Science.gov

Sample records for bacterial metal respiration

  1. New Insights into the Mechanism of Bacterial Metal Respiration

    SciTech Connect

    DiChristina, Thomas J.

    2004-04-17

    This project goal is to identify genes and gene products required for microbial metal reduction: reductive dissolution of iron; reductive dissolution of manganese; reductive precipitation of selenium; reductive precipitation of uranium; and reductive precipitation of technetium.

  2. Bacterial respiration of arsenic and selenium

    USGS Publications Warehouse

    Stolz, J.F.; Oremland, R.S.

    1999-01-01

    Oxyanions of arsenic and selenium can be used in microbial anaerobic respiration as terminal electron acceptors. The detection of arsenate and selenate respiring bacteria in numerous pristine and contaminated environments and their rapid appearance in enrichment culture suggest that they are widespread and metabolically active in nature. Although the bacterial species that have been isolated and characterized are still few in number, they are scattered throughout the bacterial domain and include Gram- positive bacteria, beta, gamma and epsilon Proteobacteria and the sole member of a deeply branching lineage of the bacteria, Chrysiogenes arsenatus. The oxidation of a number of organic substrates (i.e. acetate, lactate, pyruvate, glycerol, ethanol) or hydrogen can be coupled to the reduction of arsenate and selenate, but the actual donor used varies from species to species. Both periplasmic and membrane-associated arsenate and selenate reductases have been characterized. Although the number of subunits and molecular masses differs, they all contain molybdenum. The extent of the environmental impact on the transformation and mobilization of arsenic and selenium by microbial dissimilatory processes is only now being fully appreciated.

  3. Molecular Characterization of Bacterial Respiration on Minerals

    SciTech Connect

    Blake, Robert C.

    2013-04-26

    anomalous dispersion (MAD) phasing; 4. An acid-stable red cytochrome with a novel absorbance peak at 579 nm was purified from cell-free extracts of L. ferriphilum. Functional studies demonstrated that this cytochrome was an important component of the aerobic iron respiratory chain in this organism; 5. The specific adhesion of At. ferrooxidans to pyrite is mediated by an extracellular protein that was identified as aporusticyanin. The adhesion of At. ferrooxidans to minerals was characterized by high affinity binding that exhibited a high specificity for pyrite over other sulfide minerals. The principal biopolymer involved in this high-affinity adhesion to pyrite was isolated by mineral affinity chromatography and identified as aporusticyanin. The adhesion of purified aporusticyanin to minerals was observed to adhere to different mineral with a pattern of reactivity identical to that observed with the intact bacterium. Further, preincubation of pyrite with excess exogenous aporusticyanin served to inhibit the adherence of intact cells to the surface of the mineral, indicating that the protein and the cells adhered to the pyrite in a mutually exclusive manner. Taken together, these observations support a model where aporusticyanin located on the surface of the bacterial cell acts as a mineral-specific receptor for the initial adherence of At. ferrooxidans to solid pyrite; 6. The specific adhesion of L. ferriphilum to pyrite was mediated by a different acid-stable extracellular protein than aporusticyanin; and 7. A prototype integrating cavity absorption meter (ICAM) was assembled to determine whether this novel spectrophotometer could be used to study cellular respiration in situ.

  4. Respiration and ecological niche influence bacterial membrane lipid compositions.

    PubMed

    Bay, Denice C; Booth, Sean C; Turner, Raymond J

    2015-05-01

    Bacterial membrane compositions vary widely between phyla and within related species. The types of lipids within membranes are as diverse as the selective pressures that influence bacterial lifestyles such as their mode of respiration and habitat. This study has examined the extent that respiration and habitat affect bacterial fatty acid (FA) and polar lipid (PL) compositions. To accomplish this, over 300 FA and PL profiles from 380 previously characterized species were assembled and subjected to multivariate statistical analyses in order to determine lipid to habitat/respiration associations. It was revealed that PL profiles showed a slight advantage over FA profiles for discriminating taxonomic relationships between species. FA profiles showed greater correlation with respiration and habitat than PL. This study identified that respiration did not consistently favour uniform FA or PL changes when lipid profiles were compared between examined phyla. This suggests that although phyla may adopt similar respiration methods, it does not result in consistent lipid attributes within one respiration state. Examination of FA and PL compositions were useful to identify taxonomic relationships between related species and provides insight into lipid variations influenced by the niche of its host. PMID:25297716

  5. Heavy Metal Pollution Enhances Soil Respiration and Reduces Carbon Storage in a Chinese Paddy Soil

    NASA Astrophysics Data System (ADS)

    Pan, Genxing; Li, Zhipeng; Liu, Yongzhuo; Smith, Pete; Crowley, David; Zheng, Jufeng

    2010-05-01

    China's paddy soils are crucial both for food security through high cereal productivity, and for climate mitigation through high soil carbon storage. These functions are increasingly threatened by widespread heavy metal pollution, resulting from rapid industrial development. Heavy metal-polluted soils generally have a reduced microbial biomass and reduced soil respiration, as well as reduced functional diversity through changes in microbial community structure. Here we show that heavy metal pollution enhances soil respiration and CO2 efflux from a Chinese rice paddy soil, and leads to a soil organic carbon (SOC) loss, which is correlated with a decline in the fungal-to-bacterial ratio of the reduced soil microbial community. The pollution-induced SOC loss could offset 70% of the yearly SOC increase from China's paddy soils. Thus, heavy metal pollution impacts long term productivity and the potential for C sequestration in China's paddy soils.

  6. BACTERIAL RESPIRATION OF ARSENIC AND SELENIUM. (R826105)

    EPA Science Inventory

    Abstract

    Oxyanions of arsenic and selenium can be used in microbial anaerobic respiration as terminal electron acceptors. The detection of arsenate and selenate respiring bacteria in numerous pristine and contaminated environments and their rapid appearance in enrichme...

  7. Modification of Bacterial Respiration by a Macromolecular Polyanionic Antibiotic Produced by a Marine Alteromonas

    PubMed Central

    Gauthier, M. J.

    1976-01-01

    A macromolecular polyanionic antibiotic produced by a marine bacterium belonging to the genus Alteromonas causes a large modification in bacterial respiration when added to the culture of several bacterial species in their early stage of growth. This antibiotic induces an increase of oxygen uptake and the production of hydrogen peroxide. The latter fact explains the high sensitivity of bacteria with low catalase activity and the antagonistic effect of pure catalase on antibiosis. The antibiotic could act at the level of the respiratory chain by setting up a flavinic respiration. PMID:1259396

  8. Dynamic subcellular localization of a respiratory complex controls bacterial respiration

    PubMed Central

    Alberge, François; Espinosa, Leon; Seduk, Farida; Sylvi, Léa; Toci, René; Walburger, Anne; Magalon, Axel

    2015-01-01

    Respiration, an essential process for most organisms, has to optimally respond to changes in the metabolic demand or the environmental conditions. The branched character of their respiratory chains allows bacteria to do so by providing a great metabolic and regulatory flexibility. Here, we show that the native localization of the nitrate reductase, a major respiratory complex under anaerobiosis in Escherichia coli, is submitted to tight spatiotemporal regulation in response to metabolic conditions via a mechanism using the transmembrane proton gradient as a cue for polar localization. These dynamics are critical for controlling the activity of nitrate reductase, as the formation of polar assemblies potentiates the electron flux through the complex. Thus, dynamic subcellular localization emerges as a critical factor in the control of respiration in bacteria. DOI: http://dx.doi.org/10.7554/eLife.05357.001 PMID:26077726

  9. Bacterial sorption of heavy metals.

    PubMed Central

    Mullen, M D; Wolf, D C; Ferris, F G; Beveridge, T J; Flemming, C A; Bailey, G W

    1989-01-01

    Four bacteria, Bacillus cereus, B. subtilis, Escherichia coli, and Pseudomonas aeruginosa, were examined for the ability to remove Ag+, Cd2+, Cu2+, and La3+ from solution by batch equilibration methods. Cd and Cu sorption over the concentration range 0.001 to 1 mM was described by Freundlich isotherms. At 1 mM concentrations of both Cd2+ and Cu2+, P. aeruginosa and B. cereus were the most and least efficient at metal removal, respectively. Freundlich K constants indicated that E. coli was most efficient at Cd2+ removal and B. subtilis removed the most Cu2+. Removal of Ag+ from solution by bacteria was very efficient; an average of 89% of the total Ag+ was removed from the 1 mM solution, while only 12, 29, and 27% of the total Cd2+, Cu2+, and La3+, respectively, were sorbed from 1 mM solutions. Electron microscopy indicated that La3+ accumulated at the cell surface as needlelike, crystalline precipitates. Silver precipitated as discrete colloidal aggregates at the cell surface and occasionally in the cytoplasm. Neither Cd2+ nor Cu2+ provided enough electron scattering to identify the location of sorption. The affinity series for bacterial removal of these metals decreased in the order Ag greater than La greater than Cu greater than Cd. The results indicate that bacterial cells are capable of binding large quantities of different metals. Adsorption equations may be useful for describing bacterium-metal interactions with metals such as Cd and Cu; however, this approach may not be adequate when precipitation of metals occurs. Images PMID:2515800

  10. Metal Toxicity Affects Fungal and Bacterial Activities in Soil Differently

    PubMed Central

    Rajapaksha, R. M. C. P.; Tobor-Kapłon, M. A; Bååth, E.

    2004-01-01

    Although the toxic effect of heavy metals on soil microorganism activity is well known, little is known about the effects on different organism groups. The influence of heavy metal addition on total, bacterial, and fungal activities was therefore studied for up to 60 days in a laboratory experiment using forest soil contaminated with different concentrations of Zn or Cu. The effects of the metals differed between the different activity measurements. During the first week after metal addition, the total activity (respiration rate) decreased by 30% at the highest level of contamination and then remained stable during the 60 days of incubation. The bacterial activity (thymidine incorporation rate) decreased during the first days with the level of metal contamination, resulting in a 90% decrease at the highest level of contamination. Bacterial activity then slowly recovered to values similar to those of the control soil. The recovery was faster when soil pH, which had decreased due to metal addition, was restored to control values by liming. Fungal activity (acetate-in-ergosterol incorporation rate) initially increased with the level of metal contamination, being up to 3 and 7 times higher than that in the control samples during the first week at the highest levels of Zn and Cu addition, respectively. The positive effect of metal addition on fungal activity then decreased, but fungal activity was still higher in contaminated than in control soil after 35 days. This is the first direct evidence that fungal and bacterial activities in soil are differently affected by heavy metals. The different responses of bacteria and fungi to heavy metals were reflected in an increase in the relative fungal/bacterial ratio (estimated using phospholipid fatty acid analysis) with increased metal load. PMID:15128558

  11. Metal toxicity affects fungal and bacterial activities in soil differently.

    PubMed

    Rajapaksha, R M C P; Tobor-Kapłon, M A; Bååth, E

    2004-05-01

    Although the toxic effect of heavy metals on soil microorganism activity is well known, little is known about the effects on different organism groups. The influence of heavy metal addition on total, bacterial, and fungal activities was therefore studied for up to 60 days in a laboratory experiment using forest soil contaminated with different concentrations of Zn or Cu. The effects of the metals differed between the different activity measurements. During the first week after metal addition, the total activity (respiration rate) decreased by 30% at the highest level of contamination and then remained stable during the 60 days of incubation. The bacterial activity (thymidine incorporation rate) decreased during the first days with the level of metal contamination, resulting in a 90% decrease at the highest level of contamination. Bacterial activity then slowly recovered to values similar to those of the control soil. The recovery was faster when soil pH, which had decreased due to metal addition, was restored to control values by liming. Fungal activity (acetate-in-ergosterol incorporation rate) initially increased with the level of metal contamination, being up to 3 and 7 times higher than that in the control samples during the first week at the highest levels of Zn and Cu addition, respectively. The positive effect of metal addition on fungal activity then decreased, but fungal activity was still higher in contaminated than in control soil after 35 days. This is the first direct evidence that fungal and bacterial activities in soil are differently affected by heavy metals. The different responses of bacteria and fungi to heavy metals were reflected in an increase in the relative fungal/bacterial ratio (estimated using phospholipid fatty acid analysis) with increased metal load. PMID:15128558

  12. The Terminal Oxidase Cytochrome bd Promotes Sulfide-resistant Bacterial Respiration and Growth

    PubMed Central

    Forte, Elena; Borisov, Vitaliy B.; Falabella, Micol; Colaço, Henrique G.; Tinajero-Trejo, Mariana; Poole, Robert K.; Vicente, João B.; Sarti, Paolo; Giuffrè, Alessandro

    2016-01-01

    Hydrogen sulfide (H2S) impairs mitochondrial respiration by potently inhibiting the heme-copper cytochrome c oxidase. Since many prokaryotes, including Escherichia (E.) coli, generate H2S and encounter high H2S levels particularly in the human gut, herein we tested whether bacteria can sustain sulfide-resistant O2-dependent respiration. E. coli has three respiratory oxidases, the cyanide-sensitive heme-copper bo3 enzyme and two bd oxidases much less sensitive to cyanide. Working on the isolated enzymes, we found that, whereas the bo3 oxidase is inhibited by sulfide with half-maximal inhibitory concentration IC50 = 1.1 ± 0.1 μM, under identical experimental conditions both bd oxidases are insensitive to sulfide up to 58 μM. In E. coli respiratory mutants, both O2-consumption and aerobic growth proved to be severely impaired by sulfide when respiration was sustained by the bo3 oxidase alone, but unaffected by ≤200 μM sulfide when either bd enzyme acted as the only terminal oxidase. Accordingly, wild-type E. coli showed sulfide-insensitive respiration and growth under conditions favouring the expression of bd oxidases. In all tested conditions, cyanide mimicked the functional effect of sulfide on bacterial respiration. We conclude that bd oxidases promote sulfide-resistant O2-consumption and growth in E. coli and possibly other bacteria. The impact of this discovery is discussed. PMID:27030302

  13. Soil Respiration and Bacterial Structure and Function after 17 Years of a Reciprocal Soil Transplant Experiment

    PubMed Central

    Bond-Lamberty, Ben; Bolton, Harvey; Fansler, Sarah; Heredia-Langner, Alejandro; Liu, Chongxuan; McCue, Lee Ann; Bailey, Vanessa

    2016-01-01

    The effects of climate change on soil organic matter—its structure, microbial community, carbon storage, and respiration response—remain uncertain and widely debated. In addition, the effects of climate changes on ecosystem structure and function are often modulated or delayed, meaning that short-term experiments are not sufficient to characterize ecosystem responses. This study capitalized on a long-term reciprocal soil transplant experiment to examine the response of dryland soils to climate change. The two transplant sites were separated by 500 m of elevation on the same mountain slope in eastern Washington state, USA, and had similar plant species and soil types. We resampled the original 1994 soil transplants and controls, measuring CO2 production, temperature response, enzyme activity, and bacterial community structure after 17 years. Over a laboratory incubation of 100 days, reciprocally transplanted soils respired roughly equal cumulative amounts of carbon as non-transplanted controls from the same site. Soils transplanted from the hot, dry, lower site to the cooler and wetter (difference of -5°C monthly maximum air temperature, +50 mm yr-1 precipitation) upper site exhibited almost no respiratory response to temperature (Q10 of 1.1), but soils originally from the upper, cooler site had generally higher respiration rates. The bacterial community structure of transplants did not differ significantly from that of untransplanted controls, however. Slight differences in local climate between the upper and lower Rattlesnake locations, simulated with environmental control chambers during the incubation, thus prompted significant differences in microbial activity, with no observed change to bacterial structure. These results support the idea that environmental shifts can influence soil C through metabolic changes, and suggest that microbial populations responsible for soil heterotrophic respiration may be constrained in surprising ways, even as shorter- and

  14. Soil Respiration and Bacterial Structure and Function after 17 Years of a Reciprocal Soil Transplant Experiment.

    PubMed

    Bond-Lamberty, Ben; Bolton, Harvey; Fansler, Sarah; Heredia-Langner, Alejandro; Liu, Chongxuan; McCue, Lee Ann; Smith, Jeffrey; Bailey, Vanessa

    2016-01-01

    The effects of climate change on soil organic matter-its structure, microbial community, carbon storage, and respiration response-remain uncertain and widely debated. In addition, the effects of climate changes on ecosystem structure and function are often modulated or delayed, meaning that short-term experiments are not sufficient to characterize ecosystem responses. This study capitalized on a long-term reciprocal soil transplant experiment to examine the response of dryland soils to climate change. The two transplant sites were separated by 500 m of elevation on the same mountain slope in eastern Washington state, USA, and had similar plant species and soil types. We resampled the original 1994 soil transplants and controls, measuring CO2 production, temperature response, enzyme activity, and bacterial community structure after 17 years. Over a laboratory incubation of 100 days, reciprocally transplanted soils respired roughly equal cumulative amounts of carbon as non-transplanted controls from the same site. Soils transplanted from the hot, dry, lower site to the cooler and wetter (difference of -5°C monthly maximum air temperature, +50 mm yr-1 precipitation) upper site exhibited almost no respiratory response to temperature (Q10 of 1.1), but soils originally from the upper, cooler site had generally higher respiration rates. The bacterial community structure of transplants did not differ significantly from that of untransplanted controls, however. Slight differences in local climate between the upper and lower Rattlesnake locations, simulated with environmental control chambers during the incubation, thus prompted significant differences in microbial activity, with no observed change to bacterial structure. These results support the idea that environmental shifts can influence soil C through metabolic changes, and suggest that microbial populations responsible for soil heterotrophic respiration may be constrained in surprising ways, even as shorter- and

  15. Soil respiration and bacterial structure and function after 17 years of a reciprocal soil transplant experiment

    DOE PAGESBeta

    Bond-Lamberty, Benjamin; Bolton, Harvey; Fansler, Sarah J.; Heredia-Langner, Alejandro; Liu, Chongxuan; McCue, Lee Ann; Smith, Jeff L.; Bailey, Vanessa L.

    2016-03-02

    The effects of climate change on soil organic matter—its structure, microbial community, carbon storage, and respiration response—remain uncertain and widely debated. In addition, the effects of climate changes on ecosystem structure and function are often modulated or delayed, meaning that short-term experiments are not sufficient to characterize ecosystem responses. This study capitalized on a long-term reciprocal soil transplant experiment to examine the response of dryland soils to climate change. The two transplant sites were separated by 500 m of elevation on the same mountain slope in eastern Washington state, USA, and had similar plant species and soil types. We resampledmore » the original 1994 soil transplants and controls, measuring CO2 production, temperature response, enzyme activity, and bacterial community structure after 17 years. Over a laboratory incubation of 100 days, reciprocally transplanted soils respired roughly equal cumulative amounts of carbon as non-transplanted controls from the same site. Soils transplanted from the hot, dry, lower site to the cooler and wetter (difference of -5 °C monthly maximum air temperature, +50 mm yr-1precipitation) upper site exhibited almost no respiratory response to temperature (Q10 of 1.1), but soils originally from the upper, cooler site had generally higher respiration rates. The bacterial community structure of transplants did not differ significantly from that of untransplanted controls, however. Slight differences in local climate between the upper and lower Rattlesnake locations, simulated with environmental control chambers during the incubation, thus prompted significant differences in microbial activity, with no observed change to bacterial structure. Lastly, these results support the idea that environmental shifts can influence soil C through metabolic changes, and suggest that microbial populations responsible for soil heterotrophic respiration may be constrained in surprising ways, even

  16. Effect of heavy metals on bacterial transport

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Olson, M. S.

    2010-12-01

    Adsorption of metals onto bacteria and soil takes place as stormwater runoff infiltrates into the subsurface. Changes in both bacterial surfaces and soil elemental content have been observed, and may alter the attachment of bacteria to soil surfaces. In this study, scanning electron microscopy (SEM) and Energy Dispersive X-ray Spectrometry (EDS) analyses were performed on soil samples equilibrated with synthetic stormwater amended with copper, lead and zinc. The results demonstrate the presence of copper and zinc on soil surfaces. To investigate bacterial attachment behavior, sets of batch sorption experiments were conducted on Escherichia Coli (E. coli) under different chemical conditions by varying solution compositions (nutrient solution vs synthetic stormwater). The adsorption data is best described using theoretical linear isotherms. The equilibrium coefficient (Kd) of E. coli is higher in synthetic stormwater than in nutrient solution without heavy metals. The adsorption of heavy metals onto bacterial surfaces significantly decreases their negative surface charge as determined via zeta potential measurements (-17.0±5.96mv for E. coli equilibrated with synthetic stormwater vs -21.6±5.45mv for E. coli equilibrated with nutrient solution), indicating that bacterial attachment may increase due to the attachment of metals onto bacterial surfaces and their subsequent change in surface charge. The attachment efficiency (α) of bacteria was also calculated and compared for both solution chemistries. Bacterial attachment efficiency (α) in synthetic stormwater is 0.997, which is twice as high as that in nutrient solution(α 0.465). The ratio of bacterial diameter : collector diameter suggests minimal soil straining during bacterial transport. Results suggest that the presence of metals in synthetic stormwater leads to an increase in bacterial attachment to soil surfaces. In terms of designing stormwater infiltration basins, the presence of heavy metals seems to

  17. Effect of CO2 enrichment on bacterial production and respiration and on bacterial carbon metabolism in Arctic waters

    NASA Astrophysics Data System (ADS)

    Motegi, C.; Tanaka, T.; Piontek, J.; Brussaard, C. P. D.; Gattuso, J. P.; Weinbauer, M. G.

    2012-10-01

    The impact of rising carbon dioxide (pCO2) on bacterial production (BP), bacterial respiration (BR) and bacterial carbon metabolism was investigated during the mesocosm experiment in Kongsfjord (Svalbard) in 2010. The mesocosm experiment lasted 30 days and nine mesocosms with pCO2 levels ranging from ca. 180 to 1400 μatm were used. Generally, BP gradually decreased in all mesocosms in an initial phase, showed a large (3.6-fold in average) but temporary increase on day 10, and increased slightly afterwards. BP increased with increasing pCO2 at the beginning of the experiment (day 5). This trend became inversed and BP decreased with increasing pCO2 on day 14 (after nutrient addition). Interestingly, increasing pCO2 enhanced the leucine and thymidine ratio at the end of experiment, suggesting that pCO2 may alter the growth balance of bacteria. In contrast to BP, no clear trend and effect of changes of pCO2 was observed for BR, bacterial carbon demand and bacterial growth efficiency. Our results suggest that (1) the response to elevated pCO2 had a strong temporal variation, potentially linked to the nutrient status, and (2) pCO2 had an influence on biomass accumulation (i.e. BP) rather than on the conversion of dissolved organic matter into CO2 (i.e. BR).

  18. Effects of viral enrichment on bacterial production, respiration and growth efficiency

    NASA Astrophysics Data System (ADS)

    Bonilla-Findji, O.; Rochelle-Newall, E.; Weinbauer, M. G.; Gattuso, J.-P.

    2003-04-01

    Viruses are the most common biological agents in the sea. They can influence many ecological processes such as nutrient and carbon cycling, particle size distribution, algal bloom control, species diversity and gene transfer. As they are mainly bacteriophages they not only influence bacterial abundances but also potentially, the bacterial respiration and production, as has been suggested in by Fuhrman’s model in 1992 and a few recent experimental studies. Through their lytic action viruses can influence biogeochemical cycles and so affect the functioning of the whole marine ecosystem. In order to explore this hypothesis and provide some quantitative data we: (1) studied the effects of viruses on bacterial respiration (BR), production (BP) and growth efficiency (BGE) and (2) investigated whether these effects change over time. A viral enrichment experiment was performed in April and May 2002, where the bacterial community isolated from the Bay of Villefranche was exposed to three treatments: Vo (no viral addition), Vm (enrichment of 1-1.5 fold inactivated viruses) and V+ (enrichment of 1-1.5 fold active viruses). No virally induced effects on bacterial metabolism were observed in April but in May after 24 h of incubation, BR was stimulated by ca. 39% in V+ compared to Vo and by 20% relative to Vm. In the presence of active viruses, BP was repressed by ca. 40% compared to Vo and BGE was reduced by 48%. In May, viruses increased the total bacterial carbon demand (17% in V+ compared to Vo, and by 11% relative to Vm). Our results suggest that viruses seem to induce a shift in the specific role of bacterioplankton by reducing the carbon flow to the higher trophic levels and by stimulating the DOM ‡ bacteria ‡ CO2, N, P, Fe pathway.

  19. Bioremoval of heavy metals by bacterial biomass.

    PubMed

    Aryal, Mahendra; Liakopoulou-Kyriakides, Maria

    2015-01-01

    Heavy metals are among the most common pollutants found in the environment. Health problems due to the heavy metal pollution become a major concern throughout the world, and therefore, various treatment technologies such as reverse osmosis, ion exchange, solvent extraction, chemical precipitation, and adsorption are adopted to reduce or eliminate their concentration in the environment. Biosorption is a cost-effective and environmental friendly technique, and it can be used for detoxification of heavy metals in industrial effluents as an alternative treatment technology. Biosorption characteristics of various bacterial species are reviewed here with respect to the results reported so far. The role of physical, chemical, and biological modification of bacterial cells for heavy metal removal is presented. The paper evaluates the different kinetic, equilibrium, and thermodynamic models used in bacterial sorption of heavy metals. Biomass characterization and sorption mechanisms as well as elution of metal ions and regeneration of biomass are also discussed. PMID:25471624

  20. Effect of methylchloro/methylisothiazolone on bacterial respiration in cooling water

    SciTech Connect

    Shaw, D.A.; Williams, T.M.; Holz, J.W.

    1998-12-31

    Cooling water systems provide a suitable environment for the growth of bacteria, algae and occasionally fungi. The efficacy of industrial biocides is typically determined by monitoring reduction in viable cell counts. An alternative approach is to measure a parameter of microbial activity such as respiration. The effect of methylchloro/ methylisothiazolone biocide (MCMI) on bacterial respiration was determined using an enriched synthetic cooling water and actual cooling water samples. Addition of MCMI resulted in rapid inhibition of oxygen uptake ( 5--10 minutes) by the mixed population of bacteria, whereas reduction in viable counts (two to six-log decrease) was generally not observed until four to six hours. These studies demonstrated MCMI as a fast-acting biocide and supported the current mode of action model for isothiazolone biocides.

  1. Physiological and electrochemical effects of different electron acceptors on bacterial anode respiration in bioelectrochemical systems.

    PubMed

    Yang, Yonggang; Xiang, Yinbo; Xia, Chunyu; Wu, Wei-Min; Sun, Guoping; Xu, Meiying

    2014-07-01

    To understand the interactions between bacterial electrode respiration and the other ambient bacterial electron acceptor reductions, alternative electron acceptors (nitrate, Fe2O3, fumarate, azo dye MB17) were added singly or multiply into Shewanella decolorationis microbial fuel cells (MFCs). All the added electron acceptors were reduced simultaneously with current generation. Adding nitrate or MB17 resulted in more rapid cell growth, higher flavin concentration and higher biofilm metabolic viability, but lower columbic efficiency (CE) and normalized energy recovery (NER) while the CE and NER were enhanced by Fe2O3 or fumarate. The added electron acceptors also significantly influenced the cyclic voltammetry profile of anode biofilm probably via altering the cytochrome c expression. The highest power density was observed in MFCs added with MB17 due to the electron shuttle role of the naphthols from MB17 reduction. The results provided important information for MFCs applied in practical environments where contains various electron acceptors. PMID:24862003

  2. Are the actively respiring cells (CTC+) those responsible for bacterial production in aquatic environments?

    PubMed

    Servais, P; Agogué, H; Courties, C; Joux, F; Lebaron, P

    2001-04-01

    The 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) staining method is commonly and increasingly used to detect and to enumerate actively respiring cells (CTC+ cells) in aquatic systems. However, this method remains controversial since some authors promote this technique while others pointed out several drawbacks of the method. Using flow cytometry (FCM), we showed that CTC staining kinetics vary greatly from one sample to another. Therefore, there is no universal staining protocol that can be applied to aquatic bacterial communities. Furthermore, using (3)H-leucine incorporation, it was shown that the CTC dye has a rapid toxic effect on bacterial cells by inhibiting protein synthesis, a key physiological function. The coupling of radioactive labelling with cell sorting by FCM suggested that CTC+ cells contribute to less than 60% of the whole bacterial activity determined at the community level. From these results, it is clearly demonstrated that the CTC method is not valid to detect active bacteria, i.e. cells responsible for bacterial production. PMID:11295456

  3. Effect of humic substance photodegradation on bacterial growth and respiration in lake water.

    PubMed

    Anesio, Alexandre M; Granéli, Wilhelm; Aiken, George R; Kieber, David J; Mopper, Kenneth

    2005-10-01

    This study addresses how humic substance (HS) chemical composition and photoreactivity affect bacterial growth, respiration, and growth efficiency (BGE) in lake water. Aqueous solutions of HSs from diverse aquatic environments representing different dissolved organic matter sources (autochthonous and allochthonous) were exposed to artificial solar UV radiation. These solutions were added to lake water passed through a 0.7-microm-pore-size filter (containing grazer-free lake bacteria) followed by dark incubation for 5, 43, and 65 h. For the 5-h incubation, several irradiated HSs inhibited bacterial carbon production (BCP) and this inhibition was highly correlated with H2O2 photoproduction. The H2O2 decayed in the dark, and after 43 h, nearly all irradiated HSs enhanced BCP (average 39% increase relative to nonirradiated controls, standard error = 7.5%, n = 16). UV exposure of HSs also increased bacterial respiration (by approximately 18%, standard error = 5%, n = 4), but less than BCP, resulting in an average increase in BGE of 32% (standard error = 10%, n = 4). Photoenhancement of BCP did not correlate to HS bulk properties (i.e., elemental and chemical composition). However, when the photoenhancement of BCP was normalized to absorbance, several trends with HS origin and extraction method emerged. Absorbance-normalized hydrophilic acid and humic acid samples showed greater enhancement of BCP than hydrophobic acid and fulvic acid samples. Furthermore, absorbance-normalized autochthonous samples showed approximately 10-fold greater enhancement of BCP than allochthonous-dominated samples, indicating that the former are more efficient photoproducers of biological substrates. PMID:16204548

  4. Effect of Humic Substance Photodegradation on Bacterial Growth and Respiration in Lake Water

    PubMed Central

    Anesio, Alexandre M.; Granéli, Wilhelm; Aiken, George R.; Kieber, David J.; Mopper, Kenneth

    2005-01-01

    This study addresses how humic substance (HS) chemical composition and photoreactivity affect bacterial growth, respiration, and growth efficiency (BGE) in lake water. Aqueous solutions of HSs from diverse aquatic environments representing different dissolved organic matter sources (autochthonous and allochthonous) were exposed to artificial solar UV radiation. These solutions were added to lake water passed through a 0.7-μm-pore-size filter (containing grazer-free lake bacteria) followed by dark incubation for 5, 43, and 65 h. For the 5-h incubation, several irradiated HSs inhibited bacterial carbon production (BCP) and this inhibition was highly correlated with H2O2 photoproduction. The H2O2 decayed in the dark, and after 43 h, nearly all irradiated HSs enhanced BCP (average 39% increase relative to nonirradiated controls, standard error = 7.5%, n = 16). UV exposure of HSs also increased bacterial respiration (by ∼18%, standard error = 5%, n = 4), but less than BCP, resulting in an average increase in BGE of 32% (standard error = 10%, n = 4). Photoenhancement of BCP did not correlate to HS bulk properties (i.e., elemental and chemical composition). However, when the photoenhancement of BCP was normalized to absorbance, several trends with HS origin and extraction method emerged. Absorbance-normalized hydrophilic acid and humic acid samples showed greater enhancement of BCP than hydrophobic acid and fulvic acid samples. Furthermore, absorbance-normalized autochthonous samples showed ∼10-fold greater enhancement of BCP than allochthonous-dominated samples, indicating that the former are more efficient photoproducers of biological substrates. PMID:16204548

  5. Effect of humic substance photodegradation on bacterial growth and respiration in lake water

    USGS Publications Warehouse

    Anesio, A.M.; Graneli, W.; Aiken, G.R.; Kieber, D.J.; Mopper, K.

    2005-01-01

    This study addresses how humic substance (HS) chemical composition and photoreactivity affect bacterial growth, respiration, and growth efficiency (BGE) in lake water. Aqueous solutions of HSs from diverse aquatic environments representing different dissolved organic matter sources (autochthonous and allochthonous) were exposed to artificial solar UV radiation. These solutions were added to lake water passed through a 0.7-??m-pore-size filter (containing grazer-free lake bacteria) followed by dark incubation for 5, 43, and 65 h. For the 5-h incubation, several irradiated HSs inhibited bacterial carbon production (BCP) and this inhibition was highly correlated with H 2O2 photoproduction. The H2O2 decayed in the dark, and after 43 h, nearly all irradiated HSs enhanced BCP (average 39% increase relative to nonirradiated controls, standard error = 7.5%, n = 16). UV exposure of HSs also increased bacterial respiration (by ???18%, standard error = 5%, n = 4), but less than BCP, resulting in an average increase in BGE of 32% (standard error = 10%, n = 4). Photoenhancement of BCP did not correlate to HS bulk properties (i.e., elemental and chemical composition). However, when the photoenhancement of BCP was normalized to absorbance, several trends with HS origin and extraction method emerged. Absorbance-normalized hydrophilic acid and humic acid samples showed greater enhancement of BCP than hydrophobic acid and fulvic acid samples. Furthermore, absorbance-normalized autochthonous samples showed ???10-fold greater enhancement of BCP than allochthonous-dominated samples, indicating that the former are more efficient photoproducers of biological substrates. Copyright ?? 2005, American Society for Microbiology. All Rights Reserved.

  6. Bacterial Diversity, Sediment Age and Organic Respiration in the Marine Sedimentary Environment

    NASA Astrophysics Data System (ADS)

    Walsh, E. A.; Kirkpatrick, J. B.; Pockalny, R. A.; Sauvage, J.; Sogin, M. L.; D'Hondt, S.

    2014-12-01

    Subseafloor sediment hosts to a large1, taxonomically rich2 and metabolically diverse3 microbial ecosystem. However, the factors that control microbial diversity in subseafloor sediment have rarely been explored. Here we show that subseafloor bacterial richness varies directly with sediment age and net rate of organic-fueled respiration. We examined three open-ocean sites (in the Bering Sea and equatorial Pacific) and one continental margin site (Indian Ocean), with sediment depths to 404 meters below seafloor. At all locations, taxonomic richness decreases exponentially with increasing sediment age. Richness declines most rapidly for a few hundred thousand years after sediment deposition. This profile generally matches the canonical relationship between rates of organic oxidation and sediment age 4. To examine the potential link between organic oxidation and taxonomic richness we used pore-water chemical profiles to quantify net rates of organic respiration at the three open-ocean sites (the chemical profiles of the ocean-margin site are not in diffusive steady state). Taxonomic richness and total rate of organic-fueled respiration are highest at the high productivity Bering Sea site and lower at the moderate productivity equatorial Pacific sites. At each of these sites, organic-fueled respiration rate and taxonomic richness are highest at the surface and decline together as sediment depth and age increase. To our knowledge, this is the first evidence that taxonomic richness is closely linked to organic-fueled respiration rate and sediment age in subseafloor sediment. References1. Kallmeyer, J., Pockalny, R., Adhikari, R. R., Smith, D. C. & D'Hondt, S. Proceedings of the National Academy of Sciences, doi:10.1073/pnas.1203849109 (2012). 2. Inagaki, F. et al. Proceedings of the National Academy of Sciences 103, 2815-2820 (2006). 3. D'Hondt, S. et al. Science 306, 2216-2221, doi:10.1126/science.1101155 (2004). 4. Middelburg, J. J. Geochimica et Cosmochimica Acta 53

  7. Exploring the biochemistry at the extracellular redox frontier of bacterial mineral Fe(III) respiration

    SciTech Connect

    Richardson, David J.; Edwards, Marcus; White, Gaye F.; Baiden, Nanakow; Hartshorne, Robert S.; Fredrickson, Jim K.; Shi, Liang; Zachara, John M.; Gates, Andrew J.; Butt, Julea N.; Clarke, Thomas

    2012-06-01

    Many species of the bacterial Shewanella genus are notable for their ability to respire in anoxic environments utilizing insoluble minerals of Fe(III) and Mn(IV) as extracellular electron acceptors. In Shewanella oneidensis, the process is dependent on the decahaem electron-transport proteins that lie at the extracellular face of the outer membrane where they can contact the insoluble mineral substrates. These extracellular proteins are charged with electrons provided by an inter-membrane electron-transfer pathway that links the extracellular face of the outer membrane with the inner cytoplasmic membrane and thereby intracellular electron sources. In the present paper, we consider the common structural features of two of these outermembrane decahaem cytochromes, MtrC and MtrF, and bring this together with biochemical, spectroscopic and voltammetric data to identify common and distinct properties of these prototypical members of different clades of the outer-membrane decahaem cytochrome superfamily.

  8. Bacterial Adaptation of Respiration from Oxic to Microoxic and Anoxic Conditions: Redox Control

    PubMed Central

    Bueno, Emilio; Mesa, Socorro; Bedmar, Eulogio J.; Richardson, David J.

    2012-01-01

    Abstract Under a shortage of oxygen, bacterial growth can be faced mainly by two ATP-generating mechanisms: (i) by synthesis of specific high-affinity terminal oxidases that allow bacteria to use traces of oxygen or (ii) by utilizing other substrates as final electron acceptors such as nitrate, which can be reduced to dinitrogen gas through denitrification or to ammonium. This bacterial respiratory shift from oxic to microoxic and anoxic conditions requires a regulatory strategy which ensures that cells can sense and respond to changes in oxygen tension and to the availability of other electron acceptors. Bacteria can sense oxygen by direct interaction of this molecule with a membrane protein receptor (e.g., FixL) or by interaction with a cytoplasmic transcriptional factor (e.g., Fnr). A third type of oxygen perception is based on sensing changes in redox state of molecules within the cell. Redox-responsive regulatory systems (e.g., ArcBA, RegBA/PrrBA, RoxSR, RegSR, ActSR, ResDE, and Rex) integrate the response to multiple signals (e.g., ubiquinone, menaquinone, redox active cysteine, electron transport to terminal oxidases, and NAD/NADH) and activate or repress target genes to coordinate the adaptation of bacterial respiration from oxic to anoxic conditions. Here, we provide a compilation of the current knowledge about proteins and regulatory networks involved in the redox control of the respiratory adaptation of different bacterial species to microxic and anoxic environments. Antioxid. Redox Signal. 16, 819–852. PMID:22098259

  9. The impact of dissolved organic carbon and bacterial respiration on pCO2 in experimental sea ice

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Kotovitch, M.; Kaartokallio, H.; Moreau, S.; Tison, J.-L.; Kattner, G.; Dieckmann, G.; Thomas, D. N.; Delille, B.

    2016-02-01

    Previous observations have shown that the partial pressure of carbon dioxide (pCO2) in sea ice brines is generally higher in Arctic sea ice compared to those from the Antarctic sea ice, especially in winter and early spring. We hypothesized that these differences result from the higher dissolved organic carbon (DOC) content in Arctic seawater: Higher concentrations of DOC in seawater would be reflected in a greater DOC incorporation into sea ice, enhancing bacterial respiration, which in turn would increase the pCO2 in the ice. To verify this hypothesis, we performed an experiment using two series of mesocosms: one was filled with seawater (SW) and the other one with seawater with an addition of filtered humic-rich river water (SWR). The addition of river water increased the DOC concentration of the water from a median of 142 μmol Lwater-1 in SW to 249 μmol Lwater-1 in SWR. Sea ice was grown in these mesocosms under the same physical conditions over 19 days. Microalgae and protists were absent, and only bacterial activity has been detected. We measured the DOC concentration, bacterial respiration, total alkalinity and pCO2 in sea ice and the underlying seawater, and we calculated the changes in dissolved inorganic carbon (DIC) in both media. We found that bacterial respiration in ice was higher in SWR: median bacterial respiration was 25 nmol C Lice-1 h-1 compared to 10 nmol C Lice-1 h-1 in SW. pCO2 in ice was also higher in SWR with a median of 430 ppm compared to 356 ppm in SW. However, the differences in pCO2 were larger within the ice interiors than at the surfaces or the bottom layers of the ice, where exchanges at the air-ice and ice-water interfaces might have reduced the differences. In addition, we used a model to simulate the differences of pCO2 and DIC based on bacterial respiration. The model simulations support the experimental findings and further suggest that bacterial growth efficiency in the ice might approach 0.15 and 0.2. It is thus credible

  10. Metallization of bacterial cellulose for electrical and electronic device manufacture

    DOEpatents

    Evans, Barbara R.; O'Neill, Hugh M.; Jansen, Valerie Malyvanh; Woodward, Jonathan

    2011-06-07

    A method for the deposition of metals in bacterial cellulose and for the employment of the metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The method for impregnating bacterial cellulose with a metal comprises placing a bacterial cellulose matrix in a solution of a metal salt such that the metal salt is reduced to metallic form and the metal precipitates in or on the matrix. The method for the construction of a fuel cell comprises placing a hydrated bacterial cellulose support structure in a solution of a metal salt such that the metal precipitates in or on the support structure, inserting contact wires into two pieces of the metal impregnated support structure, placing the two pieces of metal impregnated support structure on opposite sides of a layer of hydrated bacterial cellulose, and dehydrating the three layer structure to create a fuel cell.

  11. Metallization of bacterial cellulose for electrical and electronic device manufacture

    DOEpatents

    Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN; Jansen, Valerie Malyvanh [Memphis, TN; Woodward, Jonathan [Knoxville, TN

    2010-09-28

    A method for the deposition of metals in bacterial cellulose and for the employment of the metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The method for impregnating bacterial cellulose with a metal comprises placing a bacterial cellulose matrix in a solution of a metal salt such that the metal salt is reduced to metallic form and the metal precipitates in or on the matrix. The method for the construction of a fuel cell comprises placing a hydrated bacterial cellulose support structure in a solution of a metal salt such that the metal precipitates in or on the support structure, inserting contact wires into two pieces of the metal impregnated support structure, placing the two pieces of metal impregnated support structure on opposite sides of a layer of hydrated bacterial cellulose, and dehydrating the three layer structure to create a fuel cell.

  12. Using Reactive Transport Modeling to Understand Changes in Electrical Conductivity Associated with Bacterial Growth and Respiration

    NASA Astrophysics Data System (ADS)

    Regberg, A. B.; Singha, K.; Picardal, F.; Brantley, S. L.

    2011-12-01

    Previous research has linked measured changes in the bulk electrical conductivity (σb) of water-saturated sediments to the respiration and growth of anaerobic bacteria. If the mechanism causing this signal is understood and characterized it could be used to identify and monitor zones of bacterial activity in the subsurface. The 1-D reactive transport model PHREEQC was used to understand σb signals by modeling chemical gradients within two column reactors and corresponding changes in effluent chemistry. The flow-through column reactors were packed with Fe(III)-bearing sediment from Oyster, VA and inoculated with an environmental consortia of microorganisms. Influent in the first reactor was amended with 1mM Na-acetate to encourage the growth of iron-reducing bacteria. Influent in the second reactor was amended with 0.1mM Na-Acetate and 2mM NaNO3 to encourage the growth of nitrate-reducing bacteria. While effluent concentrations of acetate, Fe(II), NO3-, NO2-, and NH4+ remained at steady state, we measured a 3-fold increase (0.055 S/m - 0.2 S/m) in σb in the iron-reducing column and a 10-fold increase in σb (0.07 S/m - 0.8 S/m) in the nitrate-reducing column over 198 days. The ionic strength in both reactors remained constant through time indicating that the measured increases in σb were not caused by changing effluent concentrations. PHREEQC successfully matched the measured changes in effluent concentrations for both columns when the reaction database was modified in the following manner. For the iron-reducing column, kinetic expressions governing the rate of iron reduction, the rate of bacterial growth, and the production of methane were added to the reaction database. Additionally, surface adsorption and cation exchange reactions were added so that the model was consistent with measured effluent chemistry. For the nitrate-reducing column, kinetic expressions governing nitrate reduction and bacterial growth were added to the reaction database. Additionally

  13. Microbial metal reduction by members of the genus Shewanella: novel strategies for anaerobic respiration

    SciTech Connect

    Dichristina, Thomas; Bates, David J.; Burns, Justin L.; Dale, Jason R.; Payne, Amanda N.

    2006-01-01

    Metal-reducing members of the genus Shewanella are important components of the microbial community residing in redox-stratified freshwater and marine environments. Metal-reducing gram-negative bacteria such as Shewanella, however, are presented with a unique physiological challenge: they are required to respire anaerobically on terminal electron acceptors which are either highly insoluble (Fe(III)- and Mn(IV)-oxides) and reduced to soluble end-products or highly soluble (U(VI) and Tc(VII)) and reduced to insoluble end-products. To overcome physiological problems associated with metal solubility, metal-respiring Shewanella are postulated to employ a variety of novel respiratory strategies not found in other gram-negative bacteria which respire on soluble electron acceptors such as O2, NO3 and SO4. The following chapter highlights the latest findings on the molecular mechanism of Fe(III), U(VI) and Tc(VII) reduction by Shewanella, with particular emphasis on electron transport chain physiology.

  14. Comparative Genomics Analysis and Phenotypic Characterization of Shewanella putrefaciens W3-18-1: Anaerobic Respiration, Bacterial Microcompartments, and Lateral Flagella

    SciTech Connect

    Qiu, D.; Tu, Q.; He, Zhili; Zhou, Jizhong

    2010-05-17

    Respiratory versatility and psychrophily are the hallmarks of Shewanella. The ability to utilize a wide range of electron acceptors for respiration is due to the large number of c-type cytochrome genes present in the genome of Shewanella strains. More recently the dissimilatory metal reduction of Shewanella species has been extensively and intensively studied for potential applications in the bioremediation of radioactive wastes of groundwater and subsurface environments. Multiple Shewanella genome sequences are now available in the public databases (Fredrickson et al., 2008). Most of the sequenced Shewanella strains were isolated from marine environments and this genus was believed to be of marine origin (Hau and Gralnick, 2007). However, the well-characterized model strain, S. oneidensis MR-1, was isolated from the freshwater lake sediment of Lake Oneida, New York (Myers and Nealson, 1988) and similar bacteria have also been isolated from other freshwater environments (Venkateswaran et al., 1999). Here we comparatively analyzed the genome sequence and physiological characteristics of S. putrefaciens W3-18-1 and S. oneidensis MR-1, isolated from the marine and freshwater lake sediments, respectively. The anaerobic respirations, carbon source utilization, and cell motility have been experimentally investigated. Large scale horizontal gene transfers have been revealed and the genetic divergence between these two strains was considered to be critical to the bacterial adaptation to specific habitats, freshwater or marine sediments.

  15. Influences of Mn(II) and V(IV) on Bacterial Surface Chemistry and Metal Reactivity

    NASA Astrophysics Data System (ADS)

    French, S.; Fakra, S.; Glasauer, S.

    2009-05-01

    Microorganisms in terrestrial and marine environments are typically bathed in solutions that contain a range of metal ions, toxic and beneficial. Bacteria such as Shewanella putrefaciens CN32 are metabolically versatile in their respiration, and the reductive dissolution of widely dispersed metals such as Fe(III), Mn(IV), or V(V) can present unique challenges if nearby bodies of water are used for irrigation or drinking. In redox transition zones, dissimilatory metal reduction (DMR) by bacteria can lead to generation of high concentrations of soluble metals. It has been shown that metals will associate with negatively charged bacterial membranes, and the mechanisms of metal reduction are well defined for many species of bacteria. The interaction of metals with the cell wall during DMR is, however, not well documented; very little is known about the interaction of respired transition metals with membrane lipids. Furthermore, bacterial surfaces tend to change in response to their immediate environments. Variations in conditions such as oxygen or metal presence may affect surface component composition, including availability of metal reactive sites. Our research seeks to characterize the biochemical nature of metal-membrane interactions, as well as identify the unique changes at the cell surface that arise as a result of metal presence in their environments. We have utilized scanning transmission X-ray microscopy (STXM) to examine the dynamics of soluble Mn(II) and V(IV) interactions with purified bacterial membranes rather than whole cells. This prevents intracellular interferences, and allows for near edge X-ray absorption fine structure (NEXAFS) spectroscopic analyses of cell surface and surface-associated components. NEXAFS spectra for carbon, nitrogen, and oxygen edges indicate that Mn(II) and V(IV) induce biological modifications of the cell membrane in both aerobic and anaerobic conditions. These changes depend not only on the metal, but also on the presence of

  16. Molecular characterization of bacterial respiration of minerals. Final technical report, March 1, 1985--February 29, 1996

    SciTech Connect

    Blake, R. II

    1996-08-01

    The goals of this project were to continue the identification, separation, and characterization of the cellular components necessary for aerobic respiration on iron, and to initiate an investigation of the molecular principles whereby these bacteria recognize and adhere to their insoluble inorganic substrates. Progress is described.

  17. An annual survey of bacterial production, respiration and ectoenzyme activity in coastal NW Mediterranean waters: temperature and resource controls.

    PubMed

    Céa, B; Lefèvre, D; Chirurgien, L; Raimbault, P; Garcia, N; Charrière, B; Grégori, G; Ghiglione, J F; Barani, A; Lafont, M; Van Wambeke, F

    2015-09-01

    We simultaneously measured bacterial production (BP), bacterial respiration (BR), alkaline phosphatase activity (phos) and ectoaminopeptidase activity (prot) in relation to biogeochemical parameters, nutritive resources and in situ temperature over a 1-year survey at the long-term observatory the SOLEMIO station (Marseille bay, NW Mediterranean Sea). Despite its proximity to the coast, oligotrophic conditions prevailed at this station (yearly mean of Chl a = 0.43 μg dm(-3), NO3 = 0.55 μmol dm(-3) and PO4 = 0.04 μmol dm(-3)). Episodic meteorological events (dominant winds, inputs from the Rhone River) induced rapid oscillations (within 15 days) in temperature and sometimes salinity that resulted in rapid changes in phytoplankton succession and a high variability in C/P ratios within the particulate and dissolved organic matter. Throughout the year, BP ranged from 0.01 to 0.82 μg C dm-(3) h-(1) and bacterial growth efficiency varied from 1 to 39%, with higher values in summer. Enrichment experiments showed that BP was limited most of the year by phosphorus availability (except in winter). A significant positive correlation was found between in situ temperature, BP, BR and phos. Finally, we found that temperature and phosphate availability were the main factors driving heterotrophic bacterial activity and thus play a fundamental role in carbon fluxes within the marine ecosystem. PMID:25217279

  18. A Diverse Community of Metal(loid) Oxide Respiring Bacteria Is Associated with Tube Worms in the Vicinity of the Juan de Fuca Ridge Black Smoker Field.

    PubMed

    Maltman, Chris; Walter, Graham; Yurkov, Vladimir

    2016-01-01

    Epibiotic bacteria associated with tube worms living in the vicinity of deep sea hydrothermal vents of the Juan de Fuca Ridge in the Pacific Ocean were investigated for the ability to respire anaerobically on tellurite, tellurate, selenite, selenate, metavanadate and orthovanadate as terminal electron acceptors. Out of 107 isolates tested, 106 were capable of respiration on one or more of these oxides, indicating that metal(loid) oxide based respiration is not only much more prevalent in nature than is generally believed, but also is an important mode of energy generation in the habitat. Partial 16S rRNA gene sequencing revealed the bacterial community to be rich and highly diverse, containing many potentially new species. Furthermore, it appears that the worms not only possess a close symbiotic relationship with chemolithotrophic sulfide-oxidizing bacteria, but also with the metal(loid) oxide transformers. Possibly they protect the worms through reduction of the toxic compounds that would otherwise be harmful to the host. PMID:26914590

  19. A Diverse Community of Metal(loid) Oxide Respiring Bacteria Is Associated with Tube Worms in the Vicinity of the Juan de Fuca Ridge Black Smoker Field

    PubMed Central

    Maltman, Chris; Walter, Graham; Yurkov, Vladimir

    2016-01-01

    Epibiotic bacteria associated with tube worms living in the vicinity of deep sea hydrothermal vents of the Juan de Fuca Ridge in the Pacific Ocean were investigated for the ability to respire anaerobically on tellurite, tellurate, selenite, selenate, metavanadate and orthovanadate as terminal electron acceptors. Out of 107 isolates tested, 106 were capable of respiration on one or more of these oxides, indicating that metal(loid) oxide based respiration is not only much more prevalent in nature than is generally believed, but also is an important mode of energy generation in the habitat. Partial 16S rRNA gene sequencing revealed the bacterial community to be rich and highly diverse, containing many potentially new species. Furthermore, it appears that the worms not only possess a close symbiotic relationship with chemolithotrophic sulfide-oxidizing bacteria, but also with the metal(loid) oxide transformers. Possibly they protect the worms through reduction of the toxic compounds that would otherwise be harmful to the host. PMID:26914590

  20. The environmental controls that govern the end product of bacterial nitrate respiration

    DOE PAGESBeta

    Kraft, Beate; Tegetmeyer, Halina E.; Sharma, Ritin; Klotz, Martin G.; Ferdelman, Timothy G.; Hettich, Robert L.; Geelhoed, Jeanine S.; Strous, Marc

    2014-08-08

    In the biogeochemical nitrogen cycle, microbial respiration processes compete for nitrate as an electron acceptor. Denitrification converts nitrate into nitrogenous gas and thus removes fixed nitrogen from the biosphere, whereas ammonification converts nitrate into ammonium, which is directly reusable by primary producers. In this paper, we combined multiple parallel long-term incubations of marine microbial nitrate-respiring communities with isotope labeling and metagenomics to unravel how specific environmental conditions select for either process. Microbial generation time, supply of nitrite relative to nitrate, and the carbon/nitrogen ratio were identified as key environmental controls that determine whether nitrite will be reduced to nitrogenous gasmore » or ammonium. Finally, our results define the microbial ecophysiology of a biogeochemical feedback loop that is key to global change, eutrophication, and wastewater treatment.« less

  1. The environmental controls that govern the end product of bacterial nitrate respiration

    SciTech Connect

    Kraft, Beate; Tegetmeyer, Halina E.; Sharma, Ritin; Klotz, Martin G.; Ferdelman, Timothy G.; Hettich, Robert L.; Geelhoed, Jeanine S.; Strous, Marc

    2014-08-08

    In the biogeochemical nitrogen cycle, microbial respiration processes compete for nitrate as an electron acceptor. Denitrification converts nitrate into nitrogenous gas and thus removes fixed nitrogen from the biosphere, whereas ammonification converts nitrate into ammonium, which is directly reusable by primary producers. In this paper, we combined multiple parallel long-term incubations of marine microbial nitrate-respiring communities with isotope labeling and metagenomics to unravel how specific environmental conditions select for either process. Microbial generation time, supply of nitrite relative to nitrate, and the carbon/nitrogen ratio were identified as key environmental controls that determine whether nitrite will be reduced to nitrogenous gas or ammonium. Finally, our results define the microbial ecophysiology of a biogeochemical feedback loop that is key to global change, eutrophication, and wastewater treatment.

  2. Key respiratory genes elucidate bacterial community respiration in a seasonally anoxic estuary.

    PubMed

    Eggleston, Erin M; Lee, Dong Y; Owens, Michael S; Cornwell, Jeffrey C; Crump, Byron C; Hewson, Ian

    2015-07-01

    Intense annual spring phytoplankton blooms and thermohaline stratification lead to anoxia in Chesapeake Bay bottom waters. Once oxygen becomes depleted in the system, microbial communities use energetically favourable alternative electron acceptors for respiration. The extent to which changes in respiration are reflected in community gene expression have only recently been investigated. Metatranscriptomes prepared from near-bottom water plankton over a 4-month time series in central Chesapeake Bay demonstrated changes consistent with terminal electron acceptor availability. The frequency of respiration-related genes in metatranscriptomes was examined by BLASTx against curated databases of genes intimately and exclusively involved in specific electron acceptor utilization pathways. The relative expression of genes involved in denitrification and dissimilatory nitrate reduction to ammonium were coincident with changes in nitrate, nitrite and ammonium concentrations. Dissimilatory iron and manganese reduction transcript ratios increase during anoxic conditions and corresponded with the highest soluble reactive phosphate and manganese concentrations. The sulfide concentration peaked in late July and early August and also matched dissimilatory sulfate reduction transcript ratios. We show that rather than abrupt transitions between terminal electron acceptors, there is substantial overlap in time and space of these various anaerobic respiratory processes in Chesapeake Bay. PMID:25470994

  3. Metallization of bacterial cellulose for electrical and electronic device manufacture

    SciTech Connect

    Evans, Barbara R.; O'Neill, Hugh M.; Jansen, Valerie Malyvanh; Woodward, Jonathan

    2006-01-17

    The employment of metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The fuel cell includes an electrolyte membrane comprising a membrane support structure comprising bacterial cellulose, an anode disposed on one side of the electrolyte membrane, and a cathode disposed on an opposite side of the electrolyte membrane. At least one of the anode and the cathode comprises an electrode support structure comprising bacterial cellulose, and a catalyst disposed in or on the electrode support structure.

  4. Residual organic matter and microbial respiration in bottom ash: Effects on metal leaching and eco-toxicity.

    PubMed

    Ilyas, A; Persson, K M; Persson, M

    2015-09-01

    A common assumption regarding the residual organic matter, in bottom ash, is that it does not represent a significant pool of organic carbon and, beyond metal-ion complexation process, it is of little consequence to evolution of ash/leachate chemistry. This article evaluates the effect of residual organic matter and associated microbial respiratory processes on leaching of toxic metals (i.e. arsenic, copper, chromium, molybdenum, nickel, lead, antimony and zinc), eco-toxicity of ash leachates. Microbial respiration was quantified with help of a respirometric test equipment OXITOP control system. The effect of microbial respiration on metal/residual organic matter leaching and eco-toxicity was quantified with the help of batch leaching tests and an eco-toxicity assay - Daphnia magna. In general, the microbial respiration process decreased the leachate pH and eco-toxicity, indicating modification of bioavailability of metal species. Furthermore, the leaching of critical metals, such as copper and chromium, decreased after the respiration in both ash types (fresh and weathered). It was concluded that microbial respiration, if harnessed properly, could enhance the stability of fresh bottom ash and may promote its reuse. PMID:25999368

  5. Molecular characterization of bacterial respiration on minerals. Final technical report, August 4, 1994--August 3, 1996

    SciTech Connect

    Blake, R. II

    1996-12-31

    The scope of work outlined in the original proposal contained two specific aims. Highlights of the results obtained and published on each specific aim during the grant period in question are summarized. The first aim continued the identification, separation, and characterization of the cellular components necessary for aerobic respiration on iron. An electrochemical apparatus for the large scale cultivation of chemolithotrophic bacteria that respire aerobically on ferrous ions was perfected. The kinetic properties of an acid-stable iron:rusticyanin oxidoreductase from T. ferrooxidans were determined. The overall tertiary structure of rusticyanin in solution was elucidated from a combination of homonuclear proton and heteronuclear {sup 15}N-edited NMR spectra. An artificial gene for rusticyanin was designed, synthesized, and successfully expressed in E. coli. The X-ray crystallographic structure of rusticyanin was solved to a resolution of 1.9 {angstrom} by multiwavelength anomalous dispersion (MAD) phasing. The second aim initiated an investigation of the molecular principles whereby these bacteria recognize and adhere to their insoluble inorganic substrates. The electrophoretic mobility of T. ferrooxidans with and without its insoluble substrates was determined by laser Doppler velocimetry under physiological conditions. The adherence of T. ferrooxidans to the surface of pyrite was observed directly in a video-enhanced light microscope.

  6. In situ spectroscopic investigation of hyperthermophilic metal-respiring archaea at high-temperature

    NASA Astrophysics Data System (ADS)

    Ménez, B.; Bureau, H.; Gouget, B.; Avoscan, L.; Simionovici, A.; Somogyi, A.

    2003-04-01

    The main issue of this study is developing methodologies that can improve abilities to characterize life in extreme habitats. In particular, it aims at evaluating the possibility of monitoring microorganisms mediated reactions involving metals by using non destructive X-ray microprobe combined with high pressure and temperature micro-reactors. The first step was dedicated to the study of metal-respiring organisms that achieve growth with oxyanions of arsenate and selenate as their electron acceptors for the oxidation of organic substrates or H2, forming elemental selenium or arsenite, respectively, as the reduction products. We focused on a strictly anaerobic hyperthermophilic archaea, Pyrobaculum arsenaticum, recently isolated and well adapted to high levels of arsenate and selenate (Huber et al., 2000, System. Appl. Microbiol., 23, 305). We report here the first in situ X-ray Absorption Near Edge Structure (XANES) spectroscopic characterization of the oxidation state of selenium following microbial respiration at high temperature. A Basset-modified Hydrothermal Diamond Anvil Cell (HDAC) acts as anaerobic micro-reactor to reproduce extreme temperature and pressure conditions for life and allows, together with the direct visual observation of the organisms, the microbeam characterization of the changes of metal concentration and speciation induced by microbial activity. The measurements were performed at the ESRF on undulator beamline ID22. P. arsenaticum together with its culture medium, doped with selenate (50 μM), were loaded under N_2 atmosphere in the HDAC. High-resolution X-ray fluorescence and selenium K-edge XANES spectra were collected alternatively and continuously at high temperature (up to 95^oC), allowing for the time-resolved monitoring of the chemical evolution of the culture medium. Data processing is still in progress. In the long-term, our aim is, on one hand, to shed light on the tolerance in terms of temperature, pressure and metal

  7. Viral effects on bacterial respiration, production and growth efficiency: Consistent trends in the Southern Ocean and the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Bonilla-Findji, Osana; Malits, Andrea; Lefèvre, Dominique; Rochelle-Newall, Emma; Lemée, Rodolphe; Weinbauer, Markus G.; Gattuso, Jean-Pierre

    2008-03-01

    To investigate the potential effects of viruses on bacterial respiration (BR), production (BP) and growth efficiency (BGE), experiments were performed using natural microbial communities from the coastal Mediterranean Sea, from a typical high-nutrient low-chlorophyll (HNLC) region in the Southern Ocean and from a naturally iron (Fe)-fertilized algal bloom above the Kerguelen Plateau (Southern Ocean). Seawater was sequentially filtered and concentrated to produce a bacterial concentrate, a viral concentrate and a virus-free ultrafiltrate. The combination of all three fractions served as treatments with active viruses. Heating or microwaving was used to inactivate viruses for the control treatments. Despite the differences in the initial trophic state and community composition of the study sites, consistent trends were found. In the presence of active viruses, BR was stimulated (up to 113%), whereas BP and BGE were reduced (up to 51%). Our results suggest that viruses enhance the role of bacteria as oxidizers of organic matter, hence as producers of CO 2, and remineralizers of CO 2, N, P and Fe. In the context of Fe-fertilization, this has important implications for the final fate of organic carbon in marine systems.

  8. Mechanisms of bacterial metals removal from solids

    SciTech Connect

    Torma, A.E.; Pryfogle, P.A.

    1990-01-01

    The Great Lakes area sediments are contaminated with varying amounts of heavy metals and polychlorinated organic matter. With respect to the bioremediation of metallic contents of these sediments, it was shown that a number of microorganisms exist which can effectively solubilize heavy metals. The basic reaction mechanisms of bioleaching processes were discussed and the effects of semiconductor character of the sulfide substrate explained. A special emphasis was made to comment on INEL's bioremediation capability. 37 refs.

  9. The Study Of Metalworking Fluids Biodegradability By Indirect Measurement Of Bacterial Inoculum Respiration

    NASA Astrophysics Data System (ADS)

    Gerulová, Kristína; Tatarka, Ondrej; Štefko, Tomáš; Škulavík, Tomáš

    2015-06-01

    An apparatus for measuring biodegradability of metalworking fluids (MWFs) was constructed according to (1), based on the Zahn-Wellens test which enables a continuous determination of CO2 production by the change in conductivity of absorption solution. Results obtained from the testing of 8 different MWFs by this modified method were compared to those obtained in standardized OECD 302 B. The comparison showed better description of bacterial inoculum activity in tested solution; lag phase was easy to indicate. Tested emulsion achieved the level of primary degradability 39.7 - 40.8 %, and semi-synthetics 19.1 - 43.5%. The samples of synthetics where the degradation level reached 43.9 - 58.6 % were identified as the most degradable metalworking fluids.

  10. Bacterial Killing by Dry Metallic Copper Surfaces▿

    PubMed Central

    Santo, Christophe Espírito; Lam, Ee Wen; Elowsky, Christian G.; Quaranta, Davide; Domaille, Dylan W.; Chang, Christopher J.; Grass, Gregor

    2011-01-01

    Metallic copper surfaces rapidly and efficiently kill bacteria. Cells exposed to copper surfaces accumulated large amounts of copper ions, and this copper uptake was faster from dry copper than from moist copper. Cells suffered extensive membrane damage within minutes of exposure to dry copper. Further, cells removed from copper showed loss of cell integrity. Acute contact with metallic copper surfaces did not result in increased mutation rates or DNA lesions. These findings are important first steps for revealing the molecular sensitive targets in cells lethally challenged by exposure to copper surfaces and provide a scientific explanation for the use of copper surfaces as antimicrobial agents for supporting public hygiene. PMID:21148701

  11. Leaf litter breakdown, microbial respiration and shredder production in metal-polluted streams

    USGS Publications Warehouse

    Carlisle, D.M.; Clements, W.H.

    2005-01-01

    1. If species disproportionately influence ecosystem functioning and also differ in their sensitivities to environmental conditions, the selective removal of species by anthropogenic stressors may lead to strong effects on ecosystem processes. We evaluated whether these circumstances held for several Colorado, U.S.A. streams stressed by Zn. 2. Benthic invertebrates and chemistry were sampled in five second-third order streams for 1 year. Study streams differed in dissolved metal concentrations, but were otherwise similar in chemical and physical characteristics. Secondary production of leaf-shredding insects was estimated using the increment summation and size-frequency methods. Leaf litter breakdown rates were estimated by retrieving litter-bags over a 171 day period. Microbial activity on leaf litter was measured in the laboratory using changes in oxygen concentration over a 48 h incubation period. 3. Dissolved Zn concentrations varied eightfold among two reference and three polluted streams. Total secondary production of shredders was negatively associated with metal contamination. Secondary production in reference streams was dominated by Taenionema pallidum. Results of previous studies and the current investigation demonstrate that this shredder is highly sensitive to metals in Colorado headwater streams. Leaf litter breakdown rates were similar between reference streams and declined significantly in the polluted streams. Microbial respiration at the most contaminated site was significantly lower than at reference sites. 4. Our results supported the hypothesis that some shredder species contribute disproportionately to leaf litter breakdown. Furthermore, the functionally dominant taxon was also the most sensitive to metal contamination. We conclude that leaf litter breakdown in our study streams lacked functional redundancy and was therefore highly sensitive to contaminant-induced alterations in community structure. We argue for the necessity of simultaneously

  12. Seasonal Variation in Soil Microbial Biomass, Bacterial Community Composition and Extracellular Enzyme Activity in Relation to Soil Respiration in a Northern Great Plains Grassland

    NASA Astrophysics Data System (ADS)

    Wilton, E.; Flanagan, L. B.

    2014-12-01

    Soil respiration rate is affected by seasonal changes in temperature and moisture, but is this a direct effect on soil metabolism or an indirect effect caused by changes in microbial biomass, bacterial community composition and substrate availability? In order to address this question, we compared continuous measurements of soil and plant CO2 exchange made with an automatic chamber system to analyses conducted on replicate soil samples collected on four dates during June-August. Microbial biomass was estimated from substrate-induced respiration rate, bacterial community composition was determined by 16S rRNA amplicon pyrosequencing, and β-1,4-N-acetylglucosaminidase (NAGase) and phenol oxidase enzyme activities were assayed fluorometrically or by absorbance measurements, respectively. Soil microbial biomass declined from June to August in strong correlation with a progressive decline in soil moisture during this time period. Soil bacterial species richness and alpha diversity showed no significant seasonal change. However, bacterial community composition showed a progressive shift over time as measured by Bray-Curtis dissimilarity. In particular, the change in community composition was associated with increasing relative abundance in the alpha and delta classes, and declining abundance of the beta and gamma classes of the Proteobacteria phylum during June-August. NAGase showed a progressive seasonal decline in potential activity that was correlated with microbial biomass and seasonal changes in soil moisture. In contrast, phenol oxidase showed highest potential activity in mid-July near the time of peak soil respiration and ecosystem photosynthesis, which may represent a time of high input of carbon exudates into the soil from plant roots. This input of exudates may stimulate the activity of phenol oxidase, a lignolytic enzyme involved in the breakdown of soil organic matter. These analyses indicated that seasonal change in soil respiration is a complex

  13. Sorption of heavy metals by prepared bacterial cell surfaces

    SciTech Connect

    Churchill, S.A.; Walters, J.V.; Churchill, P.F.

    1995-10-01

    Prepared biomass from two Gram-negative and one Gram-positive bacterial strains was examined for single, binary, and quaternary mixtures of polyvalent metal cation binding to cell surfaces. The biosorption of {sub 24}Cr{sup 3+}, {sub 27}Co{sup 2+}, {sub 28}Ni{sup 2+}, and {sub 29}Cu{sup 2+} for each bacterial cell type was evaluated using a batch equilibrium method. The binding of each metal by all three bacterial cells could be described by the Freundlich sorption model. The isotherm binding constants suggest that E. coli cells are the most efficient at binding copper, chromium, and nickel; and M. luteus adsorbs cobalt most efficiently. The K-values for copper bound to P. aeruginosa and E. coli are > 2-fold and > 8-fold greater, respectively, than previous reported for intact cells. The general metal-affinity series observed was Cr{sup 3+} > Cu{sup 2+} > Ni{sup 2+} > Co{sup 2+}. There was a marked lower affinity of all biosorbents for Co{sup 2+} and Ni{sup 2+}. M. luteus and E. coli had a strong preference for Co{sup 2+} over Ni{sup 2+}. Metal-binding enhancement could be ascribed to increased cell barrier surface porosity to metal-bearing solutions.

  14. Alkaline Anaerobic Respiration: Isolation and Characterization of a Novel Alkaliphilic and Metal-Reducing Bacterium

    PubMed Central

    Ye, Qi; Roh, Yul; Carroll, Susan L.; Blair, Benjamin; Zhou, Jizhong; Zhang, Chuanlun L.; Fields, Matthew W.

    2004-01-01

    Iron-reducing enrichments were obtained from leachate ponds at the U.S. Borax Company in Boron, Calif. Based on partial small-subunit (SSU) rRNA gene sequences (approximately 500 nucleotides), six isolates shared 98.9% nucleotide identity. As a representative, the isolate QYMF was selected for further analysis. QYMF could be grown with Fe(III)-citrate, Fe(III)-EDTA, Co(III)-EDTA, or Cr(VI) as electron acceptors, and yeast extract and lactate could serve as electron donors. Growth during iron reduction occurred over the pH range of 7.5 to 11.0 (optimum, pH 9.5), a sodium chloride range of 0 to 80 g/liter (optimum, 20 g/liter), and a temperature range of 4 to 45°C (optimum, approximately 35°C), and iron precipitates were formed. QYMF was a strict anaerobe that could be grown in the presence of borax, and the cells were straight rods that produced endospores. Sodium chloride and yeast extract stimulated growth. Phylogenetic analysis of the SSU rRNA gene indicated that the bacterium was a low-G+C gram-positive microorganism and had 96 and 92% nucleotide identity with Alkaliphilus transvaalensis and Alkaliphilus crotonatoxidans, respectively. The major phospholipid fatty acids were 14:1, 16:1ω7c, and 16:0, which were different from those of other alkaliphiles but similar to those of reported iron-reducing bacteria. The results demonstrated that the isolate might represent a novel metal-reducing alkaliphilic species. The name Alkaliphilus metalliredigens sp. nov. is proposed. The isolation and activity of metal-reducing bacteria from borax-contaminated leachate ponds suggest that bioremediation of metal-contaminated alkaline environments may be feasible and have implications for alkaline anaerobic respiration. PMID:15345448

  15. Beneficial role of bacterial endophytes in heavy metal phytoremediation.

    PubMed

    Ma, Ying; Rajkumar, Mani; Zhang, Chang; Freitas, Helena

    2016-06-01

    Phytoremediation is an emerging technology that uses plants and their associated microbes to clean up pollutants from the soil, water and air. In recent years, phytoremediation assisted by bacterial endophytes has been highly recommended for cleaning up of metal polluted soils since endophytic bacteria can alleviate metal toxicity in plant through their own metal resistance system and facilitate plant growth under metal stress. Endophytic bacteria improve plant growth in metal polluted soils in two different ways: 1) directly by producing plant growth beneficial substances including solubilization/transformation of mineral nutrients (phosphate, nitrogen and potassium), production of phytohormones, siderophores and specific enzymes; and 2) indirectly through controlling plant pathogens or by inducing a systemic resistance of plants against pathogens. Besides, they also alter metal accumulation capacity in plants by excreting metal immobilizing extracellular polymeric substances, as well as metal mobilizing organic acids and biosurfactants. The present work aims to review the progress of recent research on the isolation, identification and diversity of metal resistant endophytic bacteria and illustrate various mechanisms responsible for plant growth promotion and heavy metal detoxification/phytoaccumulation/translocation in plants. PMID:26989941

  16. Phytoremediation of metals from fly ash through bacterial augmentation.

    PubMed

    Kumari, Babita; Singh, S N

    2011-01-01

    Different combinations of four bacterial strains isolated from fly ash were used by us to study their impact on phytoextraction of metals from fly ash by Brassica juncea grown in fly ash amended with farm yard manure (50:50 w/w). Out of 11 bacterial consortia, a combination of two strains i.e. Paenibacillus macerans NBRFT5 + Bacillus pumilus NBRFT9 (C7) inoculated in the rhizosphere was found to enhance Pb accumulation maximally by 278%, Mn by 75%, Zn by 163%, Cr by 226% and Ni by 414% compared to control. It is possible that these bacteria, known for N(2) fixation, solubilization of phosphorus and uptake of micronutrient, could promote the plant growth resulting in higher accumulation of metals. However, a combination of four bacteria, namely Micrococcus roseus NBRFT2 + Bacillus endophyticus NBRFT4 + Paenibacillus macerans NBRFT5 + Bacillus pumilus NBRFT9 (C4) was able to increase Cd uptake maximally by 237%. Further, the translocation of metal was invariably more from root to stem than from stem to leaf which was regulated by plant transport mechanism and metal mobility. Bacteria are known to excrete protons, organic acids, enzymes and siderophores to enhance the mobilization of metals which boosted the phytoextraction of metals from fly ash. PMID:21080221

  17. Enhancement of bacterial iron and sulfate respiration for in situ bioremediation of acid mine drainage sites: a case study

    SciTech Connect

    Bilgin, A.A.; Harrington, J.M.; Silverstein, J.

    2007-08-15

    The prevention of acid mine drainage (AMD) in situ is more attractive than down-gradient treatment alternatives that do not involve source control. AMD source control can be achieved by shifting the microbial activity in the sulfidic rock from pyrite oxidation to anaerobic heterotrophic activity. This is achieved by adding biodegradable organic carbon amendments to the sulfidic rock. This technique was applied to an abandoned coal mine pool in Pennsylvania. The pool had a pH of 3.0 to 3.5. Following treatment, near-neutral pH and decreased effluent heavy metal concentrations were achieved. In situ bioremediation by the enhancement of bacterial iron and sulfate reduction is a promising technology for AMD prevention.

  18. The Role of Bacterial Spores in Metal Cycling and Their Potential Application in Metal Contaminant Bioremediation.

    PubMed

    Butterfield, Cristina N; Lee, Sung-Woo; Tebo, Bradley M

    2016-04-01

    Bacteria are one of the premier biological forces that, in combination with chemical and physical forces, drive metal availability in the environment. Bacterial spores, when found in the environment, are often considered to be dormant and metabolically inactive, in a resting state waiting for favorable conditions for them to germinate. However, this is a highly oversimplified view of spores in the environment. The surface of bacterial spores represents a potential site for chemical reactions to occur. Additionally, proteins in the outer layers (spore coats or exosporium) may also have more specific catalytic activity. As a consequence, bacterial spores can play a role in geochemical processes and may indeed find uses in various biotechnological applications. The aim of this review is to introduce the role of bacteria and bacterial spores in biogeochemical cycles and their potential use as toxic metal bioremediation agents. PMID:27227313

  19. Improving the sensitivity of bacterial bioreporters for heavy metals.

    PubMed

    Hynninen, Anu; Tönismann, Karmen; Virta, Marko

    2010-01-01

    Whole-cell bacterial bioreporters represent a convenient testing method for quantifying the bioavailability of contaminants in environmental samples. Despite the fact that several bioreporters have been constructed for measuring heavy metals, their application to environmental samples has remained minimal. The major drawbacks of the available bioreporters include a lack of sensitivity and specificity. Here, we report an improvement in the limit of detection of bacterial bioreporters by interfering with the natural metal homeostasis system of the host bacterium. The limit of detection of a Pseudomonas putida KT2440-based Zn/Cd/Pb-biosensor was improved by a factor of up to 45 by disrupting four main efflux transporters for Zn/Cd/Pb and thereby causing the metals to accumulate in the cell. The specificity of the bioreporter could be modified by changing the sensor element. A Zn-specific bioreporter was achieved by using the promoter of the cadA1 gene from P. putida as a sensor element. The constructed transporter-deficient P. putida reporter strain detected Zn(2+) concentrations about 50 times lower than that possible with other available Zn-bioreporters. The achieved detection limits were significantly below the permitted limit values for Zn and Pb in water and in soil, allowing for reliable detection of heavy metals in the environment. PMID:21326938

  20. Susceptibility of metallic magnesium implants to bacterial biofilm infections.

    PubMed

    Rahim, Muhammad Imran; Rohde, Manfred; Rais, Bushra; Seitz, Jan-Marten; Mueller, Peter P

    2016-06-01

    Magnesium alloys have promising mechanical and biological properties as biodegradable medical implant materials for temporary applications during bone healing or as vascular stents. Whereas conventional implants are prone to colonization by treatment resistant microbial biofilms in which bacteria are embedded in a protective matrix, magnesium alloys have been reported to act antibacterial in vitro. To permit a basic assessment of antibacterial properties of implant materials in vivo an economic but robust animal model was established. Subcutaneous magnesium implants were inoculated with bacteria in a mouse model. Contrary to the expectations, bacterial activity was enhanced and prolonged in the presence of magnesium implants. Systemic antibiotic treatments were remarkably ineffective, which is a typical property of bacterial biofilms. Biofilm formation was further supported by electron microscopic analyses that revealed highly dense bacterial populations and evidence for the presence of extracellular matrix material. Bacterial agglomerates could be detected not only on the implant surface but also at a limited distance in the peri-implant tissue. Therefore, precautions may be necessary to minimize risks of metallic magnesium-containing implants in prospective clinical applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1489-1499, 2016. PMID:26860452

  1. Response of soil bacterial community to metal nanoparticles in biosolids.

    PubMed

    Shah, Vishal; Jones, Jamilee; Dickman, Jenifer; Greenman, Steven

    2014-06-15

    The increasing use of engineered nanoparticles (NPs) in industrial and household applications will very likely lead to the increased release of such materials into the public sewer systems. During the wastewater treatment process, some fraction of NPs would always be concentrated in the biosolids. When biosolids is applied on the agricultural land, NPs are introduced into the soil matrix. In the current study we investigate the influence of five different metal nanoparticles present in biosolids on soil microbial community as a function of time. Results indicate that ZnO and Zero Valent Cu NPs were not toxic to soil bacterial community. Biosolids mixed with Ag NPs and TiO2 (both anatase and rutile phase) in contrast changed the bacterial richness and composition in wavering pattern as a function of time. Based on the observations made in the study, we suggest caution when interpreting the toxicity of NPs based on single time point study. PMID:24801897

  2. Bacterial adhesion to glass and metal-oxide surfaces.

    PubMed

    Li, Baikun; Logan, Bruce E

    2004-07-15

    Metal oxides can increase the adhesion of negatively-charged bacteria to surfaces primarily due to their positive charge. However, the hydrophobicity of a metal-oxide surface can also increase adhesion of bacteria. In order to understand the relative contribution of charge and hydrophobicity to bacterial adhesion, we measured the adhesion of 8 strains of bacteria, under conditions of low and high-ionic strength (1 and 100 mM, respectively) to 11 different surfaces and examined adhesion as a function of charge, hydrophobicity (water contact angle) and surface energy. Inorganic surfaces included three uncoated glass surfaces and eight metal-oxide thin films prepared on the upper (non-tin-exposed) side of float glass by chemical vapor deposition. The Gram-negative bacteria differed in lengths of lipopolysaccharides on their outer surface (three Escherichia coli strains), the amounts of exopolysaccharides (two Pseudomonas aeruginosa strains), and their known relative adhesion to sand grains (two Burkholderia cepacia strains). One Gram positive bacterium was also used that had a lower adhesion to glass than these other bacteria (Bacillus subtilis). For all eight bacteria, there was a consistent increase in adhesion between with the type of inorganic surface in the order: float glass exposed to tin (coded here as Si-Sn), glass microscope slide (Si-m), uncoated air-side float glass surface (Si-a), followed by thin films of (Co(1-y-z)Fe(y)Cr(z))3O4, Ti/Fe/O, TiO2, SnO2, SnO2:F, SnO2:Sb, A1(2)O3, and Fe2O3 (the colon indicates metal doping, a slash indicates that the metal is a major component, while the dash is used to distinguish surfaces). Increasing the ionic strength from 1 to 100 mM increased adhesion by a factor of 2.0 +/- 0.6 (73% of the sample results were within the 95% CI) showing electrostatic charge was important in adhesion. However, adhesion was not significantly correlated with bacterial charge and contact angle. Adhesion (A) of the eight strains was

  3. PEROXOTITANATE- AND MONOSODIUM METAL-TITANATE COMPOUNDS AS INHIBITORS OF BACTERIAL GROWTH

    SciTech Connect

    Hobbs, D.

    2011-01-19

    Sodium titanates are ion-exchange materials that effectively bind a variety of metal ions over a wide pH range. Sodium titanates alone have no known adverse biological effects but metal-exchanged titanates (or metal titanates) can deliver metal ions to mammalian cells to alter cell processes in vitro. In this work, we test a hypothesis that metal-titanate compounds inhibit bacterial growth; demonstration of this principle is one prerequisite to developing metal-based, titanate-delivered antibacterial agents. Focusing initially on oral diseases, we exposed five species of oral bacteria to titanates for 24 h, with or without loading of Au(III), Pd(II), Pt(II), and Pt(IV), and measuring bacterial growth in planktonic assays through increases in optical density. In each experiment, bacterial growth was compared with control cultures of titanates or bacteria alone. We observed no suppression of bacterial growth by the sodium titanates alone, but significant (p < 0.05, two-sided t-tests) suppression was observed with metal-titanate compounds, particularly Au(III)-titanates, but with other metal titanates as well. Growth inhibition ranged from 15 to 100% depending on the metal ion and bacterial species involved. Furthermore, in specific cases, the titanates inhibited bacterial growth 5- to 375-fold versus metal ions alone, suggesting that titanates enhanced metal-bacteria interactions. This work supports further development of metal titanates as a novel class of antibacterials.

  4. Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes

    SciTech Connect

    Shi, Liang; Squier, Thomas C.; Zachara, John M.; Fredrickson, Jim K.

    2007-07-01

    Dissimilatory reduction of metal (e.g. Fe, Mn) (hydr)oxides represents a challenge for microorganisms, as their cell envelopes are impermeable to metal (hydr)oxides that are poorly soluble in water. To overcome this physical barrier, the Gram-negative bacteria Shewanella oneidensis MR-1 and Geobactersulfurreducens have developed electron transfer (ET) strategies that require multihaem c-type cytochromes (c-Cyts). In S. oneidensis MR-1, multihaem c-Cyts CymA and MtrA are believed to transfer electrons from the inner membrane quinone/quinol pool through the periplasm to the outer membrane. The type II secretion system of S. oneidensis MR-1 has been implicated in the reduction of metal (hydr)oxides, most likely by translocating decahaem c-Cyts MtrC and OmcA across outer membrane to the surface of bacterial cells where they form a protein complex. The extracellular MtrC and OmcA can directly reduce solid metal (hydr)oxides. Likewise, outer membrane multihaem c-Cyts OmcE and OmcS of G. sulfurreducens are suggested to transfer electrons from outer membrane to type IV pili that are hypothesized to relay the electrons to solid metal (hydr)oxides. Thus, multihaem c-Cyts play critical roles in S. oneidensis MR-1-and G. sulfurreducens-mediated dissimilatory reduction of solid metal (hydr)oxides by facilitating ET across the bacterial cell envelope.

  5. Bacterial metal leaching and bioaccumulation. (Latest citations from the Life Sciences Collection database). Published Search

    SciTech Connect

    Not Available

    1994-03-01

    The bibliography contains citations concerning bacterial strains used in metal leaching from effluents, and their role in metal recovery processes. Factors affecting bacterial growth such as temperature, pH and oxygen consumption are discussed. The isolation of bacteria suitable for these processes is considered. (Contains 250 citations and includes a subject term index and title list.)

  6. Bacterial metal leaching and bioaccumulation. (Latest citations from the Life Sciences collection database). Published Search

    SciTech Connect

    1995-01-01

    The bibliography contains citations concerning bacterial strains used in metal leaching from effluents, and their role in metal recovery processes. Factors affecting bacterial growth such as temperature, pH and oxygen consumption are discussed. The isolation of bacteria suitable for these processes is considered. (Contains 250 citations and includes a subject term index and title list.)

  7. A cost-effective and field-ready potentiostat that poises subsurface electrodes to monitor bacterial respiration.

    PubMed

    Friedman, Elliot S; Rosenbaum, Miriam A; Lee, Alexander W; Lipson, David A; Land, Bruce R; Angenent, Largus T

    2012-02-15

    Here, we present the proof-of-concept for a subsurface bioelectrochemical system (BES)-based biosensor capable of monitoring microbial respiration that occurs through exocellular electron transfer. This system includes our open-source design of a three-channel microcontroller-unit (MCU)-based potentiostat that is capable of chronoamperometry, which laboratory tests showed to be accurate within 0.95 ± 0.58% (95% Confidence Limit) of a commercial potentiostat. The potentiostat design is freely available online: http://angenent.bee.cornell.edu/potentiostat.html. This robust and field-ready potentiostat, which can withstand temperatures of -30°C, can be manufactured at relatively low cost ($600), thus, allowing for en-masse deployment at field sites. The MCU-based potentiostat was integrated with electrodes and a solar panel-based power system, and deployed as a biosensor to monitor microbial respiration in drained thaw lake basins outside Barrow, AK. At three different depths, the working electrode of a microbial three-electrode system (M3C) was maintained at potentials corresponding to the microbial reduction of iron(III) compounds and humic acids. Thereby, the working electrode mimics these compounds and is used by certain microbes as an electron acceptor. The sensors revealed daily cycles in microbial respiration. In the medium- and deep-depth electrodes the onset of these cycles followed a considerable increase in overall activity that corresponded to those soils reaching temperatures conducive to microbial activity as the summer thaw progressed. The BES biosensor is a valuable tool for studying microbial activity in situ in remote environments, and the cost-efficient design of the potentiostat allows for wide-scale use in remote areas. PMID:22209069

  8. Effect of a metal alloy fuel catalyst on bacterial growth.

    PubMed

    Ghosh, Ruma; Koerting, Claudia; Suib, Steven L; Best, Michael H; Berlin, Alvin J

    2005-11-01

    Many microorganisms have been demonstrated to utilize petroleum fuel products to fulfill their nutritional requirement for carbon. As a result, the ability of these microbes to degrade fuel has both a deleterious affect as well as beneficial applications. This study focused on the undesired ability of bacteria to grow on fuel and the potential for some metal alloys to inhibit this biodegradation. The objective of this study was to review the pattern of growth of two reference strains of petroleum-degrading bacteria, Pseudomonas oleovorans and Rhodococcus rhodocrous, in a specific hydrocarbon environment in the presence of a commercially available alloy. The alloy formulated and supplied by Advanced Power Systems International Inc. (APSI) is sold for fuel reformulation and other purposes. The components of the alloy used in the study were antimony, tin, lead, and mercury formulated as pellets. Surface characterization also showed the presence of tin oxide and lead amalgam phases. Hydrocarbon used for the study was primarily 87-octane gasoline. The growth of the bacteria in the water and mineral-supplemented gasoline mixture over 6-8 weeks was monitored by the viable plate count method. While an initial increase in bacteria occurred in the first week, overall bacterial growth was found to be suppressed in the presence of the alloy. Results also indicate that the alloy surface characteristics that convey the catalytic activity may also contribute to the observed antibacterial activity. PMID:16262333

  9. Comprehensive Proteomic and Metabolomic Signatures of Nontypeable Haemophilus influenzae-Induced Acute Otitis Media Reveal Bacterial Aerobic Respiration in an Immunosuppressed Environment.

    PubMed

    Harrison, Alistair; Dubois, Laura G; St John-Williams, Lisa; Moseley, M Arthur; Hardison, Rachael L; Heimlich, Derek R; Stoddard, Alexander; Kerschner, Joseph E; Justice, Sheryl S; Thompson, J Will; Mason, Kevin M

    2016-03-01

    A thorough understanding of the molecular details of the interactions between bacteria and host are critical to ultimately prevent disease. Recent technological advances allow simultaneous analysis of host and bacterial protein and metabolic profiles from a single small tissue sample to provide insight into pathogenesis. We used the chinchilla model of human otitis media to determine, for the first time, the most expansive delineation of global changes in protein and metabolite profiles during an experimentally induced disease. After 48 h of infection with nontypeable Haemophilus influenzae, middle ear tissue lysates were analyzed by high-resolution quantitative two-dimensional liquid chromatography-tandem mass spectrometry. Dynamic changes in 105 chinchilla proteins and 66 metabolites define the early proteomic and metabolomic signature of otitis media. Our studies indicate that establishment of disease coincides with actin morphogenesis, suppression of inflammatory mediators, and bacterial aerobic respiration. We validated the observed increase in the actin-remodeling complex, Arp2/3, and experimentally showed a role for Arp2/3 in nontypeable Haemophilus influenzae invasion. Direct inhibition of actin branch morphology altered bacterial invasion into host epithelial cells, and is supportive of our efforts to use the information gathered to modify outcomes of disease. The twenty-eight nontypeable Haemophilus influenzae proteins identified participate in carbohydrate and amino acid metabolism, redox homeostasis, and include cell wall-associated metabolic proteins. Quantitative characterization of the molecular signatures of infection will redefine our understanding of host response driven developmental changes during pathogenesis. These data represent the first comprehensive study of host protein and metabolite profiles in vivo in response to infection and show the feasibility of extensive characterization of host protein profiles during disease. Identification of

  10. Bacterial metal leaching and bioaccumulation. (Latest citations from the Life Sciences Collection database). Published Search

    SciTech Connect

    1996-06-01

    The bibliography contains citations concerning bioleaching and bioaccumulation in metal recovery systems. References study bacterial oxidation, fungal metabolism, metal extraction, and metal recovery from deposits. Gold and uranium ore treatments are discussed. Toxicity characteristic leaching procedure (TCLP) tests and ultrasound pretreatment are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  11. Isolation and Genomic Characterization of 'Desulfuromonas soudanensis WTL', a Metal- and Electrode-Respiring Bacterium from Anoxic Deep Subsurface Brine.

    PubMed

    Badalamenti, Jonathan P; Summers, Zarath M; Chan, Chi Ho; Gralnick, Jeffrey A; Bond, Daniel R

    2016-01-01

    Reaching a depth of 713 m below the surface, the Soudan Underground Iron Mine (Soudan, MN, USA) transects a massive Archaean (2.7 Ga) banded iron formation, providing a remarkably accessible window into the terrestrial deep biosphere. Despite organic carbon limitation, metal-reducing microbial communities are present in potentially ancient anoxic brines continuously emanating from exploratory boreholes on Level 27. Using graphite electrodes deposited in situ as bait, we electrochemically enriched and isolated a novel halophilic iron-reducing Deltaproteobacterium, 'Desulfuromonas soudanensis' strain WTL, from an acetate-fed three-electrode bioreactor poised at +0.24 V (vs. standard hydrogen electrode). Cyclic voltammetry revealed that 'D. soudanensis' releases electrons at redox potentials approximately 100 mV more positive than the model freshwater surface isolate Geobacter sulfurreducens, suggesting that its extracellular respiration is tuned for higher potential electron acceptors. 'D. soudanensis' contains a 3,958,620-bp circular genome, assembled to completion using single-molecule real-time (SMRT) sequencing reads, which encodes a complete TCA cycle, 38 putative multiheme c-type cytochromes, one of which contains 69 heme-binding motifs, and a LuxI/LuxR quorum sensing cassette that produces an unidentified N-acyl homoserine lactone. Another cytochrome is predicted to lie within a putative prophage, suggesting that horizontal gene transfer plays a role in respiratory flexibility among metal reducers. Isolation of 'D. soudanensis' underscores the utility of electrode-based approaches for enriching rare metal reducers from a wide range of habitats. PMID:27445996

  12. Bioremediation of contaminated marine sediments can enhance metal mobility due to changes of bacterial diversity.

    PubMed

    Fonti, Viviana; Beolchini, Francesca; Rocchetti, Laura; Dell'Anno, Antonio

    2015-01-01

    Bioremediation strategies applied to contaminated marine sediments can induce important changes in the mobility and bioavailability of metals with potential detrimental consequences on ecosystem health. In this study we investigated changes of bacterial abundance and diversity (by a combination of molecular fingerprinting and next generation sequencing analyses) during biostimulation experiments carried out on anoxic marine sediments characterized by high metal content. We provide evidence that the addition of organic (lactose and/or acetate) and/or inorganic compounds to contaminated sediments determines a significant increase of bacterial growth coupled with changes in bacterial diversity and assemblage composition. Experimental systems supplied only with organic substrates were characterized by an increase of the relative importance of sulfate reducing bacteria belonging to the families Desulfobacteraceae and Desulfobulbaceae with a concomitant decrease of taxa affiliated with Flavobacteriaceae. An opposite effect was observed in the experimental treatments supplied also with inorganic nutrients. The increase of bacterial metabolism coupled with the increase of bacterial taxa affiliated with Flavobacteriaceae were reflected in a significant decrease of Cd and Zn associated with sedimentary organic matter and Pb and As associated with the residual fraction of the sediment. However, independently from the experimental conditions investigated no dissolution of metals occurred, suggesting a role of bacterial assemblages in controlling metal solubilization processes. Overall results of this study have allowed to identify key biogeochemical interactions influencing the metal behavior and provide new insights for a better understanding of the potential consequences of bio-treatments on the metal fate in contaminated marine sediments. PMID:25462769

  13. Sputtered Gum metal thin films showing bacterial inactivation and biocompatibility.

    PubMed

    Achache, S; Alhussein, A; Lamri, S; François, M; Sanchette, F; Pulgarin, C; Kiwi, J; Rtimi, S

    2016-10-01

    Super-elastic Titanium based thin films Ti-23Nb-0.7Ta-2Zr-(O) (TNTZ-O) and Ti-24Nb-(N) (TN-N) (at.%) were deposited by direct current magnetron sputtering (DCMS) in different reactive atmospheres. The effects of oxygen doping (TNTZ-O) and/or nitrogen doping (TN-N) on the microstructure, mechanical properties and biocompatibility of the as-deposited coatings were investigated. Nano-indentation measurements show that, in both cases, 1sccm of reactive gas in the mixture is necessary to reach acceptable values of hardness and Young's modulus. Mechanical properties are considered in relation to the films compactness, the compressive stress and the changes in the grain size. Data on Bacterial inactivation and biocompatibility are reported in this study. The biocompatibility tests showed that O-containing samples led to higher cells proliferation. Bacterial inactivation was concomitant with the observed pH and surface potential changes under light and in the dark. The increased cell fluidity leading to bacterial lysis was followed during the bacterial inactivation time. The increasing cell wall fluidity was attributed to the damage of the bacterial outer cell which losing its capacity to regulate the ions exchange in and out of the bacteria. PMID:27434155

  14. Effect of organic carbon and metal accumulation on the bacterial communities in sulphidogenic sediments.

    PubMed

    Bueche, Matthieu; Junier, Pilar

    2016-06-01

    A unique geochemical setting in Lake Cadagno, Switzerland, has led to the accumulation of insoluble metal sulphides in the sedimentary record as the result of past airborne pollution. This offers an exceptional opportunity to study the effect of these metals on the bacterial communities in sediments, and in particular to investigate further the link between metal contamination and an increase in the populations of endospore-forming bacteria observed previously in other metal-contaminated sediments. A decrease in organic carbon and total bacterial counts was correlated with an increase in the numbers of endospores in the oldest sediment samples, showing the first environmental evidence of a decrease in nutrient availability as a trigger of sporulation. Proteobacteria and Firmicutes were the two dominant bacterial phyla throughout the sediment, the former in an area with high sulphidogenic activity, and the latter in the oldest samples. Even though the dominant Firmicutes taxa were stable along the sediment core and did not vary with changes in metal contamination, the prevalence of some molecular species like Clostridium sp. was positively correlated with metal sulphide concentration. However, this cannot be generalized to all endospore-forming species. Overall, the community composition supports the hypothesis of sporulation as the main mechanism explaining the dominance of endospore formers in the deepest part of the sediment core, while metal contamination in the form of insoluble metal sulphide deposits appears not to be linked with sporulation as a mechanism of metal tolerance in this sulphidogenic ecosystem. PMID:26780045

  15. Towards an understanding of the genetics of bacterial metal resistance.

    PubMed

    Mergeay, M

    1991-01-01

    Many bacteria show great promise for use in metal recovery. However, the genetics of metal-leaching, accumulation-resistance, and oxidation/reduction mechanisms of these bacteria is still an area of research in its infancy. The introduction of such genes into bacteria of economic importance would have application in biomining and environmental bioremediation. PMID:1366923

  16. Bacterial Exopolysaccharides For Corrosion Inhibition on Metal Substrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofilms, composed of extra-cellular polymers secreted by bacteria, have been observed to both increase as well as decrease the rate of metal corrosion. Exopolysaccharides derived from Leuconostoc mesenteroides cultures have been shown to inhibit corrosion on corrosion-sensitive metals. The substa...

  17. Treatment of metal-contaminated water using bacterial sulfate reduction: results from pilot-scale reactors.

    PubMed

    Dvorak, D H; Hedin, R S; Edenborn, H M; McIntire, P E

    1992-08-01

    Simple anaerobic reactors were installed to treat metal-contaminated water in an underground coal mine and at a smelting residues dump in Pennsylvania. The reactors consisted of barrels and tanks filled with spent mushroom compost, within which bacterial sulfate reduction became established. Concentrations of Al, Cd, Fe, Mn, Ni, and Zn were typically lowered by over 95% as contaminated water flowed through the reactors. Cadmium, Fe, Ni, and some Zn were retained as insoluble metal sulfides following their reaction with bacterially generated H(2)S. Aluminum, Mn, and some Zn hydrolyzed and were retained as insoluble hydroxides or carbonates. Reactor effluents were typically circumneutral in pH and contained net alkalinity. The principal sources of alkalinity in the reactors were bacterial sulfate reduction and limestone dissolution. This article examines the chemistry of the reactor systems and the opportunities for enhancing their metal-retaining and alkalinity-generating potential. PMID:18601157

  18. Engineered Bacterial Metal-binding Proteins for Nanoscale Self-assembly and heavy Metal Tolerance

    NASA Astrophysics Data System (ADS)

    Hall Sedlak, Ruth Amanda

    Implementing biological principles in material synthesis and assembly is one way to expand our abilities to efficiently assemble nanoscale materials and devices. Specifically, recent advances in identifying peptides that bind inorganic materials with high affinity and specificity has spurred investigation of protein models for nanoscale inorganic assembly. This dissertation presents the results of my studies of several E. coli proteins engineered to bind inorganic materials through simple peptide motifs. I demonstrate that these proteins modulate the self-assembly of DNA-based nanostructures and can introduce heavy metal tolerance into metal-sensitive bacteria. Chapter 2 explores use of the engineered F plasmid DNA relaxase/helicase TraI for the self-assembly of complex DNA-protein-gold nanostructures. The full-length protein is engineered with a gold binding motif at an internal permissive site (TraI369GBP1-7x), while a truncated version of TraI is engineered with the same gold binding motif at the C-terminus (TraI361GBP1-7x). Both constructs bind gold nanoparticles while maintaining their DNA binding activity, and transmission electron microscopy reveals TraI369GBP1-7x utilizes its non-specific DNA binding activity to decorate single-stranded and double-stranded DNA with gold nanoparticles. The self assembly principles demonstrated in this work will be fundamental to constructing higher ordered hybrid nanostructures through DNA-protein-nanoparticle interactions. Chapter 3 studies the effects of expressing inorganic binding peptides within cells. I identified a silver binding peptide that, when fused to the periplasmic maltose binding protein, protects E. coli from silver toxicity in batch culture and reduces silver ions to silver nanoparticles within the bacterial periplasm. Engineered metal-ion tolerant microorganisms such as this E. coli could potentially be used in applications ranging from remediation to interrogation of biomolecule-metal interactions in vivo

  19. Iraq Dust is Respirable, Sharp, Metal-Laden, and Induces Lung Inflammation with Fibrosis in Mice via IL-2 Upregulation and Depletion of Regulatory T Cells

    PubMed Central

    Szema, Anthony M.; Reeder, Richard J.; Harrington, Andrea D.; Schmidt, Millicent; Liu, Jingxuan; Golightly, Marc; Rueb, Todd; Hamidi, Sayyed A.

    2014-01-01

    Soldiers returning from Iraq have reported respiratory symptoms. Lung biopsies show constrictive bronchiolitis and vascular remodeling with polarizable crystals. We hypothesized that ground surface dust may be a contributing factor to Iraq Afghanistan War Lung Injury (IAW-LI) and analyzed soil grab samples from Camp Victory, Iraq to determine if particle sizes are respirable. Samples contain particles 2.5 micron in size and have sharp edges. Trace metals (including titanium), calcium and silicon are present. Mice with airway instillation of dust have polarizable crystals and septate inflammation. CD4+CD25+FOXP3+ regulatory T cells are decreased in spleen and thymus from mice exposed to dust. IL-2 is elevated from bronchoalveolar lavage taken from dust-exposed mice. Respirable Iraq dust leads to lung inflammation in mice similar to that seen in patients, particularly regarding polarizable crystals which, appear to be titanium. PMID:24603199

  20. Characterization of bacterial communities in heavy metal contaminated soils.

    PubMed

    Roane, T M; Kellogg, S T

    1996-06-01

    Heavy metal pollution is a principle source of environmental contamination. We analyzed heavy metal impacted soil microbial communities and found that, in general, although lead adversely affected biomass, metabolic activity, and diversity, autochthonous lead- and cadmium-resistant isolates were found. In several metal-stressed soils, the microbial community consisted of two populations, either resistant or sensitive to lead. Additionally, a lead-resistant isolate was isolated from a control soil with no known previous exposure to lead, suggesting widespread lead resistance. Lead-resistant genera isolated included Pseudomonas, Bacillus, Corynebacterium, and Enterobacter species. Plasmids, ranging from 5 to 260 kb, were not detected through standard purifications from lead-resistant isolates. Positive correlations existed between antibiotic resistance and isolation habitat for lead-resistant strains, microbial metabolic activity and soil type, soluble lead concentration and microbial diversity, and arsenic concentration and total or viable cell concentrations. PMID:8801006

  1. Bacterial adhesion on amorphous and crystalline metal oxide coatings.

    PubMed

    Almaguer-Flores, Argelia; Silva-Bermudez, Phaedra; Galicia, Rey; Rodil, Sandra E

    2015-12-01

    Several studies have demonstrated the influence of surface properties (surface energy, composition and topography) of biocompatible materials on the adhesion of cells/bacteria on solid substrates; however, few have provided information about the effect of the atomic arrangement or crystallinity. Using magnetron sputtering deposition, we produced amorphous and crystalline TiO2 and ZrO2 coatings with controlled micro and nanoscale morphology. The effect of the structure on the physical-chemical surface properties was carefully analyzed. Then, we studied how these parameters affect the adhesion of Escherichia coli and Staphylococcus aureus. Our findings demonstrated that the nano-topography and the surface energy were significantly influenced by the coating structure. Bacterial adhesion at micro-rough (2.6 μm) surfaces was independent of the surface composition and structure, contrary to the observation in sub-micron (0.5 μm) rough surfaces, where the crystalline oxides (TiO2>ZrO2) surfaces exhibited higher numbers of attached bacteria. Particularly, crystalline TiO2, which presented a predominant acidic nature, was more attractive for the adhesion of the negatively charged bacteria. The information provided by this study, where surface modifications are introduced by means of the deposition of amorphous or crystalline oxide coatings, offers a route for the rational design of implant surfaces to control or inhibit bacterial adhesion. PMID:26354243

  2. METHOD FOR MEASURING BACTERIAL RESISTANCE TO METALS EMPLOYING EPIFLUORESCENT MICROSCOPY

    EPA Science Inventory

    A direct viable counting method has been developed which can be used to measure resistance of bacteria to metal (DVCMR bio-assay). Results obtained using DVCMR was compared with classical culture methods and proven superior. Evaluation of test strains resistant to arsenic or mang...

  3. Bacterial Transition Metal P1B-ATPases, Transport Mechanism and Roles in Virulence

    PubMed Central

    Argüello, José M.; González-Guerrero, Manuel; Raimunda, Daniel

    2011-01-01

    P1B-type ATPases are polytopic membrane proteins that couple the hydrolysis of ATP to the efflux of cytoplasmic transition metals. This article reviews recent progress in our understanding of the structure and function of these proteins in bacteria. These are members of the P-type superfamily of transport ATPases. Cu+-ATPases are the most frequently observed and best-characterized members of this group of transporters. However, bacterial genomes show diverse arrays of P1B-type ATPases with a range of substrates (Cu+, Zn2+, Co2+). Furthermore, because of the structural similarities among transitions metals, these proteins can also transport non-physiological substrates (Cu2+, Cd2+, Pb2+, Au+, Ag+). P1B-type ATPases have six or eight transmembrane segments (TM) with metal coordinating amino acids in three core TMs flanking the cytoplasmic domain responsible for ATP binding and hydrolysis. In addition, regulatory cytoplasmic metal binding domains are present in most P1B-type ATPases. Central to the transport mechanism is the binding of the uncomplexed metal to these proteins when cytoplasmic substrates are bound to chaperone and chelating molecules. Metal binding to regulatory sites is through a reversible metal exchange among chaperones and cytoplasmic metal binding domains. In contrast, the chaperone-mediated metal delivery to transport sites appears as a largely irreversible event. P1B-ATPases have two overarching physiological functions: to maintain cytoplasmic metal levels and to provide metals for the periplasmic assembly of metalloproteins. Recent studies have shown that both roles are critical for bacterial virulence, since P1B-ATPases appear key to overcome high phagosomal metal levels and are required for the assembly of periplasmic and secreted metalloproteins that are essential for survival in extreme oxidant environments. PMID:21999638

  4. Facilitated transport of heavy metals by bacterial colloids in sand columns

    NASA Astrophysics Data System (ADS)

    Guiné, V.; Martins, J.; Gaudet, J. P.

    2003-05-01

    The aim of this work is to evaluate the ability of biotic collois (e.g. bacterial cells) to facilitate the transport of heavy metals in soils. and to identify the main factors influencing colloid transport in order to detelmine the geo-chemical conditions where this secondary transport process may become dominant. The model colloids studied here are living cells of Escherichia coli and Ralstonia metallidurans. We studied the transport of mercury zinc, and cadmium in columns of Fontainebleau sand. The properties (i.e. optical and morphological properties, charge (zeta potential, zeta) and hydrophobia (water/hexadecane distribution parameter, K_{hw})) of the bacterial cells surface were characterised, as well as their potential for heavy metals sorption (kinetic and isotherm). Both surface charge (zeta=-54 and -14 mV) and hydrophobia (K_{hw} = 0.25 and 0.05) differ strongly for the two bacteria. Column studies were conducted with bacteria and heavy metals separately or simultaneously. The cell surface differences led to different transport behaviour of the two bacteria, although the retardation factor is close to 1 for both. We observed that colloid mobility increases when increasing bacterial cells concentration and when decreasing the ionic strength. We also observed that bacterial colloids appeared as excellent vectors for Hg, Zn and Cd. Indeed, heavy metals adsorbed on the Fontainebleau sand when injected alone in columns (retardation factors of 1.4 ; 2.9 and 3.8 for Hg, Zn and Cd, respectively); whereas no retardation (R≈1) is observed when injected in the presence of both bacteria. Moreover, transport of bio-sorbed metal appears to be 4 to 6 times higher than dissolved heavy-metal.

  5. Heavy metals species affect fungal-bacterial synergism during the bioremediation of fluoranthene.

    PubMed

    Ma, Xiao-Kui; Ding, Ning; Peterson, Eric Charles; Daugulis, Andrew J

    2016-09-01

    The co-occurrence of polycyclic aromatic hydrocarbons (PAHs) with heavy metals (HMs) is very common in contaminated soils, but the influence of HMs on fungal-bacterial synergism during PAH bioremediation has not been investigated. The bioremediation of fluoranthene-contaminated sand using co-cultures of Acremonium sp. P0997 and Bacillus subtilis showed increases of 109.4 and 9.8 % in degradation compared to pure bacterial and fungal cultures, respectively, removing 64.1 ± 1.4 % fluoanthene in total. The presence of Cu(2+) reduced fluoranthene removal to 53.7 ± 1.7 %, while inhibiting bacterial growth, and reducing translocation of bacteria on fungal hyphae by 49.5 %, in terms of the bacterial translocation ratio. Cu(2+) reduced bacterial diffusion by 46.8 and 31.9 %, as reflected by D (a bulk random motility diffusional coefficient) and D eff (the effective one-dimensional diffusion coefficient) compared to the control without HM supplementation, respectively. However, Mn(2+) resulted in a 78.2 ± 1.9 % fluoranthene degradation, representing an increase of 21.9 %, while enhancing bacterial growth and bacterial translocation on fungal hyphae, showing a 12.0 % increase in translocation ratio, with no observable impact on D and D eff. Hence, the presence of HMs has been shown to affect fungal-bacterial synergism in PAH degradation, and this effect differs with HM species. PMID:27178182

  6. Extracellular respiration

    PubMed Central

    Gralnick, Jeffrey A.; Newman, Dianne K.

    2009-01-01

    Summary Although it has long been known that microbes can generate energy using diverse strategies, only recently has it become clear that a growing number involve electron transfer to or from extracellular substrates. The best-known example of what we will term ‘extracellular respiration’ is electron transfer between microbes and minerals, such as iron and manganese (hydr)oxides. This makes sense, given that these minerals are sparingly soluble. What is perhaps surprising, however, is that a number of substrates that might typically be classified as ‘soluble’ are also respired at the cell surface. There are several reasons why this might be the case: the substrate, in its ecological context, might be associated with a solid surface and thus effectively insoluble; the substrate, while soluble, might simply be too large to transport inside the cell; or the substrate, while benign in one redox state, might become toxic after it is metabolized. In this review, we discuss various examples of extracellular respiration, paying particular attention to what is known about the molecular mechanisms underlying these processes. As will become clear, much remains to be learned about the biochemistry, cell biology and regulation of extracellular respiration, making it a rich field of study for molecular microbiologists. PMID:17581115

  7. [Role of superoxide anion radicals in the bacterial corrosion of metals].

    PubMed

    Belov, D V; Kalinina, A A; Sokolova, T N; Smirnov, V F; Chelnokova, M V; Kartashov, V R

    2012-01-01

    It was found that seven strains of bacteria can cause corrosion damage to aluminum, its alloys, and zinc. With respect to the studied metals, the most active bacteria were Proteus vulgaris 1212 and Pseudomonas aeruginosa 969. Superoxide anion radicals were demonstrated to play a role in the initiation of corrosive damage to aluminum and zinc, while bacterial exometabolites participate in the later stages of this process. PMID:22834301

  8. Light-scattering Characteristics of Metal Nanoparticles on a Single Bacterial Cell.

    PubMed

    Kinoshita, Takamasa; Kiso, Keita; LE, Dung Q; Shiigi, Hiroshi; Nagaoka, Tsutomu

    2016-01-01

    Metal nanoparticles express unique light-scattering characteristics based on the localized surface plasmon resonance, which depends on the metal species, particle size, and aggregation state of the nanoparticles. Therefore, we focused on the light-scattering characteristics of metal nanoparticles, such as silver, gold, and copper oxide, adsorbed on a bacterium. Monodisperse silver nanoparticles expressed the strongest scattered light among them, and showed various colors of scattered light. Although a monodisperse gold nanoparticle produced monochromatic light (green color), the color of the scattered light strongly depended on the aggregation state of the nanoparticles on a bacterium. On the other hand, copper oxide nanoparticles expressed monochromatic light (blue color), regardless of their aggregation states on a bacterium. We examined details concerning the light-scattering characteristics of metal nanoparticles, and discussed the possibility of their applications to bacterial cell imaging. PMID:26960609

  9. Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation--part A.

    PubMed

    Vera, Mario; Schippers, Axel; Sand, Wolfgang

    2013-09-01

    Bioleaching of metal sulfides is performed by a diverse group of microorganisms. The dissolution chemistry of metal sulfides follows two pathways, which are determined by the mineralogy and the acid solubility of the metal sulfides: the thiosulfate and the polysulfide pathways. Bacterial cells can effect this metal sulfide dissolution via iron(II) ion and sulfur compound oxidation. Thereby, iron(III) ions and protons, the metal sulfide-attacking agents, are available. Cells can be active either in planktonic state or in forming biofilms on the mineral surface; however, the latter is much more efficient in terms of bioleaching kinetics. In the case of Acidithiobacillus ferrooxidans, bacterial exopolymers contain iron(III) ions, each complexed by two uronic acid residues. The resulting positive charge allows an electrostatic attachment to the negatively charged pyrite. Thus, the first function of complexed iron(III) ions is the mediation of cell attachment, while their second function is oxidative dissolution of the metal sulfide, similar to the role of free iron(III) ions in non-contact leaching. In both cases, the electrons extracted from the metal sulfide reduce molecular oxygen via a redox chain forming a supercomplex spanning the periplasmic space and connecting both outer and inner membranes. In this review, we summarize some recent discoveries relevant to leaching bacteria which contribute to a better understanding of these fascinating microorganisms. These include surface science, biochemistry of iron and sulfur metabolism, anaerobic metabolism, and biofilm formation. The study of microbial interactions among multispecies leaching consortia, including cell-to-cell communication mechanisms, must be considered in order to reveal more insights into the biology of bioleaching microorganisms and their potential biotechnological use. PMID:23720034

  10. Heavy metals in liquid pig manure in light of bacterial antimicrobial resistance

    SciTech Connect

    Hoelzel, Christina S.; Mueller, Christa; Harms, Katrin S.; Mikolajewski, Sabine; Schaefer, Stefanie; Schwaiger, Karin; Bauer, Johann

    2012-02-15

    Heavy metals are regularly found in liquid pig manure, and might interact with bacterial antimicrobial resistance. Concentrations of heavy metals were determined by atomic spectroscopic methods in 305 pig manure samples and were connected to the phenotypic resistance of Escherichia coli (n=613) against 29 antimicrobial drugs. Concentrations of heavy metals (/kg dry matter) were 0.08-5.30 mg cadmium, 1.1-32.0 mg chrome, 22.4-3387.6 mg copper, <2.0-26.7 mg lead, <0.01-0.11 mg mercury, 3.1-97.3 mg nickel and 93.0-8239.0 mg zinc. Associated with the detection of copper and zinc, resistance rates against {beta}-lactams were significantly elevated. By contrast, the presence of mercury was significantly associated with low antimicrobial resistance rates of Escherichia coli against {beta}-lactams, aminoglycosides and other antibiotics. Effects of subinhibitory concentrations of mercury on bacterial resistance against penicillins, cephalosporins, aminoglycosides and doxycycline were also demonstrated in a laboratory trial. Antimicrobial resistance in the porcine microflora might be increased by copper and zinc. By contrast, the occurrence of mercury in the environment might, due to co-toxicity, act counter-selective against antimicrobial resistant strains.

  11. Irrigation water quality in southern Mexico City based on bacterial and heavy metal analyses

    NASA Astrophysics Data System (ADS)

    Solís, C.; Sandoval, J.; Pérez-Vega, H.; Mazari-Hiriart, M.

    2006-08-01

    Xochimilco is located in southern Mexico City and represents the reminiscence of the pre-Columbian farming system, the "chinampa" agriculture. "Chinampas" are island plots surrounded by a canal network. At present the area is densely urbanized and populated, with various contaminant sources contributing to the water quality degradation. The canal system is recharged by a combination of treated-untreated wastewater, and precipitation during the rainy season. Over 40 agricultural species, including vegetables, cereals and flowers, are produced in the "chinampas". In order to characterize the quality of Xochimilcos' water used for irrigation, spatial and temporal contaminant indicators such as microorganisms and heavy metals were investigated. Bacterial indicators (fecal coliforms, fecal enterococcus) were analyzed by standard analytical procedures, and heavy metals (such as Fe, Cu, Zn and Pb) were analyzed by particle induced X-ray emission (PIXE). The more contaminated sites coincide with the heavily populated areas. Seasonal variation of contaminants was observed, with the higher bacterial counts and heavy metal concentrations reported during the rainy season.

  12. EFFECTS OF DIVALENT METAL CHLORIDES ON RESPIRATION AND EXTRACTABLE ENZYMATIC ACTIVITIES OF DOUGLAS-FIR NEEDLE LITTER

    EPA Science Inventory

    The rates of CO2 evolution from Douglas-fir (Pseudotsuga menziesii Franco) needle litter, following application of divalent metal (Hg, Cd, Pb, Ni, Zn, and Cu) chlorides at rates of 10, 100, and 1,000 microgram/g and Ca chloride at 7, 68, and 683 microgram/g were monitored at 2- t...

  13. Sequential removal of heavy metals ions and organic pollutants using an algal-bacterial consortium.

    PubMed

    Muñoz, Raul; Alvarez, Maria Teresa; Muñoz, Adriana; Terrazas, Enrique; Guieysse, Benoit; Mattiasson, Bo

    2006-05-01

    The residual algal-bacterial biomass from photosynthetically supported, organic pollutant biodegradation processes, in enclosed photobioreactors, was tested for its ability to accumulate Cu(II), Ni(II), Cd(II), and Zn(II). Salicylate was chosen as a model contaminant. The algal-bacterial biomass combined the high adsorption capacity of microalgae with the low cost of the residual biomass, which makes it an attractive biosorbent for environmental applications. Cu(II) was preferentially taken-up from the medium when the metals were present both separately and in combination. There was no observed competition for adsorption sites, which suggested that Cu(II), Ni(II), Cd(II), and Zn(II) bind to different sites and that active Ni(II), Cd(II) and Zn(II) binding groups were present at very low concentrations. Therefore, special focus was given to Cu(II) biosorption. Cu(II) biosorption by the algal-bacterial biomass was characterized by an initial fast cell surface adsorption followed by a slower metabolically driven uptake. pH, Cu(II), and algal-bacterial concentration significantly affected the biosorption capacity for Cu(II). Maximum Cu(II) adsorption capacities of 8.5+/-0.4 mg g-1 were achieved at an initial Cu(II) concentration of 20 mg l-1 and at pH 5 for the tested algal-bacterial biomass. These are consistent with values reported for other microbial sorbents under similar conditions. The desorption of Cu(II) from saturated biomass was feasible by elution with a 0.0125 M HCl solution. Simultaneous Cu(II) and salicylate removal in a continuous stirred tank photobioreactor was not feasible due to the high toxicity of Cu(II) towards the microbial culture. The introduction of an adsorption column, packed with the algal-bacterial biomass, prior to the photobioreactor reduced Cu(II) concentration, thereby allowing the subsequent salicylate biodegradation in the photobioreactor. PMID:16307789

  14. Mercury and other heavy metals influence bacterial community structure in low-order Tennessee streams

    SciTech Connect

    Vishnivetskaya, Tatiana A; Mosher, Jennifer J; Palumbo, Anthony Vito; Podar, Mircea; Brown, Steven D; Brooks, Scott C; Southworth, George R; Drake, Meghan M; Brandt, Craig C

    2011-01-01

    High concentrations of the heavy metals U(VI) and Hg(II) as well as inorganic compounds including nitrate have contaminated streams located in the Department of Energy reservation in Oak Ridge, TN. Of particular concern is methylmercury (MeHg) as it is more neurotoxic than Hg0. Deltaproteobacteria including sulfate reducing bacteria (SRB) and iron reducing bacteria (IRB) have been generally identified as the primary methylators. In order to determine potential effects on microbial community composition by the contamination, surface stream sediments were collected 7 times during the year from 5 contaminated sites and 1 control site. Sixty samples were analyzed for bacterial community composition and geochemistry. Community characterization used GS 454 FLX pyrosequencing with 235 Mb of 16S rDNA sequence targeting the V4 region. Sorting and filtering of the raw reads resulted in 588,699 high quality sequences with lengths of >200 bp. The bacterial community was represented by 24 phyla and unclassified Bacteria including Proteobacteria (22.9-58.5%), Cyanobacteria (0.2-32.0%), Acidobacteria (1.6-30.6%), and Verrucomicrobia (3.4-31.0%). Redundancy analysis indicated there were no significant differences in the bacterial community structure between midchannel and near bank samples. However, significant correlations existed between the bacterial community and seasonal as well as geochemical variation. Further, several members of the community appear to be positively associated with MeHg including the Proteobacteria group that includes SRBs as well as Verrucomicrobia. This study is the first to indicate the influence of MeHg on an in-situ microbial community and suggests possible roles for each of these phyla in the Hg/MeHg cycle.

  15. Bacterial contamination of fabric and metal-bead identity card lanyards: a cross-sectional study.

    PubMed

    Pepper, Thomas; Hicks, Georgina; Glass, Stephen; Philpott-Howard, John

    2014-01-01

    In healthcare, fabric or metal-bead lanyards are universally used for carrying identity cards. However there is little information on microbial contamination with potential pathogens that may readily re-contaminate disinfected hands. We examined 108 lanyards from hospital staff. Most grew skin flora but 7/108 (6%) had potentially pathogenic bacteria: four grew methicillin-susceptible Staphylococcus aureus, and four grew probable fecal flora: 3 Clostridium perfringens and 1 Clostridium bifermentans (one lanyard grew both S. aureus and C. bifermentans). Unused (control) lanyards had little or no such contamination. The median duration of lanyard wear was 12 months (interquartile range 3-36 months). 17/108 (16%) of the lanyards had reportedly undergone decontamination including wiping with alcohol, chlorhexidine or chlorine dioxide; and washing with soap and water or by washing machine. Metal-bead lanyards had significantly lower median bacterial counts than those from fabric lanyards (1 vs. 4 CFU/cm(2); Mann-Whitney U=300.5; P<0.001). 12/32 (38%) of the metal-bead lanyards grew no bacteria, compared with 2/76 (3%) of fabric lanyards. We recommend that an effective decontamination regimen be instituted by those who use fabric lanyards, or that fabric lanyards be discarded altogether in preference for metal-bead lanyards or clip-on identity cards. PMID:25151656

  16. Bacterial assisted degradation of chlorpyrifos: The key role of environmental conditions, trace metals and organic solvents.

    PubMed

    Khalid, Saira; Hashmi, Imran; Khan, Sher Jamal

    2016-03-01

    Wastewater from pesticide industries, agricultural or surface runoff containing pesticides and their residues has adverse environmental impacts. Present study demonstrates effect of petrochemicals and trace metals on chlorpyrifos (CP) biotransformation often released in wastewater of agrochemical industry. Biodegradation was investigated using bacterial strain Pseudomonas kilonensis SRK1 isolated from wastewater spiked with CP. Optimal environmental conditions for CP removal were CFU (306 × 10(6)), pH (8); initial CP concentration (150 mg/L) and glucose as additional carbon source. Among various organic solvents (petrochemicals) used in this study toluene has stimulatory effect on CP degradation process using SRK1, contrary to this benzene and phenol negatively inhibited degradation process. Application of metal ions (Cu (II), Fe (II) Zn (II) at low concentration (1 mg/L) took part in biochemical reaction and positively stimulated CP degradation process. Metal ions at high concentrations have inhibitory effect on degradation process. A first order growth model was shown to fit the data. It could be concluded that both type and concentration of metal ions and petrochemicals can affect CP degradation process. PMID:26692411

  17. Isolation and Genomic Characterization of ‘Desulfuromonas soudanensis WTL’, a Metal- and Electrode-Respiring Bacterium from Anoxic Deep Subsurface Brine

    PubMed Central

    Badalamenti, Jonathan P.; Summers, Zarath M.; Chan, Chi Ho; Gralnick, Jeffrey A.; Bond, Daniel R.

    2016-01-01

    Reaching a depth of 713 m below the surface, the Soudan Underground Iron Mine (Soudan, MN, USA) transects a massive Archaean (2.7 Ga) banded iron formation, providing a remarkably accessible window into the terrestrial deep biosphere. Despite organic carbon limitation, metal-reducing microbial communities are present in potentially ancient anoxic brines continuously emanating from exploratory boreholes on Level 27. Using graphite electrodes deposited in situ as bait, we electrochemically enriched and isolated a novel halophilic iron-reducing Deltaproteobacterium, ‘Desulfuromonas soudanensis’ strain WTL, from an acetate-fed three-electrode bioreactor poised at +0.24 V (vs. standard hydrogen electrode). Cyclic voltammetry revealed that ‘D. soudanensis’ releases electrons at redox potentials approximately 100 mV more positive than the model freshwater surface isolate Geobacter sulfurreducens, suggesting that its extracellular respiration is tuned for higher potential electron acceptors. ‘D. soudanensis’ contains a 3,958,620-bp circular genome, assembled to completion using single-molecule real-time (SMRT) sequencing reads, which encodes a complete TCA cycle, 38 putative multiheme c-type cytochromes, one of which contains 69 heme-binding motifs, and a LuxI/LuxR quorum sensing cassette that produces an unidentified N-acyl homoserine lactone. Another cytochrome is predicted to lie within a putative prophage, suggesting that horizontal gene transfer plays a role in respiratory flexibility among metal reducers. Isolation of ‘D. soudanensis’ underscores the utility of electrode-based approaches for enriching rare metal reducers from a wide range of habitats. PMID:27445996

  18. Organohalide respiration: microbes breathing chlorinated molecules

    PubMed Central

    Leys, David; Adrian, Lorenz; Smidt, Hauke

    2013-01-01

    Bacterial respiration has taken advantage of almost every redox couple present in the environment. The reduction of organohalide compounds to release the reduced halide ion drives energy production in organohalide respiring bacteria. This process is centred around the reductive dehalogenases, an iron–sulfur and corrinoid containing family of enzymes. These enzymes, transcriptional regulators and the bacteria themselves have potential to contribute to future bioremediation solutions that address the pollution of the environment by halogenated organic compounds. PMID:23479746

  19. Anaerobic respiration on tellurate and other metalloids in bacteria from hydrothermal vent fields in the eastern Pacific Ocean.

    PubMed

    Csotonyi, Julius T; Stackebrandt, Erko; Yurkov, Vladimir

    2006-07-01

    This paper reports the discovery of anaerobic respiration on tellurate by bacteria isolated from deep ocean (1,543 to 1,791 m) hydrothermal vent worms. The first evidence for selenite- and vanadate-respiring bacteria from deep ocean hydrothermal vents is also presented. Enumeration of the anaerobic metal(loid)-resistant microbial community associated with hydrothermal vent animals indicates that a greater proportion of the bacterial community associated with certain vent fauna resists and reduces metal(loid)s anaerobically than aerobically, suggesting that anaerobic metal(loid) respiration might be an important process in bacteria that are symbiotic with vent fauna. Isolates from Axial Volcano and Explorer Ridge were tested for their ability to reduce tellurate, selenite, metavanadate, or orthovanadate in the absence of alternate electron acceptors. In the presence of metal(loid)s, strains showed an ability to grow and produce ATP, whereas in the absence of metal(loid)s, no growth or ATP production was observed. The protonophore carbonyl cyanide m-chlorophenylhydrazone depressed metal(loid) reduction. Anaerobic tellurate respiration will be a significant component in describing biogeochemical cycling of Te at hydrothermal vents. PMID:16820492

  20. Dynamics of the heme-binding bacterial gas-sensing dissimilative nitrate respiration regulator (DNR) and activation barriers for ligand binding and escape.

    PubMed

    Lobato, Laura; Bouzhir-Sima, Latifa; Yamashita, Taku; Wilson, Michael T; Vos, Marten H; Liebl, Ursula

    2014-09-19

    DNR (dissimilative nitrate respiration regulator) is a heme-binding transcription factor that is involved in the regulation of denitrification in Pseudomonas aeruginosa. In the ferrous deoxy state, the heme is 6-coordinate; external NO and CO can replace an internal ligand. Using fluorescence anisotropy, we show that high-affinity sequence-specific DNA binding occurs only when the heme is nitrosylated, consistent with the proposed function of DNR as NO sensor and transcriptional activator. This role is moreover supported by the NO "trapping" properties revealed by ultrafast spectroscopy that are similar to those of other heme-based NO sensor proteins. Dissociated CO-heme pairs rebind in an essentially barrierless way. This process competes with migration out of the heme pocket. The latter process is thermally activated (Ea ∼ 7 kJ/mol). This result is compared with other heme proteins, including the homologous CO sensor/transcription factor CooA, variants of the 5-coordinate mycobacterial sensor DosT and the electron transfer protein cytochrome c. This comparison indicates that thermal activation of ligand escape from the heme pocket is specific for systems where an external ligand replaces an internal one. The origin of this finding and possible implications are discussed. PMID:25037216

  1. Dynamics of the Heme-binding Bacterial Gas-sensing Dissimilative Nitrate Respiration Regulator (DNR) and Activation Barriers for Ligand Binding and Escape*

    PubMed Central

    Lobato, Laura; Bouzhir-Sima, Latifa; Yamashita, Taku; Wilson, Michael T.; Vos, Marten H.; Liebl, Ursula

    2014-01-01

    DNR (dissimilative nitrate respiration regulator) is a heme-binding transcription factor that is involved in the regulation of denitrification in Pseudomonas aeruginosa. In the ferrous deoxy state, the heme is 6-coordinate; external NO and CO can replace an internal ligand. Using fluorescence anisotropy, we show that high-affinity sequence-specific DNA binding occurs only when the heme is nitrosylated, consistent with the proposed function of DNR as NO sensor and transcriptional activator. This role is moreover supported by the NO “trapping” properties revealed by ultrafast spectroscopy that are similar to those of other heme-based NO sensor proteins. Dissociated CO-heme pairs rebind in an essentially barrierless way. This process competes with migration out of the heme pocket. The latter process is thermally activated (Ea ∼7 kJ/mol). This result is compared with other heme proteins, including the homologous CO sensor/transcription factor CooA, variants of the 5-coordinate mycobacterial sensor DosT and the electron transfer protein cytochrome c. This comparison indicates that thermal activation of ligand escape from the heme pocket is specific for systems where an external ligand replaces an internal one. The origin of this finding and possible implications are discussed. PMID:25037216

  2. A suite of recombinant luminescent bacterial strains for the quantification of bioavailable heavy metals and toxicity testing

    PubMed Central

    2009-01-01

    Background Recombinant whole-cell sensors have already proven useful in the assessment of the bioavailability of environmental pollutants like heavy metals and organic compounds. In this work 19 recombinant bacterial strains representing various Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli, Pseudomonas fluorescens) bacteria were constructed to express the luminescence encoding genes luxCDABE (from Photorhabdus luminescens) as a response to bioavailable heavy metals ("lights-on" metal sensors containing metal-response elements, 13 strains) or in a constitutive manner ("lights-off" constructs, 6 strains). Results The bioluminescence of all 13 "lights-on" metal sensor strains was expressed as a function of the sub-toxic metal concentrations enabling the quantitative determination of metals bioavailable for these strains. Five sensor strains, constructed for detecting copper and mercury, proved to be target metal specific, whereas eight other sensor strains were simultaneously induced by Cd2+, Hg2+, Zn2+and Pb2+. The lowest limits of determination of the "lights-on" sensor strains for the metals tested in this study were (μg l-1): 0.002 of CH3HgCl, 0.03 of HgCl2, 1.8 of CdCl2, 33 of Pb(NO3)2, 1626 of ZnSO4, 24 of CuSO4 and 340 of AgNO3. In general, the sensitivity of the "lights-on" sensor strains was mostly dependent on the metal-response element used while the selection of host bacterium played a relatively minor role. In contrast, toxicity of metals to the "lights-off" strains was only dependent on the bacterial host so that Gram-positive strains were remarkably more sensitive than Gram-negative ones. Conclusion The constructed battery of 19 recombinant luminescent bacterial strains exhibits several novel aspects as it contains i) metal sensor strains with similar metal-response elements in different host bacteria; ii) metal sensor strains with metal-response elements in different copies and iii) a "lights

  3. Composition, Reactivity and Regulation of Extracellular Metal-Reducing Structures (Bacterial Nanowires) Produced by Dissimilatory Metal - Reducing Bacteria.

    SciTech Connect

    Beveridge, Terrance J; Whitfield, Christopher

    2013-03-06

    This is the final technical report for the project. There were two objectives in the proposal. The first was to describe the composition and function of electrically conductive appendages, known as bacterial nanowires, which resemble pili but are longer and are electrically conductive. They were first identified on the dissimilatory metal-reducing bacteria (DMRB), Shewanella and Geobacter. Specifically, this project investigated the role of these structures in: (i) the reductive transformation of iron oxides as solid phase electron acceptors; (ii) the use of as uranium as a dissolved electron acceptor to form nanocrystalline particles of uraninite upon reduction. The Beveridge group investigated these processes using advanced cryo-transmission electron microscopy (cryoTEM) to visualize the points of connection between the distal ends of nanowires and the effect they have on solid phase Fe minerals. At the same time, immuno-electron microscopy was applied in an attempt to identify where metal reductases and cytochromes are located on the cell surface, or in the nanowires. The second objective was to define the surface physicochemistry of Shewanella spp. in an attempt to decipher how weak bonding (electrostatics and hydrophobicity) affects the adherence of the bacteria to Fe oxides. This bonding could be dictated by the chemistry of lipopolysaccharide (LPS), or the presence/absence of capsular polysaccharide.

  4. Effect of Metal-Rich Sewage Sludge Application on the Bacterial Communities of Grasslands

    PubMed Central

    Barkay, Tamar; Tripp, Susan C.; Olson, Betty H.

    1985-01-01

    The effect of long-term application of heavy metal-laden sewage sludge on the total heterotrophic aerobic and the cadmium-resistant soil bacterial communities was studied. Gram-positive bacteria were completely absent from resistant communities. These findings suggest that this group is highly susceptible to Cd. Shannon's diversity indices estimated for total communities did not reveal negative effects on the communities that developed in the presence of sludge. However, Cd-resistant communities isolated from long-term sludge-amended soils were more diverse than the resistant communities from a control sample, suggesting that adaptation to Cd as a stressor had occurred in the presence of sludge constituents. This higher diversity was attributed to Cd resistance in pseudomonads and gram-negative fermenters. Resistance did not develop by dissemination of Cd resistance plasmids, because these were rarely detected in the genomes of resistant strains. PMID:16346720

  5. Biodegradation of the metallic carcinogen hexavalent chromium Cr(VI) by an indigenously isolated bacterial strain

    PubMed Central

    Mishra, Susmita

    2010-01-01

    Background: Hexavalent chromium [Cr(VI)], a potential mutagen and carcinogen, is regularly introduced into the environment through diverse anthropogenic activities, including electroplating, leather tanning, and pigment manufacturing. Human exposure to this toxic metal ion not only causes potential human health hazards but also affects other life forms. The World Health Organization, the International Agency for Research on Cancer, and the Environmental Protection Agency have determined that Cr(VI) compounds are known human carcinogens. The Sukinda valley in Jajpur District, Orissa, is known for its deposit of chromite ore, producing nearly 98% of the chromite ore in India and one of the prime open cast chromite ore mines in the world (CES, Orissa Newsletter). Materials and Methods: Our investigation involved microbial remediation of Cr(VI) without producing any byproduct. Bacterial cultures tolerating high concentrations of Cr were isolated from the soil sample collected from the chromite-contaminated sites of Sukinda, and their bioaccumulation properties were investigated. Strains capable of growing at 250 mg/L Cr(VI) were considered as Cr resistant. Results: The experimental investigation showed the maximum specific Cr uptake at pH 7 and temperature 30°C. At about 50 mg/L initial Cr(VI) concentrations, uptake of the selected potential strain exceeded 98% within 12 h of incubation. The bacterial isolate was identified by 16S rRNA sequencing as Brevebacterium casei. Conclusion: Results indicated promising approach for microbial remediation of effluents containing elevated levels of Cr(VI). PMID:20976016

  6. Bacterial Killing by Light-Triggered Release of Silver from Biomimetic Metal Nanorods

    PubMed Central

    Yi, Ji; Zhang, Ran; Rivera, José G.; Messersmith, Phillip B.

    2014-01-01

    Illumination of noble metal nanoparticles at the plasmon resonance causes substantial heat generation, and the transient and highly localized temperature increases that result from this energy conversion can be exploited for photothermal therapy by plasmonically heating gold nanorods (NRs) bound to cell surfaces. Here, we report the first use of plasmonic heating to locally release silver from gold core/silver shell (Au@Ag) NRs targeted to bacterial cell walls. A novel biomimetic method of preparing Au@Ag core-shell NRs was employed, involving deposition of a thin organic polydopamine (PD) primer onto Au NR surfaces, followed by spontaneous electroless silver metallization, and conjugation of antibacterial antibodies and passivating polymers for targeting to gram-negative and gram-positive bacteria. Dramatic cytotoxicity of S. epidermidis and E. coli cells targeted with Au@Ag NRs was observed upon exposure to light as a result of the combined antibacterial effects of plasmonic heating and silver release. The antibacterial effect was much greater than with either plasmonic heating or silver alone, implying a strong therapeutic synergy between cell-targeted plasmonic heating and the associated silver release upon irradiation. Our findings suggest a potential antibacterial use of Au@Ag NRs when coupled with light irradiation, which was not previously described. PMID:23847147

  7. Nosepiece respiration monitor

    NASA Technical Reports Server (NTRS)

    Lavery, A. L.; Long, L. E.; Rice, N. E.

    1968-01-01

    Comfortable, inexpensive nosepiece respiration monitor produces rapid response signals to most conventional high impedance medical signal conditioners. The monitor measures respiration in a manner that produces a large signal with minimum delay.

  8. Common Components of Industrial Metal-Working Fluids as Sources of Carbon for Bacterial Growth

    PubMed Central

    Foxall-VanAken, S.; Brown, J. A.; Young, W.; Salmeen, I.; McClure, T.; Napier, S.; Olsen, R. H.

    1986-01-01

    Water-based metal-working fluids used in large-scale industrial operations consist of many components, but in the most commonly used formulations only three classes of components are present in high enough concentrations that they could, in principle, provide enough carbon to support the high bacterial densities (109 CFU/ml) often observed in contaminated factory fluids. These components are petroleum oil (1 to 5%), petroleum sulfonates (0.1 to 0.5%), and fatty acids (less than 0.1%, mainly linoleic and oleic acids supplied as tall oils). We isolated pure strains of predominating bacteria from contaminated reservoirs of two metal-working systems and randomly selected 12 strains which we tested in liquid culture for growth with each of the metal-working fluid components as the sole source of carbon. Of the 12 strains, 7 reached high density (109 CFU/ml from an initial inoculum of less than 2 × 103) in 24 h, and 1 strain did the same in 48 h with 0.05% oleic or linoleic acid as the carbon source. These same strains also grew on 1% naphthenic petroleum oil but required up to 72 h to reach densities near 108 CFU/ml. One strain grew slightly and the others not at all on the petroleum sulfonates. The four remaining strains did not grow on any of the components, even though they were among the predominating bacteria in the contaminated system. Of the seven strains that grew best on the fatty acids and on the naphthenic petroleum oil, five were tentatively identified as Acinetobacter species and two were identified as Pseudomonas species. Four of the bacteria that did not grow were tentatively identified as species of Pseudomonas, and one could not be identified. PMID:16347072

  9. Ecofriendly biosorption of dyes and metals by bacterial biomass of Aeromonas hydrophila RC1.

    PubMed

    Busi, Siddhardha; Chatterjee, Rahul; Rajkumari, Jobina; Hnamte, Sairengpuii

    2016-03-01

    The ability of dried bacterial biomass in azo dye and heavy metal removal from aqueous solution was explored. Biosorption of three textile dyes, Eriochrome black T (EBT), Acid Red 26 (AR) and Trypan blue (TB) and heavy metals (Pb and Cr) by dried biomass of Aeromonas hydrophila RC1, was investigated in a batch system under various parameters such as dye concentration, contact time, concentration of biomass, pH, and temperature. The experimental results showed that the extent of biosorption for dyes increased with increase in initial concentration of dyes, biomass concentration, contact time, temperature and decreased with increase in pH. The experimental isotherms data were analyzed using Langmuir and Freundlich isotherm equations. The Langmuir model yielded good fit to the experimental data (R² approximately 0.794, 0.844 and 0.969 for the dyes, EBT, AR and TB, respectively) with maximum monolayer adsorption capacity of 58.8 mg g⁻¹ for AR. Similarly results were obtained for heavy metals and the data fit in Langmuir model (R² value of 0.849 and 0.787) with q(m) value of 40 mg g⁻¹ for Pb. The results fit in pseudo first order kinetics with removal upto 96.67 % for Pb. Involvement of the surface characteristics of the biomass in biosorption was studied using scanning electron micrographs, FTIR, EDX and XRD analysis. Thus, use ofA. hydrophila RC1 biomass can be extensively employed in water treatment plants in order to get desired water quality in the most economical way. PMID:27097447

  10. Aqueous phase synthesis of copper nanoparticles: a link between heavy metal resistance and nanoparticle synthesis ability in bacterial systems

    NASA Astrophysics Data System (ADS)

    Ramanathan, Rajesh; Field, Matthew R.; O'Mullane, Anthony P.; Smooker, Peter M.; Bhargava, Suresh K.; Bansal, Vipul

    2013-02-01

    We demonstrate aqueous phase biosynthesis of phase-pure metallic copper nanoparticles (CuNPs) using a silver resistant bacterium Morganella morganii. This is particularly important considering that there has been no report that demonstrates biosynthesis and stabilization of pure copper nanoparticles in the aqueous phase. Electrochemical analysis of bacterial cells exposed to Cu2+ ions provides new insights into the mechanistic aspect of Cu2+ ion reduction within the bacterial cell and indicates a strong link between the silver and copper resistance machinery of bacteria in the context of metal ion reduction. The outcomes of this study take us a step closer towards designing rational strategies for biosynthesis of different metal nanoparticles using microorganisms.We demonstrate aqueous phase biosynthesis of phase-pure metallic copper nanoparticles (CuNPs) using a silver resistant bacterium Morganella morganii. This is particularly important considering that there has been no report that demonstrates biosynthesis and stabilization of pure copper nanoparticles in the aqueous phase. Electrochemical analysis of bacterial cells exposed to Cu2+ ions provides new insights into the mechanistic aspect of Cu2+ ion reduction within the bacterial cell and indicates a strong link between the silver and copper resistance machinery of bacteria in the context of metal ion reduction. The outcomes of this study take us a step closer towards designing rational strategies for biosynthesis of different metal nanoparticles using microorganisms. Electronic supplementary information (ESI) available: Sequence similarity analysis of proteins involved in the silver and copper resistance machinery of bacteria. See DOI: 10.1039/c2nr32887a

  11. Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure.

    PubMed

    Zhang, Chang; Nie, Shuang; Liang, Jie; Zeng, Guangming; Wu, Haipeng; Hua, Shanshan; Liu, Jiayu; Yuan, Yujie; Xiao, Haibing; Deng, Linjing; Xiang, Hongyu

    2016-07-01

    Heavy metals (HMs) contamination is a serious environmental issue in wetland soil. Understanding the micro ecological characteristic of HMs polluted wetland soil has become a public concern. The goal of this study was to identify the effects of HMs and soil physicochemical properties on soil microorganisms and prioritize some parameters that contributed significantly to soil microbial biomass (SMB) and bacterial community structure. Bacterial community structure was analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Relationships between soil environment and microorganisms were analyzed by correlation analysis and redundancy analysis (RDA). The result indicated relationship between SMB and HMs was weaker than SMB and physicochemical properties. The RDA showed all eight parameters explained 74.9% of the variation in the bacterial DGGE profiles. 43.4% (contain the variation shared by Cr, Cd, Pb and Cu) of the variation for bacteria was explained by the four kinds of HMs, demonstrating HMs contamination had a significant influence on the changes of bacterial community structure. Cr solely explained 19.4% (p<0.05) of the variation for bacterial community structure, and Cd explained 17.5% (p<0.05), indicating Cr and Cd were the major factors related to bacterial community structure changes. PMID:27046142

  12. Colour removal from aqueous solutions of metal-complex azo dyes using bacterial cells of Shewanella strain J18 143.

    PubMed

    Li, Tie; Guthrie, James Thomas

    2010-06-01

    The decoloration treatment of textile dye effluents through biodegradation, using bacterial cells, has been studied as a possible means of solving some of the problems that are associated with the pollution of water sources by colorants. In this paper, the use of whole bacterial cells of Shewanella J18 143 for the reduction of aqueous solutions of selected mono-azo, metal-complex dyes, namely Irgalan Grey GLN, Irgalan Black RBLN and Irgalan Blue 3GL, was investigated. The effects of temperature, pH and dye concentration on colour removal were also investigated and shown to be important. The operative conditions for the removal of colour were 30 degrees C, at pH 6.8, with a final dye concentration of 0.12 g/L in the colour reduction system. This study provides an extension to the application of Shewanella strain J18 143 bacterial cells in the decoloration of textile wastewaters. PMID:20167478

  13. Examining trace metal contamination in an unanthropogenically impacted lake in Algonquin Park: implications for environmental bacterial communities and antibiotic resistance

    NASA Astrophysics Data System (ADS)

    Elliott, A. V.; Plach, J.; Droppo, I.; Warren, L. A.

    2009-05-01

    Identifying the biogeochemical processes influencing the interactions amongst trace metals, microbial communities, pathogenicity and antibiotic resistance (ABR) is key to predicting the emergence, dissemination and maintenance of ABR in the environmental arena. The co-selection of heavy metal resistance and ABR has been documented in metal-contaminated environments. However, as yet, little research has been conducted assessing the metal status of 'pristine' area lakes and associated environmental bacterial communities. As part of a larger project evaluating metal-bacterial-ABR-pathogen interactions, a field survey of 6 variably contaminated aquatic systems was conducted in the summer of 2008, including Brewer Lake -a highly organic, circumneutral, Fe stained lake in Algonquin Park. To our knowledge, this study is the first to assess metal concentrations for the suite of Ag, As, Cd, Co, Cu, Ni, Pb, Se, Zn amongst the water column, suspended floc and bed sediments for this lake. The characterization and sampling protocol included 1) in situ characterization of overlying water column physicochemical parameters and 2) collection of water samples, suspended flocs (by field flow centrifugation) and bed sediment samples (by core; surficial and at depth) for subsequent metal analysis. Floc- and sediment-associated metals were partitioned into 6 operationally defined solid matrix fractions by sequential extraction: the exchangeable (loosely bound); carbonate; reducible amorphous Fe/Mn hydrous oxides; reducible crystalline Fe/Mn oxides; and residual fractions. Results indicate that the partitioning of metals between solid (floc, sediments) and dissolved compartments is largely element- dependent. Mean total metal concentrations in the sediments ranged from nM (Ag,Se, Cd) to μM (As, Co, Cu, Ni, Pb, Zn) with only Cu and Co (nM) and Zn ( μM) being detected in the water column. However in all cases floc-associated metal concentrations were an order of magnitude greater than in

  14. Carbon, Metals, and Grain Size Correlate with Bacterial Community Structure in Sediments of a High Arsenic Aquifer

    PubMed Central

    Legg, Teresa M.; Zheng, Yan; Simone, Bailey; Radloff, Kathleen A.; Mladenov, Natalie; González, Antonio; Knights, Dan; Siu, Ho Chit; Rahman, M. Moshiur; Ahmed, K. Matin; McKnight, Diane M.; Nemergut, Diana R.

    2011-01-01

    Bacterial communities can exert significant influence on the biogeochemical cycling of arsenic (As). This has globally important implications since As in drinking water affects the health of over 100 million people worldwide, including in the Ganges–Brahmaputra Delta region of Bangladesh where geogenic arsenic in groundwater can reach concentrations of more than 10 times the World Health Organization’s limit. Thus, the goal of this research was to investigate patterns in bacterial community composition across gradients in sediment texture and chemistry in an aquifer with elevated groundwater As concentrations in Araihazar, Bangladesh. We characterized the bacterial community by pyrosequencing 16S rRNA genes from aquifer sediment samples collected at three locations along a groundwater flow path at a range of depths between 1.5 and 15 m. We identified significant differences in bacterial community composition between locations in the aquifer. In addition, we found that bacterial community structure was significantly related to sediment grain size, and sediment carbon (C), manganese (Mn), and iron (Fe) concentrations. Deltaproteobacteria and Chloroflexi were found in higher proportions in silty sediments with higher concentrations of C, Fe, and Mn. By contrast, Alphaproteobacteria and Betaproteobacteria were in higher proportions in sandy sediments with lower concentrations of C and metals. Based on the phylogenetic affiliations of these taxa, these results may indicate a shift to more Fe-, Mn-, and humic substance-reducers in the high C and metal sediments. It is well-documented that C, Mn, and Fe may influence the mobility of groundwater arsenic, and it is intriguing that these constituents may also structure the bacterial community. PMID:22470368

  15. Health risk assessment of heavy metals and bacterial contamination in drinking water sources: a case study of Malakand Agency, Pakistan.

    PubMed

    Nawab, Javed; Khan, Sardar; Ali, Sharafat; Sher, Hassan; Rahman, Ziaur; Khan, Kifayatullah; Tang, Jianfeng; Ahmad, Aziz

    2016-05-01

    Human beings are frequently exposed to pathogens and heavy metals through ingestion of contaminated drinking water throughout the world particularly in developing countries. The present study aimed to assess the quality of water used for drinking purposes in Malakand Agency, Pakistan. Water samples were collected from different sources (dug wells, bore wells, tube wells, springs, and hand pumps) and analyzed for different physico-chemical parameters and bacterial pathogens (fecal coliform bacteria) using standard methods, while heavy metals were analyzed using atomic absorption spectrophotometry (AAS-PEA-700). In the study area, 70 % of water sources were contaminated with F. coliform representing high bacterial contamination. The heavy metals, such as Cd (29 and 8 %), Ni (16 and 78 %), and Cr (7 %), exceeded their respective safe limits of WHO (2006) and Pak-EPA (2008), respectively, in water sources, while Pb (9 %) only exceeded from WHO safe limit. The risk assessment tools such as daily intake of metals (DIMs) and health risk indexes (HRIs) were used for health risk estimation and were observed in the order of Ni > Cr > Mn > Pb > Cd and Cd > Ni > Pb > Mn > Cr, respectively. The HRI values of heavy metals for both children and adults were <1, showing lack of potential health risk to the local inhabitants of the study area. PMID:27075311

  16. Pyrosequencing analysis of bacterial diversity in soils contaminated long-term with PAHs and heavy metals: Implications to bioremediation.

    PubMed

    Kuppusamy, Saranya; Thavamani, Palanisami; Megharaj, Mallavarapu; Venkateswarlu, Kadiyala; Lee, Yong Bok; Naidu, Ravi

    2016-11-01

    Diversity, distribution and composition of bacterial community of soils contaminated long-term with both polycyclic aromatic hydrocarbons (PAHs) and heavy metals were explored for the first time following 454 pyrosequencing. Strikingly, the complete picture of the Gram positive (+ve) and Gram negative (-ve) bacterial profile obtained in our study illustrates novel postulates that include: (1) Metal-tolerant and PAH-degrading Gram -ves belonging to the class Alphaproteobacteria persist relatively more in the real contaminated sites compared to Gram +ves, (2) Gram +ves are not always resistant to heavy metal toxicity, (3) Stenotrophomonas followed by Burkholderia and Pseudomonas are the dominant genera of PAH degraders with high metabolic activity in long-term contaminated soils, (4) Actinobacteria is the predominant group among the Gram +ves in soils contaminated with high molecular weight PAHs that co-exist with toxic heavy metals like Pb, Cu and Zn, (5) Microbial communities are nutrient-driven in natural environments and (6) Catabolically potential Gram +/-ves with diverse applicability to remediate the real contaminated sites evolve eventually in the historically-polluted soils. Thus, the most promising indigenous Gram +/-ve strains from the long-term contaminated sites with increased catabolic potential, enzymatic activity and metal tolerance need to be harnessed for mixed contaminant cleanups. PMID:27267691

  17. Enhancement of Bacterial Transport in Aerobic and Anaerobic Environments: Assessing the Effect of Metal Oxide Chemical Heterogeneities

    SciTech Connect

    T.C. Onstott

    2005-09-30

    The goal of our research was to understand the fundamental processes that control microbial transport in physically and chemically heterogeneous aquifers and from this enhanced understanding determine the requirements for successful, field-scale delivery of microorganisms to metal contaminated subsurface sites. Our specific research goals were to determine; (1) the circumstances under which the preferential adsorption of bacteria to Fe, Mn, and Al oxyhydroxides influences field-scale bacterial transport, (2) the extent to which the adhesion properties of bacterial cells affect field-scale bacterial transport, (3) whether microbial Fe(III) reduction can enhance field-scale transport of Fe reducing bacteria (IRB) and other microorganisms and (4) the effect of field-scale physical and chemical heterogeneity on all three processes. Some of the spin-offs from this basic research that can improve biostimulation and bioaugmentation remediation efforts at contaminated DOE sites have included; (1) new bacterial tracking tools for viable bacteria; (2) an integrated protocol which combines subsurface characterization, laboratory-scale experimentation, and scale-up techniques to accurately predict field-scale bacterial transport; and (3) innovative and inexpensive field equipment and methods that can be employed to enhance Fe(III) reduction and microbial transport and to target microbial deposition under both aerobic and anaerobic conditions.

  18. Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater

    PubMed Central

    2013-01-01

    Background Heavy-metals exert considerable stress on the environment worldwide. This study assessed the resistance to and bioremediation of heavy-metals by selected protozoan and bacterial species in highly polluted industrial-wastewater. Specific variables (i.e. chemical oxygen demand, pH, dissolved oxygen) and the growth/die-off-rates of test organisms were measured using standard methods. Heavy-metal removals were determined in biomass and supernatant by the Inductively Couple Plasma Optical Emission Spectrometer. A parallel experiment was performed with dead microbial cells to assess the biosorption ability of test isolates. Results The results revealed that the industrial-wastewater samples were highly polluted with heavy-metal concentrations exceeding by far the maximum limits (in mg/l) of 0.05-Co, 0.2-Ni, 0.1-Mn, 0.1-V, 0.01-Pb, 0.01-Cu, 0.1-Zn and 0.005-Cd, prescribed by the UN-FAO. Industrial-wastewater had no major effects on Pseudomonas putida, Bacillus licheniformis and Peranema sp. (growth rates up to 1.81, 1.45 and 1.43 d-1, respectively) compared to other test isolates. This was also revealed with significant COD increases (p < 0.05) in culture media inoculated with living bacterial isolates (over 100%) compared to protozoan isolates (up to 24% increase). Living Pseudomonas putida demonstrated the highest removal rates of heavy metals (Co-71%, Ni-51%, Mn-45%, V-83%, Pb-96%, Ti-100% and Cu-49%) followed by Bacillus licheniformis (Al-23% and Zn-53%) and Peranema sp. (Cd-42%). None of the dead cells were able to remove more than 25% of the heavy metals. Bacterial isolates contained the genes copC, chrB, cnrA3 and nccA encoding the resistance to Cu, Cr, Co-Ni and Cd-Ni-Co, respectively. Protozoan isolates contained only the genes encoding Cu and Cr resistance (copC and chrB genes). Peranema sp. was the only protozoan isolate which had an additional resistant gene cnrA3 encoding Co-Ni resistance. Conclusion Significant differences (p < 0

  19. Soluble metals in residual oil fly ash alter innate and adaptive pulmonary immune responses to bacterial infection in rats

    SciTech Connect

    Roberts, Jenny R. . E-mail: jur6@cdc.gov; Young, Shih-Houng; Castranova, Vincent; Antonini, James M.

    2007-06-15

    The soluble metals of the pollutant, residual oil fly ash (ROFA), have been shown to alter pulmonary bacterial clearance in rats. The goal of this study was to determine the potential effects on both the innate and adaptive lung immune responses after bacterial infection in rats pre-exposed to the soluble metals in ROFA. Sprague-Dawley rats were intratracheally dosed (i.t.) at day 0 with ROFA (R-Total) (1.0 mg/100 g body weight), the soluble fraction of ROFA (R-Soluble), the soluble sample subject to a chelator (R-Chelex), or phosphate-buffered saline (Saline). On day 3, rats were administered an i.t. dose of 5 x 10{sup 4} Listeria monocytogenes. On days 6, 8, and 10, bacterial pulmonary clearance was monitored and bronchoalveolar lavage (BAL) was performed on days 3 (pre-infection), 6, 8, and 10. A concentrated first fraction of lavage fluid was retained for analysis of lactate dehydrogenase and albumin to assess lung injury. BAL cell number, phenotype, and production of reactive oxygen (ROS) and nitrogen species (RNS) were assessed, and a variety of cytokines were measured in the BAL fluid. Rats pre-treated with R-Soluble showed elevated lung injury/cytotoxicity and increased cellular influx into the lungs. R-Soluble-treatment also altered ROS, RNS, and cytokine levels, and caused a degree of macrophage and T cell inhibition. These effects of R-Soluble result in increased pulmonary bacterial burden after infection. The results suggest that soluble metals in ROFA increase lung injury and inflammation, and alter both innate and adaptive pulmonary immune responses.

  20. Composition, Reactivity and Regulation of Extracellular Metal-Reducing Structures (Bacterial Nanowires) Produced by Dissimilatory Metal - Reducing Bacteria

    SciTech Connect

    Beveridge, Terrance J.

    2004-06-01

    Approach. Previously, using conventional and cryoTEM techniques, surface physicochemistry assays, NMR structural analysis, etc., we showed that the structure and composition of Shewanella's lipopolysaccharide (LPS) and capsular polysaccharide (PS) significantly determined overall cell surface physicochemistry. In our study a strong correlation between such macroscopic parameters as surface electronegativity, hydrophobicity or hydrophilicity, and bacterial adhesion to hematite was observed. Rough LPS strains exhibited more than an order higher affinity and maximal sorption capacity to hematite when compared to encapsulated strains. These general trends, however, characterize bacterial adhesion only as a bulk process, being unable to reveal finer mechanisms taking place at the level of an individual cell. Cell surface physicochemical and structural heterogeneity suggests much more complex interactions at the bacterial-mineral interface than predicted by such approaches operating within macroscopic parameters.

  1. Functional diversity and dynamics of bacterial communities in a membrane bioreactor for the treatment of metal-working fluid wastewater.

    PubMed

    Grijalbo, Lucía; Garbisu, Carlos; Martín, Iker; Etxebarria, Javier; Gutierrez-Mañero, F Javier; Lucas Garcia, Jose Antonio

    2015-12-01

    An extensive microbiological study has been carried out in a membrane bioreactor fed with activated sludge and metal-working fluids. Functional diversity and dynamics of bacterial communities were studied with different approaches. Functional diversity of culturable bacterial communities was studied with different Biolog™ plates. Structure and dynamics of bacterial communities were studied in culturable and in non-culturable fractions using a 16S rRNA analysis. Among the culturable bacteria, Alphaproteobacteria and Gammaproteobacteria were the predominant classes. However, changes in microbial community structure were detected over time. Culture-independent analysis showed that Betaproteobacteria was the most frequently detected class in the membrane bioreactor (MBR) community with Zoogloea and Acidovorax as dominant genera. Also, among non-culturable bacteria, a process of succession was observed. Longitudinal structural shifts observed were more marked for non-culturable than for culturable bacteria, pointing towards an important role in the MBR performance. Microbial community metabolic abilities assessed with Biolog™ Gram negative, Gram positive and anaerobic plates also showed differences over time for Shannon's diversity index, kinetics of average well colour development, and the intensely used substrates by bacterial community in each plate. PMID:26608762

  2. Respiration in Aquatic Insects.

    ERIC Educational Resources Information Center

    MacFarland, John

    1985-01-01

    This article: (1) explains the respiratory patterns of several freshwater insects; (2) describes the differences and mechanisms of spiracular cutaneous, and gill respiration; and (3) discusses behavioral aspects of selected aquatic insects. (ML)

  3. Variability In Marine Plankton Community Respiration and The Effects On Carbon Fluxes

    NASA Astrophysics Data System (ADS)

    Robinson, Carol

    In order to divide the amount of photosynthetically fixed carbon between that which is simply recycled back to carbon dioxide and that which is exported to the oceanSs interior, it is important to understand the spatial and temporal variability of plankton respiration and how this relates to community structure and substrate supply. While measurements of community respiration constrain the maximum respiration rate and minimum growth efficiency of each microbial group within the plankton, an improved understanding of the transfer of carbon through the complex planktonic food web would be achieved if the respiration of each of the microbial groups within the plankton was known. Unfortunately, there are few studies directly apportioning community respiration to trophic group, and such accounting exercises are highly de- pendent upon the substrate utilisation efficiencies used. Whereas some studies advo- cate bacterial respiration to be the major component of community respiration, algal respiration is thought to account for the majority of community respiration in some eutrophic ecosystems. The present study analyses measurements of community respiration made in inter- disciplinary research programs in shelf seas, coastal upwelling regions and the open ocean. The specific objectives were to relate the magnitude and variability of commu- nity respiration to bacterial, algal and microzooplankton biomass and activity and to investigate the use of indicator measurements to predict community respiration.

  4. Effect of bacterial inoculation of strains of Pseudomonas aeruginosa, Alcaligenes feacalis and Bacillus subtilis on germination, growth and heavy metal (Cd, Cr, and Ni) uptake of Brassica juncea.

    PubMed

    Ndeddy Aka, Robinson Junior; Babalola, Olubukola Oluranti

    2016-01-01

    Bacterial inoculation may influence Brassica juncea growth and heavy metal (Ni, Cr, and Cd) accumulation. Three metal tolerant bacterial isolates (BCr3, BCd33, and BNi11) recovered from mine tailings, identified as Pseudomonas aeruginosa KP717554, Alcaligenes feacalis KP717561, and Bacillus subtilis KP717559 were used. The isolates exhibited multiple plant growth beneficial characteristics including the production of indole-3-acetic acid, hydrogen cyanide, ammonia, insoluble phosphate solubilization together with the potential to protect plants against fungal pathogens. Bacterial inoculation improved seeds germination of B. juncea plant in the presence of 0.1 mM Cr, Cd, and Ni, as compared to the control treatment. Compared with control treatment, soil inoculation with bacterial isolates significantly increased the amount of soluble heavy metals in soil by 51% (Cr), 50% (Cd), and 44% (Ni) respectively. Pot experiment of B. juncea grown in soil spiked with 100 mg kg(-1) of NiCl2, 100 mg kg(-1) of CdCl2, and 150 mg kg(-1) of K2Cr2O7, revealed that inoculation with metal tolerant bacteria not only protected plants against the toxic effects of heavy metals, but also increased growth and metal accumulation of plants significantly. These findings suggest that such metal tolerant, plant growth promoting bacteria are valuable tools which could be used to develop bio-inoculants for enhancing the efficiency of phytoextraction. PMID:26503637

  5. Uncovering the transmembrane metal binding site of the novel bacterial major facilitator superfamily-type copper importer CcoA

    DOE PAGESBeta

    Khalfaoui-Hassani, Bahia; Verissimo, Andreia F.; Koch, Hans -Georg; Daldal, Fevzi

    2016-01-19

    In this study, uptake and trafficking of metals and their delivery to their respective metalloproteins are important processes. Cells need precise control of each step to avoid exposure to excessive metal concentrations and their harmful consequences. Copper (Cu) is a required micronutrient used as a cofactor in proteins. However, in large amounts, it can induce oxidative damage; hence, Cu homeostasis is indispensable for cell survival. Biogenesis of respiratory heme-Cu oxygen (HCO) reductases includes insertion of Cu into their catalytic subunits to form heme-Cu binuclear centers. Previously, we had shown that CcoA is a major facilitator superfamily (MFS)-type bacterial Cu importermore » required for biogenesis of cbb3-type cytochromecoxidase (cbb3-Cox). Here, using Rhodobacter capsulatus, we focused on the import and delivery of Cu to cbb3-Cox. By comparing the CcoA amino acid sequence with its homologues from other bacterial species, we located several well-conserved Met, His, and Tyr residues that might be important for Cu transport. We determined the topology of the transmembrane helices that carry these residues to establish that they are membrane embedded, and substituted for them amino acids that do not ligand metal atoms. Characterization of these mutants for their uptake of radioactive64Cu and cbb3-Cox activities demonstrated that Met233 and His261 of CcoA are essential and Met237 and Met265 are important, whereas Tyr230 has no role for Cu uptake or cbb3-Cox biogenesis. These findings show for the first time that CcoA-mediated Cu import relies on conserved Met and His residues that could act as metal ligands at the membrane-embedded Cu binding domain of this transporter.« less

  6. Uncovering the Transmembrane Metal Binding Site of the Novel Bacterial Major Facilitator Superfamily-Type Copper Importer CcoA

    PubMed Central

    Khalfaoui-Hassani, Bahia; Verissimo, Andreia F.; Koch, Hans-Georg

    2016-01-01

    ABSTRACT Uptake and trafficking of metals and their delivery to their respective metalloproteins are important processes. Cells need precise control of each step to avoid exposure to excessive metal concentrations and their harmful consequences. Copper (Cu) is a required micronutrient used as a cofactor in proteins. However, in large amounts, it can induce oxidative damage; hence, Cu homeostasis is indispensable for cell survival. Biogenesis of respiratory heme-Cu oxygen (HCO) reductases includes insertion of Cu into their catalytic subunits to form heme-Cu binuclear centers. Previously, we had shown that CcoA is a major facilitator superfamily (MFS)-type bacterial Cu importer required for biogenesis of cbb3-type cytochrome c oxidase (cbb3-Cox). Here, using Rhodobacter capsulatus, we focused on the import and delivery of Cu to cbb3-Cox. By comparing the CcoA amino acid sequence with its homologues from other bacterial species, we located several well-conserved Met, His, and Tyr residues that might be important for Cu transport. We determined the topology of the transmembrane helices that carry these residues to establish that they are membrane embedded, and substituted for them amino acids that do not ligand metal atoms. Characterization of these mutants for their uptake of radioactive 64Cu and cbb3-Cox activities demonstrated that Met233 and His261 of CcoA are essential and Met237 and Met265 are important, whereas Tyr230 has no role for Cu uptake or cbb3-Cox biogenesis. These findings show for the first time that CcoA-mediated Cu import relies on conserved Met and His residues that could act as metal ligands at the membrane-embedded Cu binding domain of this transporter. PMID:26787831

  7. Whole-cell bacterial biosensors for rapid and effective monitoring of heavy metals and inorganic pollutants in wastewater.

    PubMed

    Olaniran, Ademola O; Hiralal, Lettisha; Pillay, Balakrishna

    2011-10-01

    The increasing number of potentially harmful pollutants in the wastewater effluent discharge necessitates the need for the development of fast and cost effective analytical techniques for extensive monitoring programmes to assess the effectiveness of the treatment process. This study compared the use of bacterial biosensors to the conventional Daphnia magna assay, Chemical Oxygen Demand (COD) and Biochemical Oxygen Demand (BOD) tests as well as chemical analysis, for monitoring the toxicity of wastewater. The bacterial biosensors constructed in this study, using S. sonnei and E. coli, were found to be sensitive to the toxicity of the wastewater effluents. A linear increase in bioluminescence with increasing concentration of heavy metals and inorganic pollutants in water was observed, with a correlation coefficient (r(2)) as high as 0.995 and 0.997, respectively. No notable correlation between biosensor toxicity and BOD and COD test results was observed. These bacterial biosensors could provide appropriate alternatives for a rapid, sensitive and cost effective detection of wastewater quality. However, the differences in sensitivity obtained for the different systems suggest that the use of a battery of toxicity assays may be required to provide a real ecotoxicological assessment of wastewater samples. PMID:21904738

  8. Direct Metal Transfer between Periplasmic Proteins Identifies a Bacterial Copper Chaperone†

    PubMed Central

    Bagai, Ireena; Rensing, Christopher; Blackburn, Ninian J.; McEvoy, Megan M.

    2008-01-01

    Transition metals require exquisite handling within cells to ensure that cells are not harmed by an excess of free metal species. In gram-negative bacteria, copper is only required in low amounts in the periplasm, not in the cytoplasm, so a key aspect of protection under excess metal conditions is to export copper from the periplasm. Additional protection could be conferred by a periplasmic chaperone in order to limit the free metal species prior to export. Using isothermal titration calorimetry, we have demonstrated that two periplasmic proteins, CusF and CusB, of the E. coli Cu(I)/Ag(I) efflux system undergo a metal dependent interaction. Through the development of a novel X-ray absorption spectroscopy approach using selenomethionine labeling to distinguish the metal sites of the two proteins, we have demonstrated transfer of Cu(I) occurs between CusF and CusB. The interaction between these proteins is highly specific, as a homolog of CusF with 51% sequence identity and similar affinity for metal, did not function in metal transfer. These experiments establish a metallochaperone activity for CusF in the periplasm of gram-negative bacteria, serving to protect the periplasm from metal-mediated damage. PMID:18847219

  9. Enhanced Bioaccumulation of Heavy Metal Ions by Bacterial Cells Due to Surface Display of Short Metal Binding Peptides

    PubMed Central

    Kotrba, Pavel; Dolečková, Lucie; de Lorenzo, Víctor; Ruml, Tomas

    1999-01-01

    Metal binding peptides of sequences Gly-His-His-Pro-His-Gly (named HP) and Gly-Cys-Gly-Cys-Pro-Cys-Gly-Cys-Gly (named CP) were genetically engineered into LamB protein and expressed in Escherichia coli. The Cd2+-to-HP and Cd2+-to-CP stoichiometries of peptides were 1:1 and 3:1, respectively. Hybrid LamB proteins were found to be properly folded in the outer membrane of E. coli. Isolated cell envelopes of E. coli bearing newly added metal binding peptides showed an up to 1.8-fold increase in Cd2+ binding capacity. The bioaccumulation of Cd2+, Cu2+, and Zn2+ by E. coli was evaluated. Surface display of CP multiplied the ability of E. coli to bind Cd2+ from growth medium fourfold. Display of HP peptide did not contribute to an increase in the accumulation of Cu2+ and Zn2+. However, Cu2+ ceased contribution of HP for Cd2+ accumulation, probably due to the strong binding of Cu2+ to HP. Thus, considering the cooperation of cell structures with inserted peptides, the relative affinities of metal binding peptide and, for example, the cell wall to metal ion should be taken into account in the rational design of peptide sequences possessing specificity for a particular metal. PMID:10049868

  10. Enhanced bioaccumulation of heavy metal ions by bacterial cells due to surface display of short metal binding peptides

    SciTech Connect

    Kotrba, P.; Ruml, T.; Doleckova, L.; Lorenzo, V. de

    1999-03-01

    Metal binding peptides of sequences Gly-His-His-Pro-His-Gly (named HP) and Gly-Cys-Gly-Cys-Pro-Cys-Gly-Cys-Gly (named CP) were genetically engineered into LamB protein and expressed in Escherichia coli. The Cd{sup 2+}-to-HP and Cd{sup 2+}-to-CP stoichiometries of peptides were 1:1 and 3:1, respectively. Hybrid LamB proteins were found to be properly folded in the outer membrane of E. coli. Isolated cell envelopes of E. coli bearing newly added metal binding peptides showed an up to 1.8-fold increase in Cd{sup 2+} binding capacity. The bioaccumulation of Cd{sup 2+}, Cu{sup 2+}, and Zn{sup 2+} by E. coli was evaluated. Surface display of CP multiplied the ability of E. coli to bind Cd{sup 2+} from growth medium fourfold. Display of HP peptide did not contribute to an increase in the accumulation of Cu{sup 2+} and Zn{sup 2+}. However, Cu{sup 2+} ceased contribution of HP for Cd{sup 2+} accumulation, probably due to the strong binding of Cu{sup 2+} to HP. Thus, considering the cooperation of cell structures with inserted peptides, the relative affinities of metal binding peptide and, for example, the cell wall to metal ion should be taken into account in the rational design of peptide sequences possessing specificity for a particular metal.

  11. Study of canal sediments contaminated with heavy metals: fungal versus bacterial bioleaching techniques.

    PubMed

    Sabra, Nada; Dubourguier, Henri-Charles; Duval, Marie-Nadège; Hamieh, Tayssir

    2011-01-01

    Filamentous fungi and lithotrophic bacteria were used to leach heavy metals from dredged sediments in semi-pilot scale air-lift bioreactors. A preliminary physico-chemical characterization of the sediments comprising a sequential extraction study revealed their high metallic contamination and a predominant association of the metals with sulphides and organic matter. The mobility of heavy metals from sediments was ranked by decreasing order as follows: Mn > Zn > Cd > Cu > Pb. The conditions that favoured the solubilization of heavy metals by filamentous fungi turned out to be also favourable for the activity of the sediment organotrophic bacteria. The latter produced organic acids under temporary hypoxic conditions and resulted in the solubilization of 77% of manganese, 44% of zinc, 12% of copper, and less than 2% of cadmium or lead. In general, the fungal organotrophic treatments were limited to the relatively mobile metals due to the weak nature of the organic acids produced and to their microbial consumption under limited saccharose conditions. The lithotrophic treatments yielded higher solubilization results than the organotrophic experiments. Sulphur resulted in a faster, and for some metals such as copper and cadmium, in better bioleaching results compared with reduced iron or with a combination of reduced iron and sulphur. The bioleaching percentages varied between 72 and 93% for cadmium, copper, manganese and zinc, except for lead because of the poor solubility of lead sulphate. The sediment's lithotrophic bacteria acidified the matrix through sulphur oxidation, and leached both loosely and tightly bound metals. PMID:21970173

  12. Mercury and other heavy metals influence bacterial community structure in contaminated Tennessee streams

    SciTech Connect

    Vishnivetskaya, Tatiana A; Mosher, Jennifer J; Palumbo, Anthony Vito; Yang, Zamin; Podar, Mircea; Brown, Steven D; Brooks, Scott C; Gu, Baohua; Southworth, George R; Drake, Meghan M; Brandt, Craig C; Elias, Dwayne A

    2011-01-01

    High concentrations of uranium, inorganic mercury [Hg(II)], and methylmercury (MeHg) have been detected in streams located in the Department of Energy reservation in Oak Ridge, TN. To determine the potential effects of the surface water contamination on the microbial community composition, surface stream sediments were collected 7 times during the year, from 5 contaminated locations and 1 control stream. Fifty-nine samples were analyzed for bacterial community composition and geochemistry. Community characterization was based on GS 454 FLX pyrosequencing with 235 Mb of 16S rRNA gene sequence targeting the V4 region. Sorting and filtering of the raw reads resulted in 588,699 high-quality sequences with lengths of >200 bp. The bacterial community consisted of 23 phyla, including Proteobacteria (ranging from 22.9 to 58.5% per sample), Cyanobacteria (0.2 to 32.0%), Acidobacteria (1.6 to 30.6%), Verrucomicrobia (3.4 to 31.0%), and unclassified bacteria. Redundancy analysis indicated no significant differences in the bacterial community structure between midchannel and near-bank samples. Significant correlations were found between the bacterial community and seasonal as well as geochemical factors. Furthermore, several community members within the Proteobacteria group that includes sulfate-reducing bacteria and within the Verrucomicrobia group appeared to be associated positively with Hg and MeHg. This study is the first to indicate an influence of MeHg on the in situ microbial community and suggests possible roles of these bacteria in the Hg/MeHg cycle.

  13. Expressing a bacterial mercuric ion binding protein in plant for phytoremediation of heavy metals.

    PubMed

    Hsieh, Ju-Liang; Chen, Ching-Yi; Chiu, Meng-Hsuen; Chein, Mei-Fang; Chang, Jo-Shu; Endo, Ginro; Huang, Chieh-Chen

    2009-01-30

    A specific mercuric ion binding protein (MerP) originating from transposon TnMERI1 of Bacillus megaterium strain MB1 isolated from Minamata Bay displayed good adsorption capability for a variety of heavy metals. In this study, the Gram-positive MerP protein was expressed in transgenic Arabidopsis to create a model system for phytoremediation of heavy metals. Under control of an actin promoter, the transgenic Arabidpsis showed higher tolerance and accumulation capacity for mercury, cadium and lead when compared with the control plant. Results from confocal microscopy analysis also indicate that MerP was localized at the cell membrane and vesicles of plant cells. The developed transgenic plants possessing excellent metal-accumulative ability could have potential applications in decontamination of heavy metals. PMID:18538925

  14. Impact of hydrocarbons, PCBs and heavy metals on bacterial communities in Lerma River, Salamanca, Mexico: Investigation of hydrocarbon degradation potential.

    PubMed

    Brito, Elcia M S; De la Cruz Barrón, Magali; Caretta, César A; Goñi-Urriza, Marisol; Andrade, Leandro H; Cuevas-Rodríguez, Germán; Malm, Olaf; Torres, João P M; Simon, Maryse; Guyoneaud, Remy

    2015-07-15

    Freshwater contamination usually comes from runoff water or direct wastewater discharges to the environment. This paper presents a case study which reveals the impact of these types of contamination on the sediment bacterial population. A small stretch of Lerma River Basin, heavily impacted by industrial activities and urban wastewater release, was studied. Due to industrial inputs, the sediments are characterized by strong hydrocarbon concentrations, ranging from 2 935 to 28 430μg·kg(-1) of total polyaromatic hydrocarbons (PAHs). These sediments are also impacted by heavy metals (e.g., 9.6μg·kg(-1) of Cd and 246μg·kg(-1) of Cu, about 8 times the maximum recommended values for environmental samples) and polychlorinated biphenyls (ranging from 54 to 123μg·kg(-1) of total PCBs). The bacterial diversity on 6 sediment samples, taken from upstream to downstream of the main industrial and urban contamination sources, was assessed through TRFLP. Even though the high PAH concentrations are hazardous to aquatic life, they are not the only factor driving bacterial community composition in this ecosystem. Urban discharges, leading to hypoxia and low pH, also strongly influenced bacterial community structure. The bacterial bioprospection of these samples, using PAH as unique carbon source, yielded 8 hydrocarbonoclastic strains. By sequencing the 16S rDNA gene, these were identified as similar to Mycobacterium goodii, Pseudomonas aeruginosa, Pseudomonas lundensis or Aeromonas veronii. These strains showed high capacity to degrade naphthalene (between 92 and 100% at 200mg·L(-1)), pyrene (up to 72% at 100mg·L(-1)) and/or fluoranthene (52% at 50mg·L(-1)) as their only carbon source on in vitro experiments. These hydrocarbonoclastic bacteria were detected even in the samples upstream of the city of Salamanca, suggesting chronical contamination, already in place longer before. Such microorganisms are clearly potential candidates for hydrocarbon degradation in the

  15. Application of a bacterial extracellular polymeric substance in heavy metal adsorption in a co-contaminated aqueous system

    PubMed Central

    de Oliveira Martins, Paula Salles; de Almeida, Narcisa Furtado; Leite, Selma Gomes Ferreira

    2008-01-01

    The application of a bacterial extracellular polymeric substance (EPS) in the bioremediation of heavy metals (Cd, Zn and Cu) by a microbial consortium in a hydrocarbon co-contaminated aqueous system was studied. At the low concentrations used in this work (1.00 ppm of each metal), it was not observed an inhibitory effect on the cellular growing. In the other hand, the application of the EPS lead to a lower concentration of the free heavy metals in solution, once a great part of them is adsorbed in the polymeric matrix (87.12% of Cd; 19.82% of Zn; and 37.64% of Cu), when compared to what is adsorbed or internalized by biomass (5.35% of Cd; 47.35% of Zn; and 24.93% of Cu). It was noted an increase of 24% in the consumption of ethylbenzene, among the gasoline components that were quantified, in the small interval of time evaluated (30 hours). Our results suggest that, if the experiments were conducted in a larger interval of time, it would possibly be noted a higher effect in the degradation of gasoline compounds. Still, considering the low concentrations that were evaluated, it is possible that a real system could be bioremediated by natural attenuation process, demonstrated by the low effect of those levels of contaminants and co-contaminants over the naturally present microbial consortium. PMID:24031307

  16. A simple synthesis method to produce metal oxide loaded carbon paper using bacterial cellulose gel and characterization of its electrochemical behavior in an aqueous electrolyte

    NASA Astrophysics Data System (ADS)

    Miyajima, Naoya; Jinguji, Ken; Matsumura, Taiyu; Matsubara, Toshihiro; Sakane, Hideto; Akatsu, Takashi; Tanaike, Osamu

    2016-04-01

    A simple synthetic chemical process to produce metal oxide loaded carbon papers was developed using bacterial cellulose gel, which consisted of nanometer-sized fibrous cellulose and water. Metal ions were successfully impregnated into the gel via aqueous solution media before drying and carbonization methods resulting in metal oxide contents that were easy to control through variations in the concentration of aqueous solutions. The papers loaded by molybdenum oxides were characterized as pseudocapacitor electrodes preliminary, and the large redox capacitance of the oxides was followed by a conductive fibrous carbon substrate, suggesting that a binder and carbon black additive-free electrode consisting of metal oxides and carbon paper was formed.

  17. Remobilization of toxic heavy metals adsorbed to bacterial wall-clay composites.

    PubMed Central

    Flemming, C A; Ferris, F G; Beveridge, T J; Bailey, G W

    1990-01-01

    Significant quantities of Ag(I), Cu(II), and Cr(III) were bound to isolated Bacillus subtilis 168 walls, Escherichia coli K-12 envelopes, kaolinite and smectite clays, and the corresponding organic material-clay aggregates (1:1, wt/wt). These sorbed metals were leached with HNO3, Ca(NO3)2, EDTA, fulvic acid, and lysozyme at several concentrations over 48 h at room temperature. The remobilization of the sorbed metals depended on the physical properties of the organic and clay surfaces and on the character and concentration of the leaching agents. In general, the order of remobilization of metals was Cr much less than Ag less than Cu. Cr was very stable in the wall, clay, and composite systems; pH 3.0, 500 microM EDTA, 120-ppm [mg liter-1] fulvic acid, and 160-ppm Ca remobilized less than 32% (wt/wt) of sorbed Cr. Ag (45 to 87%) and Cu (up to 100%) were readily removed by these agents. Although each leaching agent was effective at mobilizing certain metals, elevated Ca or acidic pH produced the greatest overall mobility. The organic chelators were less effective. Lysozyme digestion of Bacillus walls remobilized Cu from walls and Cu-wall-kaolinite composites, but Ag, Cr, and smectite partially inhibited enzyme activity, and the metals remained insoluble. The extent of metal remobilization was not always dependent on increasing concentrations of leaching agents; for example, Ag mobility decreased with some clays and some composites treated with high fulvic acid, EDTA, and lysozyme concentrations. Sometimes the organic material-clay composites reacted in a manner distinctly different from that of their individual counterparts; e.g., 25% less Cu was remobilized from wall- and envelope-smectite composites than from walls, envelopes, or smectite individually in 500 microM EDTA. Alternatively, treatment with 160-ppm Ca removed 1.5 to 10 times more Ag from envelope-kaolinite composites than from the individual components. The particle size of the deposited metal may account

  18. Accumulation of clinically relevant antibiotic-resistance genes, bacterial load, and metals in freshwater lake sediments in Central Europe.

    PubMed

    Devarajan, Naresh; Laffite, Amandine; Graham, Neil D; Meijer, Maria; Prabakar, Kandasamy; Mubedi, Josué I; Elongo, Vicky; Mpiana, Pius T; Ibelings, Bastiaan Willem; Wildi, Walter; Poté, John

    2015-06-01

    Wastewater treatment plants (WWTP) receive the effluents from various sources (communities, industrial, and hospital effluents) and are recognized as reservoir for antibiotic-resistance genes (ARGs) that are associated with clinical pathogens. The aquatic environment is considered a hot-spot for horizontal gene transfer, and lake sediments offer the opportunity for reconstructing the pollution history and evaluating the impacts. In this context, variation with depth and time of the total bacterial load, the abundance of faecal indicator bacteria (FIB; E. coli and Enterococcus spp. (ENT)), Pseudomonas spp., and ARGs (blaTEM, blaSHV, blaCTX-M, blaNDM, and aadA) were quantified in sediment profiles of different parts of Lake Geneva using quantitative PCR. The abundance of bacterial marker genes was identified in sediments contaminated by WWTP following eutrophication of the lake. Additionally, ARGs, including the extended-spectrum ß-lactam- and aminoglycoside-resistance genes, were identified in the surface sediments. The ARG and FIB abundance strongly correlated (r ≥ 0.403, p < 0.05, n = 34) with organic matter and metal concentrations in the sediments, indicating a common and contemporary source of contamination. The contamination of sediments by untreated or partially treated effluent water can affect the quality of ecosystem. Therefore, the reduction of contaminants from the source is recommended for further improvement of water quality. PMID:25933054

  19. Bacterial inoculants for enhanced seed germination of Spartina densiflora: Implications for restoration of metal polluted areas.

    PubMed

    Paredes-Páliz, Karina I; Pajuelo, Eloísa; Doukkali, Bouchra; Caviedes, Miguel Ángel; Rodríguez-Llorente, Ignacio D; Mateos-Naranjo, Enrique

    2016-09-15

    The design of effective phytoremediation programs is severely hindered by poor seed germination on metal polluted soils. The possibility that inoculation with plant growth promoting rhizobacteria (PGPR) could help overcoming this problem is hypothesized. Our aim was investigating the role of PGPR in Spartina densiflora seed germination on sediments with different physicochemical characteristics and metal pollution degrees. Gram negative Pantoea agglomerans RSO6 and RSO7, and gram positive Bacillus aryabhattai RSO25, together with the consortium of the three strains, were used for independent inoculation experiments. The presence of metals (As, Cu, Pb and Zn) in sediments reduced seed germination by 80%. Inoculation with Bacillus aryabhattai RSO25 or Pantoea agglomerans RSO6 and RSO7 enhanced up to 2.5 fold the germination rate of S. densiflora in polluted sediments regarding non-inoculated controls. Moreover, the germination process was accelerated and the germination period was extended. The consortium did not achieve further improvements in seed germination. PMID:27315751

  20. Ex Situ Formation of Metal Selenide Quantum Dots Using Bacterially Derived Selenide Precursors

    SciTech Connect

    Fellowes, Jonathan W.; Pattrick, Richard; Lloyd, Jon; Charnock, John M.; Coker, Victoria S.; Mosselmans, JFW; Weng, Tsu-Chien; Pearce, Carolyn I.

    2013-04-12

    Luminescent quantum dots were synthesized using bacterially derived selenide (SeII-) as the precursor. Biogenic SeII- was produced by the reduction of Se-IV by Veillonella atypica and compared directly against borohydride-reduced Se-IV for the production of glutathione-stabilized CdSe and beta-mercaptoethanol-stabilized ZnSe nanoparticles by aqueous synthesis. Biological SeII- formed smaller, narrower size distributed QDs under the same conditions. The growth kinetics of biologically sourced CdSe phases were slower. The proteins isolated from filter sterilized biogenic SeII- included a methylmalonyl-CoA decarboxylase previously characterized in the closely related Veillonella parvula. XAS analysis of the glutathione-capped CdSe at the S K-edge suggested that sulfur from the glutathione was structurally incorporated within the CdSe. A novel synchrotron based XAS technique was also developed to follow the nucleation of biological and inorganic selenide phases, and showed that biogenic SeII- is more stable and more resistant to beam-induced oxidative damage than its inorganic counterpart. The bacterial production of quantum dot precursors offers an alternative, 'green' synthesis technique that negates the requirement of expensive, toxic chemicals and suggests a possible link to the exploitation of selenium contaminated waste streams.

  1. RESPIROMETRY AS A TOOL TO DETERMINE METAL TOXICITY IN A SULFATE REDUCING BACTERIAL CULTURE

    EPA Science Inventory

    A novel method under development for treatment of acid mine drainage waste uses biologically- generated hydrogen sulfide (H2S) to precipitate the metals in acid mine drainage (principally zinc, copper, aluminum, nickel, cadmium, arsenic, manganese, iron, and cobalt). The insolub...

  2. REMOBILIZATION OF TOXIC HEAVY METALS ADSORBED TO BACTERIAL WALL-CLAY COMPOSITES

    EPA Science Inventory

    Significant quantities of Ag(I), Cu(II), and Cr(III) were bound to isolated Bacillus subtilis 168 walls, Escherichia coli K-12 envelopes, kaolinite and smectite clays, and the corresponding organic material-clay aggregates (1:1, wt/wt). hese sorbed metals were leached with HNO3, ...

  3. Effects of bioirrigation of non-biting midges (Diptera: Chironomidae) on lake sediment respiration.

    PubMed

    Baranov, Viktor; Lewandowski, Jörg; Romeijn, Paul; Singer, Gabriel; Krause, Stefan

    2016-01-01

    Bioirrigation or the transport of fluids into the sediment matrix due to the activities of organisms such as bloodworms (larvae of Diptera, Chironomidae), has substantial impacts on sediment respiration in lakes. However, previous quantifications of bioirrigation impacts of Chironomidae have been limited by technical challenges such as the difficulty to separate faunal and bacterial respiration. This paper describes a novel method based on the bioreactive tracer resazurin for measuring respiration in-situ in non-sealed systems with constant oxygen supply. Applying this new method in microcosm experiments revealed that bioirrigation enhanced sediment respiration by up to 2.5 times. The new method is yielding lower oxygen consumption than previously reported, as it is only sensitive to aerobic heterotrophous respiration and not to other processes causing oxygen decrease. Hence it decouples the quantification of respiration of animals and inorganic oxygen consumption from microbe respiration in sediment. PMID:27256514

  4. Effects of bioirrigation of non-biting midges (Diptera: Chironomidae) on lake sediment respiration

    PubMed Central

    Baranov, Viktor; Lewandowski, Jörg; Romeijn, Paul; Singer, Gabriel; Krause, Stefan

    2016-01-01

    Bioirrigation or the transport of fluids into the sediment matrix due to the activities of organisms such as bloodworms (larvae of Diptera, Chironomidae), has substantial impacts on sediment respiration in lakes. However, previous quantifications of bioirrigation impacts of Chironomidae have been limited by technical challenges such as the difficulty to separate faunal and bacterial respiration. This paper describes a novel method based on the bioreactive tracer resazurin for measuring respiration in-situ in non-sealed systems with constant oxygen supply. Applying this new method in microcosm experiments revealed that bioirrigation enhanced sediment respiration by up to 2.5 times. The new method is yielding lower oxygen consumption than previously reported, as it is only sensitive to aerobic heterotrophous respiration and not to other processes causing oxygen decrease. Hence it decouples the quantification of respiration of animals and inorganic oxygen consumption from microbe respiration in sediment. PMID:27256514

  5. Small ecosystem engineers as important regulators of lake's sediment respiration.

    NASA Astrophysics Data System (ADS)

    Baranov, Victor; Lewandowski, Joerg; Krause, Stefan; Romeijn, Paul

    2016-04-01

    Although shallow lakes are covering only about 1.5% of the land surface of the Earth, they are responsible for sequestration of carbon amounts similar or even larger than those sequestered in all marine sediments. One of the most important drivers of the carbon sequestration in lakes is sediment respiration. Especially in shallow lakes, bioturbation, i.e. the biogenic reworking of the sediment matrix and the transport of fluids within the sediment, severely impacts on sediment respiration. Widespread freshwater bioturbators such as chironomid larvae (Diptera, Chironomidae) are building tubes in the sediment and actively pump water through their burrows (ventilation). In the present work we study how different organism densities and temperatures (5-30°C) impact on respiration rates. In a microcosm experiment the bioreactive resazurin/resorufin smart tracer system was applied for quantifying the impacts of different densities of Chironomidae (Diptera) larvae (0, 1000, 2000 larvae/m2) on sediment respiration. Tracer transformation rates (and sediment respiration) were correlated with larval densities with highest transformation rates occurring in microcosms with highest larval densities. Respiration differences between defaunated sediment and sediment with 1000 and 2000 larvae per m2 was insignificant at 5 °C, and was progressively increasing with rising temperatures. At 30 °C respiration rates of sediment with 2000 larvae per m2 was 4.8 times higher than those of defaunated sediment. We interpret this as an effect of temperature on larval metabolic and locomotory activity. Furthermore, bacterial communities are benefiting from the combination of the high water temperatures and bioirrigation as bacterial community are able to maintain high metabolic rates due to oxygen supplied by bioirrigation. In the context of global climate change that means that chironomid ecosystem engineering activity will have a profound and increasing impact on lake sediment respiration

  6. Common components of industrial metal-working fluids as sources of carbon for bacterial growth. [Acinetobacter; Pseudomonas

    SciTech Connect

    Foxall-vanAken, S.; Brown, J.A. Jr.; Young, W.; Salmeen, I.; McClure, T.; Napier, S. Jr.; Olsen, R.H.

    1986-06-01

    Water-based metal-working fluids in large-scale industrial operations consist of many components, but in the most commonly used formulations only three classes of components are present in high enough concentrations that they could, in principle, provide enough carbon to support the high bacterial densities (10/sup 9/ CFU/ml) often observed in contaminated factory fluids. These components are petroleum oil (1 to 5%), petroleum sulfonates (0.1 to 0.5%), and fatty acids (less than 0.1%, mainly linoleic and oleic acids supplied as tall oils). Pure strains of predominating bacteria were isolated from contaminated reservoirs of two metal-working systems and randomly selected 12 strains which were tested in liquid culture for growth with each of the metal-working fluid components as the sole source of carbon. Of the 12 strains, 7 reached high density (10/sup 9/ CFU/ml from an initial inoculum of less than 2 x 10/sup 3/) in 24 h, and 1 strain did the same in 48 h with 0.05% oleic or linoleic acid as the carbon source. These same strains also grew on 1% naphthenic petroleum oil but required up to 72 h to reach densities near 10/sup 8/ CFU/ml. One strain grew slightly and the others not at all on the petroleum sulfonates. The four remaining strains did not grow on any of the components, even though they were among the predominating bacteria in the contaminated system. Of the seven strains that grew best on the fatty acids and on the naphthenic petroleum oil, five were tentatively identified as Acinetobacter species and two were identified as Pseudomonas species. Four of the bacteria that did not grow were tentatively identified as species of Pseudomonas, and one could not be identified.

  7. Bacterial exposure to metal-oxide nanoparticles: Methods, physical interactions, and biological effects

    NASA Astrophysics Data System (ADS)

    Horst, Allison Marie

    Nanotechnology is a major endeavor of this century, with proposed applications in fields ranging from agriculture to energy to medicine. Nanoscale titanium dioxide (nano-TiO2) is among the most widely produced nanoparticles worldwide, and already exists in consumer products including impermanent personal care products and surface coatings. Inevitably, nano-TiO2 will be transported into the environment via consumer or industrial waste, where its effects on organisms are largely unknown. Out of concern for the possible ill-effects of nanoparticles in the environment, there is now a field of study in nanotoxicology. Bacteria are ideal organisms for nanotoxicology research because they are environmentally important, respond rapidly to intoxication, and provide evidence for effects in higher organisms. My doctoral research focuses on the effects and interactions of nano-TiO2 in aqueous systems with planktonic bacteria. This dissertation describes four projects and the outcomes of the research: (1) A discovery, using a combination of environmental- and cryogenic-scanning electron microscopy and dynamic light scattering (DLS), that initially agglomerated nano-TiO2 is dispersed upon bacterial contact, as nanoparticles preferentially sorbed to cell surfaces. (2) Establishment of a method to disperse nanoparticles in an aqueous culture medium for nanotoxicology studies. A combination of electrostatic repulsion, steric hindrance and sonication yielded a high initial level of nano-TiO2 dispersion (i.e. < 300 nm average agglomerate size) and reduced nanoparticle sedimentation. The approach is described in the context of general considerations for dispersion that are transferable to other nanoparticle and media chemistries. (3) Assessment and optimization of optically-based assays to simultaneously study effects of nanoparticles on bacterial membranes (membrane potential, membrane permeability, and electron transport chain function) and generation of reactive oxygen species. A

  8. Plankton community respiration during a coccolithophore bloom

    NASA Astrophysics Data System (ADS)

    Robinson, Carol; Widdicombe, Claire E.; Zubkov, Mikhail V.; Tarran, Glen A.; Miller, Axel E. J.; Rees, Andrew P.

    Plankton dark community respiration (DCR), gross production (GP), bacterial production, protozoan herbivory, and phytoplankton, microzooplankton and heterotrophic bacterial abundance were measured during a bloom of the coccolithophore Emiliania huxleyi. The study, which was conducted in the northern North Sea during June 1999, included a spatial survey and a 6-day Lagrangian time series informed by a sulphur hexafluoride (SF 6) tracer-release experiment. E. huxleyi abundance in surface waters ranged from 380 to 3000 cells ml -1, while DCR varied between 2 and 4 mmol O 2 m -3 d -1 and GP between 2 and 5 mmol O 2 m -3 d -1. Euphotic zone integrated DCR and GP were in approximate balance, with a mean (±SD) P:R ratio of 0.9±0.4 ( n=9). However, highest GP occurred at the surface alongside maxima of E. huxleyi, whereas highest rates of DCR occurred at depths of 25-30 m associated with maxima in chlorophyll a and bacterial biomass. DCR was positively correlated with bacterial biomass, microzooplankton biomass, attenuance, particulate organic carbon, and chlorophyll a concentration; and negatively correlated with apparent oxygen utilisation. DCR was not correlated with in situ temperature, dissolved organic carbon concentration or E. huxleyi abundance. A˜100 h incubation of 0.8 μm filtered seawater enabled the estimation of a bacterial respiratory quotient (RQ) and growth efficiency (BGE) from the slopes of the linear regressions of the decrease in dissolved oxygen and increase in dissolved inorganic carbon (DIC) and bacterial carbon with time. During this experiment the bacterial RQ was 0.69 and the growth efficiency was 18%. This measured BGE was used in comparison with literature values to apportion DCR to that associated with bacterial (13-71%), microzooplankton (10-50%), and algal (11-28%) activity. This accounting exercise compared well with measured DCR (to within ±50%), the exact calculation being highly dependent on the BGE used.

  9. A Multinuclear Metal Complex Based DNase-Mimetic Artificial Enzyme: Matrix Cleavage for Combating Bacterial Biofilms.

    PubMed

    Chen, Zhaowei; Ji, Haiwei; Liu, Chaoqun; Bing, Wei; Wang, Zhenzhen; Qu, Xiaogang

    2016-08-26

    Extracellular DNA (eDNA) is an essential structural component during biofilm formation, including initial bacterial adhesion, subsequent development, and final maturation. Herein, the construction of a DNase-mimetic artificial enzyme (DMAE) for anti-biofilm applications is described. By confining passivated gold nanoparticles with multiple cerium(IV) complexes on the surface of colloidal magnetic Fe3 O4  /SiO2 core/shell particles, a robust and recoverable artificial enzyme with DNase-like activity was obtained, which exhibited high cleavage ability towards both model substrates and eDNA. Compared to the high environmental sensitivity of natural DNase in anti-biofilm applications, DMAE exhibited a much better operational stability and easier recoverability. When DMAE was coated on substratum surfaces, biofilm formation was inhibited for prolonged periods of time, and the DMAE excelled in the dispersion of established biofilms of various ages. Finally, the presence of DMAE remarkably potentiated the efficiency of traditional antibiotics to kill biofilm-encased bacteria and eradiate biofilms. PMID:27484616

  10. Trace metals and their relation to bacterial infections studied by X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Maser, J.; Wagner, D.; Lai, B.; Cai, Z.; Legnini, D.; Moric, I.; Bermudez, L.

    2003-03-01

    Bacterial pathogens survive in different environments in the human host by responding with expression of virulence factors that enable them to adapt to changing conditions. Trace elements regulate the expression of many virulence genes in bacteria and are thus important for their survival in the host. Mycobacteria are intracellular pathogens that can cause diseases such as tuberculosis or secondary infections in immunocompromised patients. We have used a hard x-ray microprobe to study the trace element distribution in the mycobacterial phagosome after infection of macrophages. We have studied phagosomes with virulent (M. avium) and nonvirulent (M. smegmatis) mycobacteria. In this article, we will show that the iron concentration in phagosomes with macrophages infected with nonvirulent M. smegmatis is reduced 24 hours after infection but increased in phagosomes in cells infected with virulent M. avium. In addition, we will show the effect activation of macrophages with tumor necrosis factor (TNF-α) or interferon (IFN-γ) has on the iron concentration in M. avium.

  11. Assessment of bacterial communities and characterization of lead-resistant bacteria in the rhizosphere soils of metal-tolerant Chenopodium ambrosioides grown on lead-zinc mine tailings.

    PubMed

    Zhang, Wen-hui; Huang, Zhi; He, Lin-yan; Sheng, Xia-fang

    2012-06-01

    Bacterial communities in the rhizosphere soils of metal tolerant and accumulating Chenopodium ambrosioides grown in highly and moderately lead-zinc mine tailings contaminated-soils as well as the adjacent soils with low metal contamination were characterized by using cultivation-independent and cultivation techniques. A total of 69, 73, and 83 bacterial operational taxonomic units (OTUs) having 84.8-100% similarity with the closest match in the database were detected among high, moderate, and low-contamination soil clone libraries, respectively. These OTUs had a Shannon diversity index value in the range of 4.06-4.30. There were 9, 10, and 14 bacterial genera specific to high, moderate, and low metal-contaminated soil clone libraries, respectively. Phylogenetic analysis showed that the Pb-resistant isolates belonged to 8 genera. Pseudomonas and Arthrobacter were predominant among the isolates. Most of the isolates (82-86%) produced indole acetic acid and siderophores. More strains from the highly metal-contaminated soil produced 1-aminocyclopropane-1-carboxylate deaminase than the strains from the moderately and lowly metal-contaminated soils. In experiments involving canola grown in quartz sand containing 200 mg kg(-1) of Pb, inoculation with the isolated Paenibacillus jamilae HTb8 and Pseudomonas sp. GTa5 was found to significantly increase the above-ground tissues dry weight (ranging from 19% to 36%) and Pb uptake (ranging from 30% to 40%) compared to the uninoculated control. These results show that C. ambrosioides harbor different metal-resistant bacterial communities in their rhizosphere soils and the isolates expressing plant growth promoting traits may be exploited for improving the phytoextraction efficiency of Pb-polluted environment. PMID:22397839

  12. Influence of charge and metal coordination of meso-substituted porphyrins on bacterial photoinactivation

    NASA Astrophysics Data System (ADS)

    Zoltan, Tamara; Vargas, Franklin; López, Verónica; Chávez, Valery; Rivas, Carlos; Ramírez, Álvaro H.

    2015-01-01

    The photodynamic effect of meso-substituted porphyrins with different charges and metal ions: meso-tetraphenylporphyrin tetrasulfonate 1, its nickel 2 and zinc complexes 3; meso-tetranaphthylporphyrin tetrasulfonate 4, and its zinc complex Zn 5; and tetra piridyl ethylacetate porphirins 6 and their nickel 7 and zinc 8 complexes, were synthesized and studied their antimicrobial activity against Escherichia coli. Fluorescence quantum yields (ΦF) were measured in water using reference TPPS4, obtaining higher values for complexes 3 and 4. The singlet oxygen ΦΔ were measured using histidine as trapping singlet oxygen and Rose Bengal as a reference standard. Complexes 1, 2 and 6 have the highest quantum yields of singlet oxygen formation, showing no relation with the peripheral charges and efficiency as Type II photosensitizers. Meanwhile complexes 3, 8 and 4 were the most efficient in producing radical species, determined with their reaction with NADH. The photoinduced antibacterial activity of complex was investigated at different concentrations of the photosensitizers with an irradiation time of 30 min. The higher antibacterial activities were obtained for the complexes 1-3 that are those with greater production of ROS and minor structural deformations. Complexes 7 and 8 had moderate activity, while 4-6 a low activity. Thus, in this work demonstrates that the production of ROS and structural deformations due to peripheral substituents and metal coordination, influence the activity of the complexes studied. Therefore, is important to perform comprehensive study physics and structurally when predicting or explain such activity.

  13. Structural and biochemical characterization of bacterial YpgQ protein reveals a metal-dependent nucleotide pyrophosphohydrolase.

    PubMed

    Jeon, Ye Ji; Park, Sun Cheol; Song, Wan Seok; Kim, Ok-Hee; Oh, Byung-Chul; Yoon, Sung-Il

    2016-07-01

    The optimal balance of cellular nucleotides and the efficient elimination of non-canonical nucleotides are critical to avoiding erroneous mutation during DNA replication. One such mechanism involves the degradation of excessive or abnormal nucleotides by nucleotide-hydrolyzing enzymes. YpgQ contains the histidine-aspartate (HD) domain that is involved in the hydrolysis of nucleotides or nucleic acids, but the enzymatic activity and substrate specificity of YpgQ have never been characterized. Here, we unravel the catalytic activity and structural features of YpgQ to report the first Mn(2+)-dependent pyrophosphohydrolase that hydrolyzes (deoxy)ribonucleoside triphosphate [(d)NTP] to (deoxy)ribonucleoside monophosphate and pyrophosphate using the HD domain. YpgQ from Bacillus subtilis (bsYpgQ) displays a helical structure and assembles into a unique dimeric architecture that has not been observed in other HD domain-containing proteins. Each bsYpgQ monomer accommodates a metal ion and a nucleotide substrate in a cavity located between the N- and C-terminal lobes. The metal cofactor is coordinated by the canonical residues of the HD domain, namely, two histidine residues and two aspartate residues, and is positioned in close proximity to the β-phosphate group of the nucleotide, allowing us to propose a nucleophilic attack mechanism for the nucleotide hydrolysis reaction. YpgQ enzymes from other bacterial species also catalyze pyrophosphohydrolysis but exhibit different substrate specificity. Comparative structural and mutational studies demonstrated that residues outside the major substrate-binding site of bsYpgQ are responsible for the species-specific substrate preference. Taken together, our structural and biochemical analyses highlight the substrate-recognition mode and catalysis mechanism of YpgQ in pyrophosphohydrolysis. PMID:27062940

  14. Outward- and inward-facing structures of a putative bacterial transition-metal transporter with homology to ferroportin

    PubMed Central

    Taniguchi, Reiya; Kato, Hideaki E.; Font, Josep; Deshpande, Chandrika N.; Wada, Miki; Ito, Koichi; Ishitani, Ryuichiro; Jormakka, Mika; Nureki, Osamu

    2015-01-01

    In vertebrates, the iron exporter ferroportin releases Fe2+ from cells into plasma, thereby maintaining iron homeostasis. The transport activity of ferroportin is suppressed by the peptide hormone hepcidin, which exhibits upregulated expression in chronic inflammation, causing iron-restrictive anaemia. However, due to the lack of structural information about ferroportin, the mechanisms of its iron transport and hepcidin-mediated regulation remain largely elusive. Here we report the crystal structures of a putative bacterial homologue of ferroportin, BbFPN, in both the outward- and inward-facing states. Despite undetectable sequence similarity, BbFPN adopts the major facilitator superfamily fold. A comparison of the two structures reveals that BbFPN undergoes an intra-domain conformational rearrangement during the transport cycle. We identify a substrate metal-binding site, based on structural and mutational analyses. Furthermore, the BbFPN structures suggest that a predicted hepcidin-binding site of ferroportin is located within its central cavity. Thus, BbFPN may be a valuable structural model for iron homeostasis regulation by ferroportin. PMID:26461048

  15. EPR investigation of Cu2+-substituted photosynthetic bacterial reaction centers: evidence for histidine ligation at the surface metal site.

    PubMed

    Utschig, L M; Poluektov, O; Tiede, D M; Thurnauer, M C

    2000-03-21

    The coordination environments of two distinct metal sites on the bacterial photosynthetic reaction center (RC) protein were probed with pulsed electron paramagnetic resonance (EPR) spectroscopy. For these studies, Cu2+ was bound specifically to a surface site on native Fe2+-containing RCs from Rhodobacter sphaeroides R-26 and to the native non-heme Fe site in biochemically Fe-removed RCs. The cw and pulsed EPR results clearly indicate two spectroscopically different Cu2+ environments. In the dark, the RCs with Cu2+ bound to the surface site exhibit an axially symmetric EPR spectrum with g(parallel) = 2.24, A(parallel) = 160 G, g(perpendicular) = 2.06, whereas the values g(parallel) = 2.31, A(parallel) = 143 G, and g(perpendicular) = 2.07 were observed when Cu(2+) was substituted in the Fe site. Examination of the light-induced spectral changes indicate that the surface Cu2+ is at least 23 A removed from the primary donor (P+) and reduced quinone acceptor (QA-). Electron spin-echo envelope modulation (ESEEM) spectra of these Cu-RC proteins have been obtained and provide the first direct solution structural information about the ligands in the surface metal site. From these pulsed EPR experiments, modulations were observed that are consistent with multiple weakly hyperfine coupled 14N nuclei in close proximity to Cu2+, indicating that two or more histidines ligate the Cu2+ at the surface site. Thus, metal and EPR analyses confirm that we have developed reliable methods for stoichiometrically and specifically binding Cu2+ to a surface site that is distinct from the well characterized Fe site and support the view that Cu2+ is bound at or near the Zn site that modulates electron transfer between the quinones QA and QB (QA-QB --> QAQB-) (Utschig, L. M., Ohigashi, Y., Thurnauer, M. C., and Tiede, D. M (1998) Biochemistry 37, 8278-8281) and proton uptake by QB- (Paddock, M. L., Graige, M. S., Feher, G., and Okamura, M. Y. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 6183

  16. Synergy of fresh and accumulated organic matter to bacterial growth.

    PubMed

    Farjalla, Vinicius F; Marinho, Claudio C; Faria, Bias M; Amado, André M; Esteves, Francisco de A; Bozelli, Reinaldo L; Giroldo, Danilo

    2009-05-01

    The main goal of this research was to evaluate whether the mixture of fresh labile dissolved organic matter (DOM) and accumulated refractory DOM influences bacterial production, respiration, and growth efficiency (BGE) in aquatic ecosystems. Bacterial batch cultures were set up using DOM leached from aquatic macrophytes as the fresh DOM pool and DOM accumulated from a tropical humic lagoon. Two sets of experiments were performed and bacterial growth was followed in cultures composed of each carbon substrate (first experiment) and by carbon substrates combined (second experiment), with and without the addition of nitrogen and phosphorus. In both experiments, bacterial production, respiration, and BGE were always higher in cultures with N and P additions, indicating a consistent inorganic nutrient limitation. Bacterial production, respiration, and BGE were higher in cultures set up with leachate DOM than in cultures set up with humic DOM, indicating that the quality of the organic matter pool influenced the bacterial growth. Bacterial production and respiration were higher in the mixture of substrates (second experiment) than expected by bacterial production and respiration in single substrate cultures (first experiment). We suggest that the differences in the concentration of some compounds between DOM sources, the co-metabolism on carbon compound decomposition, and the higher diversity of molecules possibly support a greater bacterial diversity which might explain the higher bacterial growth observed. Finally, our results indicate that the mixture of fresh labile and accumulated refractory DOM that naturally occurs in aquatic ecosystems could accelerate the bacterial growth and bacterial DOM removal. PMID:18985269

  17. Hybrid respiration-signal conditioner

    NASA Technical Reports Server (NTRS)

    Rinard, G. A.; Steffen, D. A.; Sturm, R. E.

    1979-01-01

    Hybrid impedance-pneumograph and respiration-rate signal conditioner element of hand-held vital signs monitor measures changes in impedance of chest during breathing cycle and generates analog respiration signal as output along with synchronous square wave that can be monitored by breath-rate processor.

  18. The Diesel Exhaust in Miners Study: III. Interrelations between Respirable Elemental Carbon and Gaseous and Particulate Components of Diesel Exhaust derived from Area Sampling in Underground Non-metal Mining Facilities

    PubMed Central

    Vermeulen, Roel; Coble, Joseph B.; Yereb, Daniel; Lubin, Jay H.; Blair, Aaron; Portengen, Lützen; Stewart, Patricia A.; Attfield, Michael; Silverman, Debra T.

    2010-01-01

    Diesel exhaust (DE) has been implicated as a potential lung carcinogen. However, the exact components of DE that might be involved have not been clearly identified. In the past, nitrogen oxides (NOx) and carbon oxides (COx) were measured most frequently to estimate DE, but since the 1990s, the most commonly accepted surrogate for DE has been elemental carbon (EC). We developed quantitative estimates of historical exposure levels of respirable elemental carbon (REC) for an epidemiologic study of mortality, particularly lung cancer, among diesel-exposed miners by back-extrapolating 1998–2001 REC exposure levels using historical measurements of carbon monoxide (CO). The choice of CO was based on the availability of historical measurement data. Here, we evaluated the relationship of REC with CO and other current and historical components of DE from side-by-side area measurements taken in underground operations of seven non-metal mining facilities. The Pearson correlation coefficient of the natural log-transformed (Ln)REC measurements with the Ln(CO) measurements was 0.4. The correlation of REC with the other gaseous, organic carbon (OC), and particulate measurements ranged from 0.3 to 0.8. Factor analyses indicated that the gaseous components, including CO, together with REC, loaded most strongly on a presumed ‘Diesel exhaust’ factor, while the OC and particulate agents loaded predominantly on other factors. In addition, the relationship between Ln(REC) and Ln(CO) was approximately linear over a wide range of REC concentrations. The fact that CO correlated with REC, loaded on the same factor, and increased linearly in log–log space supported the use of CO in estimating historical exposure levels to DE. PMID:20876234

  19. The Bacterial and Fungal Diversity of an Aged PAH- and Heavy Metal-Contaminated Soil is Affected by Plant Cover and Edaphic Parameters.

    PubMed

    Bourceret, Amélia; Cébron, Aurélie; Tisserant, Emilie; Poupin, Pascal; Bauda, Pascale; Beguiristain, Thierry; Leyval, Corinne

    2016-04-01

    Industrial wasteland soils with aged PAH and heavy metal contaminations are environments where pollutant toxicity has been maintained for decades. Although the communities may be well adapted to the presence of stressors, knowledge about microbial diversity in such soils is scarce. Soil microbial community dynamics can be driven by the presence of plants, but the impact of plant development on selection or diversification of microorganisms in these soils has not been established yet. To test these hypotheses, aged-contaminated soil samples from a field trial were collected. Plots planted with alfalfa were compared to bare soil plots, and bacterial and fungal diversity and abundance were assessed after 2 and 6 years. Using pyrosequencing of 16S rRNA gene and ITS amplicons, we showed that the bacterial community was dominated by Proteobacteria, Actinobacteria, and Bacteroidetes and was characterized by low Acidobacteria abundance, while the fungal community was mainly represented by members of the Ascomycota. The short-term toxic impact of pollutants usually reduces the microbial diversity, yet in our samples bacterial and fungal species richness and diversity was high suggesting that the community structure and diversity adapted to the contaminated soil over decades. The presence of plants induced higher bacterial and fungal diversity than in bare soil. It also increased the relative abundance of bacterial members of the Actinomycetales, Rhizobiales, and Xanthomonadales orders and of most fungal orders. Multivariate analysis showed correlations between microbial community structure and heavy metal and PAH concentrations over time, but also with edaphic parameters (C/N, pH, phosphorus, and nitrogen concentrations). PMID:26440298

  20. Measurements of respirable dust and nanoparticle concentrations in a titanium dioxide pigment production factory.

    PubMed

    Huang, Cheng-Hsiung; Tai, Chih-Yuan; Huang, Cheng-Yu; Tsai, Chuen-Jinn; Chen, Chun-Wan; Chang, Cheng-Ping; Shih, Tung-Sheng

    2010-08-01

    This study compared respirable dust and nanoparticle concentrations measured by different sampling devices at a titanium dioxide pigment factory. Respirable particle mass concentrations, nanoparticle concentrations, particle size distribution and particle metallic content were measured at different sampling locations. The sampling results of the Multi-orifice Uniform Deposit Impactor (MOUDI) showed that the particle size distribution at this titanium dioxide production factory fell in the range of 1-10 mu m. Generally, the higher levels of the respirable particle mass concentrations and nanoparticle number concentrations were near the packing site of the pigment titanium dioxide production factory. Metal analysis results revealed that the titanium dioxide concentrations in respirable dust and nanoparticles were within the limits specified by National Institute for Occupational Safety and Health (NIOSH). During sampling, particle metallic content analysis is essential for identifying the source of particles and for measuring respirable dust and nanoparticle concentrations. PMID:20623401

  1. Radar sensitivity to human heartbeats and respiration

    NASA Astrophysics Data System (ADS)

    Aardal, Øyvind; Brovoll, Sverre; Paichard, Yoann; Berger, Tor; Lande, Tor Sverre; Hamran, Svein-Erik

    2015-05-01

    Human heartbeats and respiration can be detected from a distance using radar. This can be used for medical applications and human being detection. It is useful to have a system independent measure of how detectable the vital signs are. In radar applications, the Radar Cross Section (RCS) is normally used to characterize the detectability of an object. Since the human vital signs are seen by the radar as movements of the torso, the modulations in the person RCS can be used as a system independent measure of the vital signs detectability. In this paper, measurements of persons seated in an anechoic chamber are presented. The measurements were calibrated using empty room and a metallic calibration sphere. A narrowband radar operating at frequencies from 500 MHz to 18 GHz in discrete steps was used. A turntable provided measurements at precise aspect angles all around the person under test. In an I & Q receiver, the heartbeat and respiration modulation is a combination of amplitude and phase mod- modulations. The measurements were filtered, leaving the modulations from the vital signs in the radar recordings. The procedure for RCS computation was applied to these filtered data, capturing the complex signatures. It was found that both the heartbeat and respiration detectability increase with increasing frequency. The heartbeat signatures are almost equal from the front and the back, while being almost undetectable from the sides of the person. The respiration signatures are slightly higher from the front than from the back, and smaller from the sides. The signature measurements presented in this paper provide an objective system independent measure of the detectability of human vital signs as a function of frequency and aspect angle. These measures are useful for example in system design and in assessing real measurement scenarios.

  2. Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation.

    PubMed

    Luo, Sheng-lian; Chen, Liang; Chen, Jue-liang; Xiao, Xiao; Xu, Tao-ying; Wan, Yong; Rao, Chan; Liu, Cheng-bin; Liu, Yu-tang; Lai, Cui; Zeng, Guang-ming

    2011-11-01

    This study investigates the heavy metal-resistant bacterial endophytes of Cd-hyperaccumulator Solanum nigrum L. grown on a mine tailing by using cultivation-dependent technique. Thirty Cd-tolerant bacterial endophytes were isolated from roots, stems, and leaves of S. nigrum L. and classified by amplified ribosomal DNA-restriction analysis into 18 different types. Phylogenetic analysis based on 16S rDNA sequences showed that these isolates belonged to four groups: Actinobacteria (43%), Proteobacteria (23%), Bacteroidetes (27%) and Firmicutes (7%). All the isolates were then characterized for their plant growth promoting traits as well as their resistances to different heavy metals; and the actual plant growth promotion and colonization ability were also assessed. Four isolates were re-introduced into S. nigrum L. under Cd stress and resulted in Cd phytotoxicity decrease, as dry weights of roots increased from 55% to 143% and dry weights of above-ground from 64% to 100% compared to the uninoculated ones. The total Cd accumulation of inoculated plants increased from 66% to 135% (roots) and from 22% to 64% (above-ground) compared to the uninoculated ones. Our research suggests that bacterial endophytes are a most promising resource and may be the excellent candidates of bio-inoculants for enhancing the phytoremediation efficiency. PMID:21868057

  3. Respiration signals from photoplethysmography.

    PubMed

    Nilsson, Lena M

    2013-10-01

    respiratory modulation of the pulse oximeter waveform and has been shown to predict fluid responsiveness in mechanically ventilated patients including infants. The pleth variability index value depends on the size of the tidal volume and on positive end-expiratory pressure. In conclusion, the respiration modulation of the PPG signal can be used to monitor respiratory rate. It is probable that improvements in neural network technology will increase sensitivity and specificity for detecting both central and obstructive apnea. The size of the PPG respiration variation can predict fluid responsiveness in mechanically ventilated patients. PMID:23449854

  4. Respiration in spiders (Araneae).

    PubMed

    Schmitz, Anke

    2016-05-01

    Spiders (Araneae) are unique regarding their respiratory system: they are the only animal group that breathe simultaneously with lungs and tracheae. Looking at the physiology of respiration the existence of tracheae plays an important role in spiders with a well-developed tracheal system. Other factors as sex, life time, type of prey capture and the high ability to gain energy anaerobically influence the resting and the active metabolic rate intensely. Most spiders have metabolic rates that are much lower than expected from body mass; but especially those with two pairs of lungs. Males normally have higher resting rates than females; spiders that are less evolved and possess a cribellum have lower metabolic rates than higher evolved species. Freely hunting spiders show a higher energy turnover than spiders hunting with a web. Spiders that live longer than 1 year will have lower metabolic rates than those species that die after 1 year in which development and reproduction must be completed. Lower temperatures and starvation, which most spiders can cope with, will decrease the metabolic rate as well. PMID:26820263

  5. Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases

    PubMed Central

    Hug, Laura A.; Maphosa, Farai; Leys, David; Löffler, Frank E.; Smidt, Hauke; Edwards, Elizabeth A.; Adrian, Lorenz

    2013-01-01

    Organohalide respiration is an anaerobic bacterial respiratory process that uses halogenated hydrocarbons as terminal electron acceptors during electron transport-based energy conservation. This dechlorination process has triggered considerable interest for detoxification of anthropogenic groundwater contaminants. Organohalide-respiring bacteria have been identified from multiple bacterial phyla, and can be categorized as obligate and non-obligate organohalide respirers. The majority of the currently known organohalide-respiring bacteria carry multiple reductive dehalogenase genes. Analysis of a curated set of reductive dehalogenases reveals that sequence similarity and substrate specificity are generally not correlated, making functional prediction from sequence information difficult. In this article, an orthologue-based classification system for the reductive dehalogenases is proposed to aid integration of new sequencing data and to unify terminology. PMID:23479752

  6. A comparison of conventional methods for the quantification of bacterial cells after exposure to metal oxide nanoparticles

    PubMed Central

    2014-01-01

    Background Due to potential interference of nanoparticles on bacterial quantification, there is a challenge to develop a fast, accurate and reproducible method for bacterial quantification. Currently various bacterial quantification methods are used by researchers performing nanoparticles study, but there has been no efficacy evaluation of these methods. Here we study interference of nanoparticles on three most commonly used conventional bacterial quantification methods, including colony counting to determine the colony-forming units (CFU), spectrophotometer method of optical density (OD) measurement, and flow cytometry (FCM). Results Three oxide nanoparticles including ZnO, TiO2, and SiO2 and four bacterial species including Salmonella enterica serovar Newport, Staphylococcus epidermidis, Enterococcus faecalis, and Escherichia coli were included in the test. Results showed that there is no apparent interference of the oxide nanoparticles on quantifications of all four bacterial species by FCM measurement; CFU counting is time consuming, less accurate and not suitable for automation; and the spectrophotometer method using OD measurement was the most unreliable method to quantify and detect the bacteria in the presence of the nanoparticles. Conclusion In summary, FCM measurement proved to be the best method, which is suitable for rapid, accurate and automatic detection of bacteria in the presence of the nanoparticles. PMID:25138641

  7. Changing sources of respiration between a black spruce forest and thermokarst bog

    NASA Astrophysics Data System (ADS)

    Waldrop, M. P.; McFarland, J.; Czimczik, C. I.; Euskirchen, E. S.; Amendolara, T.; Scott, G. J.; Turetsky, M. R.; Harden, J. W.; McGuire, A. D.

    2011-12-01

    Permafrost thaw in lowland black spruce forests (Picea mariana) which develop into thermokarst bogs can alter ecosystem carbon balance through positive or negative feedbacks to climate warming. In this context, the responses of plant and soil microbial communities to permafrost thaw, and their roles in altered carbon balance, need to be understood. In addition, gross changes in microbial community composition, such as fungal:bacterial ratios and their temperature response functions, are poorly characterized in permafrost thaw experiments. In this study, we compared carbon fluxes between a lowland black spruce forest with intact permafrost and an adjacent thermokarst bog that developed 20-30 years ago located near the Bonanza Creek Experimental Forest in Alaska. We quantified net ecosystem exchange (NEE), ecosystem respiration (ER), and gross primary productivity (GPP) using flux autochambers, and partitioned sources of ecosystem respiration into autotrophic vs. heterotrophic sources using radiocarbon analysis of ecosystem and microbial respiration, and atmospheric CO2. We further partitioned microbial respiration into fungal vs. bacterial sources using substrate inhibition techniques. Preliminary results indicate that in mid summer of 2011 the thermokarst bog was a source of CO2 to the atmosphere. NEE data indicated that the black spruce understory was a source of CO2. However, because flux tower data showed that the black spruce ecosystem was actually a net sink, GPP by the black spruce trees must have been large. In the black spruce forest ER was dominated by plant respiration in the spring and by microbial respiration in the fall whereas in the thermokarst bog CO2 was derived from deeper soil C sources. Although microbial respiration was roughly balanced between fungi and bacteria in the black spruce forest, respiration was dominantly bacterial in the thermokarst bog. Our initial results show that thermokarst bogs are source of C to the atmosphere during summer

  8. 78 FR 18601 - Respirator Certification Fees; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ... HUMAN SERVICES Centers for Disease Control and Prevention Respirator Certification Fees; Public Meeting... stakeholders to present information the impact of an increase on respirator fees on individual respirator... in respirator certification and approval fees on individual respirator manufacturers, the...

  9. Bacterial riboswitches cooperatively bind Ni2+ or Co2+ ions and control expression of heavy metal transporters

    PubMed Central

    Furukawa, Kazuhiro; Ramesh, Arati; Zhou, Zhiyuan; Weinberg, Zasha; Vallery, Tenaya; Winkler, Wade C.; Breaker, Ronald R.

    2015-01-01

    SUMMARY Bacteria regularly encounter widely varying metal concentrations in their surrounding environment. As metals become depleted, or, conversely, accrue to toxicity, microbes will activate cellular responses that act to maintain metal homeostasis. A suite of metal-sensing regulatory (‘metalloregulatory’) proteins orchestrate these responses by allosterically coupling the selective binding of target metals to the activity of DNA-binding domains. However, we report here the discovery, validation and structural details of a widespread class of riboswitch RNAs, whose members selectively and tightly bind the low abundance transition metals, Ni2+ and Co2+. These riboswitches bind metal cooperatively, and with affinities in the low micromolar range. The structure of a Co2+-bound RNA reveals a network of molecular contacts that explain how it achieves cooperative binding between adjacent sites. These findings reveal that bacteria have evolved to utilize highly selective metalloregulatory riboswitches, in addition to metalloregulatory proteins, for detecting and responding to toxic levels of heavy metals. PMID:25794617

  10. Characterization of antibacterial polyethersulfone membranes using the Respiration Activity Monitoring System (RAMOS).

    PubMed

    Kochan, Jozef; Scheidle, Marco; van Erkel, Joost; Bikel, Matías; Büchs, Jochen; Wong, John Erik; Melin, Thomas; Wessling, Matthias

    2012-10-15

    Membranes with antibacterial properties were developed using surface modification of polyethersulfone ultrafiltration membranes. Three different modification strategies using polyelectrolyte layer-by-layer (LbL) technique are described. The first strategy relying on the intrinsic antibacterial properties of poly(diallyldimethylammonium chloride) (PDADMAC) and poly(ethylenimine) (PEI) exhibits only little antibacterial effects. The other two strategies contain silver in both ionic (Ag(+)) and metallic (Ag(0)) form. Ag(+) embedded into negatively charged poly(sodium 4-styrene sulfonate) (PSS) layers totally inhibits bacterial growth. Ag(0) nanoparticles were introduced to the membrane surface by LbL deposition of chitosan- and poly(methacrylic acid) - sodium salt (PMA)-capped silver nanoparticles and subsequent UV or heat treatment. Antibacterial properties of the modified membranes were quantified by a new method based on the Respiration Activity Monitoring System (RAMOS), whereby the oxygen transfer rates (OTR) of E. coli K12 cultures on the membranes were monitored online. As opposed to colony forming counting method RAMOS yields more quantitative and reliable data on the antibacterial effect of membrane modification. Ag-imprinted polyelectrolyte film composed of chitosan (Ag(0))/PMA(Ag(0))/chitosan(Ag(0)) was found to be the most promising among the tested membranes. Further investigation revealed that the concentration and equal distribution of silver in the membrane surface plays an important role in bacterial growth inhibition. PMID:22884245

  11. Bacterial communities associated with the rhizosphere of pioneer plants (Bahia xylopoda and Viguiera linearis) growing on heavy metals-contaminated soils.

    PubMed

    Navarro-Noya, Yendi E; Jan-Roblero, Janet; González-Chávez, Maria del Carmen; Hernández-Gama, Regina; Hernández-Rodríguez, César

    2010-05-01

    In this study, the bacterial communities associated with the rhizospheres of pioneer plants Bahia xylopoda and Viguiera linearis were explored. These plants grow on silver mine tailings with high concentration of heavy metals in Zacatecas, Mexico. Metagenomic DNAs from rhizosphere and bulk soil were extracted to perform a denaturing gradient gel electrophoresis analysis (DGGE) and to construct 16S rRNA gene libraries. A moderate bacterial diversity and twelve major phylogenetic groups including Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes, Chloroflexi, Firmicutes, Verrucomicrobia, Nitrospirae and Actinobacteria phyla, and divisions TM7, OP10 and OD1 were recognized in the rhizospheres. Only 25.5% from the phylotypes were common in the rhizosphere libraries and the most abundant groups were members of the phyla Acidobacteria and Betaproteobacteria (Thiobacillus spp., Nitrosomonadaceae). The most abundant groups in bulk soil library were Acidobacteria and Actinobacteria, and no common phylotypes were shared with the rhizosphere libraries. Many of the clones detected were related with chemolithotrophic and sulfur-oxidizing bacteria, characteristic of an environment with a high concentration of heavy metal-sulfur complexes, and lacking carbon and organic energy sources. PMID:20084459

  12. Hospital Effluents Are One of Several Sources of Metal, Antibiotic Resistance Genes, and Bacterial Markers Disseminated in Sub-Saharan Urban Rivers

    PubMed Central

    Laffite, Amandine; Kilunga, Pitchouna I.; Kayembe, John M.; Devarajan, Naresh; Mulaji, Crispin K.; Giuliani, Gregory; Slaveykova, Vera I.; Poté, John

    2016-01-01

    Data concerning the occurrence of emerging biological contaminants such as antibiotic resistance genes (ARGs) and fecal indicator bacteria (FIB) in aquatic environments in Sub-Saharan African countries is limited. On the other hand, antibiotic resistance remains a worldwide problem which may pose serious potential risks to human and animal health. Consequently, there is a growing number of reports concerning the prevalence and dissemination of these contaminants into various environmental compartments. Sediments provide the opportunity to reconstruct the pollution history and evaluate impacts so this study investigates the abundance and distribution of toxic metals, FIB, and ARGs released from hospital effluent wastewaters and their presence in river sediments receiving systems. ARGs (blaTEM, blaCTX-M, blaSHV, and aadA), total bacterial load, and selected bacterial species FIB [Escherichia coli, Enterococcus (ENT)] and species (Psd) were quantified by targeting species specific genes using quantitative PCR (qPCR) in total DNA extracted from the sediments recovered from 4 hospital outlet pipes (HOP) and their river receiving systems in the City of Kinshasa in the Democratic Republic of the Congo. The results highlight the great concentration of toxic metals in HOP, reaching the values (in mg kg−1) of 47.9 (Cr), 213.6 (Cu), 1434.4 (Zn), 2.6 (Cd), 281.5 (Pb), and 13.6 (Hg). The results also highlight the highest (P < 0.05) values of 16S rRNA, FIB, and ARGs copy numbers in all sampling sites including upstream (control site), discharge point, and downstream of receiving rivers, indicating that the hospital effluent water is not an exclusive source of the biological contaminants entering the urban rivers. Significant correlation were observed between (i) all analyzed ARGs and total bacterial load (16S rRNA) 0.51 to 0.72 (p < 0.001, n = 65); (ii) ARGs (except blaTEM) and FIB and Psd 0.57 < r < 0.82 (p < 0.001, n = 65); and (iii) ARGs (except blaTEM) and toxic metals

  13. Hospital Effluents Are One of Several Sources of Metal, Antibiotic Resistance Genes, and Bacterial Markers Disseminated in Sub-Saharan Urban Rivers.

    PubMed

    Laffite, Amandine; Kilunga, Pitchouna I; Kayembe, John M; Devarajan, Naresh; Mulaji, Crispin K; Giuliani, Gregory; Slaveykova, Vera I; Poté, John

    2016-01-01

    Data concerning the occurrence of emerging biological contaminants such as antibiotic resistance genes (ARGs) and fecal indicator bacteria (FIB) in aquatic environments in Sub-Saharan African countries is limited. On the other hand, antibiotic resistance remains a worldwide problem which may pose serious potential risks to human and animal health. Consequently, there is a growing number of reports concerning the prevalence and dissemination of these contaminants into various environmental compartments. Sediments provide the opportunity to reconstruct the pollution history and evaluate impacts so this study investigates the abundance and distribution of toxic metals, FIB, and ARGs released from hospital effluent wastewaters and their presence in river sediments receiving systems. ARGs (bla TEM, bla CTX-M, bla SHV, and aadA), total bacterial load, and selected bacterial species FIB [Escherichia coli, Enterococcus (ENT)] and species (Psd) were quantified by targeting species specific genes using quantitative PCR (qPCR) in total DNA extracted from the sediments recovered from 4 hospital outlet pipes (HOP) and their river receiving systems in the City of Kinshasa in the Democratic Republic of the Congo. The results highlight the great concentration of toxic metals in HOP, reaching the values (in mg kg(-1)) of 47.9 (Cr), 213.6 (Cu), 1434.4 (Zn), 2.6 (Cd), 281.5 (Pb), and 13.6 (Hg). The results also highlight the highest (P < 0.05) values of 16S rRNA, FIB, and ARGs copy numbers in all sampling sites including upstream (control site), discharge point, and downstream of receiving rivers, indicating that the hospital effluent water is not an exclusive source of the biological contaminants entering the urban rivers. Significant correlation were observed between (i) all analyzed ARGs and total bacterial load (16S rRNA) 0.51 to 0.72 (p < 0.001, n = 65); (ii) ARGs (except bla TEM) and FIB and Psd 0.57 < r < 0.82 (p < 0.001, n = 65); and (iii) ARGs (except bla TEM) and toxic

  14. Predicting soil respiration from peatlands.

    PubMed

    Rowson, J G; Worrall, F; Evans, M G; Dixon, S D

    2013-01-01

    This study considers the relative performance of six different models to predict soil respiration from upland peat. Predicting soil respiration is important for global carbon budgets and gap filling measured data from eddy covariance and closed chamber measurements. Further to models previously published new models are presented using two sub-soil zones and season. Models are tested using data from the Bleaklow plateau, southern Pennines, UK. Presented literature models include ANOVA using logged environmental data, the Arrhenius equation, modified versions of the Arrhenius equation to include soil respiration activation energy and water table depth. New models are proposed including the introduction of two soil zones in the peat profile, and season. The first new model proposes a zone of high CO(2) productivity related to increased soil microbial CO(2) production due to the supply of labile carbon from plant root exudates and root respiration. The second zone is a deeper zone where CO(2) production is lower with less labile carbon. A final model allows the zone of high CO(2) production to become dormant during winter months when plants will senesce and will vary depending upon vegetation type within a fixed location. The final model accounted for, on average, 31.9% of variance in net ecosystem respiration within 11 different restoration sites whilst, using the same data set, the best fitting literature equation only accounted for 18.7% of the total variance. Our results demonstrate that soil respiration models can be improved by explicitly accounting for seasonality and the vertically stratified nature of soil processes. These improved models provide an enhanced basis for calculating the peatland carbon budgets which are essential in understanding the role of peatlands in the global C cycle. PMID:23178842

  15. [Dark respiration of terrestrial vegetations: a review].

    PubMed

    Sun, Jin-Wei; Yuan, Feng-Hui; Guan, De-Xin; Wu, Jia-Bing

    2013-06-01

    The source and sink effect of terrestrial plants is one of the hotspots in terrestrial ecosystem research under the background of global change. Dark respiration of terrestrial plants accounts for a large fraction of total net carbon balance, playing an important role in the research of carbon cycle under global climate change. However, there is little study on plant dark respiration. This paper summarized the physiological processes of plant dark respiration, measurement methods of the dark respiration, and the effects of plant biology and environmental factors on the dark respiration. The uncertainty of the dark respiration estimation was analyzed, and the future hotspots of related researches were pointed out. PMID:24066565

  16. Use of poly(lactic acid) amendments to promote the bacterial fixation of metals in zinc smelter tailings.

    PubMed

    Edenborn, H M

    2004-04-01

    The ability of poly(lactic acid) (PLA) to serve as a long-term source of lactic acid for bacterial sulfate reduction activity in zinc smelter tailings was investigated. Solid PLA polymers mixed in water hydrolyzed abiotically to release lactic acid into solution over an extended period of time. The addition of both PLA and gypsum was required for indigenous bacteria to lower redox potential, raise pH, and stimulate sulfate reduction activity in highly oxidized smelter tailings after one year of treatment. Bioavailable cadmium, copper, lead and zinc were all lowered significantly in PLA/gypsum treated soil, but PLA amendments alone increased the bioavailability of lead, nickel and zinc. Similar PLA amendments may be useful in constructed wetlands and reactive barrier walls for the passive treatment of mine drainage, where enhanced rates of bacterial sulfate reduction are desirable. PMID:14693443

  17. The influence of bacterial-humus preparations on the biological activity of soils polluted with oil products and heavy metals

    NASA Astrophysics Data System (ADS)

    Kozlova, E. N.; Stepanov, A. L.; Lysak, L. V.

    2015-04-01

    The influence of bacterial-humus preparations based on Gumigel ( Agrosintez Company) on the biological activity of soddy-podzolic soil polluted with Pb(CH3COO)2 and gasoline was studied in a model experiment. Some indicators of biological activity are shown to depend on soil pollution to different extents. The process of nitrogen fixation and the activity of dehydrogenase and phosphatase were mostly inhibited by Pb(CH3COO)2 and gasoline. Gasoline compared to Pb(CH3COO)2 inhibited the soil biological activity to a greater extent. The bacterial-humus preparations exerted a significant positive effect on the biological activity of the polluted soils manifested in the increase of the total number of bacteria and of the enzyme activity (1.5-5.0 times), in the intensification of nitrogen fixation and denitrification (3-8 times), as well as in the increase in the biomass of the plants grown (1.5-2.0 times). The application of bacterial suspensions of pure cultures or the microbial complex without the preparations of humic acids did not always give a positive effect.

  18. Partitioning Belowground Respiration in a Northern Peatland

    NASA Astrophysics Data System (ADS)

    Stewart, H. E.; Roulet, N. T.; Moore, T.

    2004-05-01

    Although they cover only 3% of the land surface, northern peatlands store up to one-third of the global soil carbon pool, deeming them a significant carbon sink. However, changes in peatland soil respiration could lead to peatlands becoming carbon sources with consequent feedbacks to climate change. In order to understand the global carbon balance we need to understand respiration processes, but compared to photosynthesis we know very little about respiration, especially belowground. Within soils there are three compartments among which carbon is transferred and respired: roots, rhizosphere and root-free soil. In order to further the understanding of respiration processes of northern peatlands, the relative importance of each type of belowground respiration was determined at two locations at Mer Bleue, a northern peatland located near Ottawa, Ontario. Weekly CO2 flux measurements, using dark chambers and a portable IRGA, were made throughout the growing season of 2003. At both areas there are reference plots to determine total respiration where the vegetation remained in tact. Treatment plots were also installed at both areas where foliage was removed in order to determine SOM (shrub-free) respiration. The shrub foliage was replaced with nylon `foliage' in an attempt to maintain soil temperature and moisture conditions. Root respiration was determined by incubating root segments on-site, taking air samples over a one hour period. Rhizosphere respiration was estimated by subtracting SOM, root and aboveground respiration from total respiration, and aboveground respiration was removed from the equation using a calculation from a peatland carbon model.

  19. Presence of the siderophores pyoverdine and pyochelin in the extracellular medium reduces toxic metal accumulation in Pseudomonas aeruginosa and increases bacterial metal tolerance.

    PubMed

    Braud, Armelle; Geoffroy, Valérie; Hoegy, Françoise; Mislin, Gaëtan L A; Schalk, Isabelle J

    2010-06-01

    In order to get access to iron, Pseudomonas aeruginosa strain PAO1 produces two major siderophores pyoverdine (PVD) and pyochelin (PCH). Both siderophores are able to chelate many other metals in addition to iron. However, despite this property, only iron is transported efficiently into the bacteria by the PVD and PCH uptake pathways. Growth studies with P. aeruginosa strains showed a lower sensitivity to toxic metals for the siderophore-producing strain than for the mutants unable to produce siderophores. Moreover, addition of PVD or PCH to the growth medium of a siderophore-deficient strain considerably reduced the toxicity of toxic metals present at concentrations of 100 µM in iron-limited and iron-supplemented growth conditions. Measurement by Inductively Coupled Plasma-Atomic Emission Spectrometry of the concentration of metals present in bacteria incubated with metals in the presence or absence of PVD or PCH indicated that both siderophores were able to sequester metals from the extracellular medium of the bacteria, decreasing metal diffusion into the bacteria. Pyoverdine was able to sequester Al(3+) , Co(2+) , Cu(2+) , Eu(3+) , Ni(2+) , Pb(2+) , Tb(3+) and Zn(2+) from the extracellular medium, and PCH, Al(3+) , Co(2+) , Cu(2+) , Ni(2+) , Pb(2+) and Zn(2+) . Moreover, the presence of 100 µM Cu(2+) and Ni(2+) increased PVD production by 290% and 380%, respectively, in a medium supplemented with iron. All these data suggest that PVD and PCH may contribute to P. aeruginosa resistance to heavy metals. PMID:23766115

  20. Mn Oxide Biogenesis and Metal Sequestration in the Presence of Co (II) and Cu (II) By Bacillus SG-1 Bacterial Spores

    SciTech Connect

    Bayat, N

    2004-02-05

    Mn oxides play an important role in degrading contaminants and cycling nutrients in soils and natural waters. The process in which Mn (II) oxidizes to form MnO, is slow; however, Bacillus SG-1 bacterial spores can catalyze the process and allow it to proceed up to five orders of magnitude faster. This experiment explored the affects of co-ion metal concentrations on Biogenic Mn oxide production and their ability to sequester metal cations. Spore solutions were prepared with different ratios of Metal (II): Mn (II) added over a three-week period; this was done separately for Co (II) and Cu (II). The copper solutions were analyzed with ICP/AES to check for the amount of copper and manganese left in solution after biogenic MnO, production. ICP/AES was used to analyze the ratio of Co: Mn in spores where Co was the co-ion metal. Observations showed very little dissolved Cu and Mn exist in solutions with low copper concentrations, but a large amount of Cu and Mn were left in solutions where higher Cu concentrations were used. This shows that high Cu concentration inhibits biogenic Mn oxide production and Cu sequestration. For the experiments with Co as the co-ion metal, it was observed that the ratio of Co: Mn in the spores is relatively similar to the ratios added; however, an exception to this rule was experiments where high concentrations of Co were used. The inconsistency in Co: Mn ratios at high Co concentrations showed that high Co concentrations also inhibit biogenic Mn oxide production.

  1. Ecology and Biotechnology of Selenium-Respiring Bacteria

    PubMed Central

    2015-01-01

    SUMMARY In nature, selenium is actively cycled between oxic and anoxic habitats, and this cycle plays an important role in carbon and nitrogen mineralization through bacterial anaerobic respiration. Selenium-respiring bacteria (SeRB) are found in geographically diverse, pristine or contaminated environments and play a pivotal role in the selenium cycle. Unlike its structural analogues oxygen and sulfur, the chalcogen selenium and its microbial cycling have received much less attention by the scientific community. This review focuses on microorganisms that use selenate and selenite as terminal electron acceptors, in parallel to the well-studied sulfate-reducing bacteria. It overviews the significant advancements made in recent years on the role of SeRB in the biological selenium cycle and their ecological role, phylogenetic characterization, and metabolism, as well as selenium biomineralization mechanisms and environmental biotechnological applications. PMID:25631289

  2. Ecology and biotechnology of selenium-respiring bacteria.

    PubMed

    Nancharaiah, Y V; Lens, P N L

    2015-03-01

    In nature, selenium is actively cycled between oxic and anoxic habitats, and this cycle plays an important role in carbon and nitrogen mineralization through bacterial anaerobic respiration. Selenium-respiring bacteria (SeRB) are found in geographically diverse, pristine or contaminated environments and play a pivotal role in the selenium cycle. Unlike its structural analogues oxygen and sulfur, the chalcogen selenium and its microbial cycling have received much less attention by the scientific community. This review focuses on microorganisms that use selenate and selenite as terminal electron acceptors, in parallel to the well-studied sulfate-reducing bacteria. It overviews the significant advancements made in recent years on the role of SeRB in the biological selenium cycle and their ecological role, phylogenetic characterization, and metabolism, as well as selenium biomineralization mechanisms and environmental biotechnological applications. PMID:25631289

  3. 30 CFR 57.5044 - Respirators.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... exceeding 1.0 WL, miners shall wear respirators approved by NIOSH for radon daughters prior to July 10, 1995 or under the equivalent section of 42 CFR part 84 and such respirator use shall be in compliance...

  4. 30 CFR 57.5044 - Respirators.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... exceeding 1.0 WL, miners shall wear respirators approved by NIOSH for radon daughters prior to July 10, 1995 or under the equivalent section of 42 CFR part 84 and such respirator use shall be in compliance...

  5. 30 CFR 57.5044 - Respirators.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... exceeding 1.0 WL, miners shall wear respirators approved by NIOSH for radon daughters prior to July 10, 1995 or under the equivalent section of 42 CFR part 84 and such respirator use shall be in compliance...

  6. 30 CFR 57.5044 - Respirators.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... exceeding 1.0 WL, miners shall wear respirators approved by NIOSH for radon daughters prior to July 10, 1995 or under the equivalent section of 42 CFR part 84 and such respirator use shall be in compliance...

  7. 30 CFR 57.5044 - Respirators.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... exceeding 1.0 WL, miners shall wear respirators approved by NIOSH for radon daughters prior to July 10, 1995 or under the equivalent section of 42 CFR part 84 and such respirator use shall be in compliance...

  8. Respirable bacteriophages for the treatment of bacterial lung infections.

    PubMed

    Hoe, Susan; Semler, Diana D; Goudie, Amanda D; Lynch, Karlene H; Matinkhoo, Sadaf; Finlay, Warren H; Dennis, Jonathan J; Vehring, Reinhard

    2013-12-01

    This review article discusses the development of respiratory therapeutics containing bacteriophages indicated for lung infections, specifically those that have become increasingly difficult to treat because of antibiotic resistance. Recent achievements and remaining problems are presented for each step necessary to develop a bacteriophage-containing dosage form for respiratory drug delivery, including selection of appropriate bacteriophages for therapy, processing and purification of phage preparations, formulation into a stable, solid dosage form, and delivery device selection. Safety and efficacy studies in animals and human subjects are also reviewed. PMID:23597003

  9. Soil Respiration in Response to Landscape Position

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variations in soil type, due to landscape position, may influence soil respiration. This study was conducted to determine how landscape position (summit, side-slope, and depression) influences heterotrophic and autotrophic soil respiration. Soil respiration was determined at three landscape positio...

  10. 42 CFR 84.174 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Air-Purifying Particulate Respirators § 84.174 Respirator containers; minimum requirements. (a) Except... contamination of respirators which are not removed, and to prevent damage to respirators during transit....

  11. 42 CFR 84.174 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Air-Purifying Particulate Respirators § 84.174 Respirator containers; minimum requirements. (a) Except... contamination of respirators which are not removed, and to prevent damage to respirators during transit....

  12. 42 CFR 84.174 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Air-Purifying Particulate Respirators § 84.174 Respirator containers; minimum requirements. (a) Except... contamination of respirators which are not removed, and to prevent damage to respirators during transit....

  13. 42 CFR 84.174 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Air-Purifying Particulate Respirators § 84.174 Respirator containers; minimum requirements. (a) Except... contamination of respirators which are not removed, and to prevent damage to respirators during transit....

  14. 42 CFR 84.174 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Air-Purifying Particulate Respirators § 84.174 Respirator containers; minimum requirements. (a) Except... contamination of respirators which are not removed, and to prevent damage to respirators during transit....

  15. RESPIRABLE PARTICLES AND MISTS IN MOUSE PULMONARY INFECTIVITY MODEL. EFFECT OF CHRONIC OR INTERMITTENT EXPOSURE

    EPA Science Inventory

    The effects of respirable-sized sulfuric acid mist or mixtures containing acid mist and carbon particles (A-C) on the susceptibility to bacterial and viral respiratory infection were studied in mice and hamsters. Both species showed mortalities upon single 3-hour exposure to 600 ...

  16. MICROBIAL COLONIZATION, RESPIRATION AND BREAKDOWN OF MAPLE LEAVES ALONG A STREAM-MARSH CONTINUUM

    EPA Science Inventory

    Breakdown rates, macroinvertebrate and bacterial colonization, and microbial respiration were measured on decaying maple leaves at three sites along a stream-marsh continuum. Breakdown rates were 0.0284+/-0.0045 d-1 for leaves in a high-gradient, non-tidal stream; 0.0112 +/- 0.0...

  17. MICROBIAL COLONIZATION, RESPIRATION, AND BREAKDOWN OF MAPLE LEAVES ALONG A STREAM-MARSH CONTINUUM

    EPA Science Inventory

    Breakdown rates, macroinvertebrate and bacterial colonization, and microbial respiration were measured on decaying maple (Acer saccharum) leaves at three sites along a stream-marsh continuum. Breakdown rates (-k+-SE) were 0.0284+-0.0045 d-1 for leaves in a high-gradient, non-tida...

  18. Metal-assisted polyatomic SIMS and laser desorption/ionization for enhanced small molecule imaging of bacterial biofilms.

    PubMed

    Dunham, Sage J B; Comi, Troy J; Ko, Kyungwon; Li, Bin; Baig, Nameera F; Morales-Soto, Nydia; Shrout, Joshua D; Bohn, Paul W; Sweedler, Jonathan V

    2016-06-01

    Mass spectrometry imaging (MSI) has become an important analytical tool for many sectors of science and medicine. As the application of MSI expands into new areas of inquiry, existing methodologies must be adapted and improved to meet emerging challenges. Particularly salient is the need for small molecule imaging methods that are compatible with complex multicomponent systems, a challenge that is amplified by the effects of analyte migration and matrix interference. With a focus on microbial biofilms from the opportunistic pathogen Pseudomonas aeruginosa, the relative advantages of two established microprobe-based MSI techniques-polyatomic secondary ion mass spectrometry (SIMS) and laser desorption/ionization-are compared, with emphasis on exploring the effect of surface metallization on small molecule imaging. A combination of qualitative image comparison and multivariate statistical analysis demonstrates that sputtering microbial biofilms with a 2.5 nm layer of gold selectively enhances C60-SIMS ionization for several molecular classes including rhamnolipids and 2-alkyl-quinolones. Metallization also leads to the reduction of in-source fragmentation and subsequent ionization of media-specific background polymers, which improves spectral purity and image quality. These findings show that the influence of metallization upon ionization is strongly dependent on both the surface architecture and the analyte class, and further demonstrate that metal-assisted C60-SIMS is a viable method for small molecule imaging of intact molecular ions in complex biological systems. PMID:26945568

  19. Antimicrobial Applications of Transition Metal Complexes of Benzothiazole Based Terpolymer: Synthesis, Characterization, and Effect on Bacterial and Fungal Strains

    PubMed Central

    Riswan Ahamed, Mohamed A.; Azarudeen, Raja S.; Kani, N. Mujafar

    2014-01-01

    Terpolymer of 2-amino-6-nitro-benzothiazole-ethylenediamine-formaldehyde (BEF) has been synthesized and characterized by elemental analysis and various spectral techniques like FTIR, UV-Visible, and 1H and 13C-NMR. The terpolymer metal complexes were prepared with Cu2+, Ni2+, and Zn2+ metal ions using BEF terpolymer as a ligand. The complexes have been characterized by elemental analysis and IR, UV-Visible, ESR, 1H-NMR, and 13C-NMR spectral studies. Gel permeation chromatography was used to determine the molecular weight of the ligand. The surface features and crystalline behavior of the ligand and its complexes were analyzed by scanning electron microscope and X-ray diffraction methods. Thermogravimetric analysis was used to analyze the thermal stability of the ligand and its metal complexes. Kinetic parameters such as activation energy (Ea) and order of reaction (n) and thermodynamic parameters, namely, ΔS, ΔF, S*, and Z, were calculated using Freeman-Carroll (FC), Sharp-Wentworth (SW), and Phadnis-Deshpande (PD) methods. Thermal degradation model of the terpolymer and its metal complexes was also proposed using PD method. Biological activities of the ligand and its complexes were tested against Shigella sonnei, Escherichia coli, Klebsiella species, Staphylococcus aureus, Bacillus subtilis, and Salmonella typhimurium bacteria and Aspergillus flavus, Aspergillus niger, Penicillium species, Candida albicans, Cryptococcus neoformans, Mucor species fungi. PMID:25298760

  20. Structural basis for organohalide respiration.

    PubMed

    Bommer, Martin; Kunze, Cindy; Fesseler, Jochen; Schubert, Torsten; Diekert, Gabriele; Dobbek, Holger

    2014-10-24

    Organohalide-respiring microorganisms can use a variety of persistent pollutants, including trichloroethene (TCE), as terminal electron acceptors. The final two-electron transfer step in organohalide respiration is catalyzed by reductive dehalogenases. Here we report the x-ray crystal structure of PceA, an archetypal dehalogenase from Sulfurospirillum multivorans, as well as structures of PceA in complex with TCE and product analogs. The active site harbors a deeply buried norpseudo-B12 cofactor within a nitroreductase fold, also found in a mammalian B12 chaperone. The structures of PceA reveal how a cobalamin supports a reductive haloelimination exploiting a conserved B12-binding scaffold capped by a highly variable substrate-capturing region. PMID:25278505

  1. The Effect of Graphene Oxide/Reduced Graphene Oxide Functionalized with Metal Nanoparticles on Dermal, Bacterial, and Cancerous/Non-Cancerous Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Chen, Arthur; Rafailovich, Miriam; Simon, Marcia; Isseroff, Rebecca; Walker, Stephen; Cho, Jae Hee; Jerome, John

    Graphene and metal nanoparticles are permeating health products but their effects individually and combined on human skin are uncertain. This project studied the effect of graphene oxide (GO) and reduced graphene oxide (rGO) functionalized with Ag or Pt nanoparticles (Ag/PtNPs) on bacterial, dermal (DFBC's), and cancerous (SCC13's) and non-cancerous (DO33's) epidermal cells. GO was functionalized with AgNPs or PtNPs, forming metallized-GO; then reduced with NaBH4. FTIR and SEM confirmed the synthesis and composition. Confocal and SEM showed that Ag-rGO, depending on nanoparticle size, killed either S. Aureus or K. Pneumoniae, while Pt-rGO and rGO had no effect. Rhodamine staining revealed that Ag-rGO was very toxic to SCC13's, but only slightly toxic to DO33's. Pt-rGO and rGO had little effect on SCC13's and DO33's. At high concentrations all GO solutions inhibited cell growth but were not cytotoxic. Optical microscopy displayed that every GO/rGO solution adhered to DFBC's and influenced their direction of growth, making GO/rGO potentially applicable for wound healing. Garcia MRSEC Polymers at Engineered Interfaces.

  2. Solution structure and metal-ion binding of the P4 element from bacterial RNase P RNA.

    PubMed Central

    Schmitz, M; Tinoco, I

    2000-01-01

    We determined the solution structure of two 27-nt RNA hairpins and their complexes with cobalt(III)-hexammine (Co(NH3)3+(6)) by NMR spectroscopy. The RNA hairpins used in this study are the P4 region from Escherichia coli RNase P RNA and a C-to-U mutant that confers altered divalent metal-ion specificity (Ca2+ replaces Mg2+) for catalytic activity of this ribozyme. Co(NH3)3+(6) is a useful spectroscopic probe for Mg(H2O)2+(6)-binding sites because both complexes have octahedral symmetry and have similar radii. The thermodynamics of binding to both RNA hairpins was studied using chemical shift changes upon titration with Mg2+, Ca2+, and Co(NH3)3+(6). We found that the equilibrium binding constants for each of the metal ions was essentially unchanged when the P4 model RNA hairpin was mutated, although the NMR structures show that the RNA hairpins adopt different conformations. In the C-to-U mutant a C.G base pair is replaced by U.G, and the conserved bulged uridine in the P4 wild-type stem shifts in the 3' direction by 1 nt. Intermolecular NOE cross-peaks between Co(NH3)3+(6) and RNA protons were used to locate the site of Co(NH3)3+(6) binding to both RNA hairpins. The metal ion binds in the major groove near a bulge loop, but is shifted 5' by more than 1 bp in the mutant. The change of the metal-ion binding site provides a possible explanation for changes in catalytic activity of the mutant RNase P in the presence of Ca2+. PMID:10999599

  3. Impact of Mining Waste on Airborne Respirable Particulates in Northeastern Oklahoma, United States

    EPA Science Inventory

    Atmospheric dispersion of particles from mine waste is potentially an important route of human exposure to metals in communities close to active and abandoned mining areas. In this study, we assessed sources of mass and metal concentrations in two size fractions of respirable pa...

  4. Degradation of the metal-cyano complex tetracyanonickelate(II) by cyanide-utilizing bacterial isolates. [Klebsiella; Pseudomonas putida

    SciTech Connect

    Silva-Avalos, J.; Richmond, M.G.; Nagappan, O.; Kunz, D.A. )

    1990-12-01

    Ten bacterial isolates capable of growth on tetracyanonickelate(II) {l brace}K{sub 2}(Ni(CN){sub 4}){r brace} (TCN) as the sole nitrogen source were isolated from soil, freshwater, and sewage sludge enrichments. Seven of the 10 were identified as pseudomonads, while the remaining 3 were classified as Klebsiella species. A detailed investigation of one isolate, Pseudomonas putide BCN3, revealed a rapid growth rate on TCN (generation time, 2 h), with substrate removal and growth occurring in parallel. In addition to TCN, all isolates were able to utilize KCN, although the latter was significantly more toxic; MICs ranged from 0.2 to 0.8 mM for KCN and {ge}50 mM for TCN. While growth occurred over a wide range of TCN concentrations (0.25 to 16 mM), degradation was most substantial under growth-limiting conditions and did not occur when ammonia was present. In addition, cells grown on TCN were found to accumulate nickel cyanide (Ni(CN){sub 2}) as a major biodegradation product. The results show that bacteria capable of growth on TCN can readily be isolated and that degradation (i) appears to parallel the capacity for growth on KCN, (ii) does not occur in the presence of ammonia, and (iii) proceeds via the formation of Ni(CN){sub 2} as a biological metabolite.

  5. Effect of Rocking Movements on Respiration

    PubMed Central

    Omlin, Ximena; Crivelli, Francesco; Heinicke, Lorenz; Zaunseder, Sebastian; Achermann, Peter; Riener, Robert

    2016-01-01

    For centuries, rocking has been used to promote sleep in babies or toddlers. Recent research suggested that relaxation could play a role in facilitating the transition from waking to sleep during rocking. Breathing techniques are often used to promote relaxation. However, studies investigating head motions and body rotations showed that vestibular stimulation might elicit a vestibulo-respiratory response, leading to an increase in respiration frequency. An increase in respiration frequency would not be considered to promote relaxation in the first place. On the other hand, a coordination of respiration to rhythmic vestibular stimulation has been observed. Therefore, this study aimed to investigate the effect of different movement frequencies and amplitudes on respiration frequency. Furthermore, we tested whether subjects adapt their respiration to movement frequencies below their spontaneous respiration frequency at rest, which could be beneficial for relaxation. Twenty-one healthy subjects (24–42 years, 12 males) were investigated using an actuated bed, moving along a lateral translation. Following movement frequencies were applied: +30%, +15%, -15%, and -30% of subjects’ rest respiration frequency during baseline (no movement). Furthermore, two different movement amplitudes were tested (Amplitudes: 15 cm, 7.5 cm; movement frequency: 0.3 Hz). In addition, five subjects (25–28 years, 2 males) were stimulated with their individual rest respiration frequency. Rocking movements along a lateral translation caused a vestibulo-respiratory adaptation leading to an increase in respiration frequency. The increase was independent of the applied movement frequencies or amplitudes but did not occur when stimulating with subjects’ rest respiration frequency. Furthermore, no synchronization of the respiration frequency to the movement frequency was observed. In particular, subjects did not lower their respiration frequency below their resting frequency. Hence, it was not

  6. Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities.

    PubMed

    Ge, Yuan; Schimel, Joshua P; Holden, Patricia A

    2011-02-15

    Increased use of engineered nanoparticles (ENPs) raises concerns about their environmental impacts, but the effects of metal oxide ENPs on environmental processes and the organisms that carry them out remain largely unknown. This study evaluated the impacts of TiO2 and ZnO ENPs on soil bacterial communities. Soils collected from a California grassland were exposed to different doses of nanoparticulate TiO2 (0, 0.5, 1.0, and 2.0 mg g(-1) soil) and ZnO (0.05, 0.1, and 0.5 mg g(-1) soil) in microcosms over 60 days. The effects on soil microbial biomass were assessed by substrate induced respiration (SIR) and total extractable soil DNA. The effects on bacterial community composition were evaluated by terminal restriction fragment length polymorphism (T-RFLP) analysis. Total soil respiration indicated impacts on overall microbial activity. We found that both nano-TiO2 and nano-ZnO reduced both microbial biomass (as indicated by declines in both SIR and DNA) and diversity (by T-RFLP). Both types of nanoparticles also altered the composition of the soil bacterial community. The effect of nano-ZnO was stronger than that of nano-TiO2, as reflected by lower DNA and stronger shifts in bacterial community composition for nano-ZnO at the same exposure concentration (0.5 mg g(-1) soil). Thus, nanoparticulate metal oxides may measurably and negatively impact soil bacterial communities. PMID:21207975

  7. A Versatile Strategy for Production of Membrane Proteins with Diverse Topologies: Application to Investigation of Bacterial Homologues of Human Divalent Metal Ion and Nucleoside Transporters

    PubMed Central

    Huysmans, Gerard; Lesiuk, Amelia; Bullough, Per; Wang, Yingying; Bartlam, Mark; Phillips, Simon E.; Young, James D.; Goldman, Adrian; Postis, Vincent L. G.

    2015-01-01

    Membrane proteins play key roles in many biological processes, from acquisition of nutrients to neurotransmission, and are targets for more than 50% of current therapeutic drugs. However, their investigation is hampered by difficulties in their production and purification on a scale suitable for structural studies. In particular, the nature and location of affinity tags introduced for the purification of recombinant membrane proteins can greatly influence their expression levels by affecting their membrane insertion. The extent of such effects typically depends on the transmembrane topologies of the proteins, which for proteins of unknown structure are usually uncertain. For example, attachment of oligohistidine tags to the periplasmic termini of membrane proteins often interferes with folding and drastically impairs expression in Escherichia coli. To circumvent this problem we have employed a novel strategy to enable the rapid production of constructs bearing a range of different affinity tags compatible with either cytoplasmic or periplasmic attachment. Tags include conventional oligohistidine tags compatible with cytoplasmic attachment and, for attachment to proteins with a periplasmic terminus, either tandem Strep-tag II sequences or oligohistidine tags fused to maltose binding protein and a signal sequence. Inclusion of cleavage sites for TEV or HRV-3C protease enables tag removal prior to crystallisation trials or a second step of purification. Together with the use of bioinformatic approaches to identify members of membrane protein families with topologies favourable to cytoplasmic tagging, this has enabled us to express and purify multiple bacterial membrane transporters. To illustrate this strategy, we describe here its use to purify bacterial homologues of human membrane proteins from the Nramp and ZIP families of divalent metal cation transporters and from the concentrative nucleoside transporter family. The proteins are expressed in E. coli in a

  8. A Versatile Strategy for Production of Membrane Proteins with Diverse Topologies: Application to Investigation of Bacterial Homologues of Human Divalent Metal Ion and Nucleoside Transporters.

    PubMed

    Ma, Cheng; Hao, Zhenyu; Huysmans, Gerard; Lesiuk, Amelia; Bullough, Per; Wang, Yingying; Bartlam, Mark; Phillips, Simon E; Young, James D; Goldman, Adrian; Baldwin, Stephen A; Postis, Vincent L G

    2015-01-01

    Membrane proteins play key roles in many biological processes, from acquisition of nutrients to neurotransmission, and are targets for more than 50% of current therapeutic drugs. However, their investigation is hampered by difficulties in their production and purification on a scale suitable for structural studies. In particular, the nature and location of affinity tags introduced for the purification of recombinant membrane proteins can greatly influence their expression levels by affecting their membrane insertion. The extent of such effects typically depends on the transmembrane topologies of the proteins, which for proteins of unknown structure are usually uncertain. For example, attachment of oligohistidine tags to the periplasmic termini of membrane proteins often interferes with folding and drastically impairs expression in Escherichia coli. To circumvent this problem we have employed a novel strategy to enable the rapid production of constructs bearing a range of different affinity tags compatible with either cytoplasmic or periplasmic attachment. Tags include conventional oligohistidine tags compatible with cytoplasmic attachment and, for attachment to proteins with a periplasmic terminus, either tandem Strep-tag II sequences or oligohistidine tags fused to maltose binding protein and a signal sequence. Inclusion of cleavage sites for TEV or HRV-3C protease enables tag removal prior to crystallisation trials or a second step of purification. Together with the use of bioinformatic approaches to identify members of membrane protein families with topologies favourable to cytoplasmic tagging, this has enabled us to express and purify multiple bacterial membrane transporters. To illustrate this strategy, we describe here its use to purify bacterial homologues of human membrane proteins from the Nramp and ZIP families of divalent metal cation transporters and from the concentrative nucleoside transporter family. The proteins are expressed in E. coli in a

  9. Respirable concrete dust--silicosis hazard in the construction industry.

    PubMed

    Linch, Kenneth D

    2002-03-01

    Concrete is an extremely important part of the infrastructure of modern life and must be replaced as it ages. Many of the methods of removing, repairing, or altering existing concrete structures have the potential for producing vast quantities of respirable dust. Since crystalline silica in the form of quartz is a major component of concrete, airborne respirable quartz dust may be produced during construction work involving the disturbance of concrete, thereby producing a silicosis hazard for exposed workers. Silicosis is a debilitating and sometimes fatal lung disease resulting from breathing microscopic particles of crystalline silica. Between 1992 and 1998, the National Institute for Occupational Safety and Health (NIOSH) made visits to construction projects where concrete was being mechanically disturbed in order to obtain data concerning respirable crystalline silica dust exposures. The construction activities studied included: abrasive blasting, concrete pavement sawing and drilling, and asphalt/concrete milling. Air samples of respirable dust were obtained using 10-mm nylon cyclone pre-separators, 37-mm polyvinyl chloride (PVC) filters, and constant-flow pumps calibrated at 1.7 L/min. In addition, high-volume respirable dust samples were obtained on 37-mm PVC filters using 1/2" metal cyclones (Sensidyne model 18) and constant-flow pumps calibrated at 9.0 L/min. Air sample analysis included total weight gain by gravimetric analysis according to NIOSH Analytical Method 600 and respirable crystalline silica (quartz and cristobalite) using x-ray diffraction, as per NIOSH Analytical Method 7500. For abrasive blasting of concrete structures, the respirable crystalline silica (quartz) concentration ranged up to 14.0 mg/m3 for a 96-minute sample resulting in an eight-hour time-weighted average (TWA) of 2.8 mg/m3. For drilling concrete highway pavement the respirable quartz concentrations ranged up to 4.4 mg/m3 for a 358-minute sample, resulting in an eight-hour TWA

  10. Prokaryotic community structure and respiration during long-term incubations

    PubMed Central

    Baltar, Federico; Lindh, Markus V; Parparov, Arkadi; Berman, Tom; Pinhassi, Jarone

    2012-01-01

    Despite the importance of incubation assays for studies in microbial ecology that frequently require long confinement times, few reports are available in which changes in the assemblage structure of aquatic prokaryotes were monitored during long-term incubations. We measured rates of dissolved organic carbon degradation and microbial respiration by consumption of dissolved oxygen (DO) in four experiments with Lake Kinneret near-surface water and, concomitantly, we analyzed the variability in prokaryotic community structure during long-term dark bottle incubations. During the first 24 h, there were only minor changes in bacterial community composition. Thereafter there were marked changes in the prokaryotic community structure during the incubations. In contrast, oxygen consumption rates (a proxy for both respiration and dissolved organic carbon degradation rates) remained stable for up to 10–23 days. This study is one of the first to examine closely the phylo-genetic changes that occur in the microbial community of untreated freshwater during long-term (days) incubations in dark, sealed containers. Novel information on the diversity of the main bacterial phylotypes that may be involved in dissolved organic matter degradation in lake Kinneret is also provided. Our results suggest that, under certain ecological settings, constant community metabolic rates can be maintained as a result of shifts in community composition. PMID:22950026

  11. Measuring aerobic respiration in stream ecosystems using the resazurin-resorufin system

    NASA Astrophysics Data System (ADS)

    GonzáLez-Pinzón, Ricardo; Haggerty, Roy; Myrold, David D.

    2012-09-01

    The use of smart tracers to study hydrologic systems is becoming more widespread. Smart tracers are compounds that irreversibly react in the presence of a process or condition under investigation. Resazurin (Raz) is a smart tracer that undergoes an irreversible reduction to resorufin (Rru) in the presence of cellular metabolic activity. We quantified the relationship between the transformation of Raz and aerobic bacterial respiration in pure culture experiments using two obligate aerobes and two facultative anaerobes, and in colonized surface and shallow (<10 cm) hyporheic sediments using reach-scale experiments. We found that the transformation of Raz to Rru was nearly perfectly (minr2 = 0.986), positively correlated with aerobic microbial respiration in all experiments. These results suggest that Raz can be used as a surrogate to measure respiration in situ and in vivoat different spatial scales, thus providing an alternative to investigate mechanistic controls of solute transport and stream metabolism on nutrient processing. Lastly, a comparison of respiration and mass-transfer rates in streams suggests that field-scale respiration is controlled by the slower of respiration and mass transfer, highlighting the need to understand both biogeochemistry and physics in stream ecosystems.

  12. An evaluation of respirator maintenance requirements.

    PubMed

    Brosseau, L M; Traubel, K

    1997-03-01

    A telephone survey was developed as part of a pilot study to evaluate the inspection, cleaning, maintenance, and storage aspects of respirator protection programs (RPP). Regulations and consensus standards such as those published by the Occupational Safety and Health Administration in the Code of Federal Regulations (CFR) or the American National Standards Institute (ANSI) require or recommend that RPP contain elements that ensure that the respirators provide proper protection. A great deal of research has been done to evaluate the effectiveness of new respirators; however, little research has been conducted to evaluate how respirators behave over time in real industrial settings Respirator inspection, cleaning, maintenance, and storage are significant factors in determining how well a respirator continues to perform. The telephone survey was developed by reviewing the requirements and recommendations of CFR 1910.134 and ANSI Z88.2-1980. Approximately 30 companies were selected based on their use of negative air-purifying respirators. Most of the companies represented the hardgoods manufacturing or service industries. Although the majority of companies were meeting requirements, responses indicated that the following improvements in RPP were necessary: (1) inspection of all respirator parts should be carried out before and after each use, (2) replacement parts should be made readily available on site, (3) regular cleaning should be performed, and (4) more hands-on practice with respirators and their maintenance should be incorporated into training sessions. PMID:9075316

  13. Respirator selection for clandestine methamphetamine laboratory investigation.

    PubMed

    Nelson, Gary O; Bronder, Gregory D; Larson, Scott A; Parker, Jay A; Metzler, Richard W

    2012-01-01

    First responders to illicit drug labs may not always have SCBA protection available. Air-purifying respirators using organic vapor cartridges with P-100 filters may not be sufficient. It would be better to use a NIOSH-approved CBRN respirator with its required multi-purpose cartridge system, which includes a P-100 filter. This would remove all the primary drug lab contaminants—organic vapors, acid gases, ammonia, phosphine, iodine, and airborne meth particulates. To assure the proper selection and use of a respirator, it is recommended that the contaminants present be identified and quantified and the OSHA 29 CFR 1910.134 respirator protection program requirements followed. PMID:22571884

  14. Purification, substrate range, and metal center of AtzC: the N-isopropylammelide aminohydrolase involved in bacterial atrazine metabolism.

    PubMed

    Shapir, Nir; Osborne, Jeffrey P; Johnson, Gilbert; Sadowsky, Michael J; Wackett, Lawrence P

    2002-10-01

    N-Isopropylammelide isopropylaminohydrolase, AtzC, the third enzyme in the atrazine degradation pathway in Pseudomonas sp. strain ADP, catalyzes the stoichiometric hydrolysis of N-isopropylammelide to cyanuric acid and isopropylamine. The atzC gene was cloned downstream of the tac promoter and expressed in Escherichia coli, where the expressed enzyme comprised 36% of the soluble protein. AtzC was purified to homogeneity by ammonium sulfate precipitation and phenyl column chromatography. It has a subunit size of 44,938 kDa and a holoenzyme molecular weight of 174,000. The K(m) and k(cat) values for AtzC with N-isopropylammelide were 406 micro M and 13.3 s(-1), respectively. AtzC hydrolyzed other N-substituted amino dihydroxy-s-triazines, and those with linear N-alkyl groups had higher k(cat) values than those with branched alkyl groups. Native AtzC contained 0.50 eq of Zn per subunit. The activity of metal-depleted AtzC was restored with Zn(II), Fe(II), Mn(II), Co(II), and Ni(II) salts. Cobalt-substituted AtzC had a visible absorbance band at 540 nm (Delta epsilon = 84 M(-1) cm(-1)) and exhibited an axial electron paramagnetic resonance (EPR) signal with the following effective values: g((x)) = 5.18, g((y)) = 3.93, and g((z)) = 2.24. Incubating cobalt-AtzC with the competitive inhibitor 5-azacytosine altered the effective EPR signal values to g((x)) = 5.11, g((y)) = 4.02, and g((z)) = 2.25 and increased the microwave power at half saturation at 10 K from 31 to 103 mW. Under the growth conditions examined, our data suggest that AtzC has a catalytically essential, five-coordinate Zn(II) metal center in the active site and specifically catalyzes the hydrolysis of intermediates generated during the metabolism of s-triazine herbicides. PMID:12218024

  15. Uncoupling Mitochondrial Respiration for Diabesity.

    PubMed

    Larrick, James W; Larrick, Jasmine W; Mendelsohn, Andrew R

    2016-08-01

    Until recently, the mechanism of adaptive thermogenesis was ascribed to the expression of uncoupling protein 1 (UCP1) in brown and beige adipocytes. UCP1 is known to catalyze a proton leak of the inner mitochondrial membrane, resulting in uncoupled oxidative metabolism with no production of adenosine triphosphate and increased energy expenditure. Thus increasing brown and beige adipose tissue with augmented UCP1 expression is a viable target for obesity-related disorders. Recent work demonstrates an UCP1-independent pathway to uncouple mitochondrial respiration. A secreted enzyme, PM20D1, enriched in UCP1+ adipocytes, exhibits catalytic and hydrolytic activity to reversibly form N-acyl amino acids. N-acyl amino acids act as endogenous uncouplers of mitochondrial respiration at physiological concentrations. Administration of PM20D1 or its products, N-acyl amino acids, to diet-induced obese mice improves glucose tolerance by increasing energy expenditure. In short-term studies, treated animals exhibit no toxicity while experiencing 10% weight loss primarily of adipose tissue. Further study of this metabolic pathway may identify novel therapies for diabesity, the disease state associated with diabetes and obesity. PMID:27378359

  16. Organized bacterial assemblies in manganese nodules: evidence for a role of S-layers in metal deposition

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohong; Schröder, Heinz C.; Schloßmacher, Ute; Müller, Werner E. G.

    2009-04-01

    Polymetallic/ferro-manganese nodules (Mn-nodules) reach sizes of up to 10 cm in diameter and are abundantly found on the seabed. To date, the origin of Mn-nodules remains unclear, and both abiogenic and biogenic origins have been proposed. In search of evidence for a contribution of microbial processes to the formation of Mn-nodules, we analyzed those spherical nodules which contain a concentrically banded texture in their interior. The Mn-nodules were collected at a depth of 5,152 m from the Clarion-Clipperton Zone. Our high-resolution scanning electron microscopy analyses reveal first published evidence that endolithic microorganisms exist and are arranged in a highly organized manner on plane mineral surfaces within the nodules. These microorganisms are adorned on their surfaces with S-layers, which are indicative for bacteria. Moreover, the data suggest that these S-layers are the crystallization seeds for the mineralization process. We conclude that the mineral material of the Mn-nodule has a biogenic origin, and hope that these data will contribute to the development of biotechnological approaches to concentrate metals from seawater using bacteria in bioreactors.

  17. Synthesis, aggregation and spectroscopic studies of novel water soluble metal free, zinc, copper and magnesium phthalocyanines and investigation of their anti-bacterial properties.

    PubMed

    Bayrak, Rıza; Akçay, Hakkı Türker; Beriş, Fatih Şaban; Sahin, Ertan; Bayrak, Hacer; Demirbaş, Ümit

    2014-12-10

    In this study, novel phthalonitrile derivative (3) was synthesized by the reaction between 4-nitrophthalonitrile (2) and a triazole derivative (1) containing pyridine moiety. Crystal structure of compound (3) was characterized by X-ray diffraction. New metal free and metallo-phthalocyanine complexes (Zn, Cu, and Mg) were synthesized using the phthalonitrile derivative (3). Cationic derivatives of these phthalocyanines (5, 7, 9, and 11) were prepared from the non-ionic phthalocyanines (4, 6, 8, and 10). All proposed structures were supported by instrumental methods. The aggregation behaviors of the phthalocyanines (4-11) were investigated in different solvents such as dimethylsulfoxide (DMSO), N,N-dimethylformamide (DMF), chloroform and water. Water soluble cationic Pcs (5, 7, 9, and 11) aggregated in water and sodium dodecyl sulfate was used to prevent the aggregation. The second derivatives of the UV-Vis spectra of aggregated Pcs were used for analyzing the Q and B bands of aggregated species. Thermal behaviors of the phthalocyanines were also studied. In addition, anti-bacterial properties of the phthalocyanines were investigated. We used four gram negative and two gram positive bacteria to determine antibacterial activity of these compounds. Compound 7 has the best activity against the all bacteria with 125μg/mL of MIC value. Compounds 4, 6, and 10 have the similar effect on the bacteria with 250μg/mL of MIC value. PMID:24952089

  18. Synthesis, aggregation and spectroscopic studies of novel water soluble metal free, zinc, copper and magnesium phthalocyanines and investigation of their anti-bacterial properties

    NASA Astrophysics Data System (ADS)

    Bayrak, Rıza; Akçay, Hakkı Türker; Beriş, Fatih Şaban; Şahin, Ertan; Bayrak, Hacer; Demirbaş, Ümit

    2014-12-01

    In this study, novel phthalonitrile derivative (3) was synthesized by the reaction between 4-nitrophthalonitrile (2) and a triazole derivative (1) containing pyridine moiety. Crystal structure of compound (3) was characterized by X-ray diffraction. New metal free and metallo-phthalocyanine complexes (Zn, Cu, and Mg) were synthesized using the phthalonitrile derivative (3). Cationic derivatives of these phthalocyanines (5, 7, 9, and 11) were prepared from the non-ionic phthalocyanines (4, 6, 8, and 10). All proposed structures were supported by instrumental methods. The aggregation behaviors of the phthalocyanines (4-11) were investigated in different solvents such as dimethylsulfoxide (DMSO), N,N-dimethylformamide (DMF), chloroform and water. Water soluble cationic Pcs (5, 7, 9, and 11) aggregated in water and sodium dodecyl sulfate was used to prevent the aggregation. The second derivatives of the UV-Vis spectra of aggregated Pcs were used for analyzing the Q and B bands of aggregated species. Thermal behaviors of the phthalocyanines were also studied. In addition, anti-bacterial properties of the phthalocyanines were investigated. We used four gram negative and two gram positive bacteria to determine antibacterial activity of these compounds. Compound 7 has the best activity against the all bacteria with 125 μg/mL of MIC value. Compounds 4, 6, and 10 have the similar effect on the bacteria with 250 μg/mL of MIC value.

  19. Patterns of benthic bacterial diversity in coastal areas contaminated by heavy metals, polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs).

    PubMed

    Quero, Grazia Marina; Cassin, Daniele; Botter, Margherita; Perini, Laura; Luna, Gian Marco

    2015-01-01

    Prokaryotes in coastal sediments are fundamental players in the ecosystem functioning and regulate processes relevant in the global biogeochemical cycles. Nevertheless, knowledge on benthic microbial diversity patterns across spatial scales, or as function to anthropogenic influence, is still limited. We investigated the microbial diversity in two of the most chemically polluted sites along the coast of Italy. One site is the Po River Prodelta (Northern Adriatic Sea), which receives contaminant discharge from one of the largest rivers in Europe. The other site, the Mar Piccolo of Taranto (Ionian Sea), is a chronically polluted area due to steel production plants, oil refineries, and intense maritime traffic. We collected sediments from 30 stations along gradients of contamination, and studied prokaryotic diversity using Illumina sequencing of amplicons of a 16S rDNA gene fragment. The main sediment variables and the concentration of eleven metals, polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) were measured. Chemical analyses confirmed the high contamination in both sites, with concentrations of PCBs particularly high and often exceeding the sediment guidelines. The analysis of more than 3 millions 16S rDNA sequences showed that richness decreased with higher contamination levels. Multivariate analyses showed that contaminants significantly shaped community composition. Assemblages differed significantly between the two sites, but showed wide within-site variations related with spatial gradients in the chemical contamination, and the presence of a core set of OTUs shared by the two geographically distant sites. A larger importance of PCB-degrading taxa was observed in the Mar Piccolo, suggesting their potential selection in this historically polluted site. Our results indicate that sediment contamination by multiple contaminants significantly alter benthic prokaryotic diversity in coastal areas, and suggests considering the potential

  20. Patterns of benthic bacterial diversity in coastal areas contaminated by heavy metals, polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs)

    PubMed Central

    Quero, Grazia Marina; Cassin, Daniele; Botter, Margherita; Perini, Laura; Luna, Gian Marco

    2015-01-01

    Prokaryotes in coastal sediments are fundamental players in the ecosystem functioning and regulate processes relevant in the global biogeochemical cycles. Nevertheless, knowledge on benthic microbial diversity patterns across spatial scales, or as function to anthropogenic influence, is still limited. We investigated the microbial diversity in two of the most chemically polluted sites along the coast of Italy. One site is the Po River Prodelta (Northern Adriatic Sea), which receives contaminant discharge from one of the largest rivers in Europe. The other site, the Mar Piccolo of Taranto (Ionian Sea), is a chronically polluted area due to steel production plants, oil refineries, and intense maritime traffic. We collected sediments from 30 stations along gradients of contamination, and studied prokaryotic diversity using Illumina sequencing of amplicons of a 16S rDNA gene fragment. The main sediment variables and the concentration of eleven metals, polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) were measured. Chemical analyses confirmed the high contamination in both sites, with concentrations of PCBs particularly high and often exceeding the sediment guidelines. The analysis of more than 3 millions 16S rDNA sequences showed that richness decreased with higher contamination levels. Multivariate analyses showed that contaminants significantly shaped community composition. Assemblages differed significantly between the two sites, but showed wide within-site variations related with spatial gradients in the chemical contamination, and the presence of a core set of OTUs shared by the two geographically distant sites. A larger importance of PCB-degrading taxa was observed in the Mar Piccolo, suggesting their potential selection in this historically polluted site. Our results indicate that sediment contamination by multiple contaminants significantly alter benthic prokaryotic diversity in coastal areas, and suggests considering the potential

  1. Bacterial Sialidase

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Data shows that elevated sialidase in bacterial vaginosis patients correlates to premature births in women. Bacterial sialidase also plays a significant role in the unusual colonization of Pseudomonas aeruginosa in cystic fibrosis patients. Crystals of Salmonella sialidase have been reproduced and are used for studying the inhibitor-enzyme complexes. These inhibitors may also be used to inhibit a trans-sialidase of Trypanosome cruzi, a very similar enzyme to bacterial sialidase, therefore preventing T. cruzi infection, the causitive agent of Chagas' disease. The Center for Macromolecular Crystallography suggests that inhibitors of bacterial sialidases can be used as prophylactic drugs to prevent bacterial infections in these critical cases.

  2. Photosynthesis and Respiration in a Jar.

    ERIC Educational Resources Information Center

    Buttner, Joseph K.

    2000-01-01

    Describes an activity that reduces the biosphere to a water-filled jar to simulate the relationship between cellular respiration, photosynthesis, and energy. Allows students in high school biology and related courses to explore quantitatively cellular respiration and photosynthesis in almost any laboratory setting. (ASK)

  3. Depressive Symptoms and Impaired Respiration in Sleep.

    ERIC Educational Resources Information Center

    Bliwise, Donald L.; And Others

    1986-01-01

    Associations between depression and impaired respiration in sleep are frequently noted clinically. This relationship was documented psychometrically with the Geriatric Depression Scale, a self-report measure of nonsomatic depressive symptoms. Mean values and effect size suggest that impaired respiration in sleep was associated with only relatively…

  4. Direct reading of electrocardiograms and respiration rates

    NASA Technical Reports Server (NTRS)

    Wise, J. P.

    1969-01-01

    Technique for reading heart and respiration rates is more accurate and direct than the previous method. Index of a plastic calibrated card is aligned with a point on the electrocardiogram. Complexes are counted as indicated on the card and heart or respiration rate is read directly from the appropriate scale.

  5. Artificial Respiration and Artificial Circulation

    PubMed Central

    Brook, Joseph; Brook, Morris H.; Lopez, Jose F.

    1965-01-01

    A training program in the newer methods of treatment of acute cardiopulmonary emergencies which was developed at the University Hospital, University of Saskatchewan, is reported. Artificial respiration by the chance rescuer, primary and secondary resuscitation, and post-resuscitation measures involving the use of special drugs and equipment by trained personnel are described. Figures and tables designed for wall-mounting and ready reference in an emergency situation are presented. Firstaid ventilatory adjuncts for use by trained personnel are classified and critically appraised, and the propriety of their use is emphasized. A plea is made to the medical profession and allied agencies to assume the responsibility of spreading knowledge of the new techniques more widely. Unless effective treatment is instituted early enough to prevent death or permanent anoxic damage to heart and brain, follow-through therapy will often be fruitless. PMID:14339303

  6. Sleep and Respiration in Microgravity

    NASA Technical Reports Server (NTRS)

    West, John B.; Elliott, Ann R.; Prisk, G. Kim; Paiva, Manuel

    2003-01-01

    Sleep is often reported to be of poor quality in microgravity, and studies on the ground have shown a strong relationship between sleep-disordered breathing and sleep disruption. During the 16-day Neurolab mission, we studied the influence of possible changes in respiratory function on sleep by performing comprehensive sleep recordings on the payload crew on four nights during the mission. In addition, we measured the changes in the ventilatory response to low oxygen and high carbon dioxide in the same subjects during the day, hypothesizing that changes in ventilatory control might affect respiration during sleep. Microgravity caused a large reduction in the ventilatory response to reduced oxygen. This is likely the result of an increase in blood pressure at the peripheral chemoreceptors in the neck that occurs when the normally present hydrostatic pressure gradient between the heart and upper body is abolished. This reduction was similar to that seen when the subjects were placed acutely in the supine position in one-G. In sharp contrast to low oxygen, the ventilatory response to elevated carbon dioxide was unaltered by microgravity or the supine position. Because of the similarities of the findings in microgravity and the supine position, it is unlikely that changes in ventilatory control alter respiration during sleep in microgravity. During sleep on the ground, there were a small number of apneas (cessation of breathing) and hypopneas (reduced breathing) in these normal subjects. During sleep in microgravity, there was a reduction in the number of apneas and hypopneas per hour compared to preflight. Obstructive apneas virtually disappeared in microgravity, suggesting that the removal of gravity prevents the collapse of upper airways during sleep. Arousals from sleep were reduced in microgravity compared to preflight, and virtually all of this reduction was as a result of a reduction in the number of arousals from apneas and hypopneas. We conclude that any sleep

  7. Modelling Soil respiration in agro-ecosystems

    NASA Astrophysics Data System (ADS)

    Delogu, Emilie; LeDantec, Valerie; Mordelet, Patrick; Buysse, Pauline; Aubinet, Marc; Pattey, Elizabeth

    2013-04-01

    A soil respiration model was developed to simulate soil respiration in crops on a daily time step. The soil heterotrophic respiration component was derived from Century (Parton et al., 1987). Soil organic carbon is divided into three major components including active, slow and passive soil carbon. Each pool has its own decomposition rate coefficient. Carbon flows between these pools are controlled by carbon inputs (crop residues), decomposition rate and microbial respiration loss parameters, both of which are a function of soil texture, soil temperature and soil water content. The model assumes that all C decompositions flows are associated with microbial activity and that microbial respiration occurs for each of these flows. Heterotrophic soil respiration is the sum of all these microbial respiration processes. To model the soil autotrophic respiration component, maintenance respiration is calculated from the nitrogen content and assuming an exponential relationship to account for temperature dependence (Ryan et al., 1991). Growth respiration is calculated assuming a dependence on both growth rate and construction cost of the considered organ (MacCree et al., 1982) A database, made of four different soil and climate conditions in mid-latitude was used to study the two components of the soil respiration model in wheat fields. Soil respiration were measured in three winter wheat fields at Lamasquère (43°49'N, 01°23'E, 2007) and Auradé (43°54'N, 01°10'E, 2008), South-West France and Lonzée (50°33'N, 4°44'E, 2007), Belgium, and in a spring wheat field at Ottawa (45°22'N, 75°43'W, 2007, 2011), Ontario, Canada. Manual closed chambers were used in the French sites. The Belgium and Canadian sites were equipped with automated closed chamber systems, which continuously collected 30-min soil respiration exchanges. All the sites were also equipped with eddy flux towers. When eddy flux data were collected over bare soil, the net ecosystem exchange (NEE) was equal to

  8. Physicochemical properties of respirable-size lunar dust

    NASA Astrophysics Data System (ADS)

    McKay, D. S.; Cooper, B. L.; Taylor, L. A.; James, J. T.; Thomas-Keprta, K.; Pieters, C. M.; Wentworth, S. J.; Wallace, W. T.; Lee, T. S.

    2015-02-01

    We separated the respirable dust and other size fractions from Apollo 14 bulk sample 14003,96 in a dry nitrogen environment. While our toxicology team performed in vivo and in vitro experiments with the respirable fraction, we studied the size distribution and shape, chemistry, mineralogy, spectroscopy, iron content and magnetic resonance of various size fractions. These represent the finest-grained lunar samples ever measured for either FMR np-Fe0 index or precise bulk chemistry, and are the first instance we know of in which SEM/TEM samples have been obtained without using liquids. The concentration of single-domain, nanophase metallic iron (np-Fe0) increases as particle size diminishes to 2 μm, confirming previous extrapolations. Size-distribution studies disclosed that the most frequent particle size was in the 0.1-0.2 μm range suggesting a relatively high surface area and therefore higher potential toxicity. Lunar dust particles are insoluble in isopropanol but slightly soluble in distilled water (~0.2 wt%/3 days). The interaction between water and lunar fines, which results in both agglomeration and partial dissolution, is observable on a macro scale over time periods of less than an hour. Most of the respirable grains were smooth amorphous glass. This suggests less toxicity than if the grains were irregular, porous, or jagged, and may account for the fact that lunar dust is less toxic than ground quartz.

  9. Apparatus and method for the characterization of respirable aerosols

    DOEpatents

    Clark, Douglas K.; Hodges, Bradley W.; Bush, Jesse D.; Mishima, Jofu

    2016-05-31

    An apparatus for the characterization of respirable aerosols, including: a burn chamber configured to selectively contain a sample that is selectively heated to generate an aerosol; a heating assembly disposed within the burn chamber adjacent to the sample; and a sampling segment coupled to the burn chamber and configured to collect the aerosol such that it may be analyzed. The apparatus also includes an optional sight window disposed in a wall of the burn chamber such that the sample may be viewed during heating. Optionally, the sample includes one of a Lanthanide, an Actinide, and a Transition metal.

  10. Effect of long-term industrial waste effluent pollution on soil enzyme activities and bacterial community composition.

    PubMed

    Subrahmanyam, Gangavarapu; Shen, Ju-Pei; Liu, Yu-Rong; Archana, Gattupalli; Zhang, Li-Mei

    2016-02-01

    Although numerous studies have addressed the influence of exogenous pollutants on microorganisms, the effect of long-term industrial waste effluent (IWE) pollution on the activity and diversity of soil bacteria was still unclear. Three soil samples characterized as uncontaminated (R1), moderately contaminated (R2), and highly contaminated (R3) receiving mixed organic and heavy metal pollutants for more than 20 years through IWE were collected along the Mahi River basin, Gujarat, western India. Basal soil respiration and in situ enzyme activities indicated an apparent deleterious effect of IWE on microbial activity and soil function. Community composition profiling of soil bacteria using 16S rRNA gene amplification and denaturing gradient gel electrophoresis (DGGE) method indicated an apparent bacterial community shift in the IWE-affected soils. Cloning and sequencing of DGGE bands revealed that the dominated bacterial phyla in polluted soil were affiliated with Firmicutes, Acidobacteria, and Actinobacteria, indicating that these bacterial phyla may have a high tolerance to pollutants. We suggested that specific bacterial phyla along with soil enzyme activities could be used as relevant biological indicators for long-term pollution assessment on soil quality. Graphical Abstract Bacterial community profiling and soil enzyme activities in long-term industrial waste effluent polluted soils. PMID:26803661

  11. Propane respiration jump-starts microbial response to a deep oil spill.

    PubMed

    Valentine, David L; Kessler, John D; Redmond, Molly C; Mendes, Stephanie D; Heintz, Monica B; Farwell, Christopher; Hu, Lei; Kinnaman, Franklin S; Yvon-Lewis, Shari; Du, Mengran; Chan, Eric W; Garcia Tigreros, Fenix; Villanueva, Christie J

    2010-10-01

    The Deepwater Horizon event resulted in suspension of oil in the Gulf of Mexico water column because the leakage occurred at great depth. The distribution and fate of other abundant hydrocarbon constituents, such as natural gases, are also important in determining the impact of the leakage but are not yet well understood. From 11 to 21 June 2010, we investigated dissolved hydrocarbon gases at depth using chemical and isotopic surveys and on-site biodegradation studies. Propane and ethane were the primary drivers of microbial respiration, accounting for up to 70% of the observed oxygen depletion in fresh plumes. Propane and ethane trapped in the deep water may therefore promote rapid hydrocarbon respiration by low-diversity bacterial blooms, priming bacterial populations for degradation of other hydrocarbons in the aging plume. PMID:20847236

  12. Bacterial Proteasomes

    PubMed Central

    Jastrab, Jordan B.; Darwin, K. Heran

    2015-01-01

    Interest in bacterial proteasomes was sparked by the discovery that proteasomal degradation is required for the pathogenesis of Mycobacterium tuberculosis, one of the world's deadliest pathogens. Although bacterial proteasomes are structurally similar to their eukaryotic and archaeal homologs, there are key differences in their mechanisms of assembly, activation, and substrate targeting for degradation. In this article, we compare and contrast bacterial proteasomes with their archaeal and eukaryotic counterparts, and we discuss recent advances in our understanding of how bacterial proteasomes function to influence microbial physiology. PMID:26488274

  13. Spartina alterniflora invasion alters soil microbial community composition and microbial respiration following invasion chronosequence in a coastal wetland of China.

    PubMed

    Yang, Wen; Jeelani, Nasreen; Leng, Xin; Cheng, Xiaoli; An, Shuqing

    2016-01-01

    The role of exotic plants in regulating soil microbial community structure and activity following invasion chronosequence remains unclear. We investigated soil microbial community structure and microbial respiration following Spartina alterniflora invasion in a chronosequence of 6-, 10-, 17-, and 20-year-old by comparing with bare flat in a coastal wetland of China. S. alterniflora invasion significantly increased soil moisture and salinity, the concentrations of soil water-soluble organic carbon and microbial biomass carbon (MBC), the quantities of total and various types of phospholipid fatty acids (PLFAs), the fungal:bacterial PLFAs ratio and cumulative microbial respiration compared with bare flat. The highest MBC, gram-negative bacterial and saturated straight-chain PLFAs were found in 10-year-old S. alterniflora soil, while the greatest total PLFAs, bacterial and gram-positive bacterial PLFAs were found in 10- and 17-year-old S. alterniflora soils. The monounsaturated:branched PLFAs ratio declined, and cumulative microbial respiration on a per-unit-PLFAs increased following S. alterniflora invasion in the chronosequence. Our results suggest that S. alterniflora invasion significantly increased the biomass of soil various microbial groups and microbial respiration compared to bare flat soil by increasing soil available substrate, and modifying soil physiochemical properties. Soil microbial community reached the most enriched condition in the 10-year-old S. alterniflora community. PMID:27241173

  14. Spartina alterniflora invasion alters soil microbial community composition and microbial respiration following invasion chronosequence in a coastal wetland of China

    NASA Astrophysics Data System (ADS)

    Yang, Wen; Jeelani, Nasreen; Leng, Xin; Cheng, Xiaoli; An, Shuqing

    2016-05-01

    The role of exotic plants in regulating soil microbial community structure and activity following invasion chronosequence remains unclear. We investigated soil microbial community structure and microbial respiration following Spartina alterniflora invasion in a chronosequence of 6-, 10-, 17-, and 20-year-old by comparing with bare flat in a coastal wetland of China. S. alterniflora invasion significantly increased soil moisture and salinity, the concentrations of soil water-soluble organic carbon and microbial biomass carbon (MBC), the quantities of total and various types of phospholipid fatty acids (PLFAs), the fungal:bacterial PLFAs ratio and cumulative microbial respiration compared with bare flat. The highest MBC, gram-negative bacterial and saturated straight-chain PLFAs were found in 10-year-old S. alterniflora soil, while the greatest total PLFAs, bacterial and gram-positive bacterial PLFAs were found in 10- and 17-year-old S. alterniflora soils. The monounsaturated:branched PLFAs ratio declined, and cumulative microbial respiration on a per-unit-PLFAs increased following S. alterniflora invasion in the chronosequence. Our results suggest that S. alterniflora invasion significantly increased the biomass of soil various microbial groups and microbial respiration compared to bare flat soil by increasing soil available substrate, and modifying soil physiochemical properties. Soil microbial community reached the most enriched condition in the 10-year-old S. alterniflora community.

  15. Spartina alterniflora invasion alters soil microbial community composition and microbial respiration following invasion chronosequence in a coastal wetland of China

    PubMed Central

    Yang, Wen; Jeelani, Nasreen; Leng, Xin; Cheng, Xiaoli; An, Shuqing

    2016-01-01

    The role of exotic plants in regulating soil microbial community structure and activity following invasion chronosequence remains unclear. We investigated soil microbial community structure and microbial respiration following Spartina alterniflora invasion in a chronosequence of 6-, 10-, 17-, and 20-year-old by comparing with bare flat in a coastal wetland of China. S. alterniflora invasion significantly increased soil moisture and salinity, the concentrations of soil water-soluble organic carbon and microbial biomass carbon (MBC), the quantities of total and various types of phospholipid fatty acids (PLFAs), the fungal:bacterial PLFAs ratio and cumulative microbial respiration compared with bare flat. The highest MBC, gram-negative bacterial and saturated straight-chain PLFAs were found in 10-year-old S. alterniflora soil, while the greatest total PLFAs, bacterial and gram-positive bacterial PLFAs were found in 10- and 17-year-old S. alterniflora soils. The monounsaturated:branched PLFAs ratio declined, and cumulative microbial respiration on a per-unit-PLFAs increased following S. alterniflora invasion in the chronosequence. Our results suggest that S. alterniflora invasion significantly increased the biomass of soil various microbial groups and microbial respiration compared to bare flat soil by increasing soil available substrate, and modifying soil physiochemical properties. Soil microbial community reached the most enriched condition in the 10-year-old S. alterniflora community. PMID:27241173

  16. Particulate Respirators Functionalized with Silver Nanoparticles Showed Excellent Real-Time Antimicrobial Effects against Pathogens.

    PubMed

    Zheng, Clark Renjun; Li, Shuai; Ye, Chengsong; Li, Xinyang; Zhang, Chiqian; Yu, Xin

    2016-07-01

    Particulate respirators designed to filtrate fine particulate matters usually do not possess antimicrobial functions. The current study aimed to functionalize particulate respirators with silver nanoparticles (nanosilver or AgNPs), which have excellent antimicrobial activities, utilizing a straightforward and effective method. We first enhanced the nanosilver-coating ability of nonwoven fabrics from a particulate respirator through surface modification by sodium oleate. The surfactant treatment significantly improved the fabrics' water wet preference where the static water contact angles reduced from 122° to 56°. Both macroscopic agar-plate tests and microscopic scanning electron microscope (SEM) characterization revealed that nanosilver functionalized fabrics could effectively inhibit the growth of two model bacterial strains (i.e., Staphylococcus aureus and Pseudomonas aeruginosa). The coating of silver nanoparticles would not affect the main function of particulate respirators (i.e., filtration of fine air-borne particles). Nanosilver coated particulate respirators with excellent antimicrobial activities can provide real-time protection to people in regions with severe air pollution against air-borne pathogens. PMID:27327938

  17. Environmental and Genotypic Effects on the Respiration Associated with Symbiotic Nitrogen Fixation in Peas 1

    PubMed Central

    Mahon, John D.

    1979-01-01

    Estimated values for the respiration associated with symbiotic nitrogen fixation in Pisum sativum L. were independent of irradiance, temperature, plant age, and CO2 concentration, despite large variation in the total rates of C2H2 reduction and root + nodule respiration. Similar values were also found in Phaseolus vulgaris L., Vicia faba L. and Glycine max (L.) Merr. Among all combinations of four Pisum cultivars with four Rhizobium leguminosarum inoculants only the plant genotype significantly affected the fixation-linked respiration, although both plant and bacterial types significantly influenced the total rate of C2H2 reduction. On the basis of measured rates of H2 evolution and C2H2 reduction, or total nitrogen gain in the same system, the least respiration per unit of ammonia produced symbiotically was estimated as 4.8 to 6.9 moles CO2 (mole NH3)−1 in Laxton's Progress and the greatest as 9.3 to 13.3 moles CO2 (mole NH3)−1 in an Indian cultivar, as compared to a theoretical minimum respiration requirement of 4.7 moles CO2 (mole NH3)−1 in peas. PMID:16660833

  18. Soil microbial community composition and respiration along an experimental precipitation gradient in a semiarid steppe

    PubMed Central

    Zhao, Cancan; Miao, Yuan; Yu, Chengde; Zhu, Lili; Wang, Feng; Jiang, Lin; Hui, Dafeng; Wan, Shiqiang

    2016-01-01

    As a primary limiting factor in arid and semiarid regions, precipitation strongly influences soil microbial properties. However, the patterns and mechanisms of soil microbial responses to precipitation have not been well documented. In this study, changes in soil microorganisms along an experimental precipitation gradient with seven levels of precipitation manipulation (i.e., ambient precipitation as a control, and ±20%, ±40%, and ±60% of ambient precipitation) were explored in a semiarid temperate steppe in northern China. Soil microbial biomass carbon and respiration as well as the ratio of fungal to bacterial biomass varied along the experimental precipitation gradient and peaked under the +40% precipitation treatment. The shifts in microbial community composition could be largely attributable to the changes in soil water and nutrient availability. The metabolic quotient increased (indicating reduced carbon use efficiency) with increasing precipitation due to the leaching of dissolved organic carbon. The relative contributions of microbial respiration to soil and ecosystem respiration increased with increasing precipitation, suggesting that heterotrophic respiration will be more sensitive than autotrophic respiration if precipitation increases in the temperate steppe as predicted under future climate-change scenarios. PMID:27074973

  19. BOREAS TE-5 Soil Respiration Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Ehleriinger, Jim; Brooks, J. Renee; Flanagan, Larry

    2000-01-01

    The BOREAS TE-5 team collected measurements in the NSA and SSA on gas exchange, gas composition, and tree growth. Soil respiration data were collected from 26-May-94 to 07-Sep-94 in the BOREAS NSA and SSA to compare the soil respiration rates in different forest sites using a LI-COR 6200 soil respiration chamber (model 6299). The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distrobuted Activity Archive Center (DAAC).

  20. The effect of subject characteristics and respirator features on respirator fit.

    PubMed

    Zhuang, Ziqing; Coffey, Christopher C; Ann, Roland Berry

    2005-12-01

    A recent study was conducted to compare five fit test methods for screening out poor-fitting N95 filtering-facepiece respirators. Eighteen models of NIOSH-certified, N95 filtering-facepiece respirators were used to assess the fit test methods by using a simulated workplace protection factor (SWPF) test. The purpose of this companion study was to investigate the effect of subject characteristics (gender and face dimensions) and respirator features on respirator fit. The respirator features studied were design style (folding and cup style) and number of sizes available (one size fits all, two sizes, and three sizes). Thirty-three subjects participated in this study. Each was measured for 12 face dimensions using traditional calipers and tape. From this group, 25 subjects with face size categories 1 to 10 tested each respirator. The SWPF test protocol entailed using the PortaCount Plus to determine a SWPF based on total penetration (face-seal leakage plus filter penetration) while the subject performed six simulated workplace movements. Six tests were conducted for each subject/respirator model combination with redonning between tests. The respirator design style (folding style and cup style) did not have a significant effect on respirator fit in this study. The number of respirator sizes available for a model had significant impact on respirator fit on the panel for cup-style respirators with one and two sizes available. There was no significant difference in the geometric mean fit factor between male and female subjects for 16 of the 18 respirator models. Subsets of one to six face dimensions were found to be significantly correlated with SWPFs (p < 0.05) in 16 of the 33 respirator model/respirator size combinations. Bigonial breadth, face width, face length, and nose protrusion appeared the most in subsets (five or six) of face dimensions and their multiple linear regression coefficients were significantly different from zero (p < 0.05). Lip length was found in

  1. Effects of substrate induced respiration on the stability of bottom ash in landfill cover environment.

    PubMed

    Ilyas, A; Lovat, E; Persson, K M

    2014-12-01

    The municipal solid waste incineration bottom ash is being increasingly used to construct landfill covers in Sweden. In post-closure, owing to increased cover infiltration, the percolating water can add external organic matter to bottom ash. The addition and subsequent degradation of this external organic matter can affect metal mobility through complexation and change in redox conditions. However, the impacts of such external organic matter addition on bottom ash stability have not been fully evaluated yet. Therefore, the objective of this study was to evaluate the impact of external organic matter on bottom ash respiration and metal leaching. The samples of weathered bottom ash were mixed with oven dried and digested wastewater sludge (1%-5% by weight). The aerobic respiration activity (AT4), as well as the leaching of metals, was tested with the help of respiration and batch leaching tests. The respiration and heavy metal leaching increased linearly with the external organic matter addition. Based on the results, it was concluded that the external organic matter addition would negatively affect the quality of landfill cover drainage. PMID:25395160

  2. A combined electrochemical and optical trapping platform for measuring single cell respiration rates at electrode interfaces

    SciTech Connect

    Gross, Benjamin J.; El-Naggar, Mohamed Y.

    2015-06-15

    Metal-reducing bacteria gain energy by extracellular electron transfer to external solids, such as naturally abundant minerals, which substitute for oxygen or the other common soluble electron acceptors of respiration. This process is one of the earliest forms of respiration on earth and has significant environmental and technological implications. By performing electron transfer to electrodes instead of minerals, these microbes can be used as biocatalysts for conversion of diverse chemical fuels to electricity. Understanding such a complex biotic-abiotic interaction necessitates the development of tools capable of probing extracellular electron transfer down to the level of single cells. Here, we describe an experimental platform for single cell respiration measurements. The design integrates an infrared optical trap, perfusion chamber, and lithographically fabricated electrochemical chips containing potentiostatically controlled transparent indium tin oxide microelectrodes. Individual bacteria are manipulated using the optical trap and placed on the microelectrodes, which are biased at a suitable oxidizing potential in the absence of any chemical electron acceptor. The potentiostat is used to detect the respiration current correlated with cell-electrode contact. We demonstrate the system with single cell measurements of the dissimilatory-metal reducing bacterium Shewanella oneidensis MR-1, which resulted in respiration currents ranging from 15 fA to 100 fA per cell under our measurement conditions. Mutants lacking the outer-membrane cytochromes necessary for extracellular respiration did not result in any measurable current output upon contact. In addition to the application for extracellular electron transfer studies, the ability to electronically measure cell-specific respiration rates may provide answers for a variety of fundamental microbial physiology questions.

  3. A combined electrochemical and optical trapping platform for measuring single cell respiration rates at electrode interfaces

    NASA Astrophysics Data System (ADS)

    Gross, Benjamin J.; El-Naggar, Mohamed Y.

    2015-06-01

    Metal-reducing bacteria gain energy by extracellular electron transfer to external solids, such as naturally abundant minerals, which substitute for oxygen or the other common soluble electron acceptors of respiration. This process is one of the earliest forms of respiration on earth and has significant environmental and technological implications. By performing electron transfer to electrodes instead of minerals, these microbes can be used as biocatalysts for conversion of diverse chemical fuels to electricity. Understanding such a complex biotic-abiotic interaction necessitates the development of tools capable of probing extracellular electron transfer down to the level of single cells. Here, we describe an experimental platform for single cell respiration measurements. The design integrates an infrared optical trap, perfusion chamber, and lithographically fabricated electrochemical chips containing potentiostatically controlled transparent indium tin oxide microelectrodes. Individual bacteria are manipulated using the optical trap and placed on the microelectrodes, which are biased at a suitable oxidizing potential in the absence of any chemical electron acceptor. The potentiostat is used to detect the respiration current correlated with cell-electrode contact. We demonstrate the system with single cell measurements of the dissimilatory-metal reducing bacterium Shewanella oneidensis MR-1, which resulted in respiration currents ranging from 15 fA to 100 fA per cell under our measurement conditions. Mutants lacking the outer-membrane cytochromes necessary for extracellular respiration did not result in any measurable current output upon contact. In addition to the application for extracellular electron transfer studies, the ability to electronically measure cell-specific respiration rates may provide answers for a variety of fundamental microbial physiology questions.

  4. A combined electrochemical and optical trapping platform for measuring single cell respiration rates at electrode interfaces.

    PubMed

    Gross, Benjamin J; El-Naggar, Mohamed Y

    2015-06-01

    Metal-reducing bacteria gain energy by extracellular electron transfer to external solids, such as naturally abundant minerals, which substitute for oxygen or the other common soluble electron acceptors of respiration. This process is one of the earliest forms of respiration on earth and has significant environmental and technological implications. By performing electron transfer to electrodes instead of minerals, these microbes can be used as biocatalysts for conversion of diverse chemical fuels to electricity. Understanding such a complex biotic-abiotic interaction necessitates the development of tools capable of probing extracellular electron transfer down to the level of single cells. Here, we describe an experimental platform for single cell respiration measurements. The design integrates an infrared optical trap, perfusion chamber, and lithographically fabricated electrochemical chips containing potentiostatically controlled transparent indium tin oxide microelectrodes. Individual bacteria are manipulated using the optical trap and placed on the microelectrodes, which are biased at a suitable oxidizing potential in the absence of any chemical electron acceptor. The potentiostat is used to detect the respiration current correlated with cell-electrode contact. We demonstrate the system with single cell measurements of the dissimilatory-metal reducing bacterium Shewanella oneidensis MR-1, which resulted in respiration currents ranging from 15 fA to 100 fA per cell under our measurement conditions. Mutants lacking the outer-membrane cytochromes necessary for extracellular respiration did not result in any measurable current output upon contact. In addition to the application for extracellular electron transfer studies, the ability to electronically measure cell-specific respiration rates may provide answers for a variety of fundamental microbial physiology questions. PMID:26133851

  5. BACTERIAL SORPTION OF HEAVY METALS

    EPA Science Inventory

    Four bacteria, Bacillus cereus, B. subtilis, Escherichia coli, and Pseudomonas aeruginosa, were examined for the ability to remove Ag+, Cd2+, Cu2+, and La3+ from solution by batch equilibration methods. d and Cu sorption over the concentration range 0.001 to 1 mM was described by...

  6. Photosynthesis and Respiration in Leaf Slices.

    ERIC Educational Resources Information Center

    Brown, Simon

    1998-01-01

    Demonstrates how leaf slices provide an inexpensive material for illustrating several fundamental points about the biochemistry of photosynthesis and respiration. Presents experiments that illustrate the effects of photon flux density and herbicides and carbon dioxide concentration. (DDR)

  7. Respiration gated radiotherapy treatment: a technical study

    NASA Astrophysics Data System (ADS)

    Kubo, Hideo D.; Hill, Bruce C.

    1996-01-01

    In order to optimize external-beam conformal radiotherapy, patient movement during treatment must be minimized. For treatment on the upper torso, the target organs are known to move substantially due to patient respiration. This paper deals with the technical aspects of gating the radiotherapy beam synchronously with respiration: the optimal respiration monitoring system, measurements of organ displacement and linear accelerator gating. Several respiration sensors including a thermistor, a thermocouple, a strain gauge and a pneumotachograph were examined to find the optimal sensor. The magnitude of breast, chest wall and lung motion were determined using playback of fluoroscopic x-ray images recorded on a VCR during routine radiotherapy simulation. Total dose, beam symmetry and beam uniformity were examined to determine any effects on the Varian 2100C linear accelerator due to gating.

  8. [Effects of Tillage on Soil Respiration and Root Respiration Under Rain-Fed Summer Corn Field].

    PubMed

    Lu, Xing-li; Liao, Yun-cheng

    2015-06-01

    To explore the effects of different tillage systems on soil respiration and root respiration under rain-fed condition. Based on a short-term experiment, this paper investigated soil respiration in summer corn growth season under four tillage treatments including subsoiling tillage (ST), no tillage (NT), rotary tillage (RT) and moldboard plow tillage (CT). The contribution of root respiration using root exclusion method was also discussed. The results showed that soil respiration rate presented a single peak trend under four tillage methods during the summer corn growing season, and the maximum value was recorded at the heading stage. The trends of soil respiration were as follows: heading stage > flowering stage > grain filling stage > maturity stage > jointing stage > seedling stage. The trends of soil respiration under different tillage systems were as follows: CT > ST > RT > NT. There was a significant correlation between soil respiration rate and soil temperatures (P < 0.05), which could explain 35%-75% variability of soil respiration using exponential function equation. However, there was no significant correlation between soil respiration rate and soil moisture. Root respiration accounted for 45.13%-56.86% of the proportion of soil respiratio n with the mean value 51.72% during the summer corn growing season under different tillage systems. Therefore, root exclusion method could be used to study the contribution of crop growth to carbon emission, to compare effects of different tillage systems on the contribution of root respiration provides the bases for selecting the measures to slow down the decomposition of soil carbon. PMID:26387335

  9. 42 CFR 84.191 - Chemical cartridge respirators; required components.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Chemical cartridge respirators; required components... Chemical Cartridge Respirators § 84.191 Chemical cartridge respirators; required components. (a) Each chemical cartridge respirator described in § 84.190 shall, where its design requires, contain the...

  10. 42 CFR 84.191 - Chemical cartridge respirators; required components.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Chemical cartridge respirators; required components... Chemical Cartridge Respirators § 84.191 Chemical cartridge respirators; required components. (a) Each chemical cartridge respirator described in § 84.190 shall, where its design requires, contain the...