010172

  17. Bacterial gold sensing and resistance.

    PubMed

    Checa, Susana K; Soncini, Fernando C

    2011-06-01

    Gold ions are mobilized and disseminated through the environment and enter into the cells by non-specific intake. To avoid deleterious effect that occurs even at very low concentrations, bacteria such as Salmonella enterica and Cupriavidus metallidurans use Au-specific MerR-type transcriptional regulators to detect the presence of these toxic ions, and control the expression of specific resistance factors. In contrast to the related copper sensor CueR, the Au-selective metalloregulatory proteins are able to distinguish Au(I) from Cu(I) or Ag(I). This is achieved by finely tuning a single dithiolate metal coordination with conserved cysteine residues at the metal binding site of the proteins to lower the affinity for Cu(I) in comparison to the Cu-sensors, while maintaining or even increasing the affinity for Au(I). In Salmonella, GolS not only privileges the binding of Au(I) over Cu(I) or Ag(I), but also distinguishes its target recognition sites in its regulated promoters minimizing cross-activation of CueR-controlled operators. In this sense, the presence of a selective Au sensory devise would allow species harbouring resident Cu-homeostasis systems to eliminate the toxic ion without affecting Cu acquisition in Au rich environments. PMID:21153861

  18. Drug resistance in eukaryotic microorganisms.

    PubMed

    Fairlamb, Alan H; Gow, Neil A R; Matthews, Keith R; Waters, Andrew P

    2016-01-01

    Eukaryotic microbial pathogens are major contributors to illness and death globally. Although much of their impact can be controlled by drug therapy as with prokaryotic microorganisms, the emergence of drug resistance has threatened these treatment efforts. Here, we discuss the challenges posed by eukaryotic microbial pathogens and how these are similar to, or differ from, the challenges of prokaryotic antibiotic resistance. The therapies used for several major eukaryotic microorganisms are then detailed, and the mechanisms that they have evolved to overcome these therapies are described. The rapid emergence of resistance and the restricted pipeline of new drug therapies pose considerable risks to global health and are particularly acute in the developing world. Nonetheless, we detail how the integration of new technology, biological understanding, epidemiology and evolutionary analysis can help sustain existing therapies, anticipate the emergence of resistance or optimize the deployment of new therapies. PMID:27572976

  19. Antibiotic resistance in prevalent bacterial and protozoan sexually transmitted infections.

    PubMed

    Krupp, Karl; Madhivanan, Purnima

    2015-01-01

    The emergence of multi-drug resistant sexually transmitted infections (STIs) is causing a treatment crisis across the globe. While cephalosporin-resistant gonorrhea is one of the most pressing issues, extensively antibiotic resistant Chlamydia trachomatis and Mycoplasma hominis are also becoming commonplace. Experts have suggested that the failure of current treatment regimens are "largely inevitable" and have called for entirely new classes of antimicrobial agents. With the exception of several new classes of drugs primarily targeting nosocomial infections, progress has been slow. While pharmaceutical companies continue to introduce new drugs, they are based on decade-old discoveries. While there is disagreement about what constitutes new classes of antibiotics, many experts suggest that the last truly new family of antimicrobials was discovered in 1987. This review summarizes the existing literature on antibiotic resistance in common bacterial and protozoal STIs. It also briefly discusses several of the most promising alternatives to current therapies, and further examines how advances in drug delivery, formulation, concentration, and timing are improving the efficacy of existing treatments. Finally, the paper discusses the current state of pharmaceutical development for multidrug-resistant STI. PMID:26392647

  20. Antimicrobial (Drug) Resistance Prevention

    MedlinePlus

    ... Action Plan for Combating Antibiotic-Resistant Bacteria (PDF) ​​​​​​ Javascript Error Your browser JavaScript is turned off causing certain features of the ... incorrectly. Please visit your browser settings and turn JavaScript on. Read more information on enabling JavaScript. Skip ...

  1. Repurposing salicylanilide anthelmintic drugs to combat drug resistant Staphylococcus aureus.

    PubMed

    Rajamuthiah, Rajmohan; Fuchs, Beth Burgwyn; Conery, Annie L; Kim, Wooseong; Jayamani, Elamparithi; Kwon, Bumsup; Ausubel, Frederick M; Mylonakis, Eleftherios

    2015-01-01

    Staphylococcus aureus is a Gram-positive bacterium that has become the leading cause of hospital acquired infections in the US. Repurposing Food and Drug Administration (FDA) approved drugs for antimicrobial therapy involves lower risks and costs compared to de novo development of novel antimicrobial agents. In this study, we examined the antimicrobial properties of two commercially available anthelmintic drugs. The FDA approved drug niclosamide and the veterinary drug oxyclozanide displayed strong in vivo and in vitro activity against methicillin resistant S. aureus (minimum inhibitory concentration (MIC): 0.125 and 0.5 μg/ml respectively; minimum effective concentration: ≤ 0.78 μg/ml for both drugs). The two drugs were also effective against another Gram-positive bacteria Enterococcus faecium (MIC 0.25 and 2 μg/ml respectively), but not against the Gram-negative species Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter aerogenes. The in vitro antimicrobial activity of niclosamide and oxyclozanide were determined against methicillin, vancomycin, linezolid or daptomycin resistant S. aureus clinical isolates, with MICs at 0.0625-0.5 and 0.125-2 μg/ml for niclosamide and oxyclozanide respectively. A time-kill study demonstrated that niclosamide is bacteriostatic, whereas oxyclozanide is bactericidal. Interestingly, oxyclozanide permeabilized the bacterial membrane but neither of the anthelmintic drugs exhibited demonstrable toxicity to sheep erythrocytes. Oxyclozanide was non-toxic to HepG2 human liver carcinoma cells within the range of its in vitro MICs but niclosamide displayed toxicity even at low concentrations. These data show that the salicylanilide anthelmintic drugs niclosamide and oxyclozanide are suitable candidates for mechanism of action studies and further clinical evaluation for treatment of staphylococcal infections. PMID:25897961

  2. Repurposing Salicylanilide Anthelmintic Drugs to Combat Drug Resistant Staphylococcus aureus

    PubMed Central

    Rajamuthiah, Rajmohan; Fuchs, Beth Burgwyn; Conery, Annie L.; Kim, Wooseong; Jayamani, Elamparithi; Kwon, Bumsup; Ausubel, Frederick M.; Mylonakis, Eleftherios

    2015-01-01

    Staphylococcus aureus is a Gram-positive bacterium that has become the leading cause of hospital acquired infections in the US. Repurposing Food and Drug Administration (FDA) approved drugs for antimicrobial therapy involves lower risks and costs compared to de novo development of novel antimicrobial agents. In this study, we examined the antimicrobial properties of two commercially available anthelmintic drugs. The FDA approved drug niclosamide and the veterinary drug oxyclozanide displayed strong in vivo and in vitro activity against methicillin resistant S. aureus (minimum inhibitory concentration (MIC): 0.125 and 0.5 μg/ml respectively; minimum effective concentration: ≤ 0.78 μg/ml for both drugs). The two drugs were also effective against another Gram-positive bacteria Enterococcus faecium (MIC 0.25 and 2 μg/ml respectively), but not against the Gram-negative species Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter aerogenes. The in vitro antimicrobial activity of niclosamide and oxyclozanide were determined against methicillin, vancomycin, linezolid or daptomycin resistant S. aureus clinical isolates, with MICs at 0.0625-0.5 and 0.125-2 μg/ml for niclosamide and oxyclozanide respectively. A time-kill study demonstrated that niclosamide is bacteriostatic, whereas oxyclozanide is bactericidal. Interestingly, oxyclozanide permeabilized the bacterial membrane but neither of the anthelmintic drugs exhibited demonstrable toxicity to sheep erythrocytes. Oxyclozanide was non-toxic to HepG2 human liver carcinoma cells within the range of its in vitro MICs but niclosamide displayed toxicity even at low concentrations. These data show that the salicylanilide anthelmintic drugs niclosamide and oxyclozanide are suitable candidates for mechanism of action studies and further clinical evaluation for treatment of staphylococcal infections. PMID:25897961

  3. Antibacterial Mechanisms of Polymyxin and Bacterial Resistance

    PubMed Central

    Qin, Wangrong; Fang, Shisong; Qiu, Juanping

    2015-01-01

    Multidrug resistance in pathogens is an increasingly significant threat for human health. Indeed, some strains are resistant to almost all currently available antibiotics, leaving very limited choices for antimicrobial clinical therapy. In many such cases, polymyxins are the last option available, although their use increases the risk of developing resistant strains. This review mainly aims to discuss advances in unraveling the mechanisms of antibacterial activity of polymyxins and bacterial tolerance together with the description of polymyxin structure, synthesis, and structural modification. These are expected to help researchers not only develop a series of new polymyxin derivatives necessary for future medical care, but also optimize the clinical use of polymyxins with minimal resistance development. PMID:25664322

  4. Extensively drug-resistant tuberculosis.

    PubMed

    Jassal, Mandeep; Bishai, William R

    2009-01-01

    Extensively drug-resistant (XDR) tuberculosis is defined as disease caused by Mycobacterium tuberculosis with resistance to at least isoniazid and rifampicin, any fluoroquinolone, and at least one of three injectable second-line drugs (amikacin, capreomycin, or kanamycin). The definition has applicable clinical value and has allowed for more uniform surveillance in varied international settings. Recent surveillance data have indicated that the prevalence of tuberculosis drug resistance has risen to the highest rate ever recorded. The gold standard for drug-susceptibility testing has been the agar proportion method; however, this technique requires several weeks for results to be determined. More sensitive and specific diagnostic tests are still unavailable in resource-limited settings. Clinical manifestations, although variable in different settings and among different strains, have in general shown that XDR tuberculosis is associated with greater morbidity and mortality than non-XDR tuberculosis. The treatment of XDR tuberculosis should include agents to which the organism is susceptible, and should continue for a minimum of 18-24 months. However, treatment continues to be limited in tuberculosis-endemic countries largely because of weaknesses in national tuberculosis health-care models. The ultimate strategy to control drug-resistant tuberculosis is one that implements a comprehensive approach incorporating innovation from the political, social, economic, and scientific realms. PMID:18990610

  5. Mechanisms of Drug Resistance: Daptomycin Resistance

    PubMed Central

    Tran, Truc T.; Munita, Jose M.; Arias, Cesar A.

    2016-01-01

    Daptomycin (DAP) is a cyclic lipopeptide with in vitro activity against a variety of Gram-positive pathogens, including multidrug-resistant organisms. Since its introduction in clinical practice in 2003, DAP has become an important key front-line antibiotic for severe or deep-seated infections caused by Gram-positive organisms. Unfortunately, DAP-resistance (R) has been extensively documented in clinically important organisms such as Staphylococcus aureus, Enterococcus spp, and Streptococcus spp. Studies on the mechanisms of DAP-R in Bacillus subtilis and other Gram-positive bacteria indicate that the genetic pathways of DAP resistance are diverse and complex. However, a common phenomenon emerging from these mechanistic studies is that DAP-R is associated with important adaptive changes in cell wall and cell membrane homeostasis with critical changes in cell physiology. Findings related to these adaptive changes have offered novel insights into the genetics and molecular mechanisms of bacterial cell envelope stress response and the manner in which Gram-positive bacteria cope with the antimicrobial peptide attack and protect vital structures of the cell envelope such as the cell membrane. In this review, we will examine the most recent findings related to the molecular mechanisms of resistance to DAP in relevant Gram-positive pathogens and discuss the clinical implications for therapy against these important bacteria. PMID:26495887

  6. Antiviral Drug Resistance: Mechanisms and Clinical Implications

    PubMed Central

    Chou, Sunwen

    2010-01-01

    Summary Antiviral drug resistance is an increasing concern in immunocompromised patient populations, where ongoing viral replication and prolonged drug exposure lead to the selection of resistant strains. Rapid diagnosis of resistance can be made by associating characteristic viral mutations with resistance to various drugs as determined by phenotypic assays. Management of drug resistance includes optimization of host factors and drug delivery, selection of alternative therapies based on knowledge of mechanisms of resistance, and the development of new antivirals. This article discusses drug resistance in herpesviruses and hepatitis B. PMID:20466277

  7. Combination Approaches to Combat Multi-Drug Resistant Bacteria

    PubMed Central

    Worthington, Roberta J.; Melander, Christian

    2013-01-01

    The increasing prevalence of infections caused by multi-drug resistant bacteria is a global health problem that is exacerbated by the dearth of novel classes of antibiotics entering the clinic over the past 40 years. Herein we describe recent developments toward combination therapies for the treatment of multi-drug resistant bacterial infections. These efforts include antibiotic-antibiotic combinations, and the development of adjuvants that either directly target resistance mechanisms such as the inhibition of β-lactamase enzymes, or indirectly target resistance by interfering with bacterial signaling pathways such as two-component systems. We also discuss screening of libraries of previously approved drugs to identify non-obvious antimicrobial adjuvants. PMID:23333434

  8. Drug resistance in Giardia duodenalis.

    PubMed

    Ansell, Brendan R E; McConville, Malcolm J; Ma'ayeh, Showgy Y; Dagley, Michael J; Gasser, Robin B; Svärd, Staffan G; Jex, Aaron R

    2015-11-01

    Giardia duodenalis is a microaerophilic parasite of the human gastrointestinal tract and a major contributor to diarrheal and post-infectious chronic gastrointestinal disease world-wide. Treatment of G. duodenalis infection currently relies on a small number of drug classes. Nitroheterocyclics, in particular metronidazole, have represented the front line treatment for the last 40 years. Nitroheterocyclic-resistant G. duodenalis have been isolated from patients and created in vitro, prompting considerable research into the biomolecular mechanisms of resistance. These compounds are redox-active and are believed to damage proteins and DNA after being activated by oxidoreductase enzymes in metabolically active cells. In this review, we explore the molecular phenotypes of nitroheterocyclic-resistant G. duodenalis described to date in the context of the protist's unusual glycolytic and antioxidant systems. We propose that resistance mechanisms are likely to extend well beyond currently described resistance-associated enzymes (i.e., pyruvate ferredoxin oxidoreductases and nitroreductases), to include NAD(P)H- and flavin-generating pathways, and possibly redox-sensitive epigenetic regulation. Mechanisms that allow G. duodenalis to tolerate oxidative stress may lead to resistance against both oxygen and nitroheterocyclics, with implications for clinical control. The present review highlights the potential for systems biology tools and advanced bioinformatics to further investigate the multifaceted mechanisms of nitroheterocyclic resistance in this important pathogen. PMID:25922317

  9. YAP and the drug resistance highway

    PubMed Central

    Keren-Paz, Alona; Emmanuel, Rafi

    2016-01-01

    Deciphering mechanisms of drug resistance is crucial to winning the battle against cancer. A new study points to an unexpected function of YAP in drug resistance and illuminates its potential role as a therapeutic target. PMID:25711863

  10. YAP and the drug resistance highway.

    PubMed

    Keren-Paz, Alona; Emmanuel, Rafi; Samuels, Yardena

    2015-03-01

    Deciphering mechanisms of drug resistance is crucial to winning the battle against cancer. A new study points to an unexpected function of YAP in drug resistance and illuminates its potential role as a therapeutic target. PMID:25711863

  11. Drug Resistance Mechanisms in Mycobacterium tuberculosis

    PubMed Central

    Palomino, Juan Carlos; Martin, Anandi

    2014-01-01

    Tuberculosis (TB) is a serious public health problem worldwide. Its situation is worsened by the presence of multidrug resistant (MDR) strains of Mycobacterium tuberculosis, the causative agent of the disease. In recent years, even more serious forms of drug resistance have been reported. A better knowledge of the mechanisms of drug resistance of M. tuberculosis and the relevant molecular mechanisms involved will improve the available techniques for rapid drug resistance detection and will help to explore new targets for drug activity and development. This review article discusses the mechanisms of action of anti-tuberculosis drugs and the molecular basis of drug resistance in M. tuberculosis. PMID:27025748

  12. Supramolecular Antibiotic Switches: A Potential Strategy for Combating Drug Resistance.

    PubMed

    Bai, Haotian; Lv, Fengting; Liu, Libing; Wang, Shu

    2016-08-01

    Bacterial infectious disease is a serious public health concern throughout the world. Pathogen drug resistance, arising from both rational use and abuse/misuse of germicides, complicates the situation. Aside from developing novel antibiotics and antimicrobial agents, molecular approaches have become another significant method to overcome the problem of pathogen drug resistance. Established supramolecular systems, the antibiotic properties of which can be switched "on" and "off" through host-guest interactions, show great potential in combating issues regarding antibiotic resistance in the long term, as indicated by several recent studies. In this Concept, recently developed strategies for antibacterial regulation are summarized and further directions for research into antibiotic switches are proposed. PMID:27312106

  13. Antibiotic resistance of bacterial litter isolates.

    PubMed

    Kelley, T R; Pancorbo, O C; Merka, W C; Barnhart, H M

    1998-02-01

    Use of antibiotics in subtherapeutic doses as growth-promoting feed additives for animal production is widespread in the U.S. and throughout the world. Previous studies by our research group concluded that size fractionation of poultry (broiler) litter followed by storage facilitated reutilization of litter as a soil amendment or bedding supplement. However, litter microbial contamination, including antibiotic-resistant populations, and accumulation of metals and other elements may limit litter reutilization. Litter from four broiler houses was separated into a fine fraction for use as a soil amendment, and a coarse fraction for reutilization as a bedding supplement in growing subsequent flocks of broilers. Fractions and whole litter were stored in indoor piles simulating farm storage conditions for 4 mo with periodic analysis for metals, other elements, and culturable bacteria (including total and fecal coliform, Aeromonas hydrophila, Pseudomonas aeruginosa, Yersinia enterocolitica, and Campylobacter jejuni). Representative bacterial isolates were tested for their sensitivity to 12 common antibiotics (ampicillin, bacitracin, cephalothin, erythromycin, gentamicin, kanamycin, nalidixic acid, neomycin, penicillin, streptomycin, sulfisoxazole, and tetracycline) using the Kirby-Bauer technique. Pathogens and indicator bacteria tested were found to be resistant to multiple antibiotics. Data suggest that microbial contamination of litter should be reduced or eliminated prior to reutilization to minimize environmental health risks related to transfer of antibiotic-resistant bacteria to humans or other animals. PMID:9495488

  14. Cancer Metabolism and Drug Resistance

    PubMed Central

    Rahman, Mahbuba; Hasan, Mohammad Rubayet

    2015-01-01

    Metabolic alterations, driven by genetic and epigenetic factors, have long been known to be associated with the etiology of cancer. Furthermore, accumulating evidence suggest that cancer metabolism is intimately linked to drug resistance, which is currently one of the most important challenges in cancer treatment. Altered metabolic pathways help cancer cells to proliferate at a rate higher than normal, adapt to nutrient limited conditions, and develop drug resistance phenotypes. Application of systems biology, boosted by recent advancement of novel high-throughput technologies to obtain cancer-associated, transcriptomic, proteomic and metabolomic data, is expected to make a significant contribution to our understanding of metabolic properties related to malignancy. Indeed, despite being at a very early stage, quantitative data obtained from the omics platforms and through applications of 13C metabolic flux analysis (MFA) in in vitro studies, researchers have already began to gain insight into the complex metabolic mechanisms of cancer, paving the way for selection of molecular targets for therapeutic interventions. In this review, we discuss some of the major findings associated with the metabolic pathways in cancer cells and also discuss new evidences and achievements on specific metabolic enzyme targets and target-directed small molecules that can potentially be used as anti-cancer drugs. PMID:26437434

  15. Suppression of Drug Resistance in Dengue Virus

    PubMed Central

    Mateo, Roberto; Nagamine, Claude M.

    2015-01-01

    ABSTRACT Dengue virus is a major human pathogen responsible for 400 million infections yearly. As with other RNA viruses, daunting challenges to antiviral design exist due to the high error rates of RNA-dependent RNA synthesis. Indeed, treatment of dengue virus infection with a nucleoside analog resulted in the expected genetic selection of resistant viruses in tissue culture and in mice. However, when the function of the oligomeric core protein was inhibited, no detectable selection of drug resistance in tissue culture or in mice was detected, despite the presence of drug-resistant variants in the population. Suppressed selection of drug-resistant virus correlated with cooligomerization of the targeted drug-susceptible and drug-resistant core proteins. The concept of “dominant drug targets,” in which inhibition of oligomeric viral assemblages leads to the formation of drug-susceptible chimeras, can therefore be used to prevent the outgrowth of drug resistance during dengue virus infection. PMID:26670386

  16. Socioeconomic and behavioral factors leading to acquired bacterial resistance to antibiotics in developing countries.

    PubMed Central

    Okeke, I. N.; Lamikanra, A.; Edelman, R.

    1999-01-01

    In developing countries, acquired bacterial resistance to antimicrobial agents is common in isolates from healthy persons and from persons with community-acquired infections. Complex socioeconomic and behavioral factors associated with antibiotic resistance, particularly regarding diarrheal and respiratory pathogens, in developing tropical countries, include misuse of antibiotics by health professionals, unskilled practitioners, and laypersons; poor drug quality; unhygienic conditions accounting for spread of resistant bacteria; and inadequate surveillance. PMID:10081668

  17. Developing live bacterial vaccines by selecting resistance to antibacterials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four chemicals were used in this study to modify bacterial isolates through chemical-resistance strategy. All bacteria were able to develop high resistance to gossypol. However, none of the gossypol-resistant isolate was attenuated. Although majority of the proflavine hemisulfate-resistant isolates ...

  18. Bacterial and archaeal resistance to ionizing radiation

    NASA Astrophysics Data System (ADS)

    Confalonieri, F.; Sommer, S.

    2011-01-01

    Organisms living in extreme environments must cope with large fluctuations of temperature, high levels of radiation and/or desiccation, conditions that can induce DNA damage ranging from base modifications to DNA double-strand breaks. The bacterium Deinococcus radiodurans is known for its resistance to extremely high doses of ionizing radiation and for its ability to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Recently, extreme ionizing radiation resistance was also generated by directed evolution of an apparently radiation-sensitive bacterial species, Escherichia coli. Radioresistant organisms are not only found among the Eubacteria but also among the Archaea that represent the third kingdom of life. They present a set of particular features that differentiate them from the Eubacteria and eukaryotes. Moreover, Archaea are often isolated from extreme environments where they live under severe conditions of temperature, pressure, pH, salts or toxic compounds that are lethal for the large majority of living organisms. Thus, Archaea offer the opportunity to understand how cells are able to cope with such harsh conditions. Among them, the halophilic archaeon Halobacterium sp and several Pyrococcus or Thermococcus species, such as Thermococcus gammatolerans, were also shown to display high level of radiation resistance. The dispersion, in the phylogenetic tree, of radioresistant prokaryotes suggests that they have independently acquired radioresistance. Different strategies were selected during evolution including several mechanisms of radiation byproduct detoxification and subtle cellular metabolism modifications to help cells recover from radiation-induced injuries, protection of proteins against oxidation, an efficient DNA repair tool box, an original pathway of DNA double-strand break repair, a condensed nucleoid that may prevent the dispersion of the DNA fragments and specific radiation-induced proteins involved in

  19. Clinical Management of HIV Drug Resistance

    PubMed Central

    Cortez, Karoll J.; Maldarelli, Frank

    2011-01-01

    Combination antiretroviral therapy for HIV-1 infection has resulted in profound reductions in viremia and is associated with marked improvements in morbidity and mortality. Therapy is not curative, however, and prolonged therapy is complicated by drug toxicity and the emergence of drug resistance. Management of clinical drug resistance requires in depth evaluation, and includes extensive history, physical examination and laboratory studies. Appropriate use of resistance testing provides valuable information useful in constructing regimens for treatment-experienced individuals with viremia during therapy. This review outlines the emergence of drug resistance in vivo, and describes clinical evaluation and therapeutic options of the individual with rebound viremia during therapy. PMID:21994737

  20. Drug-Resistant Tuberculosis: Challenges and Progress.

    PubMed

    Kurz, Sebastian G; Furin, Jennifer J; Bark, Charles M

    2016-06-01

    Antimicrobial resistance is a natural evolutionary process, which in the case of Mycobacterium tuberculosis is based on spontaneous chromosomal mutations, meaning that well-designed combination drug regimens provided under supervised therapy will prevent the emergence of drug-resistant strains. Unfortunately, limited resources, poverty, and neglect have led to the emergence of drug-resistant tuberculosis throughout the world. The international community has responded with financial and scientific support, leading to new rapid diagnostics, new drugs and regimens in advanced clinical development, and an increasingly sophisticated understanding of resistance mechanisms and their application to all aspects of TB control and treatment. PMID:27208770

  1. Medical Management of Drug-Resistant Tuberculosis

    PubMed Central

    2015-01-01

    Drug-resistant tuberculosis (TB) is still a major threat worldwide. However, recent scientific advances in diagnostic and therapeutic tools have improved the management of drug-resistant TB. The development of rapid molecular testing methods allows for the early detection of drug resistance and prompt initiation of an appropriate treatment. In addition, there has been growing supportive evidence for shorter treatment regimens in multidrug-resistant TB; and for the first time in over 50 years, new anti-TB drugs have been developed. The World Health Organization has recently revised their guidelines, primarily based on evidence from a meta-analysis of individual patient data (n=9,153) derived from 32 observational studies, and outlined the recommended combination and correct use of available anti-TB drugs. This review summarizes the updated guidelines with a focus on the medical management of drug-resistant TB. PMID:26175768

  2. Preventing drug resistance in severe influenza

    NASA Astrophysics Data System (ADS)

    Dobrovolny, Hana; Deecke, Lucas

    2015-03-01

    Severe, long-lasting influenza infections are often caused by new strains of influenza. The long duration of these infections leads to an increased opportunity for the emergence of drug resistant mutants. This is particularly problematic for new strains of influenza since there is often no vaccine, so drug treatment is the first line of defense. One strategy for trying to minimize drug resistance is to apply periodic treatment. During treatment the wild-type virus decreases, but resistant virus might increase; when there is no treatment, wild-type virus will hopefully out-compete the resistant virus, driving down the number of resistant virus. We combine a mathematical model of severe influenza with a model of drug resistance to study emergence of drug resistance during a long-lasting infection. We apply periodic treatment with two types of antivirals: neuraminidase inhibitors, which block release of virions; and adamantanes, which block replication of virions. We compare the efficacy of the two drugs in reducing emergence of drug resistant mutants and examine the effect of treatment frequency on the emergence of drug resistant mutants.

  3. Anticipating designer drug-resistant cancer cells.

    PubMed

    Frangione, Mark L; Lockhart, John H; Morton, Daniel T; Pava, Libia M; Blanck, George

    2015-07-01

    Successful use of anticancer designer drugs is likely to depend on simultaneous combinations of these drugs to minimize the development of resistant cancer cells. Considering the knowledge base of cancer signaling pathways, mechanisms of designer drug resistance should be anticipated, and early clinical trials could be designed to include arms that combine new drugs specifically with currently US Food and Drug Administration (FDA)-approved drugs expected to blunt alternative signaling pathways. In this review, we indicate examples of alternative signal pathways for recent anticancer drugs, and the use of original, Python-based software to systematically identify signaling pathways that could facilitate resistance to drugs targeting a particular protein. Pathway alternatives can be assessed at http://www.alternativesignalingpathways.com, developed with this review article. PMID:25697478

  4. Characterization of bacterial drug antiporters homologous to mammalian neurotransmitter transporters.

    PubMed

    Vardy, Eyal; Steiner-Mordoch, Sonia; Schuldiner, Shimon

    2005-11-01

    Multidrug transporters are ubiquitous proteins, and, based on amino acid sequence similarities, they have been classified into several families. Here we characterize a cluster of archaeal and bacterial proteins from the major facilitator superfamily (MFS). One member of this family, the vesicular monoamine transporter (VMAT) was previously shown to remove both neurotransmitters and toxic compounds from the cytoplasm, thereby conferring resistance to their effects. A BLAST search of the available microbial genomes against the VMAT sequence yielded sequences of novel putative multidrug transporters. The new sequences along with VMAT form a distinct cluster within the dendrogram of the MFS, drug-proton antiporters. A comparison with other proteins in the family suggests the existence of a potential ion pair in the membrane domain. Three of these genes, from Mycobacterium smegmatis, Corynebacterium glutamicum, and Halobacterium salinarum, were cloned and functionally expressed in Escherichia coli. The proteins conferred resistance to fluoroquinolones and chloramphenicol (at concentrations two to four times greater than that of the control). Measurement of antibiotic accumulation in cells revealed proton motive force-dependent transport of those compounds. PMID:16237035

  5. SCREENING OF TRANSGENIC ANTHURIUMS FOR BACTERIAL BLIGHT AND NEMATODE RESISTANCE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anthuriums exhibit limited resistance to bacterial blight caused by Xanthomonas axonopodis pv. dieffenbachiae and to the nematodes Radopholus simile and Meloidogyne javanica. Agrobacterium tumefaciens transformation of embryogenic calli with strains LBA4404, EHA105, and AGLO resulted in transgenic p...

  6. Architecture and Conservation of the Bacterial DNA Replication Machinery, an Underexploited Drug Target

    PubMed Central

    Robinson, Andrew; Causer, Rebecca J; Dixon, Nicholas E

    2012-01-01

    New antibiotics with novel modes of action are required to combat the growing threat posed by multi-drug resistant bacteria. Over the last decade, genome sequencing and other high-throughput techniques have provided tremendous insight into the molecular processes underlying cellular functions in a wide range of bacterial species. We can now use these data to assess the degree of conservation of certain aspects of bacterial physiology, to help choose the best cellular targets for development of new broad-spectrum antibacterials. DNA replication is a conserved and essential process, and the large number of proteins that interact to replicate DNA in bacteria are distinct from those in eukaryotes and archaea; yet none of the antibiotics in current clinical use acts directly on the replication machinery. Bacterial DNA synthesis thus appears to be an underexploited drug target. However, before this system can be targeted for drug design, it is important to understand which parts are conserved and which are not, as this will have implications for the spectrum of activity of any new inhibitors against bacterial species, as well as the potential for development of drug resistance. In this review we assess similarities and differences in replication components and mechanisms across the bacteria, highlight current progress towards the discovery of novel replication inhibitors, and suggest those aspects of the replication machinery that have the greatest potential as drug targets. PMID:22206257

  7. Old drugs, novel ways out: Drug resistance toward cytotoxic chemotherapeutics.

    PubMed

    Wijdeven, Ruud H; Pang, Baoxu; Assaraf, Yehuda G; Neefjes, Jacques

    2016-09-01

    Efficacy of chemotherapy in the treatment of distinct malignancies is often hampered by drug resistance arising in the tumor. Understanding the molecular basis of drug resistance and translating this knowledge into personalized treatment decisions can enhance therapeutic efficacy and even curative outcome. Over the years, multiple drug resistance mechanisms have been identified that enable tumors to cope with the damage instigated by a specific drug or group of anti-tumor agents. Here we provide an overview of the molecular pathways leading to resistance against conventional anti-cancer drugs, with emphasis on the utility of these pathways for rational selection of treatments for individual cancer patients. We further complement the review by discussing the pitfalls and difficulties in translating these findings into novel treatment strategies for cancer patients. PMID:27620955

  8. MULTIPLE DRUG RESISTANCE: TRENDS AND IMPLICATIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antimicrobial resistance (AR) has emerged as a global problem. Although AR occurs shortly after the introduction and use of an antimicrobial, resistance levels vary over time. Historically, antimicrobials were regarded as wonder drugs and for years, when resistance to a single antimicrobial occurr...

  9. The role of glucuronidation in drug resistance.

    PubMed

    Mazerska, Zofia; Mróz, Anna; Pawłowska, Monika; Augustin, Ewa

    2016-03-01

    The final therapeutic effect of a drug candidate, which is directed to a specific molecular target strongly depends on its absorption, distribution, metabolism and excretion (ADME). The disruption of at least one element of ADME may result in serious drug resistance. In this work we described the role of one element of this resistance: phase II metabolism with UDP-glucuronosyltransferases (UGTs). UGT function is the transformation of their substrates into more polar metabolites, which are better substrates for the ABC transporters, MDR1, MRP and BCRP, than the native drug. UGT-mediated drug resistance can be associated with (i) inherent overexpression of the enzyme, named intrinsic drug resistance or (ii) induced expression of the enzyme, named acquired drug resistance observed when enzyme expression is induced by the drug or other factors, as food-derived compounds. Very often this induction occurs via ligand binding receptors including AhR (aryl hydrocarbon receptor) PXR (pregnane X receptor), or other transcription factors. The effect of UGT dependent resistance is strengthened by coordinate action and also a coordinate regulation of the expression of UGTs and ABC transporters. This coupling of UGT and multidrug resistance proteins has been intensively studied, particularly in the case of antitumor treatment, when this resistance is "improved" by differences in UGT expression between tumor and healthy tissue. Multidrug resistance coordinated with glucuronidation has also been described here for drugs used in the management of epilepsy, psychiatric diseases, HIV infections, hypertension and hypercholesterolemia. Proposals to reverse UGT-mediated drug resistance should consider the endogenous functions of UGT. PMID:26808161

  10. Recovery and identification of bacterial DNA from illicit drugs.

    PubMed

    Cho, Kaymann T; Richardson, Michelle M; Kirkbride, K Paul; McNevin, Dennis; Nelson, Michelle; Pianca, Dennis; Roffey, Paul; Gahan, Michelle E

    2014-02-01

    Bacterial infections, including Bacillus anthracis (anthrax), are a common risk associated with illicit drug use, particularly among injecting drug users. There is, therefore, an urgent need to survey illicit drugs used for injection for the presence of bacteria and provide valuable information to health and forensic authorities. The objectives of this study were to develop a method for the extraction of bacterial DNA from illicit drugs and conduct a metagenomic survey of heroin and methamphetamine seized in the Australian Capital Territory during 2002-2011 for the presence of pathogens. Trends or patterns in drug contamination and their health implications for injecting drug users were also investigated. Methods based on the ChargeSwitch(®)gDNA mini kit (Invitrogen), QIAamp DNA extraction mini kit (QIAGEN) with and without bead-beating, and an organic phenol/chloroform extraction with ethanol precipitation were assessed for the recovery efficiency of both free and cellular bacterial DNA. Bacteria were identified using polymerase chain reaction and electrospray ionization-mass spectrometry (PCR/ESI-MS). An isopropanol pre-wash to remove traces of the drug and diluents, followed by a modified ChargeSwitch(®) method, was found to efficiently lyse cells and extract free and cellular DNA from Gram-positive and Gram-negative bacteria in heroin and methamphetamine which could then be identified by PCR/ESI-MS. Analysis of 12 heroin samples revealed the presence of DNA from species of Comamonas, Weissella, Bacillus, Streptococcus and Arthrobacter. No organisms were detected in the nine methamphetamine samples analysed. This study develops a method to extract and identify Gram-positive and Gram-negative bacteria from illicit drugs and demonstrates the presence of a range of bacterial pathogens in seized drug samples. These results will prove valuable for future work investigating trends or patterns in drug contamination and their health implications for injecting drug

  11. Drug repurposing as an alternative for the treatment of recalcitrant bacterial infections.

    PubMed

    Rangel-Vega, Adrián; Bernstein, Lawrence R; Mandujano-Tinoco, Edna Ayerim; García-Contreras, Silvia Julieta; García-Contreras, Rodolfo

    2015-01-01

    Bacterial infection remains one of the leading causes of death worldwide, and the options for treating such infections are decreasing, due the rise of antibiotic-resistant bacteria. The pharmaceutical industry has produced few new types of antibiotics in more than a decade. Researchers are taking several approaches toward developing new classes of antibiotics, including (1) focusing on new targets and processes, such as bacterial cell-cell communication that upregulates virulence; (2) designing inhibitors of bacterial resistance, such as blockers of multidrug efflux pumps; and (3) using alternative antimicrobials such as bacteriophages. In addition, the strategy of finding new uses for existing drugs is beginning to produce results: antibacterial properties have been discovered for existing anticancer, antifungal, anthelmintic, and anti-inflammatory drugs. In this review, we discuss the antimicrobial properties of gallium compounds, 5-fluorouracil, ciclopirox, diflunisal, and some other FDA-approved drugs and argue that their repurposing for the treatment of bacterial infections, including those that are multidrug resistant, is a feasible strategy. PMID:25914685

  12. Drug repurposing as an alternative for the treatment of recalcitrant bacterial infections

    PubMed Central

    Rangel-Vega, Adrián; Bernstein, Lawrence R.; Mandujano-Tinoco, Edna Ayerim; García-Contreras, Silvia Julieta; García-Contreras, Rodolfo

    2015-01-01

    Bacterial infection remains one of the leading causes of death worldwide, and the options for treating such infections are decreasing, due the rise of antibiotic-resistant bacteria. The pharmaceutical industry has produced few new types of antibiotics in more than a decade. Researchers are taking several approaches toward developing new classes of antibiotics, including (1) focusing on new targets and processes, such as bacterial cell–cell communication that upregulates virulence; (2) designing inhibitors of bacterial resistance, such as blockers of multidrug efflux pumps; and (3) using alternative antimicrobials such as bacteriophages. In addition, the strategy of finding new uses for existing drugs is beginning to produce results: antibacterial properties have been discovered for existing anticancer, antifungal, anthelmintic, and anti-inflammatory drugs. In this review, we discuss the antimicrobial properties of gallium compounds, 5-fluorouracil, ciclopirox, diflunisal, and some other FDA-approved drugs and argue that their repurposing for the treatment of bacterial infections, including those that are multidrug resistant, is a feasible strategy. PMID:25914685

  13. The Association between Mycobacterium Tuberculosis Genotype and Drug Resistance in Peru

    PubMed Central

    Grandjean, Louis; Iwamoto, Tomotada; Lithgow, Anna; Gilman, Robert H; Arikawa, Kentaro; Nakanishi, Noriko; Martin, Laura; Castillo, Edith; Alarcon, Valentina; Coronel, Jorge; Solano, Walter; Aminian, Minoo; Guezala, Claudia; Rastogi, Nalin; Couvin, David; Sheen, Patricia; Zimic, Mirko; Moore, David AJ

    2015-01-01

    Background The comparison of Mycobacterium tuberculosis bacterial genotypes with phenotypic, demographic, geospatial and clinical data improves our understanding of how strain lineage influences the development of drug-resistance and the spread of tuberculosis. Methods To investigate the association of Mycobacterium tuberculosis bacterial genotype with drug-resistance. Drug susceptibility testing together with genotyping using both 15-loci MIRU-typing and spoligotyping, was performed on 2,139 culture positive isolates, each from a different patient in Lima, Peru. Demographic, geospatial and socio-economic data were collected using questionnaires, global positioning equipment and the latest national census. Results The Latin American Mediterranean (LAM) clade (OR 2.4, p<0.001) was significantly associated with drug-resistance and alone accounted for more than half of all drug resistance in the region. Previously treated patients, prisoners and genetically clustered cases were also significantly associated with drug-resistance (OR's 2.5, 2.4 and 1.8, p<0.001, p<0.05, p<0.001 respectively). Conclusions Tuberculosis disease caused by the LAM clade was more likely to be drug resistant independent of important clinical, genetic and socio-economic confounding factors. Explanations for this include; the preferential co-evolution of LAM strains in a Latin American population, a LAM strain bacterial genetic background that favors drug-resistance or the "founder effect" from pre-existing LAM strains disproportionately exposed to drugs. PMID:25984723

  14. Plasmodium falciparum drug resistance in Angola.

    PubMed

    Fançony, Cláudia; Brito, Miguel; Gil, Jose Pedro

    2016-01-01

    Facing chloroquine drug resistance, Angola promptly adopted artemisinin-based combination therapy as the first-line to treat malaria. Currently, the country aims to consolidate malaria control, while preparing for the elimination of the disease, along with others African countries in the region. However, the remarkable capacity of Plasmodium to develop drug resistance represents an alarming threat for those achievements. Herein, the available, but relatively scarce and dispersed, information on malaria drug resistance in Angola, is reviewed and discussed. The review aims to inform but also to encourage future research studies that monitor and update the information on anti-malarial drug efficacy and prevalence of molecular markers of drug resistance, key fields in the context and objectives of elimination. PMID:26858018

  15. Enhanced Efflux Activity Facilitates Drug Tolerance in Dormant Bacterial Cells

    PubMed Central

    Pu, Yingying; Zhao, Zhilun; Li, Yingxing; Zou, Jin; Ma, Qi; Zhao, Yanna; Ke, Yuehua; Zhu, Yun; Chen, Huiyi; Baker, Matthew A.B.; Ge, Hao; Sun, Yujie; Xie, Xiaoliang Sunney; Bai, Fan

    2016-01-01

    Summary Natural variations in gene expression provide a mechanism for multiple phenotypes to arise in an isogenic bacterial population. In particular, a sub-group termed persisters show high tolerance to antibiotics. Previously, their formation has been attributed to cell dormancy. Here we demonstrate that bacterial persisters, under β-lactam antibiotic treatment, show less cytoplasmic drug accumulation as a result of enhanced efflux activity. Consistently, a number of multi-drug efflux genes, particularly the central component TolC, show higher expression in persisters. Time-lapse imaging and mutagenesis studies further establish a positive correlation between tolC expression and bacterial persistence. The key role of efflux systems, among multiple biological pathways involved in persister formation, indicates that persisters implement a positive defense against antibiotics prior to a passive defense via dormancy. Finally, efflux inhibitors and antibiotics together effectively attenuate persister formation, suggesting a combination strategy to target drug tolerance. PMID:27105118

  16. Multidrug-resistant Gram-negative bacterial infections: the emerging threat and potential novel treatment options.

    PubMed

    Vergidis, Paschalis I; Falagas, Matthew E

    2008-02-01

    Gram-negative bacterial infections constitute an emerging threat because of the development of multidrug-resistant organisms. There is a relative shortage of new drugs in the antimicrobial development pipeline that have been tested in vitro and evaluated in clinical studies. Antibiotics that are in the pipeline for the treatment of serious Gram-negative bacterial infections include the cephalosporins, ceftobiprole, ceftarolin and FR-264205. Tigecycline is the first drug approved from a new class of antibiotics called glycylcyclines, and there has been renewed interest in this drug for the treatment of some multidrug-resistant Gram-negative organisms. Carbapenems in the pipeline include tomopenem, with the approved drugs doripenem and faropenem, an oral agent, under evaluation for activity against multidrug-resistant Gram-negative bacterial infections. Polymyxins are old antibiotics traditionally considered to be toxic, but which are being used because of their activity against resistant Gram-negative organisms. New pharmacokinetic and pharmacodynamic data are available regarding the use of these agents. Finally, antimicrobial peptides and efflux pump inhibitors are two new classes of agents under development. This review of investigational antibiotics shows that several new agents will become available in the coming years, even though the pace of antimicrobial research is far from ideal. PMID:18246520

  17. Mitomycin resistance in mammalian cells expressing the bacterial mitomycin C resistance protein MCRA.

    PubMed

    Belcourt, M F; Penketh, P G; Hodnick, W F; Johnson, D A; Sherman, D H; Rockwell, S; Sartorelli, A C

    1999-08-31

    The mitomycin C-resistance gene, mcrA, of Streptomyces lavendulae produces MCRA, a protein that protects this microorganism from its own antibiotic, the antitumor drug mitomycin C. Expression of the bacterial mcrA gene in mammalian Chinese hamster ovary cells causes profound resistance to mitomycin C and to its structurally related analog porfiromycin under aerobic conditions but produces little change in drug sensitivity under hypoxia. The mitomycins are prodrugs that are enzymatically reduced and activated intracellularly, producing cytotoxic semiquinone anion radical and hydroquinone reduction intermediates. In vitro, MCRA protects DNA from cross-linking by the hydroquinone reduction intermediate of these mitomycins by oxidizing the hydroquinone back to the parent molecule; thus, MCRA acts as a hydroquinone oxidase. These findings suggest potential therapeutic applications for MCRA in the treatment of cancer with the mitomycins and imply that intrinsic or selected mitomycin C resistance in mammalian cells may not be due solely to decreased bioactivation, as has been hypothesized previously, but instead could involve an MCRA-like mechanism. PMID:10468636

  18. Mitomycin resistance in mammalian cells expressing the bacterial mitomycin C resistance protein MCRA

    PubMed Central

    Belcourt, Michael F.; Penketh, Philip G.; Hodnick, William F.; Johnson, David A.; Sherman, David H.; Rockwell, Sara; Sartorelli, Alan C.

    1999-01-01

    The mitomycin C-resistance gene, mcrA, of Streptomyces lavendulae produces MCRA, a protein that protects this microorganism from its own antibiotic, the antitumor drug mitomycin C. Expression of the bacterial mcrA gene in mammalian Chinese hamster ovary cells causes profound resistance to mitomycin C and to its structurally related analog porfiromycin under aerobic conditions but produces little change in drug sensitivity under hypoxia. The mitomycins are prodrugs that are enzymatically reduced and activated intracellularly, producing cytotoxic semiquinone anion radical and hydroquinone reduction intermediates. In vitro, MCRA protects DNA from cross-linking by the hydroquinone reduction intermediate of these mitomycins by oxidizing the hydroquinone back to the parent molecule; thus, MCRA acts as a hydroquinone oxidase. These findings suggest potential therapeutic applications for MCRA in the treatment of cancer with the mitomycins and imply that intrinsic or selected mitomycin C resistance in mammalian cells may not be due solely to decreased bioactivation, as has been hypothesized previously, but instead could involve an MCRA-like mechanism. PMID:10468636

  19. Bacterial resistance to antimicrobials in urinary isolates.

    PubMed

    Muratani, Tetsuro; Matsumoto, Tetsuro

    2004-09-01

    Escherichia coli accounted for about 80% of organisms in uncomplicated urinary tract infections (UTIs), followed by Staphylococcus spp. especially Staphylococcus saprophyticus, and Proteus mirabilis. Against E. coli isolates from patients with uncomplicated UTI, faropenem was the most effective. Up to 1999, fluoroquinolone-resistant isolates were not observed in patients with uncomplicated UTI, but in 2001 fluoroquinolone-resistant E. coli isolates emerged and accounted for about 8%. Various types of organisms were isolated in patients with complicated UTI. Enterococcus faecalis, E. coli, and Pseudomonas aeruginosa were the three most frequent organisms isolated. These three organisms accounted for 44.6%. Amongst oral agents, faropenem showed the lowest rate of resistance against E. coli followed by cephems. The rates of highly fluoroquinolone-resistant and cefpodoxime-resistant E. coli isolates increased rapidly from 1998 to 2001. Fluoroquinolone-resistant P. aeruginosa isolates accounted for about 40% in 2001. Against this species, amikacin was the most effective antimicrobials among all agents tested. About 17% of Pseudomonas were resistant to carbapenem. Eight milligram per litre of ampicillin inhibited all E. faecalis isolates; about 60% of Enterococcus faecium were resistant to ampicillin. The rates of levofloxacin-resistant isolates of E. faecalis and E. faecium were 38 and 97% respectively. UTIs caused by vancomycin resistant enterococci (VRE) are rare in Japan. PMID:15364302

  20. Bacterial Cheating Limits the Evolution of Antibiotic Resistance

    NASA Astrophysics Data System (ADS)

    Yurtsev, Eugene; Xiao Chao, Hui; Datta, Manoshi; Artemova, Tatiana; Gore, Jeff

    2012-02-01

    The emergence of antibiotic resistance in bacteria is a significant health concern. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removal of the antibiotic. The presence of a cooperative mechanism of resistance suggests that a cheater strain - which does not contribute to breaking down the antibiotic - may be able to take advantage of resistant cells. We find experimentally that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We use a simple model in conjunction with difference equations to explain the observed population dynamics as a function of cell density and antibiotic concentration. Our experimental difference equations resemble the logistic map, raising the possibility of oscillations or even chaotic dynamics.

  1. Assessment of Bacterial Antibiotic Resistance Transfer in the Gut

    PubMed Central

    Schjørring, Susanne; Krogfelt, Karen A.

    2011-01-01

    We assessed horizontal gene transfer between bacteria in the gastrointestinal (GI) tract. During the last decades, the emergence of antibiotic resistant strains and treatment failures of bacterial infections have increased the public awareness of antibiotic usage. The use of broad spectrum antibiotics creates a selective pressure on the bacterial flora, thus increasing the emergence of multiresistant bacteria, which results in a vicious circle of treatments and emergence of new antibiotic resistant bacteria. The human gastrointestinal tract is a massive reservoir of bacteria with a potential for both receiving and transferring antibiotic resistance genes. The increased use of fermented food products and probiotics, as food supplements and health promoting products containing massive amounts of bacteria acting as either donors and/or recipients of antibiotic resistance genes in the human GI tract, also contributes to the emergence of antibiotic resistant strains. This paper deals with the assessment of antibiotic resistance gene transfer occurring in the gut. PMID:21318188

  2. Emerging pathogens: Dynamics, mutation and drug resistance

    SciTech Connect

    Perelson, A.S.; Goldstein, B.; Korber, B.T.

    1997-10-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The objectives of this project were to develop models of the spread of pathogens, such as HIV-1 and influenza, in humans, and then to use the models to address the possibility of designing appropriate drug therapies that may limit the ability of the pathogen to escape treatment by mutating into a drug resistant form. We have developed a model of drug-resistance to amantidine and rimantadine, the two major antiviral drugs used to treat influenza, and have used the model to suggest treatment strategies during an epidemic.

  3. [Research development of HIV drug resistance].

    PubMed

    Zou, Wen; Liu, Ying; Wang, Jian; Gao, Guo-Jian; Dong, Ji-Peng; Xian, Qing-Fei

    2013-08-01

    Highly active antiretroviral combination therapy significantly reduced the mortality, but in the high-speed copying, high genetic variation and drug selection pressure under the effect of the increasingly serious problem of drug resistance greatly weakened the role of HAART inhibit viral replication and reduce antiviral treatment. This paper reports the latest trends in HIV drug-resistance in order to develop anti-HIV drugs in clinical programs, research and development of new guidance anti-HIV-1 strategy to bring guidance. PMID:24228557

  4. Risk factors for anti-MRSA drug resistance.

    PubMed

    Abe, Yasuhisa; Shigemura, Katsumi; Yoshida, Hiroyuki; Fujisawa, Masato; Arakawa, Soichi

    2012-11-01

    Meticillin-resistant Staphylococcus aureus (MRSA)-related infections have recently been spreading and are difficult to control, partly because affected patients are frequently in a poor condition. This study retrospectively investigated recent MRSA-related infections focusing on the relationship between clinical risk factors and anti-MRSA drug resistance. The patients with MRSA-related infections in Kobe University Hospital (Kobe, Japan) in 2009 were enrolled in the study. The relationships between various clinical risk factors as well as MRSA bacterial DNA concentration with minimum inhibitory concentrations (MICs) of anti-MRSA drugs were examined. In total, 44 patients were enrolled in the study and MRSA was isolated from blood (23 patients), urine (12 patients) and nasal secretions (9 patients). There was only one resistant strain to linezolid (LZD) among the anti-MRSA drugs tested, and this strain was considered staphylococcal cassette chromosome mec (SCCmec) type IIa from phage open-reading frame typing analyses. Statistical analyses showed that MRSA bacterial DNA concentration, cancer and use of a respirator, respectively, had a significant relationship with the MICs of LZD (P=0.0058) and arbekacin (ABK) (P=0.0003), of quinupristin/dalfopristin (Q/D) (P=0.0500) and ABK (P=0.0133), and of Q/D (P=0.0198) and vancomycin (P=0.0036). In conclusion, bacterial DNA concentration, cancer and use of a respirator were found to be significant risk factors for lower susceptibilities to anti-MRSA drugs; one strain was resistant to LZD. We suggest that further investigation and surveillance for MRSA-related infection are necessary for preventing the spread of MRSA-related infections. PMID:22999766

  5. Identifying representative drug resistant mutants of HIV

    PubMed Central

    2015-01-01

    Background Drug resistance is one of the most important causes for failure of anti-AIDS treatment. During therapy, multiple mutations accumulate in the HIV genome, eventually rendering the drugs ineffective in blocking replication of the mutant virus. The huge number of possible mutants precludes experimental analysis to explore the molecular mechanisms of resistance and develop improved antiviral drugs. Results In order to solve this problem, we have developed a new algorithm to reveal the most representative mutants from the whole drug resistant mutant database based on our newly proposed unified protein sequence and 3D structure encoding method. Mean shift clustering and multiple regression analysis were applied on genotype-resistance data for mutants of HIV protease and reverse transcriptase. This approach successfully chooses less than 100 mutants with the highest resistance to each drug out of about 10K in the whole database. When considering high level resistance to multiple drugs, the numbers reduce to one or two representative mutants. Conclusion This approach for predicting the most representative mutants for each drug has major importance for experimental verification since the results provide a small number of representative sequences, which will be amenable for in vitro testing and characterization of the expressed mutant proteins. PMID:26678327

  6. Facing multi-drug resistant tuberculosis.

    PubMed

    Sotgiu, Giovanni; Migliori, Giovanni Battista

    2015-06-01

    Multi-drug resistant tuberculosis (MDR-TB) is caused by Mycobacterium tuberculosis strains resistant to at least two of the most effective anti-tuberculosis drugs (i.e., isoniazid and rifampicin). Therapeutic regimens based on second- and third-line anti-tuberculosis medicines showed poor efficacy, safety, and tolerability profiles. It was estimated that in 2012 the multi-drug resistant tuberculosis incidence ranged from 300,000 to 600,000 cases, mainly diagnosed in the Eastern European and Central Asian countries. The highest proportion of cases is among individuals previously exposed to anti-tuberculosis drugs. Three main conditions can favour the emergence and spread of multi-drug resistant tuberculosis: the poor implementation of the DOTS strategy, the shortage or the poor quality of the anti-tuberculosis drugs, and the poor therapeutic adherence of the patients to the prescribed regimens. Consultation with tuberculosis experts (e.g., consilium) is crucial to tailor the best anti-tuberculosis therapy. New therapeutic options are necessary: bedaquiline and delamanid seem promising drugs; in particular, during the development phase they demonstrated a protective effect against the emergence of further resistances towards the backbone drugs. In the recent past, other antibiotics have been administered off-label: the most relevant efficacy, safety, and tolerability profile was proved in linezolid-, meropenem/clavulanate-, cotrimoxazole-containing regimens. New research and development activities are needed in the diagnostic, therapeutic, preventive fields. PMID:24792579

  7. Antimicrobial (Drug) Resistance: Methicillin-Resistant Staphylococcus aureus (MRSA)

    MedlinePlus

    ... NIAID invests in basic research to understand the biology of microbes, their behavior, and how drug resistance ... Nucleotide Polymorphism Phylogenetics & Ontology Proteomics & Protein Analysis Systems Biology Data Portals Software Applications BCBB Mobyle Interface Designer ( ...

  8. Mechanisms of echinocandin antifungal drug resistance

    PubMed Central

    Perlin, David S.

    2015-01-01

    Fungal infections due to Candida and Aspergillus species cause extensive morbidity and mortality, especially among immunosuppressed patients, and antifungal therapy is critical to patient management. Yet only a few drug classes are available to treat invasive fungal diseases, and this problem is compounded by the emergence of antifungal resistance. Echinocandin drugs are the preferred choice to treat candidiasis. They are the first cell wall–active agents and target the fungal-specific enzyme glucan synthase, which catalyzes the biosynthesis of β-1,3-glucan, a key cell wall polymer. Therapeutic failures occur rarely among common Candida species, with the exception of Candida glabrata, which are frequently multidrug resistant. Echinocandin resistance in susceptible species is always acquired during therapy. The mechanism of resistance involves amino acid changes in hot-spot regions of Fks subunits of glucan synthase, which decrease the sensitivity of the enzyme to drug. Cellular stress response pathways lead to drug adaptation, which promote the formation of resistant fks strains. Clinical factors promoting echinocandin resistance include empiric therapy, prophylaxis, gastrointestinal reservoirs, and intra-abdominal infections. A better understanding of the echinocandin resistance mechanism, along with cellular and clinical factors promoting resistance, will promote more effective strategies to overcome and prevent echinocandin resistance. PMID:26190298

  9. Expression of cytokeratin confers multiple drug resistance

    SciTech Connect

    Bauman, P.A.; Dalton, W.S.; Anderson, J.M.; Cress, A.E. )

    1994-06-07

    The cytokeratin network is an extensive filamentous structure in the cytoplasm whose biological function(s) is unknown. Based upon previous data showing the modification of cytokeratin by mitoxantrone, the authors investigated the ability of cytokeratin networks to influence the survival response of cells to chemotherapeutic agents. They have compared the survival of mouse L fibroblasts lacking cytokeratins with that of L cells transfected with cytokeratins 8 and 18 in the presence of chemotherapeutic drugs. The expression of cytokeratins 8 and 18 conferred a multiple drug resistance phenotype on cells exposed to mitoxantrone, doxorubicin, methotrexate, melphalan, Colcemid, and vincristine. The degree of drug resistance was 5-454 times that of parental cells, depending upon the agent used. Drug resistance could not be attributed to altered growth characteristics, altered drug accumulation, or an altered drug efflux in the transfected cells. Cytokeratin does not confer resistance to ionizing radiation, which damages DNA independently on intracellular transport mechanisms. These data suggest a role for cytokeratin networks in conferring a drug resistance phenotype.

  10. Antibiotic adjuvants: diverse strategies for controlling drug-resistant pathogens.

    PubMed

    Gill, Erin E; Franco, Octavio L; Hancock, Robert E W

    2015-01-01

    The growing number of bacterial pathogens that are resistant to numerous antibiotics is a cause for concern around the globe. There have been no new broad-spectrum antibiotics developed in the last 40 years, and the drugs we have currently are quickly becoming ineffective. In this article, we explore a range of therapeutic strategies that could be employed in conjunction with antibiotics and may help to prolong the life span of these life-saving drugs. Discussed topics include antiresistance drugs, which are administered to potentiate the effects of current antimicrobials in bacteria where they are no longer (or never were) effective; antivirulence drugs, which are directed against bacterial virulence factors; host-directed therapies, which modulate the host's immune system to facilitate infection clearance; and alternative treatments, which include such therapies as oral rehydration for diarrhea, phage therapy, and probiotics. All of these avenues show promise for the treatment of bacterial infections and should be further investigated to explore their full potential in the face of a postantibiotic era. PMID:25393203

  11. Antibiotic Adjuvants: Diverse Strategies for Controlling Drug-Resistant Pathogens

    PubMed Central

    Gill, Erin E; Franco, Octavio L; Hancock, Robert E W

    2015-01-01

    The growing number of bacterial pathogens that are resistant to numerous antibiotics is a cause for concern around the globe. There have been no new broad-spectrum antibiotics developed in the last 40 years, and the drugs we have currently are quickly becoming ineffective. In this article, we explore a range of therapeutic strategies that could be employed in conjunction with antibiotics and may help to prolong the life span of these life-saving drugs. Discussed topics include antiresistance drugs, which are administered to potentiate the effects of current antimicrobials in bacteria where they are no longer (or never were) effective; antivirulence drugs, which are directed against bacterial virulence factors; host-directed therapies, which modulate the host's immune system to facilitate infection clearance; and alternative treatments, which include such therapies as oral rehydration for diarrhea, phage therapy, and probiotics. All of these avenues show promise for the treatment of bacterial infections and should be further investigated to explore their full potential in the face of a postantibiotic era. PMID:25393203

  12. Alleviating Cancer Drug Toxicity by Inhibiting a Bacterial Enzyme

    SciTech Connect

    Wallace, Bret D.; Wang, Hongwei; Lane, Kimberly T.; Scott, John E.; Orans, Jillian; Koo, Ja Seol; Venkatesh, Madhukumar; Jobin, Christian; Yeh, Li-An; Mani, Sridhar; Redinbo, Matthew R.

    2011-08-12

    The dose-limiting side effect of the common colon cancer chemotherapeutic CPT-11 is severe diarrhea caused by symbiotic bacterial {beta}-glucuronidases that reactivate the drug in the gut. We sought to target these enzymes without killing the commensal bacteria essential for human health. Potent bacterial {beta}-glucuronidase inhibitors were identified by high-throughput screening and shown to have no effect on the orthologous mammalian enzyme. Crystal structures established that selectivity was based on a loop unique to bacterial {beta}-glucuronidases. Inhibitors were highly effective against the enzyme target in living aerobic and anaerobic bacteria, but did not kill the bacteria or harm mammalian cells. Finally, oral administration of an inhibitor protected mice from CPT-11-induced toxicity. Thus, drugs may be designed to inhibit undesirable enzyme activities in essential microbial symbiotes to enhance chemotherapeutic efficacy.

  13. A network-based approach for resistance transmission in bacterial populations.

    PubMed

    Gehring, Ronette; Schumm, Phillip; Youssef, Mina; Scoglio, Caterina

    2010-01-01

    Horizontal transfer of mobile genetic elements (conjugation) is an important mechanism whereby resistance is spread through bacterial populations. The aim of our work is to develop a mathematical model that quantitatively describes this process, and to use this model to optimize antimicrobial dosage regimens to minimize resistance development. The bacterial population is conceptualized as a compartmental mathematical model to describe changes in susceptible, resistant, and transconjugant bacteria over time. This model is combined with a compartmental pharmacokinetic model to explore the effect of different plasma drug concentration profiles. An agent-based simulation tool is used to account for resistance transfer occurring when two bacteria are adjacent or in close proximity. In addition, a non-linear programming optimal control problem is introduced to minimize bacterial populations as well as the drug dose. Simulation and optimization results suggest that the rapid death of susceptible individuals in the population is pivotal in minimizing the number of transconjugants in a population. This supports the use of potent antimicrobials that rapidly kill susceptible individuals and development of dosage regimens that maintain effective antimicrobial drug concentrations for as long as needed to kill off the susceptible population. Suggestions are made for experiments to test the hypotheses generated by these simulations. PMID:19747924

  14. Antiretroviral drug resistance and routine therapy, Cameroon.

    PubMed

    Laurent, Christian; Kouanfack, Charles; Vergne, Laurence; Tardy, Michèle; Zekeng, Léopold; Noumsi, Nathalie; Butel, Christelle; Bourgeois, Anke; Mpoudi-Ngolé, Eitel; Koulla-Shiro, Sinata; Peeters, Martine; Delaporte, Eric

    2006-06-01

    Among 128 patients routinely receiving highly active antiretroviral therapy in an HIV/AIDS outpatient clinic in Cameroon, 16.4% had drug resistance after a median of 10 months. Of these, 12.5% had resistance to nucleoside reverse transcriptase inhibitors (NRTIs), 10.2% to non-NRTIs, and 2.3% to protease inhibitors. PMID:16707062

  15. Antimicrobial (Drug) Resistance: Vancomycin-Resistant Enterococci (VRE) Frequently Asked Questions

    MedlinePlus

    ... Understanding Antimicrobial (Drug) Resistance Examples of Antimicrobial Resistance Methicillin-Resistant Staphylococcus aureus (MRSA) Vancomycin-Resistant Enterococci (VRE) Overview Transmission Diagnosis ...

  16. Nitroheterocyclic drug resistance mechanisms in Trypanosoma brucei

    PubMed Central

    Wyllie, Susan; Foth, Bernardo J.; Kelner, Anna; Sokolova, Antoaneta Y.; Berriman, Matthew; Fairlamb, Alan H.

    2016-01-01

    Objectives The objective of this study was to identify the mechanisms of resistance to nifurtimox and fexinidazole in African trypanosomes. Methods Bloodstream-form Trypanosoma brucei were selected for resistance to nifurtimox and fexinidazole by stepwise exposure to increasing drug concentrations. Clones were subjected to WGS to identify putative resistance genes. Transgenic parasites modulating expression of genes of interest were generated and drug susceptibility phenotypes determined. Results Nifurtimox-resistant (NfxR) and fexinidazole-resistant (FxR) parasites shared reciprocal cross-resistance suggestive of a common mechanism of action. Previously, a type I nitroreductase (NTR) has been implicated in nitro drug activation. WGS of resistant clones revealed that NfxR parasites had lost >100 kb from one copy of chromosome 7, rendering them hemizygous for NTR as well as over 30 other genes. FxR parasites retained both copies of NTR, but lost >70 kb downstream of one NTR allele, decreasing NTR transcription by half. A single knockout line of NTR displayed 1.6- and 1.9-fold resistance to nifurtimox and fexinidazole, respectively. Since NfxR and FxR parasites are ∼6- and 20-fold resistant to nifurtimox and fexinidazole, respectively, additional factors must be involved. Overexpression and knockout studies ruled out a role for a putative oxidoreductase (Tb927.7.7410) and a hypothetical gene (Tb927.1.1050), previously identified in a genome-scale RNAi screen. Conclusions NTR was confirmed as a key resistance determinant, either by loss of one gene copy or loss of gene expression. Further work is required to identify which of the many dozens of SNPs identified in the drug-resistant cell lines contribute to the overall resistance phenotype. PMID:26581221

  17. [Drug resistant epilepsy. Clinical and neurobiological concepts].

    PubMed

    Espinosa-Jovel, Camilo A; Sobrino-Mejía, Fidel E

    2015-08-16

    Drug-resistant epilepsy, is a condition defined by the International League Against Epilepsy as persistent seizures despite having used at least two appropriate and adequate antiepileptic drug treatments. Approximately 20-30% of patients with epilepsy are going to be resistant to antiepileptic drugs, with different patterns of clinical presentation, which are related to the biological basis of this disease (de novo resistance, relapsing-remitting and progressive). Drug resistant epilepsy, impacts negatively the quality of life and significantly increases the risk of premature death. From the neurobiological point of view, this medical condition is the result of the interaction of multiple variables related to the underlying disease, drug interactions and proper genetic aspects of each patient. Thanks to advances in pharmacogenetics and molecular biology research, currently some hypotheses may explain the cause of this condition and promote the study of new therapeutic options. Currently, overexpression of membrane transporters such as P-glycoprotein, appears to be one of the most important mechanisms in the development of drug resistant epilepsy. The objective of this review is to deepen the general aspects of this clinical condition, addressing the definition, epidemiology, differential diagnosis and the pathophysiological bases. PMID:26204087

  18. Drug Resistance in Glioblastoma: A Mini Review

    PubMed Central

    Haar, Catherine P.; Hebbar, Preetha; Wallace, Gerald C.; Das, Arabinda; Vandergrift, William A.; Smith, Joshua A.; Giglio, Pierre; Patel, Sunil J.; Ray, Swapan K.; Banik, Naren L.

    2015-01-01

    Glioblastoma multiforme (GBM) is recognized as the most common and lethal form of central nervous system cancer. Currently used surgical techniques, chemotherapeutic agents, and radiotherapy strategies have done very little in extending the life expectancies of patients diagnosed with GBM. The difficulty in treating this malignant disease lies both in its inherent complexity and numerous mechanisms of drug resistance. In this review, we summarize several of the primary mechanisms of drug resistance. We reviewed available published literature in the English language regarding drug resistance in glioblastoma. The reasons for drug resistance in glioblastoma include drug efflux, hypoxic areas of tumor cells, cancer stem cells, DNA damage repair, and miRNAs. Many potential therapies target these mechanisms, including a series of investigated alternative and plant-derived agents. Future research and clinical trials in glioblastoma patients should pursue combination of therapies to help combat drug resistance. The emerging new data on the potential of plant-derived therapeutics should also be closely considered and further investigated. PMID:22228201

  19. Sensitive, resistant and multi-drug resistant Acinetobacter baumanii at Saudi Arabia hospital eastern region.

    PubMed

    Ahmed, Mughis Uddin; Farooq, Reshma; Al-Hawashim, Nadia; Ahmed, Motasim; Yiannakou, Nearchos; Sayeed, Fatima; Sayed, Ali Rifat; Lutfullah, Sualiha

    2015-05-01

    Since the Physicians start use of antibiotics long ago with un-notice drug resistance. However actual problem was recognized about 85 years ago. Antibiotic resistant and Multi-drug resistant bacterial strains are at rise throughout the world. It is physicians and researchers to take scientific research based appropriate action to overcome this ever-spreading problem. This study is designed to find out sensitive (S), resistant (R) and multi-drug resistant (MDR) Acinetobacter baumanii strain along with other isolates in the resident patients of Eastern Region of Saudi Arabia. Pseudomonas aeruginosa is excluded from other gram-negative organisms isolated from different sites as it will be dealt separately. This study is based in was retrospective observations designed to collect data of different stains of Acinetobacter baumanii with reference to their Sensitivity (S), Resistance (R), Multi-Drug Resistance (MDR) along with other Gram negative isolated from different sites (from 1st January 2004 to 31st December 2011) at King Abdulaziz Hospital located Eastern Region of Kingdom of Saudi Arabia (KSA). All necessary techniques were used to culture and perform sensitivity of these isolates. There were 4532 isolates out of which 3018 (67%) were from patients. Out of Acinetobacter baumanii infected were 906 (20%) while other 3626 (80%) isolates were miscellaneous. Numbers of patients or cases were 480 (53%) out of 906 isolates and numbers of patients or cases in other organisms were 2538 (70%) out of 3626 isolates. Acinetobacter baumanii infected patients 221 (46%) were male and 259 (54%) were female and the male and female ratio of 1:1.2. In other organisms this male female ratio was almost same. There was steady rise in number of patients and the hence the isolates from 2004 to 2011. Majority of the bacterial strains were isolated as single organism but some were isolated as double or triple or quadruple or more organisms from different sites. Sensitive, Resistant and

  20. Alternatives to overcoming bacterial resistances: State-of-the-art.

    PubMed

    Rios, Alessandra C; Moutinho, Carla G; Pinto, Flávio C; Del Fiol, Fernando S; Jozala, Angela; Chaud, Marco V; Vila, Marta M D C; Teixeira, José A; Balcão, Victor M

    2016-10-01

    Worldwide, bacterial resistance to chemical antibiotics has reached such a high level that endangers public health. Presently, the adoption of alternative strategies that promote the elimination of resistant microbial strains from the environment is of utmost importance. This review discusses and analyses several (potential) alternative strategies to current chemical antibiotics. Bacteriophage (or phage) therapy, although not new, makes use of strictly lytic phage particles as an alternative, or a complement, in the antimicrobial treatment of bacterial infections. It is being rediscovered as a safe method, because these biological entities devoid of any metabolic machinery do not possess any affinity whatsoever to eukaryotic cells. Lysin therapy is also recognized as an innovative antimicrobial therapeutic option, since the topical administration of preparations containing purified recombinant lysins with amounts in the order of nanograms, in infections caused by Gram-positive bacteria, demonstrated a high therapeutic potential by causing immediate lysis of the target bacterial cells. Additionally, this therapy exhibits the potential to act synergistically when combined with certain chemical antibiotics already available on the market. Another potential alternative antimicrobial therapy is based on the use of antimicrobial peptides (AMPs), amphiphilic polypeptides that cause disruption of the bacterial membrane and can be used in the treatment of bacterial, fungal and viral infections, in the prevention of biofilm formation, and as antitumoral agents. Interestingly, bacteriocins are a common strategy of bacterial defense against other bacterial agents, eliminating the potential opponents of the former and increasing the number of available nutrients in the environment for their own growth. They can be applied in the food industry as biopreservatives and as probiotics, and also in fighting multi-resistant bacterial strains. The use of antibacterial antibodies

  1. Coinfection and the evolution of drug resistance.

    PubMed

    Hansen, J; Day, T

    2014-12-01

    Recent experimental work in the rodent malaria model has shown that when two or more strains share a host, there is competitive release of drug-resistant strains upon treatment. In other words, the propagule output of a particular strain is repressed when competing with other strains and increases upon the removal of this competition. This within-host effect is predicted to have an important impact on the evolution and growth of resistant strains. However, how this effect translates to epidemiological parameters at the between-host level, the level at which disease and resistance spread, has yet to be determined. Here we present a general, between-host epidemiological model that explicitly takes into account the effect of coinfection and competitive release. Although our model does show that when there is coinfection competitive release may contribute to the emergence of resistance, it also highlights an additional between-host effect. It is the combination of these two effects, the between-host effect and the within-host effect, that determines the overall influence of coinfection on the emergence of resistance. Therefore, even when competitive release of drug-resistant strains occurs, within an infected individual, it is not necessarily true that coinfection will result in the increased emergence of resistance. These results have important implications for the control of the emergence and spread of drug resistance. PMID:25417787

  2. Development and spread of bacterial resistance to antimicrobial agents: an overview.

    PubMed

    Tenover, F C

    2001-09-15

    Resistance to antimicrobial agents is emerging in a wide variety of nosocomial and community-acquired pathogens. The emergence and spread of multiply resistant organisms represent the convergence of a variety of factors that include mutations in common resistance genes that extend their spectrum of activity, the exchange of genetic information among microorganisms, the evolution of selective pressures in hospitals and communities that facilitate the development and spread of resistant organisms, the proliferation and spread of multiply resistant clones of bacteria, and the inability of some laboratory testing methods to detect emerging resistance phenotypes. Twenty years ago, bacteria that were resistant to antimicrobial agents were easy to detect in the laboratory because the concentration of drug required to inhibit their growth was usually quite high and distinctly different from that of susceptible strains. Newer mechanisms of resistance, however, often result in much more subtle shifts in bacterial population distributions. Perhaps the most difficult phenotypes to detect, as shown in several proficiency testing surveys, are decreased susceptibility to beta-lactams in pneumococci and decreased susceptibility to vancomycin in staphylococci. In summary, emerging resistance has required adaptations and modifications of laboratory diagnostic techniques, empiric anti-infective therapy for such diseases as bacterial meningitis, and infection control measures in health care facilities of all kinds. Judicious use is imperative if we are to preserve our arsenal of antimicrobial agents into the next decade. PMID:11524705

  3. Drug targeting of leptin resistance.

    PubMed

    Santoro, Anna; Mattace Raso, Giuseppina; Meli, Rosaria

    2015-11-01

    Leptin regulates glucose, lipid and energy homeostasis as well as feeding behavior, serving as a bridge between peripheral metabolically active tissues and the central nervous system (CNS). Indeed, this adipocyte-derived hormone, whose circulating levels mirror fat mass, not only exerts its anti-obesity effects mainly modulating the activity of specific hypothalamic neurons expressing the long form of the leptin receptor (Ob-Rb), but it also shows pleiotropic functions due to the activation of Ob-Rb in peripheral tissues. Nevertheless, several mechanisms have been suggested to mediate leptin resistance, including obesity-associated hyperleptinemia, impairment of leptin access to CNS and the reduction in Ob-Rb signal transduction effectiveness, among others. During the onset and progression of obesity, the dampening of leptin sensitivity often occurs, preventing the efficacy of leptin replacement therapy from overcoming obesity and/or its comorbidities. This review focuses on obesity-associated leptin resistance and the mechanisms underpinning this condition, to highlight the relevance of leptin sensitivity restoration as a useful therapeutic strategy to treat common obesity and its complications. Interestingly, although promising strategies to counteract leptin resistance have been proposed, these pharmacological approaches have shown limited efficacy or even relevant adverse effects in preclinical and clinical studies. Therefore, the numerous findings from this review clearly indicate a lack of a single and efficacious treatment for leptin resistance, highlighting the necessity to find new therapeutic tools to improve leptin sensitivity, especially in patients with most severe disease profiles. PMID:26071010

  4. Drug resistance genomics of the antimalarial drug artemisinin.

    PubMed

    Winzeler, Elizabeth A; Manary, Micah J

    2014-01-01

    Across the globe, over 200 million annual malaria infections result in up to 660,000 deaths, 77% of which occur in children under the age of five years. Although prevention is important, malaria deaths are typically prevented by using antimalarial drugs that eliminate symptoms and clear parasites from the blood. Artemisinins are one of the few remaining compound classes that can be used to cure multidrug-resistant Plasmodium falciparum infections. Unfortunately, clinical trials from Southeast Asia are showing that artemisinin-based treatments are beginning to lose their effectiveness, adding renewed urgency to the search for the genetic determinants of parasite resistance to this important drug class. We review the genetic and genomic approaches that have led to an improved understanding of artemisinin resistance, including the identification of resistance-conferring mutations in the P. falciparum kelch13 gene. PMID:25470531

  5. Antiplaque biocides and bacterial resistance: a review.

    PubMed

    Sreenivasan, Prem; Gaffar, Abdul

    2002-11-01

    Modern dentistry emphasizes the importance of dental plaque control to improve oral health. The use of oral care formulations with antiplaque biocides plays a crucial role in patient-directed approaches for plaque control. The antiplaque efficacies of these formulations have been extensively studied in many long-term clinical studies designed in accordance with well-accepted guidelines. The results from these studies conclusively demonstrate that long-term use of oral care formulations with well-known antiplaque biocides such as chlorhexidine and triclosan reduce supragingival plaque and gingivitis. This review summarizes microbiological results from clinical studies conducted with oral care formulations containing antiplaque biocides. Results from a number of long-term clinical studies conducted under real-life use conditions indicate no adverse alterations in the bacteria found in dental plaque or emergent microbial resistance. Additionally, microbial sampling of dental plaque subsequent to extended use of antiplaque biocides reveals no increase in resistant microflora. Large numbers of common oral bacteria isolated from patients using chlorhexidine indicate no increase in microbial resistance to chlorhexidine or to commonly used antibiotics. The effects of antiplaque biocides containing oral care formulations on dental plaque that exists naturally as a biofilm are examined. These formulations contain biocide, surfactants, polymers and other components that are effective against the biofilm. In summary, the results of studies on the real-life use of oral care formulations with antiplaque biocides show no emergence of resistant microflora or alterations of the oral microbiota, while such formulations have been found to provide the benefits of reducing plaque and gingivitis. PMID:12472989

  6. Exploiting bacterial DNA gyrase as a drug target: current state and perspectives.

    PubMed

    Collin, Frédéric; Karkare, Shantanu; Maxwell, Anthony

    2011-11-01

    DNA gyrase is a type II topoisomerase that can introduce negative supercoils into DNA at the expense of ATP hydrolysis. It is essential in all bacteria but absent from higher eukaryotes, making it an attractive target for antibacterials. The fluoroquinolones are examples of very successful gyrase-targeted drugs, but the rise in bacterial resistance to these agents means that we not only need to seek new compounds, but also new modes of inhibition of this enzyme. We review known gyrase-specific drugs and toxins and assess the prospects for developing new antibacterials targeted to this enzyme. PMID:21904817

  7. Genetics and breeding of bacterial leaf spot resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial leaf spot (BLS) caused by the pathogen Xanthomonas campestris pv. vitians (Xcv) is a globally important disease of whole head and baby leaf lettuce that reduces crop yield and quality. Host resistance is the most feasible method to reduce disease losses. Screening Lactuca accessions has id...

  8. Persistence and resistance as complementary bacterial adaptations to antibiotics.

    PubMed

    Vogwill, T; Comfort, A C; Furió, V; MacLean, R C

    2016-06-01

    Bacterial persistence represents a simple of phenotypic heterogeneity, whereby a proportion of cells in an isogenic bacterial population can survive exposure to lethal stresses such as antibiotics. In contrast, genetically based antibiotic resistance allows for continued growth in the presence of antibiotics. It is unclear, however, whether resistance and persistence are complementary or alternative evolutionary adaptations to antibiotics. Here, we investigate the co-evolution of resistance and persistence across the genus Pseudomonas using comparative methods that correct for phylogenetic nonindependence. We find that strains of Pseudomonas vary extensively in both their intrinsic resistance to antibiotics (ciprofloxacin and rifampicin) and persistence following exposure to these antibiotics. Crucially, we find that persistence correlates positively to antibiotic resistance across strains. However, we find that different genes control resistance and persistence implying that they are independent traits. Specifically, we find that the number of type II toxin-antitoxin systems (TAs) in the genome of a strain is correlated to persistence, but not resistance. Our study shows that persistence and antibiotic resistance are complementary, but independent, evolutionary adaptations to stress and it highlights the key role played by TAs in the evolution of persistence. PMID:26999656

  9. Test for bacterial resistance build-up against plasma treatment

    NASA Astrophysics Data System (ADS)

    Zimmermann, J. L.; Shimizu, T.; Schmidt, H.-U.; Li, Y.-F.; Morfill, G. E.; Isbary, G.

    2012-07-01

    It is well known that the evolution of resistance of microorganisms to a range of different antibiotics presents a major problem in the control of infectious diseases. Accordingly, new bactericidal ‘agents’ are in great demand. Using a cold atmospheric pressure (CAP) plasma dispenser operated with ambient air, a more than five orders of magnitude inactivation or reduction of Methicillin-resistant Staphylococcus aureus (MRSA; resistant against a large number of the tested antibiotics) was obtained in less than 10 s. This makes CAP the most promising candidate for combating nosocomial (hospital-induced) infections. To test for the occurrence and development of bacterial resistance against such plasmas, experiments with Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Enterococcus mundtii) were performed. The aim was to determine quantitative limits for primary (naturally) or secondary (acquired) resistance against the plasma treatment. Our results show that E. coli and E. mundtii possess no primary resistance against the plasma treatment. By generating four generations of bacteria for every strain, where the survivors of the plasma treatment were used for the production of the next generation, a lower limit to secondary resistance was obtained. Our results indicate that CAP technology could contribute to the control of infections in hospitals, in outpatient care and in disaster situations, providing a new, fast and efficient broad-band disinfection technology that is not constrained by bacterial resistance mechanisms.

  10. Antifungals: Mechanism of Action and Drug Resistance.

    PubMed

    Prasad, Rajendra; Shah, Abdul Haseeb; Rawal, Manpreet Kaur

    2016-01-01

    There are currently few antifungals in use which show efficacy against fungal diseases. These antifungals mostly target specific components of fungal plasma membrane or its biosynthetic pathways. However, more recent class of antifungals in use is echinocandins which target the fungal cell wall components. The availability of mostly fungistatic antifungals in clinical use, often led to the development of tolerance to these very drugs by the pathogenic fungal species. Thus, the development of clinical multidrug resistance (MDR) leads to higher tolerance to drugs and its emergence is helped by multiple mechanisms. MDR is indeed a multifactorial phenomenon wherein a resistant organism possesses several mechanisms which contribute to display reduced susceptibility to not only single drug in use but also show collateral resistance to several drugs. Considering the limited availability of antifungals in use and the emergence of MDR in fungal infections, there is a continuous need for the development of novel broad spectrum antifungal drugs with better efficacy. Here, we briefly present an overview of the current understanding of the antifungal drugs in use, their mechanism of action and the emerging possible novel antifungal drugs with great promise. PMID:26721281

  11. Drug-resistant tuberculosis: emerging treatment options

    PubMed Central

    Adhvaryu, Meghna; Vakharia, Bhasker

    2011-01-01

    Multidrug-resistant tuberculosis has emerged worldwide, with an increasing incidence due to failure of implementation of apparently effective first-line antituberculous therapy as well as primary infection with drug-resistant strains. Failure of current therapy is attributed to a long duration of treatment leading to nonadherence and irregular therapy, lack of patient education about the disease, poverty, irregular supply by care providers, drug–drug interactions in patients coinfected with human immunodeficiency virus (HIV), inadequate regulations causing market overlap and irresponsible drug usage in the private sector, and lack of research, with no addition of new drugs in the last four decades. Present standards of care for the treatment of drugsusceptible tuberculosis, multidrug-resistant tuberculosis, tuberculosis-HIV coinfection, and latent tuberculosis infection are all unsatisfactory. Since 2000, the World Health Organization (WHO) has focused on drug development for tuberculosis, as well as research in all relevant aspects to discover new regimens by 2015 and to eliminate tuberculosis as a public health concern by 2050. As a result, some 20 promising compounds from 14 groups of drugs have been discovered. Twelve candidates from eight classes are currently being evaluated in clinical trials. Ongoing research should prioritize identification of novel targets and newer application of existing drugs, discovery of multitargeted drugs from natural compounds, strengthening host factors by immunopotentiation with herbal immunomodulators, as well as protective vaccines before and after exposure, consideration of surgical measures when indicated, development of tools for rapid diagnosis, early identification of resistant strains, and markers for adequacy of treatment and an integrative approach to fulfill WHO goals. However, regulatory control over the drug market, as well as public-private partnership to use health program facilities to track patients and ensure

  12. Drug-resistant Neisseria gonorrhoeae in Michigan

    PubMed Central

    Boehme, Martha S.; Rudrik, James T.; Ganoczy, Dara; Crandell-Alden, Erin; Schneider, William A.; Somsel, Patricia A.

    2005-01-01

    The increasing prevalence of quinolone-resistant Neisseria gonorrhoeae (QRNG) in the United States is a cause for concern. Detecting resistance is complicated by the widespread use of molecular tests that do not provide isolates for susceptibility testing. The Michigan Department of Community Health developed a sentinel surveillance program to detect antimicrobial drug resistance in N. gonorrhoeae. Sentinel surveillance from 11 laboratories submitted 1,122 isolates for antimicrobial drug susceptibility testing and detected 2 clusters of QRNG from January 2003 to September 2004. These clusters were epidemiologically distinct: one involved young, heterosexual youth, and the other involved older men who have sex with men. This finding led to changes in local treatment recommendations that limited spread of resistant strains. Development of the sentinel program, collection of data, and epidemiologic analysis of the clusters are discussed. PMID:16022773

  13. Resistance to antibiotics targeted to the bacterial cell wall

    PubMed Central

    Nikolaidis, I; Favini-Stabile, S; Dessen, A

    2014-01-01

    Peptidoglycan is the main component of the bacterial cell wall. It is a complex, three-dimensional mesh that surrounds the entire cell and is composed of strands of alternating glycan units crosslinked by short peptides. Its biosynthetic machinery has been, for the past five decades, a preferred target for the discovery of antibacterials. Synthesis of the peptidoglycan occurs sequentially within three cellular compartments (cytoplasm, membrane, and periplasm), and inhibitors of proteins that catalyze each stage have been identified, although not all are applicable for clinical use. A number of these antimicrobials, however, have been rendered inactive by resistance mechanisms. The employment of structural biology techniques has been instrumental in the understanding of such processes, as well as the development of strategies to overcome them. This review provides an overview of resistance mechanisms developed toward antibiotics that target bacterial cell wall precursors and its biosynthetic machinery. Strategies toward the development of novel inhibitors that could overcome resistance are also discussed. PMID:24375653

  14. Cooperative Bacterial Growth Dynamics Predict the Evolution of Antibiotic Resistance

    NASA Astrophysics Data System (ADS)

    Artemova, Tatiana; Gerardin, Ylaine; Hsin-Jung Li, Sophia; Gore, Jeff

    2011-03-01

    Since the discovery of penicillin, antibiotics have been our primary weapon against bacterial infections. Unfortunately, bacteria can gain resistance to penicillin by acquiring the gene that encodes beta-lactamase, which inactivates the antibiotic. However, mutations in this gene are necessary to degrade the modern antibiotic cefotaxime. Understanding the conditions that favor the spread of these mutations is a challenge. Here we show that bacterial growth in beta-lactam antibiotics is cooperative and that the nature of this growth determines the conditions in which resistance evolves. Quantitative analysis of the growth dynamics predicts a peak in selection at very low antibiotic concentrations; competition between strains confirms this prediction. We also find significant selection at higher antibiotic concentrations, close to the minimum inhibitory concentrations of the strains. Our results argue that an understanding of the evolutionary forces that lead to antibiotic resistance requires a quantitative understanding of the evolution of cooperation in bacteria.

  15. [Effect of Three Typical Disinfection Byproducts on Bacterial Antibiotic Resistance].

    PubMed

    Lü, Lu; Zhang, Meng-lu; Wang, Chun-ming; Lin, Hui-rong; Yu, Xin

    2015-07-01

    The effect of typical disinfection byproducts (DBPs) on bacterial antibiotic resistance was investigated in this study. chlorodibromomethane (CDBM), iodoacetic acid (IAA) and chloral hydrate (CH) were selected, which belong to trihalomethanes (THMs), haloacetic acids (HAAs) and aldehydes, respectively. After exposure to the selected DBPs, the resistance change of the tested strains to antibiotics was determined. As a result, all of the three DBPs induced Pseudomonas aeruginosa PAO1 to gain increased resistance to the five antibiotics tested, and the DBPs ranked as IAA > CH > CDBM according to their enhancement effects. Multidrug resistance could also be enhanced by treatment with IAA. The same result was observed in Escherichia coli K12, suggesting that the effect of DBPs on antibiotic resistance was a common phenomenon. The mechanism was probably that DBPs stimulated oxidative stress, which induced mutagenesis. And the antibiotic resistance mutation frequency could be increased along with mutagenesis. This study revealed that the acquisition of bacterial antibiotic resistance might be related to DBPs in drinking water systems. Besides the genotoxicological risks, the epidemiological risks of DBPs should not be overlooked. PMID:26489321

  16. [MOLECULAR MECHANISMS OF DRUG RESISTANCE NEISSERIA GONORRHOEAE HISTORY AND PROSPECTS].

    PubMed

    Bodoev, I N; Il'ina, E N

    2015-01-01

    Neisseria gonorrhoeae (gonococcus) is a strict human pathogen, which causes gonorrhea--an infectious disease, whose origin dates back to more than two thousand years. Due to the unique plasticity of the genetic material, these bacteria have acquired the capacity to adapt to the host immune system, cause repeated infections, as well as withstand antimicrobials. Since the introduction of antibiotics in 1930s, gonococcus has displayed its propensity to develop resistance to all clinically useful antibiotics. It is important to note that the known resistance determinants of N. gonorrhoeae were acquired through horizontal gene transfer, recombination and spontaneous mutagenesis, and may be located both in the chromosome and on the plasmid. After introduction of a new antimicrobial drug, gonococcus becomes resistant within two decades and replaces sensitive bacterial population. Currently Ceftriaxone is the last remaining antibiotic for first-line treatment of gonorrhea. However, the first gonococcus displaying high-level resistance to Ceftriaxone was isolated in Japan a few years ago. Therefore, in the near future, gonorrhea may become untreatable. In the present review, we discuss the chronology of the anti-gonorrhea drugs (antibiotics) replacement, the evolution of resistance mechanisms emergence and future perspectives of N. gonorrhoeae treatment. PMID:26665738

  17. Virologic Tools for HCV Drug Resistance Testing

    PubMed Central

    Fourati, Slim; Pawlotsky, Jean-Michel

    2015-01-01

    Recent advances in molecular biology have led to the development of new antiviral drugs that target specific steps of the Hepatitis C Virus (HCV) lifecycle. These drugs, collectively termed direct-acting antivirals (DAAs), include non-structural (NS) HCV protein inhibitors, NS3/4A protease inhibitors, NS5B RNA-dependent RNA polymerase inhibitors (nucleotide analogues and non-nucleoside inhibitors), and NS5A inhibitors. Due to the high genetic variability of HCV, the outcome of DAA-based therapies may be altered by the selection of amino-acid substitutions located within the targeted proteins, which affect viral susceptibility to the administered compounds. At the drug developmental stage, preclinical and clinical characterization of HCV resistance to new drugs in development is mandatory. In the clinical setting, accurate diagnostic tools have become available to monitor drug resistance in patients who receive treatment with DAAs. In this review, we describe tools available to investigate drug resistance in preclinical studies, clinical trials and clinical practice. PMID:26690198

  18. Repurposing Clinical Molecule Ebselen to Combat Drug Resistant Pathogens

    PubMed Central

    Thangamani, Shankar; Younis, Waleed; Seleem, Mohamed N.

    2015-01-01

    Without a doubt, our current antimicrobials are losing the battle in the fight against newly-emerged multidrug-resistant pathogens. There is a pressing, unmet need for novel antimicrobials and novel approaches to develop them; however, it is becoming increasingly difficult and costly to develop new antimicrobials. One strategy to reduce the time and cost associated with antimicrobial innovation is drug repurposing, which is to find new applications outside the scope of the original medical indication of the drug. Ebselen, an organoselenium clinical molecule, possesses potent antimicrobial activity against clinical multidrug-resistant Gram-positive pathogens, including Staphylococcus, Streptococcus, and Enterococcus, but not against Gram-negative pathogens. Moreover, the activity of ebselen against Gram-positive pathogens exceeded those activities determined for vancomycin and linezolid, drugs of choice for treatment of Enterococcus and Staphylococcus infections. The minimum inhibitory concentrations of ebselen at which 90% of clinical isolates of Enterococcus and Staphylococcus were inhibited (MIC90) were found to be 0.5 and 0.25 mg/L, respectively. Ebselen showed significant clearance of intracellular methicillin-resistant S. aureus (MRSA) in comparison to vancomycin and linezolid. We demonstrated that ebselen inhibits the bacterial translation process without affecting mitochondrial biogenesis. Additionally, ebselen was found to exhibit excellent activity in vivo in a Caenorhabditis elegans MRSA-infected whole animal model. Finally, ebselen showed synergistic activities with conventional antimicrobials against MRSA. Taken together, our results demonstrate that ebselen, with its potent antimicrobial activity and safety profiles, can be potentially used to treat multidrug resistant Gram-positive bacterial infections alone or in combination with other antibiotics and should be further clinically evaluated. PMID:26222252

  19. PARAMETERS OF TREATED STAINLESS STEEL SURFACES IMPORTANT FOR RESISTANCE TO BACTERIAL CONTAMINATION

    EPA Science Inventory

    Use of materials that are resistant to bacterial contamination could enhance food safety during processing. Common finishing treatments of stainless steel surfaces used for components of poultry processing equipment were tested for resistance to bacterial attachment. Surface char...

  20. Essential Oils, A New Horizon in Combating Bacterial Antibiotic Resistance

    PubMed Central

    Yap, Polly Soo Xi; Yiap, Beow Chin; Ping, Hu Cai; Lim, Swee Hua Erin

    2014-01-01

    For many years, the battle between humans and the multitudes of infection and disease causing pathogens continues. Emerging at the battlefield as some of the most significant challenges to human health are bacterial resistance and its rapid rise. These have become a major concern in global public health invigorating the need for new antimicrobial compounds. A rational approach to deal with antibiotic resistance problems requires detailed knowledge of the different biological and non-biological factors that affect the rate and extent of resistance development. Combination therapy combining conventional antibiotics and essential oils is currently blooming and represents a potential area for future investigations. This new generation of phytopharmaceuticals may shed light on the development of new pharmacological regimes in combating antibiotic resistance. This review consolidated and described the observed synergistic outcome between essential oils and antibiotics, and highlighted the possibilities of essential oils as the potential resistance modifying agent. PMID:24627729

  1. White Paper: Recommendations on the Conduct of Superiority and Organism-Specific Clinical Trials of Antibacterial Agents for the Treatment of Infections Caused by Drug-Resistant Bacterial Pathogens

    PubMed Central

    2012-01-01

    There is a critical need for new pathways to develop antibacterial agents to treat life-threatening infections caused by highly resistant bacteria. Traditionally, antibacterial agents have been studied in noninferiority clinical trials that focus on one site of infection (eg, pneumonia, intra-abdominal infection). Conduct of superiority trials for infections caused by highly antibiotic-resistant bacteria represents a new, and as yet, untested paradigm for antibacterial drug development. We sought to define feasible trial designs of antibacterial agents that could enable conduct of superiority and organism-specific clinical trials. These recommendations are the results of several years of active dialogue among the white paper's drafters as well as external collaborators and regulatory officials. Our goal is to facilitate conduct of new types of antibacterial clinical trials to enable development and ultimately approval of critically needed new antibacterial agents. PMID:22891041

  2. Malaria drug resistance: new observations and developments

    PubMed Central

    Sá, Juliana M.; Chong, Jason L.; Wellems, Thomas E.

    2012-01-01

    Drug-resistant micro-organisms became widespread in the 20th Century, often with devastating consequences, in response to widespread use of natural and synthetic drugs against infectious diseases. Antimalarial resistance provides one of the earliest examples, following the introduction of new medicines that filled important needs for prophylaxis and treatment around the globe. In the present chapter, we offer a brief synopsis of major antimalarial developments from two natural remedies, the qinghaosu and cinchona bark infusions, and of synthetic drugs inspired by the active components of these remedies. We review some contributions that early efficacy studies of antimalarial treatment brought to clinical pharmacology, including convincing documentation of atebrine-resistant malaria in the 1940s, prior to the launching of what soon became first-choice antimalarials, chloroquine and amodiaquine. Finally, we discuss some new observations on the molecular genetics of drug resistance, including delayed parasite clearances that have been increasingly observed in response to artemisinin derivatives in regions of South-East Asia. PMID:22023447

  3. Heavy metals in liquid pig manure in light of bacterial antimicrobial resistance

    SciTech Connect

    Hoelzel, Christina S.; Mueller, Christa; Harms, Katrin S.; Mikolajewski, Sabine; Schaefer, Stefanie; Schwaiger, Karin; Bauer, Johann

    2012-02-15

    Heavy metals are regularly found in liquid pig manure, and might interact with bacterial antimicrobial resistance. Concentrations of heavy metals were determined by atomic spectroscopic methods in 305 pig manure samples and were connected to the phenotypic resistance of Escherichia coli (n=613) against 29 antimicrobial drugs. Concentrations of heavy metals (/kg dry matter) were 0.08-5.30 mg cadmium, 1.1-32.0 mg chrome, 22.4-3387.6 mg copper, <2.0-26.7 mg lead, <0.01-0.11 mg mercury, 3.1-97.3 mg nickel and 93.0-8239.0 mg zinc. Associated with the detection of copper and zinc, resistance rates against {beta}-lactams were significantly elevated. By contrast, the presence of mercury was significantly associated with low antimicrobial resistance rates of Escherichia coli against {beta}-lactams, aminoglycosides and other antibiotics. Effects of subinhibitory concentrations of mercury on bacterial resistance against penicillins, cephalosporins, aminoglycosides and doxycycline were also demonstrated in a laboratory trial. Antimicrobial resistance in the porcine microflora might be increased by copper and zinc. By contrast, the occurrence of mercury in the environment might, due to co-toxicity, act counter-selective against antimicrobial resistant strains.

  4. Host-Directed Antimicrobial Drugs with Broad-Spectrum Efficacy against Intracellular Bacterial Pathogens

    PubMed Central

    Czyż, Daniel M.; Potluri, Lakshmi-Prasad; Jain-Gupta, Neeta; Riley, Sean P.; Martinez, Juan J.; Steck, Theodore L.; Crosson, Sean; Gabay, Joëlle E.

    2014-01-01

    ABSTRACT We sought a new approach to treating infections by intracellular bacteria, namely, by altering host cell functions that support their growth. We screened a library of 640 Food and Drug Administration (FDA)-approved compounds for agents that render THP-1 cells resistant to infection by four intracellular pathogens. We identified numerous drugs that are not antibiotics but were highly effective in inhibiting intracellular bacterial growth with limited toxicity to host cells. These compounds are likely to target three kinds of host functions: (i) G protein-coupled receptors, (ii) intracellular calcium signals, and (iii) membrane cholesterol distribution. The compounds that targeted G protein receptor signaling and calcium fluxes broadly inhibited Coxiella burnetii, Legionella pneumophila, Brucella abortus, and Rickettsia conorii, while those directed against cholesterol traffic strongly attenuated the intracellular growth of C. burnetii and L. pneumophila. These pathways probably support intracellular pathogen growth so that drugs that perturb them may be therapeutic candidates. Combining host- and pathogen-directed treatments is a strategy to decrease the emergence of drug-resistant intracellular bacterial pathogens. PMID:25073644

  5. Drug release kinetics from carboxymethylcellulose-bacterial cellulose composite films.

    PubMed

    Juncu, Gheorghe; Stoica-Guzun, Anicuta; Stroescu, Marta; Isopencu, Gabriela; Jinga, Sorin Ion

    2016-08-30

    Composite films of sodium carboxymethyl cellulose and bacterial cellulose (NaCMC-BC) cross-linked with citric acid (CA) were prepared by solution casting method. Ibuprofen sodium salt (IbuNa) has been used to study the mechanism of drug release from composite films. Surface morphology was investigated by scanning electron microscopy (SEM) and proved that the BC content influences the aspect of the films. Fourier transformed infrared spectroscopy (FTIR) revealed specific peaks in IR spectra of composite films which sustain that NaCMC was cross-linked with CA. Starting from swelling observations, the release kinetic of IbuNa was described using a model which neglects the volume expansion due to polymer swelling and which considers non-linear diffusion coefficients for drug and solvent. The IbuNa release is also influenced by BC content, the drug release rate was decreasing with the increase of BC content. PMID:26688041

  6. Proteomics for Drug Resistance on the Food Chain? Multidrug-Resistant Escherichia coli Proteomes from Slaughtered Pigs.

    PubMed

    Ramos, Sónia; Silva, Nuno; Hébraud, Michel; Santos, Hugo M; Nunes-Miranda, Júlio Dinis; Pinto, Luís; Pereira, José E; Capelo, José-Luis; Poeta, Patrícia; Igrejas, Gilberto

    2016-06-01

    Understanding global drug resistance demands an integrated vision, focusing on both human and veterinary medicine. Omics technologies offer new vistas to decipher mechanisms of drug resistance in the food chain. For example, Escherichia coli resistance to major antibiotics is increasing whereas multidrug resistance (MDR) strains are now commonly found in humans and animals. Little is known about the structural and metabolic changes in the cell that trigger resistance to antimicrobial agents. Proteomics is an emerging field that is used to advance our knowledge in global health and drug resistance in the food chain. In the present proteomic analysis, we offer an overview of the global protein expression of different MDR E. coli strains from fecal samples of pigs slaughtered for human consumption. A full proteomic survey of the drug-resistant strains SU60, SU62, SU76, and SU23, under normal growth conditions, was made by two-dimensional electrophoresis, identifying proteins by MALDI-TOF/MS. The proteomes of these four E. coli strains with different genetic profiles were compared in detail. Identical transport, stress response, or metabolic proteins were discovered in the four strains. Several of the identified proteins are essential in bacterial pathogenesis (GAPDH, LuxS, FKBPs), development of bacterial resistance (Omp's, TolC, GroEL, ClpB, or SOD), and potential antibacterial targets (FBPA, FabB, ACC's, or Fab1). Effective therapies against resistant bacteria are crucial and, to accomplish this, a comprehensive understanding of putative resistance mechanisms is essential. Moving forward, we suggest that multi-omics research will further improve our knowledge about bacterial growth and virulence on the food chain, especially under antibiotic stress. PMID:27310477

  7. Marine bacterial communities are resistant to elevated carbon dioxide levels.

    PubMed

    Oliver, Anna E; Newbold, Lindsay K; Whiteley, Andrew S; van der Gast, Christopher J

    2014-12-01

    It is well established that the release of anthropogenic-derived CO2 into the atmosphere will be mainly absorbed by the oceans, with a concomitant drop in pH, a process termed ocean acidification. As such, there is considerable interest in how changes in increased CO2 and lower pH will affect marine biota, such as bacteria, which play central roles in oceanic biogeochemical processes. Set within an ecological framework, we investigated the direct effects of elevated CO2, contrasted with ambient conditions on the resistance and resilience of marine bacterial communities in a replicated temporal seawater mesocosm experiment. The results of the study strongly indicate that marine bacterial communities are highly resistant to the elevated CO2 and lower pH conditions imposed, as demonstrated from measures of turnover using taxa–time relationships and distance–decay relationships. In addition, no significant differences in community abundance, structure or composition were observed. Our results suggest that there are no direct effects on marine bacterial communities and that the bacterial fraction of microbial plankton holds enough flexibility and evolutionary capacity to withstand predicted future changes from elevated CO2 and subsequent ocean acidification. PMID:25756110

  8. Population Dynamics of Patients with Bacterial Resistance in Hospital Environment.

    PubMed

    Qu, Leilei; Pan, Qiuhui; Gao, Xubin; He, Mingfeng

    2016-01-01

    During the past decades, the increase of antibiotic resistance has become a major concern worldwide. The researchers found that superbugs with new type of resistance genes (NDM-1) have two aspects of transmission characteristics; the first is that the antibiotic resistance genes can horizontally transfer among bacteria, and the other is that the superbugs can spread between humans through direct contact. Based on these two transmission mechanisms, we study the dynamics of population in hospital environment where superbugs exist. In this paper, we build three mathematic models to illustrate the dynamics of patients with bacterial resistance in hospital environment. The models are analyzed using stability theory of differential equations. Positive equilibrium points of the system are investigated and their stability analysis is carried out. Moreover, the numerical simulation of the proposed model is also performed which supports the theoretical findings. PMID:26904150

  9. Population Dynamics of Patients with Bacterial Resistance in Hospital Environment

    PubMed Central

    Qu, Leilei; Pan, Qiuhui; Gao, Xubin; He, Mingfeng

    2016-01-01

    During the past decades, the increase of antibiotic resistance has become a major concern worldwide. The researchers found that superbugs with new type of resistance genes (NDM-1) have two aspects of transmission characteristics; the first is that the antibiotic resistance genes can horizontally transfer among bacteria, and the other is that the superbugs can spread between humans through direct contact. Based on these two transmission mechanisms, we study the dynamics of population in hospital environment where superbugs exist. In this paper, we build three mathematic models to illustrate the dynamics of patients with bacterial resistance in hospital environment. The models are analyzed using stability theory of differential equations. Positive equilibrium points of the system are investigated and their stability analysis is carried out. Moreover, the numerical simulation of the proposed model is also performed which supports the theoretical findings. PMID:26904150

  10. Screening Rice Cultivars for Resistance to Bacterial Leaf Blight.

    PubMed

    Fred, Agaba Kayihura; Kiswara, Gilang; Yi, Gihwan; Kim, Kyung-Min

    2016-05-28

    Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most serious threats to rice production. In this study, screening of rice for resistance to BLB was carried out at two different times and locations; that is, in a greenhouse during winter and in an open field during summer. The pathogenicity of Xoo race K1 was tested on 32 Korean rice cultivars. Inoculation was conducted at the maximum tillering stage, and the lesion length was measured after 14 days of inoculation. Five cultivars, Hanareum, Namcheon, Samgdeok, Samgang, and Yangjo, were found to be resistant in both the greenhouse and open-field screenings. Expression of the plant defense-related genes JAmyb, OsNPR1, OsPR1a, OsWRKY45, and OsPR10b was observed in resistant and susceptible cultivars by qRT-PCR. Among the five genes tested, only OsPR10b showed coherent expression with the phenotypes. Screening of resistance to Xoo in rice was more accurate when conducted in open fields in the summer cultivation period than in greenhouses in winter. The expression of plant defenserelated genes after bacterial inoculation could give another perspective in elucidating defense mechanisms by using both resistant and susceptible individuals. PMID:26869604

  11. Antimicrobial Resistance and Bacterial Identification Utilizing a Microelectronic Chip Array

    PubMed Central

    Westin, Lorelei; Miller, Carolyn; Vollmer, Dana; Canter, David; Radtkey, Ray; Nerenberg, Michael; O'Connell, James P.

    2001-01-01

    Species-specific bacterial identification of clinical specimens is often limited to a few species due to the difficulty of performing multiplex reactions. In addition, discrimination of amplicons is time-consuming and laborious, consisting of gel electrophoresis, probe hybridization, or sequencing technology. In order to simplify the process of bacterial identification, we combined anchored in situ amplification on a microelectronic chip array with discrimination and detection on the same platform. Here, we describe the simultaneous amplification and discrimination of six gene sequences which are representative of different bacterial identification assays: Escherichia coli gyrA, Salmonella gyrA, Campylobacter gyrA, E. coli parC, Staphylococcus mecA, and Chlamydia cryptic plasmid. The assay can detect both plasmid and transposon genes and can also discriminate strains carrying antibiotic resistance single-nucleotide polymorphism mutations. Finally, the assay is similarly capable of discriminating between bacterial species through reporter-specific discrimination and allele-specific amplification. Anchored strand displacement amplification allows multiplex amplification and complex genotype discrimination on the same platform. This assay simplifies the bacterial identification process greatly, allowing molecular biology techniques to be performed with minimal processing of samples and practical experience. PMID:11230433

  12. Membrane permeabilization of colistin toward pan-drug resistant Gram-negative isolates.

    PubMed

    Mohamed, Yasmine Fathy; Abou-Shleib, Hamida Moustafa; Khalil, Amal Mohamed; El-Guink, Nadia Mohamed; El-Nakeeb, Moustafa Ahmed

    2016-01-01

    Pan-drug resistant Gram-negative bacteria, being resistant to most available antibiotics, represent a huge threat to the medical community. Colistin is considered the last therapeutic option for patients in hospital settings. Thus, we were concerned in this study to demonstrate the membrane permeabilizing activity of colistin focusing on investigating its efficiency toward those pan-drug resistant isolates which represent a critical situation. We determined the killing dynamics of colistin against pan-drug resistant isolates. The permeability alteration was confirmed by different techniques as: leakage, electron microscopy and construction of an artificial membrane model; liposomes. Moreover, selectivity of colistin against microbial cells was also elucidated. Colistin was proved to be rapid bactericidal against pan-drug resistant isolates. It interacts with the outer bacterial membrane leading to deformation of its outline, pore formation, leakage of internal contents, cell lysis and finally death. Furthermore, variations in membrane composition of eukaryotic and microbial cells provide a key for colistin selectivity toward bacterial cells. Colistin selectively alters membrane permeability of pan-drug resistant isolates which leads to cell lysis. Colistin was proved to be an efficient last line treatment for pan-drug resistant infections which are hard to treat. PMID:26991296

  13. Absence of bacterial resistance following repeat exposure to photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Pedigo, Lisa A.; Gibbs, Aaron J.; Scott, Robert J.; Street, Cale N.

    2009-06-01

    The prevalence of antibiotic resistant bacteria necessitates exploration of alternative approaches to treat hospital and community acquired infections. The aim of this study was to determine whether bacterial pathogens develop resistance to antimicrobial photodynamic therapy (aPDT) during repeated sub-lethal challenge. Antibiotic sensitive and resistant strains of S. aureus and antibiotic sensitive E. coli were subjected to repeat PDT treatments using a methylene blue photosensitizer formulation and 670 nm illumination from a non-thermal diode laser. Parameters were adjusted such that kills were <100% so that surviving colonies could be passaged for subsequent exposures. With each repeat, kills were compared to those using non-exposed cultures of the same strain. Oxacillin resistance was induced in S. aureus using a disc diffusion method. For each experiment, "virgin" and "repeat" cultures were exposed to methylene blue at 0.01% w/v and illuminated with an energy dose of 20.6 J/cm2. No significant difference in killing of E. coli (repeat vs. virgin culture) was observed through 11 repeat exposures. Similar results were seen using MSSA and MRSA, wherein kill rate did not significantly differ from control over 25 repeat exposures. In contrast, complete oxacillin resistance could be generated in S. aureus over a limited number of exposures. PDT is effective in the eradication of pathogens including antibiotic resistance strains. Furthermore, repeated sub-lethal exposure does not induce resistance to subsequent PDT treatments. The absence of resistance formation represents a significant advantage of PDT over traditional antibiotics.

  14. Bisphosphocins: novel antimicrobials for enhanced killing of drug-resistant and biofilm-forming bacteria.

    PubMed

    Wong, Jonathan P; DiTullio, Paul; Parkinson, Steve

    2015-01-01

    The global prevalence of antibiotic resistance and the threat posed by drug-resistant superbugs are a leading challenge confronting modern medicine in the 21st century. However, the progress on the development of novel antibiotics to combat this problem is severely lagging. A more concerted effort to develop novel therapeutic agents with robust activity and unique mechanisms of action will be needed to overcome the problem of drug resistance. Furthermore, biofilm forming bacteria are known to be increasingly resistant to the actions of antibiotics and are a leading cause of mortality or morbidity in nosocomial infections. Bisphosphocins (also scientifically known as nubiotics) are novel small protonated deoxynucleotide molecules, and exert their antibacterial activity by depolarization of the bacterial cell membrane, causing bacterial cell death. Bisphosphocins may represent an effective weapon against antibiotic-resistant and biofilm-forming pathogenic bacteria. Preclinical efficacy studies in animals have shown that the compounds are safe and, efficacious against various bacterial infections, including drug-resistant pathogens. In vitro biochemical analysis confirmed that the bactericidal activity of bisphosphocins is mediated by depolarization of the bacterial cell membrane, and these compounds are better able to penetrate through bacterial biofilm and kill the biofilm encased bacteria. This article will cover the structure, mode of action, safety, efficacy and the current state of development of bisphosphocins. Together, the information presented here will present a strong case for bisphosphocins to be considered for use as new weapons to complement the existing arsenal of antimicrobial drugs and as a first line defence against drug-resistant and biofilm-forming bacteria. PMID:26597426

  15. Challenges of drug-resistant malaria

    PubMed Central

    Sinha, Shweta; Medhi, Bikash; Sehgal, Rakesh

    2014-01-01

    Over the past six decades, the drug resistance of Plasmodium falciparum has become an issue of utmost concern. Despite the remarkable progress that has been made in recent years in reducing the mortality rate to about 30% with the scaling-up of vector control, introduction of artemisinin-based combination therapies and other malaria control strategies, the confirmation of artemisinin resistance on the Cambodia–Thailand border threatened all the previous success. This review addresses the global scenario of antimalarial resistance and factors associated with it, with the main emphasis on futuristic approaches like nanotechnology and stem cell therapy that may impede resistant malaria, along with novel medications which are preparing to enter the global antimalarial market. These novel studies are likely to escalate over the coming years and will hopefully help to reduce the burden of malaria. PMID:25402734

  16. Challenges of drug-resistant malaria.

    PubMed

    Sinha, Shweta; Medhi, Bikash; Sehgal, Rakesh

    2014-01-01

    Over the past six decades, the drug resistance of Plasmodium falciparum has become an issue of utmost concern. Despite the remarkable progress that has been made in recent years in reducing the mortality rate to about 30% with the scaling-up of vector control, introduction of artemisinin-based combination therapies and other malaria control strategies, the confirmation of artemisinin resistance on the Cambodia-Thailand border threatened all the previous success. This review addresses the global scenario of antimalarial resistance and factors associated with it, with the main emphasis on futuristic approaches like nanotechnology and stem cell therapy that may impede resistant malaria, along with novel medications which are preparing to enter the global antimalarial market. These novel studies are likely to escalate over the coming years and will hopefully help to reduce the burden of malaria. PMID:25402734

  17. The prevalence of bacterial resistance in clinical, food, water and some environmental samples in Southwest Nigeria.

    PubMed

    Lateef, A; Oloke, J K; Gueguimkana, E B

    2005-01-01

    The resistance pattern and mechanisms of bacterial isolates obtained from clinical origin, soil, industrial effluent, orange juice products and drinking water were studied using commonly used antibiotics. The microbial load of the water samples, industrial effluent and orange juice products were 1.0 x 10(1)-2.25 x 10(6), 2.15 x 10(5), and 3.5 x 10(4)-2.15 x 10(5) cfu mL(-1), respectively. The faecal coliform test revealed that only two out of twenty orange juice products had MPN of 2 and 20, the MPN of water ranged from 1-> or = 1800, while the effluent had MPN of > or = 1800. The bacterial isolates that were isolated include E. coli, S. aureus, P. vulgaris, S. marcescens, S. pyogenes, B. cereus, B. subtilis, Micrococcus sp., Klebsiella sp., P. aeruginosa, and Enterobacter sp. Also, clinical and soil isolates of P. aeruginosa were used in the study. Among the eight antibiotics tested for resistance on five strains of each bacterium, seven different resistance patterns were observed among the bacterial isolates obtained from water, effluent and orange juice products. Among the clinical and soil isolates of P. aeruginosa, four multiple-drug resistance patterns were obtained. Thirty strains of E. coli and S. aureus were tested for beta-lactamase production and fourteen strains, seven each of E. coli and S. aureus that had high Minimum Inhibitory Concentration values (MIC) for both Amoxycillin and Cloxacillin were positive. PMID:15727300

  18. Drug resistance in castration resistant prostate cancer: resistance mechanisms and emerging treatment strategies

    PubMed Central

    Armstrong, Cameron M; Gao, Allen C

    2015-01-01

    Several mechanisms facilitate the progression of hormone-sensitive prostate cancer to castration-resistant prostate cancer (CRPC). At present, the approved chemotherapies for CRPC include systemic drugs (docetaxel and cabazitaxel) and agents that target androgen signaling, including enzalutamide and abiraterone. While up to 30% of patients have primary resistance to these treatments, each of these drugs confers a significant survival benefit for many. Over time, however, all patients inevitably develop resistance to treatment and their disease will continue to progress. Several key mechanisms have been identified that give rise to drug resistance. Expression of constitutively active variants of the androgen receptor, such as AR-V7, intracrine androgens and overexpression of androgen synthesis enzymes like AKR1C3, and increased drug efflux through ABCB1 are just some of the many discovered mechanisms of drug resistance. Treatment strategies are being developed to target these pathways and reintroduce drug sensitivity. Niclosamide has been discovered to reduce AR-V7 activity and synergized to enzalutamide. Indomethacin has been explored to inhibit AKR1C3 activity and showed to be able to reverse resistance to enzalutamide. ABCB1 transport activity can be mitigated by the phytochemical apigenin and by antiandrogens such as bicalutamide, with each improving cellular response to chemotherapeutics. By better understanding the mechanisms by which drug resistance develops improved treatment strategies will be made possible. Herein, we review the existing knowledge of CRPC therapies and resistance mechanisms as well as methods that have been identified which may improve drug sensitivity. PMID:26309896

  19. Structural Studies of Bacterial Enzymes and their Relation to Antibiotic Resistance Mechanisms - Final Paper

    SciTech Connect

    Maltz, Lauren

    2015-08-27

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β- lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes

  20. Antifungal drug resistance of oral fungi.

    PubMed

    Niimi, Masakazu; Firth, Norman A; Cannon, Richard D

    2010-02-01

    Fungi comprise a minor component of the oral microbiota but give rise to oral disease in a significant proportion of the population. The most common form of oral fungal disease is oral candidiasis, which has a number of presentations. The mainstay for the treatment of oral candidiasis is the use of polyenes, such as nystatin and amphotericin B, and azoles including miconazole, fluconazole, and itraconazole. Resistance of fungi to polyenes is rare, but some Candida species, such as Candida glabrata and C. krusei, are innately less susceptible to azoles, and C. albicans can acquire azole resistance. The main mechanism of high-level fungal azole resistance, measured in vitro, is energy-dependent drug efflux. Most fungi in the oral cavity, however, are present in multispecies biofilms that typically demonstrate an antifungal resistance phenotype. This resistance is the result of multiple factors including the expression of efflux pumps in the fungal cell membrane, biofilm matrix permeability, and a stress response in the fungal cell. Removal of dental biofilms, or treatments to prevent biofilm development in combination with antifungal drugs, may enable better treatment and prevention of oral fungal disease. PMID:20155503

  1. Drug Resistant Fetal Arrhythmia in Obstetric Cholestasis

    PubMed Central

    Altug, Nahide; Kirbas, Ayse; Daglar, Korkut; Biberoglu, Ebru; Uygur, Dilek; Danisman, Nuri

    2015-01-01

    Obstetric cholestasis (OC) is a pregnancy specific liver disease characterized by increased levels of bile acid (BA) and pruritus. Raised maternal BA levels could be associated with intrauterine death, fetal distress, and preterm labor and also alter the rate and rhythm of cardiomyocyte contraction and may cause fetal arrhythmic events. We report a case of drug resistant fetal supraventricular tachycardia and concomitant OC. Conclusion. If there are maternal OC and concomitant fetal arrhythmia, possibility of the resistance to antiarrhythmic treatment should be kept in mind. PMID:25821617

  2. Detection of Multi-drug Resistant Acinetobacter Lwoffii Isolated from Soil of Mink Farm.

    PubMed

    Sun, Na; Wen, Yong Jun; Zhang, Shu Qin; Zhu, Hong Wei; Guo, Li; Wang, Feng Xue; Chen, Qiang; Ma, Hong Xia; Cheng, Shi Peng

    2016-07-01

    There were 4 Acinetobacter lwoffii obtained from soil samples. The antimicrobial susceptibility of the strains to 16 antimicrobial agents was investigated using K-B method. Three isolates showed the multi-drug resistance. The presence of resistance genes and integrons was determined using PCR. The aadA1, aac(3')-IIc, aph(3')-VII, aac(6')-Ib, sul2, cat2, floR, and tet(K) genes were detected, respectively. Three class 1 integrons were obtained. The arr-3-aacA4 and blaPSE-1 gene cassette, which cause resistance to aminoglycoside and beta-lactamase antibiotics. Our results reported the detection of multi-drug resistant and carried resistant genes Acinetobacter lwoffii from soil. The findings suggested that we should pay close attention to the prevalence of multi-drug resistant bacterial species of environment. PMID:27554122

  3. Bacterial cheating limits the evolution of antibiotic resistance

    NASA Astrophysics Data System (ADS)

    Chao, Hui Xiao; Datta, Manoshi; Yurtsev, Eugene; Gore, Jeff

    2011-03-01

    The widespread use of antibiotics has led to the evolution of resistance in bacteria. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removing the antibiotic. The cooperative nature of this growth suggests that a cheater strain--which does not contribute to breaking down the antibiotic--may be able to take advantage of cells cooperatively inactivating the antibiotic. Here we experimentally find that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We observe stable coexistence between the two strains and find that a simple model successfully explains the behavior as a function of antibiotic concentration and cell density. We anticipate that our results will provide insight into the evolutionary origin of phenotypic diversity and cooperative behaviors found in nature.

  4. An insight into the drug resistance profile & mechanism of drug resistance in Neisseria gonorrhoeae.

    PubMed

    Patel, Achchhe Lal; Chaudhry, Uma; Sachdev, Divya; Sachdeva, Poonam Nagpal; Bala, Manju; Saluja, Daman

    2011-10-01

    Among the aetiological agents of treatable sexually transmitted diseases (STDs), Neissseria gonorrhoeae is considered to be most important because of emerging antibiotic resistant strains that compromise the effectiveness of treatment of the disease - gonorrhoea. In most of the developing countries, treatment of gonorrhoea relies mainly on syndromic management rather than the aetiological based therapy. Gonococcal infections are usually treated with single-dose therapy with an agent found to cure > 95 per cent of cases. Unfortunately during the last few decades, N. gonorrhoeae has developed resistance not only to less expensive antimicrobials such as sulphonamides, penicillin and tetracyclines but also to fluoroquinolones. The resistance trend of N. gonorrhoeae towards these antimicrobials can be categorised into pre-quinolone, quinolone and post-quinolone era. Among the antimicrobials available so far, only the third-generation cephalosporins could be safely recommended as first-line therapy for gonorrhoea globally. However, resistance to oral third-generation cephalosporins has also started emerging in some countries. Therefore, it has become imperative to initiate sustained national and international efforts to reduce infection and misuse of antibiotics so as to prevent further emergence and spread of antimicrobial resistance. It is necessary not only to monitor drug resistance and optimise treatment regimens, but also to gain insight into how gonococcus develops drug resistance. Knowledge of mechanism of resistance would help us to devise methods to prevent the occurrence of drug resistance against existing and new drugs. Such studies could also help in finding out new drug targets in N. gonorrhoeae and also a possibility of identification of new drugs for treating gonorrhoea. PMID:22089602

  5. An insight into the drug resistance profile & mechanism of drug resistance in Neisseria gonorrhoeae

    PubMed Central

    Patel, Achchhe Lal; Chaudhry, Uma; Sachdev, Divya; Sachdeva, Poonam Nagpal; Bala, Manju; Saluja, Daman

    2011-01-01

    Among the aetiological agents of treatable sexually transmitted diseases (STDs), Neissseria gonorrhoeae is considered to be most important because of emerging antibiotic resistant strains that compromise the effectiveness of treatment of the disease - gonorrhoea. In most of the developing countries, treatment of gonorrhoea relies mainly on syndromic management rather than the aetiological based therapy. Gonococcal infections are usually treated with single-dose therapy with an agent found to cure > 95 per cent of cases. Unfortunately during the last few decades, N. gonorrhoeae has developed resistance not only to less expensive antimicrobials such as sulphonamides, penicillin and tetracyclines but also to fluoroquinolones. The resistance trend of N. gonorrhoeae towards these antimicrobials can be categorised into pre-quinolone, quinolone and post-quinolone era. Among the antimicrobials available so far, only the third-generation cephalosporins could be safely recommended as first-line therapy for gonorrhoea globally. However, resistance to oral third-generation cephalosporins has also started emerging in some countries. Therefore, it has become imperative to initiate sustained national and international efforts to reduce infection and misuse of antibiotics so as to prevent further emergence and spread of antimicrobial resistance. It is necessary not only to monitor drug resistance and optimise treatment regimens, but also to gain insight into how gonococcus develops drug resistance. Knowledge of mechanism of resistance would help us to devise methods to prevent the occurrence of drug resistance against existing and new drugs. Such studies could also help in finding out new drug targets in N. gonorrhoeae and also a possibility of identification of new drugs for treating gonorrhoea. PMID:22089602

  6. Clinical relevance of HCV antiviral drug resistance.

    PubMed

    Welsch, C; Zeuzem, S

    2012-10-01

    The approval of direct-acting antiviral agents (DAAs) against the hepatitis C virus (HCV) NS3 protease revolutionized antiviral therapy in chronic hepatitis C. They mark the beginning of an era with drugs designed to inhibit specific viral proteins involved in the virus life cycle rather than the nonspecific antiviral activity of interferon. Upcoming generations of antivirals are expected that lead to viral eradication in most patients who undergo treatment with hope held for years that HCV can be cured without interferon. Antiviral drug resistance plays a key role in DAA-treatment failure. Knowledge on molecular escape mechanisms of resistant variants, their time to wild-type reversal and potential persistence is of upmost importance to design treatment strategies for patients with previous DAA-treatment failure. PMID:23006585

  7. Current Perspectives on HIV-1 Antiretroviral Drug Resistance

    PubMed Central

    Iyidogan, Pinar; Anderson, Karen S.

    2014-01-01

    Current advancements in antiretroviral therapy (ART) have turned HIV-1 infection into a chronic and manageable disease. However, treatment is only effective until HIV-1 develops resistance against the administered drugs. The most recent antiretroviral drugs have become superior at delaying the evolution of acquired drug resistance. In this review, the viral fitness and its correlation to HIV-1 mutation rates and drug resistance are discussed while emphasizing the concept of lethal mutagenesis as an alternative therapy. The development of resistance to the different classes of approved drugs and the importance of monitoring antiretroviral drug resistance are also summarized briefly. PMID:25341668

  8. Nanobiotechnological Approaches Against Multidrug Resistant Bacterial Pathogens: An Update.

    PubMed

    Shaikh, Sibhghatulla; Shakil, Shazi; Abuzenadah, Adel M; Rizvi, Syed Mohd Danish; Roberts, Philip Michael; Mushtaq, Gohar; Kamal, Mohammad Amjad

    2015-01-01

    Multiple drug resistant bacteria remain the greatest challenge in public health care. Globally, infections produced by such resistant strains are on the rise. Recent advent of genetic tolerance to antibiotics in many pathogens such as multiple drug resistant Staphylococcus aureus is a matter of concern, prompting researchers and pharmaceutical companies to search for new molecules and unconventional antibacterial agents. Recent advances in nanotechnology offer new opportunities to develop formulations based on metallic nanoparticles with different shapes and sizes and variable antimicrobial properties. This article is an extensive literature review that covers the latest approaches in the development of new and unconventional antibacterial agents using nanobiotechnological approaches which will better equip scientists and clinicians to face the challenges in view of dwindling stocks of effective and potent antimicrobial agents and formulations. PMID:26419545

  9. Antibiotic discovery: combatting bacterial resistance in cells and in biofilm communities.

    PubMed

    Penesyan, Anahit; Gillings, Michael; Paulsen, Ian T

    2015-01-01

    Bacterial resistance is a rapidly escalating threat to public health as our arsenal of effective antibiotics dwindles. Therefore, there is an urgent need for new antibiotics. Drug discovery has historically focused on bacteria growing in planktonic cultures. Many antibiotics were originally developed to target individual bacterial cells, being assessed in vitro against microorganisms in a planktonic mode of life. However, towards the end of the 20th century it became clear that many bacteria live as complex communities called biofilms in their natural habitat, and this includes habitats within a human host. The biofilm mode of life provides advantages to microorganisms, such as enhanced resistance towards environmental stresses, including antibiotic challenge. The community level resistance provided by biofilms is distinct from resistance mechanisms that operate at a cellular level, and cannot be overlooked in the development of novel strategies to combat infectious diseases. The review compares mechanisms of antibiotic resistance at cellular and community levels in the light of past and present antibiotic discovery efforts. Future perspectives on novel strategies for treatment of biofilm-related infectious diseases are explored. PMID:25812150

  10. Anthelmintic closantel enhances bacterial killing of polymyxin B against multidrug-resistant Acinetobacter baumannii

    PubMed Central

    Tran, Thien B.; Cheah, Soon-Ee; Yu, Heidi H.; Bergen, Phillip J.; Nation, Roger L.; Creek, Darren J.; Purcell, Anthony; Forrest, Alan; Doi, Yohei; Song, Jiangning; Velkov, Tony; Li, Jian

    2015-01-01

    Polymyxins, an old class of antibiotics, are currently used as the last resort for the treatment of multidrug-resistant (MDR) Acinetobacter baumannii. However, recent pharmacokinetic and pharmacodynamic data indicate that monotherapy can lead to the development of resistance. Novel approaches are urgently needed to preserve and improve the efficacy of this last-line class of antibiotics. This study examined the antimicrobial activity of novel combination of polymyxin B with anthelmintic closantel against A. baumannii. Closantel monotherapy (16 mg/L) was ineffective against most tested A. baumannii isolates. However, closantel at 4–16 mg/L with a clinically achievable concentration of polymyxin B (2 mg/L) successfully inhibited the development of polymyxin resistance in polymyxin-susceptible isolates, and provided synergistic killing against polymyxin-resistant isolates (MIC ≥4 mg/L). Our findings suggest that the combination of polymyxin B with closantel could be potentially useful for the treatment of MDR, including polymyxin-resistant, A. baumannii infections. The re-positioning of non-antibiotic drugs to treat bacterial infections may significantly expedite discovery of new treatment options for bacterial ‘superbugs’. PMID:26669752

  11. QTLs for Resistance to Major Rice Diseases Exacerbated by Global Warming: Brown Spot, Bacterial Seedling Rot, and Bacterial Grain Rot.

    PubMed

    Mizobuchi, Ritsuko; Fukuoka, Shuichi; Tsushima, Seiya; Yano, Masahiro; Sato, Hiroyuki

    2016-12-01

    In rice (Oryza sativa L.), damage from diseases such as brown spot, caused by Bipolaris oryzae, and bacterial seedling rot and bacterial grain rot, caused by Burkholderia glumae, has increased under global warming because the optimal temperature ranges for growth of these pathogens are relatively high (around 30 °C). Therefore, the need for cultivars carrying genes for resistance to these diseases is increasing to ensure sustainable rice production. In contrast to the situation for other important rice diseases such as blast and bacterial blight, no genes for complete resistance to brown spot, bacterial seedling rot or bacterial grain rot have yet been discovered. Thus, rice breeders have to use partial resistance, which is largely influenced by environmental conditions. Recent progress in molecular genetics and improvement of evaluation methods for disease resistance have facilitated detection of quantitative trait loci (QTLs) associated with resistance. In this review, we summarize the results of worldwide screening for cultivars with resistance to brown spot, bacterial seedling rot and bacterial grain rot and we discuss the identification of QTLs conferring resistance to these diseases in order to provide useful information for rice breeding programs. PMID:27178300

  12. Overcoming drug resistance in multi-drug resistant cancers and microorganisms: a conceptual framework.

    PubMed

    Avner, Benjamin S; Fialho, Arsenio M; Chakrabarty, Ananda M

    2012-01-01

    Resistance development against multiple drugs is a common feature among many pathogens--including bacteria such as Pseudomonas aeruginosa, viruses, and parasites--and also among cancers. The reasons are two-fold. Most commonly-used rationally-designed small molecule drugs or monoclonal antibodies, as well as antibiotics, strongly inhibit a key single step in the growth and proliferation of the pathogen or cancer cells. The disease agents quickly change or switch off this single target, or activate the efflux mechanisms to pump out the drug, thereby becoming resistant to the drug. A second problem is the way drugs are designed. The pharmaceutical industry chooses to use, by high-throughput screening, compounds that are maximally inhibitory to the key single step in the growth of the pathogen or cancer, thereby promoting selective pressure. An ideal drug would be one that inhibits multiple steps in the disease progression pathways with less stringency in these steps. Low levels of inhibition at multiple steps provide cumulative strong inhibitory effect, but little incentives or ability on the part of the pathogen/cancer to develop resistance. Such intelligent drug design involving multiple less stringent inhibitory steps is beyond the scope of the drug industry and requires evolutionary wisdom commonly possessed by bacteria. This review surveys assessments of the current clinical situation with regard to drug resistance in P. aeruginosa, and examines tools currently employed to limit this trend. We then provide a conceptual framework in which we explore the similarities between multi-drug resistance in pathogens and in cancers. We summarize promising work on anti-cancer drugs derived from the evolutionary wisdom of bacteria such as P. aeruginosa, and how such strategies can be the basis for how to look for candidate protein/peptide antibiotic drugs from bioengineered bugs. Such multi-domain proteins, unlike diffusible antibiotics, are not diffusible because of their

  13. Emerging issues in gram-negative bacterial resistance: an update for the practicing clinician.

    PubMed

    Vasoo, Shawn; Barreto, Jason N; Tosh, Pritish K

    2015-03-01

    The rapid and global spread of antimicrobial-resistant organisms in recent years has been unprecedented. Although resistant gram-positive infections have been concerning to clinicians, the increasing incidence of antibiotic-resistant gram-negative infections has become the most pressing issue in bacterial resistance. Indiscriminate antimicrobial use in humans and animals coupled with increased global connectivity facilitated the transmission of gram-negative infections harboring extended-spectrum β-lactamases in the 1990s. Carbapenemase-producing Enterobacteriaceae, such as those containing Klebsiella pneumoniae carbapenemases and New Delhi metallo-β-lactamases, have been the latest scourge since the late 1990s to 2000s. Besides β-lactam resistance, these gram-negative infections are often resistant to multiple drug classes, including fluoroquinolones, which are commonly used to treat community-onset infections. In certain geographic locales, these pathogens, which have been typically associated with health care-associated infections, are disseminating into the community, posing a significant dilemma for clinicians treating community-onset infections. In this Concise Review, we summarize emerging trends in antimicrobial resistance. We also review the current knowledge on the detection, treatment, and prevention of infection with these organisms, with a focus on the carbapenemase-producing gram-negative bacilli. Finally, we discuss emerging therapies and areas that need further research and effort to stem the spread of antimicrobial resistance. PMID:25744116

  14. Alkylaminoquinolines inhibit the bacterial antibiotic efflux pump in multidrug-resistant clinical isolates.

    PubMed Central

    Malléa, Monique; Mahamoud, Abdallah; Chevalier, Jacqueline; Alibert-Franco, Sandrine; Brouant, Pierre; Barbe, Jacques; Pagès, Jean-Marie

    2003-01-01

    Over the last decade, MDR (multidrug resistance) has increased worldwide in microbial pathogens by efflux mechanisms, leading to treatment failures in human infections. Several Gram-negative bacteria efflux pumps have been described. These proteinaceous channels are capable of expelling structurally different drugs across the envelope and conferring antibiotic resistance in various bacterial pathogens. Combating antibiotic resistance is an urgency and the blocking of efflux pumps is an attractive response to the emergence of MDR phenotypes in infectious bacteria. In the present study, various alkylaminoquinolines were tested as potential inhibitors of drug transporters. We showed that alkylaminoquinolines are capable of restoring susceptibilities to structurally unrelated antibiotics in clinical isolates of MDR Gram-negative bacteria. Antibiotic efflux studies indicated that 7-nitro-8-methyl-4-[2'-(piperidino)ethyl]aminoquinoline acts as an inhibitor of the AcrAB-TolC efflux pump and restores a high level of intracellular drug concentration. Inhibitory activity of this alkylaminoquinoline is observed on clinical isolates showing different resistance phenotypes. PMID:12959639

  15. Protoplast dehydration correlated with heat resistance of bacterial spores.

    PubMed Central

    Nakashio, S; Gerhardt, P

    1985-01-01

    Water content of the protoplast in situ within the fully hydrated dormant bacterial spore was quantified by use of a spore in which the complex of coat and outer (pericortex) membrane was genetically defective or chemically removed, as evidenced by susceptibility of the cortex to lysozyme and by permeability of the periprotoplast integument to glucose. Water content was determined by equilibrium permeability measurement with 3H-labeled water (confirmed by gravimetric measurement) for the entire spore, with 14C-labeled glucose for the integument outside the inner (pericytoplasm) membrane, and by the difference for the protoplast. The method was applied to lysozyme-sensitive spores of Bacillus stearothermophilus, B. subtilis, B. cereus, B. thuringiensis, and B. megaterium (four types). Comparable lysozyme-resistant spores, in which the outer membrane functioned as the primary permeability barrier to glucose, were employed as controls. Heat resistances were expressed as D100 values. Protoplast water content of the lysozyme-sensitive spore types correlated with heat resistance exponentially in two distinct clusters, with the four B. megaterium types in one alignment, and with the four other species types in another. Protoplast water contents of the B. megaterium spore types were sufficiently low (26 to 29%, based on wet protoplast weight) to account almost entirely for their lesser heat resistance. Corresponding values of the other species types were similar or higher (30 to 55%), indicating that these spores depended on factors additional to protoplast dehydration for their much greater heat resistance. PMID:3988704

  16. Evaluation of Glyphosate-Resistant Soybean Cultivars for Resistance to Bacterial Pustule

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Xanthomonas axonopodis pv. glycines causes bacterial pustule of soybean, which is a common disease in many soybean-growing areas of the world and is controlled by a single recessive gene that was commonly found in many conventional glyphosate-sensitive soybean cultivars. Since glyphosate-resistant c...

  17. How to Measure Export via Bacterial Multidrug Resistance Efflux Pumps.

    PubMed

    Blair, Jessica M A; Piddock, Laura J V

    2016-01-01

    Bacterial multidrug resistance (MDR) efflux pumps are an important mechanism of antibiotic resistance and are required for many pathogens to cause infection. They are also being harnessed to improve microbial biotechnological processes, including biofuel production. Therefore, scientists of many specialties must be able to accurately measure efflux activity. However, myriad methodologies have been described and the most appropriate method is not always clear. Within the scientific literature, many methods are misused or data arising are misinterpreted. The methods for measuring efflux activity can be split into two groups, (i) those that directly measure efflux and (ii) those that measure the intracellular accumulation of a substrate, which is then used to infer efflux activity. Here, we review the methods for measuring efflux and explore the most recent advances in this field, including single-cell or cell-free technologies and mass spectrometry, that are being used to provide more detailed information about efflux pump activity. PMID:27381291

  18. How to Measure Export via Bacterial Multidrug Resistance Efflux Pumps

    PubMed Central

    Blair, Jessica M. A.

    2016-01-01

    ABSTRACT Bacterial multidrug resistance (MDR) efflux pumps are an important mechanism of antibiotic resistance and are required for many pathogens to cause infection. They are also being harnessed to improve microbial biotechnological processes, including biofuel production. Therefore, scientists of many specialties must be able to accurately measure efflux activity. However, myriad methodologies have been described and the most appropriate method is not always clear. Within the scientific literature, many methods are misused or data arising are misinterpreted. The methods for measuring efflux activity can be split into two groups, (i) those that directly measure efflux and (ii) those that measure the intracellular accumulation of a substrate, which is then used to infer efflux activity. Here, we review the methods for measuring efflux and explore the most recent advances in this field, including single-cell or cell-free technologies and mass spectrometry, that are being used to provide more detailed information about efflux pump activity. PMID:27381291

  19. Exploiting Nanotechnology to Overcome Tumor Drug Resistance: Challenges and Opportunities

    PubMed Central

    Kirtane, Ameya; Kalscheuer, Stephen; Panyam, Jayanth

    2013-01-01

    Tumor cells develop resistance to chemotherapeutic drugs through multiple mechanisms. Overexpression of efflux transporters is an important source of drug resistance. Efflux transporters such as P-glycoprotein reduce intracellular drug accumulation and compromise drug efficacy. Various nanoparticle-based approaches have been investigated to overcome efflux-mediated resistance. These include the use of formulation excipients that inhibit transporter activity and co-delivery of the anticancer drug with a specific inhibitor of transporter function or expression. However, the effectiveness of nanoparticles can be diminished by poor transport in the tumor tissue. Hence, adjunct therapies that improve the intratumoral distribution of nanoparticles may be vital to the successful application of nanotechnology to overcome tumor drug resistance. This review discusses the mechanisms of tumor drug resistance and highlights the opportunities and challenges in the use of nanoparticles to improve the efficacy of anticancer drugs against resistant tumors. PMID:24036273

  20. Sterilization Resistance of Bacterial Spores Explained with Water Chemistry.

    PubMed

    Friedline, Anthony W; Zachariah, Malcolm M; Middaugh, Amy N; Garimella, Ravindranath; Vaishampayan, Parag A; Rice, Charles V

    2015-11-01

    Bacterial spores can survive for long periods without nutrients and in harsh environmental conditions. This survival is influenced by the structure of the spore, the presence of protective compounds, and water retention. These compounds, and the physical state of water in particular, allow some species of bacterial spores to survive sterilization schemes with hydrogen peroxide and UV light. The chemical nature of the spore core and its water has been a subject of some contention and the chemical environment of the water impacts resistance paradigms. Either the spore has a glassy core, where water is immobilized along with other core components, or the core is gel-like with mobile water diffusion. These properties affect the movement of peroxide and radical species, and hence resistance. Deuterium solid-state NMR experiments are useful for examining the nature of the water inside the spore. Previous work in our lab with spores of Bacillus subtilis indicate that, for spores, the core water is in a more immobilized state than expected for the gel-like core theory, suggesting a glassy core environment. Here, we report deuterium solid-state NMR observations of the water within UV- and peroxide-resistant spores from Bacillus pumilus SAFR-032. Variable-temperature NMR experiments indicate no change in the line shape after heating to 50 °C, but an overall decrease in signal after heating to 100 °C. These results show glass-like core dynamics within B. pumilus SAFR-032 that may be the potential source of its known UV-resistance properties. The observed NMR traits can be attributed to the presence of an exosporium containing additional labile deuterons that can aid in the deactivation of sterilizing agents. PMID:26435315

  1. Aberrant splicing and drug resistance in AML.

    PubMed

    de Necochea-Campion, Rosalia; Shouse, Geoffrey P; Zhou, Qi; Mirshahidi, Saied; Chen, Chien-Shing

    2016-01-01

    The advent of next-generation sequencing technologies has unveiled a new window into the heterogeneity of acute myeloid leukemia (AML). In particular, recurrent mutations in spliceosome machinery and genome-wide aberrant splicing events have been recognized as a prominent component of this disease. This review will focus on how these factors influence drug resistance through altered splicing of tumor suppressor and oncogenes and dysregulation of the apoptotic signaling network. A better understanding of these factors in disease progression is necessary to design appropriate therapeutic strategies recognizing specific alternatively spliced or mutated oncogenic targets. PMID:27613060

  2. A Locked Nucleic Acid (LNA)-Based Real-Time PCR Assay for the Rapid Detection of Multiple Bacterial Antibiotic Resistance Genes Directly from Positive Blood Culture

    PubMed Central

    Zhu, Lingxiang; Shen, Dingxia; Zhou, Qiming; Li, Zexia; Fang, Xiangdong; Li, Quan-Zhen

    2015-01-01

    Bacterial strains resistant to various antibiotic drugs are frequently encountered in clinical infections, and the rapid identification of drug-resistant strains is highly essential for clinical treatment. We developed a locked nucleic acid (LNA)-based quantitative real-time PCR (LNA-qPCR) method for the rapid detection of 13 antibiotic resistance genes and successfully used it to distinguish drug-resistant bacterial strains from positive blood culture samples. A sequence-specific primer-probe set was designed, and the specificity of the assays was assessed using 27 ATCC bacterial strains and 77 negative blood culture samples. No cross-reaction was identified among bacterial strains and in negative samples, indicating 100% specificity. The sensitivity of the assays was determined by spiking each bacterial strain into negative blood samples, and the detection limit was 1–10 colony forming units (CFU) per reaction. The LNA-qPCR assays were first applied to 72 clinical bacterial isolates for the identification of known drug resistance genes, and the results were verified by the direct sequencing of PCR products. Finally, the LNA-qPCR assays were used for the detection in 47 positive blood culture samples, 19 of which (40.4%) were positive for antibiotic resistance genes, showing 91.5% consistency with phenotypic susceptibility results. In conclusion, LNA-qPCR is a reliable method for the rapid detection of bacterial antibiotic resistance genes and can be used as a supplement to phenotypic susceptibility testing for the early detection of antimicrobial resistance to allow the selection of appropriate antimicrobial treatment and to prevent the spread of resistant isolates. PMID:25775001

  3. [Serious bacterial and fungal infections in intravenous drug addicts].

    PubMed

    Jensenius, M; Heger, B; Dalgard, O; Stiris, M; Ringertz, S H

    1999-05-10

    Invasive infections caused by bacteria and fungi are common complications of intravenous drug abuse. Various vital organs and structures may be affected, e.g. the cardiac valves, the larger arteries, the bones, the joints and the central nervous system. However, due to the high frequency of low-virulent microbes of skin and oral origin, the clinical picture may be atypical with subacute course and few focal signs and symptoms. The complexity of this problem is illustrated by eight cases of serious bacterial and fungal infections recently diagnosed at our hospitals. All patients were HIV negative intravenous heroin addicts. The clinical spectrum was wide and included skin abscesses, pyomyositis, spondylodiscitis, septic arthritis, costal osteomyelitis, infective endocarditis, recurrent bacteraemia, and multiple brain abscesses. PMID:10380592

  4. Emergence of antibiotic resistance from multinucleated bacterial filaments

    PubMed Central

    Bos, Julia; Zhang, Qiucen; Vyawahare, Saurabh; Rogers, Elizabeth; Rosenberg, Susan M.; Austin, Robert H.

    2015-01-01

    Bacteria can rapidly evolve resistance to antibiotics via the SOS response, a state of high-activity DNA repair and mutagenesis. We explore here the first steps of this evolution in the bacterium Escherichia coli. Induction of the SOS response by the genotoxic antibiotic ciprofloxacin changes the E. coli rod shape into multichromosome-containing filaments. We show that at subminimal inhibitory concentrations of ciprofloxacin the bacterial filament divides asymmetrically repeatedly at the tip. Chromosome-containing buds are made that, if resistant, propagate nonfilamenting progeny with enhanced resistance to ciprofloxacin as the parent filament dies. We propose that the multinucleated filament creates an environmental niche where evolution can proceed via generation of improved mutant chromosomes due to the mutagenic SOS response and possible recombination of the new alleles between chromosomes. Our data provide a better understanding of the processes underlying the origin of resistance at the single-cell level and suggest an analogous role to the eukaryotic aneuploidy condition in cancer. PMID:25492931

  5. Adaptive and Mutational Resistance: Role of Porins and Efflux Pumps in Drug Resistance

    PubMed Central

    Fernández, Lucía

    2012-01-01

    Summary: The substantial use of antibiotics in the clinic, combined with a dearth of new antibiotic classes, has led to a gradual increase in the resistance of bacterial pathogens to these compounds. Among the various mechanisms by which bacteria endure the action of antibiotics, those affecting influx and efflux are of particular importance, as they limit the interaction of the drug with its intracellular targets and, consequently, its deleterious effects on the cell. This review evaluates the impact of porins and efflux pumps on two major types of resistance, namely, mutational and adaptive types of resistance, both of which are regarded as key phenomena in the global rise of antibiotic resistance among pathogenic microorganisms. In particular, we explain how adaptive and mutational events can dramatically influence the outcome of antibiotic therapy by altering the mechanisms of influx and efflux of antibiotics. The identification of porins and pumps as major resistance markers has opened new possibilities for the development of novel therapeutic strategies directed specifically against these mechanisms. PMID:23034325

  6. Lysosomes as mediators of drug resistance in cancer.

    PubMed

    Zhitomirsky, Benny; Assaraf, Yehuda G

    2016-01-01

    Drug resistance remains a leading cause of chemotherapeutic treatment failure and cancer-related mortality. While some mechanisms of anticancer drug resistance have been well characterized, multiple mechanisms remain elusive. In this respect, passive ion trapping-based lysosomal sequestration of multiple hydrophobic weak-base chemotherapeutic agents was found to reduce the accessibility of these drugs to their target sites, resulting in a markedly reduced cytotoxic effect and drug resistance. Recently we have demonstrated that lysosomal sequestration of hydrophobic weak base drugs triggers TFEB-mediated lysosomal biogenesis resulting in an enlarged lysosomal compartment, capable of enhanced drug sequestration. This study further showed that cancer cells with an increased number of drug-accumulating lysosomes are more resistant to lysosome-sequestered drugs, suggesting a model of drug-induced lysosome-mediated chemoresistance. In addition to passive drug sequestration of hydrophobic weak base chemotherapeutics, other mechanisms of lysosome-mediated drug resistance have also been reported; these include active lysosomal drug sequestration mediated by ATP-driven transporters from the ABC superfamily, and a role for lysosomal copper transporters in cancer resistance to platinum-based chemotherapeutics. Furthermore, lysosomal exocytosis was suggested as a mechanism to facilitate the clearance of chemotherapeutics which highly accumulated in lysosomes, thus providing an additional line of resistance, supplementing the organelle entrapment of chemotherapeutics away from their target sites. Along with these mechanisms of lysosome-mediated drug resistance, several approaches were recently developed for the overcoming of drug resistance or exploiting lysosomal drug sequestration, including lysosomal photodestruction and drug-induced lysosomal membrane permeabilization. In this review we explore the current literature addressing the role of lysosomes in mediating cancer drug

  7. Identification of drug-resistant subpopulations in canine hemangiosarcoma.

    PubMed

    Khammanivong, A; Gorden, B H; Frantz, A M; Graef, A J; Dickerson, E B

    2016-09-01

    Canine hemangiosarcoma is a rapidly progressive disease that is poorly responsive to conventional chemotherapy. Despite numerous attempts to advance treatment options and improve outcomes, drug resistance remains a hurdle to successful therapy. To address this problem, we used recently characterized progenitor cell populations derived from canine hemangiosarcoma cell lines and grown as non-adherent spheres to identify potential drug resistance mechanisms as well as drug-resistant cell populations. Cells from sphere-forming cultures displayed enhanced resistance to chemotherapy drugs, expansion of dye-excluding side populations and altered ATP-binding cassette (ABC) transporter expression. Invasion studies demonstrated variability between cell lines as well as between sphere and monolayer cell populations. Collectively, our results suggest that sphere cell populations contain distinct subpopulations of drug-resistant cells that utilize multiple mechanisms to evade cytotoxic drugs. Our approach represents a new tool for the study of drug resistance in hemangiosarcoma, which could alter approaches for treating this disease. PMID:25112808

  8. In vitro antibacterial potential of Eugenia jambolana seed extracts against multidrug-resistant human bacterial pathogens.

    PubMed

    Bag, Anwesa; Bhattacharyya, Subir Kumar; Pal, Nishith Kumar; Chattopadhyay, Rabi Ranjan

    2012-06-20

    The present study was carried out to evaluate the possible in vitro antibacterial potential of extracts of Eugenia jambolana seeds against multidrug-resistant human bacterial pathogens. Agar well diffusion and microbroth dilution assay methods were used for antibacterial susceptibility testing. Kill-kinetics study was done to know the rate and extent of bacterial killing. Phytochemical analysis and TLC-bioautography were performed by colour tests to characterize the putative compounds responsible for this antibacterial activity. Cytotoxic potential was evaluated on human erythrocytes by haemolytic assay method and acute oral toxicity study was done in mice. The plant extracts demonstrated varying degrees of strain specific antibacterial activity against all the test isolates. Further, ethyl acetate fraction obtained from fractionation of most active ethanol extract showed maximum antibacterial effect against all the test isolates. Phytochemical analysis and TLC-bioautography of ethyl acetate fraction revealed that phenolics were the major active phytoconstituents. Ethyl acetate fraction also demonstrated no haemolytic activity on human erythrocytes and no gross behavioural changes as well as toxic symptoms were observed in mice at recommended dosage level. The results provide justification for the use of E. jambolana in folk medicine to treat various infectious diseases and may contribute to the development of novel antimicrobial agents for the treatment of infections caused by these drug-resistant bacterial pathogens. PMID:22444436

  9. Comprehensive Treatment of Extensively Drug-Resistant Tuberculosis

    PubMed Central

    Mitnick, Carole D.; Shin, Sonya S.; Seung, Kwonjune J.; Rich, Michael L.; Atwood, Sidney S.; Furin, Jennifer J.; Fitzmaurice, Garrett M.; Alcantara Viru, Felix A.; Appleton, Sasha C.; Bayona, Jaime N.; Bonilla, Cesar A.; Chalco, Katiuska; Choi, Sharon; Franke, Molly F.; Fraser, Hamish S.F.; Guerra, Dalia; Hurtado, Rocio M.; Jazayeri, Darius; Joseph, Keith; Llaro, Karim; Mestanza, Lorena; Mukherjee, Joia S.; Muñoz, Maribel; Palacios, Eda; Sanchez, Epifanio; Sloutsky, Alexander; Becerra, Mercedes C.

    2009-01-01

    BACKGROUND Extensively drug-resistant tuberculosis has been reported in 45 countries, including countries with limited resources and a high burden of tuberculosis. We describe the management of extensively drug-resistant tuberculosis and treatment outcomes among patients who were referred for individualized outpatient therapy in Peru. METHODS A total of 810 patients were referred for free individualized therapy, including drug treatment, resective surgery, adverse-event management, and nutritional and psychosocial support. We tested isolates from 651 patients for extensively drug-resistant tuberculosis and developed regimens that included five or more drugs to which the infecting isolate was not resistant. RESULTS Of the 651 patients tested, 48 (7.4%) had extensively drug-resistant tuberculosis; the remaining 603 patients had multidrug-resistant tuberculosis. The patients with extensively drug-resistant tuberculosis had undergone more treatment than the other patients (mean [±SD] number of regimens, 4.2±1.9 vs. 3.2±1.6; P<0.001) and had isolates that were resistant to more drugs (number of drugs, 8.4±1.1 vs. 5.3±1.5; P<0.001). None of the patients with extensively drug-resistant tuberculosis were coinfected with the human immunodeficiency virus (HIV). Patients with extensively drug-resistant tuberculosis received daily, supervised therapy with an average of 5.3±1.3 drugs, including cycloserine, an injectable drug, and a fluoroquinolone. Twenty-nine of these patients (60.4%) completed treatment or were cured, as compared with 400 patients (66.3%) with multidrug-resistant tuberculosis (P=0.36). CONCLUSIONS Extensively drug-resistant tuberculosis can be cured in HIV-negative patients through outpatient treatment, even in those who have received multiple prior courses of therapy for tuberculosis. PMID:18687637

  10. Young Women's Experiences of Resisting Invitations to Use Illicit Drugs

    ERIC Educational Resources Information Center

    Koehn, Corinne V.; O'Neill, Linda K.

    2011-01-01

    Ten young women were interviewed regarding their experiences of resisting invitations to use illicit drugs. Hermeneutic phenomenology was used to gather and analyze information. One key theme was the motivations that inspired women to refuse drug offers. Young women resisted drug invitations because of their desires to be authentic, protect their…

  11. Evaluation of Idaho's DARE "Drug Abuse Resistance Education Projects."

    ERIC Educational Resources Information Center

    Silva, Roberta K.

    The goal of DARE (Drug Abuse Resistance Education) is not to completely eliminate the drug and alcohol problems of society. It is a proactive prevention program designed to equip youth (focusing on elementary school) with skills for resisting peer pressure to experiment with drugs, and to manage anger without resorting to violence or the use of…

  12. Rural Adolescent Perceptions of Alcohol and Other Drug Resistance.

    ERIC Educational Resources Information Center

    Jenkins, Jeanne E.

    2001-01-01

    Used questionnaires and focus groups to examine 361 rural high schoolers' perceptions of drug resistance difficulties when offered beer, marijuana, and hard drugs. Found that drug nonusers had the widest range of explanations for resistance difficulty. Peer pressure was cited most frequently by nonusers, and seldom by heavy users. Frequent users…

  13. Evaluation of Idaho's DARE "Drug Abuse Resistance Education" Projects.

    ERIC Educational Resources Information Center

    Silva, Roberta K.

    The DARE (Drug Abuse Resistance Education) program teaches students decision-making skills, shows them how to resist peer pressure to experiment with drugs and alcohol, and provides positive alternatives to drug use. This report looks at one state's DARE programs. Included are an overview of the implementation process, a program appraisal with…

  14. Re-sensitizing drug-resistant bacteria to antibiotics by designing Antisense Therapeutics

    NASA Astrophysics Data System (ADS)

    Courtney, Colleen; Chatterjee, Anushree

    2014-03-01

    ``Super-bugs'' or ``multi-drug resistant organisms'' are a serious international health problem, with devastating consequences to patient health care. The Center for Disease Control has identified antibiotic resistance as one of the world's most pressing public health problems as a significant fraction of bacterial infections contracted are drug resistant. Typically, antibiotic resistance is encoded by ``resistance-genes'' which express proteins that carryout the resistance causing functions inside the bacterium. We present a RNA based therapeutic strategy for designing antimicrobials capable of re-sensitizing resistant bacteria to antibiotics by targeting labile regions of messenger RNAs encoding for resistance-causing proteins. We perform in silico RNA secondary structure modeling to identify labile target regions in an mRNA of interest. A synthetic biology approach is then used to administer antisense nucleic acids to our model system of ampicillin resistant Escherichia coli. Our results show a prolonged lag phase and decrease in viability of drug-resistant E. colitreated with antisense molecules. The antisense strategy can be applied to alter expression of other genes in antibiotic resistance pathways or other pathways of interest.

  15. Antibiotic therapeutic options for infections caused by drug-resistant Gram-positive cocci.

    PubMed

    Banwan, K; Senok, A C; Rotimi, V O

    2009-01-01

    Serious infections caused by Gram-positive bacteria are currently difficult to treat because many of these pathogens are now resistant to standard antimicrobial agents. As a result of the emergence and spread of multidrug-resistant Gram-positive pathogens, new antimicrobial agents are urgently needed for clinical use. In recent years, there has been an increase in the number of drugs that have activity against these Gram-positive pathogens. Daptomycin, tigecycline, linezolid, quinupristin/dalfopristin and dalbavancin are five antimicrobial agents that are useful for the treatment of infections due to drug-resistant Gram-positive cocci. This review focuses on their mechanism of action, pharmacokinetics, spectrum of activity, clinical effectiveness, drug interaction and safety. These antimicrobial agents provide the clinician with additional treatment options among the limited therapies for resistant Gram-positive bacterial infection. PMID:20701863

  16. Effect of bacterial growth stage on resistance to chlorine disinfection.

    PubMed

    Cherchi, C; Gu, A Z

    2011-01-01

    The mechanisms and factors that affect microbial resistance to chlorine disinfection have not been fully elucidated. In this study, we investigated the impact of the cell growth stage on chlorine disinfection efficiency. Specifically, we evaluated the impact of the growth stage on chlorination resistance by comparing the inactivation efficiencies of two indicator bacterial strains (Escherichia coli K12 and Escherichia coli O157:H7) obtained from various growth phases, using Chick-Watson kinetic parameters. For both E. coli strains (K12 and O157:H7), the inactivation rate constants are the lowest at stationary phase (0.19 and 0.32) compared to those at initial lag (0.54 and 0.76) and exponential growth phase (0.63 and 0.69), respectively. These results suggested that the abundance of resistant subpopulations increases at stressed stationary conditions and E. coli cells obtained from the stationary growth phase exhibited more resistance and lower inactivation efficiency compared to those from the lag and exponential phases. This implies that microbes in wastewater treatment process with varying solids retention times (SRTs, which indicate growth rates) may show different extents of chlorine resistance. Comparison of the coefficient of dilution (n) values in both E. coli strains for the various growth phases suggest that cells seem to be more sensitive to disinfectant concentration at the stationary-lag phase than that at the exponential stage. Comparing the two E. coli strains, higher inactivation rates were observed for the pathogenic O157:H7 than for K12 at different stages of growth. The strain-to-strain variability in survivability to chlorine exposure has to be considered when selecting indicator microorganisms for water quality monitoring. PMID:22053451

  17. Cytokines in cancer drug resistance: Cues to new therapeutic strategies.

    PubMed

    Jones, Valerie Sloane; Huang, Ren-Yu; Chen, Li-Pai; Chen, Zhe-Sheng; Fu, Liwu; Huang, Ruo-Pan

    2016-04-01

    The development of oncoprotein-targeted anticancer drugs is an invaluable weapon in the war against cancer. However, cancers do not give up without a fight. They may develop multiple mechanisms of drug resistance, including apoptosis inhibition, drug expulsion, and increased proliferation that reduce the effectiveness of the drug. The collective work of researchers has highlighted the role of cytokines in the mechanisms of cancer drug resistance, as well as in cancer cell progression. Furthermore, recent studies have described how specific cytokines secreted by cancer stromal cells confer resistance to chemotherapeutic treatments. In order to gain a better understanding of mechanism of cancer drug resistance and a prediction of treatment outcome, it is imperative that correlations are established between global cytokine profiles and cancer drug resistance. Here we discuss the recent discoveries in this field of research and discuss their implications for the future development of effective anti-cancer medicines. PMID:26993403

  18. Structure and function of efflux pumps that confer resistance to drugs.

    PubMed Central

    Borges-Walmsley, M Ines; McKeegan, Kenneth S; Walmsley, Adrian R

    2003-01-01

    Resistance to therapeutic drugs encompasses a diverse range of biological systems, which all have a human impact. From the relative simplicity of bacterial cells, fungi and protozoa to the complexity of human cancer cells, resistance has become problematic. Stated in its simplest terms, drug resistance decreases the chance of providing successful treatment against a plethora of diseases. Worryingly, it is a problem that is increasing, and consequently there is a pressing need to develop new and effective classes of drugs. This has provided a powerful stimulus in promoting research on drug resistance and, ultimately, it is hoped that this research will provide novel approaches that will allow the deliberate circumvention of well understood resistance mechanisms. A major mechanism of resistance in both microbes and cancer cells is the membrane protein-catalysed extrusion of drugs from the cell. Resistant cells exploit proton-driven antiporters and/or ATP-driven ABC (ATP-binding cassette) transporters to extrude cytotoxic drugs that usually enter the cell by passive diffusion. Although some of these drug efflux pumps transport specific substrates, many are transporters of multiple substrates. These multidrug pumps can often transport a variety of structurally unrelated hydrophobic compounds, ranging from dyes to lipids. If we are to nullify the effects of efflux-mediated drug resistance, we must first of all understand how these efflux pumps can accommodate a diverse range of compounds and, secondly, how conformational changes in these proteins are coupled to substrate translocation. These are key questions that must be addressed. In this review we report on the advances that have been made in understanding the structure and function of drug efflux pumps. PMID:13678421

  19. Resistance to ketolide antibiotics by coordinated expression of rRNA methyltransferases in a bacterial producer of natural ketolides

    PubMed Central

    Almutairi, Mashal M.; Park, Sung Ryeol; Rose, Simon; Hansen, Douglas A.; Vázquez-Laslop, Nora; Douthwaite, Stephen; Sherman, David H.; Mankin, Alexander S.

    2015-01-01

    Ketolides are promising new antimicrobials effective against a broad range of Gram-positive pathogens, in part because of the low propensity of these drugs to trigger the expression of resistance genes. A natural ketolide pikromycin and a related compound methymycin are produced by Streptomyces venezuelae strain ATCC 15439. The producer avoids the inhibitory effects of its own antibiotics by expressing two paralogous rRNA methylase genes pikR1 and pikR2 with seemingly redundant functions. We show here that the PikR1 and PikR2 enzymes mono- and dimethylate, respectively, the N6 amino group in 23S rRNA nucleotide A2058. PikR1 monomethylase is constitutively expressed; it confers low resistance at low fitness cost and is required for ketolide-induced activation of pikR2 to attain high-level resistance. The regulatory mechanism controlling pikR2 expression has been evolutionary optimized for preferential activation by ketolide antibiotics. The resistance genes and the induction mechanism remain fully functional when transferred to heterologous bacterial hosts. The anticipated wide use of ketolide antibiotics could promote horizontal transfer of these highly efficient resistance genes to pathogens. Taken together, these findings emphasized the need for surveillance of pikR1/pikR2-based bacterial resistance and the preemptive development of drugs that can remain effective against the ketolide-specific resistance mechanism. PMID:26438831

  20. Stop the Spread of Superbugs: Help Fight Drug Resistant Bacteria

    MedlinePlus

    ... the Spread of Superbugs Help Fight Drug-Resistant Bacteria For nearly a century, bacteria-fighting drugs known as antibiotics have helped to control and destroy many of the harmful bacteria that can make us sick. But in recent ...

  1. Nanomedicine therapeutic approaches to overcome cancer drug resistance.

    PubMed

    Markman, Janet L; Rekechenetskiy, Arthur; Holler, Eggehard; Ljubimova, Julia Y

    2013-11-01

    Nanomedicine is an emerging form of therapy that focuses on alternative drug delivery and improvement of the treatment efficacy while reducing detrimental side effects to normal tissues. Cancer drug resistance is a complicated process that involves multiple mechanisms. Here we discuss the major forms of drug resistance and the new possibilities that nanomedicines offer to overcome these treatment obstacles. Novel nanomedicines that have a high ability for flexible, fast drug design and production based on tumor genetic profiles can be created making drug selection for personal patient treatment much more intensive and effective. This review aims to demonstrate the advantage of the young medical science field, nanomedicine, for overcoming cancer drug resistance. With the advanced design and alternative mechanisms of drug delivery known for different nanodrugs including liposomes, polymer conjugates, micelles, dendrimers, carbon-based, and metallic nanoparticles, overcoming various forms of multi-drug resistance looks promising and opens new horizons for cancer treatment. PMID:24120656

  2. Bacteriocin from Bacillus subtilis as a novel drug against diabetic foot ulcer bacterial pathogens

    PubMed Central

    Joseph, Baby; Dhas, Berlina; Hena, Vimalin; Raj, Justin

    2013-01-01

    Objective To isolate and identify Bacillus subtilis (B. subtilis) from soil and to characterize and partially purify the bacteriocin. To evaluate the antimicrobial activity against four diabetic foot ulcer bacterial pathogens. Methods Genotypic identification was done based on Bergey's manual of systemic bacteriology. Antimicrobial susceptibility test was done by Kirby-Bauer disc diffusion method. Colonies were identified by colony morphology and biochemical characterization and also compared with MTCC 121 strain. Further identification was done by 16S rRNA sequencing. Inhibitory activities of partially purified bacteriocin on all the DFU isolates were done by agar well diffusion method. The strain was identified to produce bacteriocin by stab overlay assay. Bacteriocin was extracted by organic solvent extraction using chloroform, further purified by HPLC and physical, and chemical characterization was performed. Results The four isolates showed high level of resistance to amoxyclav and sensitivity to ciprofloxacin. HPLC purification revealed that the extracts are bacteriocin. The phylogenetic tree analysis results showed that the isolate was 99% related to B. subtilis BSF01. The results reveled activity to all the four isolates and high level of activity was seen in case of Klebsiella sp. Conclusions Partially purified bacteriocin was found to have antimicrobial activity against the four diabetic foot ulcer bacterial pathogens, which can thus be applied as a better drug molecule on further studies. The strain B. subtilis are found to be safe for use and these antimicrobial peptides can be used as an antimicrobial in humans to treat DFU bacterial pathogens. PMID:24093784

  3. Inactivation of indispensable bacterial proteins by early proteins of bacteriophages: implication in antibacterial drug discovery.

    PubMed

    Sau, S; Chattoraj, P; Ganguly, T; Chanda, P K; Mandal, N C

    2008-06-01

    Bacteriophages utilize host bacterial cellular machineries for their own reproduction and completion of life cycles. The early proteins that phage synthesize immediately after the entry of their genomes into bacterial cells participate in inhibiting host macromolecular biosynthesis, initiating phage-specific replication and synthesizing late proteins. Inhibition of synthesis of host macromolecules that eventually leads to cell death is generally performed by the physical and/or chemical modification of indispensable host proteins by early proteins. Interestingly, most modified bacterial proteins were shown to take part actively in phage-specific transcription and replication. Research on phages in last nine decades has demonstrated such lethal early proteins that interact with or chemically modify indispensable host proteins. Among the host proteins inhibited by lethal phage proteins, several are not inhibited by any chemical inhibitor available today. Under the context of widespread dissemination of antibiotic-resistant strains of pathogenic bacteria in recent years, the information of lethal phage proteins and cognate host proteins could be extremely invaluable as they may lead to the identification of novel antibacterial compounds. In this review, we summarize the current knowledge about some early phage proteins, their cognate host proteins and their mechanism of action and also describe how the above interacting proteins had been exploited in antibacterial drug discovery. PMID:18537683

  4. Use of a bacterial antimicrobial resistance gene microarray for the identification of resistant Staphylococcus aureus.

    PubMed

    Garneau, P; Labrecque, O; Maynard, C; Messier, S; Masson, L; Archambault, M; Harel, J

    2010-11-01

    As diagnostic and surveillance activities are vital to determine measures needed to control antimicrobial resistance (AMR), new and rapid laboratory methods are necessary to facilitate this important effort. DNA microarray technology allows the detection of a large number of genes in a single reaction. This technology is simple, specific and high-throughput. We have developed a bacterial antimicrobial resistance gene DNA microarray that will allow rapid antimicrobial resistance gene screening for all Gram-positive and Gram-negative bacteria. A prototype microarray was designed using a 70-mer based oligonucleotide set targeting AMR genes of Gram-negative and Gram-positive bacteria. In the present version, the microarray consists of 182 oligonucleotides corresponding to 166 different acquired AMR gene targets, covering most of the resistance genes found in both Gram-negative and -positive bacteria. A test study was performed on a collection of Staphylococcus aureus isolates from milk samples from dairy farms in Québec, Canada. The reproducibility of the hybridizations was determined, and the microarray results were compared with those obtained by phenotypic resistance tests (either MIC or Kirby-Bauer). The microarray genotyping demonstrated a correlation between penicillin, tetracycline and erythromycin resistance phenotypes with the corresponding acquired resistance genes. The hybridizations showed that the 38 antimicrobial resistant S. aureus isolates possessed at least one AMR gene. PMID:21083822

  5. Mechanisms of drug resistance in Mycobacterium tuberculosis: update 2015.

    PubMed

    Zhang, Y; Yew, W-W

    2015-11-01

    Drug-resistant tuberculosis (DR-TB), including multi- and extensively drug-resistant TB, is posing a significant challenge to effective treatment and TB control worldwide. New progress has been made in our understanding of the mechanisms of resistance to anti-tuberculosis drugs. This review provides an update on the major advances in drug resistance mechanisms since the previous publication in 2009, as well as added information on mechanisms of resistance to new drugs and repurposed agents. The recent application of whole genome sequencing technologies has provided new insight into the mechanisms and complexity of drug resistance. However, further research is needed to address the significance of newly discovered gene mutations in causing drug resistance. Improved knowledge of drug resistance mechanisms will help understand the mechanisms of action of the drugs, devise better molecular diagnostic tests for more effective DR-TB management (and for personalised treatment), and facilitate the development of new drugs to improve the treatment of this disease. PMID:26467578

  6. Klebsiella pneumoniae Antimicrobial Drug Resistance, United States, 1998–2010

    PubMed Central

    Sanchez, Guillermo V.; Master, Ronald N.; Clark, Richard B.; Fyyaz, Madiha; Duvvuri, Padmaraj; Ekta, Gupta

    2013-01-01

    We studied antimicrobial-resistant Klebsiella pneumoniae for 1998–2010 by using data from The Surveillance Network. Susceptibility results (n = 3,132,354) demonstrated significant increases in resistance to all antimicrobial drugs studied, except tetracycline. Cross-resistance among carbapenem-resistant K. pneumoniae was lower for tetracycline and amikacin. PMID:23260464

  7. Resistance to antimalarial drugs: molecular, pharmacological and clinical considerations

    PubMed Central

    Travassos, Mark A.; Laufer, Miriam K.

    2009-01-01

    One of the greatest obstacles to the control of malaria has been the spread of resistance to drugs used on a large scale. This review provides an update of the current understanding of the molecular basis for antimalarial drug resistance. Parasite intrinsic resistance is just one component that determines the in vivo efficacy of a drug. Human immune responses and pharmacological properties play important roles in determining the clinical outcome of treatment. The emergence and spread of resistance also results from an interplay of these factors. Current efforts to characterize and deter resistance to new combination therapy are also discussed. PMID:19918214

  8. Harnessing the potential of bacterial ghost for the effective delivery of drugs and biotherapeutics

    PubMed Central

    Ganeshpurkar, Aditya; Ganeshpurkar, Ankit; Pandey, Vikas; Agnihotri, Abhishek; Bansal, Divya; Dubey, Nazneen

    2014-01-01

    It seems to be a necessary need to develop an effective drug carrier system for targeted delivery of pharmaceuticals. Bacterial ghosts are emerging drug delivery platform that are capable of delivery of proteins, antigens, nucleic acids, and pharmaceuticals. Bacterial ghosts are generally produced by lysis of gram-negative bacteria. Pharmaceutically, these ghosts could be utilized to deliver proteins peptides, vaccines, drugs effectively. However, this technology is at initial stage and systematic studies are required to implement such system over humans. PMID:24678455

  9. New approaches for understanding mechanisms of drug resistance in schistosomes

    PubMed Central

    GREENBERG, ROBERT M.

    2013-01-01

    SUMMARY Schistosomes are parasitic flatworms that cause schistosomiasis, a neglected tropical disease that affects hundreds of millions worldwide. Treatment and control of schistosomiasis relies almost entirely on the single drug praziquantel (PZQ), making the prospect of emerging drug resistance particularly worrisome. This review will survey reports of PZQ (and other drug) resistance in schistosomes and other platyhelminths, and explore mechanisms by which drug resistance might develop. Newer genomic and post-genomic strategies that offer the promise of better understanding of how drug resistance might arise in these organisms will be discussed. These approaches could also lead to insights into the mode of action of these drugs and potentially provide markers for monitoring the emergence of resistance. PMID:23552512

  10. Public health implications of antiretroviral therapy and HIV drug resistance.

    PubMed

    Wainberg, M A; Friedland, G

    1998-06-24

    Widespread use of antiretroviral agents and increasing occurrence of human immunodeficiency virus (HIV) strains resistant to these drugs have given rise to a number of important issues. Some of these concerns are distinct from the obvious question of the relationship between drug resistance and treatment failure and have potentially widespread public health implications. The relevant issues include but are not limited to the following: (1) frequency with which drug-resistant virus may be transmitted via sexual, intravenous, or mother-to-child routes; (2) ability of drug-resistant variants to be transmitted, a question that relates, in part, to the relative fitness of such strains; (3) effectiveness of antiviral therapy in diminishing viral burden in both blood and genital secretions, and whether this may be compromised in persons harboring resistant virus; and (4) importance of patient adherence to antiviral therapy and its relationship to sustained reduction in viral load to minimize the appearance in and transmission of drug-resistant virus from both blood and genital secretions. Thus, prevention of both development of HIV drug resistance as well as transmission of drug-resistant variants is a central issue of public health importance. Unless this topic is appropriately addressed, the likelihood is that drug-resistant variants of HIV, if able to successfully replicate, will sustain the epidemic and limit the effectiveness of antiviral therapy. PMID:9643862

  11. Mutational Pathway Determines Whether Drug Gradients Accelerate Evolution of Drug-Resistant Cells

    NASA Astrophysics Data System (ADS)

    Greulich, Philip; Waclaw, Bartłomiej; Allen, Rosalind J.

    2012-08-01

    Drug gradients are believed to play an important role in the evolution of bacteria resistant to antibiotics and tumors resistant to anticancer drugs. We use a statistical physics model to study the evolution of a population of malignant cells exposed to drug gradients, where drug resistance emerges via a mutational pathway involving multiple mutations. We show that a nonuniform drug distribution has the potential to accelerate the emergence of resistance when the mutational pathway involves a long sequence of mutants with increasing resistance, but if the pathway is short or crosses a fitness valley, the evolution of resistance may actually be slowed down by drug gradients. These predictions can be verified experimentally, and may help to improve strategies for combating the emergence of resistance.

  12. GWAMAR: Genome-wide assessment of mutations associated with drug resistance in bacteria

    PubMed Central

    2014-01-01

    Background Development of drug resistance in bacteria causes antibiotic therapies to be less effective and more costly. Moreover, our understanding of the process remains incomplete. One promising approach to improve our understanding of how resistance is being acquired is to use whole-genome comparative approaches for detection of drug resistance-associated mutations. Results We present GWAMAR, a tool we have developed for detecting of drug resistance-associated mutations in bacteria through comparative analysis of whole-genome sequences. The pipeline of GWAMAR comprises several steps. First, for a set of closely related bacterial genomes, it employs eCAMBer to identify homologous gene families. Second, based on multiple alignments of the gene families, it identifies mutations among the strains of interest. Third, it calculates several statistics to identify which mutations are the most associated with drug resistance. Conclusions Based on our analysis of two large datasets retrieved from publicly available data for M. tuberculosis, we identified a set of novel putative drug resistance-associated mutations. As a part of this work, we present also an application of our tool to detect putative compensatory mutations. PMID:25559874

  13. Acid-Responsive Therapeutic Polymer for Prolonging Nanoparticle Circulation Lifetime and Destroying Drug-Resistant Tumors.

    PubMed

    Piao, Ji-Gang; Gao, Feng; Yang, Lihua

    2016-01-13

    How to destroy drug-resistant tumor cells remains an ongoing challenge for cancer treatment. We herein report on a therapeutic nanoparticle, aHLP-PDA, which has an acid-activated hemolytic polymer (aHLP) grafted onto photothermal polydopamine (PDA) nanosphere via boronate ester bond, in efforts to ablate drug-resistant tumors. Upon exposure to oxidative stress and/or near-infrared laser irradiation, aHLP-PDA nanoparticle responsively releases aHLP, likely via responsive cleavage of boronate ester bond, and thus responsively exhibits acid-facilitated mammalian-membrane-disruptive activity. In vitro cell studies with drug-resistant and/or thermo-tolerant cancer cells show that the aHLP-PDA nanoparticle demonstrates preferential cytotoxicity at acidic pH over physiological pH. When administered intravenously, the aHLP-PDA nanoparticle exhibits significantly prolonged blood circulation lifetime and enhanced tumor uptake compared to bare PDA nanosphere, likely owing to aHLP's stealth effects conferred by its zwitterionic nature at blood pH. As a result, the aHLP-PDA nanoparticle effectively ablates drug-resistant tumors, leading to 100% mouse survival even on the 32nd day after suspension of photothermal treatment, as demonstrated with the mouse model. This work suggests that a combination of nanotechnology with lessons learned in bacterial antibiotic resistance may offer a feasible and effective strategy for treating drug-resistant cancers often found in relapsing patients. PMID:26654626

  14. Rainbow Trout (Oncorhynchus mykiss) resistance to columnaris disease is heritable and favorably correlated with bacterial cold water disease resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Columnaris disease (CD) is an emerging disease affecting rainbow trout aquaculture. Objectives were to estimate heritability of CD resistance in a line (ARS-Fp-R) selected 4 generations for improved bacterial cold water disease (BCWD) resistance; estimate genetic correlations among CD resistance, BC...

  15. Acute bacterial skin and skin structure infections in internal medicine wards: old and new drugs.

    PubMed

    Falcone, Marco; Concia, Ercole; Giusti, Massimo; Mazzone, Antonino; Santini, Claudio; Stefani, Stefania; Violi, Francesco

    2016-08-01

    Skin and soft tissue infections (SSTIs) are a common cause of hospital admission among elderly patients, and traditionally have been divided into complicated and uncomplicated SSTIs. In 2010, the FDA provided a new classification of these infections, and a new category of disease, named acute bacterial skin and skin structure infections (ABSSSIs), has been proposed as an independent clinical entity. ABSSSIs include three entities: cellulitis and erysipelas, wound infections, and major cutaneous abscesses This paper revises the epidemiology of SSTIs and ABSSSIs with regard to etiologies, diagnostic techniques, and clinical presentation in the hospital settings. Particular attention is owed to frail patients with multiple comorbidities and underlying significant disease states, hospitalized on internal medicine wards or residing in nursing homes, who appear to be at increased risk of infection due to multi-drug resistant pathogens and treatment failures. Management of ABSSSIs and SSTIs, including evaluation of the hemodynamic state, surgical intervention and treatment with appropriate antibiotic therapy are extensively discussed. PMID:27084183

  16. Asynchronous magnetic bead rotation (AMBR) micro-viscometer for rapid, sensitive and label-free studies of bacterial growth and drug sensitivity

    PubMed Central

    Sinn, Irene; Albertson, Theodore; Kinnunen, Paivo; Breslauer, David N.; McNaughton, Brandon H.; Burns, Mark A.; Kopelman, Raoul

    2012-01-01

    The long turnaround time in antimicrobial susceptibility testing (AST) endangers patients and encourages the administration of wide spectrum antibiotics, thus resulting in alarming increases of multi-drug resistant pathogens. A method for faster detection of bacterial proliferation presents one avenue towards addressing this global concern. We report on a label-free asynchronous magnetic bead rotation (AMBR) based viscometry method that rapidly detects bacterial growth and determines drug sensitivity by measuring changes in the suspension’s viscosity. With this platform, we observed the growth of a uropathogenic Escherichia coli isolate, with an initial concentration of 50 cells per drop, within 20 minutes; in addition, we determined the gentamicin minimum inhibitory concentration (MIC) of the E. coli isolate within 100 minutes. We thus demonstrated a label-free, micro-viscometer platform that can measure bacterial growth and drug susceptibility more rapidly, with lower initial bacterial counts than existing commercial systems, and potentially with any microbial strains. PMID:22507307

  17. Molecular structure and dynamics in bacterial mercury resistance

    SciTech Connect

    Johs, Alexander; Shi, Liang; Miller, Susan M; Summers, Anne O; Liang, Liyuan

    2008-01-01

    Bacteria participate significantly in mercury transformation in natural and industrial environments. Previous studies have shown that bacterial mercury resistance is mediated by the mer operon, typically located on transposons or plasmids. It encodes specific genes that facilitate uptake of mercury species, cleavage of organomercurials, and reduction of Hg(II) to Hg(0). Expression of mer operon genes is regulated by MerR, a metal-responsive regulator protein on the level of transcription. In vitro studies have shown that MerR forms a non-transcribing pre-initiation complex with RNA polymerase and the promoter DNA. Binding of Hg(II) induces conformational changes in MerR and other components of the complex resulting in the transcription of mer operon genes. As part of ongoing investigations on allosteric conformational changes induced by Hg(II) in dimeric MerR, and the implications on the binding of RNA polymerase to the promoter of the mer operon, we applied small angle scattering to study the regulatory mechanism of MerR in the presence and absence of Hg(II). Our results show that in the presence of Hg(II) the MerR dimer undergoes a significant reorientation from a compact state to a conformation revealing two distinct domains. Bacterial reduction of Hg(II) can also occur at concentrations too low to induce mer operon functions. Dissimilatory metal reducing bacteria, such as Shewanella and Geobacter are able to reduce Hg(II) in the presence of mineral oxides. This process has been linked to the activity of outer membrane multiheme cytochromes. We isolated and purified a decaheme outer membrane cytochrome OmcA from Shewanella oneidensis MR-1 and characterized its envelope shape in solution by small angle x-ray scattering. Structural features were identified and compared to homology models. These results show that OmcA is an elongated macromolecule consisting of separate modules, which may be connected by flexible linkers.

  18. Novel antimicrobial peptides that exhibit activity against select agents and other drug resistant bacteria.

    PubMed

    Venugopal, Divakaramenon; Klapper, David; Srouji, Antoine H; Bhonsle, Jayendra B; Borschel, Richard; Mueller, Allen; Russell, Amanda L; Williams, Brittany C; Hicks, Rickey P

    2010-07-15

    One of the greatest challenges facing modern medicine is the evolution of drug resistant strains of bacteria. In addition to traditional methods of exposure to traditional bacterial organisms there is a growing concerned of the use of bacteria as bio-terrorism agents. To counter the evolution of drug resistant and potential bio-terrorism bacterial agents new antibiotic drugs must be developed. One potential source of new therapeutic agents that act via a novel mechanism of action are natural and synthetic antimicrobial peptides (AMPs). In our laboratories we have developed a series of AMPs incorporating the un-natural amino acids Tic-Oic to impart organism selectivity and potency while increasing metabolic stability. Herein the in vitro activity of these peptides, including ten new compounds, against eight potential bio-terrorism bacterial agents and three other bacterial strains is presented and discussed. These peptides exhibit a wide range of organism potency and selectivity. Calcein fluorescence leakage and circular dichroism studies were conducted to confirm that these peptides interact with zwitterionic and anionic liposomes. PMID:20558071

  19. Drug Resistance Mechanisms in Bacteria Causing Sexually Transmitted Diseases and Associated with Vaginosis

    PubMed Central

    Shaskolskiy, Boris; Dementieva, Ekaterina; Leinsoo, Arvo; Runina, Anastassia; Vorobyev, Denis; Plakhova, Xenia; Kubanov, Alexey; Deryabin, Dmitrii; Gryadunov, Dmitry

    2016-01-01

    Here, we review sexually transmitted diseases (STDs) caused by pathogenic bacteria and vaginal infections which result from an overgrowth of opportunistic bacterial microflora. First, we describe the STDs, the corresponding pathogens and the antimicrobials used for their treatment. In addition to the well-known diseases caused by single pathogens (i.e., syphilis, gonococcal infections, and chlamydiosis), we consider polymicrobial reproductive tract infections (especially those that are difficult to effectively clinically manage). Then, we summarize the biochemical mechanisms that lead to antimicrobial resistance and the most recent data on the emergence of drug resistance in STD pathogens and bacteria associated with vaginosis. A large amount of research performed in the last 10–15 years has shed light on the enormous diversity of mechanisms of resistance developed by bacteria. A detailed understanding of the mechanisms of antimicrobials action and the emergence of resistance is necessary to modify existing drugs and to develop new ones directed against new targets. PMID:27242760

  20. Drug Resistance Mechanisms in Bacteria Causing Sexually Transmitted Diseases and Associated with Vaginosis.

    PubMed

    Shaskolskiy, Boris; Dementieva, Ekaterina; Leinsoo, Arvo; Runina, Anastassia; Vorobyev, Denis; Plakhova, Xenia; Kubanov, Alexey; Deryabin, Dmitrii; Gryadunov, Dmitry

    2016-01-01

    Here, we review sexually transmitted diseases (STDs) caused by pathogenic bacteria and vaginal infections which result from an overgrowth of opportunistic bacterial microflora. First, we describe the STDs, the corresponding pathogens and the antimicrobials used for their treatment. In addition to the well-known diseases caused by single pathogens (i.e., syphilis, gonococcal infections, and chlamydiosis), we consider polymicrobial reproductive tract infections (especially those that are difficult to effectively clinically manage). Then, we summarize the biochemical mechanisms that lead to antimicrobial resistance and the most recent data on the emergence of drug resistance in STD pathogens and bacteria associated with vaginosis. A large amount of research performed in the last 10-15 years has shed light on the enormous diversity of mechanisms of resistance developed by bacteria. A detailed understanding of the mechanisms of antimicrobials action and the emergence of resistance is necessary to modify existing drugs and to develop new ones directed against new targets. PMID:27242760

  1. Understanding bacterial resistance to antimicrobial peptides: From the surface to deep inside.

    PubMed

    Maria-Neto, Simone; de Almeida, Keyla Caroline; Macedo, Maria Ligia Rodrigues; Franco, Octávio Luiz

    2015-11-01

    Resistant bacterial infections are a major health problem in many parts of the world. The major commercial antibiotic classes often fail to combat common bacteria. Although antimicrobial peptides are able to control bacterial infections by interfering with microbial metabolism and physiological processes in several ways, a large number of cases of resistance to antibiotic peptide classes have also been reported. To gain a better understanding of the resistance process various technologies have been applied. Here we discuss multiple strategies by which bacteria could develop enhanced antimicrobial peptide resistance, focusing on sub-cellular regions from the surface to deep inside, evaluating bacterial membranes, cell walls and cytoplasmic metabolism. Moreover, some high-throughput methods for antimicrobial resistance detection and discrimination are also examined. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides. PMID:25724815

  2. Prediction of resistance development against drug combinations by collateral responses to component drugs

    PubMed Central

    Munck, Christian; Gumpert, Heidi K.; Nilsson Wallin, Annika I.; Wang, Harris H.; Sommer, Morten O. A.

    2015-01-01

    Resistance arises quickly during chemotherapeutic selection and is particularly problematic during long-term treatment regimens such as those for tuberculosis, HIV infections, or cancer. Although drug combination therapy reduces the evolution of drug resistance, drug pairs vary in their ability to do so. Thus, predictive models are needed to rationally design resistance-limiting therapeutic regimens. Using adaptive evolution, we studied the resistance response of the common pathogen Escherichia coli to 5 different single antibiotics and all 10 different antibiotic drug pairs. By analyzing the genomes of all evolved E. coli lineages, we identified the mutational events that drive the differences in drug resistance levels and found that the degree of resistance development against drug combinations can be understood in terms of collateral sensitivity and resistance that occurred during adaptation to the component drugs. Then, using engineered E. coli strains, we confirmed that drug resistance mutations that imposed collateral sensitivity were suppressed in a drug pair growth environment. These results provide a framework for rationally selecting drug combinations that limit resistance evolution. PMID:25391482

  3. Prediction of resistance development against drug combinations by collateral responses to component drugs.

    PubMed

    Munck, Christian; Gumpert, Heidi K; Wallin, Annika I Nilsson; Wang, Harris H; Sommer, Morten O A

    2014-11-12

    Resistance arises quickly during chemotherapeutic selection and is particularly problematic during long-term treatment regimens such as those for tuberculosis, HIV infections, or cancer. Although drug combination therapy reduces the evolution of drug resistance, drug pairs vary in their ability to do so. Thus, predictive models are needed to rationally design resistance-limiting therapeutic regimens. Using adaptive evolution, we studied the resistance response of the common pathogen Escherichia coli to 5 different single antibiotics and all 10 different antibiotic drug pairs. By analyzing the genomes of all evolved E. coli lineages, we identified the mutational events that drive the differences in drug resistance levels and found that the degree of resistance development against drug combinations can be understood in terms of collateral sensitivity and resistance that occurred during adaptation to the component drugs. Then, using engineered E. coli strains, we confirmed that drug resistance mutations that imposed collateral sensitivity were suppressed in a drug pair growth environment. These results provide a framework for rationally selecting drug combinations that limit resistance evolution. PMID:25391482

  4. [Research progress of new antibacterial drugs that target bacterial quorum sensing systems].

    PubMed

    Yin, Shou-Liang; Chang, Ya-Jing; Deng, Su-Ping; Wang, Qing-Chi; Yu, Wen-Gong; Gong, Qian-Hong

    2011-06-01

    In recent years, antibiotic resistance of bacteria has become a global health crisis. Especially, the new class of "superbug" was found in South Asia, which is resistant to almost known antibiotics and causes worldwide alarm. Through the underlying mechanisms of bacterial pathogenecity, the expression of many pathogen virulence factors is regulated by the process of quorum sensing. Screening efficient quorum sensing inhibitors is an especially compelling approach to the future treatment of bacterial infections and antibiotic resistance. This article focuses on bacterial quorum sensing system, quorum sensing screening model for in vitro and evaluation of animal models in vivo, recent research of quorum sensing inhibitors and so on. PMID:21882519

  5. In Search of Alternative Antibiotic Drugs: Quorum-Quenching Activity in Sponges and their Bacterial Isolates.

    PubMed

    Saurav, Kumar; Bar-Shalom, Rinat; Haber, Markus; Burgsdorf, Ilia; Oliviero, Giorgia; Costantino, Valeria; Morgenstern, David; Steindler, Laura

    2016-01-01

    Owing to the extensive development of drug resistance in pathogens against the available antibiotic arsenal, antimicrobial resistance is now an emerging major threat to public healthcare. Anti-virulence drugs are a new type of therapeutic agent aiming at virulence factors rather than killing the pathogen, thus providing less selective pressure for evolution of resistance. One promising example of this therapeutic concept targets bacterial quorum sensing (QS), because QS controls many virulence factors responsible for bacterial infections. Marine sponges and their associated bacteria are considered a still untapped source for unique chemical leads with a wide range of biological activities. In the present study, we screened extracts of 14 sponge species collected from the Red and Mediterranean Sea for their quorum-quenching (QQ) potential. Half of the species showed QQ activity in at least 2 out of 3 replicates. Six out of the 14 species were selected for bacteria isolation, to test for QQ activity also in isolates, which, once cultured, represent an unlimited source of compounds. We show that ≈20% of the isolates showed QQ activity based on a Chromobacterium violaceum CV026 screen, and that the presence or absence of QQ activity in a sponge extract did not correlate with the abundance of isolates with the same activity from the same sponge species. This can be explained by the unknown source of QQ compounds in sponge-holobionts (host or symbionts), and further by the possible non-symbiotic nature of bacteria isolated from sponges. The potential symbiotic nature of the isolates showing QQ activity was tested according to the distribution and abundance of taxonomically close bacterial Operational Taxonomic Units (OTUs) in a dataset including 97 sponge species and 178 environmental samples (i.e., seawater, freshwater, and marine sediments). Most isolates were found not to be enriched in sponges and may simply have been trapped in the filtration channels of the

  6. In Search of Alternative Antibiotic Drugs: Quorum-Quenching Activity in Sponges and their Bacterial Isolates

    PubMed Central

    Saurav, Kumar; Bar-Shalom, Rinat; Haber, Markus; Burgsdorf, Ilia; Oliviero, Giorgia; Costantino, Valeria; Morgenstern, David; Steindler, Laura

    2016-01-01

    Owing to the extensive development of drug resistance in pathogens against the available antibiotic arsenal, antimicrobial resistance is now an emerging major threat to public healthcare. Anti-virulence drugs are a new type of therapeutic agent aiming at virulence factors rather than killing the pathogen, thus providing less selective pressure for evolution of resistance. One promising example of this therapeutic concept targets bacterial quorum sensing (QS), because QS controls many virulence factors responsible for bacterial infections. Marine sponges and their associated bacteria are considered a still untapped source for unique chemical leads with a wide range of biological activities. In the present study, we screened extracts of 14 sponge species collected from the Red and Mediterranean Sea for their quorum-quenching (QQ) potential. Half of the species showed QQ activity in at least 2 out of 3 replicates. Six out of the 14 species were selected for bacteria isolation, to test for QQ activity also in isolates, which, once cultured, represent an unlimited source of compounds. We show that ≈20% of the isolates showed QQ activity based on a Chromobacterium violaceum CV026 screen, and that the presence or absence of QQ activity in a sponge extract did not correlate with the abundance of isolates with the same activity from the same sponge species. This can be explained by the unknown source of QQ compounds in sponge-holobionts (host or symbionts), and further by the possible non-symbiotic nature of bacteria isolated from sponges. The potential symbiotic nature of the isolates showing QQ activity was tested according to the distribution and abundance of taxonomically close bacterial Operational Taxonomic Units (OTUs) in a dataset including 97 sponge species and 178 environmental samples (i.e., seawater, freshwater, and marine sediments). Most isolates were found not to be enriched in sponges and may simply have been trapped in the filtration channels of the

  7. Superinfection and the evolution of resistance to antimalarial drugs

    PubMed Central

    Klein, Eili Y.; Smith, David L.; Laxminarayan, Ramanan; Levin, Simon

    2012-01-01

    A major issue in the control of malaria is the evolution of drug resistance. Ecological theory has demonstrated that pathogen superinfection and the resulting within-host competition influences the evolution of specific traits. Individuals infected with Plasmodium falciparum are consistently infected by multiple parasites; however, while this probably alters the dynamics of resistance evolution, there are few robust mathematical models examining this issue. We developed a general theory for modelling the evolution of resistance with host superinfection and examine: (i) the effect of transmission intensity on the rate of resistance evolution; (ii) the importance of different biological costs of resistance; and (iii) the best measure of the frequency of resistance. We find that within-host competition retards the ability and slows the rate at which drug-resistant parasites invade, particularly as the transmission rate increases. We also find that biological costs of resistance that reduce transmission are less important than reductions in the duration of drug-resistant infections. Lastly, we find that random sampling of the population for resistant parasites is likely to significantly underestimate the frequency of resistance. Considering superinfection in mathematical models of antimalarial drug resistance may thus be important for generating accurate predictions of interventions to contain resistance. PMID:22787024

  8. Acquired Drug Resistance in Mycobacterium tuberculosis and Poor Outcomes among Patients with Multidrug-Resistant Tuberculosis

    PubMed Central

    Kipiani, Maia; Mirtskhulava, Veriko; Tukvadze, Nestani; Magee, Matthew J.; Blumberg, Henry M.

    2015-01-01

    Rates and risk factors for acquired drug resistance and association with outcomes among patients with multidrug-resistant tuberculosis (MDR TB) are not well defined. In an MDR TB cohort from the country of Georgia, drug susceptibility testing for second-line drugs (SLDs) was performed at baseline and every third month. Acquired resistance was defined as any SLD whose status changed from susceptible at baseline to resistant at follow-up. Among 141 patients, acquired resistance in Mycobacterium tuberculosis was observed in 19 (14%); prevalence was 9.1% for ofloxacin and 9.8% for capreomycin or kanamycin. Baseline cavitary disease and resistance to >6 drugs were associated with acquired resistance. Patients with M. tuberculosis that had acquired resistance were at significantly increased risk for poor treatment outcome compared with patients without these isolates (89% vs. 36%; p<0.01). Acquired resistance occurs commonly among patients with MDR TB and impedes successful treatment outcomes. PMID:25993036

  9. Improving Viral Protease Inhibitors to Counter Drug Resistance.

    PubMed

    Kurt Yilmaz, Nese; Swanstrom, Ronald; Schiffer, Celia A

    2016-07-01

    Drug resistance is a major problem in health care, undermining therapy outcomes and necessitating novel approaches to drug design. Extensive studies on resistance to viral protease inhibitors, particularly those of HIV-1 and hepatitis C virus (HCV) protease, revealed a plethora of information on the structural and molecular mechanisms underlying resistance. These insights led to several strategies to improve viral protease inhibitors to counter resistance, such as exploiting the essential biological function and leveraging evolutionary constraints. Incorporation of these strategies into structure-based drug design can minimize vulnerability to resistance, not only for viral proteases but for other quickly evolving drug targets as well, toward designing inhibitors one step ahead of evolution to counter resistance with more intelligent and rational design. PMID:27090931

  10. Quantifying the Determinants of Evolutionary Dynamics Leading to Drug Resistance

    PubMed Central

    Chevereau, Guillaume; Dravecká, Marta; Batur, Tugce; Guvenek, Aysegul; Ayhan, Dilay Hazal; Toprak, Erdal; Bollenbach, Tobias

    2015-01-01

    The emergence of drug resistant pathogens is a serious public health problem. It is a long-standing goal to predict rates of resistance evolution and design optimal treatment strategies accordingly. To this end, it is crucial to reveal the underlying causes of drug-specific differences in the evolutionary dynamics leading to resistance. However, it remains largely unknown why the rates of resistance evolution via spontaneous mutations and the diversity of mutational paths vary substantially between drugs. Here we comprehensively quantify the distribution of fitness effects (DFE) of mutations, a key determinant of evolutionary dynamics, in the presence of eight antibiotics representing the main modes of action. Using precise high-throughput fitness measurements for genome-wide Escherichia coli gene deletion strains, we find that the width of the DFE varies dramatically between antibiotics and, contrary to conventional wisdom, for some drugs the DFE width is lower than in the absence of stress. We show that this previously underappreciated divergence in DFE width among antibiotics is largely caused by their distinct drug-specific dose-response characteristics. Unlike the DFE, the magnitude of the changes in tolerated drug concentration resulting from genome-wide mutations is similar for most drugs but exceptionally small for the antibiotic nitrofurantoin, i.e., mutations generally have considerably smaller resistance effects for nitrofurantoin than for other drugs. A population genetics model predicts that resistance evolution for drugs with this property is severely limited and confined to reproducible mutational paths. We tested this prediction in laboratory evolution experiments using the “morbidostat”, a device for evolving bacteria in well-controlled drug environments. Nitrofurantoin resistance indeed evolved extremely slowly via reproducible mutations—an almost paradoxical behavior since this drug causes DNA damage and increases the mutation rate. Overall

  11. Molecular mechanisms of drug resistance and its reversal in cancer.

    PubMed

    Kartal-Yandim, Melis; Adan-Gokbulut, Aysun; Baran, Yusuf

    2016-08-01

    Chemotherapy is the main strategy for the treatment of cancer. However, the main problem limiting the success of chemotherapy is the development of multidrug resistance. The resistance can be intrinsic or acquired. The resistance phenotype is associated with the tumor cells that gain a cross-resistance to a large range of drugs that are structurally and functionally different. Multidrug resistance arises via many unrelated mechanisms, such as overexpression of energy-dependent efflux proteins, decrease in uptake of the agents, increase or alteration in drug targets, modification of cell cycle checkpoints, inactivation of the agents, compartmentalization of the agents, inhibition of apoptosis and aberrant bioactive sphingolipid metabolism. Exact elucidation of resistance mechanisms and molecular and biochemical approaches to overcome multidrug resistance have been a major goal in cancer research. This review comprises the mechanisms guiding multidrug resistance in cancer chemotherapy and also touches on approaches for reversing the resistance. PMID:25757878

  12. Drug-Resistant Malaria: The Era of ACT

    PubMed Central

    Lin, Jessica T.; Juliano, Jonathan J.

    2010-01-01

    As drug-resistant falciparum malaria has continued to evolve and spread worldwide, artemisinin-based combination therapies (ACT) have become the centerpiece of global malaria control over the past decade. This review discusses how advances in antimalarial drug resistance monitoring and rational use of the array of ACTs now available can maximize the impact of this highly efficacious therapy, even as resistance to artemisinins is emerging in Southeast Asia. PMID:21308525

  13. Efflux-Mediated Drug Resistance in Bacteria: an Update

    PubMed Central

    Li, Xian-Zhi; Nikaido, Hiroshi

    2010-01-01

    Drug efflux pumps play a key role in drug resistance and also serve other functions in bacteria. There has been a growing list of multidrug and drug-specific efflux pumps characterized from bacteria of human, animal, plant and environmental origins. These pumps are mostly encoded on the chromosome although they can also be plasmid-encoded. A previous article (Li X-Z and Nikaido H, Drugs, 2004; 64[2]: 159–204) had provided a comprehensive review regarding efflux-mediated drug resistance in bacteria. In the past five years, significant progress has been achieved in further understanding of drug resistance-related efflux transporters and this review focuses on the latest studies in this field since 2003. This has been demonstrated in multiple aspects that include but are not limited to: further molecular and biochemical characterization of the known drug efflux pumps and identification of novel drug efflux pumps; structural elucidation of the transport mechanisms of drug transporters; regulatory mechanisms of drug efflux pumps; determining the role of the drug efflux pumps in other functions such as stress responses, virulence and cell communication; and development of efflux pump inhibitors. Overall, the multifaceted implications of drug efflux transporters warrant novel strategies to combat multidrug resistance in bacteria. PMID:19678712

  14. Overcome Cancer Cell Drug Resistance Using Natural Products

    PubMed Central

    Wang, Pu; Yang, Hua Li; Yang, Ying Juan; Wang, Lan; Lee, Shao Chin

    2015-01-01

    Chemotherapy is one of the major treatment methods for cancer. However, failure in chemotherapy is not uncommon, mainly due to dose-limiting toxicity associated with drug resistance. Management of drug resistance is important towards successful chemotherapy. There are many reports in the Chinese literature that natural products can overcome cancer cell drug resistance, which deserve sharing with scientific and industrial communities. We summarized the reports into four categories: (1) in vitro studies using cell line models; (2) serum pharmacology; (3) in vivo studies using animal models; and (4) clinical studies. Fourteen single compounds were reported to have antidrug resistance activity for the first time. In vitro, compounds were able to overcome drug resistance at nontoxic or subtoxic concentrations, in a dose-dependent manner, by inhibiting drug transporters, cell detoxification capacity, or cell apoptosis sensitivity. Studies in vivo showed that single compounds, herbal extract, and formulas had potent antidrug resistance activities. Importantly, many single compounds, herbal extracts, and formulas have been used clinically to treat various diseases including cancer. The review provides comprehensive data on use of natural compounds to overcome cancer cell drug resistance in China, which may facilitate the therapeutic development of natural products for clinical management of cancer drug resistance. PMID:26421052

  15. Shigella Antimicrobial Drug Resistance Mechanisms, 2004-2014.

    PubMed

    Nüesch-Inderbinen, Magdalena; Heini, Nicole; Zurfluh, Katrin; Althaus, Denise; Hächler, Herbert; Stephan, Roger

    2016-06-01

    To determine antimicrobial drug resistance mechanisms of Shigella spp., we analyzed 344 isolates collected in Switzerland during 2004-2014. Overall, 78.5% of isolates were multidrug resistant; 10.5% were ciprofloxacin resistant; and 2% harbored mph(A), a plasmid-mediated gene that confers reduced susceptibility to azithromycin, a last-resort antimicrobial agent for shigellosis. PMID:27191035

  16. Shigella Antimicrobial Drug Resistance Mechanisms, 2004–2014

    PubMed Central

    Nüesch-Inderbinen, Magdalena; Heini, Nicole; Zurfluh, Katrin; Althaus, Denise; Hächler, Herbert

    2016-01-01

    To determine antimicrobial drug resistance mechanisms of Shigella spp., we analyzed 344 isolates collected in Switzerland during 2004–2014. Overall, 78.5% of isolates were multidrug resistant; 10.5% were ciprofloxacin resistant; and 2% harbored mph(A), a plasmid-mediated gene that confers reduced susceptibility to azithromycin, a last-resort antimicrobial agent for shigellosis. PMID:27191035

  17. Mycobacterium tuberculosis resistance to antituberculosis drugs in Mozambique*, **

    PubMed Central

    Pires, Germano Manuel; Folgosa, Elena; Nquobile, Ndlovu; Gitta, Sheba; Cadir, Nureisha

    2014-01-01

    OBJECTIVE: To determine the drug resistance profile of Mycobacterium tuberculosis in Mozambique. METHODS: We analyzed secondary data from the National Tuberculosis Referral Laboratory, in the city of Maputo, Mozambique, and from the Beira Regional Tuberculosis Referral Laboratory, in the city of Beira, Mozambique. The data were based on culture-positive samples submitted to first-line drug susceptibility testing (DST) between January and December of 2011. We attempted to determine whether the frequency of DST positivity was associated with patient type or provenance. RESULTS: During the study period, 641 strains were isolated in culture and submitted to DST. We found that 374 (58.3%) were resistant to at least one antituberculosis drug and 280 (43.7%) were resistant to multiple antituberculosis drugs. Of the 280 multidrug-resistant tuberculosis cases, 184 (65.7%) were in previously treated patients, most of whom were from southern Mozambique. Two (0.71%) of the cases of multidrug-resistant tuberculosis were confirmed to be cases of extensively drug-resistant tuberculosis. Multidrug-resistant tuberculosis was most common in males, particularly those in the 21-40 year age bracket. CONCLUSIONS: M. tuberculosis resistance to antituberculosis drugs is high in Mozambique, especially in previously treated patients. The frequency of M. tuberculosis strains that were resistant to isoniazid, rifampin, and streptomycin in combination was found to be high, particularly in samples from previously treated patients. PMID:24831398

  18. Totally drug-resistant tuberculosis and adjunct therapies.

    PubMed

    Parida, S K; Axelsson-Robertson, R; Rao, M V; Singh, N; Master, I; Lutckii, A; Keshavjee, S; Andersson, J; Zumla, A; Maeurer, M

    2015-04-01

    The first cases of totally drug-resistant (TDR) tuberculosis (TB) were reported in Italy 10 years ago; more recently, cases have also been reported in Iran, India and South Africa. Although there is no consensus on terminology, it is most commonly described as 'resistance to all first- and second-line drugs used to treat TB'. Mycobacterium tuberculosis (M.tb) acquires drug resistance mutations in a sequential fashion under suboptimal drug pressure due to monotherapy, inadequate dosing, treatment interruptions and drug interactions. The treatment of TDR-TB includes antibiotics with disputed or minimal effectiveness against M.tb, and the fatality rate is high. Comorbidities such as diabetes and infection with human immunodeficiency virus further impact on TB treatment options and survival rates. Several new drug candidates with novel modes of action are under late-stage clinical evaluation (e.g., delamanid, bedaquiline, SQ109 and sutezolid). 'Repurposed' antibiotics have also recently been included in the treatment of extensively drug resistant TB. However, because of mutations in M.tb, drugs will not provide a cure for TB in the long term. Adjunct TB therapies, including therapeutic vaccines, vitamin supplementation and/or repurposing of drugs targeting biologically and clinically relevant molecular pathways, may achieve better clinical outcomes in combination with standard chemotherapy. Here, we review broader perspectives of drug resistance in TB and potential adjunct treatment options. PMID:24809736

  19. Rapid evolution of drug resistance of multiple myeloma in the microenvironment with drug gradients

    NASA Astrophysics Data System (ADS)

    Wu, Amy; Zhang, Qiucen; Lambert, Guillaume; Khin, Zayar; Silva, Ariosto; Gatenby, Robert; Kim, John; Pourmand, Nader; Austin, Robert; Sturm, James

    2013-03-01

    Drug resistance in cancer is usually caused by the spatial drug gradients in tumor environment. Here, we culture multiple myeloma in a gradient from 0 to 20 nM of doxorubicin (genotoxic drug) across 2 mm wide region for 12 days. The myeloma cells grew rapidly and formed 3D colonies in the regions with less drug concentration. However, we have seen emergent colonies forming in regions with drug concentration above the minimal inhibitory concentration in less than one week. Once the cells have occupied the regions with less drug concentration, they tend to migrate toward the regions with higher drug concentration in a collective behavior. To characterize their resistance, we collect them from this microfluidic system, for further analysis of the dose response. We find that the IC50 (drug concentration that inhibits 50% of controlled population) of the cells, undergone a drug gradient, increase 16-fold of the wildtype cells. We further discover that these resistant cells express more Multidrug Resistance (mdr) protein, which pumps out the drugs and causes drug resistance, than the wildtype. Our current works on RNA-sequencing analysis may discover other biomolecular mechanisms that may confer the drug resistance.

  20. Electrospinning polyvinylidene fluoride fibrous membranes containing anti-bacterial drugs used as wound dressing.

    PubMed

    He, Ting; Wang, Jingnan; Huang, Peilin; Zeng, Baozhen; Li, Haihong; Cao, Qingyun; Zhang, Shiying; Luo, Zhuo; Deng, David Y B; Zhang, Hongwu; Zhou, Wuyi

    2015-06-01

    The aim of this study was to synthesis drug-loaded fibrous membrane scaffolds for potential applications as wound dressing. Polyvinylidene fluoride (PVDF) fibrous membranes were loaded with enrofloxacin (Enro) drugs by using an electrospinning process, and their mechanical strength, drug release profile and anti-bacterial properties were evaluated. Enro drug-loaded PVDF membranes exhibited good elasticity, flexibility and excellent mechanical strength. The electrospinning Enro/PVDF membranes showed a burst drug release in the initial 12h, followed by sustained release for the next 3 days, which was an essential property for antibiotic drugs applied for wound healing. The drug-loaded PVDF fibrous membranes displayed excellent anti-bacterial activity toward Escherichia coli and Staphylococcus aureus. The results suggest that electrospinning PVDF membrane scaffolds loaded with drugs can be used as wound dressing. PMID:25936562

  1. Prevalence of pyrazinamide resistance across the spectrum of drug resistant phenotypes of Mycobacterium tuberculosis.

    PubMed

    Whitfield, Michael G; Streicher, Elizabeth M; Dolby, Tania; Simpson, John A; Sampson, Samantha L; Van Helden, Paul D; Van Rie, Annelies; Warren, Robin M

    2016-07-01

    Pyrazinamide resistance is largely unknown in the spectrum of drug resistant phenotypes. We summarize data on PZA resistance in clinical isolates from South Africa. PZA DST should be performed when considering its inclusion in treatment of patients with rifampicin-resistant TB or MDR-TB. PMID:27450014

  2. Drug Resistance among Pulmonary Tuberculosis Patients in Calabar, Nigeria

    PubMed Central

    Otu, Akaninyene; Umoh, Victor; Habib, Abdulrazak; Ameh, Soter; Lawson, Lovett

    2013-01-01

    Background. This study aimed to determine the pattern of drug susceptibility to first-line drugs among pulmonary TB patients in two hospitals in Calabar, Nigeria. Methods. This was a descriptive cross-sectional study carried out between February 2011 and April 2012. Sputum samples from consecutive TB patients in Calabar were subjected to culture on Lowenstein-Jensen (LJ) slopes followed by drug susceptibility testing (DST). The DST was performed on LJ medium by the proportion method. Results. Forty-two of the 100 Mycobacterium tuberculosis strains were found to be resistant to at least one drug. Resistance to only one drug (monoresistance) was found in 17 patients. No strains with monoresistance to rifampicin were found. Resistance to two drugs was found in 22 patients, while one patient was resistant to both three and four drugs. MDR TB was seen in 4% (4/100). The independent variables of HIV serology and sex were not significantly associated with resistance (P > 0.05). Conclusion. There was a high prevalence of anti-TB drug resistance in Calabar. PMID:24078872

  3. Vancomycin for multi-drug resistant Enterococcus faecium cholangiohepatitis in a cat.

    PubMed

    Pressel, Michelle A; Fox, Leslie E; Apley, Michael D; Simutis, Frank J

    2005-10-01

    A 12-year-old, neutered male domestic shorthair cat was evaluated with a life-long history of intermittent, predominantly small bowel diarrhea and a 3 day history of hematochezia. At presentation, the cat had increased liver enzyme activities and an inflammatory leukogram. Histopathology demonstrated inflammatory bowel disease (IBD), cholangiohepatitis and pancreatitis. The cholangiohepatitis was associated with a multi-drug resistant Enterococcus faecium. Gallbladder agenesis was also documented. Treatment with vancomycin was safely instituted for 10 days. Clinical signs resolved, however, cure of the bacterial cholangiohepatitis was not achieved. The risk of vancomycin resistant enterococci (VRE) in human and veterinary medicine is discussed. PMID:16182186

  4. Exposing Plasmids as the Achilles’ Heel of Drug-Resistant Bacteria

    PubMed Central

    Williams, Julia J.; Hergenrother, Paul J.

    2008-01-01

    Many multi-drug resistant bacterial pathogens harbor large plasmids that encode proteins conferring resistance to antibiotics. While the acquisition of these plasmids often enables bacteria to survive in the presence of antibiotics, it is possible that plasmids also represent a vulnerability that can be exploited in tailored antibacterial therapy. This review highlights three recently described strategies designed to specifically combat bacteria harboring such plasmids: Inhibition of plasmid conjugation, inhibition of plasmid replication, and exploitation of plasmid-encoded toxin-antitoxin systems. PMID:18625335

  5. Drug interactions and the evolution of antibiotic resistance

    PubMed Central

    Yeh, Pamela J.; Hegreness, Matthew J.; Aiden, Aviva Presser; Kishony, Roy

    2010-01-01

    Large-scale, systems biology approaches now allow us to systematically map synergistic and antagonistic interactions between drugs. Consequently, drug antagonism is emerging as a powerful tool to study biological function and relatedness between cellular components as well as to uncover mechanisms of drug action. Furthermore, theoretical models and new experiments suggest that antagonistic interactions between antibiotics can counteract the evolution of drug resistance. PMID:19444248

  6. Genotypic Testing for Human Immunodeficiency Virus Type 1 Drug Resistance

    PubMed Central

    Shafer, Robert W.

    2002-01-01

    There are 16 approved human immunodeficiency virus type 1 (HIV-1) drugs belonging to three mechanistic classes: protease inhibitors, nucleoside and nucleotide reverse transcriptase (RT) inhibitors, and nonnucleoside RT inhibitors. HIV-1 resistance to these drugs is caused by mutations in the protease and RT enzymes, the molecular targets of these drugs. Drug resistance mutations arise most often in treated individuals, resulting from selective drug pressure in the presence of incompletely suppressed virus replication. HIV-1 isolates with drug resistance mutations, however, may also be transmitted to newly infected individuals. Three expert panels have recommended that HIV-1 protease and RT susceptibility testing should be used to help select HIV drug therapy. Although genotypic testing is more complex than typical antimicrobial susceptibility tests, there is a rich literature supporting the prognostic value of HIV-1 protease and RT mutations. This review describes the genetic mechanisms of HIV-1 drug resistance and summarizes published data linking individual RT and protease mutations to in vitro and in vivo resistance to the currently available HIV drugs. PMID:11932232

  7. Prediction of Cancer Drug Resistance and Implications for Personalized Medicine

    PubMed Central

    Volm, Manfred; Efferth, Thomas

    2015-01-01

    Drug resistance still impedes successful cancer chemotherapy. A major goal of early concepts in individualized therapy was to develop in vitro tests to predict tumors’ drug responsiveness. We have developed an in vitro short-term test based on nucleic acid precursor incorporation to determine clinical drug resistance. This test detects inherent and acquired resistance in vitro and transplantable syngeneic and xenografted tumors in vivo. In several clinical trials, clinical resistance was predictable with more than 90% accuracy, while drug sensitivity was detected with less accuracy (~60%). Remarkably, clinical cross-resistance to numerous drugs (multidrug resistance, broad spectrum resistance) was detectable by a single compound, doxorubicin, due to its multifactorial modes of action. The results of this predictive test were in good agreement with predictive assays of other authors. As no predictive test has been established as yet for clinical diagnostics, the identification of sensitive drugs may not reach sufficiently high reliability for clinical routine. A meta-analysis of the literature published during the past four decades considering test results of more than 15,000 tumor patients unambiguously demonstrated that, in the majority of studies, resistance was correctly predicted with an accuracy between 80 and 100%, while drug sensitivity could only be predicted with an accuracy of 50–80%. This synopsis of the published literature impressively illustrates that prediction of drug resistance could be validated. The determination of drug resistance was reliable independent of tumor type, test assay, and drug used in these in vitro tests. By contrast, chemosensitivity could not be predicted with high reliability. Therefore, we propose a rethinking of the “chemosensitivity” concept. Instead, predictive in vitro tests may reliably identify drug-resistant tumors. The clinical consequence imply to subject resistant tumors not to chemotherapy, but to other new

  8. Drug-Resistant Candida glabrata Infection in Cancer Patients

    PubMed Central

    Farmakiotis, Dimitrios; Tarrand, Jeffrey J.

    2014-01-01

    Cancer patients are at risk for candidemia, and increasing Candida spp. resistance poses an emerging threat. We determined rates of antifungal drug resistance, identified factors associated with resistance, and investigated the correlation between resistance and all-cause mortality rates among cancer patients with ≥1 C. glabrata–positive blood culture at MD Anderson Cancer Center, Houston, Texas, USA, during March 2005–September 2013. Of 146 isolates, 30 (20.5%) were resistant to fluconazole, 15 (10.3%) to caspofungin, and 10 (6.8%) to multiple drugs (9 caspofungin-resistant isolates were also resistant to fluconazole, 1 to amphotericin B). Independently associated with fluconazole resistance were azole preexposure, hematologic malignancy, and mechanical ventilation. Independently associated with caspofungin resistance were echinocandin preexposure, monocytopenia, and total parenteral nutrition. Fluconazole resistance was highly associated with caspofungin resistance, independent of prior azole or echinocandin use. Caspofungin resistance was associated with increased 28-day all-cause mortality rates. These findings highlight the need for good stewardship of antifungal drugs. PMID:25340258

  9. Bedaquiline for the treatment of drug-resistant tuberculosis.

    PubMed

    Bélard, Sabine; Heuvelings, Charlotte C; Janssen, Saskia; Grobusch, Martin P

    2015-05-01

    Bedaquiline is a much-needed novel drug which is highly effective against drug-resistant tuberculosis. While its clinical development has been laudably fast-tracked and the drug is now available for inclusion into treatment regimens when no suitable alternatives exist, clinical experience with bedaquiline is still limited. Phase III trial data and Phase IV studies are needed particularly to study different patient populations and to optimize treatment regimens. Drug resistance to bedaquiline needs to be monitored carefully, and full access to bedaquiline treatment where it is appropriate and needed must be promoted. PMID:25797824

  10. Extensive Drug Resistance Acquired During Treatment of Multidrug-Resistant Tuberculosis

    PubMed Central

    Cegielski, J. Peter; Dalton, Tracy; Yagui, Martin; Wattanaamornkiet, Wanpen; Volchenkov, Grigory V.; Via, Laura E.; Van Der Walt, Martie; Tupasi, Thelma; Smith, Sarah E.; Odendaal, Ronel; Leimane, Vaira; Kvasnovsky, Charlotte; Kuznetsova, Tatiana; Kurbatova, Ekaterina; Kummik, Tiina; Kuksa, Liga; Kliiman, Kai; Kiryanova, Elena V.; Kim, HeeJin; Kim, Chang-ki; Kazennyy, Boris Y.; Jou, Ruwen; Huang, Wei-Lun; Ershova, Julia; Erokhin, Vladislav V.; Diem, Lois; Contreras, Carmen; Cho, Sang Nae; Chernousova, Larisa N.; Chen, Michael P.; Caoili, Janice Campos; Bayona, Jaime; Akksilp, Somsak; Calahuanca, Gloria Yale; Wolfgang, Melanie; Viiklepp, Piret; Vasilieva, Irina A.; Taylor, Allison; Tan, Kathrine; Suarez, Carmen; Sture, Ingrida; Somova, Tatiana; Smirnova, Tatyana G.; Sigman, Erika; Skenders, Girts; Sitti, Wanlaya; Shamputa, Isdore C.; Riekstina, Vija; Pua, Kristine Rose; Therese, M.; Perez, C.; Park, Seungkyu; Norvaisha, Inga; Nemtsova, Evgenia S.; Min, Seonyeong; Metchock, Beverly; Levina, Klavdia; Lei, Yung-Chao; Lee, Jongseok; Larionova, Elena E.; Lancaster, Joey; Jeon, Doosoo; Jave, Oswaldo; Khorosheva, Tatiana; Hwang, Soo Hee; Huang, Angela Song-En; Gler, M. Tarcela; Dravniece, Gunta; Eum, Seokyong; Demikhova, Olga V.; Degtyareva, Irina; Danilovits, Manfred; Cirula, Anda; Cho, Eunjin; Cai, Ying; Brand, Jeanette; Bonilla, Cesar; Barry, Clifton E.; Asencios, Luis; Andreevskaya, Sofia N.; Akksilp, Rattanawadee

    2014-01-01

    Background. Increasing access to drugs for the treatment of multidrug-resistant (MDR) tuberculosis is crucial but could lead to increasing resistance to these same drugs. In 2000, the international Green Light Committee (GLC) initiative began to increase access while attempting to prevent acquired resistance. Methods. To assess the GLC's impact, we followed adults with pulmonary MDR tuberculosis from the start to the end of treatment with monthly sputum cultures, drug susceptibility testing, and genotyping. We compared the frequency and predictors of acquired resistance to second-line drugs (SLDs) in 9 countries that volunteered to participate, 5 countries that met GLC criteria, and 4 countries that did not apply to the GLC. Results. In total, 832 subjects were enrolled. Of those without baseline resistance to specific SLDs, 68 (8.9%) acquired extensively drug-resistant (XDR) tuberculosis, 79 (11.2%) acquired fluoroquinolone (FQ) resistance, and 56 (7.8%) acquired resistance to second-line injectable drugs (SLIs). The relative risk (95% confidence interval [CI]) of acquired resistance was lower at GLC-approved sites: 0.27 (.16–.47) for XDR tuberculosis, 0.28 (.17–.45) for FQ, and 0.15 (.06–.39) to 0.60 (.34–1.05) for 3 different SLIs. The risk increased as the number of potentially effective drugs decreased. Controlling for baseline drug resistance and differences between sites, the odds ratios (95% CIs) were 0.21 (.07–.62) for acquired XDR tuberculosis and 0.23 (.09–.59) for acquired FQ resistance. Conclusions. Treatment of MDR tuberculosis involves substantial risk of acquired resistance to SLDs, increasing as baseline drug resistance increases. The risk was significantly lower in programs documented by the GLC to meet specific standards. PMID:25057101

  11. Bacterial fitness shapes the population dynamics of antibiotic-resistant and -susceptible bacteria in a model of combined antibiotic and anti-virulence treatment

    PubMed Central

    Ternent, Lucy; Dyson, Rosemary J.; Krachler, Anne-Marie; Jabbari, Sara

    2015-01-01

    Bacterial resistance to antibiotic treatment is a huge concern: introduction of any new antibiotic is shortly followed by the emergence of resistant bacterial isolates in the clinic. This issue is compounded by a severe lack of new antibiotics reaching the market. The significant rise in clinical resistance to antibiotics is especially problematic in nosocomial infections, where already vulnerable patients may fail to respond to treatment, causing even greater health concern. A recent focus has been on the development of anti-virulence drugs as a second line of defence in the treatment of antibiotic-resistant infections. This treatment, which weakens bacteria by reducing their virulence rather than killing them, should allow infections to be cleared through the body׳s natural defence mechanisms. In this way there should be little to no selective pressure exerted on the organism and, as such, a predominantly resistant population should be less likely to emerge. However, before the likelihood of resistance to these novel drugs emerging can be predicted, we must first establish whether such drugs can actually be effective. Many believe that anti-virulence drugs would not be powerful enough to clear existing infections, restricting their potential application to prophylaxis. We have developed a mathematical model that provides a theoretical framework to reveal the circumstances under which anti-virulence drugs may or may not be successful. We demonstrate that by harnessing and combining the advantages of antibiotics with those provided by anti-virulence drugs, given infection-specific parameters, it is possible to identify treatment strategies that would efficiently clear bacterial infections, while preventing the emergence of antibiotic-resistant subpopulations. Our findings strongly support the continuation of research into anti-virulence drugs and demonstrate that their applicability may reach beyond infection prevention. PMID:25701634

  12. Origin of Robustness in Generating Drug-Resistant Malaria Parasites

    PubMed Central

    Kümpornsin, Krittikorn; Modchang, Charin; Heinberg, Adina; Ekland, Eric H.; Jirawatcharadech, Piyaporn; Chobson, Pornpimol; Suwanakitti, Nattida; Chaotheing, Sastra; Wilairat, Prapon; Deitsch, Kirk W.; Kamchonwongpaisan, Sumalee; Fidock, David A.; Kirkman, Laura A.; Yuthavong, Yongyuth; Chookajorn, Thanat

    2014-01-01

    Biological robustness allows mutations to accumulate while maintaining functional phenotypes. Despite its crucial role in evolutionary processes, the mechanistic details of how robustness originates remain elusive. Using an evolutionary trajectory analysis approach, we demonstrate how robustness evolved in malaria parasites under selective pressure from an antimalarial drug inhibiting the folate synthesis pathway. A series of four nonsynonymous amino acid substitutions at the targeted enzyme, dihydrofolate reductase (DHFR), render the parasites highly resistant to the antifolate drug pyrimethamine. Nevertheless, the stepwise gain of these four dhfr mutations results in tradeoffs between pyrimethamine resistance and parasite fitness. Here, we report the epistatic interaction between dhfr mutations and amplification of the gene encoding the first upstream enzyme in the folate pathway, GTP cyclohydrolase I (GCH1). gch1 amplification confers low level pyrimethamine resistance and would thus be selected for by pyrimethamine treatment. Interestingly, the gch1 amplification can then be co-opted by the parasites because it reduces the cost of acquiring drug-resistant dhfr mutations downstream in the same metabolic pathway. The compensation of compromised fitness by extra GCH1 is an example of how robustness can evolve in a system and thus expand the accessibility of evolutionary trajectories leading toward highly resistant alleles. The evolution of robustness during the gain of drug-resistant mutations has broad implications for both the development of new drugs and molecular surveillance for resistance to existing drugs. PMID:24739308

  13. TRANSFORMATION OF ANTHURIUM WITH TRANSGENES FOR BACTERIAL BLIGHT AND NEMATODE RESISTANCE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anthurium transformation was undertaken to engineer plants for resistance to bacterial blight caused by Xanthomonas axonopodis pv. dieffenbachiae and to the nematodes Radopholus simile and Meloidogyne javanica. Agrobacterium tumefaciens transformation of embryogenic calli of ‘Marian Seefurth’ was sh...

  14. Suppression of bacterial blight on mustard greens with host plant resistance and Acibenzolar-S-Methyl

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial blight, caused by Pseudomonas cannabina pv. alisalensis, attacks the leaves of most brassica vegetables, including mustard greens (Brassica juncea). ‘Carolina Broadleaf,’ a new mustard cultivar, is resistant to bacterial blight. Acibenzolar-S-methyl (trade name Actigard) has been used to m...

  15. Dominant gene for common bean resistance to common bacterial blight caused by Xanthomonas axonopodis pv. phaseoli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The common bacterial blight pathogen [Xanthomonas axonopodis pv. phaseoli (Xap)] is a limiting factor for common bean (Phaseolus vulgaris L.) production worldwide and resistance to the pathogen in most commercial cultivars is inadequate. Variability in virulence of the bacterial pathogen has been ob...

  16. Registration of Common Bacterial Blight Resistant White Kidney Bean Germplasm Line USWK-CBB-17

    Technology Transfer Automated Retrieval System (TEKTRAN)

    White kidney bean germplasm line USWK-CBB-17 was developed by USDA-ARS in cooperation with the Idaho Agricultural Experiment Station and released in 2006. This line was bred with a high level of resistance to common bacterial blight caused by Xanthomonas axonopodis pv. phaseoli (Xap). Common bacteri...

  17. Inhibitory effect of Allium sativum and Zingiber officinale extracts on clinically important drug resistant pathogenic bacteria

    PubMed Central

    2012-01-01

    Background Herbs and spices are very important and useful as therapeutic agent against many pathological infections. Increasing multidrug resistance of pathogens forces to find alternative compounds for treatment of infectious diseases. Methods In the present study the antimicrobial potency of garlic and ginger has been investigated against eight local clinical bacterial isolates. Three types of extracts of each garlic and ginger including aqueous extract, methanol extract and ethanol extract had been assayed separately against drug resistant Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus, Klebsiella pneumoniae, Shigella sonnei, Staphylococcusepidermidis and Salmonella typhi. The antibacterial activity was determined by disc diffusion method. Results All tested bacterial strains were most susceptible to the garlic aqueous extract and showed poor susceptibility to the ginger aqueous extract. The (minimum inhibitory concentration) MIC of different bacterial species varied from 0.05 mg/ml to 1.0 mg/ml. Conclusion In the light of several socioeconomic factors of Pakistan mainly poverty and poor hygienic condition, present study encourages the use of spices as alternative or supplementary medicine to reduce the burden of high cost, side effects and progressively increasing drug resistance of pathogens. PMID:22540232

  18. [Resistance to antiplatelet drugs in patients with cerebrovascular disorders].

    PubMed

    Suslina, Z A; Tanashian, M M; Domashenko, M A

    2011-01-01

    This review concerns clinical and laboratory resistance to antiplatelet drugs (aspirin and clopidogrel) in patients with cerebrovascular disorders. Results of certain clinical trials showed that laboratory resistance to antiaggregants is associated with recurrent thromboembolic vascular events. The commonest causes of aspirin resistance are production of arachidonic acid metabolites via the lipoxygenase pathway, poor compliance with the treatment, polymorphism of the genes encoding for cyclooxygenase and glycoprotein (GP) IIb/IIIa, endothelial dysfunction. The causes of clopidogrel resistance include inadequate doses of the drug, its low absorption, poor compliance with the treatment, polymorphism of ADP receptors, GP IIb/IIIa and cytochrome P450 genes, acute coronary syndrome and stroke, metabolic syndrome. Therapeutic efficacy of antiaggregants can be improved by increasing their doses, using membranotropic agents, correcting endothelial dysfunction, etc. Because the apparent variability of antiplatelet drug resistance is currently due to the use of different test-systems by different authors, the evaluation of individual sensitivity to a given drug showing laboratory resistance and the choice of alternative therapy are thus far possible only in the framework of clinical studies. Large-scale prospective multicenter trials of antiplatelet drug resistance are needed along with research for better understanding mechanisms of individual platelet sensitivity and resistance to antiaggregants and developing efficacious methods for their correction. PMID:21901881

  19. Antimicrobial resistance determinant microarray for analysis of multi-drug resistant isolates

    NASA Astrophysics Data System (ADS)

    Taitt, Chris Rowe; Leski, Tomasz; Stenger, David; Vora, Gary J.; House, Brent; Nicklasson, Matilda; Pimentel, Guillermo; Zurawski, Daniel V.; Kirkup, Benjamin C.; Craft, David; Waterman, Paige E.; Lesho, Emil P.; Bangurae, Umaru; Ansumana, Rashid

    2012-06-01

    The prevalence of multidrug-resistant infections in personnel wounded in Iraq and Afghanistan has made it challenging for physicians to choose effective therapeutics in a timely fashion. To address the challenge of identifying the potential for drug resistance, we have developed the Antimicrobial Resistance Determinant Microarray (ARDM) to provide DNAbased analysis for over 250 resistance genes covering 12 classes of antibiotics. Over 70 drug-resistant bacteria from different geographic regions have been analyzed on ARDM, with significant differences in patterns of resistance identified: genes for resistance to sulfonamides, trimethoprim, chloramphenicol, rifampin, and macrolide-lincosamidesulfonamide drugs were more frequently identified in isolates from sources in Iraq/Afghanistan. Of particular concern was the presence of genes responsible for resistance to many of the last-resort antibiotics used to treat war traumaassociated infections.

  20. The First Global Forum on Bacterial Infections calls for urgent action to contain antibiotic resistance.

    PubMed

    Vlieghe, Erika

    2012-02-01

    The 1st Global Forum on Bacterial Infections: Balancing Treatment Access and Antibiotic Resistance was organized by the Center for Disease Dynamics, Economics and Policy and the Public Health Foundation of India for researchers, policymakers, clinicians and public health program managers dealing with the problems of bacterial infection and antibiotic resistance in low- and middle-income countries. This meeting was the first gathering of its kind to be held in a developing country. PMID:22339188

  1. A functional variomics tool for discovering drug resistance genes and drug targets

    PubMed Central

    Huang, Zhiwei; Chen, Kaifu; Zhang, Jianhuai; Li, Yongxiang; Wang, Hui; Cui, Dandan; Tang, Jiangwu; Liu, Yong; Shi, Xiaomin; Li, Wei; Liu, Dan; Chen, Rui; Sucgang, Richard S.; Pan, Xuewen

    2013-01-01

    Comprehensive discovery of genetic mechanisms of drug resistance and identification of in vivo drug targets represent significant challenges. Here we present a functional variomics technology in the model organism Saccharomyces cerevisiae. This tool analyzes numerous genetic variants and effectively tackles both problems simultaneously. Using this tool, we discovered almost all genes that, due to mutations or modest overexpression, confer resistance to rapamycin, cycloheximide, and amphotericin B. Most significant among the resistance genes were drug targets, including multiple targets of a given drug. With amphotericin B, we discovered the highly conserved membrane protein Pmp3 as a potent resistance factor and a possible novel target. Widespread application of this tool should allow rapid identification of conserved resistance mechanisms and targets of many more compounds. New genes and alleles that confer resistance to other stresses can also be discovered. Similar tools in other systems such as human cell lines will also be useful. PMID:23416056

  2. Drug resistance in cancer: molecular evolution and compensatory proliferation

    PubMed Central

    Friedman, Ran

    2016-01-01

    Targeted therapies have revolutionized cancer treatment. Unfortunately, their success is limited due to the development of drug resistance within the tumor, which is an evolutionary process. Understanding how drug resistance evolves is a prerequisite to a better success of targeted therapies. Resistance is usually explained as a response to evolutionary pressure imposed by treatment. Thus, evolutionary understanding can and should be used in the design and treatment of cancer. In this article, drug-resistance to targeted therapies is reviewed from an evolutionary standpoint. The concept of apoptosis-induced compensatory proliferation (AICP) is developed. It is shown that AICP helps to explain some of the phenomena that are observed experimentally in cancers. Finally, potential drug targets are suggested in light of AICP. PMID:26909596

  3. Targeting survivin overcomes drug resistance in acute lymphoblastic leukemia

    PubMed Central

    Park, Eugene; Gang, Eun Ji; Hsieh, Yao-Te; Schaefer, Paul; Chae, Sanna; Klemm, Lars; Huantes, Sandra; Loh, Mignon; Conway, Edward M.; Kang, Eun-Suk; Hoe Koo, Hong; Hofmann, Wolf-Karsten; Heisterkamp, Nora; Pelus, Louis; Keerthivasan, Ganesan; Crispino, John; Kahn, Michael; Müschen, Markus

    2011-01-01

    Relapse of drug-resistant acute lymphoblastic leukemia (ALL) has been associated with increased expression of survivin/BIRC5, an inhibitor of apoptosis protein, suggesting a survival advantage for ALL cells. In the present study, we report that inhibition of survivin in patient-derived ALL can eradicate leukemia. Targeting survivin with shRNA in combination with chemotherapy resulted in no detectable minimal residual disease in a xenograft model of primary ALL. Similarly, pharmacologic knock-down of survivin using EZN-3042, a novel locked nucleic acid antisense oligonucleotide, in combination with chemotherapy eliminated drug-resistant ALL cells. These findings show the importance of survivin expression in drug resistance and demonstrate that survivin inhibition may represent a powerful approach to overcoming drug resistance and preventing relapse in patients with ALL. PMID:21715311

  4. Drug resistance in African trypanosomiasis: the melarsoprol and pentamidine story

    PubMed Central

    Baker, Nicola; de Koning, Harry P.; Mäser, Pascal; Horn, David

    2013-01-01

    Melarsoprol and pentamidine represent the two main classes of drugs, the arsenicals and diamidines, historically used to treat the diseases caused by African trypanosomes: sleeping sickness in humans and Nagana in livestock. Cross-resistance to these drugs was first observed over sixty years ago and remains the only example of cross-resistance among sleeping sickness therapies. A Trypanosoma brucei adenosine transporter is well-known for its role in the uptake of both drugs. More recently, aquaglyceroporin 2 (AQP2) loss-of-function was linked to melarsoprol-pentamidine cross-resistance. AQP2, a channel that appears to facilitate drug accumulation, may also be linked to clinical cases of resistance. Here, we review these findings and consider some new questions as well as future prospects for tackling the devastating diseases caused by these parasites. PMID:23375541

  5. Drug resistance in cancer: molecular evolution and compensatory proliferation.

    PubMed

    Friedman, Ran

    2016-03-15

    Targeted therapies have revolutionized cancer treatment. Unfortunately, their success is limited due to the development of drug resistance within the tumor, which is an evolutionary process. Understanding how drug resistance evolves is a prerequisite to a better success of targeted therapies. Resistance is usually explained as a response to evolutionary pressure imposed by treatment. Thus, evolutionary understanding can and should be used in the design and treatment of cancer. In this article, drug-resistance to targeted therapies is reviewed from an evolutionary standpoint. The concept of apoptosis-induced compensatory proliferation (AICP) is developed. It is shown that AICP helps to explain some of the phenomena that are observed experimentally in cancers. Finally, potential drug targets are suggested in light of AICP. PMID:26909596

  6. The impact of drug resistance on Mycobacterium tuberculosis physiology: what can we learn from rifampicin?

    PubMed Central

    Koch, Anastasia; Mizrahi, Valerie; Warner, Digby F

    2014-01-01

    The emergence of drug-resistant pathogens poses a major threat to public health. Although influenced by multiple factors, high-level resistance is often associated with mutations in target-encoding or related genes. The fitness cost of these mutations is, in turn, a key determinant of the spread of drug-resistant strains. Rifampicin (RIF) is a frontline anti-tuberculosis agent that targets the rpoB-encoded β subunit of the DNA-dependent RNA polymerase (RNAP). In Mycobacterium tuberculosis (Mtb), RIF resistance (RIFR) maps to mutations in rpoB that are likely to impact RNAP function and, therefore, the ability of the organism to cause disease. However, while numerous studies have assessed the impact of RIFR on key Mtb fitness indicators in vitro, the consequences of rpoB mutations for pathogenesis remain poorly understood. Here, we examine evidence from diverse bacterial systems indicating very specific effects of rpoB polymorphisms on cellular physiology, and consider these observations in the context of Mtb. In addition, we discuss the implications of these findings for the propagation of clinically relevant RIFR mutations. While our focus is on RIF, we also highlight results which suggest that drug-independent effects might apply to a broad range of resistance-associated mutations, especially in an obligate pathogen increasingly linked with multidrug resistance. PMID:26038512

  7. Diverse and abundant multi-drug resistant E. coli in Matang mangrove estuaries, Malaysia

    PubMed Central

    Ghaderpour, Aziz; Ho, Wing Sze; Chew, Li-Lee; Bong, Chui Wei; Chong, Ving Ching; Thong, Kwai-Lin; Chai, Lay Ching

    2015-01-01

    E.coli, an important vector distributing antimicrobial resistance in the environment, was found to be multi-drug resistant, abundant, and genetically diverse in the Matang mangrove estuaries, Malaysia. One-third (34%) of the estuarine E. coli was multi-drug resistant. The highest antibiotic resistance prevalence was observed for aminoglycosides (83%) and beta-lactams (37%). Phylogenetic groups A and B1, being the most predominant E. coli, demonstrated the highest antibiotic resistant level and prevalence of integrons (integron I, 21%; integron II, 3%). Detection of phylogenetic group B23 downstream of fishing villages indicates human fecal contamination as a source of E. coli pollution. Enteroaggregative E. coli (1%) were also detected immediately downstream of the fishing village. The results indicated multi-drug resistance among E. coli circulating in Matang estuaries, which could be reflective of anthropogenic activities and aggravated by bacterial and antibiotic discharges from village lack of a sewerage system, aquaculture farms and upstream animal husbandry. PMID:26483759

  8. Diverse and abundant multi-drug resistant E. coli in Matang mangrove estuaries, Malaysia.

    PubMed

    Ghaderpour, Aziz; Ho, Wing Sze; Chew, Li-Lee; Bong, Chui Wei; Chong, Ving Ching; Thong, Kwai-Lin; Chai, Lay Ching

    2015-01-01

    E.coli, an important vector distributing antimicrobial resistance in the environment, was found to be multi-drug resistant, abundant, and genetically diverse in the Matang mangrove estuaries, Malaysia. One-third (34%) of the estuarine E. coli was multi-drug resistant. The highest antibiotic resistance prevalence was observed for aminoglycosides (83%) and beta-lactams (37%). Phylogenetic groups A and B1, being the most predominant E. coli, demonstrated the highest antibiotic resistant level and prevalence of integrons (integron I, 21%; integron II, 3%). Detection of phylogenetic group B23 downstream of fishing villages indicates human fecal contamination as a source of E. coli pollution. Enteroaggregative E. coli (1%) were also detected immediately downstream of the fishing village. The results indicated multi-drug resistance among E. coli circulating in Matang estuaries, which could be reflective of anthropogenic activities and aggravated by bacterial and antibiotic discharges from village lack of a sewerage system, aquaculture farms and upstream animal husbandry. PMID:26483759

  9. Phenothiazinium antimicrobial photosensitizers are substrates of bacterial multidrug resistance pumps.

    PubMed

    Tegos, George P; Hamblin, Michael R

    2006-01-01

    Antimicrobial photodynamic therapy (PDT) combines a nontoxic photoactivatable dye, or photosensitizer (PS), with harmless visible light to generate singlet oxygen and free radicals that kill microbial cells. Although the light can be focused on the diseased area, the best selectivity is achieved by choosing a PS that binds and penetrates microbial cells. Cationic phenothiazinium dyes, such as methylene blue and toluidine blue O, have been studied for many years and are the only PSs used clinically for antimicrobial PDT. Multidrug resistance pumps (MDRs) are membrane-localized proteins that pump drugs out of cells and have been identified for a wide range of organisms. We asked whether phenothiazinium salts with structures that are amphipathic cations could potentially be substrates of MDRs. We used MDR-deficient mutants of Staphylococcus aureus (NorA), Escherichia coli (TolC), and Pseudomonas aeruginosa (MexAB) and found 2 to 4 logs more killing than seen with wild-type strains by use of three different phenothiazinium PSs and red light. Mutants that overexpress MDRs were protected from killing compared to the wild type. Effective antimicrobial PSs of different chemical structures showed no difference in light-mediated killing depending on MDR phenotype. Differences in uptake of phenothiazinium PS by the cells depending on level of MDR expression were found. We propose that specific MDR inhibitors could be used in combination with phenothiazinium salts to enhance their photodestructive efficiency. PMID:16377686

  10. Drug resistance and biochemical characteristics of Salmonella from turkeys.

    PubMed Central

    Poppe, C; Kolar, J J; Demczuk, W H; Harris, J E

    1995-01-01

    A study was conducted to determine the antibiotic resistance and biochemical characteristics of 2690 Salmonella strains belonging to 52 serovars and isolated from environmental and feed samples from 270 turkey flocks in Canada. Resistance of the Salmonella strains to the aminoglycoside antibiotics varied widely; none of the strains were resistant to amikacin, 14.2% were resistant to neomycin, 25.8% were resistant to gentamicin, and 27.7% of the strains were resistant to kanamycin. Most strains (97.6%) were resistant to the aminocyclitol, spectinomycin. Regarding resistance to the beta-lactam antibiotics, 14.3% and 14.4% of the strains were resistant to ampicillin and carbenicillin, respectively, whereas only 5 (0.2%) of the strains were resistant to cephalothin. None of the strains were resistant to the fluoroquinolone ciprofloxacin or to polymyxin B. Resistance to chloramphenicol and nitrofurantoin was found in 2.4% and 7% of the strains, respectively. Only 1.7% of the strains were resistant to the trimethoprimsulfamethoxazole combination, whereas 58.1% were resistant to sulfisoxazole. Thirty-eight percent of the strains were resistant to tetracycline. Salmonella serovars differed markedly in their drug resistance profiles. Biochemical characterization of the Salmonella showed that the S. anatum, S. saintpaul and S. reading serovars could be divided into distinct biotypes. PMID:8548684

  11. An antibiotic protocol to minimize emergence of drug-resistant tuberculosis

    NASA Astrophysics Data System (ADS)

    de Espíndola, Aquino L.; Girardi, Daniel; Penna, T. J. P.; Bauch, Chris T.; Troca Cabella, Brenno C.; Martinez, Alexandre Souto

    2014-04-01

    A within-host model of the spread of tuberculosis is proposed here where the emergence of drug resistance and bacterial dormancy are simultaneously combined. We consider both sensitive and resistant strains of tuberculosis pathogens as well as a dormant state of these bacteria. The dynamics of the within-host system is modeled by a set of coupled differential equations which are numerically solved to find a relation between the within-host bacterial populations and the host health states. The values of the parameters were taken from the current literature when available; a sensitivity analysis was performed for the others. Antibiotic treatment for standard, intermittent and oscillating intermittent protocols is analyzed for different conditions. Our results suggest that the oscillating protocol is the most effective one, that would imply a lower treatment cost.

  12. Highly active ozonides selected against drug resistant malaria.

    PubMed

    Lobo, Lis; Sousa, Bruno de; Cabral, Lília; Cristiano, Maria Ls; Nogueira, Fátima

    2016-06-01

    Ever increasing multi-drug resistance by Plasmodium falciparum is creating new challenges in malaria chemotherapy. In the absence of licensed vaccines, treatment and prevention of malaria is heavily dependent on drugs. Potency, range of activity, safety, low cost and ease of administration are crucial issues in the design and formulation of antimalarials. We have tested three synthetic ozonides NAC89, LC50 and LCD67 in vitro and in vivo against multidrug resistant Plasmodium. In vitro, LC50 was at least 10 times more efficient inhibiting P. falciparum multidrug resistant Dd2 strain than chloroquine and mefloquine and as efficient as artemisinin (ART), artesunate and dihydroartemisinin. All three ozonides showed high efficacy in clearing parasitaemia in mice, caused by multi-drug resistant Plasmodium chabaudi strains, by subcutaneous administration, demonstrating high efficacy in vivo against ART and artesunate resistant parasites. PMID:27276364

  13. Highly active ozonides selected against drug resistant malaria

    PubMed Central

    Lobo, Lis; de Sousa, Bruno; Cabral, Lília; Cristiano, Maria LS; Nogueira, Fátima

    2016-01-01

    Ever increasing multi-drug resistance by Plasmodium falciparum is creating new challenges in malaria chemotherapy. In the absence of licensed vaccines, treatment and prevention of malaria is heavily dependent on drugs. Potency, range of activity, safety, low cost and ease of administration are crucial issues in the design and formulation of antimalarials. We have tested three synthetic ozonides NAC89, LC50 and LCD67 in vitro and in vivo against multidrug resistant Plasmodium. In vitro, LC50 was at least 10 times more efficient inhibiting P. falciparum multidrug resistant Dd2 strain than chloroquine and mefloquine and as efficient as artemisinin (ART), artesunate and dihydroartemisinin. All three ozonides showed high efficacy in clearing parasitaemia in mice, caused by multi-drug resistant Plasmodium chabaudi strains, by subcutaneous administration, demonstrating high efficacy in vivo against ART and artesunate resistant parasites. PMID:27276364

  14. Targeting imperfect vaccines against drug-resistance determinants: a strategy for countering the rise of drug resistance.

    PubMed

    Joice, Regina; Lipsitch, Marc

    2013-01-01

    The growing prevalence of antimicrobial resistance in major pathogens is outpacing discovery of new antimicrobial classes. Vaccines mitigate the effect of antimicrobial resistance by reducing the need for treatment, but vaccines for many drug-resistant pathogens remain undiscovered or have limited efficacy, in part because some vaccines selectively favor pathogen strains that escape vaccine-induced immunity. A strain with even a modest advantage in vaccinated hosts can have high fitness in a population with high vaccine coverage, which can offset a strong selection pressure such as antimicrobial use that occurs in a small fraction of hosts. We propose a strategy to target vaccines against drug-resistant pathogens, by using resistance-conferring proteins as antigens in multicomponent vaccines. Resistance determinants may be weakly immunogenic, offering only modest specific protection against resistant strains. Therefore, we assess here how varying the specific efficacy of the vaccine against resistant strains would affect the proportion of drug-resistant vs. -sensitive strains population-wide for three pathogens--Streptococcus pneumoniae, Staphylococcus aureus, and influenza virus--in which drug resistance is a problem. Notably, if such vaccines confer even slightly higher protection (additional efficacy between 1% and 8%) against resistant variants than sensitive ones, they may be an effective tool in controlling the rise of resistant strains, given current levels of use for many antimicrobial agents. We show that the population-wide impact of such vaccines depends on the additional effect on resistant strains and on the overall effect (against all strains). Resistance-conferring accessory gene products or resistant alleles of essential genes could be valuable as components of vaccines even if their specific protective effect is weak. PMID:23935910

  15. Holarrhena antidysenterica Extract and Its Steroidal Alkaloid, Conessine, as Resistance-Modifying Agents Against Extensively Drug-Resistant Acinetobacter baumannii.

    PubMed

    Siriyong, Thanyaluck; Chusri, Sasitorn; Srimanote, Potjanee; Tipmanee, Varomyalin; Voravuthikunchai, Supayang Piyawan

    2016-06-01

    Emergence and spread of antibiotic-resistant Acinetobacter baumannii have become a major public health concern. This study was designed to investigate the efficacy of Holarrhena antidysenterica extract and its major steroidal alkaloid conessine as resistance-modifying agents (RMAs) on the susceptibility of A. baumannii to novobiocin and rifampicin. A significant synergistic activity of both the extract and conessine in combination with either novobiocin or rifampicin with fractional inhibitory concentration index ≤0.5 was demonstrated. Fluorescent dyes and different efflux pump inhibitors were used to further investigate the synergism. Increase in the uptake of 1-N-phenylnaphthylamine in the bacterial cells treated with the extract and conessine was not observed indicating that both substances did not act as permeabilizers. With regard to efflux pump inhibition, no accumulation in ethidium bromide (EtBr) was noticed suggesting that the AdeABC pump was not involved. In contrast, accumulation in Pyronin Y was significantly increased (p < 0.05) demonstrating that the synergism was due to interference with the AdeIJK pump. Study on frequencies of the spontaneous mutational resistance to the extract in combination with antibiotics demonstrated attenuation in drug-resistant organisms. Thus, H. antidysenterica extract and conessine as RMAs may offer a combinatory therapy to restore antibiotic susceptibility in the extensively drug-resistant A. baumannii. PMID:26745443

  16. Nanodrug Formed by Coassembly of Dual Anticancer Drugs to Inhibit Cancer Cell Drug Resistance.

    PubMed

    Zhao, Yuanyuan; Chen, Fei; Pan, Yuanming; Li, Zhipeng; Xue, Xiangdong; Okeke, Chukwunweike Ikechukwu; Wang, Yifeng; Li, Chan; Peng, Ling; Wang, Paul C; Ma, Xiaowei; Liang, Xing-Jie

    2015-09-01

    Carrier-free pure nanodrugs (PNDs) that are composed entirely of pharmaceutically active molecules are regarded as promising candidates to be the next generation of drug formulations and are mainly formulated from supramolecular self-assembly of drug molecules. It benefits from the efficient use of drug compounds with poor aqueous solubility and takes advantage of nanoscale drug delivery systems. Here, a type of all-in-one nanoparticle consisting of multiple drugs with enhanced synergistic antiproliferation efficiency against drug-resistant cancer cells has been created. To nanoparticulate the anticancer drugs, 10-hydroxycamptothecin (HCPT) and doxorubicin (DOX) were chosen as a typical model. The resulting HD nanoparticles (HD NPs) were formulated by a "green" and convenient self-assembling method, and the water-solubility of 10-hydroxycamptothecin (HCPT) was improved 50-fold after nanosizing by coassembly with DOX. The formation process was studied by observing the morphological changes at various reaction times and molar ratios of DOX to HCPT. Molecular dynamics (MD) simulations showed that DOX molecules tend to assemble around HCPT molecules through intermolecular forces. With the advantage of nanosizing, HD NPs could improve the intracellular drug retention of DOX to as much as 2-fold in drug-resistant cancer cells (MCF-7R). As a dual-drug-loaded nanoformulation, HD NPs effectively enhanced drug cytotoxicity to drug-resistant cancer cells. The combination of HCPT and DOX exhibited a synergistic effect as the nanosized HD NPs improved drug retention in drug-resistant cancer cells against P-gp efflux in MCF-7R cells. Furthermore, colony forming assays were applied to evaluate long-term inhibition of cancer cell proliferation, and these assays confirmed the greatly improved cytotoxicity of HD NPs in drug-resistant cells compared to free drugs. PMID:26270258

  17. Nanodrug Formed by Coassembly of Dual Anticancer Drugs to Inhibit Cancer Cell Drug Resistance

    PubMed Central

    Zhao, Yuanyuan; Chen, Fei; Pan, Yuanming; Li, Zhipeng; Xue, Xiangdong; Okeke, Chukwunweike Ikechukwu; Wang, Yifeng; Li, Chan; Peng, Ling; Wang, Paul C.; Ma, Xiaowei; Liang, Xing-Jie

    2016-01-01

    Carrier-free pure nanodrugs (PNDs) that are composed entirely of pharmaceutically active molecules are regarded as promising candidates to be the next generation of drug formulations and are mainly formulated from supramolecular self-assembly of drug molecules. It benefits from the efficient use of drug compounds with poor aqueous solubility and takes advantage of nanoscale drug delivery systems. Here, a type of all-in-one nanoparticle consisting of multiple drugs with enhanced synergistic antiproliferation efficiency against drug-resistant cancer cells has been created. To nanoparticulate the anticancer drugs, 10-hydroxycamptothecin (HCPT) and doxorubicin (DOX) were chosen as a typical model. The resulting HD nanoparticles (HD NPs) were formulated by a “green” and convenient self-assembling method, and the water-solubility of 10-hydroxycamptothecin (HCPT) was improved 50-fold after nanosizing by coassembly with DOX. The formation process was studied by observing the morphological changes at various reaction times and molar ratios of DOX to HCPT. Molecular dynamics (MD) simulations showed that DOX molecules tend to assemble around HCPT molecules through intermolecular forces. With the advantage of nanosizing, HD NPs could improve the intracellular drug retention of DOX to as much as 2-fold in drug-resistant cancer cells (MCF-7R). As a dual-drug-loaded nanoformulation, HD NPs effectively enhanced drug cytotoxicity to drug-resistant cancer cells. The combination of HCPT and DOX exhibited a synergistic effect as the nanosized HD NPs improved drug retention in drug-resistant cancer cells against P-gp efflux in MCF-7R cells. Furthermore, colony forming assays were applied to evaluate long-term inhibition of cancer cell proliferation, and these assays confirmed the greatly improved cytotoxicity of HD NPs in drug-resistant cells compared to free drugs. PMID:26270258

  18. Identifying clinically relevant drug resistance genes in drug-induced resistant cancer cell lines and post- chemotherapy tissues

    PubMed Central

    Tong, Mengsha; Zheng, Weicheng; Lu, Xingrong; Ao, Lu; Li, Xiangyu; Guan, Qingzhou; Cai, Hao; Li, Mengyao; Yan, Haidan; Guo, You; Chi, Pan; Guo, Zheng

    2015-01-01

    Until recently, few molecular signatures of drug resistance identified in drug-induced resistant cancer cell models can be translated into clinical practice. Here, we defined differentially expressed genes (DEGs) between pre-chemotherapy colorectal cancer (CRC) tissue samples of non-responders and responders for 5-fluorouracil and oxaliplatin-based therapy as clinically relevant drug resistance genes (CRG5-FU/L-OHP). Taking CRG5-FU/L-OHP as reference, we evaluated the clinical relevance of several types of genes derived from HCT116 CRC cells with resistance to 5-fluorouracil and oxaliplatin, respectively. The results revealed that DEGs between parental and resistant cells, when both were treated with the corresponding drug for a certain time, were significantly consistent with the CRG5-FU/L-OHP as well as the DEGs between the post-chemotherapy CRC specimens of responders and non-responders. This study suggests a novel strategy to extract clinically relevant drug resistance genes from both drug-induced resistant cell models and post-chemotherapy cancer tissue specimens. PMID:26515599

  19. Sparse Representation for Prediction of HIV-1 Protease Drug Resistance.

    PubMed

    Yu, Xiaxia; Weber, Irene T; Harrison, Robert W

    2013-01-01

    HIV rapidly evolves drug resistance in response to antiviral drugs used in AIDS therapy. Estimating the specific resistance of a given strain of HIV to individual drugs from sequence data has important benefits for both the therapy of individual patients and the development of novel drugs. We have developed an accurate classification method based on the sparse representation theory, and demonstrate that this method is highly effective with HIV-1 protease. The protease structure is represented using our newly proposed encoding method based on Delaunay triangulation, and combined with the mutated amino acid sequences of known drug-resistant strains to train a machine-learning algorithm both for classification and regression of drug-resistant mutations. An overall cross-validated classification accuracy of 97% is obtained when trained on a publically available data base of approximately 1.5×10(4) known sequences (Stanford HIV database http://hivdb.stanford.edu/cgi-bin/GenoPhenoDS.cgi). Resistance to four FDA approved drugs is computed and comparisons with other algorithms demonstrate that our method shows significant improvements in classification accuracy. PMID:24910813

  20. Sparse Representation for Prediction of HIV-1 Protease Drug Resistance

    PubMed Central

    Yu, Xiaxia; Weber, Irene T.; Harrison, Robert W.

    2013-01-01

    HIV rapidly evolves drug resistance in response to antiviral drugs used in AIDS therapy. Estimating the specific resistance of a given strain of HIV to individual drugs from sequence data has important benefits for both the therapy of individual patients and the development of novel drugs. We have developed an accurate classification method based on the sparse representation theory, and demonstrate that this method is highly effective with HIV-1 protease. The protease structure is represented using our newly proposed encoding method based on Delaunay triangulation, and combined with the mutated amino acid sequences of known drug-resistant strains to train a machine-learning algorithm both for classification and regression of drug-resistant mutations. An overall cross-validated classification accuracy of 97% is obtained when trained on a publically available data base of approximately 1.5×104 known sequences (Stanford HIV database http://hivdb.stanford.edu/cgi-bin/GenoPhenoDS.cgi). Resistance to four FDA approved drugs is computed and comparisons with other algorithms demonstrate that our method shows significant improvements in classification accuracy. PMID:24910813

  1. The multiple facets of drug resistance: one history, different approaches

    PubMed Central

    2014-01-01

    Some cancers like melanoma and pancreatic and ovarian cancers, for example, commonly display resistance to chemotherapy, and this is the major obstacle to a better prognosis of patients. Frequently, literature presents studies in monolayer cell cultures, 3D cell cultures or in vivo studies, but rarely the same work compares results of drug resistance in different models. Several of these works are presented in this review and show that usually cells in 3D culture are more resistant to drugs than monolayer cultured cells due to different mechanisms. Searching for new strategies to sensitize different tumors to chemotherapy, many methods have been studied to understand the mechanisms whereby cancer cells acquire drug resistance. These methods have been strongly advanced along the years and therapies using different drugs have been increasingly proposed to induce cell death in resistant cells of different cancers. Recently, cancer stem cells (CSCs) have been extensively studied because they would be the only cells capable of sustaining tumorigenesis. It is believed that the resistance of CSCs to currently used chemotherapeutics is a major contributing factor in cancer recurrence and later metastasis development. This review aims to appraise the experimental progress in the study of acquired drug resistance of cancer cells in different models as well as to understand the role of CSCs as the major contributing factor in cancer recurrence and metastasis development, describing how CSCs can be identified and isolated. PMID:24775603

  2. Phenotypic drug profiling in droplet microfluidics for better targeting of drug-resistant tumors

    PubMed Central

    Sarkar, S.; Cohen, N.; Sabhachandani, P.; Konry, T.

    2015-01-01

    Acquired drug resistance is a key factor in the failure of chemotherapy. Due to intratumoral heterogeneity, cancer cells depict variations in intracellular drug uptake and efflux at the single cell level, which may not be detectable in bulk assays. In this study we present a droplet microfluidics-based approach to assess the dynamics of drug uptake, efflux and cytotoxicity in drug-sensitive and drug-resistant breast cancer cells. An integrated droplet generation and docking microarray was utilized to encapsulate single cells as well as homotypic cell aggregates. Drug-sensitive cells showed greater death in the presence or absence of Doxorubicin (Dox) compared to the drug-resistant cells. We observed heterogeneous Dox uptake in individual drug-sensitive cells while the drug-resistant cells showed uniformly low uptake and retention. Dox-resistant cells were classified into distinct subsets based on their efflux properties. Cells that showed longer retention of extracellular reagents also demonstrated maximal death. We further observed homotypic fusion of both cell types in droplets, which resulted in increased cell survival in the presence of high doses of Dox. Our results establish the applicability of this microfluidic platform for quantitative drug screening in single cells and multicellular interactions. PMID:26456240

  3. Old Drugs, New Purpose: Retooling Existing Drugs for Optimized Treatment of Resistant Tuberculosis

    PubMed Central

    Dooley, Kelly E.; Mitnick, Carole D.; Ann DeGroote, Mary; Obuku, Ekwaro; Belitsky, Vera; Hamilton, Carol D.; Makhene, Mamodikoe; Shah, Sarita; Brust, James C. M.; Durakovic, Nadza; Nuermberger, Eric

    2012-01-01

    Treatment of drug-resistant tuberculosis is hindered by the high toxicity and poor efficacy of second-line drugs. New compounds must be used together with existing drugs, yet clinical trials to optimize combinations of drugs for drug-resistant tuberculosis are lacking. We conducted an extensive review of existing in vitro, animal, and clinical studies involving World Health Organization–defined group 1, 2, and 4 drugs used in drug-resistant tuberculosis regimens to inform clinical trials and identify critical research questions. Results suggest that optimizing the dosing of pyrazinamide, the injectables, and isoniazid for drug-resistant tuberculosis is a high priority. Additional pharmacokinetic, pharmacodynamic, and toxicodynamic studies are needed for pyrazinamide and ethionamide. Clinical trials of the comparative efficacy and appropriate treatment duration of injectables are recommended. For isoniazid, rapid genotypic tests for Mycobacterium tuberculosis mutations should be nested in clinical trials. Further research focusing on optimization of dose and duration of drugs with activity against drug-resistant tuberculosis is paramount. PMID:22615332

  4. Phenotypic drug profiling in droplet microfluidics for better targeting of drug-resistant tumors.

    PubMed

    Sarkar, S; Cohen, N; Sabhachandani, P; Konry, T

    2015-12-01

    Acquired drug resistance is a key factor in the failure of chemotherapy. Due to intratumoral heterogeneity, cancer cells depict variations in intracellular drug uptake and efflux at the single cell level, which may not be detectable in bulk assays. In this study we present a droplet microfluidics-based approach to assess the dynamics of drug uptake, efflux and cytotoxicity in drug-sensitive and drug-resistant breast cancer cells. An integrated droplet generation and docking microarray was utilized to encapsulate single cells as well as homotypic cell aggregates. Drug-sensitive cells showed greater death in the presence or absence of Doxorubicin (Dox) compared to the drug-resistant cells. We observed heterogeneous Dox uptake in individual drug-sensitive cells while the drug-resistant cells showed uniformly low uptake and retention. Dox-resistant cells were classified into distinct subsets based on their efflux properties. Cells that showed longer retention of extracellular reagents also demonstrated maximal death. We further observed homotypic fusion of both cell types in droplets, which resulted in increased cell survival in the presence of high doses of Dox. Our results establish the applicability of this microfluidic platform for quantitative drug screening in single cells and multicellular interactions. PMID:26456240

  5. Effect of Vibration on Bacterial Growth and Antibiotic Resistance

    NASA Technical Reports Server (NTRS)

    Juergensmeyer, Elizabeth A.; Juergensmeyer, Margaret A.

    2004-01-01

    The purpose of this research grant was to provide a fundamental, systematic investigation of the effects of oscillatory acceleration on bacterial proliferation and their responses to antibiotics in a liquid medium.

  6. Fungal naphtho-γ-pyrones: Potent antibiotics for drug-resistant microbial pathogens.

    PubMed

    He, Yan; Tian, Jun; Chen, Xintao; Sun, Weiguang; Zhu, Hucheng; Li, Qin; Lei, Liang; Yao, Guangmin; Xue, Yongbo; Wang, Jianping; Li, Hua; Zhang, Yonghui

    2016-01-01

    Four naphtho-γ-pyrones (fonsecinones A and C and aurasperones A and E) were identified as potential antibacterial agents against Escherichia coli, extended-spectrum β-lactamase (ESBL)-producing E. coli, Pseudomonas aeruginosa, Enterococcus faecalis, and methicillin-resistant Staphylococcus aureus (MRSA) in an in vitro antibacterial screen of 218 fungal metabolites. Fonsecinone A (2) exhibited the most potent antibacterial activity, with minimum inhibitory concentrations (MICs) of 4.26, 17.04, and 4.26 μg/mL against ESBL-producing E. coli, P. aeruginosa, and E. faecalis, respectively. The inhibitory effects of fonsecinones A (2) and C (3) against E. coli and ESBL-producing E. coli were comparable to those of amikacin. Molecular docking-based target identification of naphtho-γ-pyrones 1-8 revealed bacterial enoyl-acyl carrier protein reductase (FabI) as an antibacterial target, which was further validated by FabI affinity and inhibition assays. Fonsecinones A (2) and C (3) and aurasperones A (6) and E (7) bound FabI specifically and produced concentration-dependent inhibition effects. This work is the first report of anti-drug-resistant bacterial activities of naphtho-γ-pyrones 1-8 and their possible antibacterial mechanism of action and provides an example of the successful application of in silico methods for drug target identification and validation and the identification of new lead antibiotic compounds against drug-resistant pathogens. PMID:27063778

  7. Fungal naphtho-γ-pyrones: Potent antibiotics for drug-resistant microbial pathogens

    PubMed Central

    He, Yan; Tian, Jun; Chen, Xintao; Sun, Weiguang; Zhu, Hucheng; Li, Qin; Lei, Liang; Yao, Guangmin; Xue, Yongbo; Wang, Jianping; Li, Hua; Zhang, Yonghui

    2016-01-01

    Four naphtho-γ-pyrones (fonsecinones A and C and aurasperones A and E) were identified as potential antibacterial agents against Escherichia coli, extended-spectrum β-lactamase (ESBL)-producing E. coli, Pseudomonas aeruginosa, Enterococcus faecalis, and methicillin-resistant Staphylococcus aureus (MRSA) in an in vitro antibacterial screen of 218 fungal metabolites. Fonsecinone A (2) exhibited the most potent antibacterial activity, with minimum inhibitory concentrations (MICs) of 4.26, 17.04, and 4.26 μg/mL against ESBL-producing E. coli, P. aeruginosa, and E. faecalis, respectively. The inhibitory effects of fonsecinones A (2) and C (3) against E. coli and ESBL-producing E. coli were comparable to those of amikacin. Molecular docking-based target identification of naphtho-γ-pyrones 1–8 revealed bacterial enoyl-acyl carrier protein reductase (FabI) as an antibacterial target, which was further validated by FabI affinity and inhibition assays. Fonsecinones A (2) and C (3) and aurasperones A (6) and E (7) bound FabI specifically and produced concentration-dependent inhibition effects. This work is the first report of anti-drug-resistant bacterial activities of naphtho-γ-pyrones 1–8 and their possible antibacterial mechanism of action and provides an example of the successful application of in silico methods for drug target identification and validation and the identification of new lead antibiotic compounds against drug-resistant pathogens. PMID:27063778

  8. Biochemistry of Bacterial Multidrug Efflux Pumps

    PubMed Central

    Kumar, Sanath; Varela, Manuel F.

    2012-01-01

    Bacterial pathogens that are multi-drug resistant compromise the effectiveness of treatment when they are the causative agents of infectious disease. These multi-drug resistance mechanisms allow bacteria to survive in the presence of clinically useful antimicrobial agents, thus reducing the efficacy of chemotherapy towards infectious disease. Importantly, active multi-drug efflux is a major mechanism for bacterial pathogen drug resistance. Therefore, because of their overwhelming presence in bacterial pathogens, these active multi-drug efflux mechanisms remain a major area of intense study, so that ultimately measures may be discovered to inhibit these active multi-drug efflux pumps. PMID:22605991

  9. New Role for FDA-Approved Drugs in Combating Antibiotic-Resistant Bacteria.

    PubMed

    Andersson, Jourdan A; Fitts, Eric C; Kirtley, Michelle L; Ponnusamy, Duraisamy; Peniche, Alex G; Dann, Sara M; Motin, Vladimir L; Chauhan, Sadhana; Rosenzweig, Jason A; Sha, Jian; Chopra, Ashok K

    2016-06-01

    Antibiotic resistance in medically relevant bacterial pathogens, coupled with a paucity of novel antimicrobial discoveries, represents a pressing global crisis. Traditional drug discovery is an inefficient and costly process; however, systematic screening of Food and Drug Administration (FDA)-approved therapeutics for other indications in humans offers a rapid alternative approach. In this study, we screened a library of 780 FDA-approved drugs to identify molecules that rendered RAW 264.7 murine macrophages resistant to cytotoxicity induced by the highly virulent Yersinia pestis CO92 strain. Of these compounds, we identified 94 not classified as antibiotics as being effective at preventing Y. pestis-induced cytotoxicity. A total of 17 prioritized drugs, based on efficacy in in vitro screens, were chosen for further evaluation in a murine model of pneumonic plague to delineate if in vitro efficacy could be translated in vivo Three drugs, doxapram (DXP), amoxapine (AXPN), and trifluoperazine (TFP), increased animal survivability despite not exhibiting any direct bacteriostatic or bactericidal effect on Y. pestis and having no modulating effect on crucial Y. pestis virulence factors. These findings suggested that DXP, AXPN, and TFP may modulate host cell pathways necessary for disease pathogenesis. Finally, to further assess the broad applicability of drugs identified from in vitro screens, the therapeutic potential of TFP, the most efficacious drug in vivo, was evaluated in murine models of Salmonella enterica serovar Typhimurium and Clostridium difficile infections. In both models, TFP treatment resulted in increased survivability of infected animals. Taken together, these results demonstrate the broad applicability and potential use of nonantibiotic FDA-approved drugs to combat respiratory and gastrointestinal bacterial pathogens. PMID:27067323

  10. A Research-Inspired Laboratory Sequence Investigating Acquired Drug Resistance

    ERIC Educational Resources Information Center

    Taylor, Elizabeth Vogel; Fortune, Jennifer A.; Drennan, Catherine L.

    2010-01-01

    Here, we present a six-session laboratory exercise designed to introduce students to standard biochemical techniques in the context of investigating a high impact research topic, acquired resistance to the cancer drug Gleevec. Students express a Gleevec-resistant mutant of the Abelson tyrosine kinase domain, the active domain of an oncogenic…

  11. The interplay between drug resistance and fitness in malaria parasites

    PubMed Central

    Rosenthal, Philip J.

    2013-01-01

    Summary Controlling the spread of antimalarial drug resistance, especially resistance of Plasmodium falciparum to artemisinin-based combination therapies, is a high priority. Available data indicate that, as with other microorganisms, the spread of drug-resistant malaria parasites is limited by fitness costs that frequently accompany resistance. Resistance-mediating polymorphisms in malaria parasites have been identified in putative drug transporters and in target enzymes. The impacts of these polymorphisms on parasite fitness have been characterized in vitro and in animal models. Additional insights have come from analyses of samples from clinical studies, both evaluating parasites under different selective pressures and determining the clinical consequences of infection with different parasites. With some exceptions, resistance-mediating polymorphisms lead to malaria parasites that, compared to wild type, grow less well in culture and in animals, and are replaced by wild type when drug pressure diminishes in the clinical setting. In some cases, the fitness costs of resistance may be offset by compensatory mutations that increase virulence or changes that enhance malaria transmission. However, not enough is known about effects of resistance mediators on parasite fitness. A better appreciation of the costs of fitness-mediating mutations will facilitate the development of optimal guidelines for the treatment and prevention of malaria. PMID:23899091

  12. Bacterial Magnetosome: A Novel Biogenetic Magnetic Targeted Drug Carrier with Potential Multifunctions

    PubMed Central

    Sun, Jianbo; Li, Ying; Liang, Xing-Jie; Wang, Paul C.

    2012-01-01

    Bacterial magnetosomes (BMs) synthesized by magnetotactic bacteria have recently drawn great interest due to their unique features. BMs are used experimentally as carriers for antibodies, enzymes, ligands, nucleic acids, and chemotherapeutic drugs. In addition to the common attractive properties of magnetic carriers, BMs also show superiority as targeting nanoscale drug carriers, which is hardly matched by artificial magnetic particles. We are presenting the potential applications of BMs as drug carriers by introducing the drug-loading methods and strategies and the recent research progress of BMs which has contributed to the application of BMs as drug carriers. PMID:22448162

  13. Comprehensive screening of genes resistant to an anticancer drug in esophageal squamous cell carcinoma

    PubMed Central

    TSUTSUI, MAI; KAWAKUBO, HIROFUMI; HAYASHIDA, TESTSU; FUKUDA, KAZUMASA; NAKAMURA, RIEKO; TAKAHASHI, TSUNEHIRO; WADA, NORIHITO; SAIKAWA, YOSHIRO; OMORI, TAI; TAKEUCHI, HIROYA; KITAGAWA, YUKO

    2015-01-01

    Drug resistance to chemotherapy is a major issue in esophageal cancer management. Drug resistance may be mediated by genetic changes in the tumor; therefore, the identification of gene mutations may lead to better therapeutic outcomes. We used a novel method involving transposons to screen and identify drug-resistant genes. Transposons are DNA sequences that move from one location on the gene to another. A modified piggyBac transposon was designed as an insertion mutagen, and a cytomegalovirus (CMV) promoter sequence was added to induce strong transcription. When the transposon is inserted to the upstream of a certain gene, the gene will be overexpressed while when intserted down or intragenically, it will be downregulated. After establishing a transposon-tagged cell library, we treated cell lines derived from esophageal squamous cell carcinomas (ESCC) [Tohoku esophagus (TE)] with cisplatin (CDDP). We performed splinkerette PCR and TOPO cloning on the resistant colonies. Bacterial colonies were sequenced, and next-generation sequencing was used to identify the overexpressed/downregulated sequences as candidate genes for CDDP resistance. We established 4 cell lines of transposon-tagged cells, TE4, 5, 9 and 15. We treated the two relatively viable cell lines, TE4 and TE15, with CDDP. We identified 37 candidate genes from 8 resistant colonies. Eight genes were overexpressed whilst 29 were downregulated. Among these genes was Janus kinase 2 (JAK2) that is implicated in the progression of myeloproliferative neoplasms. We identified 37 candidate genes responsible for CDDP resistance in the two cell lines derived from ESCC cells. The method is inexpensive, relatively simple, and capable of introducing activating and de-activating mutations in the genome, allowing for drug-resistant genes to be identified. PMID:26202837

  14. Acquisition of Drug Resistance and Dependence by Prions

    PubMed Central

    Oelschlegel, Anja M.; Weissmann, Charles

    2013-01-01

    We have reported that properties of prion strains may change when propagated in different environments. For example, when swainsonine-sensitive 22L prions were propagated in PK1 cells in the presence of swainsonine, drug-resistant variants emerged. We proposed that prions constitute quasi- populations comprising a range of variants with different properties, from which the fittest are selected in a particular environment. Prion populations developed heterogeneity even after biological cloning, indicating that during propagation mutation-like processes occur at the conformational level. Because brain-derived 22L prions are naturally swainsonine resistant, it was not too surprising that prions which had become swa sensitive after propagation in cells could revert to drug resistance. Because RML prions, both after propagation in brain or in PK1 cells, are swainsonine sensitive, we investigated whether it was nonetheless possible to select swainsonine-resistant variants by propagation in the presence of the drug. Interestingly, this was not possible with the standard line of PK1 cells, but in certain PK1 sublines not only swainsonine-resistant, but even swainsonine-dependent populations (i.e. that propagated more rapidly in the presence of the drug) could be isolated. Once established, they could be passaged indefinitely in PK1 cells, even in the absence of the drug, without losing swainsonine dependence. The misfolded prion protein (PrPSc) associated with a swainsonine-dependent variant was less rapidly cleared in PK1 cells than that associated with its drug-sensitive counterpart, indicating that likely structural differences of the misfolded PrP underlie the properties of the prions. In summary, propagation of prions in the presence of an inhibitory drug may not only cause the selection of drug-resistant prions but even of stable variants that propagate more efficiently in the presence of the drug. These adaptations are most likely due to conformational changes of

  15. The Warburg effect and drug resistance.

    PubMed

    Bhattacharya, Bhaskar; Mohd Omar, Mohd Feroz; Soong, Richie

    2016-03-01

    : The Warburg effect describes the increased utilization of glycolysis rather than oxidative phosphorylation by tumour cells for their energy requirements under physiological oxygen conditions. This effect has been the basis for much speculation on the survival advantage of tumour cells, tumourigenesis and the microenvironment of tumours. More recently, studies have begun to reveal how the Warburg effect could influence drug efficacy and how our understanding of tumour energetics could be exploited to improve drug development. In particular, evidence is emerging demonstrating how better modelling of the tumour metabolic microenvironment could lead to a better prediction of drug efficacy and the identification of new combination strategies. This review will provide details of the current understanding of the complex interplay between glucose metabolism and pharmacology and discuss opportunities for utilizing the Warburg effect in future drug development. PMID:26750865

  16. The Warburg effect and drug resistance

    PubMed Central

    Mohd Omar, Mohd Feroz; Soong, Richie

    2016-01-01

      The Warburg effect describes the increased utilization of glycolysis rather than oxidative phosphorylation by tumour cells for their energy requirements under physiological oxygen conditions. This effect has been the basis for much speculation on the survival advantage of tumour cells, tumourigenesis and the microenvironment of tumours. More recently, studies have begun to reveal how the Warburg effect could influence drug efficacy and how our understanding of tumour energetics could be exploited to improve drug development. In particular, evidence is emerging demonstrating how better modelling of the tumour metabolic microenvironment could lead to a better prediction of drug efficacy and the identification of new combination strategies. This review will provide details of the current understanding of the complex interplay between glucose metabolism and pharmacology and discuss opportunities for utilizing the Warburg effect in future drug development. PMID:26750865

  17. Multidrug-resistant bacterial infections after liver transplantation: An ever-growing challenge

    PubMed Central

    Santoro-Lopes, Guilherme; de Gouvêa, Erika Ferraz

    2014-01-01

    Bacterial infections are a leading cause of morbidity and mortality among solid organ transplant recipients. Over the last two decades, various multidrug-resistant (MDR) pathogens have emerged as relevant causes of infection in this population. Although this fact reflects the spread of MDR pathogens in health care facilities worldwide, several factors relating to the care of transplant donor candidates and recipients render these patients particularly prone to the acquisition of MDR bacteria and increase the likelihood of MDR infectious outbreaks in transplant units. The awareness of this high vulnerability of transplant recipients to infection leads to the more frequent use of broad-spectrum empiric antibiotic therapy, which further contributes to the selection of drug resistance. This vicious cycle is difficult to avoid and leads to a scenario of increased complexity and narrowed therapeutic options. Infection by MDR pathogens is more frequently associated with a failure to start appropriate empiric antimicrobial therapy. The lack of appropriate treatment may contribute to the high mortality occurring in transplant recipients with MDR infections. Furthermore, high therapeutic failure rates have been observed in patients infected with extensively-resistant pathogens, such as carbapenem-resistant Enterobacteriaceae, for which optimal treatment remains undefined. In such a context, the careful implementation of preventive strategies is of utmost importance to minimize the negative impact that MDR infections may have on the outcome of liver transplant recipients. This article reviews the current literature regarding the incidence and outcome of MDR infections in liver transplant recipients, and summarizes current preventive and therapeutic recommendations. PMID:24876740

  18. Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells

    PubMed Central

    Ramirez, Michael; Rajaram, Satwik; Steininger, Robert J.; Osipchuk, Daria; Roth, Maike A.; Morinishi, Leanna S.; Evans, Louise; Ji, Weiyue; Hsu, Chien-Hsiang; Thurley, Kevin; Wei, Shuguang; Zhou, Anwu; Koduru, Prasad R.; Posner, Bruce A.; Wu, Lani F.; Altschuler, Steven J.

    2016-01-01

    Cancer therapy has traditionally focused on eliminating fast-growing populations of cells. Yet, an increasing body of evidence suggests that small subpopulations of cancer cells can evade strong selective drug pressure by entering a ‘persister' state of negligible growth. This drug-tolerant state has been hypothesized to be part of an initial strategy towards eventual acquisition of bona fide drug-resistance mechanisms. However, the diversity of drug-resistance mechanisms that can expand from a persister bottleneck is unknown. Here we compare persister-derived, erlotinib-resistant colonies that arose from a single, EGFR-addicted lung cancer cell. We find, using a combination of large-scale drug screening and whole-exome sequencing, that our erlotinib-resistant colonies acquired diverse resistance mechanisms, including the most commonly observed clinical resistance mechanisms. Thus, the drug-tolerant persister state does not limit—and may even provide a latent reservoir of cells for—the emergence of heterogeneous drug-resistance mechanisms. PMID:26891683

  19. Pilot Screening to Determine Antimicrobial Synergies in a Multidrug-Resistant Bacterial Strain Library.

    PubMed

    Kim, Si-Hyun; Park, Chulmin; Chun, Hye-Sun; Lee, Dong-Gun; Choi, Jae-Ki; Lee, Hyo-Jin; Cho, Sung-Yeon; Park, Sun Hee; Choi, Su-Mi; Choi, Jung-Hyun; Yoo, Jin-Hong

    2016-07-01

    With the rise in multidrug-resistant (MDR) bacterial infections, there has been increasing interest in combinations of ≥2 antimicrobial agents with synergistic effects. We established an MDR bacterial strain library to screen for in vitro antimicrobial synergy by using a broth microdilution checkerboard method and high-throughput luciferase-based bacterial cell viability assay. In total, 39 MDR bacterial strains, including 23 carbapenem-resistant gram-negative bacteria, 9 vancomycin-intermediate Staphylococcus aureus, and 7 vancomycin-resistant Enterococcus faecalis, were used to screen for potential antimicrobial synergies. Synergies were more frequently identified with combinations of imipenem plus trimethoprim-sulfamethoxazole for carbapenem-resistant Acinetobacter baumannii in the library. To verify this finding, we tested 34 A. baumannii clinical isolates resistant to both imipenem and trimethoprim-sulfamethoxazole by the checkerboard method. The imipenem plus trimethoprim-sulfamethoxazole combination showed synergy in the treatment of 21 (62%) of the clinical isolates. The results indicate that pilot screening for antimicrobial synergy in the MDR bacterial strain library could be valuable in the selection of combination therapeutic regimens to treat MDR bacterial infections. Further studies are warranted to determine whether this screening system can be useful to screen for the combined effects of conventional antimicrobials and new-generation antimicrobials or nonantimicrobials. PMID:26974861

  20. Pilot Screening to Determine Antimicrobial Synergies in a Multidrug-Resistant Bacterial Strain Library

    PubMed Central

    Kim, Si-Hyun; Park, Chulmin; Chun, Hye-Sun; Choi, Jae-Ki; Lee, Hyo-Jin; Cho, Sung-Yeon; Park, Sun Hee; Choi, Su-Mi; Choi, Jung-Hyun; Yoo, Jin-Hong

    2016-01-01

    With the rise in multidrug-resistant (MDR) bacterial infections, there has been increasing interest in combinations of ≥2 antimicrobial agents with synergistic effects. We established an MDR bacterial strain library to screen for in vitro antimicrobial synergy by using a broth microdilution checkerboard method and high-throughput luciferase-based bacterial cell viability assay. In total, 39 MDR bacterial strains, including 23 carbapenem-resistant gram-negative bacteria, 9 vancomycin-intermediate Staphylococcus aureus, and 7 vancomycin-resistant Enterococcus faecalis, were used to screen for potential antimicrobial synergies. Synergies were more frequently identified with combinations of imipenem plus trimethoprim–sulfamethoxazole for carbapenem-resistant Acinetobacter baumannii in the library. To verify this finding, we tested 34 A. baumannii clinical isolates resistant to both imipenem and trimethoprim–sulfamethoxazole by the checkerboard method. The imipenem plus trimethoprim–sulfamethoxazole combination showed synergy in the treatment of 21 (62%) of the clinical isolates. The results indicate that pilot screening for antimicrobial synergy in the MDR bacterial strain library could be valuable in the selection of combination therapeutic regimens to treat MDR bacterial infections. Further studies are warranted to determine whether this screening system can be useful to screen for the combined effects of conventional antimicrobials and new-generation antimicrobials or nonantimicrobials. PMID:26974861

  1. Resistance mechanisms and drug susceptibility testing of nontuberculous mycobacteria.

    PubMed

    van Ingen, Jakko; Boeree, Martin J; van Soolingen, Dick; Mouton, Johan W

    2012-06-01

    Nontuberculous mycobacteria (NTM) are increasingly recognized as causative agents of opportunistic infections in humans. For most NTM infections the therapy of choice is drug treatment, but treatment regimens differ by species, in particular between slow (e.g. Mycobacterium avium complex, Mycobacterium kansasii) and rapid growers (e.g. Mycobacterium abscessus, Mycobacterium fortuitum). In general, drug treatment is long, costly, and often associated with drug-related toxicities; outcome of drug treatment is poor and is likely related to the high levels of natural antibiotic resistance in NTM. The role of drug susceptibility testing (DST) in the choice of agents for antimicrobial treatment of NTM disease, mainly that by slow growers, remains subject of debate. There are important discrepancies between drug susceptibility measured in vitro and the activity of the drug observed in vivo. In part, these discrepancies derive from laboratory technical issues. There is still no consensus on a standardized method. With the increasing clinical importance of NTM disease, DST of NTM is again in the spotlight. This review provides a comprehensive overview of the mechanisms of drug resistance in NTM, phenotypic methods for testing susceptibility in past and current use for DST of NTM, as well as molecular approaches to assess drug resistance. PMID:22525524

  2. An efficient system for intracellular delivery of beta-lactam antibiotics to overcome bacterial resistance

    PubMed Central

    Abed, Nadia; Saïd-Hassane, Fatouma; Zouhiri, Fatima; Mougin, Julie; Nicolas, Valérie; Desmaële, Didier; Gref, Ruxandra; Couvreur, Patrick

    2015-01-01

    The “Golden era” of antibiotics is definitely an old story and this is especially true for intracellular bacterial infections. The poor intracellular bioavailability of antibiotics reduces the efficency of many treatments and thereby promotes resistances. Therefore, the development of nanodevices coupled with antibiotics that are capable of targeting and releasing the drug into the infected-cells appears to be a promising solution to circumvent these complications. Here, we took advantage of two natural terpenes (farnesyl and geranyl) to design nanodevices for an efficient intracellular delivery of penicillin G. The covalent linkage between the terpene moieties and the antibiotic leads to formation of prodrugs that self-assemble to form nanoparticles with a high drug payload between 55–63%. Futhermore, the addition of an environmentally-sensitive bond between the antibiotic and the terpene led to an efficient antibacterial activity against the intracellular pathogen Staphylococcus aureus with reduced intracellular replication of about 99.9% compared to untreated infected cells. Using HPLC analysis, we demonstrated and quantified the intracellular release of PenG when this sensitive-bond (SB) was present on the prodrug, showing the success of this technology to deliver antibiotics directly into cells. PMID:26311631

  3. Distribution of drug-resistant bacteria and rational use of clinical antimicrobial agents

    PubMed Central

    ZHOU, CHENLIANG; CHEN, XIAOBING; WU, LIWEN; QU, JING

    2016-01-01

    Open wound may lead to infection in patients. Due to overuse of medication, certain bacteria have become resistant to drugs currently available. The aim of the present study was to provide a guide to ameliorate the appropriate and rational use of clinical antimicrobial agents by analyzing the distribution of drug-resistant pathogenic bacteria in patients. Between October 2013 and January 2015, 126 patients were selected at the Department of Orthopedics. Wound secretion samples were collected, and the pathogen bacteria isolated and identified. Identification was performed using an automated identification instrument and the Kirby-Bauer antibiotic method was used to evaluate the bacterial resistance. Of the 126 patients, 118 patients were infected (infection rate, 93.65%). Additionally, 47 strains of gram-positive pathogenic bacteria (39.83%) and 71 strains of pathogenic-gram negative bacteria (60.17%) were identified. The bacteria were most likely to be resistant to penicillin while sensitive to vancomycin and imipenem. Some bacteria were resistant to several antibacterial agents. The results showed that existing risk factors at the Department of Orthopedics were complex and any non-standard procedures were able to cause bacterial infection. There were obvious dissimilarities among infectious bacteria with regard to their sensitivity to various antibacterial agents. Manipulation techniques during the treatment process were performed in a sterile manner and the use of antibacterial agents was required to be strictly in accordance with the results of drug sensitivity tests to provide effective etiologic information and a treatment plan for clinical trials and to reduce the risk of infection by multi-resistant bacteria. PMID:27313667

  4. Bacterial resistance and impetigo treatment trends: a review.

    PubMed

    Bangert, Scott; Levy, Moise; Hebert, Adelaide A

    2012-01-01

    Impetigo is a common cutaneous infection that is especially prevalent in children. The prevalence of colonization and infection with resistant strains is continually increasing, forcing clinicians to reevaluate treatment strategies. Newer topical agents are effective in treating infections with resistant strains and may help minimize resistance and adverse effects from systemic agents. Use of topical disinfectants to decrease colonization is an important adjunctive measure. Physicians should be aware of local resistance patterns in impetigo to help guide therapy. PMID:22299710

  5. Update on antifungal drug resistance mechanisms of Aspergillus fumigatus.

    PubMed

    Chamilos, G; Kontoyiannis, D P

    2005-12-01

    Although the arsenal of agents with anti-Aspergillus activity has expanded over the last decade, mortality due to invasive aspergillosis (IA) remains unacceptably high. Aspergillus fumigatus still accounts for the majority of cases of IA; however less susceptible to antifungals non-fumigatus aspergilli began to emerge. Antifungal drug resistance of Aspergillus might partially account for treatment failures. Recent advances in our understanding of mechanisms of antifungal drug action in Aspergillus, along with the standardization of in vitro susceptibility testing methods, has brought resistance testing to the forefront of clinical mycology. In addition, molecular biology has started to shed light on the mechanisms of resistance of A. fumigatus to azoles and the echinocandins, while genome-based assays show promise for high-throughput screening for genotypic antifungal resistance. Several problems remain, however, in the study of this complex area. Large multicenter clinical studies--point prevalence or longitudinal--to capture the incidence and prevalence of antifungal resistance in A. fumigatus isolates are lacking. Correlation of in vitro susceptibility with clinical outcome and susceptibility breakpoints has not been established. In addition, the issue of cross-resistance between the newer triazoles is of concern. Furthermore, in vitro resistance testing for polyenes and echinocandins is difficult, and their mechanisms of resistance are largely unknown. This review examines challenges in the diagnosis, epidemiology, and mechanisms of antifungal drug resistance in A. fumigatus. PMID:16488654

  6. [Mobile ISCR elements: structure, functions, and role in the emergence, increasing and spreading of blocks of bacterial genes of multiple antibiotic resistance].

    PubMed

    Il'ina, T S

    2012-01-01

    The recently discovered method of horizontal distribution of bacterial genes with atypical ISCR sequences is reviewed using an example of drug resistance genes. The adjacent DNA segment mobilization is provided by the transposition of such elements, including rolling circle replication, formation of autonomous nonreplicable circular structures, and homological recombination. The gene distribution capacity with the ISCR elements is more significant than the capacity of transposons and integrons, thereby providing formation of groups of mobile genes, including antibiotic-resistance genes of pathogenic bacteria. The structure and functions of the ISCR elements were discussed together with their similarity and dissimilarity with the group of IS91-similar elements and their role in the emergence of blocks of bacterial genes encoding of multiple antibiotic resistance and their contribution to evolution of bacterial and plasmid genes. PMID:23248846

  7. Modeling and predicting drug resistance rate and strength.

    PubMed

    Fullybright, R; Dwivedi, A; Mallawaarachchi, I; Sinsin, B

    2016-08-01

    Drug resistance has been worsening in human infectious diseases medicine over the past several decades. Our ability to successfully control resistance depends to a large extent on our understanding of the features characterizing the process. Part of that understanding includes the rate at which new resistance has been emerging in pathogens. Along that line, resistance data covering 90 infectious diseases, 118 pathogens, and 337 molecules, from 1921 through 2007, are modeled using various statistical tools to generate regression models for the rate of new resistance emergence and for cumulative resistance build-up in pathogens. Thereafter, the strength of the association between the number of molecules put on the market and the number of resulting cases of resistance is statistically tested. Predictive models are presented for the rate at which new resistance has been emerging in infectious diseases medicine, along with predictive models for the rate of cumulative resistance build-up in the aggregate of 118 pathogens as well as in ten individual pathogens. The models are expressed as a function of time and/or as a function of the number of molecules put on the market by the pharmaceutical industry. It is found that molecules significantly induce resistance in pathogens and that new or cumulative drug resistance across infectious diseases medicine has been arising at exponential rates. PMID:27209288

  8. Nanoparticles: Alternatives Against Drug-Resistant Pathogenic Microbes.

    PubMed

    Rudramurthy, Gudepalya Renukaiah; Swamy, Mallappa Kumara; Sinniah, Uma Rani; Ghasemzadeh, Ali

    2016-01-01

    Antimicrobial substances may be synthetic, semisynthetic, or of natural origin (i.e., from plants and animals). Antimicrobials are considered "miracle drugs" and can determine if an infected patient/animal recovers or dies. However, the misuse of antimicrobials has led to the development of multi-drug-resistant bacteria, which is one of the greatest challenges for healthcare practitioners and is a significant global threat. The major concern with the development of antimicrobial resistance is the spread of resistant organisms. The replacement of conventional antimicrobials by new technology to counteract antimicrobial resistance is ongoing. Nanotechnology-driven innovations provide hope for patients and practitioners in overcoming the problem of drug resistance. Nanomaterials have tremendous potential in both the medical and veterinary fields. Several nanostructures comprising metallic particles have been developed to counteract microbial pathogens. The effectiveness of nanoparticles (NPs) depends on the interaction between the microorganism and the NPs. The development of effective nanomaterials requires in-depth knowledge of the physicochemical properties of NPs and the biological aspects of microorganisms. However, the risks associated with using NPs in healthcare need to be addressed. The present review highlights the antimicrobial effects of various nanomaterials and their potential advantages, drawbacks, or side effects. In addition, this comprehensive information may be useful in the discovery of broad-spectrum antimicrobial drugs for use against multi-drug-resistant microbial pathogens in the near future. PMID:27355939

  9. Phenotypic Resistance and the Dynamics of Bacterial Escape from Phage Control

    PubMed Central

    Bull, James J.; Vegge, Christina Skovgaard; Schmerer, Matthew; Chaudhry, Waqas Nasir; Levin, Bruce R.

    2014-01-01

    The canonical view of phage - bacterial interactions in dense, liquid cultures is that the phage will eliminate most of the sensitive cells; genetic resistance will then ascend to restore high bacterial densities. Yet there are various mechanisms by which bacteria may remain sensitive to phages but still attain high densities in their presence – because bacteria enter a transient state of reduced adsorption. Importantly, these mechanisms may be cryptic and inapparent prior to the addition of phage yet result in a rapid rebound of bacterial density after phage are introduced. We describe mathematical models of these processes and suggest how different types of this ‘phenotypic’ resistance may be elucidated. We offer preliminary in vitro studies of a previously characterized E. coli model system and Campylobacter jejuni illustrating apparent phenotypic resistance. As phenotypic resistance may be specific to the receptors used by phages, awareness of its mechanisms may identify ways of improving the choice of phages for therapy. Phenotypic resistance can also explain several enigmas in the ecology of phage-bacterial dynamics. Phenotypic resistance does not preclude the evolution of genetic resistance and may often be an intermediate step to genetic resistance. PMID:24743264

  10. EPISTATIC INTERACTION BETWEEN TWO MAJOR QTL CONDITIONING RESISTANCE TO COMMON BACTERIAL BLIGHT IN COMMON BEAN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistance to common bacterial blight in common bean is a complex trait that is quantitatively inherited. Combining QTL is the current strategy for improving resistance, but interactions among different QTL are unknown. We examined the interaction between two independent QTL present in dry bean bre...

  11. Response to selection for bacterial cold water disease resistance in rainbow trout

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies indicate that resistance to experimental bacterial cold water disease (BCWD) challenge is heritable and thus may be improved through selective breeding. Our objective was to estimate response after one generation of genetic selection for resistance to BCWD in a pedigreed population ...

  12. Sphingolipids in neuroblastoma: their role in drug resistance mechanisms.

    PubMed

    Sietsma, Hannie; Dijkhuis, Anne Jan; Kamps, Willem; Kok, Jan Willem

    2002-08-01

    Disseminated neuroblastoma usually calls for chemotherapy as the primary approach for treatment. Treatment failure is often attributable to drug resistance. This involves a variety of cellular mechanisms, including increased drug efflux through expression of ATP-binding cassette transporters (e.g., P-glycoprotein) and the inability of tumor cells to activate or propagate the apoptotic response. In recent years it has become apparent that sphingolipid metabolism and the generation of sphingolipid species, such as ceramide, also play a role in drug resistance. This may involve an autonomous mechanism, related to direct effects of sphingolipids on the apoptotic response, but also a subtle interplay between sphingolipids and ATP-binding cassette transporters. Here, we present an overview of the current understanding of the multiple levels at which sphingolipids function in drug resistance, with an emphasis on sphingolipid function in neuroblastoma and how modulation of sphingolipid metabolism may be used as a novel treatment paradigm. PMID:12374201

  13. Surveillance for Antimicrobial Drug Resistance in Under-Resourced Countries

    PubMed Central

    Mary, Catherine; Altmann, Dany M.; Doumbo, Ogobara; Morpeth, Susan; Bhutta, Zulfiqar A.; Klugman, Keith P.

    2014-01-01

    Antimicrobial drug resistance is usually not monitored in under-resourced countries because they lack surveillance networks, laboratory capacity, and appropriate diagnostics. This accelerating problem accounts for substantial number of excess deaths, especially among infants. Infections particularly affected by antimicrobial drug resistance include tuberculosis, malaria, severe acute respiratory infections, and sepsis caused by gram-negative bacteria. Nonetheless, mapping antimicrobial drug resistance is feasible in under-resourced countries, and lessons can be learned from previous successful efforts. Specimen shipping conditions, data standardization, absence of contamination, and adequate diagnostics must be ensured. As a first step toward solving this problem, we propose that a road map be created at the international level to strengthen antimicrobial resistance surveillance in under-resourced countries. This effort should include a research agenda; a map of existing networks and recommendations to unite them; and a communication plan for national, regional, and international organizations and funding agencies. PMID:24564906

  14. Resistance to targeted cancer drugs through hepatocyte growth factor signaling

    PubMed Central

    Heynen, Guus JJE; Fonfara, Aldona; Bernards, René

    2014-01-01

    Cancer therapeutics that target a signaling pathway to which the cancer cells are addicted can deliver dramatic initial responses, but resistance is nearly always inevitable. A variety of mechanisms that cancer cells employ to escape from targeted cancer drugs have been described. We review here the role of Hepatocyte Growth Factor (HGF) and its receptor MET in drug resistance. We present data demonstrating that HGF can confer resistance to a number of kinase inhibitors in a variety of cancer cell lines and discuss our results in relation to the findings of others. Together, these data point at a major role for HGF/MET signaling in resistance to a variety of targeted cancer drugs. PMID:25426675

  15. Long non-coding RNAs in cancer drug resistance development.

    PubMed

    Majidinia, Maryam; Yousefi, Bahman

    2016-09-01

    The presence or emergence of chemoresistance in tumor cells is a major burden in cancer therapy. While drug resistance is a multifactorial phenomenon arising from altered membrane transport of drugs, altered drug metabolism, altered DNA repair, reduced apoptosis rate and alterations of drug metabolism, it can also be linked to genetic and epigenetic factors. Long non-coding RNAs (lncRNAs) have important regulatory roles in many aspects of genome function including gene transcription, splicing, and epigenetics as well as biological processes involved in cell cycle, cell differentiation, development, and pluripotency. As such, it may not be surprising that some lncRNAs have been recently linked to carcinogenesis and drug resistance/sensitivity. Research is accelerating to decipher the exact molecular mechanism of lncRNA-regulated drug resistance and its therapeutic implications. In this article, we will review the structure, biogenesis, and mode of action of lncRNAs. Then, the involvement of lncRNAs in drug resistance will be discussed in detail. PMID:27427176

  16. Investigational new drugs for the treatment of resistant pneumococcal infections.

    PubMed

    Hoffman-Roberts, Holly L; C Babcock, Emily; Mitropoulos, Isaac F

    2005-08-01

    Antibiotic resistance in Streptococcus pneumoniae is not only increasing with penicillin but also with other antimicrobial classes including the macrolides, tetracyclines and sulfonamides. This trend with antibiotic resistance has highlighted the need for the further development of new anti-infectives for the treatment of pneumococcal infections, particularly against multi-drug resistant pneumococci. Several new drugs with anti-pneumococcal activity are at various stages of development and will be discussed in this review. Two new cephalosporins with activity against S. pneumoniae include ceftobiprole and RWJ-54428. Faropenem is in a new class of beta-lactam antibiotics called the penems. Structurally, the penems are a hybrid between the penicillins and cephalosporins. Sitafloxacin and garenoxacin are two new quinolones that are likely to have a role in treating pneumococcal infections. Oritavancin and dalbavancin are glycopeptides with activity against methicillin-resistant S. aureus and vancomycin-resistant Enterococcus spp. as well as multi-drug resistant pneumococci. Tigecycline is the first drug in a new class of anti-infectives called the glycycyclines that has activity against penicillin-resistant pneumococci. PMID:16050791

  17. Cooperative Antibiotic Resistance in a Multi-Drug Environment

    NASA Astrophysics Data System (ADS)

    Yurtsev, Eugene; Dai, Lei; Gore, Jeff

    2013-03-01

    The emergence of antibiotic resistance in bacteria is a significant health concern. A frequent mechanism of antibiotic resistance involves the production of an enzyme which inactivates the antibiotic. By inactivating the antibiotic, resistant cells can ``share'' their resistance with other cells in the bacterial population, suggesting that it may be possible to observe cooperation between strains that inactivate different antibiotics. Here, we experimentally track the population dynamics of two E. coli strains in the presence of two different antibiotics. We find that together the strains are able to grow in antibiotic concentrations that inhibit growth of either of the strains individually. We observe that even when there is stable coexistence between the two strains, the population size of each strain can undergo large oscillations. We expect that our results will provide insight into the evolution of antibiotic resistance and the evolutionary origin of phenotypic diversity and cooperative behaviors.

  18. Effects of antibiotic resistance alleles on bacterial evolutionary responses to viral parasites

    PubMed Central

    Hall, Alex R.

    2016-01-01

    Antibiotic resistance has wide-ranging effects on bacterial phenotypes and evolution. However, the influence of antibiotic resistance on bacterial responses to parasitic viruses remains unclear, despite the ubiquity of such viruses in nature and current interest in therapeutic applications. We experimentally investigated this by exposing various Escherichia coli genotypes, including eight antibiotic-resistant genotypes and a mutator, to different viruses (lytic bacteriophages). Across 960 populations, we measured changes in population density and sensitivity to viruses, and tested whether variation among bacterial genotypes was explained by their relative growth in the absence of parasites, or mutation rate towards phage resistance measured by fluctuation tests for each phage. We found that antibiotic resistance had relatively weak effects on adaptation to phages, although some antibiotic-resistance alleles impeded the evolution of resistance to phages via growth costs. By contrast, a mutator allele, often found in antibiotic-resistant lineages in pathogenic populations, had a relatively large positive effect on phage-resistance evolution and population density under parasitism. This suggests costs of antibiotic resistance may modify the outcome of phage therapy against pathogenic populations previously exposed to antibiotics, but the effects of any co-occurring mutator alleles are likely to be stronger. PMID:27194288

  19. Effects of antibiotic resistance alleles on bacterial evolutionary responses to viral parasites.

    PubMed

    Arias-Sánchez, Flor I; Hall, Alex R

    2016-05-01

    Antibiotic resistance has wide-ranging effects on bacterial phenotypes and evolution. However, the influence of antibiotic resistance on bacterial responses to parasitic viruses remains unclear, despite the ubiquity of such viruses in nature and current interest in therapeutic applications. We experimentally investigated this by exposing various Escherichia coli genotypes, including eight antibiotic-resistant genotypes and a mutator, to different viruses (lytic bacteriophages). Across 960 populations, we measured changes in population density and sensitivity to viruses, and tested whether variation among bacterial genotypes was explained by their relative growth in the absence of parasites, or mutation rate towards phage resistance measured by fluctuation tests for each phage. We found that antibiotic resistance had relatively weak effects on adaptation to phages, although some antibiotic-resistance alleles impeded the evolution of resistance to phages via growth costs. By contrast, a mutator allele, often found in antibiotic-resistant lineages in pathogenic populations, had a relatively large positive effect on phage-resistance evolution and population density under parasitism. This suggests costs of antibiotic resistance may modify the outcome of phage therapy against pathogenic populations previously exposed to antibiotics, but the effects of any co-occurring mutator alleles are likely to be stronger. PMID:27194288

  20. Combinatorial discovery of polymers resistant to bacterial attachment

    PubMed Central

    Luckett, Jeni; Cockayne, Alan; Atkinson, Steve; Mei, Ying; Bayston, Roger; Irvine, Derek J; Langer, Robert; Anderson, Daniel G; Williams, Paul; Davies, Martyn C; Alexander, Morgan R

    2013-01-01

    Bacterial attachment and subsequent biofilm formation pose key challenges to the optimal performance of medical devices. In this study, we determined the attachment of selected bacterial species to hundreds of polymeric materials in a high-throughput microarray format. Using this method, we identified a group of structurally related materials comprising ester and cyclic hydrocarbon moieties that substantially reduced the attachment of pathogenic bacteria (Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli). Coating silicone with these ‘hit’ materials achieved up to a 30-fold (96.7%) reduction in the surface area covered by bacteria compared with a commercial silver hydrogel coating in vitro, and the same material coatings were effective at reducing bacterial attachment in vivo in a mouse implant infection model. These polymers represent a class of materials that reduce the attachment of bacteria that could not have been predicted to have this property from the current understanding of bacteria-surface interactions. PMID:22885723

  1. Problems of Glioblastoma Multiforme Drug Resistance.

    PubMed

    Stavrovskaya, A A; Shushanov, S S; Rybalkina, E Yu

    2016-02-01

    Glioblastoma multiforme (GBL) is the most common and aggressive brain neoplasm. A standard therapeutic approach for GBL involves combination therapy consisting of surgery, radiotherapy, and chemotherapy. The latter is based on temozolomide (TMZ). However, even by applying such a radical treatment strategy, the mean patient survival time is only 14.6 months. Here we review the molecular mechanisms underlying the resistance of GBL cells to TMZ including genetic and epigenetic mechanisms. Present data regarding a role for genes and proteins MGMT, IDH1/2, YB-1, MELK, MVP/LRP, MDR1 (ABCB1), and genes encoding other ABC transporters as well as Akt3 kinase in developing resistance of GBL to TMZ are discussed. Some epigenetic regulators of resistance to TMZ such as microRNA and EZH2 are reviewed. PMID:27260389

  2. Treatment of drug-resistant Shigella infections.

    PubMed

    Klontz, Karl C; Singh, Nalini

    2015-01-01

    Since the introduction of sulfonamides in the late 1930s, selective pressure and the widespread dissemination of mobile genetic elements conferring antimicrobial resistance have forced clinicians to seek successive agents for the treatment of multidrug-resistant shigellosis. Over the decades, the principal antibiotics used to treat Shigella infections have included tetracycline, chloramphenicol, ampicillin, trimethoprim-sulfamethoxazole, and nalidixic acid. Presently, ciprofloxacin, azithromycin, and ceftriaxone serve as the mainstays of treatment, although growing evidence has documented decreased susceptibility or full resistance to these agents in some regions. With diminishing pharmaceutical options available, there is an enhanced need for preventive measures in the form of improved sanitation and hygiene standards, strict use of currently effective agents, and a safe and effective licensed vaccine. PMID:25399653

  3. Zingiber officinale (ginger) compounds have tetracycline-resistance modifying effects against clinical extensively drug-resistant Acinetobacter baumannii.

    PubMed

    Wang, Hui-Min; Chen, Chung-Yi; Chen, Hsi-An; Huang, Wan-Chun; Lin, Wei-Ru; Chen, Tun-Chieh; Lin, Chun-Yu; Chien, Hsin-Ju; Lu, Po-Liang; Lin, Chiu-Mei; Chen, Yen-Hsu

    2010-12-01

    Extensively drug-resistant Acinetobacter baumannii (XDRAB) is a growing and serious nosocomial infection worldwide, such that developing new agents against it is critical. The antimicrobial activities of the rhizomes from Zingiber officinale, known as ginger, have not been proven in clinical bacterial isolates with extensive drug-resistance. This study aimed to investigate the effects of four known components of ginger, [6]-dehydrogingerdione, [10]-gingerol, [6]-shogaol and [6]-gingerol, against clinical XDRAB. All these compounds showed antibacterial effects against XDRAB. Combined with tetracycline, they showed good resistance modifying effects to modulate tetracycline resistance. Using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method, these four ginger compounds demonstrated antioxidant properties, which were inhibited by MnO₂, an oxidant without antibacterial effects. After the antioxidant property was blocked, their antimicrobial effects were abolished significantly. These results indicate that ginger compounds have antioxidant effects that partially contribute to their antimicrobial activity and are candidates for use in the treatment of infections with XDRAB. PMID:20564496

  4. Resistance and cross-resistance studies with narasin, a new polyether antibiotic anticoccidial drug.

    PubMed

    Jeffers, T K

    1981-01-01

    The Wisconsin (Wis) strain and a field strain (FS-196) of Eimeria tenella were propagated in the presence of 80 ppm narasin in an attempt to select for narasin resistance. Comparisons of the narasin sensitivity of the selected strains (Wis-NR and FS-196-NR) and of the parent strains (Wis and FS-196) from which they were derived revealed no resistance development. These findings agree with the results of similar studies with the polyether antibiotic anticoccidial drugs monensin and lasalocid and support the conclusion that chicken coccidia do not readily develop resistance to this class of anticoccidial drugs. In a separate series of experiments, the efficacy of narasin was evaluated against five E. tenella field strains, one each resistant to amprolium, clopidol, decoquinate, nicarbazin, and robenidine. Narasin effectively controlled infections that were inadequately controlled by the anticoccidial drugs to which the strains were resistant. There was no evidence of cross-resistance to narasin. PMID:7259679

  5. Drug Resistance Pattern of MTB Isolates from PTB Patients

    PubMed Central

    Ranganath, Rajani; Kumar, Vijay G. S.; Ranganath, Ravi; Goud, Gangadhar; Javali, Veerabhadra

    2013-01-01

    Background. TB is a global pandemic disease. All TB control programs were not successful due to the emergence of multidrug resistance in M. tuberculosis strains. Objective of the present study was to detect the rate of MDR-MTB in this part of India. Methods. One hundred and thirty clinical MTB strains isolated from patients on treatment and confirmed as MTB by MPT64 antigen detection were tested for drug susceptibility against Streptomycin, INH, Rifampicin, and Ethambutol by MBBact automated system. Result. Thirty-two were MDRs (25.61%). 31.2%, 28%, 17.6%, and 21.6% were resistant to INH, RIF, Ethambutol, and Streptomycin, respectively. Resistance to either INH or Rifampicin was 20.8% and 13.88%, respectively. Combined INH and Rifampicin resistance was seen in 18.05% isolates. Conclusion. Drug resistance rate is high in patients treated previously and who have been irregular on treatment. PMID:24282636

  6. Evolution of resistance to a last-resort antibiotic in Staphyloccocus aureus via bacterial competition

    PubMed Central

    Koch, Gudrun; Yepes, Ana; Förstner, Konrad U.; Wermser, Charlotte; Stengel, Stephanie T.; Modamio, Jennifer; Ohlsen, Knut; Foster, Kevin R.; Lopez, Daniel

    2014-01-01

    Summary Antibiotic resistance is a key medical concern, with antibiotic use likely being an important cause. However, here we describe an alternative route to clinically-relevant antibiotic resistance that occurs solely due to competitive interactions between bacterial cells. We consistently observe that isolates of Methicillin-resistant Staphylococcus aureus diversify spontaneously into two distinct, sequentially arising strains. The first evolved strain outgrows the parent strain via secretion of surfactants and a toxic bacteriocin. The second is resistant to the bacteriocin. Importantly, this second strain is also resistant to intermediate levels of vancomycin. This so-called VISA (vancomycin-intermediate S. aureus) phenotype is seen in many hard-to-treat clinical isolates. This strain diversification also occurs during in vivo infection in a mouse model, consistent with the fact that both coevolved phenotypes resemble strains commonly found in clinic. Our study shows how competition between coevolving bacterial strains can generate antibiotic resistance and recapitulate key clinical phenotypes. PMID:25171407

  7. Non-toxic antimicrobials that evade drug resistance

    PubMed Central

    Davis, Stephen A.; Vincent, Benjamin M.; Endo, Matthew M.; Whitesell, Luke; Marchillo, Karen; Andes, David R.; Lindquist, Susan; Burke, Martin D.

    2015-01-01

    Drugs that act more promiscuously provide fewer routes for the emergence of resistant mutants. But this benefit often comes at the cost of serious off-target and dose-limiting toxicities. The classic example is the antifungal amphotericin B (AmB), which has evaded resistance for more than half a century. We report dramatically less toxic amphotericins that nevertheless evade resistance. They are scalably accessed in just three steps from the natural product, and bind their target (the fungal sterol, ergosterol) with far greater selectivity than AmB. Hence, they are less toxic and far more effective in a mouse model of systemic candidiasis. Surprisingly, exhaustive efforts to select for mutants resistant to these more selective compounds revealed that they are just as impervious to resistance as AmB. Thus, highly selective cytocidal action and the evasion of resistance are not mutually exclusive, suggesting practical routes to the discovery of less toxic, resistance-evasive therapies. PMID:26030729

  8. Efflux pump-mediated drug resistance in Burkholderia

    PubMed Central

    Podnecky, Nicole L.; Rhodes, Katherine A.; Schweizer, Herbert P.

    2015-01-01

    Several members of the genus Burkholderia are prominent pathogens. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. Virtually all Burkholderia species are also resistant to polymyxin, prohibiting use of drugs like colistin that are available for treatment of infections caused by most other drug resistant Gram-negative bacteria. Despite clinical significance and antibiotic resistance of Burkholderia species, characterization of efflux pumps lags behind other non-enteric Gram-negative pathogens such as Acinetobacter baumannii and Pseudomonas aeruginosa. Although efflux pumps have been described in several Burkholderia species, they have been best studied in Burkholderia cenocepacia and B. pseudomallei. As in other non-enteric Gram-negatives, efflux pumps of the resistance nodulation cell division (RND) family are the clinically most significant efflux systems in these two species. Several efflux pumps were described in B. cenocepacia, which when expressed confer resistance to clinically significant antibiotics, including aminoglycosides, chloramphenicol, fluoroquinolones, and tetracyclines. Three RND pumps have been characterized in B. pseudomallei, two of which confer either intrinsic or acquired resistance to aminoglycosides, macrolides, chloramphenicol, fluoroquinolones, tetracyclines, trimethoprim, and in some instances trimethoprim+sulfamethoxazole. Several strains of the host-adapted B. mallei, a clone of B. pseudomallei, lack AmrAB-OprA, and are therefore aminoglycoside and macrolide susceptible. B. thailandensis is closely related to B. pseudomallei, but non-pathogenic to humans. Its pump repertoire and ensuing drug resistance profile parallels that of B. pseudomallei. An efflux pump in B. vietnamiensis plays a significant role in acquired aminoglycoside resistance. Summarily, efflux pumps are significant players in Burkholderia drug resistance. PMID:25926825

  9. Potential risk for drug resistance globalization at the Hajj.

    PubMed

    Al-Tawfiq, J A; Memish, Z A

    2015-02-01

    Antibiotics were once considered the miracle cure for infectious diseases. The tragedy would be the loss of these miracles as we witness increased antibiotic resistance throughout the world. One of the concerns during mass gatherings is the transmission of antibiotic resistance. Hajj is one of the most common recurring mass gatherings, attracting millions of people from around the world. The transmission of drug-resistant organisms during the Hajj is not well described. In the current review, we summarize the available literature on the transmission and acquisition of antibiotic resistance during the Hajj and present possible solutions. PMID:25682276

  10. Will drug resistance against dolutegravir in initial therapy ever occur?

    PubMed

    Wainberg, Mark A; Han, Ying-Shan

    2015-01-01

    Dolutegravir (DTG) is a second-generation integrase strand transfer inhibitor (INSTI) and INSTIs are the latest class of potent anti-HIV drugs. Compared to the first generation INSTIs, raltegravir, and elvitegravir, DTG shows a limited cross-resistance profile. More interestingly, clinical resistance mutations to DTG in treatment-naive patents have not been observed to this date. This review summarizes recent studies on resistance mutations to DTG and on our understanding of the mechanisms of resistance to DTG as well as future directions for research. PMID:25972810

  11. Drug Repurposing Identifies Inhibitors of Oseltamivir-Resistant Influenza Viruses.

    PubMed

    Bao, Ju; Marathe, Bindumadhav; Govorkova, Elena A; Zheng, Jie J

    2016-03-01

    The neuraminidase (NA) inhibitor, oseltamivir, is a widely used anti-influenza drug. However, oseltamivir-resistant H1N1 influenza viruses carrying the H275Y NA mutation spontaneously emerged as a result of natural genetic drift and drug treatment. Because H275Y and other potential mutations may generate a future pandemic influenza strain that is oseltamivir-resistant, alternative therapy options are needed. Herein, we show that a structure-based computational method can be used to identify existing drugs that inhibit resistant viruses, thereby providing a first line of pharmaceutical defense against this possible scenario. We identified two drugs, nalidixic acid and dorzolamide, that potently inhibit the NA activity of oseltamivir-resistant H1N1 viruses with the H275Y NA mutation at very low concentrations, but have no effect on wild-type H1N1 NA even at a much higher concentration, suggesting that the oseltamivir-resistance mutation itself caused susceptibility to these drugs. PMID:26833677

  12. Development of a risk reduction intervention to reduce bacterial and viral infections for injection drug users

    PubMed Central

    Phillips, Kristina T.; Altman, Jennifer K.; Corsi, Karen F.; Stein, Michael D.

    2016-01-01

    Bacterial infections are widespread problems among drug injectors, requiring novel preventive intervention. As part of a NIDA-funded study, we developed an intervention based on the Information-Motivation-Behavioral Skills Model, past research, injection hygiene protocols, and data collected from focus groups with 32 injectors in Denver in 2009. Qualitative responses from focus groups indicated that most participants had experienced skin abscesses and believed that bacterial infections were commonly a result of drug cut, injecting intramuscularly, and reusing needles. Access to injection supplies and experiencing withdrawal were the most frequently reported barriers to utilizing risk reduction. Implications for intervention development are discussed. PMID:23017057

  13. Antifungal drug resistance evokedvia RNAi-dependent epimutations

    PubMed Central

    Calo, Silvia; Shertz-Wall, Cecelia; Lee, Soo Chan; Bastidas, Robert J.; Nicolás, Francisco E.; Granek, Joshua A.; Mieczkowski, Piotr; Torres-Martinez, Santiago; Ruiz-Vazquez, Rosa M.; Cardenas, Maria E.; Heitman, Joseph

    2014-01-01

    Microorganisms evolve via mechanisms spanning sexual/parasexual reproduction, mutators, aneuploidy, Hsp90, and even prions. Mechanisms that may seem detrimental can be repurposed to generate diversity. Here we show the human fungal pathogen Mucor circinelloides develops spontaneous resistance to the antifungal drug FK506 (tacrolimus) via two distinct mechanisms. One involves Mendelian mutations that confer stable drug resistance; the other occurs via an epigenetic RNA interference (RNAi)-mediated pathway resulting in unstable drug resistance. The peptidyl-prolyl isomerase FKBP12 interacts with FK506 forming a complex that inhibits the protein phosphatase calcineurin1. Calcineurin inhibition by FK506 blocks M. circinelloides transition to hyphae and enforces yeast growth2. Mutations in the fkbA gene encoding FKBP12 or the calcineurin cnbR or cnaA genes confer FK506 resistance (FK506R) and restore hyphal growth. In parallel, RNAi is spontaneously triggered to silence the FKBP12 fkbA gene, giving rise to drug-resistant epimutants. FK506R epimutants readily reverted to the drug-sensitive wild-type (WT) phenotype when grown without drug. The establishment of these epimutants is accompanied by generation of abundant fkbA small RNA (sRNA) and requires the RNAi pathway as well as other factors that constrain or reverse the epimutant state. Silencing involves generation of a double-stranded RNA (dsRNA) trigger intermediate from the fkbA mature mRNA to produce antisense fkbA RNA. This study uncovers a novel epigenetic RNAi-based epimutation mechanism controlling phenotypic plasticity, with possible implications for antimicrobial drug resistance and RNAi-regulatory mechanisms in fungi and other eukaryotes. PMID:25079329

  14. Rewired Metabolism in Drug-resistant Leukemia Cells

    PubMed Central

    Stäubert, Claudia; Bhuiyan, Hasanuzzaman; Lindahl, Anna; Broom, Oliver Jay; Zhu, Yafeng; Islam, Saiful; Linnarsson, Sten; Lehtiö, Janne; Nordström, Anders

    2015-01-01

    Cancer cells that escape induction therapy are a major cause of relapse. Understanding metabolic alterations associated with drug resistance opens up unexplored opportunities for the development of new therapeutic strategies. Here, we applied a broad spectrum of technologies including RNA sequencing, global untargeted metabolomics, and stable isotope labeling mass spectrometry to identify metabolic changes in P-glycoprotein overexpressing T-cell acute lymphoblastic leukemia (ALL) cells, which escaped a therapeutically relevant daunorubicin treatment. We show that compared with sensitive ALL cells, resistant leukemia cells possess a fundamentally rewired central metabolism characterized by reduced dependence on glutamine despite a lack of expression of glutamate-ammonia ligase (GLUL), a higher demand for glucose and an altered rate of fatty acid β-oxidation, accompanied by a decreased pantothenic acid uptake capacity. We experimentally validate our findings by selectively targeting components of this metabolic switch, using approved drugs and starvation approaches followed by cell viability analyses in both the ALL cells and in an acute myeloid leukemia (AML) sensitive/resistant cell line pair. We demonstrate how comparative metabolomics and RNA expression profiling of drug-sensitive and -resistant cells expose targetable metabolic changes and potential resistance markers. Our results show that drug resistance is associated with significant metabolic costs in cancer cells, which could be exploited using new therapeutic strategies. PMID:25697355

  15. Homeless individuals and drug-resistant tuberculosis in south Texas.

    PubMed

    Morris, J T; McAllister, C K

    1992-09-01

    Drug-resistant tuberculosis was found in 21 percent of homeless individuals in New York City between 1982 and 1987. To see if this relationship existed in south Texas, we evaluated all admissions to a Texas Health Department facility with culture-proven tuberculosis. Four hundred forty-three patients were admitted between September 1987 and October 1990. Twenty-six, (5.9 percent) of these patients were identified as homeless. Alcoholism, tobacco abuse, divorce, and unemployment were common demographic characteristics. Six male patients and one female patient (27 percent) had Mycobacterium tuberculosis resistant to one or more antituberculosis drugs. Five were Hispanic, one was white, and one was black. The six male patients had resistance to only one drug, either rifampin or ethambutol. The female patient had resistance to streptomycin, isoniazid, and rifampin. These findings illustrate that drug-resistant tuberculosis exists among homeless individuals in south Texas. As the number of homeless people increases, physicians need to recognize that pulmonary tuberculosis is a frequent infection in this population and that the causal mycobacteria may well be resistant to one or more antituberculosis agents. PMID:1516406

  16. Nanomechanics of drug-target interactions and antibacterial resistance detection.

    PubMed

    Ndieyira, Joseph W; Watari, Moyu; McKendry, Rachel A

    2013-01-01

    The cantilever sensor, which acts as a transducer of reactions between model bacterial cell wall matrix immobilized on its surface and antibiotic drugs in solution, has shown considerable potential in biochemical sensing applications with unprecedented sensitivity and specificity. The drug-target interactions generate surface stress, causing the cantilever to bend, and the signal can be analyzed optically when it is illuminated by a laser. The change in surface stress measured with nano-scale precision allows disruptions of the biomechanics of model bacterial cell wall targets to be tracked in real time. Despite offering considerable advantages, multiple cantilever sensor arrays have never been applied in quantifying drug-target binding interactions. Here, we report on the use of silicon multiple cantilever arrays coated with alkanethiol self-assembled monolayers mimicking bacterial cell wall matrix to quantitatively study antibiotic binding interactions. To understand the impact of vancomycin on the mechanics of bacterial cell wall structures. We developed a new model(1) which proposes that cantilever bending can be described by two independent factors; i) namely a chemical factor, which is given by a classical Langmuir adsorption isotherm, from which we calculate the thermodynamic equilibrium dissociation constant (Kd) and ii) a geometrical factor, essentially a measure of how bacterial peptide receptors are distributed on the cantilever surface. The surface distribution of peptide receptors (p) is used to investigate the dependence of geometry and ligand loading. It is shown that a threshold value of p ~10% is critical to sensing applications. Below which there is no detectable bending signal while above this value, the bending signal increases almost linearly, revealing that stress is a product of a local chemical binding factor and a geometrical factor combined by the mechanical connectivity of reacted regions and provides a new paradigm for design of powerful

  17. Molecular mechanisms in multiple myeloma drug resistance

    PubMed Central

    Nikesitch, Nicholas; Ling, Silvia C W

    2016-01-01

    Multiple myeloma (MM) is predominantly an incurable malignancy despite high-dose chemotherapy, autologous stem cell transplant and novel agents. MM is a genetically heterogeneous disease and the complexity increases as the disease progresses to a more aggressive stage. MM arises from a plasma cell, which produces and secretes non-functioning immunoglobulins. Most MM cells are sensitive to proteasome inhibitors (PIs), which have become the main drug in the treatment of newly diagnosed and relapsed MM. However, not all MM is sensitive to PIs. This review summarises the literature regarding molecular biology of MM with a focus on the unfolded protein response and explores how this could affect drug sensitivity and progression of disease. PMID:26598624

  18. METHOD FOR MEASURING BACTERIAL RESISTANCE TO METALS EMPLOYING EPIFLUORESCENT MICROSCOPY

    EPA Science Inventory

    A direct viable counting method has been developed which can be used to measure resistance of bacteria to metal (DVCMR bio-assay). Results obtained using DVCMR was compared with classical culture methods and proven superior. Evaluation of test strains resistant to arsenic or mang...

  19. Antiviral Drug- and Multidrug Resistance in Cytomegalovirus Infected SCT Patients

    PubMed Central

    Göhring, Katharina; Hamprecht, Klaus; Jahn, Gerhard

    2015-01-01

    In pediatric and adult patients after stem cell transplantation (SCT) disseminated infections caused by human cytomegalovirus (HCMV) can cause life threatening diseases. For treatment, the three antivirals ganciclovir (GCV), foscarnet (PFA) and cidofovir (CDV) are approved and most frequently used. Resistance to all of these antiviral drugs may induce a severe problem in this patient cohort. Responsible for resistance phenomena are mutations in the HCMV phosphotransferase-gene (UL97) and the polymerase-gene (UL54). Most frequently mutations in the UL97-gene are associated with resistance to GCV. Resistance against all three drugs is associated to mutations in the UL54-gene. Monitoring of drug resistance by genotyping is mostly done by PCR-based Sanger sequencing. For phenotyping with cell culture the isolation of HCMV is a prerequisite. The development of multidrug resistance with mutation in both genes is rare, but it is often associated with a fatal outcome. The manifestation of multidrug resistance is mostly associated with combined UL97/UL54-mutations. Normally, mutations in the UL97 gene occur initially followed by UL54 mutation after therapy switch. The appearance of UL54-mutation alone without any detection of UL97-mutation is rare. Interestingly, in a number of patients the UL97 mutation could be detected in specific compartments exclusively and not in blood. PMID:25750703

  20. Assessment of Microbiota and Their Drug Resistance in Chronic Fistulous Tracts

    PubMed Central

    Wu, Xiuwen; Li, Xiaoting; Liu, Song; Wu, Qin; Wang, Gefei; Gu, Guosheng; Ren, Huajian; Li, Jieshou

    2015-01-01

    Abstract Background: Bacteria colonizing an enterocutaneous fistula tract have not been clarified. The aims of this study were to investigate the pathogen spectra of fistulous tracts and their resistance to antibiotics in patients with chronic fistulas. Methods: We conducted a one-year prospective single-center study. In the absence of significant sepsis, consecutively stabilized patients with chronic enterocutaneous fistula were included. Microbiology and antimicrobial susceptibility of isolates from the tracts were analyzed. The correlations between the existence of bacteria and various clinical values were investigated further. Results: Forty-one patients were enrolled, of whom eight had a negative culture. A total of 48 bacterial strains were harvested, including 42 strains of gram-negative bacteria and six strains of gram-positive bacteria, most of which were multiple-drug-resistant. The three bacteria cultured most often were Escherichia coli (11 strains; 22.9%), Pseudomonas aeruginosa (eight strains; 16.7%), and Klebsiella pneumoniae (eight strains). Binary logistic regression analysis with forward (conditional) stepwise selection found that fistula length correlated with positive bacterial results (p=0.018). Other variables, namely entire length of hospitalization and fistula duration and location, were unrelated to the presence of micro-organisms in fistula tracts. Conclusions: Multiple-drug-resistant gram-negative bacteria were the main pathogens colonizing chronic fistula tracts. Fistula length was significantly associated with the presence of pathogens in a multivariable logistic regression model. PMID:25894837

  1. [Influence of chronic lead exposure on resistence to bacterial infection (author's transl)].

    PubMed

    Ewers, U; Weisser, L; Wegner, A

    1980-01-01

    Suppression by lead of resistance to bacterial or viral infections has been reported by several authors. We have studied, if a decrease of resistance to bacterial infection could be evaluated at blood lead concentrations (PbB), which correspond to the upper levels of environmental or occupational lead exposure regarded as tolerable (PbB = 35 resp. 60 microgram/100 ml). NMRI mice were chronically exposed to lead by feeding with lead acetate containing diets and given a challenge with Salmonella typhimurium. No increase of susceptibility to bacterial infection could be demonstrated at PbB < 90 microgram/100 g. At PbB > 100 microgram/100 g, however, an increase of lethality and a decrease of 50% survival times could be observed after bacterial infection. PMID:6999813

  2. Identification, Characterization and Antibiotic Resistance of Bacterial Isolates Obtained from Waterpipe Device Hoses

    PubMed Central

    Masadeh, Majed M.; Hussein, Emad I.; Alzoubi, Karem H.; Khabour, Omar; Shakhatreh, Muhamad Ali K.; Gharaibeh, Mahmoud

    2015-01-01

    The general lack of knowledge about the health effects of waterpipe smoking is among the reasons for its global spread. In this study, bacterial contamination of waterpipe hoses was investigated. Twenty hoses were collected from waterpipe cafés and screened for bacterial pathogens using standard culture and isolation techniques. Additionally, resistance of isolated bacteria to common antibiotics was determined by identifying the minimum inhibitory concentration (MIC) of each isolate. Forty eight bacterial isolates were detected. Isolates included both Gram-positive and Gram-negative pathogens from species that included Micrococcus (12), Corynebacterium (13) and Bacillus (9). In addition, some of the detected pathogens were found to be resistant to aztreonam (79%), cefixime (79%), norfloxacin, amoxicillin (47%), clarithromycin (46%) and enrofloxacin (38%). In conclusion, the hose of the waterpipe device is a good environment for the growth of bacterial pathogens, which can then be transmitted to users. PMID:25985311

  3. Identification, characterization and antibiotic resistance of bacterial isolates obtained from waterpipe device hoses.

    PubMed

    Masadeh, Majed M; Hussein, Emad I; Alzoubi, Karem H; Khabour, Omar; Shakhatreh, Muhamad Ali K; Gharaibeh, Mahmoud

    2015-05-01

    The general lack of knowledge about the health effects of waterpipe smoking is among the reasons for its global spread. In this study, bacterial contamination of waterpipe hoses was investigated. Twenty hoses were collected from waterpipe cafés and screened for bacterial pathogens using standard culture and isolation techniques. Additionally, resistance of isolated bacteria to common antibiotics was determined by identifying the minimum inhibitory concentration (MIC) of each isolate. Forty eight bacterial isolates were detected. Isolates included both Gram-positive and Gram-negative pathogens from species that included Micrococcus (12), Corynebacterium (13) and Bacillus (9). In addition, some of the detected pathogens were found to be resistant to aztreonam (79%), cefixime (79%), norfloxacin, amoxicillin (47%), clarithromycin (46%) and enrofloxacin (38%). In conclusion, the hose of the waterpipe device is a good environment for the growth of bacterial pathogens, which can then be transmitted to users. PMID:25985311

  4. Effects of temperature on biochemical reactions and drug resistance of virulent and avirulent Aeromonas salmonicida

    USGS Publications Warehouse

    Hahnel, G.B.; Gould, R.W.

    1982-01-01

    Incubation temperatures of 11°, 18° and 28° did not substantially affect biochemical reactions of either virulent or avirulent forms of Aeromonas salmonicida subspecies salmonicida. The only change observed, amygdalin fermentation, was positive at 11° and 18° but negative at 28°C. Several isolates utilized sucrose, a characteristic not normally recognized for A. salmonicida subspecies salmonicida.Antimicrobial susceptibility screening indicated resistance to novobiocin increased at the higher incubation temperatures. Standardized drug sensitivity testing procedures and precise zone diameter interpretive standards for bacterial fish pathogens are needed.

  5. New strategies against drug resistance to herpes simplex virus.

    PubMed

    Jiang, Yu-Chen; Feng, Hui; Lin, Yu-Chun; Guo, Xiu-Rong

    2016-03-01

    Herpes simplex virus (HSV), a member of the Herpesviridae family, is a significant human pathogen that results in mucocutaneous lesions in the oral cavity or genital infections. Acyclovir (ACV) and related nucleoside analogues can successfully treat HSV infections, but the emergence of drug resistance to ACV has created a barrier for the treatment of HSV infections, especially in immunocompromised patients. There is an urgent need to explore new and effective tactics to circumvent drug resistance to HSV. This review summarises the current strategies in the development of new targets (the DNA helicase/primase (H/P) complex), new types of molecules (nature products) and new antiviral mechanisms (lethal mutagenesis of Janus-type nucleosides) to fight the drug resistance of HSV. PMID:27025259

  6. New strategies against drug resistance to herpes simplex virus

    PubMed Central

    Jiang, Yu-Chen; Feng, Hui; Lin, Yu-Chun; Guo, Xiu-Rong

    2016-01-01

    Herpes simplex virus (HSV), a member of the Herpesviridae family, is a significant human pathogen that results in mucocutaneous lesions in the oral cavity or genital infections. Acyclovir (ACV) and related nucleoside analogues can successfully treat HSV infections, but the emergence of drug resistance to ACV has created a barrier for the treatment of HSV infections, especially in immunocompromised patients. There is an urgent need to explore new and effective tactics to circumvent drug resistance to HSV. This review summarises the current strategies in the development of new targets (the DNA helicase/primase (H/P) complex), new types of molecules (nature products) and new antiviral mechanisms (lethal mutagenesis of Janus-type nucleosides) to fight the drug resistance of HSV. PMID:27025259

  7. Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance.

    PubMed Central

    Speer, B S; Shoemaker, N B; Salyers, A A

    1992-01-01

    Tetracycline has been a widely used antibiotic because of its low toxicity and broad spectrum of activity. However, its clinical usefulness has been declining because of the appearance of an increasing number of tetracycline-resistant isolates of clinically important bacteria. Two types of resistance mechanisms predominate: tetracycline efflux and ribosomal protection. A third mechanism of resistance, tetracycline modification, has been identified, but its clinical relevance is still unclear. For some tetracycline resistance genes, expression is regulated. In efflux genes found in gram-negative enteric bacteria, regulation is via a repressor that interacts with tetracycline. Gram-positive efflux genes appear to be regulated by an attenuation mechanism. Recently it was reported that at least one of the ribosome protection genes is regulated by attenuation. Tetracycline resistance genes are often found on transmissible elements. Efflux resistance genes are generally found on plasmids, whereas genes involved in ribosome protection have been found on both plasmids and self-transmissible chromosomal elements (conjugative transposons). One class of conjugative transposon, originally found in streptococci, can transfer itself from streptococci to a variety of recipients, including other gram-positive bacteria, gram-negative bacteria, and mycoplasmas. Another class of conjugative transposons has been found in the Bacteroides group. An unusual feature of the Bacteroides elements is that their transfer is enhanced by preexposure to tetracycline. Thus, tetracycline has the double effect of selecting for recipients that acquire a resistance gene and stimulating transfer of the gene. PMID:1423217

  8. Distribution and drug resistance profile of methicillin-resistant Staphylococcus aureus after orthopaedic surgery.

    PubMed

    Song, Wen Chao; Zhang, Si Sen; Gong, Yu Hong

    2015-05-01

    This paper is aimed to comprehend clinical distribution and drug-resistance situation of methicillin-resistant Staphylococcus aureus. This study applied automatic microbe instrument Microscan W/A 96 for strain identification and drug susceptibility screening on the isolated strains. It was found that 312 MRSA strains were isolated in three years, which account for 58.1% of Staphylococcus aureus. MRSA were mainly focused in wound secretion, purulent sputum and prostatic fluid and a few of them were isolated from blood specimens; Endemic area distribution was mainly located in intensive care unit, neurosurgery, respiratory department, dermatology, orthopaedic burns and orthopaedics. MRSA strains showed high drug resistance of 82.37%~100% to most of the antibiotics including vancomycin, cotrimoxazole and rifampicin. Strain was 100% resistance towards ampicillin, amoxicillin/acid, cefalotin, cefazolin, tienam, benzylpenicillin, penicillin and tetracycline and 90% strains resisted clindamycin, cefotaxime, clarithromycin and gentamicin. PMID:26051737

  9. Drug rechallenge and treatment beyond progression—implications for drug resistance

    PubMed Central

    Kuczynski, Elizabeth A.; Sargent, Daniel J.; Grothey, Axel; Kerbel, Robert S.

    2015-01-01

    The established dogma in oncology for managing recurrent or refractory disease dictates that therapy is changed at disease progression, because the cancer is assumed to have become drug-resistant. Drug resistance, whether pre-existing or acquired, is largely thought to be a stable and heritable process; thus, reuse of therapeutic agents that have failed is generally contraindicated. Over the past few decades, clinical evidence has suggested a role for unstable, non-heritable mechanisms of acquired drug resistance pertaining to chemotherapy and targeted agents. There are many examples of circumstances where patients respond to reintroduction of the same therapy (drug rechallenge) after a drug holiday following disease relapse or progression during therapy. Additional, albeit limited, evidence suggests that, in certain circumstances, continuing a therapy beyond disease progression can also have antitumour activity. In this Review, we describe the anticancer agents used in these treatment strategies and discuss the potential mechanisms explaining the apparent tumour re-sensitization with reintroduced or continued therapy. The extensive number of malignancies and drugs that challenge the custom of permanently switching to different drugs at each line of therapy warrants a more in-depth examination of the definitions of disease progression and drug resistance and the resulting implications for patient care. PMID:23999218

  10. "A'ole" Drugs! Cultural Practices and Drug Resistance of Rural Hawai'ian Youths

    ERIC Educational Resources Information Center

    Po'A-Kekuawela, Ka'Ohinani; Okamoto, Scott K.; Nebre, La Risa H.; Helm, Susana; Chin, Coralee I. H.

    2009-01-01

    This qualitative study examined how Native Hawai'ian youths from rural communities utilized cultural practices to promote drug resistance and/or abstinence. Forty-seven students from five different middle schools participated in gender-specific focus groups that focused on the cultural and environmental contexts of drug use for Native Hawai'ian…

  11. Bacterial Community Shift Drives Antibiotic Resistance Promotion during Drinking Water Chlorination.

    PubMed

    Jia, Shuyu; Shi, Peng; Hu, Qing; Li, Bing; Zhang, Tong; Zhang, Xu-Xiang

    2015-10-20

    For comprehensive insights into the effects of chlorination, a widely used disinfection technology, on bacterial community and antibiotic resistome in drinking water, this study applied high-throughput sequencing and metagenomic approaches to investigate the changing patterns of antibiotic resistance genes (ARGs) and bacterial community in a drinking water treatment and distribution system. At genus level, chlorination could effectively remove Methylophilus, Methylotenera, Limnobacter, and Polynucleobacter, while increase the relative abundance of Pseudomonas, Acidovorax, Sphingomonas, Pleomonas, and Undibacterium in the drinking water. A total of 151 ARGs within 15 types were detectable in the drinking water, and chlorination evidently increased their total relative abundance while reduced their diversity in the opportunistic bacteria (p < 0.05). Residual chlorine was identified as the key contributing factor driving the bacterial community shift and resistome alteration. As the dominant persistent ARGs in the treatment and distribution system, multidrug resistance genes (mainly encoding resistance-nodulation-cell division transportation system) and bacitracin resistance gene bacA were mainly carried by chlorine-resistant bacteria Pseudomonas and Acidovorax, which mainly contributed to the ARGs abundance increase. The strong correlation between bacterial community shift and antibiotic resistome alteration observed in this study may shed new light on the mechanism behind the chlorination effects on antibiotic resistance. PMID:26397118

  12. Rainbow trout (Oncorhynchus mykiss) resistance to columnaris disease is heritable and favorably correlated with bacterial cold water disease resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Columnaris disease (CD), caused by Flabobacterium columnare, is an emerging disease affecting rainbow trout aquaculture. Objectives of this study were to 1) estimate heritability of innate CD resistance in a rainbow trout line (ARS-Fp-R) previously selected four generations for improved bacterial co...

  13. Bacterial panicle blight resistance QTL in rice (Oryza sativa L.) and their association with resistance to other diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial panicle blight (BPB) of rice (Oryza sativa L.) occurs when the bacterium Burkholderia glumae infects and colonizes emerging and flowering panicles, causing kernels to abort. To identify quantitative trait loci (QTL) for BPB resistance, a population of 300 recombinant inbred lines (RILs) d...

  14. Pattern of Drug Resistance and Risk Factors Associated with Development of Drug Resistant Mycobacterium tuberculosis in Pakistan

    PubMed Central

    Ullah, Irfan; Javaid, Arshad; Tahir, Zarfishan; Ullah, Obaid; Shah, Aamer Ali; Hasan, Fariha; Ayub, Najma

    2016-01-01

    Background Drug resistant tuberculosis (DR-TB) is a major public health problem in developing countries such as Pakistan. Objective The current study was conducted to assess the frequency of drug resistant tuberculosis including multi drug resistance (MDR- TB) as well as risk factors for development of DR-TB, in Punjab, Pakistan. Methodology Drug susceptibility testing (DST) was performed, using proportion method, for 2367 culture positive Mycobacterium tuberculosis (MTB) cases that were enrolled from January 2012 to December 2013 in the province of Punjab, Pakistan, against first-line anti-tuberculosis drugs. The data was analyzed using statistical software; SPSS version 18. Results Out of 2367 isolates, 273 (11.5%) were resistant to at least one anti-TB drug, while 221 (9.3%) showed MDR- TB. Risk factors for development of MDR-TB were early age (ranges between 10–25 years) and previously treated TB patients. Conclusion DR-TB is a considerable problem in Pakistan. Major risk factors are previous history of TB treatment and younger age group. It emphasizes the need for effective TB control Program in the country. PMID:26809127

  15. Efficacy of OH-CATH30 and its analogs against drug-resistant bacteria in vitro and in mouse models.

    PubMed

    Li, Sheng-An; Lee, Wen-Hui; Zhang, Yun

    2012-06-01

    Antimicrobial peptides (AMPs) have been considered alternatives to conventional antibiotics for drug-resistant bacterial infections. However, their comparatively high toxicity toward eukaryotic cells and poor efficacy in vivo hamper their clinical application. OH-CATH30, a novel cathelicidin peptide deduced from the king cobra, possesses potent antibacterial activity in vitro. The objective of this study is to evaluate the efficacy of OH-CATH30 and its analog OH-CM6 against drug-resistant bacteria in vitro and in vivo. The MICs of OH-CATH30 and OH-CM6 ranged from 1.56 to 12.5 μg/ml against drug-resistant clinical isolates of several pathogenic species, including Escherichia coli, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus. The MICs of OH-CATH30 and OH-CM6 were slightly altered in the presence of 25% human serum. OH-CATH30 and OH-CM6 killed E. coli quickly (within 60 min) by disrupting the bacterial cytoplasmic membrane. Importantly, the 50% lethal doses (LD(50)) of OH-CATH30 and OH-CM6 in mice following intraperitoneal (i.p.) injection were 120 mg/kg of body weight and 100 mg/kg, respectively, and no death was observed at any dose up to 160 mg/kg following subcutaneous (s.c.) injection. Moreover, 10 mg/kg OH-CATH30 or OH-CM6 significantly decreased the bacterial counts as well as the inflammatory response in a mouse thigh infection model and rescued infected mice in a bacteremia model induced by drug-resistant E. coli. Taken together, our findings demonstrate that the natural cathelicidin peptide OH-CATH30 and its analogs exhibit relatively low toxicity and potent efficacy in mouse models, indicating that they may have therapeutic potential against the systemic infections caused by drug-resistant bacteria. PMID:22491685

  16. Antibiotic residues and drug resistance in human intestinal flora.

    PubMed Central

    Corpet, D E

    1987-01-01

    The effect of residual levels of ampicillin on the drug resistance of fecal flora was studied in human volunteers given 1.5 mg of ampicillin orally per day for 21 days. This treatment failed to have any significant reproducible effect on the number of resistant Escherichia coli in their feces. The effect of continuous administration of small doses of ampicillin, chlortetracycline, or streptomycin in the drinking water was studied in gnotobiotic mice inoculated with a human fecal flora. In this animal model, which is free of many interfering factors, an increase in the fecal concentration of resistant E. coli was observed when the mice were given 0.5 microgram of ampicillin or chlortetracycline per ml of water. This model is therefore a sensitive system for testing the effect of antimicrobial drugs on the resistance characteristics of the intestinal flora. PMID:3300533

  17. The new concepts on overcoming drug resistance in lung cancer

    PubMed Central

    Zhang, Weisan; Lei, Ping; Dong, Xifeng; Xu, Cuiping

    2014-01-01

    Lung cancer is one of the most deadly diseases worldwide. The current first-line therapies include chemotherapy using epidermal growth factor receptor tyrosine kinase inhibitors and radiotherapies. With the current progress in identifying new molecular targets, acquired drug resistance stands as an obstacle for good prognosis. About half the patients receiving epidermal growth factor receptor-tyrosine kinase inhibitor treatments develop resistance. Although extensive studies have been applied to elucidate the underlying mechanisms, evidence is far from enough to establish a well-defined picture to correct resistance. In the review, we will discuss four different currently developed strategies that have the potential to overcome drug resistance in lung cancer therapies and facilitate prolonged anticancer effects of the first-line therapies. PMID:24944510

  18. (Post-) Genomic approaches to tackle drug resistance in Leishmania.

    PubMed

    Berg, Maya; Mannaert, An; Vanaerschot, Manu; Van Der Auwera, Gert; Dujardin, Jean-Claude

    2013-10-01

    Leishmaniasis, like other neglected diseases is characterized by a small arsenal of drugs for its control. To safeguard the efficacy of current drugs and guide the development of new ones it is thus of utmost importance to acquire a deep understanding of the phenomenon of drug resistance and its link with treatment outcome. We discuss here how (post-)genomic approaches may contribute to this purpose. We highlight the need for a clear definition of the phenotypes under consideration: innate and acquired resistance versus treatment failure. We provide a recent update of our knowledge on the Leishmania genome structure and dynamics, and compare the contribution of targeted and untargeted methods for the understanding of drug resistance and show their limits. We also present the main assays allowing the experimental validation of the genes putatively involved in drug resistance. The importance of analysing information downstream of the genome is stressed and further illustrated by recent metabolomics findings. Finally, the attention is called onto the challenges for implementing the acquired knowledge to the benefit of the patients and the population at risk. PMID:23480865

  19. Vaults: a ribonucleoprotein particle involved in drug resistance?

    PubMed

    Mossink, Marieke H; van Zon, Arend; Scheper, Rik J; Sonneveld, Pieter; Wiemer, Erik A C

    2003-10-20

    Vaults are ribonucleoprotein particles found in the cytoplasm of eucaryotic cells. The 13 MDa particles are composed of multiple copies of three proteins: an M(r) 100 000 major vault protein (MVP) and two minor vault proteins of M(r) 193 000 (vault poly-(ADP-ribose) polymerase) and M(r) 240 000 (telomerase-associated protein 1), as well as small untranslated RNA molecules of approximately 100 bases. Although the existence of vaults was first reported in the mid-1980s no function has yet been attributed to this organelle. The notion that vaults might play a role in drug resistance was suggested by the molecular identification of the lung resistance-related (LRP) protein as the human MVP. MVP/LRP was found to be overexpressed in many chemoresistant cancer cell lines and primary tumor samples of different histogenetic origin. Several, but not all, clinico-pathological studies showed that MVP expression at diagnosis was an independent adverse prognostic factor for response to chemotherapy. The hollow barrel-shaped structure of the vault complex and its subcellular localization indicate a function in intracellular transport. It was therefore postulated that vaults contributed to drug resistance by transporting drugs away from their intracellular targets and/or the sequestration of drugs. Here, we review the current knowledge on the vault complex and critically discuss the evidence that links vaults to drug resistance. PMID:14576851

  20. Bacterial antibiotic resistance in soils irrigated with reclaimed municipal wastewater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wastewater reclamation for municipal irrigation and groundwater recharge is an increasingly attractive option for extending water supplies. However, public health concerns include the potential for development of antibiotic resistance (AR) in soil bacteria after exposure to residual chemicals in rec...

  1. Drug resistance as influenced by inactivated sensitivity discs.

    PubMed

    Griffith, L J; Mullins, C G

    1968-04-01

    Reports of staphylococci resistant to the semisynthetic penicillins stimulated a study of the factors influencing the stability of the drugs in discs. The behavior of penicillin G, methicillin, oxacillin, cloxacillin, and cephalothin discs under different humidity and temperature conditions is described. Humidity was found to be the most significant factor in drug inactivation. Storage of discs in a vacuum desiccator at -20 C provides maximal antibiotic stability. PMID:4869619

  2. Development of a Protocol for Predicting Bacterial Resistance to Microbicides

    PubMed Central

    Knapp, Laura; Amézquita, Alejandro; McClure, Peter; Stewart, Sara

    2015-01-01

    Regulations dealing with microbicides in Europe and the United States are evolving and now require data on the risk of the development of resistance in organisms targeted by microbicidal products. There is no standard protocol to assess the risk of the development of resistance to microbicidal formulations. This study aimed to validate the use of changes in microbicide and antibiotic susceptibility as initial markers for predicting microbicide resistance and cross-resistance to antibiotics. Three industrial isolates (Pseudomonas aeruginosa, Burkholderia cepacia, and Klebsiella pneumoniae) and two Salmonella enterica serovar Typhimurium strains (SL1344 and 14028S) were exposed to a shampoo, a mouthwash, eye makeup remover, and the microbicides contained within these formulations (chlorhexidine digluconate [CHG] and benzalkonium chloride [BZC]) under realistic, in-use conditions. Baseline and postexposure data were compared. No significant increases in the MIC or the minimum bactericidal concentration (MBC) were observed for any strain after exposure to the three formulations. Increases as high as 100-fold in the MICs and MBCs of CHG and BZC for SL1344 and 14028S were observed but were unstable. Changes in antibiotic susceptibility were not clinically significant. The use of MICs and MBCs combined with antibiotic susceptibility profiling and stability testing generated reproducible data that allowed for an initial prediction of the development of resistance to microbicides. These approaches measure characteristics that are directly relevant to the concern over resistance and cross-resistance development following the use of microbicides. These are low-cost, high-throughput techniques, allowing manufacturers to provide to regulatory bodies, promptly and efficiently, data supporting an early assessment of the risk of resistance development. PMID:25636848

  3. Development of a protocol for predicting bacterial resistance to microbicides.

    PubMed

    Knapp, Laura; Amézquita, Alejandro; McClure, Peter; Stewart, Sara; Maillard, Jean-Yves

    2015-04-01

    Regulations dealing with microbicides in Europe and the United States are evolving and now require data on the risk of the development of resistance in organisms targeted by microbicidal products. There is no standard protocol to assess the risk of the development of resistance to microbicidal formulations. This study aimed to validate the use of changes in microbicide and antibiotic susceptibility as initial markers for predicting microbicide resistance and cross-resistance to antibiotics. Three industrial isolates (Pseudomonas aeruginosa, Burkholderia cepacia, and Klebsiella pneumoniae) and two Salmonella enterica serovar Typhimurium strains (SL1344 and 14028S) were exposed to a shampoo, a mouthwash, eye makeup remover, and the microbicides contained within these formulations (chlorhexidine digluconate [CHG] and benzalkonium chloride [BZC]) under realistic, in-use conditions. Baseline and postexposure data were compared. No significant increases in the MIC or the minimum bactericidal concentration (MBC) were observed for any strain after exposure to the three formulations. Increases as high as 100-fold in the MICs and MBCs of CHG and BZC for SL1344 and 14028S were observed but were unstable. Changes in antibiotic susceptibility were not clinically significant. The use of MICs and MBCs combined with antibiotic susceptibility profiling and stability testing generated reproducible data that allowed for an initial prediction of the development of resistance to microbicides. These approaches measure characteristics that are directly relevant to the concern over resistance and cross-resistance development following the use of microbicides. These are low-cost, high-throughput techniques, allowing manufacturers to provide to regulatory bodies, promptly and efficiently, data supporting an early assessment of the risk of resistance development. PMID:25636848

  4. Antibacterial effect of Allium sativum cloves and Zingiber officinale rhizomes against multiple-drug resistant clinical pathogens

    PubMed Central

    Karuppiah, Ponmurugan; Rajaram, Shyamkumar

    2012-01-01

    Objective To evaluate the antibacterial properties of Allium sativum (garlic) cloves and Zingiber officinale (ginger) rhizomes against multi-drug resistant clinical pathogens causing nosocomial infection. Methods The cloves of garlic and rhizomes of ginger were extracted with 95% (v/v) ethanol. The ethanolic extracts were subjected to antibacterial sensitivity test against clinical pathogens. Results Anti-bacterial potentials of the extracts of two crude garlic cloves and ginger rhizomes were tested against five gram negative and two gram positive multi-drug resistant bacteria isolates. All the bacterial isolates were susceptible to crude extracts of both plants extracts. Except Enterobacter sp. and Klebsiella sp., all other isolates were susceptible when subjected to ethanolic extracts of garlic and ginger. The highest inhibition zone was observed with garlic (19.45 mm) against Pseudomonas aeruginosa (P. aeruginosa). The minimal inhibitory concentration was as low as 67.00 µg/mL against P. aeruginosa. Conclusions Natural spices of garlic and ginger possess effective anti-bacterial activity against multi-drug clinical pathogens and can be used for prevention of drug resistant microbial diseases and further evaluation is necessary. PMID:23569978

  5. Anticancer drug nanomicelles formed by self-assembling amphiphilic dendrimer to combat cancer drug resistance

    PubMed Central

    Wei, Tuo; Chen, Chao; Liu, Juan; Liu, Cheng; Posocco, Paola; Liu, Xiaoxuan; Cheng, Qiang; Huo, Shuaidong; Liang, Zicai; Fermeglia, Maurizio; Liang, Xing-Jie; Rocchi, Palma; Peng, Ling

    2015-01-01

    Drug resistance and toxicity constitute challenging hurdles for cancer therapy. The application of nanotechnology for anticancer drug delivery is expected to address these issues and bring new hope for cancer treatment. In this context, we established an original nanomicellar drug delivery system based on an amphiphilic dendrimer (AmDM), which could generate supramolecular micelles to effectively encapsulate the anticancer drug doxorubicin (DOX) with high drug-loading capacity (>40%), thanks to the unique dendritic structure creating large void space for drug accommodation. The resulting AmDM/DOX nanomicelles were able to enhance drug potency and combat doxorubicin resistance in breast cancer models by significantly enhancing cellular uptake while considerably decreasing efflux of the drug. In addition, the AmDM/DOX nanoparticles abolished significantly the toxicity related to the free drug. Collectively, our studies demonstrate that the drug delivery system based on nanomicelles formed with the self-assembling amphiphilic dendrimer constitutes a promising and effective drug carrier in cancer therapy. PMID:25713374

  6. Anticancer drug nanomicelles formed by self-assembling amphiphilic dendrimer to combat cancer drug resistance.

    PubMed

    Wei, Tuo; Chen, Chao; Liu, Juan; Liu, Cheng; Posocco, Paola; Liu, Xiaoxuan; Cheng, Qiang; Huo, Shuaidong; Liang, Zicai; Fermeglia, Maurizio; Pricl, Sabrina; Liang, Xing-Jie; Rocchi, Palma; Peng, Ling

    2015-03-10

    Drug resistance and toxicity constitute challenging hurdles for cancer therapy. The application of nanotechnology for anticancer drug delivery is expected to address these issues and bring new hope for cancer treatment. In this context, we established an original nanomicellar drug delivery system based on an amphiphilic dendrimer (AmDM), which could generate supramolecular micelles to effectively encapsulate the anticancer drug doxorubicin (DOX) with high drug-loading capacity (>40%), thanks to the unique dendritic structure creating large void space for drug accommodation. The resulting AmDM/DOX nanomicelles were able to enhance drug potency and combat doxorubicin resistance in breast cancer models by significantly enhancing cellular uptake while considerably decreasing efflux of the drug. In addition, the AmDM/DOX nanoparticles abolished significantly the toxicity related to the free drug. Collectively, our studies demonstrate that the drug delivery system based on nanomicelles formed with the self-assembling amphiphilic dendrimer constitutes a promising and effective drug carrier in cancer therapy. PMID:25713374

  7. How Fitness Reduced, Antimicrobial Resistant Bacteria Survive and Spread: A Multiple Pig - Multiple Bacterial Strain Model

    PubMed Central

    Græsbøll, Kaare; Nielsen, Søren Saxmose; Toft, Nils; Christiansen, Lasse Engbo

    2014-01-01

    More than 30% of E. coli strains sampled from pig farms in Denmark over the last five years were resistant to the commonly used antimicrobial tetracycline. This raises a number of questions: How is this high level sustained if resistant bacteria have reduced growth rates? Given that there are multiple susceptible and resistant bacterial strains in the pig intestines, how can we describe their coexistence? To what extent does the composition of these multiple strains in individual pigs influence the total bacterial population of the pig pen? What happens to a complex population when antimicrobials are used? To investigate these questions, we created a model where multiple strains of bacteria coexist in the intestines of pigs sharing a pen, and explored the parameter limits of a stable system; both with and without an antimicrobial treatment. The approach taken is a deterministic bacterial population model with stochastic elements of bacterial distributions and transmission. The rates that govern the model are process-oriented to represent growth, excretion, and uptake from environment, independent of herd and meta-population structures. Furthermore, an entry barrier and elimination process for the individual strains in each pig were implemented. We demonstrate how competitive growth between multiple bacterial strains in individual pigs, and the transmission between pigs in a pen allow for strains of antimicrobial resistant bacteria to persist in a pig population to different extents, and how quickly they can become dominant if antimicrobial treatment is initiated. The level of spread depends in a non-linear way of the parameters that govern excretion and uptake. Furthermore, the sampling of initial distributions of strains and stochastic transmission events give rise to large variation in how homogenous and how resistant the bacterial population becomes. Most important: resistant bacteria are demonstrated to survive with a disadvantage in growth rate of well over 10

  8. Wear and corrosion resistance of anti-bacterial Ti-Cu-N coatings on titanium implants

    NASA Astrophysics Data System (ADS)

    Wu, Haibo; Zhang, Xiangyu; He, Xiaojing; Li, Meng; Huang, Xiaobo; Hang, Ruiqiang; Tang, Bin

    2014-10-01

    Anti-bacterial coatings with excellent wear and corrosion resistance play a vital role in ensuring the durability of implant materials in constant use. To this end, a novel anti-bacterial surface modification by combining magnetron sputtering with plasma nitriding was adopted in this paper to fabricate Cu-bearing Ti-based nitrides coatings (Ti-Cu-N) on titanium surface. The anti-bacterial properties of Ti-Cu-N coatings were evaluated. The microstructures and composition of the coatings were investigated by using FESEM, EDS, GDOES, XRD. The wear and corrosion resistance of the coatings were investigated. The results confirmed that an anti-bacterial Ti-Cu-N coating with a thickness of 6 μm and good adhesive strength to substrate was successfully achieved on titanium surface. As implied by XRD, the coatings were consisted of TiN, Ti2N, TiN0.3 phases. The surface micro-hardness and wear resistance of Ti-Cu-N coatings were significantly enhanced after plasma nitriding treatment. The analysis of potentiodynamic polarization curves and Nyquist plots obtained in 0.9 wt.% NaCl solution suggested that the Ti-Cu-N coatings also exhibited an excellent corrosion resistance. As mentioned above, it can be concluded that the duplex-treatment reported here was a versatile approach to develop anti-bacterial Ti-Cu-N coatings with excellent comprehensive properties on titanium implants.

  9. Mathematical models of the epidemiology and control of drug-resistant TB.

    PubMed

    Cohen, Ted; Dye, Christopher; Colijn, Caroline; Williams, Brian; Murray, Megan

    2009-02-01

    Recent reports of extensively drug-resistant TB in South Africa have renewed concerns that antibiotic resistance may undermine progress in TB control. We review three major questions for which mathematical models elucidate the epidemiology and control of drug-resistant TB. How is multiple drug-resistant Mycobacterium tuberculosis selected for in individuals exposed to combination chemotherapy? What factors determine the prevalence of drug-resistant TB? Which interventions to prevent the spread of drug-resistant TB are effective and feasible? Models offer insight into the acquisition and amplification of drug resistance, reveal the importance of distinguishing the intrinsic and extrinsic determinants of the reproductive capacity of drug-resistant M. tuberculosis, and demonstrate the cost effectiveness of interventions for drug-resistant TB. These models also highlight knowledge gaps for which new research will improve our ability to project trends of drug resistance and develop more effective policies for its control. PMID:20477283

  10. Effect and Safety of Shihogyejitang for Drug Resistant Childhood Epilepsy.

    PubMed

    Lee, Jinsoo; Son, Kwanghyun; Hwang, Gwiseo; Kim, Moonju

    2016-01-01

    Objective. Herbal medicine has been widely used to treat drug resistant epilepsy. Shihogyejitang (SGT) has been commonly used to treat epilepsy. We investigated the effect and safety of SGT in children with drug resistant epilepsy. Design. We reviewed medical records of 54 patients with epilepsy, who failed to respond to at least two antiepileptic drugs and have been treated with SGT between April 2006 and June 2014 at the Department of Pediatric Neurology, I-Tomato Hospital, Korea. Effect was measured by the response rate, seizure-free rate, and retention rate at six months. We also checked adverse events, change in antiepileptic drugs use, and the variables related to the outcome. Results. Intent-to-treat analysis showed that, after six months, 44.4% showed a >50% seizure reduction, 24.1% including seizure-free, respectively, and 53.7% remained on SGT. Two adverse events were reported, mild skin rash and fever. Focal seizure type presented significantly more positive responses when compared with other seizure types at six months (p = 0.0284, Fisher's exact test). Conclusion. SGT is an effective treatment with excellent tolerability for drug resistant epilepsy patients. Our data provide evidence that SGT may be used as alternative treatment option when antiepileptic drug does not work in epilepsy children. PMID:27047568

  11. Effect and Safety of Shihogyejitang for Drug Resistant Childhood Epilepsy

    PubMed Central

    Lee, Jinsoo; Son, Kwanghyun; Hwang, Gwiseo

    2016-01-01

    Objective. Herbal medicine has been widely used to treat drug resistant epilepsy. Shihogyejitang (SGT) has been commonly used to treat epilepsy. We investigated the effect and safety of SGT in children with drug resistant epilepsy. Design. We reviewed medical records of 54 patients with epilepsy, who failed to respond to at least two antiepileptic drugs and have been treated with SGT between April 2006 and June 2014 at the Department of Pediatric Neurology, I-Tomato Hospital, Korea. Effect was measured by the response rate, seizure-free rate, and retention rate at six months. We also checked adverse events, change in antiepileptic drugs use, and the variables related to the outcome. Results. Intent-to-treat analysis showed that, after six months, 44.4% showed a >50% seizure reduction, 24.1% including seizure-free, respectively, and 53.7% remained on SGT. Two adverse events were reported, mild skin rash and fever. Focal seizure type presented significantly more positive responses when compared with other seizure types at six months (p = 0.0284, Fisher's exact test). Conclusion. SGT is an effective treatment with excellent tolerability for drug resistant epilepsy patients. Our data provide evidence that SGT may be used as alternative treatment option when antiepileptic drug does not work in epilepsy children. PMID:27047568

  12. Skin conditions: emerging drug-resistant skin infections and infestations.

    PubMed

    Zuniga, Ramiro; Nguyen, Tam

    2013-04-01

    Methicillin-resistant Staphylococcus aureus (MRSA) skin infections are increasingly common. Automated microbiology systems are now available to detect MRSA and to determine antibiotic resistance patterns. Abscesses should be drained and antibiotics administered, with systemic antibiotics used to manage more severe infections. Until sensitivities are known and depending on local resistance rates, clindamycin is an option for empiric management of stable patients without bacteremia. For patients who are more ill, linezolid and vancomycin are alternatives, the latter being first-line treatment for children hospitalized with MRSA skin infections. Drug resistance also occurs in head lice management. Although topical permethrin is still the first-line drug management, its effectiveness has decreased due to permethrin-resistant strains. Patients who do not benefit from 2 applications of permethrin can be treated with topical malathion or topical ivermectin. Though not approved by the Food and Drug Administration (FDA) for treating head lice, oral ivermectin is sometimes used for difficult-to-treat cases. Permethrin is also the first-line management for scabies, though there is a concern that permethrin-resistant scabies may soon occur. For patients with scabies who do not benefit from topical treatment, oral ivermectin is recommended by the Centers for Disease Control and Prevention, although it is not approved by the FDA for this purpose. PMID:23600335

  13. Determinants of Genetic Diversity of Spontaneous Drug Resistance in Bacteria.

    PubMed

    Couce, Alejandro; Rodríguez-Rojas, Alexandro; Blázquez, Jesús

    2016-07-01

    Any pathogen population sufficiently large is expected to harbor spontaneous drug-resistant mutants, often responsible for disease relapse after antibiotic therapy. It is seldom appreciated, however, that while larger populations harbor more mutants, the abundance distribution of these mutants is expected to be markedly uneven. This is because a larger population size allows early mutants to expand for longer, exacerbating their predominance in the final mutant subpopulation. Here, we investigate the extent to which this reduction in evenness can constrain the genetic diversity of spontaneous drug resistance in bacteria. Combining theory and experiments, we show that even small variations in growth rate between resistant mutants and the wild type result in orders-of-magnitude differences in genetic diversity. Indeed, only a slight fitness advantage for the mutant is enough to keep diversity low and independent of population size. These results have important clinical implications. Genetic diversity at antibiotic resistance loci can determine a population's capacity to cope with future challenges (i.e., second-line therapy). We thus revealed an unanticipated way in which the fitness effects of antibiotic resistance can affect the evolvability of pathogens surviving a drug-induced bottleneck. This insight will assist in the fight against multidrug-resistant microbes, as well as contribute to theories aimed at predicting cancer evolution. PMID:27182949

  14. Evidence for epistatic interactions in antiepileptic drug resistance.

    PubMed

    Kim, Myeong-Kyu; Moore, Jason H; Kim, Jong-Ki; Cho, Ki-Hyun; Cho, Yong-Won; Kim, Yo-Sik; Lee, Min-Cheol; Kim, Young-Ok; Shin, Min-Ho

    2011-01-01

    To investigate the epistatic interactions involved in antiepileptic drug (AED) resistance, 26 coding single-nucleotide polymorphisms (SNPs) were selected from 16 candidate genes. A total of 200 patients with drug-resistant localization-related epilepsy and 200 patients with drug-responsive localization-related epilepsy were genotyped individually for the SNPs. Rather than using the traditional parametric statistical method, a new statistical method, multifactor dimensionality reduction (MDR), was used to determine whether gene-gene interactions increase the risk of AED resistance. The MDR method indicated that a combination of four SNPs (rs12658835 and rs35166395 from GABRA1, rs2228622 from EAAT3 and rs2304725 from GAT3) was the best model for predicting susceptibility to AED resistance with a statistically significant testing accuracy of 0.625 (P < 0.001) and cross-validation consistency of 10/10. This best model had an odds ratio of 3.68 with a significant 95% confidence interval of 2.32-5.85 (P < 0.0001). Our results may provide meaningful information on the mechanism underlying AED resistance and, to the best of our knowledge, this is the first report of evidence for gene-gene interactions underlying AED resistance. PMID:21124337

  15. A treatment plant receiving waste water from multiple bulk drug manufacturers is a reservoir for highly multi-drug resistant integron-bearing bacteria.

    PubMed

    Marathe, Nachiket P; Regina, Viduthalai R; Walujkar, Sandeep A; Charan, Shakti Singh; Moore, Edward R B; Larsson, D G Joakim; Shouche, Yogesh S

    2013-01-01

    The arenas and detailed mechanisms for transfer of antibiotic resistance genes between environmental bacteria and pathogens are largely unclear. Selection pressures from antibiotics in situations where environmental bacteria and human pathogens meet are expected to increase the risks for such gene transfer events. We hypothesize that waste-water treatment plants (WWTPs) serving antibiotic manufacturing industries may provide such spawning grounds, given the high bacterial densities present there together with exceptionally strong and persistent selection pressures from the antibiotic-contaminated waste. Previous analyses of effluent from an Indian industrial WWTP that processes waste from bulk drug production revealed the presence of a range of drugs, including broad spectrum antibiotics at extremely high concentrations (mg/L range). In this study, we have characterized the antibiotic resistance profiles of 93 bacterial strains sampled at different stages of the treatment process from the WWTP against 39 antibiotics belonging to 12 different classes. A large majority (86%) of the strains were resistant to 20 or more antibiotics. Although there were no classically-recognized human pathogens among the 93 isolated strains, opportunistic pathogens such as Ochrobactrum intermedium, Providencia rettgeri, vancomycin resistant Enterococci (VRE), Aerococcus sp. and Citrobacter freundii were found to be highly resistant. One of the O. intermedium strains (ER1) was resistant to 36 antibiotics, while P. rettgeri (OSR3) was resistant to 35 antibiotics. Class 1 and 2 integrons were detected in 74/93 (80%) strains each, and 88/93 (95%) strains harbored at least one type of integron. The qPCR analysis of community DNA also showed an unprecedented high prevalence of integrons, suggesting that the bacteria living under such high selective pressure have an appreciable potential for genetic exchange of resistance genes via mobile gene cassettes. The present study provides insight into

  16. A Treatment Plant Receiving Waste Water from Multiple Bulk Drug Manufacturers Is a Reservoir for Highly Multi-Drug Resistant Integron-Bearing Bacteria

    PubMed Central

    Walujkar, Sandeep A.; Charan, Shakti Singh; Moore, Edward R. B.; Larsson, D. G. Joakim; Shouche, Yogesh S.

    2013-01-01

    The arenas and detailed mechanisms for transfer of antibiotic resistance genes between environmental bacteria and pathogens are largely unclear. Selection pressures from antibiotics in situations where environmental bacteria and human pathogens meet are expected to increase the risks for such gene transfer events. We hypothesize that waste-water treatment plants (WWTPs) serving antibiotic manufacturing industries may provide such spawning grounds, given the high bacterial densities present there together with exceptionally strong and persistent selection pressures from the antibiotic-contaminated waste. Previous analyses of effluent from an Indian industrial WWTP that processes waste from bulk drug production revealed the presence of a range of drugs, including broad spectrum antibiotics at extremely high concentrations (mg/L range). In this study, we have characterized the antibiotic resistance profiles of 93 bacterial strains sampled at different stages of the treatment process from the WWTP against 39 antibiotics belonging to 12 different classes. A large majority (86%) of the strains were resistant to 20 or more antibiotics. Although there were no classically-recognized human pathogens among the 93 isolated strains, opportunistic pathogens such as Ochrobactrum intermedium, Providencia rettgeri, vancomycin resistant Enterococci (VRE), Aerococcus sp. and Citrobacter freundii were found to be highly resistant. One of the O. intermedium strains (ER1) was resistant to 36 antibiotics, while P. rettgeri (OSR3) was resistant to 35 antibiotics. Class 1 and 2 integrons were detected in 74/93 (80%) strains each, and 88/93 (95%) strains harbored at least one type of integron. The qPCR analysis of community DNA also showed an unprecedented high prevalence of integrons, suggesting that the bacteria living under such high selective pressure have an appreciable potential for genetic exchange of resistance genes via mobile gene cassettes. The present study provides insight into

  17. Emerging novel and antimicrobial-resistant respiratory tract infections: new drug development and therapeutic options.

    PubMed

    Zumla, Alimuddin; Memish, Ziad A; Maeurer, Markus; Bates, Matthew; Mwaba, Peter; Al-Tawfiq, Jaffar A; Denning, David W; Hayden, Frederick G; Hui, David S

    2014-11-01

    The emergence and spread of antimicrobial-resistant bacterial, viral, and fungal pathogens for which diminishing treatment options are available is of major global concern. New viral respiratory tract infections with epidemic potential, such as severe acute respiratory syndrome, swine-origin influenza A H1N1, and Middle East respiratory syndrome coronavirus infection, require development of new antiviral agents. The substantial rise in the global numbers of patients with respiratory tract infections caused by pan-antibiotic-resistant Gram-positive and Gram-negative bacteria, multidrug-resistant Mycobacterium tuberculosis, and multiazole-resistant fungi has focused attention on investments into development of new drugs and treatment regimens. Successful treatment outcomes for patients with respiratory tract infections across all health-care settings will necessitate rapid, precise diagnosis and more effective and pathogen-specific therapies. This Series paper describes the development and use of new antimicrobial agents and immune-based and host-directed therapies for a range of conventional and emerging viral, bacterial, and fungal causes of respiratory tract infections. PMID:25189352

  18. Trends in bacterial resistance in a tertiary university hospital over one decade.

    PubMed

    Rubio, Fernando Góngora; Oliveira, Viviane Decicera Colombo; Rangel, Regina Mara Custódio; Nogueira, Mara Corrêa Lelles; Almeida, Margarete Teresa Gottardo

    2013-01-01

    The objective of this study was to investigate bacterial resistance trends, infection sites and the relationship between resistance and admittance to the intensive care unit (ICU). A total of 53,316 bacteria identified between 1999 and 2008 were evaluated. Multidrug resistance was characterized when gram-negative bacilli (GNB) presented resistance to two or more classes of antibiotics. Gram-positive cocci (CPC) were assessed for resistance to penicillin, oxacillin and vancomycin. GNB were the most common (66.1%) isolate. There was a 3.7-fold overall increase in multidrug resistant GNB over the study period; Acinetobacter baumanii and Staphylococcus aureus were the most prevalent. Highest increases were recorded for Klebsiella pneumoniae (14.6-fold) and enterococci (73-fold). The resistance rates for GNB and GPC were 36% and 51.7%, respectively. Most multidrug resistant GNB and GPC were recovered from ICU patients (p-value<0.001). Vancomycin-resistant enterococci were isolated during this decade with an increase of 18.7% by 2008. These data confirm the worldwide trend in multidrug bacterial resistance. PMID:23797009

  19. Genome Analysis of 17 Extensively Drug-Resistant Strains Reveals New Potential Mutations for Resistance

    PubMed Central

    Tarazona, D.; Galarza, M.; Borda, V.; Curitomay, R.

    2014-01-01

    We report the whole-genome sequence of an extensively drug-resistant (XDR) tuberculosis (TB) strain of Latin American–Mediterranean (LAM) lineage. This strain is phenotypically resistant to aminoglycosides, but carries no related mutations in rrs, tlyA, and eis. Through genome analysis comparison with 16 XDR strains, we found 218 non-synonymous single nucleotide polymorphisms (SNPs) shared that could confer resistance. PMID:25081269

  20. Anticancer Agent Shikonin Is an Incompetent Inducer of Cancer Drug Resistance

    PubMed Central

    Wu, Hao; Xie, Jiansheng; Pan, Qiangrong; Wang, Beibei; Hu, Danqing; Hu, Xun

    2013-01-01

    Purpose Cancer drug resistance is a major obstacle for the success of chemotherapy. Since most clinical anticancer drugs could induce drug resistance, it is desired to develop candidate drugs that are highly efficacious but incompetent to induce drug resistance. Numerous previous studies have proven that shikonin and its analogs not only are highly tumoricidal but also can bypass drug-transporter and apoptotic defect mediated drug resistance. The purpose of this study is to investigate if or not shikonin is a weak inducer of cancer drug resistance. Experimental Design Different cell lines (K562, MCF-7, and a MDR cell line K562/Adr), after repeatedly treated with shikonin for 18 months, were assayed for drug resistance and gene expression profiling. Results After 18-month treatment, cells only developed a mere 2-fold resistance to shikonin and a marginal resistance to cisplatin and paclitaxel, without cross resistance to shikonin analogs and other anticancer agents. Gene expression profiles demonstrated that cancer cells did strongly respond to shikonin treatment but failed to effectively mobilize drug resistant machineries. Shikonin-induced weak resistance was associated with the up-regulation of βII-tubulin, which physically interacted with shikonin. Conclusion Taken together, apart from potent anticancer activity, shikonin and its analogs are weak inducers of cancer drug resistance and can circumvent cancer drug resistance. These merits make shikonin and its analogs potential candidates for cancer therapy with advantages of avoiding induction of drug resistance and bypassing existing drug resistance. PMID:23300986

  1. [Multidrug-resistant tuberculosis: current epidemiology, therapeutic regimens, new drugs].

    PubMed

    Gómez-Ayerbe, C; Vivancos, M J; Moreno, S

    2016-09-01

    Multidrug and extensively resistant tuberculosis are especially severe forms of the disease for which no efficacious therapy exists in many cases. All the countries in the world have registered cases, although most of them are diagnosed in resource-limited countries from Asia, Africa and South America. For adequate treatment, first- and second-line antituberculosis drugs have to be judiciously used, but the development of new drugs with full activity, good tolerability and little toxicity is urgently needed. There are some drugs in development, some of which are already available through expanded-access programs. PMID:27608311

  2. Role of old antibiotics in multidrug resistant bacterial infections.

    PubMed

    Maviglia, R; Nestorini, R; Pennisi, M

    2009-09-01

    Multidrug resistant bacteria infections are associated with an increase in attributable mortality and morbidity in ICU patients. Unfortunately, an emerging resistance to novel antibiotics used in the therapy of gram negative and gram positive bacteria infections is often reported in literature. Old antibiotics have been reintroduced in clinical practice. In this review we report the efficacy and safety use of older antimicrobial agents in critically ill patients. Polymyxins are used for nosocomial infection caused by Pseudomonas aeruginosa and Acinetobacter baumannii resistant strains. Patients with polymyxin-only susceptible gram-negative nosocomial pneumonia are reported to be successfully treated with inhaled colistin. Isepamicin can probably be used in intensive care units that harbor Gram-negative bacteria resistant to other aminoglycosides. Fosfomycin may be a useful alternative to linezolid and quinupristin-dalfopristin in the treatment of Vancomycin Resistant Enterococci (VRE) infections in certain clinical situations, e.g. uncomplicated urinary tract infections. Chloramphenicol has a wide antimicrobial spectrum and excellent tissue penetration; though it is sometimes used empirically in the hospital setting for the treatment of patients with unknown source of fever, its role is still a matter of controversy. The colistin/rifampicin combination might have a synergistic effect in Acinetobacter baumannii and Pseudomonas aeruginosa infections. Fusidic acid is active against staphylococcal strains. PMID:19799544

  3. Antibiotic-Resistant Gram-Negative Bacterial Infections in Patients With Cancer

    PubMed Central

    Perez, Federico; Adachi, Javier; Bonomo, Robert A.

    2014-01-01

    Patients with cancer are at high risk for infections caused by antibiotic resistant gram-negative bacteria. In this review, we summarize trends among the major pathogens and clinical syndromes associated with antibiotic resistant gram-negative bacterial infection in patients with malignancy, with special attention to carbapenem and expanded-spectrum β-lactam resistance in Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia—all major threats to our cancer patients. Optimal therapy for these antibiotic-resistant pathogens still remains to be determined. PMID:25352627

  4. Antibiotic-resistant gram-negative bacterial infections in patients with cancer.

    PubMed

    Perez, Federico; Adachi, Javier; Bonomo, Robert A

    2014-11-15

    Patients with cancer are at high risk for infections caused by antibiotic resistant gram-negative bacteria. In this review, we summarize trends among the major pathogens and clinical syndromes associated with antibiotic resistant gram-negative bacterial infection in patients with malignancy, with special attention to carbapenem and expanded-spectrum β-lactam resistance in Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia--all major threats to our cancer patients. Optimal therapy for these antibiotic-resistant pathogens still remains to be determined. PMID:25352627

  5. Antimicrobial Resistance and Virulence: a Successful or Deleterious Association in the Bacterial World?

    PubMed Central

    Beceiro, Alejandro; Tomás, María

    2013-01-01

    SUMMARY Hosts and bacteria have coevolved over millions of years, during which pathogenic bacteria have modified their virulence mechanisms to adapt to host defense systems. Although the spread of pathogens has been hindered by the discovery and widespread use of antimicrobial agents, antimicrobial resistance has increased globally. The emergence of resistant bacteria has accelerated in recent years, mainly as a result of increased selective pressure. However, although antimicrobial resistance and bacterial virulence have developed on different timescales, they share some common characteristics. This review considers how bacterial virulence and fitness are affected by antibiotic resistance and also how the relationship between virulence and resistance is affected by different genetic mechanisms (e.g., coselection and compensatory mutations) and by the most prevalent global responses. The interplay between these factors and the associated biological costs depend on four main factors: the bacterial species involved, virulence and resistance mechanisms, the ecological niche, and the host. The development of new strategies involving new antimicrobials or nonantimicrobial compounds and of novel diagnostic methods that focus on high-risk clones and rapid tests to detect virulence markers may help to resolve the increasing problem of the association between virulence and resistance, which is becoming more beneficial for pathogenic bacteria. PMID:23554414

  6. Pyramiding B genes in cotton achieves broader but not always higher resistance to bacterial blight.

    PubMed

    Essenberg, Margaret; Bayles, Melanie B; Pierce, Margaret L; Verhalen, Laval M

    2014-10-01

    Near-isogenic lines of upland cotton (Gossypium hirsutum) carrying single, race-specific genes B4, BIn, and b7 for resistance to bacterial blight were used to develop a pyramid of lines with all possible combinations of two and three genes to learn whether the pyramid could achieve broad and high resistance approaching that of L. A. Brinkerhoff's exceptional line Im216. Isogenic strains of Xanthomonas axonopodis pv. malvacearum carrying single avirulence (avr) genes were used to identify plants carrying specific resistance (B) genes. Under field conditions in north-central Oklahoma, pyramid lines exhibited broader resistance to individual races and, consequently, higher resistance to a race mixture. It was predicted that lines carrying two or three B genes would also exhibit higher resistance to race 1, which possesses many avr genes. Although some enhancements were observed, they did not approach the level of resistance of Im216. In a growth chamber, bacterial populations attained by race 1 in and on leaves of the pyramid lines decreased significantly with increasing number of B genes in only one of four experiments. The older lines, Im216 and AcHR, exhibited considerably lower bacterial populations than any of the one-, two-, or three-B-gene lines. A spreading collapse of spray-inoculated AcBIn and AcBInb7 leaves appears to be a defense response (conditioned by BIn) that is out of control. PMID:24655289

  7. PREVALENCE OF BACTERIAL RESISTANCE IN HOSPITALIZED CIRRHOTIC PATIENTS IN SOUTHERN BRAZIL: A NEW CHALLENGE

    PubMed Central

    COSTABEBER, Ane Micheli; de MATTOS, Angelo Alves; SUKIENNIK, Teresa Cristina Teixeira

    2016-01-01

    Background & Aims: An increased frequency of infections by multiresistant bacteria has been described in hospitalized patients. The aim of this study was to evaluate the bacterial resistance profile in cirrhotic patients. Methods: This is a retrospective observational study. We assessed the antimicrobial susceptibility of 5,839 bacterial isolates from patients with and without cirrhosis. Regarding the multidrug resistance, we evaluated 4,505 bacterial isolates from 2,180 patients. Results: Two hundred and fifty-one patients had cirrhosis (mean age 57.6 ± 11 years; 61.8% were male, 47.8% of cases associated with hepatitis C virus). Of the isolates of patients with and without cirrhosis, 174/464 (37.5%) and 1,783/4,041 (44.1%) were multiresistant, respectively (p = 0.007). E. coli was the most common multiresistant bacteria in both groups. Approximately 20% of E. coli and Klebsiella sp. isolates were ESBL-producers and 44% of S. aureus isolates were methicillin-resistant in cirrhotic patients. In cirrhotic patients admitted to the emergency department, hospital ward, and intensive care unit, 28.3%, 50% and 40% had multiresistant isolates, respectively. In patients with and without cirrhosis, 36.2% and 33.5% of isolates were resistant to third-generation cephalosporins, respectively. Conclusions: The empirical treatment of infections in hospitalized patients using broad-spectrum antibiotics should consider the observed pattern of bacterial resistance. PMID:27253738

  8. Additional Drug Resistance of Multidrug-Resistant Tuberculosis in Patients in 9 Countries

    PubMed Central

    Dalton, Tracy; Ershova, Julia; Tupasi, Thelma; Caoili, Janice Campos; Van Der Walt, Martie; Kvasnovsky, Charlotte; Yagui, Martin; Bayona, Jaime; Contreras, Carmen; Leimane, Vaira; Via, Laura E.; Kim, HeeJin; Akksilp, Somsak; Kazennyy, Boris Y.; Volchenkov, Grigory V.; Jou, Ruwen; Kliiman, Kai; Demikhova, Olga V.; Cegielski, J. Peter

    2015-01-01

    Data from a large multicenter observational study of patients with multidrug-resistant tuberculosis (MDR TB) were analyzed to simulate the possible use of 2 new approaches to treatment of MDR TB: a short (9-month) regimen and a bedaquiline-containing regimen. Of 1,254 patients, 952 (75.9%) had no resistance to fluoroquinolones and second-line injectable drugs and thus would qualify as candidates for the 9-month regimen; 302 (24.1%) patients with resistance to a fluoroquinolone or second-line injectable drug would qualify as candidates for a bedaquiline-containing regimen in accordance with published guidelines. Among candidates for the 9-month regimen, standardized drug-susceptibility tests demonstrated susceptibility to a median of 5 (interquartile range 5–6) drugs. Among candidates for bedaquiline, drug-susceptibility tests demonstrated susceptibility to a median of 3 (interquartile range 2–4) drugs; 26% retained susceptibility to <2 drugs. These data may assist national TB programs in planning to implement new drugs and drug regimens. PMID:25988299

  9. Additional drug resistance of multidrug-resistant tuberculosis in patients in 9 countries.

    PubMed

    Kurbatova, Ekaterina V; Dalton, Tracy; Ershova, Julia; Tupasi, Thelma; Caoili, Janice Campos; Van Der Walt, Martie; Kvasnovsky, Charlotte; Yagui, Martin; Bayona, Jaime; Contreras, Carmen; Leimane, Vaira; Via, Laura E; Kim, HeeJin; Akksilp, Somsak; Kazennyy, Boris Y; Volchenkov, Grigory V; Jou, Ruwen; Kliiman, Kai; Demikhova, Olga V; Cegielski, J Peter

    2015-06-01

    Data from a large multicenter observational study of patients with multidrug-resistant tuberculosis (MDR TB) were analyzed to simulate the possible use of 2 new approaches to treatment of MDR TB: a short (9-month) regimen and a bedaquiline-containing regimen. Of 1,254 patients, 952 (75.9%) had no resistance to fluoroquinolones and second-line injectable drugs and thus would qualify as candidates for the 9-month regimen; 302 (24.1%) patients with resistance to a fluoroquinolone or second-line injectable drug would qualify as candidates for a bedaquiline-containing regimen in accordance with published guidelines. Among candidates for the 9-month regimen, standardized drug-susceptibility tests demonstrated susceptibility to a median of 5 (interquartile range 5-6) drugs. Among candidates for bedaquiline, drug-susceptibility tests demonstrated susceptibility to a median of 3 (interquartile range 2-4) drugs; 26% retained susceptibility to <2 drugs. These data may assist national TB programs in planning to implement new drugs and drug regimens. PMID:25988299

  10. Interferon in resistance to bacterial and protozoan infections

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Gould, Cheryl L.; Kierszenbaum, Felipe; Degee, Antonie L. W.; Mansfield, John M.

    1986-01-01

    The effects of genetic differences in mouse strains on the modulation of protozoan infections by interferon (IFN) were investigated. In one set of experiments, three different strains of mice were injected with T. cruzi, and their sera were assayed at five time intervals for IFN titer. A greater quantity of IFN was produced by mouse strains that were susceptible to T. cruzi infection than by the more resistant strain. In another set of experiments, spleen cell cultures from inbred strains of mice were challenged with an antigen made from T.b. rhodesiense. The cells from mice resistant to infection, produced greater amounts of IFN-gamma than did cells from the susceptible mice. In a third set of experiments, it was found that mice injected with T.b. rhodesiense before being infected with a diabetogenic virus (EMC-D) were resistant to the effects of the virus and did not produce virus-specific antibody.

  11. Examination of Bacterial Resistance to Exogenous Nitric Oxide

    PubMed Central

    Privett, Benjamin J.; Broadnax, Angela D.; Bauman, Susanne J.; Riccio, Daniel A.; Schoenfisch, Mark H.

    2012-01-01

    While much research has been directed to harnessing the antimicrobial properties of exogenous NO, the possibility of bacteria developing resistance to such therapy has not been thoroughly studied. Herein, we evaluate potential NO resistance using spontaneous and serial passage mutagenesis assays. Specifically, Staphylococcus aureus, Methicillin-resistant S. aureus (MRSA), Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa were systematically exposed to NO-releasing 75mol% MPTMS-TEOS nitrosothiol particles at or below minimum inhibitory concentration (MIC) levels. In the spontaneous mutagenesis assay, bacteria that survived exposure to lethal concentrations of NO showed no increase in MIC. Similarly, no increase in MIC was observed in the serial passage mutagenesis assay after exposure of these species to sub-inhibitory concentrations of NO through 20 d. PMID:22349019

  12. Targeting mitochondrial biogenesis to overcome drug resistance to MAPK inhibitors

    PubMed Central

    Zhang, Gao; Frederick, Dennie T.; Wu, Lawrence; Wei, Zhi; Krepler, Clemens; Srinivasan, Satish; Chae, Young Chan; Xu, Xiaowei; Choi, Harry; Dimwamwa, Elaida; Shannan, Batool; Basu, Devraj; Zhang, Dongmei; Guha, Manti; Xiao, Min; Randell, Sergio; Sproesser, Katrin; Xu, Wei; Liu, Jephrey; Karakousis, Giorgos C.; Schuchter, Lynn M.; Gangadhar, Tara C.; Amaravadi, Ravi K.; Gu, Mengnan; Xu, Caiyue; Ghosh, Abheek; Xu, Weiting; Tian, Tian; Zhang, Jie; Zha, Shijie; Brafford, Patricia; Weeraratna, Ashani; Davies, Michael A.; Wargo, Jennifer A.; Avadhani, Narayan G.; Lu, Yiling; Mills, Gordon B.; Altieri, Dario C.; Flaherty, Keith T.

    2016-01-01

    Targeting multiple components of the MAPK pathway can prolong the survival of patients with BRAFV600E melanoma. This approach is not curative, as some BRAF-mutated melanoma cells are intrinsically resistant to MAPK inhibitors (MAPKi). At the systemic level, our knowledge of how signaling pathways underlie drug resistance needs to be further expanded. Here, we have shown that intrinsically resistant BRAF-mutated melanoma cells with a low basal level of mitochondrial biogenesis depend on this process to survive MAPKi. Intrinsically resistant cells exploited an integrated stress response, exhibited an increase in mitochondrial DNA content, and required oxidative phosphorylation to meet their bioenergetic needs. We determined that intrinsically resistant cells rely on the genes encoding TFAM, which controls mitochondrial genome replication and transcription, and TRAP1, which regulates mitochondrial protein folding. Therefore, we targeted mitochondrial biogenesis with a mitochondrium-targeted, small-molecule HSP90 inhibitor (Gamitrinib), which eradicated intrinsically resistant cells and augmented the efficacy of MAPKi by inducing mitochondrial dysfunction and inhibiting tumor bioenergetics. A subset of tumor biopsies from patients with disease progression despite MAPKi treatment showed increased mitochondrial biogenesis and tumor bioenergetics. A subset of acquired drug-resistant melanoma cell lines was sensitive to Gamitrinib. Our study establishes mitochondrial biogenesis, coupled with aberrant tumor bioenergetics, as a potential therapy escape mechanism and paves the way for a rationale-based combinatorial strategy to improve the efficacy of MAPKi. PMID:27043285

  13. Targeting mitochondrial biogenesis to overcome drug resistance to MAPK inhibitors.

    PubMed

    Zhang, Gao; Frederick, Dennie T; Wu, Lawrence; Wei, Zhi; Krepler, Clemens; Srinivasan, Satish; Chae, Young Chan; Xu, Xiaowei; Choi, Harry; Dimwamwa, Elaida; Ope, Omotayo; Shannan, Batool; Basu, Devraj; Zhang, Dongmei; Guha, Manti; Xiao, Min; Randell, Sergio; Sproesser, Katrin; Xu, Wei; Liu, Jephrey; Karakousis, Giorgos C; Schuchter, Lynn M; Gangadhar, Tara C; Amaravadi, Ravi K; Gu, Mengnan; Xu, Caiyue; Ghosh, Abheek; Xu, Weiting; Tian, Tian; Zhang, Jie; Zha, Shijie; Liu, Qin; Brafford, Patricia; Weeraratna, Ashani; Davies, Michael A; Wargo, Jennifer A; Avadhani, Narayan G; Lu, Yiling; Mills, Gordon B; Altieri, Dario C; Flaherty, Keith T; Herlyn, Meenhard

    2016-05-01

    Targeting multiple components of the MAPK pathway can prolong the survival of patients with BRAFV600E melanoma. This approach is not curative, as some BRAF-mutated melanoma cells are intrinsically resistant to MAPK inhibitors (MAPKi). At the systemic level, our knowledge of how signaling pathways underlie drug resistance needs to be further expanded. Here, we have shown that intrinsically resistant BRAF-mutated melanoma cells with a low basal level of mitochondrial biogenesis depend on this process to survive MAPKi. Intrinsically resistant cells exploited an integrated stress response, exhibited an increase in mitochondrial DNA content, and required oxidative phosphorylation to meet their bioenergetic needs. We determined that intrinsically resistant cells rely on the genes encoding TFAM, which controls mitochondrial genome replication and transcription, and TRAP1, which regulates mitochondrial protein folding. Therefore, we targeted mitochondrial biogenesis with a mitochondrium-targeted, small-molecule HSP90 inhibitor (Gamitrinib), which eradicated intrinsically resistant cells and augmented the efficacy of MAPKi by inducing mitochondrial dysfunction and inhibiting tumor bioenergetics. A subset of tumor biopsies from patients with disease progression despite MAPKi treatment showed increased mitochondrial biogenesis and tumor bioenergetics. A subset of acquired drug-resistant melanoma cell lines was sensitive to Gamitrinib. Our study establishes mitochondrial biogenesis, coupled with aberrant tumor bioenergetics, as a potential therapy escape mechanism and paves the way for a rationale-based combinatorial strategy to improve the efficacy of MAPKi. PMID:27043285

  14. Biophysical principles predict fitness landscapes of drug resistance.

    PubMed

    Rodrigues, João V; Bershtein, Shimon; Li, Anna; Lozovsky, Elena R; Hartl, Daniel L; Shakhnovich, Eugene I

    2016-03-15

    Fitness landscapes of drug resistance constitute powerful tools to elucidate mutational pathways of antibiotic escape. Here, we developed a predictive biophysics-based fitness landscape of trimethoprim (TMP) resistance for Escherichia coli dihydrofolate reductase (DHFR). We investigated the activity, binding, folding stability, and intracellular abundance for a complete set of combinatorial DHFR mutants made out of three key resistance mutations and extended this analysis to DHFR originated from Chlamydia muridarum and Listeria grayi We found that the acquisition of TMP resistance via decreased drug affinity is limited by a trade-off in catalytic efficiency. Protein stability is concurrently affected by the resistant mutants, which precludes a precise description of fitness from a single molecular trait. Application of the kinetic flux theory provided an accurate model to predict resistance phenotypes (IC50) quantitatively from a unique combination of the in vitro protein molecular properties. Further, we found that a controlled modulation of the GroEL/ES chaperonins and Lon protease levels affects the intracellular steady-state concentration of DHFR in a mutation-specific manner, whereas IC50 is changed proportionally, as indeed predicted by the model. This unveils a molecular rationale for the pleiotropic role of the protein quality control machinery on the evolution of antibiotic resistance, which, as we illustrate here, may drastically confound the evolutionary outcome. These results provide a comprehensive quantitative genotype-phenotype map for the essential enzyme that serves as an important target of antibiotic and anticancer therapies. PMID:26929328

  15. Computational evaluation of phytocompounds for combating drug resistant tuberculosis by multi-targeted therapy.

    PubMed

    Sundarrajan, Sudharsana; Lulu, Sajitha; Arumugam, Mohanapriya

    2015-09-01

    The cell wall of Mycobacterium tuberculosis interacts with the host counterpart during the pathogenesis of tuberculosis. L-rhamnosyl (L-Rha) residue, a linker connects the arabinogalactan and peptidoglycan moieties in the bacterial cell wall. The biosynthesis of L-rhamnose utilizes four successive enzymes RmlA, RmlB, RmlC and RmlD. Neither rhamnose nor the genes responsible for its synthesis are observed in humans. Thus, drugs inhibiting enzymes of this pathway are unlikely to interfere with metabolic pathways in humans. The adverse drug effects of first and second line drugs along with the development of multi-drug resistance tuberculosis have stimulated the research in search of new therapeutic drugs. Thus, it is attractive to hypothesize that inhibition of the biosynthesis of L-Rha would be lethal to the mycobacteria. Nature provides innumerable secondary metabolites with novel structural architectures with reported activity against M. tuberculosis. Combination of structure based virtual screening with physicochemical and pharmacokinetic studies against rhamnose pathway enzymes identified potential leads. The crucial screening studies recognized four phytocompounds butein, diospyrin, indicanine, and rumexneposide A with good binding affinity towards the rhamnose pathway proteins. Furthermore, the high throughput screening methods recognized butein, a secondary metabolite from Butea monosperma with strong anti-tubercular bioactive spectrum. Butein displayed promising anti-mycobacterial activity which is validated by Microplate alamar blue assay (MABA). The focus on novel agents like these phytocompounds which exhibit preference toward the successive enzymes of a single pathway can prevent the development of bacterial resistance. PMID:26323856

  16. Drug Targets and Mechanisms of Resistance in the Anaerobic Protozoa

    PubMed Central

    Upcroft, Peter; Upcroft, Jacqueline A.

    2001-01-01

    The anaerobic protozoa Giardia duodenalis, Trichomonas vaginalis, and Entamoeba histolytica infect up to a billion people each year. G. duodenalis and E. histolytica are primarily pathogens of the intestinal tract, although E. histolytica can form abscesses and invade other organs, where it can be fatal if left untreated. T. vaginalis infection is a sexually transmitted infection causing vaginitis and acute inflammatory disease of the genital mucosa. T. vaginalis has also been reported in the urinary tract, fallopian tubes, and pelvis and can cause pneumonia, bronchitis, and oral lesions. Respiratory infections can be acquired perinatally. T. vaginalis infections have been associated with preterm delivery, low birth weight, and increased mortality as well as predisposing to human immunodeficiency virus infection, AIDS, and cervical cancer. All three organisms lack mitochondria and are susceptible to the nitroimidazole metronidazole because of similar low-redox-potential anaerobic metabolic pathways. Resistance to metronidazole and other drugs has been observed clinically and in the laboratory. Laboratory studies have identified the enzyme that activates metronidazole, pyruvate:ferredoxin oxidoreductase, to its nitroso form and distinct mechanisms of decreasing drug susceptibility that are induced in each organism. Although the nitroimidazoles have been the drug family of choice for treating the anaerobic protozoa, G. duodenalis is less susceptible to other antiparasitic drugs, such as furazolidone, albendazole, and quinacrine. Resistance has been demonstrated for each agent, and the mechanism of resistance has been investigated. Metronidazole resistance in T. vaginalis is well documented, and the principal mechanisms have been defined. Bypass metabolism, such as alternative oxidoreductases, have been discovered in both organisms. Aerobic versus anaerobic resistance in T. vaginalis is discussed. Mechanisms of metronidazole resistance in E. histolytica have recently

  17. Induced Bacterial Cross-Resistance toward Host Antimicrobial Peptides: A Worrying Phenomenon

    PubMed Central

    Fleitas, Osmel; Franco, Octávio L.

    2016-01-01

    Bacterial resistance to conventional antibiotics has reached alarming levels, threatening to return to the pre-antibiotic era. Therefore, the search for new antimicrobial compounds that overcome the resistance phenomenon has become a priority. Antimicrobial peptides (AMPs) appear as one of the most promising antibiotic medicines. However, in recent years several AMP-resistance mechanisms have been described. Moreover, the AMP-resistance phenomenon has become more complex due to its association with cross-resistance toward AMP effectors of the host innate immune system. In this context, the use of AMPs as a therapeutic option could be potentially hazardous, since bacteria could develop resistance toward our innate immune system. Here, we review the findings of major studies that deal with the AMP cross-resistance phenomenon. PMID:27047486

  18. Microparticle drug sequestration provides a parallel pathway in the acquisition of cancer drug resistance.

    PubMed

    Gong, Joyce; Luk, Frederick; Jaiswal, Ritu; George, Anthony M; Grau, Georges Emile Raymond; Bebawy, Mary

    2013-12-01

    Expanding on our previous findings demonstrating that microparticles (MPs) spread cancer multidrug resistance, we now show that MPs sequester drugs, reducing the free drug concentration available to cells. MPs were isolated from drug-sensitive and drug-resistant sub-clones of a human breast adenocarcinoma cell line and from human acute lymphoblastic leukemia cells. MPs were assessed for size, mitochondria, RNA and phospholipid content, P-glycoprotein (P-gp) expression and orientation and ATPase activity relative to drug sequestration capacity. Of the drug classes examined, MPs sequestered the anthracycline class to a significant degree. The degree of sequestration was likely due to the size of MPs and thus the amount of cargo they contain, to which the anthracyclines bind. Moreover, a proportion of the P-gp present on MPs was inside-out in orientation, enabling it to influx drugs rather than its typical efflux function. This was confirmed by surface immunofluorescence and by assessment of drug-stimulated ATPase activity following MP permeabilization. Thus we determined that breast cancer MPs carried a proportion of their P-gp oriented inside-out, providing active sequestration within the microvesicular compartment. These results demonstrate a capacity for MPs to sequester chemotherapeutic drugs, which has a predominantly active sequestration component for MPs derived from drug-resistant cells and a predominantly passive component for MPs derived from drug-sensitive cells. This reduction in available drug concentration has potential to contribute to a parallel pathway and complements that of the intercellular transfer of P-gp. These findings lend further support to the role of MPs in limiting the successful management of cancer. PMID:24095666

  19. Alcohol and Other Drug Resistance Strategies Employed by Rural Adolescents

    ERIC Educational Resources Information Center

    Pettigrew, Jonathan; Miller-Day, Michelle; Krieger, Janice; Hecht, Michael L.

    2011-01-01

    This study seeks to identify how rural adolescents make health decisions and utilize communication strategies to resist influence attempts in offers of alcohol, tobacco, and other drugs (ATOD). Semi-structured interviews were conducted with 113 adolescents from rural school districts to solicit information on ATOD norms, past ATOD experiences, and…

  20. P-Glycoprotein and Drug Resistance in Systemic Autoimmune Diseases

    PubMed Central

    Picchianti-Diamanti, Andrea; Rosado, Maria Manuela; Scarsella, Marco; Laganà, Bruno; D’Amelio, Raffaele

    2014-01-01

    Autoimmune diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA) and psoriatic arthritis (PsA) are chronic inflammatory disorders of unknown etiology characterized by a wide range of abnormalities of the immune system that may compromise the function of several organs, such as kidney, heart, joints, brain and skin. Corticosteroids (CCS), synthetic and biologic immunosuppressive agents have demonstrated the capacity to improve the course of autoimmune diseases. However, a significant number of patients do not respond or develop resistance to these therapies over time. P-glycoprotein (P-gp) is a transmembrane protein that pumps several drugs out of the cell, including CCS and immunosuppressants; thus, its over-expression or hyper-function has been proposed as a possible mechanism of drug resistance in patients with autoimmune disorders. Recently, different authors have demonstrated that P-gp inhibitors, such as cyclosporine A (CsA) and its analogue Tacrolimus, are able to reduce P-gp expression and or function in SLE, RA and PsA patients. These observations suggest that P-gp antagonists could be adopted to revert drug resistance and improve disease outcome. The complex inter-relationship among drug resistance, P-gp expression and autoimmunity still remains elusive. PMID:24658440

  1. "Applied" Aspects of the Drug Resistance Strategies Project

    ERIC Educational Resources Information Center

    Hecht, Michael L.; Miller-Day, Michelle A.

    2010-01-01

    This paper discusses the applied aspects of our Drug Resistance Strategies Project. We argue that a new definitional distinction is needed to expand the notion of "applied" from the traditional notion of utilizing theory, which we call "applied.1," in order to consider theory-grounded, theory testing and theory developing applied research. We…

  2. Antibiotic resistant bacterial profiles of anaerobic swine lagoon effluent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although land application of swine manure lagoon effluent is a common and effective method of disposal, the presence of antibiotic-resistant bacteria, both pathogenic and commensal can complicate already understood issues associated with its safe disposal. To better understand this, more data is ne...

  3. Towards an understanding of the genetics of bacterial metal resistance.

    PubMed

    Mergeay, M

    1991-01-01

    Many bacteria show great promise for use in metal recovery. However, the genetics of metal-leaching, accumulation-resistance, and oxidation/reduction mechanisms of these bacteria is still an area of research in its infancy. The introduction of such genes into bacteria of economic importance would have application in biomining and environmental bioremediation. PMID:1366923

  4. Antibiotic Resistant Bacterial Profiles of Anaerobic Swine Lagoon Effluent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although land application of swine manure lagoon effluent is a common and effective method of disposal, the presence of antibiotic-resistant bacteria, both pathogenic and commensal can complicate already understood issues associated with its safe disposal. The aim of this study was to assess antibi...

  5. Quantitative Trait Loci Mapping for Bacterial Blight Resistance in Rice Using Bulked Segregant Analysis

    PubMed Central

    Han, Xueying; Yang, Yong; Wang, Xuming; Zhou, Jie; Zhang, Wenhao; Yu, Chulang; Cheng, Chen; Cheng, Ye; Yan, Chengqi; Chen, Jianping

    2014-01-01

    Oryza meyeriana is highly resistant to rice bacterial blight (BB) and this resistance trait has been transferred to cultivated rice (O. sativa) using asymmetric somatic hybridization. However, no resistance genes have yet been cloned. In the present study, a progeny of the somatic hybridization with high BB resistance was crossed with a rice cultivar with high BB susceptibility to develop an F2 population. Using bulked segregant analysis (BSA), 17 polymorphic markers that were linked to rice BB resistance were obtained through scanning a total of 186 simple sequence repeats (SSR) and sequence-tagged site (STS) markers, evenly distributed on 12 chromosomes. A genetic linkage map was then constructed based on the 17 linkage markers and the F2 segregating population, which was followed by mapping for quantitative trait loci (QTLs) for BB resistance. Three QTLs were identified on chromosomes 1, 3 and 5, respectively, and the alleles of the resistant parent at any of the QTLs increased BB resistance. All of the three QTLs had a strong effect on resistance, explaining about 21.5%, 12.3% and 39.2% of the resistance variance, respectively. These QTLs were different from the loci of the BB resistance genes that have been identified in previous studies. The QTLs mapped in this work will facilitate the isolation of novel BB resistance genes and their utilization in rice resistance breeding. PMID:24995697

  6. Modeling mass drug treatment and resistant filaria disease transmission

    NASA Astrophysics Data System (ADS)

    Fuady, A. M.; Nuraini, N.; Soewono, E.; Tasman, H.; Supriatna, A. K.

    2014-03-01

    It has been indicated that a long term application of combined mass drug treatment may contribute to the development of drug resistance in lymphatic filariasis. This phenomenon is not well understood due to the complexity of filaria life cycle. In this paper we formulate a mathematical model for the spread of mass drug resistant in a filaria endemic region. The model is represented in a 13-dimensional Host-Vector system. The basic reproductive ratio of the system which is obtained from the next generation matrix, and analysis of stability of both the disease free equilibrium and the coexistence equilibria are shown. Numerical simulation for long term dynamics for possible field conditions is also shown.

  7. Mechanisms of Drug Resistance in Relapse and Refractory Multiple Myeloma

    PubMed Central

    Yang, Wen-Chi; Lin, Sheng-Fung

    2015-01-01

    Multiple myeloma (MM) is a hematological malignancy that remains incurable because most patients eventually relapse or become refractory to current treatments. Although the treatments have improved, the major problem in MM is resistance to therapy. Clonal evolution of MM cells and bone marrow microenvironment changes contribute to drug resistance. Some mechanisms affect both MM cells and microenvironment, including the up- and downregulation of microRNAs and programmed death factor 1 (PD-1)/PD-L1 interaction. Here, we review the pathogenesis of MM cells and bone marrow microenvironment and highlight possible drug resistance mechanisms. We also review a potential molecular targeting treatment and immunotherapy for patients with refractory or relapse MM. PMID:26649299

  8. Drug Resistance Characteristics and Macrolide-Resistant Mechanisms of Streptococcus pneumoniae in Wenzhou City, China.

    PubMed

    Hu, Dakang; Sun, Zheng; Luo, Xinhua; Liu, Shuangchun; Yu, Lianhua; Qu, Ying; Yang, Jinhong; Yu, Jian; Li, Xiangyang; Zhang, Jin

    2016-01-01

    BACKGROUND Streptococcus pneumoniae (SP) is a Gram-positive, alpha-hemolytic, facultative anaerobic member of the genus Streptococcus. The erythromycin-resistant methylase (erm) gene and macrolide efflux (mef) gene are the 2 main genes that can mediate SP. Transposon (Tn) also plays an important role in the collection and metastasis of the gene. In the present study we investigated the drug resistance characteristics and the macrolide-resistant mechanisms of SP in Wenzhou City, China. MATERIAL AND METHODS Sixty-eight strains of SP were isolated from sputum samples of hospitalized children in the Second Affiliated Hospital of Wenzhou Medical University. These strains were analyzed using antimicrobial susceptibility tests to determine their drug resistance to 10 kinds of antibacterials. Macrolide-resistant phenotypes were identified using K-B method. PCR method was used to analyze the erm B gene, mef A gene, and int Tn gene. RESULTS Drug resistance rates of 68 strains of SP were 98.5%, 100.0%, 63.2%, 52.9%, 94.1%, 89.7%, 0.0%, 0.0%, 16.2%, and 14.7% for clindamycin, erythromycin, penicillin G, cefotaxime, tetracycline, sulfamethoxazole/trimethoprim, levofloxacin, vancomycin, chloramphenicol, and amoxicillin, respectively. Total detection rates of the erm B gene, mef A gene, and int Tn gene were 98.5%, 91.2%, and 100.0%, respectively. CONCLUSIONS SP shows significant multi-drug resistance in Wenzhou City, whereas there is no clinical value of macrolides antibiotics for SP. cMLSB mediated by erm B gene is the most predominant phenotype among macrolide-resistant SP. The int Tn gene may play an important role in horizontal transfer and clonal dissemination of SP drug resistance genes in Wenzhou City. PMID:27483416

  9. Drug Resistance Characteristics and Macrolide-Resistant Mechanisms of Streptococcus pneumoniae in Wenzhou City, China

    PubMed Central

    Hu, Dakang; Sun, Zheng; Luo, Xinhua; Liu, Shuangchun; Yu, Lianhua; Qu, Ying; Yang, Jinhong; Yu, Jian; Li, Xiangyang; Zhang, Jin

    2016-01-01

    Background Streptococcus pneumoniae (SP) is a Gram-positive, alpha-hemolytic, facultative anaerobic member of the genus Streptococcus. The erythromycin-resistant methylase (erm) gene and macrolide efflux (mef) gene are the 2 main genes that can mediate SP. Transposon (Tn) also plays an important role in the collection and metastasis of the gene. In the present study we investigated the drug resistance characteristics and the macrolide-resistant mechanisms of SP in Wenzhou City, China. Material/Methods Sixty-eight strains of SP were isolated from sputum samples of hospitalized children in the Second Affiliated Hospital of Wenzhou Medical University. These strains were analyzed using antimicrobial susceptibility tests to determine their drug resistance to 10 kinds of antibacterials. Macrolide-resistant phenotypes were identified using K-B method. PCR method was used to analyze the erm B gene, mef A gene, and int Tn gene. Results Drug resistance rates of 68 strains of SP were 98.5%, 100.0%, 63.2%, 52.9%, 94.1%, 89.7%, 0.0%, 0.0%, 16.2%, and 14.7% for clindamycin, erythromycin, penicillin G, cefotaxime, tetracycline, sulfamethoxazole/trimethoprim, levofloxacin, vancomycin, chloramphenicol, and amoxicillin, respectively. Total detection rates of the erm B gene, mef A gene, and int Tn gene were 98.5%, 91.2%, and 100.0%, respectively. Conclusions SP shows significant multi-drug resistance in Wenzhou City, whereas there is no clinical value of macrolides antibiotics for SP. cMLSB mediated by erm B gene is the most predominant phenotype among macrolide-resistant SP. The int Tn gene may play an important role in horizontal transfer and clonal dissemination of SP drug resistance genes in Wenzhou City. PMID:27483416

  10. Pharmacological telomerase inhibition can sensitize drug-resistant and drug-sensitive cells to chemotherapeutic treatment.

    PubMed

    Ward, Ryan J; Autexier, Chantal

    2005-09-01

    Effective strategies to reverse or prevent chemotherapeutic resistance are required before cancer therapies can be curative. Telomerase is the ribonucleoprotein responsible for de novo synthesis and maintenance of telomeres, and its activity is predominantly observed in cancer cells. The telomerase enzyme has been successfully inhibited or inactivated to sensitize cells to cellular stresses; however, no studies have determined yet the effect of combining a pharmacological inhibitor of telomerase catalysis and traditional chemotherapeutics for the treatment of drug-sensitive or drug-resistant cancers. Here, we describe the effect of 2-[(E)-3-naphtalen-2-yl-but-2-enoylamino]-benzoic acid (BIBR1532), a small-molecule inhibitor of telomerase catalytic activity, on drug-resistant leukemia and breast cancer cells and their parental counterparts when treated in combination with chemotherapeutics. We observed that BIBR1532-treated cells show progressive telomere shortening, decreased proliferative capacity, and sensitization to chemotherapeutic treatment. These effects are telomere length-dependent, because cells insensitive to BIBR1532 or cells released from telomerase inhibition did not demonstrate changes in growth ability or drug sensitivity. Our novel observations suggest that pharmacological telomerase inhibition in combination therapy may be a valid strategy for the treatment of both drug-sensitive and drug-resistant cancers. PMID:15939802

  11. Extensively Drug-Resistant Tuberculosis: A New Face to an Old Pathogen

    PubMed Central

    Shenoi, Sheela; Friedland, Gerald

    2009-01-01

    The presence and consequences of resistance to drugs used for the treatment of tuberculosis have long been neglected. The recent detection and recognition of widespread multiple-drug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis have raised interest and concern among clinicians and public health authorities globally. In this article, we describe the current global status of drug-resistant tuberculosis. We discuss the development of resistance, current management, and strategies for control. PMID:19630575

  12. Insights into the amplification of bacterial resistance to erythromycin in activated sludge.

    PubMed

    Guo, Mei-Ting; Yuan, Qing-Bin; Yang, Jian

    2015-10-01

    Wastewater treatment plants are significant reservoirs for antimicrobial resistance. However, little is known about wastewater treatment effects on the variation of antibiotic resistance. The shifts of bacterial resistance to erythromycin, a macrolide widely used in human medicine, on a lab-scale activated sludge system fed with real wastewater was investigated from levels of bacteria, community and genes, in this study. The resistance variation of total heterotrophic bacteria was studied during the biological treatment process, based on culture dependent method. The alterations of bacterial community resistant to erythromycin and nine typical erythromycin resistance genes were explored with molecular approaches, including high-throughput sequencing and quantitative polymerase chain reaction. The results revealed that the total heterotrophs tolerance level to erythromycin concentrations (higher than 32 mg/L) was significantly amplified during the activated sludge treatment, with the prevalence increased from 9.6% to 21.8%. High-throughput sequencing results demonstrated an obvious increase of the total heterotrophic bacterial diversity resistant to erythromycin. Proteobacteria and Bacteroidetes were the two dominant phyla in the influent and effluent of the bioreactor. However, the prevalence of Proteobacteria decreased from 76% to 59% while the total phyla number increased greatly from 18 to 29 through activated sludge treatment. The gene proportions of erm(A), mef(E) and erm(D) were greatly amplified after biological treatment. It is proposed that the transfer of antibiotic resistance genes through the variable mixtures of bacteria in the activated sludge might be the reason for the antibiotic resistance amplification. The amplified risk of antibiotic resistance in wastewater treatment needs to be paid more attention. PMID:25957255

  13. Rapid detection of bacterial resistance to antibiotics using AFM cantilevers as nanomechanical sensors

    NASA Astrophysics Data System (ADS)

    Longo, G.; Alonso-Sarduy, L.; Rio, L. Marques; Bizzini, A.; Trampuz, A.; Notz, J.; Dietler, G.; Kasas, S.

    2013-07-01

    The widespread misuse of drugs has increased the number of multiresistant bacteria, and this means that tools that can rapidly detect and characterize bacterial response to antibiotics are much needed in the management of infections. Various techniques, such as the resazurin-reduction assays, the mycobacterial growth indicator tube or polymerase chain reaction-based methods, have been used to investigate bacterial metabolism and its response to drugs. However, many are relatively expensive or unable to distinguish between living and dead bacteria. Here we show that the fluctuations of highly sensitive atomic force microscope cantilevers can be used to detect low concentrations of bacteria, characterize their metabolism and quantitatively screen (within minutes) their response to antibiotics. We applied this methodology to Escherichia coli and Staphylococcus aureus, showing that live bacteria produced larger cantilever fluctuations than bacteria exposed to antibiotics. Our preliminary experiments suggest that the fluctuation is associated with bacterial metabolism.

  14. Enteric dysbiosis promotes antibiotic-resistant bacterial infection: systemic dissemination of resistant and commensal bacteria through epithelial transcytosis.

    PubMed

    Yu, Linda Chia-Hui; Shih, Yi-An; Wu, Li-Ling; Lin, Yang-Ding; Kuo, Wei-Ting; Peng, Wei-Hao; Lu, Kuo-Shyan; Wei, Shu-Chen; Turner, Jerrold R; Ni, Yen-Hsuan

    2014-10-15

    Antibiotic usage promotes intestinal colonization of antibiotic-resistant bacteria. However, whether resistant bacteria gain dominance in enteric microflora or disseminate to extraintestinal viscera remains unclear. Our aim was to investigate temporal diversity changes in microbiota and transepithelial routes of bacterial translocation after antibiotic-resistant enterobacterial colonization. Mice drinking water with or without antibiotics were intragastrically gavaged with ampicillin-resistant (Amp-r) nonpathogenic Escherichia coli (E. coli) and given normal water afterward. The composition and spatial distribution of intestinal bacteria were evaluated using 16S rDNA sequencing and fluorescence in situ hybridization. Bacterial endocytosis in epithelial cells was examined using gentamicin resistance assay and transmission electromicroscopy. Paracellular permeability was assessed by tight junctional immunostaining and measured by tissue conductance and luminal-to-serosal dextran fluxes. Our results showed that antibiotic treatment enabled intestinal colonization and transient dominance of orally acquired Amp-r E. coli in mice. The colonized Amp-r E. coli peaked on day 3 postinoculation and was competed out after 1 wk, as evidenced by the recovery of commensals, such as Escherichia, Bacteroides, Lachnospiraceae, Clostridium, and Lactobacillus. Mucosal penetration and extraintestinal dissemination of exogenous and endogenous enterobacteria were correlated with abnormal epithelial transcytosis but uncoupled with paracellular tight junctional damage. In conclusion, antibiotic-induced enteric dysbiosis predisposes to exogenous infection and causes systemic dissemination of both antibiotic-resistant and commensal enterobacteria through transcytotic routes across epithelial layers. These results may help explain the susceptibility to sepsis in antibiotic-resistant enteric bacterial infection. PMID:25059827

  15. Resistance of Aerosolized Bacterial Viruses to Relative Humidity and Temperature.

    PubMed

    Verreault, Daniel; Marcoux-Voiselle, Mélissa; Turgeon, Nathalie; Moineau, Sylvain; Duchaine, Caroline

    2015-10-01

    The use of aerosolized bacteriophages as surrogates for hazardous viruses might simplify and accelerate the discovery of links between viral components and their persistence in the airborne state under diverse environmental conditions. In this study, four structurally distinct lytic phages, MS2 (single-stranded RNA [ssRNA]), ϕ6 (double-stranded RNA [dsRNA]), ϕX174 (single-stranded DNA [ssDNA]), and PR772 (double-stranded DNA [dsDNA]), were nebulized into a rotating chamber and exposed to various levels of relative humidity (RH) and temperature as well as to germicidal UV radiation. The aerosolized viral particles were allowed to remain airborne for up to 14 h before being sampled for analysis by plaque assays and quantitative PCRs. Phages ϕ6 and MS2 were the most resistant at low levels of relative humidity, while ϕX174 was more resistant at 80% RH. Phage ϕ6 lost its infectivity immediately after exposure to 30°C and 80% RH. The infectivity of all tested phages rapidly declined as a function of the exposure time to UVC radiation, phage MS2 being the most resistant. Taken altogether, our data indicate that these aerosolized phages behave differently under various environmental conditions and highlight the necessity of carefully selecting viral simulants in bioaerosol studies. PMID:26253683

  16. Resistance of Aerosolized Bacterial Viruses to Relative Humidity and Temperature

    PubMed Central

    Verreault, Daniel; Marcoux-Voiselle, Mélissa; Turgeon, Nathalie; Moineau, Sylvain

    2015-01-01

    The use of aerosolized bacteriophages as surrogates for hazardous viruses might simplify and accelerate the discovery of links between viral components and their persistence in the airborne state under diverse environmental conditions. In this study, four structurally distinct lytic phages, MS2 (single-stranded RNA [ssRNA]), ϕ6 (double-stranded RNA [dsRNA]), ϕX174 (single-stranded DNA [ssDNA]), and PR772 (double-stranded DNA [dsDNA]), were nebulized into a rotating chamber and exposed to various levels of relative humidity (RH) and temperature as well as to germicidal UV radiation. The aerosolized viral particles were allowed to remain airborne for up to 14 h before being sampled for analysis by plaque assays and quantitative PCRs. Phages ϕ6 and MS2 were the most resistant at low levels of relative humidity, while ϕX174 was more resistant at 80% RH. Phage ϕ6 lost its infectivity immediately after exposure to 30°C and 80% RH. The infectivity of all tested phages rapidly declined as a function of the exposure time to UVC radiation, phage MS2 being the most resistant. Taken altogether, our data indicate that these aerosolized phages behave differently under various environmental conditions and highlight the necessity of carefully selecting viral simulants in bioaerosol studies. PMID:26253683

  17. Antibiotic exposure can induce various bacterial virulence phenotypes in multidrug-resistant Salmonella enterica serovar Typhimurium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella is one of the most prevalent bacterial foodborne diseases in the United States and causes an estimated 1 million human cases every year. Multidrug-resistant (MDR) Salmonella has emerged as a public health issue as it has been associated with increased morbidity in humans and mortality in...

  18. RELEASE OF COMMON BACTERIAL BLIGHT RESISTANT WHITE KIDNEY BEAN GERMPLASM LINE USWK-CBB-17

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Agricultural Research Service, U.S. Department of Agriculture, and the Idaho Agricultural Experiment Station announce the release of USWK-CBB-17 white kidney (Phaseolus vulgaris L.) germplasm line with a high level of resistance to common bacterial blight caused by Xanthomonas axonopodis pv. ph...

  19. Development of candidate gene markers associated to common bacterial blight resistance in common bean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Common bacterial blight (CBB), caused by Xanthomonas axonopodis pv. phaseoli (Xap), is a major yield-limiting factor of common bean (Phaseolus vulgaris L.) production around the world. Two major CBB-resistant quantitative trait loci (QTL), linked to the sequence characterized amplified region marker...

  20. Response to selection for bacterial cold water disease resistance in rainbow trout

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A family-based selection program was initiated at the National Center for Cool and Cold Water Aquaculture in 2005 to improve resistance to bacterial cold water disease (BCWD) in rainbow trout. The objective of this study was to estimate response to 2 generations of selection. A total of 14,841 juven...

  1. Multidrug-Resistant Bacterial Donor-Derived Infections in Solid Organ Transplantation.

    PubMed

    Lewis, Jessica D; Sifri, Costi D

    2016-06-01

    Although rare, donor-derived infections (DDIs) caused by multidrug-resistant (MDR) bacteria can have devastating consequences for organ transplant recipients. Recognition of MDR bacterial DDIs can be challenging, as MDR bacteria are prevalent in most hospitals and distinguishing their transmission through transplantation from other, more typical routes of acquisition are difficult. New technologies such as whole genome sequencing have recently proven to be a powerful advance in the investigation of MDR bacterial DDIs. Once recognized, the optimal treatment of MDR bacterial DDIs is not clear. Herein, we review the clinical manifestations, outcomes, and management of MDR bacterial DDIs, and identify areas of uncertainty toward which the transplant community should direct further research efforts. PMID:27115701

  2. Nanomechanical detection of antibiotic-mucopeptide binding in a model for superbug drug resistance.

    PubMed

    Ndieyira, Joseph Wafula; Watari, Moyu; Barrera, Alejandra Donoso; Zhou, Dejian; Vögtli, Manuel; Batchelor, Matthew; Cooper, Matthew A; Strunz, Torsten; Horton, Mike A; Abell, Chris; Rayment, Trevor; Aeppli, Gabriel; McKendry, Rachel A

    2008-11-01

    The alarming growth of the antibiotic-resistant superbugs methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) is driving the development of new technologies to investigate antibiotics and their modes of action. We report the label-free detection of vancomycin binding to bacterial cell wall precursor analogues (mucopeptides) on cantilever arrays, with 10 nM sensitivity and at clinically relevant concentrations in blood serum. Differential measurements have quantified binding constants for vancomycin-sensitive and vancomycin-resistant mucopeptide analogues. Moreover, by systematically modifying the mucopeptide density we gain new insights into the origin of surface stress. We propose that stress is a product of a local chemical binding factor and a geometrical factor describing the mechanical connectivity of regions activated by local binding in terms of a percolation process. Our findings place BioMEMS devices in a new class of percolative systems. The percolation concept will underpin the design of devices and coatings to significantly lower the drug detection limit and may also have an impact on our understanding of antibiotic drug action in bacteria. PMID:18989336

  3. Nanomechanical detection of antibiotic-mucopeptide binding in a model for superbug drug resistance

    NASA Astrophysics Data System (ADS)

    Ndieyira, Joseph Wafula; Watari, Moyu; Barrera, Alejandra Donoso; Zhou, Dejian; Vögtli, Manuel; Batchelor, Matthew; Cooper, Matthew A.; Strunz, Torsten; Horton, Mike A.; Abell, Chris; Rayment, Trevor; Aeppli, Gabriel; McKendry, Rachel A.

    2008-11-01

    The alarming growth of the antibiotic-resistant superbugs methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) is driving the development of new technologies to investigate antibiotics and their modes of action. We report the label-free detection of vancomycin binding to bacterial cell wall precursor analogues (mucopeptides) on cantilever arrays, with 10 nM sensitivity and at clinically relevant concentrations in blood serum. Differential measurements have quantified binding constants for vancomycin-sensitive and vancomycin-resistant mucopeptide analogues. Moreover, by systematically modifying the mucopeptide density we gain new insights into the origin of surface stress. We propose that stress is a product of a local chemical binding factor and a geometrical factor describing the mechanical connectivity of regions activated by local binding in terms of a percolation process. Our findings place BioMEMS devices in a new class of percolative systems. The percolation concept will underpin the design of devices and coatings to significantly lower the drug detection limit and may also have an impact on our understanding of antibiotic drug action in bacteria.

  4. Amino Acid-Based Zwitterionic Polymer Surfaces Highly Resist Long-Term Bacterial Adhesion.

    PubMed

    Liu, Qingsheng; Li, Wenchen; Wang, Hua; Newby, Bi-Min Zhang; Cheng, Fang; Liu, Lingyun

    2016-08-01

    The surfaces or coatings that can effectively suppress bacterial adhesion in the long term are of critical importance for biomedical applications. Herein, a group of amino acid-based zwitterionic polymers (pAAZ) were investigated for their long-term resistance to bacterial adhesion. The polymers were derived from natural amino acids including serine, ornithine, lysine, aspartic acid, and glutamic acid. The pAAZ brushes were grafted on gold via the surface-initiated photoiniferter-mediated polymerization (SI-PIMP). Results show that the pAAZ coatings highly suppressed adsorption from the undiluted human serum and plasma. Long-term bacterial adhesion on these surfaces was investigated, using two kinds of representative bacteria [Gram-positive Staphylococcus epidermidis and Gram-negative Pseudomonas aeruginosa] as the model species. Results demonstrate that the pAAZ surfaces were highly resistant to bacterial adhesion after culturing for 1, 5, 9, or even 14 days, representing at least 95% reduction at all time points compared to the control unmodified surfaces. The bacterial accumulation on the pAAZ surfaces after 9 or 14 days was even lower than on the surfaces grafted with poly[poly(ethyl glycol) methyl ether methacrylate] (pPEGMA), one of the most common antifouling materials known to date. The pAAZ brushes also exhibited excellent structural stability in phosphate-buffered saline after incubation for 4 weeks. The bacterial resistance and stability of pAAZ polymers suggest they have good potential to be used for those applications where long-term suppression to bacterial attachment is desired. PMID:27397718

  5. Inhibition of bacterial multidrug resistance by celecoxib, a cyclooxygenase-2 inhibitor.

    PubMed

    Kalle, Arunasree M; Rizvi, Arshad

    2011-01-01

    Multidrug resistance (MDR) is a major problem in the treatment of infectious diseases and cancer. Accumulating evidence suggests that the cyclooxygenase-2 (COX-2)-specific inhibitor celecoxib would not only inhibit COX-2 but also help in the reversal of drug resistance in cancers by inhibiting the MDR1 efflux pump. Here, we demonstrate that celecoxib increases the sensitivity of bacteria to the antibiotics ampicillin, kanamycin, chloramphenicol, and ciprofloxacin by accumulating the drugs inside the cell, thus reversing MDR in bacteria. PMID:20937780

  6. Balancing drug resistance and growth rates via compensatory mutations in the Plasmodium falciparum chloroquine resistance transporter.

    PubMed

    Petersen, Ines; Gabryszewski, Stanislaw J; Johnston, Geoffrey L; Dhingra, Satish K; Ecker, Andrea; Lewis, Rebecca E; de Almeida, Mariana Justino; Straimer, Judith; Henrich, Philipp P; Palatulan, Eugene; Johnson, David J; Coburn-Flynn, Olivia; Sanchez, Cecilia; Lehane, Adele M; Lanzer, Michael; Fidock, David A

    2015-07-01

    The widespread use of chloroquine to treat Plasmodium falciparum infections has resulted in the selection and dissemination of variant haplotypes of the primary resistance determinant PfCRT. These haplotypes have encountered drug pressure and within-host competition with wild-type drug-sensitive parasites. To examine these selective forces in vitro, we genetically engineered P. falciparum to express geographically diverse PfCRT haplotypes. Variant alleles from the Philippines (PH1 and PH2, which differ solely by the C72S mutation) both conferred a moderate gain of chloroquine resistance and a reduction in growth rates in vitro. Of the two, PH2 showed higher IC50 values, contrasting with reduced growth. Furthermore, a highly mutated pfcrt allele from Cambodia (Cam734) conferred moderate chloroquine resistance and enhanced growth rates, when tested against wild-type pfcrt in co-culture competition assays. These three alleles mediated cross-resistance to amodiaquine, an antimalarial drug widely used in Africa. Each allele, along with the globally prevalent Dd2 and 7G8 alleles, rendered parasites more susceptible to lumefantrine, the partner drug used in the leading first-line artemisinin-based combination therapy. These data reveal ongoing region-specific evolution of PfCRT that impacts drug susceptibility and relative fitness in settings of mixed infections, and raise important considerations about optimal agents to treat chloroquine-resistant malaria. PMID:25898991

  7. Balancing drug resistance and growth rates via compensatory mutations in the Plasmodium falciparum chloroquine resistance transporter

    PubMed Central

    Petersen, Ines; Gabryszewski, Stanislaw J.; Johnston, Geoffrey L.; Dhingra, Satish K.; Ecker, Andrea; Lewis, Rebecca E.; de Almeida, Mariana Justino; Straimer, Judith; Henrich, Philipp H.; Palatulan, Eugene; Johnson, David J.; Coburn-Flynn, Olivia; Sanchez, Cecilia; Lehane, Adele M.; Lanzer, Michael; Fidock, David A.

    2015-01-01

    Summary The widespread use of chloroquine to treat Plasmodium falciparum infections has resulted in the selection and dissemination of variant haplotypes of the primary resistance determinant PfCRT. These haplotypes have encountered drug pressure and within-host competition with wild-type drug-sensitive parasites. To examine these selective forces in vitro, we genetically engineered P. falciparum to express geographically diverse PfCRT haplotypes. Variant alleles from the Philippines (PH1 and PH2, which differ solely by the C72S mutation) both conferred a moderate gain of chloroquine resistance and a reduction in growth rates in vitro. Of the two, PH2 showed higher IC50 values, contrasting with reduced growth. Furthermore, a highly mutated pfcrt allele from Cambodia (Cam734) conferred moderate chloroquine resistance and enhanced growth rates, when tested against wild-type pfcrt in co-culture competition assays. These three alleles mediated cross-resistance to amodiaquine, an antimalarial drug widely used in Africa. Each allele, along with the globally prevalent Dd2 and 7G8 alleles, rendered parasites more susceptible to lumefantrine, the partner drug used in the leading first-line artemisinin-based combination therapy. These data reveal ongoing region-specific evolution of PfCRT that impacts drug susceptibility and relative fitness in settings of mixed infections, and raise important considerations about optimal agents to treat chloroquine-resistant malaria. PMID:25898991

  8. 21 CFR 866.3950 - In vitro human immunodeficiency virus (HIV) drug resistance genotype assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false In vitro human immunodeficiency virus (HIV) drug resistance genotype assay. 866.3950 Section 866.3950 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... Serological Reagents § 866.3950 In vitro human immunodeficiency virus (HIV) drug resistance genotype assay....

  9. 21 CFR 866.3950 - In vitro human immunodeficiency virus (HIV) drug resistance genotype assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false In vitro human immunodeficiency virus (HIV) drug resistance genotype assay. 866.3950 Section 866.3950 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... Serological Reagents § 866.3950 In vitro human immunodeficiency virus (HIV) drug resistance genotype assay....

  10. 21 CFR 866.3950 - In vitro human immunodeficiency virus (HIV) drug resistance genotype assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false In vitro human immunodeficiency virus (HIV) drug resistance genotype assay. 866.3950 Section 866.3950 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... Serological Reagents § 866.3950 In vitro human immunodeficiency virus (HIV) drug resistance genotype assay....

  11. 21 CFR 866.3950 - In vitro human immunodeficiency virus (HIV) drug resistance genotype assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false In vitro human immunodeficiency virus (HIV) drug resistance genotype assay. 866.3950 Section 866.3950 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... Serological Reagents § 866.3950 In vitro human immunodeficiency virus (HIV) drug resistance genotype assay....

  12. 21 CFR 866.3950 - In vitro human immunodeficiency virus (HIV) drug resistance genotype assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false In vitro human immunodeficiency virus (HIV) drug resistance genotype assay. 866.3950 Section 866.3950 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... Serological Reagents § 866.3950 In vitro human immunodeficiency virus (HIV) drug resistance genotype assay....

  13. Smart doxorubicin nanoparticles with high drug payload for enhanced chemotherapy against drug resistance and cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Yu, Caitong; Zhou, Mengjiao; Zhang, Xiujuan; Wei, Weijia; Chen, Xianfeng; Zhang, Xiaohong

    2015-03-01

    Considering the obvious advantages in efficacy and price, doxorubicin (DOX) has been widely used for a range of cancers, which is usually encapsulated in various nanocarriers for drug delivery. Although effective, in most nanocarrier-based delivery systems, the drug loading capacity of DOX is rather low; this can lead to undesired systemic toxicity and excretion concern. Herein, we report for the first time the usage of pure doxorubicin nanoparticles (DOX NPs) without addition of any carriers for enhanced chemotherapy against drug-resistance. The drug payload reaches as high as 90.47%, which largely surpassed those in previous reports. These PEG stabilized DOX NPs exhibit good biocompatibility and stability, long blood circulation time, fast release in an acidic environment and high accumulation in tumors. Compared with free DOX, DOX NPs display a dramatically enhanced anticancer therapeutic efficacy in the inhibition of cell and tumor growth. Moreover, they can also be readily incorporated with other anticancer drugs for synergistic chemotherapy to overcome the drug resistance of cancers. The fluorescence properties of DOX also endow these NPs with imaging capabilities, thus making it a multifunctional system for diagnosis and treatment. This work demonstrates great potential of DOX NPs for cancer diagnosis, therapy and overcoming drug tolerance.Considering the obvious advantages in efficacy and price, doxorubicin (DOX) has been widely used for a range of cancers, which is usually encapsulated in various nanocarriers for drug delivery. Although effective, in most nanocarrier-based delivery systems, the drug loading capacity of DOX is rather low; this can lead to undesired systemic toxicity and excretion concern. Herein, we report for the first time the usage of pure doxorubicin nanoparticles (DOX NPs) without addition of any carriers for enhanced chemotherapy against drug-resistance. The drug payload reaches as high as 90.47%, which largely surpassed those in

  14. Bacterial resistance evolution by recruitment of super-integron gene cassettes.

    PubMed

    Rowe-Magnus, Dean A; Guerout, Anne-Marie; Mazel, Didier

    2002-03-01

    The capture and spread of antibiotic resistance determinants by integrons underlies the rapid evolution of multiple antibiotic resistance among diverse Gram-negative clinical isolates. The association of multiple resistance integrons (MRIs) with mobile DNA elements facilitates their transit across phylogenetic boundaries and augments the potential impact of integrons on bacterial evolution. Recently, ancestral chromosomal versions, the super-integrons (SIs), were found to be genuine components of the genomes of diverse bacterial species. SIs possess evolutionary characteristics and stockpiles of adaptive functions, including cassettes related to antibiotic resistance determinants previously characterized in clinical isolates, which suggest that MRIs and their resistance genes were originally recruited from SIs and their pool of amassed genes. However, the recombination activity of integrons has never been demonstrated in a bacterium other than Escherichia coli. We introduced a naturally occurring MRI (TpR, SulR) on a conjugative plasmid into Vibrio cholerae, a species known to harbour a SI. We show that MRIs can randomly recruit genes directly from the cache of SI cassettes. By applying a selective constraint for the development of antibiotic resistance, we demonstrate bacterial resistance evolution through the recruitment a novel, but phenotypically silent, chloramphenicol acetyltransferase gene from the V. cholerae SI and its precise insertion into the MRI. The resulting resistance profile (CmR, TpR, SulR) could then be disseminated by conjugation to other clinically relevant pathogens at high frequency. These results demonstrate that otherwise phenotypically sensitive strains may still be a genetic source for the evolution of resistance to clinically relevant antibiotics through integron-mediated recombination events. PMID:11952913

  15. Role of wild birds as carriers of multi-drug resistant Escherichia coli and Escherichia vulneris.

    PubMed

    Shobrak, Mohammed Y; Abo-Amer, Aly E

    2014-01-01

    Emergence and distribution of multi-drug resistant (MDR) bacteria in environments pose a risk to human and animal health. A total of 82 isolates of Escherichia spp. were recovered from cloacal swabs of migrating and non-migrating wild birds. All bacterial isolates were identified and characterized morphologically and biochemically. 72% and 50% of isolates recovered from non-migrating and migrating birds, respectively, showed positive congo red dye binding (a virulence factor). Also, hemolysin production (a virulence factor) was showed in 8% of isolates recovered from non-migrating birds and 75% of isolates recovered from migrating birds. All isolates recovered from non-migrating birds were found resistant to Oxacillin while all isolates recovered from migrating birds demonstrated resistance to Oxacillin, Chloramphenicol, Oxytetracycline and Lincomycin. Some bacterial isolates recovered from non-migrating birds and migrating birds exhibited MDR phenotype. The MDR isolates were further characterized by API 20E and 16S rRNA as E. coli and E. vulneris. MDR Escherichia isolates contain ~1-5 plasmids of high-molecular weights. Accordingly, wild birds could create a potential threat to human and animal health by transmitting MDR bacteria to water streams and other environmental sources through their faecal residues, and to remote regions by migration. PMID:25763023

  16. Role of wild birds as carriers of multi-drug resistant Escherichia coli and Escherichia vulneris

    PubMed Central

    Shobrak, Mohammed Y.; Abo-Amer, Aly E.

    2014-01-01

    Emergence and distribution of multi-drug resistant (MDR) bacteria in environments pose a risk to human and animal health. A total of 82 isolates of Escherichia spp. were recovered from cloacal swabs of migrating and non-migrating wild birds. All bacterial isolates were identified and characterized morphologically and biochemically. 72% and 50% of isolates recovered from non-migrating and migrating birds, respectively, showed positive congo red dye binding (a virulence factor). Also, hemolysin production (a virulence factor) was showed in 8% of isolates recovered from non-migrating birds and 75% of isolates recovered from migrating birds. All isolates recovered from non-migrating birds were found resistant to Oxacillin while all isolates recovered from migrating birds demonstrated resistance to Oxacillin, Chloramphenicol, Oxytetracycline and Lincomycin. Some bacterial isolates recovered from non-migrating birds and migrating birds exhibited MDR phenotype. The MDR isolates were further characterized by API 20E and 16S rRNA as E. coli and E. vulneris. MDR Escherichia isolates contain ~1–5 plasmids of high-molecular weights. Accordingly, wild birds could create a potential threat to human and animal health by transmitting MDR bacteria to water streams and other environmental sources through their faecal residues, and to remote regions by migration. PMID:25763023

  17. Recommendations for treating children with drug-resistant tuberculosis.

    PubMed

    Galli, Luisa; Lancella, Laura; Garazzino, Silvia; Tadolini, Marina; Matteelli, Alberto; Migliori, Giovanni Battista; Principi, Nicola; Villani, Alberto; Esposito, Susanna

    2016-03-01

    Tuberculosis (TB) is still one of the most difficult infectious diseases to treat, and the second most frequent cause of death due to infectious disease throughout the world. The number of cases of multidrug-resistant (MDR-TB) and extensively drug-resistant TB (XDR-TB), which are characterised by high mortality rates, is increasing. The therapeutic management of children with MDR- and XDR-TB is complicated by a lack of knowledge, and the fact that many potentially useful drugs are not registered for pediatric use and there are no formulations suitable for children in the first years of life. Furthermore, most of the available drugs are burdened by major adverse events that need to be taken into account, particularly in the case of prolonged therapy. This document describes the recommendations of a group of scientific societies on the therapeutic approach to pediatric MDR- and XDR-TB. On the basis of a systematic literature review and their personal clinical experience, the experts recommend that children with active TB caused by a drug-resistant strain of Mycobacterium tuberculosis should always be referred to a specialised centre because of the complexity of patient management, the paucity of pediatric data, and the high incidence of adverse events due to second-line anti-TB treatment. PMID:26821118

  18. Modeling HIV-1 Drug Resistance as Episodic Directional Selection

    PubMed Central

    Murrell, Ben; de Oliveira, Tulio; Seebregts, Chris; Kosakovsky Pond, Sergei L.; Scheffler, Konrad

    2012-01-01

    The evolution of substitutions conferring drug resistance to HIV-1 is both episodic, occurring when patients are on antiretroviral therapy, and strongly directional, with site-specific resistant residues increasing in frequency over time. While methods exist to detect episodic diversifying selection and continuous directional selection, no evolutionary model combining these two properties has been proposed. We present two models of episodic directional selection (MEDS and EDEPS) which allow the a priori specification of lineages expected to have undergone directional selection. The models infer the sites and target residues that were likely subject to directional selection, using either codon or protein sequences. Compared to its null model of episodic diversifying selection, MEDS provides a superior fit to most sites known to be involved in drug resistance, and neither one test for episodic diversifying selection nor another for constant directional selection are able to detect as many true positives as MEDS and EDEPS while maintaining acceptable levels of false positives. This suggests that episodic directional selection is a better description of the process driving the evolution of drug resistance. PMID:22589711

  19. HIV Drug-Resistant Patient Information Management, Analysis, and Interpretation

    PubMed Central

    Mars, Maurice

    2012-01-01

    Introduction The science of information systems, management, and interpretation plays an important part in the continuity of care of patients. This is becoming more evident in the treatment of human immunodeficiency virus (HIV) and acquired immune deficiency syndrome (AIDS), the leading cause of death in sub-Saharan Africa. The high replication rates, selective pressure, and initial infection by resistant strains of HIV infer that drug resistance will inevitably become an important health care concern. This paper describes proposed research with the aim of developing a physician-administered, artificial intelligence-based decision support system tool to facilitate the management of patients on antiretroviral therapy. Methods This tool will consist of (1) an artificial intelligence computer program that will determine HIV drug resistance information from genomic analysis; (2) a machine-learning algorithm that can predict future CD4 count information given a genomic sequence; and (3) the integration of these tools into an electronic medical record for storage and management. Conclusion The aim of the project is to create an electronic tool that assists clinicians in managing and interpreting patient information in order to determine the optimal therapy for drug-resistant HIV patients. PMID:23611761

  20. Drug resistance following irradiation of RIF-1 tumors: Influence of the interval between irradiation and drug treatment

    SciTech Connect

    Hopwood, L.E.; Davies, B.M.; Moulder, J.E. )

    1990-09-01

    RIF-1 tumors contain a small number of cells (1 to 100 per 10(6) cells) that are resistant to 5-fluorouracil, methotrexate, or adriamycin. The frequency of drug-resistant cells among individual untreated tumors is highly variable. Radiation, delivered in vivo at doses of 3 to 12 Gy, increases the frequency of methotrexate- and 5-fluorouracil-resistant cells, but not the frequency of adriamycin-resistant cells. The magnitude of induction of 5-fluorouracil and methotrexate resistance shows a complex dependence on the radiation dose and on the interval between irradiation and assessment of drug resistance. For a dose of 3 Gy, induced 5-fluorouracil and methotrexate resistance is seen only after an interval of 5 to 7 days, whereas for a dose of 12 Gy, high levels of induced resistance are observed 1 to 3 days after irradiation. The maximum absolute risk for induction of resistance is 4 per 10(4) cells per Gy for methotrexate, and 3 per 10(6) cells per Gy for 5-fluorouracil. These results indicate that tumor hypoxia may play a role in the increased levels of drug resistance seen after irradiation, and that both genetic and environmental factors may influence radiation-induction of drug resistance. These studies provide essential data for models of the development of tumor drug resistance, and imply that some of the drug resistance seen when chemotherapy follows radiotherapy may be caused by radiation-induced drug resistance.

  1. MRJP1-containing glycoproteins isolated from honey, a novel antibacterial drug candidate with broad spectrum activity against multi-drug resistant clinical isolates

    PubMed Central

    Brudzynski, Katrina; Sjaarda, Calvin; Lannigan, Robert

    2015-01-01

    The emergence of extended- spectrum β-lactamase (ESBL) is the underlying cause of growing antibiotic resistance among Gram-negative bacteria to β-lactam antibiotics. We recently reported the discovery of honey glycoproteins (glps) that exhibited a rapid, concentration-dependent antibacterial activity against both Gram-positive Bacillus subtilis and Gram-negative Escherichia coli that resembled action of cell wall-active β-lactam drugs. Glps showed sequence identity with the Major Royal Jelly Protein 1 (MRJP1) precursor that harbors three antimicrobial peptides: Jelleins 1, 2, and 4. Here, we used semi-quantitative radial diffusion assay and broth microdilution assay to evaluate susceptibility of a number of multi-drug resistant (MDR) clinical isolates to the MRJP1-contaning honey glycoproteins. The MDR bacterial strains comprised three methicillin-resistant Staphylococcus aureus (MRSA), four Pseudomonas aeruginosa, two Klebsiella pneumoniae, two vancomycin-resistant Enterococci (VRE), and five ESBL identified as one Proteus mirabilis, three E. coli, and one E. coli NDM. Their resistance to different classes of antibiotics was confirmed using automated system Vitek 2. MDR isolates differed in their susceptibility to glps with MIC90 values ranging from 4.8 μg/ml against B. subtilis to 14.4 μg/ml against ESBL K. pneumoniae, Klebsiella spp. ESBL and E. coli and up to 33 μg/ml against highly resistant strains of P. aeruginosa. Glps isolated from different honeys showed a similar ability to overcome bacterial resistance to β-lactams suggesting that (a) their mode of action is distinct from other classes of β-lactams and that (b) the common glps structure was the lead structure responsible for the activity. The results of the current study together with our previous evidence of a rapid bactericidal activity of glps demonstrate that glps possess suitable characteristics to be considered a novel antibacterial drug candidate. PMID:26217333

  2. MRJP1-containing glycoproteins isolated from honey, a novel antibacterial drug candidate with broad spectrum activity against multi-drug resistant clinical isolates.

    PubMed

    Brudzynski, Katrina; Sjaarda, Calvin; Lannigan, Robert

    2015-01-01

    The emergence of extended- spectrum β-lactamase (ESBL) is the underlying cause of growing antibiotic resistance among Gram-negative bacteria to β-lactam antibiotics. We recently reported the discovery of honey glycoproteins (glps) that exhibited a rapid, concentration-dependent antibacterial activity against both Gram-positive Bacillus subtilis and Gram-negative Escherichia coli that resembled action of cell wall-active β-lactam drugs. Glps showed sequence identity with the Major Royal Jelly Protein 1 (MRJP1) precursor that harbors three antimicrobial peptides: Jelleins 1, 2, and 4. Here, we used semi-quantitative radial diffusion assay and broth microdilution assay to evaluate susceptibility of a number of multi-drug resistant (MDR) clinical isolates to the MRJP1-contaning honey glycoproteins. The MDR bacterial strains comprised three methicillin-resistant Staphylococcus aureus (MRSA), four Pseudomonas aeruginosa, two Klebsiella pneumoniae, two vancomycin-resistant Enterococci (VRE), and five ESBL identified as one Proteus mirabilis, three E. coli, and one E. coli NDM. Their resistance to different classes of antibiotics was confirmed using automated system Vitek 2. MDR isolates differed in their susceptibility to glps with MIC90 values ranging from 4.8 μg/ml against B. subtilis to 14.4 μg/ml against ESBL K. pneumoniae, Klebsiella spp. ESBL and E. coli and up to 33 μg/ml against highly resistant strains of P. aeruginosa. Glps isolated from different honeys showed a similar ability to overcome bacterial resistance to β-lactams suggesting that (a) their mode of action is distinct from other classes of β-lactams and that (b) the common glps structure was the lead structure responsible for the activity. The results of the current study together with our previous evidence of a rapid bactericidal activity of glps demonstrate that glps possess suitable characteristics to be considered a novel antibacterial drug candidate. PMID:26217333

  3. Resistance to antiplatelet drugs: molecular mechanisms and laboratory detection.

    PubMed

    Cattaneo, M

    2007-07-01

    The definition 'resistance to antiplatelet drugs' should be limited to situations in which failure of the drug to hit its pharmacological target has been documented by specific laboratory tests. Aspirin resistance, as determined by specific tests (e.g. serum thromboxane B(2)), appears to be rare (1-2%) and, in most instances, is caused by poor compliance. In contrast to aspirin, studies that used specific tests to measure the pharmacological effect of thienopyridines [e.g. vasodilator-stimulated phosphoprotein (VASP)] showed a wide variability of responses to these drugs, with significant proportions of subjects (15-30%) who are very poor responders. Inter-individual differences in the extent of metabolism of thienopyridines to their active metabolites is the most plausible mechanism for the observed inter-individual variability in platelet inhibition. The demonstration that some patients may be 'resistant' or 'poor responders' to the pharmacological effect of antiplatelet drugs, has prompted the need of laboratory monitoring of antiplatelet therapy. However, many published studies have been performed using unspecific tests of platelet function, which identify patients on antiplatelet treatment with high residual platelet reactivity, which is not necessarily because of resistance to antiplatelet drugs. Despite this drawback, identification of patients with high residual platelet reactivity may be useful to predict their risk of atherothrombotic events. However, many studies still need to be carried out to identify the ideal laboratory test and to answer basic questions on its clinical utility and cost-effectiveness, before monitoring antiplatelet therapy can be recommended in the clinical practise. Until then, monitoring of antiplatelet therapy should be considered for investigational purposes only. PMID:17635731

  4. High-level expression of the bacterial opd gene in Drosophila melanogaster: improved inducible insecticide resistance.

    PubMed

    Benedict, M Q; Scott, J A; Cockburn, A F

    1994-11-01

    The bacterial parathion hydrolase gene (opd) was expressed in transformed D. melanogaster under the control of an hsp70 promoter. Transformed lines carrying chimaeric genes designed for either cytoplasmic or secretory expression exhibited high- or low-level heat-shock-inducible transient resistance to paraoxon respectively. Greatest levels of resistance occurred approximately 12-16 h after heat shock and well after periods of maximal transcription. Insecticide resistance conferred by the cytoplasmic form of opd is expressed as a semidominant trait. PMID:7704308

  5. Production of putrescine-capped stable silver nanoparticle: its characterization and antibacterial activity against multidrug-resistant bacterial strains

    NASA Astrophysics Data System (ADS)

    Saha, Saswati; Gupta, Bhaskar; Gupta, Kamala; Chaudhuri, Mahua Ghosh

    2016-04-01

    Integration of biology with nanotechnology is now becoming attention-grabbing area of research. The antimicrobial potency of silver has been eminent from antiquity. Due to the recent desire for the enhancement of antibacterial efficacy of silver, various synthesis methods of silver in their nano dimensions are being practiced using a range of capping material. The present work highlights a facile biomimetic approach for production of silver nanoparticle being capped and stabilized by putrescine, possessing a diameter of 10-25 ± 1.5 nm. The synthesized nanoparticles have been analyzed spectrally and analytically. Morphological studies are carried out by high-resolution transmission electron microscopy and crystallinity by selected area electron diffraction patterns. Moreover, the elemental composition of the capped nanoparticles was confirmed by energy-dispersive X-ray spectroscopy analysis. A comparative study (zone of inhibition and minimum inhibitory concentration) regarding the interactions and antibacterial potentiality of the capped silver nanoparticles with respect to the bare ones reveal the efficiency of the capped one over the bare one. The bacterial kinetic study was executed to monitor the interference of nanoparticles with bacterial growth rate. The results also highlight the efficacy of putrescine-capped silver nanoparticles as effective growth inhibitors against multi-drug resistant human pathogenic bacterial strains, which may, thus, potentially be applicable as an effective antibacterial control system to fight diseases.

  6. Insights into the mechanism of drug resistance. X-ray structure analysis of multi-drug resistant HIV-1 protease ritonavir complex

    SciTech Connect

    Liu, Zhigang; Yedidi, Ravikiran S.; Wang, Yong; Dewdney, Tamaria G.; Reiter, Samuel J.; Brunzelle, Joseph S.; Kovari, Iulia A.; Kovari, Ladislau C.

    2013-01-08

    Ritonavir (RTV) is a first generation HIV-1 protease inhibitor with rapidly emerging drug resistance. Mutations at residues 46, 54, 82 and 84 render the HIV-1 protease drug resistant against RTV. We report the crystal structure of multi-drug resistant (MDR) 769 HIV-1 protease (carrying resistant mutations at residues 10, 36, 46, 54, 62, 63, 71, 82, 84 and 90) complexed with RTV and the in vitro enzymatic IC50 of RTV against MDR HIV-1 protease. The structural and functional studies demonstrate significant drug resistance of MDR HIV-1 protease against RTV, arising from reduced hydrogen bonds and Van der Waals interactions between RTV and MDR HIV-1 protease.

  7. Genome-wide screening of loci associated with drug resistance to 5-fluorouracil-based drugs.

    PubMed

    Ooyama, Akio; Okayama, Yoshihiro; Takechi, Teiji; Sugimoto, Yoshikazu; Oka, Toshinori; Fukushima, Masakazu

    2007-04-01

    Resistance to chemotherapeutic agents represents the chief cause of mortality in cancer patients with advanced disease. Chromosomal aberration and altered gene expression are the main genetic mechanisms of tumor chemoresistance. In this study, we have established an algorithm to calculate DNA copy number using the Affymetrix 10K array, and performed a genome-wide correlation analysis between DNA copy number and antitumor activity against 5-fluorouracil (5-FU)-based drugs (S-1, tegafur + uracil [UFT], 5'-DFUR and capecitabine) to screen for loci influencing drug resistance using 27 human cancer xenografts. A correlation analysis confirmed that the single nucleotide polymorphism (SNP) showing significant associations with drug sensitivity were concentrated in some cytogenetic regions (18p, 17p13.2, 17p12, 11q14.1, 11q11 and 11p11.12), and we identified some genes that have been indicated their relations to drug sensitivity. Among these regions, 18p11.32 at the location of the thymidylate synthase gene (TYMS) was strongly associated with resistance to 5-FU-based drugs. A change in copy number of the TYMS gene was reflected in the TYMS expression level, and showed a significant negative correlation with sensitivity against 5-FU-based drugs. These results suggest that amplification of the TYMS gene is associated with innate resistance, supporting the possibility that TYMS copy number might be a predictive marker of drug sensitivity to fluoropyrimidines. Further study is necessary to clarify the functional roles of other genes coded in significant cytogenetic regions. These promising data suggest that a comprehensive DNA copy number analysis might aid in the quest for optimal markers of drug response. PMID:17425594

  8. MicroRNAs and drug resistance in prostate cancers.

    PubMed

    Li, Feng; Mahato, Ram I

    2014-08-01

    Prostate cancer is the second leading cause of cancer related death in American men. Androgen deprivation therapy (ADT) is used to treat patients with aggressive prostate cancers. After androgen deprivation therapy, prostate cancers slowly progress to an androgen-independent status. Taxanes (e.g., docetaxel) are used as standard treatments for androgen-independent prostate cancers. However, these chemotherapeutic agents will eventually become ineffective due to the development of drug resistance. A microRNA (miRNA) is a small noncoding RNA molecule, which can regulate gene expression at the post-transcription level. miRNAs elicit their effects by binding to the 3'-untranslated region (3'-UTR) of their target mRNAs, leading to the inhibition of translation or the degradation of the mRNAs. miRNAs have received increasing attention as targets for cancer therapy, as they can target multiple signaling pathways related to tumor progression, metastasis, invasion, and chemoresistance. Emerging evidence suggests that aberrant expression of miRNAs can lead to the development of resistant prostate cancers. Here, we discuss the roles of miRNAs in the development of resistant prostate cancers and their involvement in various drug resistant mechanisms including androgen signaling, apoptosis avoidance, multiple drug resistance (MDR) transporters, epithelialmesenchymal transition (EMT), and cancer stem cells (CSCs). In addition, we also discuss strategies for treating resistant prostate cancers by targeting specific miRNAs. Different delivery strategies are also discussed with focus on those that have been successfully used in human clinical trials. PMID:24742219

  9. ATP7B expression confers multidrug resistance through drug sequestration

    PubMed Central

    Moinuddin, F M; Shinsato, Yoshinari; Komatsu, Masaharu; Mitsuo, Ryoichi; Minami, Kentaro; Yamamoto, Masatatsu; Kawahara, Kohich; Hirano, Hirofumi; Arita, Kazunori; Furukawa, Tatsuhiko

    2016-01-01

    We previously reported that ATP7B is involved in cisplatin resistance and ATP7A confers multidrug resistance (MDR) in cancer cells. In this study, we show that ATP7B expressing cells also are resistant to doxorubicin, SN-38, etoposide, and paclitaxel as well as cisplatin. In ATP7B expressing cells, doxorubicin relocated from the nuclei to the late-endosome at 4 hours after doxorubicin exposure. EGFP-ATP7B mainly colocalized with doxorubicin. ATP7B has six metal binding sites (MBSs) in the N-terminal cytoplasmic region. To investigate the role of the MBSs of ATP7B in doxorubicin resistance, we used three mutant ATP7B (Cu0, Cu6 and M6C/S) expressing cells. Cu0 has no MBSs, Cu6 has only the sixth MBS and M6C/S carries CXXC to SXXS mutation in the sixth MBS. Cu6 expressing cells were less resistance to the anticancer agents than wild type ATP7B expressing cells, and had doxorubicin sequestration in the late-endosome. Cu0- and M6C/S-expressing cells were sensitive to doxorubicin. In these cells, doxorubicin did not relocalize to the late-endosome. EGFP-M6C/S mainly localized to the trans-Golgi network (TGN) even in the presence of copper. Thus the cysteine residues in the sixth MBS of ATP7B are essential for MDR phenotype. Finally, we found that ammonium chloride and tamoxifen suppressed late endosomal sequestration of doxorubicin, thereby attenuating drug resistance. These results suggest that the sequestration depends on the acidity of the vesicles partly. We here demonstrate that ATP7B confers MDR by facilitating nuclear drug efflux and late endosomal drug sequestration. PMID:26988911

  10. Elaboration of a global strategy for containing microbial drug resistance.

    PubMed

    Zabicki, W

    2001-01-01

    The World Health Organization is engaged in developing the Global Strategy for Containment of Antimicrobial Resistance. The preliminary document WHO/CDC/CSR/DRS/2000.I Draft has already been distributed, and remarks have been solicited.
    The World Health Assembly Resolution of 1998 urged Member States to encourage the appropriate and cost-effective use of antimicrobials. Member States were requested to implement effective systems of microbial resistance surveillance and to monitor volumes and patterns of antimicrobial drug use.
    The phenomenon of antimicrobial resistance is rising rapidly and causing growing international concern. Many countries have undertaken their own national plans to address the problem.
    The overall aim of the strategy being developed is to find the most effective forms and to prevent the spread of antimicrobial resistance and resistant microbes. The strategy covers the following topics: patients and general community, prescribers, hospitals, veterinarians, manufacturers and drug dispensers, and international aspects.
    The strategy is being developed on the basis of expert opinions, published reports, reviews of specific topics specially commissioned by various international and national bodies, and a large body of literature with a list of publications containing over 100 items. PMID:17986973

  11. Global Phenotypic Characterization of Effects of Fluoroquinolone Resistance Selection on the Metabolic Activities and Drug Susceptibilities of Clostridium perfringens Strains

    PubMed Central

    Park, Miseon

    2014-01-01

    Fluoroquinolone resistance affects toxin production of Clostridium perfringens strains differently. To investigate the effect of fluoroquinolone resistance selection on global changes in metabolic activities and drug susceptibilities, four C. perfringens strains and their norfloxacin-, ciprofloxacin-, and gatifloxacin-resistant mutants were compared in nearly 2000 assays, using phenotype microarray plates. Variations among mutant strains resulting from resistance selection were observed in all aspects of metabolism. Carbon utilization, pH range, osmotic tolerance, and chemical sensitivity of resistant strains were affected differently in the resistant mutants depending on both the bacterial genotype and the fluoroquinolone to which the bacterium was resistant. The susceptibilities to gentamicin and erythromycin of all resistant mutants except one increased, but some resistant strains were less susceptible to amoxicillin, cefoxitin, ceftriaxone, chloramphenicol, and metronidazole than their wild types. Sensitivity to ethidium bromide decreased in some resistant mutants and increased in others. Microarray analysis of two gatifloxacin-resistant mutants showed changes in metabolic activities that were correlated with altered expression of various genes. Both the chemical structures of fluoroquinolones and the genomic makeup of the wild types influenced the changes found in resistant mutants, which may explain some inconsistent reports of the effects of therapeutic use of fluoroquinolones on clinical isolates of bacteria. PMID:25587280

  12. Global Phenotypic Characterization of Effects of Fluoroquinolone Resistance Selection on the Metabolic Activities and Drug Susceptibilities of Clostridium perfringens Strains.

    PubMed

    Park, Miseon; Rafii, Fatemeh

    2014-01-01

    Fluoroquinolone resistance affects toxin production of Clostridium perfringens strains differently. To investigate the effect of fluoroquinolone resistance selection on global changes in metabolic activities and drug susceptibilities, four C. perfringens strains and their norfloxacin-, ciprofloxacin-, and gatifloxacin-resistant mutants were compared in nearly 2000 assays, using phenotype microarray plates. Variations among mutant strains resulting from resistance selection were observed in all aspects of metabolism. Carbon utilization, pH range, osmotic tolerance, and chemical sensitivity of resistant strains were affected differently in the resistant mutants depending on both the bacterial genotype and the fluoroquinolone to which the bacterium was resistant. The susceptibilities to gentamicin and erythromycin of all resistant mutants except one increased, but some resistant strains were less susceptible to amoxicillin, cefoxitin, ceftriaxone, chloramphenicol, and metronidazole than their wild types. Sensitivity to ethidium bromide decreased in some resistant mutants and increased in others. Microarray analysis of two gatifloxacin-resistant mutants showed changes in metabolic activities that were correlated with altered expression of various genes. Both the chemical structures of fluoroquinolones and the genomic makeup of the wild types influenced the changes found in resistant mutants, which may explain some inconsistent reports of the effects of therapeutic use of fluoroquinolones on clinical isolates of bacteria. PMID:25587280

  13. Coherent feedforward transcriptional regulatory motifs enhance drug resistance

    NASA Astrophysics Data System (ADS)

    Charlebois, Daniel A.; Balázsi, Gábor; Kærn, Mads

    2014-05-01

    Fluctuations in gene expression give identical cells access to a spectrum of phenotypes that can serve as a transient, nongenetic basis for natural selection by temporarily increasing drug resistance. In this study, we demonstrate using mathematical modeling and simulation that certain gene regulatory network motifs, specifically coherent feedforward loop motifs, can facilitate the development of nongenetic resistance by increasing cell-to-cell variability and the time scale at which beneficial phenotypic states can be maintained. Our results highlight how regulatory network motifs enabling transient, nongenetic inheritance play an important role in defining reproductive fitness in adverse environments and provide a selective advantage subject to evolutionary pressure.

  14. Alcohol and Other Drug Resistance Strategies Employed by Rural Adolescents

    PubMed Central

    Pettigrew, Jonathan; Miller-Day, Michelle; Krieger, Janice; Hecht, Michael L.

    2011-01-01

    This study seeks to identify how rural adolescents make health decisions and utilize communication strategies to resist influence attempts in offers of alcohol, tobacco, and other drugs (ATOD). Semi-structured interviews were conducted with 113 adolescents from rural school districts to solicit information on ATOD norms, past ATOD experiences, and substance offer-response episodes. Rural youths’ resistance strategies were similar to previous findings with urban adolescents – refuse, explain, avoid, and leave (the REAL typology) – while unique features of these strategies were identified including the importance of personal narratives, the articulation of a non-user identity, and being “accountable” to self and others. PMID:21552345

  15. Drug therapy for the patient with resistant hypertension.

    PubMed

    Donazzan, Luca; Ewen, Sebastian; Papademetriou, Vasilios; Linicus, Yvonne; Linz, Dominik; Böhm, Michael; Mahfoud, Felix

    2015-03-01

    Resistant hypertension is associated with high morbidity and mortality. Resistant hypertension is defined as blood pressure above targets despite treatment with at least three antihypertensive drugs in adequate dose and combination. Nonadherence is a frequent cause of uncontrolled hypertension and can be improved by providing fixed dose (of two or three agents) single pill combination. Triple combination of the most widely used antihypertensive agents (renin-angiotensin-aldosterone system antagonists, calcium channel blockers and diuretics) is a safe and effective therapy. Fourth line therapy is the use of an aldosterone antagonist. Renal denervation and baroreceptor stimulation can be considered in patients who remained uncontrolled despite optimal medical therapy. PMID:25760878

  16. Personalized Cancer Medicine: Molecular Diagnostics, Predictive biomarkers, and Drug Resistance

    PubMed Central

    Gonzalez de Castro, D; Clarke, P A; Al-Lazikani, B; Workman, P

    2013-01-01

    The progressive elucidation of the molecular pathogenesis of cancer has fueled the rational development of targeted drugs for patient populations stratified by genetic characteristics. Here we discuss general challenges relating to molecular diagnostics and describe predictive biomarkers for personalized cancer medicine. We also highlight resistance mechanisms for epidermal growth factor receptor (EGFR) kinase inhibitors in lung cancer. We envisage a future requiring the use of longitudinal genome sequencing and other omics technologies alongside combinatorial treatment to overcome cellular and molecular heterogeneity and prevent resistance caused by clonal evolution. PMID:23361103

  17. Antibiotic resistance among cultured bacterial isolates from bioethanol fermentation facilities across the United States.

    PubMed

    Murphree, Colin A; Heist, E Patrick; Moe, Luke A

    2014-09-01

    Bacterial contamination of fuel ethanol fermentations by lactic acid bacteria (LAB) can have crippling effects on bioethanol production. Producers have had success controlling bacterial growth through prophylactic addition of antibiotics to fermentors, yet concerns have arisen about antibiotic resistance among the LAB. Here, we report on mechanisms used by 32 LAB isolates from eight different US bioethanol facilities to persist under conditions of antibiotic stress. Minimum inhibitory concentration assays with penicillin, erythromycin, and virginiamycin revealed broad resistance to each of the antibiotics as well as high levels of resistance to individual antibiotics. Phenotypic assays revealed that antibiotic inactivation mechanisms contributed to the high levels of individual resistances among the isolates, especially to erythromycin and virginiamycin, yet none of the isolates appeared to use a β-lactamase. Biofilm formation was noted among the majority of the isolates and may contribute to persistence under low levels of antibiotics. Nearly all of the isolates carried at least one canonical antibiotic resistance gene and many carried more than one. The erythromycin ribosomal methyltransferase (erm) gene class was found in 19 of 32 isolates, yet a number of these isolates exhibit little to no resistance to erythromycin. The erm genes were present in 15 isolates that encoded more than one antibiotic resistance mechanism, suggestive of potential genetic linkages. PMID:24748439

  18. Engineering serendipity: High-throughput discovery of materials that resist bacterial attachment☆

    PubMed Central

    Magennis, E.P.; Hook, A.L.; Davies, M.C.; Alexander, C.; Williams, P.; Alexander, M.R.

    2016-01-01

    Controlling the colonisation of materials by microorganisms is important in a wide range of industries and clinical settings. To date, the underlying mechanisms that govern the interactions of bacteria with material surfaces remain poorly understood, limiting the ab initio design and engineering of biomaterials to control bacterial attachment. Combinatorial approaches involving high-throughput screening have emerged as key tools for identifying materials to control bacterial attachment. The hundreds of different materials assessed using these methods can be carried out with the aid of computational modelling. This approach can develop an understanding of the rules used to predict bacterial attachment to surfaces of non-toxic synthetic materials. Here we outline our view on the state of this field and the challenges and opportunities in this area for the coming years. Statement of significance This opinion article on high throughput screening methods reflects one aspect of how the field of biomaterials research has developed and progressed. The piece takes the reader through key developments in biomaterials discovery, particularly focusing on need to reduce bacterial colonisation of surfaces. Such bacterial resistant surfaces are increasingly required in this age of antibiotic resistance. The influence and origin of high-throughput methods are discussed with insights into the future of biomaterials development where computational methods may drive materials development into new fertile areas of discovery. New biomaterials will exhibit responsiveness to adapt to the biological environment and promote better integration and reduced rejection or infection. PMID:26577984

  19. Cultivable Bacterial Microbiota of Northern Bobwhite (Colinus virginianus): A New Reservoir of Antimicrobial Resistance?

    PubMed Central

    Su, Hongwen; McKelvey, Jessica; Rollins, Dale; Zhang, Michael; Brightsmith, Donald J.; Derr, James; Zhang, Shuping

    2014-01-01

    The northern bobwhite (Colinus virginianus) is an ecologically and economically important avian species. At the present time, little is known about the microbial communities associated with these birds. As the first step to create a quail microbiology knowledge base, the current study conducted an inventory of cultivable quail tracheal, crop, cecal, and cloacal microbiota and associated antimicrobial resistance using a combined bacteriology and DNA sequencing approach. A total of 414 morphologically unique bacterial colonies were selected from nonselective aerobic and anaerobic cultures, as well as selective and enrichment cultures. Analysis of the first 500-bp 16S rRNA gene sequences in conjunction with biochemical identifications revealed 190 non-redundant species-level taxonomic units, representing 160 known bacterial species and 30 novel species. The bacterial species were classified into 4 phyla, 14 orders, 37 families, and 59 or more genera. Firmicutes was the most commonly encountered phylum (57%) followed by Actinobacteria (24%), Proteobacteria (17%) and Bacteroidetes (0.02%). Extensive diversity in the species composition of quail microbiota was observed among individual birds and anatomical locations. Quail microbiota harbored several opportunistic pathogens, such as E. coli and Ps. aeruginosa, as well as human commensal organisms, including Neisseria species. Phenotypic characterization of selected bacterial species demonstrated a high prevalence of resistance to the following classes of antimicrobials: phenicol, macrolide, lincosamide, quinolone, and sulphate. Data from the current investigation warrant further investigation on the source, transmission, pathology, and control of antimicrobial resistance in wild quail populations. PMID:24937705

  20. Steering Evolution with Sequential Therapy to Prevent the Emergence of Bacterial Antibiotic Resistance

    PubMed Central

    Nichol, Daniel; Jeavons, Peter; Fletcher, Alexander G.; Bonomo, Robert A.; Maini, Philip K.; Paul, Jerome L.; Gatenby, Robert A.; Anderson, Alexander R.A.; Scott, Jacob G.

    2015-01-01

    The increasing rate of antibiotic resistance and slowing discovery of novel antibiotic treatments presents a growing threat to public health. Here, we consider a simple model of evolution in asexually reproducing populations which considers adaptation as a biased random walk on a fitness landscape. This model associates the global properties of the fitness landscape with the algebraic properties of a Markov chain transition matrix and allows us to derive general results on the non-commutativity and irreversibility of natural selection as well as antibiotic cycling strategies. Using this formalism, we analyze 15 empirical fitness landscapes of E. coli under selection by different β-lactam antibiotics and demonstrate that the emergence of resistance to a given antibiotic can be either hindered or promoted by different sequences of drug application. Specifically, we demonstrate that the majority, approximately 70%, of sequential drug treatments with 2–4 drugs promote resistance to the final antibiotic. Further, we derive optimal drug application sequences with which we can probabilistically ‘steer’ the population through genotype space to avoid the emergence of resistance. This suggests a new strategy in the war against antibiotic–resistant organisms: drug sequencing to shepherd evolution through genotype space to states from which resistance cannot emerge and by which to maximize the chance of successful therapy. PMID:26360300

  1. Polyether ionophores: broad-spectrum and promising biologically active molecules for the control of drug-resistant bacteria and parasites

    PubMed Central

    Kevin, Dion A; Meujo, Damaris AF; Hamann, Mark T

    2016-01-01

    Background As multidrug-resistant (MDR) pathogens continue to emerge, there is a substantial amount of pressure to identify new drug candidates. Carboxyl polyethers, also referred to as polyether antibiotics, are a unique class of compounds with outstanding potency against a variety of critical infectious disease targets including protozoa, bacteria and viruses. The characteristics of these molecules that are of key interest are their selectivity and high potency against several MDR etiological agents. Objective Although many studies have been published about carboxyl polyether antibiotics, there are no recent reviews of this class of drugs. The purpose of this review is to provide the reader with an overview of the spectrum of activity of polyether antibiotics, their mechanism of action, toxicity and potential as drug candidates to combat drug-resistant infectious diseases. Conclusion Polyether ionophores show a high degree of promise for the potential control of drug-resistant bacterial and parasitic infections. Despite the long history of use of this class of drugs, very limited medicinal chemistry and drug optimization studies have been reported, thus leaving the door open to these opportunities in the future. Scifinder and PubMed were the main search engines used to locate articles relevant to the topic presented in the present review. Keywords used in our search were specific names of each of the 88 compounds presented in the review as well as more general terms such as polyethers, ionophores, carboxylic polyethers and polyether antibiotics. PMID:23480512

  2. Smart doxorubicin nanoparticles with high drug payload for enhanced chemotherapy against drug resistance and cancer diagnosis.

    PubMed

    Yu, Caitong; Zhou, Mengjiao; Zhang, Xiujuan; Wei, Weijia; Chen, Xianfeng; Zhang, Xiaohong

    2015-03-19

    Considering the obvious advantages in efficacy and price, doxorubicin (DOX) has been widely used for a range of cancers, which is usually encapsulated in various nanocarriers for drug delivery. Although effective, in most nanocarrier-based delivery systems, the drug loading capacity of DOX is rather low; this can lead to undesired systemic toxicity and excretion concern. Herein, we report for the first time the usage of pure doxorubicin nanoparticles (DOX NPs) without addition of any carriers for enhanced chemotherapy against drug-resistance. The drug payload reaches as high as 90.47%, which largely surpassed those in previous reports. These PEG stabilized DOX NPs exhibit good biocompatibility and stability, long blood circulation time, fast release in an acidic environment and high accumulation in tumors. Compared with free DOX, DOX NPs display a dramatically enhanced anticancer therapeutic efficacy in the inhibition of cell and tumor growth. Moreover, they can also be readily incorporated with other anticancer drugs for synergistic chemotherapy to overcome the drug resistance of cancers. The fluorescence properties of DOX also endow these NPs with imaging capabilities, thus making it a multifunctional system for diagnosis and treatment. This work demonstrates great potential of DOX NPs for cancer diagnosis, therapy and overcoming drug tolerance. PMID:25740312

  3. The bacterial DNA repair protein Mfd confers resistance to the host nitrogen immune response.

    PubMed

    Guillemet, Elisabeth; Leréec, Alain; Tran, Seav-Ly; Royer, Corinne; Barbosa, Isabelle; Sansonetti, Philippe; Lereclus, Didier; Ramarao, Nalini

    2016-01-01

    Production of reactive nitrogen species (NO) is a key step in the immune response following infections. NO induces lesions to bacterial DNA, thus limiting bacterial growth within hosts. Using two pathogenic bacteria, Bacillus cereus and Shigella flexneri, we show that the DNA-repair protein Mfd (Mutation-Frequency-Decline) is required for bacterial resistance to the host-NO-response. In both species, a mutant deficient for mfd does not survive to NO, produced in vitro or by phagocytic cells. In vivo, the ∆mfd mutant is avirulent and unable to survive the NO-stress. Moreover, NO induces DNA-double-strand-breaks and point mutations in the Δmfd mutant. In overall, these observations demonstrate that NO damages bacterial DNA and that Mfd is required to maintain bacterial genomic integrity. This unexpected discovery reveals that Mfd, a typical housekeeping gene, turns out to be a true virulence factor allowing survival and growth of the pathogen in its host, due to its capacity to protect the bacterium against NO, a key molecule of the innate immune defense. As Mfd is widely conserved in the bacterial kingdom, these data highlight a mechanism that may be used by a large spectrum of bacteria to overcome the host immune response and especially the mutagenic properties of NO. PMID:27435260

  4. The bacterial DNA repair protein Mfd confers resistance to the host nitrogen immune response

    PubMed Central

    Guillemet, Elisabeth; Leréec, Alain; Tran, Seav-Ly; Royer, Corinne; Barbosa, Isabelle; Sansonetti, Philippe; Lereclus, Didier; Ramarao, Nalini

    2016-01-01

    Production of reactive nitrogen species (NO) is a key step in the immune response following infections. NO induces lesions to bacterial DNA, thus limiting bacterial growth within hosts. Using two pathogenic bacteria, Bacillus cereus and Shigella flexneri, we show that the DNA-repair protein Mfd (Mutation-Frequency-Decline) is required for bacterial resistance to the host-NO-response. In both species, a mutant deficient for mfd does not survive to NO, produced in vitro or by phagocytic cells. In vivo, the ∆mfd mutant is avirulent and unable to survive the NO-stress. Moreover, NO induces DNA-double-strand-breaks and point mutations in the Δmfd mutant. In overall, these observations demonstrate that NO damages bacterial DNA and that Mfd is required to maintain bacterial genomic integrity. This unexpected discovery reveals that Mfd, a typical housekeeping gene, turns out to be a true virulence factor allowing survival and growth of the pathogen in its host, due to its capacity to protect the bacterium against NO, a key molecule of the innate immune defense. As Mfd is widely conserved in the bacterial kingdom, these data highlight a mechanism that may be used by a large spectrum of bacteria to overcome the host immune response and especially the mutagenic properties of NO. PMID:27435260

  5. Bottlenecks in the Transferability of Antibiotic Resistance from Natural Ecosystems to Human Bacterial Pathogens

    PubMed Central

    Martínez, José L.

    2011-01-01

    It is generally accepted that resistance genes acquired by human pathogens through horizontal gene transfer originated in environmental, non-pathogenic bacteria. As a consequence, there is increasing concern on the roles that natural, non-clinical ecosystems, may play in the evolution of resistance. Recent studies have shown that the variability of determinants that can provide antibiotic resistance on their expression in a heterologous host is much larger than what is actually found in human pathogens, which implies the existence of bottlenecks modulating the transfer, spread, and stability of antibiotic resistance genes. In this review, the role that different factors such as founder effects, ecological connectivity, fitness costs, or second-order selection may have on the establishment of a specific resistance determinant in a population of bacterial pathogens is analyzed. PMID:22319513

  6. Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them.

    PubMed

    Khameneh, Bahman; Diab, Roudayna; Ghazvini, Kiarash; Fazly Bazzaz, Bibi Sedigheh

    2016-06-01

    Multidrug-resistant (MDR) bacteria have increased at an alarming rate over recent decades and cause serious problems. The emergence of resistant infections caused by these bacteria has led to mortality and morbidity; consequently there is an urgent need to find solution for combating bacterial resistance. In the present paper, first, some mechanisms of antibiotic resistance such as changing the antibacterial agent's uptake and biofilm formation are discussed. Following, for removing the antibacterial resistance, a wide range of approaches like developing new generations of antibiotics, combination therapy, natural antibacterial substances and applying nanoparticulate systems have been explained. Among them, antibiotic delivery via nanoparticles, has been attracted more attention recently, so discussed in present review, separately. PMID:26911646

  7. Steroidal regulation of uterine resistance to bacterial infection in livestock

    PubMed Central

    Lewis, Gregory S

    2003-01-01

    Postpartum uterine infections reduce reproductive efficiency and have significant animal welfare and economic consequences. Postpartum uterine infections are classified as nonspecific, but Arcanobacterium pyogenes and Escherichia coli are usually associated with them in cattle and sheep. Pyometra is the most common type of uterine infection in dairy cattle, and it is detected almost exclusively in cows with active corpora lutea. Luteal progesterone typically down-regulates uterine immune functions and prevents the uterus from resisting infections. Progesterone also can down-regulate uterine eicosanoid synthesis. This seems to be a critical event in the onset of uterine infections, because eicosanoids can up-regulate immune cell functions in vitro. In addition, exogenous prostaglandin F2 alpha stimulates uterine secretion of prostaglandin F2 alpha and enhances immune functions in vivo. Thus, one may hypothesize that eicosanoids can override the negative effects of progesterone and that the up-regulatory effects of exogenous prostaglandin F2 alpha allow the uterus to resolve an infection, regardless of progesterone concentrations. Based on the results of studies to test that hypothesis, cows, sheep, and pigs in various physiological statuses are resistant to intrauterine infusions of Arcanobacterium pyogenes and Escherichia coli, unless progesterone concentrations are increased. In sheep and pigs, exogenous prostaglandin F2 alpha stimulates uterine production of prostaglandin F2 alpha and allows the uterus to resolve Arcanobacterium pyogenes-Escherichia coli-induced infections, even when progesterone is maintained at luteal phase concentrations before and after treatment. Prostaglandin F2 alpha is a proinflammatory molecule that stimulates the production of various proinflammatory cytokines, and it may enhance uterine production of leukotriene B4. Proinflammatory cytokines and leukotriene B4 enhance phagocytosis and lymphocyte functions. Even though there are clear

  8. Mathematical models of tumor heterogeneity and drug resistance

    NASA Astrophysics Data System (ADS)

    Greene, James

    In this dissertation we develop mathematical models of tumor heterogeneity and drug resistance in cancer chemotherapy. Resistance to chemotherapy is one of the major causes of the failure of cancer treatment. Furthermore, recent experimental evidence suggests that drug resistance is a complex biological phenomena, with many influences that interact nonlinearly. Here we study the influence of such heterogeneity on treatment outcomes, both in general frameworks and under specific mechanisms. We begin by developing a mathematical framework for describing multi-drug resistance to cancer. Heterogeneity is reflected by a continuous parameter, which can either describe a single resistance mechanism (such as the expression of P-gp in the cellular membrane) or can account for the cumulative effect of several mechanisms and factors. The model is written as a system of integro-differential equations, structured by the continuous "trait," and includes density effects as well as mutations. We study the limiting behavior of the model, both analytically and numerically, and apply it to study treatment protocols. We next study a specific mechanism of tumor heterogeneity and its influence on cell growth: the cell-cycle. We derive two novel mathematical models, a stochastic agent-based model and an integro-differential equation model, each of which describes the growth of cancer cells as a dynamic transition between proliferative and quiescent states. By examining the role all parameters play in the evolution of intrinsic tumor heterogeneity, and the sensitivity of the population growth to parameter values, we show that the cell-cycle length has the most significant effect on the growth dynamics. In addition, we demonstrate that the agent-based model can be approximated well by the more computationally efficient integro-differential equations, when the number of cells is large. The model is closely tied to experimental data of cell growth, and includes a novel implementation of

  9. Risk practices associated with bacterial infections among injection drug users in Denver, CO

    PubMed Central

    Phillips, Kristina T.; Stein, Michael D.

    2016-01-01

    Background There has been limited research on bacterial infections (e.g., skin and soft tissue abscesses, endocarditis) among injection drug users (IDUs), despite these infections often resulting in serious morbidity and costly medical care. Although high-risk practices that contribute to bacterial infections are not entirely clear, certain injection practices have been found to increase risk in past studies. Objectives To examine rates of bacterial infections among IDUs in Denver, CO and high-risk practices that predict skin infections. Methods Structured interviews were conducted with 51 active heroin, cocaine and methamphetamine IDUs (over 18 years). Results Among all participants, 55% reported a lifetime history of at least one skin infection and 29% reported having an infection in the last year. Those with a skin infection in the last year were significantly more likely to inject intramuscularly (OR = 1.57) and to report greater heroin injection frequency (OR = 1.08) compared to IDUs with no history of skin infections. Heroin and speedball injectors reported a higher number of past abscesses compared to methamphetamine and cocaine injectors. Conclusion Intervention strategies to reduce bacterial infections should focus on high-risk injection practices. Scientific Significance Learning about rates of bacterial infections and high-risk practices associated with these infections can benefit researchers developing risk reduction interventions for IDUs. PMID:20337504

  10. Peptide IDR-1018: modulating the immune system and targeting bacterial biofilms to treat antibiotic-resistant bacterial infections.

    PubMed

    Mansour, Sarah C; de la Fuente-Núñez, César; Hancock, Robert E W

    2015-05-01

    Host defense (antimicrobial) peptides, produced by all complex organisms, typically contain an abundance of positively charged and hydrophobic amino acid residues. A small synthetic peptide termed innate defense regulator (IDR-)1018 was derived by substantial modification of the bovine neutrophil host defense peptide bactenecin. Here, we review its intriguing properties that include anti-infective, anti-inflammatory, wound healing, and anti-biofilm activities. It was initially developed as an immune modulator with an ability to selectively enhance chemokine production and polarize cellular differentiation while suppressing/balancing the pro-inflammatory response. In this regard, it has demonstrated in vivo activity in murine models including enhancement of wound healing and an ability to protect against Staphylococcus aureus, multidrug resistant Mycobacterium tuberculosis, herpes virus, and inflammatory disorders, including cerebral malaria and neuronal damage in a pre-term birth model. More recently, IDR-1018 was shown, in a broad-spectrum fashion, to selectively target bacterial biofilms, which are adaptively resistant to many antibiotics and represent the most common growth state of bacteria in human infections. Furthermore, IDR-1018 demonstrated synergy with conventional antibiotics to both prevent biofilm formation and treat pre-existing biofilms. These data are consistent with a strong potential as an adjunctive therapy against antibiotic-resistant infections. PMID:25358509

  11. Assessing transmissibility of HIV-1 drug resistance mutations from treated and from drug-naive individuals

    PubMed Central

    Winand, Raf; Theys, Kristof; Eusébio, Mónica; Aerts, Jan; Camacho, Ricardo J.; Gomes, Perpetua; Suchard, Marc A.; Vandamme, Anne-Mieke; Abecasis, Ana B.

    2015-01-01

    Objectives: Surveillance drug resistance mutations (SDRMs) in drug-naive patients are typically used to survey HIV-1-transmitted drug resistance (TDR). We test here how SDRMs in patients failing treatment, the original source of TDR, contribute to assessing TDR, transmissibility and transmission source of SDRMs. Design: This is a retrospective observational study analyzing a Portuguese cohort of HIV-1-infected patients. Methods: The prevalence of SDRMs to protease inhibitors, nucleoside reverse transcriptase inhibitors (NRTIs) and nonnucleoside reverse transcriptase inhibitors (NNRTIs) in drug-naive and treatment-failing patients was measured for 3554 HIV-1 subtype B patients. Transmission ratio (prevalence in drug-naive/prevalence in treatment-failing patients), average viral load and robust linear regression with outlier detection (prevalence in drug-naive versus in treatment-failing patients) were analyzed and used to interpret transmissibility. Results: Prevalence of SDRMs in drug-naive and treatment-failing patients were linearly correlated, but some SDRMs were classified as outliers – above (PRO: D30N, N88D/S, L90 M, RT: G190A/S/E) or below (RT: M184I/V) expectations. The normalized regression slope was 0.073 for protease inhibitors, 0.084 for NRTIs and 0.116 for NNRTIs. Differences between SDRMs transmission ratios were not associated with differences in viral loads. Conclusion: The significant linear correlation between prevalence of SDRMs in drug-naive and in treatment-failing patients indicates that the prevalence in treatment-failing patients can be useful to predict levels of TDR. The slope is a cohort-dependent estimate of rate of TDR per drug class and outlier detection reveals comparative persistence of SDRMs. Outlier SDRMs with higher transmissibility are more persistent and more likely to have been acquired from drug-naive patients. Those with lower transmissibility have faster reversion dynamics after transmission and are associated with

  12. No role for bacterially produced salicylic Acid in rhizobacterial induction of systemic resistance in Arabidopsis.

    PubMed

    Ran, L X; van Loon, L C; Bakker, P A H M

    2005-11-01

    ABSTRACT The role of bacterially produced salicylic acid (SA) in the induction of systemic resistance in plants by rhizobacteria is far from clear. The strong SA producer Pseudomonas fluorescens WCS374r induces resistance in radish but not in Arabidopsis thaliana, whereas application of SA leads to induction of resistance in both plant species. In this study, we compared P. fluorescens WCS374r with three other SA-producing fluorescent Pseudomonas strains, P. fluorescens WCS417r and CHA0r, and P. aeruginosa 7NSK2 for their abilities to produce SA under different growth conditions and to induce systemic resistance in A. thaliana against bacterial speck, caused by P. syringae pv. tomato. All strains produced SA in vitro, varying from 5 fg cell(-1) for WCS417r to >25 fg cell(-1) for WCS374r. Addition of 200 muM FeCl(3) to standard succinate medium abolished SA production in all strains. Whereas the incubation temperature did not affect SA production by WCS417r and 7NSK2, strains WCS374r and CHA0r produced more SA when grown at 33 instead of 28 degrees C. WCS417r, CHA0r, and 7NSK2 induced systemic resistance apparently associated with their ability to produce SA, but WCS374r did not. Conversely, a mutant of 7NSK2 unable to produce SA still triggered induced systemic resistance (ISR). The possible involvement of SA in the induction of resistance was evaluated using SA-nonaccumulating transgenic NahG plants. Strains WCS417r, CHA0r, and 7NSK2 induced resistance in NahG Arabidopsis. Also, WCS374r, when grown at 33 or 36 degrees C, triggered ISR in these plants, but not in ethylene-insensitive ein2 or in non-plant pathogenesis- related protein-expressing npr1 mutant plants, irrespective of the growth temperature of the bacteria. These results demonstrate that, whereas WCS374r can be manipulated to trigger ISR in Arabidopsis, SA is not the primary determinant for the induction of systemic resistance against bacterial speck disease by this bacterium. Also, for the other

  13. Overcoming Drug Resistance and Treating Advanced Prostate Cancer

    PubMed Central

    Semenas, Julius; Allegrucci, Cinzia; Boorjian, Stephen A; Mongan, Nigel P; Persson, Jenny Liao

    2012-01-01

    Most of the prostate cancers (PCa) in advanced stage will progress to castration-resistant prostate cancer (CRPC). Within CRPC group, 50-70% of the patients will develop bone metastasis in axial and other regions of the skeleton. Once PCa cells spread to the bone, currently, no treatment regimens are available to eradicate the metastasis, and cancer-related death becomes inevitable. In 2012, it is estimated that there will be 28,170 PCa deaths in the United States. Thus, PCa bone metastasis-associated clinical complications and treatment resistance pose major clinical challenges. In this review, we will present recent findings on the molecular and cellular pathways that are responsible for bone metastasis of PCa. We will address several novel mechanisms with a focus on the role of bone and bone marrow microenvironment in promoting PCa metastasis, and will further discuss why prostate cancer cells preferentially metastasize to the bone. Additionally, we will discuss novel roles of several key pathways, including angiogenesis and extracellular matrix remodeling in bone marrow and stem cell niches with their relationship to PCa bone metastasis and poor treatment response. We will evaluate how various chemotherapeutic drugs and radiation therapies may allow aggressive PCa cells to gain advantageous mutations leading to increased survival and rendering the cancer cells to become resistant to treatment. The novel concept relating several key survival and invasion signaling pathways to stem cell niches and treatment resistance will be reviewed. Lastly, we will provide an update of several recently developed novel drug candidates that target metastatic cancer microenvironments or niches, and discuss the advantages and significance provided by such therapeutic approaches in pursuit of overcoming drug resistance and treating advanced PCa. PMID:22746994

  14. Investigational drugs to treat methicillin-resistant Staphylococcus aureus

    PubMed Central

    Vuong, Cuong; Yeh, Anthony J; Cheung, Gordon YC; Otto, Michael

    2016-01-01

    Introduction Staphylococcus aureus remains one of the leading causes of morbidity and mortality worldwide. This is to a large extent due to antibiotic-resistant strains, in particular methicillin-resistant S. aureus (MRSA). While the toll of invasive MRSA infections appears to decrease in U.S. hospitals, the rate of community-associated MRSA infections remains constant and there is a surge of MRSA in many other countries. This situation calls for continuing if not increased efforts to find novel strategies to combat MRSA infections. Areas covered This review will provide an overview of current investigational antibiotics in clinical development (up to phase II), and of therapeutic antibodies and alternative drugs against S. aureus in preclinical and clinical development, including a short description of the mechanism of action and a presentation of microbiological and clinical data. Expert opinion Increased recent antibiotic development efforts and results from pathogenesis research have led to several new antibiotics and alternative drugs, as well as a more informed selection of targets for vaccination efforts against MRSA. This developing portfolio of novel anti-staphylococcal drugs will hopefully provide us with additional and more efficient ways to combat MRSA infections in the near future and prevent us from running out of treatment options, even if new resistances arise. PMID:26536498

  15. Delamanid expanded access novel treatment of drug resistant tuberculosis

    PubMed Central

    Rustomjee, Roxana; Zumla, Alimuddin

    2015-01-01

    Tuberculosis (TB) remains a global emergency and is one of the most common infectious disease causes of death in developing countries. Current treatment regimens for multi-drug resistant TB are associated with low treatment success rates, are toxic, and require long duration of treatment. The need for shorter and more effective treatment regimens is urgent. Delamanid (Deltyba, or formerly known as OPC-67683) is a new dihydro-imidazooxazole anti-TB drug active against resistant forms of pulmonary TB. Delamanid kills Mycobacterium tuberculosis by inhibiting the synthesis of mycolic acids required for cell wall synthesis. Whilst delamanid has been included in the WHO Model List of Essential Medicine by the World Health Organization Expert Committee on Selection and Use of Essential Medicines and in international guidance for the treatment of multi-drug resistant TB since April 2014, its access in countries with the greatest need, has proven challenging. This review provides an update on currently available clinical safety and efficacy data on delamanid and offers a discussion on research priorities and recommendations for expedited, expanded access. PMID:26604805

  16. Oscyp71Z2 involves diterpenoid phytoalexin biosynthesis that contributes to bacterial blight resistance in rice.

    PubMed

    Li, Wenqi; Shao, Min; Yang, Jie; Zhong, Weigong; Okada, Kazunori; Yamane, Hisakazu; Qian, Guoliang; Liu, Fengquan

    2013-06-01

    Bacterial blight is one of the most destructive rice diseases, which caused by Xoo, and results in yield losses, endangering worldwide food security. Diterpenoid phytoalexins, a type of antimicrobials produced in rice, are critical for resistance to fungal and bacterial pathogens. This article reports the characterization of the cytochrome P450 gene Oscyp71Z2, which belongs to the CYP71Z subfamily. Overexpression of Oscyp71Z2 in rice enhanced resistance to Xoo at the booting stage. The accumulation of phytoalexins was rapidly and strongly induced in Oscyp71Z2-overexpressing plants, and the transcript levels of genes related to the phytoalexin biosynthesis pathway were elevated. The H₂O₂ concentration in Oscyp71Z2-overexpressing plants was reduced in accordance with the increase in ROS-scavenging ability due to the induction of SOD as well as POD and CAT activation. We also showed that suppression of Oscyp71Z2 had no significantly effect on disease resistance to Xoo in rice. These results demonstrated that Oscyp71Z2 plays an important role in bacterial blight resistance by regulating the diterpenoid phytoalexin biosynthesis and H₂O₂ generation. PMID:23602104

  17. Quaternary Ammonium Compounds: An Antimicrobial Mainstay and Platform for Innovation to Address Bacterial Resistance.

    PubMed

    Jennings, Megan C; Minbiole, Kevin P C; Wuest, William M

    2015-07-10

    Quaternary ammonium compounds (QACs) have represented one of the most visible and effective classes of disinfectants for nearly a century. With simple preparation, wide structural variety, and versatile incorporation into consumer products, there have been manifold developments and applications of these structures. Generally operating via disruption of one of the most fundamental structures in bacteria-the cell membrane-leading to cell lysis and bacterial death, the QACs were once thought to be impervious to resistance. Developments over the past decades, however, have shown this to be far from the truth. It is now known that a large family of bacterial genes (generally termed qac genes) encode efflux pumps capable of expelling many QAC structures from bacterial cells, leading to a decrease in susceptibility to QACs; methods of regulation of qac transcription are also understood. Importantly, qac genes can be horizontally transferred via plasmids to other bacteria and are often transmitted alongside other antibiotic-resistant genes; this dual threat represents a significant danger to human health. In this review, both QAC development and QAC resistance are documented, and possible strategies for addressing and overcoming QAC-resistant bacteria are discussed. PMID:27622819

  18. Drug Resistance Mechanisms of Mycoplasma pneumoniae to Macrolide Antibiotics

    PubMed Central

    Liu, Xijie; Jiang, Yue; Chen, Xiaogeng; Li, Jing; Shi, Dawei; Xin, Deli

    2014-01-01

    Throat swabs from children with suspected Mycoplasma pneumoniae (M. pneumoniae) infection were cultured for the presence of M. pneumoniae and its species specificity using the 16S rRNA gene. Seventy-six M. pneumoniae strains isolated from 580 swabs showed that 70 were erythromycin resistant with minimum inhibitory concentrations (MIC) around 32–512 mg/L. Fifty M. pneumoniae strains (46 resistant, 4 sensitive) were tested for sensitivity to tetracycline, ciprofloxacin, and gentamicin. Tetracycline and ciprofloxacin had some effect, and gentamicin had an effect on the majority of M. pneumoniae strains. Domains II and V of the 23S rRNA gene and the ribosomal protein L4 and L22 genes, both of which are considered to be associated with macrolide resistance, were sequenced and the sequences were compared with the corresponding sequences in M129 registered with NCBI and the FH strain. The 70 resistant strains all showed a 2063 or 2064 site mutation in domain V of the 23S rRNA but no mutations in domain II. Site mutations of L4 or L22 can be observed in either resistant or sensitive strains, although it is not known whether this is associated with drug resistance. PMID:24592385

  19. Surfactant-based drug delivery systems for treating drug-resistant lung cancer.

    PubMed

    Kaur, Prabhjot; Garg, Tarun; Rath, Goutam; Murthy, R S R; Goyal, Amit K

    2016-01-01

    Among all cancers, lung cancer is the major cause of deaths. Lung cancer can be categorized into two classes for prognostic and treatment purposes: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). Both categories of cancer are resistant to certain drugs. Various mechanisms behind drug resistance are over-expression of superficial membrane proteins [glycoprotein (P-gp)], lung resistance-associated proteins, aberration of the intracellular enzyme system, enhancement of the cell repair system and deregulation of cell apoptosis. Structure-performance relationships and chemical compatibility are consequently major fundamentals in surfactant-based formulations, with the intention that a great deal investigation is committed to this region. With the purpose to understand the potential of P-gp in transportation of anti-tumor drugs to cancer cells with much effectiveness and specificity, several surfactant-based delivery systems have been developed which may include microspheres, nanosized drug carriers (nanoparticles, nanoemulsions, stealth liposomes, nanogels, polymer-drug conjugates), novel powders, hydrogels and mixed micellar systems intended for systemic and/or localized delivery. PMID:25013959

  20. HIV-1 Drug Resistance Mutations: Potential Applications for Point-of-Care Genotypic Resistance Testing

    PubMed Central

    Rhee, Soo-Yon; Jordan, Michael R.; Raizes, Elliot; Chua, Arlene; Parkin, Neil; Kantor, Rami; Van Zyl, Gert U.; Mukui, Irene; Hosseinipour, Mina C.; Frenkel, Lisa M.; Ndembi, Nicaise; Hamers, Raph L.; Rinke de Wit, Tobias F.; Wallis, Carole L.; Gupta, Ravindra K.; Fokam, Joseph; Zeh, Clement; Schapiro, Jonathan M.; Carmona, Sergio; Katzenstein, David; Tang, Michele; Aghokeng, Avelin F.; De Oliveira, Tulio; Wensing, Annemarie M. J.; Gallant, Joel E.; Wainberg, Mark A.; Richman, Douglas D.; Fitzgibbon, Joseph E.; Schito, Marco; Bertagnolio, Silvia; Yang, Chunfu; Shafer, Robert W.

    2015-01-01

    The increasing prevalence of acquired and transmitted HIV-1 drug resistance is an obstacle to successful antiretroviral therapy (ART) in the low- and middle-income countries (LMICs) hardest hit by the HIV-1 pandemic. Genotypic drug resistance testing could facilitate the choice of initial ART in areas with rising transmitted drug resistance (TDR) and enable care-providers to determine which individuals with virological failure (VF) on a first- or second-line ART regimen require a change in treatment. An inexpensive near point-of-care (POC) genotypic resistance test would be useful in settings where the resources, capacity, and infrastructure to perform standard genotypic drug resistance testing are limited. Such a test would be particularly useful in conjunction with the POC HIV-1 viral load tests that are currently being introduced in LMICs. A POC genotypic resistance test is likely to involve the use of allele-specific point mutation assays for detecting drug-resistance mutations (DRMs). This study proposes that two major nucleoside reverse transcriptase inhibitor (NRTI)-associated DRMs (M184V and K65R) and four major NNRTI-associated DRMs (K103N, Y181C, G190A, and V106M) would be the most useful for POC genotypic resistance testing in LMIC settings. One or more of these six DRMs was present in 61.2% of analyzed virus sequences from ART-naïve individuals with intermediate or high-level TDR and 98.8% of analyzed virus sequences from individuals on a first-line NRTI/NNRTI-containing regimen with intermediate or high-level acquired drug resistance. The detection of one or more of these DRMs in an ART-naïve individual or in a individual with VF on a first-line NRTI/NNRTI-containing regimen may be considered an indication for a protease inhibitor (PI)-containing regimen or closer virological monitoring based on cost-effectiveness or country policy. PMID:26717411

  1. HIV-1 Drug Resistance Mutations: Potential Applications for Point-of-Care Genotypic Resistance Testing.

    PubMed

    Rhee, Soo-Yon; Jordan, Michael R; Raizes, Elliot; Chua, Arlene; Parkin, Neil; Kantor, Rami; Van Zyl, Gert U; Mukui, Irene; Hosseinipour, Mina C; Frenkel, Lisa M; Ndembi, Nicaise; Hamers, Raph L; Rinke de Wit, Tobias F; Wallis, Carole L; Gupta, Ravindra K; Fokam, Joseph; Zeh, Clement; Schapiro, Jonathan M; Carmona, Sergio; Katzenstein, David; Tang, Michele; Aghokeng, Avelin F; De Oliveira, Tulio; Wensing, Annemarie M J; Gallant, Joel E; Wainberg, Mark A; Richman, Douglas D; Fitzgibbon, Joseph E; Schito, Marco; Bertagnolio, Silvia; Yang, Chunfu; Shafer, Robert W

    2015-01-01

    The increasing prevalence of acquired and transmitted HIV-1 drug resistance is an obstacle to successful antiretroviral therapy (ART) in the low- and middle-income countries (LMICs) hardest hit by the HIV-1 pandemic. Genotypic drug resistance testing could facilitate the choice of initial ART in areas with rising transmitted drug resistance (TDR) and enable care-providers to determine which individuals with virological failure (VF) on a first- or second-line ART regimen require a change in treatment. An inexpensive near point-of-care (POC) genotypic resistance test would be useful in settings where the resources, capacity, and infrastructure to perform standard genotypic drug resistance testing are limited. Such a test would be particularly useful in conjunction with the POC HIV-1 viral load tests that are currently being introduced in LMICs. A POC genotypic resistance test is likely to involve the use of allele-specific point mutation assays for detecting drug-resistance mutations (DRMs). This study proposes that two major nucleoside reverse transcriptase inhibitor (NRTI)-associated DRMs (M184V and K65R) and four major NNRTI-associated DRMs (K103N, Y181C, G190A, and V106M) would be the most useful for POC genotypic resistance testing in LMIC settings. One or more of these six DRMs was present in 61.2% of analyzed virus sequences from ART-naïve individuals with intermediate or high-level TDR and 98.8% of analyzed virus sequences from individuals on a first-line NRTI/NNRTI-containing regimen with intermediate or high-level acquired drug resistance. The detection of one or more of these DRMs in an ART-naïve individual or in a individual with VF on a first-line NRTI/NNRTI-containing regimen may be considered an indication for a protease inhibitor (PI)-containing regimen or closer virological monitoring based on cost-effectiveness or country policy. PMID:26717411

  2. Exosomes in development, metastasis and drug resistance of breast cancer

    PubMed Central

    Yu, Dan-dan; Wu, Ying; Shen, Hong-yu; Lv, Meng-meng; Chen, Wei-xian; Zhang, Xiao-hui; Zhong, Shan-liang; Tang, Jin-hai; Zhao, Jian-hua

    2015-01-01

    Transport through the cell membrane can be divided into active, passive and vesicular types (exosomes). Exosomes are nano-sized vesicles released by a variety of cells. Emerging evidence shows that exosomes play a critical role in cancers. Exosomes mediate communication between stroma and cancer cells through the transfer of nucleic acid and proteins. It is demonstrated that the contents and the quantity of exosomes will change after occurrence of cancers. Over the last decade, growing attention has been paid to the role of exosomes in the development of breast cancer, the most life-threatening cancer in women. Breast cancer could induce salivary glands to secret specific exosomes, which could be used as biomarkers in the diagnosis of early breast cancer. Exosome-delivered nucleic acid and proteins partly facilitate the tumorigenesis, metastasis and resistance of breast cancer. Exosomes could also transmit anti-cancer drugs outside breast cancer cells, therefore leading to drug resistance. However, exosomes are effective tools for transportation of anti-cancer drugs with lower immunogenicity and toxicity. This is a promising way to establish a drug delivery system. PMID:26052865

  3. Exosomes in development, metastasis and drug resistance of breast cancer.

    PubMed

    Yu, Dan-dan; Wu, Ying; Shen, Hong-yu; Lv, Meng-meng; Chen, Wei-xian; Zhang, Xiao-hui; Zhong, Shan-liang; Tang, Jin-hai; Zhao, Jian-hua

    2015-08-01

    Transport through the cell membrane can be divided into active, passive and vesicular types (exosomes). Exosomes are nano-sized vesicles released by a variety of cells. Emerging evidence shows that exosomes play a critical role in cancers. Exosomes mediate communication between stroma and cancer cells through the transfer of nucleic acid and proteins. It is demonstrated that the contents and the quantity of exosomes will change after occurrence of cancers. Over the last decade, growing attention has been paid to the role of exosomes in the development of breast cancer, the most life-threatening cancer in women. Breast cancer could induce salivary glands to secret specific exosomes, which could be used as biomarkers in the diagnosis of early breast cancer. Exosome-delivered nucleic acid and proteins partly facilitate the tumorigenesis, metastasis and resistance of breast cancer. Exosomes could also transmit anti-cancer drugs outside breast cancer cells, therefore leading to drug resistance. However, exosomes are effective tools for transportation of anti-cancer drugs with lower immunogenicity and toxicity. This is a promising way to establish a drug delivery system. PMID:26052865

  4. Catalysis and Sulfa Drug Resistance in Dihydropteroate Synthase

    SciTech Connect

    Yun, Mi-Kyung; Wu, Yinan; Li, Zhenmei; Zhao, Ying; Waddell, M. Brett; Ferreira, Antonio M.; Lee, Richard E.; Bashford, Donald; White, Stephen W.

    2013-04-08

    The sulfonamide antibiotics inhibit dihydropteroate synthase (DHPS), a key enzyme in the folate pathway of bacteria and primitive eukaryotes. However, resistance mutations have severely compromised the usefulness of these drugs. We report structural, computational, and mutagenesis studies on the catalytic and resistance mechanisms of DHPS. By performing the enzyme-catalyzed reaction in crystalline DHPS, we have structurally characterized key intermediates along the reaction pathway. Results support an S{sub N}1 reaction mechanism via formation of a novel cationic pterin intermediate. We also show that two conserved loops generate a substructure during catalysis that creates a specific binding pocket for p-aminobenzoic acid, one of the two DHPS substrates. This substructure, together with the pterin-binding pocket, explains the roles of the conserved active-site residues and reveals how sulfonamide resistance arises.

  5. [Occurrence and drug-resistance of beta-hemolytic streptococci].

    PubMed

    Mikołajczyk, Dorota; Budzyńska, Anna; Kaczmarek, Agnieszka; Gospodarek, Eugenia</