Science.gov

Sample records for bacterial family vibrionaceae

  1. Global and Phylogenetic Distribution of Quorum Sensing Signals, Acyl Homoserine Lactones, in the Family of Vibrionaceae

    PubMed Central

    Barker Rasmussen, Bastian; Fog Nielsen, Kristian; Machado, Henrique; Melchiorsen, Jette; Gram, Lone; Sonnenschein, Eva C.

    2014-01-01

    Bacterial quorum sensing (QS) and the corresponding signals, acyl homoserine lactones (AHLs), were first described for a luminescent Vibrio species. Since then, detailed knowledge has been gained on the functional level of QS; however, the abundance of AHLs in the family of Vibrionaceae in the environment has remained unclear. Three hundred and one Vibrionaceae strains were collected on a global research cruise and the prevalence and profile of AHL signals in this global collection were determined. AHLs were detected in 32 of the 301 strains using Agrobacterium tumefaciens and Chromobacterium violaceum reporter strains. Ethyl acetate extracts of the cultures were analysed by ultra-high performance liquid chromatography-high resolution mass spectrometry (MS) with automated tandem MS confirmation for AHLs. N-(3-hydroxy-hexanoyl) (OH-C6) and N-(3-hydroxy-decanoyl) (OH-C10) homoserine lactones were the most common AHLs found in 17 and 12 strains, respectively. Several strains produced a diversity of different AHLs, including N-heptanoyl (C7) HL. AHL-producing Vibrionaceae were found in polar, temperate and tropical waters. The AHL profiles correlated with strain phylogeny based on gene sequence homology, however not with geographical location. In conclusion, a wide range of AHL signals are produced by a number of clades in the Vibrionaceae family and these results will allow future investigations of inter- and intra-species interactions within this cosmopolitan family of marine bacteria. PMID:25419995

  2. Pathogenicity of members of the vibrionaceae family to cultured juvenile sablefish.

    PubMed

    Arkoosh, Mary R; Dietrich, Joseph P

    2015-06-01

    Sablefish Anoplopoma fimbria are a prized seafood species due to their high oil content and white flaky flesh. Raising these species in culture can help to provide an important source of protein for humans and relief to declining wild fish populations. Understanding the environmental factors that influence the production of Sablefish is important for successful culturing. The significance of host-pathogen interactions in Sablefish culture and the resulting environmental implications are unknown. Pathogens could potentially cause losses of cultured Sablefish stocks due to disease, while Sablefish cultured in net pens may also serve as reservoirs for pathogens and potentially transmit disease to wild fish species. In this initial study, the susceptibility of juvenile Sablefish to three bacterial pathogens from the family Vibrionaceae was examined. Listonella anguillarum, Vibrio ordalii, and V. splendidus can pose serious economic threats to cultured fish and shellfish. Groups of juvenile Sablefish were exposed to five concentrations of each of the pathogens. Sablefish were susceptible to L. anguillarum, but were resistant to V. ordalii and V. splendidus at exposure concentrations of ≤ 1.32 × 10⁷ CFU/mL and ≤ 3.57 × 10⁶ CFU/mL, respectively. The greatest L. anguillarum concentration examined (8.7 × 10⁶ CFU/mL) resulted in 24% mortality in juvenile Sablefish. A 24% loss of Sablefish stock could significantly influence an aquaculture program. As determined by multiple logistic regression, the survival of Sablefish to L. anguillarum exposure was significantly affected by their body mass, and larger fish had a greater probability of survival. Aquaculture operations could employ various strategies to minimize the loss of juvenile Sablefish by accounting for their size and known susceptibilities to pathogens. PMID:25970236

  3. Genomic and systems evolution in Vibrionaceae species

    PubMed Central

    Gu, Jianying; Neary, Jennifer; Cai, Hong; Moshfeghian, Audrey; Rodriguez, Stephen A; Lilburn, Timothy G; Wang, Yufeng

    2009-01-01

    Background The steadily increasing number of prokaryotic genomes has accelerated the study of genome evolution; in particular, the availability of sets of genomes from closely related bacteria has facilitated the exploration of the mechanisms underlying genome plasticity. The family Vibrionaceae is found in the Gammaproteobacteria and is abundant in aquatic environments. Taxa from the family Vibrionaceae are diversified in their life styles; some species are free living, others are symbiotic, and others are human pathogens. This diversity makes this family a useful set of model organisms for studying bacterial evolution. This evolution is driven by several forces, among them gene duplication and lateral gene transfer, which are believed to provide raw material for functional redundancy and novelty. The resultant gene copy increase in one genome is then detected as lineage-specific expansion (LSE). Results Here we present the results of a detailed comparison of the genomes of eleven Vibrionaceae strains that have distinct life styles and distinct phenotypes. The core genome shared by all eleven strains is composed of 1,882 genes, which make up about 31%–50% of the genome repertoire. We further investigated the distribution and features of genes that have been specifically expanded in one unique lineage of the eleven strains. Abundant duplicate genes have been identified in the eleven Vibrionaceae strains, with 1–11% of the whole genomes composed lineage specific radiations. These LSEs occurred in two distinct patterns: the first type yields one or more copies of a single gene; we call this a single gene expansion. The second pattern has a high evolutionary impact, as the expansion involves two or more gene copies in a block, with the duplicated block located next to the original block (a contiguous block expansion) or at some distance from the original block (a discontiguous block expansion). We showed that LSEs involve genes that are tied to defense and

  4. Comparative genomics of the family Vibrionaceae reveals the wide distribution of genes encoding virulence-associated proteins

    PubMed Central

    2010-01-01

    Background Species of the family Vibrionaceae are ubiquitous in marine environments. Several of these species are important pathogens of humans and marine species. Evidence indicates that genetic exchange plays an important role in the emergence of new pathogenic strains within this family. Data from the sequenced genomes of strains in this family could show how the genes encoded by all these strains, known as the pangenome, are distributed. Information about the core, accessory and panproteome of this family can show how, for example, genes encoding virulence-associated proteins are distributed and help us understand how virulence emerges. Results We deduced the complete set of orthologs for eleven strains from this family. The core proteome consists of 1,882 orthologous groups, which is 28% of the 6,629 orthologous groups in this family. There were 4,411 accessory orthologous groups (i.e., proteins that occurred in from 2 to 10 proteomes) and 5,584 unique proteins (encoded once on only one of the eleven genomes). Proteins that have been associated with virulence in V. cholerae were widely distributed across the eleven genomes, but the majority was found only on the genomes of the two V. cholerae strains examined. Conclusions The proteomes are reflective of the differing evolutionary trajectories followed by different strains to similar phenotypes. The composition of the proteomes supports the notion that genetic exchange among species of the Vibrionaceae is widespread and that this exchange aids these species in adapting to their environments. PMID:20537180

  5. Phylogenetic relationships of marine bacteria, mainly members of the family Vibrionaceae, determined on the basis of 16S rRNA sequences.

    PubMed

    Kita-Tsukamoto, K; Oyaizu, H; Nanba, K; Simidu, U

    1993-01-01

    The phylogenetic relationships of 50 reference strains, mostly marine bacteria which require Na+ for growth, were determined on the basis of 600 16S rRNA nucleotides by using reverse transcriptase sequencing. Strains belonging to 10 genera were included (four genera of the family Vibrionaceae, the genus Aeromonas of the family Aeromonadaceae, and the genera Alteromonas, Marinomonas, Shewanella, Pseudomonas, and Deleya). The sequences were aligned, the similarity values and evolutionary distance values were determined, and a phylogenetic tree was constructed by using the neighbor-joining method. On the basis of our results, the family Vibrionaceae was separated into at least seven groups (genera and families). Vibrio marinus clearly was on a line of descent that was remote from other vibrios. As determined by the similarity and evolutionary distance values, V. marinus is more distantly related to the family Vibrionaceae than the members of the Aeromonadaceae are. Also, Vibrio cholerae strains formed a separate group with Vibrio mimicus at the genus level. Of 30 species of the Vibrionaceae, 17 formed a large phylogenetic cluster. The genus Listonella was found to be a heterogeneous group, and the species were distributed in various subgroups of the Vibrionaceae. The separation of the family Aeromonadaceae from the family Vibrionaceae and the separation of the genera Marinomonas and Shewanella from the genus Alteromonas were confirmed in this phylogenetic study. However, a marine Pseudomonas species, Pseudomonas nautica, was clearly separated from two terrestrial Pseudomonas species. Each group that was separated by the phylogenetic analysis had characteristic 16S rRNA sequence patterns that were common only to species in that group. Therefore, the characteristic sequences described in this paper may be useful for identification purposes. PMID:8427811

  6. Water quality parameters and total aerobic bacterial and vibrionaceae loads in eastern oysters (Crassostrea virginica) from oyster gardening sites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oyster gardening is a practice designed to restore habitat for marine life and to improve water quality. This study determined physical and chemical water quality parameters at two oyster gardening sites in the Delaware Inland Bays and compared them with total aerobic bacteria and Vibrionaceae conc...

  7. Fluorogenic Membrane Overlays to Enumerate Total and Fecal Escherichia coli and Total Vibrionaceae in Shellfish and Seawater.

    PubMed

    Richards, Gary P; Watson, Michael A

    2010-01-01

    Three assays were developed to enumerate total and fecal Escherichia coli and total Vibrionaceae in shellfish, seawater, and other foods and environmental samples. Assays involve membrane overlays of overnight colonies on nonselective agar plates to detect beta-glucuronidase and lysyl aminopeptidase activities for E. coli and Vibrionaceae, respectively. Cellulose membranes containing the substrates 4-methylumbeferyl-beta-D-glucuronide (MUG) produced a bright blue fluorescence when overlaid onto E. coli, while L-lysyl-7-amino-4-trifluoromethylcoumarin produced green fluorescent foci when overlaid onto Vibrionaceae family members. A multiplex assay was also developed for simultaneously enumerating total E. coli and total Vibrionaceae in oysters and seawater. Overall, 65% of overlaid E. coli (non-O157:H7) were MUG-positive, compared with 62% as determined by the most-probable-number-MUG assay. The overlays are rapid, simple, and cost effective for quantification purposes. This research provides practical alternatives for monitoring bacterial indicators and potential pathogens in complex samples, including molluscan shellfish. PMID:20396663

  8. Water-quality parameters and total aerobic bacterial and Vibrionaceae loads in Eastern oysters (Crassostrea virginica) from oyster-gardening sites.

    PubMed

    Fay, Johnna P; Richards, Gary P; Ozbay, Gulnihal

    2012-05-01

    Oyster gardening is a practice designed to restore habitat for marine life and to improve water quality. This study determined physical and chemical water-quality parameters at two oyster gardening sites in the Delaware Inland Bays and compared them with total aerobic bacteria and Vibrionaceae concentrations in Eastern oysters (Crassostrea virginica). One site was located at the end of a man-made canal, whereas the other was located in an open bay. Measured water parameters included temperature, dissolved oxygen (DO), salinity, pH, total nitrogen, nitrate, nitrite, total phosphorus, and total suspended solids. The highest Vibrionaceae levels, as determined by the colony overlay procedure for peptidases, were at the canal site in September (3.5 × 10(5) g(-1)) and at the bay site in August (1.9 × 10(5) g(-1)). Vibrionaceae levels were significantly greater during the duration of the study at the canal site (P = 0.01). This study provides the first baseline levels for total Vibrionaceae in the Delaware Inland Bays. Minimum DO readings at the bay and canal sites were 3.0 and 2.3 mg l(-1), respectively, far less than the state-targeted minimum threshold of 5.0 mg l(-1). Total phosphorus levels exceeded recommendations of ≤0.1 mg l(-1) at the bay and canal sites for all monthly samplings, with mean monthly highs at both sites ≥0.68 mg l(-1) in August. Nitrogen occasionally exceeded the recommended level of 1.0 mg l(-1) at both sites. Overall, waters were highly degraded from high phosphates, nitrogen, and total suspended solids as well as low DO. PMID:22183874

  9. Microbial experimental evolution as a novel research approach in the Vibrionaceae and squid-Vibrio symbiosis

    PubMed Central

    Soto, William; Nishiguchi, Michele K.

    2014-01-01

    The Vibrionaceae are a genetically and metabolically diverse family living in aquatic habitats with a great propensity toward developing interactions with eukaryotic microbial and multicellular hosts (as either commensals, pathogens, and mutualists). The Vibrionaceae frequently possess a life history cycle where bacteria are attached to a host in one phase and then another where they are free from their host as either part of the bacterioplankton or adhered to solid substrates such as marine sediment, riverbeds, lakebeds, or floating particulate debris. These two stages in their life history exert quite distinct and separate selection pressures. When bound to solid substrates or to host cells, the Vibrionaceae can also exist as complex biofilms. The association between bioluminescent Vibrio spp. and sepiolid squids (Cephalopoda: Sepiolidae) is an experimentally tractable model to study bacteria and animal host interactions, since the symbionts and squid hosts can be maintained in the laboratory independently of one another. The bacteria can be grown in pure culture and the squid hosts raised gnotobiotically with sterile light organs. The partnership between free-living Vibrio symbionts and axenic squid hatchlings emerging from eggs must be renewed every generation of the cephalopod host. Thus, symbiotic bacteria and animal host can each be studied alone and together in union. Despite virtues provided by the Vibrionaceae and sepiolid squid-Vibrio symbiosis, these assets to evolutionary biology have yet to be fully utilized for microbial experimental evolution. Experimental evolution studies already completed are reviewed, along with exploratory topics for future study. PMID:25538686

  10. The fur Gene as a New Phylogenetic Marker for Vibrionaceae Species Identification

    PubMed Central

    Gram, Lone

    2015-01-01

    Microbial taxonomy is essential in all areas of microbial science. The 16S rRNA gene sequence is one of the main phylogenetic species markers; however, it does not provide discrimination in the family Vibrionaceae, where other molecular techniques allow better interspecies resolution. Although multilocus sequence analysis (MLSA) has been used successfully in the identification of Vibrio species, the technique has several limitations. They include the fact that several locus amplifications and sequencing have to be performed, which still sometimes lead to doubtful identifications. Using an in silico approach based on genomes from 103 Vibrionaceae strains, we demonstrate here the high resolution of the fur gene in the identification of Vibrionaceae species and its usefulness as a phylogenetic marker. The fur gene showed within-species similarity higher than 95%, and the relationships inferred from its use were in agreement with those observed for 16S rRNA analysis and MLSA. Furthermore, we developed a fur PCR sequencing-based method that allowed identification of Vibrio species. The discovery of the phylogenetic power of the fur gene and the development of a PCR method that can be used in amplification and sequencing of the gene are of general interest whether for use alone or together with the previously suggested loci in an MLSA. PMID:25662978

  11. A new family of bacterial condensins

    PubMed Central

    Petrushenko, Zoya M.; She, Weifeng; Rybenkov, Valentin V.

    2011-01-01

    Condensins play a central role in global chromatin organization. In bacteria, two families of condensins have been identified, the MukBEF and SMC-ScpAB complexes. Only one of the two complexes is usually found in a given species, giving rise to a paradigm that a single condensin organizes bacterial chromosomes. Using sequence analysis, we identified a third family of condensins, MksBEF (MukBEF-like SMC proteins), which is broadly present in diverse bacteria. The proteins appear distantly related to MukBEF, have a similar operon organization and similar predicted secondary structures albeit with notably shorter coiled coils. All three subunits of MksBEF exhibit significant sequence variation and can be divided into a series of overlapping subfamilies. MksBEF often coexists with the SMC-ScpAB, MukBEF and, sometimes, other MksBEFs. In Pseudomonas aeruginosa, both SMC and MksB contribute to faithful chromosome partitioning, with their inactivation leading to increased frequencies of anucleate cells. Moreover, MksBEF can complement anucleate cell formation in SMC-deficient cells. Purified PaMksB showed activities typical for condensins including ATP-modulated DNA binding and condensation. Notably, DNA binding by MksB is negatively regulated by ATP, which sets it apart from other known SMC proteins. Thus, several specialized condensins might be involved in organization of bacterial chromosomes. PMID:21752107

  12. Genomic and Metabolic Profiling of Nonulosonic Acids in Vibrionaceae Reveal Biochemical Phenotypes of Allelic Divergence in Vibrio vulnificus ▿

    PubMed Central

    Lewis, Amanda L.; Lubin, Jean-Bernard; Argade, Shilpa; Naidu, Natasha; Choudhury, Biswa; Boyd, E. Fidelma

    2011-01-01

    Nonulosonic acids (NulOs) encompass a large group of structurally diverse nine-carbon backbone α-keto sugars widely distributed among the three domains of life. Mammals express a specialized version of NulOs called sialic acids, which are displayed in prominent terminal positions of cell surface and secreted glycoconjugates. Within bacteria, the ability to synthesize NulOs has been demonstrated in a number of human pathogens and is phylogenetically widespread. Here we examine the distribution, diversity, evolution, and function of NulO biosynthesis pathways in members of the family Vibrionaceae. Among 27 species of Vibrionaceae examined at the genomic level, 12 species contained nab gene clusters. We document examples of duplication, divergence, horizontal transfer, and recombination of nab gene clusters in different Vibrionaceae lineages. Biochemical analyses, including mass spectrometry, confirmed that many species do, in fact, produce di-N-acetylated NulOs. A library of clinical and environmental isolates of Vibrio vulnificus served as a model for further investigation of nab allele genotypes and levels of NulO expression. The data show that lineage I isolates produce about 20-fold higher levels of NulOs than lineage II isolates. Moreover, nab gene alleles found in a subset of V. vulnificus clinical isolates express 40-fold higher levels of NulOs than nab alleles associated with environmental isolates. Taken together, the data implicate the family Vibrionaceae as a “hot spot” of NulO evolution and suggest that these molecules may have diverse roles in environmental persistence and/or animal virulence. PMID:21724895

  13. Topological and Phylogenetic Analyses of Bacterial Holin Families and Superfamilies

    PubMed Central

    Reddy, Bhaskara L.; Saier, Milton H.

    2013-01-01

    Holins are small “hole-forming” transmembrane proteins that mediate bacterial cell lysis during programmed cell death or following phage infection. We have identified fifty two families of established or putative holins and have included representative members of these proteins in the Transporter Classification Database (TCDB; www.tcdb.org). We have identified the organismal sources of members of these families, calculated their average protein sizes, estimated their topologies and determined their relative family sizes. Topological analyses suggest that these proteins can have 1, 2, 3 or 4 transmembrane α-helical segments (TMSs), and members of a single family are frequently, but not always, of a single topology. In one case, proteins of a family proved to have either 2 or 4 TMSs, and the latter arose by intragenic duplication of a primordial 2 TMS protein-encoding gene resembling the former. Using established statistical approaches, some of these families have been shown to be related by common descent. Seven superfamilies, including 21 of the 52 recognized families were identified. Conserved motif and Pfam analyses confirmed most superfamily assignments. These results serve to expand upon the scope of channel-forming bacterial holins. PMID:23856191

  14. Reproducibility of Vibrionaceae population structure in coastal bacterioplankton.

    PubMed

    Szabo, Gitta; Preheim, Sarah P; Kauffman, Kathryn M; David, Lawrence A; Shapiro, Jesse; Alm, Eric J; Polz, Martin F

    2013-03-01

    How reproducibly microbial populations assemble in the wild remains poorly understood. Here, we assess evidence for ecological specialization and predictability of fine-scale population structure and habitat association in coastal ocean Vibrionaceae across years. We compare Vibrionaceae lifestyles in the bacterioplankton (combinations of free-living, particle, or zooplankton associations) measured using the same sampling scheme in 2006 and 2009 to assess whether the same groups show the same environmental association year after year. This reveals complex dynamics with populations falling primarily into two categories: (i) nearly equally represented in each of the two samplings and (ii) highly skewed, often to an extent that they appear exclusive to one or the other sampling times. Importantly, populations recovered at the same abundance in both samplings occupied highly similar habitats suggesting predictable and robust environmental association while skewed abundances of some populations may be triggered by shifts in ecological conditions. The latter is supported by difference in the composition of large eukaryotic plankton between years, with samples in 2006 being dominated by copepods, and those in 2009 by diatoms. Overall, the comparison supports highly predictable population-habitat linkage but highlights the fact that complex, and often unmeasured, environmental dynamics in habitat occurrence may have strong effects on population dynamics. PMID:23178668

  15. Targeting the Replication Initiator of the Second Vibrio Chromosome: Towards Generation of Vibrionaceae-Specific Antimicrobial Agents

    PubMed Central

    Yamaichi, Yoshiharu; Duigou, Stéphane; Shakhnovich, Elizabeth A.; Waldor, Matthew K.

    2009-01-01

    The Vibrionaceae is comprised of numerous aquatic species and includes several human pathogens, such as Vibrio cholerae, the cause of cholera. All organisms in this family have two chromosomes, and replication of the smaller one depends on rctB, a gene that is restricted to the Vibrionaceae. Given the increasing prevalence of multi-drug resistance in pathogenic vibrios, there is a need for new targets and drugs to combat these pathogens. Here, we carried out a high throughput cell-based screen to find small molecule inhibitors of RctB. We identified a compound that blocked growth of an E. coli strain bearing an rctB-dependent plasmid but did not influence growth of E. coli lacking this plasmid. This compound, designated vibrepin, had potent cidal activity against V. cholerae and inhibited the growth of all vibrio species tested. Vibrepin blocked RctB oriCII unwinding, apparently by promoting formation of large non-functional RctB complexes. Although vibrepin also appears to have targets other than RctB, our findings suggest that RctB is an attractive target for generation of novel antibiotics that only block growth of vibrios. Vibrio-specific agents, unlike antibiotics currently used in clinical practice, will not engender resistance in the normal human flora or in non-vibrio environmental microorganisms. PMID:19936046

  16. The family of bacterial ADP-ribosylating exotoxins.

    PubMed Central

    Krueger, K M; Barbieri, J T

    1995-01-01

    Pathogenic bacteria utilize a variety of virulence factors that contribute to the clinical manifestation of their pathogenesis. Bacterial ADP-ribosylating exotoxins (bAREs) represent one family of virulence factors that exert their toxic effects by transferring the ADP-ribose moiety of NAD onto specific eucaryotic target proteins. The observations that some bAREs ADP-ribosylate eucaryotic proteins that regulate signal transduction, like the heterotrimeric GTP-binding proteins and the low-molecular-weight GTP-binding proteins, has extended interest in bAREs beyond the bacteriology laboratory. Molecular studies have shown that bAREs possess little primary amino acid homology and have diverse quaternary structure-function organization. Underlying this apparent diversity, biochemical and crystallographic studies have shown that several bAREs have conserved active-site structures and possess a conserved glutamic acid within their active sites. PMID:7704894

  17. Associations and dynamics of Vibrionaceae in the environment, from the genus to the population level

    PubMed Central

    Takemura, Alison F.; Chien, Diana M.; Polz, Martin F.

    2013-01-01

    The Vibrionaceae, which encompasses several potential pathogens, including V. cholerae, the causative agent of cholera, and V. vulnificus, the deadliest seafood-borne pathogen, are a well-studied family of marine bacteria that thrive in diverse habitats. To elucidate the environmental conditions under which vibrios proliferate, numerous studies have examined correlations with bulk environmental variables—e.g., temperature, salinity, nitrogen, and phosphate—and association with potential host organisms. However, how meaningful these environmental associations are remains unclear because data are fragmented across studies with variable sampling and analysis methods. Here, we synthesize findings about Vibrio correlations and physical associations using a framework of increasingly fine environmental and taxonomic scales, to better understand their dynamics in the wild. We first conduct a meta-analysis to determine trends with respect to bulk water environmental variables, and find that while temperature and salinity are generally strongly predictive correlates, other parameters are inconsistent and overall patterns depend on taxonomic resolution. Based on the hypothesis that dynamics may better correlate with more narrowly defined niches, we review evidence for specific association with plants, algae, zooplankton, and animals. We find that Vibrio are attached to many organisms, though evidence for enrichment compared to the water column is often lacking. Additionally, contrary to the notion that they flourish predominantly while attached, Vibrio can have, at least temporarily, a free-living lifestyle and even engage in massive blooms. Fine-scale sampling from the water column has enabled identification of such lifestyle preferences for ecologically cohesive populations, and future efforts will benefit from similar analysis at fine genetic and environmental sampling scales to describe the conditions, habitats, and resources shaping Vibrio dynamics. PMID:24575082

  18. Fluorogenic membrane overlays to enumerate total coliforms, Escherichia coli, and total Vibrionaceae in shellfish and seawater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three assays were developed to enumerate total coliforms, Escherichia coli, and total Vibrionaceae in shellfish and other foods and in seawater and other environmental samples. Assays involve membrane overlays of overnight colonies on non-selective agar plates to detect ß-glucuronidase and lysyl am...

  19. Jellyfish modulate bacterial dynamic and community structure.

    PubMed

    Tinta, Tinkara; Kogovšek, Tjaša; Malej, Alenka; Turk, Valentina

    2012-01-01

    Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom-forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish-enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to 'jellyfish-associated' and 'free-living' bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the Vibrionaceae families. Elevated levels of dissolved proteins, dissolved organic and inorganic nutrient release, bacterial abundance and carbon production as well as ammonium concentrations characterized the degradation process. The biochemical composition of jellyfish species may influence changes in the amount of accumulated dissolved organic and inorganic nutrients. Our results can contribute insights into possible changes in

  20. Jellyfish Modulate Bacterial Dynamic and Community Structure

    PubMed Central

    Tinta, Tinkara; Kogovšek, Tjaša; Malej, Alenka; Turk, Valentina

    2012-01-01

    Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom - forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish - enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to ‘jellyfish - associated’ and ‘free - living’ bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the Vibrionaceae families. Elevated levels of dissolved proteins, dissolved organic and inorganic nutrient release, bacterial abundance and carbon production as well as ammonium concentrations characterized the degradation process. The biochemical composition of jellyfish species may influence changes in the amount of accumulated dissolved organic and inorganic nutrients. Our results can contribute insights into

  1. Bacterial profiling of White Plague Disease in a comparative coral species framework.

    PubMed

    Roder, Cornelia; Arif, Chatchanit; Bayer, Till; Aranda, Manuel; Daniels, Camille; Shibl, Ahmed; Chavanich, Suchana; Voolstra, Christian R

    2014-01-01

    Coral reefs are threatened throughout the world. A major factor contributing to their decline is outbreaks and propagation of coral diseases. Due to the complexity of coral-associated microbe communities, little is understood in terms of disease agents, hosts and vectors. It is known that compromised health in corals is correlated with shifts in bacterial assemblages colonizing coral mucus and tissue. However, general disease patterns remain, to a large extent, ambiguous as comparative studies over species, regions, or diseases are scarce. Here, we compare bacterial assemblages of samples from healthy (HH) colonies and such displaying signs of White Plague Disease (WPD) of two different coral species (Pavona duerdeni and Porites lutea) from the same reef in Koh Tao, Thailand, using 16S rRNA gene microarrays. In line with other studies, we found an increase of bacterial diversity in diseased (DD) corals, and a higher abundance of taxa from the families that include known coral pathogens (Alteromonadaceae, Rhodobacteraceae, Vibrionaceae). In our comparative framework analysis, we found differences in microbial assemblages between coral species and coral health states. Notably, patterns of bacterial community structures from HH and DD corals were maintained over species boundaries. Moreover, microbes that differentiated the two coral species did not overlap with microbes that were indicative of HH and DD corals. This suggests that while corals harbor distinct species-specific microbial assemblages, disease-specific bacterial abundance patterns exist that are maintained over coral species boundaries. PMID:23924783

  2. The DSF Family of Cell–Cell Signals: An Expanding Class of Bacterial Virulence Regulators

    PubMed Central

    Ryan, Robert P.; An, Shi-qi; Allan, John H.; McCarthy, Yvonne; Dow, J. Maxwell

    2015-01-01

    Many pathogenic bacteria use cell–cell signaling systems involving the synthesis and perception of diffusible signal molecules to control virulence as a response to cell density or confinement to niches. Bacteria produce signals of diverse structural classes. Signal molecules of the diffusible signal factor (DSF) family are cis-2-unsaturated fatty acids. The paradigm is cis-11-methyl-2-dodecenoic acid from Xanthomonas campestris pv. campestris (Xcc), which controls virulence in this plant pathogen. Although DSF synthesis was thought to be restricted to the xanthomonads, it is now known that structurally related molecules are produced by the unrelated bacteria Burkholderia cenocepacia and Pseudomonas aeruginosa. Furthermore, signaling involving these DSF family members contributes to bacterial virulence, formation of biofilms and antibiotic tolerance in these important human pathogens. Here we review the recent advances in understanding DSF signaling and its regulatory role in different bacteria. These advances include the description of the pathway/mechanism of DSF biosynthesis, identification of novel DSF synthases and new members of the DSF family, the demonstration of a diversity of DSF sensors to include proteins with a Per-Arnt-Sim (PAS) domain and the description of some of the signal transduction mechanisms that impinge on virulence factor expression. In addition, we address the role of DSF family signals in interspecies signaling that modulates the behavior of other microorganisms. Finally, we consider a number of recently reported approaches for the control of bacterial virulence through the modulation of DSF signaling. PMID:26181439

  3. Bacterial β-Kdo glycosyltransferases represent a new glycosyltransferase family (GT99).

    PubMed

    Ovchinnikova, Olga G; Mallette, Evan; Koizumi, Akihiko; Lowary, Todd L; Kimber, Matthew S; Whitfield, Chris

    2016-05-31

    Kdo (3-deoxy-d-manno-oct-2-ulosonic acid) is an eight-carbon sugar mostly confined to Gram-negative bacteria. It is often involved in attaching surface polysaccharides to their lipid anchors. α-Kdo provides a bridge between lipid A and the core oligosaccharide in all bacterial LPSs, whereas an oligosaccharide of β-Kdo residues links "group 2" capsular polysaccharides to (lyso)phosphatidylglycerol. β-Kdo is also found in a small number of other bacterial polysaccharides. The structure and function of the prototypical cytidine monophosphate-Kdo-dependent α-Kdo glycosyltransferase from LPS assembly is well characterized. In contrast, the β-Kdo counterparts were not identified as glycosyltransferase enzymes by bioinformatics tools and were not represented among the 98 currently recognized glycosyltransferase families in the Carbohydrate-Active Enzymes database. We report the crystallographic structure and function of a prototype β-Kdo GT from WbbB, a modular protein participating in LPS O-antigen synthesis in Raoultella terrigena The β-Kdo GT has dual Rossmann-fold motifs typical of GT-B enzymes, but extensive deletions, insertions, and rearrangements result in a unique architecture that makes it a prototype for a new GT family (GT99). The cytidine monophosphate-binding site in the C-terminal α/β domain closely resembles the corresponding site in bacterial sialyltransferases, suggesting an evolutionary connection that is not immediately evident from the overall fold or sequence similarities. PMID:27199480

  4. Genetic functions of the NAIP family of inflammasome receptors for bacterial ligands in mice.

    PubMed

    Zhao, Yue; Shi, Jianjin; Shi, Xuyan; Wang, Yupeng; Wang, Fengchao; Shao, Feng

    2016-05-01

    Biochemical studies suggest that the NAIP family of NLR proteins are cytosolic innate receptors that directly recognize bacterial ligands and trigger NLRC4 inflammasome activation. In this study, we generated Naip5(-/-), Naip1(-/-), and Naip2(-/-) mice and showed that bone marrow macrophages derived from these knockout mice are specifically deficient in detecting bacterial flagellin, the type III secretion system needle, and the rod protein, respectively. Naip1(-/-), Naip2(-/-), and Naip5(-/-) mice also resist lethal inflammasome activation by the corresponding ligand. Furthermore, infections performed in the Naip-deficient macrophages have helped to define the major signal in Legionella pneumophila, Salmonella Typhimurium and Shigella flexneri that is detected by the NAIP/NLRC4 inflammasome. Using an engineered S. Typhimurium infection model, we demonstrate the critical role of NAIPs in clearing bacterial infection and protecting mice from bacterial virulence-induced lethality. These results provide definitive genetic evidence for the important physiological function of NAIPs in antibacterial defense and inflammatory damage-induced lethality in mice. PMID:27114610

  5. An iron-containing dodecameric heptosyltransferase family modifies bacterial autotransporters in pathogenesis.

    PubMed

    Lu, Qiuhe; Yao, Qing; Xu, Yue; Li, Lin; Li, Shan; Liu, Yanhua; Gao, Wenqing; Niu, Miao; Sharon, Michal; Ben-Nissan, Gili; Zamyatina, Alla; Liu, Xiaoyun; Chen, She; Shao, Feng

    2014-09-10

    Autotransporters deliver virulence factors to the bacterial surface by translocating an effector passenger domain through a membrane-anchored barrel structure. Although passenger domains are diverse, those found in enteric bacteria autotransporters, including AIDA-I in diffusely adhering Escherichia coli (DAEC) and TibA in enterotoxigenic E. coli, are commonly glycosylated. We show that AIDA-I is heptosylated within the bacterial cytoplasm by autotransporter adhesin heptosyltransferase (AAH) and its paralogue AAH2. AIDA-I heptosylation determines DAEC adhesion to host cells. AAH/AAH2 define a bacterial autotransporter heptosyltransferase (BAHT) family that contains ferric ion and adopts a dodecamer assembly. Structural analyses of the heptosylated TibA passenger domain reveal 35 heptose conjugates forming patterned and solenoid-like arrays on the surface of a β helix. Additionally, CARC, the AIDA-like autotransporter from Citrobacter rodentium, is essential for colonization in mice and requires heptosylation by its cognate BAHT. Our study establishes a bacterial glycosylation system that regulates virulence and is essential for pathogenesis. PMID:25211077

  6. Defense Against Cannibalism: The SdpI Family of Bacterial Immunity/Signal Transduction Proteins

    PubMed Central

    Povolotsky, Tatyana Leonidovna; Orlova, Ekaterina; Tamang, Dorjee G.

    2010-01-01

    The SdpI family consists of putative bacterial toxin immunity and signal transduction proteins. One member of the family in Bacillus subtilis, SdpI, provides immunity to cells from cannibalism in times of nutrient limitation. SdpI family members are transmembrane proteins with 3, 4, 5, 6, 7, 8, or 12 putative transmembrane α-helical segments (TMSs). These varied topologies appear to be genuine rather than artifacts due to sequencing or annotation errors. The basic and most frequently occurring element of the SdpI family has 6 TMSs. Homologues of all topological types were aligned to determine the homologous TMSs and loop regions, and the positive-inside rule was used to determine sidedness. The two most conserved motifs were identified between TMSs 1 and 2 and TMSs 4 and 5 of the 6 TMS proteins. These showed significant sequence similarity, leading us to suggest that the primordial precursor of these proteins was a 3 TMS–encoding genetic element that underwent intragenic duplication. Various deletional and fusional events, as well as intragenic duplications and inversions, may have yielded SdpI homologues with topologies of varying numbers and positions of TMSs. We propose a specific evolutionary pathway that could have given rise to these distantly related bacterial immunity proteins. We further show that genes encoding SdpI homologues often appear in operons with genes for homologues of SdpR, SdpI’s autorepressor. Our analyses allow us to propose structure–function relationships that may be applicable to most family members. Electronic supplementary material The online version of this article (doi:10.1007/s00232-010-9260-7) contains supplementary material, which is available to authorized users. PMID:20563570

  7. Multidrug Efflux Pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus Bacterial Food Pathogens

    PubMed Central

    Andersen, Jody L.; He, Gui-Xin; Kakarla, Prathusha; KC, Ranjana; Kumar, Sanath; Lakra, Wazir Singh; Mukherjee, Mun Mun; Ranaweera, Indrika; Shrestha, Ugina; Tran, Thuy; Varela, Manuel F.

    2015-01-01

    Foodborne illnesses caused by bacterial microorganisms are common worldwide and constitute a serious public health concern. In particular, microorganisms belonging to the Enterobacteriaceae and Vibrionaceae families of Gram-negative bacteria, and to the Staphylococcus genus of Gram-positive bacteria are important causative agents of food poisoning and infection in the gastrointestinal tract of humans. Recently, variants of these bacteria have developed resistance to medically important chemotherapeutic agents. Multidrug resistant Escherichia coli, Salmonella enterica, Vibrio cholerae, Enterobacter spp., and Staphylococcus aureus are becoming increasingly recalcitrant to clinical treatment in human patients. Of the various bacterial resistance mechanisms against antimicrobial agents, multidrug efflux pumps comprise a major cause of multiple drug resistance. These multidrug efflux pump systems reside in the biological membrane of the bacteria and actively extrude antimicrobial agents from bacterial cells. This review article summarizes the evolution of these bacterial drug efflux pump systems from a molecular biological standpoint and provides a framework for future work aimed at reducing the conditions that foster dissemination of these multidrug resistant causative agents through human populations. PMID:25635914

  8. Vibrio galatheae sp. nov., a member of the family Vibrionaceae isolated from a mussel.

    PubMed

    Giubergia, Sonia; Machado, Henrique; Valentina Mateiu, Ramona; Gram, Lone

    2016-01-01

    Based on genetic, chemotaxonomic and phenotypic characteristics, a novel species belonging to the genus Vibrio is described. The facultatively anaerobic strain S2757T was isolated from a mussel collected in the Solomon Sea (Solomon Islands). Phylogenetic analyses based on sequences of 16S rRNA and fur genes indicated affiliation of the strain to a novel species. This observation was supported by a multilocus sequence analysis including sequences of the housekeeping genes 16S rRNA, gyrB, pyrH, recA and topA. In silico DNA-DNA hybridization and average nucleotide identity values comparing the genomic sequence of strain S2757T with those of closely related type strains were lower than 23 and 82 %, respectively. The DNA G+C content of the strain was 45.3 mol%. Phenotypic and chemotaxonomic analyses clearly differentiated the strain from other Vibrio species. Hence, strain S2757T should be considered to represent a novel species of the genus Vibrio, for which the name Vibrio galatheae sp. nov. is proposed. The type strain is S2757T ( = DSM 100497T = LMG 28895T). PMID:26514698

  9. Conserved small RNAs govern replication and incompatibility of a diverse new plasmid family from marine bacteria

    PubMed Central

    Le Roux, Frédérique; Davis, Brigid M.; Waldor, Matthew K.

    2011-01-01

    Plasmids are autonomously replicating extrachromosomal DNA molecules that often impart key phenotypes to their bacterial hosts. Plasmids are abundant in marine bacteria, but there is scant knowledge of the mechanisms that control their replication in these hosts. Here, we identified and characterized the factors governing replication of a new family of plasmids from marine bacteria, typified by the virulence-linked plasmid pB1067 of Vibrio nigripulchritudo. Members of this family are prevalent among, yet restricted to, the Vibrionaceae. Unlike almost all plasmid families characterized to date, the ori regions of these plasmids do not encode a Rep protein to initiate DNA replication; instead, the ori regions encode two partially complementary RNAs. The smaller, termed RNA I, is ∼68-nt long and functions as a negative regulator and the key determinant of plasmid incompatibility. This Marine RNA-based (MRB) plasmid family is the first characterized family of replicons derived from marine bacteria. Only one other plasmid family (the ColE1 family) has previously been reported to rely on RNA-mediated replication initiation. However, since the sequences and structures of MRB RNA I transcripts are not related to those of ColE1 replicons, these two families of RNA-dependent replicons likely arose by convergent evolution. PMID:20923782

  10. Acetone formation in the Vibrio family: a new pathway for bacterial leucine catabolism.

    PubMed

    Nemecek-Marshall, M; Wojciechowski, C; Wagner, W P; Fall, R

    1999-12-01

    There is current interest in biological sources of acetone, a volatile organic compound that impacts atmospheric chemistry. Here, we determined that leucine-dependent acetone formation is widespread in the Vibrionaceae. Sixteen Vibrio isolates, two Listonella species, and two Photobacterium angustum isolates produced acetone in the presence of L-leucine. Shewanella isolates produced much less acetone. Growth of Vibrio splendidus and P. angustum in a fermentor with controlled aeration revealed that acetone was produced after a lag in late logarithmic or stationary phase of growth, depending on the medium, and was not derived from acetoacetate by nonenzymatic decarboxylation in the medium. L-Leucine, but not D-leucine, was converted to acetone with a stoichiometry of approximately 0.61 mol of acetone per mol of L-leucine. Testing various potential leucine catabolites as precursors of acetone showed that only alpha-ketoisocaproate was efficiently converted by whole cells to acetone. Acetone production was blocked by a nitrogen atmosphere but not by electron transport inhibitors, suggesting that an oxygen-dependent reaction is required for leucine catabolism. Metabolic labeling with deuterated (isopropyl-d(7))-L-leucine revealed that the isopropyl carbons give rise to acetone with full retention of deuterium in each methyl group. These results suggest the operation of a new catabolic pathway for leucine in vibrios that is distinct from the 3-hydroxy-3-methylglutaryl-coenzyme A pathway seen in pseudomonads. PMID:10601206

  11. Biochemical Characterization of a Family 15 Carbohydrate Esterase from a Bacterial Marine Arctic Metagenome

    PubMed Central

    De Santi, Concetta; Willassen, Nils Peder

    2016-01-01

    Background The glucuronoyl esterase enzymes of wood-degrading fungi (Carbohydrate Esterase family 15; CE15) form part of the hemicellulolytic and cellulolytic enzyme systems that break down plant biomass, and have possible applications in biotechnology. Homologous enzymes are predicted in the genomes of several bacteria, however these have been much less studied than their fungal counterparts. Here we describe the recombinant production and biochemical characterization of a bacterial CE15 enzyme denoted MZ0003, which was identified by in silico screening of a prokaryotic metagenome library derived from marine Arctic sediment. MZ0003 has high similarity to several uncharacterized gene products of polysaccharide-degrading bacterial species, and phylogenetic analysis indicates a deep evolutionary split between these CE15s and fungal homologs. Results MZ0003 appears to differ from previously-studied CE15s in some aspects. Some glucuronoyl esterase activity could be measured by qualitative thin-layer chromatography which confirms its assignment as a CE15, however MZ0003 can also hydrolyze a range of other esters, including p-nitrophenyl acetate, which is not acted upon by some fungal homologs. The structure of MZ0003 also appears to differ as it is predicted to have several large loop regions that are absent in previously studied CE15s, and a combination of homology-based modelling and site-directed mutagenesis indicate its catalytic residues deviate from the conserved Ser-His-Glu triad of many fungal CE15s. Taken together, these results indicate that potentially unexplored diversity exists among bacterial CE15s, and this may be accessed by investigation of the microbial metagenome. The combination of low activity on typical glucuronoyl esterase substrates, and the lack of glucuronic acid esters in the marine environment suggest that the physiological substrate of MZ0003 and its homologs is likely to be different from that of related fungal enzymes. PMID:27433797

  12. A structural mechanism for bacterial autotransporter glycosylation by a dodecameric heptosyltransferase family.

    PubMed

    Yao, Qing; Lu, Qiuhe; Wan, Xiaobo; Song, Feng; Xu, Yue; Hu, Mo; Zamyatina, Alla; Liu, Xiaoyun; Huang, Niu; Zhu, Ping; Shao, Feng

    2014-01-01

    A large group of bacterial virulence autotransporters including AIDA-I from diffusely adhering E. coli (DAEC) and TibA from enterotoxigenic E. coli (ETEC) require hyperglycosylation for functioning. Here we demonstrate that TibC from ETEC harbors a heptosyltransferase activity on TibA and AIDA-I, defining a large family of bacterial autotransporter heptosyltransferases (BAHTs). The crystal structure of TibC reveals a characteristic ring-shape dodecamer. The protomer features an N-terminal β-barrel, a catalytic domain, a β-hairpin thumb, and a unique iron-finger motif. The iron-finger motif contributes to back-to-back dimerization; six dimers form the ring through β-hairpin thumb-mediated hand-in-hand contact. The structure of ADP-D-glycero-β-D-manno-heptose (ADP-D,D-heptose)-bound TibC reveals a sugar transfer mechanism and also the ligand stereoselectivity determinant. Electron-cryomicroscopy analyses uncover a TibC-TibA dodecamer/hexamer assembly with two enzyme molecules binding to one TibA substrate. The complex structure also highlights a high efficient hyperglycosylation of six autotransporter substrates simultaneously by the dodecamer enzyme complex. PMID:25310236

  13. A structural mechanism for bacterial autotransporter glycosylation by a dodecameric heptosyltransferase family

    PubMed Central

    Yao, Qing; Lu, Qiuhe; Wan, Xiaobo; Song, Feng; Xu, Yue; Hu, Mo; Zamyatina, Alla; Liu, Xiaoyun; Huang, Niu; Zhu, Ping; Shao, Feng

    2014-01-01

    A large group of bacterial virulence autotransporters including AIDA-I from diffusely adhering E. coli (DAEC) and TibA from enterotoxigenic E. coli (ETEC) require hyperglycosylation for functioning. Here we demonstrate that TibC from ETEC harbors a heptosyltransferase activity on TibA and AIDA-I, defining a large family of bacterial autotransporter heptosyltransferases (BAHTs). The crystal structure of TibC reveals a characteristic ring-shape dodecamer. The protomer features an N-terminal β-barrel, a catalytic domain, a β-hairpin thumb, and a unique iron-finger motif. The iron-finger motif contributes to back-to-back dimerization; six dimers form the ring through β-hairpin thumb-mediated hand-in-hand contact. The structure of ADP-D-glycero-β-D-manno-heptose (ADP-D,D-heptose)-bound TibC reveals a sugar transfer mechanism and also the ligand stereoselectivity determinant. Electron-cryomicroscopy analyses uncover a TibC–TibA dodecamer/hexamer assembly with two enzyme molecules binding to one TibA substrate. The complex structure also highlights a high efficient hyperglycosylation of six autotransporter substrates simultaneously by the dodecamer enzyme complex. DOI: http://dx.doi.org/10.7554/eLife.03714.001 PMID:25310236

  14. Mechanisms of the sialidase and trans-sialidase activities of bacterial sialyltransferases from glycosyltransferase family 80.

    PubMed

    Mehr, Kevin; Withers, Stephen G

    2016-04-01

    Many important biological functions are mediated by complex glycan structures containing the nine-carbon sugar sialic acid (Sia) at terminal, non-reducing positions. Sia are introduced onto glycan structures by enzymes known as sialyltransferases (STs). Bacterial STs from the glycosyltransferase family GT80 are a group of well-studied enzymes used for the synthesis of sialylated glycan structures. While highly efficient at sialyl transfer, these enzymes also demonstrate sialidase and trans-sialidase activities for which there is some debate surrounding the corresponding enzymatic mechanisms. Here we propose a mechanism for STs from the glycosyltransferase family GT80 in which sialidase and trans-sialidase activities occur through reverse sialylation of CMP. The resulting CMP-Sia is then enzymatically hydrolyzed or used as a donor in subsequent ST reactions resulting in sialidase and trans-sialidase activities, respectively. We provide evidence for this mechanism by demonstrating that CMP is required for sialidase and trans-sialidase activities and that its removal with phosphatase ablates activity. We also confirm the formation of CMP-Sia using a coupled enzyme assay. A clear understanding of the sialidase and trans-sialidase mechanisms for this class of enzymes allows for more effective use of these enzymes in the synthesis of glycoconjugates. PMID:26582604

  15. New protein kinase and protein phosphatase families mediate signal transduction in bacterial catabolite repression.

    PubMed

    Galinier, A; Kravanja, M; Engelmann, R; Hengstenberg, W; Kilhoffer, M C; Deutscher, J; Haiech, J

    1998-02-17

    Carbon catabolite repression (CCR) is the prototype of a signal transduction mechanism. In enteric bacteria, cAMP was considered to be the second messenger in CCR by playing a role reminiscent of its actions in eukaryotic cells. However, recent results suggest that CCR in Escherichia coli is mediated mainly by an inducer exclusion mechanism. In many Gram-positive bacteria, CCR is triggered by fructose-1,6-bisphosphate, which activates HPr kinase, presumed to be one of the most ancient serine protein kinases. We here report cloning of the Bacillus subtilis hprK and hprP genes and characterization of the encoded HPr kinase and P-Ser-HPr phosphatase. P-Ser-HPr phosphatase forms a new family of phosphatases together with bacterial phosphoglycolate phosphatase, yeast glycerol-3-phosphatase, and 2-deoxyglucose-6-phosphate phosphatase whereas HPr kinase represents a new family of protein kinases on its own. It does not contain the domain structure typical for eukaryotic protein kinases. Although up to now the HPr modifying/demodifying enzymes were thought to exist only in Gram-positive bacteria, a sequence comparison revealed that they also are present in several Gram-negative pathogenic bacteria. PMID:9465101

  16. Bacterial origin of a diverse family of UDP-glycosyltransferase genes in the Tetranychus urticae genome.

    PubMed

    Ahn, Seung-Joon; Dermauw, Wannes; Wybouw, Nicky; Heckel, David G; Van Leeuwen, Thomas

    2014-07-01

    UDP-glycosyltransferases (UGTs) catalyze the conjugation of a variety of small lipophilic molecules with uridine diphosphate (UDP) sugars, altering them into more water-soluble metabolites. Thereby, UGTs play an important role in the detoxification of xenobiotics and in the regulation of endobiotics. Recently, the genome sequence was reported for the two-spotted spider mite, Tetranychus urticae, a polyphagous herbivore damaging a number of agricultural crops. Although various gene families implicated in xenobiotic metabolism have been documented in T. urticae, UGTs so far have not. We identified 80 UGT genes in the T. urticae genome, the largest number of UGT genes in a metazoan species reported so far. Phylogenetic analysis revealed that lineage-specific gene expansions increased the diversity of the T. urticae UGT repertoire. Genomic distribution, intron-exon structure and structural motifs in the T. urticae UGTs were also described. In addition, expression profiling after host-plant shifts and in acaricide resistant lines supported an important role for UGT genes in xenobiotic metabolism. Expanded searches of UGTs in other arachnid species (Subphylum Chelicerata), including a spider, a scorpion, two ticks and two predatory mites, unexpectedly revealed the complete absence of UGT genes. However, a centipede (Subphylum Myriapoda) and a water flea and a crayfish (Subphylum Crustacea) contain UGT genes in their genomes similar to insect UGTs, suggesting that the UGT gene family might have been lost early in the Chelicerata lineage and subsequently re-gained in the tetranychid mites. Sequence similarity of T. urticae UGTs and bacterial UGTs and their phylogenetic reconstruction suggest that spider mites acquired UGT genes from bacteria by horizontal gene transfer. Our findings show a unique evolutionary history of the T. urticae UGT gene family among other arthropods and provide important clues to its functions in relation to detoxification and thereby host

  17. A genomic perspective on a new bacterial genus and species from the Alcaligenaceae family, Basilea psittacipulmonis

    PubMed Central

    2014-01-01

    Background A novel Gram-negative, non-haemolytic, non-motile, rod-shaped bacterium was discovered in the lungs of a dead parakeet (Melopsittacus undulatus) that was kept in captivity in a petshop in Basel, Switzerland. The organism is described with a chemotaxonomic profile and the nearly complete genome sequence obtained through the assembly of short sequence reads. Results Genome sequence analysis and characterization of respiratory quinones, fatty acids, polar lipids, and biochemical phenotype is presented here. Comparison of gene sequences revealed that the most similar species is Pelistega europaea, with BLAST identities of only 93% to the 16S rDNA gene, 76% identity to the rpoB gene, and a similar GC content (~43%) as the organism isolated from the parakeet, DSM 24701 (40%). The closest full genome sequences are those of Bordetella spp. and Taylorella spp. High-throughput sequencing reads from the Illumina-Solexa platform were assembled with the Edena de novo assembler to form 195 contigs comprising the ~2 Mb genome. Genome annotation with RAST, construction of phylogenetic trees with the 16S rDNA (rrs) gene sequence and the rpoB gene, and phylogenetic placement using other highly conserved marker genes with ML Tree all suggest that the bacterial species belongs to the Alcaligenaceae family. Analysis of samples from cages with healthy parakeets suggested that the newly discovered bacterial species is not widespread in parakeet living quarters. Conclusions Classification of this organism in the current taxonomy system requires the formation of a new genus and species. We designate the new genus Basilea and the new species psittacipulmonis. The type strain of Basilea psittacipulmonis is DSM 24701 (= CIP 110308 T, 16S rDNA gene sequence Genbank accession number JX412111 and GI 406042063). PMID:24581117

  18. Biochemical Roles for Conserved Residues in the Bacterial Fatty Acid-binding Protein Family.

    PubMed

    Broussard, Tyler C; Miller, Darcie J; Jackson, Pamela; Nourse, Amanda; White, Stephen W; Rock, Charles O

    2016-03-18

    Fatty acid kinase (Fak) is a ubiquitous Gram-positive bacterial enzyme consisting of an ATP-binding protein (FakA) that phosphorylates the fatty acid bound to FakB. In Staphylococcus aureus, Fak is a global regulator of virulence factor transcription and is essential for the activation of exogenous fatty acids for incorporation into phospholipids. The 1.2-Å x-ray structure of S. aureus FakB2, activity assays, solution studies, site-directed mutagenesis, and in vivo complementation were used to define the functions of the five conserved residues that define the FakB protein family (Pfam02645). The fatty acid tail is buried within the protein, and the exposed carboxyl group is bound by a Ser-93-fatty acid carboxyl-Thr-61-His-266 hydrogen bond network. The guanidinium of the invariant Arg-170 is positioned to potentially interact with a bound acylphosphate. The reduced thermal denaturation temperatures of the T61A, S93A, and H266A FakB2 mutants illustrate the importance of the hydrogen bond network in protein stability. The FakB2 T61A, S93A, and H266A mutants are 1000-fold less active in the Fak assay, and the R170A mutant is completely inactive. All FakB2 mutants form FakA(FakB2)2 complexes except FakB2(R202A), which is deficient in FakA binding. Allelic replacement shows that strains expressing FakB2 mutants are defective in fatty acid incorporation into phospholipids and virulence gene transcription. These conserved residues are likely to perform the same critical functions in all bacterial fatty acid-binding proteins. PMID:26774272

  19. Crystal structure analysis of a bacterial aryl acylamidase belonging to the amidase signature enzyme family.

    PubMed

    Lee, Saeyoung; Park, Eun-Hye; Ko, Hyeok-Jin; Bang, Won Gi; Kim, Hye-Yeon; Kim, Kyoung Heon; Choi, In-Geol

    2015-11-13

    The atomic structure of a bacterial aryl acylamidase (EC 3.5.1.13; AAA) is reported and structural features are investigated to better understand the catalytic profile of this enzyme. Structures of AAA were determined in its native form and in complex with the analgesic acetanilide, p-acetaminophenol, at 1.70 Å and 1.73 Å resolutions, respectively. The overall structural fold of AAA was identified as an α/β fold class, exhibiting an open twisted β-sheet core surrounded by α-helices. The asymmetric unit contains one AAA molecule and the monomeric form is functionally active. The core structure enclosing the signature sequence region, including the canonical Ser-cisSer-Lys catalytic triad, is conserved in all members of the Amidase Signature enzyme family. The structure of AAA in a complex with its ligand reveals a unique organization in the substrate-binding pocket. The binding pocket consists of two loops (loop1 and loop2) in the amidase signature sequence and one helix (α10) in the non-amidase signature sequence. We identified two residues (Tyr(136) and Thr(330)) that interact with the ligand via water molecules, and a hydrogen-bonding network that explains the catalytic affinity over various aryl acyl compounds. The optimum activity of AAA at pH > 10 suggests that the reaction mechanism employs Lys(84) as the catalytic base to polarize the Ser(187) nucleophile in the catalytic triad. PMID:26454172

  20. Draft Genome Sequences of Two Vibrionaceae Species, Vibrio ponticus C121 and Photobacterium aphoticum C119, Isolated as Coral Reef Microbiota

    PubMed Central

    Al-saari, Nurhidayu; Meirelles, Pedro Milet; Mino, Sayaka; Suda, Wataru; Oshima, Kenshiro; Hattori, Masahira; Ohkuma, Moriya; Thompson, Fabiano L.; Gomez-Gil, Bruno; Sawabe, Toko

    2014-01-01

    Here, the draft genome sequences of two Vibrionaceae, Vibrio ponticus C121 and Photobacterium aphoticum C119, which were isolated from the coral reef vicinity in Okinawa, Japan, are reported. The genome provides further insight into the genomic plasticity, biocomplexity, and ecophysiology, including pathogenicity and evolution, of these genera. PMID:25359913

  1. Draft Genome Sequences of Two Vibrionaceae Species, Vibrio ponticus C121 and Photobacterium aphoticum C119, Isolated as Coral Reef Microbiota.

    PubMed

    Al-Saari, Nurhidayu; Meirelles, Pedro Milet; Mino, Sayaka; Suda, Wataru; Oshima, Kenshiro; Hattori, Masahira; Ohkuma, Moriya; Thompson, Fabiano L; Gomez-Gil, Bruno; Sawabe, Toko; Sawabe, Tomoo

    2014-01-01

    Here, the draft genome sequences of two Vibrionaceae, Vibrio ponticus C121 and Photobacterium aphoticum C119, which were isolated from the coral reef vicinity in Okinawa, Japan, are reported. The genome provides further insight into the genomic plasticity, biocomplexity, and ecophysiology, including pathogenicity and evolution, of these genera. PMID:25359913

  2. Opa+ Neisseria gonorrhoeae Exhibits Reduced Survival in Human Neutrophils Via Src Family Kinase-Mediated Bacterial Trafficking Into Mature Phagolysosomes

    PubMed Central

    Johnson, M. Brittany; Ball, Louise M.; Daily, Kylene P.; Martin, Jennifer N.; Columbus, Linda; Criss, Alison K.

    2015-01-01

    Summary During gonorrheal infection, there is a heterogeneous population of Neisseria gonorrhoeae (Gc) varied in their expression of opacity-associated (Opa) proteins. While Opa proteins are important for bacterial attachment and invasion of epithelial cells, Opa+ Gc has a survival defect after exposure to neutrophils. Here, we use constitutively Opa- and OpaD+ Gc in strain background FA1090 to show that Opa+ Gc is more sensitive to killing inside adherent, chemokine-treated primary human neutrophils due to increased bacterial residence in mature, degradative phagolysosomes that contain primary and secondary granule antimicrobial content. Although Opa+ Gc stimulates a potent oxidative burst, neutrophil killing of Opa+ Gc was instead attributable to non-oxidative components, particularly neutrophil proteases and the bactericidal/permeability-increasing protein. Blocking interaction of Opa+ Gc with carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) or inhibiting Src family kinase signaling, which is downstream of CEACAM activation, enhanced the survival of Opa+ Gc in neutrophils. Src family kinase signaling was required for fusion of Gc phagosomes with primary granules to generate mature phagolysosomes. Conversely, ectopic activation of Src family kinases or coinfection with Opa+ Gc resulted in decreased survival of Opa- Gc in neutrophils. From these results, we conclude that Opa protein expression is an important modulator of Gc survival characteristics in neutrophils by influencing phagosome dynamics and thus bacterial exposure to neutrophils’ full antimicrobial arsenal. PMID:25346239

  3. Homologs of the Acinetobacter baumannii AceI Transporter Represent a New Family of Bacterial Multidrug Efflux Systems

    PubMed Central

    Liu, Qi; Henderson, Peter J. F.

    2015-01-01

    ABSTRACT Multidrug efflux systems are a major cause of resistance to antimicrobials in bacteria, including those pathogenic to humans, animals, and plants. These proteins are ubiquitous in these pathogens, and five families of bacterial multidrug efflux systems have been identified to date. By using transcriptomic and biochemical analyses, we recently identified the novel AceI (Acinetobacter chlorhexidine efflux) protein from Acinetobacter baumannii that conferred resistance to the biocide chlorhexidine, via an active efflux mechanism. Proteins homologous to AceI are encoded in the genomes of many other bacterial species and are particularly prominent within proteobacterial lineages. In this study, we expressed 23 homologs of AceI and examined their resistance and/or transport profiles. MIC analyses demonstrated that, like AceI, many of the homologs conferred resistance to chlorhexidine. Many of the AceI homologs conferred resistance to additional biocides, including benzalkonium, dequalinium, proflavine, and acriflavine. We conducted fluorimetric transport assays using the AceI homolog from Vibrio parahaemolyticus and confirmed that resistance to both proflavine and acriflavine was mediated by an active efflux mechanism. These results show that this group of AceI homologs represent a new family of bacterial multidrug efflux pumps, which we have designated the proteobacterial antimicrobial compound efflux (PACE) family of transport proteins. PMID:25670776

  4. Overexpression of the Eggplant (Solanum melongena) NAC Family Transcription Factor SmNAC Suppresses Resistance to Bacterial Wilt.

    PubMed

    Na, Chen; Shuanghua, Wu; Jinglong, Fu; Bihao, Cao; Jianjun, Lei; Changming, Chen; Jin, Jiang

    2016-01-01

    Bacterial wilt (BW) is a serious disease that affects eggplant (Solanum melongena) production. Although resistance to this disease has been reported, the underlying mechanism is unknown. In this study, we identified a NAC family transcription factor (SmNAC) from eggplant and characterized its expression, its localization at the tissue and subcellular levels, and its role in BW resistance. To this end, transgenic eggplant lines were generated in which the expression of SmNAC was constitutively up regulated or suppressed using RNAi. The results indicated that overexpression of SmNAC decreases resistance to BW. Moreover, SmNAC overexpression resulted in the reduced accumulation of the plant immune signaling molecule salicylic acid (SA) and reduced expression of ICS1 (a gene that encode isochorismate synthase 1, which is involved in SA biosynthesis). We propose that reduced SA content results in increased bacterial wilt susceptibility in the transgenic lines. Our results provide important new insights into the regulatory mechanisms of bacterial wilt resistance in eggplant. PMID:27528282

  5. Overexpression of the Eggplant (Solanum melongena) NAC Family Transcription Factor SmNAC Suppresses Resistance to Bacterial Wilt

    PubMed Central

    Na, Chen; Shuanghua, Wu; Jinglong, Fu; Bihao, Cao; Jianjun, Lei; Changming, Chen; Jin, Jiang

    2016-01-01

    Bacterial wilt (BW) is a serious disease that affects eggplant (Solanum melongena) production. Although resistance to this disease has been reported, the underlying mechanism is unknown. In this study, we identified a NAC family transcription factor (SmNAC) from eggplant and characterized its expression, its localization at the tissue and subcellular levels, and its role in BW resistance. To this end, transgenic eggplant lines were generated in which the expression of SmNAC was constitutively up regulated or suppressed using RNAi. The results indicated that overexpression of SmNAC decreases resistance to BW. Moreover, SmNAC overexpression resulted in the reduced accumulation of the plant immune signaling molecule salicylic acid (SA) and reduced expression of ICS1 (a gene that encode isochorismate synthase 1, which is involved in SA biosynthesis). We propose that reduced SA content results in increased bacterial wilt susceptibility in the transgenic lines. Our results provide important new insights into the regulatory mechanisms of bacterial wilt resistance in eggplant. PMID:27528282

  6. Anopheles gambiae Ag-STAT, a new insect member of the STAT family, is activated in response to bacterial infection.

    PubMed

    Barillas-Mury, C; Han, Y S; Seeley, D; Kafatos, F C

    1999-02-15

    A new insect member of the STAT family of transcription factors (Ag-STAT) has been cloned from the human malaria vector Anopheles gambiae. The domain involved in DNA interaction and the SH2 domain are well conserved. Ag-STAT is most similar to Drosophila D-STAT and to vertebrate STATs 5 and 6, constituting a proposed ancient class A of the STAT family. The mRNA is expressed at all developmental stages, and the protein is present in hemocytes, pericardial cells, midgut, skeletal muscle and fat body cells. There is no evidence of transcriptional activation following bacterial challenge. However, bacterial challenge results in nuclear translocation of Ag-STAT protein in fat body cells and induction of DNA-binding activity that recognizes a STAT target site. In vitro treatment with pervanadate (vanadate and H2O2) translocates Ag-STAT to the nucleus in midgut epithelial cells. This is the first evidence of direct participation of the STAT pathway in immune responses in insects. PMID:10022838

  7. Two novel human members of an emerging mammalian gene family related to mono-ADP-ribosylating bacterial toxins

    SciTech Connect

    Koch-Nolte, F.; Haag, F.; Braren, R.

    1997-02-01

    Mono-ADP-ribosylation is one of the posttranslational protein modifications regulating cellular metabolism, e.g., nitrogen fixation, in prokaryotes. Several bacterial toxins mono-ADP-ribosylate and inactivate specific proteins in their animal hosts. Recently, two mammalian GPI-anchored cell surface enzymes with similar activities were cloned (designated ART1 and ART2). We have now identified six related expressed sequence tags (ESTs) in the public database and cloned the two novel human genes from which these are derived (designated ART3 and ART4). The deduced amino acid sequences of the predicted gene products show 28% sequence identity to one another and 32-41% identity vs the muscle and T cell enzymes. They contain signal peptide sequences characteristic of GPI anchorage. Southern Zoo blot analyses suggest the presence of related genes in other mammalian species. By PCR screening of somatic cell hybrids and by in situ hybridization, we have mapped the two genes to human chromosomes 4p14-p15.l and 12q13.2- q13.3. Northern blot analyses show that these genes are specifically expressed in testis and spleen, respectively. Comparison of genomic and cDNA sequences reveals a conserved exon/intron structure, with an unusually large exon encoding the predicted mature membrane proteins. Secondary structure prediction analyses indicate conserved motifs and amino acid residues consistent with a common ancestry of this emerging mammalian enzyme family and bacterial mono(ADP-ribosyl)transferases. It is possible that the four human gene family members identified so far represent the {open_quotes}tip of an iceberg,{close_quote} i.e., a larger family of enzymes that influences the function of target proteins via mono-ADP-ribosylation. 35 refs., 4 figs.

  8. Cloning and characterization of a novel lipase from Stenotrophomonas maltophilia GS11: The first member of a new bacterial lipase family XVI.

    PubMed

    Li, Mu; Yang, Li-Rong; Xu, Gang; Wu, Jian-Ping

    2016-06-20

    Bacterial lipases are an important group of enzymes that offer enormous potential in organic synthesis, and there is considerable interest in identifying and developing novel bacterial lipases. In previous studies, strains of the genus Stenotrophomonas were proved to be potential source of lipases, but there is little genetic information describing lipase from the genus Stenotrophomonas. We have cloned and characterized a novel lipase (LipSM54), the first lipase described from the genus Stenotrophomonas. Enzymatic study showed that LipSM54 was a cold-active, solvent-tolerant and alkaline lipase. Using bioinformatics tools, LipSM54 was found to be related only to several putative lipases from different bacterial origins, none of which could be assigned to any previously described bacterial lipase family. LipSM54 and these related putative lipases share four conserved motifs around the catalytic residues. These motifs clearly distinguish them from the known bacterial lipase families. Consequently, LipSM54 is the first characterized member of the novel bacterial lipase family. PMID:27117245

  9. CPDadh: A new peptidase family homologous to the cysteine protease domain in bacterial MARTX toxins

    PubMed Central

    Pei, Jimin; Lupardus, Patrick J; Garcia, K Christopher; Grishin, Nick V

    2009-01-01

    A cysteine protease domain (CPD) has been recently discovered in a group of multifunctional, autoprocessing RTX toxins (MARTX) and Clostridium difficile toxins A and B. These CPDs (referred to as CPDmartx) autocleave the toxins to release domains with toxic effects inside host cells. We report identification and computational analysis of CPDadh, a new cysteine peptidase family homologous to CPDmartx. CPDadh and CPDmartx share a Rossmann-like structural core and conserved catalytic residues. In bacteria, domains of the CPDadh family are present at the N-termini of a diverse group of putative cell-cell interaction proteins and at the C-termini of some RHS (recombination hot spot) proteins. In eukaryotes, catalytically inactive members of the CPDadh family are found in cell surface protein NELF (nasal embryonic LHRH factor) and some putative signaling proteins. PMID:19309740

  10. Rethinking the roles of CRP, cAMP, and sugar-mediated global regulation in the Vibrionaceae.

    PubMed

    Colton, Deanna M; Stabb, Eric V

    2016-02-01

    Many proteobacteria modulate a suite of catabolic genes using the second messenger cyclic 3', 5'-AMP (cAMP) and the cAMP receptor protein (CRP). Together, the cAMP-CRP complex regulates target promoters, usually by activating transcription. In the canonical model, the phosphotransferase system (PTS), and in particular the EIIA(Glc) component for glucose uptake, provides a mechanistic link that modulates cAMP levels depending on glucose availability, resulting in more cAMP and activation of alternative catabolic pathways when glucose is unavailable. Within the Vibrionaceae, cAMP-CRP appears to play the classical role in modulating metabolic pathways; however, it also controls functions involved in natural competence, bioluminescence, pheromone signaling, and colonization of animal hosts. For this group of marine bacteria, chitin is an ecologically relevant resource, and chitin's monomeric sugar N-acetylglucosamine (NAG) supports robust growth while also triggering regulatory responses. Recent studies with Vibrio fischeri indicate that NAG and glucose uptake share EIIA(Glc), yet the responses of cAMP-CRP to these two carbon sources are starkly different. Moreover, control of cAMP levels appears to be more dominantly controlled by export and degradation. Perhaps more surprisingly, although CRP may require cAMP, its activity can be controlled in response to glucose by a mechanism independent of cAMP levels. Future studies in this area promise to shed new light on the role of cAMP and CRP. PMID:26215147

  11. IDENTIFICATION OF NICOTINAMIDE MONONUCLEOTIDE DEAMIDASE OF THE BACTERIAL PYRIDINE NUCLEOTIDE CYCLE REVEALS A NOVEL BROADLY CONSERVED AMIDOHYDROLASE FAMILY

    SciTech Connect

    Galeazzi, Luca; Bocci, Paolo; Amici, Adolfo; Brunetti, Lucia; Ruggieri, Silverio; Romine, Margaret F.; Reed, Samantha B.; Osterman, Andrei; Rodionov, Dmitry A.; Sorci, Leonardo; Raffaelli, Nadia

    2011-09-27

    The pyridine nucleotide cycle (PNC) is a network of salvage and recycling routes maintaining homeostasis of NAD(P) cofactor pool in the cell. Nicotinamide mononucleotide (NMN) deamidase (EC 3.5.1.42), one of the key enzymes of the bacterial PNC was originally described in Enterobacteria, but the corresponding gene eluded identification for over 30 years. A genomics-based reconstruction of NAD metabolism across hundreds bacterial species suggested that NMN deamidase reaction is the only possible way of nicotinamide salvage in the marine bacterium Shewanella oneidensis. This prediction was verified via purification of native NMN deamidase from S. oneidensis followed by the identification of the respective gene, termed pncC. Enzymatic characterization of the PncC protein, as well as phenotype analysis of deletion mutants, confirmed its proposed biochemical and physiological function in S. oneidensis. Of the three PncC homologs present in E. coli, NMN deamidase activity was confirmed only for the recombinant purified product of the ygaD gene. A comparative analysis at the level of sequence and three dimensional structure, which is available for one of the PncC family member, shows no homology with any previously described amidohydrolases. Multiple alignment analysis of functional and non functional PncC homologs, together with NMN docking experiments, allowed us to tentatively identify the active site area and conserved residues therein. An observed broad phylogenomic distribution of predicted functional PncCs in bacterial kingdom is consistent with a possible role in detoxification of NMN, resulting from NAD utilization by DNA ligase.

  12. Sphingomonas paucimobilis beta-glucosidase Bgl1: a member of a new bacterial subfamily in glycoside hydrolase family 1.

    PubMed Central

    Marques, Ana Rita; Coutinho, Pedro M; Videira, Paula; Fialho, Arsénio M; Sá-Correia, Isabel

    2003-01-01

    The Sphingomonas paucimobilis beta-glucosidase Bgl1 is encoded by the bgl1 gene, associated with an 1308 bp open reading frame. The deduced protein has a potential signal peptide of 24 amino acids in the N-terminal region, and experimental evidence is consistent with the processing and export of the Bgl1 protein through the inner membrane to the periplasmic space. A His(6)-tagged 44.3 kDa protein was over-produced in the cytosol of Escherichia coli from a recombinant plasmid, which contained the S. paucimobilis bgl1 gene lacking the region encoding the putative signal peptide. Mature beta-glucosidase Bgl1 is specific for aryl-beta-glucosides and has no apparent activity with oligosaccharides derived from cellulose hydrolysis and other saccharides. A structure-based alignment established structural relations between S. paucimobilis Bgl1 and other members of the glycoside hydrolase (GH) family 1 enzymes. At subsite -1, the conserved residues required for catalysis by GH1 enzymes are present in Bgl1 with only minor differences. Major differences are found at subsite +1, the aglycone binding site. This alignment seeded a sequence-based phylogenetic analysis of GH1 enzymes, revealing an absence of horizontal transfer between phyla. Bootstrap analysis supported the definition of subfamilies and revealed that Bgl1, the first characterized beta-glucosidase from the genus Sphingomonas, represents a very divergent bacterial subfamily, closer to archaeal subfamilies than to others of bacterial origin. PMID:12444924

  13. A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants.

    PubMed

    DebRoy, Sruti; Thilmony, Roger; Kwack, Yong-Bum; Nomura, Kinya; He, Sheng Yang

    2004-06-29

    Salicylic acid (SA)-mediated host immunity plays a central role in combating microbial pathogens in plants. Inactivation of SA-mediated immunity, therefore, would be a critical step in the evolution of a successful plant pathogen. It is known that mutations in conserved effector loci (CEL) in the plant pathogens Pseudomonas syringae (the Delta CEL mutation), Erwinia amylovora (the dspA/E mutation), and Pantoea stewartii subsp. stewartii (the wtsE mutation) exert particularly strong negative effects on bacterial virulence in their host plants by unknown mechanisms. We found that the loss of virulence in Delta CEL and dspA/E mutants was linked to their inability to suppress cell wall-based defenses and to cause normal disease necrosis in Arabidopsis and apple host plants. The Delta CEL mutant activated SA-dependent callose deposition in wild-type Arabidopsis but failed to elicit high levels of callose-associated defense in Arabidopsis plants blocked in SA accumulation or synthesis. This mutant also multiplied more aggressively in SA-deficient plants than in wild-type plants. The hopPtoM and avrE genes in the CEL of P. syringae were found to encode suppressors of this SA-dependent basal defense. The widespread conservation of the HopPtoM and AvrE families of effectors in various bacteria suggests that suppression of SA-dependent basal immunity and promotion of host cell death are important virulence strategies for bacterial infection of plants. PMID:15210989

  14. Broad Spectrum Activity of a Lectin-Like Bacterial Serine Protease Family on Human Leukocytes

    PubMed Central

    Ayala-Lujan, Jorge Luis; Vijayakumar, Vidhya; Gong, Mei; Smith, Rachel; Santiago, Araceli E.; Ruiz-Perez, Fernando

    2014-01-01

    The serine protease autotransporter from Enterobacteriaceae (SPATE) family, which number more than 25 proteases with apparent diverse functions, have been phylogenetically divided into two distinct classes, designated 1 and 2. We recently demonstrated that Pic and Tsh, two members of the class-2 SPATE family produced by intestinal and extraintestinal pathogenic E. coli, were able to cleave a number of O-glycosylated proteins on neutrophils and lymphocytes resulting in impaired leukocyte functions. Here we show that most members of the class-2 SPATE family have lectin-like properties and exhibit differential protease activity reliant on glycoprotein type and cell lineage. Protease activity was seen in virtually all tested O-glycosylated proteins including CD34, CD55, CD164, TIM1, TIM3, TIM4 and C1-INH. We also show that although SPATE proteins bound and cleaved glycoproteins more efficiently on granulocytes and monocytes, they also targeted glycoproteins on B, T and natural killer lymphocytes. Finally, we found that the characteristic domain-2 of class-2 SPATEs is not required for glycoprotease activity, but single amino acid mutations in Pic domain-1 to those residues naturally occurring in domain-1 of SepA, were sufficient to hamper Pic glycoprotease activity. This study shows that most class-2 SPATEs have redundant activities and suggest that they may function as immunomodulators at several levels of the immune system. PMID:25251283

  15. Identification of novel members of the bacterial azoreductase family in Pseudomonas aeruginosa.

    PubMed

    Crescente, Vincenzo; Holland, Sinead M; Kashyap, Sapna; Polycarpou, Elena; Sim, Edith; Ryan, Ali

    2016-03-01

    Azoreductases are a family of diverse enzymes found in many pathogenic bacteria as well as distant homologues being present in eukarya. In addition to having azoreductase activity, these enzymes are also suggested to have NAD(P)H quinone oxidoreductase (NQO) activity which leads to a proposed role in plant pathogenesis. Azoreductases have also been suggested to play a role in the mammalian pathogenesis of Pseudomonas aeruginosa. In view of the importance of P. aeruginosa as a pathogen, we therefore characterized recombinant enzymes following expression of a group of putative azoreductase genes from P. aeruginosa expressed in Escherichia coli. The enzymes include members of the arsenic-resistance protein H (ArsH), tryptophan repressor-binding protein A (WrbA), modulator of drug activity B (MdaB) and YieF families. The ArsH, MdaB and YieF family members all show azoreductase and NQO activities. In contrast, WrbA is the first enzyme to show NQO activity but does not reduce any of the 11 azo compounds tested under a wide range of conditions. These studies will allow further investigation of the possible role of these enzymes in the pathogenesis of P. aeruginosa. PMID:26621870

  16. Broad spectrum activity of a lectin-like bacterial serine protease family on human leukocytes.

    PubMed

    Ayala-Lujan, Jorge Luis; Vijayakumar, Vidhya; Gong, Mei; Smith, Rachel; Santiago, Araceli E; Ruiz-Perez, Fernando

    2014-01-01

    The serine protease autotransporter from Enterobacteriaceae (SPATE) family, which number more than 25 proteases with apparent diverse functions, have been phylogenetically divided into two distinct classes, designated 1 and 2. We recently demonstrated that Pic and Tsh, two members of the class-2 SPATE family produced by intestinal and extraintestinal pathogenic E. coli, were able to cleave a number of O-glycosylated proteins on neutrophils and lymphocytes resulting in impaired leukocyte functions. Here we show that most members of the class-2 SPATE family have lectin-like properties and exhibit differential protease activity reliant on glycoprotein type and cell lineage. Protease activity was seen in virtually all tested O-glycosylated proteins including CD34, CD55, CD164, TIM1, TIM3, TIM4 and C1-INH. We also show that although SPATE proteins bound and cleaved glycoproteins more efficiently on granulocytes and monocytes, they also targeted glycoproteins on B, T and natural killer lymphocytes. Finally, we found that the characteristic domain-2 of class-2 SPATEs is not required for glycoprotease activity, but single amino acid mutations in Pic domain-1 to those residues naturally occurring in domain-1 of SepA, were sufficient to hamper Pic glycoprotease activity. This study shows that most class-2 SPATEs have redundant activities and suggest that they may function as immunomodulators at several levels of the immune system. PMID:25251283

  17. The cholesterol-dependent cytolysin family of gram-positive bacterial toxins.

    PubMed

    Heuck, Alejandro P; Moe, Paul C; Johnson, Benjamin B

    2010-01-01

    The cholesterol-dependent cytolysins (CDCs) are a family of beta-barrel pore-forming toxins secreted by Gram-positive bacteria. These toxins are produced as water-soluble monomeric proteins that after binding to the target cell oligomerize on the membrane surface forming a ring-like pre-pore complex, and finally insert a large beta-barrel into the membrane (about 250 A in diameter). Formation of such a large transmembrane structure requires multiple and coordinated conformational changes. The presence of cholesterol in the target membrane is absolutely required for pore-formation, and therefore it was long thought that cholesterol was the cellular receptor for these toxins. However, not all the CDCs require cholesterol for binding. Intermedilysin, secreted by Streptoccocus intermedius only binds to membranes containing a protein receptor, but forms pores only if the membrane contains sufficient cholesterol. In contrast, perfringolysin O, secreted by Clostridium perfringens, only binds to membranes containing substantial amounts of cholesterol. The mechanisms by which cholesterol regulates the cytolytic activity of the CDCs are not understood at the molecular level. The C-terminus of perfringolysin O is involved in cholesterol recognition, and changes in the conformation of the loops located at the distal tip of this domain affect the toxin-membrane interactions. At the same time, the distribution of cholesterol in the membrane can modulate toxin binding. Recent studies support the concept that there is a dynamic interplay between the cholesterol-binding domain of the CDCs and the excess of cholesterol molecules in the target membrane. PMID:20213558

  18. Identification of two partners from the bacterial Kef exchanger family for the apical plasma membrane V-ATPase of Metazoa.

    PubMed

    Day, Jonathan P; Wan, Susan; Allan, Adrian K; Kean, Laura; Davies, Shireen A; Gray, Joe V; Dow, Julian A T

    2008-08-01

    The vital task of vectorial solute transport is often energised by a plasma membrane, proton-motive V-ATPase. However, its proposed partner, an apical alkali-metal/proton exchanger, has remained elusive. Here, both FlyAtlas microarray data and in situ analyses demonstrate that the bacterial kefB and kefC (members of the CPA2 family) homologues in Drosophila, CG10806 and CG31052, respectively, are both co-expressed with V-ATPase genes in transporting epithelia. Immunocytochemistry localises endogenous CG10806 and CG31052 to the apical plasma membrane of the Malpighian (renal) tubule. YFP-tagged CG10806 and CG31052 both localise to the plasma membrane of Drosophila S2 cells, and when driven in principal cells of the Malpighian tubule, they localise specifically to the apical plasma membrane. V-ATPase-energised fluid secretion is affected by overexpression of CG10806, but not CG31052; in the former case, overexpression causes higher basal rates, but lower stimulated rates, of fluid secretion compared with parental controls. Overexpression also impacts levels of secreted Na+ and K+. Both genes rescue exchanger-deficient (nha1 nhx1) yeast, but act differently; CG10806 is driven predominantly to the plasma membrane and confers protection against excess K+, whereas CG31052 is expressed predominantly on the vacuolar membrane and protects against excess Na+. Thus, both CG10806 and CG31052 are functionally members of the CPA2 gene family, colocalise to the same apical membrane as the plasma membrane V-ATPase and show distinct ion specificities, as expected for the Wieczorek exchanger. PMID:18628302

  19. Chloroplast division in higher plants requires members of two functionally divergent gene families with homology to bacterial ftsZ.

    PubMed Central

    Osteryoung, K W; Stokes, K D; Rutherford, S M; Percival, A L; Lee, W Y

    1998-01-01

    The division of plastids is critical for viability in photosynthetic eukaryotes, but the mechanisms associated with this process are still poorly understood. We previously identified a nuclear gene from Arabidopsis encoding a chloroplast-localized homolog of the bacterial cell division protein FtsZ, an essential cytoskeletal component of the prokaryotic cell division apparatus. Here, we report the identification of a second nuclear-encoded FtsZ-type protein from Arabidopsis that does not contain a chloroplast targeting sequence or other obvious sorting signals and is not imported into isolated chloroplasts, which strongly suggests that it is localized in the cytosol. We further demonstrate using antisense technology that inhibiting expression of either Arabidopsis FtsZ gene (AtFtsZ1-1 or AtFtsZ2-1) in transgenic plants reduces the number of chloroplasts in mature leaf cells from 100 to one, indicating that both genes are essential for division of higher plant chloroplasts but that each plays a distinct role in the process. Analysis of currently available plant FtsZ sequences further suggests that two functionally divergent FtsZ gene families encoding differentially localized products participate in chloroplast division. Our results provide evidence that both chloroplastic and cytosolic forms of FtsZ are involved in chloroplast division in higher plants and imply that important differences exist between chloroplasts and prokaryotes with regard to the roles played by FtsZ proteins in the division process. PMID:9836740

  20. Genes Similar to the Vibrio parahaemolyticus Virulence-Related Genes tdh, tlh, and vscC2 Occur in Other Vibrionaceae Species Isolated from a Pristine Estuary

    PubMed Central

    Klein, Savannah L.; Gutierrez West, Casandra K.; Mejia, Diana M.

    2014-01-01

    Detection of the human pathogen Vibrio parahaemolyticus often relies on molecular biological analysis of species-specific virulence factor genes. These genes have been employed in determinations of V. parahaemolyticus population numbers and the prevalence of pathogenic V. parahaemolyticus strains. Strains of the Vibrionaceae species Photobacterium damselae, Vibrio diabolicus, Vibrio harveyi, and Vibrio natriegens, as well as strains similar to Vibrio tubiashii, were isolated from a pristine salt marsh estuary. These strains were examined for the V. parahaemolyticus hemolysin genes tdh, trh, and tlh and for the V. parahaemolyticus type III secretion system 2α gene vscC2 using established PCR primers and protocols. Virulence-related genes occurred at high frequencies in non-V. parahaemolyticus Vibrionaceae species. V. diabolicus was of particular interest, as several strains were recovered, and the large majority (>83%) contained virulence-related genes. It is clear that detection of these genes does not ensure correct identification of virulent V. parahaemolyticus. Further, the occurrence of V. parahaemolyticus-like virulence factors in other vibrios potentially complicates tracking of outbreaks of V. parahaemolyticus infections. PMID:24212573

  1. Phylogenetic and Complementation Analysis of a Single-Stranded DNA Binding Protein Family from Lactococcal Phages Indicates a Non-Bacterial Origin

    PubMed Central

    Mariadassou, Mahendra; Bardowski, Jacek K.; Bidnenko, Elena

    2011-01-01

    Background The single-stranded-nucleic acid binding (SSB) protein superfamily includes proteins encoded by different organisms from Bacteria and their phages to Eukaryotes. SSB proteins share common structural characteristics and have been suggested to descend from an ancestor polypeptide. However, as other proteins involved in DNA replication, bacterial SSB proteins are clearly different from those found in Archaea and Eukaryotes. It was proposed that the corresponding genes in the phage genomes were transferred from the bacterial hosts. Recently new SSB proteins encoded by the virulent lactococcal bacteriophages (Orf14bIL67-like proteins) have been identified and characterized structurally and biochemically. Methodology/Principal Findings This study focused on the determination of phylogenetic relationships between Orf14bIL67-like proteins and other SSBs. We have performed a large scale phylogenetic analysis and pairwise sequence comparisons of SSB proteins from different phyla. The results show that, in remarkable contrast to other phage SSBs, the Orf14bIL67–like proteins form a distinct, self-contained and well supported phylogenetic group connected to the archaeal SSBs. Functional studies demonstrated that, despite the structural and amino acid sequence differences from bacterial SSBs, Orf14bIL67 protein complements the conditional lethal ssb-1 mutation of Escherichia coli. Conclusions/Significance Here we identified for the first time a group of phages encoded SSBs which are clearly distinct from their bacterial counterparts. All methods supported the recognition of these phage proteins as a new family within the SSB superfamily. Our findings suggest that unlike other phages, the virulent lactococcal phages carry ssb genes that were not acquired from their hosts, but transferred from an archaeal genome. This represents a unique example of a horizontal gene transfer between Archaea and bacterial phages. PMID:22073223

  2. Properties and Phylogeny of 76 Families of Bacterial and Eukaryotic Organellar Outer Membrane Pore-Forming Proteins

    PubMed Central

    Reddy, Bhaskara L.; Saier, Milton H.

    2016-01-01

    We here report statistical analyses of 76 families of integral outer membrane pore-forming proteins (OMPPs) found in bacteria and eukaryotic organelles. 47 of these families fall into one superfamily (SFI) which segregate into fifteen phylogenetic clusters. Families with members of the same protein size, topology and substrate specificities often cluster together. Virtually all OMPP families include only proteins that form transmembrane pores. Nine such families, all of which cluster together in the SFI phylogenetic tree, contain both α- and β-structures, are multi domain, multi subunit systems, and transport macromolecules. Most other SFI OMPPs transport small molecules. SFII and SFV homologues derive from Actinobacteria while SFIII and SFIV proteins derive from chloroplasts. Three families of actinobacterial OMPPs and two families of eukaryotic OMPPs apparently consist primarily of α-helices (α-TMSs). Of the 71 families of (putative) β-barrel OMPPs, only twenty could not be assigned to a superfamily, and these derived primarily from Actinobacteria (1), chloroplasts (1), spirochaetes (8), and proteobacteria (10). Proteins were identified in which two or three full length OMPPs are fused together. Family characteristic are described and evidence agrees with a previous proposal suggesting that many arose by adjacent β-hairpin structural unit duplications. PMID:27064789

  3. Evolution of a family of metazoan active-site-serine enzymes from penicillin-binding proteins: a novel facet of the bacterial legacy

    PubMed Central

    2008-01-01

    Background Bacterial penicillin-binding proteins and β-lactamases (PBP-βLs) constitute a large family of serine proteases that perform essential functions in the synthesis and maintenance of peptidoglycan. Intriguingly, genes encoding PBP-βL homologs occur in many metazoan genomes including humans. The emerging role of LACTB, a mammalian mitochondrial PBP-βL homolog, in metabolic signaling prompted us to investigate the evolutionary history of metazoan PBP-βL proteins. Results Metazoan PBP-βL homologs including LACTB share unique structural features with bacterial class B low molecular weight penicillin-binding proteins. The amino acid residues necessary for enzymatic activity in bacterial PBP-βL proteins, including the catalytic serine residue, are conserved in all metazoan homologs. Phylogenetic analysis indicated that metazoan PBP-βL homologs comprise four alloparalogus protein lineages that derive from α-proteobacteria. Conclusion While most components of the peptidoglycan synthesis machinery were dumped by early eukaryotes, a few PBP-βL proteins were conserved and are found in metazoans including humans. Metazoan PBP-βL homologs are active-site-serine enzymes that probably have distinct functions in the metabolic circuitry. We hypothesize that PBP-βL proteins in the early eukaryotic cell enabled the degradation of peptidoglycan from ingested bacteria, thereby maximizing the yield of nutrients and streamlining the cell for effective phagocytotic feeding. PMID:18226203

  4. Borrelia burgdorferi EbfC defines a newly-identified, widespread family of bacterial DNA-binding proteins

    PubMed Central

    Riley, Sean P.; Bykowski, Tomasz; Cooley, Anne E.; Burns, Logan H.; Babb, Kelly; Brissette, Catherine A.; Bowman, Amy; Rotondi, Matthew; Miller, M. Clarke; DeMoll, Edward; Lim, Kap; Fried, Michael G.; Stevenson, Brian

    2009-01-01

    The Lyme disease spirochete, Borrelia burgdorferi, encodes a novel type of DNA-binding protein named EbfC. Orthologs of EbfC are encoded by a wide range of bacterial species, so characterization of the borrelial protein has implications that span the eubacterial kingdom. The present work defines the DNA sequence required for high-affinity binding by EbfC to be the 4 bp broken palindrome GTnAC, where ‘n’ can be any nucleotide. Two high-affinity EbfC-binding sites are located immediately 5′ of B. burgdorferi erp transcriptional promoters, and binding of EbfC was found to alter the conformation of erp promoter DNA. Consensus EbfC-binding sites are abundantly distributed throughout the B. burgdorferi genome, occurring approximately once every 1 kb. These and other features of EbfC suggest that this small protein and its orthologs may represent a distinctive type of bacterial nucleoid-associated protein. EbfC was shown to bind DNA as a homodimer, and site-directed mutagenesis studies indicated that EbfC and its orthologs appear to bind DNA via a novel α-helical ‘tweezer’-like structure. PMID:19208644

  5. Architecture and Assembly of a Divergent Member of the ParM Family of Bacterial Actin-like Proteins

    PubMed Central

    Rivera, Christopher R.; Kollman, Justin M.; Polka, Jessica K.; Agard, David A.; Mullins, R. Dyche

    2011-01-01

    Eubacteria and archaea contain a variety of actin-like proteins (ALPs) that form filaments with surprisingly diverse architectures, assembly dynamics, and cellular functions. Although there is much data supporting differences between ALP families, there is little data regarding conservation of structure and function within these families. We asked whether the filament architecture and biochemical properties of the best-understood prokaryotic actin, ParM from plasmid R1, are conserved in a divergent member of the ParM family from plasmid pB171. Previous work demonstrated that R1 ParM assembles into filaments that are structurally distinct from actin and the other characterized ALPs. They also display three biophysical properties thought to be essential for DNA segregation: 1) rapid spontaneous nucleation, 2) symmetrical elongation, and 3) dynamic instability. We used microscopic and biophysical techniques to compare and contrast the architecture and assembly of these related proteins. Despite being only 41% identical, R1 and pB171 ParMs polymerize into nearly identical filaments with similar assembly dynamics. Conservation of the core assembly properties argues for their importance in ParM-mediated DNA segregation and suggests that divergent DNA-segregating ALPs with different assembly properties operate via different mechanisms. PMID:21339292

  6. An Entamoeba histolytica ADP-ribosyl transferase from the diphtheria toxin family modifies the bacterial elongation factor Tu.

    PubMed

    Avila, Eva E; Rodriguez, Orlando I; Marquez, Jaqueline A; Berghuis, Albert M

    2016-06-01

    ADP-ribosyl transferases are enzymes involved in the post-translational modification of proteins; they participate in multiple physiological processes, pathogenesis and host-pathogen interactions. Several reports have characterized the functions of these enzymes in viruses, prokaryotes and higher eukaryotes, but few studies have reported ADP-ribosyl transferases in lower eukaryotes, such as parasites. The locus EHI_155600 from Entamoeba histolytica encodes a hypothetical protein that possesses a domain from the ADP-ribosylation superfamily; this protein belongs to the diphtheria toxin family according to a homology model using poly-ADP-ribosyl polymerase 12 (PARP12 or ARTD12) as a template. The recombinant protein expressed in Escherichia coli exhibited in vitro ADP-ribosylation activity that was dependent on the time and temperature. Unlabeled βNAD(+), but not ADP-ribose, competed in the enzymatic reaction using biotin-βNAD(+) as the ADP-ribose donor. The recombinant enzyme, denominated EhToxin-like, auto-ADP-ribosylated and modified an acceptor from E. coli that was identified by MS/MS as the elongation factor Tu (EF-Tu). To the best of our knowledge, this is the first report to identify an ADP-ribosyl transferase from the diphtheria toxin family in a protozoan parasite. The known toxins from this family (i.e., the diphtheria toxin, the Pseudomonas aeruginosa toxin Exo-A, and Cholix from Vibrio cholerae) modify eukaryotic elongation factor two (eEF-2), whereas the amoeba EhToxin-like modified EF-Tu, which is another elongation factor involved in protein synthesis in bacteria and mitochondria. PMID:27234208

  7. Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose.

    PubMed Central

    Tormo, J; Lamed, R; Chirino, A J; Morag, E; Bayer, E A; Shoham, Y; Steitz, T A

    1996-01-01

    The crystal structure of a family-III cellulose-binding domain (CBD) from the cellulosomal scaffoldin subunit of Clostridium thermocellum has been determined at 1.75 A resolution. The protein forms a nine-stranded beta sandwich with a jelly roll topology and binds a calcium ion. conserved, surface-exposed residues map into two defined surfaces located on opposite sides of the molecule. One of these faces is dominated by a planar linear strip of aromatic and polar residues which are proposed to interact with crystalline cellulose. The other conserved residues are contained in a shallow groove, the function of which is currently unknown, and which has not been observed previously in other families of CBDs. On the basis of modeling studies combined with comparisons of recently determined NMR structures for other CBDs, a general model for the binding of CBDs to cellulose is presented. Although the proposed binding of the CBD to cellulose is essentially a surface interaction, specific types and combinations of amino acids appear to interact selectively with glucose moieties positioned on three adjacent chains of the cellulose surface. The major interaction is characterized by the planar strip of aromatic residues, which align along one of the chains. In addition, polar amino acid residues are proposed to anchor the CBD molecule to two other adjacent chains of crystalline cellulose. Images PMID:8918451

  8. Advanced Microbial Taxonomy Combined with Genome-Based-Approaches Reveals that Vibrio astriarenae sp. nov., an Agarolytic Marine Bacterium, Forms a New Clade in Vibrionaceae

    PubMed Central

    Al-saari, Nurhidayu; Gao, Feng; A.K.M. Rohul, Amin; Sato, Kazumichi; Sato, Keisuke; Mino, Sayaka; Suda, Wataru; Oshima, Kenshiro; Hattori, Masahira; Ohkuma, Moriya; Meirelles, Pedro M.; Thompson, Fabiano L.; Thompson, Cristiane; A. Filho, Gilberto M.; Gomez-Gil, Bruno; Sawabe, Toko; Sawabe, Tomoo

    2015-01-01

    Advances in genomic microbial taxonomy have opened the way to create a more universal and transparent concept of species but is still in a transitional stage towards becoming a defining robust criteria for describing new microbial species with minimum features obtained using both genome and classical polyphasic taxonomies. Here we performed advanced microbial taxonomies combined with both genome-based and classical approaches for new agarolytic vibrio isolates to describe not only a novel Vibrio species but also a member of a new Vibrio clade. Two novel vibrio strains (Vibrio astriarenae sp. nov. C7T and C20) showing agarolytic, halophilic and fermentative metabolic activity were isolated from a seawater sample collected in a coral reef in Okinawa. Intraspecific similarities of the isolates were identical in both sequences on the 16S rRNA and pyrH genes, but the closest relatives on the molecular phylogenetic trees on the basis of 16S rRNA and pyrH gene sequences were V. hangzhouensis JCM 15146T (97.8% similarity) and V. agarivorans CECT 5085T (97.3% similarity), respectively. Further multilocus sequence analysis (MLSA) on the basis of 8 protein coding genes (ftsZ, gapA, gyrB, mreB, pyrH, recA, rpoA, and topA) obtained by the genome sequences clearly showed the V. astriarenae strain C7T and C20 formed a distinct new clade protruded next to V. agarivorans CECT 5085T. The singleton V. agarivorans has never been included in previous MLSA of Vibrionaceae due to the lack of some gene sequences. Now the gene sequences are completed and analysis of 100 taxa in total provided a clear picture describing the association of V. agarivorans into pre-existing concatenated network tree and concluded its relationship to our vibrio strains. Experimental DNA-DNA hybridization (DDH) data showed that the strains C7T and C20 were conspecific but were separated from all of the other Vibrio species related on the basis of both 16S rRNA and pyrH gene phylogenies (e.g., V. agarivorans CECT

  9. Advanced Microbial Taxonomy Combined with Genome-Based-Approaches Reveals that Vibrio astriarenae sp. nov., an Agarolytic Marine Bacterium, Forms a New Clade in Vibrionaceae.

    PubMed

    Al-Saari, Nurhidayu; Gao, Feng; Rohul, Amin A K M; Sato, Kazumichi; Sato, Keisuke; Mino, Sayaka; Suda, Wataru; Oshima, Kenshiro; Hattori, Masahira; Ohkuma, Moriya; Meirelles, Pedro M; Thompson, Fabiano L; Thompson, Cristiane; Filho, Gilberto M A; Gomez-Gil, Bruno; Sawabe, Toko; Sawabe, Tomoo

    2015-01-01

    Advances in genomic microbial taxonomy have opened the way to create a more universal and transparent concept of species but is still in a transitional stage towards becoming a defining robust criteria for describing new microbial species with minimum features obtained using both genome and classical polyphasic taxonomies. Here we performed advanced microbial taxonomies combined with both genome-based and classical approaches for new agarolytic vibrio isolates to describe not only a novel Vibrio species but also a member of a new Vibrio clade. Two novel vibrio strains (Vibrio astriarenae sp. nov. C7T and C20) showing agarolytic, halophilic and fermentative metabolic activity were isolated from a seawater sample collected in a coral reef in Okinawa. Intraspecific similarities of the isolates were identical in both sequences on the 16S rRNA and pyrH genes, but the closest relatives on the molecular phylogenetic trees on the basis of 16S rRNA and pyrH gene sequences were V. hangzhouensis JCM 15146T (97.8% similarity) and V. agarivorans CECT 5085T (97.3% similarity), respectively. Further multilocus sequence analysis (MLSA) on the basis of 8 protein coding genes (ftsZ, gapA, gyrB, mreB, pyrH, recA, rpoA, and topA) obtained by the genome sequences clearly showed the V. astriarenae strain C7T and C20 formed a distinct new clade protruded next to V. agarivorans CECT 5085T. The singleton V. agarivorans has never been included in previous MLSA of Vibrionaceae due to the lack of some gene sequences. Now the gene sequences are completed and analysis of 100 taxa in total provided a clear picture describing the association of V. agarivorans into pre-existing concatenated network tree and concluded its relationship to our vibrio strains. Experimental DNA-DNA hybridization (DDH) data showed that the strains C7T and C20 were conspecific but were separated from all of the other Vibrio species related on the basis of both 16S rRNA and pyrH gene phylogenies (e.g., V. agarivorans CECT

  10. Analysis of the LacI family regulators of Erwinia chrysanthemi 3937, involvement in the bacterial phytopathogenicity.

    PubMed

    Van Gijsegem, Frédérique; Wlodarczyk, Aleksandra; Cornu, Amandine; Reverchon, Sylvie; Hugouvieux-Cotte-Pattat, Nicole

    2008-11-01

    Analysis of the regulators of the LacI family was performed in order to identify those potentially involved in pathogenicity of Erwinia chrysanthemi (Dickeya dadantii). Among the 18 members of the LacI family, the function of 11 members is either known or predicted and only 7 members have, as yet, no proposed function. Inactivation of these seven genes, called lfaR, lfbR, lfcR, lfdR, lfeR, lffR, and lfgR, demonstrated that four of them are important for plant infection. The lfaR and lfcR mutants showed a reduced virulence on chicory, Saintpaulia sp., and Arabidopsis. The lfeR mutant showed a reduced virulence on Arabidopsis. The lfdR mutant was more efficient than the wild-type strain in initiating maceration on Saintpaulia sp. The genetic environment of each regulator was examined to detect adjacent genes potentially involved in a common function. Construction of transcriptional fusions in these neighboring genes demonstrated that five regulators, LfaR, LfcR, LfeR, LffR, and LfgR, act as repressors of adjacent genes. Analysis of these fusions also indicated that the genes controlled by LfaR, LfcR, LfgR, and LffR are expressed during plant infection. Moreover, addition of crude plant extracts to culture medium demonstrated that the expression of the LfaR- and LfgR-controlled genes is specifically induced by plant components. PMID:18842096

  11. Mosquitocidal properties of Calotropis gigantea (Family: Asclepiadaceae) leaf extract and bacterial insecticide, Bacillus thuringiensis, against the mosquito vectors.

    PubMed

    Kovendan, Kalimuthu; Murugan, Kadarkarai; Prasanna Kumar, Kanagarajan; Panneerselvam, Chellasamy; Mahesh Kumar, Palanisamy; Amerasan, Duraisamy; Subramaniam, Jayapal; Vincent, Savariar

    2012-08-01

    Calotropis gigantea leaf extract and Bacillus thuringiensis were tested first to fourth-instar larvae and pupae of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. The medicinal plants were collected from the area around Bharathiar University, Coimbatore, India. Calotropis gigantea leaf was washed with tap water and shade-dried at room temperature. An electrical blender powdered the dried plant materials (leaves). The powder 500 g of the leaf was extracted with 1.5 L of organic solvents of methanol for 8 h using a Soxhlet apparatus and filtered. The crude leaf extracts were evaporated to dryness in a rotary vacuum evaporator. The plant extract showed larvicidal and pupicidal effects after 24 h of exposure; no mortality was observed in the control group. For Calotropis gigantea, the median lethal concentration values (LC(50)) observed for the larvicidal and pupicidal activities against mosquito vector species Anopheles stephensi I to IV larval instars and pupae were 73.77, 89.64, 121.69, 155.49, and 213.79 ppm; Aedes aegypti values were 92.27, 106.60, 136.48, 164.01, and 202.56 ppm; and Culex quinquefasciatus values were 104.66, 127.71, 173.75, 251.65, and 314.70 ppm, respectively. For B. thuringiensis, the LC(50) values of I to IV larval instars and pupae of Anopheles stephensi were 37.24, 45.41, 57.82, 80.09, and 98.34 ppm; Aedes aegypti values were 42.38, 51.90, 71.02, 96.17, and 121.59 ppm; and Culex quinquefasciatus values were 55.85, 68.07, 94.11, 113.35, and 133.87 ppm, respectively. The study proved that the methanol leaf extract of Calotropis gigantea and bacterial insecticide B. thuringiensis has mosquitocidal property and was evaluated as target species of mosquito vectors. This is an ideal ecofriendly approach for the control of vector control programs. PMID:22382205

  12. Cycle Inhibiting Factors (CIFs) Are a Growing Family of Functional Cyclomodulins Present in Invertebrate and Mammal Bacterial Pathogens

    PubMed Central

    Jubelin, Grégory; Chavez, Carolina Varela; Taieb, Frédéric; Banfield, Mark J.; Samba-Louaka, Ascel; Nobe, Rika; Nougayrède, Jean-Philippe; Zumbihl, Robert; Givaudan, Alain; Escoubas, Jean-Michel; Oswald, Eric

    2009-01-01

    The cycle inhibiting factor (Cif) produced by enteropathogenic and enterohemorrhagic Escherichia coli was the first cyclomodulin to be identified that is injected into host cells via the type III secretion machinery. Cif provokes cytopathic effects characterized by G1 and G2 cell cycle arrests, accumulation of the cyclin-dependent kinase inhibitors (CKIs) p21waf1/cip1 and p27kip1 and formation of actin stress fibres. The X-ray crystal structure of Cif revealed it to be a divergent member of a superfamily of enzymes including cysteine proteases and acetyltransferases that share a conserved catalytic triad. Here we report the discovery and characterization of four Cif homologs encoded by different pathogenic or symbiotic bacteria isolated from vertebrates or invertebrates. Cif homologs from the enterobacteria Yersinia pseudotuberculosis, Photorhabdus luminescens, Photorhabdus asymbiotica and the β-proteobacterium Burkholderia pseudomallei all induce cytopathic effects identical to those observed with Cif from pathogenic E. coli. Although these Cif homologs are remarkably divergent in primary sequence, the catalytic triad is strictly conserved and was shown to be crucial for cell cycle arrest, cytoskeleton reorganization and CKIs accumulation. These results reveal that Cif proteins form a growing family of cyclomodulins in bacteria that interact with very distinct hosts including insects, nematodes and humans. PMID:19308257

  13. A Bioinformatics Analysis Reveals a Group of MocR Bacterial Transcriptional Regulators Linked to a Family of Genes Coding for Membrane Proteins

    PubMed Central

    Milano, Teresa

    2016-01-01

    The MocR bacterial transcriptional regulators are characterized by an N-terminal domain, 60 residues long on average, possessing the winged-helix-turn-helix (wHTH) architecture responsible for DNA recognition and binding, linked to a large C-terminal domain (350 residues on average) that is homologous to fold type-I pyridoxal 5′-phosphate (PLP) dependent enzymes like aspartate aminotransferase (AAT). These regulators are involved in the expression of genes taking part in several metabolic pathways directly or indirectly connected to PLP chemistry, many of which are still uncharacterized. A bioinformatics analysis is here reported that studied the features of a distinct group of MocR regulators predicted to be functionally linked to a family of homologous genes coding for integral membrane proteins of unknown function. This group occurs mainly in the Actinobacteria and Gammaproteobacteria phyla. An analysis of the multiple sequence alignments of their wHTH and AAT domains suggested the presence of specificity-determining positions (SDPs). Mapping of SDPs onto a homology model of the AAT domain hinted at possible structural/functional roles in effector recognition. Likewise, SDPs in wHTH domain suggested the basis of specificity of Transcription Factor Binding Site recognition. The results reported represent a framework for rational design of experiments and for bioinformatics analysis of other MocR subgroups. PMID:27446613

  14. A Bioinformatics Analysis Reveals a Group of MocR Bacterial Transcriptional Regulators Linked to a Family of Genes Coding for Membrane Proteins.

    PubMed

    Milano, Teresa; Angelaccio, Sebastiana; Tramonti, Angela; Di Salvo, Martino Luigi; Contestabile, Roberto; Pascarella, Stefano

    2016-01-01

    The MocR bacterial transcriptional regulators are characterized by an N-terminal domain, 60 residues long on average, possessing the winged-helix-turn-helix (wHTH) architecture responsible for DNA recognition and binding, linked to a large C-terminal domain (350 residues on average) that is homologous to fold type-I pyridoxal 5'-phosphate (PLP) dependent enzymes like aspartate aminotransferase (AAT). These regulators are involved in the expression of genes taking part in several metabolic pathways directly or indirectly connected to PLP chemistry, many of which are still uncharacterized. A bioinformatics analysis is here reported that studied the features of a distinct group of MocR regulators predicted to be functionally linked to a family of homologous genes coding for integral membrane proteins of unknown function. This group occurs mainly in the Actinobacteria and Gammaproteobacteria phyla. An analysis of the multiple sequence alignments of their wHTH and AAT domains suggested the presence of specificity-determining positions (SDPs). Mapping of SDPs onto a homology model of the AAT domain hinted at possible structural/functional roles in effector recognition. Likewise, SDPs in wHTH domain suggested the basis of specificity of Transcription Factor Binding Site recognition. The results reported represent a framework for rational design of experiments and for bioinformatics analysis of other MocR subgroups. PMID:27446613

  15. A Diverse Family of Host-Defense Peptides (Piscidins) Exhibit Specialized Anti-Bacterial and Anti-Protozoal Activities in Fishes.

    PubMed

    Salger, Scott A; Cassady, Katherine R; Reading, Benjamin J; Noga, Edward J

    2016-01-01

    Conventional antibiotics and other chemical-based drugs are currently one of the most common methods used to control disease-related mortality in animal agriculture. Use of the innate immune system to decrease disease related mortalities is a novel alternative to conventional drugs. One component of the innate immune system is the host-defense peptides, also known as antimicrobial peptides. Host-defense peptides are typically small, amphipathic, α-helical peptides with a broad-spectrum of action against viral, bacterial, fungal, and/or protozoal pathogens. Piscidins are host-defense peptides first discovered in the hybrid striped bass (white bass, Morone chrysops, x striped bass, M. saxatilis). In this paper we identify four new piscidin isoforms in the hybrid striped bass and describe their tissue distributions. We also determine the progenitor species of origin of each piscidin (orthology) and propose a revised nomenclature for this newly described piscidin family based on a three class system. The Class I piscidins (22 amino acids in length; striped bass and white bass piscidin 1 and piscidin 3) show broad-spectrum activity against bacteria and ciliated protozoans, while the Class III piscidins (55 amino acids in length; striped bass and white bass piscidin 6 and striped bass piscidin 7) primarily show anti-protozoal activity. The Class II piscidins (44-46 amino acids in length; striped bass and white bass piscidin 4 and white bass piscidin 5) have a level of activity against bacteria and protozoans intermediate to Classes I and III. Knowledge of piscidin function and activity may help in the future development of disease-resistant lines of striped bass and white bass that could be used to produce superior hybrids for aquaculture. PMID:27552222

  16. A Diverse Family of Host-Defense Peptides (Piscidins) Exhibit Specialized Anti-Bacterial and Anti-Protozoal Activities in Fishes

    PubMed Central

    Cassady, Katherine R.; Noga, Edward J.

    2016-01-01

    Conventional antibiotics and other chemical-based drugs are currently one of the most common methods used to control disease-related mortality in animal agriculture. Use of the innate immune system to decrease disease related mortalities is a novel alternative to conventional drugs. One component of the innate immune system is the host-defense peptides, also known as antimicrobial peptides. Host-defense peptides are typically small, amphipathic, α-helical peptides with a broad-spectrum of action against viral, bacterial, fungal, and/or protozoal pathogens. Piscidins are host-defense peptides first discovered in the hybrid striped bass (white bass, Morone chrysops, x striped bass, M. saxatilis). In this paper we identify four new piscidin isoforms in the hybrid striped bass and describe their tissue distributions. We also determine the progenitor species of origin of each piscidin (orthology) and propose a revised nomenclature for this newly described piscidin family based on a three class system. The Class I piscidins (22 amino acids in length; striped bass and white bass piscidin 1 and piscidin 3) show broad-spectrum activity against bacteria and ciliated protozoans, while the Class III piscidins (55 amino acids in length; striped bass and white bass piscidin 6 and striped bass piscidin 7) primarily show anti-protozoal activity. The Class II piscidins (44–46 amino acids in length; striped bass and white bass piscidin 4 and white bass piscidin 5) have a level of activity against bacteria and protozoans intermediate to Classes I and III. Knowledge of piscidin function and activity may help in the future development of disease-resistant lines of striped bass and white bass that could be used to produce superior hybrids for aquaculture. PMID:27552222

  17. ABC transporters: bacterial exporters.

    PubMed Central

    Fath, M J; Kolter, R

    1993-01-01

    The ABC transporters (also called traffic ATPases) make up a large superfamily of proteins which share a common function and a common ATP-binding domain. ABC transporters are classified into three major groups: bacterial importers (the periplasmic permeases), eukaryotic transporters, and bacterial exporters. We present a comprehensive review of the bacterial ABC exporter group, which currently includes over 40 systems. The bacterial ABC exporter systems are functionally subdivided on the basis of the type of substrate that each translocates. We describe three main groups: protein exporters, peptide exporters, and systems that transport nonprotein substrates. Prototype exporters from each group are described in detail to illustrate our current understanding of this protein family. The prototype systems include the alpha-hemolysin, colicin V, and capsular polysaccharide exporters from Escherichia coli, the protease exporter from Erwinia chrysanthemi, and the glucan exporters from Agrobacterium tumefaciens and Rhizobium meliloti. Phylogenetic analysis of the ATP-binding domains from 29 bacterial ABC exporters indicates that the bacterial ABC exporters can be divided into two primary branches. One branch contains the transport systems where the ATP-binding domain and the membrane-spanning domain are present on the same polypeptide, and the other branch contains the systems where these domains are found on separate polypeptides. Differences in substrate specificity do not correlate with evolutionary relatedness. A complete survey of the known and putative bacterial ABC exporters is included at the end of the review. PMID:8302219

  18. Bacterial Sialidase

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Data shows that elevated sialidase in bacterial vaginosis patients correlates to premature births in women. Bacterial sialidase also plays a significant role in the unusual colonization of Pseudomonas aeruginosa in cystic fibrosis patients. Crystals of Salmonella sialidase have been reproduced and are used for studying the inhibitor-enzyme complexes. These inhibitors may also be used to inhibit a trans-sialidase of Trypanosome cruzi, a very similar enzyme to bacterial sialidase, therefore preventing T. cruzi infection, the causitive agent of Chagas' disease. The Center for Macromolecular Crystallography suggests that inhibitors of bacterial sialidases can be used as prophylactic drugs to prevent bacterial infections in these critical cases.

  19. Identification of a copper-repressible C-type heme protein of Methylococcus capsulatus (Bath). A member of a novel group of the bacterial di-heme cytochrome c peroxidase family of proteins.

    PubMed

    Karlsen, Odd A; Kindingstad, Louise; Angelskår, Solveig M; Bruseth, Live J; Straume, Daniel; Puntervoll, Pål; Fjellbirkeland, Anne; Lillehaug, Johan R; Jensen, Harald B

    2005-12-01

    Genomic sequencing of the methanotrophic bacterium, Methylococcus capsulatus (Bath), revealed an open reading frame (MCA2590) immediately upstream of the previously described mopE gene (MCA2589). Sequence analyses of the deduced amino acid sequence demonstrated that the MCA2590-encoded protein shared significant, but restricted, sequence similarity to the bacterial di-heme cytochrome c peroxidase (BCCP) family of proteins. Two putative C-type heme-binding motifs were predicted, and confirmed by positive heme staining. Immunospecific recognition and biotinylation of whole cells combined with MS analyses confirmed expression of MCA2590 in M. capsulatus as a protein noncovalently associated with the cellular surface of the bacterium exposed to the cell exterior. Similar to MopE, expression of MCA2590 is regulated by the bioavailability of copper and is most abundant in M. capsulatus cultures grown under low copper conditions, thus indicating an important physiological role under these growth conditions. MCA2590 is distinguished from previously characterized members of the BCCP family by containing a much longer primary sequence that generates an increased distance between the two heme-binding motifs in its primary sequence. Furthermore, the surface localization of MCA2590 is in contrast to the periplasmic location of the reported BCCP members. Based on our experimental and bioinformatical analyses, we suggest that MCA2590 is a member of a novel group of bacterial di-heme cytochrome c peroxidases not previously characterized. PMID:16336269

  20. Bacterial Communities Associated with Porites White Patch Syndrome (PWPS) on Three Western Indian Ocean (WIO) Coral Reefs

    PubMed Central

    Séré, Mathieu G.; Tortosa, Pablo; Chabanet, Pascale; Turquet, Jean; Quod, Jean-Pascal; Schleyer, Michael H.

    2013-01-01

    The scleractinian coral Porites lutea, an important reef-building coral on western Indian Ocean reefs (WIO), is affected by a newly-reported white syndrome (WS) the Porites white patch syndrome (PWPS). Histopathology and culture-independent molecular techniques were used to characterise the microbial communities associated with this emerging disease. Microscopy showed extensive tissue fragmentation generally associated with ovoid basophilic bodies resembling bacterial aggregates. Results of 16S rRNA sequence analysis revealed a high variability between bacterial communities associated with PWPS-infected and healthy tissues in P. lutea, a pattern previously reported in other coral diseases such as black band disease (BBD), white band disease (WBD) and white plague diseases (WPD). Furthermore, substantial variations in bacterial communities were observed at the different sampling locations, suggesting that there is no strong bacterial association in Porites lutea on WIO reefs. Several sequences affiliated with potential pathogens belonging to the Vibrionaceae and Rhodobacteraceae were identified, mainly in PWPS-infected coral tissues. Among them, only two ribotypes affiliated to Shimia marina (NR043300.1) and Vibrio hepatarius (NR025575.1) were consistently found in diseased tissues from the three geographically distant sampling localities. The role of these bacterial species in PWPS needs to be tested experimentally. PMID:24391819

  1. Expansion of the aminoglycoside-resistance 16S rRNA (m1A1408) methyltransferase family: expression and functional characterization of four hypothetical enzymes of diverse bacterial origin

    PubMed Central

    Witek, Marta A.; Conn, Graeme L.

    2014-01-01

    The global dissemination, potential activity in diverse species and broad resistance spectrum conferred by the aminoglycoside-resistance ribosomal RNA methyltransferases make them a significant potential new threat to the efficacy of aminoglycoside antibiotics in the treatment of serious bacterial infections. The N1 methylation of adenosine 1408 (m1A1408) confers resistance to structurally diverse aminoglycosides, including kanamycin, neomycin and apramycin. The limited analyses to date of the enzymes responsible have identified common features but also potential differences in their molecular details of action. Therefore, with the goal of expanding the known 16S rRNA (m1A1408) methyltransferase family as a platform for developing a more complete mechanistic understanding, we report here the cloning, expression and functional analyses of four hypothetical aminoglycoside-resistance rRNA methyltransferases from recent genome sequences of diverse bacterial species. Each of the genes produced a soluble, folded protein with a secondary structure, as determined from circular dichroism (CD) spectra, consistent with enzymes for which high-resolution structures are available. For each enzyme, antibiotic minimum inhibitory concentration (MIC) assays revealed a resistance spectrum characteristic of the known 16S rRNA (m1A1408) methyltransferases and the modified nucleotide was confirmed by reverse transcription as A1408. In common with other family members, higher binding affinity for the methylation reaction by-product S-adenosylhomocysteine (SAH) than the cosubstrate S-adenosyl-L-methionine (SAM) was observed for three methyltransferases, while one unexpectedly showed no measurable affinity for SAH. Collectively, these results confirm each hypothetical enzyme is a functional 16S rRNA (m1A1408) methyltransferase but also point to further potential mechanistic variation within this enzyme family. PMID:24963996

  2. Bacterial Proteasomes

    PubMed Central

    Jastrab, Jordan B.; Darwin, K. Heran

    2015-01-01

    Interest in bacterial proteasomes was sparked by the discovery that proteasomal degradation is required for the pathogenesis of Mycobacterium tuberculosis, one of the world's deadliest pathogens. Although bacterial proteasomes are structurally similar to their eukaryotic and archaeal homologs, there are key differences in their mechanisms of assembly, activation, and substrate targeting for degradation. In this article, we compare and contrast bacterial proteasomes with their archaeal and eukaryotic counterparts, and we discuss recent advances in our understanding of how bacterial proteasomes function to influence microbial physiology. PMID:26488274

  3. Engulfment of Neisseria gonorrhoeae: revealing distinct processes of bacterial entry by individual carcinoembryonic antigen-related cellular adhesion molecule family receptors.

    PubMed

    McCaw, Shannon E; Liao, Edward H; Gray-Owen, Scott D

    2004-05-01

    Individual Neisseria gonorrhoeae colony opacity-associated (Opa) protein variants can bind up to four different carcinoembryonic antigen-related cellular adhesion molecule (CEACAM) receptors. Most human cells encountered by gonococci express a combination of CEACAM receptors, thereby complicating the elucidation of intracellular signaling pathways triggered by individual receptors. Here, we compare the process of bacterial engulfment by a panel of stably transfected HeLa epithelial cell lines expressing each CEACAM receptor in isolation. CEACAM1 and CEACAM3 each contain proteinaceous transmembrane and cytoplasmic domains; however, the processes of neisserial uptake mediated by these receptors differ with respect to their susceptibilities to both tyrosine kinase inhibitors and the actin microfilament-disrupting agent cytochalasin D. Neisserial uptake mediated by glycosylphosphatidylinositol (GPI)-anchored CEACAM5 and CEACAM6 was not significantly affected by any of a broad spectrum of inhibitors tested. However, cleavage of the GPI anchor by phosphatidylinositol-specific phospholipase C reduced bacterial uptake by HeLa cells expressing CEACAM5, consistent with a single zipper-like mechanism of uptake mediated by this receptor. Regardless of the CEACAM receptor expressed, internalized gonococci were effectively killed by a microtubule-dependent process that required acidification of the bacterium-containing phagosome. Given the phase-variable nature of neisserial Opa proteins, these results indicate that the mechanism of bacterial engulfment and the cellular response to gonococcal infection depend on both the receptor specificities of the neisserial Opa protein variants expressed and the spectrum of CEACAM receptors present on target cells, each of which determines the combination of receptors ultimately engaged. PMID:15102784

  4. Bacterial Keratitis

    MedlinePlus

    ... very quickly, and if left untreated, can cause blindness. The bacteria usually responsible for this type of ... to intense ultraviolet radiation exposure, e.g. snow blindness or welder's arc eye). Next Bacterial Keratitis Symptoms ...

  5. Bacterial communities associated with healthy and Acropora white syndrome-affected corals from American Samoa.

    PubMed

    Wilson, Bryan; Aeby, Greta S; Work, Thierry M; Bourne, David G

    2012-05-01

    Acropora white syndrome (AWS) is characterized by rapid tissue loss revealing the white underlying skeleton and affects corals worldwide; however, reports of causal agents are conflicting. Samples were collected from healthy and diseased corals and seawater around American Samoa and bacteria associated with AWS characterized using both culture-dependent and culture-independent methods, from coral mucus and tissue slurries, respectively. Bacterial 16S rRNA gene clone libraries derived from coral tissue were dominated by the Gammaproteobacteria, and Jaccard's distances calculated between the clone libraries showed that those from diseased corals were more similar to each other than to those from healthy corals. 16S rRNA genes from 78 culturable coral mucus isolates also revealed a distinct partitioning of bacterial genera into healthy and diseased corals. Isolates identified as Vibrionaceae were further characterized by multilocus sequence typing, revealing that whilst several Vibrio spp. were found to be associated with AWS lesions, a recently described species, Vibrio owensii, was prevalent amongst cultured Vibrio isolates. Unaffected tissues from corals with AWS had a different microbiota than normal Acropora as found by others. Determining whether a microbial shift occurs prior to disease outbreaks will be a useful avenue of pursuit and could be helpful in detecting prodromal signs of coral disease prior to manifestation of lesions. PMID:22283330

  6. Bacterial communities associated with healthy and Acropora white syndrome-affected corals from American Samoa

    USGS Publications Warehouse

    Wilson, Bryan; Aeby, Greta S.; Work, Thierry M.; Bourne, David G.

    2012-01-01

    Acropora white syndrome (AWS) is characterized by rapid tissue loss revealing the white underlying skeleton and affects corals worldwide; however, reports of causal agents are conflicting. Samples were collected from healthy and diseased corals and seawater around American Samoa and bacteria associated with AWS characterized using both culture-dependent and culture-independent methods, from coral mucus and tissue slurries, respectively. Bacterial 16S rRNA gene clone libraries derived from coral tissue were dominated by the Gammaproteobacteria, and Jaccard's distances calculated between the clone libraries showed that those from diseased corals were more similar to each other than to those from healthy corals. 16S rRNA genes from 78 culturable coral mucus isolates also revealed a distinct partitioning of bacterial genera into healthy and diseased corals. Isolates identified as Vibrionaceae were further characterized by multilocus sequence typing, revealing that whilst several Vibrio spp. were found to be associated with AWS lesions, a recently described species, Vibrio owensii, was prevalent amongst cultured Vibrio isolates. Unaffected tissues from corals with AWS had a different microbiota than normal Acropora as found by others. Determining whether a microbial shift occurs prior to disease outbreaks will be a useful avenue of pursuit and could be helpful in detecting prodromal signs of coral disease prior to manifestation of lesions.

  7. Single sea urchin phagocytes express messages of a single sequence from the diverse Sp185/333 gene family in response to bacterial challenge.

    PubMed

    Majeske, Audrey J; Oren, Matan; Sacchi, Sandro; Smith, L Courtney

    2014-12-01

    Immune systems in animals rely on fast and efficient responses to a wide variety of pathogens. The Sp185/333 gene family in the purple sea urchin, Strongylocentrotus purpuratus, consists of an estimated 50 (±10) members per genome that share a basic gene structure but show high sequence diversity, primarily due to the mosaic appearance of short blocks of sequence called elements. The genes show significantly elevated expression in three subpopulations of phagocytes responding to marine bacteria. The encoded Sp185/333 proteins are highly diverse and have central effector functions in the immune system. In this study we report the Sp185/333 gene expression in single sea urchin phagocytes. Sea urchins challenged with heat-killed marine bacteria resulted in a typical increase in coelomocyte concentration within 24 h, which included an increased proportion of phagocytes expressing Sp185/333 proteins. Phagocyte fractions enriched from coelomocytes were used in limiting dilutions to obtain samples of single cells that were evaluated for Sp185/333 gene expression by nested RT-PCR. Amplicon sequences showed identical or nearly identical Sp185/333 amplicon sequences in single phagocytes with matches to six known Sp185/333 element patterns, including both common and rare element patterns. This suggested that single phagocytes show restricted expression from the Sp185/333 gene family and infers a diverse, flexible, and efficient response to pathogens. This type of expression pattern from a family of immune response genes in single cells has not been identified previously in other invertebrates. PMID:25355922

  8. Ichthyobacterium seriolicida gen. nov., sp. nov., a member of the phylum 'Bacteroidetes', isolated from yellowtail fish (Seriola quinqueradiata) affected by bacterial haemolytic jaundice, and proposal of a new family, Ichthyobacteriaceae fam. nov.

    PubMed

    Takano, Tomokazu; Matsuyama, Tomomasa; Sakai, Takamitsu; Nakamura, Yoji; Kamaishi, Takashi; Nakayasu, Chihaya; Kondo, Hidehiro; Hirono, Ikuo; Fukuda, Yutaka; Sorimachi, Minoru; Iida, Takaji

    2016-02-01

    A novel Gram-stain-negative, rod-shaped (0.3 × 4-6 μm), non-flagellated, aerobic strain with gliding motility, designated JBKA-6T, was isolated in 1991 from a yellowtail fish, Seriola quinqueradiata, showing symptoms of bacterial haemolytic jaundice. 16S rRNA gene sequence analysis showed that strain JBKA-6T was related most closely to members of the family Flavobacteriaceae in the phylum 'Bacteroidetes'. Furthermore, based on gyrB gene sequence analysis, JBKA-6T was classified into a single clade within the order Flavobacteriales, which was distinct from the known clades of the families Flavobacteriaceae, Blattabacteriaceae and Cryomorphaceae. The predominant isoprenoid quinone was identified as MK-6 (97.9 %), and the major cellular fatty acids (>10 %) were C14 : 0 and iso-C15 : 0. The main polar lipids were phosphatidylethanolamine, three unidentified phospholipids, two unidentified aminophospholipids and two unidentified polar lipids. The DNA G+C content of JBKA-6T, as derived from its whole genome, was 33.4 mol%. The distinct phylogenetic position and phenotypic traits of strain JBKA-6T distinguish it from all other described species of the phylum 'Bacteroidetes', and therefore it was concluded that strain JBKA-6T represents a new member of the phylum 'Bacteroidetes', and the name Ichthyobacterium seriolicida gen. nov., sp. nov. is proposed. The type strain of Ichthyobacterium seriolicida is JBKA-6T ( = ATCC BAA-2465T = JCM 18228T). We also propose that Icthyobacterium gen. nov. is the type genus of a novel family, Ichthyobacteriaceae fam. nov. PMID:26554606

  9. A New Family of Membrane Electron Transporters and Its Substrates, Including a New Cell Envelope Peroxiredoxin, Reveal a Broadened Reductive Capacity of the Oxidative Bacterial Cell Envelope

    PubMed Central

    Cho, Seung-Hyun; Parsonage, Derek; Thurston, Casey; Dutton, Rachel J.; Poole, Leslie B.; Collet, Jean-Francois; Beckwith, Jon

    2012-01-01

    ABSTRACT The Escherichia coli membrane protein DsbD functions as an electron hub that dispatches electrons received from the cytoplasmic thioredoxin system to periplasmic oxidoreductases involved in protein disulfide isomerization, cytochrome c biogenesis, and sulfenic acid reduction. Here, we describe a new class of DsbD proteins, named ScsB, whose members are found in proteobacteria and Chlamydia. ScsB has a domain organization similar to that of DsbD, but its amino-terminal domain differs significantly. In DsbD, this domain directly interacts with substrates to reduce them, which suggests that ScsB acts on a different array of substrates. Using Caulobacter crescentus as a model organism, we searched for the substrates of ScsB. We discovered that ScsB provides electrons to the first peroxide reduction pathway identified in the bacterial cell envelope. The reduction pathway comprises a thioredoxin-like protein, TlpA, and a peroxiredoxin, PprX. We show that PprX is a thiol-dependent peroxidase that efficiently reduces both hydrogen peroxide and organic peroxides. Moreover, we identified two additional proteins that depend on ScsB for reduction, a peroxiredoxin-like protein, PrxL, and a novel protein disulfide isomerase, ScsC. Altogether, our results reveal that the array of proteins involved in reductive pathways in the oxidative cell envelope is significantly broader than was previously thought. Moreover, the identification of a new periplasmic peroxiredoxin indicates that in some bacteria, it is important to directly scavenge peroxides in the cell envelope even before they reach the cytoplasm. PMID:22493033

  10. B. subtilis ykuD Protein at 2.0 Angstrom Resolution: Insights into the Structure and Function of a Novel, Ubiquitous Family of Bacterial Enzymes

    SciTech Connect

    Bielnicki,J.; Devedjiev, Y.; Derewenda, U.; Dauter, Z.; Joachimiak, A.; Derewenda, Z.

    2006-01-01

    The crystal structure of the product of the Bacillus subtilis ykuD gene was solved by the multiwavelength anomalous dispersion (MAD) method and refined using data to 2.0 Angstroms resolution. The ykuD protein is a representative of a distinctly prokaryotic and ubiquitous family found among both pathogenic and nonpathogenic Gram-positive and Gram-negative bacteria. The deduced amino acid sequence reveals the presence of an N-terminal LysM domain, which occurs among enzymes involved in cell wall metabolism, and a novel, putative catalytic domain with a highly conserved His/Cys-containing motif of hitherto unknown structure. As the wild-type protein did not crystallize, a double mutant was designed (Lys117Ala/Gln118Ala) to reduce excess surface conformational entropy. As expected, the structure of the LysM domain is similar to the NMR structure reported for an analogous domain from Escherichia coli murein transglycosylase MltD. The molecular model also shows that the 112-residue-long C-terminal domain has a novel tertiary fold consisting of a {beta}-sandwich with two mixed sheets, one containing five strands and the other, six strands. The two {beta}-sheets form a cradle capped by an {alpha}-helix. This domain contains a putative catalytic site with a tetrad of invariant His123, Gly124, Cys139, and Arg141. The stereochemistry of this active site shows similarities to peptidotransferases and sortases, and suggests that the enzymes of the ykuD family may play an important role in cell wall biology.

  11. CpsR, a GntR family regulator, transcriptionally regulates capsular polysaccharide biosynthesis and governs bacterial virulence in Streptococcus pneumoniae

    PubMed Central

    Wu, Kaifeng; Xu, Hongmei; Zheng, Yuqiang; Wang, Libin; Zhang, Xuemei; Yin, Yibing

    2016-01-01

    Transcriptional regulation of capsule expression is critical for pneumococcal transition from carriage to infection, yet the underlying mechanism remains incompletely understood. Here, we describe the regulation of capsular polysaccharide, one of the most important pneumococcal virulence factor by a GntR family regulator, CpsR. Electrophoretic mobility-shift assays have shown the direct interaction between CpsR and the cps promoter (cpsp), and their interaction could be competitively interfered by glucose. DNase I footprinting assays localized the binding site to a region −146 to −114 base pairs relative to the transcriptional start site of the cps locus in S. pneumoniae D39. We found that CpsR negatively controlled the transcription of the cps locus and hence CPS production, which was confirmed by fine-tuning expression of CpsR in a ΔcpsR complemented strain. Increased expression of CpsR in complemented strain led to a decreased resistance to the whole-blood-mediated killing, suggesting a protective role for CpsR-cpsp interaction in the establishment of invasive infection. Finally, animal experiments showed that CpsR-cpsp interaction was necessary for both pneumococcal colonization and invasive infection. Taken together, our results provide a thorough insight into the regulation of capsule production mediated by CpsR and its important roles in pneumococcal pathogenesis. PMID:27386955

  12. Eco-Evolutionary Dynamics of Episomes among Ecologically Cohesive Bacterial Populations

    SciTech Connect

    Xue, Hong; Cordero, Otto X.; Camas, Francisco M.; Trimble, William; Meyer, Folker; Guglielmini, Julien; Rocha, Eduardo P. C.; Polz, Martin F.

    2015-05-05

    Although plasmids and other episomes are recognized as key players in horizontal gene transfer among microbes, their diversity and dynamics among ecologically structured host populations in the wild remain poorly understood. Here, we show that natural populations of marine Vibrionaceae bacteria host large numbers of families of episomes, consisting of plasmids and a surprisingly high fraction of plasmid-like temperate phages. Episomes are unevenly distributed among host populations, and contrary to the notion that high-density communities in biofilms act as hot spots of gene transfer, we identified a strong bias for episomes to occur in free-living as opposed to particle-attached cells. Mapping of episomal families onto host phylogeny shows that, with the exception of all phage and a few plasmid families, most are of recent evolutionary origin and appear to have spread rapidly by horizontal transfer. Such high eco-evolutionary turnover is particularly surprising for plasmids that are, based on previously suggested categorization, putatively nontransmissible, indicating that this type of plasmid is indeed frequently transferred by currently unknown mechanisms. Finally, analysis of recent gene transfer among plasmids reveals a network of extensive exchange connecting nearly all episomes. Genes functioning in plasmid transfer and maintenance are frequently exchanged, suggesting that plasmids can be rapidly transformed from one category to another. The broad distribution of episomes among distantly related hosts and the observed promiscuous recombination patterns show how episomes can offer their hosts rapid assembly and dissemination of novel functions.

  13. Eco-Evolutionary Dynamics of Episomes among Ecologically Cohesive Bacterial Populations

    DOE PAGESBeta

    Xue, Hong; Cordero, Otto X.; Camas, Francisco M.; Trimble, William; Meyer, Folker; Guglielmini, Julien; Rocha, Eduardo P. C.; Polz, Martin F.

    2015-05-05

    Although plasmids and other episomes are recognized as key players in horizontal gene transfer among microbes, their diversity and dynamics among ecologically structured host populations in the wild remain poorly understood. Here, we show that natural populations of marine Vibrionaceae bacteria host large numbers of families of episomes, consisting of plasmids and a surprisingly high fraction of plasmid-like temperate phages. Episomes are unevenly distributed among host populations, and contrary to the notion that high-density communities in biofilms act as hot spots of gene transfer, we identified a strong bias for episomes to occur in free-living as opposed to particle-attached cells.more » Mapping of episomal families onto host phylogeny shows that, with the exception of all phage and a few plasmid families, most are of recent evolutionary origin and appear to have spread rapidly by horizontal transfer. Such high eco-evolutionary turnover is particularly surprising for plasmids that are, based on previously suggested categorization, putatively nontransmissible, indicating that this type of plasmid is indeed frequently transferred by currently unknown mechanisms. Finally, analysis of recent gene transfer among plasmids reveals a network of extensive exchange connecting nearly all episomes. Genes functioning in plasmid transfer and maintenance are frequently exchanged, suggesting that plasmids can be rapidly transformed from one category to another. The broad distribution of episomes among distantly related hosts and the observed promiscuous recombination patterns show how episomes can offer their hosts rapid assembly and dissemination of novel functions.« less

  14. Bacterial Immunity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A variety of bacterial agents reside in and around the environment that can cause illness and death in a poultry flock. Many cause disseminated disease while others exert more local effects such as the respiratory or gastrointestinal tract. The host, for our current purposes the laying hen, has de...

  15. Bacterial community shift is induced by dynamic environmental parameters in a changing coastal ecosystem (northern Adriatic, northeastern Mediterranean Sea)--a 2-year time-series study.

    PubMed

    Tinta, T; Vojvoda, J; Mozetič, P; Talaber, I; Vodopivec, M; Malfatti, F; Turk, V

    2015-10-01

    The potential link between the microbial dynamics and the environmental parameters was investigated in a semi-enclosed and highly dynamic coastal system (Gulf of Trieste, northern Adriatic Sea, NE Mediterranean Sea). Our comprehensive 2-year time-series study showed that despite the shallowness of this area, there was a significant difference between the surface and the bottom bacterial community structure. The bottom bacterial community was more diverse than the surface one and influenced by sediment re-suspension. The surface seawater temperature had a profound effect on bacterial productivity, while the bacterial community structure was more affected by freshwater-borne nutrients and phytoplankton blooms. Phytoplankton blooms caused an increase of Gammaproteobacteria (Alteromonadaceae, SAR86 and Vibrionaceae) and shift in dominance from SAR11 to Rhodobacteraceae taxon at the surface. Our results propose the importance of the water mass movements as drivers of freshwater-borne nutrients and of allochthonous microbial taxa. This study emphasizes the prediction power based on association networks analyses that are fed with long-term measurements of microbial and environmental parameters. These interaction maps offer valuable insights into the response of marine ecosystem to climate- and anthropogenic-driven stressors. PMID:24903068

  16. Bacterial Skin Infections.

    PubMed

    Ibrahim, Fadi; Khan, Tariq; Pujalte, George G A

    2015-12-01

    Skin and soft tissue infections account for 0.5% of outpatient visits to primary care. Skin and soft tissue infections can usually be managed in an outpatient setting. However, there are certain circumstances as discussed in this article that require more urgent care or inpatient management. Primary care providers should be able to diagnose, manage, and provide appropriate follow-up care for these frequently seen skin infections. This article provides family physicians with a comprehensive review of the assessment and management of common bacterial skin infections. PMID:26612370

  17. [Bacterial vaginosis].

    PubMed

    Romero Herrero, Daniel; Andreu Domingo, Antonia

    2016-07-01

    Bacterial vaginosis (BV) is the main cause of vaginal dysbacteriosis in the women during the reproductive age. It is an entity in which many studies have focused for years and which is still open for discussion topics. This is due to the diversity of microorganisms that cause it and therefore, its difficult treatment. Bacterial vaginosis is probably the result of vaginal colonization by complex bacterial communities, many of them non-cultivable and with interdependent metabolism where anaerobic populations most likely play an important role in its pathogenesis. The main symptoms are an increase of vaginal discharge and the unpleasant smell of it. It can lead to serious consequences for women, such as an increased risk of contracting sexually transmitted infections including human immunodeficiency virus and upper genital tract and pregnancy complications. Gram stain is the gold standard for microbiological diagnosis of BV, but can also be diagnosed using the Amsel clinical criteria. It should not be considered a sexually transmitted disease but it is highly related to sex. Recurrence is the main problem of medical treatment. Apart from BV, there are other dysbacteriosis less characterized like aerobic vaginitis of which further studies are coming slowly but are achieving more attention and consensus among specialists. PMID:27474242

  18. Establishing a Role for Bacterial Cellulose in Environmental Interactions: Lessons Learned from Diverse Biofilm-Producing Proteobacteria.

    PubMed

    Augimeri, Richard V; Varley, Andrew J; Strap, Janice L

    2015-01-01

    Bacterial cellulose (BC) serves as a molecular glue to facilitate intra- and inter-domain interactions in nature. Biosynthesis of BC-containing biofilms occurs in a variety of Proteobacteria that inhabit diverse ecological niches. The enzymatic and regulatory systems responsible for the polymerization, exportation, and regulation of BC are equally as diverse. Though the magnitude and environmental consequences of BC production are species-specific, the common role of BC-containing biofilms is to establish close contact with a preferred host to facilitate efficient host-bacteria interactions. Universally, BC aids in attachment, adherence, and subsequent colonization of a substrate. Bi-directional interactions influence host physiology, bacterial physiology, and regulation of BC biosynthesis, primarily through modulation of intracellular bis-(3'→5')-cyclic diguanylate (c-di-GMP) levels. Depending on the circumstance, BC producers exhibit a pathogenic or symbiotic relationship with plant, animal, or fungal hosts. Rhizobiaceae species colonize plant roots, Pseudomonadaceae inhabit the phyllosphere, Acetobacteriaceae associate with sugar-loving insects and inhabit the carposphere, Enterobacteriaceae use fresh produce as vehicles to infect animal hosts, and Vibrionaceae, particularly Aliivibrio fischeri, colonize the light organ of squid. This review will highlight the diversity of the biosynthesis and regulation of BC in nature by discussing various examples of Proteobacteria that use BC-containing biofilms to facilitate host-bacteria interactions. Through discussion of current data we will establish new directions for the elucidation of BC biosynthesis, its regulation and its ecophysiological roles. PMID:26635751

  19. Establishing a Role for Bacterial Cellulose in Environmental Interactions: Lessons Learned from Diverse Biofilm-Producing Proteobacteria

    PubMed Central

    Augimeri, Richard V.; Varley, Andrew J.; Strap, Janice L.

    2015-01-01

    Bacterial cellulose (BC) serves as a molecular glue to facilitate intra- and inter-domain interactions in nature. Biosynthesis of BC-containing biofilms occurs in a variety of Proteobacteria that inhabit diverse ecological niches. The enzymatic and regulatory systems responsible for the polymerization, exportation, and regulation of BC are equally as diverse. Though the magnitude and environmental consequences of BC production are species-specific, the common role of BC-containing biofilms is to establish close contact with a preferred host to facilitate efficient host–bacteria interactions. Universally, BC aids in attachment, adherence, and subsequent colonization of a substrate. Bi-directional interactions influence host physiology, bacterial physiology, and regulation of BC biosynthesis, primarily through modulation of intracellular bis-(3′→5′)-cyclic diguanylate (c-di-GMP) levels. Depending on the circumstance, BC producers exhibit a pathogenic or symbiotic relationship with plant, animal, or fungal hosts. Rhizobiaceae species colonize plant roots, Pseudomonadaceae inhabit the phyllosphere, Acetobacteriaceae associate with sugar-loving insects and inhabit the carposphere, Enterobacteriaceae use fresh produce as vehicles to infect animal hosts, and Vibrionaceae, particularly Aliivibrio fischeri, colonize the light organ of squid. This review will highlight the diversity of the biosynthesis and regulation of BC in nature by discussing various examples of Proteobacteria that use BC-containing biofilms to facilitate host–bacteria interactions. Through discussion of current data we will establish new directions for the elucidation of BC biosynthesis, its regulation and its ecophysiological roles. PMID:26635751

  20. Bacterial actins and their diversity

    PubMed Central

    Ozyamak, Ertan; Kollman, Justin M.; Komeili, Arash

    2015-01-01

    For many years bacteria were considered rather simple organisms, but the dogmatic notion that subcellular organization is a eukaryotic trait has been overthrown for more than a decade. The discovery of homologs of the eukaryotic cytoskeletal proteins actin, tubulin, and intermediate filaments in bacteria has been instrumental in changing this view. Over the recent years we gained an incredible level of insight into the diverse family of bacterial actins and their molecular workings. Here we review the functional, biochemical and structural features of the most well-studied bacterial actins. PMID:24015924

  1. Bacterial Games

    NASA Astrophysics Data System (ADS)

    Frey, Erwin; Reichenbach, Tobias

    Microbial laboratory communities have become model systems for studying the complex interplay between nonlinear dynamics of evolutionary selection forces, stochastic fluctuations arising from the probabilistic nature of interactions, and spatial organization. Major research goals are to identify and understand mechanisms that ensure viability of microbial colonies by allowing for species diversity, cooperative behavior and other kinds of "social" behavior. A synthesis of evolutionary game theory, nonlinear dynamics, and the theory of stochastic processes provides the mathematical tools and conceptual framework for a deeper understanding of these ecological systems. We give an introduction to the modern formulation of these theories and illustrate their effectiveness, focusing on selected examples of microbial systems. Intrinsic fluctuations, stemming from the discreteness of individuals, are ubiquitous, and can have important impact on the stability of ecosystems. In the absence of speciation, extinction of species is unavoidable, may, however, take very long times. We provide a general concept for defining survival and extinction on ecological time scales. Spatial degrees of freedom come with a certain mobility of individuals. When the latter is sufficiently high, bacterial community structures can be understood through mapping individual-based models, in a continuum approach, onto stochastic partial differential equations. These allow progress using methods of nonlinear dynamics such as bifurcation analysis and invariant manifolds. We conclude with a perspective on the current challenges in quantifying bacterial pattern formation, and how this might have an impact on fundamental research in nonequilibrium physics .

  2. Vertebrate Acyl CoA synthetase family member 4 (ACSF4-U26) is a β-alanine-activating enzyme homologous to bacterial non-ribosomal peptide synthetase.

    PubMed

    Drozak, Jakub; Veiga-da-Cunha, Maria; Kadziolka, Beata; Van Schaftingen, Emile

    2014-03-01

    Mammalian ACSF4-U26 (Acyl CoA synthetase family member 4), a protein of unknown function, comprises a putative adenylation domain (AMP-binding domain) similar to those of bacterial non-ribosomal peptide synthetases, a putative phosphopantetheine attachment site, and a C-terminal PQQDH (pyrroloquinoline quinone dehydrogenase)-related domain. Orthologues comprising these three domains are present in many eukaryotes including plants. Remarkably, the adenylation domain of plant ACSF4-U26 show greater identity with Ebony, the insect enzyme that ligates β-alanine to several amines, than with vertebrate or insect ACSF4-U26, and prediction of its specificity suggests that it activates β-alanine. In the presence of ATP, purified mouse recombinant ACSF4-U26 progressively formed a covalent bond with radiolabelled β-alanine. The bond was not formed in a point mutant lacking the phosphopantetheine attachment site. Competition experiments with various amino acids indicated that the reaction was almost specific for β-alanine, and a KM of ~ 5 μm was calculated for this reaction. The loaded enzyme was used to study the formation of a potential end product. Among the 20 standard amino acids, only cysteine stimulated unloading of the enzyme. This effect was mimicked by cysteamine and dithiothreitol, and was unaffected by absence of the PQQDH-related domain, suggesting that β-alanine transfer onto thiols is catalysed by the ACSF4-U26 adenylation domain, but is physiologically irrelevant. We conclude that ACSF4-U26 is a β-alanine-activating enzyme, and hypothesize that it is involved in a rare intracellular reaction, possibly an infrequent post-translational or post-transcriptional modification. PMID:24467666

  3. Family Preservation & Family Functioning.

    ERIC Educational Resources Information Center

    McCroskey, Jacquelyn; Meezan, William

    This book reports a study of the outcomes of home-based family preservation services for abusive and neglectful families in Los Angeles County. Using the Family Assessment Form, the research project evaluated services provided by two voluntary agencies, and focused on changes in family functioning between the opening and closing of services during…

  4. Bacterial Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Lauga, Eric

    2016-01-01

    Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells, yet they represent the bulk of the world's biomass and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micrometer scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically complex environments. Using hydrodynamics as an organizing framework, I review the biomechanics of bacterial motility and look ahead to future challenges.

  5. Bacterial symbionts and natural products

    PubMed Central

    Crawford, Jason M.; Clardy, Jon

    2011-01-01

    The study of bacterial symbionts of eukaryotic hosts has become a powerful discovery engine for chemistry. This highlight looks at four case studies that exemplify the range of chemistry and biology involved in these symbioses: a bacterial symbiont of a fungus and a marine invertebrate that produce compounds with significant anticancer activity, and bacterial symbionts of insects and nematodes that produce compounds that regulate multilateral symbioses. In the last ten years, a series of shocking revelations – the molecular equivalents of a reality TV show’s uncovering the true parents of a well known individual or a deeply hidden family secret – altered the study of genetically encoded small molecules, natural products for short. These revelations all involved natural products produced by bacterial symbionts, and while details differed, two main plot lines emerged: parentage, in which the real producers of well known natural products with medical potential were not the organisms from which they were originally discovered, and hidden relationships, in which bacterially produced small molecules turned out to be the unsuspected regulators of complex interactions. For chemists, these studies led to new molecules, new biosynthetic pathways, and an understanding of the biological functions these molecules fulfill. PMID:21594283

  6. Diverse Bacterial Microcompartment Organelles

    PubMed Central

    Chowdhury, Chiranjit; Sinha, Sharmistha; Chun, Sunny; Yeates, Todd O.

    2014-01-01

    SUMMARY Bacterial microcompartments (MCPs) are sophisticated protein-based organelles used to optimize metabolic pathways. They consist of metabolic enzymes encapsulated within a protein shell, which creates an ideal environment for catalysis and facilitates the channeling of toxic/volatile intermediates to downstream enzymes. The metabolic processes that require MCPs are diverse and widely distributed and play important roles in global carbon fixation and bacterial pathogenesis. The protein shells of MCPs are thought to selectively control the movement of enzyme cofactors, substrates, and products (including toxic or volatile intermediates) between the MCP interior and the cytoplasm of the cell using both passive electrostatic/steric and dynamic gated mechanisms. Evidence suggests that specialized shell proteins conduct electrons between the cytoplasm and the lumen of the MCP and/or help rebuild damaged iron-sulfur centers in the encapsulated enzymes. The MCP shell is elaborated through a family of small proteins whose structural core is known as a bacterial microcompartment (BMC) domain. BMC domain proteins oligomerize into flat, hexagonally shaped tiles, which assemble into extended protein sheets that form the facets of the shell. Shape complementarity along the edges allows different types of BMC domain proteins to form mixed sheets, while sequence variation provides functional diversification. Recent studies have also revealed targeting sequences that mediate protein encapsulation within MCPs, scaffolding proteins that organize lumen enzymes and the use of private cofactor pools (NAD/H and coenzyme A [HS-CoA]) to facilitate cofactor homeostasis. Although much remains to be learned, our growing understanding of MCPs is providing a basis for bioengineering of protein-based containers for the production of chemicals/pharmaceuticals and for use as molecular delivery vehicles. PMID:25184561

  7. Bacterial vaginosis.

    PubMed Central

    Spiegel, C A

    1991-01-01

    Bacterial vaginosis (BV) is the most common of the vaginitides affecting women of reproductive age. It appears to be due to an alteration in the vaginal ecology by which Lactobacillus spp., the predominant organisms in the healthy vagina, are replaced by a mixed flora including Prevotella bivia, Prevotella disiens, Porphyromonas spp., Mobiluncus spp., and Peptostreptococcus spp. All of these organisms except Mobiluncus spp. are also members of the endogenous vaginal flora. While evidence from treatment trials does not support the notion that BV is sexually transmitted, recent studies have shown an increased risk associated with multiple sexual partners. It has also been suggested that the pathogenesis of BV may be similar to that of urinary tract infections, with the rectum serving as a reservoir for some BV-associated flora. The organisms associated with BV have also been recognized as agents of female upper genital tract infection, including pelvic inflammatory disease, and the syndrome BV has been associated with adverse outcome of pregnancy, including premature rupture of membranes, chorioamnionitis, and fetal loss; postpartum endometritis; cuff cellulitis; and urinary tract infections. The mechanisms by which the BV-associated flora causes the signs of BV are not well understood, but a role for H2O2-producing Lactobacillus spp. in protecting against colonization by catalase-negative anaerobic bacteria has been recognized. These and other aspects of BV are reviewed. PMID:1747864

  8. Diversity, Structures, and Collagen-Degrading Mechanisms of Bacterial Collagenolytic Proteases

    PubMed Central

    Zhang, Yu-Zhong; Ran, Li-Yuan; Li, Chun-Yang

    2015-01-01

    Bacterial collagenolytic proteases are important because of their essential role in global collagen degradation and because of their virulence in some human bacterial infections. Bacterial collagenolytic proteases include some metalloproteases of the M9 family from Clostridium or Vibrio strains, some serine proteases distributed in the S1, S8, and S53 families, and members of the U32 family. In recent years, there has been remarkable progress in discovering new bacterial collagenolytic proteases and in investigating the collagen-degrading mechanisms of bacterial collagenolytic proteases. This review provides comprehensive insight into bacterial collagenolytic proteases, especially focusing on the structures and collagen-degrading mechanisms of representative bacterial collagenolytic proteases in each family. The roles of bacterial collagenolytic proteases in human diseases and global nitrogen cycling, together with the biotechnological and medical applications for these proteases, are also briefly discussed. PMID:26150451

  9. The uncultured luminous symbiont of Anomalops katoptron (Beryciformes: Anomalopidae) represents a new bacterial genus.

    PubMed

    Hendry, Tory A; Dunlap, Paul V

    2011-12-01

    Flashlight fishes (Beryciformes: Anomalopidae) harbor luminous symbiotic bacteria in subocular light organs and use the bacterial light for predator avoidance, feeding, and communication. Despite many attempts anomalopid symbionts have not been brought into laboratory culture, which has restricted progress in understanding their phylogenetic relationships with other luminous bacteria, identification of the genes of their luminescence system, as well as the nature of their symbiotic interactions with their fish hosts. To begin addressing these issues, we used culture-independent analysis of the bacteria symbiotic with the anomalopid fish, Anomalops katoptron, to characterize the phylogeny of the bacteria and to identify the genes of their luminescence system including those involved in the regulation of luminescence. Analysis of the 16S rRNA, atpA, gapA, gyrB, pyrH, recA, rpoA, and topA genes resolved the A. katoptron symbionts as a clade nested within and deeply divergent from other members of Vibrionaceae. The bacterial luminescence (lux) genes were identified as a contiguous set (luxCDABEG), as found for the lux operons of other luminous bacteria. Phylogenetic analysis based on the lux genes confirmed the housekeeping gene phylogenetic placement. Furthermore, genes flanking the lux operon in the A. katoptron symbionts differed from those flanking lux operons of other genera of luminous bacteria. We therefore propose the candidate name Candidatus Photodesmus (Greek: photo = light, desmus = servant) katoptron for the species of bacteria symbiotic with A. katoptron. Results of a preliminary genomic analysis for genes regulating luminescence in other bacteria identified only a Vibrio harveyi-type luxR gene. These results suggest that expression of the luminescence system might be continuous in P. katoptron. PMID:21864694

  10. Bacterial tyrosinases.

    PubMed

    Claus, Harald; Decker, Heinz

    2006-01-01

    Tyrosinases are nearly ubiquitously distributed in all domains of life. They are essential for pigmentation and are important factors in wound healing and primary immune response. Their active site is characterized by a pair of antiferromagnetically coupled copper ions, CuA and CuB, which are coordinated by six histidine residues. Such a "type 3 copper centre" is the common feature of tyrosinases, catecholoxidases and haemocycanins. It is also one of several other copper types found in the multi-copper oxidases (ascorbate oxidase, laccase). The copper pair of tyrosinases binds one molecule of atmospheric oxygen to catalyse two different kinds of enzymatic reactions: (1) the ortho-hydroxylation of monophenols (cresolase activity) and (2) the oxidation of o-diphenols to o-diquinones (catecholase activity). The best-known function is the formation of melanins from L-tyrosine via L-dihydroxyphenylalanine (L-dopa). The complicated hydroxylation mechanism at the active centre is still not completely understood, because nothing is known about their tertiary structure. One main reason for this deficit is that hitherto tyrosinases from eukaryotic sources could not be isolated in sufficient quantities and purities for detailed structural studies. This is not the case for prokaryotic tyrosinases from different Streptomyces species, having been intensively characterized genetically and spectroscopically for decades. The Streptomyces tyrosinases are non-modified monomeric proteins with a low molecular mass of ca. 30kDa. They are secreted to the surrounding medium, where they are involved in extracellular melanin production. In the species Streptomyces, the tyrosinase gene is part of the melC operon. Next to the tyrosinase gene (melC2), this operon contains an additional ORF called melC1, which is essential for the correct expression of the enzyme. This review summarizes the present knowledge of bacterial tyrosinases, which are promising models in order to get more insights in

  11. Bacterial differentiation.

    PubMed

    Shapiro, L; Agabian-Keshishian, N; Bendis, I

    1971-09-01

    technique can be used to select for mutants blocked in the various stages of morphogenesis. 3) Temperature-sensitive mutants of Caulobacter that are restricted in macromolecular synthesis and development at elevated temperatures have been isolated. 4) Genetic exchange in the Calflobacter genus has been demonstrated and is now being defined. Two questions related to control processes can now readily be approached experimentally. (i) Is the temporal progression of events occurring during bacterial differentiation controlled by regulator gene products? (ii) Is the differentiation cycle like a biosynthetic pathway where one event must follow another? The availability of temperature-sensitive mutants blocked at various stages of development permits access to both questions. An interesting feature of the differentiation cycle is that the polar organelle may represent a special segregated unit which is operative in the control of the differentiation process. Perhaps the sequential morphogenic changes exhibited by Caulobacter are dependent on the initial synthesis of this organelle. Because the ultimate expression of cell changes are dependent on selective protein synthesis, specific messenger RNA production-either from DNA present in an organelle or from the chromosome-may prove to be a controlling factor in cell differentiation. We have begun studies with RNA polymerase purified from Caulobacter crescentus to determine whether cell factors or alterations in the enzyme structure serve to change the specificity of transcription during the cell cycle. Control of sequential cell changes at the level of transcription has long been postulated and has recently been substantiated in the case of Bacillus sporulation (6). The Caulobacter bacteria now present another system in which direct analysis of these control mechanisms is feasible. PMID:5572165

  12. Covariation of viral parameters with bacterial assemblage richness and diversity in the water column and sediments

    NASA Astrophysics Data System (ADS)

    Hewson, Ian; Fuhrman, Jed A.

    2007-05-01

    Viruses are hypothesized to maintain diversity in microbial assemblages by regulating the abundance of dominant competitors and thereby allowing less-dominant competitors to persist in assemblages; however, there have been few empirical data sets to support this idea. In this study, we examined the relationship between the ratio of viral abundance to bacterial abundance, viral production, and the relative richness and diversity of bacterial assemblage fingerprints, in samples taken from geographically widespread locations (North Pacific gyre, the Amazon River plume and adjacent North Atlantic gyre, Gulf of Mexico, Southern California Bight and Arafura—Coral Seas) which are oligo- to mesotrophic. Bacterial assemblage richness and diversity as measured by automated rRNA intergenic spacer (ARISA) fingerprinting were significantly and positively correlated with the ratio of virus abundance to bacteria abundance (VBR) and to the rate of virus production only in the oligotrophic North Pacific gyre. ARISA fingerprint richness/diversity were not significantly correlated to viral parameters when assessed across all samples in surface waters, suggesting there is not a singular global quantitative relationship between viral pressure and host diversity within well evolved host/virus systems in different geographic locations in plankton. In sediments off Southern California, viral parameters significantly and negatively correlated with ARISA diversity, suggesting strong viral interactions in this habitat. To examine covariation of viral parameters and the relative abundance and diversity of rarer bacterial taxa (i.e., less-dominant competitor), the richness and diversity of diazotroph communities was measured using terminal restriction fragment length polymorphism (TRFLP) of a portion ( nifH) of the nitrogenase gene. The richness and diversity of diazotrophic communities were significantly and negatively correlated with viral parameters across all locations. Since diazotrophs

  13. Family Meals

    MedlinePlus

    ... Story" 5 Things to Know About Zika & Pregnancy Family Meals KidsHealth > For Parents > Family Meals Print A ... even more important as kids get older. Making Family Meals Happen It can be a big challenge ...

  14. Family History

    MedlinePlus

    Your family history includes health information about you and your close relatives. Families have many factors in common, including their genes, ... as heart disease, stroke, and cancer. Having a family member with a disease raises your risk, but ...

  15. Family Arguments

    MedlinePlus

    ... Spread the Word Shop AAP Find a Pediatrician Family Life Medical Home Family Dynamics Adoption & Foster Care ... Life Listen Español Text Size Email Print Share Family Arguments Page Content Article Body We seem to ...

  16. Family Folklore

    ERIC Educational Resources Information Center

    Kotkin, Amy J.; Baker, Holly C.

    1977-01-01

    Discusses the Family Folklore Program of the Smithsonian Institution's annual Festival of American Folklife, in which the whole family can be involved in tracing family history through story telling, photographs, etc. (MS)

  17. Family History

    MedlinePlus

    ... CDC Cancel Submit Search The CDC Family Health History Note: Javascript is disabled or is not supported ... visit this page: About CDC.gov . Family Health History The Basics Family Health History & Chronic Disease Planning ...

  18. The intrinsic resistome of bacterial pathogens

    PubMed Central

    Olivares, Jorge; Bernardini, Alejandra; Garcia-Leon, Guillermo; Corona, Fernando; B. Sanchez, Maria; Martinez, Jose L.

    2013-01-01

    Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyze recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice. PMID:23641241

  19. Facial bacterial infections: folliculitis.

    PubMed

    Laureano, Ana Cristina; Schwartz, Robert A; Cohen, Philip J

    2014-01-01

    Facial bacterial infections are most commonly caused by infections of the hair follicles. Wherever pilosebaceous units are found folliculitis can occur, with the most frequent bacterial culprit being Staphylococcus aureus. We review different origins of facial folliculitis, distinguishing bacterial forms from other infectious and non-infectious mimickers. We distinguish folliculitis from pseudofolliculitis and perifolliculitis. Clinical features, etiology, pathology, and management options are also discussed. PMID:25441463

  20. Demonstrating Bacterial Flagella.

    ERIC Educational Resources Information Center

    Porter, John R.; And Others

    1992-01-01

    Describes an effective laboratory method for demonstrating bacterial flagella that utilizes the Proteus mirabilis organism and a special harvesting technique. Includes safety considerations for the laboratory exercise. (MDH)

  1. Family Privilege

    ERIC Educational Resources Information Center

    Seita, John R.

    2014-01-01

    Family privilege is defined as "strengths and supports gained through primary caring relationships." A generation ago, the typical family included two parents and a bevy of kids living under one roof. Now, every variation of blended caregiving qualifies as family. But over the long arc of human history, a real family was a…

  2. Bacterial Ion Channels.

    PubMed

    Compton, Emma L R; Mindell, Joseph A

    2010-09-01

    Bacterial ion channels were known, but only in special cases, such as outer membrane porins in Escherichia coli and bacterial toxins that form pores in their target (bacterial or mammalian) membranes. The exhaustive coverage provided by a decade of bacterial genome sequencing has revealed that ion channels are actually widespread in bacteria, with homologs of a broad range of mammalian channel proteins coded throughout the bacterial and archaeal kingdoms. This review discusses four groups of bacterial channels: porins, mechano-sensitive (MS) channels, channel-forming toxins, and bacterial homologs of mammalian channels. The outer membrane (OM) of gram-negative bacteria blocks access of essential nutrients; to survive, the cell needs to provide a mechanism for nutrients to penetrate the OM. Porin channels provide this access by forming large, nonspecific aqueous pores in the OM that allow ions and vital nutrients to cross it and enter the periplasm. MS channels act as emergency release valves, allowing solutes to rapidly exit the cytoplasm and to dissipate the large osmotic disparity between the internal and external environments. MS channels are remarkable in that they do this by responding to forces exerted by the membrane itself. Some bacteria produce toxic proteins that form pores in trans, attacking and killing other organisms by virtue of their pore formation. The review focuses on those bacterial toxins that kill other bacteria, specifically the class of proteins called colicins. Colicins reveal the dangers of channel formation in the plasma membrane, since they kill their targets with exactly that approach. PMID:26443789

  3. Vimentin in Bacterial Infections.

    PubMed

    Mak, Tim N; Brüggemann, Holger

    2016-01-01

    Despite well-studied bacterial strategies to target actin to subvert the host cell cytoskeleton, thus promoting bacterial survival, replication, and dissemination, relatively little is known about the bacterial interaction with other components of the host cell cytoskeleton, including intermediate filaments (IFs). IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge about the role of IFs in bacterial infections, focusing on the type III IF protein vimentin. Recent studies have revealed the involvement of vimentin in host cell defenses, acting as ligand for several pattern recognition receptors of the innate immune system. Two main aspects of bacteria-vimentin interactions are presented in this review: the role of vimentin in pathogen-binding on the cell surface and subsequent bacterial invasion and the interaction of cytosolic vimentin and intracellular pathogens with regards to innate immune signaling. Mechanistic insight is presented involving distinct bacterial virulence factors that target vimentin to subvert its function in order to change the host cell fate in the course of a bacterial infection. PMID:27096872

  4. Vimentin in Bacterial Infections

    PubMed Central

    Mak, Tim N.; Brüggemann, Holger

    2016-01-01

    Despite well-studied bacterial strategies to target actin to subvert the host cell cytoskeleton, thus promoting bacterial survival, replication, and dissemination, relatively little is known about the bacterial interaction with other components of the host cell cytoskeleton, including intermediate filaments (IFs). IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge about the role of IFs in bacterial infections, focusing on the type III IF protein vimentin. Recent studies have revealed the involvement of vimentin in host cell defenses, acting as ligand for several pattern recognition receptors of the innate immune system. Two main aspects of bacteria-vimentin interactions are presented in this review: the role of vimentin in pathogen-binding on the cell surface and subsequent bacterial invasion and the interaction of cytosolic vimentin and intracellular pathogens with regards to innate immune signaling. Mechanistic insight is presented involving distinct bacterial virulence factors that target vimentin to subvert its function in order to change the host cell fate in the course of a bacterial infection. PMID:27096872

  5. Fungal and Bacterial Diseases.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungal and bacterial diseases are important constraints to production. Recognition of diseases and information on their biology is important in disease management. This chapter is aimed at providing diagnostic information on fungal and bacterial diseases of sugar beet and their biology, epidemiolo...

  6. Cancer, Families, and Family Counselors.

    ERIC Educational Resources Information Center

    Duffy, Maureen; Gillig, Scott

    2003-01-01

    Examines the role of the family counselor in working with cancer patients and their families. Suggests ways in which the family counselor can work proactively with families in the area of cancer prevention and helping them cope more effectively with its impact on their lives. Uses a clinical case example to illustrate intervention with cancer…

  7. Family therapy by family doctors

    PubMed Central

    Neighbour, R.

    1982-01-01

    The experiences of a group of general practitioners learning and attempting family therapy are described. Three principles for working with whole families — facilitation, formulation and focussing — are illustrated by case histories. Family therapy in general practice can be effective for patients and worthwhile for family doctors. PMID:7153974

  8. FAMILIAL SUICIDE

    PubMed Central

    Unni, K.E. Sadanaandan

    1996-01-01

    Seven completed suicides in a family of lower socioeconomic status and suburban domicile in Pondicherry are reported. The presence of bipolar affective disorder in the family members and the absence of exogenous factors are illustrated by utilising both family history method and family study method. The details collected formed the basis for the terminology ‘familial suicide’. The management of the index case, one of the only three surviving male members of the family, who presented with suicidal ruminations and depressive features, is described. PMID:21584122

  9. Bacterial challenges in food

    PubMed Central

    Collee, J. G.

    1974-01-01

    Qualitative and quantitative aspects of bacterial challenges that might be encountered in food are discussed with reference to recognized and relatively unrecognized hazards. Mechanisms of pathogenicity are reviewed and the populations at risk are noted. The bacterial content of food as it is served at table merits more study. The challenge of prevention by education is discussed. Indirect bacterial challenges in our food are considered. The real challenge of diagnosis depends upon an awareness of a complex range of conditions; the importance of effective communication with efficient laboratory and epidemiological services is stressed. There is an increasing need for care in the preparation and distribution of food. PMID:4467860

  10. Molecular Analysis of Bacterial Microbiota on Brazilian Currency Note Surfaces.

    PubMed

    Pereira da Fonseca, Tairacan Augusto; Pessôa, Rodrigo; Sanabani, Sabri Saeed

    2015-10-01

    Currency notes have been implicated as a vehicle for transmitting community-acquired bacterial infections. However, the overall diversity of the bacterial population residing on banknotes is still unknown in Brazil. In this study, we aimed to investigate the overall bacterial population from 150 different Brazilian Rial (R$) notes in circulation using a culture-independent Illumina massively parallel sequencing approach of the 16S rRNA genes. Samples were randomly collected from three different street markets or "feiras" in the metropolitan region of São Paulo. Taxonomical composition revealed the abundance of Proteobacteria phyla, followed by Firmicutes and Streptophyta, with a total of 1193 bacterial families and 3310 bacterial genera. Most of these bacterial genera are of human, animal, and environmental origins. Also, our analysis revealed the presence of some potential pathogenic bacterial genera including Salmonella, Staphylococcus, and Klebsiella. The results demonstrate that there is a tremendous diversity of bacterial contamination on currency notes, including organisms known to be opportunistic pathogens. One of the factors that may contribute to the richness of bacterial diversity in currency notes is personal hygiene. Thus, our results underscore the need to increase public awareness of the importance of personal hygiene of money handlers who also handle food. PMID:26506368

  11. Family Matters.

    ERIC Educational Resources Information Center

    Mainor, Peggy

    2001-01-01

    Describes a Kellogg Family Collaborative project that involves the University of Montana and four tribal colleges in a family-strengths approach to improving student retention and achievement. States that the project is grounded in social work theory and research that recognize and reinforce family and student resilience through promotion of…

  12. Family Support.

    ERIC Educational Resources Information Center

    Wieck, Colleen, Ed.; McBride, Marijo, Ed.

    1990-01-01

    This "Feature Issue" of the quarterly journal "Impact" presents 19 brief articles on family support systems in the United States for persons with developmental disabilities and their families. Emphasis is on provisions of Public Law 99-457. Articles include: "Family Support in the United States: Setting a Course for the 1990s" (James Knoll);…

  13. Rural Families.

    ERIC Educational Resources Information Center

    Goetz, Kathy, Ed.

    1992-01-01

    This "special focus" journal issue consists of 13 individual articles on the theme of rural family programs relating to school, health services, church, and other institutions. It includes: (1) "Towards a Rural Family Policy" (Judith K. Chynoweth and Michael D. Campbell); (2) "Montana: Council for Families Collaborates for Prevention (Jean…

  14. Bacterial Wound Culture

    MedlinePlus

    ... Home Visit Global Sites Search Help? Bacterial Wound Culture Share this page: Was this page helpful? Also known as: Aerobic Wound Culture; Anaerobic Wound Culture Formal name: Culture, wound Related ...

  15. Bacterial Nail Infection (Paronychia)

    MedlinePlus

    ... in people who work in the health care industry. Chronic paronychia is most common in adult women and those who work in places where their hands are kept moist, such as food handlers. Signs and Symptoms Bacterial nail infection most ...

  16. Small bowel bacterial overgrowth

    MedlinePlus

    Overgrowth - intestinal bacteria; Bacterial overgrowth - intestine ... Unlike the large intestine, the small intestine does not have a high number of bacteria. When there are too many bacteria in the ...

  17. Bacterial surface adaptation

    NASA Astrophysics Data System (ADS)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  18. Bacterial communities in the phylloplane of Prunus species.

    PubMed

    Jo, Yeonhwa; Cho, Jin Kyong; Choi, Hoseong; Chu, Hyosub; Lian, Sen; Cho, Won Kyong

    2015-04-01

    Bacterial populations in the phylloplane of four different Prunus species were investigated by 16 S rRNA pyrosequencing. Bioinformatic analysis identified an average of 510 operational taxonomic units belonging to 159 genera in 76 families. The two genera, Sphingomonas and Methylobacterium, were dominant in the phylloplane of four Prunus species. Twenty three genera were commonly identified in the four Prunus species, indicating a high level of bacterial diversity dependent on the plant species. Our study based on 16 S rRNA sequencing reveals the complexity of bacterial diversity in the phylloplane of Prunus species in detail. PMID:25515303

  19. Deciphering the bacterial glycocode: recent advances in bacterial glycoproteomics

    PubMed Central

    Longwell, Scott A.; Dube, Danielle H.

    2012-01-01

    Bacterial glycoproteins represent an attractive target for new antibacterial treatments, as they are frequently linked to pathogenesis and contain distinctive glycans that are absent in humans. Despite their potential therapeutic importance, many bacterial glycoproteins remain uncharacterized. This review focuses on recent advances in deciphering the bacterial glycocode, including metabolic glycan labeling to discover and characterize bacterial glycoproteins, lectin-based microarrays to monitor bacterial glycoprotein dynamics, crosslinking sugars to assess the roles of bacterial glycoproteins, and harnessing bacterial glycosylation systems for the efficient production of industrially important glycoproteins. PMID:23276734

  20. Bistability and Bacterial Infections

    PubMed Central

    Malka, Roy; Shochat, Eliezer; Rom-Kedar, Vered

    2010-01-01

    Bacterial infections occur when the natural host defenses are overwhelmed by invading bacteria. The main component of the host defense is impaired when neutrophil count or function is too low, putting the host at great risk of developing an acute infection. In people with intact immune systems, neutrophil count increases during bacterial infection. However, there are two important clinical cases in which they remain constant: a) in patients with neutropenic-associated conditions, such as those undergoing chemotherapy at the nadir (the minimum clinically observable neutrophil level); b) in ex vivo examination of the patient's neutrophil bactericidal activity. Here we study bacterial population dynamics under fixed neutrophil levels by mathematical modelling. We show that under reasonable biological assumptions, there are only two possible scenarios: 1) Bacterial behavior is monostable: it always converges to a stable equilibrium of bacterial concentration which only depends, in a gradual manner, on the neutrophil level (and not on the initial bacterial level). We call such a behavior type I dynamics. 2) The bacterial dynamics is bistable for some range of neutrophil levels. We call such a behavior type II dynamics. In the bistable case (type II), one equilibrium corresponds to a healthy state whereas the other corresponds to a fulminant bacterial infection. We demonstrate that published data of in vitro Staphylococcus epidermidis bactericidal experiments are inconsistent with both the type I dynamics and the commonly used linear model and are consistent with type II dynamics. We argue that type II dynamics is a plausible mechanism for the development of a fulminant infection. PMID:20463954

  1. Reconstruction of Bacterial and Viral Genomes from Multiple Metagenomes.

    PubMed

    Gupta, Ankit; Kumar, Sanjiv; Prasoodanan, Vishnu P K; Harish, K; Sharma, Ashok K; Sharma, Vineet K

    2016-01-01

    Several metagenomic projects have been accomplished or are in progress. However, in most cases, it is not feasible to generate complete genomic assemblies of species from the metagenomic sequencing of a complex environment. Only a few studies have reported the reconstruction of bacterial genomes from complex metagenomes. In this work, Binning-Assembly approach has been proposed and demonstrated for the reconstruction of bacterial and viral genomes from 72 human gut metagenomic datasets. A total 1156 bacterial genomes belonging to 219 bacterial families and, 279 viral genomes belonging to 84 viral families could be identified. More than 80% complete draft genome sequences could be reconstructed for a total of 126 bacterial and 11 viral genomes. Selected draft assembled genomes could be validated with 99.8% accuracy using their ORFs. The study provides useful information on the assembly expected for a species given its number of reads and abundance. This approach along with spiking was also demonstrated to be useful in improving the draft assembly of a bacterial genome. The Binning-Assembly approach can be successfully used to reconstruct bacterial and viral genomes from multiple metagenomic datasets obtained from similar environments. PMID:27148174

  2. Reconstruction of Bacterial and Viral Genomes from Multiple Metagenomes

    PubMed Central

    Gupta, Ankit; Kumar, Sanjiv; Prasoodanan, Vishnu P. K.; Harish, K.; Sharma, Ashok K.; Sharma, Vineet K.

    2016-01-01

    Several metagenomic projects have been accomplished or are in progress. However, in most cases, it is not feasible to generate complete genomic assemblies of species from the metagenomic sequencing of a complex environment. Only a few studies have reported the reconstruction of bacterial genomes from complex metagenomes. In this work, Binning-Assembly approach has been proposed and demonstrated for the reconstruction of bacterial and viral genomes from 72 human gut metagenomic datasets. A total 1156 bacterial genomes belonging to 219 bacterial families and, 279 viral genomes belonging to 84 viral families could be identified. More than 80% complete draft genome sequences could be reconstructed for a total of 126 bacterial and 11 viral genomes. Selected draft assembled genomes could be validated with 99.8% accuracy using their ORFs. The study provides useful information on the assembly expected for a species given its number of reads and abundance. This approach along with spiking was also demonstrated to be useful in improving the draft assembly of a bacterial genome. The Binning-Assembly approach can be successfully used to reconstruct bacterial and viral genomes from multiple metagenomic datasets obtained from similar environments. PMID:27148174

  3. Tracking bacterial growth in liquid media and a new bacterial life model.

    PubMed

    Liu, S

    1999-12-01

    By increasing viscosity of liquid media above 8.4 centipoise (cp) i.e. 0.084 g * cm(-1) * s(-1), individual growth and family formation of Escherichia coli was continuously observed in real-time for up to 6 h. The observations showed primarily unidirectional growth and reproduction of E. coli and suggested more than one reproduction in the observed portion of E. coli life span. A new bacterial life model is proposed: each bacterium has a stable cell polarity that ultimately transforms into two bacteria of different generations; the life cycle of a bacterium can contain more than one reproduction cycle; and the age of a bacterium should be defined by its experienced chronological time. This new bacterial life model differs from the dominant concepts of bacterial life but complies with all basic life principles based on direct observation of macroorganisms. PMID:18726488

  4. Bacterial extracellular zinc-containing metalloproteases.

    PubMed Central

    Häse, C C; Finkelstein, R A

    1993-01-01

    Extracellular zinc-containing metalloproteases are widely distributed in the bacterial world. The most extensively studied are those which are associated with pathogenic bacteria or bacteria which have industrial significance. They are found practically wherever they are sought in both gram-negative and gram-positive microorganisms, be they aerobic or anaerobic. This ubiquity in itself implies that these enzymes serve important functions for the organisms which produce them. Because of the importance of zinc to enzymatic activity, it is not surprising that there is a pervasive amino acid sequence homology in the primary structure of this family of enzymes regardless of their source. The evidence suggests that both convergent and divergent evolutionary forces are at work. Within the large family of bacterial zinc-containing metalloendopeptidases, smaller family units are observed, such as thermolysin-like, elastase-like, and Serratia protease-like metalloproteases from various bacterial species. While this review was in the process of construction, a new function for zinc-containing metalloproteases was discovered: the neurotoxins of Clostridium tetani and Clostridium botulinum type B have been shown to be zinc metalloproteases with specificity for synaptobrevin, an integral membrane protein of small synaptic vesicles which is involved in neurotransmission. Additional understanding of the mode of action of proteases which contribute to pathogenicity could lead to the development of inhibitors, such as chelators, surrogate substrates, or antibodies, which could prevent or interrupt the disease process. Further studies of this broad family of metalloproteases will provide important additional insights into the pathogenesis and structure-function relationships of enzymes and will lead to the development of products, including "designer proteins," which might be industrially and/or therapeutically useful. PMID:8302217

  5. Bacterial start site prediction.

    PubMed

    Hannenhalli, S S; Hayes, W S; Hatzigeorgiou, A G; Fickett, J W

    1999-09-01

    With the growing number of completely sequenced bacterial genes, accurate gene prediction in bacterial genomes remains an important problem. Although the existing tools predict genes in bacterial genomes with high overall accuracy, their ability to pinpoint the translation start site remains unsatisfactory. In this paper, we present a novel approach to bacterial start site prediction that takes into account multiple features of a potential start site, viz., ribosome binding site (RBS) binding energy, distance of the RBS from the start codon, distance from the beginning of the maximal ORF to the start codon, the start codon itself and the coding/non-coding potential around the start site. Mixed integer programing was used to optimize the discriminatory system. The accuracy of this approach is up to 90%, compared to 70%, using the most common tools in fully automated mode (that is, without expert human post-processing of results). The approach is evaluated using Bacillus subtilis, Escherichia coli and Pyrococcus furiosus. These three genomes cover a broad spectrum of bacterial genomes, since B.subtilis is a Gram-positive bacterium, E.coli is a Gram-negative bacterium and P. furiosus is an archaebacterium. A significant problem is generating a set of 'true' start sites for algorithm training, in the absence of experimental work. We found that sequence conservation between P. furiosus and the related Pyrococcus horikoshii clearly delimited the gene start in many cases, providing a sufficient training set. PMID:10446249

  6. Crystal Structures of Two Bacterial 3-Hydroxy-3-methylglutaryl-CoA Lyases Suggest a Common Catalytic Mechanism among a Family of TIM Barrel Metalloenzymes Cleaving Carbon-Carbon Bonds

    SciTech Connect

    Forouhar,F.; Hussain, M.; Farid, R.; Benach, J.; Abashidze, M.; Edstrom, W.; Vorobiev, S.; Montelione, G.; Hunt, J.; et al.

    2006-01-01

    The enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) lyase catalyzes the terminal steps in ketone body generation and leucine degradation. Mutations in this enzyme cause a human autosomal recessive disorder called primary metabolic aciduria, which typically kills victims because of an inability to tolerate hypoglycemia. Here we present crystal structures of the HMG-CoA lyases from Bacillus subtilis and Brucella melitensis at 2.7 and 2.3 {angstrom} resolution, respectively. These enzymes share greater than 45% sequence identity with the human orthologue. Although the enzyme has the anticipated triose-phosphate isomerase (TIM) barrel fold, the catalytic center contains a divalent cation-binding site formed by a cluster of invariant residues that cap the core of the barrel, contrary to the predictions of homology models. Surprisingly, the residues forming this cation-binding site and most of their interaction partners are shared with three other TIM barrel enzymes that catalyze diverse carbon-carbon bond cleavage reactions believed to proceed through enolate intermediates (4-hydroxy-2-ketovalerate aldolase, 2-isopropylmalate synthase, and transcarboxylase 5S). We propose the name 'DRE-TIM metallolyases' for this newly identified enzyme family likely to employ a common catalytic reaction mechanism involving an invariant Asp-Arg-Glu (DRE) triplet. The Asp ligates the divalent cation, while the Arg probably stabilizes charge accumulation in the enolate intermediate, and the Glu maintains the precise structural alignment of the Asp and Arg. We propose a detailed model for the catalytic reaction mechanism of HMG-CoA lyase based on the examination of previously reported product complexes of other DRE-TIM metallolyases and induced fit substrate docking studies conducted using the crystal structure of human HMG-CoA lyase (reported in the accompanying paper by Fu, et al. (2006) J. Biol. Chem. 281, 7526-7532). Our model is consistent with extensive mutagenesis results and

  7. Lipoproteins of bacterial pathogens.

    PubMed

    Kovacs-Simon, A; Titball, R W; Michell, S L

    2011-02-01

    Bacterial lipoproteins are a set of membrane proteins with many different functions. Due to this broad-ranging functionality, these proteins have a considerable significance in many phenomena, from cellular physiology through cell division and virulence. Here we give a general overview of lipoprotein biogenesis and highlight examples of the roles of lipoproteins in bacterial disease caused by a selection of medically relevant Gram-negative and Gram-positive pathogens: Mycobacterium tuberculosis, Streptococcus pneumoniae, Borrelia burgdorferi, and Neisseria meningitidis. Lipoproteins have been shown to play key roles in adhesion to host cells, modulation of inflammatory processes, and translocation of virulence factors into host cells. As such, a number of lipoproteins have been shown to be potential vaccines. This review provides a summary of some of the reported roles of lipoproteins and of how this knowledge has been exploited in some cases for the generation of novel countermeasures to bacterial diseases. PMID:20974828

  8. IS4 family goes genomic

    PubMed Central

    2008-01-01

    Background Insertion sequences (ISs) are small, mobile DNA entities able to expand in prokaryotic genomes and trigger important rearrangements. To understand their role in evolution, accurate IS taxonomy is essential. The IS4 family is composed of ~70 elements and, like some other families, displays extremely elevated levels of internal divergence impeding its classification. The increasing availability of complete genome sequences provides a valuable source for the discovery of additional IS4 elements. In this study, this genomic database was used to update the structural and functional definition of the IS4 family. Results A total of 227 IS4-related sequences were collected among more than 500 sequenced bacterial and archaeal genomes, representing more than a three fold increase of the initial inventory. A clear division into seven coherent subgroups was discovered as well as three emerging families, which displayed distinct structural and functional properties. The IS4 family was sporadically present in 17 % of analyzed genomes, with most of them displaying single or a small number of IS4 elements. Significant expansions were detected only in some pathogens as well as among certain extremophiles, suggesting the probable involvement of some elements in bacterial and archaeal adaptation and/or evolution. Finally, it should be noted that some IS4 subgroups and two emerging families occurred preferentially in specific phyla or exclusively inside a specific genus. Conclusion The present taxonomic update of IS4 and emerging families will facilitate the classification of future elements as they arise from ongoing genome sequencing. Their narrow genomic impact and the existence of both IS-poor and IS-rich thriving prokaryotes suggested that these families, and probably ISs in general, are occasionally used as a tool for genome flexibility and evolution, rather than just representing self sustaining DNA entities. PMID:18215304

  9. Bacterial transfer RNAs

    PubMed Central

    Shepherd, Jennifer; Ibba, Michael

    2015-01-01

    Transfer RNA is an essential adapter molecule that is found across all three domains of life. The primary role of transfer RNA resides in its critical involvement in the accurate translation of messenger RNA codons during protein synthesis and, therefore, ultimately in the determination of cellular gene expression. This review aims to bring together the results of intensive investigations into the synthesis, maturation, modification, aminoacylation, editing and recycling of bacterial transfer RNAs. Codon recognition at the ribosome as well as the ever-increasing number of alternative roles for transfer RNA outside of translation will be discussed in the specific context of bacterial cells. PMID:25796611

  10. Structure and operation of bacterial tripartite pumps.

    PubMed

    Hinchliffe, Philip; Symmons, Martyn F; Hughes, Colin; Koronakis, Vassilis

    2013-01-01

    In bacteria such as Pseudomonas aeruginosa and Escherichia coli, tripartite membrane machineries, or pumps, determine the efflux of small noxious molecules, such as detergents, heavy metals, and antibiotics, and the export of large proteins including toxins. They are therefore influential in bacterial survival, particularly during infections caused by multidrug-resistant pathogens. In these tripartite pumps an inner membrane transporter, typically an ATPase or proton antiporter, binds and translocates export or efflux substrates. In cooperation with a periplasmic adaptor protein it recruits and opens a TolC family cell exit duct, which is anchored in the outer membrane and projects across the periplasmic space between inner and outer membranes. Assembled tripartite pumps thus span the entire bacterial cell envelope. We review the atomic structures of each of the three pump components and discuss how these have allowed high-resolution views of tripartite pump assembly, operation, and possible inhibition. PMID:23808339

  11. FAMILY LYGISTORRHINIDAE.

    PubMed

    Oliveira, Sarah Siqueira; Amorim, Dalton De Souza

    2016-01-01

    The Lygistorrhinidae are a family belonging to the suborder Bibionomorpha, with no previous record from Colombia. This paper refers for the first time to the occurrence of the family in the country, an undetermined species of the genus Lygistorrhina (Probolaeus) Williston. PMID:27395260

  12. Family Potyviridae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The International Committee on the Taxonomy of Viruses potyvirus study group has revised the description of the family Potyviridae for inclusion in the ICTV 9th report. Characteristic features of each genus within the family is presented. Revised criteria for demarcation and nomenclature of viral sp...

  13. Family Empowerment.

    ERIC Educational Resources Information Center

    Sinclair, Mary F., Ed.; And Others

    1992-01-01

    This feature issue of IMPACT focuses on the empowerment of families with a member who has a developmental disability. It presents strategies and models for a collaborative, respectful approach to service provision, and presents the experiences of families in seeking support and assistance. Feature articles include "Two Generations of Disability: A…

  14. Family Workshops

    ERIC Educational Resources Information Center

    Bennett, Dave; Rees-Jones, Tanny

    1978-01-01

    A Family Workshop is an informal, multidisciplined educational program for adults and children, organized by a team of teachers. This article discusses the Lavender Hill Family Workshop, one of many, which attempts to provide education in various subject areas for adults and for children while also integrating both objectives in order to educate…

  15. Family Life.

    ERIC Educational Resources Information Center

    Naturescope, 1986

    1986-01-01

    Focuses on various aspects of mammal family life ranging from ways different species are born to how different mammals are raised. Learning activities include making butter from cream, creating birth announcements for mammals, and playing a password game on family life. (ML)

  16. BACTERIAL WATERBORNE PATHOGENS

    EPA Science Inventory

    Bacterial pathogens are examples of classical etiological agents of waterborne disease. While these agents no longer serve as major threats to U.S. water supplies, they are still important pathogens in areas with substandard sanitation and poor water treatment facilities. In th...

  17. Bacterial microflora of nectarines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microflora of fruit surfaces has been the best source of antagonists against fungi causing postharvest decays of fruit. However, there is little information on microflora colonizing surfaces of fruits other than grapes, apples, and citrus fruit. We characterized bacterial microflora on nectarine f...

  18. Modeling intraocular bacterial infections.

    PubMed

    Astley, Roger A; Coburn, Phillip S; Parkunan, Salai Madhumathi; Callegan, Michelle C

    2016-09-01

    Bacterial endophthalmitis is an infection and inflammation of the posterior segment of the eye which can result in significant loss of visual acuity. Even with prompt antibiotic, anti-inflammatory and surgical intervention, vision and even the eye itself may be lost. For the past century, experimental animal models have been used to examine various aspects of the pathogenesis and pathophysiology of bacterial endophthalmitis, to further the development of anti-inflammatory treatment strategies, and to evaluate the pharmacokinetics and efficacies of antibiotics. Experimental models allow independent control of many parameters of infection and facilitate systematic examination of infection outcomes. While no single animal model perfectly reproduces the human pathology of bacterial endophthalmitis, investigators have successfully used these models to understand the infectious process and the host response, and have provided new information regarding therapeutic options for the treatment of bacterial endophthalmitis. This review highlights experimental animal models of endophthalmitis and correlates this information with the clinical setting. The goal is to identify knowledge gaps that may be addressed in future experimental and clinical studies focused on improvements in the therapeutic preservation of vision during and after this disease. PMID:27154427

  19. Phagocytosis of bacterial pathogens.

    PubMed

    Chung, Yoon-Suk Alexander; Kocks, Christine

    2012-01-01

    Phagocytosis is an evolutionarily ancient, receptor-driven process, by which phagocytic cells recognize invading microbes and destroy them after internalization. The phagocytosis receptor Eater is expressed exclusively on Drosophila phagocytes and is required for the survival of bacterial infections. In a recent study, we explored how Eater can defend fruit flies against different kinds of bacteria. We discovered that Eater bound to certain types of bacteria directly, while for others bacterial binding was dependent on prior disruption of the bacterial envelope. Similar to phagocytes, antimicrobial peptides and lysozymes are ancient components of animal immune systems. Our results suggest that cationic antimicrobial peptides, as well as lysozymes, can facilitate Eater binding to live Gram-negative bacteria. Both types of molecules promote surface-exposure of bacterial ligands that otherwise would remain buried and hidden under an outer membrane. We propose that unmasking ligands for phagocytic receptors may be a conserved mechanism operating in many animals, including humans. Thus, studying a Drosophila phagocytosis receptor may advance our understanding of innate immunity in general. PMID:22223092

  20. Bacterial extracellular lignin peroxidase

    DOEpatents

    Crawford, Donald L.; Ramachandra, Muralidhara

    1993-01-01

    A newly discovered lignin peroxidase enzyme is provided. The enzyme is obtained from a bacterial source and is capable of degrading the lignin portion of lignocellulose in the presence of hydrogen peroxide. The enzyme is extracellular, oxidative, inducible by lignin, larch wood xylan, or related substrates and capable of attacking certain lignin substructure chemical bonds that are not degradable by fungal lignin peroxidases.

  1. The Bacterial Growth Curve.

    ERIC Educational Resources Information Center

    Paulton, Richard J. L.

    1991-01-01

    A procedure that allows students to view an entire bacterial growth curve during a two- to three-hour student laboratory period is described. Observations of the lag phase, logarithmic phase, maximum stationary phase, and phase of decline are possible. A nonpathogenic, marine bacterium is used in the investigation. (KR)

  2. Bacterial leaf spot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial leaf spot has been reported in Australia (Queensland), Egypt, El Salvador, India, Japan, Nicaragua, Sudan, and the United States (Florida, Iowa, Kansas, Maryland, and Wisconsin). It occasionally causes locally severe defoliation and post-emergence damping-off and stunting. The disease is...

  3. Corticosteroids for Bacterial Keratitis

    PubMed Central

    Srinivasan, Muthiah; Mascarenhas, Jeena; Rajaraman, Revathi; Ravindran, Meenakshi; Lalitha, Prajna; Glidden, David V.; Ray, Kathryn J.; Hong, Kevin C.; Oldenburg, Catherine E.; Lee, Salena M.; Zegans, Michael E.; McLeod, Stephen D.; Lietman, Thomas M.; Acharya, Nisha R.

    2013-01-01

    Objective To determine whether there is a benefit in clinical outcomes with the use of topical corticosteroids as adjunctive therapy in the treatment of bacterial corneal ulcers. Methods Randomized, placebo-controlled, double-masked, multicenter clinical trial comparing prednisolone sodium phosphate, 1.0%, to placebo as adjunctive therapy for the treatment of bacterial corneal ulcers. Eligible patients had a culture-positive bacterial corneal ulcer and received topical moxifloxacin for at least 48 hours before randomization. Main Outcome Measures The primary outcome was best spectacle-corrected visual acuity (BSCVA) at 3 months from enrollment. Secondary outcomes included infiltrate/scar size, reepithelialization, and corneal perforation. Results Between September 1, 2006, and February 22, 2010, 1769 patients were screened for the trial and 500 patients were enrolled. No significant difference was observed in the 3-month BSCVA (−0.009 logarithm of the minimum angle of resolution [logMAR]; 95% CI, −0.085 to 0.068; P = .82), infiltrate/scar size (P = .40), time to reepithelialization (P = .44), or corneal perforation (P > .99). A significant effect of corticosteroids was observed in subgroups of baseline BSCVA (P = .03) and ulcer location (P = .04). At 3 months, patients with vision of counting fingers or worse at baseline had 0.17 logMAR better visual acuity with corticosteroids (95% CI, −0.31 to −0.02; P = .03) compared with placebo, and patients with ulcers that were completely central at baseline had 0.20 logMAR better visual acuity with corticosteroids (−0.37 to −0.04; P = .02). Conclusions We found no overall difference in 3-month BSCVA and no safety concerns with adjunctive corticosteroid therapy for bacterial corneal ulcers. Application to Clinical Practice Adjunctive topical corticosteroid use does not improve 3-month vision in patients with bacterial corneal ulcers. PMID:21987582

  4. Urban aerosols harbor diverse and dynamic bacterial populations

    PubMed Central

    Brodie, Eoin L.; DeSantis, Todd Z.; Parker, Jordan P. Moberg; Zubietta, Ingrid X.; Piceno, Yvette M.; Andersen, Gary L.

    2007-01-01

    Considering the importance of its potential implications for human health, agricultural productivity, and ecosystem stability, surprisingly little is known regarding the composition or dynamics of the atmosphere's microbial inhabitants. Using a custom high-density DNA microarray, we detected and monitored bacterial populations in two U.S. cities over 17 weeks. These urban aerosols contained at least 1,800 diverse bacterial types, a richness approaching that of some soil bacterial communities. We also reveal the consistent presence of bacterial families with pathogenic members including environmental relatives of select agents of bioterrorism significance. Finally, using multivariate regression techniques, we demonstrate that temporal and meteorological influences can be stronger factors than location in shaping the biological composition of the air we breathe. PMID:17182744

  5. Family Health and Family Planning.

    ERIC Educational Resources Information Center

    World Health Organization, Copenhagen (Denmark). Regional Office for Europe.

    This document is made up of a selection of some of the papers distributed to participants in courses on "Family Health and Family Planning" which have been organized each year since 1973 by the International Children's Center and the World Health Organization Regional Office for Europe. Six courses, held between 1973 and 1978, brought together a…

  6. FAMILY BIBIONIDAE.

    PubMed

    Falaschi, Rafaela Lopes; Oliveira, Sarah Siqueira; Amorim, Dalton De Souza

    2016-01-01

    The Bibionidae are a family belonging to the suborder Bibionomorpha with four genera and 17 species known from Colombia. This work expands the distribution of these species to other localities in the country. PMID:27395253

  7. Tomorrow's Family

    ERIC Educational Resources Information Center

    Pickett, Robert S.

    1977-01-01

    Author states that "...the traditional form of family which has been the norm in recent times in the West will persist, but will be forced to "move over" to accommodate other forms of domestic life." (Author)

  8. Unusual families.

    PubMed

    Golombok, Susan

    2005-03-01

    The introduction of assisted reproduction has led to unusual forms of procreation. This article describes the social consequences of lesbian motherhood and of families headed by single heterosexual mothers. PMID:15819999

  9. FAMILY RHAGIONIDAE.

    PubMed

    Santos, Charles Morphy D; Carmo, Daniel D D

    2016-01-01

    The family Rhagionidae is one of the oldest Brachyeran lineages. Its monophyly is still uncertain. There are four rhagionid genera distributed in Neotropical Region but only three species of Chrysopilus are found in Colombia. PMID:27395270

  10. Family Issues

    MedlinePlus

    ... not mean that everyone gets along all the time. Conflicts are a part of family life. Many things can lead to conflict, such as illness, disability, addiction, job loss, school problems, and marital issues. Listening to ...

  11. Family Limitation

    PubMed Central

    Smith, Robert

    1966-01-01

    Dr Robert Smith surveys the history of birth control and sounds a warning for the future of mankind, if the population explosion is allowed to continue unchecked. He stresses the importance of the role of the general practitioner in the limitation of births. Sir Theodore Fox describes the work of the Family Planning Association and stresses that, increasingly, this is a specialist service covering all aspects of fertility. He also feels that the general practitioner has a role in family planning. PMID:5954261

  12. Physics of Bacterial Morphogenesis

    PubMed Central

    Sun, Sean X.; Jiang, Hongyuan

    2011-01-01

    Summary: Bacterial cells utilize three-dimensional (3D) protein assemblies to perform important cellular functions such as growth, division, chemoreception, and motility. These assemblies are composed of mechanoproteins that can mechanically deform and exert force. Sometimes, small-nucleotide hydrolysis is coupled to mechanical deformations. In this review, we describe the general principle for an understanding of the coupling of mechanics with chemistry in mechanochemical systems. We apply this principle to understand bacterial cell shape and morphogenesis and how mechanical forces can influence peptidoglycan cell wall growth. We review a model that can potentially reconcile the growth dynamics of the cell wall with the role of cytoskeletal proteins such as MreB and crescentin. We also review the application of mechanochemical principles to understand the assembly and constriction of the FtsZ ring. A number of potential mechanisms are proposed, and important questions are discussed. PMID:22126993

  13. [Bacterial diseases of rape].

    PubMed

    Zakharova, O M; Mel'nychuk, M D; Dankevych, L A; Patyka, V P

    2012-01-01

    Bacterial destruction of the culture was described and its agents identified in the spring and winter rape crops. Typical symptoms are the following: browning of stem tissue and its mucilagization, chlorosis of leaves, yellowing and beginning of soft rot in the place of leaf stalks affixion to stems, loss of pigmentation (violet). Pathogenic properties of the collection strains and morphological, cultural, physiological, and biochemical properties of the agents of rape's bacterial diseases isolated by the authors have been investigated. It was found that all the isolates selected by the authors are highly or moderately aggressive towards different varieties of rape. According to the complex of phenotypic properties 44% of the total number of isolates selected by the authors are related to representatives of the genus Pseudomonas, 37% - to Xanthomonas and 19% - to Pectobacterium. PMID:23293826

  14. Bacterial Genome Instability

    PubMed Central

    Darmon, Elise

    2014-01-01

    SUMMARY Bacterial genomes are remarkably stable from one generation to the next but are plastic on an evolutionary time scale, substantially shaped by horizontal gene transfer, genome rearrangement, and the activities of mobile DNA elements. This implies the existence of a delicate balance between the maintenance of genome stability and the tolerance of genome instability. In this review, we describe the specialized genetic elements and the endogenous processes that contribute to genome instability. We then discuss the consequences of genome instability at the physiological level, where cells have harnessed instability to mediate phase and antigenic variation, and at the evolutionary level, where horizontal gene transfer has played an important role. Indeed, this ability to share DNA sequences has played a major part in the evolution of life on Earth. The evolutionary plasticity of bacterial genomes, coupled with the vast numbers of bacteria on the planet, substantially limits our ability to control disease. PMID:24600039

  15. Bacterial ratchet motors

    PubMed Central

    Di Leonardo, R.; Angelani, L.; Dell’Arciprete, D.; Ruocco, G.; Iebba, V.; Schippa, S.; Conte, M. P.; Mecarini, F.; De Angelis, F.; Di Fabrizio, E.

    2010-01-01

    Self-propelling bacteria are a nanotechnology dream. These unicellular organisms are not just capable of living and reproducing, but they can swim very efficiently, sense the environment, and look for food, all packaged in a body measuring a few microns. Before such perfect machines can be artificially assembled, researchers are beginning to explore new ways to harness bacteria as propelling units for microdevices. Proposed strategies require the careful task of aligning and binding bacterial cells on synthetic surfaces in order to have them work cooperatively. Here we show that asymmetric environments can produce a spontaneous and unidirectional rotation of nanofabricated objects immersed in an active bacterial bath. The propulsion mechanism is provided by the self-assembly of motile Escherichia coli cells along the rotor boundaries. Our results highlight the technological implications of active matter’s ability to overcome the restrictions imposed by the second law of thermodynamics on equilibrium passive fluids. PMID:20457936

  16. Bacterial multidrug efflux transporters.

    PubMed

    Delmar, Jared A; Su, Chih-Chia; Yu, Edward W

    2014-01-01

    Infections caused by bacteria are a leading cause of death worldwide. Although antibiotics remain a key clinical therapy, their effectiveness has been severely compromised by the development of drug resistance in bacterial pathogens. Multidrug efflux transporters--a common and powerful resistance mechanism--are capable of extruding a number of structurally unrelated antimicrobials from the bacterial cell, including antibiotics and toxic heavy metal ions, facilitating their survival in noxious environments. Transporters of the resistance-nodulation-cell division (RND) superfamily typically assemble as tripartite efflux complexes spanning the inner and outer membranes of the cell envelope. In Escherichia coli, the CusCFBA complex, which mediates resistance to copper(I) and silver(I) ions, is the only known RND transporter specific to heavy metals. Here, we describe the current knowledge of individual pump components of the Cus system, a paradigm for efflux machinery, and speculate on how RND pumps assemble to fight diverse antimicrobials. PMID:24702006

  17. Bacterial Cell Wall Components

    NASA Astrophysics Data System (ADS)

    Ginsberg, Cynthia; Brown, Stephanie; Walker, Suzanne

    Bacterial cell-surface polysaccharides cells are surrounded by a variety of cell-surface structures that allow them to thrive in extreme environments. Components of the cell envelope and extracellular matrix are responsible for providing the cells with structural support, mediating intercellular communication, allowing the cells to move or to adhere to surfaces, protecting the cells from attack by antibiotics or the immune system, and facilitating the uptake of nutrients. Some of the most important cell wall components are polysaccharide structures. This review discusses the occurrence, structure, function, and biosynthesis of the most prevalent bacterial cell surface polysaccharides: peptidoglycan, lipopolysaccharide, arabinogalactan, and lipoarabinomannan, and capsular and extracellular polysaccharides. The roles of these polysaccharides in medicine, both as drug targets and as therapeutic agents, are also described.

  18. Formation of bacterial nanocells

    NASA Astrophysics Data System (ADS)

    Vainshtein, Mikhail; Kudryashova, Ekaterina; Suzina, Natalia; Ariskina, Elena; Voronkov, Vadim

    1998-07-01

    Existence of nanobacteria received increasing attention both in environmental microbiology/geomicro-biology and in medical microbiology. In order to study a production of nanoforms by typical bacterial cells. Effects of different physical factors were investigated. Treatment of bacterial cultures with microwave radiation, or culturing in field of electric current resulted in formation a few types of nanocells. The number and type of nanoforms were determined with type and dose of the treatment. The produced nanoforms were: i) globules, ii) clusters of the globules--probably produced by liaison, iii) nanocells coated with membrane. The viability of the globules is an object opened for doubts. The nanocells discovered multiplication and growth on solidified nutrient media. The authors suggest that formation of nanocells is a common response of bacteria to stress-actions produced by different agents.

  19. Bacterial transformation of terpenoids

    NASA Astrophysics Data System (ADS)

    Grishko, V. V.; Nogovitsina, Y. M.; Ivshina, I. B.

    2014-04-01

    Data on the bacterial transformation of terpenoids published in the literature in the past decade are analyzed. Possible pathways for chemo-, regio- and stereoselective modifications of terpenoids are discussed. Considerable attention is given to new technological approaches to the synthesis of terpenoid derivatives suitable for the use in the perfume and food industry and promising as drugs and chiral intermediates for fine organic synthesis. The bibliography includes 246 references.

  20. Neglected Bacterial Zoonoses

    PubMed Central

    Chikeka, Ijeuru; Dumler, J. Stephen

    2015-01-01

    Bacterial zoonoses comprise a group of diseases in humans or animals acquired by direct contact with or by oral consumption of contaminated animal materials, or via arthropod vectors. Among neglected infections, bacterial zoonoses are among the most neglected given emerging data on incidence and prevalence as causes of acute febrile illness, even in areas where recognized neglected tropical diseases occur frequently. While many other bacterial infections could also be considered in this neglected category, five distinct infections stand out because they are globally distributed, are acute febrile diseases, have high rates of morbidity and case fatality, and are reported as commonly as malaria, typhoid or dengue virus infections in carefully designed studies in which a broad spectrum diagnoses are actively sought. Thus, this review will focus attention on leptospirosis, relapsing fever borreliosis, and rickettsioses, including scrub typhus, murine typhus and spotted fever group rickettsiosis. Of greatest interest is the lack of distinguishing clinical features among these infections when in humans, which confounds diagnosis where laboratory confirmation is lacking, and in regions where clinical diagnosis is often attributed to one of several perceived more common threats. As diseases such as malaria come under improved control, the real impact of these common and under-recognized infections will become evident, as will the requirement for the strategies and allocation of resources for their control. PMID:25964152

  1. Acute Bacterial Cholangitis

    PubMed Central

    Zimmer, Vincent; Lammert, Frank

    2015-01-01

    Background Acute bacterial cholangitis for the most part owing to common bile duct stones is common in gastroenterology practice and represents a potentially life-threatening condition often characterized by fever, abdominal pain, and jaundice (Charcot's triad) as well as confusion and septic shock (Reynolds' pentad). Methods This review is based on a systematic literature review in PubMed with the search items ‘cholangitis’, ‘choledocholithiasis’, ‘gallstone disease’, ‘biliary infection’, and ‘biliary sepsis’. Results Although most patients respond to empiric broad-spectrum antibiotic treatment, timely endoscopic biliary drainage depending on the severity of the disease is required to eliminate the underlying obstruction. Specific recommendations have been derived from the Tokyo guideline working group consensus 2006 and its update in 2013, albeit poorly evidence-based, providing a comprehensive overview of diagnosis, classification, risk stratification, and treatment algorithms in acute bacterial cholangitis. Conclusion Prompt clinical recognition and accurate diagnostic workup including adequate laboratory assessment and (aetiology-oriented) imaging are critical steps in the management of cholangitis. Treatment is directed at the two major interrelated pathophysiologic components, i.e. bacterial infection (immediate antimicrobial therapy) and bile duct obstruction (biliary drainage). As for the latter, transpapillary endoscopic drainage by stent or nasobiliary drain and/or same-session bile duct clearance, depending on individual disease severity, represent first-line treatment approaches. PMID:26468310

  2. Family welfare.

    PubMed

    Sinha, N K

    1992-01-01

    Between 1901-1921, India gained 12.9 million people because mortality remained high. The death rate fell between 1921-1951, but birth rates remained the same. Therefore 110 million people were added--2 times the population increase between 1891-1921. Between 1951-1981, the population increased to 324 million. Socioeconomic development was responsible for most of the downward trend in the birth rate during the 20th century. Even though large families were the norm in early India, religious leaders encouraged small family size. The 1st government family planning clinics in the world opened in Mysore and Bangalore in 1930. Right before Independence, the Bhore Committee made recommendations to reduce population growth such as increasing the age of marriage for girls. Since 1951 there has been a change in measures and policies geared towards population growth with each of the 7 5-Year Plans because policy makers applied what they learned from each previous plan. The 1st 5-Year Plan emphasized the need to understand what factors contribute to population growth. It also integrated family planning services into health services of hospitals and health centers. The government was over zealous in its implementation of the sterilization program (2nd 5-Year Plan, 1956-1961), however, which hurt family planning programs for many years. As of early 1992, sterilization, especially tubectomy, remained the most popular family planning method, however. The 7th 5-Year Plan changed its target of reaching a Net Reproductive Rate of 1 by 2001 to 2006-2011. It set a goal of 100% immunization coverage by 1990 but it did not occur. In 1986, the Ministry of Health and Family Welfare planned to make free contraceptives available in urban and rural areas and to involve voluntary organizations. The government needs to instill measures to increase women's status, women's literacy, and age of marriage as well as to eliminate poverty, ensure old age security, and ensure child survival and

  3. SLC9/NHE gene family, a plasma membrane and organellar family of Na+/H+ exchangers *

    PubMed Central

    Donowitz, Mark; Tse, C. Ming; Fuster, Daniel

    2013-01-01

    This brief review of the human Na/H exchanger gene family introduces a new classification with three subgroups to the SLC9 gene family. Progress in the structure and function of this gene family is reviewed with structure based on homology to the bacterial Na/H exchanger NhaA. Human diseases which result from genetic abnormalities of the SLC9 family are discussed although the exact role of these transporters in causing any disease is not established, other than poorly functioning NHE3 in congenital Na diarrhea PMID:23506868

  4. Bacterial-like PPP protein phosphatases

    PubMed Central

    Kerk, David; Uhrig, R Glen; Moorhead, Greg B

    2013-01-01

    Reversible phosphorylation is a widespread modification affecting the great majority of eukaryotic cellular proteins, and whose effects influence nearly every cellular function. Protein phosphatases are increasingly recognized as exquisitely regulated contributors to these changes. The PPP (phosphoprotein phosphatase) family comprises enzymes, which catalyze dephosphorylation at serine and threonine residues. Nearly a decade ago, “bacterial-like” enzymes were recognized with similarity to proteins from various bacterial sources: SLPs (Shewanella-like phosphatases), RLPHs (Rhizobiales-like phosphatases), and ALPHs (ApaH-like phosphatases). A recent article from our laboratory appearing in Plant Physiology characterizes their extensive organismal distribution, abundance in plant species, predicted subcellular localization, motif organization, and sequence evolution. One salient observation is the distinct evolutionary trajectory followed by SLP genes and proteins in photosynthetic eukaryotes vs. animal and plant pathogens derived from photosynthetic ancestors. We present here a closer look at sequence data that emphasizes the distinctiveness of pathogen SLP proteins and that suggests that they might represent novel drug targets. A second observation in our original report was the high degree of similarity between the bacterial-like PPPs of eukaryotes and closely related proteins of the “eukaryotic-like” phyla Myxococcales and Planctomycetes. We here reflect on the possible implications of these observations and their importance for future research. PMID:24675170

  5. Bacterial Enzymes and Antibiotic Resistance- Oral Presentation

    SciTech Connect

    Maltz, Lauren

    2015-08-25

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β-lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes.

  6. Family II. Leptospiraceae Hovind-Hougen 1979, 245AL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacteria within the Family Leptospiraceae comprise a diverse group of three bacterial genera, Leptospira, Leptonema, and Turneriella. These bacteria are aerobes that consume long-chain fatty acids and alcohols as carbon and energy sources. Some members of this Family cause serious infections in ani...

  7. Marine bacteria which produce tetrodotoxin.

    PubMed Central

    Simidu, U; Noguchi, T; Hwang, D F; Shida, Y; Hashimoto, K

    1987-01-01

    A number of type strains of marine bacteria, including members of the family Vibrionaceae, were cultured and examined for tetrodotoxin productivity by high-performance liquid chromatography and gas chromatography-mass spectrometry. Most of the Vibrionaceae strains produced tetrodotoxin, anhydrotetrodotoxin, or both. PMID:3310884

  8. FAMILY STRATIOMYIDAE.

    PubMed

    Fachin, Diego Aguilar; De Assis-Pujol, Cristiane Vieira

    2016-01-01

    The family Stratiomyidae has more than 2,800 described species, of which 1001 species belongs to the Neotropics. This catalog for Colombia presents 87 species distributed in 32 genera, and ten subfamilies. Merosargus gracilis and the genus Microchrysa, with a single species M. bicolor are recorded for the first time to Colombia. The fauna is very expressive but still poorly known, representing nearly one tenth of the Neotropical diversity of the family in numbers of species, and one fifth of generic diversity. PMID:27395274

  9. Familial Hypercholesterolemia.

    PubMed

    Bouhairie, Victoria Enchia; Goldberg, Anne Carol

    2016-03-01

    Familial hypercholesterolemia is a common, inherited disorder of cholesterol metabolism that leads to early cardiovascular morbidity and mortality. It is underdiagnosed and undertreated. Statins, ezetimibe, bile acid sequestrants, niacin, lomitapide, mipomersen, and low-density lipoprotein (LDL) apheresis are treatments that can lower LDL cholesterol levels. Early treatment can lead to substantial reduction of cardiovascular events and death in patients with familial hypercholesterolemia. It is important to increase awareness of this disorder in physicians and patients to reduce the burden of this disorder. PMID:26892994

  10. Family-Centered Child Care. Families Matter.

    ERIC Educational Resources Information Center

    Lopez, M. Elena; Dorros, Sybilla

    The Families Matter series of papers from the Harvard Family Research Project advances the concept of family-centered child care, advocating an approach to early childhood education that addresses the development of the child and family together. Grounded in family support principles, which build on family strengths and work from a community's…

  11. Bacterial infections in cirrhosis.

    PubMed

    Botwin, Gregory J; Morgan, Timothy R

    2014-09-01

    Bacterial infections occur in 25-35 % of cirrhotics admitted to hospital. Health-care associated and hospital acquired (nosocomial) infections are the most common epidemiology, with community acquired infections less common (15-30 %). Spontaneous bacterial peritonitis and urinary infections are the most common sites, with spontaneous bacteremia, pneumonia, cellulitis and other sites being less common. The risk of infection is increased among subjects with more severe liver disease and an infection in the past 6 months. Bacteria are isolated from approximately half of patients with a clinical diagnosis of infection. Gram-negative enterobacteriaceae are the most common organisms among community acquired infections; Gram-positive cocci are the most common organisms isolated among subjects with nosocomial infections. Up to 30 % of hospital associated infections are with multidrug resistant bacteria. Consequently, empiric antibiotic therapy that is recommended for community acquired infections is often inadequate for nosocomial infections. Infections worsen liver function. In-hospital and 1-year mortality of cirrhotics with infections is significantly higher than among cirrhotics without infection. In-hospital complications of infections, such as severe sepsis and septic shock, and mortality, are increased among subjects with multidrug-resistant infections as compared with cirrhotics with susceptible bacteria. Short-term antibiotic prophylaxis of cirrhotics with upper gastrointestinal bleeding and long-term antibiotic prophylaxis of selected cirrhotics with spontaneous bacterial peritonitis reduces infections and improves survival. Albumin administration to cirrhotics with SBP and evidence of advanced liver disease improves survival. The benefit of albumin administration to cirrhotics with infections other than SBP is under investigation. PMID:26201326

  12. Small Intestinal Bacterial Overgrowth

    PubMed Central

    Dukowicz, Andrew C.; Levine, Gary M.

    2007-01-01

    Small intestinal bacterial overgrowth (SIBO), defined as excessive bacteria in the small intestine, remains a poorly understood disease. Initially thought to occur in only a small number of patients, it is now apparent that this disorder is more prevalent than previously thought. Patients with SIBO vary in presentation, from being only mildly symptomatic to suffering from chronic diarrhea, weight loss, and malabsorption. A number of diagnostic tests are currently available, although the optimal treatment regimen remains elusive. Recently there has been renewed interest in SIBO and its putative association with irritable bowel syndrome. In this comprehensive review, we will discuss the epidemiology, pathogenesis, clinical manifestations, diagnosis, and treatment of SIBO. PMID:21960820

  13. Bacterial terpene cyclases.

    PubMed

    Dickschat, Jeroen S

    2016-01-01

    Covering: up to 2015. This review summarises the accumulated knowledge about characterised bacterial terpene cyclases. The structures of identified products and of crystallised enzymes are included, and the obtained insights into enzyme mechanisms are discussed. After a summary of mono-, sesqui- and diterpene cyclases the special cases of the geosmin and 2-methylisoborneol synthases that are both particularly widespread in bacteria will be presented. A total number of 63 enzymes that have been characterised so far is presented, with 132 cited references. PMID:26563452

  14. Income and Family Events: Family Income, Family Size, and Consumption

    ERIC Educational Resources Information Center

    Cutright, Phillips

    1971-01-01

    This paper considers the structure of family income, examines some factors affecting family size, reviews alternative definitions of an adequate income for families with varying numbers, and presents data on actual consumption, according to family income and family size. A model depicting the causal relations among factors affecting consumption is…

  15. FAMILY ASILIDAE.

    PubMed

    Wolff, Marta; Lamas, Carlos José Einicker

    2016-01-01

    Asilidae is one of the largest Diptera families with more than 7,000 recognized species worldwide. All their species are predators on arthropods, mainly insects. This catalogue presents 71 species distributed in 26 genera, ten tribes or generic groups and four subfamilies. For each species we present the available geographical information and relevant references. PMID:27395278

  16. Familial hyperamylasemia.

    PubMed

    Koda, Yu Kar Ling; Vidolin, Eliana

    2002-01-01

    A 7-year-old white boy was referred to us with a history of 3 attacks of hypogastric pain over the previous 2 years and persistently elevated serum amylase concentrations. At physical examination, he was well with no evidence of clinical abnormalities. His weight and height were normal. Laboratory diagnostic investigations were all normal except for the presence of Ascaris lumbricoides in the feces and persistently elevated serum amylase levels. Serum amylase determinations in the family members were normal in his father and maternal grandmother but elevated in his mother, sister, maternal aunt, and uncle, all of whom asymptomatic. Macroamylasemia was excluded in the child and in the mother. The finding of persistently elevated amylasemia in the child and in the other family members spanning 3 generations, and the exclusion of diseases that lead to hyperamilasemia are consistent with the diagnosis of familial hyperamylasemia. Until now, only 1 similar case has been reported. Familial hyperamylasemia must be considered in the differential diagnosis of hyperamylasemias in childhood. PMID:11981589

  17. Family Violence.

    ERIC Educational Resources Information Center

    Sorgen, Carol, Ed.

    1979-01-01

    This quarterly publication, issued by the National Institute on Alcohol Abuse and Alcoholism (NIAAA), contains articles dealing with family violence and alcohol abuse, children of alcoholic parents, training programs for counselors, and confidentiality of client records. The three articles on alcohol abuse suggest that: (1) there is a clear…

  18. Familial hyperaldosteronism.

    PubMed

    Stowasser, M; Gordon, R D

    2001-09-01

    Primary aldosteronism (PAL) may be as much as ten times more common than has been traditionally thought, with most patients normokalemic. The study of familial varieties has facilitated a fuller appreciation of the nature and diversity of its clinical, biochemical, morphological and molecular aspects. In familial hyperaldosteronism type I (FH-I), glucocorticoid-remediable PAL is caused by inheritance of an ACTH-regulated, hybrid CYP11B1/CYP11B2 gene. Genetic testing has greatly facilitated diagnosis. Hypertension severity varies widely, demonstrating relationships with gender, affected parent's gender, urinary kallikrein level, degree of biochemical disturbance and hybrid gene crossover point position. Analyses of aldosterone/PRA/cortisol 'day-curves' have revealed that (1) the hybrid gene dominates over wild type CYP11B2 in terms of aldosterone regulation and (2) correction of hypertension in FH-I requires only partial suppression of ACTH, and much smaller glucocorticoid doses than those previously recommended. Familial hyperaldosteronism type II is not glucocorticoid-remediable, and is clinically, biochemically and morphologically indistinguishable from apparently sporadic PAL. In one informative family available for linkage analysis, FH-II does not segregate with either the CYP11B2, AT1 or MEN1 genes, but a genome-wide search has revealed linkage with a locus in chromosome 7. As has already occurred in FH-I, elucidation of causative mutations is likely to facilitate earlier detection of PAL and other curable or specifically treatable forms of hypertension. PMID:11595502

  19. FAMILY SCIARIDAE.

    PubMed

    Carvalho-Fernandes, Sheila Patrícia

    2016-01-01

    Sciaridae are a widely distributed family with high number of species. They are known as black fungus gnats due to their dark color and feeding activity. This catalogue presents 17 species from Colombia distributed in eight genera, and for each species the geographical distribution is provided. PMID:27395255

  20. FAMILY CECIDOMYIIDAE.

    PubMed

    Maia, Valéria Cid

    2016-01-01

    This large family is poorly known in Colombia, where only 44 species have been recorded in 20 genera. All of them are included in Cecidomyiinae, which is the most diverse subfamily of gall midges in number of species and feeding habits, including phytophagous, predaceous and fungivorous species. Most of them are galler. The other subfamilies have never been recorded in this country. PMID:27395254

  1. Serving Families.

    ERIC Educational Resources Information Center

    Link, Geoffrey; Beggs, Marjorie; Seiderman, Ethel

    Parent Services Project (PSP), the first comprehensive program of resources and mental health activities for parents offered at child care centers in the San Francisco Bay Area (California), has expanded to centers in six states, serving over 19,000 families. This report describes the program's history, aims, and achievements, along with specific…

  2. FAMILY TYMOVIRIDAE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article provides a brief review of the taxonomic structure, virion properties, genome organization and replication strategy, antigenic properties, and biological properties of viruses in the family Tymoviridae. Criteria for demarcation of genus and species are provided. A brief review of each...

  3. Family Disruptions

    MedlinePlus

    ... and Returns Do you or your spouse frequently travel on business? These can be disruptive times for your child and for the family as ... these out-of-town trips. Spend as much time as it takes to explain where you are ... before and during your travels. You need to acknowledge and accept her feelings: " ...

  4. Family Hypnotherapy.

    ERIC Educational Resources Information Center

    Araoz, Daniel L.; Negley-Parker, Esther

    1985-01-01

    A therapeutic model to help families activate experiential and right hemispheric functioning through hypnosis is presented in detail, together with a clinical illustration. Different situations in which this model is effective are mentioned and one such set of circumstances is described. (Author)

  5. Updating the Vibrio clades defined by multilocus sequence phylogeny: proposal of eight new clades, and the description of Vibrio tritonius sp. nov.

    PubMed Central

    Sawabe, Tomoo; Ogura, Yoshitoshi; Matsumura, Yuta; Feng, Gao; Amin, AKM Rohul; Mino, Sayaka; Nakagawa, Satoshi; Sawabe, Toko; Kumar, Ramesh; Fukui, Yohei; Satomi, Masataka; Matsushima, Ryoji; Thompson, Fabiano L.; Gomez-Gil, Bruno; Christen, Richard; Maruyama, Fumito; Kurokawa, Ken; Hayashi, Tetsuya

    2013-01-01

    To date 142 species have been described in the Vibrionaceae family of bacteria, classified into seven genera; Aliivibrio, Echinimonas, Enterovibrio, Grimontia, Photobacterium, Salinivibrio and Vibrio. As vibrios are widespread in marine environments and show versatile metabolisms and ecologies, these bacteria are recognized as one of the most diverse and important marine heterotrophic bacterial groups for elucidating the correlation between genome evolution and ecological adaptation. However, on the basis of 16S rRNA gene phylogeny, we could not find any robust monophyletic lineages in any of the known genera. We needed further attempts to reconstruct their evolutionary history based on multilocus sequence analysis (MLSA) and/or genome wide taxonomy of all the recognized species groups. In our previous report in 2007, we conducted the first broad multilocus sequence analysis (MLSA) to infer the evolutionary history of vibrios using nine housekeeping genes (the 16S rRNA gene, gapA, gyrB, ftsZ, mreB, pyrH, recA, rpoA, and topA), and we proposed 14 distinct clades in 58 species of Vibrionaceae. Due to the difficulty of designing universal primers that can amplify the genes for MLSA in every Vibrionaceae species, some clades had yet to be defined. In this study, we present a better picture of an updated molecular phylogeny for 86 described vibrio species and 10 genome sequenced Vibrionaceae strains, using 8 housekeeping gene sequences. This new study places special emphasis on (1) eight newly identified clades (Damselae, Mediterranei, Pectenicida, Phosphoreum, Profundum, Porteresiae, Rosenbergii, and Rumoiensis); (2) clades amended since the 2007 proposal with recently described new species; (3) orphan clades of genomospecies F6 and F10; (4) phylogenetic positions defined in 3 genome-sequenced strains (N418, EX25, and EJY3); and (5) description of V. tritonius sp. nov., which is a member of the “Porteresiae” clade. PMID:24409173

  6. [Plesiomonas shigelloides, a Vibrionaceae to be taken into account].

    PubMed

    Bravo, L; Cabrera, R; Ramírez, M; Llop, A; Fernández, A; García, B; Morier, L

    2000-01-01

    The antigenic structure and antimicrobial susceptibility were studied in 99 strains isolated from patients with acute diarrhea (6 strains from an outbreak of digestive transmission disease in Santiago de Cuba) and a strain isolated from a patient who died from infections neurological syndrome (INS, meningitis). Four new serotypes (093, 994, 095, 096), which had not been described in the world classification, were identified from the Cuban isolated strains and were included in the International Serotyping Scheme by the International Reference Center located in Prague, Czech Republic. For the first time in Cuba, the circulation of serotypes 017:H11, 011: H2, 023. H1alc, 057: H3 which show cross reaction to Shiguella species was proved. Those strains from the outbreak of digestive disease belonged to serotype 050: H11 and had a thermostable toxin. The first case of infectious neurologic syndrome with Plesionomas shigelloides etiology reported in Cuba was described; the strain corresponded to serotype 050: H11. The worldwide reported pattern of antimicrobial resistance was demonstrated. PMID:11107887

  7. Animal Models of Bacterial Keratitis

    PubMed Central

    Marquart, Mary E.

    2011-01-01

    Bacterial keratitis is a disease of the cornea characterized by pain, redness, inflammation, and opacity. Common causes of this disease are Pseudomonas aeruginosa and Staphylococcus aureus. Animal models of keratitis have been used to elucidate both the bacterial factors and the host inflammatory response involved in the disease. Reviewed herein are animal models of bacterial keratitis and some of the key findings in the last several decades. PMID:21274270

  8. Insights from twenty years of bacterial genome sequencing

    SciTech Connect

    Land, Miriam L; Hauser, Loren John; Jun, Se Ran; Nookaew, Intawat; Leuze, Michael Rex; Ahn, Tae-Hyuk; Karpinets, Tatiana V; Lund, Ole; Kora, Guruprasad H; Wassenaar, Trudy; Poudel, Suresh; Ussery, David W

    2015-01-01

    Since the first two complete bacterial genome sequences were published in 1995, the science of bacteria has dramatically changed. Using third-generation DNA sequencing, it is possible to completely sequence a bacterial genome in a few hours and identify some types of methylation sites along the genome as well. Sequencing of bacterial genome sequences is now a standard procedure, and the information from tens of thousands of bacterial genomes has had a major impact on our views of the bacterial world. In this review, we explore a series of questions to highlight some insights that comparative genomics has produced. To date, there are genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. However, the distribution is quite skewed towards a few phyla that contain model organisms. But the breadth is continuing to improve, with projects dedicated to filling in less characterized taxonomic groups. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system provides bacteria with immunity against viruses, which outnumber bacteria by tenfold. How fast can we go? Second-generation sequencing has produced a large number of draft genomes (close to 90 % of bacterial genomes in GenBank are currently not complete); third-generation sequencing can potentially produce a finished genome in a few hours, and at the same time provide methlylation sites along the entire chromosome. The diversity of bacterial communities is extensive as is evident from the genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. Genome sequencing can help in classifying an organism, and in the case where multiple genomes of the same species are available, it is possible to calculate the pan- and core genomes; comparison of more than 2000 Escherichia coli genomes finds an E. coli core genome of about 3100 gene families and a total of about 89,000 different gene families. Why do we care about bacterial genome

  9. Insights from 20 years of bacterial genome sequencing.

    PubMed

    Land, Miriam; Hauser, Loren; Jun, Se-Ran; Nookaew, Intawat; Leuze, Michael R; Ahn, Tae-Hyuk; Karpinets, Tatiana; Lund, Ole; Kora, Guruprased; Wassenaar, Trudy; Poudel, Suresh; Ussery, David W

    2015-03-01

    Since the first two complete bacterial genome sequences were published in 1995, the science of bacteria has dramatically changed. Using third-generation DNA sequencing, it is possible to completely sequence a bacterial genome in a few hours and identify some types of methylation sites along the genome as well. Sequencing of bacterial genome sequences is now a standard procedure, and the information from tens of thousands of bacterial genomes has had a major impact on our views of the bacterial world. In this review, we explore a series of questions to highlight some insights that comparative genomics has produced. To date, there are genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. However, the distribution is quite skewed towards a few phyla that contain model organisms. But the breadth is continuing to improve, with projects dedicated to filling in less characterized taxonomic groups. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system provides bacteria with immunity against viruses, which outnumber bacteria by tenfold. How fast can we go? Second-generation sequencing has produced a large number of draft genomes (close to 90 % of bacterial genomes in GenBank are currently not complete); third-generation sequencing can potentially produce a finished genome in a few hours, and at the same time provide methlylation sites along the entire chromosome. The diversity of bacterial communities is extensive as is evident from the genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. Genome sequencing can help in classifying an organism, and in the case where multiple genomes of the same species are available, it is possible to calculate the pan- and core genomes; comparison of more than 2000 Escherichia coli genomes finds an E. coli core genome of about 3100 gene families and a total of about 89,000 different gene families. Why do we care about bacterial genome

  10. [Endogenous bacterial endophthalmitis].

    PubMed

    Cornut, P-L; Chiquet, C

    2011-01-01

    Endogenous bacterial endophthalmitis, also called metastatic bacterial endophthalmitis, remains a diagnostic and therapeutic challenge. It is a rare and potentially sight-threatening ocular infection that occurs when bacteria reach the eye via the bloodstream, cross the blood-ocular barrier, and multiply within the eye. It usually affects immunocompromised patients and those suffering from diabetes mellitus, malignancy, or cardiac disease, but has also been reported after invasive procedures or in previously healthy people. In most cases, the ocular symptoms occur after the diagnosis of septicemia or systemic infection. Ocular symptoms include decreased vision, redness, discharge, pain, and floaters. The ocular inflammatory signs may be anterior and/or posterior. Bilateral involvement occurs in nearly 25% of cases. A wide range of microorganisms are involved, with differences in their frequency according to geography as well as the patient's age and past medical history, because of variations in the predisposing conditions and the source of the sepsis. The majority of patients are initially misdiagnosed, and ophthalmologists should be aware of this because prompt local and general management is required to save the eye and/or the patient's life. PMID:21145128

  11. The bacterial gliding machinery

    NASA Astrophysics Data System (ADS)

    Shrivastava, Abhishek

    Cells of Flavobacterium johnsoniae, a rod-shaped bacterium, glide over surfaces with speeds reaching up to 2 micrometer's. Gliding is powered by a protonmotive force. The adhesin SprB forms filaments about 160 nm long that move on the cell-surface along a looped track. Interaction of SprB filaments with a surface produces gliding. We tethered F. johnsoniae cells to glass by adding anti-SprB antibody. Tethered cells spun about fixed points, rotating at speeds of about 1 Hz. The torques required to sustain such speeds were large, comparable to those generated by the flagellar rotary motor. Using a flow cell apparatus, we changed load on the gliding motor by adding the viscous agent Ficoll to tethered cells. We found that a gliding motor runs at constant speed rather than constant torque. We attached gold nanoparticles to the SprB filament and tracked its motion. We fluorescently tagged a bacterial Type IX secretion system (T9SS) protein and imaged its dynamics. Fluorescently tagged T9SS protein localized near the point of tether, indicating that T9SS localizes with the gliding motor. Based on our results, we propose a model to explain bacterial gliding.

  12. Mechanism of Bacterial Oligosaccharyltransferase

    PubMed Central

    Gerber, Sabina; Lizak, Christian; Michaud, Gaëlle; Bucher, Monika; Darbre, Tamis; Aebi, Markus; Reymond, Jean-Louis; Locher, Kaspar P.

    2013-01-01

    N-Linked glycosylation is an essential post-translational protein modification in the eukaryotic cell. The initial transfer of an oligosaccharide from a lipid carrier onto asparagine residues within a consensus sequon is catalyzed by oligosaccharyltransferase (OST). The first X-ray structure of a complete bacterial OST enzyme, Campylobacter lari PglB, was recently determined. To understand the mechanism of PglB, we have quantified sequon binding and glycosylation turnover in vitro using purified enzyme and fluorescently labeled, synthetic peptide substrates. Using fluorescence anisotropy, we determined a dissociation constant of 1.0 μm and a strict requirement for divalent metal ions for consensus (DQNAT) sequon binding. Using in-gel fluorescence detection, we quantified exceedingly low glycosylation rates that remained undetected using in vivo assays. We found that an alanine in the −2 sequon position, converting the bacterial sequon to a eukaryotic one, resulted in strongly lowered sequon binding, with in vitro turnover reduced 50,000-fold. A threonine is preferred over serine in the +2 sequon position, reflected by a 4-fold higher affinity and a 1.2-fold higher glycosylation rate. The interaction of the +2 sequon position with PglB is modulated by isoleucine 572. Our study demonstrates an intricate interplay of peptide and metal binding as the first step of protein N-glycosylation. PMID:23382388

  13. Nanoparticle Approaches against Bacterial Infections

    PubMed Central

    Gao, Weiwei; Thamphiwatana, Soracha; Angsantikul, Pavimol; Zhang, Liangfang

    2014-01-01

    Despite the wide success of antibiotics, the treatment of bacterial infection still faces significant challenges, particularly the emergence of antibiotic resistance. As a result, nanoparticle drug delivery platforms including liposomes, polymeric nanoparticles, dendrimers, and various inorganic nanoparticles have been increasingly exploited to enhance the therapeutic effectiveness of existing antibiotics. This review focuses on areas where nanoparticle approaches hold significant potential to advance the treatment of bacterial infection. These areas include targeted antibiotic delivery, environmentally responsive antibiotic delivery, combinatorial antibiotic delivery, nanoparticle-enabled antibacterial vaccination, and nanoparticle-based bacterial detection. In each area we highlight the innovative antimicrobial nanoparticle platforms and review their progress made against bacterial infections. PMID:25044325

  14. Family Structure and Family Processes in Mexican American Families

    PubMed Central

    Zeiders, Katharine H.; Roosa, Mark W.; Tein, Jenn-Yun

    2010-01-01

    Despite increases in single-parent families among Mexican Americans (MA), few studies have examined the association of family structure and family adjustment. Utilizing a diverse sample of 738 Mexican American families (21.7% single parent), the current study examined differences across family structure on early adolescent outcomes, family functioning, and parent-child relationship variables. Results revealed that early adolescents in single parent families reported greater school misconduct, CD/ODD and MDD symptoms, and greater parent-child conflict than their counterparts in two parent families. Single parent mothers reported greater economic hardship, depression and family stress. Family stress and parent-child conflict emerged as significant mediators of the association between family structure and early adolescent outcomes, suggesting important processes linking MA single parent families and adolescent adjustment. PMID:21361925

  15. Family Therapy and Disturbed Families.

    ERIC Educational Resources Information Center

    Zuk, Gerald H., Ed.; Boszormenyi-Nagy, Ivan, Ed.

    Presented at a conference at which authors represented major theoretical positions in the field, most of the papers use family therapy as an important source of observations or ideas, or as a means to pinpoint methodological problems. Papers are grouped in sections as follows: four which introduce the reader to the field of specialization, provide…

  16. Genomics of Pathogenic Vibrio Species

    NASA Astrophysics Data System (ADS)

    Dziejman, Michelle; Yildiz, Fitnat H.

    Members of the heterotrophic bacterial family Vibrionaceae are native inhabitants of aquatic environments worldwide, constituting a diverse and abundant component of marine microbial organisms. Over 60 species of the genus Vibrio have been identified (Thompson et al., 2004) and their phenotypic heterogeneity is well documented. The ecology of the genus remains less well understood, however, despite reports that vibrios are the dominant microorganisms inhabiting the superficial water layer and colonizing the chitinous exoskeleton of zooplankton (e.g., copepods, Thompson et al., 2004). Although some species were originally isolated from seawater as free living organisms, most were isolated in association with marine life such as bivalves, fish, eels, or shrimp.

  17. FAMILY BOMBYLIIDAE.

    PubMed

    Lamas, Carlos José Einicker; Evenhuis, Neal L

    2016-01-01

    Bombyliidae is one of the largest Diptera families with more than 4,500 recognized species worldwide. Their species vary from robust to thin, and may be small to large (2-20mm) and looks like bees or wasps. They also present great variation in color. Adults can often be seen either resting and sunning themselves on trails, rocks or twigs or feeding on flowering plants as they are nectar feeders. All reared bee flies are predators or parasitoids of arthropods. The Colombian fauna of bombyliids comprises at the moment 22 species, and 12 genera, of which, six are endemic species. Nonetheless, this number may be much higher, as Colombia is a megadiverse country and there are not many specimens of this family deposited in collections all over the world. PMID:27395279

  18. Familial Hypercholesterolemia

    PubMed Central

    Pejic, Rade N.

    2014-01-01

    Background Familial hypercholesterolemia (FH) is an autosomal dominant-inherited genetic disorder that leads to elevated blood cholesterol levels. FH may present as severely elevated total cholesterol and low density lipoprotein (LDL) cholesterol levels or as premature coronary heart disease (CHD). Methods This review presents information on the disease and on the effects of drug treatment and lifestyle changes. Results Routine lipid testing should identify most patients with FH. Once an index case is identified, testing should be offered to family members. Early diagnosis and aggressive treatment with therapeutic lifestyle changes and statins can prevent premature CHD and other atherosclerotic sequelae in patients with FH. Conclusion Emerging therapies such as LDL apheresis and novel therapeutic agents may be useful in patients with homozygous FH or treatment-resistant FH. Liver transplantation is the only effective therapy for severe cases of homozygous FH. PMID:25598733

  19. Familial Hypercholesterolemia

    PubMed Central

    Bouhairie, Victoria Enchia; Goldberg, Anne Carol

    2015-01-01

    Familial hypercholesterolemia is a common, inherited disorder of cholesterol metabolism that leads to early cardiovascular morbidity and mortality. It is underdiagnosed and undertreated. Statins, ezetimibe, bile acid sequestrants, niacin, lomitapide, mipomersen and LDL apheresis are treatments that can lower LDL cholesterol levels. Early treatment can lead to substantial reduction of cardiovascular events and death in patients with FH. It is important to increase awareness of this disorder in physicians and patients in order to reduce the burden of this disorder. PMID:25939291

  20. Family affairs.

    PubMed

    Dupont, M

    1994-06-01

    It's no secret that your job is stressful, forcing you to deal with tragedy and death on a regular basis. You've become good at what you do because you pay attention to details and care about people. Most of the EMS providers I've known dedicate untold hours to their work, usually in addition to the regular jobs they hold. Their communities need them to be ready at a moment's notice when the pager sounds. Someone is in crisis. A life may hang in the balance-a life they may save. But what about the family that's left behind as you run out the door-yet again? How do your spouse/significant other and kids cope with whatever emotional state you're in when you return home? While your stress may be evident, their distress may be overlooked. What price do they pay to live with you? These questions were addressed during several workshops my colleagues and I conducted for EMS providers and their families. Many of the problems and frustrations identified in this article were shared by EMTs' family members who attended. PMID:10134394

  1. Familial hypercholesterolemia

    PubMed Central

    Turgeon, Ricky D.; Barry, Arden R.; Pearson, Glen J.

    2016-01-01

    Objective To summarize the pathophysiology, epidemiology, screening, diagnosis, and treatment of familial hypercholesterolemia (FH). Quality of evidence A PubMed search was conducted (inception to July 2014) for articles on pathophysiology, screening, diagnosis, and management of FH, supplemented with hand searches of bibliographies of guidelines and reviews. A supporting level of evidence for each recommendation was categorized as level I (randomized controlled trial or systematic review of randomized controlled trials), level II (observational study), or level III (expert opinion). The best available evidence is mostly level II or III. Main message Familial hypercholesterolemia affects 1 in 500 Canadians. Risk of a coronary event is high in these patients and is underestimated by risk calculators (eg, Framingham). Clinicians should screen patients according to guidelines and suspect FH in any patient with a premature cardiovascular event, physical stigmata of hypercholesterolemia, or an elevated plasma lipid level. Physicians should diagnose FH using either the Simon Broome or Dutch Lipid Network criteria. Management of heterozygous FH includes reducing low-density lipoprotein levels by 50% or more from baseline with high-dose statins and other lipid-lowering agents. Clinicians should refer any patient with homozygous FH to a specialized centre. Conclusion Familial hypercholesterolemia represents an important cause of premature cardiovascular disease in Canadians. Early identification and aggressive treatment of individuals with FH reduces cardiovascular morbidity and mortality. PMID:26796832

  2. A Common Fold Mediates Vertebrate Defense and Bacterial Attack

    SciTech Connect

    Rosado, Carlos J.; Buckle, Ashley M.; Law, Ruby H.P.; Butcher, Rebecca E.; Kan, Wan-Ting; Bird, Catherina H.; Ung, Kheng; Browne, Kylie A.; Baran, Katherine; Bashtannyk-Puhalovich, Tanya A.; Faux, Noel G.; Wong, Wilson; Porter, Corrine J.; Pike, Robert N.; Ellisdon, Andrew M.; Pearce, Mary C.; Bottomley, Stephen P.; Emsley, Jonas; Smith, A. Ian; Rossjohn, Jamie; Hartland, Elizabeth L.; Voskoboinik, Ilia; Trapani, Joseph A.; Bird, Phillip I.; Dunstone, Michelle A.; Whisstock, James C.

    2008-10-02

    Proteins containing membrane attack complex/perforin (MACPF) domains play important roles in vertebrate immunity, embryonic development, and neural-cell migration. In vertebrates, the ninth component of complement and perforin form oligomeric pores that lyse bacteria and kill virus-infected cells, respectively. However, the mechanism of MACPF function is unknown. We determined the crystal structure of a bacterial MACPF protein, Plu-MACPF from Photorhabdus luminescens, to 2.0 angstrom resolution. The MACPF domain reveals structural similarity with poreforming cholesterol-dependent cytolysins (CDCs) from Gram-positive bacteria. This suggests that lytic MACPF proteins may use a CDC-like mechanism to form pores and disrupt cell membranes. Sequence similarity between bacterial and vertebrate MACPF domains suggests that the fold of the CDCs, a family of proteins important for bacterial pathogenesis, is probably used by vertebrates for defense against infection.

  3. Exploring bacterial lignin degradation.

    PubMed

    Brown, Margaret E; Chang, Michelle C Y

    2014-04-01

    Plant biomass represents a renewable carbon feedstock that could potentially be used to replace a significant level of petroleum-derived chemicals. One major challenge in its utilization is that the majority of this carbon is trapped in the recalcitrant structural polymers of the plant cell wall. Deconstruction of lignin is a key step in the processing of biomass to useful monomers but remains challenging. Microbial systems can provide molecular information on lignin depolymerization as they have evolved to break lignin down using metalloenzyme-dependent radical pathways. Both fungi and bacteria have been observed to metabolize lignin; however, their differential reactivity with this substrate indicates that they may utilize different chemical strategies for its breakdown. This review will discuss recent advances in studying bacterial lignin degradation as an approach to exploring greater diversity in the environment. PMID:24780273

  4. Ribonucleotides in Bacterial DNA

    PubMed Central

    Schroeder, Jeremy W.; Randall, Justin R.; Matthews, Lindsay A.; Simmons, Lyle A.

    2014-01-01

    In all living cells, DNA is the storage medium for genetic information. Being quite stable, DNA is well-suited for its role in storage and propagation of information, but RNA is also covalently included in DNA through various mechanisms. Recent studies also demonstrate useful aspects of including ribonucleotides in the genome during repair. Therefore, our understanding of the consequences of RNA inclusion into bacterial genomic DNA is just beginning, but with its high frequency of occurrence the consequences and potential benefits are likely to be numerous and diverse. In this review, we discuss the processes that cause ribonucleotide inclusion in genomic DNA, the pathways important for ribonucleotide removal and the consequences that arise should ribonucleotides remain nested in genomic DNA. PMID:25387798

  5. [Small intestine bacterial overgrowth].

    PubMed

    Leung Ki, E L; Roduit, J; Delarive, J; Guyot, J; Michetti, P; Dorta, G

    2010-01-27

    Small intestine bacterial overgrowth (SIBO) is a condition characterised by nutrient malabsorption and excessive bacteria in the small intestine. It typically presents with diarrhea, flatulence and a syndrome of malabsorption (steatorrhea, macrocytic anemia). However, it may be asymptomatic in the eldery. A high index of suspicion is necessary in order to differentiate SIBO from other similar presenting disorders such as coeliac disease, lactose intolerance or the irritable bowel syndrome. A search for predisposing factor is thus necessary. These factors may be anatomical (stenosis, blind loop), or functional (intestinal hypomotility, achlorydria). The hydrogen breath test is the most frequently used diagnostic test although it lacks standardisation. The treatment of SIBO consists of eliminating predisposing factors and broad-spectrum antibiotic therapy. PMID:20214190

  6. The bacterial proteogenomic pipeline

    PubMed Central

    2014-01-01

    Background Proteogenomics combines the cutting-edge methods from genomics and proteomics. While it has become cheap to sequence whole genomes, the correct annotation of protein coding regions in the genome is still tedious and error prone. Mass spectrometry on the other hand relies on good characterizations of proteins derived from the genome, but can also be used to help improving the annotation of genomes or find species specific peptides. Additionally, proteomics is widely used to find evidence for differential expression of proteins under different conditions, e.g. growth conditions for bacteria. The concept of proteogenomics is not altogether new, in-house scripts are used by different labs and some special tools for eukaryotic and human analyses are available. Results The Bacterial Proteogenomic Pipeline, which is completely written in Java, alleviates the conducting of proteogenomic analyses of bacteria. From a given genome sequence, a naïve six frame translation is performed and, if desired, a decoy database generated. This database is used to identify MS/MS spectra by common peptide identification algorithms. After combination of the search results and optional flagging for different experimental conditions, the results can be browsed and further inspected. In particular, for each peptide the number of identifications for each condition and the positions in the corresponding protein sequences are shown. Intermediate and final results can be exported into GFF3 format for visualization in common genome browsers. Conclusions To facilitate proteogenomics analyses the Bacterial Proteogenomic Pipeline is a set of comprehensive tools running on common desktop computers, written in Java and thus platform independent. The pipeline allows integrating peptide identifications from various algorithms and emphasizes the visualization of spectral counts from different experimental conditions. PMID:25521444

  7. Changes in intestinal bacterial communities are closely associated with shrimp disease severity.

    PubMed

    Xiong, Jinbo; Wang, Kai; Wu, Jinfeng; Qiuqian, Linglin; Yang, Kunjie; Qian, Yunxia; Zhang, Demin

    2015-08-01

    Increasing evidence has revealed a close association between intestinal bacterial communities and human health. However, given that host phylogeny shapes the composition of intestinal microbiota, it is unclear whether changes in intestinal microbiota structure in relation to shrimp health status. In this study, we collected shrimp and seawater samples from ponds with healthy and diseased shrimps to understand variations in bacterial communities among habitats (water and intestine) and/or health status. The bacterial communities were clustered according to the original habitat and health status. Habitat and health status constrained 14.6 and 7.7 % of the variation in bacterial communities, respectively. Changes in shrimp intestinal bacterial communities occurred in parallel with changes in disease severity, reflecting the transition from a healthy to a diseased state. This pattern was further evidenced by 38 bacterial families that were significantly different in abundance between healthy and diseased shrimps; moderate changes were observed in shrimps with sub-optimal health. In addition, within a given bacterial family, the patterns of enrichment or decrease were consistent with the known functions of those bacteria. Furthermore, the identified 119 indicator taxa exhibited a discriminative pattern similar to the variation in the community as a whole. Overall, this study suggests that changes in intestinal bacterial communities are closely associated with the severity of shrimp disease and that indicator taxa can be used to evaluate shrimp health status. PMID:25947250

  8. Uncovering common bacterial skin infections.

    PubMed

    Napierkowski, Daria

    2013-03-10

    The four most common bacterial skin infections are impetigo, erysipelas, cellulitis, and folliculitis. This article summarizes current information about the etiology, clinical presentation, diagnosis, prevention, treatment, and implications for primary care practice needed to effectively diagnose and treat common bacterial skin infections. PMID:23361375

  9. Bacterial Genotoxins: Merging the DNA Damage Response into Infection Biology.

    PubMed

    Grasso, Francesca; Frisan, Teresa

    2015-01-01

    Bacterial genotoxins are unique among bacterial toxins as their molecular target is DNA. The consequence of intoxication or infection is induction of DNA breaks that, if not properly repaired, results in irreversible cell cycle arrest (senescence) or death of the target cells. At present, only three bacterial genotoxins have been identified. Two are protein toxins: the cytolethal distending toxin (CDT) family produced by a number of Gram-negative bacteria and the typhoid toxin produced by Salmonella enterica serovar Typhi. The third member, colibactin, is a peptide-polyketide genotoxin, produced by strains belonging to the phylogenetic group B2 of Escherichia coli. This review will present the cellular effects of acute and chronic intoxication or infection with the genotoxins-producing bacteria. The carcinogenic properties and the role of these effectors in the context of the host-microbe interaction will be discussed. We will further highlight the open questions that remain to be solved regarding the biology of this unusual family of bacterial toxins. PMID:26270677

  10. Bacterial Genotoxins: Merging the DNA Damage Response into Infection Biology

    PubMed Central

    Grasso, Francesca; Frisan, Teresa

    2015-01-01

    Bacterial genotoxins are unique among bacterial toxins as their molecular target is DNA. The consequence of intoxication or infection is induction of DNA breaks that, if not properly repaired, results in irreversible cell cycle arrest (senescence) or death of the target cells. At present, only three bacterial genotoxins have been identified. Two are protein toxins: the cytolethal distending toxin (CDT) family produced by a number of Gram-negative bacteria and the typhoid toxin produced by Salmonella enterica serovar Typhi. The third member, colibactin, is a peptide-polyketide genotoxin, produced by strains belonging to the phylogenetic group B2 of Escherichia coli. This review will present the cellular effects of acute and chronic intoxication or infection with the genotoxins-producing bacteria. The carcinogenic properties and the role of these effectors in the context of the host-microbe interaction will be discussed. We will further highlight the open questions that remain to be solved regarding the biology of this unusual family of bacterial toxins. PMID:26270677

  11. FAMILY MYCETOPHILIDAE.

    PubMed

    Oliveira, Sarah Siqueira; Amorim, Dalton De Souza

    2016-01-01

    The Mycetophilidae include small fungus-gnats which life cycle is associated with fungi, especially of the larvae. The known diversity of the family in the Neotropical region is 1,145 species, but only some very few papers have been published on the Colombian species of Mycetophilidae, with records for the genera Docosia Winnertz, Paraleia Tonnoir, and Dziedzickia Johannsen. This catalogue gathers the information available on mycetophilids from Colombia, including genera and some species that for the first time are mentioned to occur in the country-as Leiella unicincta Edwards and Leiella zonalis Edwards. PMID:27395261

  12. FAMILY ANISOPODIDAE.

    PubMed

    Amorim, Dalton De Souza; Falaschi, Rafaela Lopes; Oliveira, Sarah Siqueira

    2016-01-01

    This considerably small family is poorly known in Colombia, with only two species reported for the genus Sylvicola Harris (1776) so far. We synonymize Neomesochria Amorim & Tozoni (1994) to Mycetobia Meigen (1818), hence transferring the Dominican amber species Neomesochria antillea (Grimaldi 1991) and N. cryptambra (Grimaldi 1991), and the recent Neotropical species N. limanda (Stone 1966) and N. stonei (Lane & d'Andretta 1958) back to the genus Mycetobia. This paper provides new records for Mycetobia and Olbiogaster Osten-Sacken (1886) for Colombia. PMID:27395252

  13. FAMILY SCIOMYZIDAE.

    PubMed

    Marinoni, Luciane; Murphy, William L

    2016-01-01

    The Sciomyzidae are a family of acalyptrate flies of worldwide distribution, with 543 extant species and 14 described subspecies in 63 genera. Although 274 species in 37 genera are found in the Western Hemisphere, the sciomyzid fauna of Central and South America remains relatively unknown, comprising 103 species in 25 genera, with only seven species in five genera having been recorded from Colombia: Dictya bergi Valley, Perilimnia albifacies Becker, Pherbellia guttata (Coquillett), Sepedomerus bipuncticeps (Malloch), S. macropus (Walker), Sepedonea guianica (Steyskal), and S. isthmi (Steyskal). PMID:27395301

  14. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome

    PubMed Central

    de Souza, Rafael Soares Correa; Okura, Vagner Katsumi; Armanhi, Jaderson Silveira Leite; Jorrín, Beatriz; Lozano, Núria; da Silva, Márcio José; González-Guerrero, Manuel; de Araújo, Laura Migliorini; Verza, Natália Cristina; Bagheri, Homayoun Chaichian; Imperial, Juan; Arruda, Paulo

    2016-01-01

    Plant microbiome and its manipulation herald a new era for plant biotechnology with the potential to benefit sustainable crop production. However, studies evaluating the diversity, structure and impact of the microbiota in economic important crops are still rare. Here we describe a comprehensive inventory of the structure and assemblage of the bacterial and fungal communities associated with sugarcane. Our analysis identified 23,811 bacterial OTUs and an unexpected 11,727 fungal OTUs inhabiting the endophytic and exophytic compartments of roots, shoots, and leaves. These communities originate primarily from native soil around plants and colonize plant organs in distinct patterns. The sample type is the primary driver of fungal community assemblage, and the organ compartment plays a major role in bacterial community assemblage. We identified core bacterial and fungal communities composed of less than 20% of the total microbial richness but accounting for over 90% of the total microbial relative abundance. The roots showed 89 core bacterial families, 19 of which accounted for 44% of the total relative abundance. Stalks are dominated by groups of yeasts that represent over 12% of total relative abundance. The core microbiome described here comprise groups whose biological role underlies important traits in plant growth and fermentative processes. PMID:27358031

  15. Bacterial Origin of a Mitochondrial Outer Membrane Protein Translocase

    PubMed Central

    Harsman, Anke; Niemann, Moritz; Pusnik, Mascha; Schmidt, Oliver; Burmann, Björn M.; Hiller, Sebastian; Meisinger, Chris; Schneider, André; Wagner, Richard

    2012-01-01

    Mitochondria are of bacterial ancestry and have to import most of their proteins from the cytosol. This process is mediated by Tom40, an essential protein that forms the protein-translocating pore in the outer mitochondrial membrane. Tom40 is conserved in virtually all eukaryotes, but its evolutionary origin is unclear because bacterial orthologues have not been identified so far. Recently, it was shown that the parasitic protozoon Trypanosoma brucei lacks a conventional Tom40 and instead employs the archaic translocase of the outer mitochondrial membrane (ATOM), a protein that shows similarities to both eukaryotic Tom40 and bacterial protein translocases of the Omp85 family. Here we present electrophysiological single channel data showing that ATOM forms a hydrophilic pore of large conductance and high open probability. Moreover, ATOM channels exhibit a preference for the passage of cationic molecules consistent with the idea that it may translocate unfolded proteins targeted by positively charged N-terminal presequences. This is further supported by the fact that the addition of a presequence peptide induces transient pore closure. An in-depth comparison of these single channel properties with those of other protein translocases reveals that ATOM closely resembles bacterial-type protein export channels rather than eukaryotic Tom40. Our results support the idea that ATOM represents an evolutionary intermediate between a bacterial Omp85-like protein export machinery and the conventional Tom40 that is found in mitochondria of other eukaryotes. PMID:22778261

  16. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome.

    PubMed

    de Souza, Rafael Soares Correa; Okura, Vagner Katsumi; Armanhi, Jaderson Silveira Leite; Jorrín, Beatriz; Lozano, Núria; da Silva, Márcio José; González-Guerrero, Manuel; de Araújo, Laura Migliorini; Verza, Natália Cristina; Bagheri, Homayoun Chaichian; Imperial, Juan; Arruda, Paulo

    2016-01-01

    Plant microbiome and its manipulation herald a new era for plant biotechnology with the potential to benefit sustainable crop production. However, studies evaluating the diversity, structure and impact of the microbiota in economic important crops are still rare. Here we describe a comprehensive inventory of the structure and assemblage of the bacterial and fungal communities associated with sugarcane. Our analysis identified 23,811 bacterial OTUs and an unexpected 11,727 fungal OTUs inhabiting the endophytic and exophytic compartments of roots, shoots, and leaves. These communities originate primarily from native soil around plants and colonize plant organs in distinct patterns. The sample type is the primary driver of fungal community assemblage, and the organ compartment plays a major role in bacterial community assemblage. We identified core bacterial and fungal communities composed of less than 20% of the total microbial richness but accounting for over 90% of the total microbial relative abundance. The roots showed 89 core bacterial families, 19 of which accounted for 44% of the total relative abundance. Stalks are dominated by groups of yeasts that represent over 12% of total relative abundance. The core microbiome described here comprise groups whose biological role underlies important traits in plant growth and fermentative processes. PMID:27358031

  17. A survey of bacterial insertion sequences using IScan

    PubMed Central

    Wagner, Andreas; Lewis, Christopher; Bichsel, Manuel

    2007-01-01

    Bacterial insertion sequences (ISs) are the simplest kinds of bacterial mobile DNA. Evolutionary studies need consistent IS annotation across many different genomes. We have developed an open-source software package, IScan, to identify bacterial ISs and their sequence elements—inverted and target direct repeats—in multiple genomes using multiple flexible search parameters. We applied IScan to 438 completely sequenced bacterial genomes and 20 IS families. The resulting data show that ISs within a genome are extremely similar, with a mean synonymous divergence of Ks = 0.033. Our analysis substantially extends previously available information, and suggests that most ISs have entered bacterial genomes recently. By implication, their population persistence may depend on horizontal transfer. We also used IScan's ability to analyze the statistical significance of sequence similarity among many IS inverted repeats. Although the inverted repeats of insertion sequences are evolutionarily highly flexible parts of ISs, we show that this ability can be used to enrich a dataset for ISs that are likely to be functional. Applied to the thousands of genomes that will soon be available, IScan could be used for many purposes, such as mapping the evolutionary history and horizontal transfer patterns of different ISs. PMID:17686783

  18. Desert gerbils affect bacterial composition of soil.

    PubMed

    Kuznetsova, Tatyana A; Kam, Michael; Khokhlova, Irina S; Kostina, Natalia V; Dobrovolskaya, Tatiana G; Umarov, Marat M; Degen, A Allan; Shenbrot, Georgy I; Krasnov, Boris R

    2013-11-01

    Rodents affect soil microbial communities by burrow architecture, diet composition, and foraging behavior. We examined the effect of desert rodents on nitrogen-fixing bacteria (NFB) communities by identifying bacteria colony-forming units (CFU) and measuring nitrogen fixation rates (ARA), denitrification (DA), and CO2 emission in soil from burrows of three gerbil species differing in diets. Psammomys obesus is folivorous, Meriones crassus is omnivorous, consuming green vegetation and seeds, and Dipodillus dasyurus is predominantly granivorous. We also identified NFB in the digestive tract of each rodent species and in Atriplex halimus and Anabasis articulata, dominant plants at the study site. ARA rates of soil from burrows of the rodent species were similar, and substantially lower than control soil, but rates of DA and CO2 emission differed significantly among burrows. Highest rates of DA and CO2 emission were measured in D. dasyurus burrows and lowest in P. obesus. CFU differed among bacteria isolates, which reflected dietary selection. Strains of cellulolytic representatives of the family Myxococcaceae and the genus Cytophaga dominated burrows of P. obesus, while enteric Bacteroides dominated burrows of D. dasyurus. Burrows of M. crassus contained both cellulolytic and enteric bacteria. Using discriminant function analysis, differences were revealed among burrow soils of all rodent species and control soil, and the two axes accounted for 91 % of the variance in bacterial occurrences. Differences in digestive tract bacterial occurrences were found among these rodent species. Bacterial colonies in P. obesus and M. crassus burrows were related to bacteria of A. articulata, the main plant consumed by both species. In contrast, bacteria colonies in the burrow soil of D. dasyurus were related to bacteria in its digestive tract. We concluded that gerbils play an important role as ecosystem engineers within their burrow environment and affect the microbial complex of

  19. Comparative Genomic Analyses of the Bacterial Phosphotransferase System

    PubMed Central

    Barabote, Ravi D.; Saier, Milton H.

    2005-01-01

    We report analyses of 202 fully sequenced genomes for homologues of known protein constituents of the bacterial phosphoenolpyruvate-dependent phosphotransferase system (PTS). These included 174 bacterial, 19 archaeal, and 9 eukaryotic genomes. Homologues of PTS proteins were not identified in archaea or eukaryotes, showing that the horizontal transfer of genes encoding PTS proteins has not occurred between the three domains of life. Of the 174 bacterial genomes (136 bacterial species) analyzed, 30 diverse species have no PTS homologues, and 29 species have cytoplasmic PTS phosphoryl transfer protein homologues but lack recognizable PTS permeases. These soluble homologues presumably function in regulation. The remaining 77 species possess all PTS proteins required for the transport and phosphorylation of at least one sugar via the PTS. Up to 3.2% of the genes in a bacterium encode PTS proteins. These homologues were analyzed for family association, range of protein types, domain organization, and organismal distribution. Different strains of a single bacterial species often possess strikingly different complements of PTS proteins. Types of PTS protein domain fusions were analyzed, showing that certain types of domain fusions are common, while others are rare or prohibited. Select PTS proteins were analyzed from different phylogenetic standpoints, showing that PTS protein phylogeny often differs from organismal phylogeny. The results document the frequent gain and loss of PTS protein-encoding genes and suggest that the lateral transfer of these genes within the bacterial domain has played an important role in bacterial evolution. Our studies provide insight into the development of complex multicomponent enzyme systems and lead to predictions regarding the types of protein-protein interactions that promote efficient PTS-mediated phosphoryl transfer. PMID:16339738

  20. Laboratory Diagnosis of Bacterial Gastroenteritis

    PubMed Central

    Humphries, Romney M.

    2015-01-01

    SUMMARY Bacterial gastroenteritis is a disease that is pervasive in both the developing and developed worlds. While for the most part bacterial gastroenteritis is self-limiting, identification of an etiological agent by bacterial stool culture is required for the management of patients with severe or prolonged diarrhea, symptoms consistent with invasive disease, or a history that may predict a complicated course of disease. Importantly, characterization of bacterial enteropathogens from stool cultures in clinical laboratories is one of the primary means by which public health officials identify and track outbreaks of bacterial gastroenteritis. This article provides guidance for clinical microbiology laboratories that perform stool cultures. The general characteristics, epidemiology, and clinical manifestations of key bacterial enteropathogens are summarized. Information regarding optimal specimen collection, transport, and processing and current diagnostic tests and testing algorithms is provided. This article is an update of Cumitech 12A (P. H. Gilligan, J. M. Janda, M. A. Karmali, and J. M. Miller, Cumitech 12A, Laboratory diagnosis of bacterial diarrhea, 1992). PMID:25567220

  1. Family and family therapy in the Netherlands.

    PubMed

    Wagenaar, Karin; Baars, Jan

    2012-04-01

    This article describes how families are functioning in the Netherlands, and how family therapy is used in mental healthcare. In the open Dutch society, new ideas are easily incorporated, as exemplified by the rapid introduction and growth of family therapy in the 1980s. In recent decades, however, family therapy has lost ground to other treatment models that are more individually orientated, and adhere to stricter protocols. This decline of family therapy has been exacerbated by recent budget cuts in mental healthcare. In regular healthcare institutes family therapy now has a marginal position at best, although family treatment models are used in specific areas such as forensic treatments. In addition, the higher trained family therapists have found their own niches to work with couples and families. We argue that a stronger position of family therapy would be beneficial for patients and for families, in order to counteract the strong individualization of Dutch society. PMID:22515464

  2. Bacterial phytochromes: more than meets the light.

    PubMed

    Auldridge, Michele E; Forest, Katrina T

    2011-02-01

    Phytochromes are environmental sensors, historically thought of as red/far-red photoreceptors in plants. Their photoperception occurs through a covalently linked tetrapyrrole chromophore, which undergoes a light-dependent conformational change propagated through the protein to a variable output domain. The phytochrome composition is modular, typically consisting of a PAS-GAF-PHY architecture for the N-terminal photosensory core. A collection of three-dimensional structures has uncovered key features, including an unusual figure-of-eight knot, an extension reaching from the PHY domain to the chromophore-binding GAF domain, and a centrally located, long α-helix hypothesized to be crucial for intramolecular signaling. Continuing identification of phytochromes in microbial systems has expanded the assigned sensory abilities of this family out of the red and into the yellow, green, blue, and violet portions of the spectrum. Furthermore, phytochromes acting not as photoreceptors but as redox sensors have been recognized. In addition, architectures other than PAS-GAF-PHY are known, thus revealing phytochromes to be a varied group of sensory receptors evolved to utilize their modular design to perceive a signal and respond accordingly. This review focuses on the structures of bacterial phytochromes and implications for signal transmission. We also discuss the small but growing set of bacterial phytochromes for which a physiological function has been ascertained. PMID:21250783

  3. Infectious delivery of alphaherpesvirus bacterial artificial chromosomes.

    PubMed

    Tobler, Kurt; Fraefel, Cornel

    2015-01-01

    Bacterial artificial chromosomes (BACs) can accommodate and stably propagate the genomes of large DNA viruses in E. coli. As DNA virus genomes are often per se infectious upon transfection into mammalian cells, their cloning in BACs and easy modification by homologous recombination in bacteria has become an important strategy to investigate the functions of individual virus genes. This chapter describes a strategy to clone the genomes of viruses of the Alphaherpesvirinae subfamily within the family of the Herpesviridae, which is a group of large DNA viruses that can establish both lytic and latent infections in most animal species including humans. The cloning strategy includes the following steps: (1) Construction of a transfer plasmid that contains the BAC backbone with selection and screening markers, and targeting sequences which support homologous recombination between the transfer plasmid and the alphaherpesvirus genome. (2) Introduction of the transfer plasmid sequences into the alphaherpesvirus genome via homologous recombination in mammalian cells. (3) Isolation of recombinant virus genomes containing the BAC backbone sequences from infected mammalian cells and electroporation into E. coli. (4) Preparation of infectious BAC DNA from bacterial cultures and transfection into mammalian cells. (5) Isolation and characterization of progeny virus. PMID:25239748

  4. Numerical Survey of Some Bacterial Taxa

    PubMed Central

    Focht, D. D.; Lockhart, W. R.

    1965-01-01

    Focht, D. D. (Iowa State University, Ames), and W. R. Lockhart. Numerical survey of some bacterial taxa. J. Bacteriol. 90:1314–1319. 1965.—A numerical analysis was made of 77 properties of each of 43 bacterial strains, representing 25 genera from 8 families in the orders Eubacteriales and Pseudomonadales. Four major groups were found, related to one another at approximately the same level of similarity: (1) a large cluster containing the subgroups (1a) Athiorhodaceae-Spirillaceae, (1b) Xanthomonas, and (1c) “inactive” Micrococcaceae-Achromobacteraceae; (2) a cluster containing the “active” Micrococcaceae and Lactobacillaceae; (3) the enterobacteria; and (4) Aeromonas. There was a sharp distinction between the branches of groups 1a, 1c, and 2. The composition of groups was essentially the same whether or not fermentation of carbohydrates (28 characters) was included in the analysis. Several individual strains, notably, Bacillus subtilis, Leuconostoc mesenteroides, Pseudomonas aeruginosa, and Erwinia amylovora, were related to none of the groups, and others (two species of Proteus, Flavobacterium devorans, and Lactobacillus casei) showed only minimal quantitative relationships with their groups. These results suggest that there may be significant variation in levels of similarity within microbial groups presently accorded equivalent taxonomic rank, and that some present distinctions among taxa, particularly at the generic level, cannot be confirmed on the basis of overall similarity. PMID:5848329

  5. Roles within the Family

    MedlinePlus

    ... Spread the Word Shop AAP Find a Pediatrician Family Life Medical Home Family Dynamics Adoption & Foster Care ... Text Size Email Print Share Roles Within the Family Page Content Article Body Families are not democracies. ...

  6. National Military Family Association

    MedlinePlus

    ... Clinton and Trump Stand Behind the Uniform? Military families have some questions... More Suicide Prevention Awareness Month ... quick fact sheet about this program. Operation Purple Family Retreats Operation Purple Family Retreats provide military families ...

  7. In Support of Families.

    ERIC Educational Resources Information Center

    Murphy, Albert T.

    1979-01-01

    The article discusses support services and sources for the families of handicapped children. Aspects covered include family involvement in early childhood education programs, emotional support, and family mental health. The characteristics of the "ideal" family are also discussed. (DLS)

  8. Canadian guidelines for acute bacterial rhinosinusitis

    PubMed Central

    Kaplan, Alan

    2014-01-01

    Objective To provide a clinical summary of the Canadian clinical practice guidelines for acute bacterial rhinosinusitis (ABRS) that includes relevant considerations for family physicians. Quality of evidence Guideline authors performed a systematic literature search and drafted recommendations. Recommendations received both strength of evidence and strength of recommendation ratings. Input from external content experts was sought, as was endorsement from Canadian medical societies (Association of Medical Microbiology and Infectious Disease Canada, Canadian Society of Allergy and Clinical Immunology, Canadian Society of Otolaryngology—Head and Neck Surgery, Canadian Association of Emergency Physicians, and the Family Physicians Airways Group of Canada). Main message Diagnosis of ABRS is based on the presence of specific symptoms and their duration; imaging or culture are not needed in uncomplicated cases. Treatment is dependent on symptom severity, with intranasal corticosteroids (INCSs) recommended as monotherapy for mild and moderate cases, although the benefit might be modest. Use of INCSs plus antibiotics is reserved for patients who fail to respond to INCSs after 72 hours, and for initial treatment of patients with severe symptoms. Antibiotic selection must account for the suspected pathogen, the risk of resistance, comorbid conditions, and local antimicrobial resistance trends. Adjunct therapies such as nasal saline irrigation are recommended. Failure to respond to treatment, recurrent episodes, and signs of complications should prompt referral to an otolaryngologist. The guidelines address situations unique to the Canadian health care environment, including actions to take during prolonged wait periods for specialist referral or imaging. Conclusion The Canadian guidelines provide up-to-date recommendations for diagnosis and treatment of ABRS that reflect an evolving understanding of the disease. In addition, the guidelines offer useful tools to help

  9. Electromagnetism of Bacterial Growth

    NASA Astrophysics Data System (ADS)

    Ainiwaer, Ailiyasi

    2011-10-01

    There has been increasing concern from the public about personal health due to the significant rise in the daily use of electrical devices such as cell phones, radios, computers, GPS, video games and television. All of these devices create electromagnetic (EM) fields, which are simply magnetic and electric fields surrounding the appliances that simultaneously affect the human bio-system. Although these can affect the human system, obstacles can easily shield or weaken the electrical fields; however, magnetic fields cannot be weakened and can pass through walls, human bodies and most other objects. The present study was conducted to examine the possible effects of bacteria when exposed to magnetic fields. The results indicate that a strong causal relationship is not clear, since different magnetic fields affect the bacteria differently, with some causing an increase in bacterial cells, and others causing a decrease in the same cells. This phenomenon has yet to be explained, but the current study attempts to offer a mathematical explanation for this occurrence. The researchers added cultures to the magnetic fields to examine any effects to ion transportation. Researchers discovered ions such as potassium and sodium are affected by the magnetic field. A formula is presented in the analysis section to explain this effect.

  10. Bacterial genotoxicity bioreporters

    PubMed Central

    Biran, Alva; Yagur‐Kroll, Sharon; Pedahzur, Rami; Buchinger, Sebastian; Reifferscheid, Georg; Ben‐Yoav, Hadar; Shacham‐Diamand, Yosi; Belkin, Shimshon

    2010-01-01

    Summary Ever since the introduction of the Salmonella typhimurium mammalian microsome mutagenicity assay (the ‘Ames test’) over three decades ago, there has been a constant development of additional genotoxicity assays based upon the use of genetically engineered microorganisms. Such assays rely either on reversion principles similar to those of the Ames test, or on promoter–reporter fusions that generate a quantifiable dose‐dependent signal in the presence of potential DNA damaging compounds and the induction of repair mechanisms; the latter group is the subject of the present review. Some of these assays were only briefly described in the scientific literature, whereas others have been developed all the way to commercial products. Out of these, only one, the umu‐test, has been fully validated and ISO‐ and OECD standardized. Here we review the main directions undertaken in the construction and testing of bacterial‐based genotoxicity bioassays, including the attempts to incorporate at least a partial metabolic activation capacity into the molecular design. We list the genetic modifications introduced into the tester strains, compare the performance of the different assays, and briefly describe the first attempts to incorporate such bacterial reporters into actual genotoxicity testing devices. PMID:21255340