Science.gov

Sample records for bacterial growth curve

  1. Solubilization and bio-conjugation of quantum dots and bacterial toxicity assays by growth curve and plate count.

    PubMed

    Park, Soonhyang; Chibli, Hicham; Nadeau, Jay

    2012-01-01

    Quantum dots (QDs) are fluorescent semiconductor nanoparticles with size-dependent emission spectra that can be excited by a broad choice of wavelengths. QDs have attracted a lot of interest for imaging, diagnostics, and therapy due to their bright, stable fluorescence. QDs can be conjugated to a variety of bio-active molecules for binding to bacteria and mammalian cells. QDs are also being widely investigated as cytotoxic agents for targeted killing of bacteria. The emergence of multiply-resistant bacterial strains is rapidly becoming a public health crisis, particularly in the case of Gram negative pathogens. Because of the well-known antimicrobial effect of certain nanomaterials, especially Ag, there are hundreds of studies examining the toxicity of nanoparticles to bacteria. Bacterial studies have been performed with other types of semiconductor nanoparticles as well, especially TiO(2), but also ZnO and others including CuO. Some comparisons of bacterial strains have been performed in these studies, usually comparing a Gram negative strain with a Gram positive. With all of these particles, mechanisms of toxicity are attributed to oxidation: either the photogeneration of reactive oxygen species (ROS) by the particles or the direct release of metal ions that can cause oxidative toxicity. Even with these materials, results of different studies vary greatly. In some studies the Gram positive test strain is reportedly more sensitive than the Gram negative; in others it is the opposite. These studies have been well reviewed. In all nanoparticle studies, particle composition, size, surface chemistry, sample aging/breakdown, and wavelength, power, and duration of light exposure can all dramatically affect the results. In addition, synthesis byproducts and solvents must be considered. High-throughput screening techniques are needed to be able to develop effective new nanomedicine agents. CdTe QDs have anti-microbial effects alone or in combination with antibiotics. In a previous study, we showed that coupling of antibiotics to CdTe can increase toxicity to bacteria but decrease toxicity to mammalian cells, due to decreased production of reactive oxygen species from the conjugates. Although it is unlikely that cadmium-containing compounds will be approved for use in humans, such preparations could be used for disinfection of surfaces or sterilization of water. In this protocol, we give a straightforward approach to solubilizing CdTe QDs with mercaptopropionic acid (MPA). The QDs are ready to use within an hour. We then demonstrate coupling to an antimicrobial agent. The second part of the protocol demonstrates a 96-well bacterial inhibition assay using the conjugated and unconjugated QDs. The optical density is read over many hours, permitting the effects of QD addition and light exposure to be evaluated immediately as well as after a recovery period. We also illustrate a colony count for quantifying bacterial survival. PMID:22824953

  2. Electromagnetism of Bacterial Growth

    NASA Astrophysics Data System (ADS)

    Ainiwaer, Ailiyasi

    2011-10-01

    There has been increasing concern from the public about personal health due to the significant rise in the daily use of electrical devices such as cell phones, radios, computers, GPS, video games and television. All of these devices create electromagnetic (EM) fields, which are simply magnetic and electric fields surrounding the appliances that simultaneously affect the human bio-system. Although these can affect the human system, obstacles can easily shield or weaken the electrical fields; however, magnetic fields cannot be weakened and can pass through walls, human bodies and most other objects. The present study was conducted to examine the possible effects of bacteria when exposed to magnetic fields. The results indicate that a strong causal relationship is not clear, since different magnetic fields affect the bacteria differently, with some causing an increase in bacterial cells, and others causing a decrease in the same cells. This phenomenon has yet to be explained, but the current study attempts to offer a mathematical explanation for this occurrence. The researchers added cultures to the magnetic fields to examine any effects to ion transportation. Researchers discovered ions such as potassium and sodium are affected by the magnetic field. A formula is presented in the analysis section to explain this effect.

  3. Nonlinear Growth Curves in Developmental Research

    ERIC Educational Resources Information Center

    Grimm, Kevin J.; Ram, Nilam; Hamagami, Fumiaki

    2011-01-01

    Developmentalists are often interested in understanding change processes, and growth models are the most common analytic tool for examining such processes. Nonlinear growth curves are especially valuable to developmentalists because the defining characteristics of the growth process such as initial levels, rates of change during growth spurts, and…

  4. Bacterial Colonization of Particles: Growth and Interactions

    PubMed Central

    Grossart, Hans-Peter; Kiřrboe, Thomas; Tang, Kam; Ploug, Helle

    2003-01-01

    Marine particles in the ocean are exposed to diverse bacterial communities, and colonization and growth of attached bacteria are important processes in the degradation and transformation of the particles. In an earlier study, we showed that the initial colonization of model particles by individual bacterial strains isolated from marine aggregates was a function of attachment and detachment. In the present study, we have investigated how this colonization process was further affected by growth and interspecific interactions among the bacteria. Long-term incubation experiments showed that growth dominated over attachment and detachment after a few hours in controlling the bacterial population density on agar particles. In the absence of grazing mortality, this growth led to an equilibrium population density consistent with the theoretical limit due to oxygen diffusion. Interspecific interaction experiments showed that the presence of some bacterial strains (“residents”) on the agar particles either increased or decreased the colonization rate of other strains (“newcomers”). Comparison between an antibiotic-producing strain and its antibiotic-free mutant showed no inhibitory effect on the newcomers due to antibiotic production. On the contrary, hydrolytic activity of the antibiotic-producing strain appeared to benefit the newcomers and enhance their colonization rate. These results show that growth- and species-specific interactions have to be taken into account to adequately describe bacterial colonization of marine particles. Changes in colonization pattern due to such small-scale processes may have profound effects on the transformation and fluxes of particulate matter in the ocean. PMID:12788756

  5. Arabidopsis growth curves Antibody effect on fibrinogen to fibrin conversion

    E-print Network

    McCullagh, Peter

    ­40 Typical growth trajectory for one plant zero up to day t0 35 (plant-specific) reaches full height aroundArabidopsis growth curves Antibody effect on fibrinogen to fibrin conversion Growth curve modelsCullagh, Mei Wang Growth curve models #12;Arabidopsis growth curves Antibody effect on fibrinogen to fibrin

  6. Fundal Height Growth Curve for Thai Women

    PubMed Central

    Deeluea, Jirawan; Sirichotiyakul, Supatra; Weerakiet, Sawaek; Buntha, Renu; Tawichasri, Chamaiporn

    2013-01-01

    Objectives. To develop fundal height (FH) growth curve from normal singleton pregnancy based on last menstrual period (LMP) and/or ultrasound dating for women in the northern part of Thailand. Methods. A retrospective time-series study was conducted at four hospitals in the upper northern part of Thailand between January 2009 and March 2011. FH from 20 to 40 weeks was measured in centimeters. The FH growth curve was presented as smoothed function of the 10th, 50th, and 90th percentiles, which were derived from a regression model fitted by a multilevel model for continuous data. Results. FH growth curve was derived from 7,523 measurements of 1,038 women. Gestational age was calculated from LMP in 648 women and ultrasound in 390 women. The FH increased from 19.1?cm at 20 weeks to 35.4?cm at 40 weeks. The maximum increase of 1.0?cm/wk was observed between 20 and 32 weeks, declining to 0.7?cm/wk between 33 and 36 weeks and 0.3?cm/wk between 37 and 40 weeks. A quadratic regression equation was FH (cm) = ?19.7882 + 2.438157?GA?(wk) ? 0.0262178 GA2 (wk) (R-squared?=?0.85). Conclusions. A demographically specific FH growth curve may be an appropriate tool for monitoring and screening abnormal intrauterine growth. PMID:23691342

  7. Bacterial growth prevention in liquid bicarbonate concentrate.

    PubMed

    Stragier, A; Wenderickx, D

    1998-01-01

    We describe an original Liquid Bicarbonate Concentrate (LBC) production and distribution unit, now functioning for five years. To prevent bacterial growth several measures were taken: LBC osmolarity as high as possible, fast concentrate turnover, UV irradiation of the tank and continuous circulation of LBC. Although, six and ten months elapsed before the first two positive cultures appeared after implementation of the new distribution circuit, subsequently, the interval between positive cultures became much shorter so that disinfection of the LBC unit is now required every 3 weeks. Changing the disinfecting agent from hypochlorite to peracetic acid did not succeed in increasing this interval. Our experience draws special the attention to the problem of bacterial growth in an on-line LBC production and distribution unit and defines the potential methods to control it. Continuous vigilance remains mandatory. PMID:10392080

  8. Curved tails in polymerization-based bacterial motility

    NASA Astrophysics Data System (ADS)

    Rutenberg, Andrew D.; Grant, Martin

    2001-08-01

    The curved actin ``comet-tail'' of the bacterium Listeria monocytogenes is a visually striking signature of actin polymerization-based motility. Similar actin tails are associated with Shigella flexneri, spotted-fever Rickettsiae, the Vaccinia virus, and vesicles and microspheres in related in vitro systems. We show that the torque required to produce the curvature in the tail can arise from randomly placed actin filaments pushing the bacterium or particle. We find that the curvature magnitude determines the number of actively pushing filaments, independent of viscosity and of the molecular details of force generation. The variation of the curvature with time can be used to infer the dynamics of actin filaments at the bacterial surface.

  9. Growth factor parametrization in curved space

    E-print Network

    Yungui Gong; Mustapha Ishak; Anzhong Wang

    2009-07-01

    The growth rate of matter perturbation and the expansion rate of the Universe can be used to distinguish modified gravity and dark energy models in explaining cosmic acceleration. We explore here the inclusion of spatial curvature into the growth factor. We expand previous results using the approximation $\\Omega_{m}^\\gamma$ and then suggest a new form, $f_a=\\Omega_m^\\gamma+(\\gamma-4/7)\\Omega_k$, as an approximation for the growth factor when the curvature $\\Omega_k$ is not negligible, and where the growth index $\\gamma$ is usually model dependent. The expression recovers the standard results for the curved and flat $\\Lambda$CDM and Dvali-Gabadadze-Porrati models. Using the best fit values of $\\Omega_{m0}$ and $\\Omega_{k0}$ to the expansion/distance measurements from Type Ia supernovae, baryon acoustic oscillation, WMAP5, and $H(z)$ data, we fit the growth index parameter to current growth factor data and obtain $\\gamma_{\\Lambda}(\\Omega_{k} \

  10. Arabidopsis growth curves Antibody effect on fibrinogen to fibrin conversion

    E-print Network

    McCullagh, Peter

    UCseal Arabidopsis growth curves Antibody effect on fibrinogen to fibrin conversion Gaussian Arabidopsis growth curves Antibody effect on fibrinogen to fibrin conversion Gaussian processes Outline 1 Arabidopsis growth curves 2 Antibody effect on fibrinogen to fibrin conversion 3 Gaussian processes Peter Mc

  11. Bacterial growth and form under mechanical compression

    PubMed Central

    Si, Fangwei; Li, Bo; Margolin, William; Sun, Sean X.

    2015-01-01

    A combination of physical and chemical processes is involved in determining the bacterial cell shape. In standard medium, Escherichia coli cells are rod-shaped, and maintain a constant diameter during exponential growth. Here, we demonstrate that by applying compressive forces to growing E. coli, cells no longer retain their rod-like shapes but grow and divide with a flat pancake-like geometry. The deformation is reversible: deformed cells can recover back to rod-like shapes in several generations after compressive forces are removed. During compression, the cell elongation rate, proliferation rate, DNA replication rate, and protein synthesis are not significantly altered from those of the normal rod-shaped cells. Quantifying the rate of cell wall growth under compression reveals that the cell wall growth rate depends on the local cell curvature. MreB not only influences the rate of cell wall growth, but also influences how the growth rate scales with cell geometry. The result is consistent with predictions of a mechanochemical model, and suggests an active mechanical role for MreB during cell wall growth. The developed compressive device is also useful for studying a variety of cells in unique geometries. PMID:26086542

  12. Synergy of fresh and accumulated organic matter to bacterial growth.

    PubMed

    Farjalla, Vinicius F; Marinho, Claudio C; Faria, Bias M; Amado, André M; Esteves, Francisco de A; Bozelli, Reinaldo L; Giroldo, Danilo

    2009-05-01

    The main goal of this research was to evaluate whether the mixture of fresh labile dissolved organic matter (DOM) and accumulated refractory DOM influences bacterial production, respiration, and growth efficiency (BGE) in aquatic ecosystems. Bacterial batch cultures were set up using DOM leached from aquatic macrophytes as the fresh DOM pool and DOM accumulated from a tropical humic lagoon. Two sets of experiments were performed and bacterial growth was followed in cultures composed of each carbon substrate (first experiment) and by carbon substrates combined (second experiment), with and without the addition of nitrogen and phosphorus. In both experiments, bacterial production, respiration, and BGE were always higher in cultures with N and P additions, indicating a consistent inorganic nutrient limitation. Bacterial production, respiration, and BGE were higher in cultures set up with leachate DOM than in cultures set up with humic DOM, indicating that the quality of the organic matter pool influenced the bacterial growth. Bacterial production and respiration were higher in the mixture of substrates (second experiment) than expected by bacterial production and respiration in single substrate cultures (first experiment). We suggest that the differences in the concentration of some compounds between DOM sources, the co-metabolism on carbon compound decomposition, and the higher diversity of molecules possibly support a greater bacterial diversity which might explain the higher bacterial growth observed. Finally, our results indicate that the mixture of fresh labile and accumulated refractory DOM that naturally occurs in aquatic ecosystems could accelerate the bacterial growth and bacterial DOM removal. PMID:18985269

  13. Coupled effects of chemotaxis and growth on traveling bacterial waves

    NASA Astrophysics Data System (ADS)

    Yan, Zhifeng; Bouwer, Edward J.; Hilpert, Markus

    2014-08-01

    Traveling bacterial waves are capable of improving contaminant remediation in the subsurface. It is fairly well understood how bacterial chemotaxis and growth separately affect the formation and propagation of such waves. However, their interaction is not well understood. We therefore perform a modeling study to investigate the coupled effects of chemotaxis and growth on bacterial migration, and examine their effects on contaminant remediation. We study the waves by using different initial electron acceptor concentrations for different bacteria and substrate systems. Three types of traveling waves can occur: a chemotactic wave due to the biased movement of chemotactic bacteria resulting from metabolism-generated substrate concentration gradients; a growth/decay/motility wave due to a dynamic equilibrium between bacterial growth, decay and random motility; and an integrated wave due to the interaction between bacterial chemotaxis and growth. Chemotaxis hardly enhances the bacterial propagation if it is too weak to form a chemotactic wave or its wave speed is less than half of the growth/decay/motility wave speed. However, chemotaxis significantly accelerates bacterial propagation once its wave speed exceeds the growth/decay/motility wave speed. When convection occurs, it speeds up the growth/decay/motility wave but slows down or even eliminates the chemotactic wave due to the dispersion. Bacterial survival proves particularly important for bacterial propagation. Therefore we develop a conceptual model to estimate the speed of growth/decay/motility waves.

  14. Coupled effects of chemotaxis and growth on traveling bacterial waves.

    PubMed

    Yan, Zhifeng; Bouwer, Edward J; Hilpert, Markus

    2014-08-01

    Traveling bacterial waves are capable of improving contaminant remediation in the subsurface. It is fairly well understood how bacterial chemotaxis and growth separately affect the formation and propagation of such waves. However, their interaction is not well understood. We therefore perform a modeling study to investigate the coupled effects of chemotaxis and growth on bacterial migration, and examine their effects on contaminant remediation. We study the waves by using different initial electron acceptor concentrations for different bacteria and substrate systems. Three types of traveling waves can occur: a chemotactic wave due to the biased movement of chemotactic bacteria resulting from metabolism-generated substrate concentration gradients; a growth/decay/motility wave due to a dynamic equilibrium between bacterial growth, decay and random motility; and an integrated wave due to the interaction between bacterial chemotaxis and growth. Chemotaxis hardly enhances the bacterial propagation if it is too weak to form a chemotactic wave or its wave speed is less than half of the growth/decay/motility wave speed. However, chemotaxis significantly accelerates bacterial propagation once its wave speed exceeds the growth/decay/motility wave speed. When convection occurs, it speeds up the growth/decay/motility wave but slows down or even eliminates the chemotactic wave due to the dispersion. Bacterial survival proves particularly important for bacterial propagation. Therefore we develop a conceptual model to estimate the speed of growth/decay/motility waves. PMID:24984293

  15. Coupled effects of chemotaxis and growth on traveling bacterial waves

    NASA Astrophysics Data System (ADS)

    Yan, Z.; Hilpert, M.; Bouwer, E. J.

    2014-12-01

    Traveling bacterial waves are capable of improving contaminant remediation in the subsurface. It is fairly well understood how bacterial chemotaxis and growth separately affect the formation and propagation of such waves. However, their interaction is not well understood. We therefore perform a modeling study to investigate the coupled effects of chemotaxis and growth on bacterial migration, and examine their effects on contaminant remediation. We study the waves by using different initial electron acceptor concentrations for different bacteria and substrate systems. Three types of traveling waves can occur: a chemotactic wave due to the biased movement of chemotactic bacteria resulting from metabolism-generated substrate concentration gradients; a growth/decay/motility wave due to a dynamic equilibrium between bacterial growth, decay and random motility; and an integrated wave due to the interaction between bacterial chemotaxis and growth. Chemotaxis hardly enhances the bacterial propagation if it is too weak to form a chemotactic wave or its wave speed is less than half of the growth/decay/motility wave speed. However, chemotaxis significantly accelerates bacterial propagation once its wave speed exceeds the growth/decay/motility wave speed. When convection occurs, it speeds up the growth/decay/motility wave but slows down or even eliminates the chemotactic wave due to the dispersion. Bacterial survival proves particularly important for bacterial propagation. Therefore we develop a conceptual model to estimate the speed of growth/decay/motility waves.

  16. A brief history of bacterial growth physiology

    PubMed Central

    Schaechter, Moselio

    2015-01-01

    Arguably, microbial physiology started when Leeuwenhoek became fascinated by observing a Vorticella beating its cilia, my point being that almost any observation of microbes has a physiological component. With the advent of modern microbiology in the mid-19th century, the field became recognizably distinctive with such discoveries as anaerobiosis, fermentation as a biological phenomenon, and the nutritional requirements of microbes. Soon came the discoveries of Winogradsky and his followers of the chemical changes in the environment that result from microbial activities. Later, during the first half of the 20th century, microbial physiology became the basis for much of the elucidation of central metabolism. Bacterial physiology then became a handmaiden of molecular biology and was greatly influenced by the discovery of cellular regulatory mechanisms. Microbial growth, which had come of age with the early work of Hershey, Monod, and others, was later pursued by studies on a whole cell level by what became known as the “Copenhagen School.” During this time, the exploration of physiological activities became coupled to modern inquiries into the structure of the bacterial cell. Recent years have seen the development of a further phase in microbial physiology, one seeking a deeper quantitative understanding of phenomena on a whole cell level. This pursuit is exemplified by the emergence of systems biology, which is made possible by the development of technologies that permit the gathering of information in huge amounts. As has been true through history, the research into microbial physiology continues to be guided by the development of new methods of analysis. Some of these developments may well afford the possibility of making stunning breakthroughs. PMID:25954250

  17. Surface Growth of a Motile Bacterial Population Resembles Growth in a Chemostat

    E-print Network

    Surface Growth of a Motile Bacterial Population Resembles Growth in a Chemostat Daniel A. Koster populations. For such populations, the relation between growth, motility and spatial position is unclear. We, that is similar to bacterial growth in a chemostat predicts that the fraction of the population lagging behind

  18. Regime Switching in the Latent Growth Curve Mixture Model

    ERIC Educational Resources Information Center

    Dolan, Conor V.; Schmittmann, Verena D.; Lubke, Gitta H.; Neale, Michael C.

    2005-01-01

    A linear latent growth curve mixture model is presented which includes switching between growth curves. Switching is accommodated by means of a Markov transition model. The model is formulated with switching as a highly constrained multivariate mixture model and is fitted using the freely available Mx program. The model is illustrated by analyzing…

  19. Some Observations on Bacterial Thermal Death Time Curves1

    PubMed Central

    Licciardello, J. J.; Nickerson, J. T. R.

    1963-01-01

    Thermal death rate data were obtained for spores of Clostridium sporogenes P.A. 3679 and Bacillus subtilis var. niger, and for cells of Salmonella senftenberg 775W. The survival curves for P.A. 3679 were approximately linear, but for B. subtilis var. niger or S. senftenberg 775W they were sigmoidal. Decimal reduction times were derived from the regression slopes of the apparent linear portion of the survival curves, and from these a phantom thermal death time (TDT) curve was constructed. In general, the phantom TDT curves were linear for B. subtilis var. niger and S. senftenberg 775W and nonlinear for P.A. 3679. PMID:14075045

  20. 1 Arabidopsis growth curves 1.1 Data description

    E-print Network

    McCullagh, Peter

    1 Arabidopsis growth curves 1.1 Data description The file PlantGrowth.dat contains the heights appeared by day 41. By day 65 or earlier, the growth was complete; for each plant, the height recorded 69 distinct growth trajectories for 70 plants. The illusion is caused in part by heights being

  1. Multiscale study of bacterial growth: Experiments and model to understand the impact of gas exchange on global growth

    NASA Astrophysics Data System (ADS)

    Lalanne-Aulet, David; Piacentini, Adalberto; Guillot, Pierre; Marchal, Philippe; Moreau, Gilles; Colin, Annie

    2015-11-01

    Using a millifluidics and macroscale setup, we study quantitatively the impact of gas exchange on bacterial growth. In millifluidic environments, the permeability of the incubator materials allows an unlimited oxygen supply by diffusion. Moreover, the efficiency of diffusion at small scales makes the supply instantaneous in comparison with the cell division time. In hermetic closed vials, the amount of available oxygen is low. The growth curve has the same trend but is quantitatively different from the millifluidic situation. The analysis of all the data allows us to write a quantitative modeling enabling us to capture the entire growth process.

  2. Complementarity among plant growth promoting traits in rhizospheric bacterial communities promotes plant growth

    PubMed Central

    Singh, Mangal; Awasthi, Ashutosh; Soni, Sumit K.; Singh, Rakshapal; Verma, Rajesh K.; Kalra, Alok

    2015-01-01

    An assessment of roles of rhizospheric microbial diversity in plant growth is helpful in understanding plant-microbe interactions. Using random combinations of rhizospheric bacterial species at different richness levels, we analysed the contribution of species richness, compositions, interactions and identity on soil microbial respiration and plant biomass. We showed that bacterial inoculation in plant rhizosphere enhanced microbial respiration and plant biomass with complementary relationships among bacterial species. Plant growth was found to increase linearly with inoculation of rhizospheric bacterial communities with increasing levels of species or plant growth promoting trait diversity. However, inoculation of diverse bacterial communities having single plant growth promoting trait, i.e., nitrogen fixation could not enhance plant growth over inoculation of single bacteria. Our results indicate that bacterial diversity in rhizosphere affect ecosystem functioning through complementary relationship among plant growth promoting traits and may play significant roles in delivering microbial services to plants. PMID:26503744

  3. Complementarity among plant growth promoting traits in rhizospheric bacterial communities promotes plant growth.

    PubMed

    Singh, Mangal; Awasthi, Ashutosh; Soni, Sumit K; Singh, Rakshapal; Verma, Rajesh K; Kalra, Alok

    2015-01-01

    An assessment of roles of rhizospheric microbial diversity in plant growth is helpful in understanding plant-microbe interactions. Using random combinations of rhizospheric bacterial species at different richness levels, we analysed the contribution of species richness, compositions, interactions and identity on soil microbial respiration and plant biomass. We showed that bacterial inoculation in plant rhizosphere enhanced microbial respiration and plant biomass with complementary relationships among bacterial species. Plant growth was found to increase linearly with inoculation of rhizospheric bacterial communities with increasing levels of species or plant growth promoting trait diversity. However, inoculation of diverse bacterial communities having single plant growth promoting trait, i.e., nitrogen fixation could not enhance plant growth over inoculation of single bacteria. Our results indicate that bacterial diversity in rhizosphere affect ecosystem functioning through complementary relationship among plant growth promoting traits and may play significant roles in delivering microbial services to plants. PMID:26503744

  4. Impact of pH on bacterial growth and activity of recent fluoroquinolones in pooled urine.

    PubMed

    Erdogan-Yildirim, Zeynep; Burian, Angela; Manafi, Mohammad; Zeitlinger, Markus

    2011-04-01

    Acidification of urine is widely recommended for prevention and treatment of urinary tract infections. We set out to describe the effect of modification of pH on bacterial growth of relevant bacteria as well as on activity of modern fluoroquinolones in urine in vitro. Bacterial growth of Escherichia coli ATCC 25922 and Klebsiella oxytoca ATCC 700324 was determined in pooled human urine adjusted to pH levels between 5.0 and 8.0. Minimal inhibitory concentrations (MICs) and time-kill curves were performed for ciprofloxacin, levofloxacin and moxifloxacin in pH-adjusted urine and Mueller-Hinton Broth (MHB). Uptake of radioactive labeled [C(14)]-ciprofloxacin into bacterial cells was investigated at different pHs. While no difference in bacterial growth of E. coli and K. oxytoca was observed at pH values between 5.0 and 8.0, acidification of urine led to major impairment of antimicrobial activity of all tested fluoroquinolones, indicated by an up to 40-fold increase in MIC compared to MHB and nearly total neutralization of activity in time-kill experiments. The most probable mechanism behind this observation may have been reduced uptake of fluoroquinolones into bacterial cells, as indicated by bacterial uptake of [C(14)]-ciprofloxacin and a reversibility of the effect. The observed reduction in activity of modern fluoroquinolones confirms previous observations from older compounds. PMID:21288486

  5. Catecholamines and in vitro growth of pathogenic bacteria: enhancement of growth varies greatly among bacterial species

    NASA Technical Reports Server (NTRS)

    Belay, Tesfaye; Aviles, Hernan; Vance, Monique; Fountain, Kimberly; Sonnenfeld, Gerald

    2003-01-01

    The purpose of this study was to examine the effects of catecholamines on in vitro growth of a range of bacterial species, including anaerobes. Bacteria tested included: Porphyromonas gingivalis, Bacteriodes fragilis, Shigella boydii, Shigella sonnie, Enterobacter Sp, and Salmonella choleraesuis. The results of the current study indicated that supplementation of bacterial cultures in minimal medium with norepinephrine or epinephrine did not result in increased growth of bacteria. Positive controls involving treatment of Escherichia coli with catecholamines did result in increased growth of that bacterial species. The results of the present study extend previous observations that showed differential capability of catecholamines to enhance bacterial growth in vitro.

  6. Developmental Growth Curves of Preschool Children with Vision Impairments.

    ERIC Educational Resources Information Center

    Hatton, Deborah D.; Bailey, Donald B., Jr.; Burchinal, Margaret R.; Ferrell, Kay Alicyn

    1997-01-01

    Used growth curve analysis to describe the development of 186 preschoolers with vision impairments. Found that mental retardation and developmental delay were associated with lower developmental ages and slower growth rates. Visual function of 20/800 or worse was associated with lower developmental ages and slower growth rates in personal-social…

  7. BGFit: management and automated fitting of biological growth curves

    PubMed Central

    2013-01-01

    Background Existing tools to model cell growth curves do not offer a flexible integrative approach to manage large datasets and automatically estimate parameters. Due to the increase of experimental time-series from microbiology and oncology, the need for a software that allows researchers to easily organize experimental data and simultaneously extract relevant parameters in an efficient way is crucial. Results BGFit provides a web-based unified platform, where a rich set of dynamic models can be fitted to experimental time-series data, further allowing to efficiently manage the results in a structured and hierarchical way. The data managing system allows to organize projects, experiments and measurements data and also to define teams with different editing and viewing permission. Several dynamic and algebraic models are already implemented, such as polynomial regression, Gompertz, Baranyi, Logistic and Live Cell Fraction models and the user can add easily new models thus expanding current ones. Conclusions BGFit allows users to easily manage their data and models in an integrated way, even if they are not familiar with databases or existing computational tools for parameter estimation. BGFit is designed with a flexible architecture that focus on extensibility and leverages free software with existing tools and methods, allowing to compare and evaluate different data modeling techniques. The application is described in the context of bacterial and tumor cells growth data fitting, but it is also applicable to any type of two-dimensional data, e.g. physical chemistry and macroeconomic time series, being fully scalable to high number of projects, data and model complexity. PMID:24067087

  8. Bayesian growth curves using normal mixtures with nonparametric weights

    E-print Network

    Green, Peter

    the distribution of a measurement as it changes according to some covariate, often age. We present a new, Heterogeneity, Markov chain Monte Carlo, Normal mixtures, Path sampling, Reversible jump algorithms covariate, often age. Here we will refer to these curves as centile or growth curves. This second name comes

  9. Can we estimate bacterial growth rates from ribosomal RNA content?

    SciTech Connect

    Kemp, P.F.

    1995-12-31

    Several studies have demonstrated a strong relationship between the quantity of RNA in bacterial cells and their growth rate under laboratory conditions. It may be possible to use this relationship to provide information on the activity of natural bacterial communities, and in particular on growth rate. However, if this approach is to provide reliably interpretable information, the relationship between RNA content and growth rate must be well-understood. In particular, a requisite of such applications is that the relationship must be universal among bacteria, or alternately that the relationship can be determined and measured for specific bacterial taxa. The RNA-growth rate relationship has not been used to evaluate bacterial growth in field studies, although RNA content has been measured in single cells and in bulk extracts of field samples taken from coastal environments. These measurements have been treated as probable indicators of bacterial activity, but have not yet been interpreted as estimators of growth rate. The primary obstacle to such interpretations is a lack of information on biological and environmental factors that affect the RNA-growth rate relationship. In this paper, the available data on the RNA-growth rate relationship in bacteria will be reviewed, including hypotheses regarding the regulation of RNA synthesis and degradation as a function of growth rate and environmental factors; i.e. the basic mechanisms for maintaining RNA content in proportion to growth rate. An assessment of the published laboratory and field data, the current status of this research area, and some of the remaining questions will be presented.

  10. [Effect of bacterial satellites on Chlamydomonas reinhardtii growth in an algo-bacterial community].

    PubMed

    Nikolaev, Iu A; Plakunov, V K; Voronina, N A; Nemtseva, N V; Plotnikov, A O; Gogoleva, O A; Murav'eva, M E; Ovechkina, G V

    2008-01-01

    The growth characteristics of an algo-bacterial community (Chlamydomonas reinhardtii and bacterial satellites) were studied, as well as the mechanism and patterns of bacterial effect on algae. Four strains of predominant bacteria were isolated and partially characterized. They were assigned to the following taxa: Rhodococcus terrea, Micrococcus roseus, and Bacillus spp. A pure culture of the alga under study was obtained by plating serial dilutions on agarized media with ampicillin. Within the algo-bacterial association, the alga had a higher growth rate (0.76 day(-1)) and yield (60 microg chlorophyll/ml culture) than in pure cultures (0.4 day(-1) and 10 microg chlorophyll/ml culture, respectively). The viability of the algal cells within the association was retained longer than in pure culture. Among the isolated bacterial satellites, strains B1 and Y1, assigned to the species Rhodococcus terrae, had the highest stimulatory effect on algal growth. The culture liquid of bacteria incubated under the conditions not permitting growth stimulated algal growth; the culture liquid of actively growing bacteria had an opposite effect. PMID:18365726

  11. Visualization of Growth Curve Data from Phenotype MicroarrayExperiments

    SciTech Connect

    Jacobsen, Janet S.; Joyner, Dominique C.; Borglin, Sharon E.; Hazen, Terry C.; Arkin, Adam P.; Bethel, E. Wes

    2007-04-19

    Phenotype microarrays provide a technology to simultaneouslysurvey the response of an organism to nearly 2,000 substrates, includingcarbon, nitrogen and potassium sources; varying pH; varying saltconcentrations; and antibiotics. In order to more quickly and easily viewand compare the large number of growth curves produced by phenotypemicroarray experiments, we have developed software to produce and displaycolor images, each of which corresponds to a set of 96 growth curves.Using color images to represent growth curves data has proven to be avaluable way to assess experiment quality, compare replicates, facilitatecomparison of the responses of different organisms, and identifysignificant phenotypes. The color images are linked to traditional plotsof growth versus time, as well as to information about the experiment,organism, and substrate. In order to share and view information and dataproject-wide, all information, plots, and data are accessible using onlya Web browser.

  12. Modeling growth curves to track growing obesity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our purpose was to examine the relationship between total physical activity (PA) and PA at various intensity levels with insulin resistance at increasing waist circumference and skinfold thickness levels. Being able to describe growth appropriately and succinctly is important in many nutrition and p...

  13. Interactions of cosmic rays in the atmosphere: growth curves revisited

    SciTech Connect

    Obermeier, A.; Boyle, P.; Müller, D.; Hörandel, J.

    2013-12-01

    Measurements of cosmic-ray abundances on balloons are affected by interactions in the residual atmosphere above the balloon. Corrections for such interactions are particularly important for observations of rare secondary particles such as boron, antiprotons, and positrons. These corrections either can be calculated if the relevant cross sections in the atmosphere are known or may be empirically determined by extrapolation of the 'growth curves', i.e., the individual particle intensities as functions of atmospheric depth. The growth-curve technique is particularly attractive for long-duration balloon flights where the periodic daily altitude variations permit rather precise determinations of the corresponding particle intensity variations. We determine growth curves for nuclei from boron (Z = 5) to iron (Z = 26) using data from the 2006 Arctic balloon flight of the TRACER detector for cosmic-ray nuclei, and we compare the growth curves with predictions from published cross section values. In general, good agreement is observed. We then study the boron/carbon abundance ratio and derive a simple and energy-independent correction term for this ratio. We emphasize that the growth-curve technique can be developed further to provide highly accurate tests of published interaction cross section values.

  14. Bacterial Growth in Weak Magnetic Field

    NASA Astrophysics Data System (ADS)

    Masood, Samina

    2015-03-01

    We study the growth of bacteria in a weak magnetic field. Computational analysis of experimental data shows that the growth rate of bacteria is affected by the magnetic field. The effect of magnetic field depends on the strength and type of magnetic field. It also depends on the type of bacteria. We mainly study gram positive and gram negative bacteria of rod type as well as spherical bacteria. Preliminary results show that the weak magnetic field enhances the growth of rod shape gram negative bacteria. Gram positive bacteria can be even killed in the inhomogeneous magnetic field.

  15. Integrated kinetic and probabilistic modeling of the growth potential of bacterial populations.

    PubMed

    George, S M; Métris, A; Baranyi, J

    2015-05-01

    When bacteria are exposed to osmotic stress, some cells recover and grow, while others die or are unculturable. This leads to a viable count growth curve where the cell number decreases before the onset of the exponential growth phase. From such curves, it is impossible to estimate what proportion of the initial cells generates the growth because it leads to an ill-conditioned numerical problem. Here, we applied a combination of experimental and statistical methods, based on optical density measurements, to infer both the probability of growth and the maximum specific growth rate of the culture. We quantified the growth potential of a bacterial population as a quantity composed from the probability of growth and the "suitability" of the growing subpopulation to the new environment. We found that, for all three laboratory media studied, the probability of growth decreased while the "work to be done" by the growing subpopulation (defined as the negative logarithm of their suitability parameter) increased with NaCl concentration. The results suggest that the effect of medium on the probability of growth could be described by a simple shift parameter, a differential NaCl concentration that can be accounted for by the change in the medium composition. Finally, we highlighted the need for further understanding of the effect of the osmoprotectant glycine betaine on metabolism. PMID:25747002

  16. Integrated Kinetic and Probabilistic Modeling of the Growth Potential of Bacterial Populations

    PubMed Central

    George, S. M.; Métris, A.

    2015-01-01

    When bacteria are exposed to osmotic stress, some cells recover and grow, while others die or are unculturable. This leads to a viable count growth curve where the cell number decreases before the onset of the exponential growth phase. From such curves, it is impossible to estimate what proportion of the initial cells generates the growth because it leads to an ill-conditioned numerical problem. Here, we applied a combination of experimental and statistical methods, based on optical density measurements, to infer both the probability of growth and the maximum specific growth rate of the culture. We quantified the growth potential of a bacterial population as a quantity composed from the probability of growth and the “suitability” of the growing subpopulation to the new environment. We found that, for all three laboratory media studied, the probability of growth decreased while the “work to be done” by the growing subpopulation (defined as the negative logarithm of their suitability parameter) increased with NaCl concentration. The results suggest that the effect of medium on the probability of growth could be described by a simple shift parameter, a differential NaCl concentration that can be accounted for by the change in the medium composition. Finally, we highlighted the need for further understanding of the effect of the osmoprotectant glycine betaine on metabolism. PMID:25747002

  17. Quantification of antibiotic drug potency by a two-compartment radioassay of bacterial growth

    SciTech Connect

    Boonkitticharoen, V.; Ehrhardt, J.C.; Kirchner, P.T. )

    1990-06-01

    The two-compartment radioassay for microbial kinetics based on continuous measurement of the {sup 14}CO{sub 2} released by bacterial metabolism of 14C-labeled substrate offers a valuable approach to testing the potency of antimicrobial drugs. By using a previously validated radioassay with gram-positive and gram-negative bacteria, a group of protein synthesis inhibitors was evaluated for their effect on microbial growth kinetics. All tested drugs induced changes in both the slopes and intercepts of the growth curves. An exponential growth model was applied to quantify the drug effect on the processes of bacterial {sup 14}CO{sub 2} liberation and cell generation. The response was measured in terms of a generation rate constant. A linear dependence of the generation rate constant on the dose of spectinomycin was observed with Escherichia coli. Sigmoidal-shaped curves were found in the assays of chloramphenicol and tetracycline. The implications of dose-response curves are discussed on the basis of the receptor site concept for drug action. The assay sensitivities for chloramphenicol and tetracycline were similar to those obtained by the cell counting method, but the sensitivity of the radioassay was at least 10 times greater for spectinomycin.

  18. Bayesian Inference and Application of Robust Growth Curve Models Using Student's "t" Distribution

    ERIC Educational Resources Information Center

    Zhang, Zhiyong; Lai, Keke; Lu, Zhenqiu; Tong, Xin

    2013-01-01

    Despite the widespread popularity of growth curve analysis, few studies have investigated robust growth curve models. In this article, the "t" distribution is applied to model heavy-tailed data and contaminated normal data with outliers for growth curve analysis. The derived robust growth curve models are estimated through Bayesian…

  19. Cooperative Bacterial Growth Dynamics Predict the Evolution of Antibiotic Resistance

    NASA Astrophysics Data System (ADS)

    Artemova, Tatiana; Gerardin, Ylaine; Hsin-Jung Li, Sophia; Gore, Jeff

    2011-03-01

    Since the discovery of penicillin, antibiotics have been our primary weapon against bacterial infections. Unfortunately, bacteria can gain resistance to penicillin by acquiring the gene that encodes beta-lactamase, which inactivates the antibiotic. However, mutations in this gene are necessary to degrade the modern antibiotic cefotaxime. Understanding the conditions that favor the spread of these mutations is a challenge. Here we show that bacterial growth in beta-lactam antibiotics is cooperative and that the nature of this growth determines the conditions in which resistance evolves. Quantitative analysis of the growth dynamics predicts a peak in selection at very low antibiotic concentrations; competition between strains confirms this prediction. We also find significant selection at higher antibiotic concentrations, close to the minimum inhibitory concentrations of the strains. Our results argue that an understanding of the evolutionary forces that lead to antibiotic resistance requires a quantitative understanding of the evolution of cooperation in bacteria.

  20. Evolution of bacterial and fungal growth media

    PubMed Central

    Basu, Srijoni; Bose, Chandra; Ojha, Nupur; Das, Nabajit; Das, Jagaree; Pal, Mrinmoy; Khurana, Sukant

    2015-01-01

    Microbial media has undergone several changes since its inception but some key challenges remain. In recent years, there has been exploration of several alternative nutrient sources, both to cater to the specificity in requirement of growth of “fussy microorganisms” and also to reduce costs for large-scale fermentation that is required for biotechnology. Our mini-review explores these developments and also points at lacunas in the present areas of exploration, such as a lack of concerted effort in pH and osmolarity regulation. We hope that our commentary provides direction for future research in microbial media. PMID:26124557

  1. Diagnostics of Robust Growth Curve Modeling Using Student's "t" Distribution

    ERIC Educational Resources Information Center

    Tong, Xin; Zhang, Zhiyong

    2012-01-01

    Growth curve models with different types of distributions of random effects and of intraindividual measurement errors for robust analysis are compared. After demonstrating the influence of distribution specification on parameter estimation, 3 methods for diagnosing the distributions for both random effects and intraindividual measurement errors…

  2. The Multigroup Multilevel Categorical Latent Growth Curve Models

    ERIC Educational Resources Information Center

    Hung, Lai-Fa

    2010-01-01

    Longitudinal data describe developmental patterns and enable predictions of individual changes beyond sampled time points. Major methodological issues in longitudinal data include modeling random effects, subject effects, growth curve parameters, and autoregressive residuals. This study embedded the longitudinal model within a multigroup…

  3. Predicting Change in Postpartum Depression: An Individual Growth Curve Approach.

    ERIC Educational Resources Information Center

    Buchanan, Trey

    Recently, methodologists interested in examining problems associated with measuring change have suggested that developmental researchers should focus upon assessing change at both intra-individual and inter-individual levels. This study used an application of individual growth curve analysis to the problem of maternal postpartum depression.…

  4. Developmental Trajectories of Adolescent Popularity: A Growth Curve Modelling Analysis

    ERIC Educational Resources Information Center

    Cillessen, Antonius H. N.; Borch, Casey

    2006-01-01

    Growth curve modelling was used to examine developmental trajectories of sociometric and perceived popularity across eight years in adolescence, and the effects of gender, overt aggression, and relational aggression on these trajectories. Participants were 303 initially popular students (167 girls, 136 boys) for whom sociometric data were…

  5. A SAS Macro for Estimating and Visualizing Individual Growth Curves

    ERIC Educational Resources Information Center

    Carrig, Madeline M.; Wirth, R. J.; Curran, Patrick J.

    2004-01-01

    Longitudinal data analyses can be usefully supplemented by the plotting of individual growth curves. Unfortunately, such graphics can be challenging and tedious to produce. This article presents and demonstrates a SAS macro designed to automate this task. The OLStraj macro graphically depicts ordinary least squares (OLS)-estimated individual…

  6. Latent Growth Curves within Developmental Structural Equation Models.

    ERIC Educational Resources Information Center

    McArdle, J. J.; Epstein, David

    1987-01-01

    Uses structural equation modeling to combine traditional ideas from repeated-measures ANOVA with some traditional ideas from longitudinal factor analysis. The model describes a latent growth curve model that permits the estimation of parameters representing individual and group dynamics. (Author/RH)

  7. Microcoupon Assay Of Adhesion And Growth Of Bacterial Films

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Koenig, David W.

    1994-01-01

    Microbiological assay technique facilitates determination of some characteristics of sessile bacteria like those that attach to and coat interior walls of water-purification systems. Biofilms cause sickness and interfere with purification process. Technique enables direct measurement of rate of attachment of bacterial cells, their metabolism, and effects of chemicals on them. Used to quantify effects of both bactericides and growth-stimulating agents and in place of older standard plate-count and tube-dilution techniques.

  8. Growth curves in Down syndrome: implications for clinical practice.

    PubMed

    Bertapelli, Fabio; Martin, Juan Eduardo Samur-San; Gonçalves, Ezequiel Moreira; de Oliveira Barbeta, Vinicius Justino; Guerra-Júnior, Gil

    2014-03-01

    Growth curves have been developed for individuals with Down syndrome (DS) in several countries. However, in order to facilitate the preparation of clinical guidelines it is necessary to verify the eligibility of these curves. The search was conducted according to the PRISMA method (Preferred Reporting Items for Systematic reviews and Meta-Analyses). It was conducted between July 2012 and June 2013 in MEDLINE/PubMed and BIREME. The inclusion and exclusion criteria were applied to identify the studies and a total of 16 relevant articles were selected. The aspects analyzed in the articles consisted of sample size, number of observations, age group, anthropometric variables, standard deviation scores (SDS), type of study, collection and analysis of data, participants, inclusion/exclusion criteria and outcomes. The mean, standard deviations (SDs) and percentiles for sex and age were used to develop the curve of weight, height, and head circumference. The individuals with DS presented growth between -0.4 and -4.0 SDS in comparison to healthy controls. The variation in these observations can be explained by genetic differences, secular trends in growth and disease status. Regarding the limitations identified, it was observed that most of the studies did not provide data concerning the number of individuals and observations, mean values and respective SDs by sex and age. In addition, most studies did not use LMS methods to evaluate asymmetry, the median and data variability. In conclusion, the results of this review demonstrated that in order to avoid false diagnoses in children and adolescents with DS new growth curves must be developed. PMID:24357551

  9. Halophilic (aerobic) bacterial growth rate of mangrove ecosystem.

    PubMed

    Khan, A Saleem; Ali, M Sheik; Baig, I Juned Ahmed

    2009-09-01

    Mangroves are woody specialized trees of tropics and are valuable flora contributing to economical, ecological, scientific and cultural resources. They thrive in salty environments like coastal regions and are aid towards disaster management facing the onslaught of giant waves such as Tsunami. Analysis of mangrove soil on the banks of the Adyar river behind the Theosophical society campus, Adyar, Chennai, India, gave a startling revelation of microorganisms that can tolerate different salinity ranges. Previous studies in Pichavaram delta, have reported bacterial isolates such as nitrogen fixing bacteria, halophiles and several others. However their efficiency in the growth of mangrove forest has been studied to a lesser extent. The present study has been designed and formulated to estimate halophilic (aerobic) bacterial load from mangroves soil sample based on depth and salinity of the soil and further the efficiency if any of these isolates in the growth of mangroves. Results have been correlated and a cohesive conclusion reached for further intensive research. This study throws light on the ecology of the bacterial population in the coastal marine environment inhabited bymangroves and its possible role in disaster mitigation. PMID:20136052

  10. Bacterial growth laws reflect the evolutionary importance of energy efficiency.

    PubMed

    Maitra, Arijit; Dill, Ken A

    2015-01-13

    We are interested in the balance of energy and protein synthesis in bacterial growth. How has evolution optimized this balance? We describe an analytical model that leverages extensive literature data on growth laws to infer the underlying fitness landscape and to draw inferences about what evolution has optimized in Escherichia coli. Is E. coli optimized for growth speed, energy efficiency, or some other property? Experimental data show that at its replication speed limit, E. coli produces about four mass equivalents of nonribosomal proteins for every mass equivalent of ribosomes. This ratio can be explained if the cell's fitness function is the the energy efficiency of cells under fast growth conditions, indicating a tradeoff between the high energy costs of ribosomes under fast growth and the high energy costs of turning over nonribosomal proteins under slow growth. This model gives insight into some of the complex nonlinear relationships between energy utilization and ribosomal and nonribosomal production as a function of cell growth conditions. PMID:25548180

  11. Bacterial growth, detachment and cell size control on polyethylene terephthalate surfaces.

    PubMed

    Wang, Liyun; Fan, Daming; Chen, Wei; Terentjev, Eugene M

    2015-01-01

    In medicine and food industry, bacterial colonisation on surfaces is a common cause of infections and severe illnesses. However, the detailed quantitative information about the dynamics and the mechanisms involved in bacterial proliferation on solid substrates is still lacking. In this study we investigated the adhesion and detachment, the individual growth and colonisation, and the cell size control of Escherichia coli (E. coli) MG1655 on polyethylene terephthalate (PET) surfaces. The results show that the bacterial growth curve on PET exhibits the distinct lag and log phases, but the generation time is more than twice longer than in bulk medium. Single cells in the lag phase are more likely to detach than clustered ones in the log phase; clustered bacteria in micro-colonies have stronger adhesive bonds with surfaces and their neighbours with the progressing colonisation. We show that the cell size is under the density-dependent pathway control: when the adherent cells are at low density, the culture medium is responsible for coordinating cell division and cell size; when the clustered cells are at high population density, we demonstrate that the effect of quorum sensing causes the cell size decrease as the cell density on surfaces increases. PMID:26464114

  12. Bacterial growth, detachment and cell size control on polyethylene terephthalate surfaces

    PubMed Central

    Wang, Liyun; Fan, Daming; Chen, Wei; Terentjev, Eugene M.

    2015-01-01

    In medicine and food industry, bacterial colonisation on surfaces is a common cause of infections and severe illnesses. However, the detailed quantitative information about the dynamics and the mechanisms involved in bacterial proliferation on solid substrates is still lacking. In this study we investigated the adhesion and detachment, the individual growth and colonisation, and the cell size control of Escherichia coli (E. coli) MG1655 on polyethylene terephthalate (PET) surfaces. The results show that the bacterial growth curve on PET exhibits the distinct lag and log phases, but the generation time is more than twice longer than in bulk medium. Single cells in the lag phase are more likely to detach than clustered ones in the log phase; clustered bacteria in micro-colonies have stronger adhesive bonds with surfaces and their neighbours with the progressing colonisation. We show that the cell size is under the density-dependent pathway control: when the adherent cells are at low density, the culture medium is responsible for coordinating cell division and cell size; when the clustered cells are at high population density, we demonstrate that the effect of quorum sensing causes the cell size decrease as the cell density on surfaces increases. PMID:26464114

  13. Slow protein fluctuations explain the emergence of growth phenotypes and persistence in clonal bacterial populations

    E-print Network

    Andrea Rocco; Andrzej M. Kierzek; Johnjoe McFadden

    2013-10-31

    One of the most challenging problems in microbiology is to understand how a small fraction of microbes that resists killing by antibiotics can emerge in a population of genetically identical cells, the phenomenon known as persistence or drug tolerance. Its characteristic signature is the biphasic kill curve, whereby microbes exposed to a bactericidal agent are initially killed very rapidly but then much more slowly. Here we relate this problem to the more general problem of understanding the emergence of distinct growth phenotypes in clonal populations. We address the problem mathematically by adopting the framework of the phenomenon of so-called weak ergodicity breaking, well known in dynamical physical systems, which we extend to the biological context. We show analytically and by direct stochastic simulations that distinct growth phenotypes can emerge as a consequence of slow-down of stochastic fluctuations in the expression of a gene controlling growth rate. In the regime of fast gene transcription, the system is ergodic, the growth rate distribution is unimodal, and accounts for one phenotype only. In contrast, at slow transcription and fast translation, weakly non-ergodic components emerge, the population distribution of growth rates becomes bimodal, and two distinct growth phenotypes are identified. When coupled to the well-established growth rate dependence of antibiotic killing, this model describes the observed fast and slow killing phases, and reproduces much of the phenomenology of bacterial persistence. The model has major implications for efforts to develop control strategies for persistent infections.

  14. Slow Protein Fluctuations Explain the Emergence of Growth Phenotypes and Persistence in Clonal Bacterial Populations

    PubMed Central

    Rocco, Andrea; Kierzek, Andrzej M.; McFadden, Johnjoe

    2013-01-01

    One of the most challenging problems in microbiology is to understand how a small fraction of microbes that resists killing by antibiotics can emerge in a population of genetically identical cells, the phenomenon known as persistence or drug tolerance. Its characteristic signature is the biphasic kill curve, whereby microbes exposed to a bactericidal agent are initially killed very rapidly but then much more slowly. Here we relate this problem to the more general problem of understanding the emergence of distinct growth phenotypes in clonal populations. We address the problem mathematically by adopting the framework of the phenomenon of so-called weak ergodicity breaking, well known in dynamical physical systems, which we extend to the biological context. We show analytically and by direct stochastic simulations that distinct growth phenotypes can emerge as a consequence of slow-down of stochastic fluctuations in the expression of a gene controlling growth rate. In the regime of fast gene transcription, the system is ergodic, the growth rate distribution is unimodal, and accounts for one phenotype only. In contrast, at slow transcription and fast translation, weakly non-ergodic components emerge, the population distribution of growth rates becomes bimodal, and two distinct growth phenotypes are identified. When coupled to the well-established growth rate dependence of antibiotic killing, this model describes the observed fast and slow killing phases, and reproduces much of the phenomenology of bacterial persistence. The model has major implications for efforts to develop control strategies for persistent infections. PMID:23382887

  15. Limitation of Bacterial Growth by Dissolved Organic Matter and Iron in the Southern Ocean†

    PubMed Central

    Church, Matthew J.; Hutchins, David A.; Ducklow, Hugh W.

    2000-01-01

    The importance of resource limitation in controlling bacterial growth in the high-nutrient, low-chlorophyll (HNLC) region of the Southern Ocean was experimentally determined during February and March 1998. Organic- and inorganic-nutrient enrichment experiments were performed between 42°S and 55°S along 141°E. Bacterial abundance, mean cell volume, and [3H]thymidine and [3H]leucine incorporation were measured during 4- to 5-day incubations. Bacterial biomass, production, and rates of growth all responded to organic enrichments in three of the four experiments. These results indicate that bacterial growth was constrained primarily by the availability of dissolved organic matter. Bacterial growth in the subtropical front, subantarctic zone, and subantarctic front responded most favorably to additions of dissolved free amino acids or glucose plus ammonium. Bacterial growth in these regions may be limited by input of both organic matter and reduced nitrogen. Unlike similar experimental results in other HNLC regions (subarctic and equatorial Pacific), growth stimulation of bacteria in the Southern Ocean resulted in significant biomass accumulation, apparently by stimulating bacterial growth in excess of removal processes. Bacterial growth was relatively unchanged by additions of iron alone; however, additions of glucose plus iron resulted in substantial increases in rates of bacterial growth and biomass accumulation. These results imply that bacterial growth efficiency and nitrogen utilization may be partly constrained by iron availability in the HNLC Southern Ocean. PMID:10653704

  16. Influence of Polyelectrolyte Film Stiffness on Bacterial Growth

    PubMed Central

    Saha, Naresh; Monge, Claire; Dulong, Virginie; Picart, Catherine; Glinel, Karine

    2015-01-01

    Photo-crosslinkable polyelectrolyte films whose nanomechanical properties can be varied under UV light illumination, were prepared from poly(L-lysine) (PLL) and a hyaluronan derivative modified with photoreactive vinylbenzyl groups (HAVB). The adhesion and the growth of two model bacteria, namely Escherichia coli and Lactococcus lactis, were studied on non-crosslinked and crosslinked films to investigate how the film stiffness influences the bacterial behavior. While the Gram positive L. lactis was shown to grow slowly on both films, independently of their rigidity, the Gram negative E. coli exhibited a more rapid growth on non-crosslinked softer films compared to the stiffer ones. Experiments performed on photo-patterned films showing both soft and stiff regions, confirmed a faster development of E. coli colonies on softer regions. Interestingly, this behavior is opposite to the one reported before for mammalian cells. Therefore, the photo-crosslinked (PLL/HAVB) films are interesting coatings for tissue engineering since they promote the growth of mammalian cells while limiting the bacterial colonization. PMID:23289403

  17. Oral iron acutely elevates bacterial growth in human serum.

    PubMed

    Cross, James H; Bradbury, Richard S; Fulford, Anthony J; Jallow, Amadou T; Wegmüller, Rita; Prentice, Andrew M; Cerami, Carla

    2015-01-01

    Iron deficiency is the most common nutrient deficiency worldwide and routine supplementation is standard policy for pregnant mothers and children in most low-income countries. However, iron lies at the center of host-pathogen competition for nutritional resources and recent trials of iron administration in African and Asian children have resulted in significant excesses of serious adverse events including hospitalizations and deaths. Increased rates of malaria, respiratory infections, severe diarrhea and febrile illnesses of unknown origin have all been reported, but the mechanisms are unclear. We here investigated the ex vivo growth characteristics of exemplar sentinel bacteria in adult sera collected before and 4?h after oral supplementation with 2?mg/kg iron as ferrous sulfate. Escherichia coli, Yersinia enterocolitica and Salmonella enterica serovar Typhimurium (all gram-negative bacteria) and Staphylococcus epidermidis (gram-positive) showed markedly elevated growth in serum collected after iron supplementation. Growth rates were very strongly correlated with transferrin saturation (p?Growth of Staphylococcus aureus, which preferentially scavenges heme iron, was unaffected. These data suggest that even modest oral supplements with highly soluble (non-physiological) iron, as typically used in low-income settings, could promote bacteremia by accelerating early phase bacterial growth prior to the induction of immune defenses. PMID:26593732

  18. Oral iron acutely elevates bacterial growth in human serum

    PubMed Central

    Cross, James H.; Bradbury, Richard S.; Fulford, Anthony J.; Jallow, Amadou T.; Wegmüller, Rita; Prentice, Andrew M.; Cerami, Carla

    2015-01-01

    Iron deficiency is the most common nutrient deficiency worldwide and routine supplementation is standard policy for pregnant mothers and children in most low-income countries. However, iron lies at the center of host-pathogen competition for nutritional resources and recent trials of iron administration in African and Asian children have resulted in significant excesses of serious adverse events including hospitalizations and deaths. Increased rates of malaria, respiratory infections, severe diarrhea and febrile illnesses of unknown origin have all been reported, but the mechanisms are unclear. We here investigated the ex vivo growth characteristics of exemplar sentinel bacteria in adult sera collected before and 4?h after oral supplementation with 2?mg/kg iron as ferrous sulfate. Escherichia coli, Yersinia enterocolitica and Salmonella enterica serovar Typhimurium (all gram-negative bacteria) and Staphylococcus epidermidis (gram-positive) showed markedly elevated growth in serum collected after iron supplementation. Growth rates were very strongly correlated with transferrin saturation (p?Growth of Staphylococcus aureus, which preferentially scavenges heme iron, was unaffected. These data suggest that even modest oral supplements with highly soluble (non-physiological) iron, as typically used in low-income settings, could promote bacteremia by accelerating early phase bacterial growth prior to the induction of immune defenses. PMID:26593732

  19. Experimental investigation on the role of bacterial growth and bacterial transport in MEOR processes

    SciTech Connect

    Jang, L.K.; Yen, T.F.

    1983-03-01

    In order to define the dynamics of Microbial Enhanced Oil Recovery (MEOR) process bench-scale MEOR using Bacillus subtilis was undertaken. The relationship between bacterial transport in the oil containing porous media, growth rate and the efficiency of oil recovery was investigated. Work using Pseudomonas fluorescens and clostridium acetobutylicum is in progress (no data). Heavy crude (API gravity 17/sup 0/) was used in these studies in which Continuous Flooding Process and the combination Huff-and-Puff and Nutrient Flooding Processes were compared. B. subtilis provided greater than 40% oil recovery after secondary flooding. Growth is satisfactory provided adequate nutrient and oxygen supply. Liquid phase metabolites (polysaccharides, lipids) and gaseous phase metabolites (CO/sub 2/, etc.) improve recovery. The Huff-and-Puff, etc. combination process is the most efficient based on nutrient consumption.

  20. Dislocation-mediated growth of bacterial cell walls

    E-print Network

    Ariel Amir; David R. Nelson

    2012-05-07

    Recent experiments have illuminated a remarkable growth mechanism of rod-shaped bacteria: proteins associated with cell wall extension move at constant velocity in circles oriented approximately along the cell circumference (Garner et al., Science (2011), Dominguez-Escobar et al. Science (2011), van Teeffelen et al. PNAS (2011). We view these as dislocations in the partially ordered peptidoglycan structure, activated by glycan strand extension machinery, and study theoretically the dynamics of these interacting defects on the surface of a cylinder. Generation and motion of these interacting defects lead to surprising effects arising from the cylindrical geometry, with important implications for growth. We also discuss how long range elastic interactions and turgor pressure affect the dynamics of the fraction of actively moving dislocations in the bacterial cell wall.

  1. Dislocation-mediated growth of bacterial cell walls

    PubMed Central

    Amir, Ariel; Nelson, David R.

    2012-01-01

    Recent experiments have illuminated a remarkable growth mechanism of rod-shaped bacteria: proteins associated with cell wall extension move at constant velocity in circles oriented approximately along the cell circumference [Garner EC, et al., (2011) Science 333:222–225], [Domínguez-Escobar J, et al. (2011) Science 333:225–228], [van Teeffelen S, et al. (2011) PNAS 108:15822–15827]. We view these as dislocations in the partially ordered peptidoglycan structure, activated by glycan strand extension machinery, and study theoretically the dynamics of these interacting defects on the surface of a cylinder. Generation and motion of these interacting defects lead to surprising effects arising from the cylindrical geometry, with important implications for growth. We also discuss how long range elastic interactions and turgor pressure affect the dynamics of the fraction of actively moving dislocations in the bacterial cell wall. PMID:22660931

  2. Gradient microfluidics enables rapid bacterial growth inhibition testing.

    PubMed

    Li, Bing; Qiu, Yong; Glidle, Andrew; McIlvenna, David; Luo, Qian; Cooper, Jon; Shi, Han-Chang; Yin, Huabing

    2014-03-18

    Bacterial growth inhibition tests have become a standard measure of the adverse effects of inhibitors for a wide range of applications, such as toxicity testing in the medical and environmental sciences. However, conventional well-plate formats for these tests are laborious and provide limited information (often being restricted to an end-point assay). In this study, we have developed a microfluidic system that enables fast quantification of the effect of an inhibitor on bacteria growth and survival, within a single experiment. This format offers a unique combination of advantages, including long-term continuous flow culture, generation of concentration gradients, and single cell morphology tracking. Using Escherichia coli and the inhibitor amoxicillin as one model system, we show excellent agreement between an on-chip single cell-based assay and conventional methods to obtain quantitative measures of antibiotic inhibition (for example, minimum inhibition concentration). Furthermore, we show that our methods can provide additional information, over and above that of the standard well-plate assay, including kinetic information on growth inhibition and measurements of bacterial morphological dynamics over a wide range of inhibitor concentrations. Finally, using a second model system, we show that this chip-based systems does not require the bacteria to be labeled and is well suited for the study of naturally occurring species. We illustrate this using Nitrosomonas europaea, an environmentally important bacteria, and show that the chip system can lead to a significant reduction in the period required for growth and inhibition measurements (<4 days, compared to weeks in a culture flask). PMID:24548044

  3. Growth curves of Egyptian patients with Turner syndrome.

    PubMed

    El-Bassyouni, Hala T; Afifi, Hanan H; Aglan, Mona S; Mahmoud, Wael M; Zaki, Moushira E

    2012-11-01

    This study analyzes the body anthropometric measurements in females with Turner syndrome (TS) not treated with recombinant human growth hormone. Height, weight, head circumference, and body mass index (BMI) data were collected from 93 patients. Their ages ranged from 6 months to 24 years (mean 10 ± 4.3 years). Chromosomal analysis revealed: 55 patients with 45,X and 38 patients with mosaic karyotypes. Patients were divided into yearly age groups. Standard growth curves were constructed for these Egyptian Turner syndrome (TS) patients. Mean and standard deviations were estimated across the age groups. When comparing the mean heights of patients to the Egyptian standards, short stature (?2 SD) was found in 96.8% of patients older than 6 years. Patients' mean weight and BMI were higher than controls. The mean height of the studied Egyptian patients was slightly lower than that of females with TS in UK and European patients. Therefore, local reference values are more appropriate than International standards. The charts presented here can be used to optimize routine healthcare for Egyptian TS patients. The use of growth charts specific for Egyptian TS patients can help to discover early physical developmental delay and suggests the necessity of looking for concomitant diseases affecting growth. PMID:22847945

  4. Engineered cerium oxide nanoparticles: Effects on bacterial growth and viability

    SciTech Connect

    Pelletier, Dale A; Suresh, Anil K; Holton, Gregory A; McKeown, Catherine K; Wang, Wei; Gu, Baohua; Mortensen, Ninell P; Allison, David P; Joy, David Charles; Allison, Martin R; Brown, Steven D; Phelps, Tommy Joe; Doktycz, Mitchel John

    2010-01-01

    Interest in engineered nanostructures has risen in recent years due to their use in energy conservation strategies and biomedicine. To ensure prudent development and use of nanomaterials, the fate and effects of such engineered structures on the environment should be understood. Interactions of nanomaterials with environmental microorganisms are inevitable, but the general consequences of such interactions remain unclear. Further, standardized methods for assessing such interactions are lacking. Therefore, we have initiated a multianalytical approach to understand the interactions of synthesized nanoparticles with bacterial systems. These efforts are focused initially on cerium oxide nanoparticles and model bacteria in order to evaluate characterization procedures and the possible fate of such materials in the environment. In this study the effects of cerium oxide nanoparticles on the growth and viability of Gram-negative Escherichia coli and Shewanella oneidensis, a metal-reducing bacteria, and Gram-positive Bacillus subtilis were examined relative to particle size, growth media, pH, and dosage. A hydrothermal based synthesis procedure was used to prepare cerium oxide nanoparticles of defined sizes in order to eliminate complications originating from the use of organic solvents and surfactants. Bactericidal effects were determined by minimum inhibitory concentration, colony forming units, disc diffusion tests and Live/Dead assays. In growth inhibition experiments involving E. coli and B. subtilis, a clear strain and size-dependent inhibition was observed. S. oneidensis appeared to be unaffected by the cerium oxide nanoparticles. Transmission electron microscopy along with microarray-based transcriptional profiling have been used to understand the response mechanism of the bacteria. The use of multiple analytical approaches adds confidence to toxicity assessments while the use of different bacterial systems highlights the potential wide-ranging effects of nanomaterial interactions in the environment.

  5. Growth curves: how to best measure growth of the preterm infant.

    PubMed

    Bhatia, Jatinder

    2013-03-01

    Birth weight is one of the most important anthropometric measures in the evaluation of an infant. For the full-term infant, birth weight is compared with reference or standard growth curves that are constructed by plotting weight, length, and head circumference against postnatal age. Following a similar approach for preterm infants is less effective for a variety of reasons. Birth weight and other anthropometric measures used to evaluate an infant at birth are influenced by various maternal characteristics, the intrauterine milieu, and duration of gestation. Second, the causes of premature birth and their impact on birth weight are largely unknown. Third, gestational age is difficult to determine with full certainty. One approach that has been used to circumvent these issues is to use intrauterine growth reference curves. However, these curves do not really reflect "normal" growth because they were constructed using cross-sectional data from infants born prematurely and, as such, do not reflect the normal condition. Thus, there is a need to develop normative growth curves derived from "healthy" preterm infants that can be applied to neonates born prematurely. These should be updated periodically to reflect secular trends in maternal body weight, height, and overall health. PMID:23445844

  6. Parent involvement and science achievement: A latent growth curve analysis

    NASA Astrophysics Data System (ADS)

    Johnson, Ursula Yvette

    This study examined science achievement growth across elementary and middle school and parent school involvement using the Early Childhood Longitudinal Study - Kindergarten Class of 1998--1999 (ECLS-K). The ECLS-K is a nationally representative kindergarten cohort of students from public and private schools who attended full-day or half-day kindergarten class in 1998--1999. The present study's sample (N = 8,070) was based on students that had a sampling weight available from the public-use data file. Students were assessed in science achievement at third, fifth, and eighth grades and parents of the students were surveyed at the same time points. Analyses using latent growth curve modeling with time invariant and varying covariates in an SEM framework revealed a positive relationship between science achievement and parent involvement at eighth grade. Furthermore, there were gender and racial/ethnic differences in parents' school involvement as a predictor of science achievement. Findings indicated that students with lower initial science achievement scores had a faster rate of growth across time. The achievement gap between low and high achievers in earth, space and life sciences lessened from elementary to middle school. Parents' involvement with school usually tapers off after elementary school, but due to parent school involvement being a significant predictor of eighth grade science achievement, later school involvement may need to be supported and better implemented in secondary schooling.

  7. Bacterial actin and tubulin homologs in cell growth and division.

    PubMed

    Busiek, Kimberly K; Margolin, William

    2015-03-16

    In contrast to the elaborate cytoskeletal machines harbored by eukaryotic cells, such as mitotic spindles, cytoskeletal structures detectable by typical negative stain electron microscopy are generally absent from bacterial cells. As a result, for decades it was thought that bacteria lacked cytoskeletal machines. Revolutions in genomics and fluorescence microscopy have confirmed the existence not only of smaller-scale cytoskeletal structures in bacteria, but also of widespread functional homologs of eukaryotic cytoskeletal proteins. The presence of actin, tubulin, and intermediate filament homologs in these relatively simple cells suggests that primitive cytoskeletons first arose in bacteria. In bacteria such as Escherichia coli, homologs of tubulin and actin directly interact with each other and are crucial for coordinating cell growth and division. The function and direct interactions between these proteins will be the focus of this review. PMID:25784047

  8. Effects of Low-Level Deuterium Enrichment on Bacterial Growth

    PubMed Central

    Xie, Xueshu; Zubarev, Roman A.

    2014-01-01

    Using very precise (±0.05%) measurements of the growth parameters for bacteria E. coli grown on minimal media, we aimed to determine the lowest deuterium concentration at which the adverse effects that are prominent at higher enrichments start to become noticeable. Such a threshold was found at 0.5% D, a surprisingly high value, while the ultralow deuterium concentrations (?0.25% D) showed signs of the opposite trend. Bacterial adaptation for 400 generations in isotopically different environment confirmed preference for ultralow (?0.25% D) enrichment. This effect appears to be similar to those described in sporadic but multiple earlier reports. Possible explanations include hormesis and isotopic resonance phenomena, with the latter explanation being favored. PMID:25033078

  9. The Biasing Effects of Unmodeled ARMA Time Series Processes on Latent Growth Curve Model Estimates

    ERIC Educational Resources Information Center

    Sivo, Stephen; Fan, Xitao; Witta, Lea

    2005-01-01

    The purpose of this study was to evaluate the robustness of estimated growth curve models when there is stationary autocorrelation among manifest variable errors. The results suggest that when, in practice, growth curve models are fitted to longitudinal data, alternative rival hypotheses to consider would include growth models that also specify…

  10. Targeting of a Chlamydial Protease Impedes Intracellular Bacterial Growth

    PubMed Central

    Paschen, Stefan A.; Vier, Juliane; Schauenburg, Linda; Rupp, Jan; Meyer, Thomas F.; Häcker, Georg; Heuer, Dagmar

    2011-01-01

    Chlamydiae are obligate intracellular bacteria that propagate in a cytosolic vacuole. Recent work has shown that growth of Chlamydia induces the fragmentation of the Golgi apparatus (GA) into ministacks, which facilitates the acquisition of host lipids into the growing inclusion. GA fragmentation results from infection-associated cleavage of the integral GA protein, golgin-84. Golgin-84-cleavage, GA fragmentation and growth of Chlamydia trachomatis can be blocked by the peptide inhibitor WEHD-fmk. Here we identify the bacterial protease chlamydial protease-like activity factor (CPAF) as the factor mediating cleavage of golgin-84 and as the target of WEHD-fmk-inhibition. WEHD-fmk blocked cleavage of golgin-84 as well as cleavage of known CPAF targets during infection with C. trachomatis and C. pneumoniae. The same effect was seen when active CPAF was expressed in non-infected cells and in a cell-free system. Ectopic expression of active CPAF in non-infected cells was sufficient for GA fragmentation. GA fragmentation required the small GTPases Rab6 and Rab11 downstream of CPAF-activity. These results define CPAF as the first protein that is essential for replication of Chlamydia. We suggest that this role makes CPAF a potential anti-infective therapeutic target. PMID:21990969

  11. Bacterial locomotion, adsorption and growth over chemically patterned surfaces

    NASA Astrophysics Data System (ADS)

    Jalali, Maryam; Molaei, Mehdi; Sheng, Jian

    2013-11-01

    Complex dynamic interactions between bacteria and chemically patched interface that mimics the heterogeneous energy landscape of a real-life interfacial environment are studied in the paper. We explore effects of these spatially varying chemical patches on bacterial locomotion, adsorption, biofilm formation and the film growth rate. Using micro-fabrication and soft-lithography, we have fabricated PDMS microfluidic channels with a solid substrate covered by micro-scale chemical patches. Arrays of 2D geometries of characteristic scales varying from 10 to 50 ?m are transferred onto a glass substrate by soft-lithography. The substrate is functionalized to generate alternating hydrophobic and hydrophilic regions and bonded with the channel. The 3D swimming characteristics near these surfaces, such as swimming velocity, linear and angular dispersions, are measured in-situ using 3D digital holographic microscopy. The observations are used to examine the mechanisms involved in adsorption and desorption of swimming bacteria onto the substrate. Long-term experiments are conducted to quantify the growth rate and structures of colony. A correlation between various length scales of the substrate and bacteria motility are observed.

  12. Growth Curve Models for Zero-Inflated Count Data: An Application to Smoking Behavior

    ERIC Educational Resources Information Center

    Liu, Hui; Powers, Daniel A.

    2007-01-01

    This article applies growth curve models to longitudinal count data characterized by an excess of zero counts. We discuss a zero-inflated Poisson regression model for longitudinal data in which the impact of covariates on the initial counts and the rate of change in counts over time is the focus of inference. Basic growth curve models using a…

  13. The Effects of Autocorrelation on the Curve-of-Factors Growth Model

    ERIC Educational Resources Information Center

    Murphy, Daniel L.; Beretvas, S. Natasha; Pituch, Keenan A.

    2011-01-01

    This simulation study examined the performance of the curve-of-factors model (COFM) when autocorrelation and growth processes were present in the first-level factor structure. In addition to the standard curve-of factors growth model, 2 new models were examined: one COFM that included a first-order autoregressive autocorrelation parameter, and a…

  14. Using Design-Based Latent Growth Curve Modeling with Cluster-Level Predictor to Address Dependency

    ERIC Educational Resources Information Center

    Wu, Jiun-Yu; Kwok, Oi-Man; Willson, Victor L.

    2014-01-01

    The authors compared the effects of using the true Multilevel Latent Growth Curve Model (MLGCM) with single-level regular and design-based Latent Growth Curve Models (LGCM) with or without the higher-level predictor on various criterion variables for multilevel longitudinal data. They found that random effect estimates were biased when the…

  15. Effect of lag time distribution on the lag phase of bacterial growth - a Monte Carlo analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study is to use Monte Carlo simulation to evaluate the effect of lag time distribution of individual bacterial cells incubated under isothermal conditions on the development of lag phase. The growth of bacterial cells of the same initial concentration and mean lag phase durati...

  16. Bacterial growth in the plant apoplast is limited by nutrient availability

    E-print Network

    RAMOS, MARIA EUGENIA

    2010-01-01

    host plant from saprophytic to pathogenic; but bacteria arepathogenic bacteria We also estimated bacterial population sizes in plantspathogenic bacteria might be limited in growth in the apoplast by factors other than plant

  17. A new growth curve model for biological growth: some inferential studies on the growth of Cirrhinus mrigala.

    PubMed

    Bhowmick, Amiya Ranjan; Bhattacharya, Sabyasachi

    2014-08-01

    Growth of living organisms is a fundamental biological process. It depicts the physiological development of the species related to the environment. Mathematical development of growth curve models has a long history since its birth. We propose a mathematical model to describe the evolution of relative growth rate as a function of time based on a real life experiment on a major Indian Carp Cirrhinus mrigala. We establish that the proposed model is able to describe the fish growth dynamics more accurately for our experimental data than some existing models e.g. logistic, Gompertz, exponential. Approximate expressions of the points of inflection and the time of achieving the maximum relative growth rate are derived. We study, in detail, the existence of a nonlinear least squares estimator of the model parameters and their consistency properties. Test-statistics is developed to study the equality of points of inflection and equality of the amount of time necessary to achieve the maximum relative growth rate for a species at two different locations. Using the theory of variance stabilizing transformations, we propose a new test statistic to test the effect of the decay parameter for the proposed growth law. The testing procedure is found to be more sensitive in comparison with the test based on nonlinear least squares estimates. Our proposed model provides a general framework to model growth in other disciplines as well. PMID:24933474

  18. Peroxotitanate- and monosodium metal-titanate compounds as inhibitors of bacterial growth.

    PubMed

    Chung, Whasun O; Wataha, John C; Hobbs, David T; An, Jonathan; Wong, Jacqueline J; Park, Christine H; Dogan, Sami; Elvington, Mark C; Rutherford, R Bruce

    2011-06-01

    Sodium titanates are ion-exchange materials that effectively bind a variety of metal ions over a wide pH range. Sodium titanates alone have no known adverse biological effects but metal-exchanged titanates (or metal titanates) can deliver metal ions to mammalian cells to alter cell processes in vitro. In this work, we test a hypothesis that metal-titanate compounds inhibit bacterial growth; demonstration of this principle is one prerequisite to developing metal-based, titanate-delivered antibacterial agents. Focusing initially on oral diseases, we exposed five species of oral bacteria to titanates for 24 h, with or without loading of Au(III), Pd(II), Pt(II), and Pt(IV), and measuring bacterial growth in planktonic assays through increases in optical density. In each experiment, bacterial growth was compared with control cultures of titanates or bacteria alone. We observed no suppression of bacterial growth by the sodium titanates alone, but significant (p < 0.05, two-sided t-tests) suppression was observed with metal-titanate compounds, particularly Au(III)-titanates, but with other metal titanates as well. Growth inhibition ranged from 15 to 100% depending on the metal ion and bacterial species involved. Furthermore, in specific cases, the titanates inhibited bacterial growth 5- to 375-fold versus metal ions alone, suggesting that titanates enhanced metal-bacteria interactions. This work supports further development of metal titanates as a novel class of antibacterials. PMID:21472975

  19. PEROXOTITANATE- AND MONOSODIUM METAL-TITANATE COMPOUNDS AS INHIBITORS OF BACTERIAL GROWTH

    SciTech Connect

    Hobbs, D.

    2011-01-19

    Sodium titanates are ion-exchange materials that effectively bind a variety of metal ions over a wide pH range. Sodium titanates alone have no known adverse biological effects but metal-exchanged titanates (or metal titanates) can deliver metal ions to mammalian cells to alter cell processes in vitro. In this work, we test a hypothesis that metal-titanate compounds inhibit bacterial growth; demonstration of this principle is one prerequisite to developing metal-based, titanate-delivered antibacterial agents. Focusing initially on oral diseases, we exposed five species of oral bacteria to titanates for 24 h, with or without loading of Au(III), Pd(II), Pt(II), and Pt(IV), and measuring bacterial growth in planktonic assays through increases in optical density. In each experiment, bacterial growth was compared with control cultures of titanates or bacteria alone. We observed no suppression of bacterial growth by the sodium titanates alone, but significant (p < 0.05, two-sided t-tests) suppression was observed with metal-titanate compounds, particularly Au(III)-titanates, but with other metal titanates as well. Growth inhibition ranged from 15 to 100% depending on the metal ion and bacterial species involved. Furthermore, in specific cases, the titanates inhibited bacterial growth 5- to 375-fold versus metal ions alone, suggesting that titanates enhanced metal-bacteria interactions. This work supports further development of metal titanates as a novel class of antibacterials.

  20. Effect of Vibration on Bacterial Growth and Antibiotic Resistance

    NASA Technical Reports Server (NTRS)

    Juergensmeyer, Elizabeth A.; Juergensmeyer, Margaret A.

    2004-01-01

    The purpose of this research grant was to provide a fundamental, systematic investigation of the effects of oscillatory acceleration on bacterial proliferation and their responses to antibiotics in a liquid medium.

  1. Bacterial Growth on Surfaces: Automated Image Analysis for Quantification of Growth Rate-Related Parameters

    PubMed Central

    Moller, S.; Kristensen, C. S.; Poulsen, L. K.; Carstensen, J. M.; Molin, S.

    1995-01-01

    A fast routine method for estimating bacterial cell growth rates by using the metachromatic dye acridine orange is described. The method allows simultaneous estimates of cellular RNA and DNA contents of single cells. Acridine orange staining can be used as a nonspecific supplement to quantitative species-specific hybridizations with fluorescence-labelled ribosomal probes to estimate the single-cell concentration of RNA. By automated analysis of digitized images of stained cells, we determined four independent growth rate-related parameters: cellular RNA and DNA contents, cell volume, and the frequency of dividing cells in a cell population. These parameters were used to compare physiological states of liquid-suspended and surface-growing Pseudomonas putida KT2442 in chemostat cultures. The major finding is that the correlation between substrate availability and cellular growth rate found for the free-living cells was not observed for the surface-bound cells; in contrast, the data indicate an almost constant growth rate for attached cells which was independent of the dilution rate in the chemostat. PMID:16534939

  2. Squeezing Interval Change From Ordinal Panel Data: Latent Growth Curves With Ordinal Outcomes

    ERIC Educational Resources Information Center

    Mehta, Paras D.; Neale, Michael C.; Flay, Brian R.

    2004-01-01

    A didactic on latent growth curve modeling for ordinal outcomes is presented. The conceptual aspects of modeling growth with ordinal variables and the notion of threshold invariance are illustrated graphically using a hypothetical example. The ordinal growth model is described in terms of 3 nested models: (a) multivariate normality of the…

  3. Changes in the Bacterial Community of Soybean Rhizospheres during Growth in the Field

    PubMed Central

    Sugiyama, Akifumi; Ueda, Yoshikatsu; Zushi, Takahiro; Takase, Hisabumi; Yazaki, Kazufumi

    2014-01-01

    Highly diverse communities of bacteria inhabiting soybean rhizospheres play pivotal roles in plant growth and crop production; however, little is known about the changes that occur in these communities during growth. We used both culture-dependent physiological profiling and culture independent DNA-based approaches to characterize the bacterial communities of the soybean rhizosphere during growth in the field. The physiological properties of the bacterial communities were analyzed by a community-level substrate utilization assay with BioLog Eco plates, and the composition of the communities was assessed by gene pyrosequencing. Higher metabolic capabilities were found in rhizosphere soil than in bulk soil during all stages of the BioLog assay. Pyrosequencing analysis revealed that differences between the bacterial communities of rhizosphere and bulk soils at the phylum level; i.e., Proteobacteria were increased, while Acidobacteria and Firmicutes were decreased in rhizosphere soil during growth. Analysis of operational taxonomic units showed that the bacterial communities of the rhizosphere changed significantly during growth, with a higher abundance of potential plant growth promoting rhizobacteria, including Bacillus, Bradyrhizobium, and Rhizobium, in a stage-specific manner. These findings demonstrated that rhizosphere bacterial communities were changed during soybean growth in the field. PMID:24955843

  4. Interpretations of Incompressible Continuous Spectrum Receptivity Curves for Transient Growth

    NASA Astrophysics Data System (ADS)

    Monschke, Jason; White, Edward

    2013-11-01

    Receptivity of transient disturbances to distributed surface roughness is not representable as a single value but is instead a complex-valued function with a different value for each continuous spectrum mode of the Orr-Sommerfeld/Squire equations. Specific characteristics of the curves give rise to streamwise vorticity of varying strength and at different locations within the boundary layer. The various combinations of streamwise vorticity and the initial streamwise velocity disturbance result in the many types of energy evolution seen in experiments and DNS. Following the work of Tumin [Phys. Fluids 15, 2525 (2003)], Denissen & White [Phys. Fluids 21, 114105 (2009)] developed a technique to decompose experimental measurements made downstream of a roughness array into the constituent continuous spectrum modes. These techniques provide for significant data reduction because receptivity curves encode the complete downstream evolution of the laminar boundary layer. Even though the decomposition uniquely characterizes receptivity to roughness, the small set of measured curves has hindered a systematic understanding of the physical meaning of roughness receptivity curves. Our findings help to associate specific receptivity-curve shapes with physically observable behavior. Supported by AFOSR under grant FA9550-11-1-0203.

  5. Bacterial volatiles promote growth in Arabidopsis Choong-Min Ryu*, Mohamed A. Farag

    E-print Network

    Paré, Paul W.

    hormones, whereas others increase mineral and nitrogen availability in the soil as a way to augment growth synthesis were devoid in this growth-promotion capacity. The demonstration that PGPR strains release by PGPR include bacterial synthesis of the plant hormones indole-3-acetic acid (4), cytokinin (5

  6. Blue light (470 nm) effectively inhibits bacterial and fungal growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The activity of blue light (470nm) alone on (1) bacterial viability, and (2) with a food grade photosensitizer on filamentous fungal viability, was studied. Suspensions of the bacteria Leuconostoc mesenteroides (LM), Bacillus atrophaeus (BA), and Pseudomonas aeruginosa (PA) were prepared and aliquo...

  7. Monensin inhibits growth of bacterial contaminants from fuel ethanol plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contamination of commercial fermentation cultures by lactic acid bacteria (LAB) is a common and costly problem to the fuel ethanol industry. Virginiamycin (VIR) and penicillin (PEN) are frequently used to control bacterial contamination but extensive use of antibiotics may select for strains with d...

  8. Understanding the Scalability of Bayesian Network Inference Using Clique Tree Growth Curves

    NASA Technical Reports Server (NTRS)

    Mengshoel, Ole J.

    2010-01-01

    One of the main approaches to performing computation in Bayesian networks (BNs) is clique tree clustering and propagation. The clique tree approach consists of propagation in a clique tree compiled from a Bayesian network, and while it was introduced in the 1980s, there is still a lack of understanding of how clique tree computation time depends on variations in BN size and structure. In this article, we improve this understanding by developing an approach to characterizing clique tree growth as a function of parameters that can be computed in polynomial time from BNs, specifically: (i) the ratio of the number of a BN s non-root nodes to the number of root nodes, and (ii) the expected number of moral edges in their moral graphs. Analytically, we partition the set of cliques in a clique tree into different sets, and introduce a growth curve for the total size of each set. For the special case of bipartite BNs, there are two sets and two growth curves, a mixed clique growth curve and a root clique growth curve. In experiments, where random bipartite BNs generated using the BPART algorithm are studied, we systematically increase the out-degree of the root nodes in bipartite Bayesian networks, by increasing the number of leaf nodes. Surprisingly, root clique growth is well-approximated by Gompertz growth curves, an S-shaped family of curves that has previously been used to describe growth processes in biology, medicine, and neuroscience. We believe that this research improves the understanding of the scaling behavior of clique tree clustering for a certain class of Bayesian networks; presents an aid for trade-off studies of clique tree clustering using growth curves; and ultimately provides a foundation for benchmarking and developing improved BN inference and machine learning algorithms.

  9. Differentiation of bacterial colonies and temporal growth patterns using hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Mehrübeoglu, Mehrube; Buck, Gregory W.; Livingston, Daniel W.

    2014-09-01

    Detection and identification of bacteria are important for health and safety. Hyperspectral imaging offers the potential to capture unique spectral patterns and spatial information from bacteria which can then be used to detect and differentiate bacterial species. Here, hyperspectral imaging has been used to characterize different bacterial colonies and investigate their growth over time. Six bacterial species (Pseudomonas fluorescens, Escherichia coli, Serratia marcescens, Salmonella enterica, Staphylococcus aureus, Enterobacter aerogenes) were grown on tryptic soy agar plates. Hyperspectral data were acquired immediately after, 24 hours after, and 96 hours after incubation. Spectral signatures from bacterial colonies demonstrated repeatable measurements for five out of six species. Spatial variations as well as changes in spectral signatures were observed across temporal measurements within and among species at multiple wavelengths due to strengthening or weakening reflectance signals from growing bacterial colonies based on their pigmentation. Between-class differences and within-class similarities were the most prominent in hyperspectral data collected 96 hours after incubation.

  10. Inhibition by antibiotics of the growth of bacterial and yeast protoplasts.

    PubMed

    SHOCKMAN, G D; LAMPEN, J O

    1962-09-01

    Shockman, Gerald D. (Temple University School of Medicine, Philadelphia, Pa.) and J. Oliver Lampen. Inhibition by antibiotics of the growth of bacterial and yeast protoplasts. J. Bacteriol. 84:508-512. 1962.-The characteristics and requirements for growth of bacterial (Streptococcus faecalis) and yeast (Saccharomyces cerevisiae) protoplasts were established and the effect of a variety of antibacterial and antifungal antibiotics determined. A clear differentiation was obtained between such inhibitors of bacterial cell wall synthesis as penicillin and cycloserine, which did not prevent protoplast growth, and all others, antibacterial and antifungal, which inhibited protoplasts and intact organisms at the same range of concentration. Novobiocin, previously reported to inhibit bacterial wall synthesis, was also effective against a reaction(s) essential to the growth of S. faecalis protoplasts. The antibacterial action of streptomycin, neomycin, and kanamycin was essentially eliminated by the high salt concentration needed to maintain the protoplasts. Removal of the cell wall did not significantly increase antibiotic susceptibility of a resistant species. Protoplasts of Bacillus megaterium were insensitive to the antifungal agent, nystatin, and did not bind it to any detectable degree. Thus, the yeast or bacterial cell wall does not appear to play a major role in determining relative antibiotic susceptibility by masking internal sensitive target sites. A variety of antifungal antibiotics tested on the growth of log-phase yeast cells failed to produce osmotically fragile forms. PMID:13988638

  11. On Traveling Wave Fronts in a Bacterial Growth Model with Density-Dependent Diffusion and Chemotaxis

    NASA Astrophysics Data System (ADS)

    Mansour, M. B. A.

    2011-04-01

    Bacterial colonies often generate patterns that are characterized by fingerlike projections growing out of the propagating front. In this paper, we analyze the traveling wave fronts in bacterial growth model that accounts for chemotactic movement as well as random motion in density-dependent diffusion. Specifically, the existence of traveling wave solutions to model equations is examined by means of methods of local linear and nonlinear analysis, and numerical simulations. The occurrence is shown of both sharp and smooth traveling wave fronts.

  12. Growing Growth curves using PROC MIXED and PROC NLMIXED

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Being able to describe growth appropriately and succinctly is important in many contexts, including biology, epidemiology, and statistics. Various approaches are used varying from differential equations, deterministic modeling, and statistical approaches like regression. Often, with epidemiologic da...

  13. Shaping the Growth Behaviour of Bacterial Aggregates in Biofilms

    E-print Network

    Melaugh, Gavin; Kragh, Kasper Nřrskov; Irie, Yasuhiko; Roberts, Aled; Bjarnsholt, Thomas; Diggle, Steve P; Gordon, Vernita; Allen, Rosalind J

    2015-01-01

    Bacterial biofilms are usually assumed to originate from individual cells deposited on a surface. However, many biofilm-forming bacteria tend to aggregate in the planktonic phase meaning it is possible that many natural and infectious biofilms originate wholly or partially from pre-formed cell aggregates. Here, we use agent-based computer simulations to investigate the role of pre-formed aggregates in biofilm development. Focusing on the role of aggregate shape, we find that the degree of spreading of an aggregate on a surface can play a key role in determining its eventual fate during biofilm development. Specifically, initially spread aggregates perform better when competition with surrounding bacterial cells is low, while initially rounded aggregates perform better when competition is high. These contrasting outcomes are governed by a trade-off between aggregate surface area and height. Our results provide new insight into biofilm formation and development, and reveal new factors that may be at play in the...

  14. Avian Incubation Inhibits Growth and Diversification of Bacterial Assemblages on Eggs

    PubMed Central

    Shawkey, Matthew D.; Firestone, Mary K.; Brodie, Eoin L.; Beissinger, Steven R.

    2009-01-01

    Microbial infection is a critical source of mortality for early life stages of oviparous vertebrates, but parental defenses against infection are less well known. Avian incubation has been hypothesized to reduce the risk of trans-shell infection by limiting microbial growth of pathogenic bacteria on eggshells, while enhancing growth of commensal or beneficial bacteria that inhibit or competitively exclude pathogens. We tested this hypothesis by comparing bacterial assemblages on naturally incubated and experimentally unincubated eggs at laying and late incubation using a universal 16S rRNA microarray containing probes for over 8000 bacterial taxa. Before treatment, bacterial assemblages on individual eggs from both treatment groups were dissimilar to one another, as measured by clustering in non-metric dimensional scaling (NMDS) ordination space. After treatment, assemblages of unincubated eggs were similar to one another, but those of incubated eggs were not. Furthermore, assemblages of unincubated eggs were characterized by high abundance of six indicator species while incubated eggs had no indicator species. Bacterial taxon richness remained static on incubated eggs, but increased significantly on unincubated eggs, especially in several families of Gram-negative bacteria. The relative abundance of individual bacterial taxa did not change on incubated eggs, but that of 82 bacterial taxa, including some known to infect the interior of eggs, increased on unincubated eggs. Thus, incubation inhibits all of the relatively few bacteria that grow on eggshells, and does not appear to promote growth of any bacteria. PMID:19225566

  15. Inhibition of bacterial growth by iron oxide nanoparticles with and without attached drug: Have we conquered the antibiotic resistance problem?

    NASA Astrophysics Data System (ADS)

    Armijo, Leisha M.; Jain, Priyanka; Malagodi, Angelina; Fornelli, F. Zuly; Hayat, Allison; Rivera, Antonio C.; French, Michael; Smyth, Hugh D. C.; Osi?ski, Marek

    2015-03-01

    Pseudomonas aeruginosa is among the top three leading causative opportunistic human pathogens, possessing one of the largest bacterial genomes and an exceptionally large proportion of regulatory genes therein. It has been known for more than a decade that the size and complexity of the P. aeruginosa genome is responsible for the adaptability and resilience of the bacteria to include its ability to resist many disinfectants and antibiotics. We have investigated the susceptibility of P. aeruginosa bacterial biofilms to iron oxide (magnetite) nanoparticles (NPs) with and without attached drug (tobramycin). We also characterized the susceptibility of zero-valent iron NPs, which are known to inactivate microbes. The particles, having an average diameter of 16 nm were capped with natural alginate, thus doubling the hydrodynamic size. Nanoparticle-drug conjugates were produced via cross-linking drug and alginate functional groups. Drug conjugates were investigated in the interest of determining dosage, during these dosage-curve experiments, NPs unbound to drug were tested in cultures as a negative control. Surprisingly, we found that the iron oxide NPs inhibited bacterial growth, and thus, biofilm formation without the addition of antibiotic drug. The inhibitory dosages of iron oxide NPs were investigated and the minimum inhibitory concentrations are presented. These findings suggest that NP-drug conjugates may overcome the antibiotic drug resistance common in P. aeruginosa infections.

  16. Parent Involvement and Science Achievement: A Cross-Classified Multilevel Latent Growth Curve Analysis

    ERIC Educational Resources Information Center

    Johnson, Ursula Y.; Hull, Darrell M.

    2014-01-01

    The authors examined science achievement growth at Grades 3, 5, and 8 and parent school involvement at the same time points using the Early Childhood Longitudinal Study-Kindergarten Class of 1998-1999. Data were analyzed using cross-classified multilevel latent growth curve modeling with time invariant and varying covariates. School-based…

  17. Teaching the Microbial Growth Curve Concept Using Microalgal Cultures and Flow Cytometry

    ERIC Educational Resources Information Center

    Forget, Nathalie; Belzile, Claude; Rioux, Pierre; Nozais, Christian

    2010-01-01

    The microbial growth curve is widely studied within microbiology classes and bacteria are usually the microbial model used. Here, we describe a novel laboratory protocol involving flow cytometry to assess the growth dynamics of the unicellular microalgae "Isochrysis galbana." The algal model represents an appropriate alternative to bacteria…

  18. Estimation of Growth Curves and Suitable Slaughter Weight of the Liangshan Pig

    PubMed Central

    Luo, Jia; Lei, Huaigang; Shen, Linyuan; Yang, Runlin; Pu, Qiang; Zhu, Kangping; Li, Mingzhou; Tang, Guoqing; Li, Xuewei; Zhang, Shunhua; Zhu, Li

    2015-01-01

    The Liangshan pig is a traditional Chinese small-sized breed; it has a relatively long feeding period and low meat production ability but superior meat quality. This study utilized three non-linear growth models (Von Bertalanffy, Gompertz, and logistic) to fit the growth curve of Liangshan pigs from an unselected, random-bred pig population and estimate the pigs most suitable slaughter weight. The growth development data at 20 time points of 275 Liangshan pigs (from birth to 250 d) were collected. To analyze the relative gene expression related to development, seven slaughter weight phases (50, 58, 66, 74, 82, 90, and 98 kg) (20 pigs per phase) were examined. We found that the Liangshan pig growth curve fit the typical S-curve well and that their growth turning point was 193.4 days at a weight of 62.5 kg, according to the best fit Von Bertalanffy model based on the goodness of fit criteria. Furthermore, we estimated that the most suitable slaughter weight was 62.5 to 74.9 kg based on the growth curve and the relative expression levels of growth-related genes. PMID:26194218

  19. Estimation of Growth Curves and Suitable Slaughter Weight of the Liangshan Pig.

    PubMed

    Luo, Jia; Lei, Huaigang; Shen, Linyuan; Yang, Runlin; Pu, Qiang; Zhu, Kangping; Li, Mingzhou; Tang, Guoqing; Li, Xuewei; Zhang, Shunhua; Zhu, Li

    2015-09-01

    The Liangshan pig is a traditional Chinese small-sized breed; it has a relatively long feeding period and low meat production ability but superior meat quality. This study utilized three non-linear growth models (Von Bertalanffy, Gompertz, and logistic) to fit the growth curve of Liangshan pigs from an unselected, random-bred pig population and estimate the pigs most suitable slaughter weight. The growth development data at 20 time points of 275 Liangshan pigs (from birth to 250 d) were collected. To analyze the relative gene expression related to development, seven slaughter weight phases (50, 58, 66, 74, 82, 90, and 98 kg) (20 pigs per phase) were examined. We found that the Liangshan pig growth curve fit the typical S-curve well and that their growth turning point was 193.4 days at a weight of 62.5 kg, according to the best fit Von Bertalanffy model based on the goodness of fit criteria. Furthermore, we estimated that the most suitable slaughter weight was 62.5 to 74.9 kg based on the growth curve and the relative expression levels of growth-related genes. PMID:26194218

  20. Bacterial growth on a superhydrophobic surface containing silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Heinonen, S.; Nikkanen, J.-P.; Laakso, J.; Raulio, M.; Priha, O.; Levänen, E.

    2013-12-01

    The antibacterial effect of silver can be exploited in the food and beverage industry and medicinal applications to reduce biofouling of surfaces. Very small amount of silver ions are enough to destructively affect the metabolism of bacteria. Moreover, superhydrophobic properties could reduce bacterial adhesion to the surface. In this study we fabricated superhydrophobic surfaces that contained nanosized silver particles. The superhydrophobic surfaces were manufactured onto stainless steel as combination of ceramic nanotopography and hydrophobication by fluorosilane. Silver nanoparticles were precipitated onto the surface by a chemical method. The dissolution of silver from the surface was tested in an aqueous environment under pH values of 1, 3, 5, 7, 9, 11 and 13. The pH value was adjusted with nitric acid and ammonia. It was found that dissolution rate of silver increased as the pH of the solution altered from the pH of de-ionized water to lower and higher pH values but dissolution occurred also in de-ionized water. The antimicrobial potential of this coating was investigated using bacterial strains isolated from the brewery equipment surfaces. The results showed that the number of bacteria adhering onto steel surface was significantly reduced (88%) on the superhydrophobic silver containing coating.

  1. [Inhibition of bacterial growth in thawed cake and rapid evaluation methods for microbiological quality].

    PubMed

    Tanaka, Keiko; Takeya, Kouji; Hara-Kudo, Yukiko

    2002-12-01

    The inhibition of bacterial growth in thawed cake kept under refrigeration and rapid evaluation methods for microbiological quality of the cake were investigated. The effects of the freezing temperature and the addition of ethanol or emulsifier on bacterial numbers in a cake model after storage for 72 hr at 10 degrees C following the thawing process were also studied. Bacterial growth in the cake model was inhibited by the additives under various freezing conditions. In addition, rapid evaluation methods for estimating bacterial numbers in the cake model after incubation for 72 hr at 10 degrees C were studied. High correlations were found between bacterial numbers in the cake model incubated for 24 hr at 20 degrees C and for 6 hr at 35 degrees C with tryptic soy broth and that of the cake model incubated for 72 hr at 10 degrees C. This result indicated that rapid evaluation by incubation for 24 hr at 20 degrees C or for 6 hr at 35 degrees C with tryptic soy broth can be used to predict the bacterial numbers in a cake model after incubation for 72 hr at 10 degrees C. Furthermore, the ATP-bioluminescence method was applied to shorten the testing time, because culture on an agar medium was not necessary. PMID:12635333

  2. Volatile Emissions from Mycobacterium avium subsp. paratuberculosis Mirror Bacterial Growth and Enable Distinction of Different Strains

    PubMed Central

    Trefz, Phillip; Koehler, Heike; Klepik, Klaus; Moebius, Petra; Reinhold, Petra; Schubert, Jochen K.; Miekisch, Wolfram

    2013-01-01

    Control of paratuberculosis in livestock is hampered by the low sensitivity of established direct and indirect diagnostic methods. Like other bacteria, Mycobacterium avium subsp. paratuberculosis (MAP) emits volatile organic compounds (VOCs). Differences of VOC patterns in breath and feces of infected and not infected animals were described in first pilot experiments but detailed information on potential marker substances is missing. This study was intended to look for characteristic volatile substances in the headspace of cultures of different MAP strains and to find out how the emission of VOCs was affected by density of bacterial growth. One laboratory adapted and four field strains, three of MAP C-type and one MAP S-type were cultivated on Herrold’s egg yolk medium in dilutions of 10-0, 10-2, 10-4 and 10-6. Volatile substances were pre-concentrated from the headspace over the MAP cultures by means of Solid Phase Micro Extraction (SPME), thermally desorbed from the SPME fibers and separated and identified by means of GC-MS. Out of the large number of compounds found in the headspace over MAP cultures, 34 volatile marker substances could be identified as potential biomarkers for growth and metabolic activity. All five MAP strains could clearly be distinguished from blank culture media by means of emission patterns based on these 34 substances. In addition, patterns of volatiles emitted by the reference strain were significantly different from the field strains. Headspace concentrations of 2-ethylfuran, 2-methylfuran, 3-methylfuran, 2-pentylfuran, ethyl acetate, 1-methyl-1-H-pyrrole and dimethyldisulfide varied with density of bacterial growth. Analysis of VOCs emitted from mycobacterial cultures can be used to identify bacterial growth and, in addition, to differentiate between different bacterial strains. VOC emission patterns may be used to approximate bacterial growth density. In a perspective volatile marker substances could be used to diagnose MAP infections in animals and to identify different bacterial strains and origins. PMID:24116177

  3. Growth-rate-dependent dynamics of a bacterial genetic oscillator

    NASA Astrophysics Data System (ADS)

    Osella, Matteo; Lagomarsino, Marco Cosentino

    2013-01-01

    Gene networks exhibiting oscillatory dynamics are widespread in biology. The minimal regulatory designs giving rise to oscillations have been implemented synthetically and studied by mathematical modeling. However, most of the available analyses generally neglect the coupling of regulatory circuits with the cellular “chassis” in which the circuits are embedded. For example, the intracellular macromolecular composition of fast-growing bacteria changes with growth rate. As a consequence, important parameters of gene expression, such as ribosome concentration or cell volume, are growth-rate dependent, ultimately coupling the dynamics of genetic circuits with cell physiology. This work addresses the effects of growth rate on the dynamics of a paradigmatic example of genetic oscillator, the repressilator. Making use of empirical growth-rate dependencies of parameters in bacteria, we show that the repressilator dynamics can switch between oscillations and convergence to a fixed point depending on the cellular state of growth, and thus on the nutrients it is fed. The physical support of the circuit (type of plasmid or gene positions on the chromosome) also plays an important role in determining the oscillation stability and the growth-rate dependence of period and amplitude. This analysis has potential application in the field of synthetic biology, and suggests that the coupling between endogenous genetic oscillators and cell physiology can have substantial consequences for their functionality.

  4. Choice of bacterial growth medium alters the transcriptome and phenotype of Salmonella enterica Serovar Typhimurium.

    PubMed

    Blair, Jessica M A; Richmond, Grace E; Bailey, Andrew M; Ivens, Al; Piddock, Laura J V

    2013-01-01

    The type of bacterial culture medium is an important consideration during design of any experimental protocol. The aim of this study was to understand the impact of medium choice on bacterial gene expression and physiology by comparing the transcriptome of Salmonella enterica SL1344 after growth in the widely used LB broth or the rationally designed MOPS minimal medium. Transcriptomics showed that after growth in MOPS minimal media, compared to LB, there was increased expression of 42 genes involved in amino acid synthesis and 23 genes coding for ABC transporters. Seven flagellar genes had decreased expression after growth in MOPS minimal medium and this correlated with a decreased motility. In both MOPS minimal medium and MEM expression of genes from SPI-2 was increased and the adhesion of S. Typhimurium to intestinal epithelial cells was higher compared to the levels after growth in LB. However, SL1344 invasion was not significantly altered by growth in either MOPs minimal media or MEM. Expression of SPI-2 was also measured using chromosomal GFP reporter fusions followed by flow cytometry which showed, for the first time, that the reduction in SPI-2 transcript after growth in different media related to a reduction in the proportion of the bacterial population expressing SPI-2. These data highlight the profound differences in the global transcriptome after in vitro growth in different media and show that choice of medium should be considered carefully during experimental design, particularly when virulence related phenotypes are being measured. PMID:23704954

  5. 40 CFR 798.5500 - Differential growth inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...damage which is expressed as cell killing or growth inhibition... (ii) Phase of bacterial cell growth at time of use in the...for determination of degree of cell kill. (vii) Dose-response...mutagens and carcinogens.” Cancer Research,...

  6. 40 CFR 798.5500 - Differential growth inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...damage which is expressed as cell killing or growth inhibition... (ii) Phase of bacterial cell growth at time of use in the...for determination of degree of cell kill. (vii) Dose-response...mutagens and carcinogens.” Cancer Research,...

  7. 40 CFR 798.5500 - Differential growth inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...damage which is expressed as cell killing or growth inhibition... (ii) Phase of bacterial cell growth at time of use in the...for determination of degree of cell kill. (vii) Dose-response...mutagens and carcinogens.” Cancer Research,...

  8. 40 CFR 798.5500 - Differential growth inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...damage which is expressed as cell killing or growth inhibition... (ii) Phase of bacterial cell growth at time of use in the...for determination of degree of cell kill. (vii) Dose-response...mutagens and carcinogens.” Cancer Research,...

  9. 40 CFR 798.5500 - Differential growth inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...damage which is expressed as cell killing or growth inhibition... (ii) Phase of bacterial cell growth at time of use in the...for determination of degree of cell kill. (vii) Dose-response...mutagens and carcinogens.” Cancer Research,...

  10. Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance

    SciTech Connect

    Goldfarb, K.C.; Karaoz, U.; Hanson, C.A.; Santee, C.A.; Bradford, M.A.; Treseder, K.K.; Wallenstein, M.D.; Brodie, E.L.

    2011-04-18

    Soils are immensely diverse microbial habitats with thousands of co-existing bacterial, archaeal, and fungal species. Across broad spatial scales, factors such as pH and soil moisture appear to determine the diversity and structure of soil bacterial communities. Within any one site however, bacterial taxon diversity is high and factors maintaining this diversity are poorly resolved. Candidate factors include organic substrate availability and chemical recalcitrance, and given that they appear to structure bacterial communities at the phylum level, we examine whether these factors might structure bacterial communities at finer levels of taxonomic resolution. Analyzing 16S rRNA gene composition of nucleotide analog-labeled DNA by PhyloChip microarrays, we compare relative growth rates on organic substrates of increasing chemical recalcitrance of >2,200 bacterial taxa across 43 divisions/phyla. Taxa that increase in relative abundance with labile organic substrates (i.e., glycine, sucrose) are numerous (>500), phylogenetically clustered, and occur predominantly in two phyla (Proteobacteria and Actinobacteria) including orders Actinomycetales, Enterobacteriales, Burkholderiales, Rhodocyclales, Alteromonadales, and Pseudomonadales. Taxa increasing in relative abundance with more chemically recalcitrant substrates (i.e., cellulose, lignin, or tannin-protein) are fewer (168) but more phylogenetically dispersed, occurring across eight phyla and including Clostridiales, Sphingomonadalaes, Desulfovibrionales. Just over 6% of detected taxa, including many Burkholderiales increase in relative abundance with both labile and chemically recalcitrant substrates. Estimates of median rRNA copy number per genome of responding taxa demonstrate that these patterns are broadly consistent with bacterial growth strategies. Taken together, these data suggest that changes in availability of intrinsically labile substrates may result in predictable shifts in soil bacterial composition.

  11. Randomly curved runs interrupted by tumbling: A model for bacterial motion

    NASA Astrophysics Data System (ADS)

    Condat, C. A.; Jäckle, J.; Menchón, S. A.

    2005-08-01

    Small bacteria are strongly buffeted by Brownian forces that make completely straight runs impossible. A model for bacterial motion is formulated in which the effects of fluctuational forces and torques on the run phase are taken into account by using coupled Langevin equations. An integrated description of the motion, including runs and tumbles, is then obtained by the use of convolution and Laplace transforms. The properties of the velocity-velocity correlation function, of the mean displacement, and of the two relevant diffusion coefficients are examined in terms of the bacterial sizes and of the magnitude of the propelling forces. For bacteria smaller than E. coli, the integrated diffusion coefficient crosses over from a jump-dominated to a rotational-diffusion-dominated form.

  12. Tetracycline Resistance Gene Maintenance under Varying Bacterial Growth Rate, Substrate and Oxygen Availability, and Tetracycline

    E-print Network

    Alvarez, Pedro J.

    Tetracycline Resistance Gene Maintenance under Varying Bacterial Growth Rate, Substrate and Oxygen Availability, and Tetracycline Concentration Michal Rysz, William R. Mansfield, John D. Fortner,§ and Pedro J on continuous culture and batch experiments to determine how tetracycline (TC), aerobic vs anaerobic conditions

  13. Estimates of bacterial growth from changes in uptake rates and biomass.

    PubMed Central

    Kirchman, D; Ducklow, H; Mitchell, R

    1982-01-01

    Rates of nucleic acid synthesis have been used to examine microbiol growth in natural waters. These rates are calculated from the incorporation of [3H]adenine and [3H]thymidine for RNA and DNA syntheses, respectively. Several additional biochemical parameters must be measured or taken from the literature to estimate growth rates from the incorporation of the tritiated compounds. We propose a simple method of estimating a conversion factor which obviates measuring these biochemical parameters. The change in bacterial abundance and incorporation rates of [3H]thymidine was measured in samples from three environments. The incorporation of exogenous [3H]thymidine was closely coupled with growth and cell division as estimated from the increase in bacterial biomass. Analysis of the changes in incorporation rates and initial bacterial abundance yielded a conversion factor for calculating bacterial production rates from incorporation rates. Furthermore, the growth rate of only those bacteria incorporating the compound can be estimated. The data analysis and experimental design can be used to estimate the proportion of nondividing cells and to examine changes in cell volumes. PMID:6760812

  14. Fractional differential equations based modeling of microbial survival and growth curves: model development and experimental validation.

    PubMed

    Kaur, A; Takhar, P S; Smith, D M; Mann, J E; Brashears, M M

    2008-10-01

    A fractional differential equations (FDEs)-based theory involving 1- and 2-term equations was developed to predict the nonlinear survival and growth curves of foodborne pathogens. It is interesting to note that the solution of 1-term FDE leads to the Weibull model. Nonlinear regression (Gauss-Newton method) was performed to calculate the parameters of the 1-term and 2-term FDEs. The experimental inactivation data of Salmonella cocktail in ground turkey breast, ground turkey thigh, and pork shoulder; and cocktail of Salmonella, E. coli, and Listeria monocytogenes in ground beef exposed at isothermal cooking conditions of 50 to 66 degrees C were used for validation. To evaluate the performance of 2-term FDE in predicting the growth curves-growth of Salmonella typhimurium, Salmonella Enteritidis, and background flora in ground pork and boneless pork chops; and E. coli O157:H7 in ground beef in the temperature range of 22.2 to 4.4 degrees C were chosen. A program was written in Matlab to predict the model parameters and survival and growth curves. Two-term FDE was more successful in describing the complex shapes of microbial survival and growth curves as compared to the linear and Weibull models. Predicted curves of 2-term FDE had higher magnitudes of R(2) (0.89 to 0.99) and lower magnitudes of root mean square error (0.0182 to 0.5461) for all experimental cases in comparison to the linear and Weibull models. This model was capable of predicting the tails in survival curves, which was not possible using Weibull and linear models. The developed model can be used for other foodborne pathogens in a variety of food products to study the destruction and growth behavior. PMID:19019113

  15. Optimization of a new mathematical model for bacterial growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research is to optimize a new mathematical equation as a primary model to describe the growth of bacteria under constant temperature conditions. An optimization algorithm was used in combination with a numerical (Runge-Kutta) method to solve the differential form of the new gr...

  16. BIOASSAY PROCEDURE FOR PREDICTING COLIFORM BACTERIAL GROWTH IN DRINKING WATER

    EPA Science Inventory

    Water quality degradation due to the growth of microorganisms Is an area of concern for many water utilities. urrently the nutrient status of drinking water is difficult to measure and can only be defined in relative terms. o date, the procedures developed for determining the amo...

  17. BIOASSAY PROCEDURES FOR PREDICTING COLIFORM BACTERIAL GROWTH IN DRINKING WATER

    EPA Science Inventory

    Water quality degradation due to the growth of microorganisms is an area of concern for many water utilities. o date, the procedures developed or determining the amount of biodegradable material present in potable water have utilized heterotrophic non-coliform bacteria as bioassa...

  18. Curved tails in polymerization-based bacterial motility Andrew D. Rutenberg*

    E-print Network

    Grant, Martin

    ; published 19 July 2001 The curved actin ``comet-tail'' of the bacterium Listeria monocytogenes is a visually.40. a INTRODUCTION The bacteria L. monocytogenes, S. flexneri, the spotted fever group of Rickettsiae experiments in L. monocytogenes 24 and quali- tative observation of S. flexneri 15 and of spotted

  19. Body Temperatures in Dinosaurs: What Can Growth Curves Tell Us?

    PubMed Central

    Griebeler, Eva Maria

    2013-01-01

    To estimate the body temperature (BT) of seven dinosaurs Gillooly, Alleen, and Charnov (2006) used an equation that predicts BT from the body mass and maximum growth rate (MGR) with the latter preserved in ontogenetic growth trajectories (BT-equation). The results of these authors evidence inertial homeothermy in Dinosauria and suggest that, due to overheating, the maximum body size in Dinosauria was ultimately limited by BT. In this paper, I revisit this hypothesis of Gillooly, Alleen, and Charnov (2006). I first studied whether BTs derived from the BT-equation of today’s crocodiles, birds and mammals are consistent with core temperatures of animals. Second, I applied the BT-equation to a larger number of dinosaurs than Gillooly, Alleen, and Charnov (2006) did. In particular, I estimated BT of Archaeopteryx (from two MGRs), ornithischians (two), theropods (three), prosauropods (three), and sauropods (nine). For extant species, the BT value estimated from the BT-equation was a poor estimate of an animal’s core temperature. For birds, BT was always strongly overestimated and for crocodiles underestimated; for mammals the accuracy of BT was moderate. I argue that taxon-specific differences in the scaling of MGR (intercept and exponent of the regression line, log-log-transformed) and in the parameterization of the Arrhenius model both used in the BT-equation as well as ecological and evolutionary adaptations of species cause these inaccuracies. Irrespective of the found inaccuracy of BTs estimated from the BT-equation and contrary to the results of Gillooly, Alleen, and Charnov (2006) I found no increase in BT with increasing body mass across all dinosaurs (Sauropodomorpha, Sauropoda) studied. This observation questions that, due to overheating, the maximum size in Dinosauria was ultimately limited by BT. However, the general high inaccuracy of dinosaurian BTs derived from the BT-equation makes a reliable test of whether body size in dinosaurs was ultimately limited by overheating impossible. PMID:24204568

  20. Growth curve analysis of placental and fetal growth influenced by adjacent fetal sex status under crowded uterine conditions in pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intrauterine position and sex of adjacent fetuses in litter bearing species have been implicated in physiological and behavioral differences in males and females. Our objective was to establish growth curves for fetal and placental weight gain as influenced by sex status of flanking fetuses under cr...

  1. Microbial growth curves: what the models tell us and what they cannot.

    PubMed

    Peleg, Micha; Corradini, Maria G

    2011-12-01

    Most of the models of microbial growth in food are Empirical algebraic, of which the Gompertz model is the most notable, Rate equations, mostly variants of the Verhulst's logistic model, or Population Dynamics models, which can be deterministic and continuous or stochastic and discrete. The models of the first two kinds only address net growth and hence cannot account for cell mortality that can occur at any phase of the growth. Almost invariably, several alternative models of all three types can describe the same set of experimental growth data. This lack of uniqueness is by itself a reason to question any mechanistic interpretation of growth parameters obtained by curve fitting alone. As argued, all the variants of the Verhulst's model, including the Baranyi-Roberts model, are empirical phenomenological models in a rate equation form. None provides any mechanistic insight or has inherent advantage over the others. In principle, models of all three kinds can predict non-isothermal growth patterns from isothermal data. Thus a modeler should choose the simplest and most convenient model for this purpose. There is no reason to assume that the dependence of the "maximum specific growth rate" on temperature, pH, water activity, or other factors follows the original or modified versions of the Arrhenius model, as the success of Ratkowsky's square root model testifies. Most sigmoid isothermal growth curves require three adjustable parameters for their mathematical description and growth curves showing a peak at least four. Although frequently observed, there is no theoretical reason that these growth parameters should always rise and fall in unison in response to changes in external conditions. Thus quantifying the effect of an environmental factor on microbial growth require that all the growth parameters are addressed, not just the "maximum specific growth rate." Different methods to determine the "lag time" often yield different values, demonstrating that it is a poorly defined growth parameter. The combined effect of several factors, such as temperature and pH or aw, need not be "multiplicative" and therefore ought to be revealed experimentally. This might not be always feasible, but keeping the notion in mind will eliminate theoretical assumptions that are hard to confirm. Modern mathematical software allows to model growing or dying microbial populations where cell division and mortality occur simultaneously and can be used to explain how different growth patterns emerge. But at least in the near future, practical problems, like translating a varying temperature into a corresponding microbial growth curve, will be solved with empirical rate models, which despite not being "mechanistic" are perfectly suitable for this purpose. PMID:21955092

  2. Effects of nitric oxide and nitrogen dioxide on bacterial growth

    NASA Technical Reports Server (NTRS)

    Mancinelli, R. L.; Mckay, C. P.

    1983-01-01

    While it is generally thought that the bactericidal effects of NO and NO2 derive from their reaction with water to form nitrous and nitric acids (Shank et al., 1962), this appears to be true only at high concentrations. The data presented here suggest that at low NO and NO2 concentrations, acids are not present in high enough concentrations to act as toxic agents. Reference is made to a study by Grant et al. (1979), which found that exposing acid forest soil to 1 ppm of NO2 did not cause the soil pH to drop. The results presented here show that at low concentrations of NO and NO2, the NO is bacteriostatic for some organisms and not for others, whereas NO2 may protect some bacteria from the inhibitory effects of NO. Since it has been shown that bacteria can divide while airborne (Dimmick et al., 1979), the present results suggest that NO at the low concentrations found in the atmosphere can select for resistant bacteria in the air and affect the viable airborne bacterial population.

  3. Lubricating bacteria model for the growth of bacterial colonies exposed to ultraviolet radiation

    SciTech Connect

    Zhang Shengli; Zhang Lei; Liang Run; Zhang Erhu; Liu Yachao; Zhao Shumin

    2005-11-01

    In this paper, we study the morphological transition of bacterial colonies exposed to ultraviolet radiation by modifying the bacteria model proposed by Delprato et al. Our model considers four factors: the lubricant fluid generated by bacterial colonies, a chemotaxis initiated by the ultraviolet radiation, the intensity of the ultraviolet radiation, and the bacteria's two-stage destruction rate with given radiation intensities. Using this modified model, we simulate the ringlike pattern formation of the bacterial colony exposed to uniform ultraviolet radiation. The following is shown. (1) Without the UV radiation the colony forms a disklike pattern and reaches a constant front velocity. (2) After the radiation is switched on, the bacterial population migrates to the edge of the colony and forms a ringlike pattern. As the intensity of the UV radiation is increased the ring forms faster and the outer velocity of the colony decreases. (3) For higher radiation intensities the total population decreases, while for lower intensities the total population increases initially at a small rate and then decreases. (4) After the UV radiation is switched off, the bacterial population grows both outward as well as into the inner region, and the colony's outer front velocity recovers to a constant value. All these results agree well with the experimental observations [Phys. Rev. Lett. 87, 158102 (2001)]. Along with the chemotaxis, we find that lubricant fluid and the two-stage destruction rate are critical to the dynamics of the growth of the bacterial colony when exposed to UV radiation, and these were not previously considered.

  4. Cell Wall Nonlinear Elasticity and Growth Dynamics: How Do Bacterial Cells Regulate Pressure and Growth?

    NASA Astrophysics Data System (ADS)

    Deng, Yi

    In my thesis, I study intact and bulging Escherichia coli cells using atomic force microscopy to separate the contributions of the cell wall and turgor pressure to the overall cell stiffness. I find strong evidence of power--law stress--stiffening in the E. coli cell wall, with an exponent of 1.22±0.12, such that the wall is significantly stiffer in intact cells (E = 23±8 MPa and 49±20 MPa in the axial and circumferential directions) than in unpressurized sacculi. These measurements also indicate that the turgor pressure in living cells E. coli is 29±3 kPa. The nonlinearity in cell elasticity serves as a plausible mechanism to balance the mechanical protection and tension measurement sensitivity of the cell envelope. I also study the growth dynamics of the Bacillus subtilis cell wall to help understand the mechanism of the spatiotemporal order of inserting new cell wall material. High density fluorescent markers are used to label the entire cell surface to capture the morphological changes of the cell surface at sub-cellular to diffraction-limited spatial resolution and sub-minute temporal resolution. This approach reveals that rod-shaped chaining B. subtilis cells grow and twist in a highly heterogeneous fashion both spatially and temporally. Regions of high growth and twisting activity have a typical length scale of 5 ?m, and last for 10-40 minutes. Motivated by the quantification of the cell wall growth dynamics, two microscopy and image analysis techniques are developed and applied to broader applications beyond resolving bacterial growth. To resolve densely distributed quantum dots, we present a fast and efficient image analysis algorithm, namely Spatial Covariance Reconstruction (SCORE) microscopy that takes into account the blinking statistics of the fluorescence emitters. We achieve sub-diffraction lateral resolution of 100 nm from 5 to 7 seconds of imaging, which is at least an order of magnitude faster than single-particle localization based methods such as STORM and PALM. SCORE is insensitive to background and can be applied to different types of fluorescence sources, including but not limited to organic dye and quantum dot that are tested experimentally in this thesis. The second development is an extension from tracking single quantum dot to the more general cases of moving objects at high density based on active contour model. I add a repulsive interaction between open contours to the original model and treat the trajectories as extrusions in the temporal dimension. This technique is applicable to a broad range of problems and two specific tracking problems are chosen as illustrations: (i) the quantification of walking and chasing behaviors of Drosophila and (ii) the study of trajectories of gliding bacteria Myxococcus xanthus on flat surface. I demonstrate the capability of this high-through and highly automated analysis method for studying social and group behaviors in interacting organisms.

  5. Primordial soup was edible: abiotically produced Miller-Urey mixture supports bacterial growth

    PubMed Central

    Xie, Xueshu; Backman, Daniel; Lebedev, Albert T.; Artaev, Viatcheslav B.; Jiang, Liying; Ilag, Leopold L.; Zubarev, Roman A.

    2015-01-01

    Sixty years after the seminal Miller-Urey experiment that abiotically produced a mixture of racemized amino acids, we provide a definite proof that this primordial soup, when properly cooked, was edible for primitive organisms. Direct admixture of even small amounts of Miller-Urey mixture strongly inhibits E. coli bacteria growth due to the toxicity of abundant components, such as cyanides. However, these toxic compounds are both volatile and extremely reactive, while bacteria are highly capable of adaptation. Consequently, after bacterial adaptation to a mixture of the two most abundant abiotic amino acids, glycine and racemized alanine, dried and reconstituted MU soup was found to support bacterial growth and even accelerate it compared to a simple mixture of the two amino acids. Therefore, primordial Miller-Urey soup was perfectly suitable as a growth media for early life forms. PMID:26412575

  6. Culturable bacterial endophytes isolated from Mangrove tree (Rhizophora apiculata Blume) enhance seedling growth in Rice

    PubMed Central

    Deivanai, Subramanian; Bindusara, Amitraghata Santhanam; Prabhakaran, Guruswamy; Bhore, Subhash Janardhan

    2014-01-01

    Background: Endophytic bacteria do have several potential applications in medicine and in other various sectors of biotechnology including agriculture. Bacterial endophytes need to be explored for their potential applications in agricultural biotechnology. One of the potential applications of bacterial endophytes in agricultural is to enhance the growth of the agricultural crops. Hence, this study was undertaken to explore the plant growth promoting potential application of bacterial endophytes. Objective: The objective of this study was to examine the effect of endophytic bacteria from mangrove tree (Rhizophora apiculata Blume) for their efficacy in promoting seedling growth in rice. Materials and Methods: Eight endophytic bacterial isolates (EBIs) isolated from twig and petiole tissues of the mangrove were identified based on their 16S ribosomal ribonucleic acid (rRNA) gene sequence homology. Separately, surface sterilized paddy seeds were treated with cell-free broth and cell suspension of the EBIs. Rice seedlings were analyzed by various bioassays and data was recorded. Results: The gene sequences of the isolates were closely related to two genera namely, Bacillus and Pantoea. Inoculation of EBIs from R. apiculata with rice seeds resulted in accelerated root and shoot growth with significant increase in chlorophyll content. Among the isolates, Pantoea ananatis (1MSE1) and Bacillus amyloliquefaciens (3MPE1) had shown predominance of activity. Endophytic invasion was recognized by the non-host by rapid accumulation of reactive oxygen species (ROS) and was counteracted by the production of hydrogen peroxide (H2O2) and lipid peroxide. The results demonstrated that EBIs from mangrove tree can increase the fitness of the rice seedlings under controlled conditions. Conclusion: These research findings could be useful to enhance the seedling growth and could serve as foundation in further research on enhancing the growth of the rice crop using endophytic bacteria. PMID:25097431

  7. Bacterial growth in a simulated Martian subsurface environment

    NASA Astrophysics Data System (ADS)

    Kronyak, R. E.; Pavlov, A.; House, C. H.

    2013-12-01

    The ability of microorganisms to grow under Martian conditions has implications in both the search for life and habitability of Mars as well as the potential contamination of Mars by landing spacecraft. Factors that inhibit the growth of organisms on Mars include UV radiation, low pressure and temperature, CO2 atmosphere, lack of liquid water, and extreme desiccation. Yet a possible biozone capable of supporting microbial life on Mars exists in the shallow subsurface where there is protection from harsh UV rays. In addition, the presence of widespread subsurface ice, confirmed by the Phoenix Lander, offers a water source as the ice sublimates through the upper soil. Here we will determine the ability of the organism Halomonas desiderata strain SP1 to grow in the simulated Martian subsurface environment. Halomonas was chosen as the bacteria of interest due to its tolerance to extreme environments, including carrying salt concentrations and pH. Experiments were carried out in the Mars Simulation Chamber, where temperatures, pressures, and atmospheric composition can be closely monitored to simulate Martian conditions. A series of stress experiments were conducted to observe Halomonas's ability to withstand exposure to a Mars analog soil, freezing temperatures, anoxic conditions, and low pressures. We have determined that Halomonas is able to survive exposures to low temperatures, pressures, and anoxic conditions. We will report on the survival and growth of Halomonas in the simulated Martian permafrost under low (6-10 mbar) atmospheric pressures.

  8. Growth Curve Analysis of Ability Means and Variances in Measures of Fluid Intelligence of Older Adults.

    ERIC Educational Resources Information Center

    Raykov, Tenko

    1997-01-01

    Growth curve analysis is applied to modeling test performance changes demonstrated by older adults following cognitive training or based on repeatedly presented fluid intelligence measures. Findings using data from a study by P. Bates and others (1986) provide evidence of plasticity in the fluid intelligence of older adults. (SLD)

  9. Investigation of Mediational Processes Using Parallel Process Latent Growth Curve Modeling.

    ERIC Educational Resources Information Center

    Cheong, JeeWon; MacKinnon, David P.; Khoo, Siek Toon

    2003-01-01

    Investigated a method to evaluate mediational processes using latent growth curve modeling and tested it with empirical data from a longitudinal steroid use prevention program focusing on 1,506 high school football players over 4 years. Findings suggest the usefulness of the approach. (SLD)

  10. Aptitude-Treatment Interaction Effects on Explicit Rule Learning: A Latent Growth Curve Analysis

    ERIC Educational Resources Information Center

    Hwu, Fenfang; Pan, Wei; Sun, Shuyan

    2014-01-01

    Finding the match between individuals and educational treatments is the aim of both educators and the aptitude-treatment interaction research paradigm. Using the latent growth curve analysis, the present study investigates the interaction between the type of explicit instructional approaches (deductive vs. explicit-inductive) and the level of…

  11. Sample Sizes for Two-Group Second-Order Latent Growth Curve Models

    ERIC Educational Resources Information Center

    Wanstrom, Linda

    2009-01-01

    Second-order latent growth curve models (S. C. Duncan & Duncan, 1996; McArdle, 1988) can be used to study group differences in change in latent constructs. We give exact formulas for the covariance matrix of the parameter estimates and an algebraic expression for the estimation of slope differences. Formulas for calculations of the required sample…

  12. Accuracy of Estimates and Statistical Power for Testing Meditation in Latent Growth Curve Modeling

    ERIC Educational Resources Information Center

    Cheong, JeeWon

    2011-01-01

    The latent growth curve modeling (LGCM) approach has been increasingly utilized to investigate longitudinal mediation. However, little is known about the accuracy of the estimates and statistical power when mediation is evaluated in the LGCM framework. A simulation study was conducted to address these issues under various conditions including…

  13. Ignoring Individual Differences in Times of Assessment in Growth Curve Modeling

    ERIC Educational Resources Information Center

    Coulombe, Patrick; Selig, James P.; Delaney, Harold D.

    2016-01-01

    Researchers often collect longitudinal data to model change over time in a phenomenon of interest. Inevitably, there will be some variation across individuals in specific time intervals between assessments. In this simulation study of growth curve modeling, we investigate how ignoring individual differences in time points when modeling change over…

  14. Transcriptome analysis of genetic mechanism of growth curve inflection point using a pig model

    PubMed Central

    Shen, Linyuan; Zhang, Shunhua; Zhu, Li

    2015-01-01

    Animal growth curves play an important role for animal breeders to optimize feeding and management strategies (De Lange et al., 2001 [1]; Brossard et al., 2009 [2]; Strathe et al., 2010 [3]). However, the genetic mechanism of the phenotypic difference between the inflection point and noninflection points of the growth curve remains unclear. Here, we report the differentially expressed gene pattern in pig longissimus dorsi among three typical time points of the growth curve, inflection point (IP), before inflection point (BIP) and after inflection point (AIP). The whole genome RNA-seq data was deposited at GenBank under the accession number PRJNA2284587. The RNA-seq libraries generated 117 million reads of 5.89 gigabases in length. Totals of 21,331, 20,996 and 20,139 expressed transcripts were identified in IP, UIP and AIP, respectively. Furthermore, we identified 757 differentially expressed genes (DEGs) between IP and UIP, and 271 DEGs between AIP and IP. Function enrichment analysis of DEGs found that the highly expressed genes in IP were mainly enriched in energy metabolism, global transcriptional activity and bone development intensity. This study contributes to reveal the genetic mechanism of growth curve inflection point. PMID:26697358

  15. VON BERTALANFFY GROWTH CURVES FOR STRIPED MARLIN, TETRAPTURUS AUDAX, AND BLUE MARLIN, MAKAIRA NIGRICANS,

    E-print Network

    VON BERTALANFFY GROWTH CURVES FOR STRIPED MARLIN, TETRAPTURUS AUDAX, AND BLUE MARLIN, MAKAIRA of striped marlin, Tetrapturus audax, and blue marlin, Makaira nigricans, was described by fitting von-groups, by quarters, through the Hawaiian longline fishery from 1960 to 1970. For striped marlin, the sexes grew

  16. A Latent Growth Curve Analysis of Reading Achievement for an At-Risk Population

    ERIC Educational Resources Information Center

    Beecher, Constance C.

    2011-01-01

    The development of reading skills from age seven until age 19 was investigated for children who were referred for special education preschool intervention using latent growth curve analysis (n=206). Approximately one-third of the study sample did not require special education services after preschool, providing a natural comparison group. Reading…

  17. 1. INTRODUCTION Current design methods focus on crack growth curves which are material properties for given

    E-print Network

    Hively, Lee M.

    sustained loading of cracks) and stress corrosion cracking (KI scc, JI scc, sustained loading of cracks fatigue, as well as Mode I low-temperature creep and stress corrosion. During the 1930s, A. A. Griffith1. INTRODUCTION Current design methods focus on crack growth curves which are material properties

  18. Longitudinal Changes in Physical Fitness Performance in Youth: A Multilevel Latent Growth Curve Modeling Approach

    ERIC Educational Resources Information Center

    Wang, Chee Keng John; Pyun, Do Young; Liu, Woon Chia; Lim, Boon San Coral; Li, Fuzhong

    2013-01-01

    Using a multilevel latent growth curve modeling (LGCM) approach, this study examined longitudinal change in levels of physical fitness performance over time (i.e. four years) in young adolescents aged from 12-13 years. The sample consisted of 6622 students from 138 secondary schools in Singapore. Initial analyses found between-school variation on…

  19. Bacterial-Feeding Nematode Growth and Preference for Biocontrol Isolates of the Bacterium Burkholderia cepacia

    PubMed Central

    Carta, Lynn K.

    2000-01-01

    The potential of different bacterial-feeding Rhabditida to consume isolates of Burkholderia cepacia with known agricultural biocontrol ability was examined. Caenorhabditis elegans, Diploscapter sp., Oscheius myriophila, Pelodera strongyloides, Pristionchus pacificus, Zeldia punctata, Panagrellus redivivus, and Distolabrellus veechi were tested for growth on and preference for Escherichia coli OP50 or B. cepacia maize soil isolates J82, BcF, M36, Bc2, and PHQM100. Considerable growth and preference variations occurred between nematode taxa on individual bacterial isolates, and between different bacterial isolates on a given nematode. Populations of Diploscapter sp. and P. redivivus were most strongly suppressed. Only Z. punctata and P. pacificus grew well on all isolates, though Z. punctata preferentially accumulated on all isolates and P. pacificus had no preference. Oscheius myriophila preferentially accumulated on growth-supportive Bc2 and M36, and avoided less supportive J82 and PHQM100. Isolates with plant-parasitic nematicidal properties and poor fungicidal properties supported the best growth of three members of the Rhabditidae, C. elegans, O. myriophila, and P. strongyloides. Distolabrellus veechi avoided commercial nematicide M36 more strongly than fungicide J82. PMID:19270990

  20. The effects of a low-intensity red laser on bacterial growth, filamentation and plasmid DNA

    NASA Astrophysics Data System (ADS)

    Roos, C.; Santos, J. N.; Guimarăes, O. R.; Geller, M.; Paoli, F.; Fonseca, A. S.

    2013-07-01

    Exposure of nonphotosynthesizing microorganisms to light could increase cell division in cultures, a phenomenon denominated as biostimulation. However, data concerning the importance of the genetic characteristics of cells on this effect are as yet scarce. The aim of this work was to evaluate the effects of a low-intensity red laser on the growth, filamentation and plasmids in Escherichia coli cells proficient and deficient in DNA repair. E. coli cultures were exposed to a laser (658 nm, 10 mW, 1 and 8 J cm-2) to study bacterial growth and filamentation. Also, bacterial cultures hosting pBSK plasmids were exposed to the laser to study DNA topological forms from the electrophoretic profile in agarose gels. Data indicate the low-intensity red laser: (i) had no effect on the growth of E. coli wild type and exonuclease III deficient cells; (ii) induced bacterial filamentation, (iii) led to no alteration in the electrophoretic profile of plasmids from exonuclease III deficient cells, but plasmids from wild type cells were altered. A low-intensity red laser at the low fluences used in phototherapy has no effect on growth, but induces filamentation and alters the topological forms of plasmid DNA in E. coli cultures depending on the DNA repair mechanisms.

  1. Diamagnetic levitation enhances growth of liquid bacterial cultures by increasing oxygen availability

    PubMed Central

    Dijkstra, Camelia E.; Larkin, Oliver J.; Anthony, Paul; Davey, Michael R.; Eaves, Laurence; Rees, Catherine E. D.; Hill, Richard J. A.

    2011-01-01

    Diamagnetic levitation is a technique that uses a strong, spatially varying magnetic field to reproduce aspects of weightlessness, on the Earth. We used a superconducting magnet to levitate growing bacterial cultures for up to 18 h, to determine the effect of diamagnetic levitation on all phases of the bacterial growth cycle. We find that diamagnetic levitation increases the rate of population growth in a liquid culture and reduces the sedimentation rate of the cells. Further experiments and microarray gene analysis show that the increase in growth rate is owing to enhanced oxygen availability. We also demonstrate that the magnetic field that levitates the cells also induces convective stirring in the liquid. We present a simple theoretical model, showing how the paramagnetic force on dissolved oxygen can cause convection during the aerobic phases of bacterial growth. We propose that this convection enhances oxygen availability by transporting oxygen around the liquid culture. Since this process results from the strong magnetic field, it is not present in other weightless environments, e.g. in Earth orbit. Hence, these results are of significance and timely to researchers considering the use of diamagnetic levitation to explore effects of weightlessness on living organisms and on physical phenomena. PMID:20667843

  2. Diamagnetic levitation enhances growth of liquid bacterial cultures by increasing oxygen availability.

    PubMed

    Dijkstra, Camelia E; Larkin, Oliver J; Anthony, Paul; Davey, Michael R; Eaves, Laurence; Rees, Catherine E D; Hill, Richard J A

    2011-03-01

    Diamagnetic levitation is a technique that uses a strong, spatially varying magnetic field to reproduce aspects of weightlessness, on the Earth. We used a superconducting magnet to levitate growing bacterial cultures for up to 18 h, to determine the effect of diamagnetic levitation on all phases of the bacterial growth cycle. We find that diamagnetic levitation increases the rate of population growth in a liquid culture and reduces the sedimentation rate of the cells. Further experiments and microarray gene analysis show that the increase in growth rate is owing to enhanced oxygen availability. We also demonstrate that the magnetic field that levitates the cells also induces convective stirring in the liquid. We present a simple theoretical model, showing how the paramagnetic force on dissolved oxygen can cause convection during the aerobic phases of bacterial growth. We propose that this convection enhances oxygen availability by transporting oxygen around the liquid culture. Since this process results from the strong magnetic field, it is not present in other weightless environments, e.g. in Earth orbit. Hence, these results are of significance and timely to researchers considering the use of diamagnetic levitation to explore effects of weightlessness on living organisms and on physical phenomena. PMID:20667843

  3. Effects of Benzalkonium Chloride on Planktonic Growth and Biofilm Formation by Animal Bacterial Pathogens

    PubMed Central

    Ebrahimi, Azizollah; Hemati, Majid; Shabanpour, Ziba; Habibian Dehkordi, Saeed; Bahadoran, Shahab; Lotfalian, Sharareh; Khubani, Shahin

    2015-01-01

    Background: Resistance toward quaternary ammonium compounds (QACs) is widespread among a diverse range of microorganisms and is facilitated by several mechanisms such as biofilm formation. Objectives: In this study, the effects of benzalkonium chloride on planktonic growth and biofilm formation by some field isolates of animal bacterial pathogens were investigated. Materials and Methods: Forty clinical isolates of Escherichia coli, Salmonella serotypes, Staphylococcus aureus and Streptococcus agalactiae (10 isolates of each) were examined for effects of benzalkonium chloride on biofilm formation and planktonic growth using microtiter plates. For all the examined strains in the presence of benzalkonium chloride, biofilm development and planktonic growth were affected at the same concentrations of disinfectant. Results: The means of strains growth increase after the minimal inhibitory concentration (MIC) were significant in all the bacteria (except for E. coli in 1/32 and S. agalactiae in of 1/8 MIC). Biofilm formation increased with decrease of antiseptics concentration; a significant increase was found in all the samples. The most turbidity related to S. aureus and the least to Salmonella. Conclusions: Bacterial resistance against quaternary ammonium compounds is increasing which can increase the bacterial biofilm formation. PMID:25793094

  4. Coal Fly Ash Impairs Airway Antimicrobial Peptides and Increases Bacterial Growth

    PubMed Central

    Borcherding, Jennifer A.; Chen, Haihan; Caraballo, Juan C.; Baltrusaitis, Jonas; Pezzulo, Alejandro A.; Zabner, Joseph; Grassian, Vicki H.; Comellas, Alejandro P.

    2013-01-01

    Air pollution is a risk factor for respiratory infections, and one of its main components is particulate matter (PM), which is comprised of a number of particles that contain iron, such as coal fly ash (CFA). Since free iron concentrations are extremely low in airway surface liquid (ASL), we hypothesize that CFA impairs antimicrobial peptides (AMP) function and can be a source of iron to bacteria. We tested this hypothesis in vivo by instilling mice with Pseudomonas aeruginosa (PA01) and CFA and determine the percentage of bacterial clearance. In addition, we tested bacterial clearance in cell culture by exposing primary human airway epithelial cells to PA01 and CFA and determining the AMP activity and bacterial growth in vitro. We report that CFA is a bioavailable source of iron for bacteria. We show that CFA interferes with bacterial clearance in vivo and in primary human airway epithelial cultures. Also, we demonstrate that CFA inhibits AMP activity in vitro, which we propose as a mechanism of our cell culture and in vivo results. Furthermore, PA01 uses CFA as an iron source with a direct correlation between CFA iron dissolution and bacterial growth. CFA concentrations used are very relevant to human daily exposures, thus posing a potential public health risk for susceptible subjects. Although CFA provides a source of bioavailable iron for bacteria, not all CFA particles have the same biological effects, and their propensity for iron dissolution is an important factor. CFA impairs lung innate immune mechanisms of bacterial clearance, specifically AMP activity. We expect that identifying the PM mechanisms of respiratory infections will translate into public health policies aimed at controlling, not only concentration of PM exposure, but physicochemical characteristics that will potentially cause respiratory infections in susceptible individuals and populations. PMID:23469047

  5. Growth curves for Turkish Girls with Turner Syndrome: Results of the Turkish Turner Syndrome Study Group

    PubMed Central

    Darendeliler, Feyza; Ye?ilkaya, Ediz; Bereket, Abdullah; Ba?, Firdevs; Bundak, Rüveyde; Sar?, Erkan; Küçükemre Ayd?n, Banu; Darcan, ?ükran; Dündar, Bumin; Büyükinan, Muammer; Kara, Cengiz; Maz?c?o?lu, Mümtaz M.; Adal, Erdal; Ak?nc?, Ay?ehan; Atabek, Mehmet Emre; Demirel, Fatma; Çelik, Nurullah; Özkan, Behzat; Özhan, Bayram; Orbak, Zerrin; Ersoy, Betül; Do?an, Murat; Ata?, Ali; Turan, Serap; Gök?en, Damla; Tar?m, Ömer; Yüksel, Bilgin; Ercan, Oya; Hatun, ?ükrü; ?im?ek, Enver; Ökten, Ay?enur; Abac?, Ayhan; Döneray, Hakan; Özbek, Mehmet Nuri; Keskin, Mehmet; Önal, Hasan; Akyürek, Nesibe; Bulan, Kezban; Tepe, Derya; Emeksiz, Hamdi Cihan; Demir, Korcan; K?z?lay, Deniz; Topalo?lu, Ali Kemal; Eren, Erdal; Özen, Samim; Demirbilek, Hüseyin; Abal?, Sayg?n; Ak?n, Leyla; Eklio?lu, Beray Selver; Kaba, Sultan; An?k, Ahmet; Ba?, Serpil; Ünüvar, Tolga; Sa?lam, Halil; Bolu, Semih; Özgen, Tolga; Do?an, Durmu?; Çak?r, Esra Deniz; ?en, Ya?ar; And?ran, Nesibe; Çizmecio?lu, Filiz; Evliyao?lu, Olcay; Karagüzel, Gülay; Pirgon, Özgür; Çatl?, Gönül; Can, Hatice Dilek; Gürbüz, Fatih; Binay, Çi?dem; Ba?, Veysel Nijat; Sa?lam, Celal; Gül, Davut; Polat, Adem; Aç?kel, Cengizhan; Cinaz, Peyami

    2015-01-01

    Objective: Children with Turner syndrome (TS) have a specific growth pattern that is quite different from that of healthy children. Many countries have population-specific growth charts for TS. Considering national and ethnic differences, we undertook this multicenter collaborative study to construct growth charts and reference values for height, weight and body mass index (BMI) from 3 years of age to adulthood for spontaneous growth of Turkish girls with TS. Methods: Cross-sectional height and weight data of 842 patients with TS, younger than 18 years of age and before starting any therapy, were evaluated. Results: The data were processed to calculate the 3rd, 10th, 25th, 50th, 75th, 90th and 97th percentile values for defined ages and to construct growth curves for height-for-age, weight-for-age and BMI-for-age of girls with TS. The growth pattern of TS girls in this series resembled the growth pattern of TS girls in other reports, but there were differences in height between our series and the others. Conclusion: This study provides disease-specific growth charts for Turkish girls with TS. These disease-specific national growth charts will serve to improve the evaluation of growth and its management with growth-promoting therapeutic agents in TS patients.

  6. Social complementation and growth advantages promote socially defective bacterial isolates.

    PubMed

    Kraemer, Susanne A; Velicer, Gregory J

    2014-04-22

    Social interactions among diverse individuals that encounter one another in nature have often been studied among animals but rarely among microbes. For example, the evolutionary forces that determine natural frequencies of bacteria that express cooperative behaviours at low levels remain poorly understood. Natural isolates of the soil bacterium Myxococcus xanthus sampled from the same fruiting body often vary in social phenotypes, such as group swarming and multicellular development. Here, we tested whether genotypes highly proficient at swarming or development might promote the persistence of less socially proficient genotypes from the same fruiting body. Fast-swarming strains complemented slower isolates, allowing the latter to keep pace with faster strains in mixed groups. During development, one low-sporulating strain was antagonized by high sporulators, whereas others with severe developmental defects had those defects partially complemented by high-sporulating strains. Despite declining in frequency overall during competition experiments spanning multiple cycles of development, developmentally defective strains exhibited advantages during the growth phases of competitions. These results suggest that microbes with low-sociality phenotypes often benefit from interacting with more socially proficient strains. Such complementation may combine with advantages at other traits to increase equilibrium frequencies of low-sociality genotypes in natural populations. PMID:24573856

  7. Biofilm growth alters regulation of conjugation by a bacterial pheromone

    PubMed Central

    Cook, Laura; Barnes, Aaron; Dunny, Gary; Chatterjee, Anushree; Hu, Wei-Shou; Yarwood, Jeremy

    2011-01-01

    Conjugation is an important mode of horizontal gene transfer in bacteria, enhancing the spread of antibiotic resistance. In clinical settings, biofilms are likely locations for antibiotic resistance transfer events involving nosocomial pathogens such as Enterococcus faecalis. Here we demonstrate that growth in biofilms alters the induction of conjugation by a sex pheromone in E. faecalis. Mathematical modeling suggested that a higher plasmid copy number in biofilm cells would enhance a switch-like behavior in the pheromone response of donor cells with a delayed, but increased response to the mating signal. Alterations in plasmid copy number, and a bimodal response to induction of conjugation in populations of plasmid-containing donor cells were both observed in biofilms, consistent with the predictions of the model. The pheromone system may have evolved such that donor cells in biofilms are only induced to transfer when they are in extremely close proximity to potential recipients in the biofilm community. These results may have important implications for development of chemotherapeutic agents to block resistance transfer and treat biofilm-related clinical infections. PMID:21843206

  8. Chlorhexidine Digluconate Effects on Planktonic Growth and Biofilm Formation in Some Field Isolates of Animal Bacterial Pathogens

    PubMed Central

    Ebrahimi, Azizollah; Hemati, Majid; Habibian Dehkordi, Saeed; Bahadoran, Shahab; Khoshnood, Sheida; Khubani, Shahin; Dokht Faraj, Mahdi; Hakimi Alni, Reza

    2014-01-01

    Background: To study chlorhexidine digluconate disinfectant effects on planktonic growth and biofilm formation in some bacterial field isolates from animals. Objectives: The current study investigated chlorhexidine digluconate effects on planktonic growth and biofilm formation in some field isolates of veterinary bacterial pathogens. Materials and Methods: Forty clinical isolates of Escherichia coli, Salmonella serotypes, Staphylococcus. aureus and Streptococcus agalactiae (10 isolates for each) were examined for chlorhexidine digluconate effects on biofilm formation and planktonic growth using microtiter plates. In all of the examined strains in the presence of chlorhexidine digluconate, biofilm development and planktonic growth were affected at the same concentrations of the disinfectant. Results: Chlorhexidine digluconate inhibited the planktonic growth of different bacterial species at sub-MICs. But they were able to induce biofilm development of the E. coli, Salmonella spp., S. aureus and Str. agalactiae strains. Conclusions: Bacterial resistance against chlorhexidine is increasing. Sub-MIC doses of chlorhexidine digluconate can stimulate the formation of biofilm strains. PMID:24872940

  9. Spatial and Temporal Features of the Growth of a Bacterial Species Colonizing the Zebrafish Gut

    PubMed Central

    Jemielita, Matthew; Taormina, Michael J.; Burns, Adam R.; Hampton, Jennifer S.; Rolig, Annah S.; Guillemin, Karen

    2014-01-01

    ABSTRACT The vertebrate intestine is home to microbial ecosystems that play key roles in host development and health. Little is known about the spatial and temporal dynamics of these microbial communities, limiting our understanding of fundamental properties, such as their mechanisms of growth, propagation, and persistence. To address this, we inoculated initially germ-free zebrafish larvae with fluorescently labeled strains of an Aeromonas species, representing an abundant genus in the zebrafish gut. Using light sheet fluorescence microscopy to obtain three-dimensional images spanning the gut, we quantified the entire bacterial load, as founding populations grew from tens to tens of thousands of cells over several hours. The data yield the first ever measurements of the growth kinetics of a microbial species inside a live vertebrate intestine and show dynamics that robustly fit a logistic growth model. Intriguingly, bacteria were nonuniformly distributed throughout the gut, and bacterial aggregates showed considerably higher growth rates than did discrete individuals. The form of aggregate growth indicates intrinsically higher division rates for clustered bacteria, rather than surface-mediated agglomeration onto clusters. Thus, the spatial organization of gut bacteria both relative to the host and to each other impacts overall growth kinetics, suggesting that spatial characterizations will be an important input to predictive models of host-associated microbial community assembly. PMID:25516613

  10. Growth Curve Models for the Analysis of Phenotype Arrays for a Systems Biology Overview of Yersinia pestis

    SciTech Connect

    Fodor, I K; Holtz-Morris, A E; McCutchen-Maloney, S L

    2005-09-08

    The Phenotype MicroArray technology of Biolog, Inc. (Hayward, CA) measures the respiration of cells as a function of time in thousands of microwells simultaneously, and thus provides a high-throughput means of studying cellular phenotypes. The microwells contain compounds involved in a number of biochemical pathways, as well as chemicals that test the sensitivity of cells against antibiotics and stress. While the PM experimental workflow is completely automated, statistical methods to analyze and interpret the data are lagging behind. To take full advantage of the technology, it is essential to develop efficient analytical methods to quantify the information in the complex datasets resulting from PM experiments. We propose the use of statistical growth-curve models to rigorously quantify observed differences in PM experiments, in the context of the growth and metabolism of Yersinia pestis cells grown under different physiological conditions. The information from PM experiments complement genomic and proteomic results and can be used to identify gene function and in drug development. Successful coupling of phenomics results with genomics and proteomics will lead to an unprecedented ability to characterize bacterial function at a systems biology level.

  11. GROWTH AND METABOLISM OF INDIVIDUAL BACTERIAL CELLS UTILIZING NANOSIMS

    SciTech Connect

    NEALSON, H. K.

    2007-08-03

    This work involved the use of the Nano-SIMS Instrument at Lawrence Livermore Laboratory, in an effort to utilize this unique tool for experiments in Biology. The work consisted primarily of experiments to measure in real time, C and N fixation in cyanobacteria. The work revealed a number of the difficulties in using the nano-SIMS approach with biological material, but with collaboration from a number of individuals at USC and LLNL, major progress was made. The collaborators from LLNL were from the Chemistry Group (Dr. Peter Weber), and the Biology Group (Dr. Jennifer Pett-Ridge). In addition, there were a number of other scientists involved from LLNL. The USC group consisted of Dr. K.H. Nealson, the PI on the grant, Dr. R. Popa, a postdoctoral fellow and research associate at USC, Professor Douglas Capone, and Juliet Finze, a graduate student in biology. Two major experiments were done, both of which yielded new and exciting data. (1) We studied nitrogen and carbon fixation in Anabaena, demonstrating that fixation ofN occurred rapidly in the heterocysts, and that the fixed N was transported rapidly and completely to the vegetative cells. C fixation occurred in the vegetative cells, with labeled C remaining in these cells in support of their growth and metabolism. This work was accepted in the ISME Journal (Nature Publication), and published last month. (2) We studied nitrogen and carbon fixation in Trichodesmium, a non-heterocystous cyanobacterium that also fixes nitrogen. Interestingly, the nitrogen fixation was confined to regions within the filaments that seem to be identical to the so-called cyanophycaen granules. The fixed N is then transported to other parts of the cyanobacterium, as judged by movement of the heavy N throughout the filaments. On the basis of these very exciting results, we have applied for funding from the NSF to continue the collaboration with LLNL. The results of both studies were presented in the summer of 2007 at the Gordon Research Conference (Applied Environmental Microbiol.).

  12. Traveling wave solutions of a reaction diffusion model for bacterial growth

    NASA Astrophysics Data System (ADS)

    Mansour, M. B. A.

    2007-09-01

    In this paper, we consider a reaction-diffusion model for the bacterial growth. Mathematical analysis on the traveling wave solutions of the model is performed. This includes traveling wave analysis and numerical simulations of wave front propagation for a special case. Specifically, we show that such solutions exist only for wave speeds greater than some minimum speed giving wave with a sharp front. The minimum speed is estimated and the wave profile is calculated and compared with different numerical methods.

  13. In-depth characterization of wastewater bacterial community in response to algal growth using pyrosequencing.

    PubMed

    Lee, Jangho; Lee, Juyoun; Lee, Tae Kwon; Woo, Sung-Geun; Baek, Gyu Seok; Park, Joonhong

    2013-10-28

    Microalgae have been regarded as a natural resource for sustainable materials and fuels, as well as for removal of nutrients and micropollutants from wastewater, and their interaction with bacteria in wastewater is a critical factor to consider because of the microbial diversity and complexity in a variety of wastewater conditions. Despite their importance, very little is known about the ecological interactions between algae and bacteria in a wastewater environment. In this study, we characterized the wastewater bacterial community in response to the growth of a Selenastrum gracile UTEX 325 population in a real municipal wastewater environment. The Roche 454 GS-FLX Titanium pyrosequencing technique was used for indepth analysis of amplicons of 16S rRNA genes from different conditions in each reactor, with and without the algal population. The algal growth reduced the bacterial diversity and affected the bacterial community structure in the wastewater. The following in-depth analysis of the deep-sequenced amplicons showed that the algal growth selectively stimulated Sphingobacteria class members, especially the Sediminibacterium genus population, in the municipal wastewater environment. PMID:23867704

  14. Bacterial growth rates are influenced by cellular characteristics of individual species when immersed in electromagnetic fields.

    PubMed

    Tessaro, Lucas W E; Murugan, Nirosha J; Persinger, Michael A

    2015-03-01

    Previous studies have shown that exposure to extremely low-frequency electromagnetic fields (ELF-EMFs) have negative effects on the rate of growth of bacteria. In the present study, two Gram-positive and two Gram-negative species were exposed to six magnetic field conditions in broth cultures. Three variations of the 'Thomas' pulsed frequency-modulated pattern; a strong-static "puck" magnet upwards of 5000G in intensity; a pair of these magnets rotating opposite one another at ?30rpm; and finally a strong dynamic magnetic field generator termed the 'Resonator' with an average intensity of 250?T were used. Growth rate was discerned by optical density (OD) measurements every hour at 600nm. ELF-EMF conditions significantly affected the rates of growth of the bacterial cultures, while the two static magnetic field conditions were not statistically significant. Most interestingly, the 'Resonator' dynamic magnetic field increased the rates of growth of three species (Staphylococcus epidermidis, Staphylococcus aureus, and Escherichia coli), while slowing the growth of one (Serratia marcescens). We suggest that these effects are due to individual biophysical characteristics of the bacterial species. PMID:25721476

  15. Tropical freshwater ecosystems have lower bacterial growth efficiency than temperate ones

    PubMed Central

    Amado, André M.; Meirelles-Pereira, Frederico; Vidal, Luciana O.; Sarmento, Hugo; Suhett, Albert L.; Farjalla, Vinicius F.; Cotner, James B.; Roland, Fabio

    2013-01-01

    Current models and observations indicate that bacterial respiration should increase and growth efficiency (BGE) should decrease with increasing temperatures. However, these models and observations are mostly derived from data collected in temperate regions, and the tropics are under-represented. The aim of this work was to compare bacterial metabolism, namely bacterial production (BP) and respiration (BR), bacterial growth efficiency (BGE) and bacterial carbon demand (BCD) between tropical and temperate ecosystems via a literature review and using unpublished data. We hypothesized that (1) tropical ecosystems have higher metabolism than temperate ones and, (2) that BGE is lower in tropical relative to temperate ecosystems. We collected a total of 498 coupled BP and BR observations (Ntotal = 498; Ntemperate = 301; Ntropical = 197), calculated BGE (BP/(BP+BR)) and BCD (BP+BR) for each case and examined patterns using a model II regression analysis and compared each parameter between the two regions using non-parametric Mann–Whitney U test. We observed a significant positive linear regression between BR and BP for the whole dataset, and also for tropical and temperate data separately. We found that BP, BR and BCD were higher in the tropics, but BGE was lower compared to temperate regions. Also, BR rates per BP unit were at least two fold higher in the tropics than in temperate ecosystems. We argue that higher temperature, nutrient limitation, and light exposure all contribute to lower BGE in the tropics, mediated through effects on thermodynamics, substrate stoichiometry, nutrient availability and interactions with photochemically produced compounds. More efforts are needed in this study area in the tropics, but our work indicates that bottom-up (nutrient availability and resource stoichiometry) and top-down (grazer pressure) processes, coupled with thermodynamic constraints, might contribute to the lower BGE in the tropics relative to temperate regions. PMID:23801986

  16. Assessment of the extent of bacterial growth in reverse osmosis system for improving drinking water quality.

    PubMed

    Park, Se-keun; Hu, Jiang Yong

    2010-01-01

    This study was carried out to assess reverse osmosis (RO) treatment efficacy of drinking water in terms of biological stability in the distribution system. Two flat-sheet RO membranes were used in this study. Experiments were designed to investigate the growth of biofilm and bulk phase bacteria for the RO-treated water flowing through a model distribution system under controlled conditions without disinfectants. RO membranes improved the water quality of drinking water in terms of inorganic, organic and bacterial contents. Organic matter including the fraction available for microbes was efficiently removed by the RO membranes tested. More than 99% of bacterial cells in the tap water was retained by the RO membranes, leaving <50 cells/mL in the permeate water. In spite of the low nutrient contents and few cells in the RO permeates, monitoring of the model distribution systems receiving the RO permeates showed that remarkable biofilm accumulation and bulk cell growth occurred in the RO permeate water. In quasi-steady state, the total cell numbers in the biofilm and bulk water were of order 10(3) cells/cm(2) and 10(3) cells/mL, respectively, which were about 2 orders of magnitude lower than those grown in the tap water produced from conventional water treatment. The culturable heterotrophic bacteria constituted a significant part of the total cells (20.7-32.1% in biofilms and 21.3-46.3% in bulk waters). Biofilm maximum density and production rate were of the order 10(4) cells/cm(2) and 10(2) cells/cm(2)/day, respectively. The specific cell growth rate of bacteria in the biofilms was found to be much lower than those in the bulk waters (0.04-0.05 day(-1) versus 0.28-0.36 day(-1)). The overall specific cell growth rate which indicates the growth potential in the whole system was calculated as 0.07-0.08 day(-1), representing a doubling time of 9.1-10.1 days. These observations can be indicative of possibilities for bacterial growth in the RO permeate water with easily assimilable organic carbon concentrations below values proposed for biostability. RO permeate water does not appear to be biologically stable water. Therefore, efforts to minimize bacterial growth in the RO permeate water and in the distribution system must consider post-disinfection. PMID:20512722

  17. Impact of ZnO and Ag Nanoparticles on Bacterial Growth and Viability

    NASA Astrophysics Data System (ADS)

    Olson, M. S.; Digiovanni, K. A.

    2007-12-01

    Hundreds of consumer products containing nanomaterials are currently available in the U.S., including computers, clothing, cosmetics, sports equipment, medical devices and product packaging. Metallic nanoparticles can be embedded in or coated on product surfaces to provide antimicrobial, deodorizing, and stain- resistant properties. Although these products have the potential to provide significant benefit to the user, the impact of these products on the environment remains largely unknown. The purpose of this project is to study the effect of metallic nanoparticles released to the environment on bacterial growth and viability. Inhibition of bacterial growth was tested by adding doses of suspended ZnO and Ag nanoparticles into luria broth prior to inoculation of Escherichia coli cells. ZnO particles (approximately 40 nm) were obtained commercially and Ag particles (12-14 nm) were fabricated by reduction of silver nitrate with sodium borohydride. Toxicity assays were performed to test the viability of E. coli cells exposed to both ZnO and Ag nanoparticles using the LIVE/DEAD BacLight bacterial viability kit (Invitrogen). Live cells stain green whereas cells with compromised membranes that are considered dead or dying stain red. Cells were first grown, stained, and exposed to varying doses of metallic nanoparticles, and then bacterial viability was measured hourly using fluorescence microscopy. Results indicate that both ZnO and Ag nanoparticles inhibit the growth of E. coli in liquid media. Preliminary results from toxicity assays confirm the toxic effect of ZnO and Ag nanoparticles on active cell cultures. Calculated death rates resulting from analyses of toxicity studies will be presented.

  18. Applying Biometric Growth Curve Models to Developmental Synchronies in Cognitive Development: The Louisville Twin Study.

    PubMed

    Finkel, Deborah; Davis, Deborah Winders; Turkheimer, Eric; Dickens, William T

    2015-11-01

    Biometric latent growth curve models were applied to data from the LTS in order to replicate and extend Wilson's (Child Dev 54:298-316, 1983) findings. Assessments of cognitive development were available from 8 measurement occasions covering the period 4-15 years for 1032 individuals. Latent growth curve models were fit to percent correct for 7 subscales: information, similarities, arithmetic, vocabulary, comprehension, picture completion, and block design. Models were fit separately to WPPSI (ages 4-6 years) and WISC-R (ages 7-15). Results indicated the expected increases in heritability in younger childhood, and plateaus in heritability as children reached age 10 years. Heritability of change, per se (slope estimates), varied dramatically across domains. Significant genetic influences on slope parameters that were independent of initial levels of performance were found for only information and picture completion subscales. Thus evidence for both genetic continuity and genetic innovation in the development of cognitive abilities in childhood were found. PMID:26392369

  19. Evaluation of fatigue-crack growth rates by polynomial curve fitting. [Ti alloy plate

    NASA Technical Reports Server (NTRS)

    Davies, K. B.; Feddersen, C. E.

    1973-01-01

    Fundamental characterization of the constant-amplitude fatigue crack propagation is achieved by an analysis of the rate of change of crack length with change in number of applied loading cycles, defining the rate values such that they are consistent with the basic assumption of smoothness and continuity in the fatigue crack growth process. The technique used to satisfy the analytical conditions and minimize the effects of local material anomalies and experimental errors is that of fitting a smooth curve to the entire set of basic data by least square regression. This yields a well-behaved function relating the number of cycles to the crack length. By taking the first derivative of the function, the crack growth rate is obtained for each point. The class of curve fitting functions used in the analysis is the polynomial of degree n.

  20. Further studies on T*{sub {epsilon}} integral for curved crack growth

    SciTech Connect

    Lam, P.W.; Kobayashi, A.S.; Atluri, S.N.; Tan, P.W.

    1999-07-01

    T*{sub {epsilon}} integral values associated with stable, curved crack growth in biaxially loaded, fatigued precracked, 2024-T3 single edge notched (SEN) specimens were determined. The SEN specimens were loaded under combined Modes 1 and 2 and mimicked the flapping of a failed lap splice joint of a pressurized airplane fuselage. Most specimens were provided with a tear strap, which was either bonded, bonded and riveted, or integrally machined (machined pad-up) in the specimen. The stably growing crack curved and either penetrated or curved again upon hitting the tear strap. The displacement field, which was determined by Moire interferometry as well as with finite element analysis, was used to directly determine the T*{sub 2{epsilon}} and T*{sub 2{epsilon}} integral values. These T*{sub {epsilon}} values agreed reasonably well with those determined by an elastic-plastic finite element modeling of the experiments. T*{sub 1{epsilon}} was identical to that obtained previously for pure Mode I crack extension while the T*{sub 2{epsilon}} integral oscillated about its null value. The results of this study suggest that T*{sub 1{epsilon}} could represent the resistance for locally self-similar crack growth and that a crack will curve in the direction of vanishing T*{sub 2{epsilon}}.

  1. Association of Growth Substrates and Bacterial Genera with Benzo[a]pyrene Mineralization in Contaminated Soil

    PubMed Central

    Jones, Maiysha D.; Rodgers-Vieira, Elyse A.; Hu, Jing; Aitken, Michael D.

    2014-01-01

    Abstract Benzo[a]pyrene (BaP) is a carcinogenic polycyclic aromatic hydrocarbon (PAH) that is not known to be a bacterial growth substrate. Organisms capable of cometabolizing BaP in complex field-contaminated systems have not previously been identified. We evaluated BaP mineralization by a bacterial community from a bioreactor treating PAH-contaminated soil during coincubation with or after pre-enrichment on various PAHs as growth substrates. Pyrosequence libraries of 16S rRNA genes were used to identify bacteria that were enriched on the added growth substrate as a means of associating specific organisms with BaP mineralization. Coincubating the bioreactor-treated soil with naphthalene, phenanthrene, or pyrene inhibited BaP mineralization, whereas pre-enriching the soil on the same three PAHs enhanced BaP mineralization. Combined, these results suggest that bacteria in the bioreactor community that are capable of growing on naphthalene, phenanthrene, and/or pyrene can metabolize BaP, with coincubation competitively inhibiting BaP metabolism. Anthracene, fluoranthene, and benz[a]anthracene had little effect on BaP mineralization compared to incubations without an added growth substrate under either coincubation or pre-enrichment conditions. Substantial increases in relative abundance after pre-enrichment with phenanthrene, naphthalene, or pyrene, but not the other PAHs, suggest that members of the genera Cupriavidus and Luteimonas may have been associated with BaP mineralization. PMID:25469077

  2. Control of bacterial biofilm growth on surfaces by nanostructural mechanics and geometry

    NASA Astrophysics Data System (ADS)

    Epstein, A. K.; Hochbaum, A. I.; Kim, Philseok; Aizenberg, J.

    2011-12-01

    Surface-associated communities of bacteria, called biofilms, pervade natural and anthropogenic environments. Mature biofilms are resistant to a wide range of antimicrobial treatments and therefore pose persistent pathogenic threats. The use of surface chemistry to inhibit biofilm growth has been found to only transiently affect initial attachment. In this work, we investigate the tunable effects of physical surface properties, including high-aspect-ratio (HAR) surface nanostructure arrays recently reported to induce long-range spontaneous spatial patterning of bacteria on the surface. The functional parameters and length scale regimes that control such artificial patterning for the rod-shaped pathogenic species Pseudomonas aeruginosa are elucidated through a combinatorial approach. We further report a crossover regime of biofilm growth on a HAR nanostructured surface versus the nanostructure effective stiffness. When the 'softness' of the hair-like nanoarray is increased beyond a threshold value, biofilm growth is inhibited as compared to a flat control surface. This result is consistent with the mechanoselective adhesion of bacteria to surfaces. Therefore by combining nanoarray-induced bacterial patterning and modulating the effective stiffness of the nanoarray—thus mimicking an extremely compliant flat surface—bacterial mechanoselective adhesion can be exploited to control and inhibit biofilm growth.

  3. Growth enhancement of ETBE-degrading bacterial consortium with various carbon sources.

    PubMed

    Bekri, M; Pauss, A

    2003-01-01

    In this study, we evaluated Ethyl tert-Butyl Ether (ETBE)-degrading consortia growths in the presence of diverse carbon sources (alcohols, alkanes, ether compounds and carbohydrates). In a second step, we studied the consortium ability to maintain its ETBE degradation activity after growing on these carbon sources in presence or in absence of ETBE. The results indicate that the bacterial growth of ETBE-degrading consortia is enhanced three times more with addition of ethanol than with ETBE alone, while maintaining its ability to degrade ETBE. The bacterial yield growth rate was 0.504 d(-1) when growing on ETBE alone, 1.728 d(-1) on both ETBE and ethanol and 2.856 d(-1) on ethanol alone. Both ETBE and ethanol are completely degraded at 8.33 mg L(-1) h(-1) and 18.55 mg L(-1) h(-1) respectively for an initial OD of 0.4. The frequency of ethanol addition, as growth co-substrate, was studied to preserve the ETBE-degrading capacity of the consortium, and to observe the stability of the genetic character of the ether degradation. PMID:15296148

  4. Molecular Mechanisms of Enhanced Bacterial Growth on Hexadecane with Red Clay.

    PubMed

    Jung, Jaejoon; Jang, In-Ae; Ahn, Sungeun; Shin, Bora; Kim, Jisun; Park, Chulwoo; Jee, Seung Cheol; Sung, Jung-Suk; Park, Woojun

    2015-11-01

    Red clay was previously used to enhance bioremediation of diesel-contaminated soil. It was speculated that the enhanced degradation of diesel was due to increased bacterial growth. In this study, we selected Acinetobacter oleivorans DR1, a soil-borne degrader of diesel and alkanes, as a model bacterium and performed transcriptional analysis using RNA sequencing to investigate the cellular response during hexadecane utilization and the mechanism by which red clay promotes hexadecane degradation. We confirmed that red clay promotes the growth of A. oleivorans DR1 on hexadecane, a major component of diesel, as a sole carbon source. Addition of red clay to hexadecane-utilizing DR1 cells highly upregulated ?-oxidation, while genes related to alkane oxidation were highly expressed with and without red clay. Red clay also upregulated genes related to oxidative stress defense, such as superoxide dismutase, catalase, and glutaredoxin genes, suggesting that red clay supports the response of DR1 cells to oxidative stress generated during hexadecane utilization. Increased membrane fluidity in the presence of red clay was confirmed by fatty acid methyl ester analysis at different growth phases, suggesting that enhanced growth on hexadecane could be due to increased uptake of hexadecane coupled with upregulation of downstream metabolism and oxidative stress defense. The monitoring of the bacterial community in soil with red clay for a year revealed that red clay stabilized the community structure. PMID:25956940

  5. Characteristics of bacterial and fungal growth in plastic bottled beverages under a consuming condition model.

    PubMed

    Watanabe, Maiko; Ohnishi, Takahiro; Araki, Emiko; Kanda, Takashi; Tomita, Atsuko; Ozawa, Kazuhiro; Goto, Keiichi; Sugiyama, Kanji; Konuma, Hirotaka; Hara-Kudo, Yukiko

    2014-01-01

    Microbial contamination in unfinished beverages can occur when drinking directly from the bottle. Various microorganisms, including foodborne pathogens, are able to grow in these beverages at room temperature or in a refrigerator. In this study, we elucidated the characteristics of microorganism growth in bottled beverages under consuming condition models. Furthermore, we provide insight into the safety of partially consumed bottled beverages with respect to food hygiene. We inoculated microorganisms, including foodborne pathogens, into various plastic bottled beverages and analysed the dynamic growth of microorganisms as well as bacterial toxin production in the beverages. Eight bottled beverage types were tested in this study, namely green tea, apple juice drink, tomato juice, carbonated drink, sport drink, coffee with milk, isotonic water and mineral water, and in these beverages several microorganism types were used: nine bacteria including three toxin producers, three yeasts, and five moulds. Following inoculation, the bottles were incubated at 35°C for 48 h for bacteria, 25°C for 48 h for yeasts, and 25°C for 28 days for moulds. During the incubation period, the number of bacteria and yeasts and visible changes in mould-growth were determined over time. Our results indicated that combinations of the beverage types and microorganism species correlated with the degree of growth. Regarding factors that affect the growth and toxin-productivity of microorganisms in beverages, it is speculated that the pH, static/shaking culture, temperature, additives, or ingredients, such as carbon dioxide or organic matter (especially of plant origin), may be important for microorganism growth in beverages. Our results suggest that various types of unfinished beverages have microorganism growth and can include food borne pathogens and bacterial toxins. Therefore, our results indicate that in terms of food hygiene it is necessary to consume beverages immediately after opening the bottle. PMID:24679089

  6. Effects of Eyjafjallajökull Volcanic Ash on Innate Immune System Responses and Bacterial Growth in Vitro

    PubMed Central

    Baltrusaitis, Jonas; Powers, Linda S.; Borcherding, Jennifer A.; Caraballo, Juan C.; Mudunkotuwa, Imali; Peate, David W.; Walters, Katherine; Thompson, Jay M.; Grassian, Vicki H.; Gudmundsson, Gunnar; Comellas, Alejandro P.

    2013-01-01

    Background: On 20 March 2010, the Icelandic volcano Eyjafjallajökull erupted for the first time in 190 years. Despite many epidemiological reports showing effects of volcanic ash on the respiratory system, there are limited data evaluating cellular mechanisms involved in the response to ash. Epidemiological studies have observed an increase in respiratory infections in subjects and populations exposed to volcanic eruptions. Methods: We physicochemically characterized volcanic ash, finding various sizes of particles, as well as the presence of several transition metals, including iron. We examined the effect of Eyjafjallajökull ash on primary rat alveolar epithelial cells and human airway epithelial cells (20–100 µg/cm2), primary rat and human alveolar macrophages (5–20 µg/cm2), and Pseudomonas aeruginosa (PAO1) growth (3 µg/104 bacteria). Results: Volcanic ash had minimal effect on alveolar and airway epithelial cell integrity. In alveolar macrophages, volcanic ash disrupted pathogen-killing and inflammatory responses. In in vitro bacterial growth models, volcanic ash increased bacterial replication and decreased bacterial killing by antimicrobial peptides. Conclusions: These results provide potential biological plausibility for epidemiological data that show an association between air pollution exposure and the development of respiratory infections. These data suggest that volcanic ash exposure, while not seriously compromising lung cell function, may be able to impair innate immunity responses in exposed individuals. PMID:23478268

  7. Continuous monitoring of bacterial biofilm growth using uncoated Thickness-Shear Mode resonators

    NASA Astrophysics Data System (ADS)

    Castro, P.; Resa, P.; Durán, C.; Maestre, J. R.; Mateo, M.; Elvira, L.

    2012-12-01

    Quartz Crystal Microbalances (QCM) were used to nondestructively monitor in real time the microbial growth of the bacteria Staphylococcus epidermidis (S. epidermidis) in a liquid broth. QCM, sometimes referred to as Thickness-Shear Mode (TSM) resonators, are highly sensitive sensors not only able to measure very small mass, but also non-gravimetric contributions of viscoelastic media. These devices can be used as biosensors for bacterial detection and are employed in many applications including their use in the food industry, water and environment monitoring, pharmaceutical sciences and clinical diagnosis. In this work, three strains of S. epidermidis (which differ in the ability to produce biofilm) have been continuously monitored using an array of piezoelectric TSM resonators, at 37 °C in a selective culturing media. Microbial growth was followed by measuring the changes in the crystal resonant frequency and bandwidth at several harmonics. It was shown that microbial growth can be monitored in real time using multichannel and multiparametric QCM sensors.

  8. Bacterial Respiration and Growth Rates Affect the Feeding Preferences, Brood Size and Lifespan of Caenorhabditis elegans

    PubMed Central

    Yu, Li; Yan, Xiaomei; Ye, Chenglong; Zhao, Haiyan; Chen, Xiaoyun; Hu, Feng; Li, Huixin

    2015-01-01

    Bacteria serve as live food and nutrients for bacterial-feeding nematodes (BFNs) in soils, and influence nematodes behavior and physiology through their metabolism. Five bacterial taxa (Bacillus amyloliquefaciens JX1, Variovorax sp. JX14, Bacillus megaterium JX15, Pseudomonas fluorescens Y1 and Escherichia coli OP50) and the typical BFN Caenorhabditis elegans were selected to study the effects of bacterial respiration and growth rates on the feeding preferences, brood size and lifespan of nematodes. P. fluorescens Y1 and E. coli OP50 were found to be more active, with high respiration and rapid growth, whereas B. amyloliquefaciens JX1 and B. megaterium JX15 were inactive. The nematode C. elegans preferred active P. fluorescens Y1 and E. coli OP50 obviously. Furthermore, worms that fed on these two active bacteria produced more offspring but had shorter lifespan, while inactive and less preferred bacteria had increased nematodes lifespan and decreased the brood size. Based on these results, we propose that the bacterial activity may influence the behavior and life traits of C. elegans in the following ways: (1) active bacteria reproduce rapidly and emit high levels of CO2 attracting C. elegans; (2) these active bacteria use more resources in the nematodes’ gut to sustain their survival and reproduction, thereby reducing the worm's lifespan; (3) inactive bacteria may provide less food for worms than active bacteria, thus increasing nematodes lifespan but decreasing their fertility. Nematodes generally require a balance between their preferred foods and beneficial foods, only preferred food may not be beneficial for nematodes. PMID:26222828

  9. Scaling laws governing stochastic growth and division of single bacterial cells

    E-print Network

    Iyer-Biswas, Srividya; Henry, Jonathan T; Lo, Klevin; Burov, Stanislav; Lin, Yihan; Crooks, Gavin E; Crosson, Sean; Dinner, Aaron R; Scherer, Norbert F

    2014-01-01

    Uncovering the quantitative laws that govern the growth and division of single cells remains a major challenge. Using a unique combination of technologies that yields unprecedented statistical precision, we find that the sizes of individual Caulobacter crescentus cells increase exponentially in time. We also establish that they divide upon reaching a critical multiple ($\\approx$1.8) of their initial sizes, rather than an absolute size. We show that when the temperature is varied, the growth and division timescales scale proportionally with each other over the physiological temperature range. Strikingly, the cell-size and division-time distributions can both be rescaled by their mean values such that the condition-specific distributions collapse to universal curves. We account for these observations with a minimal stochastic model that is based on an autocatalytic cycle. It predicts the scalings, as well as specific functional forms for the universal curves. Our experimental and theoretical analysis reveals a ...

  10. Multi-Trait GWAS and New Candidate Genes Annotation for Growth Curve Parameters in Brahman Cattle

    PubMed Central

    Crispim, Aline Camporez; Kelly, Matthew John; Guimarăes, Simone Eliza Facioni; e Silva, Fabyano Fonseca; Fortes, Marina Rufino Salinas; Wenceslau, Raphael Rocha; Moore, Stephen

    2015-01-01

    Understanding the genetic architecture of beef cattle growth cannot be limited simply to the genome-wide association study (GWAS) for body weight at any specific ages, but should be extended to a more general purpose by considering the whole growth trajectory over time using a growth curve approach. For such an approach, the parameters that are used to describe growth curves were treated as phenotypes under a GWAS model. Data from 1,255 Brahman cattle that were weighed at birth, 6, 12, 15, 18, and 24 months of age were analyzed. Parameter estimates, such as mature weight (A) and maturity rate (K) from nonlinear models are utilized as substitutes for the original body weights for the GWAS analysis. We chose the best nonlinear model to describe the weight-age data, and the estimated parameters were used as phenotypes in a multi-trait GWAS. Our aims were to identify and characterize associated SNP markers to indicate SNP-derived candidate genes and annotate their function as related to growth processes in beef cattle. The Brody model presented the best goodness of fit, and the heritability values for the parameter estimates for mature weight (A) and maturity rate (K) were 0.23 and 0.32, respectively, proving that these traits can be a feasible alternative when the objective is to change the shape of growth curves within genetic improvement programs. The genetic correlation between A and K was -0.84, indicating that animals with lower mature body weights reached that weight at younger ages. One hundred and sixty seven (167) and two hundred and sixty two (262) significant SNPs were associated with A and K, respectively. The annotated genes closest to the most significant SNPs for A had direct biological functions related to muscle development (RAB28), myogenic induction (BTG1), fetal growth (IL2), and body weights (APEX2); K genes were functionally associated with body weight, body height, average daily gain (TMEM18), and skeletal muscle development (SMN1). Candidate genes emerging from this GWAS may inform the search for causative mutations that could underpin genomic breeding for improved growth rates. PMID:26445451

  11. Simulations of bacterial growth in the shallow subsurface on planets with tenuous atmospheres

    NASA Astrophysics Data System (ADS)

    Pavlov, A.; Bochnowski, A.; Kronyak, R.

    2012-12-01

    Atmospheric pressure is an important unknown parameter, which can affect potential habitability of an earth-like planet. It has been suggested that low pressure by itself can inhibit growth of terrestrial microbes on the surface of Mars however the exact mechanisms for such inhibition was never explained. We performed laboratory simulations of the survival and replication of E. Coli in the Martian simulation chamber. E. Coli was introduced into JSC-Mars-1A soil samples saturated with ~30% of H2O by weight with necessary amounts of nutrients and maintained at soil temperatures of 16-20 C - to ensure that neither water content, nutrients nor temperatures would impede bacterial growth. Several experimental runs were performed with atmospheric pressures as low as 17 mbars. We discovered that E.Coli (a non-extremophilic terrestrial microorganism) could grow within 1 cm from the planetary surface even if the atmospheric pressures are Martian-like. We conclude that low atmospheric pressure by itself is not inhibiting for bacterial growth on earth-like planets with tenuous atmospheres.

  12. Peptide nucleic acids (PNAs) antisense effect to bacterial growth and their application potentiality in biotechnology.

    PubMed

    Hatamoto, Masashi; Ohashi, Akiyoshi; Imachi, Hiroyuki

    2010-03-01

    Peptide nucleic acids (PNAs) are nucleic acid analogs having attractive properties such as quiet stability against nucleases and proteases, and they form strong complexes with complementary strands of DNA or RNA. Because of this attractive nature, PNA is often used in antisense technology to inhibit gene expression and microbial cell growth with high specificity. Many bacterial antisense or antiribosomal studies using PNA oligomers have been reported so far, and parameters to design effective antisense PNAs and to improve PNA cell entry for efficient inhibition of bacterial growth have been presented. However, there are still several obstacles such as low cellular uptake of PNA while applying antisense PNAs to a complex microbial community. On overcoming these problems, the PNA antisense technique might become a very attractive tool not only for controlling the microbial growth but also for further elucidating microbial ecology in complex microbial consortia. Here, we summarize and present recent studies on the development of antimicrobial PNAs targeting mRNAs and rRNAs. In addition, the application potentiality of antisense techniques in nonclinical biotechnology fields is discussed. PMID:20135118

  13. Carboxyl-modified single-walled carbon nanotubes negatively affect bacterial growth and denitrification activity

    NASA Astrophysics Data System (ADS)

    Zheng, Xiong; Su, Yinglong; Chen, Yinguang; Wan, Rui; Li, Mu; Wei, Yuanyuan; Huang, Haining

    2014-07-01

    Single-walled carbon nanotubes (SWNTs) have been used in a wide range of fields, and the surface modification via carboxyl functionalization can further improve their physicochemical properties. However, whether carboxyl-modified SWNT poses potential risks to microbial denitrification after its release into the environment remains unknown. Here we present the possible effects of carboxyl-modified SWNT on the growth and denitrification activity of Paracoccus denitrificans (a model denitrifying bacterium). It was found that carboxyl-modified SWNT were present both outside and inside the bacteria, and thus induced bacterial growth inhibition at the concentrations of 10 and 50 mg/L. After 24 h of exposure, the final nitrate concentration in the presence of 50 mg/L carboxyl-modified SWNT was 21-fold higher than that in its absence, indicating that nitrate reduction was substantially suppressed by carboxyl-modified SWNT. The transcriptional profiling revealed that carboxyl-modified SWNT led to the transcriptional activation of the genes encoding ribonucleotide reductase in response to DNA damage and also decreased the gene expressions involved in glucose metabolism and energy production, which was an important reason for bacterial growth inhibition. Moreover, carboxyl-modified SWNT caused the significant down-regulation and lower activity of nitrate reductase, which was consistent with the decreased efficiency of nitrate reduction.

  14. Zinc-Triggered Hydrogelation of Self-assembled Small Molecules to Inhibit Bacterial Growth

    PubMed Central

    Xu, Chao; Cai, Yanbin; Ren, Chunhua; Gao, Jie; Hao, Jihui

    2015-01-01

    There is a significant need to develop antibacterial materials that could be applied locally and directly to the places surrounded by large amount of bacteria, in order to address the problems of bacterial antibiotic-resistance or irreversible biofilm formation. Hydrogels are thought to be suitable candidates due to their versatile applications in biomedical field. Among them, small molecular hydrogels have been paid lots of attention because they are easy to design and fabricate and often sensitive to external stimuli. Meanwhile, the antibacterial activity of metal ions are attracting more and more attention because resistance to them are not yet found within bacteria. We therefore designed the zinc ion binding peptide of Nap-GFFYGGGHGRGD, who can self-assemble into hydrogels after binds Zn2+ and inhibit the growth of bacteria due to the excellent antibacterial activity of Zn2+. Upon the addition of zinc ions, solutions containing Nap-GFFYGGGHGRGD transformed into supramolecular hydrogels composed of network of long nano-fibers. Bacterial tests revealed an antibacterial effect of the zinc triggered hydrogels on E. coli. The studied small molecular hydrogel shows great potential in locally addressing bacterial infections. PMID:25583430

  15. Gyramides Prevent Bacterial Growth by Inhibiting DNA Gyrase and Altering Chromosome Topology

    PubMed Central

    2015-01-01

    Antibiotics targeting DNA gyrase have been a clinical success story for the past half-century, and the emergence of bacterial resistance has fueled the search for new gyrase inhibitors. In this paper we demonstrate that a new class of gyrase inhibitors, the gyramides, are bacteriostatic agents that competitively inhibit the ATPase activity of Escherichia coli gyrase and produce supercoiled DNA in vivo. E. coli cells treated with gyramide A have abnormally localized, condensed chromosomes that blocks DNA replication and interrupts chromosome segregation. The resulting alterations in DNA topology inhibit cell division through a mechanism that involves the SOS pathway. Importantly, gyramide A is a specific inhibitor of gyrase and does not inhibit the closely related E. coli enzyme topoisomerase IV. E. coli mutants with reduced susceptibility to gyramide A do not display cross-resistance to ciprofloxacin and novobiocin. The results demonstrate that the gyramides prevent bacterial growth by a mechanism in which the topological state of chromosomes is altered and halts DNA replication and segregation. The specificity and activity of the gyramides for inhibiting gyrase makes these compounds important chemical tools for studying the mechanism of gyrase and the connection between DNA topology and bacterial cell division. PMID:24712739

  16. Zinc-Triggered Hydrogelation of Self-assembled Small Molecules to Inhibit Bacterial Growth

    NASA Astrophysics Data System (ADS)

    Xu, Chao; Cai, Yanbin; Ren, Chunhua; Gao, Jie; Hao, Jihui

    2015-01-01

    There is a significant need to develop antibacterial materials that could be applied locally and directly to the places surrounded by large amount of bacteria, in order to address the problems of bacterial antibiotic-resistance or irreversible biofilm formation. Hydrogels are thought to be suitable candidates due to their versatile applications in biomedical field. Among them, small molecular hydrogels have been paid lots of attention because they are easy to design and fabricate and often sensitive to external stimuli. Meanwhile, the antibacterial activity of metal ions are attracting more and more attention because resistance to them are not yet found within bacteria. We therefore designed the zinc ion binding peptide of Nap-GFFYGGGHGRGD, who can self-assemble into hydrogels after binds Zn2+ and inhibit the growth of bacteria due to the excellent antibacterial activity of Zn2+. Upon the addition of zinc ions, solutions containing Nap-GFFYGGGHGRGD transformed into supramolecular hydrogels composed of network of long nano-fibers. Bacterial tests revealed an antibacterial effect of the zinc triggered hydrogels on E. coli. The studied small molecular hydrogel shows great potential in locally addressing bacterial infections.

  17. Growth and location of bacterial colonies within dairy foods using microscopy techniques: a review

    PubMed Central

    Hickey, Cian D.; Sheehan, Jeremiah J.; Wilkinson, Martin G.; Auty, Mark A. E.

    2015-01-01

    The growth, location, and distribution of bacterial colonies in dairy products are important factors for the ripening and flavor development of cheeses, yogurts, and soured creams. Starter, non-starter, spoilage, and pathogenic bacteria all become entrapped in the developing casein matrix of dairy foods. In order to visualize these bacterial colonies and the environments surrounding them, microscopy techniques are used. The use of various microscopy methods allow for the rapid detection, enumeration, and distribution of starter, non-starter and pathogenic bacteria in dairy foods. Confocal laser scanning microscopy is extensively utilized to identify bacteria location via the use of fluorescent dyes. Further study is needed in relation to the development of micro- gradients and localized ripening parameters in dairy products due to the location of bacteria at the protein–fat interface. Development in the area of bacterial discrimination using microscopy techniques and fluorescent dyes/tags is needed as the benefits of rapidly identifying spoilage/pathogenic bacteria early in product manufacture would be of huge benefit in relation to both safety and financial concerns. PMID:25741328

  18. Functional properties of peanut fractions on the growth of probiotics and foodborne bacterial pathogens.

    PubMed

    Peng, Mengfei; Bitsko, Elizabeth; Biswas, Debabrata

    2015-03-01

    Various compounds found in peanut (Arachis hypogaea) have been shown to provide multiple benefits to human health and may influence the growth of a broad range of gut bacteria. In this study, we investigated the effects of peanut white kernel and peanut skin on 3 strains of Lactobacillus and 3 major foodborne enteric bacterial pathogens. Significant (P < 0.05) growth stimulation of Lactobacillus casei and Lactobacillus rhamnosus was observed in the presence of 0.5% peanut flour (PF) made from peanut white kernel, whereas 0.5% peanut skin extract (PSE) exerted the inhibitory effect on the growth of these beneficial microbes. We also found that within 72 h, PF inhibited growth of enterohemorrhagic Escherichia coli O157:H7 (EHEC), while PSE significantly (P < 0.05) inhibited Listeria monocytogenes but promoted the growth of both EHEC and Salmonella Typhimurium. The cell adhesion and invasion abilities of 3 pathogens to the host cells were also significantly (P < 0.05) reduced by 0.5% PF and 0.5% PSE. These results suggest that peanut white kernel might assist in improving human gut flora as well as reducing EHEC, whereas the beneficial effects of peanut skins require further research and investigation. PMID:25627431

  19. Alcohol, intestinal bacterial growth, intestinal permeability to endotoxin, and medical consequences: summary of a symposium.

    PubMed

    Purohit, Vishnudutt; Bode, J Christian; Bode, Christiane; Brenner, David A; Choudhry, Mashkoor A; Hamilton, Frank; Kang, Y James; Keshavarzian, Ali; Rao, Radhakrishna; Sartor, R Balfour; Swanson, Christine; Turner, Jerrold R

    2008-08-01

    This report is a summary of the symposium on Alcohol, Intestinal Bacterial Growth, Intestinal Permeability to Endotoxin, and Medical Consequences, organized by National Institute on Alcohol Abuse and Alcoholism, Office of Dietary Supplements, and National Institute of Diabetes and Digestive and Kidney Diseases of National Institutes of Health in Rockville, Maryland, October 11, 2006. Alcohol exposure can promote the growth of Gram-negative bacteria in the intestine, which may result in accumulation of endotoxin. In addition, alcohol metabolism by Gram-negative bacteria and intestinal epithelial cells can result in accumulation of acetaldehyde, which in turn can increase intestinal permeability to endotoxin by increasing tyrosine phosphorylation of tight junction and adherens junction proteins. Alcohol-induced generation of nitric oxide may also contribute to increased permeability to endotoxin by reacting with tubulin, which may cause damage to microtubule cytoskeleton and subsequent disruption of intestinal barrier function. Increased intestinal permeability can lead to increased transfer of endotoxin from the intestine to the liver and general circulation where endotoxin may trigger inflammatory changes in the liver and other organs. Alcohol may also increase intestinal permeability to peptidoglycan, which can initiate inflammatory response in liver and other organs. In addition, acute alcohol exposure may potentiate the effect of burn injury on intestinal bacterial growth and permeability. Decreasing the number of Gram-negative bacteria in the intestine can result in decreased production of endotoxin as well as acetaldehyde which is expected to decrease intestinal permeability to endotoxin. In addition, intestinal permeability may be preserved by administering epidermal growth factor, l-glutamine, oats supplementation, or zinc, thereby preventing the transfer of endotoxin to the general circulation. Thus reducing the number of intestinal Gram-negative bacteria and preserving intestinal permeability to endotoxin may attenuate alcoholic liver and other organ injuries. PMID:18504085

  20. Effect of humic substance photodegradation on bacterial growth and respiration in lake water

    USGS Publications Warehouse

    Anesio, A.M.; Graneli, W.; Aiken, G.R.; Kieber, D.J.; Mopper, K.

    2005-01-01

    This study addresses how humic substance (HS) chemical composition and photoreactivity affect bacterial growth, respiration, and growth efficiency (BGE) in lake water. Aqueous solutions of HSs from diverse aquatic environments representing different dissolved organic matter sources (autochthonous and allochthonous) were exposed to artificial solar UV radiation. These solutions were added to lake water passed through a 0.7-??m-pore-size filter (containing grazer-free lake bacteria) followed by dark incubation for 5, 43, and 65 h. For the 5-h incubation, several irradiated HSs inhibited bacterial carbon production (BCP) and this inhibition was highly correlated with H 2O2 photoproduction. The H2O2 decayed in the dark, and after 43 h, nearly all irradiated HSs enhanced BCP (average 39% increase relative to nonirradiated controls, standard error = 7.5%, n = 16). UV exposure of HSs also increased bacterial respiration (by ???18%, standard error = 5%, n = 4), but less than BCP, resulting in an average increase in BGE of 32% (standard error = 10%, n = 4). Photoenhancement of BCP did not correlate to HS bulk properties (i.e., elemental and chemical composition). However, when the photoenhancement of BCP was normalized to absorbance, several trends with HS origin and extraction method emerged. Absorbance-normalized hydrophilic acid and humic acid samples showed greater enhancement of BCP than hydrophobic acid and fulvic acid samples. Furthermore, absorbance-normalized autochthonous samples showed ???10-fold greater enhancement of BCP than allochthonous-dominated samples, indicating that the former are more efficient photoproducers of biological substrates. Copyright ?? 2005, American Society for Microbiology. All Rights Reserved.

  1. Growth performance and carcase quality in broiler chickens fed on bacterial protein grown on natural gas.

    PubMed

    Řverland, M; Schřyen, H F; Skrede, A

    2010-10-01

    1. The effects of increasing concentrations (0, 40, 80 or 120 g/kg) of bacterial protein meal (BPM) and bacterial protein autolysate (BPA) grown on natural gas on growth performance and carcase quality in broiler chickens were examined. 2. Adding BPM to diets reduced feed intake and improved gain: feed from 0 to 21 d and overall to 35 d, but did not significantly affect weight gain compared to the soybean meal based control diet. 3. Increasing concentrations of BPA significantly reduced growth rate, feed intake, gain: feed, carcase weight and dressing percentage, but significantly increased carcase dry matter, fat and energy content. 4. Adding BPM to diets had no effect on viscosity of diets and jejunal digesta, and minor effects on litter quality, whereas BPA increased the viscosity of diets and jejunal digesta, improved litter quality at 21 d, but decreased litter quality at 32 d. 5. To conclude, broiler chickens performed better on a BPM product with intact proteins than on an autolysate with ruptured cell walls and a high content of free amino acids and low molecular-weight peptides. PMID:21058073

  2. Kinetics of substrate utilization and bacterial growth of crude oil degraded by Pseudomonas aeruginosa.

    PubMed

    Talaiekhozani, Amirreza; Jafarzadeh, Nematollah; Fulazzaky, Mohamad Ali; Talaie, Mohammad Reza; Beheshti, Masoud

    2015-01-01

    Pollution associated with crude oil (CO) extraction degrades the quality of waters, threatens drinking water sources and may ham air quality. The systems biology approach aims at learning the kinetics of substrate utilization and bacterial growth for a biological process for which very limited knowledge is available. This study uses the Pseudomonas aeruginosa to degrade CO and determines the kinetic parameters of substrate utilization and bacterial growth modeled from a completely mixed batch reactor. The ability of Pseudomonas aeruginosa can remove 91 % of the total petroleum hydrocarbons and 83 % of the aromatic compounds from oily environment. The value k of 9.31 g of substrate g(-1) of microorganism d(-1) could be far higher than the value k obtained for petrochemical wastewater treatment and that for municipal wastewater treatment. The production of new cells of using CO as the sole carbon and energy source can exceed 2(3) of the existing cells per day. The kinetic parameters are verified to contribute to improving the biological removal of CO from oily environment. PMID:26413306

  3. Bursts of sectors in expanding bacterial colonies as a possible model for tumor growth and metastases

    NASA Astrophysics Data System (ADS)

    Ron, Ilan G.; Golding, Ido; Lifsitz-Mercer, Beatrice; Ben-Jacob, Eshel

    2003-03-01

    All kinds of hypotheses have been proposed to explain the mechanism of tumorigenesis. Up until now, we have not had any generally acknowledged model that helps us understand the process. However, it is well accepted that cancer development and progression is dictated by a series of alterations in genes such as oncogenes, tumor suppressor genes, DNA replication genes and others. Segregation of cell populations is a key question in evolution theory. One important aspect when observing cell proliferation in general or bacterial colonies in particular is the relation between spatial organization and the composition of the populations. Here we study a specific example-sectors in expanding bacterial colonies. Such sectors are spatially segregated sub-populations of mutants. Bursts of sectors are observed during compact growth and during branching growth. For theoretical studies of these bursts we employ two mathematical models. Using these models we investigate the amount of segregation achieved by a neutral mutation, as well as by mutations having some advantage over the wild type.

  4. Determining Cloud Parameters with the Curve-Of-Growth: Application Eta Car

    NASA Technical Reports Server (NTRS)

    Vieira, G. L.; Gull, T. R.; Bruhweiler, F.; Nielsen, K. E.; Verner, E. M.

    2004-01-01

    We have investigated the NUV part of the Eta Car spectrum, using data with high spatial and high spectral resolving power obtained with the HST/STIS under the Treasury Program. The NUV spectrum of Eta Car Shows a great contribution of absorption features from neutral and singly ionized elements along the line-of-sight. A large number of velocity systems have been observed. The two most prominent, with Doppler shifts corresponding to -146 and -513 km/s respectively, are shown to be useful for investigations of the gaseous environments responsible for the absorption. The -146 and the -513 km/s velocity systems display different characteristics regarding the ionization state and spectral line width, which suggest that they originate at different distances from the central object. We have investigated the absorption structures before the spectroscopic minimum, occurring during the summer of 2003, with a standard curve-of-growth. We have independently derived the column density and the b-value for the Fe II (-146 km/s) and Ti II (-513 km/s) velocity systems. The excitation temperature has been determined for the -146 km/s velocity system using the photo-ionization code \\textsc(cloudy). The -146 km/s velocity structure shows noticeable variation over the spectroscopic minimum. The sudden appearance and disappearance of Ti II and V II are astonishing. We have made an attempt to analyze these variations with the curve-of-growth method and will present preliminary results.

  5. Effects of assimilable organic carbon and free chlorine on bacterial growth in drinking water.

    PubMed

    Liu, Xiaolu; Wang, Jingqi; Liu, Tingting; Kong, Weiwen; He, Xiaoqing; Jin, Yi; Zhang, Bolin

    2015-01-01

    Assimilable organic carbon (AOC) is one of the most important factors affecting the re-growth of microorganisms in drinking water. High AOC concentrations result in biological instability, but disinfection kills microbes to ensure the safety of drinking water. Free chlorine is an important oxidizing agent used during the disinfection process. Therefore, we explored the combined effects of AOC and free chlorine on bacterial growth in drinking water using flow cytometry (FCM). The initial AOC concentration was 168 ?g.L(-1) in all water samples. Without free chlorine, the concentrations of intact bacteria increased but the level of AOC decreased. The addition of sodium hypochlorite caused an increase and fluctuation in AOC due to the oxidation of organic carbon. The concentrations of intact bacteria decreased from 1.1 × 10(5) cells.mL(-1) to 2.6 × 10(4) cells.mL(-1) at an initial free chlorine dose of 0.6 mg.L(-1) to 4.8 × 10(4) cells.mL(-1) at an initial free chlorine dose of 0.3 mg.L(-1) due to free chlorine originating from sodium hypochlorite. Additionally, free chlorine might be more obviously affected AOC concentrations than microbial growth did. These results suggested that AOC and free chlorine might have combined effects on microbial growth. In this study, our results showed concentrations determined by FCM were higher than those by HPC, which indicated that some E. coli detected by FCM might not be detected using HPC in drinking water. The level of free chlorine might restrain the consumption of AOC by inhibiting the growth of E. coli; on the other hand, chlorination might increase the level of AOC, thereby increase the potential for microbial growth in the drinking water network. PMID:26034988

  6. Effects of Assimilable Organic Carbon and Free Chlorine on Bacterial Growth in Drinking Water

    PubMed Central

    Liu, Tingting; Kong, Weiwen; He, Xiaoqing; Jin, Yi; Zhang, Bolin

    2015-01-01

    Assimilable organic carbon (AOC) is one of the most important factors affecting the re-growth of microorganisms in drinking water. High AOC concentrations result in biological instability, but disinfection kills microbes to ensure the safety of drinking water. Free chlorine is an important oxidizing agent used during the disinfection process. Therefore, we explored the combined effects of AOC and free chlorine on bacterial growth in drinking water using flow cytometry (FCM). The initial AOC concentration was 168 ?g.L-1 in all water samples. Without free chlorine, the concentrations of intact bacteria increased but the level of AOC decreased. The addition of sodium hypochlorite caused an increase and fluctuation in AOC due to the oxidation of organic carbon. The concentrations of intact bacteria decreased from 1.1×105 cells.mL-1 to 2.6×104 cells.mL-1 at an initial free chlorine dose of 0.6 mg.L-1 to 4.8×104 cells.mL-1 at an initial free chlorine dose of 0.3 mg.L-1 due to free chlorine originating from sodium hypochlorite. Additionally, free chlorine might be more obviously affected AOC concentrations than microbial growth did. These results suggested that AOC and free chlorine might have combined effects on microbial growth. In this study, our results showed concentrations determined by FCM were higher than those by HPC, which indicated that some E. coli detected by FCM might not be detected using HPC in drinking water. The level of free chlorine might restrain the consumption of AOC by inhibiting the growth of E. coli; on the other hand, chlorination might increase the level of AOC, thereby increase the potential for microbial growth in the drinking water network. PMID:26034988

  7. Mining the phytomicrobiome to understand how bacterial coinoculations enhance plant growth

    PubMed Central

    Maymon, Maskit; Martínez-Hidalgo, Pilar; Tran, Stephen S.; Ice, Tyler; Craemer, Karena; Anbarchian, Teni; Sung, Tiffany; Hwang, Lin H.; Chou, Minxia; Fujishige, Nancy A.; Villella, William; Ventosa, Jérôme; Sikorski, Johannes; Sanders, Erin R.; Faull, Kym F.; Hirsch, Ann M.

    2015-01-01

    In previous work, we showed that coinoculating Rhizobium leguminosarum bv. viciae 128C53 and Bacillus simplex 30N-5 onto Pisum sativum L. roots resulted in better nodulation and increased plant growth. We now expand this research to include another alpha-rhizobial species as well as a beta-rhizobium, Burkholderia tuberum STM678. We first determined whether the rhizobia were compatible with B. simplex 30N-5 by cross-streaking experiments, and then Medicago truncatula and Melilotus alba were coinoculated with B. simplex 30N-5 and Sinorhizobium (Ensifer) meliloti to determine the effects on plant growth. Similarly, B. simplex 30N-5 and Bu. tuberum STM678 were coinoculated onto Macroptilium atropurpureum. The exact mechanisms whereby coinoculation results in increased plant growth are incompletely understood, but the synthesis of phytohormones and siderophores, the improved solubilization of inorganic nutrients, and the production of antimicrobial compounds are likely possibilities. Because B. simplex 30N-5 is not widely recognized as a Plant Growth Promoting Bacterial (PGPB) species, after sequencing its genome, we searched for genes proposed to promote plant growth, and then compared these sequences with those from several well studied PGPB species. In addition to genes involved in phytohormone synthesis, we detected genes important for the production of volatiles, polyamines, and antimicrobial peptides as well as genes for such plant growth-promoting traits as phosphate solubilization and siderophore production. Experimental evidence is presented to show that some of these traits, such as polyamine synthesis, are functional in B. simplex 30N-5, whereas others, e.g., auxin production, are not. PMID:26442090

  8. Escaping the snare of chronological growth and launching a free curve alternative: General deviance as latent growth model

    PubMed Central

    WOOD, PHILLIP KARL; JACKSON, KRISTINA M.

    2014-01-01

    Researchers studying longitudinal relationships among multiple problem behaviors sometimes characterize autoregressive relationships across constructs as indicating “protective” or “launch” factors or as “developmental snares.” These terms are used to indicate that initial or intermediary states of one problem behavior subsequently inhibit or promote some other problem behavior. Such models are contrasted with models of “general deviance” over time in which all problem behaviors are viewed as indicators of a common linear trajectory. When fit of the “general deviance” model is poor and fit of one or more autoregressive models is good, this is taken as support for the inhibitory or enhancing effect of one construct on another. In this paper, we argue that researchers consider competing models of growth before comparing deviance and time-bound models. Specifically, we propose use of the free curve slope intercept (FCSI) growth model (Meredith & Tisak, 1990) as a general model to typify change in a construct over time. The FCSI model includes, as nested special cases, several statistical models often used for prospective data, such as linear slope intercept models, repeated measures multivariate analysis of variance, various one-factor models, and hierarchical linear models. When considering models involving multiple constructs, we argue the construct of “general deviance” can be expressed as a single-trait multimethod model, permitting a characterization of the deviance construct over time without requiring restrictive assumptions about the form of growth over time. As an example, prospective assessments of problem behaviors from the Dunedin Multidisciplinary Health and Development Study (Silva & Stanton, 1996) are considered and contrasted with earlier analyses of Hussong, Curran, Moffitt, and Caspi (2008), which supported launch and snare hypotheses. For antisocial behavior, the FCSI model fit better than other models, including the linear chronometric growth curve model used by Hussong et al. For models including multiple constructs, a general deviance model involving a single trait and multimethod factors (or a corresponding hierarchical factor model) fit the data better than either the “snares” alternatives or the general deviance model previously considered by Hussong et al. Taken together, the analyses support the view that linkages and turning points cannot be contrasted with general deviance models absent additional experimental intervention or control. PMID:23880389

  9. Moral Disengagement, Anticipated Social Outcomes and Adolescents' Alcohol Use: Parallel Latent Growth Curve Analyses.

    PubMed

    Quinn, Catherine A; Bussey, Kay

    2015-10-01

    Moral disengagement is a social cognitive process that has been extensively applied to transgressive behaviors, including delinquency, aggression and illicit substance use. However, there has been limited research on moral disengagement as it relates to underage drinking. The current study aimed to examine moral disengagement contextualized to underage drinking and its longitudinal relationship to alcohol use. Moreover, the social context in which adolescent alcohol use typically occurs was also considered, with a specific emphasis on the social sanctions, or social outcomes, that adolescents anticipate receiving from friends for their alcohol use. Adolescents were assessed across three time-points, 8 months apart. The longitudinal sample consisted of 382 (46% female) underage drinkers (12-16 years at T1). Parallel latent growth curve analysis was used to examine the bi-directional influence of initial moral disengagement, anticipated social outcomes, and alcohol use on subsequent growth in moral disengagement, anticipated social outcomes and alcohol use. The interrelation of initial scores and growth curves was also assessed. The findings revealed that, in the binary parallel analyses, initial moral disengagement and anticipated social outcomes both significantly predicted changes in alcohol use across time. Moreover, initial anticipated social outcomes predicted changes in moral disengagement. These findings were not consistently found when all three process analyses were included in a single model. The results emphasize the impact of social context on moral disengagement and suggest that by targeting adolescents' propensity to justify or excuse their drinking, as well as the social outcomes adolescents anticipate for being drunk, it may be possible to reduce their underage drinking. PMID:26318080

  10. Response of leaf endophytic bacterial community to elevated CO2 at different growth stages of rice plant

    PubMed Central

    Ren, Gaidi; Zhang, Huayong; Lin, Xiangui; Zhu, Jianguo; Jia, Zhongjun

    2015-01-01

    Plant endophytic bacteria play an important role in plant growth and health. In the context of climate change, the response of plant endophytic bacterial communities to elevated CO2 at different rice growing stages is poorly understood. Using 454 pyrosequencing, we investigated the response of leaf endophytic bacterial communities to elevated CO2 (eCO2) at the tillering, filling, and maturity stages of the rice plant under different nitrogen fertilization conditions [low nitrogen fertilization (LN) and high nitrogen fertilization (HN)]. The results revealed that the leaf endophytic bacterial community was dominated by Gammaproteobacteria-affiliated families, such as Enterobacteriaceae and Xanthomonadaceae, which represent 28.7–86.8% and 2.14–42.6% of the total sequence reads, respectively, at all tested growth stages. The difference in the bacterial community structure between the different growth stages was greater than the difference resulting from the CO2 and nitrogen fertilization treatments. The eCO2 effect on the bacterial communities differed greatly under different nitrogen application conditions and at different growth stages. Specifically, eCO2 revealed a significant effect on the community structure under both LN and HN levels at the tillering stage; however, the significant effect of eCO2 was only observed under HN, rather than under the LN condition at the filling stage; no significant effect of eCO2 on the community structure at both the LN and HN fertilization levels was found at the maturity stage. These results provide useful insights into the response of leaf endophytic bacterial communities to elevated CO2 across rice growth stages. PMID:26379635

  11. Response of leaf endophytic bacterial community to elevated CO2 at different growth stages of rice plant.

    PubMed

    Ren, Gaidi; Zhang, Huayong; Lin, Xiangui; Zhu, Jianguo; Jia, Zhongjun

    2015-01-01

    Plant endophytic bacteria play an important role in plant growth and health. In the context of climate change, the response of plant endophytic bacterial communities to elevated CO2 at different rice growing stages is poorly understood. Using 454 pyrosequencing, we investigated the response of leaf endophytic bacterial communities to elevated CO2 (eCO2) at the tillering, filling, and maturity stages of the rice plant under different nitrogen fertilization conditions [low nitrogen fertilization (LN) and high nitrogen fertilization (HN)]. The results revealed that the leaf endophytic bacterial community was dominated by Gammaproteobacteria-affiliated families, such as Enterobacteriaceae and Xanthomonadaceae, which represent 28.7-86.8% and 2.14-42.6% of the total sequence reads, respectively, at all tested growth stages. The difference in the bacterial community structure between the different growth stages was greater than the difference resulting from the CO2 and nitrogen fertilization treatments. The eCO2 effect on the bacterial communities differed greatly under different nitrogen application conditions and at different growth stages. Specifically, eCO2 revealed a significant effect on the community structure under both LN and HN levels at the tillering stage; however, the significant effect of eCO2 was only observed under HN, rather than under the LN condition at the filling stage; no significant effect of eCO2 on the community structure at both the LN and HN fertilization levels was found at the maturity stage. These results provide useful insights into the response of leaf endophytic bacterial communities to elevated CO2 across rice growth stages. PMID:26379635

  12. Effects of Gypsophila saponins on bacterial growth kinetics and on selection of subterranean clover rhizosphere bacteria.

    PubMed

    Fons, F; Amellal, N; Leyval, C; Saint-Martin, N; Henry, M

    2003-06-01

    Plant secondary metabolites, such as saponins, have a considerable impact in agriculture because of their allelopathic effects. They also affect the growth of soil microorganisms, especially fungi. We investigated the influence of saponins on rhizosphere bacteria in vitro and in soil conditions. The effects of gypsophila saponins on the growth kinetics of rhizosphere bacteria were studied by monitoring the absorbance of the cultures in microtiter plates. Gypsophila saponins (1%) increased the lag phase of bacterial growth. The impact of gypsophila saponins on subterranean clover rhizosphere was also investigated in a pot experiment. The addition of gypsophila saponins did not modify clover biomass but significantly increased (twofold with 1% saponins) the weight of adhering soil. The number of culturable heterotrophic bacteria of the clover rhizosphere was not affected by the addition of gypsophila saponins. Nevertheless, the phenotypical characterization of the dominant Gram-negative strains of the clover rhizosphere, using the Biolog system, showed qualitative and quantitative differences induced by 1% saponins. With the addition of saponins, the populations of Chryseomonas spp. and Acinetobacter spp., the two dominant culturable genera of control clover, were no longer detectable or were significantly decreased, while that of Aquaspirillum dispar increased and Aquaspirillum spp. became the major genus. Aquaspirillum dispar and Aquaspirillum spp. were also the dominant rhizosphere bacteria of Gypsophila paniculata, which greatly accumulates these saponins in its roots. These results suggest that saponins may control rhizosphere bacteria in soil through rhizodeposition mechanisms. PMID:14569290

  13. Essays on the predictability of oil shocks and yield curves for real-time output growth

    NASA Astrophysics Data System (ADS)

    Carlton, Amelie B.

    This dissertation is a collection of three essays that revisits the long-standing puzzle of the apparently disproportionate effect of oil prices in the economy by examining output growth predictability with real-time data. Each study of the predictive content of oil shocks is from a different perspective by using newly developed real-time datasets, which allows for replicating the economic environment faced by policymakers in real time. The first study extends the conventional set of models of output growth determination by investigating predictability of models that incorporate various functional forms of oil prices and real-time data. The results are supportive of the relationship of GDP and oil in the context of Granger causality with real-time data. In the second essay, I use oil shocks to predict the economy is changing direction earlier than would be predicted by solely using initial GDP releases. The model provides compelling evidence of negative GDP growth predictability in response to oil price shocks, which could shorten the "recognition lag" for successful implementation of discretionary counter-cyclical policies. In the third essay, I evaluate short-horizon output growth predictability using real-time data for different sample periods. I find strong evidence of predictability at the one-quarter and four-quarter horizon for the United States. The major result of the paper is that we reject the null hypothesis of no predictability against an alternative hypothesis of predictability with oil shocks that include yield curves in the forecasting regression. This relationship suggests the combination of monetary policy and oil shocks are important for subsequent GDP growth.

  14. Effect of Bacterial Memory Dependent Growth by Using Fractional Derivatives Reaction-Diffusion Chemotactic Model

    NASA Astrophysics Data System (ADS)

    Rida, S. Z.; El-Sayed, A. M. A.; Arafa, A. A. M.

    2010-08-01

    In this paper, numerical solutions of a reaction-diffusion chemotactic model of fractional orders for bacterial growth will be present. A new solution is constructed in power series. The fractional derivatives are described in the Caputo sense. We compare the experimental result obtained with those obtained by simulation of the chemotactic model without fractional derivatives. The results show that the solution continuously depends on the time-fractional derivative. The resulting solutions spread faster than the classical solutions and may exhibit asymmetry, depending on the fractional derivative used. We present results of numerical simulations to illustrate the method, and investigate properties of numerical solutions. The Adomian's decomposition method (ADM) is used to find the approximate solution of fractional `reaction-diffusion chemotactic model. Numerical results show that the approach is easy to implement and accurate when applied to partial differential equations of fractional order.

  15. Molecular mechanisms for the evolution of bacterial morphologies and growth modes

    PubMed Central

    Randich, Amelia M.; Brun, Yves V.

    2015-01-01

    Bacteria exhibit a rich diversity of morphologies. Within this diversity, there is a uniformity of shape for each species that is replicated faithfully each generation, suggesting that bacterial shape is as selectable as any other biochemical adaptation. We describe the spatiotemporal mechanisms that target peptidoglycan synthesis to different subcellular zones to generate the rod-shape of model organisms Escherichia coli and Bacillus subtilis. We then demonstrate, using the related genera Caulobacter and Asticcacaulis as examples, how the modularity of the core components of the peptidoglycan synthesis machinery permits repositioning of the machinery to achieve different growth modes and morphologies. Finally, we highlight cases in which the mechanisms that underlie morphological evolution are beginning to be understood, and how they depend upon the expansion and diversification of the core components of the peptidoglycan synthesis machinery. PMID:26106381

  16. Identifying longitudinal growth trajectories of learning domains in problem-based learning: a latent growth curve modeling approach using SEM.

    PubMed

    Wimmers, Paul F; Lee, Ming

    2015-05-01

    To determine the direction and extent to which medical student scores (as observed by small-group tutors) on four problem-based-learning-related domains change over nine consecutive blocks during a two-year period (Domains: Problem Solving/Use of Information/Group Process/Professionalism). Latent growth curve modeling is used to analyze performance trajectories in each domain of two cohorts of 1st and 2nd year students (n = 296). Slopes of the growth trajectories show similar linear increments in the first three domains. Further analysis revealed relative strong individual variability in initial scores but not in their later increments. Professionalism, on the other hand, shows low variability and has very small, insignificant slope increments. In this study, we showed that the learning domains (Problem Solving, Use of Information, and Group Process) observed during PBL tutorials are not only related to each other but also develop cumulatively over time. Professionalism, in contrast to the other domains studied, is less affected by the curriculum suggesting that this represents a stable characteristic. The observation that the PBL tutorial has an equal benefit to all students is noteworthy and needs further investigation. PMID:25118860

  17. Radiative heat transfer in curved specular surfaces in Czochralski crystal growth furnace

    SciTech Connect

    Guo, Z.; Maruyama, Shigenao; Tsukada, Takao

    1997-11-07

    A numerical investigation of radiative heat transfer constructed by curved surfaces with specular and diffuse reflection components is carried out. The ray tracing method is adopted for the calculation of view factors, in which a new ray emission model is proposed. The second-degree radiation ring elements are introduced, which are of engineering importance and numerical efficiency. The accuracy of the method is analyzed and verified using a simple configuration. The present computation using the proposed ray emission model is in good agreement with the analytical solution. As a numerical example and engineering application, the effects of the specular reflection and the meniscus of the melt surface in Czochralski (CZ) crystal growth are investigated. A marked temperature decrease in the melt surface is found by introducing specular reflection and the meniscus. The combined effects of the specular reflection and the meniscus should be considered in precision heat transfer control of a CZ apparatus.

  18. Using Reactive Transport Modeling to Understand Changes in Electrical Conductivity Associated with Bacterial Growth and Respiration

    NASA Astrophysics Data System (ADS)

    Regberg, A. B.; Singha, K.; Picardal, F.; Brantley, S. L.

    2011-12-01

    Previous research has linked measured changes in the bulk electrical conductivity (?b) of water-saturated sediments to the respiration and growth of anaerobic bacteria. If the mechanism causing this signal is understood and characterized it could be used to identify and monitor zones of bacterial activity in the subsurface. The 1-D reactive transport model PHREEQC was used to understand ?b signals by modeling chemical gradients within two column reactors and corresponding changes in effluent chemistry. The flow-through column reactors were packed with Fe(III)-bearing sediment from Oyster, VA and inoculated with an environmental consortia of microorganisms. Influent in the first reactor was amended with 1mM Na-acetate to encourage the growth of iron-reducing bacteria. Influent in the second reactor was amended with 0.1mM Na-Acetate and 2mM NaNO3 to encourage the growth of nitrate-reducing bacteria. While effluent concentrations of acetate, Fe(II), NO3-, NO2-, and NH4+ remained at steady state, we measured a 3-fold increase (0.055 S/m - 0.2 S/m) in ?b in the iron-reducing column and a 10-fold increase in ?b (0.07 S/m - 0.8 S/m) in the nitrate-reducing column over 198 days. The ionic strength in both reactors remained constant through time indicating that the measured increases in ?b were not caused by changing effluent concentrations. PHREEQC successfully matched the measured changes in effluent concentrations for both columns when the reaction database was modified in the following manner. For the iron-reducing column, kinetic expressions governing the rate of iron reduction, the rate of bacterial growth, and the production of methane were added to the reaction database. Additionally, surface adsorption and cation exchange reactions were added so that the model was consistent with measured effluent chemistry. For the nitrate-reducing column, kinetic expressions governing nitrate reduction and bacterial growth were added to the reaction database. Additionally, immobile porosity was added along with adsorption and cation exchange reactions. Although the model revealed the existence of chemical and biological gradients within the columns that were not discernable as changes in effluent concentrations, none of the chemical reactions or gradients could explain the measured ?b increases in either column. This result is not consistent with chemical gradients within the column reactor causing the measured changes in ?b. To test the alternate hypothesis that microbial biofilms are electrically conductive, we used the output from PHREEQC to calculate the amount of biomass produced within the column reactors. If biofilm causes the ?b changes, our model is consistent with an electrical conductivity for biomass in the iron-reducing column between 2.75 and 220 S/m. The model is also consistent with an electrical conductivity for biomass in the nitrate-reducing column between 350 and 35,000 S/m. These estimates of biomass electrical conductivity are poorly constrained but represent a first step towards understanding the electrical properties associated with respiring biofilms.

  19. Secreted Pyomelanin of Legionella pneumophila Promotes Bacterial Iron Uptake and Growth under Iron-Limiting Conditions

    PubMed Central

    Zheng, Huaixin; Chatfield, Christa H.; Liles, Mark R.

    2013-01-01

    Iron acquisition is critical to the growth and virulence of Legionella pneumophila. Previously, we found that L. pneumophila uses both a ferrisiderophore pathway and ferrous iron transport to obtain iron. We now report that two molecules secreted by L. pneumophila, homogentisic acid (HGA) and its polymerized variant (HGA-melanin, a pyomelanin), are able to directly mediate the reduction of various ferric iron salts. Furthermore, HGA, synthetic HGA-melanin, and HGA-melanin derived from bacterial supernatants enhanced the ability of L. pneumophila and other species of Legionella to take up radiolabeled iron. Enhanced iron uptake was not observed with a ferrous iron transport mutant. Thus, HGA and HGA-melanin mediate ferric iron reduction, with the resulting ferrous iron being available to the bacterium for uptake. Upon further testing of L. pneumophila culture supernatants, we found that significant amounts of ferric and ferrous iron were associated with secreted HGA-melanin. Importantly, a pyomelanin-containing fraction obtained from a wild-type culture supernatant was able to stimulate the growth of iron-starved legionellae. That the corresponding supernatant fraction obtained from a nonpigmented mutant culture did not stimulate growth demonstrated that HGA-melanin is able to both promote iron uptake and enhance growth under iron-limiting conditions. Indicative of a complementary role in iron acquisition, HGA-melanin levels were inversely related to the levels of siderophore activity. Compatible with a role in the ecology and pathogenesis of L. pneumophila, HGA and HGA-melanin were effective at reducing and releasing iron from both insoluble ferric hydroxide and the mammalian iron chelates ferritin and transferrin. PMID:23980114

  20. BIODEGRADATION DURING CONTAMINANT TRANSPORT IN POROUS MEDIA. 4. IMPACT OF MICROBIAL LAG AND BACTERIAL CELL GROWTH. (R825415)

    EPA Science Inventory

    Abstract

    Miscible-displacement experiments were conducted to examine the impact of microbial lag and bacterial cell growth on the transport of salicylate, a model hydrocarbon compound. The impacts of these processes were examined separately, as well as jointly, to dete...

  1. Bacterial and fungal growth for monitoring the impact of wildfire combined or not with different soil stabilization treatments

    NASA Astrophysics Data System (ADS)

    Barreiro, Ana; Baath, Erland; Díaz-Ravińa, Montserrat

    2015-04-01

    Soil stabilization techniques are rapidly gaining acceptance as efficient tool for reducing post-fire erosion. However, despite its interest, information concerning their impact on soil biota is scarce. We examined, under field conditions, the bacterial and fungal medium-term responses in a hillslope area located in Laza (NW Spain) affected by a high severity wildfire with the following treatments established by triplicate (4 x 20 m plots): unburnt control soil, burnt control soil, burnt soil with rye seeding and burnt soil with straw mulch. The bacterial and fungal growth, as well as respiration, were measured 4 years after fire and application of treatments using leucine incorporation for bacterial growth and acetate-in-ergosterol incorporation for fungal growth. The results showed that soil respiration and fungal biomass were negatively affected by fire, in the top layer (0-5 cm), while bacterial and fungal growth was stimulated. These microbial changes induced by fire were associated with modifications in organic matter (50% reduction in C content) and soil pH (increase of 0.5-0.9 units). Thus, the results suggested that under acid environment (pH in water 3.5) post-fire conditions might have favoured both microbial groups, which is supported by the fact that estimated bacterial and fungal growth were positive and significant correlated with soil pH (range of 3.5-4.5). This contrast with the well-known reported investigations showing that bacteria rather than fungi proliferation occurred after prescribed fire or wildfire; it should be noticed, however, that soils with a higher pH than that in the present study were used. Our data also indicated that bacterial and fungal communities were not significantly affected by seeding and mulching treatments. The results highlighted the importance of pre-fire soil pH as key factor in determining the microbial response after fire. Acknowledgements. A. Barreiro is recipient of FPU grant from Spanish Ministry of Education. Keywords: wildfire, seeding, mulching, bacterial growth, fungal growth

  2. Environmental considerations on solar disinfection of wastewater and the subsequent bacterial (re)growth.

    PubMed

    Giannakis, Stefanos; Darakas, Efthymios; Escalas-Cańellas, Antoni; Pulgarin, César

    2015-03-01

    In this work, solar disinfection of wastewater was studied, focusing on the effect of selected environmental variables, namely light intensity, continuous/intermittent light delivery, and post-irradiation storage as well as dilution in lake water. These variables were studied for their effect on the disinfection efficiency and on post-irradiation survival/regrowth in undiluted wastewater and in wastewater diluted in lake water at different dilution rates. The bacterial inactivation curves were studied, and distinct kinetic phases were identified and interpreted. The dose primarily influenced the demonstration of phases and total inactivation times, independently of the irradiance. Intermittent illumination unevenly prolonged the required exposure time and highlighted the need for extended illumination times when unstable weather conditions are expected. Post-irradiation survival/regrowth in undiluted wastewater showed three distinct kinetic profiles, with transitions among them largely determined by the applied light dose. Lower doses resulted in similar inactivation profiles to the higher ones, when irradiation was followed by prolonged storage at high dilution rates in lake water. The studied factors show significant design and operation implications for solar wastewater applications based on local environmental conditions and water receptor restrictions. PMID:25539093

  3. Biocontrol of Fusarium graminearum Growth and Deoxynivalenol Production in Wheat Kernels with Bacterial Antagonists

    PubMed Central

    Shi, Cuijuan; Yan, Peisheng; Li, Jiafei; Wu, Hanqi; Li, Qianwei; Guan, Shanshan

    2014-01-01

    Fusarium graminearum is the main causal pathogen affecting small-grain cereals, and it produces deoxynivalenol, a kind of mycotoxin, which displays a wide range of toxic effects in human and animals. Bacterial strains isolated from peanut shells were investigated for their activities against F. graminearum by dual-culture plate and tip-culture assays. Among them, twenty strains exhibited potent inhibition to the growth of F. graminearum, and the inhibition rates ranged from 41.41% to 54.55% in dual-culture plate assay and 92.70% to 100% in tip-culture assay. Furthermore, eighteen strains reduced the production of deoxynivalenol by 16.69% to 90.30% in the wheat kernels assay. Finally, the strains with the strongest inhibitory activity were identified by morphological, physiological, biochemical methods and also 16S rDNA and gyrA gene analysis as Bacillus amyloliquefaciens. The current study highlights the potential application of antagonistic microorganisms and their metabolites in the prevention of fungal growth and mycotoxin production in wheat kernels. As a biological strategy, it might avoid safety problems and nutrition loss which always caused by physical and chemical strategies. PMID:24441510

  4. N-acetyl-L-cysteine affects growth, extracellular polysaccharide production, and bacterial biofilm formation on solid surfaces.

    PubMed

    Olofsson, Ann-Cathrin; Hermansson, Malte; Elwing, Hans

    2003-08-01

    N-Acetyl-L-cysteine (NAC) is used in medical treatment of patients with chronic bronchitis. The positive effects of NAC treatment have primarily been attributed to the mucus-dissolving properties of NAC, as well as its ability to decrease biofilm formation, which reduces bacterial infections. Our results suggest that NAC also may be an interesting candidate for use as an agent to reduce and prevent biofilm formation on stainless steel surfaces in environments typical of paper mill plants. Using 10 different bacterial strains isolated from a paper mill, we found that the mode of action of NAC is chemical, as well as biological, in the case of bacterial adhesion to stainless steel surfaces. The initial adhesion of bacteria is dependent on the wettability of the substratum. NAC was shown to bind to stainless steel, increasing the wettability of the surface. Moreover, NAC decreased bacterial adhesion and even detached bacteria that were adhering to stainless steel surfaces. Growth of various bacteria, as monocultures or in a multispecies community, was inhibited at different concentrations of NAC. We also found that there was no detectable degradation of extracellular polysaccharides (EPS) by NAC, indicating that NAC reduced the production of EPS, in most bacteria tested, even at concentrations at which growth was not affected. Altogether, the presence of NAC changes the texture of the biofilm formed and makes NAC an interesting candidate for use as a general inhibitor of formation of bacterial biofilms on stainless steel surfaces. PMID:12902275

  5. A New Method to Compare Statistical Tree Growth Curves: The PL-GMANOVA Model and Its Application with Dendrochronological Data

    PubMed Central

    Ricker, Martin; Peńa Ramírez, Víctor M.; von Rosen, Dietrich

    2014-01-01

    Growth curves are monotonically increasing functions that measure repeatedly the same subjects over time. The classical growth curve model in the statistical literature is the Generalized Multivariate Analysis of Variance (GMANOVA) model. In order to model the tree trunk radius (r) over time (t) of trees on different sites, GMANOVA is combined here with the adapted PL regression model Q?=?A·T+E, where for and for , A?=? initial relative growth to be estimated, , and E is an error term for each tree and time point. Furthermore, Ei[–b·r] ?=?, , with TPR being the turning point radius in a sigmoid curve, and at is an estimated calibrating time-radius point. Advantages of the approach are that growth rates can be compared among growth curves with different turning point radiuses and different starting points, hidden outliers are easily detectable, the method is statistically robust, and heteroscedasticity of the residuals among time points is allowed. The model was implemented with dendrochronological data of 235 Pinus montezumae trees on ten Mexican volcano sites to calculate comparison intervals for the estimated initial relative growth . One site (at the Popocatépetl volcano) stood out, with being 3.9 times the value of the site with the slowest-growing trees. Calculating variance components for the initial relative growth, 34% of the growth variation was found among sites, 31% among trees, and 35% over time. Without the Popocatépetl site, the numbers changed to 7%, 42%, and 51%. Further explanation of differences in growth would need to focus on factors that vary within sites and over time. PMID:25402427

  6. Artemisia princeps Pamp. Essential oil and its constituents eucalyptol and ?-terpineol ameliorate bacterial vaginosis and vulvovaginal candidiasis in mice by inhibiting bacterial growth and NF-?B activation.

    PubMed

    Trinh, Hien-Trung; Lee, In-Ah; Hyun, Yang-Jin; Kim, Dong-Hyun

    2011-12-01

    To investigate the inhibitory effects of Artemisia princeps Pamp. (family Asteraceae) essential oil (APEO) and its main constituents against bacterial vaginosis and vulvovaginal candidiasis, their antimicrobial activities against Gardnerella vaginalis and Candida albicans in vitro and their anti-inflammatory effects against G. vaginalis-induced vaginosis and vulvovaginal candidiasis were examined in mice. APEO and its constituents eucalyptol and ?-terpineol were found to inhibit microbe growths. ?-Terpineol most potently inhibited the growths of G. vaginalis and C. albicans with MIC values of 0.06 and 0.125?% (v/v), respectively. The antimicrobial activity of ?-terpineol was found to be comparable to that of clotrimazole. Intravaginal treatment with APEO, eucalyptol, or ?-terpineol significantly decreased viable G. vaginalis and C. albicans numbers in the vaginal cavity and myeloperoxidase activity in mouse vaginal tissues compared with controls. These agents also inhibited the expressions of proinflammatory cytokines (IL-1 ?, IL-6, TNF- ?), COX-2, iNOS, and the activation of NF- ?B and increased expression of the anti-inflammatory cytokine IL-10. In addition, they inhibited the expressions of proinflammatory cytokines and the activation of NF- ?B in lipopolysaccharide-stimulated peritoneal macrophages, and ?-terpineol most potently inhibited the expressions of proinflammatory cytokines and NF- ?B activation. Based on these findings, APEO and its constituents, particularly ?-terpineol, ameliorate bacterial vaginosis and vulvovaginal candidiasis by inhibiting the growths of vaginal pathogens and the activation of NF- ?B. PMID:21830186

  7. Btcd, a mouse protein that binds to curved DNA, can substitute in Escherichia coli for H-NS, a bacterial nucleoid protein.

    PubMed Central

    Timchenko, T; Bailone, A; Devoret, R

    1996-01-01

    In an Escherichia coli mutant devoid of H-NS, a bacterial nucleoid protein, mouse protein Btcd was able to substitute for H-NS in two tested functions. It restored cell motility and repression of the expression of the bgl operon. Btcd1, a mutant Btcd protein deleted of its zinc finger and thus having reduced DNA binding, failed to substitute for H-NS. Mouse protein Btcd was shown to repress the bgl operon at the level of transcription initiation and to bind preferentially to a curved DNA fragment encompassing the bgl promoter. These effects of Btcd on bacterial gene transcription can be accounted for by the binding of Btcd or H-NS to a curved DNA sequence near a promoter. A few mammalian proteins have been shown to substitute for their Escherichia prototypes involved in DNA and RNA transactions. The efficiency of Btcd protein in substituting for H-NS in Escherichia suggests its possible involvement in regulating gene expression in mouse cells. Images PMID:8670903

  8. Ice formation and growth shape bacterial community structure in Baltic Sea drift ice.

    PubMed

    Eronen-Rasimus, Eeva; Lyra, Christina; Rintala, Janne-Markus; Jürgens, Klaus; Ikonen, Vilma; Kaartokallio, Hermanni

    2015-02-01

    Drift ice, open water and under-ice water bacterial communities covering several developmental stages from open water to thick ice were studied in the northern Baltic Sea. The bacterial communities were assessed with 16S rRNA gene terminal-restriction fragment length polymorphism and cloning, together with bacterial abundance and production measurements. In the early stages, open water and pancake ice were dominated by Alphaproteobacteria and Actinobacteria, which are common bacterial groups in Baltic Sea wintertime surface waters. The pancake ice bacterial communities were similar to the open-water communities, suggesting that the parent water determines the sea-ice bacterial community in the early stages of sea-ice formation. In consolidated young and thick ice, the bacterial communities were significantly different from water bacterial communities as well as from each other, indicating community development in Baltic Sea drift ice along with ice-type changes. The thick ice was dominated by typical sea-ice genera from classes Flavobacteria and Gammaproteobacteria, similar to those in polar sea-ice bacterial communities. Since the thick ice bacterial community was remarkably different from that of the parent seawater, results indicate that thick ice bacterial communities were recruited from the rarer members of the seawater bacterial community. PMID:25764550

  9. Indoor Heating Drives Water Bacterial Growth and Community Metabolic Profile Changes in Building Tap Pipes during the Winter Season

    PubMed Central

    Zhang, Hai-Han; Chen, Sheng-Nan; Huang, Ting-Lin; Shang, Pan-Lu; Yang, Xiao; Ma, Wei-Xing

    2015-01-01

    The growth of the bacterial community harbored in indoor drinking water taps is regulated by external environmental factors, such as indoor temperature. However, the effect of indoor heating on bacterial regrowth associated with indoor drinking water taps is poorly understood. In the present work, flow cytometry and community-level sole-carbon-source utilization techniques were combined to explore the effects of indoor heating on water bacterial cell concentrations and community carbon metabolic profiles in building tap pipes during the winter season. The results showed that the temperature of water stagnated overnight (“before”) in the indoor water pipes was 15–17 °C, and the water temperature decreased to 4–6 °C after flushing for 10 min (“flushed”). The highest bacterial cell number was observed in water stagnated overnight, and was 5–11 times higher than that of flushed water. Meanwhile, a significantly higher bacterial community metabolic activity (AWCD590nm) was also found in overnight stagnation water samples. The significant “flushed” and “taps” values indicated that the AWCD590nm, and bacterial cell number varied among the taps within the flushed group (p < 0.01). Heatmap fingerprints and principle component analyses (PCA) revealed a significant discrimination bacterial community functional metabolic profiles in the water stagnated overnight and flushed water. Serine, threonine, glucose-phosphate, ketobutyric acid, phenylethylamine, glycerol, putrescine were significantly used by “before” water samples. The results suggested that water stagnated at higher temperature should be treated before drinking because of bacterial regrowth. The data from this work provides useful information on reasonable utilization of drinking water after stagnation in indoor pipes during indoor heating periods. PMID:26516885

  10. Growth curves of carcass traits obtained by ultrasonography in three lines of Nellore cattle selected for body weight.

    PubMed

    Coutinho, C C; Mercadante, M E Z; Jorge, A M; Paz, C C P; El Faro, L; Monteiro, F M

    2015-01-01

    The effect of selection for postweaning weight was evaluated within the growth curve parameters for both growth and carcass traits. Records of 2404 Nellore animals from three selection lines were analyzed: two selection lines for high postweaning weight, selection (NeS) and traditional (NeT); and a control line (NeC) in which animals were selected for postweaning weight close to the average. Body weight (BW), hip height (HH), rib eye area (REA), back fat thickness (BFT), and rump fat thickness (RFT) were measured and records collected from animals 8 to 20 (males) and 11 to 26 (females) months of age. The parameters A (asymptotic value) and k (growth rate) were estimated using the nonlinear model procedure of the Statistical Analysis System program, which included fixed effect of line (NeS, NeT, and NeC) in the model, with the objective to evaluate differences in the estimated parameters between lines. Selected animals (NeS and NeT) showed higher growth rates than control line animals (NeC) for all traits. Line effect on curves parameters was significant (P < 0.001) for BW, HH, and REA in males, and for BFT and RFT in females. Selection for postweaning weight was effective in altering growth curves, resulting in animals with higher growth potential. PMID:26535722

  11. Bacterial Colonies in Solid Media and Foods: A Review on Their Growth and Interactions with the Micro-Environment

    PubMed Central

    Jeanson, Sophie; Floury, Juliane; Gagnaire, Valérie; Lortal, Sylvie; Thierry, Anne

    2015-01-01

    Bacteria, either indigenous or added, are immobilized in solid foods where they grow as colonies. Since the 80's, relatively few research groups have explored the implications of bacteria growing as colonies and mostly focused on pathogens in large colonies on agar/gelatine media. It is only recently that high resolution imaging techniques and biophysical characterization techniques increased the understanding of the growth of bacterial colonies, for different sizes of colonies, at the microscopic level and even down to the molecular level. This review covers the studies on bacterial colony growth in agar or gelatine media mimicking the food environment and in model cheese. The following conclusions have been brought to light. Firstly, under unfavorable conditions, mimicking food conditions, the immobilization of bacteria always constrains their growth in comparison with planktonic growth and increases the sensibility of bacteria to environmental stresses. Secondly, the spatial distribution describes both the distance between colonies and the size of the colonies as a function of the initial level of population. By studying the literature, we concluded that there systematically exists a threshold that distinguishes micro-colonies (radius < 100–200 ?m) from macro-colonies (radius >200 ?m). Micro-colonies growth resembles planktonic growth and no pH microgradients could be observed. Macro-colonies growth is slower than planktonic growth and pH microgradients could be observed in and around them due to diffusion limitations which occur around, but also inside the macro-colonies. Diffusion limitations of milk proteins have been demonstrated in a model cheese around and in the bacterial colonies. In conclusion, the impact of immobilization is predominant for macro-colonies in comparison with micro-colonies. However, the interaction between the colonies and the food matrix itself remains to be further investigated at the microscopic scale. PMID:26648910

  12. Enhancing the Psychological Well-Being of Elderly Individuals through Tai Chi Exercise: A Latent Growth Curve Analysis.

    ERIC Educational Resources Information Center

    Li, Fuzhong; Duncan, Terry E.; Duncan, Susan C.; McAuley, Edward; Chaumeton, Nigel R.; Harmer, Peter

    2001-01-01

    Examined whether a Tai Chi exercise program enhanced the psychological well-being of 98 elderly individuals. Analyzed repeated measures data about participants using latent growth curve analysis. Results indicate the beneficial effects of participation in the Tai Chi program. Discusses implications related to the exercise-psychological health…

  13. Exploring the Different Trajectories of Analytical Thinking Ability Factors: An Application of the Second-Order Growth Curve Factor Model

    ERIC Educational Resources Information Center

    Saengprom, Narumon; Erawan, Waraporn; Damrongpanit, Suntonrapot; Sakulku, Jaruwan

    2015-01-01

    The purposes of this study were 1) Compare analytical thinking ability by testing the same sets of students 5 times 2) Develop and verify whether analytical thinking ability of students corresponds to second-order growth curve factors model. Samples were 1,093 eighth-grade students. The results revealed that 1) Analytical thinking ability scores…

  14. Examining the Earnings Trajectories of Community College Students Using a Piecewise Growth Curve Modeling Approach. A CAPSEE Working Paper

    ERIC Educational Resources Information Center

    Jaggars, Shanna Smith; Xu, Di

    2015-01-01

    Policymakers have become increasingly concerned with measuring--and holding colleges accountable for--students' labor market outcomes. In this paper we introduce a piecewise growth curve approach to analyzing community college students' labor market outcomes, and we discuss how this approach differs from Mincerian and fixed-effects approaches. Our…

  15. Energy utilisation and growth performance of chicken fed diets containing graded levels of supplementary bacterial phytase.

    PubMed

    Pirgozliev, V; Bedford, M R

    2013-01-28

    A total of 364 female Ross 308 chicks (1 d old) were used in the present study conducted in floor pens to investigate the effects of graded levels of supplementary bacterial phytase on dietary energy utilisation and growth performance. For this purpose, four maize-soyabean-based diets were offered to the birds from 0 to 21 d of age. These included a suboptimal P negative control (NC, 3.0 g/kg non-phytate P), NC+250 phytase units (FTU)/kg feed, NC+500 FTU and NC+2500 FTU. The effect of phytase activity on bird growth performance was best described as a linear relationship between increasing dose and increased feed intake (P< 0.001), but was quadratic for body-weight gain (P= 0.002) and feed efficiency (P= 0.023). There was no significant response (P>0.05) of dietary apparent metabolisable energy (AME) to supplementary phytase. The birds fed phytase increased their retention of total carcass energy in a linear fashion (P= 0.009) with increased phytase dose. The efficiency of dietary AME used for overall carcass energy retention also improved (P= 0.007) in a linear manner with increased dietary phytase activity. Dietary net energy for production (NEp) increased (P= 0.047) with an increase in phytase dose following a linear pattern, as an increase of 100 FTU increased dietary net energy by 15.4 J (estimated within the range of doses used in the present experiment). Dietary NEp was more highly correlated with performance criteria than dietary AME, and it seems to be a more sensitive way to evaluate broiler response to phytase supplementation. PMID:22716908

  16. Lysozyme-triggered epidermal growth factor release from bacterial cellulose membranes controlled by smart nanostructured films.

    PubMed

    Picheth, Guilherme Fadel; Sierakowski, Maria Rita; Woehl, Marco Aurelio; Ono, Lucy; Cofré, Axel Rulf; Vanin, Luana Pasetti; Pontarolo, Roberto; De Freitas, Rilton Alves

    2014-12-01

    A novel wound-dressing biodevice, sensitive to lysozyme, an enzyme commonly found at infected skin wounds, was assembled by the layer-by-layer deposition of nanopolymeric chitosan and alginate films onto oxidized bacterial cellulose membranes incorporated with epidermal growth factor (EGF). Distinct EGF release profiles were obtained according to specific stimuli caused by infection. In in vitro conditions simulating noninfected wounds, the EGF rate and burst release effect were reduced by three deposited layers (Mt /M? of 0.25 at 3 h) in a process dependent on the porosity of the compact chitosan-alginate complex. The importance of the organized structure was revealed when an infected wound was simulated by adding lysozyme to the release medium, thus inducing the formation of a loosely polyelectrolyte architecture that caused rapid EGF diffusion (Mt /M? of 0.75 at 30 min). The results indicate that the nanopolymeric layers were capable of slowly releasing EGF as required for normal wound repair and rapidly undergoing architectural transitions that allow the diffusion of massive amounts of drug to enhance the process of re-epithelialization. In summary, the proposed system comprises the roles of both wound dressing and local delivery mechanism to recognize infections and respond with a burst of EGF release. PMID:25308839

  17. Predicting growth and curve progression in the individual patient with adolescent idiopathic scoliosis: design of a prospective longitudinal cohort study

    PubMed Central

    2010-01-01

    Background Scoliosis is present in 3-5% of the children in the adolescent age group, with a higher incidence in females. Treatment of adolescent idiopathic scoliosis is mainly dependent on the progression of the scoliotic curve. There is a close relationship between curve progression and rapid (spinal) growth of the patient during puberty. However, until present time no conclusive method was found for predicting the timing and magnitude of the pubertal growth spurt in total body height, or the curve progression of the idiopathic scoliosis. The goal of this study is to determine the predictive value of several maturity indicators that reflect growth or remaining growth potential, in order to predict timing of the peak growth velocity of total body height in the individual patient with adolescent idiopathic scoliosis. Furthermore, different parameters are evaluated for their correlation with curve progression in the individual scoliosis patient. Methods/design This prospective, longitudinal cohort study will be incorporated in the usual care of patients with adolescent idiopathic scoliosis. All new patients between 8 and 17 years with adolescent idiopathic scoliosis (Cobb angle >10 degrees) visiting the outpatient clinic of the University Medical Center Groningen are included in this study. Follow up will take place every 6 months. The present study will use a new ultra-low dose X-ray system which can make total body X-rays. Several maturity indicators are evaluated like different body length dimensions, secondary sexual characteristics, skeletal age in hand and wrist, skeletal age in the elbow, the Risser sign, the status of the triradiate cartilage, and EMG ratios of the paraspinal muscle activity. Correlations of all dimensions will be calculated in relationship to the timing of the pubertal growth spurt, and to the progression of the scoliotic curve. An algorithm will be made for the optimal treatment strategy in the individual patient with adolescent idiopathic scoliosis. Discussion This study will determine the value of many maturity indicators and will be useful as well for other clinicians treating children with disorders of growth. Since not all clinicians have access to the presented new 3D X-ray system or have the time to make EMG's, for example, all indicators will be correlated to the timing of the peak growth velocity of total body height and curve progression in idiopathic scoliosis. Therefore each clinician can chose which indicators can be used best in their practice. Trial registration number NTR2048 PMID:20478013

  18. Perceived social support and academic achievement: cross-lagged panel and bivariate growth curve analyses.

    PubMed

    Mackinnon, Sean P

    2012-04-01

    As students transition to post-secondary education, they experience considerable stress and declines in academic performance. Perceived social support is thought to improve academic achievement by reducing stress. Longitudinal designs with three or more waves are needed in this area because they permit stronger causal inferences and help disentangle the direction of relationships. This study uses a cross-lagged panel and a bivariate growth curve analysis with a three-wave longitudinal design. Participants include 10,445 students (56% female; 12.6% born outside of Canada) transitioning to post-secondary education from ages 15-19. Self-report measures of academic achievement and a generalized measure of perceived social support were used. An increase in average relative standing in academic achievement predicted an increase in average relative standing on perceived social support 2 years later, but the reverse was not true. High levels of perceived social support at age 15 did not protect against declines in academic achievement over time. In sum, perceived social support appears to have no bearing on adolescents' future academic performance, despite commonly held assumptions of its importance. PMID:21720859

  19. A simple interpretation of the growth of scientific/technological research impact leading to hype-type evolution curves

    E-print Network

    Campani, Marco

    2014-01-01

    The empirical and theoretical justification of Gartner hype curves is a very relevant open question in the field of Technological Life Cycle analysis. The scope of the present paper is to introduce a simple model describing the growth of scientific/technological research impact, in the specific case where science is the main source of a new idea driving a technological development, leading to hype-type evolution curves. The main idea of the model is that, in a first stage, the growth of the scientific interest of a new specific field (as can be measured by publication numbers) basically follows the classical logistic growth curve. At a second stage, starting at a later trigger time, the technological development based on that scientific idea (as can be measured by patent deposits) can be described as the integral (in a mathematical sense) of the first curve, since technology is based on the overall accumulated scientific knowledge. The model is tested through a bibliometric analysis of the publication and pat...

  20. Application of Direct Current Potential Drop for the J-integral vs. Crack Growth Resistance Curve Characterization

    SciTech Connect

    Chen, Xiang; Nanstad, Randy K; Sokolov, Mikhail A

    2014-01-01

    The direct current potential drop (DCPD) technique has been applied to derive the J-integral vs. crack growth resistance curve (J-R curve) for fracture toughness characterization of structural materials. The test matrix covered three materials including type 316LN stainless steels, Ni-based alloy 617, and one ferritic-martensitic steel, three specimen configurations including standard compact, single edge bending, and disk-shaped compact specimens, and temperatures ranging from 20 C to 650 C. When compared with baseline J-R curves derived from the ASTM normalization method, the original J-R curves from the DCPD technique yielded much smaller Jq values due to the influence of crack blunting, plastic deformation, etc. on potential drop. To counter these effects, a new procedure for adjusting DCPD J-R curves was proposed. After applying the new adjustment procedure, the average difference in Jq between the DCPD technique and the normalization method was only 5.2% and the difference in tearing modulus was 7.4%. The promising result demonstrates the applicability of the DCPD technique for the J-R curve characterization especially in extreme environments, such as elevated temperatures, where the conventional elastic unloading compliance method faces considerable challenges.

  1. A Model to Explain Plant Growth Promotion Traits: A Multivariate Analysis of 2,211 Bacterial Isolates

    PubMed Central

    da Costa, Pedro Beschoren; Granada, Camille E.; Ambrosini, Adriana; Moreira, Fernanda; de Souza, Rocheli; dos Passos, Joăo Frederico M.; Arruda, Letícia; Passaglia, Luciane M. P.

    2014-01-01

    Plant growth-promoting bacteria can greatly assist sustainable farming by improving plant health and biomass while reducing fertilizer use. The plant-microorganism-environment interaction is an open and complex system, and despite the active research in the area, patterns in root ecology are elusive. Here, we simultaneously analyzed the plant growth-promoting bacteria datasets from seven independent studies that shared a methodology for bioprospection and phenotype screening. The soil richness of the isolate's origin was classified by a Principal Component Analysis. A Categorical Principal Component Analysis was used to classify the soil richness according to isolate's indolic compound production, siderophores production and phosphate solubilization abilities, and bacterial genera composition. Multiple patterns and relationships were found and verified with nonparametric hypothesis testing. Including niche colonization in the analysis, we proposed a model to explain the expression of bacterial plant growth-promoting traits according to the soil nutritional status. Our model shows that plants favor interaction with growth hormone producers under rich nutrient conditions but favor nutrient solubilizers under poor conditions. We also performed several comparisons among the different genera, highlighting interesting ecological interactions and limitations. Our model could be used to direct plant growth-promoting bacteria bioprospection and metagenomic sampling. PMID:25542031

  2. Detection of phase transitions and cooperative interactions by Avrami analysis of sigmoid biological time curves for muscle, nerve, growth, firefly, and infrared phosphorescence of green leaves, melanin, and cytochrome C.

    PubMed

    Cope, F W

    1977-01-01

    A simple graphical analysis of sigmoid biological time curves for K+ leakage from muscle and nerve, for muscle tension and myosin ATPase, for animal, plant and bacterial growth, for firefly light flash, and for 3 micron infrared phosphorescence from green leaves, melanin, and cytochrome c shows good curve fits to the Avrami equation for phase transition kinetics. The congruences imply that the analyzed processes are rate-limited by cooperative interactions and phase transitions. That implication is strengthened and its potential usefulness enhanced by the finding that the Avrami exponents of the above biological processes are not randomly distributed but cluster about certain values indicating (in the context of the Avrami theory) whether the spread of the new phase from nuclei within the old phase occurs in one, two, or three dimensions. The implication is further strengthened by the finding that similar types of biological processes show similar values of the Avrami exponent. PMID:206919

  3. Keratinocyte growth factor-2 inhibits bacterial infection with Pseudomonas aeruginosa pneumonia in a mouse model.

    PubMed

    Feng, Nana; Wang, Qin; Zhou, Jian; Li, Jing; Wen, Xiaoxing; Chen, Shujing; Zhu, Zhenhua; Bai, Chunxue; Song, Yuanlin; Li, Huayin

    2016-01-01

    To determine protective effects of concurrent administration of Keratinocyte growth factor-2 (KGF-2) with Pseudomonas aeruginosa (P. aeruginosa) inoculation on the induced pneumonia. KGF-2 (5 mg/kg) was concurrently administered into the left lobe of 55 mice with P. aeruginosa PAO1 (5 × 10(6) CFU, half-lethal dose); 55 mice in the control group were concurrently administered PBS with the PAO1. We detected and analyzed: body temperature; amount of P. aeruginosa in homogenates; count of total number of nucleated cells and of mononuclear macrophages; protein concentration in bronchoalveolar lavage fluid (BALF); lung wet-to-dry weight ratio; cytokines in BALF and blood; and lung morphology. To study survival rate, concurrent administration of KGF-2 (experimental group) versus PBS (control) with a lethal dose of PAO1 (1 × 10(7) CFU was performed, and survivorship was documented for 7 days post-inoculation. The bacterial CFU in lung homogenates was significantly decreased in the KGF-2 group compared to the control group. There were significantly more mononuclear macrophages in the BALF from the KGF-2 group than from the control group (p < 0.05). KGF-2 increased the surfactant protein and GM-CSF mRNA in lung at 6 h and 72 h after inoculation. Significant reduction of lung injury scores, protein concentrations, lung wet-to-dry weight ratio, and IL-6 and TNF-? levels was noted in the KGF-2 treated rats at 72 h after inoculation (p < 0.05). The 7-day survival rate of the KGF-2 group was significantly higher than that of the control group (p < 0.05). Concurrent administration of KGF-2 facilitates the clearance of P. aeruginosa from the lungs, attenuates P. aeruginosa-induced lung injury, and extends the 7-day survival rate in mice model with P. aeruginosa pneumonia. PMID:26617350

  4. Bacterial growth at the high concentrations of magnesium sulfate found in martian soils.

    PubMed

    Crisler, J D; Newville, T M; Chen, F; Clark, B C; Schneegurt, M A

    2012-02-01

    The martian surface environment exhibits extremes of salinity, temperature, desiccation, and radiation that would make it difficult for terrestrial microbes to survive. Recent evidence suggests that martian soils contain high concentrations of MgSO? minerals. Through warming of the soils, meltwater derived from subterranean ice-rich regolith may exist for an extended period of time and thus allow the propagation of terrestrial microbes and create significant bioburden at the near surface of Mars. The current report demonstrates that halotolerant bacteria from the Great Salt Plains (GSP) of Oklahoma are capable of growing at high concentrations of MgSO? in the form of 2 M solutions of epsomite. The epsotolerance of isolates in the GSP bacterial collection was determined, with 35% growing at 2 M MgSO?. There was a complex physiological response to mixtures of MgSO? and NaCl coupled with other environmental stressors. Growth also was measured at 1 M concentrations of other magnesium and sulfate salts. The complex responses may be partially explained by the pattern of chaotropicity observed for high-salt solutions as measured by agar gelation temperature. Select isolates could grow at the high salt concentrations and low temperatures found on Mars. Survival during repetitive freeze-thaw or drying-rewetting cycles was used as other measures of potential success on the martian surface. Our results indicate that terrestrial microbes might survive under the high-salt, low-temperature, anaerobic conditions on Mars and present significant potential for forward contamination. Stringent planetary protection requirements are needed for future life-detection missions to Mars. PMID:22248384

  5. Effects of High Hydrostatic Pressure on Bacterial Growth on Human Ossicles Explanted from Cholesteatoma Patients

    PubMed Central

    Ostwald, Jürgen; Lindner, Tobias; Zautner, Andreas Erich; Arndt, Kathleen; Pau, Hans Wilhelm; Podbielski, Andreas

    2012-01-01

    Background High hydrostatic pressure (HHP) treatment can eliminate cholesteatoma cells from explanted human ossicles prior to re-insertion. We analyzed the effects of HHP treatment on the microbial flora on ossicles and on the planktonic and biofilm states of selected isolates. Methodology Twenty-six ossicles were explanted from cholesteatoma patients. Five ossicles were directly analyzed for microbial growth without further treatment. Fifteen ossicles were cut into two pieces. One piece was exposed to HHP of 350 MPa for 10 minutes. Both the treated and untreated (control) pieces were then assessed semi-quantitatively. Three ossicles were cut into two pieces and exposed to identical pressure conditions with or without the addition of one of two different combinations of antibiotics to the medium. Differential effects of 10-minute in vitro exposure of planktonic and biofilm bacteria to pressures of 100 MPa, 250 MPa, 400 MPa and 540 MPa in isotonic and hypotonic media were analyzed using two patient isolates of Staphylococcus epidermidis and Neisseria subflava. Bacterial cell inactivation and biofilm destruction were assessed by colony counting and electron microscopy. Principal Findings A variety of microorganisms were isolated from the ossicles. Irrespective of the medium, HHP treatment at 350 MPa for 10 minutes led to satisfying but incomplete inactivation especially of Gram-negative bacteria. The addition of antibiotics increased the efficacy of elimination. A comparison of HHP treatment of planktonic and biofilm cells showed that the effects of HPP were reduced by about one decadic logarithmic unit when HPP was applied to biofilms. High hydrostatic pressure conditions that are suitable to inactivate cholesteatoma cells fail to completely sterilize ossicles even if antibiotics are added. As a result of the reduced microbial load and the viability loss of surviving bacteria, however, there is a lower risk of re-infection after re-insertion. PMID:22291908

  6. Bacterial Growth at the High Concentrations of Magnesium Sulfate Found in Martian Soils

    PubMed Central

    Crisler, J.D.; Newville, T.M.; Chen, F.; Clark, B.C.

    2012-01-01

    Abstract The martian surface environment exhibits extremes of salinity, temperature, desiccation, and radiation that would make it difficult for terrestrial microbes to survive. Recent evidence suggests that martian soils contain high concentrations of MgSO4 minerals. Through warming of the soils, meltwater derived from subterranean ice-rich regolith may exist for an extended period of time and thus allow the propagation of terrestrial microbes and create significant bioburden at the near surface of Mars. The current report demonstrates that halotolerant bacteria from the Great Salt Plains (GSP) of Oklahoma are capable of growing at high concentrations of MgSO4 in the form of 2 M solutions of epsomite. The epsotolerance of isolates in the GSP bacterial collection was determined, with 35% growing at 2 M MgSO4. There was a complex physiological response to mixtures of MgSO4 and NaCl coupled with other environmental stressors. Growth also was measured at 1 M concentrations of other magnesium and sulfate salts. The complex responses may be partially explained by the pattern of chaotropicity observed for high-salt solutions as measured by agar gelation temperature. Select isolates could grow at the high salt concentrations and low temperatures found on Mars. Survival during repetitive freeze-thaw or drying-rewetting cycles was used as other measures of potential success on the martian surface. Our results indicate that terrestrial microbes might survive under the high-salt, low-temperature, anaerobic conditions on Mars and present significant potential for forward contamination. Stringent planetary protection requirements are needed for future life-detection missions to Mars. Key Words: Analogue—Mars—Planetary protection—Salts—Life in extreme environments. Astrobiology 12, 98–106. PMID:22248384

  7. Modeling Trajectory of Depressive Symptoms Among Psychiatric Inpatients: A Latent Growth Curve Approach

    PubMed Central

    Clapp, Joshua D.; Grubaugh, Anouk L.; Allen, Jon G.; Mahoney, Jane; Oldham, John M.; Fowler, J. Christopher; Ellis, Tom; Elhai, Jon D.; Frueh, B. Christopher

    2014-01-01

    Objectives Changes in the parameters of inpatient psychiatric care have inspired a sizable literature exploring correlates of prolonged intervention as well as symptom change over varying lengths of hospitalization. However, existing data offer limited insight regarding the nature of symptom change over time. Objectives of this longitudinal research were to (a) model the trajectory of depressive symptoms within an inpatient psychiatric sample, (b) identify characteristics associated with unique patterns of change, and (c) evaluate the magnitude of expected gains using objective clinical benchmarks. Methods Participants included psychiatric inpatients treated between April 2008 and December 2010. Latent growth curve modeling was used to determine the trajectory of Beck Depression Inventory II depressive symptoms in response to treatment. Age, gender, trauma history, prior hospitalization, and DSM-IV diagnoses were examined as potential moderators of recovery. Results Results indicate a nonlinear model of recovery, with symptom reductions greatest following admission and slowing gradually over time. Female gender, probable trauma exposure, prior psychiatric hospitalization, and primary depressive diagnosis were associated with more severe trajectories. Diagnosis of alcohol/substance use, by contrast, was associated with more moderate trajectories. Objective benchmarks occurred relatively consistently across patient groups with clinically significant change occurring between 2–4 weeks post-admission. Conclusion The nonlinear trajectory of recovery observed in these data provides insight regarding the dynamics of inpatient recovery. Across all patient groups, symptom reduction was most dramatic in the initial week of hospitalization. However, notable improvement continued for several weeks post-admission. Results suggest timelines for adequate inpatient care are largely contingent on program-specific goals. PMID:23759452

  8. Effects of Bacillus subtilis KN-42 on Growth Performance, Diarrhea and Faecal Bacterial Flora of Weaned Piglets

    PubMed Central

    Hu, Yuanliang; Dun, Yaohao; Li, Shenao; Zhao, Shumiao; Peng, Nan; Liang, Yunxiang

    2014-01-01

    This research focused on the effects of different doses of Bacillus subtilis KN-42 on the growth performance, diarrhea incidence, faecal bacterial flora, and the relative number of Lactobacillus and Escherichia coli in faeces of weaned piglets to determine whether the strain can serve as a candidate antimicrobial growth promoter. A total of 360 piglets (initial body weight 7.14±0.63 kg) weaned at 26±2 days of age were randomly allotted to 5 treatment groups (4 pens per treatment with 18 pigs per pen) for a 28-day trial. Dietary treatments were basal diet without any antimicrobial (negative control; NC), basal diet supplemented with 120 mg/kg feed of neomycin sulfate (positive control; PC) and basal diet supplemented with 2×109 (L), 4×109 (M) and 20×109 (H) CFU/kg feed of B. subtilis KN-42. During the overall period, average daily gain and feed efficiency of piglets were higher in groups PC, M, and H than those in group NC (p<0.05), and all probiotics and antibiotics groups had a lower diarrhea index than group NC (p<0.05). The 16S rDNA gene-based methods were used to analyze faecal bacterial flora on day 28 of experiment. The result of denaturing gradient gel electrophoresis analysis showed that supplementation of B. subtilis KN-42 to the diet changed the bacterial communities, with a higher bacterial diversity and band number in group M than in the other four groups. Real-time polymerase chain reaction analysis showed that the relative number of Lactobacillus were higher in groups PC and H than in group NC (p<0.05), and the supplemented B. subtilis KN-42 to the diet also reduced the relative number of E. coli (p<0.05). These results suggest that dietary addition of B. subtilis KN-42 can improve the growth performance and gastrointestinal health of piglets. PMID:25083107

  9. Bacterial growth efficiency in a partly eutrophicated bay of South China Sea: Implication for anthropogenic impacts and potential hypoxia events.

    PubMed

    Song, Xing-Yu; Liu, Hua-Xue; Zhong, Yu; Tan, Ye-Hui; Qin, Geng; Li, Kai-Zhi; Shen, Ping-Ping; Huang, Liang-Min; Wang, You-Shao

    2015-10-01

    Bacterial metabolism plays a dual role [bacterial production (BP) and bacterial respiration (BR)] in the aquatic ecosystem and potentially leads to hypoxia in the coastal eutrophic area. Bacterial growth efficiency (BGE) is an important index showing the contribution of bacterial metabolism to marine biological production and carbon budget in the pelagic ecosystem. In this study, the spatial and seasonal variety as well as diurnal variation dynamics of BGE and associated ecological characteristics were investigated in a partly eutrophicated subtropical bay (the Daya Bay) located in the northern South China Sea. Furthermore, the relationship between bacterial metabolism and potential hypoxia event was analyzed. The average BGE was 0.14 and 0.22 in summer and winter, respectively, which was lower than the mean value ever reported in other coastal and estuarine waters. The diurnal variations of BGE and BP were widely fluctuated in the Daya Bay, with approximately 3-8 fold variation of BP and 2-3 fold variation of BR in different seasons, suggesting the importance of short-term ecological dynamics on evaluating the long-term ecological processes in the coastal waters. BR was the predominant contributor to the bacterial carbon demand; however, the variation of BGE was controlled by BP in both seasons. BGE was always high in the near-shore waters with higher eutrophic level and more active BP and BR. The bacterial metabolism could deplete dissolved oxygen (DO) in the Daya bay within about 9 days when the water body was enclosed and photosynthesis was prohibited. Therefore, low DO concentration and potential hypoxia was more likely to be found in the near-shore waters of the Daya Bay in summer, since the water was stratified and enclosed with poor water exchange capacity in this area. While in winter, hypoxia seldom occurred due to vertical mixing throughout the water column. Further biological-physical coupling research is recommended to find out the detailed formation mechanism of hypoxia in the bay, and to predict the potential hypoxia events and their environmental impacts in the future. PMID:26024618

  10. Population Dynamics of a Salmonella Lytic Phage and Its Host: Implications of the Host Bacterial Growth Rate in Modelling

    PubMed Central

    Santos, Sílvio B.; Carvalho, Carla; Azeredo, Joana; Ferreira, Eugénio C.

    2014-01-01

    The prevalence and impact of bacteriophages in the ecology of bacterial communities coupled with their ability to control pathogens turn essential to understand and predict the dynamics between phage and bacteria populations. To achieve this knowledge it is essential to develop mathematical models able to explain and simulate the population dynamics of phage and bacteria. We have developed an unstructured mathematical model using delay-differential equations to predict the interactions between a broad-host-range Salmonella phage and its pathogenic host. The model takes into consideration the main biological parameters that rule phage-bacteria interactions likewise the adsorption rate, latent period, burst size, bacterial growth rate, and substrate uptake rate, among others. The experimental validation of the model was performed with data from phage-interaction studies in a 5 L bioreactor. The key and innovative aspect of the model was the introduction of variations in the latent period and adsorption rate values that are considered as constants in previous developed models. By modelling the latent period as a normal distribution of values and the adsorption rate as a function of the bacterial growth rate it was possible to accurately predict the behaviour of the phage-bacteria population. The model was shown to predict simulated data with a good agreement with the experimental observations and explains how a lytic phage and its host bacteria are able to coexist. PMID:25051248

  11. Growth promotion and colonization of switchgrass (Panicum virgatum) cv. Alamo by bacterial endophyte Burkholderia phytofirmans strain PsJN

    PubMed Central

    2012-01-01

    Background Switchgrass is one of the most promising bioenergy crop candidates for the US. It gives relatively high biomass yield and can grow on marginal lands. However, its yields vary from year to year and from location to location. Thus it is imperative to develop a low input and sustainable switchgrass feedstock production system. One of the most feasible ways to increase biomass yields is to harness benefits of microbial endophytes. Results We demonstrate that one of the most studied plant growth promoting bacterial endophytes, Burkholderia phytofirmans strain PsJN, is able to colonize and significantly promote growth of switchgrass cv. Alamo under in vitro, growth chamber, and greenhouse conditions. In several in vitro experiments, the average fresh weight of PsJN-inoculated plants was approximately 50% higher than non-inoculated plants. When one-month-old seedlings were grown in a growth chamber for 30 days, the PsJN-inoculated Alamo plants had significantly higher shoot and root biomass compared to controls. Biomass yield (dry weight) averaged from five experiments was 54.1% higher in the inoculated treatment compared to non-inoculated control. Similar results were obtained in greenhouse experiments with transplants grown in 4-gallon pots for two months. The inoculated plants exhibited more early tillers and persistent growth vigor with 48.6% higher biomass than controls. We also found that PsJN could significantly promote growth of switchgrass cv. Alamo under sub-optimal conditions. However, PsJN-mediated growth promotion in switchgrass is genotype specific. Conclusions Our results show B. phytofirmans strain PsJN significantly promotes growth of switchgrass cv. Alamo under different conditions, especially in the early growth stages leading to enhanced production of tillers. This phenomenon may benefit switchgrass establishment in the first year. Moreover, PsJN significantly stimulated growth of switchgrass cv. Alamo under sub-optimal conditions, indicating that the use of the beneficial bacterial endophytes may boost switchgrass growth on marginal lands and significantly contribute to the development of a low input and sustainable feedstock production system. PMID:22647367

  12. Bacterial Growth Kinetics under a Novel Flexible Methacrylate Dressing Serving as a Drug Delivery Vehicle for Antiseptics

    PubMed Central

    Forstner, Christina; Leitgeb, Johannes; Schuster, Rupert; Dosch, Verena; Kramer, Axel; Cutting, Keith F.; Leaper, David J.; Assadian, Ojan

    2013-01-01

    A flexible methacrylate powder dressing (Altrazeal®) transforms into a wound contour conforming matrix once in contact with wound exudate. We hypothesised that it may also serve as a drug delivery vehicle for antiseptics. The antimicrobial efficacy and influence on bacterial growth kinetics in combination with three antiseptics was investigated in an in vitro porcine wound model. Standardized in vitro wounds were contaminated with Staphylococcus aureus (MRSA; ATCC 33591) and divided into six groups: no dressing (negative control), methacrylate dressing alone, and combinations with application of 0.02% Polyhexamethylene Biguanide (PHMB), 0.4% PHMB, 0.1% PHMB + 0.1% betaine, 7.7 mg/mL Povidone-iodine (PVP-iodine), and 0.1% Octenidine-dihydrochloride (OCT) + 2% phenoxyethanol. Bacterial load per gram tissue was measured over five days. The highest reduction was observed with PVP-iodine at 24 h to log10 1.43 cfu/g, followed by OCT at 48 h to log10 2.41 cfu/g. Whilst 0.02% PHMB resulted in a stable bacterial load over 120 h to log10 4.00 cfu/g over 120 h, 0.1% PHMB + 0.1% betaine inhibited growth during the first 48 h, with slightly increasing bacterial numbers up to log10 5.38 cfu/g at 120 h. These results indicate that this flexible methacrylate dressing can be loaded with various antiseptics serving as drug delivery system. Depending on the selected combination, an individually shaped and controlled antibacterial effect may be achieved using the same type of wound dressing. PMID:23698780

  13. Asynchronous magnetic bead rotation (AMBR) micro-viscometer for rapid, sensitive and label-free studies of bacterial growth and drug sensitivity

    PubMed Central

    Sinn, Irene; Albertson, Theodore; Kinnunen, Paivo; Breslauer, David N.; McNaughton, Brandon H.; Burns, Mark A.; Kopelman, Raoul

    2012-01-01

    The long turnaround time in antimicrobial susceptibility testing (AST) endangers patients and encourages the administration of wide spectrum antibiotics, thus resulting in alarming increases of multi-drug resistant pathogens. A method for faster detection of bacterial proliferation presents one avenue towards addressing this global concern. We report on a label-free asynchronous magnetic bead rotation (AMBR) based viscometry method that rapidly detects bacterial growth and determines drug sensitivity by measuring changes in the suspension’s viscosity. With this platform, we observed the growth of a uropathogenic Escherichia coli isolate, with an initial concentration of 50 cells per drop, within 20 minutes; in addition, we determined the gentamicin minimum inhibitory concentration (MIC) of the E. coli isolate within 100 minutes. We thus demonstrated a label-free, micro-viscometer platform that can measure bacterial growth and drug susceptibility more rapidly, with lower initial bacterial counts than existing commercial systems, and potentially with any microbial strains. PMID:22507307

  14. [Qualitative and quantitative determination of bacterial populations in an aquatic environment. 7. Development of bacterial growth on raw materials exposed to potable water].

    PubMed

    Dott, W; Schoenen, D

    1985-05-01

    Refined steel plates coated with different materials that contained available organic compounds led to a microbial growth on the surface. Even plastics and bitumen which were used in the sphere of drinking water showed after an exposure time of three months up to 192 ml slime per square meter. The number of viable bacteria within the Aufwuchs was in the range of 10(7) cfu/ml. The production of slime increased with time. The relation of carbohydrate and protein content significantly changed from 2 at the beginning to 30 after 12 months of incubation the bitumen coating test plates. This indicates an increase synthesis of carbohydrate containing extracellular polymeric substances during the late phase of growth. The bacteria isolated from the Aufwuchs mainly belonged to the genera Pseudomonas, Flavobacterium, Acinetobacter, Caulobacter, sheated bacteria and other gramnegative physiologically nonreactiv roads. During exposure of the plates the relation changed within the bacterial communities of the main groups. Comparing the bacteria communities of inlet and outflow water it became evident that the later one was influenced by bacteria of the Aufwuchs. PMID:4024773

  15. Bacterial growth state distinguished by single-cell protein profiling: Does chlorination kill coliforms in municipal effluent?

    SciTech Connect

    Rockabrand, D.; Austin, T.; Kaiser, R.; Blum, P.

    1999-09-01

    Municipal effluent is the largest reservoir of human enteric bacteria. Its public health significance, however, depends upon the physiological status of the wastewater bacterial community. A novel immunofluorescence assay was developed and used to examine the bacterial growth state during wastewater disinfection. Quantitative levels of three highly conserved cytosolic proteins (DnaK, Dps, and Fis) were determined by using enterobacterium-specific antibody fluorochrome-coupled probes. Enterobacterial Fis homologs were abundant in growing cells and nearly undetectable in stationary-phase cells. In contrast, enterobacterial Dps homologs were abundant in stationary-phase cells but virtually undetectable in growing cells. The range of variation in the abundance of both proteins was at least 100-fold as determined by Western blotting and immunofluorescence analysis. Enterobacterial DnaK homologs were nearly invariant with growth state, enabling their use as permeabilization controls. The cellular growth states of individual enterobacteria in wastewater samples were determined by measurement of Fis, Dps, and DnaK abundance (protein profiling). Intermediate levels of Fis and Dps were evident and occurred in response to physiological transitions. The results indicate that chlorination failed to kill coliforms but rather elicited nutrient starvation and a reversible nonculturable state. These studies suggest that the current standard procedures for wastewater analysis which rely on detection of culturable cells likely underestimate fecal coliform content.

  16. Appropriate Fe (II) Addition Significantly Enhances Anaerobic Ammonium Oxidation (Anammox) Activity through Improving the Bacterial Growth Rate

    PubMed Central

    Liu, Yiwen; Ni, Bing-Jie

    2015-01-01

    The application of anaerobic ammonium oxidation (Anammox) process is often limited by the slow growth rate of Anammox bacteria. As the essential substrate element that required for culturing Anammox sludge, Fe (II) is expected to affect Anammox bacterial growth. This work systematically studied the effects of Fe (II) addition on Anammox activity based on the kinetic analysis of specific growth rate using data from batch tests with an enriched Anammox sludge at different dosing levels. Results clearly demonstrated that appropriate Fe (II) dosing (i.e., 0.09?mM) significantly enhanced the specific Anammox growth rate up to 0.172?d?1 compared to 0.118?d?1 at regular Fe (II) level (0.03?mM). The relationship between Fe (II) concentration and specific Anammox growth rate was found to be well described by typical substrate inhibition kinetics, which was integrated into currently well-established Anammox model to describe the enhanced Anammox growth with Fe (II) addition. The validity of the integrated Anammox model was verified using long-term experimental data from three independent Anammox reactors with different Fe (II) dosing levels. This Fe (II)-based approach could be potentially implemented to enhance the process rate for possible mainstream application of Anammox technology, in order for an energy autarchic wastewater treatment. PMID:25644239

  17. Appropriate Fe (II) Addition Significantly Enhances Anaerobic Ammonium Oxidation (Anammox) Activity through Improving the Bacterial Growth Rate

    NASA Astrophysics Data System (ADS)

    Liu, Yiwen; Ni, Bing-Jie

    2015-02-01

    The application of anaerobic ammonium oxidation (Anammox) process is often limited by the slow growth rate of Anammox bacteria. As the essential substrate element that required for culturing Anammox sludge, Fe (II) is expected to affect Anammox bacterial growth. This work systematically studied the effects of Fe (II) addition on Anammox activity based on the kinetic analysis of specific growth rate using data from batch tests with an enriched Anammox sludge at different dosing levels. Results clearly demonstrated that appropriate Fe (II) dosing (i.e., 0.09 mM) significantly enhanced the specific Anammox growth rate up to 0.172 d-1 compared to 0.118 d-1 at regular Fe (II) level (0.03 mM). The relationship between Fe (II) concentration and specific Anammox growth rate was found to be well described by typical substrate inhibition kinetics, which was integrated into currently well-established Anammox model to describe the enhanced Anammox growth with Fe (II) addition. The validity of the integrated Anammox model was verified using long-term experimental data from three independent Anammox reactors with different Fe (II) dosing levels. This Fe (II)-based approach could be potentially implemented to enhance the process rate for possible mainstream application of Anammox technology, in order for an energy autarchic wastewater treatment.

  18. Native Bacterial Endophytes Promote Host Growth in a Species-Specific Manner; Phytohormone Manipulations Do Not Result in Common Growth Responses

    PubMed Central

    Long, Hoang Hoa; Schmidt, Dominik D.; Baldwin, Ian T.

    2008-01-01

    Background All plants in nature harbor a diverse community of endophytic bacteria which can positively affect host plant growth. Changes in plant growth frequently reflect alterations in phytohormone homoeostasis by plant-growth-promoting (PGP) rhizobacteria which can decrease ethylene (ET) levels enzymatically by 1-aminocyclopropane-1-carboxylate (ACC) deaminase or produce indole acetic acid (IAA). Whether these common PGP mechanisms work similarly for different plant species has not been rigorously tested. Methodology/ Principal Findings We isolated bacterial endophytes from field-grown Solanum nigrum; characterized PGP traits (ACC deaminase activity, IAA production, phosphate solubilization and seedling colonization); and determined their effects on their host, S. nigrum, as well as on another Solanaceous native plant, Nicotiana attenuata. In S. nigrum, a majority of isolates that promoted root growth were associated with ACC deaminase activity and IAA production. However, in N. attenuata, IAA but not ACC deaminase activity was associated with root growth. Inoculating N. attenuata and S. nigrum with known PGP bacteria from a culture collection (DSMZ) reinforced the conclusion that the PGP effects are not highly conserved. Conclusions/ Significance We conclude that natural endophytic bacteria with PGP traits do not have general and predictable effects on the growth and fitness of all host plants, although the underlying mechanisms are conserved. PMID:18628963

  19. Plant Growth Promotion Potential Is Equally Represented in Diverse Grapevine Root-Associated Bacterial Communities from Different Biopedoclimatic Environments

    PubMed Central

    Fusi, Marco; Cherif, Ameur; Abou-Hadid, Ayman; El-Bahairy, Usama; Sorlini, Claudia; Daffonchio, Daniele

    2013-01-01

    Plant-associated bacteria provide important services to host plants. Environmental factors such as cultivar type and pedoclimatic conditions contribute to shape their diversity. However, whether these environmental factors may influence the plant growth promoting (PGP) potential of the root-associated bacteria is not widely understood. To address this issue, the diversity and PGP potential of the bacterial assemblage associated with the grapevine root system of different cultivars in three Mediterranean environments along a macrotransect identifying an aridity gradient were assessed by culture-dependent and independent approaches. According to 16S rRNA gene PCR-DGGE, the structure of endosphere and rhizosphere bacterial communities was highly diverse (P = 0.03) and was associated with a cultivar/latitudinal/climatic effect. Despite being diverse, the bacterial communities associated with Egyptian grapevines shared a higher similarity with the Tunisian grapevines than those cultivated in North Italy. A similar distribution, according to the cultivar/latitude/aridity gradients, was observed for the cultivable bacteria. Many isolates (23%) presented in vitro multiple stress resistance capabilities and PGP activities, the most frequent being auxin synthesis (82%), insoluble phosphate solubilisation (61%), and ammonia production (70%). The comparable numbers and types of potential PGP traits among the three different environmental settings indicate a strong functional homeostasis of beneficial bacteria associated with grape root. PMID:23878810

  20. Plant growth promotion potential is equally represented in diverse grapevine root-associated bacterial communities from different biopedoclimatic environments.

    PubMed

    Marasco, Ramona; Rolli, Eleonora; Fusi, Marco; Cherif, Ameur; Abou-Hadid, Ayman; El-Bahairy, Usama; Borin, Sara; Sorlini, Claudia; Daffonchio, Daniele

    2013-01-01

    Plant-associated bacteria provide important services to host plants. Environmental factors such as cultivar type and pedoclimatic conditions contribute to shape their diversity. However, whether these environmental factors may influence the plant growth promoting (PGP) potential of the root-associated bacteria is not widely understood. To address this issue, the diversity and PGP potential of the bacterial assemblage associated with the grapevine root system of different cultivars in three Mediterranean environments along a macrotransect identifying an aridity gradient were assessed by culture-dependent and independent approaches. According to 16S rRNA gene PCR-DGGE, the structure of endosphere and rhizosphere bacterial communities was highly diverse (P = 0.03) and was associated with a cultivar/latitudinal/climatic effect. Despite being diverse, the bacterial communities associated with Egyptian grapevines shared a higher similarity with the Tunisian grapevines than those cultivated in North Italy. A similar distribution, according to the cultivar/latitude/aridity gradients, was observed for the cultivable bacteria. Many isolates (23%) presented in vitro multiple stress resistance capabilities and PGP activities, the most frequent being auxin synthesis (82%), insoluble phosphate solubilisation (61%), and ammonia production (70%). The comparable numbers and types of potential PGP traits among the three different environmental settings indicate a strong functional homeostasis of beneficial bacteria associated with grape root. PMID:23878810

  1. Synthesis of fluorescent D-amino acids (FDAAs) and their use for probing peptidoglycan synthesis and bacterial growth in situ

    PubMed Central

    Kuru, Erkin; Tekkam, Srinivas; Hall, Edward

    2015-01-01

    Fluorescent D-amino acids (FDAAs) are efficiently incorporated into the peptidoglycan of diverse bacterial species at the sites of active peptidoglycan biosynthesis, allowing specific and covalent probing of bacterial growth with minimal perturbation. Here, we provide a protocol for the synthesis of four FDAAs emitting light in blue, green or red and for their use in peptidoglycan labeling of live bacteria. Our modular synthesis protocol gives easy access to a library of different FDAAs made with commercially available fluorophores. FDAAs can be synthesized in a typical chemistry laboratory in 2–3 days. The simple labeling procedure involves addition of the FDAAs to the bacterial sample for the desired labeling duration and stopping further label incorporation by fixation or by washing away excess dye. We discuss several scenarios for the use of these labels including short or long labeling durations, and the combination of different labels in pure culture or complex environmental samples. Depending on the experiment, FDAA labeling can take as little as 30 s for a rapidly growing species such as Escherichia coli. PMID:25474031

  2. CONSEQUENCES OF PROTIST-STIMULATED BACTERIAL PRODUCTION FOR ESTIMATING PROTIST GROWTH EFFICIENCIES

    EPA Science Inventory

    The trophic link between bacteria and bacterivorous protists is a complex interaction that involves feedback of inorganic nutrients and growth substrates that are immediately available for prey growth. These interactions were examined in the laboratory and in incubations of conce...

  3. Evaluation of free-stall mattress bedding treatments to reduce mastitis bacterial growth

    SciTech Connect

    Kristula, M.A.; Dou, Z.; Toth, J.D.; Smith, B.I.; Harvey, N.; Sabo, M.

    2008-05-15

    Bacterial counts were compared in free-stall mattresses and teat ends exposed to 5 treatments in a factorial study design on 1 dairy farm. Mattresses in five 30-cow groups were subjected to 1 of 5 bedding treatments every other day: 0.5 kg of hydrated limestone, 120 mL of commercial acidic conditioner, 1 kg of coal fly ash, 1 kg of kiln-dried wood shavings, and control (no bedding). Counts of coliforms, Klebsiella spp., Escherichia coli, and Streptococcus spp. were lowest on mattresses bedded with lime. Mattresses bedded with the commercial acidic conditioner had the next lowest counts for coliforms, Klebsiella spp., and Streptococcus spp. Wood shavings and the no-bedding control had the highest counts for coliform and Klebsiella spp. Compared with wood shavings or control, fly ash reduced the counts of coliforms, whereas for the other 3 bacterial groups, the reduction was not always significant. Streptococcus spp. counts were greatest in the control group and did not differ among the shavings and fly ash groups. Teat swab results indicated that hydrated lime was the only bedding treatment that significantly decreased the counts of both coliforms and Klebsiella spp. There were no differences in Streptococcus spp. numbers on the teats between any of the bedding treatments. Bacterial populations grew steadily on mattresses and were generally higher at 36 to 48 h than at 12 to 24 h, whereas bacterial populations on teats grew rapidly by 12 h and then remained constant. Hydrated lime was the only treatment that significantly reduced bacterial counts on both mattresses and teat ends, but it caused some skin irritation.

  4. Performance evaluation of a low conductive growth medium (LCGM) for growth of healthy and stressed Listeria monocytogenes and other common bacterial species.

    PubMed

    Banada, Padmapriya P; Liu, Yi-Shao; Yang, Liju; Bashir, Rashid; Bhunia, Arun K

    2006-08-15

    The performance of a low conductive growth medium (LCGM) (conductivity of <1300 microS) was evaluated for its ability to support growth of food borne bacterial pathogens including Listeria monocytogenes and to determine the expression of the two key virulence proteins in L. monocytogenes for possible applications in an impedance-based microfluidic biochip detection platform. Growth of Listeria was monitored spectrophotometrically and the lag phase, generation time, growth rate and maximum population density were determined using the Gompertz equation. LCGM had a lag phase of 2.3 h and showed a higher cell density compared to Luria Bertini (LB) broth. Length of lag phase was highly dependent on initial inoculum concentrations. The changes in conductivity with respect to growth in the low conductive medium were monitored using a conductivity probe. L. monocytogenes growth could be detected within 2 h (0.1 mS) in LCGM and within 6 h in LB. The performance of the media was also evaluated for the recovery of Listeria cells exposed to various stresses as 42 degrees C for 1, 2 or 6 h, an osmotic stress in 10.5% NaCl, an acidic stress at pH 2, 3 or 5 and a combined stress of 10.5% NaCl, pH 5 and 1 h exposure at 42 degrees C. The recovery rate was comparable with that of Tryptic soy broth containing yeast extract (TSBYE). L. monocytogenes in LCGM supported the expression of two key virulence markers, actin polymerization protein (ActA) and internalin B (InlB), which could be detected using specific antibodies. In general LCGM also supported the growth of several other bacterial species suggesting its implication in microbial quality monitoring of products. In conclusion, LCGM is a sensitive low conductive medium that supports the growth as well as the expression of virulence markers for potential applications in sensitive detection of L. monocytogenes or other food borne pathogens in impedance-based sensor platform. PMID:16790285

  5. Characterization of culturable bacterial endophytes and their capacity to promote plant growth from plants grown using organic or conventional practices

    PubMed Central

    Xia, Ye; DeBolt, Seth; Dreyer, Jamin; Scott, Delia; Williams, Mark A.

    2015-01-01

    Plants have a diverse internal microbial biota that has been shown to have an important influence on a range of plant health attributes. Although these endophytes have been found to be widely occurring, few studies have correlated agricultural production practices with endophyte community structure and function. One agricultural system that focuses on preserving and enhancing soil microbial abundance and biodiversity is organic farming, and numerous studies have shown that organically managed system have increased microbial community characteristics. Herein, the diversity and specificity of culturable bacterial endophytes were evaluated in four vegetable crops: corn, tomato, melon, and pepper grown under organic or conventional practices. Endophytic bacteria were isolated from surface-sterilized shoot, root, and seed tissues and sequence identified. A total of 336 bacterial isolates were identified, and grouped into 32 species and five phyla. Among these, 239 isolates were from organically grown plants and 97 from those grown conventionally. Although a diverse range of bacteria were documented, 186 were from the Phylum Firmicutes, representing 55% of all isolates. Using the Shannon diversity index, we observed a gradation of diversity in tissues, with shoots and roots having a similar value, and seeds having the least diversity. Importantly, endophytic microbial species abundance and diversity was significantly higher in the organically grown plants compared to those grown using conventional practices, potentially indicating that organic management practices may increase endophyte presence and diversity. The impact that these endophytes could have on plant growth and yield was evaluated by reintroducing them into tomato plants in a greenhouse environment. Of the bacterial isolates tested, 61% were found to promote tomato plant growth and 50–64% were shown to enhance biomass accumulation, illustrating their potential agroecosystem application. PMID:26217348

  6. Anthocyanin Incorporated Dental Copolymer: Bacterial Growth Inhibition, Mechanical Properties, and Compound Release Rates and Stability by 1H NMR

    PubMed Central

    Hrynash, Halyna; Pilly, Vinay Kumar; Mankovskaia, Alexandra; Xiong, Yaoyang; Nogueira Filho, Getulio; Bresciani, Eduardo; Lévesque, Céline Marie

    2014-01-01

    Objective. To evaluate bacterial growth inhibition, mechanical properties, and compound release rate and stability of copolymers incorporated with anthocyanin (ACY; Vaccinium macrocarpon). Methods. Resin samples were prepared (Bis-GMA/TEGDMA at 70/30?mol%) and incorporated with 2 w/w% of either ACY or chlorhexidine (CHX), except for the control group. Samples were individually immersed in a bacterial culture (Streptococcus mutans) for 24?h. Cell viability (n = 3) was assessed by counting the number of colony forming units on replica agar plates. Flexural strength (FS) and elastic modulus (E) were tested on a universal testing machine (n = 8). Compound release and chemical stability were evaluated by UV spectrophotometry and 1H NMR (n = 3). Data were analyzed by one-way ANOVA and Tukey's test (? = 0.05). Results. Both compounds inhibited S. mutans growth, with CHX being most effective (P < 0.05). Control resin had the lowest FS and E values, followed by ACY and CHX, with statistical difference between control and CHX groups for both mechanical properties (P < 0.05). The 24?h compound release rates were ACY: 1.33??g/mL and CHX: 1.92??g/mL. 1H NMR spectra suggests that both compounds remained stable after being released in water. Conclusion. The present findings indicate that anthocyanins might be used as a natural antibacterial agent in resin based materials. PMID:24693287

  7. Elevated guanosine 5'-diphosphate 3'-diphosphate level inhibits bacterial growth and interferes with FtsZ assembly.

    PubMed

    Yamaguchi, Takayoshi; Iida, Ken-Ichiro; Shiota, Susumu; Nakayama, Hiroaki; Yoshida, Shin-Ichi

    2015-12-01

    FtsZ, a protein essential for prokaryotic cell division, forms a ring structure known as the Z-ring at the division site. FtsZ has a GTP binding site and is assembled into linear structures in a GTP-dependent manner in vitro. We assessed whether guanosine 5'-diphosphate 3'-diphosphate (ppGpp), a global regulator of gene expression in starved bacteria, affects cell division in Salmonella Paratyphi A. Elevation of intracellular ppGpp levels by using the relA expression vector induced repression of bacterial growth and incorrect FtsZ assembly. We found that FtsZ forms helical structures in the presence of ppGpp by using the GTP binding site; however, ppGpp levels required to form helical structures were at least 20-fold higher than the required GTP levels in vitro. Furthermore, once formed, helical structures did not change to the straight form even after GTP addition. Our data indicate that elevation of the ppGpp level leads to inhibition of bacterial growth and interferes with FtsZ assembly. PMID:26449557

  8. Growth inhibition of bacterial fish pathogens and quorum-sensing blocking by bacteria recovered from chilean salmonid farms.

    PubMed

    Fuente, Mery de la; Miranda, Claudio D; Jopia, Paz; González-Rocha, Gerardo; Guiliani, Nicolás; Sossa, Katherine; Urrutia, Homero

    2015-06-01

    The main goal of this study was to find bacterial isolates with the ability to inhibit the growth of the fish pathogens Aeromonas hydrophila, Vibrio anguillarum, and Flavobacterium psychrophilum and to inhibit the blockage of the quorum-sensing (QS) system. A total of 80 gram-negative strains isolated from various freshwater Chilean salmonid farms were studied. We determined that 10 strains belonging to the genus Pseudomonas inhibited at least one of the assayed fish pathogens. Of these, nine strains were able to produce siderophores and two strains were able to inhibit the growth of all assayed pathogenic species. When the 80 strains were examined for QS-blocking activity, only the strains Pseudomonas sp. FF16 and Raoultella planticola R5B1 were identified as QS blockers. When the QS-blocker strains were analyzed for their ability to produce homoserine lactone (HSL) molecules, thin-layer chromatography analysis showed that both strains were able to produce C6-HSL- and C8-HSL-type molecules. Strain R5B1 did not show growth inhibition properties, but strain FF16 also led to inhibition of growth in A. hydrophila and F. psychrophilum as well as to siderophore production. Pseudomonas sp. FF16 exhibited potentially useful antagonistic properties and could be a probiotic candidate for the salmon farming industry. PMID:26000731

  9. Validity of the tritiated thymidine method for estimating bacterial growth rates: measurement of isotope dilution during DNA synthesis.

    PubMed Central

    Pollard, P C; Moriarty, D J

    1984-01-01

    The rate of tritiated thymidine incorporation into DNA was used to estimate bacterial growth rates in aquatic environments. To be accurate, the calculation of growth rates has to include a factor for the dilution of isotope before incorporation. The validity of an isotope dilution analysis to determine this factor was verified in experiments reported here with cultures of a marine bacterium growing in a chemostat. Growth rates calculated from data on chemostat dilution rates and cell density agreed well with rates calculated by tritiated thymidine incorporation into DNA and isotope dilution analysis. With sufficiently high concentrations of exogenous thymidine, de novo synthesis of deoxythymidine monophosphate was inhibited, thereby preventing the endogenous dilution of isotope. The thymidine technique was also shown to be useful for measuring growth rates of mixed suspensions of bacteria growing anaerobically. Thymidine was incorporated into the DNA of a range of marine pseudomonads that were investigated. Three species did not take up thymidine. The common marine cyanobacterium Synechococcus species did not incorporate thymidine into DNA. PMID:6517579

  10. A multiphasic approach for the identification of endophytic bacterial in strawberry fruit and their potential for plant growth promotion.

    PubMed

    de Melo Pereira, Gilberto Vinícius; Magalhăes, Karina Teixeira; Lorenzetii, Emi Rainildes; Souza, Thiago Pereira; Schwan, Rosane Freitas

    2012-02-01

    This study used a multiphasic approach, characterized by the simultaneous use of culture-dependent and culture-independent methods, to investigate endophytic bacterial communities in strawberry (Fragaria ananassa) fruit. A total of 92 bacterial endophytes were isolated and initially grouped by their repetitive extragenic palindromic (rep)-PCR banding pattern and biochemical features. Phylogenetic analysis of the 16S rRNA gene sequences of 45 representatives showed that the isolates belonged to the species Bacillus subtilis (eight isolates), Bacillus sp. (seven isolates), Enterobacter sp. (seven isolates), Enterobacter ludwigii (six isolates), Lactobacillus plantarum (six isolates), Pseudomonas sp. (five isolates), Pantoea punctata (three isolates), and Curtobacterium citreum (three isolates). Nucleic acids were extracted from the strawberry fruit and subjected to 16S rRNA gene directed polymerase chain reaction denaturing gradient gel electrophoresis (16S rRNA PCR-DGGE). The species B. subtilis, Enterobacter sp., and Pseudomonas sp. were detected both by isolation and DGGE. The DGGE fingerprints of total bacterial DNA did not exhibit bands corresponding to several of the representative species isolated in the extinction dilution (L. plantarum, C. citreum, and P. punctata). In contrast, bands in the DGGE profile that were identified as relatives of Arthrobacter sp. and one uncultivable Erythrobacter sp. were not recovered by cultivation techniques. After isolation, the nitrogen fixation ability and the in vitro production of indole-3-acetic acid (IAA) equivalents and siderophores were evaluated. A high percentage of isolates were found to possess the ability to produce siderophores and IAA equivalents; however, only a few isolates belonging to the genera Pseudomonas and Enterobacter showed the ability to fix nitrogen. Plant growth promotion was evaluated under greenhouse conditions and revealed the ability of the Bacillus strains to enhance the number of leaves, shoot length, root dry weight, and shoot dry weight. The activity of the bacterial isolate identified as B. subtilis NA-108 exerted the greatest influence on strawberry growth and showed a 42.8% increase in number of leaves, 15.26% for high shoot, 43.5% increase in root dry weight, and a 77% increase in shoot dry weight when compared with untreated controls. PMID:21837472

  11. Inhibition of bacterial, fungal and plant growth by testa extracts of Citrullus genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Watermelon (Citrullus lanatus var. lanatus (Thunb.) Matsum & Nakai) seed exudates inhibit germination and seedling growth of several plant species and growth of pathogenic fungi and bacteria. This study was conducted to determine if extractable components in testae contribute to the inhibition. T...

  12. The importance of growth kinetic analysis in determining bacterial susceptibility against antibiotics and silver nanoparticles

    PubMed Central

    Theophel, Karsten; Schacht, Veronika J.; Schlüter, Michael; Schnell, Sylvia; Stingu, Catalina-Suzana; Schaumann, Reiner; Bunge, Michael

    2014-01-01

    Routine antibiotics susceptibility testing still relies on standardized cultivation-based analyses, including measurement of inhibition zones in conventional agar diffusion tests and endpoint turbidity-based measurements. Here, we demonstrate that common off-line monitoring and endpoint determination after 18–24 h could be insufficient for reliable growth-dependent evaluation of antibiotic susceptibility. Different minimal inhibitory concentrations were obtained in 20- and 48 h microdilution plate tests using an Enterococcus faecium clinical isolate (strain UKI-MB07) as a model organism. Hence, we used an on-line kinetic assay for simultaneous cultivation and time-resolved growth analysis in a 96-well format instead of off-line susceptibility testing. Growth of the Enterococcus test organism was delayed up to 30 h in the presence of 0.25 ?g mL-1 of vancomycin and 8 ?g mL-1 of fosfomycin, after which pronounced growth was observed. Despite the delayed onset of growth, treatment with fosfomycin, daptomycin, fusidic acid, cefoxitin, or gentamicin resulted in higher maximum growth rates and/or higher final optical density values compared with antibiotic-free controls, indicating that growth stimulation and hormetic effects may occur with extended exposure to sublethal antibiotic concentrations. Whereas neither maximum growth rate nor final cell density correlated with antibiotic concentration, the lag phase duration for some antibiotics was a more meaningful indicator of dose-dependent growth inhibition. Our results also reveal that non-temporal growth profiles are only of limited value for cultivation-based antimicrobial silver nanoparticle susceptibility testing. The exposure to Ag(0) nanoparticles led to plasma membrane damage in a concentration-dependent manner and induced oxidative stress in Enterococcus faecium UKI-MB07, as shown by intracellular ROS accumulation. PMID:25426104

  13. Noninvasive Quantitative Measurement of Bacterial Growth in Porous Media Under Unsaturated-Flow Conditions

    SciTech Connect

    Yarwood, Rocky; Rockhold, Mark L.); Niemet, Mike; Selker, John S.; Bottomley, Peter J.

    2002-07-01

    Glucose-dependent growth of the luxCDABE reporter bacterium Pseudomonas fluorescens HK44 was monitored noninvasively in quartz sand under unsaturated-flow conditions within a 45- by 56- by 1-cm two-dimensional light transmission chamber. The spatial and temporal development of growth were mapped daily over 7 days by quantifying salicylate-induced bioluminescence. A nonlinear model relating the rate of increase in light emission after salicylate exposure to microbial density successfully predicted growth over 4 orders of magnitude (r{sup 2}=0.95). Total model-predicted growth agreed with growth calculated from the mass balance of the system by using previously determined growth parameters of HK44 (predicted, 1.2 x 10{sup 12} cells; calculated, 1.7 x 10{sup 12} cells). Colonization expanded in all directions from the inoculation region, including upward migration against the liquid flow. Both the daily rate of expansion of the colonized zone and the population density of the first day's growth in each newly colonized region remained relatively constant throughout the experiment. Nonetheless, substantial growth continued to occur on subsequent days in the older regions of the colonized zone. The proportion of daily potential growth that remained within the chamber declined progressively between days 2 and 7 (from 97 to 13%). A densely populated, anoxic region developed in the interior of the colonized zone even though the sand was unsaturated and fresh growth medium continued to flow through the colonized zone. These data illustrate the potential of a light transmission chamber, bioluminescent bacteria, and sensitive digital camera technology to noninvasively study real-time hydrology-microbiology interactions associated with unsaturated flow in porous media.

  14. Level and Change of Bullying Behavior during High School: A Multilevel Growth Curve Analysis

    ERIC Educational Resources Information Center

    Nocentini, Annalaura; Menesini, Ersilia; Salmivalli, Christina

    2013-01-01

    The development of bullying behavior was examined across three years in a sample of 515 adolescents (46% females) from 41 classrooms. At time 1, the students were in grades 9 and 10 (mean age = 14.5 years; SD = 0.54). Results of a multilevel growth model showed that both baseline level and change of bullying varied significantly across individuals…

  15. Structural Equation Modeling of Latent Growth Curves of Weight Gain among Treated Tuberculosis Patients

    PubMed Central

    Vasantha, Mahalingam; Venkatesan, Perumal

    2014-01-01

    Tuberculosis still remains a major public health problem even though it is treatable and curable. Weight gain measurement during anti tuberculosis (TB) treatment period is an important component to assess the progress of TB patients. In this study, Latent Growth Models (LGMs) were implemented in a longitudinal design to predict the change in weight of TB patients who were given three different regimens under randomized controlled clinical trial for anti-TB treatment. Linear and Quadratic LGMs were fitted using Mplus software. The age, sex and treatment response of the TB patients were used as time invariant independent variables of the growth trajectories. The quadratic trend was found to be better in explaining the changes in weight without grouping than the quadratic model for three group comparisons. A significant increase in the change of weight over time was identified while a significant quadratic effect indicated that weights were sustained over time. The growth rate was similar in both the groups. The treament response had significant association with the growth rate of weight scores of the patients. PMID:24618577

  16. Monitoring of bacterial growth and structural analysis as probed by FT-IR spectroscopy.

    PubMed

    Zeroual, W; Choisy, C; Doglia, S M; Bobichon, H; Angiboust, J F; Manfait, M

    1994-06-30

    Fourier-transform infrared spectroscopy was used to explore structural changes in bacteria under different incubation conditions. In particular, differences between Bradyrhizobium japonicum (BRJ) grown in liquid and on solid media were investigated, as well as the rearrangement of BRJ after transfer from one medium to the other. The FT-IR absorption bands located between 1200 and 900 cm-1 region, vary in spectral shape and intensity when BRJ were suspended in solution medium or plated on solid medium. In agreement with the electronic micrograph data, these spectroscopic changes are due to the changes involving the bacterial wall (peptidoglycan) when BRJ are plated in agar medium. By means of this FT-IR ultrastructural study of Bradyrhizobium japonicum bacteria, it has been possible to follow and to evaluate the rate of the molecular change in bacteria without any destructive interference. This indicates that FT-IR spectroscopy can prove to be a valuable technique in the monitoring of metabolic events in bacterial cells relevant to agriculture as well as environmental and health sciences. PMID:8031853

  17. Effects of space flight and mixing on bacterial growth in low volume cultures

    NASA Technical Reports Server (NTRS)

    Kacena, M. A.; Manfredi, B.; Todd, P.

    1999-01-01

    Previous investigations have shown that liquid suspension bacterial cultures grow to higher cell concentrations in spaceflight than on Earth. None of these studies included ground-control experiments designed to evaluate the fluid effects potentially responsible for the reported increases. Therefore, the emphasis of this research was to both confirm differences in final cell concentration between 1g and microgravity cultures, and to examine the effects of mixing as a partial explanation for this difference. Flight experiments were performed in the Fluid Processing Apparatus (FPA), aboard Space Shuttle Missions STS-63 and STS-69, with simultaneous 1g static and agitated controls. Additional static 1g, agitated, and clino-rotated controls were performed in 9-ml culture tubes. This research revealed that both E. coli and B. subtilis samples cultured in space flight grew to higher final cell densities (120-345% increase) than simultaneous static 1g controls. The final cell concentration of E. coli cells cultured under agitation was 43% higher than in static 1g cultures and was 102% higher with clino-rotation. However, for B. subtilis cultures grown while being agitated on a shaker or clino-rotated, the final cell concentrations were nearly identical to those of the simultaneous static 1g controls. Therefore, these data suggest that the unique fluid quiescence in the microgravity environment (lack of sedimentation, creating unique transfer of nutrients and waste products), was responsible for the enhanced bacterial proliferation reported in this and other studies.

  18. Plankton metabolism and bacterial growth efficiency in offshore waters along a latitudinal transect between the UK and Svalbard

    NASA Astrophysics Data System (ADS)

    García-Martín, E. E.; McNeill, S.; Serret, P.; Leakey, R. J. G.

    2014-10-01

    Euphotic zone gross primary production, community respiration and net community production were determined from in vitro changes of dissolved oxygen, and from in vivo INT reduction capacity fractionated into two size classes, in offshore waters along a latitudinal transect crossing the North, Norwegian and Greenland Seas between the UK and Svalbard. Rates of gross primary production were higher and more variable than community respiration, so net autotrophy prevailed in the euphotic zone with an average net community production of 164±64 mmol O2 m-2 d-1. Respiration seemed to be mainly attributed to large eukaryotic cells (>0.8 ?m) with smaller cells, mainly bacteria, accounting for a mean of 25% (range 5-48%) of community respiration. Estimates of bacterial growth efficiency were very variable (range 7-69%) due to uncoupling between bacterial respiration and production. Larger cells tended to contribute more towards total respiration in communities with high gross primary production and low community respiration, while bacteria contributed more towards total respiration in communities with lower gross primary production, typical of microbial-dominated systems. This suggests that community respiration is related to the size structure of the plankton community.

  19. Statistical optimization of medium components and physicochemical parameters to simultaneously enhance bacterial growth and esterase production by Bacillus thuringiensis.

    PubMed

    Mazzucotelli, Cintia Anabela; Moreira, María Del Rosario; Ansorena, María Roberta

    2016-01-01

    Bacillus thuringiensis is a genus extensively studied because of its high potential for biotechnological application, principally in biocontrol techniques. However, the optimization of esterase production by this strain has been scarcely studied. The aim of this work was to select and optimize the physicochemical and nutritional parameters that significantly influence the growth and esterase production of B. thuringiensis. To this purpose, 6 nutritional factors and 2 physicochemical parameters were evaluated using a Plackett-Burman design. Significant variables were optimized using a Box-Behnken design and through the desirability function to select the levels of the variables that simultaneously maximize microbial growth and esterase production. The optimum conditions resulting from simultaneous optimization of the responses under study were found to be 1 g/L glucose, 15 g/L peptone, and 3.25 g/L NaCl. Under these optimal conditions, it was possible to achieve a 2.5 log CFU/mL increase in bacterial growth and a 113-fold increase in esterase productivity, compared with minimal medium without agitation. PMID:26529589

  20. PRODUCTION OF PLANT GROWTH PROMOTING SUBSTANCES IN BACTERIAL ISOLATES FROM THE SEAGRASS RHIZOSPHERE

    EPA Science Inventory

    Plants and rhizosphere bacteria have evolved chemical signals that enable their mutual growth. These relationships have been well investigated with agriculturally important plants, but not in seagrasses, which are important to the stability of estuaries. Seagrasses are rooted in ...

  1. Sequence-specific bacterial growth inhibition by peptide nucleic acid targeted to the mRNA binding site of 16S rRNA.

    PubMed

    Hatamoto, Masashi; Nakai, Kazufumi; Ohashi, Akiyoshi; Imachi, Hiroyuki

    2009-10-01

    Peptide nucleic acid (PNA) targeted to the functional domains of 23S rRNA can inhibit translation and cell growth. However, effective inhibition of translation and cell growth using 16S rRNA-targeted PNA has still not been achieved. Here, we report that PNA targeted to the functional site of 16S rRNA could inhibit both gene expression in vitro and bacterial growth in pure culture with sequence specificity. We used 10-mer PNAs conjugated with a cell-penetrating peptide, which targeted the mRNA binding site at the 3' end of 16S rRNA. Using 0.6 microM of the peptide-PNAs, cell-free ss-galactosidase production decreased by 50%, whereas peptide-PNAs with one or two mismatches to the target sequence showed much weaker inhibition effects. To determine the growth inhibition and bactericidal effects of the peptide-PNA conjugate, we performed OD measurement and viable cell counting. We observed dose- and sequence-dependent inhibition of cell growth and bactericidal effects. These growth inhibitory effects are observed both in the Gram-negative bacterium of Escherichia coli and the Gram-positive bacteria Bacillus subtilis and Corynebacterium efficiens, although inhibitory concentrations were different for each bacterial species. These results present possibilities for 16S rRNA sequence-based specific bacterial growth inhibition using a peptide-PNA conjugate. PMID:19578844

  2. CURVED WALLS: GRAIN GROWTH, SETTLING, AND COMPOSITION PATTERNS IN T TAURI DISK DUST SUBLIMATION FRONTS

    SciTech Connect

    McClure, M. K.; Calvet, N.; Hartmann, L.; Ingleby, L.; D'Alessio, P.; Espaillat, C.; Sargent, B.; Watson, D. M.; Hernández, J. E-mail: ncalvet@umich.edu E-mail: lingleby@umich.edu E-mail: cespaillat@cfa.harvard.edu E-mail: dmw@pas.rochester.edu

    2013-10-01

    The dust sublimation walls of disks around T Tauri stars represent a directly observable cross-section through the disk atmosphere and midplane. Their emission properties can probe the grain size distribution and composition of the innermost regions of the disk, where terrestrial planets form. Here we calculate the inner dust sublimation wall properties for four classical T Tauri stars with a narrow range of spectral types and inclination angles and a wide range of mass accretion rates to determine the extent to which the walls are radially curved. Best fits to the near- and mid-IR excesses are found for curved, two-layer walls in which the lower layer contains larger, hotter, amorphous pyroxene grains with Mg/(Mg+Fe) = 0.6 and the upper layer contains submicron, cooler, mixed amorphous olivine and forsterite grains. As the mass accretion rates decrease from 10{sup –8} to 10{sup –10} M{sub ?} yr{sup –1}, the maximum grain size in the lower layer decreases from ?3 to 0.5 ?m. We attribute this to a decrease in fragmentation and turbulent support for micron-sized grains with decreasing viscous heating. The atmosphere of these disks is depleted of dust with dust-gas mass ratios 1 × 10{sup –4} of the interstellar medium (ISM) value, while the midplane is enhanced to eight times the ISM value. For all accretion rates, the wall contributes at least half of the flux in the optically thin 10 ?m silicate feature. Finally, we find evidence for an iron gradient in the disk, suggestive of that found in our solar system.

  3. Inhibition of bacterial growth in sweet cheese whey by carbon dioxide as determined by culture-independent community profiling.

    PubMed

    Lo, Raquel; Xue, Tian; Weeks, Mike; Turner, Mark S; Bansal, Nidhi

    2016-01-18

    Whey is a valuable co-product from cheese making that serves as a raw material for a wide range of products. Its rich nutritional content lends itself to rapid spoilage, thus it typically needs to be pasteurised and refrigerated promptly. Despite the extensive literature on milk spoilage bacteria, little is known about the spoilage bacteria of whey. The utility of carbon dioxide (CO2) to extend the shelf-life of raw milk and cottage cheese has been well established, but its application in whey preservation has not yet been explored. This study aims to characterise the microbial populations of fresh and spoiled sweet whey by culture-independent community profiling using 454 pyrosequencing of 16S rRNA gene amplicons and to determine whether carbonation is effective in inhibiting bacterial growth in sweet whey. The microbiota of raw Cheddar and Mozzarella whey was dominated by cheese starter bacteria. After pasteurisation, two out of the three samples studied became dominated by diverse environmental bacteria from various phyla, with Proteobacteria being the most dominant. Diverse microbial profiles were maintained until spoilage occurred, when the entire population was dominated by just one or two genera. Whey spoilage bacteria were found to be similar to those of milk. Pasteurised Cheddar and Mozzarella whey was spoiled by Bacillus sp. or Pseudomonas sp., and raw Mozzarella whey was spoiled by Pseudomonas sp., Serratia sp., and other members of the Enterobacteriaceae family. CO2 was effective in inhibiting bacterial growth of pasteurised Cheddar and Mozzarella whey stored at 15°C and raw Mozzarella whey stored at 4°C. The spoilage bacteria of the carbonated samples were similar to those of the non-carbonated controls. PMID:26476573

  4. Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties.

    PubMed

    Sura-de Jong, Martina; Reynolds, Ray J B; Richterova, Klara; Musilova, Lucie; Staicu, Lucian C; Chocholata, Iva; Cappa, Jennifer J; Taghavi, Safiyh; van der Lelie, Daniel; Frantik, Tomas; Dolinova, Iva; Strejcek, Michal; Cochran, Alyssa T; Lovecka, Petra; Pilon-Smits, Elizabeth A H

    2015-01-01

    Selenium (Se)-rich plants may be used to provide dietary Se to humans and livestock, and also to clean up Se-polluted soils or waters. This study focused on endophytic bacteria of plants that hyperaccumulate selenium (Se) to 0.5-1% of dry weight. Terminal restriction fragment length polymorphism (T-RFLP) analysis was used to compare the diversity of endophytic bacteria of hyperaccumulators Stanleya pinnata (Brassicaceae) and Astragalus bisulcatus (Fabaceae) with those from related non-accumulators Physaria bellii (Brassicaceae) and Medicago sativa (Fabaceae) collected on the same, seleniferous site. Hyperaccumulators and non-accumulators showed equal T-RF diversity. Parsimony analysis showed that T-RFs from individuals of the same species were more similar to each other than to those from other species, regardless of plant Se content or spatial proximity. Cultivable endophytes from hyperaccumulators S. pinnata and A. bisulcatus were further identified and characterized. The 66 bacterial morphotypes were shown by MS MALDI-TOF Biotyper analysis and 16S rRNA gene sequencing to include strains of Bacillus, Pseudomonas, Pantoea, Staphylococcus, Paenibacillus, Advenella, Arthrobacter, and Variovorax. Most isolates were highly resistant to selenate and selenite (up to 200 mM) and all could reduce selenite to red elemental Se, reduce nitrite and produce siderophores. Seven isolates were selected for plant inoculation and found to have plant growth promoting properties, both in pure culture and when co-cultivated with crop species Brassica juncea (Brassicaceae) or M. sativa. There were no effects on plant Se accumulation. We conclude that Se hyperaccumulators harbor an endophytic bacterial community in their natural seleniferous habitat that is equally diverse to that of comparable non-accumulators. The hyperaccumulator endophytes are characterized by high Se resistance, capacity to produce elemental Se and plant growth promoting properties. PMID:25784919

  5. Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties

    PubMed Central

    Sura-de Jong, Martina; Reynolds, Ray J. B.; Richterova, Klara; Musilova, Lucie; Staicu, Lucian C.; Chocholata, Iva; Cappa, Jennifer J.; Taghavi, Safiyh; van der Lelie, Daniel; Frantik, Tomas; Dolinova, Iva; Strejcek, Michal; Cochran, Alyssa T.; Lovecka, Petra; Pilon-Smits, Elizabeth A. H.

    2015-01-01

    Selenium (Se)-rich plants may be used to provide dietary Se to humans and livestock, and also to clean up Se-polluted soils or waters. This study focused on endophytic bacteria of plants that hyperaccumulate selenium (Se) to 0.5–1% of dry weight. Terminal restriction fragment length polymorphism (T-RFLP) analysis was used to compare the diversity of endophytic bacteria of hyperaccumulators Stanleya pinnata (Brassicaceae) and Astragalus bisulcatus (Fabaceae) with those from related non-accumulators Physaria bellii (Brassicaceae) and Medicago sativa (Fabaceae) collected on the same, seleniferous site. Hyperaccumulators and non-accumulators showed equal T-RF diversity. Parsimony analysis showed that T-RFs from individuals of the same species were more similar to each other than to those from other species, regardless of plant Se content or spatial proximity. Cultivable endophytes from hyperaccumulators S. pinnata and A. bisulcatus were further identified and characterized. The 66 bacterial morphotypes were shown by MS MALDI-TOF Biotyper analysis and 16S rRNA gene sequencing to include strains of Bacillus, Pseudomonas, Pantoea, Staphylococcus, Paenibacillus, Advenella, Arthrobacter, and Variovorax. Most isolates were highly resistant to selenate and selenite (up to 200 mM) and all could reduce selenite to red elemental Se, reduce nitrite and produce siderophores. Seven isolates were selected for plant inoculation and found to have plant growth promoting properties, both in pure culture and when co-cultivated with crop species Brassica juncea (Brassicaceae) or M. sativa. There were no effects on plant Se accumulation. We conclude that Se hyperaccumulators harbor an endophytic bacterial community in their natural seleniferous habitat that is equally diverse to that of comparable non-accumulators. The hyperaccumulator endophytes are characterized by high Se resistance, capacity to produce elemental Se and plant growth promoting properties. PMID:25784919

  6. Stimulated bacterial growth under elevated p?CO?: results from an off-shore mesocosm study.

    PubMed

    Endres, Sonja; Galgani, Luisa; Riebesell, Ulf; Schulz, Kai-Georg; Engel, Anja

    2014-01-01

    Marine bacteria are the main consumers of freshly produced organic matter. Many enzymatic processes involved in the bacterial digestion of organic compounds were shown to be pH sensitive in previous studies. Due to the continuous rise in atmospheric CO2 concentration, seawater pH is presently decreasing at a rate unprecedented during the last 300 million years but the consequences for microbial physiology, organic matter cycling and marine biogeochemistry are still unresolved. We studied the effects of elevated seawater pCO2 on a natural plankton community during a large-scale mesocosm study in a Norwegian fjord. Nine Kiel Off-Shore Mesocosms for Future Ocean Simulations (KOSMOS) were adjusted to different pCO2 levels ranging initially from ca. 280 to 3000 µatm and sampled every second day for 34 days. The first phytoplankton bloom developed around day 5. On day 14, inorganic nutrients were added to the enclosed, nutrient-poor waters to stimulate a second phytoplankton bloom, which occurred around day 20. Our results indicate that marine bacteria benefit directly and indirectly from decreasing seawater pH. During the first phytoplankton bloom, 5-10% more transparent exopolymer particles were formed in the high pCO2 mesocosms. Simultaneously, the efficiency of the protein-degrading enzyme leucine aminopeptidase increased with decreasing pH resulting in up to three times higher values in the highest pCO2/lowest pH mesocosm compared to the controls. In general, total and cell-specific aminopeptidase activities were elevated under low pH conditions. The combination of enhanced enzymatic hydrolysis of organic matter and increased availability of gel particles as substrate supported up to 28% higher bacterial abundance in the high pCO2 treatments. We conclude that ocean acidification has the potential to stimulate the bacterial community and facilitate the microbial recycling of freshly produced organic matter, thus strengthening the role of the microbial loop in the surface ocean. PMID:24941307

  7. A new predictive dynamic model describing the effect of the ambient temperature and the convective heat transfer coefficient on bacterial growth.

    PubMed

    Ben Yaghlene, H; Leguerinel, I; Hamdi, M; Mafart, P

    2009-07-31

    In this study, predictive microbiology and food engineering were combined in order to develop a new analytical model predicting the bacterial growth under dynamic temperature conditions. The proposed model associates a simplified primary bacterial growth model without lag, the secondary Ratkowsky "square root" model and a simplified two-parameter heat transfer model regarding an infinite slab. The model takes into consideration the product thickness, its thermal properties, the ambient air temperature, the convective heat transfer coefficient and the growth parameters of the micro organism of concern. For the validation of the overall model, five different combinations of ambient air temperature (ranging from 8 degrees C to 12 degrees C), product thickness (ranging from 1 cm to 6 cm) and convective heat transfer coefficient (ranging from 8 W/(m(2) K) to 60 W/(m(2) K)) were tested during a cooling procedure. Moreover, three different ambient air temperature scenarios assuming alternated cooling and heating stages, drawn from real refrigerated food processes, were tested. General agreement between predicted and observed bacterial growth was obtained and less than 5% of the experimental data fell outside the 95% confidence bands estimated by the bootstrap percentile method, at all the tested conditions. Accordingly, the overall model was successfully validated for isothermal and dynamic refrigeration cycles allowing for temperature dynamic changes at the centre and at the surface of the product. The major impact of the convective heat transfer coefficient and the product thickness on bacterial growth during the product cooling was demonstrated. For instance, the time needed for the same level of bacterial growth to be reached at the product's half thickness was estimated to be 5 and 16.5 h at low and high convection level, respectively. Moreover, simulation results demonstrated that the predicted bacterial growth at the air ambient temperature cannot be assumed to be equivalent to the bacterial growth occurring at the product's surface or centre when convection heat transfer is taken into account. Our results indicate that combining food engineering and predictive microbiology models is an interesting approach providing very useful tools for food safety and process optimisation. PMID:19447512

  8. In vitro mechanism of inhibition of bacterial cell growth by allicin.

    PubMed Central

    Feldberg, R S; Chang, S C; Kotik, A N; Nadler, M; Neuwirth, Z; Sundstrom, D C; Thompson, N H

    1988-01-01

    Diallyl thiosulfinate (allicin) is the agent found in garlic which is responsible for the antibacterial and antifungal activity of extracts of this plant. The effect of bacteriostatic concentrations of allicin (0.2 to 0.5 mM) on the growth of Salmonella typhimurium revealed a pattern of inhibition characterized by: (i) a lag of approximately 15 min between addition of allicin and onset of inhibition, (ii) a transitory inhibition phase whose duration was proportional to allicin concentration and inversely proportional to culture density, (iii) a resumed growth phase which showed a lower rate of growth than in uninhibited controls, and (iv) an entry into stationary phase at a lower culture density. Whereas DNA and protein syntheses showed a delayed and partial inhibition by allicin, inhibition of RNA synthesis was immediate and total, suggesting that this is the primary target of allicin action. PMID:2469386

  9. Effect of bacterial inoculation of strains of pseudomonas aeruginosa, alcaligenes feacalis and bacillus subtilis on germination, growth and heavy metal (cd, cr, and ni) uptake of brassica juncea.

    PubMed

    Ndeddy Aka, Robinson Junior; Babalola, Olubukola Oluranti

    2016-02-01

    Bacterial inoculation may influence Brassica juncea growth and heavy metal (Ni, Cr, and Cd) accumulation. Three metal tolerant bacterial isolates (BCr3, BCd33, and BNi11) recovered from mine tailings, identified as Pseudomonas aeruginosa KP717554, Alcaligenes feacalis KP717561, and Bacillus subtilis KP717559 were used. The isolates exhibited multiple plant growth beneficial characteristics including the production of indole-3-acetic acid, hydrogen cyanide, ammonia, insoluble phosphate solubilization together with the potential to protect plants against fungal pathogens. Bacterial inoculation improved seeds germination of B. juncea plant in the presence of 0.1 mM Cr, Cd, and Ni, as compared to the control treatment. Compared with control treatment, soil inoculation with bacterial isolates significantly increased the amount of soluble heavy metals in soil by 51% (Cr), 50% (Cd), and 44% (Ni) respectively. Pot experiment of B. juncea grown in soil spiked with 100 mg kg(-1) of NiCl2, 100 mg kg(-1) of CdCl2, and 150 mg kg(-1) of K2Cr2O7, revealed that inoculation with metal tolerant bacteria not only protected plants against the toxic effects of heavy metals, but also increased growth and metal accumulation of plants significantly. These findings suggest that such metal tolerant, plant growth promoting bacteria are valuable tools which could be used to develop bio-inoculants for enhancing the efficiency of phytoextraction. PMID:26503637

  10. R E S E A R C H L E T T E R Ammonia produced by bacterial colonies promotes growth of

    E-print Network

    Markos, Anton

    R E S E A R C H L E T T E R Ammonia produced by bacterial colonies promotes growth of ampicillin ampicillin tolerance; ammonia; antibiotic degradation; volatiles; Serratia sp.; Escherichia coli. Abstract-containing culture media to pH 8.5 by ammonia or Tris exhibited the same effects, while pretreatment of bac- terial

  11. Induction of Purple Sulfur Bacterial Growth in Dairy Wastewater Lagoons by Circulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: To determine if circulation of diary wastewater induces the growth of phototrophic purple sulfur bacteria (PSB). Methods and Results: Two dairy wastewater lagoons that were similar in size, geographic location, number and type of cattle loading the lagoons were chosen. The only obvious diffe...

  12. Consideration of probability of bacterial growth for Jovian planets and their satellites

    NASA Technical Reports Server (NTRS)

    Taylor, D. M.; Berkman, R. M.; Divine, N.

    1975-01-01

    Environmental parameters affecting growth of bacteria (e.g., moisture, temperature, pH, and chemical composition) were compared with current atmospheric models for Jupiter and Saturn, and with the available physical data for their satellites. Different zones of relative probability of growth were identified for Jupiter and Saturn, with the highest in pressure regions of 1-10 million N/sq m (10 to 100 atmospheres) and 3-30 million N/sq m (30 to 300 atmospheres), respectively. Of the more than two dozen satellites, only the largest (Io, Europa, Ganymede, Callisto, and Titan) were found to be interesting biologically. Titan's atmosphere may produce a substantial greenhouse effect providing increased surface temperatures. Models predicting a dense atmosphere are compatible with microbial growth for a range of pressures at Titan's surface. For Titan's surface the probability of growth would be enhanced if (1) the surface is entirely or partially liquid (water), (2) volcanism (in an ice-water-steam system) is present, or (3) access to internal heat sources is significant.

  13. Evolution of cooperation in microbial biofilms - A stochastic model for the growth and survival of bacterial mats

    NASA Astrophysics Data System (ADS)

    Knebel, Johannes; Cremer, Jonas; Melbinger, Anna; Frey, Erwin

    2012-02-01

    Cooperative behavior is essential for microbial biofilms. The structure and composition of a biofilm change over time and thereby influence the evolution of cooperation within the system. In turn, the level of cooperation affects the growth dynamics of the biofilm. Here, we investigate this coupling for an experimentally well-defined situation in which mutants of the Pseudomonas fluorescens strain form a mat at the liquid-air interface by the production of an extra-cellular matrix [1]. We model the occurrence of cooperation in this bacterial population by taking into account the formation of the mat. The presence of cooperators enhances the growth of the mat, but at the same time cheaters can infiltrate the population and put the viability of the mat at risk. We find that the survival time of the mat crucially depends on its initial dynamics which is subject to demographic fluctuations [2]. More generally, our work provides conceptual insights into the requirements and mechanisms for the evolution of cooperation.[1] P. Rainey et al., Nature 425, 72 (2003).[2] A. Melbinger et al., PRL 105, 178101 (2010).

  14. Bacterial adhesion and growth reduction by novel rubber-derived oligomers.

    PubMed

    Badawy, Hope T; Pasetto, Pamela; Mouget, Jean-Luc; Pilard, Jean-François; Cutright, Teresa J; Milsted, Amy

    2013-09-01

    In the medical field, attached bacteria can cause infections associated with catheters, incisions, burns, and medical implants especially in immunocompromised patients. The problem is exacerbated by the fact that attached bacteria are ?1000 times more resistant to antibiotics than planktonic cells. The rapid spread of antibiotic resistance in these and other organisms has led to a significant need to find new methods for preventing bacterial attachment. The goal of this research was to evaluate the effectiveness of novel polymer coatings to prevent the attachment of three medically relevant bacteria. Tests were conducted with Pseudomonas aeruginosa, Staphylococcus epidermidis, and Staphylococcus aureus for oligomers derived from modifications of natural rubber (cis 1,4-polyisoprene). The different oligomers were: PP04, with no quaternary ammonium (QA); MV067, one QA; PP06, three QA groups. In almost all experiments, cell attachment was inhibited to various extents as long as the oligomers were used. PP06 was the most effective as it decreased the planktonic cell numbers by at least 50% for all bacteria. Differences between species sensitivity were also observed. P. aeruginosa was the most resistant bacteria tested, S. aureus, the most sensitive. Further experiments are required to understand the full extent and mode of the antimicrobial properties of these surfaces. PMID:23921230

  15. Bacterial adhesion and growth reduction by novel rubber-derived oligomers

    PubMed Central

    Badawy, Hope T.; Pasetto, Pamela; Mouget, Jean-Luc; Pilard, Jean-François; Cutright, Teresa J.

    2013-01-01

    In the medical field, attached bacteria can cause infections associated with catheters, incisions, burns, and medical implants especially in immunocompromised patients. The problem is exacerbated by the fact that attached bacteria are ~1000 times more resistant to antibiotics than planktonic cells. The rapid spread of antibiotic resistance in these and other organisms has led to a significant need to find new methods for preventing bacterial attachment. The goal of this research was to evaluate the effectiveness of novel polymer coatings to prevent the attachment of three medically relevant bacteria. Tests were conducted with Pseudomonas aeruginosa, Staphylococcus epidermidis, and Staphylococcus aureus for oligomers derived from modifications of natural rubber (cis 1,4-polyisoprene). The different oligomers were: PP04, with no quaternary ammonium (QA); MV067, one QA; PP06, three QA groups. In almost all experiments, cell attachment was inhibited to various extents as long as the oligomers were used. PP06 was the most effective as it decreased the planktonic cell numbers by at least 50% for all bacteria. Differences between species sensitivity were also observed. P. aeruginosa was the most resistant bacteria tested, S. aureus, the most sensitive. Further experiments are required to understand the full extent and mode of the antimicrobial properties of these surfaces. PMID:23921230

  16. In vitro study of bacterial growth in continuous ambulatory peritoneal dialysis fluids.

    PubMed Central

    Sheth, N K; Bartell, C A; Roth, D A

    1986-01-01

    We examined the in vitro survival of bacteria in continuous ambulatory peritoneal dialysis effluents of patients with clinical peritonitis and those without peritonitis. Standard strains of coagulase-negative staphylococci (CNS), Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa were inoculated into the fluids, and portions were plated for bacterial counts at 0.5, 4, 24, 48, 72, and 96 h. Unused dialysate fluid was also inoculated simultaneously. Our results show that CNS increased minimally up to 48 h in the noninfected continuous ambulatory peritoneal dialysis effluents and decreased by 96 h, whereas survival was only minimal in the infected effluent. S. aureus showed trends similar to those of CNS, but differences in survival in infected and noninfected effluents were less marked. By contrast, E. coli and P. aeruginosa increased by greater than 1,000-fold in all solutions tested. Based on the above findings, it is likely that a proportionate number of culture-negative cases of peritonitis are due to gram-positive cocci, especially CNS, which are not retrievable by standard culture techniques because of poor survival rate. PMID:3086376

  17. Biodegradation of soil-applied pesticides by selected strains of plant growth-promoting rhizobacteria (PGPR) and their effects on bacterial growth.

    PubMed

    Myresiotis, Charalampos K; Vryzas, Zisis; Papadopoulou-Mourkidou, Euphemia

    2012-04-01

    A laboratory study was conducted to investigate the influence of four PGPR strains on the degradation of five soil applied pesticides and their effects on bacterial growth. Interactions of Bacillus subtilis GB03, Bacillus subtilis FZB24, Bacillus amyloliquefaciens IN937a and Bacillus pumilus SE34 with two concentrations of acibenzolar-S-methyl, metribuzin, napropamide, propamocarb hydrochloride and thiamethoxam in liquid culture and soil microcosm were studied. The degradation of acibenzolar-S-methyl by all PGPR tested in low and high concentration, was 5.4 and 5.7 times, respectively, faster than that in non-inoculated liquid culture medium. At the end of the 72-h liquid cultured experiments, 8-18, 9-11, 15-36 and 11-22% of metribuzin, napropamide, propamocarb hydrochloride and thiamethoxam, respectively, had disappeared from PGPR inoculated medium. Under the soil microcosm experimental conditions, the half-lives of acibenzolar-S-methyl incubated in the presence of PGPR strains spiked at 1.0 and 10.0 mg kg(-1) were 10.3-16.4 and 9.2-15.9 days, respectively, markedly lower compared with >34.2 days in the control. From the rest pesticides studied degradation of propamocarb hydrochloride and thiamethoxam was enhanced in the presence of B. amyloliquefaciens IN937a and B. pumilus SE34. Acibenzolar-S-methyl, propamocarb hydrochloride and thiamethoxam significantly increased the PGPR growth. However, the stimulatory effect was related to the level of pesticide spiked. PMID:21870159

  18. Structure, Growth, and Decomposition of Laminated Algal-Bacterial Mats in Alkaline Hot Springs

    PubMed Central

    Doemel, W. N.; Brock, Thomas D.

    1977-01-01

    Laminated mats of unique character in siliceous alkaline hot springs of Yellowstone Park are formed predominantly by two organisms, a unicellular blue-green alga, Synechococcus lividus, and a filamentous, gliding, photosynthetic bacterium, Chloroflexus aurantiacus. The mats can be divided approximately into two major zones: an upper, aerobic zone in which sufficient light penetrates for net photosynthesis, and a lower, anaerobic zone, where photosynthesis does not occur and decomposition is the dominant process. Growth of the mat was followed by marking the mat surface with silicon carbide particles. The motile Chloroflexus migrates vertically at night, due to positive aerotaxis, responding to reduced O2 levels induced by dark respiration. The growth rates of mats were estimated at about 50 ?m/day. Observations of a single mat at Octopus Spring showed that despite the rapid growth rate, the thickness of the mat remained essentially constant, and silicon carbide layers placed on the surface gradually moved to the bottom of the mat, showing that decomposition was taking place. There was a rapid initial rate of decomposition, with an apparent half-time of about 1 month, followed by a slower period of decomposition with a half-time of about 12 months. Within a year, complete decomposition of a mat of about 2-cm thickness can occur. Also, the region in which decomposition occurs is strictly anaerobic, showing that complete decomposition of organic matter from these organisms can occur in the absence of O2. Images PMID:16345254

  19. Growth performance and ileal and total tract amino acid digestibility in broiler chickens fed diets containing bacterial protein produced on natural gas.

    PubMed

    Schřyen, H F; Hetland, H; Rouvinen-Watt, K; Skrede, A

    2007-01-01

    A total of 180 broiler chickens were fed 1 of 3 diets from day-old to slaughter at 35 d: a control diet with 35% soybean meal (SOY) or diets in which either 6% basic bacterial protein meal (BBP) or 6% autolysed bacterial protein meal (AUT) partially replaced soybean meal protein. Ileal and total tract apparent amino acid digestibility were examined in 5 chickens per diet using TiO(2) as an inert marker. Chickens fed the diets with bacterial protein had higher weight gain and feed consumption than control chicks during the first 3 wk, but there were no differences in growth or feed intake during the last 2 wk or during the total experimental period. The birds fed the BBP diet showed more efficient feed conversion compared with chickens fed the SOY and AUT diets. Litter quality at 5 wk was poorer in pens where the chickens were fed the AUT diet compared with the other 2 treatments. There were no differences among diets in the dressing percentage. Ileal amino acid digestibility at 5 wk of age revealed only minor differences between diets. There was a tendency toward lower ileal digestibility (0.12 > P > 0.07) of Arg, Lys, Met, and Phe in the AUT diet compared with the SOY diet, whereas there were no differences between the SOY and BBP diets. Total tract amino acid digestibilities at 5 wk were similar or slightly lower than the ileal digestibilities within diets. Total tract amino acid digestibility at 2 wk was similar to the total tract amino acid digestibility at 5 wk. The diets containing bacterial protein showed lower total tract digestibility of most amino acids compared with the SOY diet. It was concluded that 6% of either basic or autolysed bacterial protein can replace soybean meal in diets for broiler chickens without impairing growth performance, and the basic bacterial protein seemed to be a slightly better substitute than the autolysed bacterial protein. PMID:17179420

  20. Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent.

    PubMed

    Reysenbach, A L; Longnecker, K; Kirshtein, J

    2000-09-01

    The phylogenetic diversity was determined for a microbial community obtained from an in situ growth chamber placed on a deep-sea hydrothermal vent on the Mid-Atlantic Ridge (23 degrees 22' N, 44 degrees 57' W). The chamber was deployed for 5 days, and the temperature within the chamber gradually decreased from 70 to 20 degrees C. Upon retrieval of the chamber, the DNA was extracted and the small-subunit rRNA genes (16S rDNA) were amplified by PCR using primers specific for the Archaea or Bacteria domain and cloned. Unique rDNA sequences were identified by restriction fragment length polymorphisms, and 38 different archaeal and bacterial phylotypes were identified from the 85 clones screened. The majority of the archaeal sequences were affiliated with the Thermococcales (71%) and Archaeoglobales (22%) orders. A sequence belonging to the Thermoplasmales confirms that thermoacidophiles may have escaped enrichment culturing attempts of deep-sea hydrothermal vent samples. Additional sequences that represented deeply rooted lineages in the low-temperature eurarchaeal (marine group II) and crenarchaeal clades were obtained. The majority of the bacterial sequences obtained were restricted to the Aquificales (18%), the epsilon subclass of the Proteobacteria (epsilon-Proteobacteria) (40%), and the genus Desulfurobacterium (25%). Most of the clones (28%) were confined to a monophyletic clade within the epsilon-Proteobacteria with no known close relatives. The prevalence of clones related to thermophilic microbes that use hydrogen as an electron donor and sulfur compounds (S(0), SO(4), thiosulfate) indicates the importance of hydrogen oxidation and sulfur metabolism at deep-sea hydrothermal vents. The presence of sequences that are related to sequences from hyperthermophiles, moderate thermophiles, and mesophiles suggests that the diversity obtained from this analysis may reflect the microbial succession that occurred in response to the shift in temperature and possible associated changes in the chemistry of the hydrothermal fluid. PMID:10966393

  1. Autoinducer 2: A concentration-dependent signal for mutualistic bacterial biofilm growth

    USGS Publications Warehouse

    Rickard, A.H.; Palmer, R.J., Jr.; Blehert, D.S.; Campagna, S.R.; Semmelhack, M.F.; Egland, P.G.; Bassler, B.L.; Kolenbrander, P.E.

    2006-01-01

    4,5-dihydroxy-2,3-pentanedione (DPD), a product of the LuxS enzyme in the catabolism of S-ribosylhomocysteine, spontaneously cyclizes to form autoinducer 2 (AI-2). AI-2 is proposed to be a universal signal molecule mediating interspecies communication among bacteria. We show that mutualistic and abundant biofilm growth in flowing saliva of two human oral commensal bacteria, Actinomyces naeslundii T14V and Streptococcus oralis 34, is dependent upon production of AI-2 by S. oralis 34. A luxS mutant of S. oralis 34 was constructed which did not produce AI-2. Unlike wild-type dual-species biofilms, A. naeslundii T14V and an S. oralis 34 luxS mutant did not exhibit mutualism and generated only sparse biofilms which contained a 10-fold lower biomass of each species. Restoration of AI-2 levels by genetic or chemical (synthetic AI-2 in the form of DPD) complementation re-established the mutualistic growth and high biomass characteristic for the wild-type dual-species biofilm. Furthermore, an optimal concentration of DPD was determined, above and below which biofilm formation was suppressed. The optimal concentration was 100-fold lower than the detection limit of the currently accepted AI-2 assay. Thus, AI-2 acts as an interspecies signal and its concentration is critical for mutualism between two species of oral bacteria grown under conditions that are representative of the human oral cavity. ?? 2006 Blackwell Publishing Ltd.

  2. Arabidopsis growth and defense are modulated by bacterial quorum sensing molecules

    PubMed Central

    Schenk, Sebastian T.; Stein, Elke; Kogel, Karl-Heinz; Schikora, Adam

    2012-01-01

    N-acyl-homoserine lactones (AHLs) play an important role in the communication within the rhizosphere; they serve as a chemical base for interactions within and between different species of Gram-negative bacteria. Not only bacteria, also plants perceive and react to AHLs with diverse responses. Here we describe a negative correlation between the length of AHLs’ lipid chains and the observed growth promotion in Arabidopsis thaliana. Moreover, we speculate on a positive correlation between the reinforcement of defense mechanisms and the length of the lipid moieties. Observation presented here may be of great importance for understanding of the complex interplay between plants and their environment, as well as for agronomic applications. PMID:22307043

  3. Growth phase dependence of the activation of a bacterial gene for carotenoid synthesis by blue light.

    PubMed Central

    Fontes, M; Ruiz-Vázquez, R; Murillo, F J

    1993-01-01

    Myxococcus xanthus responds to blue light by producing carotenoid pigments. A mutation at a gene named carC is known to block the metabolism of phytoene, a carotenoid precursor, and this gene has now been cloned and sequenced. We show here that gene carC, which is homologous to phytoene dehydrogenase genes from other organisms, is tightly regulated by light through a mechanism that operates only when the cells have reached the stationary phase or are starved of a carbon source. A genetic element that mediates the effect of the growth phase has been identified. Gene carC is integrated with another unlinked carotenogenic gene in a single 'light regulon' controlled by common trans-acting genetic elements. A potential -35 site for the binding of sigma factors has been found upstream of the carC transcriptional start. However, the -10 region shows no similarity with analogous sites at promoters of other Gram-negative bacteria. Images PMID:8467787

  4. Pressate from peat dewatering as a substrate for bacterial growth. [Rhizopus arrhizus; Xanthomonas campestris; Aureobasidium

    SciTech Connect

    Mulligan, C.N.; Cooper, D.G.

    1985-07-01

    This study considered the possibility of using water expressed during the drying of fuel-grade peat as a substrate for microbial growth. Highly humified peat pressed for 2.5 min at 1.96 MPa produced water with a chemical oxygen demand of 690 mg/liter. Several biological compounds could be produced by using the organic matter inexpressed peat water as a substrate. These included polymers such as chitosan, contained in the cell wall of Rhizopus arrhizus, and two extracellular polysaccharides, xanthan gum and pullulan, produced by Bacillus subtilis grown in the expressed water. Small additions of nutrients to the peat pressate were necessary to obtain substantial yields of products. The addition of peptone, yeast extract, and glucose improved production of the various compounds. Biological treatment improved the quality of the expressed water to the extent that in an industrial process it could be returned to the environment.

  5. A Growth Curve Analysis of the Joint Influences of Parenting Affect, Child Characteristics and Deviant Peers on Adolescent Illicit Drug Use

    ERIC Educational Resources Information Center

    Pires, Paulo; Jenkins, Jennifer M.

    2007-01-01

    This study purports that parental rejection and warmth are critical to the development of adolescent drug use, and investigates a model that also considers children's vulnerability and deviant peer affiliations. It tests mediation through the proximal risk factor of deviant peers. Poisson growth curve modeling was used to examine participants from…

  6. The Impact of Salient Role Stress on Trajectories of Health in Late Life among Survivors of a Seven-Year Panel Study: Analyses of Individual Growth Curves

    ERIC Educational Resources Information Center

    Shaw, Benjamin A.; Krause, Neal

    2002-01-01

    The purpose of this study is twofold: 1) to model changes in health over time among older adults; and 2) to assess the degree to which stress arising in salient social roles accounts for individual variation in these changes. Individual growth curve analyses using Hierarchical Linear Modeling (HLM) software were employed with longitudinal data…

  7. Growth curves of crossbred cows sired by Hereford, Angus, Belgian Blue, Brahman, Boran, and Tuli bulls, and the fraction of mature weight and height at puberty

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to evaluate the growth curves of females to determine if mature size and relative rates of maturing amongst breeds differed. Body weight and hip height data were fit to the nonlinear function: BW = f(t) = A – Bek(age) where A is an estimate of mature BW and k determi...

  8. Root hair deformation, bacterial attachment, and plant growth in wheat-azospirillum associations.

    PubMed

    Jain, D K; Patriquin, D G

    1984-12-01

    Seven Azospirillum strains induced more deformation of root hairs of wheat than did strains of Rhizobium leguminosarum, Azotobacter chroococcum, or Escherichia coli. Azospirillum sp. strain Sp245 caused the most deformation. Strain Sp245 (isolated from surface sterile roots of wheat) and strain Sp7 (isolated from the rhizosphere of a forage grass) were compared with regard to their effects on root hair deformation, their attachment to roots, and their effects on the growth of four wheat cultivars. The amount of deformation caused by the two strains in the four cultivars increased in the following order: cv. Tobari, cv. Tonari, cv. BH1146, cv. Lagoa. Strain Sp245 attached to the roots of all cultivars in low numbers, and attachment did not increase with time (up to 48 h). Strain Sp7 attached in higher numbers, and attachment increased with time. Inoculation of the four cultivars of wheat had pronounced effects on root mass measured at maturity. The magnitude of the effects in the four cultivars increased in the following order: Tobari, Tonari, BH1146, Lagoa; these effects were progressively more positive for strain Sp245 and progressively more negative for strain Sp7. Concentrations of N in wheat did not vary substantially between cultivars or strains. Concentrations of K and P did not vary substantially between cultivars but did vary between strains, Sp245 effecting increases and Sp7 effecting decreases. PMID:16346680

  9. Effects of Bacillus amyloliquefaciens FZB42 on Lettuce Growth and Health under Pathogen Pressure and Its Impact on the Rhizosphere Bacterial Community

    PubMed Central

    Rändler, Manuela; Schmid, Michael; Junge, Helmut; Borriss, Rainer; Hartmann, Anton; Grosch, Rita

    2013-01-01

    The soil-borne pathogen Rhizoctonia solani is responsible for crop losses on a wide range of important crops worldwide. The lack of effective control strategies and the increasing demand for organically grown food has stimulated research on biological control. The aim of the present study was to evaluate the rhizosphere competence of the commercially available inoculant Bacillus amyloliquefaciens FZB42 on lettuce growth and health together with its impact on the indigenous rhizosphere bacterial community in field and pot experiments. Results of both experiments demonstrated that FZB42 is able to effectively colonize the rhizosphere (7.45 to 6.61 Log 10 CFU g?1 root dry mass) within the growth period of lettuce in the field. The disease severity (DS) of bottom rot on lettuce was significantly reduced from severe symptoms with DS category 5 to slight symptom expression with DS category 3 on average through treatment of young plants with FZB42 before and after planting. The 16S rRNA gene based fingerprinting method terminal restriction fragment length polymorphism (T-RFLP) showed that the treatment with FZB42 did not have a major impact on the indigenous rhizosphere bacterial community. However, the bacterial community showed a clear temporal shift. The results also indicated that the pathogen R. solani AG1-IB affects the rhizosphere microbial community after inoculation. Thus, we revealed that the inoculant FZB42 could establish itself successfully in the rhizosphere without showing any durable effect on the rhizosphere bacterial community. PMID:23935892

  10. Analyzing latent state-trait and multiple-indicator latent growth curve models as multilevel structural equation models

    PubMed Central

    Geiser, Christian; Bishop, Jacob; Lockhart, Ginger; Shiffman, Saul; Grenard, Jerry L.

    2013-01-01

    Latent state-trait (LST) and latent growth curve (LGC) models are frequently used in the analysis of longitudinal data. Although it is well-known that standard single-indicator LGC models can be analyzed within either the structural equation modeling (SEM) or multilevel (ML; hierarchical linear modeling) frameworks, few researchers realize that LST and multivariate LGC models, which use multiple indicators at each time point, can also be specified as ML models. In the present paper, we demonstrate that using the ML-SEM rather than the SL-SEM framework to estimate the parameters of these models can be practical when the study involves (1) a large number of time points, (2) individually-varying times of observation, (3) unequally spaced time intervals, and/or (4) incomplete data. Despite the practical advantages of the ML-SEM approach under these circumstances, there are also some limitations that researchers should consider. We present an application to an ecological momentary assessment study (N = 158 youths with an average of 23.49 observations of positive mood per person) using the software Mplus (Muthén and Muthén, 1998–2012) and discuss advantages and disadvantages of using the ML-SEM approach to estimate the parameters of LST and multiple-indicator LGC models. PMID:24416023

  11. Latent growth curve analyses of emotional support for informal caregivers of vulnerable persons with HIV/AIDS.

    PubMed

    Mitchell, Mary M; Robinson, Allysha C; Nguyen, Trang Q; Knowlton, Amy R

    2015-09-01

    People living with HIV/AIDS (PLHIV) have growing rates of morbidity and need for informal care, especially among drug-using PLHIV. Informal caregivers, or persons providing unpaid emotional or instrumental support, have protective effects on the health and well-being of PLHIV. Research suggests that social support, including care recipients' reciprocity of emotional support, is important to sustained caregiving. This study examined HIV caregivers' perceived emotional support over time from their current or former injection drug-using care recipients. Data were from baseline, 6-month, and 12-month follow-up of the BEACON study. Latent growth curve analysis showed a decline in reciprocated emotional support reports over time, particularly among caregivers themselves HIV seropositive or currently substance using. Researchers should develop interventions to strengthen the caregiving relationship by promoting reciprocity of emotional support, with implications for sustaining caregiving to vulnerable PLHIV and improving their health outcomes. Interventions should especially target dyads in which caregivers are also HIV positive or using substances. PMID:25884910

  12. Some triple-filament lead isotope ratio measurements and an absolute growth curve for single-stage leads

    USGS Publications Warehouse

    Stacey, J.S.; Delevaux, M.E.; Ulrych, T.J.

    1969-01-01

    Triple-filament analyses of three standard lead samples are used to calibrate a mass spectrometer in an absolute sense. The bias we measure is 0.0155 percent per mass unit, and the precision (for 95% confidence limits) is ??0.13% or less for all ratios relative to 204Pb. Although its precision is not quite so good as that of the lead-tetramethyl method in the analysis of large samples, the triple-filament method is less complex and is an attractive alternative for smaller sample sizes down to 500 ??g. Triple-filament data are presented for six possibly single-stage lead ores and one feldspar. These new data for ores are combined with corrected tetramethyl data for stratiform lead deposits to compute absolute parameters for a universal single-stage lead isotope growth curve. Absolute isotopic ratios for primeval lead have been determined by Oversby and because all the previous data for both meteorites and lead ores were similarly fractionated, the absolute value of 238U 204Pb = 9.09 ?? 0.06 for stratiform leads is little different from the value 8.99 ?? 0.05 originally computed by Ostic, Russell and Stanton. Absolute values for lead isotope ratios for all interlaboratory standard samples presently available from the literature are tabulated. ?? 1969.

  13. Do children orphaned by AIDS experience distress over time? A latent growth curve analysis of depressive symptoms.

    PubMed

    Chi, Peilian; Li, Xiaoming; Barnett, Douglas; Zhao, Junfeng; Zhao, Guoxiang

    2014-01-01

    This longitudinal study aimed to examine the enduring effects of parental HIV/AIDS on children's psychological well-being in Asia. A sample of 1625 children aged from 6 to 18 years old were assessed annually for their depressive symptoms over three years. Latent growth curve modeling (LGCM) was used to examine the trajectories of depressive symptoms among AIDS orphans and vulnerable children in comparison with children from HIV-free families. AIDS orphans demonstrated the highest initial level of depressive symptoms among the three groups. On average, children's depressive symptoms' scores can be expected to realize an approximate 25% decrease for AIDS orphans, 19% decrease for vulnerable children, and 15% decrease for comparison children over a three-year period. Individual differences within the groups showed that children with higher initial level of depressive symptoms can be expected to decrease slower over time. Multiple group LGCM showed that the three groups of children demonstrated significantly different trajectories of depressive symptoms. Among the key demographic factors, only age exerted an effect on the trajectory of depressive symptoms of vulnerable children, indicating that the younger children showed higher level of initial depressive symptoms and lower rate of decrease than the older children. The current study enriched our knowledge on the longitudinal effect of parental HIV/AIDS on children's emotional distress. Future psychological support might take the children's developmental stages and cultural appropriateness into consideration and deliver service for the most vulnerable group of children affected by HIV/AIDS. PMID:24090100

  14. Latent Growth Curve Analysis of Fear during a Speech Task before and after Treatment for Social Phobia

    PubMed Central

    Price, Matthew; Anderson, Page L.

    2011-01-01

    Models of social phobia highlight the importance of anticipatory anxiety in the experience of fear during a social situation. Anticipatory anxiety has been shown to be highly correlated with performance anxiety for a variety of social situations. A few studies show that average ratings of anxiety during the anticipation and performance phases of a social situation decline following treatment. Evidence also suggests that the point of confrontation with the feared stimulus is the peak level of fear. No study to date has evaluated the pattern of anxious responding across the anticipation, confrontation, and performance phases before and after treatment, which is the focus of the current study. Socially phobic individuals (N=51) completed a behavioral avoidance task before and after two types of manualized cognitive behavioral therapy, and gave ratings of fear during the anticipation and performance phases. Results from latent growth curve analysis were the same for the two treatments and suggest that before treatment, anxiety sharply increased during the anticipation phase, was highly elevated at the confrontation, and, to a gradually increased during the performance phase. After treatment, anxiety increased during the anticipation phase, although at a much slower rate than at pretreatment, peaking at confrontation, and declined at the performance phase. The findings suggest that anticipatory experiences are critical to the experience of fear for public speaking and should be incorporated into exposures. PMID:21907972

  15. The effects of indoor and outdoor dust exposure on the growth, sensitivity to oxidative-stress, and biofilm production of three opportunistic bacterial pathogens.

    PubMed

    Suraju, Mohammed O; Lalinde-Barnes, Sloan; Sanamvenkata, Sachindra; Esmaeili, Mahsa; Shishodia, Shishir; Rosenzweig, Jason A

    2015-12-15

    Within the last decade, many studies have highlighted the radical changes in the components of indoor and outdoor dust. For example, agents like automobile emitted platinum group elements and different kinds of organic phthalates and esters have been reported to be accumulating in the biosphere. Humans consistently face dermal, respiratory, and dietary exposures to these particles while indoors and outdoors. In fact, dust particulate matter has been associated with close to 500,000 deaths per year in Europe and about 200,000 deaths per year in the United States. To date, there has been limited examination of the physiological impact of indoor and outdoor dust exposure on normal flora microbes. In this study, the effect of indoor- and outdoor-dust exposure on three opportunistic bacterial species (Escherichia coli, Enterococcus faecalis, and Pseudomonas aeruginosa) was assessed. Specifically, bacterial growth, oxidative stress resistance, and biofilm production were measured following indoor- and outdoor-dust exposures. Studies were conducted in nutritionally-rich and -poor environments typically encountered by bacteria. Surprisingly, indoor-dust (200?g/mL), enhanced the growth of all three bacterial species in nutrient-poor conditions, but slowed growth in nutrient-rich conditions. In nutrient-rich medium, 100?g/mL exposure of either indoor- or outdoor-dust resulted in significantly reduced oxidative stress resistance in E. coli. Most interestingly, dust (indoor and outdoor), either in nutrient-rich or -poor conditions, significantly increased biofilm production in all three bacterial species. These data suggest that indoor and outdoor dust, can modify opportunistic bacteria through altering growth, sensitivity to oxidative stress, and their virulence potential through enhanced biofilm formation. PMID:26363607

  16. RELATIONS BETWEEN BACTERIAL NITROGEN METABOLISM AND GROWTH EFFICIENCY IN AN ESTUARINE AND AN OPEN-WATER ECOSYSTEM

    EPA Science Inventory

    Bacterial uptake or release of dissolved nitrogen compounds (amino nitrogen, urea, ammonium and nitrate) were examined in 0.8 |m filtered water from an estuary (Santa Rosa Sound [SRS], northwestern Florida) and an open-water location in the Gulf of Mexico [GM]. The bacterial nutr...

  17. Inhibition of Bacterial Growth and Intramniotic Infection in a Guinea Pig Model of Chorioamnionitis Using PAMAM Dendrimers

    PubMed Central

    Wang, Bing; Navath, Raghavendra S.; Menjoge, Anupa R.; Balakrishnan, Bindu; Bellair, Robert; Dai, Hui; Romero, Roberto; Kannan, Sujatha; Kannan, Rangaramanujam M.

    2010-01-01

    Dendrimers have emerged as topical microbicides to treat vaginal infections. This study explores the in-vitro, in-vivo antimicrobial activity of PAMAM dendrimers, and the associated mechanism. Interestingly, topical cervical application of 500 µg of generation-4 neutral dendrimer (G4-PAMAM-OH) showed potential to treat the Escherichia coli induced ascending uterine infection in guinea pig model of chorioamnionitis. Amniotic fluid collected from different gestational sacs of infected guinea pigs post treatment showed absence of E. coli growth in the cultures plated with it. The cytokine level [tumor necrosis factor (TNF?) and interleukin (IL-6 and IL-1?)] in placenta of the G4-PAMAM-OH treated animals were comparable to those in healthy animals while these were notably high in infected animals. Since, antibacterial activity of amine-terminated PAMAM dendrimers is known, the activity of hydroxyl and carboxylic acid terminated PAMAM dendrimers was compared with it. Though the G4-PAMAM-NH2 shows superior antibacterial activity, it was found to be cytotoxic to human cervical epithelial cell line above 10µg / mL, while the G4-PAMAM-OH was non cytotoxic upto 1mg / mL concentration. Cell integrity, outer (OM) and inner (IM) membrane permeabilization assays showed that G4-PAMAM-OH dendrimer efficiently changed the OM permeability, while G4-PAMAM-NH2 and G3.5-PAMAM-COOH damaged both OM and IM causing the bacterial lysis. The possible antibacterial mechanism are; G4-PAMAM-NH2 acts as polycation binding to the polyanionic lipopolysaccharide in E. coli, the G4-PAMAM-OH forms hydrogen bonds with the hydrophilic O-antigens in E. coli membrane and the G3.5-PAMAM-COOH acts as a polyanion, chelating the divalent ions in outer cell membrane of E. coli. This is the first study which shows that G4-PAMAM-OH dendrimer acts as an antibacterial agent. PMID:20580797

  18. Severity of Prenatal Cocaine Exposure and Child Language Functioning Through Age Seven Years: A Longitudinal Latent Growth Curve Analysis

    PubMed Central

    Bandstra, Emmalee S.; Vogel, April L.; Morrow, Connie E.; Xue, Lihua; Anthony, James C.

    2009-01-01

    The current study estimates the longitudinal effects of severity of prenatal cocaine exposure on language functioning in an urban sample of full-term African-American children (200 cocaine-exposed, 176 noncocaine-exposed) through age 7 years. The Miami Prenatal Cocaine Study sample was enrolled prospectively at birth, with documentation of prenatal drug exposure status through maternal interview and toxicology assays of maternal and infant urine and infant meconium. Language functioning was measured at ages 3 and 5 years using the Clinical Evaluation of Language Fundamentals–Preschool (CELF-P) and at age 7 years using the Core Language Domain of the NEPSY: A Developmental Neuropsychological Assessment. Longitudinal latent growth curve analyses were used to examine two components of language functioning, a more stable aptitude for language performance and a time-varying trajectory of language development, across the three time points and their relationship to varying levels of prenatal cocaine exposure. Severity of prenatal cocaine exposure was characterized using a latent construct combining maternal self-report of cocaine use during pregnancy by trimesters and maternal and infant bioassays, allowing all available information to be taken into account. The association between severity of exposure and language functioning was examined within a model including factors for fetal growth, gestational age, and IQ as intercorrelated response variables and child’s age, gender, and prenatal alcohol, tobacco, and marijuana exposure as covariates. Results indicated that greater severity of prenatal cocaine exposure was associated with greater deficits within the more stable aptitude for language performance (D = ?0.071, 95% CI = ?0.133, ?0.009; p = 0.026). There was no relationship between severity of prenatal cocaine exposure and the time-varying trajectory of language development. The observed cocaine-associated deficit was independent of multiple alternative suspected sources of variation in language performance, including other potential responses to prenatal cocaine exposure, such as child’s intellectual functioning, and other birth and postnatal influences, including language stimulation in the home environment. PMID:15002943

  19. Different bacterial communities in heat and gamma irradiation treated replant disease soils revealed by 16S rRNA gene analysis – contribution to improved aboveground apple plant growth?

    PubMed Central

    Yim, Bunlong; Winkelmann, Traud; Ding, Guo-Chun; Smalla, Kornelia

    2015-01-01

    Replant disease (RD) severely affects apple production in propagation tree nurseries and in fruit orchards worldwide. This study aimed to investigate the effects of soil disinfection treatments on plant growth and health in a biotest in two different RD soil types under greenhouse conditions and to link the plant growth status with the bacterial community composition at the time of plant sampling. In the biotest performed we observed that the aboveground growth of apple rootstock M26 plants after 8 weeks was improved in the two RD soils either treated at 50°C or with gamma irradiation compared to the untreated RD soils. Total community DNA was extracted from soil loosely adhering to the roots and quantitative real-time PCR revealed no pronounced differences in 16S rRNA gene copy numbers. 16S rRNA gene-based bacterial community analysis by denaturing gradient gel electrophoresis (DGGE) and 454-pyrosequencing revealed significant differences in the bacterial community composition even after 8 weeks of plant growth. In both soils, the treatments affected different phyla but only the relative abundance of Acidobacteria was reduced by both treatments. The genera Streptomyces, Bacillus, Paenibacillus, and Sphingomonas had a higher relative abundance in both heat treated soils, whereas the relative abundance of Mucilaginibacter, Devosia, and Rhodanobacter was increased in the gamma-irradiated soils and only the genus Phenylobacterium was increased in both treatments. The increased abundance of genera with potentially beneficial bacteria, i.e., potential degraders of phenolic compounds might have contributed to the improved plant growth in both treatments. PMID:26635733

  20. Pyrosequencing of the bacteria associated with Platygyra carnosus corals with skeletal growth anomalies reveals differences in bacterial community composition in apparently healthy and diseased tissues

    PubMed Central

    Ng, Jenny C. Y.; Chan, Yuki; Tun, Hein M.; Leung, Frederick C. C.; Shin, Paul K. S.; Chiu, Jill M. Y.

    2015-01-01

    Corals are rapidly declining globally due to coral diseases. Skeletal growth anomalies (SGA) or “coral tumors” are a group of coral diseases that affect coral reefs worldwide, including Hong Kong waters in the Indo-Pacific region. To better understand how bacterial communities may vary in corals with SGA, for the first time, we examined the bacterial composition associated with the apparently healthy and the diseased tissues of SGA-affected Platgyra carnosus using 16S ribosomal rRNA gene pyrosequencing. Taxonomic analysis revealed Proteobacteria, Bacteroidetes, Cyanobacteria, and Actinobacteria as the main phyla in both the apparently healthy and the diseased tissues. A significant difference in the bacterial community composition was observed between the two conditions at the OTU level. Diseased tissues were associated with higher abundances of Acidobacteria and Gemmatimonadetes, and a lower abundance of Spirochaetes. Several OTUs belonging to Rhodobacteraceae, Rhizobiales, Gammaproteobacteria, and Cytophaga-Flavobacterium-Bacteroidetes (CFB) were strongly associated with the diseased tissues. These groups of bacteria may contain potential pathogens involved with the development of SGA or opportunistic secondary or tertiary colonizers that proliferated upon the health-compromised coral host. We suggest that these bacterial groups to be further studied based on inoculation experiments and testing of Koch's postulates in efforts to understand the etiology and progression of SGA. PMID:26539174

  1. Comparison of the bacterial community and characterization of plant growth-promoting rhizobacteria from different genotypes of Chrysopogon zizanioides (L.) Roberty (vetiver) rhizospheres.

    PubMed

    Monteiro, Juliana Mendes; Vollú, Renata Estebanez; Coelho, Marcia Reed Rodrigues; Alviano, Celuta Sales; Blank, Arie Fitzgerald; Seldin, Lucy

    2009-08-01

    Molecular approaches [PCR-denaturing gradient gel electrophoresis (DGGE)] were used to determine whether three different vetiver (Chrysopogon zizanioides) genotypes, commercially used in Brazil and considered economically important over the world, select specific bacterial populations to coexist in their rhizospheres. DGGE profiles revealed that the predominant rhizospheric bacterial community hardly varies regarding the vetiver genotype. Moreover, using traditional cultivation methods, bacterial strains were isolated from the different rhizospheres. Colonies presenting different morphologies (83) were selected for determining their potential for plant growth promotion. More than half of the strains tested (57.8%) were amplified by PCR using nifH-based primers, specific for the enzyme nitrogenase reductase. The production of siderophores was observed in 88% of the strains, while the production of antimicrobial substances was detected in only 14.5% of the isolates when Micrococcus sp. was used as the indicator strain. Production of indole-3-acetic acid and the solubilization of phosphate were observed in 55.4% and 59% of the isolates, respectively. In total, 44 strains (53%) presented at least three characteristics of plant growth promotion and were submitted to amplified ribosomal DNA restriction analysis. Twenty-four genetic groups were formed at 100% similarity and one representative of each group was selected for their identification by partial 16S rRNA gene sequencing. They were affiliated with the genera Acinetobacter, Comamonas, Chryseobacterium, Klebsiella, Enterobacter, Pantoea, Dyella, Burkholderia, or Pseudomonas. These strains can be considered of great importance as possible biofertilizers in vetiver. PMID:19763409

  2. A curve of growth determination of the f-values for the fourth positive system of CO and the Lyman-Birge-Hopfield system of N2.

    NASA Technical Reports Server (NTRS)

    Pilling, M. J.; Bass, A. M.; Braun, W.

    1971-01-01

    The curve of growth method has been employed to determine f-values for the fourth positive system of CO and the magnetic dipole and electric quadrupole components of the Lyman-Birge-Hopfield system of N2. No significant dependence on r-centroid was found. The mean value of the ratio of the electric quadrupole to magnetic dipole f-values was 0.076.

  3. Aerobic biological treatment of low-strength synthetic wastewater in membrane-coupled bioreactors: the structure and function of bacterial enrichment cultures as the net growth rate approaches zero.

    PubMed

    Chen, Ruoyu; LaPara, Timothy M

    2006-01-01

    The goal of the current research was to determine if the stringent nutrient limitation imposed by membrane-coupled bioreactors (MBRs) could be used to force mixed bacterial communities to exhibit a zero net growth rate over an extended time period. Mechanistically, this zero net growth rate could be achieved when the amount of energy available for growth is balanced by the maintenance requirements of the bacterial community. Bench-scale MBRs were fed synthetic feed medium containing gelatin as the major organic substrate. Biomass concentrations initially increased rapidly, but subsequently declined until an asymptote was reached. Leucine aminopeptidase activities concomitantly increased by at least 10-fold, suggesting that bacterial catabolic activity remained high even while growth rates became negligible. In contrast, alpha-glucosidase and heptanoate esterase activities decreased, indicating that the bacterial community specifically adapted to the carbon source in the feed medium. Bacterial community analysis by denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments (PCR-DGGE) suggested that the bacterial community structure completely changed from the beginning to the end of each MBR. Excision and nucleotide sequence analysis of prominent PCR-DGGE bands suggested that many of the dominant populations were similar to novel bacterial strains that were previously uncultivated or recently cultivated during studies specifically targeting these novel populations. This research demonstrates that MBRs have substantial practical applications for biological wastewater treatment; in addition, MBRs are a useful tool to study the ecology of slow-growing bacteria. PMID:16400538

  4. Transcriptome Analysis of Liangshan Pig Muscle Development at the Growth Curve Inflection Point and Asymptotic Stages Using Digital Gene Expression Profiling.

    PubMed

    Shen, Linyuan; Luo, Jia; Du, Jingjing; Liu, Chendong; Wu, Xiaoqian; Pu, Qiang; Fu, Yuhua; Tang, Qianzi; Liu, Yuanrui; Li, Qiang; Yang, Runlin; Li, Xuewei; Tang, Guoqing; Jiang, Yanzhi; Li, Mingzhou; Zhang, Shunhua; Zhu, Li

    2015-01-01

    Animal growth curves can provide essential information for animal breeders to optimize feeding and management strategies. However, the genetic mechanism underlying the phenotypic differentiation between the inflection point and asymptotic stages of the growth curve is not well characterized. Here, we employed Liangshan pigs in stages of growth at the inflection point (under inflection point: UIP) and the two asymptotic stages (before the inflection point: BIP, after the inflection point: AIP) as models to survey global gene expression in the longissimus dorsi muscle using digital gene expression (DGE) tag profiling. We found Liangshan pigs reached maximum growth rate (UIP) at 163.6 days of age and a weight of 134.6 kg. The DGE libraries generated 117 million reads of 5.89 gigabases in length. 21,331, 20,996 and 20,139 expressed transcripts were identified BIP, UIP and AIP, respectively. Among them, we identified 757 differentially expressed genes (DEGs) between BIP and UIP, and 271 DEGs between AIP and UIP. An enrichment analysis of DEGs proved the immune system was strengthened in the AIP stage. Energy metabolism rate, global transcriptional activity and bone development intensity were highest UIP. Meat from Liangshan pigs had the highest intramuscular fat content and most favorable fatty acid composition in the AIP. Three hundred eighty (27.70%) specific expression genes were highly enriched in QTL regions for growth and meat quality traits. This study completed a comprehensive analysis of diverse genetic mechanisms underlying the inflection point and asymptotic stages of growth. Our findings will serve as an important resource in the understanding of animal growth and development in indigenous pig breeds. PMID:26292092

  5. Transcriptome Analysis of Liangshan Pig Muscle Development at the Growth Curve Inflection Point and Asymptotic Stages Using Digital Gene Expression Profiling

    PubMed Central

    Du, Jingjing; Liu, Chendong; Wu, Xiaoqian; Pu, Qiang; Fu, Yuhua; Tang, Qianzi; Liu, Yuanrui; Li, Qiang; Yang, Runlin; Li, Xuewei; Tang, Guoqing; Jiang, Yanzhi; Li, Mingzhou; Zhang, Shunhua; Zhu, Li

    2015-01-01

    Animal growth curves can provide essential information for animal breeders to optimize feeding and management strategies. However, the genetic mechanism underlying the phenotypic differentiation between the inflection point and asymptotic stages of the growth curve is not well characterized. Here, we employed Liangshan pigs in stages of growth at the inflection point (under inflection point: UIP) and the two asymptotic stages (before the inflection point: BIP, after the inflection point: AIP) as models to survey global gene expression in the longissimus dorsi muscle using digital gene expression (DGE) tag profiling. We found Liangshan pigs reached maximum growth rate (UIP) at 163.6 days of age and a weight of 134.6 kg. The DGE libraries generated 117 million reads of 5.89 gigabases in length. 21,331, 20,996 and 20,139 expressed transcripts were identified BIP, UIP and AIP, respectively. Among them, we identified 757 differentially expressed genes (DEGs) between BIP and UIP, and 271 DEGs between AIP and UIP. An enrichment analysis of DEGs proved the immune system was strengthened in the AIP stage. Energy metabolism rate, global transcriptional activity and bone development intensity were highest UIP. Meat from Liangshan pigs had the highest intramuscular fat content and most favorable fatty acid composition in the AIP. Three hundred eighty (27.70%) specific expression genes were highly enriched in QTL regions for growth and meat quality traits. This study completed a comprehensive analysis of diverse genetic mechanisms underlying the inflection point and asymptotic stages of growth. Our findings will serve as an important resource in the understanding of animal growth and development in indigenous pig breeds. PMID:26292092

  6. Development of a real-time system of monitoring bacterial colony growth and registering the forward-scattering pattern

    NASA Astrophysics Data System (ADS)

    Bai, Nan; Bae, Euiwon; Aroonnual, Amornrat; Bhunia, Arun K.; Robinson, J. Paul; Hirleman, E. Daniel

    2009-05-01

    Early detection and classification of pathogenic bacteria species is crucial to food safety. The previous BARDOT (BActeria Rapid Detection by using Optical light scattering Technology) system is capable of classifying the bacterial colonies of around 1~1.5mm diameter within 24~36 hours of incubation. However, in order to further reduce the detection time and synchronize the detection operation with the bacterial cultivation, a micro-incubator is developed that not only grows bacteria at 37°C but also enables forward scatterometry. This new design feature enables us to continuously characterize the light scattering patterns of the bacterial colonies throughout their growing stages. Some experimental results from this new system are demonstrated and compared with the images obtained from phase contrast microscopy and a confocal displacement meter to show the possibility of earlier identification of bacteria species. Moreover, this paper also explains the updated optical and mechanical modules for the beam waist control to accommodate the smaller bacteria colony detection.

  7. Multilevel Growth Curve Analyses of Treatment Effects of a Web-Based Intervention for Stress Reduction: Randomized Controlled Trial

    PubMed Central

    Raeder, Sabine; Kraft, Pĺl; Bjřrkli, Cato Alexander

    2013-01-01

    Background Stress is commonly experienced by many people and it is a contributing factor to many mental and physical health conditions, However, few efforts have been made to develop and test the effects of interventions for stress. Objective The aim of this study was to examine the effects of a Web-based stress-reduction intervention on stress, investigate mindfulness and procrastination as potential mediators of any treatment effects, and test whether the intervention is equally effective for females as males, all ages, and all levels of education. Methods We employed a randomized controlled trial in this study. Participants were recruited online via Facebook and randomly assigned to either the stress intervention or a control condition. The Web-based stress intervention was fully automated and consisted of 13 sessions over 1 month. The controls were informed that they would get access to the intervention after the final data collection. Data were collected at baseline and at 1, 2, and 6 months after intervention onset by means of online questionnaires. Outcomes were stress, mindfulness, and procrastination, which were all measured at every measurement occasion. Results A total of 259 participants were included and were allocated to either the stress intervention (n=126) or the control condition (n=133). Participants in the intervention and control group were comparable at baseline; however, results revealed that participants in the stress intervention followed a statistically different (ie, cubic) developmental trajectory in stress levels over time compared to the controls. A growth curve analysis showed that participants in the stress intervention (unstandardized beta coefficient [B]=–3.45, P=.008) recovered more quickly compared to the control group (B=–0.81, P=.34) from baseline to 1 month. Although participants in the stress intervention did show increases in stress levels during the study period (B=2.23, P=.008), long-term stress levels did decrease again toward study end at 6 months (B=–0.28, P=.009). Stress levels in the control group, however, remained largely unchanged after 1 month (B=0.29, P=.61) and toward 6 months (B=–0.03, P=.67). Mediation analyses showed nonlinear (ie, cubic) specific indirect effects of mindfulness and a linear specific indirect effect of procrastination on stress. In simple terms, the intervention increased mindfulness and decreased procrastination, which was related to lower stress levels. Finally, the effect of the stress intervention was independent of participants’ gender, age, or education. Conclusions The results from this randomized controlled trial suggest that a Web-based intervention can reduce levels of stress in a normal population and that both mindfulness and procrastination may be important components included in future eHealth interventions for stress. Trial Registration International Standard Randomized Controlled Trial Number (ISRCTN): 25619675; http://controlled-trials.com/ISRCTN25619675 (Archived by Webcite at http://www.webcitation.org/6FxB1gOKY) PMID:23607962

  8. Bdellovibrio and like organisms enhanced growth and survival of Penaeus monodon and altered bacterial community structures in its rearing water.

    PubMed

    Li, Huanhuan; Chen, Cheng; Sun, Qiuping; Liu, Renliang; Cai, Junpeng

    2014-10-01

    In this study, a 96-h laboratory reduction test was conducted with strain BDHSH06 (GenBank accession no. EF011103) as the test strain for Bdellovibrio and like organisms (BALOs) and 20 susceptible marine bacterial strains forming microcosms as the targets. The results showed that BDHSH06 reduced the levels of approximately 50% of prey bacterial strains within 96 h in the seawater microcosms. An 85-day black tiger shrimp (Penaeus monodon) rearing experiment was performed. The shrimp survival rate, body length, and weight in the test tanks were 48.1% ± 1.2%, 99.8 ± 10.0 mm, and 6.36 ± 1.50 g, respectively, which were values significantly (P < 0.05) higher than those for the control, viz., 31.0% ± 2.1%, 86.0 ± 11.1 mm, and 4.21 ± 1.56 g, respectively. With the addition of BDHSH06, total bacterial and Vibrio numbers were significantly reduced (P < 0.05) by 1.3 to 4.5 log CFU · ml(-1) and CFU · g(-1) in both water and shrimp intestines, respectively, compared to those in the control. The effect of BDHSH06 on bacterial community structures in the rearing water was also examined using PCR amplification of the 16S rRNA gene and denaturing gradient gel electrophoresis (DGGE). The DGGE profiles of rearing water samples from the control and test tanks revealed that the amounts of 44% of the bacterial species were reduced when BDHSH06 was added to the rearing water over the 85-day rearing period, and among these, approximately 57.1% were nonculturable. The results of this study demonstrated that BDHSH06 can be used as a biocontrol/probiotic agent in P. monodon culture. PMID:25107962

  9. Bacterial gastroenteritis

    MedlinePLUS

    Infectious diarrhea - bacterial gastroenteritis; Acute gastroenteritis; Gastroenteritis - bacterial ... the sickness. All types of food poisoning cause diarrhea . Other symptoms include: Abdominal cramps Abdominal pain Bloody ...

  10. Hierarchical Bayesian analysis to incorporate age uncertainty in growth curve analysis and estimates of age from length: Florida manatee (Trichechus manatus) carcasses

    USGS Publications Warehouse

    Schwarz, L.K.; Runge, M.C.

    2009-01-01

    Age estimation of individuals is often an integral part of species management research, and a number of ageestimation techniques are commonly employed. Often, the error in these techniques is not quantified or accounted for in other analyses, particularly in growth curve models used to describe physiological responses to environment and human impacts. Also, noninvasive, quick, and inexpensive methods to estimate age are needed. This research aims to provide two Bayesian methods to (i) incorporate age uncertainty into an age-length Schnute growth model and (ii) produce a method from the growth model to estimate age from length. The methods are then employed for Florida manatee (Trichechus manatus) carcasses. After quantifying the uncertainty in the aging technique (counts of ear bone growth layers), we fit age-length data to the Schnute growth model separately by sex and season. Independent prior information about population age structure and the results of the Schnute model are then combined to estimate age from length. Results describing the age-length relationship agree with our understanding of manatee biology. The new methods allow us to estimate age, with quantified uncertainty, for 98% of collected carcasses: 36% from ear bones, 62% from length.

  11. Indoor-Biofilter Growth and Exposure to Airborne Chemicals Drive Similar Changes in Plant Root Bacterial Communities

    PubMed Central

    Hu, Yi; Chau, Linh; Pauliushchyk, Margarita; Anastopoulos, Ioannis; Anandan, Shivanthi; Waring, Michael S.

    2014-01-01

    Due to the long durations spent inside by many humans, indoor air quality has become a growing concern. Biofiltration has emerged as a potential mechanism to clean indoor air of harmful volatile organic compounds (VOCs), which are typically found at concentrations higher indoors than outdoors. Root-associated microbes are thought to drive the functioning of plant-based biofilters, or biowalls, converting VOCs into biomass, energy, and carbon dioxide, but little is known about the root microbial communities of such artificially grown plants, how or whether they differ from those of plants grown in soil, and whether any changes in composition are driven by VOCs. In this study, we investigated how bacterial communities on biofilter plant roots change over time and in response to VOC exposure. Through 16S rRNA amplicon sequencing, we compared root bacterial communities from soil-grown plants with those from two biowalls, while also comparing communities from roots exposed to clean versus VOC-laden air in a laboratory biofiltration system. The results showed differences in bacterial communities between soil-grown and biowall-grown plants and between bacterial communities from plant roots exposed to clean air and those from VOC-exposed plant roots. Both biowall-grown and VOC-exposed roots harbored enriched levels of bacteria from the genus Hyphomicrobium. Given their known capacities to break down aromatic and halogenated compounds, we hypothesize that these bacteria are important VOC degraders. While different strains of Hyphomicrobium proliferated in the two studied biowalls and our lab experiment, strains were shared across plant species, suggesting that a wide range of ornamental houseplants harbor similar microbes of potential use in living biofilters. PMID:24878602

  12. Indoor-biofilter growth and exposure to airborne chemicals drive similar changes in plant root bacterial communities.

    PubMed

    Russell, Jacob A; Hu, Yi; Chau, Linh; Pauliushchyk, Margarita; Anastopoulos, Ioannis; Anandan, Shivanthi; Waring, Michael S

    2014-08-01

    Due to the long durations spent inside by many humans, indoor air quality has become a growing concern. Biofiltration has emerged as a potential mechanism to clean indoor air of harmful volatile organic compounds (VOCs), which are typically found at concentrations higher indoors than outdoors. Root-associated microbes are thought to drive the functioning of plant-based biofilters, or biowalls, converting VOCs into biomass, energy, and carbon dioxide, but little is known about the root microbial communities of such artificially grown plants, how or whether they differ from those of plants grown in soil, and whether any changes in composition are driven by VOCs. In this study, we investigated how bacterial communities on biofilter plant roots change over time and in response to VOC exposure. Through 16S rRNA amplicon sequencing, we compared root bacterial communities from soil-grown plants with those from two biowalls, while also comparing communities from roots exposed to clean versus VOC-laden air in a laboratory biofiltration system. The results showed differences in bacterial communities between soil-grown and biowall-grown plants and between bacterial communities from plant roots exposed to clean air and those from VOC-exposed plant roots. Both biowall-grown and VOC-exposed roots harbored enriched levels of bacteria from the genus Hyphomicrobium. Given their known capacities to break down aromatic and halogenated compounds, we hypothesize that these bacteria are important VOC degraders. While different strains of Hyphomicrobium proliferated in the two studied biowalls and our lab experiment, strains were shared across plant species, suggesting that a wide range of ornamental houseplants harbor similar microbes of potential use in living biofilters. PMID:24878602

  13. Effect of temperature on growth and activity of Aeromonas spp. and mixed bacterial populations in the Anacostia River.

    PubMed Central

    Cavari, B Z; Allen, D A; Colwell, R R

    1981-01-01

    During the winter months, total bacterial counts in the water column and in the sediment in the Anacostia River were two- to eightfold higher than at other times of the year, whereas Aeromonas spp. decreased in number of several orders of magnitude. This significant decrease in number in the Anacostia River during the cold months of the year can be explained by the low metabolic activity of Aeromonas at low temperatures. PMID:7235703

  14. Bacterial Growth Stimulation with Exogenous Siderophore and Synthetic N-Acyl Homoserine Lactone Autoinducers under Iron-Limited and Low-Nutrient Conditions

    PubMed Central

    Guan, Le Luo; Onuki, Hiroyuki; Kamino, Kei

    2000-01-01

    The growth of marine bacteria under iron-limited conditions was investigated. Neither siderophore production nor bacterial growth was detected for Pelagiobacter sp. strain V0110 when Fe(III) was present in the culture medium at a concentration of <1.0 ?M. However, the growth of V0110 was strongly stimulated by the presence of trace amounts of exogenous siderophore from an alpha proteobacterium, V0902, and 1 nM N-acyl-octanoylhomoserine lactone (C8-HSL), which is known as a quorum-sensing chemical signal. Even though the iron-binding functionality of a hydroxamate siderophore was undetected in the supernatant of V0902, a hydroxamate siderophore was detected in the supernatant of V0110 under the above conditions. These results indicated that hydroxamate siderophore biosynthesis by V0110 began in response to the exogenous siderophore from V0902 when in the presence of C8-HSL; however, C8-HSL production by V0110 and V0902 was not detected. Direct interaction between V0902 and V0110 through siderophore from V0902 was observed in the dialyzing culture. Similar stimulated growth by exogenous siderophore and HSL was also observed in other non-siderophore-producing bacteria isolated from marine sponges and seawater. The requirement of an exogenous siderophore and an HSL for heterologous siderophore production indicated the possibility that cell-cell communication between different species was occurring. PMID:10877770

  15. Inoculation of Phaseolus vulgaris with the nodule-endophyte Agrobacterium sp. 10C2 affects richness and structure of rhizosphere bacterial communities and enhances nodulation and growth.

    PubMed

    Chihaoui, Saif-Allah; Trabelsi, Darine; Jdey, Ahmed; Mhadhbi, Haythem; Mhamdi, Ridha

    2015-08-01

    Agrobacterium sp. 10C2 is a nonpathogenic and non-symbiotic nodule-endophyte strain isolated from root nodules of Phaseolus vulgaris. The effect of this strain on nodulation, plant growth and rhizosphere bacterial communities of P. vulgaris is investigated under seminatural conditions. Inoculation with strain 10C2 induced an increase in nodule number (+54 %) and plant biomass (+16 %). Grains also showed a significant increase in phosphorus (+53 %), polyphenols (+217 %), flavonoids (+62 %) and total antioxidant capacity (+82 %). The effect of strain 10C2 on bacterial communities was monitored using terminal restriction fragment length polymorphism of PCR-amplified 16S rRNA genes. When the initial soil was inoculated with strain 10C2 and left 15 days, the Agrobacterium strain did not affect TRF richness but changed structure. When common bean was sown in these soils and cultivated during 75 days, both TRF richness and structure were affected by strain 10C2. TRF richness increased in the rhizosphere soil, while it decreased in the bulk soil (root free). The taxonomic assignation of TRFs induced by strain 10C2 in the bean rhizosphere revealed the presence of four phyla (Firmicutes, Actinobacteria, Bacteroidetes and Proteobacteria) with a relative preponderance of Firmicutes, represented mainly by Bacillus species. Some of these taxa (i.e., Bacillus licheniformis, Bacillus pumilus, Bacillus senegalensis, Bacillus subtilis, Bacillus firmus and Paenibacillus koreensis) are particularly known for their plant growth-promoting potentialities. These results suggest that the beneficial effects of strain 10C2 observed on plant growth and grain quality are explained at least in part by the indirect effect through the promotion of beneficial microorganisms. PMID:25967041

  16. Brief report: Examining children's disruptive behavior in the wake of trauma - A two-piece growth curve model before and after a school shooting.

    PubMed

    Liao, Yue; Shonkoff, Eleanor T; Barnett, Elizabeth; Wen, C K Fred; Miller, Kimberly A; Eddy, J Mark

    2015-10-01

    School shootings may have serious negative impacts on children years after the event. Previous research suggests that children exposed to traumatic events experience heightened fear, anxiety, and feelings of vulnerability, but little research has examined potential aggressive and disruptive behavioral reactions. Utilizing a longitudinal dataset in which a local school shooting occurred during the course of data collection, this study sought to investigate whether the trajectory of disruptive behaviors was affected by the shooting. A two-piece growth curve model was used to examine the trajectory of disruptive behaviors during the pre-shooting years (i.e., piece one) and post-shooting years (i.e., piece two). Results indicated that the two-piece growth curve model fit the data better than the one-piece model and that the school shooting precipitated a faster decline in aggressive behaviors. This study demonstrated a novel approach to examining effects of an unexpected traumatic event on behavioral trajectories using an existing longitudinal data set. PMID:26298676

  17. Journal of Theoretical Biology 244 (2007) 326348 Bacterial gene regulation in diauxic and non-diauxic growth

    E-print Network

    Pilyugin, Sergei S.

    2007-01-01

    model; Gene regulation; Mixed substrate growth; Substitutable substrates; Lac operon; Lotka-known example of the diauxie is the growth of Escherichia coli on a mixture of glucose and lactose. Early consump- tion of glucose and lactose (Monod, 1942). Moreover, only glucose is consumed in the first

  18. Aging, Maturation and Growth of Sauropodomorph Dinosaurs as Deduced from Growth Curves Using Long Bone Histological Data: An Assessment of Methodological Constraints and Solutions.

    PubMed

    Griebeler, Eva Maria; Klein, Nicole; Sander, P Martin

    2013-01-01

    Information on aging, maturation, and growth is important for understanding life histories of organisms. In extinct dinosaurs, such information can be derived from the histological growth record preserved in the mid-shaft cortex of long bones. Here, we construct growth models to estimate ages at death, ages at sexual maturity, ages at which individuals were fully-grown, and maximum growth rates from the growth record preserved in long bones of six sauropod dinosaur individuals (one indeterminate mamenchisaurid, two Apatosaurus sp., two indeterminate diplodocids, and one Camarasaurus sp.) and one basal sauropodomorph dinosaur individual (Plateosaurus engelhardti). Using these estimates, we establish allometries between body mass and each of these traits and compare these to extant taxa. Growth models considered for each dinosaur individual were the von Bertalanffy model, the Gompertz model, and the logistic model (LGM), all of which have inherently fixed inflection points, and the Chapman-Richards model in which the point is not fixed. We use the arithmetic mean of the age at the inflection point and of the age at which 90% of asymptotic mass is reached to assess respectively the age at sexual maturity or the age at onset of reproduction, because unambiguous indicators of maturity in Sauropodomorpha are lacking. According to an AIC-based model selection process, the LGM was the best model for our sauropodomorph sample. Allometries established are consistent with literature data on other Sauropodomorpha. All Sauropodomorpha reached full size within a time span similar to scaled-up modern mammalian megaherbivores and had similar maximum growth rates to scaled-up modern megaherbivores and ratites, but growth rates of Sauropodomorpha were lower than of an average mammal. Sauropodomorph ages at death probably were lower than that of average scaled-up ratites and megaherbivores. Sauropodomorpha were older at maturation than scaled-up ratites and average mammals, but younger than scaled-up megaherbivores. PMID:23840575

  19. Aging, Maturation and Growth of Sauropodomorph Dinosaurs as Deduced from Growth Curves Using Long Bone Histological Data: An Assessment of Methodological Constraints and Solutions

    PubMed Central

    Griebeler, Eva Maria; Klein, Nicole; Sander, P. Martin

    2013-01-01

    Information on aging, maturation, and growth is important for understanding life histories of organisms. In extinct dinosaurs, such information can be derived from the histological growth record preserved in the mid-shaft cortex of long bones. Here, we construct growth models to estimate ages at death, ages at sexual maturity, ages at which individuals were fully-grown, and maximum growth rates from the growth record preserved in long bones of six sauropod dinosaur individuals (one indeterminate mamenchisaurid, two Apatosaurus sp., two indeterminate diplodocids, and one Camarasaurus sp.) and one basal sauropodomorph dinosaur individual (Plateosaurus engelhardti). Using these estimates, we establish allometries between body mass and each of these traits and compare these to extant taxa. Growth models considered for each dinosaur individual were the von Bertalanffy model, the Gompertz model, and the logistic model (LGM), all of which have inherently fixed inflection points, and the Chapman-Richards model in which the point is not fixed. We use the arithmetic mean of the age at the inflection point and of the age at which 90% of asymptotic mass is reached to assess respectively the age at sexual maturity or the age at onset of reproduction, because unambiguous indicators of maturity in Sauropodomorpha are lacking. According to an AIC-based model selection process, the LGM was the best model for our sauropodomorph sample. Allometries established are consistent with literature data on other Sauropodomorpha. All Sauropodomorpha reached full size within a time span similar to scaled-up modern mammalian megaherbivores and had similar maximum growth rates to scaled-up modern megaherbivores and ratites, but growth rates of Sauropodomorpha were lower than of an average mammal. Sauropodomorph ages at death probably were lower than that of average scaled-up ratites and megaherbivores. Sauropodomorpha were older at maturation than scaled-up ratites and average mammals, but younger than scaled-up megaherbivores. PMID:23840575

  20. Career Education: An Application of Latent Growth Curve Modelling to Career Information-Seeking Behaviour of School Pupils

    ERIC Educational Resources Information Center

    Shevlin, Mark; Millar, Rob

    2006-01-01

    Background: This study applied the theory of planned behaviour (TPB) in an attempt to predict longitudinal growth of career exploratory behaviour in school pupils. The importance of information for making considered career decisions is indicated in theories of career development and choice, career education programmes, and concepts of career…

  1. A Growth Curve Analysis of Literacy Performance among Second-Grade, Spanish-Speaking, English-Language Learners

    ERIC Educational Resources Information Center

    Gutiierrez, Gabriel; Vanderwood, Mike L.

    2013-01-01

    The literacy growth of 260 second-grade English learners (ELs) with varying degrees of English language proficiency (e.g., Beginning, Early Intermediate, Intermediate, Early Advanced and Advanced English language proficiency) was assessed with English literacy skill assessments. Dynamic Indicators of Basic Early Literacy Skills measures were…

  2. STUDIES ON BACTERIAL NUTRITION

    PubMed Central

    Thjötta, Theodor

    1921-01-01

    From the data presented in the foregoing experiments it is evident that Bacillus influenzć will grow in a fluid medium consisting of plain broth to which have been added small amounts of emulsions or extracts of mucoid bacilli or of Bacillus proteus. The bacterial extracts may be made by simple boiling of the bacillary emulsions in broth or saline solution and centrifuging out the bacterial bodies; they may be filtered without losing their growth-inducing property. Cultures of Bacillus influenzć in bacterial extract broth, if not too small doses of the extracts were employed, always showed heavier growth than the control cultures in blood broth, and growth occurred at a considerably earlier period than in blood broth. In many instances growth could be seen after 3 to 4 hours, and a bacterial whirl was always visible after 6 hours incubation. When the nature of the culture used for seeding is not stated, this was 0.1 cc. of the supernatant fluid of a blood broth culture. All cultures were made in fluid medium; solid medium is much more difficult to use in connection with the extracts. In explanation of the remarkable growth of Bacillus influenzć in this blood-free medium, the idea is proposed that the growth-stimulating effect of the bacterial extracts is due possibly to substances of the same nature as the so called vitamines. Further investigations on this principle of bacterial nutrition will appear in subsequent papers, together with a more thorough study of the sources and character of the growth-inducing substances. PMID:19868534

  3. Divergent selection for shape of the growth curve in Japanese quail. 8. Effect of long-term selection on embryonic development and growth.

    PubMed

    Hyánková, L; Novotná, B; Starosta, F

    2015-04-01

    1. Changes in embryonic development and growth were analysed in relation to direct changes in postnatal growth and correlated responses in egg parameters using Japanese quail lines selected for more than 30 generations for high (HG) and low (LG) relative gain of body weight (BW) between 11 and 28 d of age, and constant BW at 49 d of age. 2. During the first 42 h as well as at the end of incubation, LG embryos were developmentally accelerated in comparison with their HG counterparts. An expected increase of line divergence across generations was observed only in traits analysed at the end of incubation. 3. In contrast to early generations, LG embryos continuously exhibited a higher BW than HG embryos and this difference temporarily disappeared only around incubation d 8. Analogous to early generations, the HG compared with LG embryos showed two periods of transient growth retardation compensated subsequently by a higher growth rate (incubation d 3-8 and 8-16). 4. More pronounced growth retardation of HG versus LG embryos in late versus early generations corresponded to more distinct decrease of HG versus LG growth rate during the first post-hatch days. Likewise, a disappearance of line BW differences on incubation d 8 characterising the late generations corresponded to the elimination of line differences in adult BW. 5. Alterations of growth pattern were associated with changes of egg size. While HG quail maintained a relatively constant adult BW and egg size across generations, the gradually increasing incidence of large eggs in the LG line allowed selection of birds with higher growth potential, which in turn amplified the line differences in the embryonic BW and eliminated the line differences in adult BW. Line differences in egg composition (larger albumen with lower density in LG compared with HG eggs) apparently contributed to the strengthening of line developmental divergence during incubation. 6. Transient lack of nutrient supply to HG embryos due to their developmental delay is probably responsible for a higher HG versus LG embryo mortality. PMID:25560981

  4. Inhibitory effect of pomegranate (Punica granatum L.) polyphenol extracts on the bacterial growth and survival of clinical isolates of pathogenic Staphylococcus aureus and Escherichia coli.

    PubMed

    Pagliarulo, Caterina; De Vito, Valentina; Picariello, Gianluca; Colicchio, Roberta; Pastore, Gabiria; Salvatore, Paola; Volpe, Maria Grazia

    2016-01-01

    In the present study major polyphenols of pomegranate arils and peel by-products were extracted in 50% (v/v) aqueous ethanol, characterized and used in microbiological assays in order to test antimicrobial activity against clinically isolated human pathogenic microorganisms. Total concentration of polyphenols and in vitro antioxidant properties were determined by the Folin-Ciocalteu and DPPH methods, respectively. The most abundant bioactive molecules, including anthocyanins, catechins, tannins, gallic and ellagic acids were identified by RP-HPLC-DAD, also coupled to off-line matrix assisted laser desorption/ionization (MALDI-TOF) mass spectrometry (MS). The inhibitory spectrum of extracts against test microorganisms was assessed by the agar well-diffusion method. Data herein indicated that both pomegranate aril and peel extracts have an effective antimicrobial activity, as evidenced by the inhibitory effect on the bacterial growth of two important human pathogens, including Staphylococcus aureus and Escherichia coli, which are often involved in foodborne illness. PMID:26213044

  5. SIMPLAS: A Simulation of Bacterial Plasmid Maintenance.

    ERIC Educational Resources Information Center

    Dunn, A.; And Others

    1988-01-01

    This article describes a computer simulation of bacterial physiology during growth in a chemostat. The program was designed to help students to appreciate and understand the related effects of parameters which influence plasmid persistence in bacterial populations. (CW)

  6. Frequency curves

    USGS Publications Warehouse

    Riggs, H.C.

    1968-01-01

    This manual describes graphical and mathematical procedures for preparing frequency curves from samples of hydrologic data. It also discusses the theory of frequency curves, compares advantages of graphical and mathematical fitting, suggests methods of describing graphically defined frequency curves analytically, and emphasizes the correct interpretations of a frequency curve.

  7. Initiation and growth of multiple-site damage in the riveted lap joint of a curved stiffened fuselage panel: An experimental and analytical study

    NASA Astrophysics Data System (ADS)

    Ahmed, Abubaker Ali

    As part of the structural integrity research of the National Aging Aircraft Research Program, a comprehensive study on multiple-site damage (MSD) initiation and growth in a pristine lap-joint fuselage panel has been conducted. The curved stiffened fuselage panel was tested at the Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility located at the Federal Aviation Administration William J. Hughes Technical Center. A strain survey test was conducted to verify proper load application. The panel was then subjected to a fatigue test with constant-amplitude cyclic loading. The applied loading spectrum included underload marker cycles so that crack growth history could be reconstructed from post-test fractographic examinations. Crack formation and growth were monitored via nondestructive and high-magnification visual inspections. Strain gage measurements recorded during the strain survey tests indicated that the inner surface of the skin along the upper rivet row of the lap joint experienced high tensile stresses due to local bending. During the fatigue loading, cracks were detected by eddy-current inspections at multiple rivet holes along the upper rivet row. Through-thickness cracks were detected visually after about 80% of the fatigue life. Once MSD cracks from two adjacent rivet holes linked up, there was a quick deterioration in the structural integrity of the lap joint. The linkup resulted in a 2.87" (72.9-mm) lead fatigue crack that rapidly propagated across 12 rivet holes and crossed over into the next skin bay, at which stage the fatigue test was terminated. A post-fatigue residual strength test was then conducted by loading the panel quasi-statically up to final failure. The panel failed catastrophically when the crack extended instantaneously across three additional bays. Post-test fractographic examinations of the fracture surfaces in the lap joint of the fuselage panel were conducted to characterize subsurface crack initiation and growth. Results showed evidence of fretting damage and crack initiation at multiple locations near the rivet holes along the faying surface of the skin. The subsurface cracks grew significantly along the faying surface before reaching the outer surface of the skin, forming elliptical crack fronts. A finite element model (FE) of the panel was constructed and geometrically-nonlinear analyses conducted to determine strain distribution under the applied loads. The FE model was validated by comparing the analysis results with the strain gage measurements recorded during the strain survey test. The validated FE model was then used to determine stress-intensity factors at the crack tips. Stress-intensity factor results indicated that crack growth in the lap joint was under mixed-mode; however, the opening-mode stress intensity factor was dominant. The stress-intensity factors computed from the FE analysis were used to conduct cycle-by-cycle integration of fatigue crack growth. In the cycle-by-cycle integration, the NASGRO crack growth model was used with its parameters selected to account for the effects of plasticity-induced crack closure and the test environment on crack growth rate. Fatigue crack growth predictions from cycle-by-cycle computation were in good agreement with the experimental measured crack growth data. The results of the study provide key insights into the natural development and growth of MSD cracks in the pristine lap joint. The data provided by the study represent a valuable source for the evaluation and validation of analytical methodologies used for predicting MSD crack initiation and growth.

  8. MEASURING GROWTH OF A PHENANTHRENE DEGRADING BACTERIAL INOCULUM IN SOIL WITH A QUANTITATIVE COMPETITIVE POLYMERASE CHAIN REACTION METHOD. (R825433)

    EPA Science Inventory

    We measured growth of a phenanthrene-degrading bacterium, Arthrobacter, strain RP17, in Forbes soil, amended with 500 small mu, Greekg g?1 phenanthrene using a quantitati...

  9. Survival and growth of foodborne bacterial pathogens in fermenting dough of wadi, a legume-based indigenous food.

    PubMed

    Roy, A; Moktan, B; Sarkar, P K

    2011-08-01

    Wadi is a hollow, brittle, ball- or cone-shaped popular traditional legume-based product of many countries in the Indian Subcontinent. To prepare wadi, blackgram (Phaseolus mungo L.) dhal (dehusked split seeds) was soaked, ground to a soft dough, fermented for 10 h in a closed container, moulded into balls or cones and dried for ~60 h (repeating a cycle of 8 h sun-drying at 29-33 °C and then 16 h shade-drying at 28-30 °C). This study aims at understanding the fate of some selected foodborne bacterial pathogens during a chance contamination of blackgram dough at the time of preparing wadi. Uninoculated dough, during the course of its processing to wadi, remained free from Staphylococcus aureus and Escherichia coli, but got contained by Bacillus cereus during the first 10 h of fermentation and also the next 24 h of drying wadi. B. cereus, when spiked into freshly prepared dough at a load of 5.2 log cfu/g, also diminished after 24 h of drying (detection limit (DL), 100 cfu/g). S. aureus (DL, 100 cfu/g) and E. coli (DL, 10 cfu/g) reached below the DL after 36 h of drying. After 10 h of fermentation and 36 h of drying, the moisture content decreased from initial 61.9 to 33.5%, and the pH declined from 6.0 to 4.8. PMID:23572780

  10. Direct exchange of vitamin B12 is demonstrated by modelling the growth dynamics of algal–bacterial cocultures

    PubMed Central

    Grant, Matthew AA; Kazamia, Elena; Cicuta, Pietro; Smith, Alison G

    2014-01-01

    The growth dynamics of populations of interacting species in the aquatic environment is of great importance, both for understanding natural ecosystems and in efforts to cultivate these organisms for industrial purposes. Here we consider a simple two-species system wherein the bacterium Mesorhizobium loti supplies vitamin B12 (cobalamin) to the freshwater green alga Lobomonas rostrata, which requires this organic micronutrient for growth. In return, the bacterium receives photosynthate from the alga. Mathematical models are developed that describe minimally the interdependence between the two organisms, and that fit the experimental observations of the consortium. These models enable us to distinguish between different mechanisms of nutrient exchange between the organisms, and provide strong evidence that, rather than undergoing simple lysis and release of nutrients into the medium, M. loti regulates the levels of cobalamin it produces, resulting in a true mutualism with L. rostrata. Over half of all microalgae are dependent on an exogenous source of cobalamin for growth, and this vitamin is synthesised only by bacteria; it is very likely that similar symbiotic interactions underpin algal productivity more generally. PMID:24522262

  11. Bacterial Sialidase

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Data shows that elevated sialidase in bacterial vaginosis patients correlates to premature births in women. Bacterial sialidase also plays a significant role in the unusual colonization of Pseudomonas aeruginosa in cystic fibrosis patients. Crystals of Salmonella sialidase have been reproduced and are used for studying the inhibitor-enzyme complexes. These inhibitors may also be used to inhibit a trans-sialidase of Trypanosome cruzi, a very similar enzyme to bacterial sialidase, therefore preventing T. cruzi infection, the causitive agent of Chagas' disease. The Center for Macromolecular Crystallography suggests that inhibitors of bacterial sialidases can be used as prophylactic drugs to prevent bacterial infections in these critical cases.

  12. Effects of dietary inulin on bacterial growth, short-chain fatty acid production and hepatic lipid metabolism in gnotobiotic mice.

    PubMed

    Weitkunat, Karolin; Schumann, Sara; Petzke, Klaus Jürgen; Blaut, Michael; Loh, Gunnar; Klaus, Susanne

    2015-09-01

    In literature, contradictory effects of dietary fibers and their fermentation products, short-chain fatty acids (SCFA), are described: On one hand, they increase satiety, but on the other hand, they provide additional energy and promote obesity development. We aimed to answer this paradox by investigating the effects of fermentable and non-fermentable fibers on obesity induced by high-fat diet in gnotobiotic C3H/HeOuJ mice colonized with a simplified human microbiota. Mice were fed a high-fat diet supplemented either with 10% cellulose (non-fermentable) or inulin (fermentable) for 6 weeks. Feeding the inulin diet resulted in an increased diet digestibility and reduced feces energy, compared to the cellulose diet with no differences in food intake, suggesting an increased intestinal energy extraction from inulin. However, we observed no increase in body fat/weight. The additional energy provided by the inulin diet led to an increased bacterial proliferation in this group. Supplementation of inulin resulted further in significantly elevated concentrations of total SCFA in cecum and portal vein plasma, with a reduced cecal acetate:propionate ratio. Hepatic expression of genes involved in lipogenesis (Fasn, Gpam) and fatty acid elongation/desaturation (Scd1, Elovl3, Elovl6, Elovl5, Fads1 and Fads2) were decreased in inulin-fed animals. Accordingly, plasma and liver phospholipid composition were changed between the different feeding groups. Concentrations of omega-3 and odd-chain fatty acids were increased in inulin-fed mice, whereas omega-6 fatty acids were reduced. Taken together, these data indicate that, during this short-term feeding, inulin has mainly positive effects on the lipid metabolism, which could cause beneficial effects during obesity development in long-term studies. PMID:26033744

  13. Bacteriology of a most popular street food (Panipuri) and inhibitory effect of essential oils on bacterial growth.

    PubMed

    Das, Madhuchhanda; Rath, Chandi C; Mohapatra, U B

    2012-10-01

    Bacteriology of Panipuri was studied and the antibacterial effect of eight essential oils (EOs) was established on pathogens found in Panipuri. Samples were collected from twelve respective vendors from different locations in Baripada city, Orissa. Samples were fractionated into two parts viz. khatta pani and smashed potato masala used in Panipuri. Total plate count and isolation of pathogenic bacteria were done on both basal and selective media. Coliforms were detected primarily by presumptive test and confirmed subsequently, using Eosine Methylene Blue Agar. Selected colonies were pure cultured and identified through staining and an array of biochemical reactions. Antibiogram pattern of the pathogens and their susceptibility towards eight different EOs were performed. Antibacterial efficacy of four EOs in food sample was studied. Aerobic bacterial load of solid samples was observed to be more than in the liquid samples. Coliform-positive samples were found to be of 80.33%. Pathogenic bacteria like Escherichia coli, Klebsiella sp., Enterobactor sp., Bacillus sp., Enterococcus sp., Micrococcus tetragens, Salmonella paratyphi, Shigella dysenteriae and Vibrio sp. were detected. Antibiogram studies of the isolates showed multiple antibiotic resistance index (MRI;%) ranging from 15 to 92%. Among the EOs studied Cinnamon and Clove oils showed maximum antibacterial activity. Antibacterial efficacy showed that Clove and Cinnamon oils were comparatively of superior quality than Turmeric leaf and Japanese mint oils to kill food borne pathogens. Although it was a preliminary endeavor, the present study is a prerequisite in understanding the significance of pathogenic microorganisms in street foods and use of EOs as both antibacterial agents and food preservatives. PMID:24082267

  14. Optimized polymeric film-based nitric oxide delivery inhibits bacterial growth in a mouse burn wound model

    PubMed Central

    Brisbois, Elizabeth J.; Bayliss, Jill; Wu, Jianfeng; Major, Terry C.; Xi, Chuanwu; Wang, Stewart C.; Bartlett, Robert H.; Handa, Hitesh; Meyerhoff, Mark E.

    2014-01-01

    Nitric oxide (NO) has many biological roles (e.g., antimicrobial agent, promoter of angiogenesis, prevention of platelet activation, etc.) that make NO releasing materials desirable for a variety of biomedical applications. Localized NO release can be achieved from biomedical grade polymers doped with diazeniumdiolated dibutylhexanediamine (DBHD/N2O2) and poly(lactic-co-glycolic acid) (PLGA). In this study, the optimization of this chemistry to create film/patches that can be used to decrease microbial infection at wound sites is examined. Two polyurethanes with different water uptakes (Tecoflex SG-80A (6.2 ± 0.7 wt %) and Tecophillic SP-60D-20 (22.5 ± 1.1 wt%)) were doped with 25 wt% DBHD/N2O2 and 10 wt% of PLGA with various hydrolysis rates. Films prepared with the polymer that has the higher water uptake (SP-60D-20) were found to have higher NO release and for a longer duration than the polyurethane with lower water uptake (SG-80A). The more hydrophilic polymer enhances the hydrolysis rate of the PLGA additive, thereby providing a more acidic environment that increases the rate of NO release from the NO donor. The optimal NO releasing and control SG-80A patches were then applied to scald burn wounds that were infected with Acinetobacter baumannii. The NO released from these patches applied to the wounds is shown to significantly reduce the A. baumannii infection after 24 h (~4 log reduction). The NO release patches are also able to reduce the TGF-? levels, in comparison to controls, which can enhance reepithelialization, decrease scarring, and reduce migration of bacteria. The combined DBHD/N2O2 and PLGA-doped polymer patches, which could be replaced periodically throughout the wound healing process, demonstrate the potential to reduce risk of bacterial infection and promote the overall wound healing process. PMID:24980058

  15. Overcoming the anaerobic hurdle in phenotypic microarrays: Generation andvisualization of growth curve data for Desulfovibrio vulgaris Hildenborough

    SciTech Connect

    Borglin, Sharon E; Joyner, Dominique; Jacobsen, Janet; Mukhopadhyay, Aindrila; Hazen, Terry C.

    2008-10-04

    Growing anaerobic microorganisms in phenotypic microarrays (PM) and 96-well microtiter plates is an emerging technology that allows high throughput survey of the growth and physiology and/or phenotype of cultivable microorganisms. For non-model bacteria, a method for phenotypic analysis is invaluable, not only to serve as a starting point for further evaluation, but also to provide a broad understanding of the physiology of an uncharacterized wild-type organism or the physiology/phenotype of a newly created mutant of that organism. Given recent advances in genetic characterization and targeted mutations to elucidate genetic networks and metabolic pathways, high-throughput methods for determining phenotypic differences are essential. Here we outline challenges presented in studying the physiology and phenotype of a sulfate reducing anaerobic delta proteobacterium, Desulfovibrio vulgaris Hildenborough. Modifications of the commercially available OmniLog(TM) system (Hayward, CA) for experimental setup, and configuration, as well as considerations in PM data analysis are presented. Also highlighted here is data viewing software that enables users to view and compare multiple PM data sets. The PM method promises to be a valuable strategy in our systems biology approach to D. vulgaris studies and is readily applicable to other anaerobic and aerobic bacteria.

  16. Chemical Modification of Reactive Multilayered Films Fabricated from Poly(2-Alkenyl Azlactone)s: Design of Surfaces that Prevent or Promote Mammalian Cell Adhesion and Bacterial Biofilm Growth

    PubMed Central

    Buck, Maren E.; Breitbach, Anthony S.; Belgrade, Sonja K.; Blackwell, Helen E.; Lynn, David M.

    2009-01-01

    We report an approach to the design of reactive polymer films that can be functionalized post-fabrication to either prevent or promote the attachment and growth of cells. Our approach is based on the reactive layer-by-layer assembly of covalently crosslinked thin films using a synthetic polyamine and a polymer containing reactive azlactone functionality. Our results demonstrate (i) that the residual azlactone functionality in these films can be exploited to immobilize amine-functionalized chemical motifs similar to those that promote or prevent cell and protein adhesion when assembled as self-assembled monolayers on gold-coated surfaces, and (ii) that the immobilization of these motifs changes significantly the behaviors and interactions of cells with the surfaces of these polymer films. We demonstrate that films treated with the hydrophobic molecule decylamine support the attachment and growth of mammalian cells in vitro. In contrast, films treated with the hydrophilic carbohydrate D-glucamine prevent cell adhesion and growth almost completely. The results of additional experiments suggest that these large differences in cell behavior can be understood, at least in part, in terms of differences in the abilities of these two different chemical motifs to promote or prevent the adsorption of protein onto film coated surfaces. We demonstrate further that this approach can be used to pattern regions of these reactive films that resist the initial attachment and subsequent invasion of mammalian cells for periods of at least one month in the presence of serum-containing cell culture media. Finally, we report that films that prevent the adhesion and growth of mammalian cells also prevent the initial formation of bacterial biofilms when incubated in the presence of the clinically relevant pathogen Pseudomonas aeruginosa. The results of these studies, collectively, suggest the basis of general approaches to the fabrication and functionalization of thin films that prevent, promote, or pattern cell growth or the formation of biofilms on surfaces of interest in the contexts of both fundamental biological studies and a broad range of other practical applications. PMID:19438231

  17. Adaptive acid tolerance response of Vibrio parahaemolyticus as affected by acid adaptation conditions, growth phase, and bacterial strains.

    PubMed

    Chiang, Ming-Lun; Chou, Cheng-Chun; Chen, Hsi-Chia; Tseng, Yu-Ting; Chen, Ming-Ju

    2012-08-01

    Vibrio parahaemolyticus strain 690 was isolated from gastroenteritis patients. Its thermal and ethanol stress responses have been reported in our previous studies. In this study, we further investigated the effects of various acid adaptation conditions including pH (5.0-6.0) and time (30-90?min) on the acid tolerance in different growth phases of V. parahaemolyticus 690. Additionally, the adaptive acid tolerance among different V. parahaemolyticus strains was compared. Results indicated that the acid tolerance of V. parahaemolyticus 690 was significantly increased after acid adaptation at pH 5.5 and 6.0 for 30-90?min. Among the various acid adaptation conditions examined, V. parahaemolyticus 690 acid-adapted at pH 5.5 for 90?min exhibited the highest acid tolerance. The acid adaptation also influenced the acid tolerance of V. parahaemolyticus 690 in different growth phases with late-exponential phase demonstrating the greatest acid tolerance response (ATR) than other phases. Additionally, the results also showed that the induction of adaptive ATR varied with different strains of V. parahaemolyticus. An increase in acid tolerance of V. parahaemolyticus was observed after prior acid adaptation in five strains (556, 690, BCRC 13023, BCRC 13025, and BCRC 12864), but not in strains 405 and BCRC 12863. PMID:22827515

  18. Modeling and CFD simulation of nutrient distribution in picoliter bioreactors for bacterial growth studies on single-cell level.

    PubMed

    Westerwalbesloh, Christoph; Grünberger, Alexander; Stute, Birgit; Weber, Sophie; Wiechert, Wolfgang; Kohlheyer, Dietrich; von Lieres, Eric

    2015-11-01

    A microfluidic device for microbial single-cell cultivation of bacteria was modeled and simulated using COMSOL Multiphysics. The liquid velocity field and the mass transfer within the supply channels and cultivation chambers were calculated to gain insight in the distribution of supplied nutrients and metabolic products secreted by the cultivated bacteria. The goal was to identify potential substrate limitations or product accumulations within the cultivation device. The metabolic uptake and production rates, colony size, and growth medium composition were varied covering a wide range of operating conditions. Simulations with glucose as substrate did not show limitations within the typically used concentration range, but for alternative substrates limitations could not be ruled out. This lays the foundation for further studies and the optimization of existing picoliter bioreactor systems. PMID:26345659

  19. Stress- and growth rate-related differences between plate count and real-time PCR data during growth of Listeria monocytogenes.

    PubMed

    Reichert-Schwillinsky, Franziska; Pin, Carmen; Dzieciol, Monika; Wagner, Martin; Hein, Ingeborg

    2009-04-01

    To assess the overestimation of bacterial cell counts in real-time PCR in relation to stress and growth phase, four different strains of L. monocytogenes were exposed to combinations of osmotic stress (0.5 to 8% [vol/vol] NaCl) and acid stress (pH 5 to 7) in a culture model at a growth temperature of 10 degrees C or were grown under optimal conditions. Growth curves obtained from real-time PCR, optical density, and viable count data were compared. As expected, optical density data revealed entirely different growth curves. Good to moderate growth conditions yielded good correlation of real-time PCR data and plate count data (r(2) = 0.96 and 0.99) with similar cell counts. When growth conditions became worse, the numbers of CFU decreased during the stationary phase, whereas real-time-PCR-derived bacterial cell equivalents differed in this regard; the correlation worsened (r(2) = 0.84). However, fitted growth curves revealed that maximum growth rates calculated from real-time PCR data were not significantly different from those derived from plate count data. The overestimation of bacterial cell counts by real-time PCR observed in the stationary phase under higher-stress conditions might be explained by the accumulation of viable but nonculturable bacteria or dead bacteria and extracellular DNA. Considering these results, real-time PCR data collected from naturally contaminated samples should be viewed with caution. PMID:19181831

  20. Bacterial Proteasomes

    PubMed Central

    Jastrab, Jordan B.; Darwin, K. Heran

    2015-01-01

    Interest in bacterial proteasomes was sparked by the discovery that proteasomal degradation is required for the pathogenesis of Mycobacterium tuberculosis, one of the world's deadliest pathogens. Although bacterial proteasomes are structurally similar to their eukaryotic and archaeal homologs, there are key differences in their mechanisms of assembly, activation, and substrate targeting for degradation. In this article, we compare and contrast bacterial proteasomes with their archaeal and eukaryotic counterparts, and we discuss recent advances in our understanding of how bacterial proteasomes function to influence microbial physiology. PMID:26488274

  1. Human Milk Oligosaccharides Promote the Growth of Staphylococci

    PubMed Central

    Hunt, K. M.; Preuss, J.; Nissan, C.; Davlin, C. A.; Williams, J. E.; Shafii, B.; Richardson, A. D.; McGuire, M. K.; Bode, L.

    2012-01-01

    Human milk oligosaccharides (HMO), which constitute a major component of human milk, promote the growth of particular bacterial species in the infant's gastrointestinal tract. We hypothesized that HMO also interact with the bacterial communities present in human milk. To test this hypothesis, two experiments were conducted. First, milk samples were collected from healthy women (n = 16); culture-independent analysis of the bacterial communities was performed, HMO content was analyzed, and the relation between these factors was investigated. A positive correlation was observed between the relative abundance of Staphylococcus and total HMO content (r = 0.66). In a follow-up study, we conducted a series of in vitro growth curve experiments utilizing Staphylococcus aureus or Staphylococcus epidermidis and HMO isolated from human milk. HMO exhibited stimulatory effects on bacterial growth under various nutritional conditions. Analysis of culture supernatants from these experiments revealed that HMO did not measurably disappear from the culture medium, indicating that the growth-enhancing effects were not a result of bacterial metabolism of the HMO. Instead, stimulation of growth caused greater utilization of amino acids in minimal medium. Collectively, the data provide evidence that HMO may promote the growth of Staphylococcus species in the lactating mammary gland. PMID:22562995

  2. Staphylococcus epidermidis SrrAB Regulates Bacterial Growth and Biofilm Formation Differently under Oxic and Microaerobic Conditions

    PubMed Central

    Wu, Youcong; Wu, Yang; Zhu, Tao; Han, Haiyan; Liu, Huayong; Xu, Tao; Francois, Patrice; Fischer, Adrien; Bai, Li; Götz, Friedrich

    2014-01-01

    SrrAB expression in Staphylococcus epidermidis strain 1457 (SE1457) was upregulated during a shift from oxic to microaerobic conditions. An srrA deletion (?srrA) mutant was constructed for studying the regulatory function of SrrAB. The deletion resulted in retarded growth and abolished biofilm formation both in vitro and in vivo and under both oxic and microaerobic conditions. Associated with the reduced biofilm formation, the ?srrA mutant produced much less polysaccharide intercellular adhesion (PIA) and showed decreased initial adherence capacity. Microarray analysis showed that the srrA mutation affected transcription of 230 genes under microaerobic conditions, and 51 genes under oxic conditions. Quantitative real-time PCR confirmed this observation and showed downregulation of genes involved in maintaining the electron transport chain by supporting cytochrome and quinol-oxidase assembly (e.g., qoxB and ctaA) and in anaerobic metabolism (e.g., pflBA and nrdD). In the ?srrA mutant, the expression of the biofilm formation-related gene icaR was upregulated under oxic conditions and downregulated under microaerobic conditions, whereas icaA was downregulated under both conditions. An electrophoretic mobility shift assay further revealed that phosphorylated SrrA bound to the promoter regions of icaR, icaA, qoxB, and pflBA, as well as its own promoter region. These findings demonstrate that in S. epidermidis SrrAB is an autoregulator and regulates biofilm formation in an ica-dependent manner. Under oxic conditions, SrrAB modulates electron transport chain activity by positively regulating qoxBACD transcription. Under microaerobic conditions, it regulates fermentation processes and DNA synthesis by modulating the expression of both the pfl operon and nrdDG. PMID:25404696

  3. Vaccination Method Affects Immune Response and Bacterial Growth but Not Protection in the Salmonella Typhimurium Animal Model of Typhoid

    PubMed Central

    Kinnear, Clare L.; Strugnell, Richard A.

    2015-01-01

    Understanding immune responses elicited by vaccines, together with immune responses required for protection, is fundamental to designing effective vaccines and immunisation programs. This study examines the effects of the route of administration of a live attenuated vaccine on its interactions with, and stimulation of, the murine immune system as well as its ability to increase survival and provide protection from colonisation by a virulent challenge strain. We assess the effect of administration method using the murine model for typhoid, where animals are infected with S. Typhimurium. Mice were vaccinated either intravenously or orally with the same live attenuated S. Typhimurium strain and data were collected on vaccine strain growth, shedding and stimulation of antibodies and cytokines. Following vaccination, mice were challenged with a virulent strain of S. Typhimurium and the protection conferred by the different vaccination routes was measured in terms of challenge suppression and animal survival. The main difference in immune stimulation found in this study was the development of a secretory IgA response in orally-vaccinated mice, which was absent in IV vaccinated mice. While both strains showed similar protection in terms of challenge suppression in systemic organs (spleen and liver) as well as survival, they differed in terms of challenge suppression of virulent pathogens in gut-associated organs. This difference in gut colonisation presents important questions around the ability of vaccines to prevent shedding and transmission. These findings demonstrate that while protection conferred by two vaccines can appear to be the same, the mechanisms controlling the protection can differ and have important implications for infection dynamics within a population. PMID:26509599

  4. Quantum Curves

    NASA Astrophysics Data System (ADS)

    Schwarz, Albert

    2015-08-01

    One says that a pair ( P, Q) of ordinary differential operators specify a quantum curve if . If a pair of difference operators ( K, L) obey the relation KL = q LK, where , we say that they specify a discrete quantum curve. This terminology is prompted by well known results about commuting differential and difference operators, relating pairs of such operators with pairs of meromorphic functions on algebraic curves obeying some conditions. The goal of this paper is to study the moduli spaces of quantum curves. We will relate the moduli spaces for different . We will show how to quantize a pair of commuting differential or difference operators (i.e., to construct the corresponding quantum curve or discrete quantum curve).

  5. Social dynamics of health inequalities: a growth curve analysis of aging and self assessed health in the British household panel survey 1991–2001

    PubMed Central

    Sacker, A.; Clarke, P.; Wiggins, R.; Bartley, M.

    2005-01-01

    Objectives: To study how social inequalities change as people age, this paper presents a growth curve model of self assessed health, which accommodates changes in occupational class and individual health with age. Design: Nationally representative interview based longitudinal survey of adults in Great Britain. Setting: Representative members of private households of Great Britain in 1991. Participants: Survey respondents (n = 6705), aged 21–59 years in 1991 and followed up annually until 2001. Main outcome measure: Self assessed health. Results: On average, self assessed health declines slowly from early adulthood to retirement age. No significant class differences in health were observed at age 21. Health inequalities emerged later in life with the gap between mean levels of self assessed health of those in managerial and professional occupations and routine occupations widening approaching retirement. Individual variability in health trajectories increased between ages 40 and 59 years so that this widening of mean differences between occupational classes was not significant. When the analysis is confined to people whose occupational class remained constant over time, a far greater difference in health trajectories between occupational classes was seen. Conclusions: The understanding of social inequalities in health at the population level is enriched by an analysis of individual variation in age related declines by social position. PMID:15911646

  6. A statistical study of nearby galaxies - I: NIR growth curves and optical-to-NIR colors as a function of type, luminosity and inclination

    E-print Network

    Michel Fioc; Brigitte Rocca-Volmerange

    1999-04-21

    Growth curves of the near-infrared (NIR) magnitude as a function of the aperture have been built and used to derive NIR total magnitudes from aperture data taken from the literature. By cross-correlating with optical and redshift data, absolute magnitudes and optical-to-NIR colors have been computed for some 1000 galaxies of different types. Significant color gradients are observed, underlining that small aperture colors may lead to a biased picture of the stellar populations of galaxies. A statistical analysis using various estimators taking into account the intrinsic scatter has been performed to establish relations between the colors, the morphological type, the inclination or the shape, and the intrinsic luminosity. The combination of the optical and the NIR should obviously improve our understanding of the evolution of galaxies. Despite the intrinsic scatter, especially among star-forming galaxies, optical-to-NIR colors show a very well defined sequence with type, blueing by 1.3 mag from ellipticals to irregulars. The colors of spiral galaxies strongly redden with increasing inclination and put new constraints on the modeling of the extinction. No such effect is observed for lenticular galaxies. We also find that rounder ellipticals tend to be redder. A color-absolute magnitude relation is observed inside each type, with a slope significantly steeper for early and intermediate spirals than for ellipticals or late spirals. This stresses the importance of considering both the mass and the type to study the star formation history of galaxies.

  7. Silver nanoparticles synthesized by pulsed laser ablation: as a potent antibacterial agent for human enteropathogenic gram-positive and gram-negative bacterial strains.

    PubMed

    Pandey, Jitendra Kumar; Swarnkar, R K; Soumya, K K; Dwivedi, Priyanka; Singh, Manish Kumar; Sundaram, Shanthy; Gopal, R

    2014-10-01

    Present investigation deals with the study, to quantify the antibacterial property of silver nanoparticles (SNPs), synthesized by pulsed laser ablation (PLA) in aqueous media, on some human enteropathogenic gram-positive and gram-negative bacterial strains. Antibacterial property was studied by measuring the zone of inhibition using agar cup double-diffusion method, minimum inhibitory concentration by serial dilution method, and growth curve for 24 h. The results clearly show the potency of antibacterial property of PLA-synthesized SNPs and suggest that it can be used as an effective growth inhibitor against various pathogenic bacterial strains in various medical devices and antibacterial control systems. PMID:24801405

  8. Development of prototypes of bioactive packaging materials based on immobilized bacteriophages for control of growth of bacterial pathogens in foods.

    PubMed

    Lone, Ayesha; Anany, Hany; Hakeem, Mohammed; Aguis, Louise; Avdjian, Anne-Claire; Bouget, Marina; Atashi, Arash; Brovko, Luba; Rochefort, Dominic; Griffiths, Mansel W

    2016-01-18

    Due to lack of adequate control methods to prevent contamination in fresh produce and growing consumer demand for natural products, the use of bacteriophages has emerged as a promising approach to enhance safety of these foods. This study sought to control Listeria monocytogenes in cantaloupes and RTE meat and Escherichia coli O104:H4 in alfalfa seeds and sprouts under different storage conditions by using specific lytic bacteriophage cocktails applied either free or immobilized. Bacteriophage cocktails were introduced into prototypes of packaging materials using different techniques: i) immobilizing on positively charged modified cellulose membranes, ii) impregnating paper with bacteriophage suspension, and iii) encapsulating in alginate beads followed by application of beads onto the paper. Phage-treated and non-treated samples were stored for various times and at temperatures of 4°C, 12°C or 25°C. In cantaloupe, when free phage cocktail was added, L. monocytogenes counts dropped below the detection limit of the plating technique (<1logCFU/g) after 5days of storage at both 4°C and 12°C. However, at 25°C, counts below the detection limit were observed after 3 and 6h and a 2-logCFU/g reduction in cell numbers was seen after 24h. For the immobilized Listeria phage cocktail, around 1-logCFU/g reduction in the Listeria count was observed by the end of the storage period for all tested storage temperatures. For the alfalfa seeds and sprouts, regardless of the type of phage application technique (spraying of free phage suspension, bringing in contact with bacteriophage-based materials (paper coated with encapsulated bacteriophage or impregnated with bacteriophage suspension)), the count of E. coli O104:H4 was below the detection limit (<1logCFU/g) after 1h in seeds and about a 1-log cycle reduction in E. coli count was observed on the germinated sprouts by day 5. In ready-to-eat (RTE) meat, LISTEX™ P100, a commercial phage product, was able to significantly reduce the growth of L. monocytogenes at both storage temperatures, 4°C and 10°C, for 25days regardless of bacteriophage application format (immobilized or non-immobilized (free)). In conclusion, the developed phage-based materials demonstrated significant antimicrobial effect, when applied to the artificially contaminated foods, and can be used as prototypes for developing bioactive antimicrobial packaging materials capable of enhancing the safety of fresh produce and RTE meat. PMID:26490649

  9. Protective effect of Growth Hormone-Releasing Hormone agonist in bacterial toxin-induced pulmonary barrier dysfunction

    PubMed Central

    Czikora, Istvan; Sridhar, Supriya; Gorshkov, Boris; Alieva, Irina B.; Kasa, Anita; Gonzales, Joyce; Potapenko, Olena; Umapathy, Nagavedi S.; Pillich, Helena; Rick, Ferenc G.; Block, Norman L.; Verin, Alexander D.; Chakraborty, Trinad; Matthay, Michael A.; Schally, Andrew V.; Lucas, Rudolf

    2014-01-01

    Rationale: Antibiotic treatment of patients infected with G? or G+ bacteria promotes release of the toxins lipopolysaccharide (LPS) and pneumolysin (PLY) in their lungs. Growth Hormone-releasing Hormone (GHRH) agonist JI-34 protects human lung microvascular endothelial cells (HL-MVEC), expressing splice variant 1 (SV-1) of the receptor, from PLY-induced barrier dysfunction. We investigated whether JI-34 also blunts LPS-induced hyperpermeability. Since GHRH receptor (GHRH-R) signaling can potentially stimulate both cAMP-dependent barrier-protective pathways as well as barrier-disruptive protein kinase C pathways, we studied their interaction in GHRH agonist-treated HL-MVEC, in the presence of PLY, by means of siRNA-mediated protein kinase A (PKA) depletion. Methods: Barrier function measurements were done in HL-MVEC monolayers using Electrical Cell substrate Impedance Sensing (ECIS) and VE-cadherin expression by Western blotting. Capillary leak was assessed by Evans Blue dye (EBD) incorporation. Cytokine generation in broncho-alveolar lavage fluid (BALF) was measured by multiplex analysis. PKA and PKC-? activity were assessed by Western blotting. Results: GHRH agonist JI-34 significantly blunts LPS-induced barrier dysfunction, at least in part by preserving VE-cadherin expression, while not affecting inflammation. In addition to activating PKA, GHRH agonist also increases PKC-? activity in PLY-treated HL-MVEC. Treatment with PLY significantly decreases resistance in control siRNA-treated HL-MVEC, but does so even more in PKA-depleted monolayers. Pretreatment with GHRH agonist blunts PLY-induced permeability in control siRNA-treated HL-MVEC, but fails to improve barrier function in PKA-depleted PLY-treated monolayers. Conclusions: GHRH signaling in HL-MVEC protects from both LPS and PLY-mediated endothelial barrier dysfunction and concurrently induces a barrier-protective PKA-mediated and a barrier-disruptive PKC-?-induced pathway in the presence of PLY, the former of which dominates the latter. PMID:25076911

  10. Effects of Pleurotus eryngii polysaccharides on bacterial growth, texture properties, proteolytic capacity, and angiotensin-I-converting enzyme-inhibitory activities of fermented milk.

    PubMed

    Li, Siqian; Shah, Nagendra P

    2015-05-01

    Pleurotus eryngii is one of the most favored oyster mushrooms and contains various beneficial bioactive compounds. Polysaccharide extracted from P. eryngii (PEPS) was added as a natural-source ingredient to milk before fermentation, and the effects of additional PEPS on fermented milk were investigated in this study. The PEPS were extracted and added to reconstituted skim milk (12%, wt/vol) at 0.5, 0.25, and 0.125% (wt/vol) and fermented by a non-exopolysaccharide-producing strain, Streptococcus thermophilus Australian Starter Culture Collection (ASCC) 1303 (ST 1303), or an exopolysaccharide-producing Strep. thermophilus ASCC 1275 (ST 1275). Bacterial growth, texture properties, microstructure, proteolytic capacity, and angiotensin-I-converting enzyme-inhibitory activities of fermented milk (FM) were determined during refrigerated storage at 4°C for 21d. Viable counts of starter bacteria in FM with 0.5% PEPS added were the highest. Changes in pH were consistent with changes in titratable acidities for all samples. The FM samples with added PEPS showed denser protein aggregates containing larger serum pores in confocal micrographs compared with those without PEPS at d 0 and 21during refrigerated storage. The values for spontaneous whey separation of FM with added PEPS were significantly higher than those of FM fermented by ST 1303 or ST 1275 without PEPS. The proteolytic activities of ST 1303 of FM with added PEPS were higher than those of FM fermented by ST 1303 without PEPS. The FM with added 0.125% PEPS had similar angiotensin-I-converting enzyme-inhibitory activity to that fermented by ST 1303 without PEPS; both were higher than those of other samples during refrigerated storage. Firmness and gumminess values of FM with added PEPS were higher than those of FM fermented by ST 1303 or ST 1275 without PEPS. PMID:25747830

  11. Antibacterial Compounds of Canadian Honeys Target Bacterial Cell Wall Inducing Phenotype Changes, Growth Inhibition and Cell Lysis That Resemble Action of ?-Lactam Antibiotics

    PubMed Central

    Brudzynski, Katrina; Sjaarda, Calvin

    2014-01-01

    Honeys show a desirable broad spectrum activity against Gram-positive and negative bacteria making antibacterial activity an intrinsic property of honey and a desirable source for new drug development. The cellular targets and underlying mechanism of action of honey antibacterial compounds remain largely unknown. To facilitate the target discovery, we employed a method of phenotypic profiling by directly comparing morphological changes in Escherichia coli induced by honeys to that of ampicillin, the cell wall-active ?-lactam of known mechanism of action. Firstly, we demonstrated the purity of tested honeys from potential ?-lactam contaminations using quantitative LC-ESI-MS. Exposure of log-phase E. coli to honey or ampicillin resulted in time- and concentration-dependent changes in bacterial cell shape with the appearance of filamentous phenotypes at sub-inhibitory concentrations and spheroplasts at the MBC. Cell wall destruction by both agents, clearly visible on microscopic micrographs, was accompanied by increased permeability of the lipopolysaccharide outer membrane as indicated by fluorescence-activated cell sorting (FACS). More than 90% E. coli exposed to honey or ampicillin became permeable to propidium iodide. Consistently with the FACS results, both honey-treated and ampicillin-treated E. coli cells released lipopolysaccharide endotoxins at comparable levels, which were significantly higher than controls (p<0.0001). E. coli cells transformed with the ampicillin-resistance gene (?–lactamase) remained sensitive to honey, displayed the same level of cytotoxicity, cell shape changes and endotoxin release as ampicillin-sensitive cells. As expected, ?–lactamase protected the host cell from antibacterial action of ampicillin. Thus, both honey and ampicillin induced similar structural changes to the cell wall and LPS and that this ability underlies antibacterial activities of both agents. Since the cell wall is critical for cell growth and survival, honey active compounds would be highly applicable for therapeutic purposes while differences in the mode of action between honey and ampicillin may provide clinical advantage in eradicating ?-lactam-resistant pathogens. PMID:25191847

  12. Changes in teachers' involvement versus rejection and links with academic motivation during the first year of secondary education: a multilevel growth curve analysis.

    PubMed

    Maulana, Ridwan; Opdenakker, Marie-Christine; Stroet, Kim; Bosker, Roel

    2013-09-01

    Research consistently shows that the learning environment plays an important role for early adolescents' learning and outcomes and suggests that good teacher-student relationships can serve as a protective factor for maintaining young adolescents' interest and active engagement in learning. However, less is known about the dynamic nature of teacher-student relationships and how they link with academic motivation development. Furthermore, little is known about the nature and the effects of teacher-student relationships in a cross-national context. The present study investigated changes in two components of teacher-student relationships (teachers' involvement vs. rejection) and examined links with students' academic motivation during the first grade of secondary school. Ten Dutch and ten Indonesian teachers (65 % female) from 24 classes were videoed 12 times across the school year, and four videos for each class were selected randomly and coded on teachers' involvement versus rejection. A total of 713 students (52 % girls) completed four-wave measures of their academic motivation after each video observation. Multilevel growth curve modeling revealed that the teacher's involvement changed in a curvilinear way and decreased across the first year of secondary education, while changes in the teacher's rejection did not follow a linear time function. Academic motivation changed in an undesirable way: controlled motivation increased, while autonomous motivation decreased over time. Teachers' involvement had a unique contribution in preventing high levels of controlled motivation in both countries. Findings suggest that teacher-student relationships (teachers' involvement) play an essential role in early adolescents' motivation regardless of the nations and should be a priority for schools. PMID:23381778

  13. Dynamics of curved interfaces

    SciTech Connect

    Escudero, Carlos

    2009-08-15

    Stochastic growth phenomena on curved interfaces are studied by means of stochastic partial differential equations. These are derived as counterparts of linear planar equations on a curved geometry after a reparametrization invariance principle has been applied. We examine differences and similarities with the classical planar equations. Some characteristic features are the loss of correlation through time and a particular behavior of the average fluctuations. Dependence on the metric is also explored. The diffusive model that propagates correlations ballistically in the planar situation is particularly interesting, as this propagation becomes nonuniversal in the new regime.

  14. 4-(3-Chloro-5-(trifluoromethyl)pyridin-2-yl)-N-(4-methoxypyridin-2-yl)piperazine-1-carbothioamide (ML267), a Potent Inhibitor of Bacterial Phosphopantetheinyl Transferase That Attenuates Secondary Metabolism and Thwarts Bacterial Growth

    PubMed Central

    2015-01-01

    4?-Phosphopantetheinyl transferases (PPTases) catalyze a post-translational modification essential to bacterial cell viability and virulence. We present the discovery and medicinal chemistry optimization of 2-pyridinyl-N-(4-aryl)piperazine-1-carbothioamides, which exhibit submicromolar inhibition of bacterial Sfp-PPTase with no activity toward the human orthologue. Moreover, compounds within this class possess antibacterial activity in the absence of a rapid cytotoxic response in human cells. An advanced analogue of this series, ML267 (55), was found to attenuate production of an Sfp-PPTase-dependent metabolite when applied to Bacillus subtilis at sublethal doses. Additional testing revealed antibacterial activity against methicillin-resistant Staphylococcus aureus, and chemical genetic studies implicated efflux as a mechanism for resistance in Escherichia coli. Additionally, we highlight the in vitro absorption, distribution, metabolism, and excretion and in vivo pharmacokinetic profiles of compound 55 to further demonstrate the potential utility of this small-molecule inhibitor. PMID:24450337

  15. Bradford Curves.

    ERIC Educational Resources Information Center

    Rousseau, Ronald

    1994-01-01

    Discussion of informetric distributions shows that generalized Leimkuhler functions give proper fits to a large variety of Bradford curves, including those exhibiting a Groos droop or a rising tail. The Kolmogorov-Smirnov test is used to test goodness of fit, and least-square fits are compared with Egghe's method. (Contains 53 references.) (LRW)

  16. Football curves

    NASA Astrophysics Data System (ADS)

    Dupeux, Guillaume; Cohen, Caroline; Le Goff, Anne; Quéré, David; Clanet, Christophe

    2011-07-01

    Straight lines, zigzag, parabolas (possibly truncated), circles and spirals are the main curves which can be observed in football (in the European sense, soccer elsewhere). They are, respectively, associated to heavy kick, knuckleball, lob and banana kicks. We discuss their physical origin and determine their respective domain of existence.

  17. Impact of nanoscale zero valent iron on bacteria is growth phase dependent.

    PubMed

    Chaithawiwat, Krittanut; Vangnai, Alisa; McEvoy, John M; Pruess, Birgit; Krajangpan, Sita; Khan, Eakalak

    2016-02-01

    The toxic effect of nanoscale zero valent iron (nZVI) particles on bacteria from different growth phases was studied. Four bacterial strains namely Escherichia coli strains JM109 and BW25113, and Pseudomonas putida strains KT2440 and F1 were experimented. The growth curves of these strains were determined. Bacterial cells were harvested based on the predetermined time points, and exposed to nZVI. Cell viability was determined by the plate count method. Bacterial cells in lag and stationary phases showed higher resistance to nZVI for all four bacterial strains, whereas cells in exponential and decline phases were less resistant to nZVI and were rapidly inactivated when exposed to nZVI. Bacterial inactivation increased with the concentration of nZVI. Furthermore, less than 14% bacterial inactivation was observed when bacterial cells were exposed to the filtrate of nZVI suspension suggesting that the physical interaction between nZVI and cell is necessary for bacterial inactivation. PMID:26378872

  18. Formation of bacterial nanocells

    NASA Astrophysics Data System (ADS)

    Vainshtein, Mikhail; Kudryashova, Ekaterina; Suzina, Natalia; Ariskina, Elena; Voronkov, Vadim

    1998-07-01

    Existence of nanobacteria received increasing attention both in environmental microbiology/geomicro-biology and in medical microbiology. In order to study a production of nanoforms by typical bacterial cells. Effects of different physical factors were investigated. Treatment of bacterial cultures with microwave radiation, or culturing in field of electric current resulted in formation a few types of nanocells. The number and type of nanoforms were determined with type and dose of the treatment. The produced nanoforms were: i) globules, ii) clusters of the globules--probably produced by liaison, iii) nanocells coated with membrane. The viability of the globules is an object opened for doubts. The nanocells discovered multiplication and growth on solidified nutrient media. The authors suggest that formation of nanocells is a common response of bacteria to stress-actions produced by different agents.

  19. Investigation on relationship between epicentral distance and growth curve of initial P-wave propagating in local heterogeneous media for earthquake early warning system

    NASA Astrophysics Data System (ADS)

    Okamoto, Kyosuke; Tsuno, Seiji

    2015-12-01

    In the earthquake early warning (EEW) system, the epicenter location and magnitude of earthquakes are estimated using the amplitude growth rate of initial P-waves. It has been empirically pointed out that the growth rate becomes smaller as epicentral distance becomes far regardless of the magnitude of earthquakes. So, the epicentral distance can be estimated from the growth rate using this empirical relationship. However, the growth rates calculated from different earthquakes at the same epicentral distance mark considerably different values from each other. Sometimes the growth rates of earthquakes having the same epicentral distance vary by 104 times. Qualitatively, it has been considered that the gap in the growth rates is due to differences in the local heterogeneities that the P-waves propagate through. In this study, we demonstrate theoretically how local heterogeneities in the subsurface disturb the relationship between the growth rate and the epicentral distance. Firstly, we calculate seismic scattered waves in a heterogeneous medium. First-ordered PP, PS, SP, and SS scatterings are considered. The correlation distance of the heterogeneities and fractional fluctuation of elastic parameters control the heterogeneous conditions for the calculation. From the synthesized waves, the growth rate of the initial P-wave is obtained. As a result, we find that a parameter (in this study, correlation distance) controlling heterogeneities plays a key role in the magnitude of the fluctuation of the growth rate. Then, we calculate the regional correlation distances in Japan that can account for the fluctuation of the growth rate of real earthquakes from 1997 to 2011 observed by K-NET and KiK-net. As a result, the spatial distribution of the correlation distance shows locality. So, it is revealed that the growth rates fluctuate according to the locality. When this local fluctuation is taken into account, the accuracy of the estimation of epicentral distances from initial P-waves can improve, which will in turn improve the accuracy of the EEW system.

  20. Electrical spiking in bacterial biofilms.

    PubMed

    Masi, Elisa; Ciszak, Marzena; Santopolo, Luisa; Frascella, Arcangela; Giovannetti, Luciana; Marchi, Emmanuela; Viti, Carlo; Mancuso, Stefano

    2015-01-01

    In nature, biofilms are the most common form of bacterial growth. In biofilms, bacteria display coordinated behaviour to perform specific functions. Here, we investigated electrical signalling as a possible driver in biofilm sociobiology. Using a multi-electrode array system that enables high spatio-temporal resolution, we studied the electrical activity in two biofilm-forming strains and one non-biofilm-forming strain. The action potential rates monitored during biofilm-forming bacterial growth exhibited a one-peak maximum with a long tail, corresponding to the highest biofilm development. This peak was not observed for the non-biofilm-forming strain, demonstrating that the intensity of the electrical activity was not linearly related to the bacterial density, but was instead correlated with biofilm formation. Results obtained indicate that the analysis of the spatio-temporal electrical activity of bacteria during biofilm formation can open a new frontier in the study of the emergence of collective microbial behaviour. PMID:25392401

  1. Searching for the main anti-bacterial components in artificial Calculus bovis using UPLC and microcalorimetry coupled with multi-linear regression analysis.

    PubMed

    Zang, Qing-Ce; Wang, Jia-Bo; Kong, Wei-Jun; Jin, Cheng; Ma, Zhi-Jie; Chen, Jing; Gong, Qian-Feng; Xiao, Xiao-He

    2011-12-01

    The fingerprints of artificial Calculus bovis extracts from different solvents were established by ultra-performance liquid chromatography (UPLC) and the anti-bacterial activities of artificial C. bovis extracts on Staphylococcus aureus (S. aureus) growth were studied by microcalorimetry. The UPLC fingerprints were evaluated using hierarchical clustering analysis. Some quantitative parameters obtained from the thermogenic curves of S. aureus growth affected by artificial C. bovis extracts were analyzed using principal component analysis. The spectrum-effect relationships between UPLC fingerprints and anti-bacterial activities were investigated using multi-linear regression analysis. The results showed that peak 1 (taurocholate sodium), peak 3 (unknown compound), peak 4 (cholic acid), and peak 6 (chenodeoxycholic acid) are more significant than the other peaks with the standard parameter estimate 0.453, -0.166, 0.749, 0.025, respectively. So, compounds cholic acid, taurocholate sodium, and chenodeoxycholic acid might be the major anti-bacterial components in artificial C. bovis. Altogether, this work provides a general model of the combination of UPLC chromatography and anti-bacterial effect to study the spectrum-effect relationships of artificial C. bovis extracts, which can be used to discover the main anti-bacterial components in artificial C. bovis or other Chinese herbal medicines with anti-bacterial effects. PMID:22058087

  2. Bacterial polyhydroxyalkanoates.

    PubMed

    Lee, S Y

    1996-01-01

    Polyhydroxyalkanoates (PHAs) are polyesters of hydroxyalkanoates (HAs) synthesized by numerous bacteria as intracellular carbon and energy storage compounds and accumulated as granules in the cytoplasm of cells. More than 80 HAs have been detected as constituents of PHAs, which allows these thermoplastic materials to have various mechanical properties resembling hard crystalline polymer or elastic rubber depending on the incorporated monomer units. Even though PHAs have been recognized as good candidates for biodegradable plastics, their high price compared with conventional plastics has limited their use in a wide range of applications. A number of bacteria including Alcaligenes eutrophus, Alcaligenes latus, Azotobacter vinelandii, methylotrophs, pseudomonads, and recombinant Escherichia coli have been employed for the production of PHAs, and the productivity of greater than 2 g PHA/L/h has been achieved. Recent advances in understanding metabolism, molecular biology, and genetics of the PHA-synthesizing bacteria and cloning of more than 20 different PHA biosynthesis genes allowed construction of various recombinant strains that were able to synthesize polyesters having different monomer units and/or to accumulate much more polymers. Also, genetically engineered plants harboring the bacterial PHA biosynthesis genes are being developed for the economical production of PHAs. Improvements in fermentation/separation technology and the development of bacterial strains or plants that more efficiently synthesize PHAs will bring the costs down to make PHAs competitive with the conventional plastics. PMID:18623547

  3. Self-similar dynamics of bacterial chemotaxis

    NASA Astrophysics Data System (ADS)

    Ngamsaad, Waipot; Khompurngson, Kannika

    2012-12-01

    Colonies of bacteria grown on thin agar plate exhibit fractal patterns as a result of adaptation to their environments. The bacterial colony pattern formation is regulated crucially by chemotaxis, the movement of cells along a chemical concentration gradient. Here, the dynamics of pattern formation in a bacterial colony is investigated theoretically through a continuum model that considers chemotaxis. In the case of the gradient sensed by the bacterium is nearly uniform, the bacterial colony patterns are self-similar, which means they look the same at every scale. The scaling law of the bacterial colony growth has been revealed explicitly. Chemotaxis biases the movement of the bacterial population in colony to trend toward the chemical attractant. Moreover, the bacterial colonies evolve for a long time as the traveling wave with a sharp front.

  4. Phenotypic and genetic relationships between growth and feed intake curves and feed efficiency and amino acid requirements in the growing pig.

    PubMed

    Saintilan, R; Brossard, L; Vautier, B; Sellier, P; Bidanel, J; van Milgen, J; Gilbert, H

    2015-01-01

    Improvement of feed efficiency in pigs has been achieved essentially by increasing lean growth rate, which resulted in lower feed intake (FI). The objective was to evaluate the impact of strategies for improving feed efficiency on the dynamics of FI and growth in growing pigs to revisit nutrient recommendations and strategies for feed efficiency improvement. In 2010, three BWs, at 35±2, 63±9 and 107±7 kg, and daily FI during this period were recorded in three French test stations on 379 Large White and 327 French Landrace from maternal pig populations and 215 Large White from a sire population. Individual growth and FI model parameters were obtained with the InraPorc® software and individual nutrient requirements were computed. The model parameters were explored according to feed efficiency as measured by residual feed intake (RFI) or feed conversion ratio (FCR). Animals were separated in groups of better feed efficiency (RFI- or FCR-), medium feed efficiency and poor feed efficiency. Second, genetic relationships between feed efficiency and model parameters were estimated. Despite similar average daily gains (ADG) during the test for all RFI groups, RFI- pigs had a lower initial growth rate and a higher final growth rate compared with other pigs. The same initial growth rate was found for all FCR groups, but FCR- pigs had significantly higher final growth rates than other pigs, resulting in significantly different ADG. Dynamic of FI also differed between RFI or FCR groups. The calculated digestible lysine requirements, expressed in g/MJ net energy (NE), showed the same trends for RFI or FCR groups: the average requirements for the 25% most efficient animals were 13% higher than that of the 25% least efficient animals during the whole test, reaching 0.90 to 0.95 g/MJ NE at the beginning of the test, which is slightly greater than usual feed recommendations for growing pigs. Model parameters were moderately heritable (0.30±0.13 to 0.56±0.13), except for the precocity of growth (0.06±0.08). The parameter representing the quantity of feed at 50 kg BW showed a relatively high genetic correlation with RFI (0.49±0.14), and average protein deposition between 35 and 110 kg had the highest correlation with FCR (-0.76±0.08). Thus, growth and FI dynamics may be envisaged as breeding tools to improve feed efficiency. Furthermore, improvement of feed efficiency should be envisaged jointly with new feeding strategies. PMID:25192352

  5. First growth curves based on the World Health Organization reference in a Nationally-Representative Sample of Pediatric Population in the Middle East and North Africa (MENA): the CASPIAN-III study

    PubMed Central

    2012-01-01

    Background The World Health Organization (WHO) is in the process of establishing a new global database on the growth of school children and adolescents. Limited national data exist from Asian children, notably those living in the Middle East and North Africa (MENA). This study aimed to generate the growth chart of a nationally representative sample of Iranian children aged 10–19?years, and to explore how well these anthropometric data match with international growth references. Methods In this nationwide study, the anthropometric data were recorded from Iranian students, aged 10–19?years, who were selected by multistage random cluster sampling from urban and rural areas. Prior to the analysis, outliers were excluded from the features height-for-age and body mass index (BMI)-for-age using the NCHS/WHO cut-offs. The Box-Cox power exponential (BCPE) method was used to calculate height-for-age and BMI-for-age Z-scores for our study participants. Then, children with overweight, obesity, thinness, and severe thinness were identified using the BMI-for-age z-scores. Moreover, stunted children were detected using the height-for-age z-scores. The growth curve of the Iranian children was then generated from the z-scores, smoothed by cubic S-plines. Results The study population comprised 5430 school students consisting of 2312 (44%) participants aged 10–14?years , and 3118 (58%) with 15–19?years of age. Eight percent of the participants had low BMI (thinness: 6% and severe thinness: 2%), 20% had high BMI (overweight: 14% and obesity: 6%), and 7% were stunted. The prevalence rates of low and high BMI were greater in boys than in girls (P?growth curves generated from a national dataset may be included for establishing WHO global database on children’s growth. Similar to most low-and middle income populations, Iranian children aged 10–19?years are facing a double burden of weight disorders, notably under- and over- nutrition, which should be considered in public health policy-making. PMID:22985219

  6. Bacterial contamination of platelet concentrates: pathogen detection and inactivation methods

    PubMed Central

    Védy, Dana; Robert, Daniel; Gasparini, Danielle; Canellini, Giorgia; Waldvogel, Sophie; Tissot, Jean-Daniel

    2009-01-01

    Whereas the reduction of transfusion related viral transmission has been a priority during the last decade, bacterial infection transmitted by transfusion still remains associated to a high morbidity and mortality, and constitutes the most frequent infectious risk of transfusion. This problem especially concerns platelet concentrates because of their favorable bacterial growth conditions. This review gives an overview of platelet transfusion-related bacterial contamination as well as on the different strategies to reduce this problem by using either bacterial detection or inactivation methods.

  7. Bacterial hydrodynamics

    E-print Network

    Eric Lauga

    2015-09-07

    Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells yet they represent the bulk of the world's biomass, and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds-number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micron scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically-complex environments. Using hydrodynamics as an organizing framework, we review the biomechanics of bacterial motility and look ahead to future challenges.

  8. Bacterial hydrodynamics

    E-print Network

    Lauga, Eric

    2015-01-01

    Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells yet they represent the bulk of the world's biomass, and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds-number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micron scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically-complex environments. Using hydrodynamics as an organizing framework, we review the biomechanics of bacterial motility and look ahead to future challenges.

  9. Bacterial Cholangitis.

    PubMed

    Lum, Donald F.; Leung, Joseph W.

    2001-04-01

    The treatment of acute bacterial cholangitis requires broad-spectrum antibiotics to cover against gram-negative aerobic enteric organisms (Escherichia coli, Klebsiella species, and Enterobacter species), gram-positive Enterococcus and anaerobic bacteria (Bacteroides fragilis and Clostridium perfringens). Approximately 20% of patients with acute cholangitis fail to respond to conservative treatment with antibiotic therapy and require urgent biliary decompression, which is the mainstay of therapy. This is best accomplished by endoscopic retrograde cholangiopancreatography (ERCP) and placement of a nasobiliary drainage tube or a large bore (10 F or larger) indwelling plastic stent. Alternative therapy includes percutaneous transhepatic biliary drainage or surgical biliary decompression, but these carry a significantly higher morbidity and mortality. Supportive care includes intravenous fluid hydration to prevent renal failure and close monitoring of vital signs for determination of potential septicemia. PMID:11469972

  10. Development of Morphological Awareness and Vocabulary Knowledge in Spanish-Speaking Language Minority Learners: A Parallel Process Latent Growth Curve Model

    ERIC Educational Resources Information Center

    Kieffer, Michael J.; Lesaux, Nonie K.

    2012-01-01

    Despite acknowledgement of the limited English vocabularies demonstrated by many language minority (LM) learners, few studies have identified skills that relate to variation in vocabulary growth in this population. This study investigated the concurrent development of morphological awareness (i.e., students' understanding of complex words as…

  11. Testing the Importance of Individual Growth Curves in Predicting Performance on a High-Stakes Reading Comprehension Test in Florida. REL 2014-006

    ERIC Educational Resources Information Center

    Petscher, Yaacov; Kershaw, Sarah; Koon, Sharon; Foorman, Barbara R.

    2014-01-01

    Districts and schools use progress monitoring to assess student progress, to identify students who fail to respond to intervention, and to further adapt instruction to student needs. Researchers and practitioners often use progress monitoring data to estimate student achievement growth (slope) and evaluate changes in performance over time for…

  12. Parent and Child Personality Traits and Children's Externalizing Problem Behavior from Age 4 to 9 Years: A Cohort-Sequential Latent Growth Curve Analysis

    ERIC Educational Resources Information Center

    Prinzie, P.; Onghena, P.; Hellinckx, W.

    2005-01-01

    Cohort-sequential latent growth modeling was used to analyze longitudinal data for children's externalizing behavior from four overlapping age cohorts (4, 5, 6, and 7 years at first assessment) measured at three annual time points. The data included mother and father ratings on the Child Behavior Checklist and the Five-Factor Personality Inventory…

  13. Inhibition of pathogenic bacterial growth on excision wound by green synthesized copper oxide nanoparticles leads to accelerated wound healing activity in Wistar Albino rats.

    PubMed

    Sankar, Renu; Baskaran, Athmanathan; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2015-07-01

    An impaired wound healing is one of the major health related problem in diabetic and non-diabetic patients around the globe. The pathogenic bacteria play a predominant role in delayed wound healing, owing to interaction in the wound area. In our previous work we developed green chemistry mediated copper oxide nanoparticles using Ficus religiosa leaf extract. In the present study we make an attempt to evaluate the anti-bacterial, and wound healing activity of green synthesized copper oxide nanoparticles in male Wistar Albino rats. The agar well diffusion assay revealed copper oxide nanoparticles have substantial inhibition activity against human pathogenic strains such as Klebsiella pneumoniae, Shigella dysenteriae, Staphylococcus aureus, Salmonella typhimurium and Escherichia coli, which were responsible for delayed wound healing process. Furthermore, the analyses results of wound closure, histopathology and protein profiling confirmed that the F. religiosa leaf extract tailored copper oxide nanoparticles have enhanced wound healing activity in Wistar Albino rats. PMID:26194977

  14. Virus Progeny of Murine Cytomegalovirus Bacterial Artificial Chromosome pSM3fr Show Reduced Growth in Salivary Glands due to a Fixed Mutation of MCK-2 ?

    PubMed Central

    Jordan, Stefan; Krause, Johannes; Prager, Adrian; Mitrovic, Maja; Jonjic, Stipan; Koszinowski, Ulrich H.; Adler, Barbara

    2011-01-01

    Murine cytomegalovirus (MCMV) Smith strain has been cloned as a bacterial artificial chromosome (BAC) named pSM3fr and used for analysis of virus gene functions in vitro and in vivo. When sequencing the complete BAC genome, we identified a frameshift mutation within the open reading frame (ORF) encoding MCMV chemokine homologue MCK-2. This mutation would result in a truncated MCK-2 protein. When mice were infected with pSM3fr-derived virus, we observed reduced virus production in salivary glands, which could be reverted by repair of the frameshift mutation. When looking for the source of the mutation, we consistently found that virus stocks of cell culture-passaged MCMV Smith strain are mixtures of viruses with or without the MCK-2 mutation. We conclude that the MCK-2 mutation in the pSM3fr BAC is the result of clonal selection during the BAC cloning procedure. PMID:21813614

  15. Effects of growth stage and fulvic acid on the diversity and dynamics of endophytic bacterial community in Stevia rebaudiana Bertoni leaves.

    PubMed

    Yu, Xuejian; Yang, Jinshui; Wang, Entao; Li, Baozhen; Yuan, Hongli

    2015-01-01

    The aim of this study was to learn the interactions among the endophytic bacteria, the plant growth, the foliar spray of fulvic acid, and the accumulation of steviol glycosides in the leaves of Stevia rebaudiana. Metagenomic DNA was extracted from the Stevia leaves at different growth stages with or without the fulvic acid treatment; and the diversity of endophytic bacteria in Stevia leaves was estimated by pyrosequencing of 16S rRNA genes. As results, Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes were found to be the dominant phyla despite the growth stages and fulvic acid application. Stevia growth stages strongly regulated composition of endophytic community. The genera Agrobacterium (12.3%) and Erwinia (7.2%) dominated in seedling stage were apparently declined in the vegetable and initial flowering stages, while Sphingomonas and Methylobacterium increased in mature leaves at harvest time, which showed that the mature leaves of Stevia preferred to accumulate some certain endophytic bacteria. Sphingomonas and Methylobacterium constituted an important part of the core endophytic community and were positively correlated with the stevioside content and UGT74G1 gene expression, respectively; while Erwinia, Agrobacterium, and Bacillus were negatively correlated with the stevioside accumulation. Fulvic acid treatment accelerated the variation of endophytes along the growth stages and increased the steviol glycosides content. This is the first study to reveal the community composition of endophytic bacteria in the Stevia leaves, to evidence the strong effects of growth stage and fulvic acid application on the endophytes of Stevia, and to demonstrate the correlation between the endophytic bacteria and the steviol glycosides accumulation. PMID:26379644

  16. Effects of growth stage and fulvic acid on the diversity and dynamics of endophytic bacterial community in Stevia rebaudiana Bertoni leaves

    PubMed Central

    Yu, Xuejian; Yang, Jinshui; Wang, Entao; Li, Baozhen; Yuan, Hongli

    2015-01-01

    The aim of this study was to learn the interactions among the endophytic bacteria, the plant growth, the foliar spray of fulvic acid, and the accumulation of steviol glycosides in the leaves of Stevia rebaudiana. Metagenomic DNA was extracted from the Stevia leaves at different growth stages with or without the fulvic acid treatment; and the diversity of endophytic bacteria in Stevia leaves was estimated by pyrosequencing of 16S rRNA genes. As results, Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes were found to be the dominant phyla despite the growth stages and fulvic acid application. Stevia growth stages strongly regulated composition of endophytic community. The genera Agrobacterium (12.3%) and Erwinia (7.2%) dominated in seedling stage were apparently declined in the vegetable and initial flowering stages, while Sphingomonas and Methylobacterium increased in mature leaves at harvest time, which showed that the mature leaves of Stevia preferred to accumulate some certain endophytic bacteria. Sphingomonas and Methylobacterium constituted an important part of the core endophytic community and were positively correlated with the stevioside content and UGT74G1 gene expression, respectively; while Erwinia, Agrobacterium, and Bacillus were negatively correlated with the stevioside accumulation. Fulvic acid treatment accelerated the variation of endophytes along the growth stages and increased the steviol glycosides content. This is the first study to reveal the community composition of endophytic bacteria in the Stevia leaves, to evidence the strong effects of growth stage and fulvic acid application on the endophytes of Stevia, and to demonstrate the correlation between the endophytic bacteria and the steviol glycosides accumulation. PMID:26379644

  17. Low-intensity electromagnetic irradiation of 70.6 and 73 GHz frequencies enhances the effects of disulfide bonds reducer on Escherichia coli growth and affects the bacterial surface oxidation-reduction state

    SciTech Connect

    Torgomyan, Heghine; Trchounian, Armen

    2011-10-14

    Highlights: {yields} Low intensity 70.6 and 73 GHz electromagnetic irradiation (EMI) strongly suppressed Escherichia coli growth at 73 GHz and pH 7.3. {yields} Reducer DL-dithiothreitol had bactericidal effect and disturbed the SH-groups number. {yields} EMI enhanced E. coli sensitivity toward dithiothreitol. {yields} EMI decreased the SH-groups number of membrane disturbed by ATP and N,N'-dicyclohexycarbodiimide. {yields} The changed membrane oxidation-reduction state could be the primary mechanisms in EMI effects. -- Abstract: Low-intensity electromagnetic irradiation (EMI) of 70.6 and 73 GHz frequencies (flux capacity - 0.06 mW cm{sup -2}) had bactericidal effects on Escherichia coli. This EMI (1 h) exposure suppressed the growth of E. coli K-12({lambda}). The pH value (6.0-8.0) did not significantly affect the growth. The lag-phase duration was prolonged, and the growth specific rate was inhibited, and these effects were more noticeable after 73 GHz irradiation. These effects were enhanced by the addition of DL-dithiothreitol (DTT), a strong reducer of disulfide bonds in surface membrane proteins, which in its turn also has bactericidal effect. Further, the number of accessible SH-groups in membrane vesicles was markedly decreased by EMI that was augmented by N,N'-dicyclohexycarbodiimide and DTT. These results indicate a change in the oxidation-reduction state of bacterial cell membrane proteins that could be the primary membranous mechanism in the bactericidal effects of low-intensity EMI of the 70.6 and 73 GHz frequencies.

  18. EFFECT OF MECHANICAL STRESS ON BACTERIAL ADHESION

    E-print Network

    Ribot, Magali

    EFFECT OF MECHANICAL STRESS ON BACTERIAL ADHESION AND EARLY BIOFILM GROWTH Sigolčne LECUYER-4. growth and maturation (h-days) 5. dispersion (days-months) #12;MECHANICAL STRESS DURING ADHESION stress can be transmitted: ·by the underlying substrate (adhesion, friction) time PART I PART II #12

  19. [THE NATIONAL NUTRIENT MEDIUM FOR DIAGNOSTIC OF PURULENT BACTERIAL MENINGITIS].

    PubMed

    Podkopaev, Ya V; Domotenko, L V; Morozova, T P; Khramov, M K; Shepelin, A P

    2015-05-01

    The national growth mediums were developed for isolating and cultivating of main agents of purulent bacterial meningitis--haemophilus agar, chocolate agar, PBM-agar. The growing and selective characteristics of developed growth mediums are examined. The haemophilus agar ensures growth of Haemophilus influenzae. The chocolate agar, PBM-agar ensure growth of Neisseria meningitidis, Streptococcus pneumoniae and Haemophilus influenzae. By growing characteristics, the national growth mediums match foreign analogues. Under application of growth mediums with selective additions it is possible to achieve selective isolation of main agents of purulent bacterial meningitis with inhibition of growth of microbes-associates. PMID:26470444

  20. Bacterial vaginosis.

    PubMed Central

    Spiegel, C A

    1991-01-01

    Bacterial vaginosis (BV) is the most common of the vaginitides affecting women of reproductive age. It appears to be due to an alteration in the vaginal ecology by which Lactobacillus spp., the predominant organisms in the healthy vagina, are replaced by a mixed flora including Prevotella bivia, Prevotella disiens, Porphyromonas spp., Mobiluncus spp., and Peptostreptococcus spp. All of these organisms except Mobiluncus spp. are also members of the endogenous vaginal flora. While evidence from treatment trials does not support the notion that BV is sexually transmitted, recent studies have shown an increased risk associated with multiple sexual partners. It has also been suggested that the pathogenesis of BV may be similar to that of urinary tract infections, with the rectum serving as a reservoir for some BV-associated flora. The organisms associated with BV have also been recognized as agents of female upper genital tract infection, including pelvic inflammatory disease, and the syndrome BV has been associated with adverse outcome of pregnancy, including premature rupture of membranes, chorioamnionitis, and fetal loss; postpartum endometritis; cuff cellulitis; and urinary tract infections. The mechanisms by which the BV-associated flora causes the signs of BV are not well understood, but a role for H2O2-producing Lactobacillus spp. in protecting against colonization by catalase-negative anaerobic bacteria has been recognized. These and other aspects of BV are reviewed. PMID:1747864

  1. The Effect of New Zealand Kanuka, Manuka and Clover Honeys on Bacterial Growth Dynamics and Cellular Morphology Varies According to the Species

    PubMed Central

    Lu, Jing; Carter, Dee A.; Turnbull, Lynne; Rosendale, Douglas; Hedderley, Duncan; Stephens, Jonathan; Gannabathula, Swapna; Steinhorn, Gregor; Schlothauer, Ralf C.; Whitchurch, Cynthia B.; Harry, Elizabeth J.

    2013-01-01

    Treatment of chronic wounds is becoming increasingly difficult due to antibiotic resistance. Complex natural products with antimicrobial activity, such as honey, are now under the spotlight as alternative treatments to antibiotics. Several studies have shown honey to have broad-spectrum antibacterial activity at concentrations present in honey dressings, and resistance to honey has not been attainable in the laboratory. However not all honeys are the same and few studies have used honey that is well defined both in geographic and chemical terms. Here we have used a range of concentrations of clover honey and a suite of manuka and kanuka honeys from known geographical locations, and for which the floral source and concentration of methylglyoxal and hydrogen peroxide potential were defined, to determine their effect on growth and cellular morphology of four bacteria: Bacillus subtilis, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. While the general trend in effectiveness of growth inhibition was manuka>manuka-kanuka blend>kanuka>clover, the honeys had varying and diverse effects on the growth and cellular morphology of each bacterium, and each organism had a unique response profile to these honeys. P. aeruginosa showed a markedly different pattern of growth inhibition to the other three organisms when treated with sub-inhibitory concentrations of honey, being equally sensitive to all honeys, including clover, and the least sensitive to honey overall. While hydrogen peroxide potential contributed to the antibacterial activity of the manuka and kanuka honeys, it was never essential for complete growth inhibition. Cell morphology analysis also showed a varied and diverse set of responses to the honeys that included cell length changes, cell lysis, and alterations to DNA appearance. These changes are likely to reflect the different regulatory circuits of the organisms that are activated by the stress of honey treatment. PMID:23418472

  2. Dynamics of bacterial gene regulation

    NASA Astrophysics Data System (ADS)

    Narang, Atul

    2009-03-01

    The phenomenon of diauxic growth is a classical problem of bacterial gene regulation. The most well studied example of this phenomenon is the glucose-lactose diauxie, which occurs because the expression of the lac operon is strongly repressed in the presence of glucose. This repression is often explained by appealing to molecular mechanisms such as cAMP activation and inducer exclusion. I will begin by analyzing data showing that these molecular mechanisms cannot explain the strong lac repression because they exert a relatively weak effect. I will then present a minimal model accounting only for enzyme induction and dilution, which yields strong repression despite the absence of catabolite repression and inducer exclusion. The model also explains the growth patterns observed in batch and continuous cultures of various bacterial strains and substrate mixtures. The talk will conclude with a discussion of the experimental evidence regarding positive feedback, the key component of the minimal model.

  3. Universality in stochastic exponential growth.

    PubMed

    Iyer-Biswas, Srividya; Crooks, Gavin E; Scherer, Norbert F; Dinner, Aaron R

    2014-07-11

    Recent imaging data for single bacterial cells reveal that their mean sizes grow exponentially in time and that their size distributions collapse to a single curve when rescaled by their means. An analogous result holds for the division-time distributions. A model is needed to delineate the minimal requirements for these scaling behaviors. We formulate a microscopic theory of stochastic exponential growth as a Master Equation that accounts for these observations, in contrast to existing quantitative models of stochastic exponential growth (e.g., the Black-Scholes equation or geometric Brownian motion). Our model, the stochastic Hinshelwood cycle (SHC), is an autocatalytic reaction cycle in which each molecular species catalyzes the production of the next. By finding exact analytical solutions to the SHC and the corresponding first passage time problem, we uncover universal signatures of fluctuations in exponential growth and division. The model makes minimal assumptions, and we describe how more complex reaction networks can reduce to such a cycle. We thus expect similar scalings to be discovered in stochastic processes resulting in exponential growth that appear in diverse contexts such as cosmology, finance, technology, and population growth. PMID:25062238

  4. Universality in Stochastic Exponential Growth

    NASA Astrophysics Data System (ADS)

    Iyer-Biswas, Srividya; Crooks, Gavin E.; Scherer, Norbert F.; Dinner, Aaron R.

    2014-07-01

    Recent imaging data for single bacterial cells reveal that their mean sizes grow exponentially in time and that their size distributions collapse to a single curve when rescaled by their means. An analogous result holds for the division-time distributions. A model is needed to delineate the minimal requirements for these scaling behaviors. We formulate a microscopic theory of stochastic exponential growth as a Master Equation that accounts for these observations, in contrast to existing quantitative models of stochastic exponential growth (e.g., the Black-Scholes equation or geometric Brownian motion). Our model, the stochastic Hinshelwood cycle (SHC), is an autocatalytic reaction cycle in which each molecular species catalyzes the production of the next. By finding exact analytical solutions to the SHC and the corresponding first passage time problem, we uncover universal signatures of fluctuations in exponential growth and division. The model makes minimal assumptions, and we describe how more complex reaction networks can reduce to such a cycle. We thus expect similar scalings to be discovered in stochastic processes resulting in exponential growth that appear in diverse contexts such as cosmology, finance, technology, and population growth.

  5. Resiliency of Stable Isotope Fractionation (?(13)C and ?(37)Cl) of Trichloroethene to Bacterial Growth Physiology and Expression of Key Enzymes.

    PubMed

    Buchner, Daniel; Behrens, Sebastian; Laskov, Christine; Haderlein, Stefan B

    2015-11-17

    Quantification of in situ (bio)degradation using compound-specific isotope analysis requires a known and constant isotope enrichment factor (?). Because reported isotope enrichment factors for microbial dehalogenation of chlorinated ethenes vary considerably we studied the potential effects of metabolic adaptation to TCE respiration on isotope fractionation (?(13)C and ?(37)Cl) using a model organism (Desulfitobacterium hafniesne Y51), which only has one reductive dehalogenase (PceA). Cells grown on TCE for the first time showed exponential growth until 10(9) cells/mL. During exponential growth, the cell-normalized amount of PceA enzyme increased steadily in the presence of TCE (up to 21 pceA transcripts per cell) but not with alternative substrates (<1 pceA transcript per cell). Cultures initially transferred or subcultivated on TCE showed very similar isotope fractionation, both for carbon (?carbon: -8.6‰ ± 0.3‰ or -8.8‰ ± 0.2‰) and chlorine (?chlorine: -2.7‰ ± 0.3‰) with little variation (0.7‰) for the different experimental conditions. Thus, TCE isotope fractionation by D. hafniense strain Y51 was affected by neither growth phase, pceA transcription, or translation, nor by PceA content per cell, suggesting that transport limitations did not affect isotope fractionation. Previously reported variable ? values for other organohalide-respiring bacteria might thus be attributed to different expression levels of their multiple reductive dehalogenases. PMID:26505909

  6. Model-based Characterization of the Parameters of Dissimilatory Sulfate Reduction Under the Effect of Different Initial Density of Desulfovibrio piger Vib-7 Bacterial Cells

    PubMed Central

    Kushkevych, Ivan; Bolis, Marco; Bartos, Milan

    2015-01-01

    The objective of this study was to design a model of dissimilatory sulfate reduction process using the Verhulst function, with a particular focus on the kinetics of bacterial growth, sulfate and lactate consumption, and accumulation of hydrogen sulfide and acetate. The effect of the initial density (0.12±0.011, 0.25±0.024, 0.5±0.048 and 1.0±0.096 mg cells/ml of medium) of the sulfate-reducing bacteria Desulfovibrio piger Vib-7 on the growth and dissimilatory sulfate reduction was studied. The exponential growth phase of the D. piger Vib-7 was observed for 72 hours of cultivation at the (0.12 and 0.25 mg/ml) initial concentration of bacterial cells. Sulfate and lactate were consumed incompletely during this time. The increase in the initial concentration of cells to 0.5 and 1 mg/ml led to a shortening of the exponential bacterial growth phase and a shift to the stationary phase of the growth. In the case of 0.5 mg/ml seeding, the stationary growth phase was observed in the 36th hour of cultivation. The increase in the initial concentration of cells to 1 mg/ml led to the beginning of the stationary growth phase in 24th hours of cultivation. Under these conditions, sulfate and lactate were consumed completely in the 48th hour of cultivation. The kinetic analysis of the curves of bacterial growth and the process of dissimilatory sulfate reduction by D. piger Vib-7 was carried out. PMID:26668663

  7. Macroscopic Streamer Growths in Acidic, Metal-Rich Mine Waters in North Wales Consist of Novel and Remarkably Simple Bacterial Communities

    PubMed Central

    Hallberg, Kevin B.; Coupland, Kris; Kimura, Sakurako; Johnson, D. Barrie

    2006-01-01

    The microbial composition of acid streamers (macroscopic biofilms) in acidic, metal-rich waters in two locations (an abandoned copper mine and a chalybeate spa) in north Wales was studied using cultivation-based and biomolecular techniques. Known chemolithotrophic and heterotrophic acidophiles were readily isolated from disrupted streamers, but they accounted for only <1 to 7% of the total microorganisms present. Fluorescent in situ hybridization (FISH) revealed that 80 to 90% of the microbes in both types of streamers were ?-Proteobacteria. Terminal restriction fragment length polymorphism analysis of the streamers suggested that a single bacterial species was dominant in the copper mine streamers, while two distinct bacteria (one of which was identical to the bacterium found in the copper mine streamers) accounted for about 90% of the streamers in the spa water. 16S rRNA gene clone libraries showed that the ?-proteobacterium found in both locations was closely related to a clone detected previously in acid mine drainage in California and that its closest characterized relatives were neutrophilic ammonium oxidizers. Using a modified isolation technique, this bacterium was isolated from the copper mine streamers and shown to be a novel acidophilic autotrophic iron oxidizer. The ?-proteobacterium found only in the spa streamers was closely related to the neutrophilic iron oxidizer Gallionella ferruginea. FISH analysis using oligonucleotide probes that targeted the two ?-proteobacteria confirmed that the biodiversity of the streamers in both locations was very limited. The microbial compositions of the acid streamers found at the two north Wales sites are very different from the microbial compositions of the previously described acid streamers found at Iron Mountain, California, and the Rio Tinto, Spain. PMID:16517651

  8. Isolated Curves for Hyperelliptic Curve Cryptography

    E-print Network

    Wang, Wenhan

    2012-01-01

    We introduce the notion of isolated genus two curves. As there is no known efficient algorithm to explicitly construct isogenies between two genus two curves with large conductor gap, the discrete log problem (DLP) cannot be efficiently carried over from an isolated curve to a large set of isogenous curves. Thus isolated genus two curves might be more secure for DLP based hyperelliptic curve cryptography. We establish results on explicit expressions for the index of an endomorphism ring in the maximal CM order, and give conditions under which the index is a prime number or an almost prime number for three different categories of quartic CM fields. We also derived heuristic asymptotic results on the densities and distributions of isolated genus two curves with CM by any fixed quartic CM field. Computational results, which are also shown for three explicit examples, agree with heuristic prediction with errors within a tolerable range.

  9. Fitting Richards' curve to data of diverse origins

    USGS Publications Warehouse

    Johnson, D.H.; Sargeant, A.B.; Allen, S.H.

    1975-01-01

    Published techniques for fitting data to nonlinear growth curves are briefly reviewed, most techniques require knowledge of the shape of the curve. A flexible growth curve developed by Richards (1959) is discussed as an alternative when the shape is unknown. The shape of this curve is governed by a specific parameter which can be estimated from the data. We describe in detail the fitting of a diverse set of longitudinal and cross-sectional data to Richards' growth curve for the purpose of determining the age of red fox (Vulpes vulpes) pups on the basis of right hind foot length. The fitted curve is found suitable for pups less than approximately 80 days old. The curve is extrapolated to pre-natal growth and shown to be appropriate only for about 10 days prior to birth.

  10. Interfacial Properties and Iron Binding to Bacterial Proteins That Promote the Growth of Magnetite Nanocrystals: X-ray Reflectivity and Surface Spectroscopy Studies

    SciTech Connect

    Wang, Wenjie; Bu, Wei; Wang, Lijun; Palo, Pierre E.; Mallapragada, Surya; Nilsen-Hamilton, Marit; Vaknin, David

    2012-04-30

    Surface sensitive X-ray scattering and spectroscopic studies have been conducted to determine structural properties of Mms6, the protein in Magnetospirillum magneticum AMB-1 that is implicated as promoter of magnetite nanocrystals growth. Surface pressure versus molecular area isotherms indicate Mms6 forms stable monolayers at the aqueous/vapor interface that are strongly affected by ionic conditions of the subphase. Analysis of X-ray reflectivity from the monolayers shows that the protein conformation at the interface depends on surface pressure and on the presence of ions in the solutions, in particular of iron ions and its complexes. X-ray fluorescence at grazing angles of incidence from the same monolayers allows quantitative determination of surface bound ions to the protein showing that ferric iron binds to Mms6 at higher densities compared to other ions such as Fe{sup 2+} or La{sup 3+} under similar buffer conditions.

  11. Cellular automaton for bacterial towers

    NASA Astrophysics Data System (ADS)

    Indekeu, J. O.; Giuraniuc, C. V.

    2004-05-01

    A simulation approach to the stochastic growth of bacterial towers is presented, in which a non-uniform and finite nutrient supply essentially determines the emerging structure through elementary chemotaxis. The method is based on cellular automata and we use simple, microscopic, local rules for bacterial division in nutrient-rich surroundings. Stochastic nutrient diffusion, while not crucial to the dynamics of the total population, is influential in determining the porosity of the bacterial tower and the roughness of its surface. As the bacteria run out of food, we observe an exponentially rapid saturation to a carrying capacity distribution, similar in many respects to that found in a recently proposed phenomenological hierarchical population model, which uses heuristic parameters and macroscopic rules. Complementary to that phenomenological model, the simulation aims at giving more microscopic insight into the possible mechanisms for one of the recently much studied bacterial morphotypes, known as “towering biofilm”, observed experimentally using confocal laser microscopy. A simulation suggesting a mechanism for biofilm resistance to antibiotics is also shown.

  12. Dynamic mathematical model to predict microbial growth and inactivation during food processing.

    PubMed Central

    Van Impe, J F; Nicolaď, B M; Martens, T; De Baerdemaeker, J; Vandewalle, J

    1992-01-01

    Many sigmoidal functions to describe a bacterial growth curve as an explicit function of time have been reported in the literature. Furthermore, several expressions have been proposed to model the influence of temperature on the main characteristics of this growth curve: maximum specific growth rate, lag time, and asymptotic level. However, as the predictive value of such explicit models is most often guaranteed only at a constant temperature within the temperature range of microbial growth, they are less appropriate in optimization studies of a whole production and distribution chain. In this paper a dynamic mathematical model--a first-order differential equation--has been derived, describing the bacterial population as a function of both time and temperature. Furthermore, the inactivation of the population at temperatures above the maximum temperature for growth has been incorporated. In the special case of a constant temperature, the solution coincides exactly with the corresponding Gompertz model, which has been validated in several recent reports. However, the main advantage of this dynamic model is its ability to deal with time-varying temperatures, over the whole temperature range of growth and inactivation. As such, it is an essential building block in (time-saving) simulation studies to design, e.g., optimal temperature-time profiles with respect to microbial safety of a production and distribution chain of chilled foods. PMID:1444404

  13. Pregnancy Complications: Bacterial Vaginosis

    MedlinePLUS

    ... Global Map Premature birth report card Careers Archives Pregnancy Before or between pregnancies Nutrition, weight & fitness Prenatal ... complications > Bacterial vaginosis and pregnancy Bacterial vaginosis and pregnancy Now playing: E-mail to a friend Please ...

  14. Influence of bacterial N-acyl-homoserine lactones on growth parameters, pigments, antioxidative capacities and the xenobiotic phase II detoxification enzymes in barley and yam bean

    PubMed Central

    Götz-Rösch, Christine; Sieper, Tina; Fekete, Agnes; Schmitt-Kopplin, Philippe; Hartmann, Anton; Schröder, Peter

    2015-01-01

    Bacteria are able to communicate with each other and sense their environment in a population density dependent mechanism known as quorum sensing (QS). N-acyl-homoserine lactones (AHLs) are the QS signaling compounds of Gram-negative bacteria which are frequent colonizers of rhizospheres. While cross-kingdom signaling and AHL-dependent gene expression in plants has been confirmed, the responses of enzyme activities in the eukaryotic host upon AHLs are unknown. Since AHL are thought to be used as so-called plant boosters or strengthening agents, which might change their resistance toward radiation and/or xenobiotic stress, we have examined the plants’ pigment status and their antioxidative and detoxifying capacities upon AHL treatment. Because the yield of a crop plant should not be negatively influenced, we have also checked for growth and root parameters. We investigated the influence of three different AHLs, namely N-hexanoyl- (C6-HSL), N-octanoyl- (C8-HSL), and N-decanoyl- homoserine lactone (C10-HSL) on two agricultural crop plants. The AHL-effects on Hordeum vulgare (L.) as an example of a monocotyledonous crop and on the tropical leguminous crop plant Pachyrhizus erosus (L.) were compared. While plant growth and pigment contents in both plants showed only small responses to the applied AHLs, AHL treatment triggered tissue- and compound-specific changes in the activity of important detoxification enzymes. The activity of dehydroascorbate reductase in barley shoots after C10-HSL treatment for instance increased up to 384% of control plant levels, whereas superoxide dismutase activity in barley roots was decreased down to 23% of control levels upon C6-HSL treatment. Other detoxification enzymes reacted similarly within this range, with interesting clusters of positive or negative answers toward AHL treatment. In general the changes on the enzyme level were more severe in barley than in yam bean which might be due to the different abilities of the plants to degrade AHLs to metabolites such as the hydroxy- or keto-form of the original compound. PMID:25914699

  15. Influence of bacterial N-acyl-homoserine lactones on growth parameters, pigments, antioxidative capacities and the xenobiotic phase II detoxification enzymes in barley and yam bean.

    PubMed

    Götz-Rösch, Christine; Sieper, Tina; Fekete, Agnes; Schmitt-Kopplin, Philippe; Hartmann, Anton; Schröder, Peter

    2015-01-01

    Bacteria are able to communicate with each other and sense their environment in a population density dependent mechanism known as quorum sensing (QS). N-acyl-homoserine lactones (AHLs) are the QS signaling compounds of Gram-negative bacteria which are frequent colonizers of rhizospheres. While cross-kingdom signaling and AHL-dependent gene expression in plants has been confirmed, the responses of enzyme activities in the eukaryotic host upon AHLs are unknown. Since AHL are thought to be used as so-called plant boosters or strengthening agents, which might change their resistance toward radiation and/or xenobiotic stress, we have examined the plants' pigment status and their antioxidative and detoxifying capacities upon AHL treatment. Because the yield of a crop plant should not be negatively influenced, we have also checked for growth and root parameters. We investigated the influence of three different AHLs, namely N-hexanoyl- (C6-HSL), N-octanoyl- (C8-HSL), and N-decanoyl- homoserine lactone (C10-HSL) on two agricultural crop plants. The AHL-effects on Hordeum vulgare (L.) as an example of a monocotyledonous crop and on the tropical leguminous crop plant Pachyrhizus erosus (L.) were compared. While plant growth and pigment contents in both plants showed only small responses to the applied AHLs, AHL treatment triggered tissue- and compound-specific changes in the activity of important detoxification enzymes. The activity of dehydroascorbate reductase in barley shoots after C10-HSL treatment for instance increased up to 384% of control plant levels, whereas superoxide dismutase activity in barley roots was decreased down to 23% of control levels upon C6-HSL treatment. Other detoxification enzymes reacted similarly within this range, with interesting clusters of positive or negative answers toward AHL treatment. In general the changes on the enzyme level were more severe in barley than in yam bean which might be due to the different abilities of the plants to degrade AHLs to metabolites such as the hydroxy- or keto-form of the original compound. PMID:25914699

  16. Oxidation of calprotectin by hypochlorous acid prevents chelation of essential metal ions and allows bacterial growth: Relevance to infections in cystic fibrosis.

    PubMed

    Magon, Nicholas J; Turner, Rufus; Gearry, Richard B; Hampton, Mark B; Sly, Peter D; Kettle, Anthony J

    2015-09-01

    Calprotectin provides nutritional immunity by sequestering manganese and zinc ions. It is abundant in the lungs of patients with cystic fibrosis but fails to prevent their recurrent infections. Calprotectin is a major protein of neutrophils and composed of two monomers, S100A8 and S100A9. We show that the ability of calprotectin to limit growth of Staphylococcus aureus and Pseudomonas aeruginosa is exquisitely sensitive to oxidation by hypochlorous acid. The N-terminal cysteine residue on S100A9 was highly susceptible to oxidation which resulted in cross-linking of the protein monomers. The N-terminal methionine of S100A8 was also readily oxidized by hypochlorous acid, forming both the methionine sulfoxide and the unique product dehydromethionine. Isolated human neutrophils formed these modifications on calprotectin when their myeloperoxidase generated hypochlorous acid. Up to 90% of the N-terminal amine on S100A8 in bronchoalveolar lavage fluid from young children with cystic fibrosis was oxidized. Oxidized calprotectin was higher in children with cystic fibrosis compared to disease controls, and further elevated in those patients with infections. Our data suggest that oxidative stress associated with inflammation in cystic fibrosis will stop metal sequestration by calprotectin. Consequently, strategies aimed at blocking extracellular myeloperoxidase activity should enable calprotectin to provide nutritional immunity within the airways. PMID:26006104

  17. Enhancement of Contaminant Biodegradation through Traveling Bacterial Waves

    NASA Astrophysics Data System (ADS)

    Yan, Z.; Bouwer, E. J.; Hilpert, M.

    2013-12-01

    Traveling bacterial waves are capable of improving contaminant degradation. Both chemotaxis and growth/decay can cause such waves, but the joint effects of these two processes on the waves and biodegradation are not known. We therefore use numerical experimentation to investigate the formation and propagation of traveling waves of chemotactic bacteria in the presence of growth and decay, and examine their effects on contaminant remediation. Three types of traveling waves can occur: growth/decay/motility waves due to the balance of bacterial growth, decay and random motility; pure chemotactic waves due to the biased movement of chemotactic bacteria toward high concentration of substrate; integrated waves due to the interaction of growth/decay and chemotaxis. The impact of the initial electron acceptor concentration on bacterial propagation tremendously depends on the magnitude of chemotaxis. Forming a pure chemotactic wave is necessary for chemotaxis to accelerate the bacterial migration that is originally driven by growth and decay. We determine a quantitative relation between the speed of a growth/decay/motility wave and the bacterial decay rate, the yield coefficient, the maximum reaction rate, and the substrate diffusion coefficient. Finally we examine the interaction between chemotaxis and growth/decay and their effects on improving bacterial propagation as a function of chemotactic sensitivity. Chemotaxis hardly enhances the bacterial propagation if it is too weak to form a pure chemotactic band or if its speed is less than half of that of growth/decay/motility wave. However, chemotaxis will significantly accelerate the bacterial propagation once its wave speed exceeds that of growth/decay/motility waves.

  18. Bacterial cheating limits antibiotic resistance

    NASA Astrophysics Data System (ADS)

    Xiao Chao, Hui; Yurtsev, Eugene; Datta, Manoshi; Artemova, Tanya; Gore, Jeff

    2012-02-01

    The widespread use of antibiotics has led to the evolution of resistance in bacteria. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removing the antibiotic. The cooperative nature of this growth suggests that a cheater strain---which does not contribute to breaking down the antibiotic---may be able to take advantage of cells cooperatively inactivating the antibiotic. Here we find experimentally that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We observe stable coexistence between the two strains and find that a simple model successfully explains the behavior as a function of antibiotic concentration and cell density. We anticipate that our results will provide insight into the evolutionary origin of phenotypic diversity and cooperative behaviors.

  19. Antibiotic drugs targeting bacterial RNAs

    PubMed Central

    Hong, Weiling; Zeng, Jie; Xie, Jianping

    2014-01-01

    RNAs have diverse structures that include bulges and internal loops able to form tertiary contacts or serve as ligand binding sites. The recent increase in structural and functional information related to RNAs has put them in the limelight as a drug target for small molecule therapy. In addition, the recognition of the marked difference between prokaryotic and eukaryotic rRNA has led to the development of antibiotics that specifically target bacterial rRNA, reduce protein translation and thereby inhibit bacterial growth. To facilitate the development of new antibiotics targeting RNA, we here review the literature concerning such antibiotics, mRNA, riboswitch and tRNA and the key methodologies used for their screening.

  20. Volatiles in Inter-Specific Bacterial Interactions

    PubMed Central

    Tyc, Olaf; Zweers, Hans; de Boer, Wietse; Garbeva, Paolina

    2015-01-01

    The importance of volatile organic compounds for functioning of microbes is receiving increased research attention. However, to date very little is known on how inter-specific bacterial interactions effect volatiles production as most studies have been focused on volatiles produced by monocultures of well-described bacterial genera. In this study we aimed to understand how inter-specific bacterial interactions affect the composition, production and activity of volatiles. Four phylogenetically different bacterial species namely: Chryseobacterium, Dyella, Janthinobacterium, and Tsukamurella were selected. Earlier results had shown that pairwise combinations of these bacteria induced antimicrobial activity in agar media whereas this was not the case for monocultures. In the current study, we examined if these observations were also reflected by the production of antimicrobial volatiles. Thus, the identity and antimicrobial activity of volatiles produced by the bacteria were determined in monoculture as well in pairwise combinations. Antimicrobial activity of the volatiles was assessed against fungal, oomycetal, and bacterial model organisms. Our results revealed that inter-specific bacterial interactions affected volatiles blend composition. Fungi and oomycetes showed high sensitivity to bacterial volatiles whereas the effect of volatiles on bacteria varied between no effects, growth inhibition to growth promotion depending on the volatile blend composition. In total 35 volatile compounds were detected most of which were sulfur-containing compounds. Two commonly produced sulfur-containing volatile compounds (dimethyl disulfide and dimethyl trisulfide) were tested for their effect on three target bacteria. Here, we display the importance of inter-specific interactions on bacterial volatiles production and their antimicrobial activities. PMID:26733959

  1. Modelling collective behaviour and pattern formation in bacterial colonies 

    E-print Network

    Farrell, Fred Desmond Casimir

    2015-07-01

    In this Thesis I present simulation- and theory-based studies of pattern formation and growth in collections of micro-organisms, in particular bacterial colonies. The aim of these studies is to introduce simple models ...

  2. Systemic Acquired Tolerance to Virulent Bacterial Pathogens in Tomato1

    E-print Network

    Klee, Harry J.

    , ethylene and salicylic acid (SA) mediate symptom development but do not influence bacterial growth (Knoester et al., 1998, 1999) while salicylic acid (SA) is necessary for both resistance to some avirulent

  3. Live Attenuated Bacterial Vaccines in Aquaculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aquaculture has emerged as an important economical agribusiness, worldwide. Among the top barrier to growth of aquaculture is infectious disease that is causing severe economic losses. Bacterial species of more than 20 genera have been reported as causes of diseases. The risk of disease is often ...

  4. Assessment of inhibitory potency of antibiotics by MRI: apparent T2 as a marker of cell growth.

    PubMed

    Hoerr, Verena; Hoffmann, Kerstin; Schollmayer, Curd; Holzgrabe, Ulrike; Haase, Axel; Jakob, Peter; Faber, Cornelius

    2006-11-01

    A new method to assess the antibiotic potency by MRI has been developed. Correlating 1H NMR spectra of bacterial cultures with the extracellular parameters T2, OD600, and pH, a relationship between cell growth and T2 variations was established. T2 is influenced by chemical exchange that depends on pH, composition, and concentration of the medium. Changes in the medium from bacterial metabolism are reflected in alternating T2 values. At 17.6 T, growth curves based on T2 values were measured simultaneously of several cultures of Streptococcus vestibularis. From T2 growth curves in the presence of varying concentrations of vancomycin, the minimum inhibitory concentration of the antibiotic could be determined to be 0.33+/-0.08 microM. This value was in good agreement with the result obtained by the conventional broth microdilution. In principle, T2 growth curves can be determined on a large number of cultures simultaneously and may potentially be used as a novel tool in high through-put screening of novel anti-infective substances. PMID:17096123

  5. Asphalt Showing Bacterial Degeneration 

    E-print Network

    Unknown

    2011-08-17

    , has been expanded through a new project, Development of a Synergistic, Comprehensive Statewide Lone Star Healthy Streams Program. The LSHS Program initially developed and tested educational opportunities for cattlemen focusing on bacterial... contami- nation of watersheds by grazing animals and how that bacterial contamination can be reduced. The program also encouraged adoption of best management practices designed to reduce bacterial loading to Texas streams and waterways...

  6. Facial bacterial infections: folliculitis.

    PubMed

    Laureano, Ana Cristina; Schwartz, Robert A; Cohen, Philip J

    2014-01-01

    Facial bacterial infections are most commonly caused by infections of the hair follicles. Wherever pilosebaceous units are found folliculitis can occur, with the most frequent bacterial culprit being Staphylococcus aureus. We review different origins of facial folliculitis, distinguishing bacterial forms from other infectious and non-infectious mimickers. We distinguish folliculitis from pseudofolliculitis and perifolliculitis. Clinical features, etiology, pathology, and management options are also discussed. PMID:25441463

  7. Jellyfish Modulate Bacterial Dynamic and Community Structure

    PubMed Central

    Tinta, Tinkara; Kogovšek, Tjaša; Malej, Alenka; Turk, Valentina

    2012-01-01

    Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom - forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish - enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to ‘jellyfish - associated’ and ‘free - living’ bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the Vibrionaceae families. Elevated levels of dissolved proteins, dissolved organic and inorganic nutrient release, bacterial abundance and carbon production as well as ammonium concentrations characterized the degradation process. The biochemical composition of jellyfish species may influence changes in the amount of accumulated dissolved organic and inorganic nutrients. Our results can contribute insights into possible changes in bacterial population dynamics and nutrient pathways following jellyfish blooms which have important implications for ecology of coastal waters. PMID:22745726

  8. Exponential growth of bacteria: Constant multiplication through division

    NASA Astrophysics Data System (ADS)

    Hagen, Stephen J.

    2010-12-01

    The growth of a bacterial culture is one of the most familiar examples of exponential growth, with important consequences in biology and medicine. Bacterial growth involves more than just a rate constant. To sustain exponential growth, the cell must carefully coordinate the accumulation of mass, constant replication of the chromosome, and physical division. Hence, the growth rate is centrally important in any physical and chemical description of a bacterial cell. These aspects of bacterial growth can be described by empirical laws that suggest simple and intuitive models. Therefore, a quantitative discussion of bacterial growth could be a part of any undergraduate biophysics course. We present a general overview of some classic experimental studies and mathematical models of bacterial growth from a mostly physical perspective.

  9. The Role of Bacterial Biofilms and Surface Components in Plant-Bacterial Associations

    PubMed Central

    Bogino, Pablo C.; de las Mercedes Oliva, María; Sorroche, Fernando G.; Giordano, Walter

    2013-01-01

    The role of bacterial surface components in combination with bacterial functional signals in the process of biofilm formation has been increasingly studied in recent years. Plants support a diverse array of bacteria on or in their roots, transport vessels, stems, and leaves. These plant-associated bacteria have important effects on plant health and productivity. Biofilm formation on plants is associated with symbiotic and pathogenic responses, but how plants regulate such associations is unclear. Certain bacteria in biofilm matrices have been found to induce plant growth and to protect plants from phytopathogens (a process termed biocontrol), whereas others are involved in pathogenesis. In this review, we systematically describe the various components and mechanisms involved in bacterial biofilm formation and attachment to plant surfaces and the relationships of these mechanisms to bacterial activity and survival. PMID:23903045

  10. Quantification, Distribution, and Possible Source of Bacterial Biofilm in Mouse Automated Watering Systems

    PubMed Central

    Meier, Thomas R; Maute, Carrie J; Cadillac, Joan M; Lee, Ji Young; Righter, Daniel J; Hugunin, Kelly MS; Deininger, Rolf A; Dysko, Robert C

    2008-01-01

    The use of automated watering systems for providing drinking water to rodents has become commonplace in the research setting. Little is known regarding bacterial biofilm growth within the water piping attached to the racks (manifolds). The purposes of this project were to determine whether the mouse oral flora contributed to the aerobic bacterial component of the rack biofilm, quantify bacterial growth in rack manifolds over 6 mo, assess our rack sanitation practices, and quantify bacterial biofilm development within sections of the manifold. By using standard methods of bacterial identification, the aerobic oral flora of 8 strains and stocks of mice were determined on their arrival at our animal facility. Ten rack manifolds were sampled before, during, and after sanitation and monthly for 6 mo. Manifolds were evaluated for aerobic bacterial growth by culture on R2A and trypticase soy agar, in addition to bacterial ATP quantification by bioluminescence. In addition, 6 racks were sampled at 32 accessible sites for evaluation of biofilm distribution within the watering manifold. The identified aerobic bacteria in the oral flora were inconsistent with the bacteria from the manifold, suggesting that the mice do not contribute to the biofilm bacteria. Bacterial growth in manifolds increased while they were in service, with exponential growth of the biofilm from months 3 to 6 and a significant decrease after sanitization. Bacterial biofilm distribution was not significantly different across location quartiles of the rack manifold, but bacterial levels differed between the shelf pipe and connecting elbow pipes. PMID:18351724

  11. Deadly competition between sibling bacterial colonies Avraham Be'era,1

    E-print Network

    Texas at Austin. University of

    Deadly competition between sibling bacterial colonies Avraham Be'era,1 , H. P. Zhanga , E sibling cells that belong to the same colony. Here, we present experimental observations of competition be competition bacterial growth growth inhibition Paenibacillus dendritiformis Bacteria are not the simple

  12. Evaluating the effectiveness of a peer-led education intervention to improve the patient safety attitudes of junior pharmacy students: a cross-sectional study using a latent growth curve modelling approach

    PubMed Central

    Walpola, Ramesh L; Fois, Romano A; McLachlan, Andrew J; Chen, Timothy F

    2015-01-01

    Objective Despite the recognition that educating healthcare students in patient safety is essential, changing already full curricula can be challenging. Furthermore, institutions may lack the capacity and capability to deliver patient safety education, particularly from the start of professional practice studies. Using senior students as peer educators to deliver practice-based education can potentially overcome some of the contextual barriers in training junior students. Therefore, this study aimed to evaluate the effectiveness of a peer-led patient safety education programme for junior pharmacy students. Design A repeat cross-sectional design utilising a previously validated patient safety attitudinal survey was used to evaluate attitudes prior to, immediately after and 1?month after the delivery of a patient safety education programme. Latent growth curve (LGC) modelling was used to evaluate the change in attitudes of first-year students using second-year students as a comparator group. Setting Undergraduate university students in Sydney, Australia. Participants 175 first-year and 140 second-year students enrolled in the Bachelor of Pharmacy programme at the University of Sydney. Intervention An introductory patient safety programme was implemented into the first-year Bachelor of Pharmacy curriculum at the University of Sydney. The programme covered introductory patient safety topics including teamwork, communication skills, systems thinking and open disclosure. The programme consisted of 2 lectures, delivered by a senior academic, and a workshop delivered by trained final-year pharmacy students. Results A full LGC model was constructed including the intervention as a non-time-dependent predictor of change (?2 (51)=164.070, root mean square error of approximation=0.084, comparative fit index=0.913, standardised root mean square=0.056). First-year students’ attitudes significantly improved as a result of the intervention, particularly in relation to internalising errors (p=0.010), questioning behaviours (p<0.001) and open disclosure (p=0.008). Conclusions Peer-led education is an effective method that can be adopted to improve junior pharmacy students’ attitudes towards patient safety. PMID:26646830

  13. Rate of Bacterial Mortality in Aquatic Environments

    PubMed Central

    Servais, Pierre; Billen, Gilles; Rego, Jose Vives

    1985-01-01

    A method is proposed which provides a minimum estimate of the rate of bacterial mortality in growing natural populations of planktonic bacteria. This estimate is given by the rate of decrease of radioactivity from the DNA of a [3H]thymidine-labeled natural assemblage of bacteria after all added thymidine has been exhausted from the medium. Results obtained from river water, estuarine water, and seawater show overall bacterial mortality rates in the range 0.010 to 0.030 h?1, in good agreement with the range of growth rates measured in the same environments. Use of selective filtration through Nuclepore filters (pore size, 2 ?m) allowed us to determine the contribution of microzooplankton grazing to overall bacterial mortality. Grazing rates estimated by this method ranged from 0 to 0.02 h?1. PMID:16346811

  14. Scanning electron microscopy studies of bacterial cultures

    NASA Astrophysics Data System (ADS)

    Swinger, Tracy; Blust, Brittni; Calabrese, Joseph; Tzolov, Marian

    2012-02-01

    Scanning electron microscopy is a powerful tool to study the morphology of bacteria. We have used conventional scanning electron microscope to follow the modification of the bacterial morphology over the course of the bacterial growth cycle. The bacteria were fixed in vapors of Glutaraldehyde and ruthenium oxide applied in sequence. A gold film of about 5 nm was deposited on top of the samples to avoid charging and to enhance the contrast. We have selected two types of bacteria Alcaligenes faecalis and Kocuria rhizophila. Their development was carefully monitored and samples were taken for imaging in equal time intervals during their cultivation. These studies are supporting our efforts to develop an optical method for identification of the Gram-type of bacterial cultures.

  15. Bacterial pathogens commandeer Rab GTPases to establish intracellular niches.

    PubMed

    Stein, Mary-Pat; Müller, Matthias P; Wandinger-Ness, Angela

    2012-12-01

    Intracellular bacterial pathogens deploy virulence factors termed effectors to inhibit degradation by host cells and to establish intracellular niches where growth and differentiation take place. Here, we describe mechanisms by which human bacterial pathogens (including Chlamydiae; Coxiella burnetii; Helicobacter pylori; Legionella pneumophila; Listeria monocytogenes; Mycobacteria; Pseudomonas aeruginosa, Salmonella enterica) modulate endocytic and exocytic Rab GTPases in order to thrive in host cells. Host cell Rab GTPases are critical for intracellular transport following pathogen phagocytosis or endocytosis. At the molecular level bacterial effectors hijack Rab protein function to: evade degradation, direct transport to particular intracellular locations and monopolize host vesicles carrying molecules that are needed for a stable niche and/or bacterial growth and differentiation. Bacterial effectors may serve as specific receptors for Rab GTPases or as enzymes that post-translationally modify Rab proteins or endosomal membrane lipids required for Rab function. Emerging data indicate that bacterial effector expression is temporally and spatially regulated and multiple virulence factors may act concertedly to usurp Rab GTPase function, alter signaling and ensure niche establishment and intracellular bacterial growth, making this field an exciting area for further study. PMID:22901006

  16. Anodic Polarization Curves Revisited

    ERIC Educational Resources Information Center

    Liu, Yue; Drew, Michael G. B.; Liu, Ying; Liu, Lin

    2013-01-01

    An experiment published in this "Journal" has been revisited and it is found that the curve pattern of the anodic polarization curve for iron repeats itself successively when the potential scan is repeated. It is surprising that this observation has not been reported previously in the literature because it immediately brings into…

  17. Monopoles, Curves and Ramanujan

    E-print Network

    H. W. Braden; V. Z. Enolski

    2007-04-30

    We develop the Ercolani-Sinha construction of SU(2) monopoles and make this effective for (a five parameter family of centred) charge 3 monopoles. In particular we show how to solve the transcendental constraints arising on the spectral curve. For a class of symmetric curves the transcendental constraints become a number theoretic problem and a recently proven identity of Ramanujan provides a solution.

  18. The Skipping Rope Curve

    ERIC Educational Resources Information Center

    Nordmark, Arne; Essen, Hanno

    2007-01-01

    The equilibrium of a flexible inextensible string, or chain, in the centrifugal force field of a rotating reference frame is investigated. It is assumed that the end points are fixed on the rotation axis. The shape of the curve, the skipping rope curve or "troposkien", is given by the Jacobi elliptic function sn. (Contains 3 figures.)

  19. Survivial Strategies in Bacterial Range Expansions

    NASA Astrophysics Data System (ADS)

    Frey, Erwin

    2014-03-01

    Bacterial communities represent complex and dynamic ecological systems. Different environmental conditions as well as bacterial interactions determine the establishment and sustainability of bacterial diversity. In this talk we discuss the competition of three Escherichia coli strains during range expansions on agar plates. In this bacterial model system, a colicin E2 producing strain C competes with a colicin resistant strain R and with a colicin sensitive strain S for new territory. Genetic engineering allows us to tune the growth rates of the strains and to study distinct ecological scenarios. These scenarios may lead to either single-strain dominance, pairwise coexistence, or to the coexistence of all three strains. In order to elucidate the survival mechanisms of the individual strains, we also developed a stochastic agent-based model to capture the ecological scenarios in silico. In a combined theoretical and experimental approach we are able to show that the level of biodiversity depends crucially on the composition of the inoculum, on the relative growth rates of the three strains, and on the effective reach of colicin toxicity.

  20. Bacterial Skin Infections

    MedlinePLUS

    ... Quiz) Structure and Function of the Skin (Video) Skin Cancer (News) Health Tip: Recognizing Signs of Nail Fungus (News) Health Tip: Easing Hives Additional Content Medical News Overview of Bacterial Skin Infections by A. Damian Dhar, MD, JD NOTE: ...

  1. Microfluidics for bacterial chemotaxis

    E-print Network

    Ahmed, Tanvir, Ph. D. Massachusetts Institute of Technology

    2011-01-01

    Bacterial chemotaxis, a remarkable behavioral trait which allows bacteria to sense and respond to chemical gradients in the environment, has implications in a broad range of fields including but not limited to disease ...

  2. Bacterial surface adaptation

    NASA Astrophysics Data System (ADS)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  3. Continuous monitoring of bacterial attachment

    NASA Technical Reports Server (NTRS)

    Koeing, D. W.; Mishra, S. K.; Pierson, D. L.

    1994-01-01

    A major concern with the Space Station Freedom (SSF) water supply system is the control of longterm microbial contamination and biofilm development in the water storage and distribution systems. These biofilms have the potential for harboring pathogens as well as microbial strains containing resistance factors that could negatively influence crew health. The proposed means for disinfecting the water system on SSF (iodine) may encourage the selection of resistant strains. In fact, biofilm bacteria were observed in water lines from the Space Shuttle Columbia (OV-102); therefore, an alternative remediation method is required to disinfect spacecraft water lines. A thorough understanding of colonization events and the physiological parameters that will influence bacteria adhesion is required. The limiting factor for development of this technology is the ability to continuously monitor adhesion events and the effects of biocides on sessile bacteria. Methods were developed to allow bacterial adhesion and subsequent biocidal treatment to be monitored continuously. This technique couples automated image analysis with a continuous flow of a bacterial suspension through an optical flow cell. A strain of Pseudomonas cepacia isolated from the water supply of the Space Shuttle Discovery (OV-103) during STS-39 was grown in a nitrogen-limited continuous culture. This culture was challenged continuously with iodine during growth, and the adhesion characteristics of this strain was measure with regard to flow rate. Various biocides (ozone, hypochlorite, and iodine) were added to the flow stream to evaluate how well each chemical removed the bacteria. After biocide treatment, a fresh bacterial suspension was introduced into the flow cell, and the attachment rate was evaluated on the previously treated surface. This secondary fouling was again treated with biocide to determine the efficacy of multiple batch chemical treatments in removing biofilm.

  4. The bacterial translation stress response

    PubMed Central

    Starosta, Agata L.; Lassak, Jürgen; Jung, Kirsten; Wilson, Daniel N.

    2014-01-01

    Throughout their life, bacteria need to sense and respond to environmental stress. Thus, such stress responses can require dramatic cellular reprogramming, both at the transcriptional as well as the translational level. This review focuses on the protein factors that interact with the bacterial translational apparatus in order to respond to and cope with different types of environmental stress. For example, the stringent factor RelA interacts with the ribosome to generate ppGpp under nutrient deprivation, whereas a variety of factors have been identified that bind to the ribosome under unfavorable growth conditions to shut-down (RelE, pY, RMF, HPF and EttA) or re-program (MazF, EF4 and BipA) translation. Additional factors have been identified that rescue ribosomes stalled due to stress-induced mRNA truncation (tmRNA, ArfA, ArfB), translation of unfavorable protein sequences (EF-P), heat shock induced subunit dissociation (Hsp15) or antibiotic inhibition (TetM, FusB). Understanding the mechanism of how the bacterial cell responds to stress will not only provide fundamental insight into translation regulation, but will also be an important step to identifying new targets for the development of novel antimicrobial agents. PMID:25135187

  5. The bacterial flora of enamel slip

    E-print Network

    Wahlin, Joel G.

    1922-01-01

    alkaline from the soda dissolved from the frit mentioned above and contains humus and other similar organic material from the clay which gives rit the brown color* There is also a small amount of . borax and a trace of sodium fluoride present, both... for growth ana development of many bacteria* 2* There is probably some germicidal action, duo to the alkaline reaction of the - solution and the presence of borates and fluorides (18)* Having thus seen that the bacterial flora of enamel slip...

  6. Bacterial Ice Crystal Controlling Proteins

    PubMed Central

    Lorv, Janet S. H.; Rose, David R.; Glick, Bernard R.

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions. PMID:24579057

  7. Crude oil supply curves

    E-print Network

    Adelman, Morris Albert

    1998-01-01

    Short-run cost curves shift over time as depletion counters increasing knowledge. Under competition, a rightward (leftward) shift indicates lower (higher) cost and greater (lesser) productivity. A simple coefficient captures ...

  8. The bacterial communities in plant phloem-sap-feeding insects.

    PubMed

    Jing, Xiangfeng; Wong, Adam C-N; Chaston, John M; Colvin, John; McKenzie, Cindy L; Douglas, Angela E

    2014-03-01

    The resident microbiota of animals represents an important contribution to the global microbial diversity, but it is poorly known in many animals. This study investigated the bacterial diversity in plant phloem-sap-feeding whiteflies, aphids and psyllids by pyrosequencing bacterial 16S rRNA gene amplicons. After correction for sequencing error, just 3-7 bacterial operational taxonomic units were recovered from each insect sample sequenced to sufficient depth for saturation of rarefaction curves. Most samples were dominated by primary and secondary symbionts, which are localized to insect cells or the body cavity, indicative of a dearth of bacterial colonists of the gut lumen. Diversity indices of the bacterial communities (Shannon's index: 0.40-1.46, Simpson's index: 0.15-0.74) did not differ significantly between laboratory and field samples of the phloem-feeding insects, but were significantly lower than in drosophilid flies quantified by the same methods. Both the low bacterial content of the phloem sap diet and biological processes in the insect may contribute to the apparently low bacterial diversity in these phloem-feeding insects. PMID:24350573

  9. Terrestrial Exoplanet Light Curves

    E-print Network

    Eric Gaidos; Nicholas Moskovitz; Darren M. Williams

    2005-11-23

    The phase or orbital light curves of extrasolar terrestrial planets in reflected or emitted light will contain information about their atmospheres and surfaces complementary to data obtained by other techniques such as spectrosopy. We show calculated light curves at optical and thermal infrared wavelengths for a variety of Earth-like and Earth-unlike planets. We also show that large satellites of Earth-sized planets are detectable, but may cause aliasing effects if the lightcurve is insufficiently sampled.

  10. Crystallization Dynamics on Curved Surfaces

    E-print Network

    Nicolas A. Garcia; Richard A. Register; Daniel A. Vega; Leopoldo R. Gomez

    2013-07-09

    We study the evolution from a liquid to a crystal phase in two-dimensional curved space. At early times, while crystal seeds grow preferentially in regions of low curvature, the lattice frustration produced in regions with high curvature is rapidly relaxed through isolated defects. Further relaxation involves a mechanism of crystal growth and defect annihilation where regions with high curvature act as sinks for the diffusion of domain walls. The pinning of grain boundaries at regions of low curvature leads to the formation of a metastable structure of defects, characterized by asymptotically slow dynamics of ordering and activation energies dictated by the largest curvatures of the system. These glassy-like ordering dynamics may completely inhibit the appearance of the ground state structures.

  11. Bacterial meningitis in infants.

    PubMed

    Ku, Lawrence C; Boggess, Kim A; Cohen-Wolkowiez, Michael

    2015-03-01

    Neonatal bacterial meningitis is uncommon but devastating. Morbidity among survivors remains high. The types and distribution of pathogens are related to gestational age, postnatal age, and geographic region. Confirming the diagnosis is difficult. Clinical signs are often subtle, lumbar punctures are frequently deferred, and cerebrospinal fluid (CSF) cultures can be compromised by prior antibiotic exposure. Infants with bacterial meningitis can have negative blood cultures and normal CSF parameters. Promising tests such as the polymerase chain reaction require further study. Prompt treatment with antibiotics is essential. Clinical trials investigating a vaccine for preventing neonatal Group B Streptococcus infections are ongoing. PMID:25677995

  12. On time dilation in quasar light curves

    E-print Network

    Hawkins, M R S

    2010-01-01

    In this paper we set out to measure time dilation in quasar light curves. In order to detect the effects of time dilation, sets of light curves from two monitoring programmes are used to construct Fourier power spectra covering timescales from 50 days to 28 years. Data from high and low redshift samples are compared to look for the changes expected from time dilation. The main result of the paper is that quasar light curves do not show the effects of time dilation. Several explanations are discussed, including the possibility that time dilation effects are exactly offset by an increase in timescale of variation associated with black hole growth, or that the variations are caused by microlensing in which case time dilation would not be expected.

  13. Change of Collision Efficiency with Distance in Bacterial Transport Experiements

    SciTech Connect

    Dong, Hailiang; Scheibe, Timothy D.; Johnson, William P.; Monkman, Crystal; Fuller, Mark E.

    2006-05-01

    Previous bacterial transport studies have shown decreased bacterial adhesion with transport distance, largely based on laboratory core experiments. An inferred effect of microbial population variability is invoked to interpret experimental data, but there lacks direct measurement at field-scale, especially in correlation of transport distance with change of bacterial surface properties. This study was undertaken to determine change of collision efficiency with transport distance, taking advantage of the bacterial transport experiment in Oyster, VA in the summer of 2001. Upon injection of an adhesion deficient strain, Comamonas sp. DA001 into a up-gradient well, bacterial samples were taken from multi-level samplers along the flow path, and were injected into cores of 40 cm in length and 7.5 cm in diameter packed with homogenized sediment from the same site, South Oyster focus area (SOFA). Bacterial suspension samples were also measured for bacterial electrophoretic mobility distribution. Using filtration theory, collision efficiency, the probability of bacterial attachment to the grain surfaces upon collision and a quantitative measure of bacterial adhesion, was determined using CXTFIT model fitted attachment rate, measured grain size (10th percentile), porosity, flow velocity, and collector efficiency. Collision efficiency was also determined based on the fraction of retention in the cores. Contrary to previous results and interpretation of field-scale breakthrough curves, our experimentally determined collision efficiency increases with transport distance in the core experiments, which correlates with increasingly negative surface charge of the injected bacteria. Therefore we conclude that the apparent decrease in adhesion with transport distance in the field is strongly controlled by field-scale heterogeneity in physical and chemical aquifer properties and not by microbial population heterogeneity.

  14. Visualizing curved spacetime

    E-print Network

    Jonsson, Rickard

    2005-01-01

    I present a way to visualize the concept of curved spacetime. The result is a curved surface with local coordinate systems (Minkowski Systems) living on it, giving the local directions of space and time. Relative to these systems, special relativity holds. The method can be used to visualize gravitational time dilation, the horizon of black holes, and cosmological models. The idea underlying the illustrations is first to specify a field of timelike four-velocities. Then, at every point, one performs a coordinate transformation to a local Minkowski system comoving with the given four-velocity. In the local system, the sign of the spatial part of the metric is flipped to create a new metric of Euclidean signature. The new positive definite metric, called the absolute metric, can be covariantly related to the original Lorentzian metric. For the special case of a 2-dimensional original metric, the absolute metric may be embedded in 3-dimensional Euclidean space as a curved surface.

  15. Visualizing curved spacetime

    E-print Network

    Rickard Jonsson

    2007-08-18

    I present a way to visualize the concept of curved spacetime. The result is a curved surface with local coordinate systems (Minkowski Systems) living on it, giving the local directions of space and time. Relative to these systems, special relativity holds. The method can be used to visualize gravitational time dilation, the horizon of black holes, and cosmological models. The idea underlying the illustrations is first to specify a field of timelike four-velocities. Then, at every point, one performs a coordinate transformation to a local Minkowski system comoving with the given four-velocity. In the local system, the sign of the spatial part of the metric is flipped to create a new metric of Euclidean signature. The new positive definite metric, called the absolute metric, can be covariantly related to the original Lorentzian metric. For the special case of a 2-dimensional original metric, the absolute metric may be embedded in 3-dimensional Euclidean space as a curved surface.

  16. Transport along Null Curves

    E-print Network

    Joseph Samuel; Rajaram Nityananda

    2000-05-22

    Fermi Transport is useful for describing the behaviour of spins or gyroscopes following non-geodesic, timelike world lines. However, Fermi Transport breaks down for null world lines. We introduce a transport law for polarisation vectors along non-geodesic null curves. We show how this law emerges naturally from the geometry of null directions by comparing polarisation vectors associated with two distinct null directions. We then give a spinorial treatment of this topic and make contact with the geometric phase of quantum mechanics. There are two significant differences between the null and timelike cases. In the null case (i) The transport law does not approach a unique smooth limit as the null curve approaches a null geodesic. (ii) The transport law for vectors is integrable, i.e the result depends only on the local properties of the curve and not on the entire path taken. However, the transport of spinors is not integrable: there is a global sign of topological origin.

  17. Bacterial Acclimation Inside an Aqueous Battery

    PubMed Central

    Dong, Dexian; Chen, Baoling; Chen, P.

    2015-01-01

    Specific environmental stresses may lead to induced genomic instability in bacteria, generating beneficial mutants and potentially accelerating the breeding of industrial microorganisms. The environmental stresses inside the aqueous battery may be derived from such conditions as ion shuttle, pH gradient, free radical reaction and electric field. In most industrial and medical applications, electric fields and direct currents are used to kill bacteria and yeast. However, the present study focused on increasing bacterial survival inside an operating battery. Using a bacterial acclimation strategy, both Escherichia coli and Bacillus subtilis were acclimated for 10 battery operation cycles and survived in the battery for over 3 days. The acclimated bacteria changed in cell shape, growth rate and colony color. Further analysis indicated that electrolyte concentration could be one of the major factors determining bacterial survival inside an aqueous battery. The acclimation process significantly improved the viability of both bacteria E. coli and B. subtilis. The viability of acclimated strains was not affected under battery cycle conditions of 0.18-0.80 mA cm-2 and 1.4-2.1 V. Bacterial addition within 1.0×1010 cells mL-1 did not significantly affect battery performance. Because the environmental stress inside the aqueous battery is specific, the use of this battery acclimation strategy may be of great potential for the breeding of industrial microorganisms. PMID:26070088

  18. TPCP: Bacterial Blight of Eucalyptus BACTERIAL BLIGHT OF EUCALYPTUS

    E-print Network

    TPCP: Bacterial Blight of Eucalyptus BACTERIAL BLIGHT OF EUCALYPTUS Typical symptoms of bacterial and commercial plantations and was reported from different Eucalyptus species, hybrids and clones. The causal Eucalyptus spp. It also records a serious new disease problem affecting one of the most widely planted forest

  19. Throwing a Curve

    E-print Network

    Wedge, Philip

    2000-09-01

    134 Aethlon XVIII: 1 / Fall 2000 Throwing A Curve Coming home from Roy's team picture, we stop to show off the brand-new uniform - Blue Jays stenciled on the front, stockings, the works. Out of mischief or shyness hes at the edge of the room...134 Aethlon XVIII: 1 / Fall 2000 Throwing A Curve Coming home from Roy's team picture, we stop to show off the brand-new uniform - Blue Jays stenciled on the front, stockings, the works. Out of mischief or shyness hes at the edge of the room...

  20. New Curves from Branes

    E-print Network

    Landsteiner, K; Landsteiner, Karl; Lopez, Esperanza

    1998-01-01

    We consider configurations of Neveu-Schwarz fivebranes, Dirichlet fourbranes and an orientifold sixplane in type IIA string theory. Upon lifting the configuration to M-theory and proposing a description of how to include the effects of the orientifold sixplane we derive the curves describing the Coulomb branch of N=2 gauge theories with orthogonal and symplectic gauge groups, product gauge groups of the form SU(k_1)...SU(k_i) x SO(N) and SU(k_1)...SU(k_i) x Sp(N). We also propose new curves describing theories with unitary gauge groups and matter in the symmetric or antisymmetric representation.

  1. New Curves from Branes

    E-print Network

    Karl Landsteiner; Esperanza Lopez

    1997-08-22

    We consider configurations of Neveu-Schwarz fivebranes, Dirichlet fourbranes and an orientifold sixplane in type IIA string theory. Upon lifting the configuration to M-theory and proposing a description of how to include the effects of the orientifold sixplane we derive the curves describing the Coulomb branch of N=2 gauge theories with orthogonal and symplectic gauge groups, product gauge groups of the form SU(k_1)...SU(k_i) x SO(N) and SU(k_1)...SU(k_i) x Sp(N). We also propose new curves describing theories with unitary gauge groups and matter in the symmetric or antisymmetric representation.

  2. IGMtransmission: Transmission curve computation

    NASA Astrophysics Data System (ADS)

    Harrison, Christopher M.; Meiksin, Avery; Stock, David

    2015-04-01

    IGMtransmission is a Java graphical user interface that implements Monte Carlo simulations to compute the corrections to colors of high-redshift galaxies due to intergalactic attenuation based on current models of the Intergalactic Medium. The effects of absorption due to neutral hydrogen are considered, with particular attention to the stochastic effects of Lyman Limit Systems. Attenuation curves are produced, as well as colors for a wide range of filter responses and model galaxy spectra. Photometric filters are included for the Hubble Space Telescope, the Keck telescope, the Mt. Palomar 200-inch, the SUBARU telescope and UKIRT; alternative filter response curves and spectra may be readily uploaded.

  3. Bacterial extracellular lignin peroxidase

    DOEpatents

    Crawford, Donald L. (Moscow, ID); Ramachandra, Muralidhara (Moscow, ID)

    1993-01-01

    A newly discovered lignin peroxidase enzyme is provided. The enzyme is obtained from a bacterial source and is capable of degrading the lignin portion of lignocellulose in the presence of hydrogen peroxide. The enzyme is extracellular, oxidative, inducible by lignin, larch wood xylan, or related substrates and capable of attacking certain lignin substructure chemical bonds that are not degradable by fungal lignin peroxidases.

  4. BACTERIAL WATERBORNE PATHOGENS

    EPA Science Inventory

    Bacterial pathogens are examples of classical etiological agents of waterborne disease. While these agents no longer serve as major threats to U.S. water supplies, they are still important pathogens in areas with substandard sanitation and poor water treatment facilities. In th...

  5. Bacterial microflora of nectarines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microflora of fruit surfaces has been the best source of antagonists against fungi causing postharvest decays of fruit. However, there is little information on microflora colonizing surfaces of fruits other than grapes, apples, and citrus fruit. We characterized bacterial microflora on nectarine f...

  6. Bacterial leaf spot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial leaf spot has been reported in Australia (Queensland), Egypt, El Salvador, India, Japan, Nicaragua, Sudan, and the United States (Florida, Iowa, Kansas, Maryland, and Wisconsin). It occasionally causes locally severe defoliation and post-emergence damping-off and stunting. The disease is...

  7. Bacterial Sepsis and Meningitis

    E-print Network

    Nizet, Victor

    Bacteriology Group B Streptococci Group A Streptococci Streptococcus Pneumoniae Other Streptococci Enterococcus#12;217 Bacterial Sepsis and Meningitis VICTOR NIZET and JEROME O. KLEIN 6 CHAPTER OUTLINE and Meningitis Characteristics of Infants who Develop Sepsis Nursery Outbreaks or Epidemics Pathogenesis Host

  8. Ribonucleases and bacterial virulence

    PubMed Central

    Lawal, Abidat; Jejelowo, Olufisayo; Chopra, Ashok K.; Rosenzweig, Jason A.

    2011-01-01

    Summary Bacterial stress responses provide them the opportunity to survive hostile environments, proliferate and potentially cause diseases in humans and animals. The way in which pathogenic bacteria interact with host immune cells triggers a complicated series of events that include rapid genetic re?programming in response to the various host conditions encountered. Viewed in this light, the bacterial host?cell induced stress response (HCISR) is similar to any other well?characterized environmental stress to which bacteria must respond by upregulating a group of specific stress?responsive genes. Post stress, bacteria must resume their pre?stress genetic program, and, as a consequence, must degrade unnecessary stress responsive transcripts through RNA decay mechanisms. Further, there is a well?established role for several ribonucleases in the cold shock response whereby they modulate the changing transcript landscape in response to the stress, and during acclimation and subsequent genetic re?programming post stress. Recently, ribonucleases have been implicated as virulence?associated factors in several notable Gram?negative pathogens including, the yersiniae, the salmonellae, Helicobacter pylori, Shigella flexneri and Aeromonas hydrophila. This review will focus on the roles played by ribonucleases in bacterial virulence, other bacterial stress responses, and on their novel therapeutic applications. PMID:21375713

  9. Measurement of Behavioral Evolution in Bacterial Populations

    NASA Astrophysics Data System (ADS)

    Austin, Robert

    2013-03-01

    A curious aspect of bacterial behavior under stress is the induction of filamentation: the anomalous growth of certain bacteria in which cells continue to elongate but do not divide into progeny. We show that E.coli under the influence of the genotoxic antibiotic ciprofloxacin have robust filamentous growth, which provides individual bacteria a mesoscopic niche for evolution until resistant progeny can bud off and propagate. Hence, filamentation is a form of genomic amplification where even a single, isolated bacteria can have access to multiple genomes. We propose a model that predicts that the first arrival time of the normal sized progeny should follow a Gompertz distribution with the mean first arrival time proportional to the elongation rate of filament. These predictions agree with our experimental measurements. Finally, we suggest bacterial filament growth and budding has many similarities to tumor growth and metastasis and can serve as a simpler model to study those complicated processes. Sponsored by the NCI/NIH Physical Sciences Oncology Centers

  10. Extinction curves in AGN

    E-print Network

    B. Czerny

    2006-12-16

    The presence of the dust in the circumnuclear region strongly affects our view of the nucleus itself. The effect is strong in type 2 objects but weaker effect is likely to be present in type 1 objects as well. In these objects a correction to the observed optical/UV spectrum must be done in order to recover the intrinsic spectrum of a nucleus. The approach based on the extinction curve is convenient for that purpose so significant effort has been recently done in order to determine the extinction curve for the circumnuclear material. It seems clear that the circumnuclear dust is different from the average properties of the dust in the Interstellar Medium in our galaxy: the well known 2175 A feature is weak or absent in AGN nuclear dust, and the extinction curve at shorter wavelength does not seem to be rising as steeply. The circumnuclear dust is therefore more similar to SMC dust, or more likely, to the dust in very dense molecular clouds in our Galaxy. However, the exact shape of the extinction curve in the far UV is still a matter of debate, and various effects are difficult to disentangle.

  11. Curve Fit Challenge

    ERIC Educational Resources Information Center

    Harper, Suzanne R.; Driskell, Shannon

    2005-01-01

    Graphic tips for using the Geometer's Sketchpad (GSP) are described. The methods to import an image into GSP, define a coordinate system, plot points and curve fit the function using a graphical calculator are demonstrated where the graphic features of GSP allow teachers to expand the use of the technology application beyond the classroom.

  12. The Snowflake Curve.

    ERIC Educational Resources Information Center

    Lambert, Tim

    1982-01-01

    An unusual shape is considered, and properties and steps in drawing it are detailed. The focus is on development and presentation of a computer program that will draw the curve. The program is written in BASIC with special plotting commands for a Techtronix computer, but is adaptable to other systems. (MP)

  13. Bacterial Evolution: Chromosome Arithmetic and Geometry

    E-print Network

    Ochman, Howard

    across bacterial species. The occurrence of plasmids in virtually all bacterial species actually helpedBacterial Evolution: Chromosome Arithmetic and Geometry Howard Ochman Recent sequencing projects have characterized bacterial genomes that are organized onto elements of various sizes, shapes

  14. The biology behind lichenometric dating curves.

    PubMed

    Loso, Michael G; Doak, Daniel F

    2006-03-01

    Lichenometry is used to date late-Holocene terminal moraines that record glacier fluctuations. Traditionally, it relies upon dating curves that relate diameters of the largest lichens in a population to surface ages. Although widely used, the technique remains controversial, in part because lichen biology is poorly understood. We use size-frequency distributions of lichens growing on well-dated surfaces to fit demographic models for Rhizocarpon geographicum and Pseudophebe pubescens, two species commonly used for lichenometry. We show that both species suffer from substantial mortality of 2-3% per year, and grow slowest when young-trends that explain a long-standing contradiction between the literatures of lichenometry and lichen biology. Lichenometrists interpret the shape of typical dating curves to indicate a period of rapid juvenile "great growth," contrary to the growth patterns expected by biologists. With a simulation, we show how the "great growth" pattern can be explained by mortality alone, which ensures that early colonists are rarely found on the oldest surfaces. The consistency of our model predictions with biological theory and observations, and with dozens of lichenometric calibration curves from around the world, suggests opportunities to assess quantitatively the accuracy and utility of this common dating technique. PMID:16237538

  15. A Short-Term Advantage for Syngamy in the Origin of Eukaryotic Sex: Effects of Cell Fusion on Cell Cycle Duration and Other Effects Related to the Duration of the Cell Cycle—Relationship between Cell Growth Curve and the Optimal Size of the Species, and Circadian Cell Cycle in Photosynthetic Unicellular Organisms

    PubMed Central

    Mancebo Quintana, J. M.; Mancebo Quintana, S.

    2012-01-01

    The origin of sex is becoming a vexatious issue for Evolutionary Biology. Numerous hypotheses have been proposed, based on the genetic effects of sex, on trophic effects or on the formation of cysts and syncytia. Our approach addresses the change in cell cycle duration which would cause cell fusion. Several results are obtained through graphical and mathematical analysis and computer simulations. (1) In poor environments, cell fusion would be an advantageous strategy, as fusion between cells of different size shortens the cycle of the smaller cell (relative to the asexual cycle), and the majority of mergers would occur between cells of different sizes. (2) The easiest-to-evolve regulation of cell proliferation (sexual/asexual) would be by modifying the checkpoints of the cell cycle. (3) A regulation of this kind would have required the existence of the G2 phase, and sex could thus be the cause of the appearance of this phase. Regarding cell cycle, (4) the exponential curve is the only cell growth curve that has no effect on the optimal cell size in unicellular species; (5) the existence of a plateau with no growth at the end of the cell cycle explains the circadian cell cycle observed in unicellular algae. PMID:22666626

  16. Modeling of the Bacillus subtilis Bacterial Biofilm Growing on an Agar Substrate

    PubMed Central

    Wang, Xiaoling; Wang, Guoqing; Hao, Mudong

    2015-01-01

    Bacterial biofilms are organized communities composed of millions of microorganisms that accumulate on almost any kinds of surfaces. In this paper, a biofilm growth model on an agar substrate is developed based on mass conservation principles, Fick's first law, and Monod's kinetic reaction, by considering nutrient diffusion between biofilm and agar substrate. Our results show biofilm growth evolution characteristics such as biofilm thickness, active biomass, and nutrient concentration in the agar substrate. We quantitatively obtain biofilm growth dependence on different parameters. We provide an alternative mathematical method to describe other kinds of biofilm growth such as multiple bacterial species biofilm and also biofilm growth on various complex substrates. PMID:26355542

  17. Quantitative Polymerase Chain Reaction for Microbial Growth Kinetics of Mixed Culture System.

    PubMed

    Cotto, Ada; Looper, Jessica K; Mota, Linda C; Son, Ahjeong

    2015-11-28

    Microbial growth kinetics is often used to optimize environmental processes owing to its relation to the breakdown of substrate (contaminants). However, the quantification of bacterial populations in the environment is difficult owing to the challenges of monitoring a specific bacterial population within a diverse microbial community. Conventional methods are unable to detect and quantify the growth of individual strains separately in the mixed culture reactor. This work describes a novel quantitative PCR (qPCR)-based genomic approach to quantify each species in mixed culture and interpret its growth kinetics in the mixed system. Batch experiments were performed for both single and dual cultures of Pseudomonas putida and Escherichia coli K12 to obtain Monod kinetic parameters (?max and Ks). The growth curves and kinetics obtained by conventional methods (i.e., dry weight measurement and absorbance reading) were compared with that obtained by qPCR assay. We anticipate that the adoption of this qPCR-based genomic assay can contribute significantly to traditional microbial kinetics, modeling practice, and the operation of bioreactors, where handling of complex mixed cultures is required. PMID:26165316

  18. Bacterial Genome Instability

    PubMed Central

    Darmon, Elise

    2014-01-01

    SUMMARY Bacterial genomes are remarkably stable from one generation to the next but are plastic on an evolutionary time scale, substantially shaped by horizontal gene transfer, genome rearrangement, and the activities of mobile DNA elements. This implies the existence of a delicate balance between the maintenance of genome stability and the tolerance of genome instability. In this review, we describe the specialized genetic elements and the endogenous processes that contribute to genome instability. We then discuss the consequences of genome instability at the physiological level, where cells have harnessed instability to mediate phase and antigenic variation, and at the evolutionary level, where horizontal gene transfer has played an important role. Indeed, this ability to share DNA sequences has played a major part in the evolution of life on Earth. The evolutionary plasticity of bacterial genomes, coupled with the vast numbers of bacteria on the planet, substantially limits our ability to control disease. PMID:24600039

  19. A bacterial ratchet motor

    E-print Network

    R. Di Leonardo; L. Angelani; G. Ruocco; V. Iebba; M. P. Conte; S. Schippa; F. De Angelis; F. Mecarini; E. Di Fabrizio

    2009-10-15

    Self-propelling bacteria are a dream of nano-technology. These unicellular organisms are not just capable of living and reproducing, but they can swim very efficiently, sense the environment and look for food, all packaged in a body measuring a few microns. Before such perfect machines could be artificially assembled, researchers are beginning to explore new ways to harness bacteria as propelling units for micro-devices. Proposed strategies require the careful task of aligning and binding bacterial cells on synthetic surfaces in order to have them work cooperatively. Here we show that asymmetric micro-gears can spontaneously rotate when immersed in an active bacterial bath. The propulsion mechanism is provided by the self assembly of motile Escherichia coli cells along the saw-toothed boundaries of a nano-fabricated rotor. Our results highlight the technological implications of active matter's ability to overcome the restrictions imposed by the second law of thermodynamics on equilibrium passive fluids.

  20. The Bacterial Cytoskeleton

    PubMed Central

    Shih, Yu-Ling; Rothfield, Lawrence

    2006-01-01

    In recent years it has been shown that bacteria contain a number of cytoskeletal structures. The bacterial cytoplasmic elements include homologs of the three major types of eukaryotic cytoskeletal proteins (actin, tubulin, and intermediate filament proteins) and a fourth group, the MinD-ParA group, that appears to be unique to bacteria. The cytoskeletal structures play important roles in cell division, cell polarity, cell shape regulation, plasmid partition, and other functions. The proteins self-assemble into filamentous structures in vitro and form intracellular ordered structures in vivo. In addition, there are a number of filamentous bacterial elements that may turn out to be cytoskeletal in nature. This review attempts to summarize and integrate the in vivo and in vitro aspects of these systems and to evaluate the probable future directions of this active research field. PMID:16959967

  1. Trishear for curved faults

    NASA Astrophysics Data System (ADS)

    Brandenburg, J. P.

    2013-08-01

    Fault-propagation folds form an important trapping element in both onshore and offshore fold-thrust belts, and as such benefit from reliable interpretation. Building an accurate geologic interpretation of such structures requires palinspastic restorations, which are made more challenging by the interplay between folding and faulting. Trishear (Erslev, 1991; Allmendinger, 1998) is a useful tool to unravel this relationship kinematically, but is limited by a restriction to planar fault geometries, or at least planar fault segments. Here, new methods are presented for trishear along continuously curved reverse faults defining a flat-ramp transition. In these methods, rotation of the hanging wall above a curved fault is coupled to translation along a horizontal detachment. Including hanging wall rotation allows for investigation of structures with progressive backlimb rotation. Application of the new algorithms are shown for two fault-propagation fold structures: the Turner Valley Anticline in Southwestern Alberta, and the Alpha Structure in the Niger Delta.

  2. Bacterial transformation of terpenoids

    NASA Astrophysics Data System (ADS)

    Grishko, V. V.; Nogovitsina, Y. M.; Ivshina, I. B.

    2014-04-01

    Data on the bacterial transformation of terpenoids published in the literature in the past decade are analyzed. Possible pathways for chemo-, regio- and stereoselective modifications of terpenoids are discussed. Considerable attention is given to new technological approaches to the synthesis of terpenoid derivatives suitable for the use in the perfume and food industry and promising as drugs and chiral intermediates for fine organic synthesis. The bibliography includes 246 references.

  3. Diffusion in Curved Spacetimes

    E-print Network

    Matteo Smerlak

    2011-11-18

    Using simple kinematical arguments, we derive the Fokker-Planck equation for diffusion processes in curved spacetimes. In the case of Brownian motion, it coincides with Eckart's relativistic heat equation (albeit in a simpler form), and therefore provides a microscopic justification for his phenomenological heat-flux ansatz. Furthermore, we obtain the small-time asymptotic expansion of the mean square displacement of Brownian motion in static spacetimes. Beyond general relativity itself, this result has potential applications in analogue gravitational systems.

  4. Mouse Curve Biometrics

    SciTech Connect

    Schulz, Douglas A.

    2007-10-08

    A biometric system suitable for validating user identity using only mouse movements and no specialized equipment is presented. Mouse curves (mouse movements with little or no pause between them) are individually classied and used to develop classication histograms, which are representative of an individual's typical mouse use. These classication histograms can then be compared to validate identity. This classication approach is suitable for providing continuous identity validation during an entire user session.

  5. Anatomical curve identification

    PubMed Central

    Bowman, Adrian W.; Katina, Stanislav; Smith, Joanna; Brown, Denise

    2015-01-01

    Methods for capturing images in three dimensions are now widely available, with stereo-photogrammetry and laser scanning being two common approaches. In anatomical studies, a number of landmarks are usually identified manually from each of these images and these form the basis of subsequent statistical analysis. However, landmarks express only a very small proportion of the information available from the images. Anatomically defined curves have the advantage of providing a much richer expression of shape. This is explored in the context of identifying the boundary of breasts from an image of the female torso and the boundary of the lips from a facial image. The curves of interest are characterised by ridges or valleys. Key issues in estimation are the ability to navigate across the anatomical surface in three-dimensions, the ability to recognise the relevant boundary and the need to assess the evidence for the presence of the surface feature of interest. The first issue is addressed by the use of principal curves, as an extension of principal components, the second by suitable assessment of curvature and the third by change-point detection. P-spline smoothing is used as an integral part of the methods but adaptations are made to the specific anatomical features of interest. After estimation of the boundary curves, the intermediate surfaces of the anatomical feature of interest can be characterised by surface interpolation. This allows shape variation to be explored using standard methods such as principal components. These tools are applied to a collection of images of women where one breast has been reconstructed after mastectomy and where interest lies in shape differences between the reconstructed and unreconstructed breasts. They are also applied to a collection of lip images where possible differences in shape between males and females are of interest. PMID:26041943

  6. Clostridium difficile Is an Autotrophic Bacterial Pathogen

    PubMed Central

    Köpke, Michael; Straub, Melanie; Dürre, Peter

    2013-01-01

    During the last decade, Clostridium difficile infection showed a dramatic increase in incidence and virulence in the Northern hemisphere. This incessantly challenging disease is the leading cause of antibiotic-associated and nosocomial infectious diarrhea and became life-threatening especially among elderly people. It is generally assumed that all human bacterial pathogens are heterotrophic organisms, being either saccharolytic or proteolytic. So far, this has not been questioned as colonization of the human gut gives access to an environment, rich in organic nutrients. Here, we present data that C. difficile (both clinical and rumen isolates) is also able to grow on CO2+H2 as sole carbon and energy source, thus representing the first identified autotrophic bacterial pathogen. Comparison of several different strains revealed high conservation of genes for autotrophic growth and showed that the ability to use gas mixtures for growth decreases or is lost upon prolonged culturing under heterotrophic conditions. The metabolic flexibility of C. difficile (heterotrophic growth on various substrates as well as autotrophy) could allow the organism in the gut to avoid competition by niche differentiation and contribute to its survival when stressed or in unfavorable conditions that cause death to other bacteria. This may be an important trait for the pathogenicity of C. difficile. PMID:23626782

  7. Dose-response relationships and statistical performance of a battery of bacterial gene profiling assays.

    PubMed

    Dardenne, F; Nobels, I; De Coen, W; Blust, R

    2007-05-01

    Because of increasing awareness and legislative demands, there is a demand for the development and use of biological assays for the assessment of the toxicity of chemicals, environmental samples. Recently, a growing number of bacterial reporter assays have been developed and implemented. Nevertheless, little data is published on the performance of these assays in terms of analytical parameters. We present results on a battery of 14 transgenic Escherichia coli strains carrying different promoter::reporter fusions. Growth characteristics and basal expression levels were modeled and fitted, data show that growth curves should be taken into account during test development. Our study shows that the induction profiles reflect the mode of action, e.g., paraquat clearly induces the soxRS operon. The sensitivity of the assay compares well to that of whole organism tests, e.g., fish and Daphnia for polar organics. Metal toxicity is detected less efficiently, e.g., cadmium is detected near the LC50 of carp, considered a relatively insensitive species towards cadmium. The assay variability ranges from 10 to 40% depending on the strain, comparable to that of other bioassays. The variability was shown to be determined by the intrinsic traits of the promoter-strain combination, not by operating conditions. PMID:17225096

  8. Bacterial iron biomineralisation in nature Kurt O. Konhauser *

    E-print Network

    Konhauser, Kurt

    Bacterial iron biomineralisation in nature Kurt O. Konhauser * Department of Earth Sciences a variety of iron minerals. The development of these authigenic mineral phases may be either `biologically as nucleation sites for crystal growth. Because of its relatively high activity in aqueous solutions, iron

  9. Studies on Crystals of Intact Bacterial Ribosomal Particles

    E-print Network

    Yonath, Ada E.

    severe limitations. Our efforts are directed at growing three-dimensional crystals of ribo- somes from7 Studies on Crystals of Intact Bacterial Ribosomal Particles A. YONATH, M. A. SAPER, and H. G crystal growth is at all possible. Nevertheless, natural periodic organizations of ordered arrays

  10. REGULAR ARTICLE Characterization of bacterial endophytes of sweet

    E-print Network

    Doty, Sharon Lafferty

    REGULAR ARTICLE Characterization of bacterial endophytes of sweet potato plants Zareen Khan.V. 2009 Abstract Endophytic bacteria associated with sweet potato plants (Ipomoea batatas (L.) Lam.) were of sweet potato plants are beneficial to plant growth. Keywords Ipomoea batatas . Sweet potato . Plant

  11. Titania single crystals with a curved surface.

    PubMed

    Yang, Shuang; Yang, Bing Xing; Wu, Long; Li, Yu Hang; Liu, Porun; Zhao, Huijun; Yu, Yan Yan; Gong, Xue Qing; Yang, Hua Gui

    2014-01-01

    Owing to its scientific and technological importance, crystallization as a ubiquitous phenomenon has been widely studied over centuries. Well-developed single crystals are generally enclosed by regular flat facets spontaneously to form polyhedral morphologies because of the well-known self-confinement principle for crystal growth. However, in nature, complex single crystalline calcitic skeleton of biological organisms generally has a curved external surface formed by specific interactions between organic moieties and biocompatible minerals. Here we show a new class of crystal surface of TiO?, which is enclosed by quasi continuous high-index microfacets and thus has a unique truncated biconic morphology. Such single crystals may open a new direction for crystal growth study since, in principle, crystal growth rates of all facets between two normal {101} and {011} crystal surfaces are almost identical. In other words, the facet with continuous Miller index can exist because of the continuous curvature on the crystal surface. PMID:25373513

  12. Titration Curves: Fact and Fiction.

    ERIC Educational Resources Information Center

    Chamberlain, John

    1997-01-01

    Discusses ways in which datalogging equipment can enable titration curves to be measured accurately and how computing power can be used to predict the shape of curves. Highlights include sources of error, use of spreadsheets to generate titration curves, titration of a weak acid with a strong alkali, dibasic acids, weak acid and weak base, and…

  13. Guide to Elliptic Curve Cryptography

    E-print Network

    Babinkostova, Liljana

    Guide to Elliptic Curve Cryptography Darrel Hankerson Alfred Menezes Scott Vanstone Springer #12;Guide to Elliptic Curve Cryptography Springer New York Berlin Heidelberg Hong Kong London Milan Paris Tokyo #12;#12;Darrel Hankerson Alfred Menezes Scott Vanstone Guide to Elliptic Curve Cryptography

  14. Curved cap corrugated sheet

    NASA Technical Reports Server (NTRS)

    Davis, R. C.; Bales, T. T.; Royster, D. M.; Jackson, L. R. (inventors)

    1984-01-01

    The report describes a structure for a strong, lightweight corrugated sheet. The sheet is planar or curved and includes a plurality of corrugation segments, each segment being comprised of a generally U-shaped corrugation with a part-cylindrical crown and cap strip, and straight side walls and with secondary corrugations oriented at right angles to said side walls. The cap strip is bonded to the crown and the longitudinal edge of said cap strip extends beyond edge at the intersection between said crown and said side walls. The high strength relative to weight of the structure makes it desirable for use in aircraft or spacecraft.

  15. Curved shock theory

    NASA Astrophysics Data System (ADS)

    Mölder, S.

    2015-08-01

    Curved shock theory (CST) is introduced, developed and applied to relate pressure gradients, streamline curvatures, vorticity and shock curvatures in flows with planar or axial symmetry. Explicit expressions are given, in an influence coefficient format, that relate post-shock pressure gradient, streamline curvature and vorticity to pre-shock gradients and shock curvature in steady flow. The effect of pre-shock flow divergence/convergence, on vorticity generation, is related to the transverse shock curvature. A novel derivation for the post-shock vorticity is presented that includes the effects of pre-shock flow non-uniformities. CST applicability to unsteady flows is discussed.

  16. Diverse Bacterial Microcompartment Organelles

    PubMed Central

    Chowdhury, Chiranjit; Sinha, Sharmistha; Chun, Sunny; Yeates, Todd O.

    2014-01-01

    SUMMARY Bacterial microcompartments (MCPs) are sophisticated protein-based organelles used to optimize metabolic pathways. They consist of metabolic enzymes encapsulated within a protein shell, which creates an ideal environment for catalysis and facilitates the channeling of toxic/volatile intermediates to downstream enzymes. The metabolic processes that require MCPs are diverse and widely distributed and play important roles in global carbon fixation and bacterial pathogenesis. The protein shells of MCPs are thought to selectively control the movement of enzyme cofactors, substrates, and products (including toxic or volatile intermediates) between the MCP interior and the cytoplasm of the cell using both passive electrostatic/steric and dynamic gated mechanisms. Evidence suggests that specialized shell proteins conduct electrons between the cytoplasm and the lumen of the MCP and/or help rebuild damaged iron-sulfur centers in the encapsulated enzymes. The MCP shell is elaborated through a family of small proteins whose structural core is known as a bacterial microcompartment (BMC) domain. BMC domain proteins oligomerize into flat, hexagonally shaped tiles, which assemble into extended protein sheets that form the facets of the shell. Shape complementarity along the edges allows different types of BMC domain proteins to form mixed sheets, while sequence variation provides functional diversification. Recent studies have also revealed targeting sequences that mediate protein encapsulation within MCPs, scaffolding proteins that organize lumen enzymes and the use of private cofactor pools (NAD/H and coenzyme A [HS-CoA]) to facilitate cofactor homeostasis. Although much remains to be learned, our growing understanding of MCPs is providing a basis for bioengineering of protein-based containers for the production of chemicals/pharmaceuticals and for use as molecular delivery vehicles. PMID:25184561

  17. 3D printing of microscopic bacterial communities

    PubMed Central

    Connell, Jodi L.; Ritschdorff, Eric T.; Whiteley, Marvin; Shear, Jason B.

    2013-01-01

    Bacteria communicate via short-range physical and chemical signals, interactions known to mediate quorum sensing, sporulation, and other adaptive phenotypes. Although most in vitro studies examine bacterial properties averaged over large populations, the levels of key molecular determinants of bacterial fitness and pathogenicity (e.g., oxygen, quorum-sensing signals) may vary over micrometer scales within small, dense cellular aggregates believed to play key roles in disease transmission. A detailed understanding of how cell–cell interactions contribute to pathogenicity in natural, complex environments will require a new level of control in constructing more relevant cellular models for assessing bacterial phenotypes. Here, we describe a microscopic three-dimensional (3D) printing strategy that enables multiple populations of bacteria to be organized within essentially any 3D geometry, including adjacent, nested, and free-floating colonies. In this laser-based lithographic technique, microscopic containers are formed around selected bacteria suspended in gelatin via focal cross-linking of polypeptide molecules. After excess reagent is removed, trapped bacteria are localized within sealed cavities formed by the cross-linked gelatin, a highly porous material that supports rapid growth of fully enclosed cellular populations and readily transmits numerous biologically active species, including polypeptides, antibiotics, and quorum-sensing signals. Using this approach, we show that a picoliter-volume aggregate of Staphylococcus aureus can display substantial resistance to ?-lactam antibiotics by enclosure within a shell composed of Pseudomonas aeruginosa. PMID:24101503

  18. 3D printing of microscopic bacterial communities.

    PubMed

    Connell, Jodi L; Ritschdorff, Eric T; Whiteley, Marvin; Shear, Jason B

    2013-11-12

    Bacteria communicate via short-range physical and chemical signals, interactions known to mediate quorum sensing, sporulation, and other adaptive phenotypes. Although most in vitro studies examine bacterial properties averaged over large populations, the levels of key molecular determinants of bacterial fitness and pathogenicity (e.g., oxygen, quorum-sensing signals) may vary over micrometer scales within small, dense cellular aggregates believed to play key roles in disease transmission. A detailed understanding of how cell-cell interactions contribute to pathogenicity in natural, complex environments will require a new level of control in constructing more relevant cellular models for assessing bacterial phenotypes. Here, we describe a microscopic three-dimensional (3D) printing strategy that enables multiple populations of bacteria to be organized within essentially any 3D geometry, including adjacent, nested, and free-floating colonies. In this laser-based lithographic technique, microscopic containers are formed around selected bacteria suspended in gelatin via focal cross-linking of polypeptide molecules. After excess reagent is removed, trapped bacteria are localized within sealed cavities formed by the cross-linked gelatin, a highly porous material that supports rapid growth of fully enclosed cellular populations and readily transmits numerous biologically active species, including polypeptides, antibiotics, and quorum-sensing signals. Using this approach, we show that a picoliter-volume aggregate of Staphylococcus aureus can display substantial resistance to ?-lactam antibiotics by enclosure within a shell composed of Pseudomonas aeruginosa. PMID:24101503

  19. Real-Time Exponential Curve Fits Using Discrete Calculus

    NASA Technical Reports Server (NTRS)

    Rowe, Geoffrey

    2010-01-01

    An improved solution for curve fitting data to an exponential equation (y = Ae(exp Bt) + C) has been developed. This improvement is in four areas -- speed, stability, determinant processing time, and the removal of limits. The solution presented avoids iterative techniques and their stability errors by using three mathematical ideas: discrete calculus, a special relationship (be tween exponential curves and the Mean Value Theorem for Derivatives), and a simple linear curve fit algorithm. This method can also be applied to fitting data to the general power law equation y = Ax(exp B) + C and the general geometric growth equation y = Ak(exp Bt) + C.

  20. Bacterial Skin Infections.

    PubMed

    Ibrahim, Fadi; Khan, Tariq; Pujalte, George G A

    2015-12-01

    Skin and soft tissue infections account for 0.5% of outpatient visits to primary care. Skin and soft tissue infections can usually be managed in an outpatient setting. However, there are certain circumstances as discussed in this article that require more urgent care or inpatient management. Primary care providers should be able to diagnose, manage, and provide appropriate follow-up care for these frequently seen skin infections. This article provides family physicians with a comprehensive review of the assessment and management of common bacterial skin infections. PMID:26612370

  1. Nanoparticle Approaches against Bacterial Infections

    PubMed Central

    Gao, Weiwei; Thamphiwatana, Soracha; Angsantikul, Pavimol; Zhang, Liangfang

    2014-01-01

    Despite the wide success of antibiotics, the treatment of bacterial infection still faces significant challenges, particularly the emergence of antibiotic resistance. As a result, nanoparticle drug delivery platforms including liposomes, polymeric nanoparticles, dendrimers, and various inorganic nanoparticles have been increasingly exploited to enhance the therapeutic effectiveness of existing antibiotics. This review focuses on areas where nanoparticle approaches hold significant potential to advance the treatment of bacterial infection. These areas include targeted antibiotic delivery, environmentally responsive antibiotic delivery, combinatorial antibiotic delivery, nanoparticle-enabled antibacterial vaccination, and nanoparticle-based bacterial detection. In each area we highlight the innovative antimicrobial nanoparticle platforms and review their progress made against bacterial infections. PMID:25044325

  2. Biodegradation of bisphenol A by an algal-bacterial system.

    PubMed

    Eio, Er Jin; Kawai, Minako; Niwa, Chiaki; Ito, Masato; Yamamoto, Shuichi; Toda, Tatsuki

    2015-10-01

    The degradation of bisphenol A (BPA) by Chlorella sorokiniana and BPA-degrading bacteria was investigated. The results show that BPA was partially removed by a monoculture of C. sorokiniana, but the remaining BPA accounted for 50.2, 56.1, and 60.5 % of the initial BPA concentrations of 10, 20, and 50 mg L(-1), respectively. The total algal BPA adsorption and accumulation were less than 1 %. C. sorokiniana-bacterial system effectively removed BPA with photosynthetic oxygen provided by the algae irrespective of the initial BPA concentration. The growth of C. sorokiniana in the algal system was inhibited by BPA concentrations of 20 and 50 mg L(-1), but not in the algal-bacterial system. This observation indicates that bacterial growth in the algal-bacterial system reduced the BPA-inhibiting effect on algae. A total of ten BPA biodegradation intermediates were identified by GC-MS. The concentrations of the biodegradation intermediates decreased to a low level at the end of the experiment. The hypothetical carbon mass balance analysis showed that the amounts of oxygen demanded by the bacteria are insufficient for effective BPA degradation. However, adding an external carbon source could compensate for the oxygen shortage. This study demonstrates that the algal-bacterial system has the potential to remove BPA and its biodegradation intermediates. PMID:26013738

  3. Variable stoichiometry and homeostatic regulation of bacterial biomass elemental composition.

    PubMed

    Scott, J Thad; Cotner, James B; Lapara, Timothy M

    2012-01-01

    Prokaryotic heterotrophs (hereafter, bacteria) represent a large proportion of global biomass, and therefore bacterial biomass stoichiometry likely exerts control on global phosphorus (P), carbon (C), and nitrogen cycling and primary productivity. In this study we grew recently isolated freshwater heterotrophic bacteria across an ecologically relevant range of resource C:P ratios (organic C to P ratio in available resources) to quantify the P requirements of these organisms and examine the degree to which they regulated their P content under P-sufficient and P-deficient conditions. Bacterial biomass was only limited by P when resource C:P was greater than 250 (by atoms). Bacterial C:P ranged from 71 to 174 under P sufficiency and from 252 to 548 under P deficiency. Bacteria exhibited very little C:P homeostasis under P-sufficient growth conditions, greater C:P homeostasis under P-deficient conditions, and the ability of bacteria to outcompete one another in short-term experiments depended on a tradeoff between storing excess P for later use under P-deficient conditions or immediately using P to produce more biomass. These results indicate that freshwater heterotrophic bacteria are not as P-rich as previously thought and that homeostatic regulation of C:P stoichiometry depends on the individual taxa and what resource (organic C or available P) is limiting bacterial growth. Individual bacterial populations can vary between strong C:P homeostasis under P deficiency to virtually no C:P homeostasis under P sufficiency, but variation between taxa and the effect this has on competitive ability may dampen the signal in C:P(B) at the bacterial community level. Nevertheless, the prevalence of homeostatic and non-homeostatic strategies in a bacterial community should have important implications for nutrient regeneration and carbon cycling. PMID:22371708

  4. Mechanism of Bacterial Oligosaccharyltransferase

    PubMed Central

    Gerber, Sabina; Lizak, Christian; Michaud, Gaëlle; Bucher, Monika; Darbre, Tamis; Aebi, Markus; Reymond, Jean-Louis; Locher, Kaspar P.

    2013-01-01

    N-Linked glycosylation is an essential post-translational protein modification in the eukaryotic cell. The initial transfer of an oligosaccharide from a lipid carrier onto asparagine residues within a consensus sequon is catalyzed by oligosaccharyltransferase (OST). The first X-ray structure of a complete bacterial OST enzyme, Campylobacter lari PglB, was recently determined. To understand the mechanism of PglB, we have quantified sequon binding and glycosylation turnover in vitro using purified enzyme and fluorescently labeled, synthetic peptide substrates. Using fluorescence anisotropy, we determined a dissociation constant of 1.0 ?m and a strict requirement for divalent metal ions for consensus (DQNAT) sequon binding. Using in-gel fluorescence detection, we quantified exceedingly low glycosylation rates that remained undetected using in vivo assays. We found that an alanine in the ?2 sequon position, converting the bacterial sequon to a eukaryotic one, resulted in strongly lowered sequon binding, with in vitro turnover reduced 50,000-fold. A threonine is preferred over serine in the +2 sequon position, reflected by a 4-fold higher affinity and a 1.2-fold higher glycosylation rate. The interaction of the +2 sequon position with PglB is modulated by isoleucine 572. Our study demonstrates an intricate interplay of peptide and metal binding as the first step of protein N-glycosylation. PMID:23382388

  5. Bacterial genotoxicity bioreporters

    PubMed Central

    Biran, Alva; Yagur?Kroll, Sharon; Pedahzur, Rami; Buchinger, Sebastian; Reifferscheid, Georg; Ben?Yoav, Hadar; Shacham?Diamand, Yosi; Belkin, Shimshon

    2010-01-01

    Summary Ever since the introduction of the Salmonella typhimurium mammalian microsome mutagenicity assay (the ‘Ames test’) over three decades ago, there has been a constant development of additional genotoxicity assays based upon the use of genetically engineered microorganisms. Such assays rely either on reversion principles similar to those of the Ames test, or on promoter–reporter fusions that generate a quantifiable dose?dependent signal in the presence of potential DNA damaging compounds and the induction of repair mechanisms; the latter group is the subject of the present review. Some of these assays were only briefly described in the scientific literature, whereas others have been developed all the way to commercial products. Out of these, only one, the umu?test, has been fully validated and ISO? and OECD standardized. Here we review the main directions undertaken in the construction and testing of bacterial?based genotoxicity bioassays, including the attempts to incorporate at least a partial metabolic activation capacity into the molecular design. We list the genetic modifications introduced into the tester strains, compare the performance of the different assays, and briefly describe the first attempts to incorporate such bacterial reporters into actual genotoxicity testing devices. PMID:21255340

  6. ACTIVATION OF BACTERIAL ENDOSPORES.

    PubMed

    KEYNAN, A; EVANCHIK, Z; HALVORSON, H O; HASTINGS, J W

    1964-08-01

    A. Keynan (Israel Institute of Biological Research, Ness Ziona, Israel), Z. Evenchik, H. O. Halvorson, and J. W. Hastings. Studies on the activation of bacterial endospores. J. Bacteriol. 88:313-318. 1964.-Heat activation of bacterial endospores was imitated by suspending spores in reducing agents (mercaptoethanol or thioglycolate) or in a pH less than 4.5. Urea (6 m) had no effect on spores. In addition to the well-known activation at 65 C for 45 min, spores were also activated by exposure to 34 C for 48 hr. The activation by heat and by reducing agents was reversible; the reverse reaction was temperature-dependent. No reversion occurred at -20 C, whereas at 28 C the spores reversed to their original dormant state within 72 hr. It is suggested that the heat-activation phenomenon could be explained by assuming that heat or reducing agents change the tertiary structure of a protein responsible for the maintenance of the dormant state by reducing the disulfide linkages which stabilize the protein in a specific configuration. The partial denaturation of this protein is reversible by reoxidation of the reduced disulfide bonds. PMID:14203345

  7. SPOTTED STAR LIGHT CURVES WITH ENHANCED PRECISION

    SciTech Connect

    Wilson, R. E.

    2012-09-15

    The nearly continuous timewise coverage of recent photometric surveys is free of the large gaps that compromise attempts to follow starspot growth and decay as well as motions, thereby giving incentive to improve computational precision for modeled spots. Due to the wide variety of star systems in the surveys, such improvement should apply to light/velocity curve models that accurately include all the main phenomena of close binaries and rotating single stars. The vector fractional area (VFA) algorithm that is introduced here represents surface elements by small sets of position vectors so as to allow accurate computation of circle-triangle overlap by spherical geometry. When computed by VFA, spots introduce essentially no noticeable scatter in light curves at the level of one part in 10,000. VFA has been put into the Wilson-Devinney light/velocity curve program and all logic and mathematics are given so as to facilitate entry into other such programs. Advantages of precise spot computation include improved statistics of spot motions and aging, reduced computation time (intrinsic precision relaxes needs for grid fineness), noise-free illustration of spot effects in figures, and help in guarding against false positives in exoplanet searches, where spots could approximately mimic transiting planets in unusual circumstances. A simple spot growth and decay template quantifies time profiles, and specifics of its utilization in differential corrections solutions are given. Computational strategies are discussed, the overall process is tested in simulations via solutions of synthetic light curve data, and essential simulation results are described. An efficient time smearing facility by Gaussian quadrature can deal with Kepler mission data that are in 30 minute time bins.

  8. Bacterial Transport Experiments in Fractured Crystalline Bedrock

    USGS Publications Warehouse

    Becker, M.W.; Metge, D.W.; Collins, S.A.; Shapiro, A.M.; Harvey, R.W.

    2003-01-01

    The efficiency of contaminant biodegradation in ground water depends, in part, on the transport properties of the degrading bacteria. Few data exist concerning the transport of bacteria in saturated bedrock, particularly at the field scale. Bacteria and microsphere tracer experiments were conducted in a fractured crystalline bedrock under forced-gradient conditions over a distance of 36 m. Bacteria isolated from the local ground water were chosen on the basis of physicochemical and physiological differences (shape, cell-wall type, motility), and were differentially stained so that their transport behavior could be compared. No two bacterial strains transported in an identical manner, and microspheres produced distinctly different breakthrough curves than bacteria. Although there was insufficient control in this field experiment to completely separate the effects of bacteria shape, reaction to Gram staining, cell size, and motility on transport efficiency, it was observed that (1) the nonmotile, mutant strain exhibited better fractional recovery than the motile parent strain; (2) Gram-negative rod-shaped bacteria exhibited higher fractional recovery relative to the Gram-positive rod-shaped strain of similar size; and (3) coccoidal (spherical-shaped) bacteria transported better than all but one strain of the rod-shaped bacteria. The field experiment must be interpreted in the context of the specific bacterial strains and ground water environment in which they were conducted, but experimental results suggest that minor differences in the physical properties of bacteria can lead to major differences in transport behavior at the field scale.

  9. Production of Bacteriolytic Enzymes by Streptomyces globisporus Regulated by Exogenous Bacterial Cell Walls

    PubMed Central

    Brönneke, Volker; Fiedler, Franz

    1994-01-01

    Mutanolysin biosynthesis and pigment production in Streptomyces globisporus ATCC 21553 were stimulated by adding bacterial cell walls to the medium. The increased bacteriolytic activity in the supernatant correlated with an increased de novo synthesis of mutanolysin and was between 4- and 20-fold higher than in cultures grown without bacterial cell walls. The increase in mutanolysin synthesis was brought about by enhanced transcription of the mutanolysin gene. The stimulation was only observed in medium which contained dextrin or starch as the carbon source. Glucose abolished the stimulation and also inhibited the low constitutive synthesis of mutanolysin. The induction of lytic activity was observed to require minimally 0.4 mg of bacterial cell walls per ml, whereas 0.6 mg of bacterial cell walls per ml yielded maximal lytic activity. Further supplements of bacterial cell walls did not result in enhanced lytic activity. The stimulation could be achieved independently of the phase of growth of the Streptomyces strain. Cultures grown in the presence of bacterial cell walls exhibited a higher growth yield. However, the accelerated growth was not the reason for the increased amount of mutanolysin produced. The growth of cultures with peptidoglycan monomers added to the medium instead of cell walls was similarly increased, but an effect on the biosynthesis of mutanolysin was not observed. All bacterial cell walls tested were capable of eliciting the stimulation of lytic activity, including cell walls of archaea, which contained pseudomurein. Images PMID:16349213

  10. Growth factors for nanobacteria

    NASA Astrophysics Data System (ADS)

    Ciftcioglu, Neva; Kajander, E. Olavi

    1999-12-01

    Nanobacteria are novel microorganisms recently isolated from fetal bovine serum and blood of cows and humans. These coccoid, gram negative bacteria in alpha-2 subgroup of Proteobacteria grow slowly under mammalian cell culture conditions but not in common media for microbes. Now we have found two different kinds of culture supplement preparations that improve their growth and make them culturable in the classical sense. These are supernatant fractions of conditioned media obtained from 1 - 3 months old nanobacteria cultures and from about a 2 weeks old Bacillus species culture. Both improved multiplication and particle yields and the latter increased their resistance to gentamicin. Nanobacteria cultured with any of the methods shared similar immunological property, structure and protein pattern. The growth supporting factors were heat-stabile and nondialyzable, and dialysis improved the growth promoting action. Nanobacteria formed stony colonies in a bacteriological medium supplemented with the growth factors. This is an implication that nanobacterial growth is influenced by pre-existing bacterial flora.

  11. Antarctic ice core samples: culturable bacterial diversity.

    PubMed

    Shivaji, Sisinthy; Begum, Zareena; Shiva Nageswara Rao, Singireesu Soma; Vishnu Vardhan Reddy, Puram V; Manasa, Poorna; Sailaja, Buddi; Prathiba, Mambatta S; Thamban, Meloth; Krishnan, Kottekkatu P; Singh, Shiv M; Srinivas, Tanuku N R

    2013-01-01

    Culturable bacterial abundance at 11 different depths of a 50.26 m ice core from the Tallaksenvarden Nunatak, Antarctica, varied from 0.02 to 5.8 × 10(3) CFU ml(-1) of the melt water. A total of 138 bacterial strains were recovered from the 11 different depths of the ice core. Based on 16S rRNA gene sequence analyses, the 138 isolates could be categorized into 25 phylotypes belonging to phyla Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria. All isolates had 16S rRNA sequences similar to previously determined sequences (97.2-100%). No correlation was observed in the distribution of the isolates at the various depths either at the phylum, genus or species level. The 25 phylotypes varied in growth temperature range, tolerance to NaCl, growth pH range and ability to produce eight different extracellular enzymes at either 4 or 18 °C. Iso-, anteiso-, unsaturated and saturated fatty acids together constituted a significant proportion of the total fatty acid composition. PMID:23041141

  12. Impairment of the Bacterial Biofilm Stability by Triclosan

    PubMed Central

    Hubas, Cédric; Behrens, Sebastian; Ricciardi, Francesco; Paterson, David M.

    2012-01-01

    The accumulation of the widely-used antibacterial and antifungal compound triclosan (TCS) in freshwaters raises concerns about the impact of this harmful chemical on the biofilms that are the dominant life style of microorganisms in aquatic systems. However, investigations to-date rarely go beyond effects at the cellular, physiological or morphological level. The present paper focuses on bacterial biofilms addressing the possible chemical impairment of their functionality, while also examining their substratum stabilization potential as one example of an important ecosystem service. The development of a bacterial assemblage of natural composition – isolated from sediments of the Eden Estuary (Scotland, UK) – on non-cohesive glass beads (<63 µm) and exposed to a range of triclosan concentrations (control, 2 – 100 µg L?1) was monitored over time by Magnetic Particle Induction (MagPI). In parallel, bacterial cell numbers, division rate, community composition (DGGE) and EPS (extracellular polymeric substances: carbohydrates and proteins) secretion were determined. While the triclosan exposure did not prevent bacterial settlement, biofilm development was increasingly inhibited by increasing TCS levels. The surface binding capacity (MagPI) of the assemblages was positively correlated to the microbial secreted EPS matrix. The EPS concentrations and composition (quantity and quality) were closely linked to bacterial growth, which was affected by enhanced TCS exposure. Furthermore, TCS induced significant changes in bacterial community composition as well as a significant decrease in bacterial diversity. The impairment of the stabilization potential of bacterial biofilm under even low, environmentally relevant TCS levels is of concern since the resistance of sediments to erosive forces has large implications for the dynamics of sediments and associated pollutant dispersal. In addition, the surface adhesive capacity of the biofilm acts as a sensitive measure of ecosystem effects. PMID:22523534

  13. Superfluids in Curved Spacetime

    E-print Network

    Villegas, Kristian Hauser A

    2015-01-01

    Superfluids under an intense gravitational field are typically found in neutron star and quark star cores. Most treatments of these superfluids, however, are done in a flat spacetime background. In this paper, the effect of spacetime curvature on superfluidity is investigated. An effective four-fermion interaction is derived by integrating out the mediating scalar field. The fermions interacting via the mediating gauge vector bosons is also discussed. Two possible cases are considered in the mean-field treatment: antifermion-fermion and fermion-fermion pairings. An effective action, quadratic in fermion field, and a self-consistent equation are derived for both cases. The effective Euclidean action and the matrix elements of the heat kernel operator, which are very useful in curved-spacetime QFT calculations, are derived for the fermion-fermion pairing. Finally, explicit numerical calculation of the gravitational correction to the pairing order parameter is performed for the scalar superfluid case. It is foun...

  14. Understanding curved detonation waves

    SciTech Connect

    Bukiet, B.G.; Lackner, K.S.; Menikoff, R.

    1993-06-01

    The reaction zone of a detonation wave is very small compared to the dynamic length scale for a typical application. Consequently, it is impractical for numerical calculations to fully resolve the reaction zone. A non-zero reaction zone width is critical to describe curved detonation waves because it affects the wave speed. The curvature effect is the result of an the interaction between the rate of energy release and geometric source terms within the reaction zone. When the reaction zone width is determined by the computational cell size rather than the physical scale, the numerics introduces an artificial curvature effect which frequently dominates the physical effect and leads to mesh dependence of simulations. Modified Hugoniot jump conditions are derived which characterize the curvature effect. They express the conservation laws and are not sensitive to the detailed reaction dynamics but instead depend only on the reaction zone width, and averages of pressure and of mass, momentum and energy densities.

  15. Laboratory diagnosis of bacterial meningitis.

    PubMed Central

    Gray, L D; Fedorko, D P

    1992-01-01

    Bacterial meningitis is relatively common, can progress rapidly, and can result in death or permanent debilitation. This infection justifiably elicits strong emotional reactions and, hopefully, immediate medical intervention. This review is a brief presentation of the pathogenesis of bacterial meningitis and a review of current knowledge, literature, and recommendations on the subject of laboratory diagnosis of bacterial meningitis. Those who work in clinical microbiology laboratories should be familiar with the tests used in detecting bacteria and bacterial antigens in cerebrospinal fluid (CSF) and should always have the utmost appreciation for the fact that results of such tests must always be reported immediately. Academic and practical aspects of the laboratory diagnosis of bacterial meningitis presented in this review include the following: anatomy of the meninges; pathogenesis; changes in the composition of CSF; etiological agents; processing CSF; microscopic examination of CSF; culturing CSF; methods of detecting bacterial antigens and bacterial components in CSF (counter-immunoelectrophoresis, coagglutination, latex agglutination, enzyme-linked immunosorbent assay, Limulus amebocyte lysate assay, and gas-liquid chromatography); use of the polymerase chain reaction; and practical considerations for testing CSF for bacterial antigens. PMID:1576585

  16. 7 CFR 58.135 - Bacterial estimate.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...with respect to bacterial estimates: (1) Whenever the bacterial estimate indicates the presence of more than 500,000 bacteria per ml., the producer shall be notified with a warning of the excessive bacterial estimate. (2) Whenever two...

  17. Epigenetics and Bacterial Infections

    PubMed Central

    Bierne, Hélčne; Hamon, Mélanie; Cossart, Pascale

    2012-01-01

    Epigenetic mechanisms regulate expression of the genome to generate various cell types during development or orchestrate cellular responses to external stimuli. Recent studies highlight that bacteria can affect the chromatin structure and transcriptional program of host cells by influencing diverse epigenetic factors (i.e., histone modifications, DNA methylation, chromatin-associated complexes, noncoding RNAs, and RNA splicing factors). In this article, we first review the molecular bases of the epigenetic language and then describe the current state of research regarding how bacteria can alter epigenetic marks and machineries. Bacterial-induced epigenetic deregulations may affect host cell function either to promote host defense or to allow pathogen persistence. Thus, pathogenic bacteria can be considered as potential epimutagens able to reshape the epigenome. Their effects might generate specific, long-lasting imprints on host cells, leading to a memory of infection that influences immunity and might be at the origin of unexplained diseases. PMID:23209181

  18. Control of bacterial spores.

    PubMed

    Brown, K L

    2000-01-01

    Bacterial spores are much more resistant than their vegetative counterparts. The most dangerous spore-former is Clostridium botulinum which produces a potent neurotoxin that can prove fatal. The most common food poisoning from a spore-former is caused by C. perfringens. Other food poisoning spore-formers include Bacillus cereus, B. subtilis and B. licheniformis. There are a number of non-pathogenic spore-formers including butyric and thermophilic anaerobes that cause significant economic losses to food producers. Some unusual spoilage complaints have been reported, for example, B. sporothermodurans in UHT milk, Alicyclobacillus acidoterrestris in apple and orange juice and Desulfotomaculum nigrificans in hot vending machines. Control of spore-formers requires an understanding of both the resistance and outgrowth characteristics of the spores. PMID:10885113

  19. Contributions and Implications of the Medford, Oregon, Boys' Growth Study.

    ERIC Educational Resources Information Center

    Clarke, H. H.

    The overall and long-range purposes of the Medford Boys' Growth Study are: (1) to construct physical and motor growth curves and growth acceleration curves of boys seven to 18 years old; (2) to relate these traits to physiological maturity, physique type, nutritional status, socio-personal adjustment, interests, and scholastic aptitude and…

  20. Transformation of serum-susceptible Escherichia coli O111 with p16Slux plasmid to allow for real-time monitoring of complement-based inactivation of bacterial growth in bovine milk.

    PubMed

    Maye, S; Stanton, C; Fitzgerald, G F; Kelly, P M

    2016-01-01

    Complement activity has only recently been characterized in raw bovine milk. However, the activity of this component of the innate immune system was found to diminish as milk was subjected to heat or partitioning during cream separation. Detection of complement in milk relies on a bactericidal assay. This assay exploits the specific growth susceptibility of Escherichia coli O111 to the presence of complement. Practical application of the assay was demonstrated when a reduction in complement activity was recorded in the case of pasteurized and reduced-fat milks. This presented an opportunity to improve the functionality of the bactericidal assay by incorporating bioluminescence capability into the target organism. Following some adaptation, the strain was transformed by correctly integrating the p16Slux plasmid. Growth properties of the transformed strain of E. coli O111 were unaffected by the modification. The efficacy of the strain adaptation was correlated using the LINEST function analysis [r=0.966; standard error of prediction (SEy)=0.957] bioluminescence with that of bactericidal assay total plate counts within the range of 7.5 to 9.2 log cfu/mL using a combination of raw and processed milk samples. Importantly, the transformed E. coli O111 p16Slux strain could be identified in milk and broth samples using bioluminescence measurement, thus enabling the bactericidal assay-viability test to be monitored in real time throughout incubation. PMID:26585477