Science.gov

Sample records for bacterial metal respiration

  1. New Insights into the Mechanism of Bacterial Metal Respiration

    SciTech Connect

    DiChristina, Thomas J.

    2004-04-17

    This project goal is to identify genes and gene products required for microbial metal reduction: reductive dissolution of iron; reductive dissolution of manganese; reductive precipitation of selenium; reductive precipitation of uranium; and reductive precipitation of technetium.

  2. Bacterial respiration of arsenic and selenium

    USGS Publications Warehouse

    Stolz, J.F.; Oremland, R.S.

    1999-01-01

    Oxyanions of arsenic and selenium can be used in microbial anaerobic respiration as terminal electron acceptors. The detection of arsenate and selenate respiring bacteria in numerous pristine and contaminated environments and their rapid appearance in enrichment culture suggest that they are widespread and metabolically active in nature. Although the bacterial species that have been isolated and characterized are still few in number, they are scattered throughout the bacterial domain and include Gram- positive bacteria, beta, gamma and epsilon Proteobacteria and the sole member of a deeply branching lineage of the bacteria, Chrysiogenes arsenatus. The oxidation of a number of organic substrates (i.e. acetate, lactate, pyruvate, glycerol, ethanol) or hydrogen can be coupled to the reduction of arsenate and selenate, but the actual donor used varies from species to species. Both periplasmic and membrane-associated arsenate and selenate reductases have been characterized. Although the number of subunits and molecular masses differs, they all contain molybdenum. The extent of the environmental impact on the transformation and mobilization of arsenic and selenium by microbial dissimilatory processes is only now being fully appreciated.

  3. Molecular Characterization of Bacterial Respiration on Minerals

    SciTech Connect

    Blake, Robert C.

    2013-04-26

    anomalous dispersion (MAD) phasing; 4. An acid-stable red cytochrome with a novel absorbance peak at 579 nm was purified from cell-free extracts of L. ferriphilum. Functional studies demonstrated that this cytochrome was an important component of the aerobic iron respiratory chain in this organism; 5. The specific adhesion of At. ferrooxidans to pyrite is mediated by an extracellular protein that was identified as aporusticyanin. The adhesion of At. ferrooxidans to minerals was characterized by high affinity binding that exhibited a high specificity for pyrite over other sulfide minerals. The principal biopolymer involved in this high-affinity adhesion to pyrite was isolated by mineral affinity chromatography and identified as aporusticyanin. The adhesion of purified aporusticyanin to minerals was observed to adhere to different mineral with a pattern of reactivity identical to that observed with the intact bacterium. Further, preincubation of pyrite with excess exogenous aporusticyanin served to inhibit the adherence of intact cells to the surface of the mineral, indicating that the protein and the cells adhered to the pyrite in a mutually exclusive manner. Taken together, these observations support a model where aporusticyanin located on the surface of the bacterial cell acts as a mineral-specific receptor for the initial adherence of At. ferrooxidans to solid pyrite; 6. The specific adhesion of L. ferriphilum to pyrite was mediated by a different acid-stable extracellular protein than aporusticyanin; and 7. A prototype integrating cavity absorption meter (ICAM) was assembled to determine whether this novel spectrophotometer could be used to study cellular respiration in situ.

  4. Respiration and ecological niche influence bacterial membrane lipid compositions.

    PubMed

    Bay, Denice C; Booth, Sean C; Turner, Raymond J

    2015-05-01

    Bacterial membrane compositions vary widely between phyla and within related species. The types of lipids within membranes are as diverse as the selective pressures that influence bacterial lifestyles such as their mode of respiration and habitat. This study has examined the extent that respiration and habitat affect bacterial fatty acid (FA) and polar lipid (PL) compositions. To accomplish this, over 300 FA and PL profiles from 380 previously characterized species were assembled and subjected to multivariate statistical analyses in order to determine lipid to habitat/respiration associations. It was revealed that PL profiles showed a slight advantage over FA profiles for discriminating taxonomic relationships between species. FA profiles showed greater correlation with respiration and habitat than PL. This study identified that respiration did not consistently favour uniform FA or PL changes when lipid profiles were compared between examined phyla. This suggests that although phyla may adopt similar respiration methods, it does not result in consistent lipid attributes within one respiration state. Examination of FA and PL compositions were useful to identify taxonomic relationships between related species and provides insight into lipid variations influenced by the niche of its host. PMID:25297716

  5. Heavy Metal Pollution Enhances Soil Respiration and Reduces Carbon Storage in a Chinese Paddy Soil

    NASA Astrophysics Data System (ADS)

    Pan, Genxing; Li, Zhipeng; Liu, Yongzhuo; Smith, Pete; Crowley, David; Zheng, Jufeng

    2010-05-01

    China's paddy soils are crucial both for food security through high cereal productivity, and for climate mitigation through high soil carbon storage. These functions are increasingly threatened by widespread heavy metal pollution, resulting from rapid industrial development. Heavy metal-polluted soils generally have a reduced microbial biomass and reduced soil respiration, as well as reduced functional diversity through changes in microbial community structure. Here we show that heavy metal pollution enhances soil respiration and CO2 efflux from a Chinese rice paddy soil, and leads to a soil organic carbon (SOC) loss, which is correlated with a decline in the fungal-to-bacterial ratio of the reduced soil microbial community. The pollution-induced SOC loss could offset 70% of the yearly SOC increase from China's paddy soils. Thus, heavy metal pollution impacts long term productivity and the potential for C sequestration in China's paddy soils.

  6. BACTERIAL RESPIRATION OF ARSENIC AND SELENIUM. (R826105)

    EPA Science Inventory

    Abstract

    Oxyanions of arsenic and selenium can be used in microbial anaerobic respiration as terminal electron acceptors. The detection of arsenate and selenate respiring bacteria in numerous pristine and contaminated environments and their rapid appearance in enrichme...

  7. Modification of Bacterial Respiration by a Macromolecular Polyanionic Antibiotic Produced by a Marine Alteromonas

    PubMed Central

    Gauthier, M. J.

    1976-01-01

    A macromolecular polyanionic antibiotic produced by a marine bacterium belonging to the genus Alteromonas causes a large modification in bacterial respiration when added to the culture of several bacterial species in their early stage of growth. This antibiotic induces an increase of oxygen uptake and the production of hydrogen peroxide. The latter fact explains the high sensitivity of bacteria with low catalase activity and the antagonistic effect of pure catalase on antibiosis. The antibiotic could act at the level of the respiratory chain by setting up a flavinic respiration. PMID:1259396

  8. Dynamic subcellular localization of a respiratory complex controls bacterial respiration

    PubMed Central

    Alberge, François; Espinosa, Leon; Seduk, Farida; Sylvi, Léa; Toci, René; Walburger, Anne; Magalon, Axel

    2015-01-01

    Respiration, an essential process for most organisms, has to optimally respond to changes in the metabolic demand or the environmental conditions. The branched character of their respiratory chains allows bacteria to do so by providing a great metabolic and regulatory flexibility. Here, we show that the native localization of the nitrate reductase, a major respiratory complex under anaerobiosis in Escherichia coli, is submitted to tight spatiotemporal regulation in response to metabolic conditions via a mechanism using the transmembrane proton gradient as a cue for polar localization. These dynamics are critical for controlling the activity of nitrate reductase, as the formation of polar assemblies potentiates the electron flux through the complex. Thus, dynamic subcellular localization emerges as a critical factor in the control of respiration in bacteria. DOI: http://dx.doi.org/10.7554/eLife.05357.001 PMID:26077726

  9. Bacterial sorption of heavy metals.

    PubMed Central

    Mullen, M D; Wolf, D C; Ferris, F G; Beveridge, T J; Flemming, C A; Bailey, G W

    1989-01-01

    Four bacteria, Bacillus cereus, B. subtilis, Escherichia coli, and Pseudomonas aeruginosa, were examined for the ability to remove Ag+, Cd2+, Cu2+, and La3+ from solution by batch equilibration methods. Cd and Cu sorption over the concentration range 0.001 to 1 mM was described by Freundlich isotherms. At 1 mM concentrations of both Cd2+ and Cu2+, P. aeruginosa and B. cereus were the most and least efficient at metal removal, respectively. Freundlich K constants indicated that E. coli was most efficient at Cd2+ removal and B. subtilis removed the most Cu2+. Removal of Ag+ from solution by bacteria was very efficient; an average of 89% of the total Ag+ was removed from the 1 mM solution, while only 12, 29, and 27% of the total Cd2+, Cu2+, and La3+, respectively, were sorbed from 1 mM solutions. Electron microscopy indicated that La3+ accumulated at the cell surface as needlelike, crystalline precipitates. Silver precipitated as discrete colloidal aggregates at the cell surface and occasionally in the cytoplasm. Neither Cd2+ nor Cu2+ provided enough electron scattering to identify the location of sorption. The affinity series for bacterial removal of these metals decreased in the order Ag greater than La greater than Cu greater than Cd. The results indicate that bacterial cells are capable of binding large quantities of different metals. Adsorption equations may be useful for describing bacterium-metal interactions with metals such as Cd and Cu; however, this approach may not be adequate when precipitation of metals occurs. Images PMID:2515800

  10. Metal Toxicity Affects Fungal and Bacterial Activities in Soil Differently

    PubMed Central

    Rajapaksha, R. M. C. P.; Tobor-Kapłon, M. A; Bååth, E.

    2004-01-01

    Although the toxic effect of heavy metals on soil microorganism activity is well known, little is known about the effects on different organism groups. The influence of heavy metal addition on total, bacterial, and fungal activities was therefore studied for up to 60 days in a laboratory experiment using forest soil contaminated with different concentrations of Zn or Cu. The effects of the metals differed between the different activity measurements. During the first week after metal addition, the total activity (respiration rate) decreased by 30% at the highest level of contamination and then remained stable during the 60 days of incubation. The bacterial activity (thymidine incorporation rate) decreased during the first days with the level of metal contamination, resulting in a 90% decrease at the highest level of contamination. Bacterial activity then slowly recovered to values similar to those of the control soil. The recovery was faster when soil pH, which had decreased due to metal addition, was restored to control values by liming. Fungal activity (acetate-in-ergosterol incorporation rate) initially increased with the level of metal contamination, being up to 3 and 7 times higher than that in the control samples during the first week at the highest levels of Zn and Cu addition, respectively. The positive effect of metal addition on fungal activity then decreased, but fungal activity was still higher in contaminated than in control soil after 35 days. This is the first direct evidence that fungal and bacterial activities in soil are differently affected by heavy metals. The different responses of bacteria and fungi to heavy metals were reflected in an increase in the relative fungal/bacterial ratio (estimated using phospholipid fatty acid analysis) with increased metal load. PMID:15128558

  11. Metal toxicity affects fungal and bacterial activities in soil differently.

    PubMed

    Rajapaksha, R M C P; Tobor-Kapłon, M A; Bååth, E

    2004-05-01

    Although the toxic effect of heavy metals on soil microorganism activity is well known, little is known about the effects on different organism groups. The influence of heavy metal addition on total, bacterial, and fungal activities was therefore studied for up to 60 days in a laboratory experiment using forest soil contaminated with different concentrations of Zn or Cu. The effects of the metals differed between the different activity measurements. During the first week after metal addition, the total activity (respiration rate) decreased by 30% at the highest level of contamination and then remained stable during the 60 days of incubation. The bacterial activity (thymidine incorporation rate) decreased during the first days with the level of metal contamination, resulting in a 90% decrease at the highest level of contamination. Bacterial activity then slowly recovered to values similar to those of the control soil. The recovery was faster when soil pH, which had decreased due to metal addition, was restored to control values by liming. Fungal activity (acetate-in-ergosterol incorporation rate) initially increased with the level of metal contamination, being up to 3 and 7 times higher than that in the control samples during the first week at the highest levels of Zn and Cu addition, respectively. The positive effect of metal addition on fungal activity then decreased, but fungal activity was still higher in contaminated than in control soil after 35 days. This is the first direct evidence that fungal and bacterial activities in soil are differently affected by heavy metals. The different responses of bacteria and fungi to heavy metals were reflected in an increase in the relative fungal/bacterial ratio (estimated using phospholipid fatty acid analysis) with increased metal load. PMID:15128558

  12. The Terminal Oxidase Cytochrome bd Promotes Sulfide-resistant Bacterial Respiration and Growth

    PubMed Central

    Forte, Elena; Borisov, Vitaliy B.; Falabella, Micol; Colaço, Henrique G.; Tinajero-Trejo, Mariana; Poole, Robert K.; Vicente, João B.; Sarti, Paolo; Giuffrè, Alessandro

    2016-01-01

    Hydrogen sulfide (H2S) impairs mitochondrial respiration by potently inhibiting the heme-copper cytochrome c oxidase. Since many prokaryotes, including Escherichia (E.) coli, generate H2S and encounter high H2S levels particularly in the human gut, herein we tested whether bacteria can sustain sulfide-resistant O2-dependent respiration. E. coli has three respiratory oxidases, the cyanide-sensitive heme-copper bo3 enzyme and two bd oxidases much less sensitive to cyanide. Working on the isolated enzymes, we found that, whereas the bo3 oxidase is inhibited by sulfide with half-maximal inhibitory concentration IC50 = 1.1 ± 0.1 μM, under identical experimental conditions both bd oxidases are insensitive to sulfide up to 58 μM. In E. coli respiratory mutants, both O2-consumption and aerobic growth proved to be severely impaired by sulfide when respiration was sustained by the bo3 oxidase alone, but unaffected by ≤200 μM sulfide when either bd enzyme acted as the only terminal oxidase. Accordingly, wild-type E. coli showed sulfide-insensitive respiration and growth under conditions favouring the expression of bd oxidases. In all tested conditions, cyanide mimicked the functional effect of sulfide on bacterial respiration. We conclude that bd oxidases promote sulfide-resistant O2-consumption and growth in E. coli and possibly other bacteria. The impact of this discovery is discussed. PMID:27030302

  13. Soil Respiration and Bacterial Structure and Function after 17 Years of a Reciprocal Soil Transplant Experiment

    PubMed Central

    Bond-Lamberty, Ben; Bolton, Harvey; Fansler, Sarah; Heredia-Langner, Alejandro; Liu, Chongxuan; McCue, Lee Ann; Bailey, Vanessa

    2016-01-01

    The effects of climate change on soil organic matter—its structure, microbial community, carbon storage, and respiration response—remain uncertain and widely debated. In addition, the effects of climate changes on ecosystem structure and function are often modulated or delayed, meaning that short-term experiments are not sufficient to characterize ecosystem responses. This study capitalized on a long-term reciprocal soil transplant experiment to examine the response of dryland soils to climate change. The two transplant sites were separated by 500 m of elevation on the same mountain slope in eastern Washington state, USA, and had similar plant species and soil types. We resampled the original 1994 soil transplants and controls, measuring CO2 production, temperature response, enzyme activity, and bacterial community structure after 17 years. Over a laboratory incubation of 100 days, reciprocally transplanted soils respired roughly equal cumulative amounts of carbon as non-transplanted controls from the same site. Soils transplanted from the hot, dry, lower site to the cooler and wetter (difference of -5°C monthly maximum air temperature, +50 mm yr-1 precipitation) upper site exhibited almost no respiratory response to temperature (Q10 of 1.1), but soils originally from the upper, cooler site had generally higher respiration rates. The bacterial community structure of transplants did not differ significantly from that of untransplanted controls, however. Slight differences in local climate between the upper and lower Rattlesnake locations, simulated with environmental control chambers during the incubation, thus prompted significant differences in microbial activity, with no observed change to bacterial structure. These results support the idea that environmental shifts can influence soil C through metabolic changes, and suggest that microbial populations responsible for soil heterotrophic respiration may be constrained in surprising ways, even as shorter- and

  14. Soil Respiration and Bacterial Structure and Function after 17 Years of a Reciprocal Soil Transplant Experiment.

    PubMed

    Bond-Lamberty, Ben; Bolton, Harvey; Fansler, Sarah; Heredia-Langner, Alejandro; Liu, Chongxuan; McCue, Lee Ann; Smith, Jeffrey; Bailey, Vanessa

    2016-01-01

    The effects of climate change on soil organic matter-its structure, microbial community, carbon storage, and respiration response-remain uncertain and widely debated. In addition, the effects of climate changes on ecosystem structure and function are often modulated or delayed, meaning that short-term experiments are not sufficient to characterize ecosystem responses. This study capitalized on a long-term reciprocal soil transplant experiment to examine the response of dryland soils to climate change. The two transplant sites were separated by 500 m of elevation on the same mountain slope in eastern Washington state, USA, and had similar plant species and soil types. We resampled the original 1994 soil transplants and controls, measuring CO2 production, temperature response, enzyme activity, and bacterial community structure after 17 years. Over a laboratory incubation of 100 days, reciprocally transplanted soils respired roughly equal cumulative amounts of carbon as non-transplanted controls from the same site. Soils transplanted from the hot, dry, lower site to the cooler and wetter (difference of -5°C monthly maximum air temperature, +50 mm yr-1 precipitation) upper site exhibited almost no respiratory response to temperature (Q10 of 1.1), but soils originally from the upper, cooler site had generally higher respiration rates. The bacterial community structure of transplants did not differ significantly from that of untransplanted controls, however. Slight differences in local climate between the upper and lower Rattlesnake locations, simulated with environmental control chambers during the incubation, thus prompted significant differences in microbial activity, with no observed change to bacterial structure. These results support the idea that environmental shifts can influence soil C through metabolic changes, and suggest that microbial populations responsible for soil heterotrophic respiration may be constrained in surprising ways, even as shorter- and

  15. Soil respiration and bacterial structure and function after 17 years of a reciprocal soil transplant experiment

    DOE PAGESBeta

    Bond-Lamberty, Benjamin; Bolton, Harvey; Fansler, Sarah J.; Heredia-Langner, Alejandro; Liu, Chongxuan; McCue, Lee Ann; Smith, Jeff L.; Bailey, Vanessa L.

    2016-03-02

    The effects of climate change on soil organic matter—its structure, microbial community, carbon storage, and respiration response—remain uncertain and widely debated. In addition, the effects of climate changes on ecosystem structure and function are often modulated or delayed, meaning that short-term experiments are not sufficient to characterize ecosystem responses. This study capitalized on a long-term reciprocal soil transplant experiment to examine the response of dryland soils to climate change. The two transplant sites were separated by 500 m of elevation on the same mountain slope in eastern Washington state, USA, and had similar plant species and soil types. We resampledmore » the original 1994 soil transplants and controls, measuring CO2 production, temperature response, enzyme activity, and bacterial community structure after 17 years. Over a laboratory incubation of 100 days, reciprocally transplanted soils respired roughly equal cumulative amounts of carbon as non-transplanted controls from the same site. Soils transplanted from the hot, dry, lower site to the cooler and wetter (difference of -5 °C monthly maximum air temperature, +50 mm yr-1precipitation) upper site exhibited almost no respiratory response to temperature (Q10 of 1.1), but soils originally from the upper, cooler site had generally higher respiration rates. The bacterial community structure of transplants did not differ significantly from that of untransplanted controls, however. Slight differences in local climate between the upper and lower Rattlesnake locations, simulated with environmental control chambers during the incubation, thus prompted significant differences in microbial activity, with no observed change to bacterial structure. Lastly, these results support the idea that environmental shifts can influence soil C through metabolic changes, and suggest that microbial populations responsible for soil heterotrophic respiration may be constrained in surprising ways, even

  16. Effect of heavy metals on bacterial transport

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Olson, M. S.

    2010-12-01

    Adsorption of metals onto bacteria and soil takes place as stormwater runoff infiltrates into the subsurface. Changes in both bacterial surfaces and soil elemental content have been observed, and may alter the attachment of bacteria to soil surfaces. In this study, scanning electron microscopy (SEM) and Energy Dispersive X-ray Spectrometry (EDS) analyses were performed on soil samples equilibrated with synthetic stormwater amended with copper, lead and zinc. The results demonstrate the presence of copper and zinc on soil surfaces. To investigate bacterial attachment behavior, sets of batch sorption experiments were conducted on Escherichia Coli (E. coli) under different chemical conditions by varying solution compositions (nutrient solution vs synthetic stormwater). The adsorption data is best described using theoretical linear isotherms. The equilibrium coefficient (Kd) of E. coli is higher in synthetic stormwater than in nutrient solution without heavy metals. The adsorption of heavy metals onto bacterial surfaces significantly decreases their negative surface charge as determined via zeta potential measurements (-17.0±5.96mv for E. coli equilibrated with synthetic stormwater vs -21.6±5.45mv for E. coli equilibrated with nutrient solution), indicating that bacterial attachment may increase due to the attachment of metals onto bacterial surfaces and their subsequent change in surface charge. The attachment efficiency (α) of bacteria was also calculated and compared for both solution chemistries. Bacterial attachment efficiency (α) in synthetic stormwater is 0.997, which is twice as high as that in nutrient solution(α 0.465). The ratio of bacterial diameter : collector diameter suggests minimal soil straining during bacterial transport. Results suggest that the presence of metals in synthetic stormwater leads to an increase in bacterial attachment to soil surfaces. In terms of designing stormwater infiltration basins, the presence of heavy metals seems to

  17. Effects of viral enrichment on bacterial production, respiration and growth efficiency

    NASA Astrophysics Data System (ADS)

    Bonilla-Findji, O.; Rochelle-Newall, E.; Weinbauer, M. G.; Gattuso, J.-P.

    2003-04-01

    Viruses are the most common biological agents in the sea. They can influence many ecological processes such as nutrient and carbon cycling, particle size distribution, algal bloom control, species diversity and gene transfer. As they are mainly bacteriophages they not only influence bacterial abundances but also potentially, the bacterial respiration and production, as has been suggested in by Fuhrman’s model in 1992 and a few recent experimental studies. Through their lytic action viruses can influence biogeochemical cycles and so affect the functioning of the whole marine ecosystem. In order to explore this hypothesis and provide some quantitative data we: (1) studied the effects of viruses on bacterial respiration (BR), production (BP) and growth efficiency (BGE) and (2) investigated whether these effects change over time. A viral enrichment experiment was performed in April and May 2002, where the bacterial community isolated from the Bay of Villefranche was exposed to three treatments: Vo (no viral addition), Vm (enrichment of 1-1.5 fold inactivated viruses) and V+ (enrichment of 1-1.5 fold active viruses). No virally induced effects on bacterial metabolism were observed in April but in May after 24 h of incubation, BR was stimulated by ca. 39% in V+ compared to Vo and by 20% relative to Vm. In the presence of active viruses, BP was repressed by ca. 40% compared to Vo and BGE was reduced by 48%. In May, viruses increased the total bacterial carbon demand (17% in V+ compared to Vo, and by 11% relative to Vm). Our results suggest that viruses seem to induce a shift in the specific role of bacterioplankton by reducing the carbon flow to the higher trophic levels and by stimulating the DOM ‡ bacteria ‡ CO2, N, P, Fe pathway.

  18. Effect of CO2 enrichment on bacterial production and respiration and on bacterial carbon metabolism in Arctic waters

    NASA Astrophysics Data System (ADS)

    Motegi, C.; Tanaka, T.; Piontek, J.; Brussaard, C. P. D.; Gattuso, J. P.; Weinbauer, M. G.

    2012-10-01

    The impact of rising carbon dioxide (pCO2) on bacterial production (BP), bacterial respiration (BR) and bacterial carbon metabolism was investigated during the mesocosm experiment in Kongsfjord (Svalbard) in 2010. The mesocosm experiment lasted 30 days and nine mesocosms with pCO2 levels ranging from ca. 180 to 1400 μatm were used. Generally, BP gradually decreased in all mesocosms in an initial phase, showed a large (3.6-fold in average) but temporary increase on day 10, and increased slightly afterwards. BP increased with increasing pCO2 at the beginning of the experiment (day 5). This trend became inversed and BP decreased with increasing pCO2 on day 14 (after nutrient addition). Interestingly, increasing pCO2 enhanced the leucine and thymidine ratio at the end of experiment, suggesting that pCO2 may alter the growth balance of bacteria. In contrast to BP, no clear trend and effect of changes of pCO2 was observed for BR, bacterial carbon demand and bacterial growth efficiency. Our results suggest that (1) the response to elevated pCO2 had a strong temporal variation, potentially linked to the nutrient status, and (2) pCO2 had an influence on biomass accumulation (i.e. BP) rather than on the conversion of dissolved organic matter into CO2 (i.e. BR).

  19. Bioremoval of heavy metals by bacterial biomass.

    PubMed

    Aryal, Mahendra; Liakopoulou-Kyriakides, Maria

    2015-01-01

    Heavy metals are among the most common pollutants found in the environment. Health problems due to the heavy metal pollution become a major concern throughout the world, and therefore, various treatment technologies such as reverse osmosis, ion exchange, solvent extraction, chemical precipitation, and adsorption are adopted to reduce or eliminate their concentration in the environment. Biosorption is a cost-effective and environmental friendly technique, and it can be used for detoxification of heavy metals in industrial effluents as an alternative treatment technology. Biosorption characteristics of various bacterial species are reviewed here with respect to the results reported so far. The role of physical, chemical, and biological modification of bacterial cells for heavy metal removal is presented. The paper evaluates the different kinetic, equilibrium, and thermodynamic models used in bacterial sorption of heavy metals. Biomass characterization and sorption mechanisms as well as elution of metal ions and regeneration of biomass are also discussed. PMID:25471624

  20. Effect of methylchloro/methylisothiazolone on bacterial respiration in cooling water

    SciTech Connect

    Shaw, D.A.; Williams, T.M.; Holz, J.W.

    1998-12-31

    Cooling water systems provide a suitable environment for the growth of bacteria, algae and occasionally fungi. The efficacy of industrial biocides is typically determined by monitoring reduction in viable cell counts. An alternative approach is to measure a parameter of microbial activity such as respiration. The effect of methylchloro/ methylisothiazolone biocide (MCMI) on bacterial respiration was determined using an enriched synthetic cooling water and actual cooling water samples. Addition of MCMI resulted in rapid inhibition of oxygen uptake ( 5--10 minutes) by the mixed population of bacteria, whereas reduction in viable counts (two to six-log decrease) was generally not observed until four to six hours. These studies demonstrated MCMI as a fast-acting biocide and supported the current mode of action model for isothiazolone biocides.

  1. Physiological and electrochemical effects of different electron acceptors on bacterial anode respiration in bioelectrochemical systems.

    PubMed

    Yang, Yonggang; Xiang, Yinbo; Xia, Chunyu; Wu, Wei-Min; Sun, Guoping; Xu, Meiying

    2014-07-01

    To understand the interactions between bacterial electrode respiration and the other ambient bacterial electron acceptor reductions, alternative electron acceptors (nitrate, Fe2O3, fumarate, azo dye MB17) were added singly or multiply into Shewanella decolorationis microbial fuel cells (MFCs). All the added electron acceptors were reduced simultaneously with current generation. Adding nitrate or MB17 resulted in more rapid cell growth, higher flavin concentration and higher biofilm metabolic viability, but lower columbic efficiency (CE) and normalized energy recovery (NER) while the CE and NER were enhanced by Fe2O3 or fumarate. The added electron acceptors also significantly influenced the cyclic voltammetry profile of anode biofilm probably via altering the cytochrome c expression. The highest power density was observed in MFCs added with MB17 due to the electron shuttle role of the naphthols from MB17 reduction. The results provided important information for MFCs applied in practical environments where contains various electron acceptors. PMID:24862003

  2. Are the actively respiring cells (CTC+) those responsible for bacterial production in aquatic environments?

    PubMed

    Servais, P; Agogué, H; Courties, C; Joux, F; Lebaron, P

    2001-04-01

    The 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) staining method is commonly and increasingly used to detect and to enumerate actively respiring cells (CTC+ cells) in aquatic systems. However, this method remains controversial since some authors promote this technique while others pointed out several drawbacks of the method. Using flow cytometry (FCM), we showed that CTC staining kinetics vary greatly from one sample to another. Therefore, there is no universal staining protocol that can be applied to aquatic bacterial communities. Furthermore, using (3)H-leucine incorporation, it was shown that the CTC dye has a rapid toxic effect on bacterial cells by inhibiting protein synthesis, a key physiological function. The coupling of radioactive labelling with cell sorting by FCM suggested that CTC+ cells contribute to less than 60% of the whole bacterial activity determined at the community level. From these results, it is clearly demonstrated that the CTC method is not valid to detect active bacteria, i.e. cells responsible for bacterial production. PMID:11295456

  3. Effect of humic substance photodegradation on bacterial growth and respiration in lake water.

    PubMed

    Anesio, Alexandre M; Granéli, Wilhelm; Aiken, George R; Kieber, David J; Mopper, Kenneth

    2005-10-01

    This study addresses how humic substance (HS) chemical composition and photoreactivity affect bacterial growth, respiration, and growth efficiency (BGE) in lake water. Aqueous solutions of HSs from diverse aquatic environments representing different dissolved organic matter sources (autochthonous and allochthonous) were exposed to artificial solar UV radiation. These solutions were added to lake water passed through a 0.7-microm-pore-size filter (containing grazer-free lake bacteria) followed by dark incubation for 5, 43, and 65 h. For the 5-h incubation, several irradiated HSs inhibited bacterial carbon production (BCP) and this inhibition was highly correlated with H2O2 photoproduction. The H2O2 decayed in the dark, and after 43 h, nearly all irradiated HSs enhanced BCP (average 39% increase relative to nonirradiated controls, standard error = 7.5%, n = 16). UV exposure of HSs also increased bacterial respiration (by approximately 18%, standard error = 5%, n = 4), but less than BCP, resulting in an average increase in BGE of 32% (standard error = 10%, n = 4). Photoenhancement of BCP did not correlate to HS bulk properties (i.e., elemental and chemical composition). However, when the photoenhancement of BCP was normalized to absorbance, several trends with HS origin and extraction method emerged. Absorbance-normalized hydrophilic acid and humic acid samples showed greater enhancement of BCP than hydrophobic acid and fulvic acid samples. Furthermore, absorbance-normalized autochthonous samples showed approximately 10-fold greater enhancement of BCP than allochthonous-dominated samples, indicating that the former are more efficient photoproducers of biological substrates. PMID:16204548

  4. Effect of Humic Substance Photodegradation on Bacterial Growth and Respiration in Lake Water

    PubMed Central

    Anesio, Alexandre M.; Granéli, Wilhelm; Aiken, George R.; Kieber, David J.; Mopper, Kenneth

    2005-01-01

    This study addresses how humic substance (HS) chemical composition and photoreactivity affect bacterial growth, respiration, and growth efficiency (BGE) in lake water. Aqueous solutions of HSs from diverse aquatic environments representing different dissolved organic matter sources (autochthonous and allochthonous) were exposed to artificial solar UV radiation. These solutions were added to lake water passed through a 0.7-μm-pore-size filter (containing grazer-free lake bacteria) followed by dark incubation for 5, 43, and 65 h. For the 5-h incubation, several irradiated HSs inhibited bacterial carbon production (BCP) and this inhibition was highly correlated with H2O2 photoproduction. The H2O2 decayed in the dark, and after 43 h, nearly all irradiated HSs enhanced BCP (average 39% increase relative to nonirradiated controls, standard error = 7.5%, n = 16). UV exposure of HSs also increased bacterial respiration (by ∼18%, standard error = 5%, n = 4), but less than BCP, resulting in an average increase in BGE of 32% (standard error = 10%, n = 4). Photoenhancement of BCP did not correlate to HS bulk properties (i.e., elemental and chemical composition). However, when the photoenhancement of BCP was normalized to absorbance, several trends with HS origin and extraction method emerged. Absorbance-normalized hydrophilic acid and humic acid samples showed greater enhancement of BCP than hydrophobic acid and fulvic acid samples. Furthermore, absorbance-normalized autochthonous samples showed ∼10-fold greater enhancement of BCP than allochthonous-dominated samples, indicating that the former are more efficient photoproducers of biological substrates. PMID:16204548

  5. Effect of humic substance photodegradation on bacterial growth and respiration in lake water

    USGS Publications Warehouse

    Anesio, A.M.; Graneli, W.; Aiken, G.R.; Kieber, D.J.; Mopper, K.

    2005-01-01

    This study addresses how humic substance (HS) chemical composition and photoreactivity affect bacterial growth, respiration, and growth efficiency (BGE) in lake water. Aqueous solutions of HSs from diverse aquatic environments representing different dissolved organic matter sources (autochthonous and allochthonous) were exposed to artificial solar UV radiation. These solutions were added to lake water passed through a 0.7-??m-pore-size filter (containing grazer-free lake bacteria) followed by dark incubation for 5, 43, and 65 h. For the 5-h incubation, several irradiated HSs inhibited bacterial carbon production (BCP) and this inhibition was highly correlated with H 2O2 photoproduction. The H2O2 decayed in the dark, and after 43 h, nearly all irradiated HSs enhanced BCP (average 39% increase relative to nonirradiated controls, standard error = 7.5%, n = 16). UV exposure of HSs also increased bacterial respiration (by ???18%, standard error = 5%, n = 4), but less than BCP, resulting in an average increase in BGE of 32% (standard error = 10%, n = 4). Photoenhancement of BCP did not correlate to HS bulk properties (i.e., elemental and chemical composition). However, when the photoenhancement of BCP was normalized to absorbance, several trends with HS origin and extraction method emerged. Absorbance-normalized hydrophilic acid and humic acid samples showed greater enhancement of BCP than hydrophobic acid and fulvic acid samples. Furthermore, absorbance-normalized autochthonous samples showed ???10-fold greater enhancement of BCP than allochthonous-dominated samples, indicating that the former are more efficient photoproducers of biological substrates. Copyright ?? 2005, American Society for Microbiology. All Rights Reserved.

  6. Bacterial Diversity, Sediment Age and Organic Respiration in the Marine Sedimentary Environment

    NASA Astrophysics Data System (ADS)

    Walsh, E. A.; Kirkpatrick, J. B.; Pockalny, R. A.; Sauvage, J.; Sogin, M. L.; D'Hondt, S.

    2014-12-01

    Subseafloor sediment hosts to a large1, taxonomically rich2 and metabolically diverse3 microbial ecosystem. However, the factors that control microbial diversity in subseafloor sediment have rarely been explored. Here we show that subseafloor bacterial richness varies directly with sediment age and net rate of organic-fueled respiration. We examined three open-ocean sites (in the Bering Sea and equatorial Pacific) and one continental margin site (Indian Ocean), with sediment depths to 404 meters below seafloor. At all locations, taxonomic richness decreases exponentially with increasing sediment age. Richness declines most rapidly for a few hundred thousand years after sediment deposition. This profile generally matches the canonical relationship between rates of organic oxidation and sediment age 4. To examine the potential link between organic oxidation and taxonomic richness we used pore-water chemical profiles to quantify net rates of organic respiration at the three open-ocean sites (the chemical profiles of the ocean-margin site are not in diffusive steady state). Taxonomic richness and total rate of organic-fueled respiration are highest at the high productivity Bering Sea site and lower at the moderate productivity equatorial Pacific sites. At each of these sites, organic-fueled respiration rate and taxonomic richness are highest at the surface and decline together as sediment depth and age increase. To our knowledge, this is the first evidence that taxonomic richness is closely linked to organic-fueled respiration rate and sediment age in subseafloor sediment. References1. Kallmeyer, J., Pockalny, R., Adhikari, R. R., Smith, D. C. & D'Hondt, S. Proceedings of the National Academy of Sciences, doi:10.1073/pnas.1203849109 (2012). 2. Inagaki, F. et al. Proceedings of the National Academy of Sciences 103, 2815-2820 (2006). 3. D'Hondt, S. et al. Science 306, 2216-2221, doi:10.1126/science.1101155 (2004). 4. Middelburg, J. J. Geochimica et Cosmochimica Acta 53

  7. Exploring the biochemistry at the extracellular redox frontier of bacterial mineral Fe(III) respiration

    SciTech Connect

    Richardson, David J.; Edwards, Marcus; White, Gaye F.; Baiden, Nanakow; Hartshorne, Robert S.; Fredrickson, Jim K.; Shi, Liang; Zachara, John M.; Gates, Andrew J.; Butt, Julea N.; Clarke, Thomas

    2012-06-01

    Many species of the bacterial Shewanella genus are notable for their ability to respire in anoxic environments utilizing insoluble minerals of Fe(III) and Mn(IV) as extracellular electron acceptors. In Shewanella oneidensis, the process is dependent on the decahaem electron-transport proteins that lie at the extracellular face of the outer membrane where they can contact the insoluble mineral substrates. These extracellular proteins are charged with electrons provided by an inter-membrane electron-transfer pathway that links the extracellular face of the outer membrane with the inner cytoplasmic membrane and thereby intracellular electron sources. In the present paper, we consider the common structural features of two of these outermembrane decahaem cytochromes, MtrC and MtrF, and bring this together with biochemical, spectroscopic and voltammetric data to identify common and distinct properties of these prototypical members of different clades of the outer-membrane decahaem cytochrome superfamily.

  8. Bacterial Adaptation of Respiration from Oxic to Microoxic and Anoxic Conditions: Redox Control

    PubMed Central

    Bueno, Emilio; Mesa, Socorro; Bedmar, Eulogio J.; Richardson, David J.

    2012-01-01

    Abstract Under a shortage of oxygen, bacterial growth can be faced mainly by two ATP-generating mechanisms: (i) by synthesis of specific high-affinity terminal oxidases that allow bacteria to use traces of oxygen or (ii) by utilizing other substrates as final electron acceptors such as nitrate, which can be reduced to dinitrogen gas through denitrification or to ammonium. This bacterial respiratory shift from oxic to microoxic and anoxic conditions requires a regulatory strategy which ensures that cells can sense and respond to changes in oxygen tension and to the availability of other electron acceptors. Bacteria can sense oxygen by direct interaction of this molecule with a membrane protein receptor (e.g., FixL) or by interaction with a cytoplasmic transcriptional factor (e.g., Fnr). A third type of oxygen perception is based on sensing changes in redox state of molecules within the cell. Redox-responsive regulatory systems (e.g., ArcBA, RegBA/PrrBA, RoxSR, RegSR, ActSR, ResDE, and Rex) integrate the response to multiple signals (e.g., ubiquinone, menaquinone, redox active cysteine, electron transport to terminal oxidases, and NAD/NADH) and activate or repress target genes to coordinate the adaptation of bacterial respiration from oxic to anoxic conditions. Here, we provide a compilation of the current knowledge about proteins and regulatory networks involved in the redox control of the respiratory adaptation of different bacterial species to microxic and anoxic environments. Antioxid. Redox Signal. 16, 819–852. PMID:22098259

  9. The impact of dissolved organic carbon and bacterial respiration on pCO2 in experimental sea ice

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Kotovitch, M.; Kaartokallio, H.; Moreau, S.; Tison, J.-L.; Kattner, G.; Dieckmann, G.; Thomas, D. N.; Delille, B.

    2016-02-01

    Previous observations have shown that the partial pressure of carbon dioxide (pCO2) in sea ice brines is generally higher in Arctic sea ice compared to those from the Antarctic sea ice, especially in winter and early spring. We hypothesized that these differences result from the higher dissolved organic carbon (DOC) content in Arctic seawater: Higher concentrations of DOC in seawater would be reflected in a greater DOC incorporation into sea ice, enhancing bacterial respiration, which in turn would increase the pCO2 in the ice. To verify this hypothesis, we performed an experiment using two series of mesocosms: one was filled with seawater (SW) and the other one with seawater with an addition of filtered humic-rich river water (SWR). The addition of river water increased the DOC concentration of the water from a median of 142 μmol Lwater-1 in SW to 249 μmol Lwater-1 in SWR. Sea ice was grown in these mesocosms under the same physical conditions over 19 days. Microalgae and protists were absent, and only bacterial activity has been detected. We measured the DOC concentration, bacterial respiration, total alkalinity and pCO2 in sea ice and the underlying seawater, and we calculated the changes in dissolved inorganic carbon (DIC) in both media. We found that bacterial respiration in ice was higher in SWR: median bacterial respiration was 25 nmol C Lice-1 h-1 compared to 10 nmol C Lice-1 h-1 in SW. pCO2 in ice was also higher in SWR with a median of 430 ppm compared to 356 ppm in SW. However, the differences in pCO2 were larger within the ice interiors than at the surfaces or the bottom layers of the ice, where exchanges at the air-ice and ice-water interfaces might have reduced the differences. In addition, we used a model to simulate the differences of pCO2 and DIC based on bacterial respiration. The model simulations support the experimental findings and further suggest that bacterial growth efficiency in the ice might approach 0.15 and 0.2. It is thus credible

  10. Metallization of bacterial cellulose for electrical and electronic device manufacture

    DOEpatents

    Evans, Barbara R.; O'Neill, Hugh M.; Jansen, Valerie Malyvanh; Woodward, Jonathan

    2011-06-07

    A method for the deposition of metals in bacterial cellulose and for the employment of the metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The method for impregnating bacterial cellulose with a metal comprises placing a bacterial cellulose matrix in a solution of a metal salt such that the metal salt is reduced to metallic form and the metal precipitates in or on the matrix. The method for the construction of a fuel cell comprises placing a hydrated bacterial cellulose support structure in a solution of a metal salt such that the metal precipitates in or on the support structure, inserting contact wires into two pieces of the metal impregnated support structure, placing the two pieces of metal impregnated support structure on opposite sides of a layer of hydrated bacterial cellulose, and dehydrating the three layer structure to create a fuel cell.

  11. Metallization of bacterial cellulose for electrical and electronic device manufacture

    DOEpatents

    Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN; Jansen, Valerie Malyvanh [Memphis, TN; Woodward, Jonathan [Knoxville, TN

    2010-09-28

    A method for the deposition of metals in bacterial cellulose and for the employment of the metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The method for impregnating bacterial cellulose with a metal comprises placing a bacterial cellulose matrix in a solution of a metal salt such that the metal salt is reduced to metallic form and the metal precipitates in or on the matrix. The method for the construction of a fuel cell comprises placing a hydrated bacterial cellulose support structure in a solution of a metal salt such that the metal precipitates in or on the support structure, inserting contact wires into two pieces of the metal impregnated support structure, placing the two pieces of metal impregnated support structure on opposite sides of a layer of hydrated bacterial cellulose, and dehydrating the three layer structure to create a fuel cell.

  12. Using Reactive Transport Modeling to Understand Changes in Electrical Conductivity Associated with Bacterial Growth and Respiration

    NASA Astrophysics Data System (ADS)

    Regberg, A. B.; Singha, K.; Picardal, F.; Brantley, S. L.

    2011-12-01

    Previous research has linked measured changes in the bulk electrical conductivity (σb) of water-saturated sediments to the respiration and growth of anaerobic bacteria. If the mechanism causing this signal is understood and characterized it could be used to identify and monitor zones of bacterial activity in the subsurface. The 1-D reactive transport model PHREEQC was used to understand σb signals by modeling chemical gradients within two column reactors and corresponding changes in effluent chemistry. The flow-through column reactors were packed with Fe(III)-bearing sediment from Oyster, VA and inoculated with an environmental consortia of microorganisms. Influent in the first reactor was amended with 1mM Na-acetate to encourage the growth of iron-reducing bacteria. Influent in the second reactor was amended with 0.1mM Na-Acetate and 2mM NaNO3 to encourage the growth of nitrate-reducing bacteria. While effluent concentrations of acetate, Fe(II), NO3-, NO2-, and NH4+ remained at steady state, we measured a 3-fold increase (0.055 S/m - 0.2 S/m) in σb in the iron-reducing column and a 10-fold increase in σb (0.07 S/m - 0.8 S/m) in the nitrate-reducing column over 198 days. The ionic strength in both reactors remained constant through time indicating that the measured increases in σb were not caused by changing effluent concentrations. PHREEQC successfully matched the measured changes in effluent concentrations for both columns when the reaction database was modified in the following manner. For the iron-reducing column, kinetic expressions governing the rate of iron reduction, the rate of bacterial growth, and the production of methane were added to the reaction database. Additionally, surface adsorption and cation exchange reactions were added so that the model was consistent with measured effluent chemistry. For the nitrate-reducing column, kinetic expressions governing nitrate reduction and bacterial growth were added to the reaction database. Additionally

  13. Microbial metal reduction by members of the genus Shewanella: novel strategies for anaerobic respiration

    SciTech Connect

    Dichristina, Thomas; Bates, David J.; Burns, Justin L.; Dale, Jason R.; Payne, Amanda N.

    2006-01-01

    Metal-reducing members of the genus Shewanella are important components of the microbial community residing in redox-stratified freshwater and marine environments. Metal-reducing gram-negative bacteria such as Shewanella, however, are presented with a unique physiological challenge: they are required to respire anaerobically on terminal electron acceptors which are either highly insoluble (Fe(III)- and Mn(IV)-oxides) and reduced to soluble end-products or highly soluble (U(VI) and Tc(VII)) and reduced to insoluble end-products. To overcome physiological problems associated with metal solubility, metal-respiring Shewanella are postulated to employ a variety of novel respiratory strategies not found in other gram-negative bacteria which respire on soluble electron acceptors such as O2, NO3 and SO4. The following chapter highlights the latest findings on the molecular mechanism of Fe(III), U(VI) and Tc(VII) reduction by Shewanella, with particular emphasis on electron transport chain physiology.

  14. Comparative Genomics Analysis and Phenotypic Characterization of Shewanella putrefaciens W3-18-1: Anaerobic Respiration, Bacterial Microcompartments, and Lateral Flagella

    SciTech Connect

    Qiu, D.; Tu, Q.; He, Zhili; Zhou, Jizhong

    2010-05-17

    Respiratory versatility and psychrophily are the hallmarks of Shewanella. The ability to utilize a wide range of electron acceptors for respiration is due to the large number of c-type cytochrome genes present in the genome of Shewanella strains. More recently the dissimilatory metal reduction of Shewanella species has been extensively and intensively studied for potential applications in the bioremediation of radioactive wastes of groundwater and subsurface environments. Multiple Shewanella genome sequences are now available in the public databases (Fredrickson et al., 2008). Most of the sequenced Shewanella strains were isolated from marine environments and this genus was believed to be of marine origin (Hau and Gralnick, 2007). However, the well-characterized model strain, S. oneidensis MR-1, was isolated from the freshwater lake sediment of Lake Oneida, New York (Myers and Nealson, 1988) and similar bacteria have also been isolated from other freshwater environments (Venkateswaran et al., 1999). Here we comparatively analyzed the genome sequence and physiological characteristics of S. putrefaciens W3-18-1 and S. oneidensis MR-1, isolated from the marine and freshwater lake sediments, respectively. The anaerobic respirations, carbon source utilization, and cell motility have been experimentally investigated. Large scale horizontal gene transfers have been revealed and the genetic divergence between these two strains was considered to be critical to the bacterial adaptation to specific habitats, freshwater or marine sediments.

  15. Influences of Mn(II) and V(IV) on Bacterial Surface Chemistry and Metal Reactivity

    NASA Astrophysics Data System (ADS)

    French, S.; Fakra, S.; Glasauer, S.

    2009-05-01

    Microorganisms in terrestrial and marine environments are typically bathed in solutions that contain a range of metal ions, toxic and beneficial. Bacteria such as Shewanella putrefaciens CN32 are metabolically versatile in their respiration, and the reductive dissolution of widely dispersed metals such as Fe(III), Mn(IV), or V(V) can present unique challenges if nearby bodies of water are used for irrigation or drinking. In redox transition zones, dissimilatory metal reduction (DMR) by bacteria can lead to generation of high concentrations of soluble metals. It has been shown that metals will associate with negatively charged bacterial membranes, and the mechanisms of metal reduction are well defined for many species of bacteria. The interaction of metals with the cell wall during DMR is, however, not well documented; very little is known about the interaction of respired transition metals with membrane lipids. Furthermore, bacterial surfaces tend to change in response to their immediate environments. Variations in conditions such as oxygen or metal presence may affect surface component composition, including availability of metal reactive sites. Our research seeks to characterize the biochemical nature of metal-membrane interactions, as well as identify the unique changes at the cell surface that arise as a result of metal presence in their environments. We have utilized scanning transmission X-ray microscopy (STXM) to examine the dynamics of soluble Mn(II) and V(IV) interactions with purified bacterial membranes rather than whole cells. This prevents intracellular interferences, and allows for near edge X-ray absorption fine structure (NEXAFS) spectroscopic analyses of cell surface and surface-associated components. NEXAFS spectra for carbon, nitrogen, and oxygen edges indicate that Mn(II) and V(IV) induce biological modifications of the cell membrane in both aerobic and anaerobic conditions. These changes depend not only on the metal, but also on the presence of

  16. Molecular characterization of bacterial respiration of minerals. Final technical report, March 1, 1985--February 29, 1996

    SciTech Connect

    Blake, R. II

    1996-08-01

    The goals of this project were to continue the identification, separation, and characterization of the cellular components necessary for aerobic respiration on iron, and to initiate an investigation of the molecular principles whereby these bacteria recognize and adhere to their insoluble inorganic substrates. Progress is described.

  17. An annual survey of bacterial production, respiration and ectoenzyme activity in coastal NW Mediterranean waters: temperature and resource controls.

    PubMed

    Céa, B; Lefèvre, D; Chirurgien, L; Raimbault, P; Garcia, N; Charrière, B; Grégori, G; Ghiglione, J F; Barani, A; Lafont, M; Van Wambeke, F

    2015-09-01

    We simultaneously measured bacterial production (BP), bacterial respiration (BR), alkaline phosphatase activity (phos) and ectoaminopeptidase activity (prot) in relation to biogeochemical parameters, nutritive resources and in situ temperature over a 1-year survey at the long-term observatory the SOLEMIO station (Marseille bay, NW Mediterranean Sea). Despite its proximity to the coast, oligotrophic conditions prevailed at this station (yearly mean of Chl a = 0.43 μg dm(-3), NO3 = 0.55 μmol dm(-3) and PO4 = 0.04 μmol dm(-3)). Episodic meteorological events (dominant winds, inputs from the Rhone River) induced rapid oscillations (within 15 days) in temperature and sometimes salinity that resulted in rapid changes in phytoplankton succession and a high variability in C/P ratios within the particulate and dissolved organic matter. Throughout the year, BP ranged from 0.01 to 0.82 μg C dm-(3) h-(1) and bacterial growth efficiency varied from 1 to 39%, with higher values in summer. Enrichment experiments showed that BP was limited most of the year by phosphorus availability (except in winter). A significant positive correlation was found between in situ temperature, BP, BR and phos. Finally, we found that temperature and phosphate availability were the main factors driving heterotrophic bacterial activity and thus play a fundamental role in carbon fluxes within the marine ecosystem. PMID:25217279

  18. A Diverse Community of Metal(loid) Oxide Respiring Bacteria Is Associated with Tube Worms in the Vicinity of the Juan de Fuca Ridge Black Smoker Field

    PubMed Central

    Maltman, Chris; Walter, Graham; Yurkov, Vladimir

    2016-01-01

    Epibiotic bacteria associated with tube worms living in the vicinity of deep sea hydrothermal vents of the Juan de Fuca Ridge in the Pacific Ocean were investigated for the ability to respire anaerobically on tellurite, tellurate, selenite, selenate, metavanadate and orthovanadate as terminal electron acceptors. Out of 107 isolates tested, 106 were capable of respiration on one or more of these oxides, indicating that metal(loid) oxide based respiration is not only much more prevalent in nature than is generally believed, but also is an important mode of energy generation in the habitat. Partial 16S rRNA gene sequencing revealed the bacterial community to be rich and highly diverse, containing many potentially new species. Furthermore, it appears that the worms not only possess a close symbiotic relationship with chemolithotrophic sulfide-oxidizing bacteria, but also with the metal(loid) oxide transformers. Possibly they protect the worms through reduction of the toxic compounds that would otherwise be harmful to the host. PMID:26914590

  19. A Diverse Community of Metal(loid) Oxide Respiring Bacteria Is Associated with Tube Worms in the Vicinity of the Juan de Fuca Ridge Black Smoker Field.

    PubMed

    Maltman, Chris; Walter, Graham; Yurkov, Vladimir

    2016-01-01

    Epibiotic bacteria associated with tube worms living in the vicinity of deep sea hydrothermal vents of the Juan de Fuca Ridge in the Pacific Ocean were investigated for the ability to respire anaerobically on tellurite, tellurate, selenite, selenate, metavanadate and orthovanadate as terminal electron acceptors. Out of 107 isolates tested, 106 were capable of respiration on one or more of these oxides, indicating that metal(loid) oxide based respiration is not only much more prevalent in nature than is generally believed, but also is an important mode of energy generation in the habitat. Partial 16S rRNA gene sequencing revealed the bacterial community to be rich and highly diverse, containing many potentially new species. Furthermore, it appears that the worms not only possess a close symbiotic relationship with chemolithotrophic sulfide-oxidizing bacteria, but also with the metal(loid) oxide transformers. Possibly they protect the worms through reduction of the toxic compounds that would otherwise be harmful to the host. PMID:26914590

  20. The environmental controls that govern the end product of bacterial nitrate respiration

    SciTech Connect

    Kraft, Beate; Tegetmeyer, Halina E.; Sharma, Ritin; Klotz, Martin G.; Ferdelman, Timothy G.; Hettich, Robert L.; Geelhoed, Jeanine S.; Strous, Marc

    2014-08-08

    In the biogeochemical nitrogen cycle, microbial respiration processes compete for nitrate as an electron acceptor. Denitrification converts nitrate into nitrogenous gas and thus removes fixed nitrogen from the biosphere, whereas ammonification converts nitrate into ammonium, which is directly reusable by primary producers. In this paper, we combined multiple parallel long-term incubations of marine microbial nitrate-respiring communities with isotope labeling and metagenomics to unravel how specific environmental conditions select for either process. Microbial generation time, supply of nitrite relative to nitrate, and the carbon/nitrogen ratio were identified as key environmental controls that determine whether nitrite will be reduced to nitrogenous gas or ammonium. Finally, our results define the microbial ecophysiology of a biogeochemical feedback loop that is key to global change, eutrophication, and wastewater treatment.

  1. The environmental controls that govern the end product of bacterial nitrate respiration

    DOE PAGESBeta

    Kraft, Beate; Tegetmeyer, Halina E.; Sharma, Ritin; Klotz, Martin G.; Ferdelman, Timothy G.; Hettich, Robert L.; Geelhoed, Jeanine S.; Strous, Marc

    2014-08-08

    In the biogeochemical nitrogen cycle, microbial respiration processes compete for nitrate as an electron acceptor. Denitrification converts nitrate into nitrogenous gas and thus removes fixed nitrogen from the biosphere, whereas ammonification converts nitrate into ammonium, which is directly reusable by primary producers. In this paper, we combined multiple parallel long-term incubations of marine microbial nitrate-respiring communities with isotope labeling and metagenomics to unravel how specific environmental conditions select for either process. Microbial generation time, supply of nitrite relative to nitrate, and the carbon/nitrogen ratio were identified as key environmental controls that determine whether nitrite will be reduced to nitrogenous gasmore » or ammonium. Finally, our results define the microbial ecophysiology of a biogeochemical feedback loop that is key to global change, eutrophication, and wastewater treatment.« less

  2. Key respiratory genes elucidate bacterial community respiration in a seasonally anoxic estuary.

    PubMed

    Eggleston, Erin M; Lee, Dong Y; Owens, Michael S; Cornwell, Jeffrey C; Crump, Byron C; Hewson, Ian

    2015-07-01

    Intense annual spring phytoplankton blooms and thermohaline stratification lead to anoxia in Chesapeake Bay bottom waters. Once oxygen becomes depleted in the system, microbial communities use energetically favourable alternative electron acceptors for respiration. The extent to which changes in respiration are reflected in community gene expression have only recently been investigated. Metatranscriptomes prepared from near-bottom water plankton over a 4-month time series in central Chesapeake Bay demonstrated changes consistent with terminal electron acceptor availability. The frequency of respiration-related genes in metatranscriptomes was examined by BLASTx against curated databases of genes intimately and exclusively involved in specific electron acceptor utilization pathways. The relative expression of genes involved in denitrification and dissimilatory nitrate reduction to ammonium were coincident with changes in nitrate, nitrite and ammonium concentrations. Dissimilatory iron and manganese reduction transcript ratios increase during anoxic conditions and corresponded with the highest soluble reactive phosphate and manganese concentrations. The sulfide concentration peaked in late July and early August and also matched dissimilatory sulfate reduction transcript ratios. We show that rather than abrupt transitions between terminal electron acceptors, there is substantial overlap in time and space of these various anaerobic respiratory processes in Chesapeake Bay. PMID:25470994

  3. Metallization of bacterial cellulose for electrical and electronic device manufacture

    SciTech Connect

    Evans, Barbara R.; O'Neill, Hugh M.; Jansen, Valerie Malyvanh; Woodward, Jonathan

    2006-01-17

    The employment of metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The fuel cell includes an electrolyte membrane comprising a membrane support structure comprising bacterial cellulose, an anode disposed on one side of the electrolyte membrane, and a cathode disposed on an opposite side of the electrolyte membrane. At least one of the anode and the cathode comprises an electrode support structure comprising bacterial cellulose, and a catalyst disposed in or on the electrode support structure.

  4. Residual organic matter and microbial respiration in bottom ash: Effects on metal leaching and eco-toxicity.

    PubMed

    Ilyas, A; Persson, K M; Persson, M

    2015-09-01

    A common assumption regarding the residual organic matter, in bottom ash, is that it does not represent a significant pool of organic carbon and, beyond metal-ion complexation process, it is of little consequence to evolution of ash/leachate chemistry. This article evaluates the effect of residual organic matter and associated microbial respiratory processes on leaching of toxic metals (i.e. arsenic, copper, chromium, molybdenum, nickel, lead, antimony and zinc), eco-toxicity of ash leachates. Microbial respiration was quantified with help of a respirometric test equipment OXITOP control system. The effect of microbial respiration on metal/residual organic matter leaching and eco-toxicity was quantified with the help of batch leaching tests and an eco-toxicity assay - Daphnia magna. In general, the microbial respiration process decreased the leachate pH and eco-toxicity, indicating modification of bioavailability of metal species. Furthermore, the leaching of critical metals, such as copper and chromium, decreased after the respiration in both ash types (fresh and weathered). It was concluded that microbial respiration, if harnessed properly, could enhance the stability of fresh bottom ash and may promote its reuse. PMID:25999368

  5. Molecular characterization of bacterial respiration on minerals. Final technical report, August 4, 1994--August 3, 1996

    SciTech Connect

    Blake, R. II

    1996-12-31

    The scope of work outlined in the original proposal contained two specific aims. Highlights of the results obtained and published on each specific aim during the grant period in question are summarized. The first aim continued the identification, separation, and characterization of the cellular components necessary for aerobic respiration on iron. An electrochemical apparatus for the large scale cultivation of chemolithotrophic bacteria that respire aerobically on ferrous ions was perfected. The kinetic properties of an acid-stable iron:rusticyanin oxidoreductase from T. ferrooxidans were determined. The overall tertiary structure of rusticyanin in solution was elucidated from a combination of homonuclear proton and heteronuclear {sup 15}N-edited NMR spectra. An artificial gene for rusticyanin was designed, synthesized, and successfully expressed in E. coli. The X-ray crystallographic structure of rusticyanin was solved to a resolution of 1.9 {angstrom} by multiwavelength anomalous dispersion (MAD) phasing. The second aim initiated an investigation of the molecular principles whereby these bacteria recognize and adhere to their insoluble inorganic substrates. The electrophoretic mobility of T. ferrooxidans with and without its insoluble substrates was determined by laser Doppler velocimetry under physiological conditions. The adherence of T. ferrooxidans to the surface of pyrite was observed directly in a video-enhanced light microscope.

  6. In situ spectroscopic investigation of hyperthermophilic metal-respiring archaea at high-temperature

    NASA Astrophysics Data System (ADS)

    Ménez, B.; Bureau, H.; Gouget, B.; Avoscan, L.; Simionovici, A.; Somogyi, A.

    2003-04-01

    The main issue of this study is developing methodologies that can improve abilities to characterize life in extreme habitats. In particular, it aims at evaluating the possibility of monitoring microorganisms mediated reactions involving metals by using non destructive X-ray microprobe combined with high pressure and temperature micro-reactors. The first step was dedicated to the study of metal-respiring organisms that achieve growth with oxyanions of arsenate and selenate as their electron acceptors for the oxidation of organic substrates or H2, forming elemental selenium or arsenite, respectively, as the reduction products. We focused on a strictly anaerobic hyperthermophilic archaea, Pyrobaculum arsenaticum, recently isolated and well adapted to high levels of arsenate and selenate (Huber et al., 2000, System. Appl. Microbiol., 23, 305). We report here the first in situ X-ray Absorption Near Edge Structure (XANES) spectroscopic characterization of the oxidation state of selenium following microbial respiration at high temperature. A Basset-modified Hydrothermal Diamond Anvil Cell (HDAC) acts as anaerobic micro-reactor to reproduce extreme temperature and pressure conditions for life and allows, together with the direct visual observation of the organisms, the microbeam characterization of the changes of metal concentration and speciation induced by microbial activity. The measurements were performed at the ESRF on undulator beamline ID22. P. arsenaticum together with its culture medium, doped with selenate (50 μM), were loaded under N_2 atmosphere in the HDAC. High-resolution X-ray fluorescence and selenium K-edge XANES spectra were collected alternatively and continuously at high temperature (up to 95^oC), allowing for the time-resolved monitoring of the chemical evolution of the culture medium. Data processing is still in progress. In the long-term, our aim is, on one hand, to shed light on the tolerance in terms of temperature, pressure and metal

  7. Viral effects on bacterial respiration, production and growth efficiency: Consistent trends in the Southern Ocean and the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Bonilla-Findji, Osana; Malits, Andrea; Lefèvre, Dominique; Rochelle-Newall, Emma; Lemée, Rodolphe; Weinbauer, Markus G.; Gattuso, Jean-Pierre

    2008-03-01

    To investigate the potential effects of viruses on bacterial respiration (BR), production (BP) and growth efficiency (BGE), experiments were performed using natural microbial communities from the coastal Mediterranean Sea, from a typical high-nutrient low-chlorophyll (HNLC) region in the Southern Ocean and from a naturally iron (Fe)-fertilized algal bloom above the Kerguelen Plateau (Southern Ocean). Seawater was sequentially filtered and concentrated to produce a bacterial concentrate, a viral concentrate and a virus-free ultrafiltrate. The combination of all three fractions served as treatments with active viruses. Heating or microwaving was used to inactivate viruses for the control treatments. Despite the differences in the initial trophic state and community composition of the study sites, consistent trends were found. In the presence of active viruses, BR was stimulated (up to 113%), whereas BP and BGE were reduced (up to 51%). Our results suggest that viruses enhance the role of bacteria as oxidizers of organic matter, hence as producers of CO 2, and remineralizers of CO 2, N, P and Fe. In the context of Fe-fertilization, this has important implications for the final fate of organic carbon in marine systems.

  8. Mechanisms of bacterial metals removal from solids

    SciTech Connect

    Torma, A.E.; Pryfogle, P.A.

    1990-01-01

    The Great Lakes area sediments are contaminated with varying amounts of heavy metals and polychlorinated organic matter. With respect to the bioremediation of metallic contents of these sediments, it was shown that a number of microorganisms exist which can effectively solubilize heavy metals. The basic reaction mechanisms of bioleaching processes were discussed and the effects of semiconductor character of the sulfide substrate explained. A special emphasis was made to comment on INEL's bioremediation capability. 37 refs.

  9. The Study Of Metalworking Fluids Biodegradability By Indirect Measurement Of Bacterial Inoculum Respiration

    NASA Astrophysics Data System (ADS)

    Gerulová, Kristína; Tatarka, Ondrej; Štefko, Tomáš; Škulavík, Tomáš

    2015-06-01

    An apparatus for measuring biodegradability of metalworking fluids (MWFs) was constructed according to (1), based on the Zahn-Wellens test which enables a continuous determination of CO2 production by the change in conductivity of absorption solution. Results obtained from the testing of 8 different MWFs by this modified method were compared to those obtained in standardized OECD 302 B. The comparison showed better description of bacterial inoculum activity in tested solution; lag phase was easy to indicate. Tested emulsion achieved the level of primary degradability 39.7 - 40.8 %, and semi-synthetics 19.1 - 43.5%. The samples of synthetics where the degradation level reached 43.9 - 58.6 % were identified as the most degradable metalworking fluids.

  10. Bacterial Killing by Dry Metallic Copper Surfaces▿

    PubMed Central

    Santo, Christophe Espírito; Lam, Ee Wen; Elowsky, Christian G.; Quaranta, Davide; Domaille, Dylan W.; Chang, Christopher J.; Grass, Gregor

    2011-01-01

    Metallic copper surfaces rapidly and efficiently kill bacteria. Cells exposed to copper surfaces accumulated large amounts of copper ions, and this copper uptake was faster from dry copper than from moist copper. Cells suffered extensive membrane damage within minutes of exposure to dry copper. Further, cells removed from copper showed loss of cell integrity. Acute contact with metallic copper surfaces did not result in increased mutation rates or DNA lesions. These findings are important first steps for revealing the molecular sensitive targets in cells lethally challenged by exposure to copper surfaces and provide a scientific explanation for the use of copper surfaces as antimicrobial agents for supporting public hygiene. PMID:21148701

  11. Leaf litter breakdown, microbial respiration and shredder production in metal-polluted streams

    USGS Publications Warehouse

    Carlisle, D.M.; Clements, W.H.

    2005-01-01

    1. If species disproportionately influence ecosystem functioning and also differ in their sensitivities to environmental conditions, the selective removal of species by anthropogenic stressors may lead to strong effects on ecosystem processes. We evaluated whether these circumstances held for several Colorado, U.S.A. streams stressed by Zn. 2. Benthic invertebrates and chemistry were sampled in five second-third order streams for 1 year. Study streams differed in dissolved metal concentrations, but were otherwise similar in chemical and physical characteristics. Secondary production of leaf-shredding insects was estimated using the increment summation and size-frequency methods. Leaf litter breakdown rates were estimated by retrieving litter-bags over a 171 day period. Microbial activity on leaf litter was measured in the laboratory using changes in oxygen concentration over a 48 h incubation period. 3. Dissolved Zn concentrations varied eightfold among two reference and three polluted streams. Total secondary production of shredders was negatively associated with metal contamination. Secondary production in reference streams was dominated by Taenionema pallidum. Results of previous studies and the current investigation demonstrate that this shredder is highly sensitive to metals in Colorado headwater streams. Leaf litter breakdown rates were similar between reference streams and declined significantly in the polluted streams. Microbial respiration at the most contaminated site was significantly lower than at reference sites. 4. Our results supported the hypothesis that some shredder species contribute disproportionately to leaf litter breakdown. Furthermore, the functionally dominant taxon was also the most sensitive to metal contamination. We conclude that leaf litter breakdown in our study streams lacked functional redundancy and was therefore highly sensitive to contaminant-induced alterations in community structure. We argue for the necessity of simultaneously

  12. Seasonal Variation in Soil Microbial Biomass, Bacterial Community Composition and Extracellular Enzyme Activity in Relation to Soil Respiration in a Northern Great Plains Grassland

    NASA Astrophysics Data System (ADS)

    Wilton, E.; Flanagan, L. B.

    2014-12-01

    Soil respiration rate is affected by seasonal changes in temperature and moisture, but is this a direct effect on soil metabolism or an indirect effect caused by changes in microbial biomass, bacterial community composition and substrate availability? In order to address this question, we compared continuous measurements of soil and plant CO2 exchange made with an automatic chamber system to analyses conducted on replicate soil samples collected on four dates during June-August. Microbial biomass was estimated from substrate-induced respiration rate, bacterial community composition was determined by 16S rRNA amplicon pyrosequencing, and β-1,4-N-acetylglucosaminidase (NAGase) and phenol oxidase enzyme activities were assayed fluorometrically or by absorbance measurements, respectively. Soil microbial biomass declined from June to August in strong correlation with a progressive decline in soil moisture during this time period. Soil bacterial species richness and alpha diversity showed no significant seasonal change. However, bacterial community composition showed a progressive shift over time as measured by Bray-Curtis dissimilarity. In particular, the change in community composition was associated with increasing relative abundance in the alpha and delta classes, and declining abundance of the beta and gamma classes of the Proteobacteria phylum during June-August. NAGase showed a progressive seasonal decline in potential activity that was correlated with microbial biomass and seasonal changes in soil moisture. In contrast, phenol oxidase showed highest potential activity in mid-July near the time of peak soil respiration and ecosystem photosynthesis, which may represent a time of high input of carbon exudates into the soil from plant roots. This input of exudates may stimulate the activity of phenol oxidase, a lignolytic enzyme involved in the breakdown of soil organic matter. These analyses indicated that seasonal change in soil respiration is a complex

  13. Sorption of heavy metals by prepared bacterial cell surfaces

    SciTech Connect

    Churchill, S.A.; Walters, J.V.; Churchill, P.F.

    1995-10-01

    Prepared biomass from two Gram-negative and one Gram-positive bacterial strains was examined for single, binary, and quaternary mixtures of polyvalent metal cation binding to cell surfaces. The biosorption of {sub 24}Cr{sup 3+}, {sub 27}Co{sup 2+}, {sub 28}Ni{sup 2+}, and {sub 29}Cu{sup 2+} for each bacterial cell type was evaluated using a batch equilibrium method. The binding of each metal by all three bacterial cells could be described by the Freundlich sorption model. The isotherm binding constants suggest that E. coli cells are the most efficient at binding copper, chromium, and nickel; and M. luteus adsorbs cobalt most efficiently. The K-values for copper bound to P. aeruginosa and E. coli are > 2-fold and > 8-fold greater, respectively, than previous reported for intact cells. The general metal-affinity series observed was Cr{sup 3+} > Cu{sup 2+} > Ni{sup 2+} > Co{sup 2+}. There was a marked lower affinity of all biosorbents for Co{sup 2+} and Ni{sup 2+}. M. luteus and E. coli had a strong preference for Co{sup 2+} over Ni{sup 2+}. Metal-binding enhancement could be ascribed to increased cell barrier surface porosity to metal-bearing solutions.

  14. Alkaline Anaerobic Respiration: Isolation and Characterization of a Novel Alkaliphilic and Metal-Reducing Bacterium

    PubMed Central

    Ye, Qi; Roh, Yul; Carroll, Susan L.; Blair, Benjamin; Zhou, Jizhong; Zhang, Chuanlun L.; Fields, Matthew W.

    2004-01-01

    Iron-reducing enrichments were obtained from leachate ponds at the U.S. Borax Company in Boron, Calif. Based on partial small-subunit (SSU) rRNA gene sequences (approximately 500 nucleotides), six isolates shared 98.9% nucleotide identity. As a representative, the isolate QYMF was selected for further analysis. QYMF could be grown with Fe(III)-citrate, Fe(III)-EDTA, Co(III)-EDTA, or Cr(VI) as electron acceptors, and yeast extract and lactate could serve as electron donors. Growth during iron reduction occurred over the pH range of 7.5 to 11.0 (optimum, pH 9.5), a sodium chloride range of 0 to 80 g/liter (optimum, 20 g/liter), and a temperature range of 4 to 45°C (optimum, approximately 35°C), and iron precipitates were formed. QYMF was a strict anaerobe that could be grown in the presence of borax, and the cells were straight rods that produced endospores. Sodium chloride and yeast extract stimulated growth. Phylogenetic analysis of the SSU rRNA gene indicated that the bacterium was a low-G+C gram-positive microorganism and had 96 and 92% nucleotide identity with Alkaliphilus transvaalensis and Alkaliphilus crotonatoxidans, respectively. The major phospholipid fatty acids were 14:1, 16:1ω7c, and 16:0, which were different from those of other alkaliphiles but similar to those of reported iron-reducing bacteria. The results demonstrated that the isolate might represent a novel metal-reducing alkaliphilic species. The name Alkaliphilus metalliredigens sp. nov. is proposed. The isolation and activity of metal-reducing bacteria from borax-contaminated leachate ponds suggest that bioremediation of metal-contaminated alkaline environments may be feasible and have implications for alkaline anaerobic respiration. PMID:15345448

  15. Beneficial role of bacterial endophytes in heavy metal phytoremediation.

    PubMed

    Ma, Ying; Rajkumar, Mani; Zhang, Chang; Freitas, Helena

    2016-06-01

    Phytoremediation is an emerging technology that uses plants and their associated microbes to clean up pollutants from the soil, water and air. In recent years, phytoremediation assisted by bacterial endophytes has been highly recommended for cleaning up of metal polluted soils since endophytic bacteria can alleviate metal toxicity in plant through their own metal resistance system and facilitate plant growth under metal stress. Endophytic bacteria improve plant growth in metal polluted soils in two different ways: 1) directly by producing plant growth beneficial substances including solubilization/transformation of mineral nutrients (phosphate, nitrogen and potassium), production of phytohormones, siderophores and specific enzymes; and 2) indirectly through controlling plant pathogens or by inducing a systemic resistance of plants against pathogens. Besides, they also alter metal accumulation capacity in plants by excreting metal immobilizing extracellular polymeric substances, as well as metal mobilizing organic acids and biosurfactants. The present work aims to review the progress of recent research on the isolation, identification and diversity of metal resistant endophytic bacteria and illustrate various mechanisms responsible for plant growth promotion and heavy metal detoxification/phytoaccumulation/translocation in plants. PMID:26989941

  16. Phytoremediation of metals from fly ash through bacterial augmentation.

    PubMed

    Kumari, Babita; Singh, S N

    2011-01-01

    Different combinations of four bacterial strains isolated from fly ash were used by us to study their impact on phytoextraction of metals from fly ash by Brassica juncea grown in fly ash amended with farm yard manure (50:50 w/w). Out of 11 bacterial consortia, a combination of two strains i.e. Paenibacillus macerans NBRFT5 + Bacillus pumilus NBRFT9 (C7) inoculated in the rhizosphere was found to enhance Pb accumulation maximally by 278%, Mn by 75%, Zn by 163%, Cr by 226% and Ni by 414% compared to control. It is possible that these bacteria, known for N(2) fixation, solubilization of phosphorus and uptake of micronutrient, could promote the plant growth resulting in higher accumulation of metals. However, a combination of four bacteria, namely Micrococcus roseus NBRFT2 + Bacillus endophyticus NBRFT4 + Paenibacillus macerans NBRFT5 + Bacillus pumilus NBRFT9 (C4) was able to increase Cd uptake maximally by 237%. Further, the translocation of metal was invariably more from root to stem than from stem to leaf which was regulated by plant transport mechanism and metal mobility. Bacteria are known to excrete protons, organic acids, enzymes and siderophores to enhance the mobilization of metals which boosted the phytoextraction of metals from fly ash. PMID:21080221

  17. Enhancement of bacterial iron and sulfate respiration for in situ bioremediation of acid mine drainage sites: a case study

    SciTech Connect

    Bilgin, A.A.; Harrington, J.M.; Silverstein, J.

    2007-08-15

    The prevention of acid mine drainage (AMD) in situ is more attractive than down-gradient treatment alternatives that do not involve source control. AMD source control can be achieved by shifting the microbial activity in the sulfidic rock from pyrite oxidation to anaerobic heterotrophic activity. This is achieved by adding biodegradable organic carbon amendments to the sulfidic rock. This technique was applied to an abandoned coal mine pool in Pennsylvania. The pool had a pH of 3.0 to 3.5. Following treatment, near-neutral pH and decreased effluent heavy metal concentrations were achieved. In situ bioremediation by the enhancement of bacterial iron and sulfate reduction is a promising technology for AMD prevention.

  18. The Role of Bacterial Spores in Metal Cycling and Their Potential Application in Metal Contaminant Bioremediation.

    PubMed

    Butterfield, Cristina N; Lee, Sung-Woo; Tebo, Bradley M

    2016-04-01

    Bacteria are one of the premier biological forces that, in combination with chemical and physical forces, drive metal availability in the environment. Bacterial spores, when found in the environment, are often considered to be dormant and metabolically inactive, in a resting state waiting for favorable conditions for them to germinate. However, this is a highly oversimplified view of spores in the environment. The surface of bacterial spores represents a potential site for chemical reactions to occur. Additionally, proteins in the outer layers (spore coats or exosporium) may also have more specific catalytic activity. As a consequence, bacterial spores can play a role in geochemical processes and may indeed find uses in various biotechnological applications. The aim of this review is to introduce the role of bacteria and bacterial spores in biogeochemical cycles and their potential use as toxic metal bioremediation agents. PMID:27227313

  19. Improving the sensitivity of bacterial bioreporters for heavy metals.

    PubMed

    Hynninen, Anu; Tönismann, Karmen; Virta, Marko

    2010-01-01

    Whole-cell bacterial bioreporters represent a convenient testing method for quantifying the bioavailability of contaminants in environmental samples. Despite the fact that several bioreporters have been constructed for measuring heavy metals, their application to environmental samples has remained minimal. The major drawbacks of the available bioreporters include a lack of sensitivity and specificity. Here, we report an improvement in the limit of detection of bacterial bioreporters by interfering with the natural metal homeostasis system of the host bacterium. The limit of detection of a Pseudomonas putida KT2440-based Zn/Cd/Pb-biosensor was improved by a factor of up to 45 by disrupting four main efflux transporters for Zn/Cd/Pb and thereby causing the metals to accumulate in the cell. The specificity of the bioreporter could be modified by changing the sensor element. A Zn-specific bioreporter was achieved by using the promoter of the cadA1 gene from P. putida as a sensor element. The constructed transporter-deficient P. putida reporter strain detected Zn(2+) concentrations about 50 times lower than that possible with other available Zn-bioreporters. The achieved detection limits were significantly below the permitted limit values for Zn and Pb in water and in soil, allowing for reliable detection of heavy metals in the environment. PMID:21326938

  20. Susceptibility of metallic magnesium implants to bacterial biofilm infections.

    PubMed

    Rahim, Muhammad Imran; Rohde, Manfred; Rais, Bushra; Seitz, Jan-Marten; Mueller, Peter P

    2016-06-01

    Magnesium alloys have promising mechanical and biological properties as biodegradable medical implant materials for temporary applications during bone healing or as vascular stents. Whereas conventional implants are prone to colonization by treatment resistant microbial biofilms in which bacteria are embedded in a protective matrix, magnesium alloys have been reported to act antibacterial in vitro. To permit a basic assessment of antibacterial properties of implant materials in vivo an economic but robust animal model was established. Subcutaneous magnesium implants were inoculated with bacteria in a mouse model. Contrary to the expectations, bacterial activity was enhanced and prolonged in the presence of magnesium implants. Systemic antibiotic treatments were remarkably ineffective, which is a typical property of bacterial biofilms. Biofilm formation was further supported by electron microscopic analyses that revealed highly dense bacterial populations and evidence for the presence of extracellular matrix material. Bacterial agglomerates could be detected not only on the implant surface but also at a limited distance in the peri-implant tissue. Therefore, precautions may be necessary to minimize risks of metallic magnesium-containing implants in prospective clinical applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1489-1499, 2016. PMID:26860452

  1. Response of soil bacterial community to metal nanoparticles in biosolids.

    PubMed

    Shah, Vishal; Jones, Jamilee; Dickman, Jenifer; Greenman, Steven

    2014-06-15

    The increasing use of engineered nanoparticles (NPs) in industrial and household applications will very likely lead to the increased release of such materials into the public sewer systems. During the wastewater treatment process, some fraction of NPs would always be concentrated in the biosolids. When biosolids is applied on the agricultural land, NPs are introduced into the soil matrix. In the current study we investigate the influence of five different metal nanoparticles present in biosolids on soil microbial community as a function of time. Results indicate that ZnO and Zero Valent Cu NPs were not toxic to soil bacterial community. Biosolids mixed with Ag NPs and TiO2 (both anatase and rutile phase) in contrast changed the bacterial richness and composition in wavering pattern as a function of time. Based on the observations made in the study, we suggest caution when interpreting the toxicity of NPs based on single time point study. PMID:24801897

  2. Bacterial adhesion to glass and metal-oxide surfaces.

    PubMed

    Li, Baikun; Logan, Bruce E

    2004-07-15

    Metal oxides can increase the adhesion of negatively-charged bacteria to surfaces primarily due to their positive charge. However, the hydrophobicity of a metal-oxide surface can also increase adhesion of bacteria. In order to understand the relative contribution of charge and hydrophobicity to bacterial adhesion, we measured the adhesion of 8 strains of bacteria, under conditions of low and high-ionic strength (1 and 100 mM, respectively) to 11 different surfaces and examined adhesion as a function of charge, hydrophobicity (water contact angle) and surface energy. Inorganic surfaces included three uncoated glass surfaces and eight metal-oxide thin films prepared on the upper (non-tin-exposed) side of float glass by chemical vapor deposition. The Gram-negative bacteria differed in lengths of lipopolysaccharides on their outer surface (three Escherichia coli strains), the amounts of exopolysaccharides (two Pseudomonas aeruginosa strains), and their known relative adhesion to sand grains (two Burkholderia cepacia strains). One Gram positive bacterium was also used that had a lower adhesion to glass than these other bacteria (Bacillus subtilis). For all eight bacteria, there was a consistent increase in adhesion between with the type of inorganic surface in the order: float glass exposed to tin (coded here as Si-Sn), glass microscope slide (Si-m), uncoated air-side float glass surface (Si-a), followed by thin films of (Co(1-y-z)Fe(y)Cr(z))3O4, Ti/Fe/O, TiO2, SnO2, SnO2:F, SnO2:Sb, A1(2)O3, and Fe2O3 (the colon indicates metal doping, a slash indicates that the metal is a major component, while the dash is used to distinguish surfaces). Increasing the ionic strength from 1 to 100 mM increased adhesion by a factor of 2.0 +/- 0.6 (73% of the sample results were within the 95% CI) showing electrostatic charge was important in adhesion. However, adhesion was not significantly correlated with bacterial charge and contact angle. Adhesion (A) of the eight strains was

  3. Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes

    SciTech Connect

    Shi, Liang; Squier, Thomas C.; Zachara, John M.; Fredrickson, Jim K.

    2007-07-01

    Dissimilatory reduction of metal (e.g. Fe, Mn) (hydr)oxides represents a challenge for microorganisms, as their cell envelopes are impermeable to metal (hydr)oxides that are poorly soluble in water. To overcome this physical barrier, the Gram-negative bacteria Shewanella oneidensis MR-1 and Geobactersulfurreducens have developed electron transfer (ET) strategies that require multihaem c-type cytochromes (c-Cyts). In S. oneidensis MR-1, multihaem c-Cyts CymA and MtrA are believed to transfer electrons from the inner membrane quinone/quinol pool through the periplasm to the outer membrane. The type II secretion system of S. oneidensis MR-1 has been implicated in the reduction of metal (hydr)oxides, most likely by translocating decahaem c-Cyts MtrC and OmcA across outer membrane to the surface of bacterial cells where they form a protein complex. The extracellular MtrC and OmcA can directly reduce solid metal (hydr)oxides. Likewise, outer membrane multihaem c-Cyts OmcE and OmcS of G. sulfurreducens are suggested to transfer electrons from outer membrane to type IV pili that are hypothesized to relay the electrons to solid metal (hydr)oxides. Thus, multihaem c-Cyts play critical roles in S. oneidensis MR-1-and G. sulfurreducens-mediated dissimilatory reduction of solid metal (hydr)oxides by facilitating ET across the bacterial cell envelope.

  4. PEROXOTITANATE- AND MONOSODIUM METAL-TITANATE COMPOUNDS AS INHIBITORS OF BACTERIAL GROWTH

    SciTech Connect

    Hobbs, D.

    2011-01-19

    Sodium titanates are ion-exchange materials that effectively bind a variety of metal ions over a wide pH range. Sodium titanates alone have no known adverse biological effects but metal-exchanged titanates (or metal titanates) can deliver metal ions to mammalian cells to alter cell processes in vitro. In this work, we test a hypothesis that metal-titanate compounds inhibit bacterial growth; demonstration of this principle is one prerequisite to developing metal-based, titanate-delivered antibacterial agents. Focusing initially on oral diseases, we exposed five species of oral bacteria to titanates for 24 h, with or without loading of Au(III), Pd(II), Pt(II), and Pt(IV), and measuring bacterial growth in planktonic assays through increases in optical density. In each experiment, bacterial growth was compared with control cultures of titanates or bacteria alone. We observed no suppression of bacterial growth by the sodium titanates alone, but significant (p < 0.05, two-sided t-tests) suppression was observed with metal-titanate compounds, particularly Au(III)-titanates, but with other metal titanates as well. Growth inhibition ranged from 15 to 100% depending on the metal ion and bacterial species involved. Furthermore, in specific cases, the titanates inhibited bacterial growth 5- to 375-fold versus metal ions alone, suggesting that titanates enhanced metal-bacteria interactions. This work supports further development of metal titanates as a novel class of antibacterials.

  5. Bacterial metal leaching and bioaccumulation. (Latest citations from the Life Sciences Collection database). Published Search

    SciTech Connect

    Not Available

    1994-03-01

    The bibliography contains citations concerning bacterial strains used in metal leaching from effluents, and their role in metal recovery processes. Factors affecting bacterial growth such as temperature, pH and oxygen consumption are discussed. The isolation of bacteria suitable for these processes is considered. (Contains 250 citations and includes a subject term index and title list.)

  6. Bacterial metal leaching and bioaccumulation. (Latest citations from the Life Sciences collection database). Published Search

    SciTech Connect

    1995-01-01

    The bibliography contains citations concerning bacterial strains used in metal leaching from effluents, and their role in metal recovery processes. Factors affecting bacterial growth such as temperature, pH and oxygen consumption are discussed. The isolation of bacteria suitable for these processes is considered. (Contains 250 citations and includes a subject term index and title list.)

  7. A cost-effective and field-ready potentiostat that poises subsurface electrodes to monitor bacterial respiration.

    PubMed

    Friedman, Elliot S; Rosenbaum, Miriam A; Lee, Alexander W; Lipson, David A; Land, Bruce R; Angenent, Largus T

    2012-02-15

    Here, we present the proof-of-concept for a subsurface bioelectrochemical system (BES)-based biosensor capable of monitoring microbial respiration that occurs through exocellular electron transfer. This system includes our open-source design of a three-channel microcontroller-unit (MCU)-based potentiostat that is capable of chronoamperometry, which laboratory tests showed to be accurate within 0.95 ± 0.58% (95% Confidence Limit) of a commercial potentiostat. The potentiostat design is freely available online: http://angenent.bee.cornell.edu/potentiostat.html. This robust and field-ready potentiostat, which can withstand temperatures of -30°C, can be manufactured at relatively low cost ($600), thus, allowing for en-masse deployment at field sites. The MCU-based potentiostat was integrated with electrodes and a solar panel-based power system, and deployed as a biosensor to monitor microbial respiration in drained thaw lake basins outside Barrow, AK. At three different depths, the working electrode of a microbial three-electrode system (M3C) was maintained at potentials corresponding to the microbial reduction of iron(III) compounds and humic acids. Thereby, the working electrode mimics these compounds and is used by certain microbes as an electron acceptor. The sensors revealed daily cycles in microbial respiration. In the medium- and deep-depth electrodes the onset of these cycles followed a considerable increase in overall activity that corresponded to those soils reaching temperatures conducive to microbial activity as the summer thaw progressed. The BES biosensor is a valuable tool for studying microbial activity in situ in remote environments, and the cost-efficient design of the potentiostat allows for wide-scale use in remote areas. PMID:22209069

  8. Effect of a metal alloy fuel catalyst on bacterial growth.

    PubMed

    Ghosh, Ruma; Koerting, Claudia; Suib, Steven L; Best, Michael H; Berlin, Alvin J

    2005-11-01

    Many microorganisms have been demonstrated to utilize petroleum fuel products to fulfill their nutritional requirement for carbon. As a result, the ability of these microbes to degrade fuel has both a deleterious affect as well as beneficial applications. This study focused on the undesired ability of bacteria to grow on fuel and the potential for some metal alloys to inhibit this biodegradation. The objective of this study was to review the pattern of growth of two reference strains of petroleum-degrading bacteria, Pseudomonas oleovorans and Rhodococcus rhodocrous, in a specific hydrocarbon environment in the presence of a commercially available alloy. The alloy formulated and supplied by Advanced Power Systems International Inc. (APSI) is sold for fuel reformulation and other purposes. The components of the alloy used in the study were antimony, tin, lead, and mercury formulated as pellets. Surface characterization also showed the presence of tin oxide and lead amalgam phases. Hydrocarbon used for the study was primarily 87-octane gasoline. The growth of the bacteria in the water and mineral-supplemented gasoline mixture over 6-8 weeks was monitored by the viable plate count method. While an initial increase in bacteria occurred in the first week, overall bacterial growth was found to be suppressed in the presence of the alloy. Results also indicate that the alloy surface characteristics that convey the catalytic activity may also contribute to the observed antibacterial activity. PMID:16262333

  9. Comprehensive Proteomic and Metabolomic Signatures of Nontypeable Haemophilus influenzae-Induced Acute Otitis Media Reveal Bacterial Aerobic Respiration in an Immunosuppressed Environment.

    PubMed

    Harrison, Alistair; Dubois, Laura G; St John-Williams, Lisa; Moseley, M Arthur; Hardison, Rachael L; Heimlich, Derek R; Stoddard, Alexander; Kerschner, Joseph E; Justice, Sheryl S; Thompson, J Will; Mason, Kevin M

    2016-03-01

    A thorough understanding of the molecular details of the interactions between bacteria and host are critical to ultimately prevent disease. Recent technological advances allow simultaneous analysis of host and bacterial protein and metabolic profiles from a single small tissue sample to provide insight into pathogenesis. We used the chinchilla model of human otitis media to determine, for the first time, the most expansive delineation of global changes in protein and metabolite profiles during an experimentally induced disease. After 48 h of infection with nontypeable Haemophilus influenzae, middle ear tissue lysates were analyzed by high-resolution quantitative two-dimensional liquid chromatography-tandem mass spectrometry. Dynamic changes in 105 chinchilla proteins and 66 metabolites define the early proteomic and metabolomic signature of otitis media. Our studies indicate that establishment of disease coincides with actin morphogenesis, suppression of inflammatory mediators, and bacterial aerobic respiration. We validated the observed increase in the actin-remodeling complex, Arp2/3, and experimentally showed a role for Arp2/3 in nontypeable Haemophilus influenzae invasion. Direct inhibition of actin branch morphology altered bacterial invasion into host epithelial cells, and is supportive of our efforts to use the information gathered to modify outcomes of disease. The twenty-eight nontypeable Haemophilus influenzae proteins identified participate in carbohydrate and amino acid metabolism, redox homeostasis, and include cell wall-associated metabolic proteins. Quantitative characterization of the molecular signatures of infection will redefine our understanding of host response driven developmental changes during pathogenesis. These data represent the first comprehensive study of host protein and metabolite profiles in vivo in response to infection and show the feasibility of extensive characterization of host protein profiles during disease. Identification of

  10. Bacterial metal leaching and bioaccumulation. (Latest citations from the Life Sciences Collection database). Published Search

    SciTech Connect

    1996-06-01

    The bibliography contains citations concerning bioleaching and bioaccumulation in metal recovery systems. References study bacterial oxidation, fungal metabolism, metal extraction, and metal recovery from deposits. Gold and uranium ore treatments are discussed. Toxicity characteristic leaching procedure (TCLP) tests and ultrasound pretreatment are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  11. Isolation and Genomic Characterization of 'Desulfuromonas soudanensis WTL', a Metal- and Electrode-Respiring Bacterium from Anoxic Deep Subsurface Brine.

    PubMed

    Badalamenti, Jonathan P; Summers, Zarath M; Chan, Chi Ho; Gralnick, Jeffrey A; Bond, Daniel R

    2016-01-01

    Reaching a depth of 713 m below the surface, the Soudan Underground Iron Mine (Soudan, MN, USA) transects a massive Archaean (2.7 Ga) banded iron formation, providing a remarkably accessible window into the terrestrial deep biosphere. Despite organic carbon limitation, metal-reducing microbial communities are present in potentially ancient anoxic brines continuously emanating from exploratory boreholes on Level 27. Using graphite electrodes deposited in situ as bait, we electrochemically enriched and isolated a novel halophilic iron-reducing Deltaproteobacterium, 'Desulfuromonas soudanensis' strain WTL, from an acetate-fed three-electrode bioreactor poised at +0.24 V (vs. standard hydrogen electrode). Cyclic voltammetry revealed that 'D. soudanensis' releases electrons at redox potentials approximately 100 mV more positive than the model freshwater surface isolate Geobacter sulfurreducens, suggesting that its extracellular respiration is tuned for higher potential electron acceptors. 'D. soudanensis' contains a 3,958,620-bp circular genome, assembled to completion using single-molecule real-time (SMRT) sequencing reads, which encodes a complete TCA cycle, 38 putative multiheme c-type cytochromes, one of which contains 69 heme-binding motifs, and a LuxI/LuxR quorum sensing cassette that produces an unidentified N-acyl homoserine lactone. Another cytochrome is predicted to lie within a putative prophage, suggesting that horizontal gene transfer plays a role in respiratory flexibility among metal reducers. Isolation of 'D. soudanensis' underscores the utility of electrode-based approaches for enriching rare metal reducers from a wide range of habitats. PMID:27445996

  12. Bioremediation of contaminated marine sediments can enhance metal mobility due to changes of bacterial diversity.

    PubMed

    Fonti, Viviana; Beolchini, Francesca; Rocchetti, Laura; Dell'Anno, Antonio

    2015-01-01

    Bioremediation strategies applied to contaminated marine sediments can induce important changes in the mobility and bioavailability of metals with potential detrimental consequences on ecosystem health. In this study we investigated changes of bacterial abundance and diversity (by a combination of molecular fingerprinting and next generation sequencing analyses) during biostimulation experiments carried out on anoxic marine sediments characterized by high metal content. We provide evidence that the addition of organic (lactose and/or acetate) and/or inorganic compounds to contaminated sediments determines a significant increase of bacterial growth coupled with changes in bacterial diversity and assemblage composition. Experimental systems supplied only with organic substrates were characterized by an increase of the relative importance of sulfate reducing bacteria belonging to the families Desulfobacteraceae and Desulfobulbaceae with a concomitant decrease of taxa affiliated with Flavobacteriaceae. An opposite effect was observed in the experimental treatments supplied also with inorganic nutrients. The increase of bacterial metabolism coupled with the increase of bacterial taxa affiliated with Flavobacteriaceae were reflected in a significant decrease of Cd and Zn associated with sedimentary organic matter and Pb and As associated with the residual fraction of the sediment. However, independently from the experimental conditions investigated no dissolution of metals occurred, suggesting a role of bacterial assemblages in controlling metal solubilization processes. Overall results of this study have allowed to identify key biogeochemical interactions influencing the metal behavior and provide new insights for a better understanding of the potential consequences of bio-treatments on the metal fate in contaminated marine sediments. PMID:25462769

  13. Sputtered Gum metal thin films showing bacterial inactivation and biocompatibility.

    PubMed

    Achache, S; Alhussein, A; Lamri, S; François, M; Sanchette, F; Pulgarin, C; Kiwi, J; Rtimi, S

    2016-10-01

    Super-elastic Titanium based thin films Ti-23Nb-0.7Ta-2Zr-(O) (TNTZ-O) and Ti-24Nb-(N) (TN-N) (at.%) were deposited by direct current magnetron sputtering (DCMS) in different reactive atmospheres. The effects of oxygen doping (TNTZ-O) and/or nitrogen doping (TN-N) on the microstructure, mechanical properties and biocompatibility of the as-deposited coatings were investigated. Nano-indentation measurements show that, in both cases, 1sccm of reactive gas in the mixture is necessary to reach acceptable values of hardness and Young's modulus. Mechanical properties are considered in relation to the films compactness, the compressive stress and the changes in the grain size. Data on Bacterial inactivation and biocompatibility are reported in this study. The biocompatibility tests showed that O-containing samples led to higher cells proliferation. Bacterial inactivation was concomitant with the observed pH and surface potential changes under light and in the dark. The increased cell fluidity leading to bacterial lysis was followed during the bacterial inactivation time. The increasing cell wall fluidity was attributed to the damage of the bacterial outer cell which losing its capacity to regulate the ions exchange in and out of the bacteria. PMID:27434155

  14. Effect of organic carbon and metal accumulation on the bacterial communities in sulphidogenic sediments.

    PubMed

    Bueche, Matthieu; Junier, Pilar

    2016-06-01

    A unique geochemical setting in Lake Cadagno, Switzerland, has led to the accumulation of insoluble metal sulphides in the sedimentary record as the result of past airborne pollution. This offers an exceptional opportunity to study the effect of these metals on the bacterial communities in sediments, and in particular to investigate further the link between metal contamination and an increase in the populations of endospore-forming bacteria observed previously in other metal-contaminated sediments. A decrease in organic carbon and total bacterial counts was correlated with an increase in the numbers of endospores in the oldest sediment samples, showing the first environmental evidence of a decrease in nutrient availability as a trigger of sporulation. Proteobacteria and Firmicutes were the two dominant bacterial phyla throughout the sediment, the former in an area with high sulphidogenic activity, and the latter in the oldest samples. Even though the dominant Firmicutes taxa were stable along the sediment core and did not vary with changes in metal contamination, the prevalence of some molecular species like Clostridium sp. was positively correlated with metal sulphide concentration. However, this cannot be generalized to all endospore-forming species. Overall, the community composition supports the hypothesis of sporulation as the main mechanism explaining the dominance of endospore formers in the deepest part of the sediment core, while metal contamination in the form of insoluble metal sulphide deposits appears not to be linked with sporulation as a mechanism of metal tolerance in this sulphidogenic ecosystem. PMID:26780045

  15. Towards an understanding of the genetics of bacterial metal resistance.

    PubMed

    Mergeay, M

    1991-01-01

    Many bacteria show great promise for use in metal recovery. However, the genetics of metal-leaching, accumulation-resistance, and oxidation/reduction mechanisms of these bacteria is still an area of research in its infancy. The introduction of such genes into bacteria of economic importance would have application in biomining and environmental bioremediation. PMID:1366923

  16. Bacterial Exopolysaccharides For Corrosion Inhibition on Metal Substrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofilms, composed of extra-cellular polymers secreted by bacteria, have been observed to both increase as well as decrease the rate of metal corrosion. Exopolysaccharides derived from Leuconostoc mesenteroides cultures have been shown to inhibit corrosion on corrosion-sensitive metals. The substa...

  17. Treatment of metal-contaminated water using bacterial sulfate reduction: results from pilot-scale reactors.

    PubMed

    Dvorak, D H; Hedin, R S; Edenborn, H M; McIntire, P E

    1992-08-01

    Simple anaerobic reactors were installed to treat metal-contaminated water in an underground coal mine and at a smelting residues dump in Pennsylvania. The reactors consisted of barrels and tanks filled with spent mushroom compost, within which bacterial sulfate reduction became established. Concentrations of Al, Cd, Fe, Mn, Ni, and Zn were typically lowered by over 95% as contaminated water flowed through the reactors. Cadmium, Fe, Ni, and some Zn were retained as insoluble metal sulfides following their reaction with bacterially generated H(2)S. Aluminum, Mn, and some Zn hydrolyzed and were retained as insoluble hydroxides or carbonates. Reactor effluents were typically circumneutral in pH and contained net alkalinity. The principal sources of alkalinity in the reactors were bacterial sulfate reduction and limestone dissolution. This article examines the chemistry of the reactor systems and the opportunities for enhancing their metal-retaining and alkalinity-generating potential. PMID:18601157

  18. Iraq Dust is Respirable, Sharp, Metal-Laden, and Induces Lung Inflammation with Fibrosis in Mice via IL-2 Upregulation and Depletion of Regulatory T Cells

    PubMed Central

    Szema, Anthony M.; Reeder, Richard J.; Harrington, Andrea D.; Schmidt, Millicent; Liu, Jingxuan; Golightly, Marc; Rueb, Todd; Hamidi, Sayyed A.

    2014-01-01

    Soldiers returning from Iraq have reported respiratory symptoms. Lung biopsies show constrictive bronchiolitis and vascular remodeling with polarizable crystals. We hypothesized that ground surface dust may be a contributing factor to Iraq Afghanistan War Lung Injury (IAW-LI) and analyzed soil grab samples from Camp Victory, Iraq to determine if particle sizes are respirable. Samples contain particles 2.5 micron in size and have sharp edges. Trace metals (including titanium), calcium and silicon are present. Mice with airway instillation of dust have polarizable crystals and septate inflammation. CD4+CD25+FOXP3+ regulatory T cells are decreased in spleen and thymus from mice exposed to dust. IL-2 is elevated from bronchoalveolar lavage taken from dust-exposed mice. Respirable Iraq dust leads to lung inflammation in mice similar to that seen in patients, particularly regarding polarizable crystals which, appear to be titanium. PMID:24603199

  19. Engineered Bacterial Metal-binding Proteins for Nanoscale Self-assembly and heavy Metal Tolerance

    NASA Astrophysics Data System (ADS)

    Hall Sedlak, Ruth Amanda

    Implementing biological principles in material synthesis and assembly is one way to expand our abilities to efficiently assemble nanoscale materials and devices. Specifically, recent advances in identifying peptides that bind inorganic materials with high affinity and specificity has spurred investigation of protein models for nanoscale inorganic assembly. This dissertation presents the results of my studies of several E. coli proteins engineered to bind inorganic materials through simple peptide motifs. I demonstrate that these proteins modulate the self-assembly of DNA-based nanostructures and can introduce heavy metal tolerance into metal-sensitive bacteria. Chapter 2 explores use of the engineered F plasmid DNA relaxase/helicase TraI for the self-assembly of complex DNA-protein-gold nanostructures. The full-length protein is engineered with a gold binding motif at an internal permissive site (TraI369GBP1-7x), while a truncated version of TraI is engineered with the same gold binding motif at the C-terminus (TraI361GBP1-7x). Both constructs bind gold nanoparticles while maintaining their DNA binding activity, and transmission electron microscopy reveals TraI369GBP1-7x utilizes its non-specific DNA binding activity to decorate single-stranded and double-stranded DNA with gold nanoparticles. The self assembly principles demonstrated in this work will be fundamental to constructing higher ordered hybrid nanostructures through DNA-protein-nanoparticle interactions. Chapter 3 studies the effects of expressing inorganic binding peptides within cells. I identified a silver binding peptide that, when fused to the periplasmic maltose binding protein, protects E. coli from silver toxicity in batch culture and reduces silver ions to silver nanoparticles within the bacterial periplasm. Engineered metal-ion tolerant microorganisms such as this E. coli could potentially be used in applications ranging from remediation to interrogation of biomolecule-metal interactions in vivo

  20. Characterization of bacterial communities in heavy metal contaminated soils.

    PubMed

    Roane, T M; Kellogg, S T

    1996-06-01

    Heavy metal pollution is a principle source of environmental contamination. We analyzed heavy metal impacted soil microbial communities and found that, in general, although lead adversely affected biomass, metabolic activity, and diversity, autochthonous lead- and cadmium-resistant isolates were found. In several metal-stressed soils, the microbial community consisted of two populations, either resistant or sensitive to lead. Additionally, a lead-resistant isolate was isolated from a control soil with no known previous exposure to lead, suggesting widespread lead resistance. Lead-resistant genera isolated included Pseudomonas, Bacillus, Corynebacterium, and Enterobacter species. Plasmids, ranging from 5 to 260 kb, were not detected through standard purifications from lead-resistant isolates. Positive correlations existed between antibiotic resistance and isolation habitat for lead-resistant strains, microbial metabolic activity and soil type, soluble lead concentration and microbial diversity, and arsenic concentration and total or viable cell concentrations. PMID:8801006

  1. Bacterial adhesion on amorphous and crystalline metal oxide coatings.

    PubMed

    Almaguer-Flores, Argelia; Silva-Bermudez, Phaedra; Galicia, Rey; Rodil, Sandra E

    2015-12-01

    Several studies have demonstrated the influence of surface properties (surface energy, composition and topography) of biocompatible materials on the adhesion of cells/bacteria on solid substrates; however, few have provided information about the effect of the atomic arrangement or crystallinity. Using magnetron sputtering deposition, we produced amorphous and crystalline TiO2 and ZrO2 coatings with controlled micro and nanoscale morphology. The effect of the structure on the physical-chemical surface properties was carefully analyzed. Then, we studied how these parameters affect the adhesion of Escherichia coli and Staphylococcus aureus. Our findings demonstrated that the nano-topography and the surface energy were significantly influenced by the coating structure. Bacterial adhesion at micro-rough (2.6 μm) surfaces was independent of the surface composition and structure, contrary to the observation in sub-micron (0.5 μm) rough surfaces, where the crystalline oxides (TiO2>ZrO2) surfaces exhibited higher numbers of attached bacteria. Particularly, crystalline TiO2, which presented a predominant acidic nature, was more attractive for the adhesion of the negatively charged bacteria. The information provided by this study, where surface modifications are introduced by means of the deposition of amorphous or crystalline oxide coatings, offers a route for the rational design of implant surfaces to control or inhibit bacterial adhesion. PMID:26354243

  2. METHOD FOR MEASURING BACTERIAL RESISTANCE TO METALS EMPLOYING EPIFLUORESCENT MICROSCOPY

    EPA Science Inventory

    A direct viable counting method has been developed which can be used to measure resistance of bacteria to metal (DVCMR bio-assay). Results obtained using DVCMR was compared with classical culture methods and proven superior. Evaluation of test strains resistant to arsenic or mang...

  3. Bacterial Transition Metal P1B-ATPases, Transport Mechanism and Roles in Virulence

    PubMed Central

    Argüello, José M.; González-Guerrero, Manuel; Raimunda, Daniel

    2011-01-01

    P1B-type ATPases are polytopic membrane proteins that couple the hydrolysis of ATP to the efflux of cytoplasmic transition metals. This article reviews recent progress in our understanding of the structure and function of these proteins in bacteria. These are members of the P-type superfamily of transport ATPases. Cu+-ATPases are the most frequently observed and best-characterized members of this group of transporters. However, bacterial genomes show diverse arrays of P1B-type ATPases with a range of substrates (Cu+, Zn2+, Co2+). Furthermore, because of the structural similarities among transitions metals, these proteins can also transport non-physiological substrates (Cu2+, Cd2+, Pb2+, Au+, Ag+). P1B-type ATPases have six or eight transmembrane segments (TM) with metal coordinating amino acids in three core TMs flanking the cytoplasmic domain responsible for ATP binding and hydrolysis. In addition, regulatory cytoplasmic metal binding domains are present in most P1B-type ATPases. Central to the transport mechanism is the binding of the uncomplexed metal to these proteins when cytoplasmic substrates are bound to chaperone and chelating molecules. Metal binding to regulatory sites is through a reversible metal exchange among chaperones and cytoplasmic metal binding domains. In contrast, the chaperone-mediated metal delivery to transport sites appears as a largely irreversible event. P1B-ATPases have two overarching physiological functions: to maintain cytoplasmic metal levels and to provide metals for the periplasmic assembly of metalloproteins. Recent studies have shown that both roles are critical for bacterial virulence, since P1B-ATPases appear key to overcome high phagosomal metal levels and are required for the assembly of periplasmic and secreted metalloproteins that are essential for survival in extreme oxidant environments. PMID:21999638

  4. Facilitated transport of heavy metals by bacterial colloids in sand columns

    NASA Astrophysics Data System (ADS)

    Guiné, V.; Martins, J.; Gaudet, J. P.

    2003-05-01

    The aim of this work is to evaluate the ability of biotic collois (e.g. bacterial cells) to facilitate the transport of heavy metals in soils. and to identify the main factors influencing colloid transport in order to detelmine the geo-chemical conditions where this secondary transport process may become dominant. The model colloids studied here are living cells of Escherichia coli and Ralstonia metallidurans. We studied the transport of mercury zinc, and cadmium in columns of Fontainebleau sand. The properties (i.e. optical and morphological properties, charge (zeta potential, zeta) and hydrophobia (water/hexadecane distribution parameter, K_{hw})) of the bacterial cells surface were characterised, as well as their potential for heavy metals sorption (kinetic and isotherm). Both surface charge (zeta=-54 and -14 mV) and hydrophobia (K_{hw} = 0.25 and 0.05) differ strongly for the two bacteria. Column studies were conducted with bacteria and heavy metals separately or simultaneously. The cell surface differences led to different transport behaviour of the two bacteria, although the retardation factor is close to 1 for both. We observed that colloid mobility increases when increasing bacterial cells concentration and when decreasing the ionic strength. We also observed that bacterial colloids appeared as excellent vectors for Hg, Zn and Cd. Indeed, heavy metals adsorbed on the Fontainebleau sand when injected alone in columns (retardation factors of 1.4 ; 2.9 and 3.8 for Hg, Zn and Cd, respectively); whereas no retardation (R≈1) is observed when injected in the presence of both bacteria. Moreover, transport of bio-sorbed metal appears to be 4 to 6 times higher than dissolved heavy-metal.

  5. Heavy metals species affect fungal-bacterial synergism during the bioremediation of fluoranthene.

    PubMed

    Ma, Xiao-Kui; Ding, Ning; Peterson, Eric Charles; Daugulis, Andrew J

    2016-09-01

    The co-occurrence of polycyclic aromatic hydrocarbons (PAHs) with heavy metals (HMs) is very common in contaminated soils, but the influence of HMs on fungal-bacterial synergism during PAH bioremediation has not been investigated. The bioremediation of fluoranthene-contaminated sand using co-cultures of Acremonium sp. P0997 and Bacillus subtilis showed increases of 109.4 and 9.8 % in degradation compared to pure bacterial and fungal cultures, respectively, removing 64.1 ± 1.4 % fluoanthene in total. The presence of Cu(2+) reduced fluoranthene removal to 53.7 ± 1.7 %, while inhibiting bacterial growth, and reducing translocation of bacteria on fungal hyphae by 49.5 %, in terms of the bacterial translocation ratio. Cu(2+) reduced bacterial diffusion by 46.8 and 31.9 %, as reflected by D (a bulk random motility diffusional coefficient) and D eff (the effective one-dimensional diffusion coefficient) compared to the control without HM supplementation, respectively. However, Mn(2+) resulted in a 78.2 ± 1.9 % fluoranthene degradation, representing an increase of 21.9 %, while enhancing bacterial growth and bacterial translocation on fungal hyphae, showing a 12.0 % increase in translocation ratio, with no observable impact on D and D eff. Hence, the presence of HMs has been shown to affect fungal-bacterial synergism in PAH degradation, and this effect differs with HM species. PMID:27178182

  6. Extracellular respiration

    PubMed Central

    Gralnick, Jeffrey A.; Newman, Dianne K.

    2009-01-01

    Summary Although it has long been known that microbes can generate energy using diverse strategies, only recently has it become clear that a growing number involve electron transfer to or from extracellular substrates. The best-known example of what we will term ‘extracellular respiration’ is electron transfer between microbes and minerals, such as iron and manganese (hydr)oxides. This makes sense, given that these minerals are sparingly soluble. What is perhaps surprising, however, is that a number of substrates that might typically be classified as ‘soluble’ are also respired at the cell surface. There are several reasons why this might be the case: the substrate, in its ecological context, might be associated with a solid surface and thus effectively insoluble; the substrate, while soluble, might simply be too large to transport inside the cell; or the substrate, while benign in one redox state, might become toxic after it is metabolized. In this review, we discuss various examples of extracellular respiration, paying particular attention to what is known about the molecular mechanisms underlying these processes. As will become clear, much remains to be learned about the biochemistry, cell biology and regulation of extracellular respiration, making it a rich field of study for molecular microbiologists. PMID:17581115

  7. [Role of superoxide anion radicals in the bacterial corrosion of metals].

    PubMed

    Belov, D V; Kalinina, A A; Sokolova, T N; Smirnov, V F; Chelnokova, M V; Kartashov, V R

    2012-01-01

    It was found that seven strains of bacteria can cause corrosion damage to aluminum, its alloys, and zinc. With respect to the studied metals, the most active bacteria were Proteus vulgaris 1212 and Pseudomonas aeruginosa 969. Superoxide anion radicals were demonstrated to play a role in the initiation of corrosive damage to aluminum and zinc, while bacterial exometabolites participate in the later stages of this process. PMID:22834301

  8. Light-scattering Characteristics of Metal Nanoparticles on a Single Bacterial Cell.

    PubMed

    Kinoshita, Takamasa; Kiso, Keita; LE, Dung Q; Shiigi, Hiroshi; Nagaoka, Tsutomu

    2016-01-01

    Metal nanoparticles express unique light-scattering characteristics based on the localized surface plasmon resonance, which depends on the metal species, particle size, and aggregation state of the nanoparticles. Therefore, we focused on the light-scattering characteristics of metal nanoparticles, such as silver, gold, and copper oxide, adsorbed on a bacterium. Monodisperse silver nanoparticles expressed the strongest scattered light among them, and showed various colors of scattered light. Although a monodisperse gold nanoparticle produced monochromatic light (green color), the color of the scattered light strongly depended on the aggregation state of the nanoparticles on a bacterium. On the other hand, copper oxide nanoparticles expressed monochromatic light (blue color), regardless of their aggregation states on a bacterium. We examined details concerning the light-scattering characteristics of metal nanoparticles, and discussed the possibility of their applications to bacterial cell imaging. PMID:26960609

  9. Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation--part A.

    PubMed

    Vera, Mario; Schippers, Axel; Sand, Wolfgang

    2013-09-01

    Bioleaching of metal sulfides is performed by a diverse group of microorganisms. The dissolution chemistry of metal sulfides follows two pathways, which are determined by the mineralogy and the acid solubility of the metal sulfides: the thiosulfate and the polysulfide pathways. Bacterial cells can effect this metal sulfide dissolution via iron(II) ion and sulfur compound oxidation. Thereby, iron(III) ions and protons, the metal sulfide-attacking agents, are available. Cells can be active either in planktonic state or in forming biofilms on the mineral surface; however, the latter is much more efficient in terms of bioleaching kinetics. In the case of Acidithiobacillus ferrooxidans, bacterial exopolymers contain iron(III) ions, each complexed by two uronic acid residues. The resulting positive charge allows an electrostatic attachment to the negatively charged pyrite. Thus, the first function of complexed iron(III) ions is the mediation of cell attachment, while their second function is oxidative dissolution of the metal sulfide, similar to the role of free iron(III) ions in non-contact leaching. In both cases, the electrons extracted from the metal sulfide reduce molecular oxygen via a redox chain forming a supercomplex spanning the periplasmic space and connecting both outer and inner membranes. In this review, we summarize some recent discoveries relevant to leaching bacteria which contribute to a better understanding of these fascinating microorganisms. These include surface science, biochemistry of iron and sulfur metabolism, anaerobic metabolism, and biofilm formation. The study of microbial interactions among multispecies leaching consortia, including cell-to-cell communication mechanisms, must be considered in order to reveal more insights into the biology of bioleaching microorganisms and their potential biotechnological use. PMID:23720034

  10. Irrigation water quality in southern Mexico City based on bacterial and heavy metal analyses

    NASA Astrophysics Data System (ADS)

    Solís, C.; Sandoval, J.; Pérez-Vega, H.; Mazari-Hiriart, M.

    2006-08-01

    Xochimilco is located in southern Mexico City and represents the reminiscence of the pre-Columbian farming system, the "chinampa" agriculture. "Chinampas" are island plots surrounded by a canal network. At present the area is densely urbanized and populated, with various contaminant sources contributing to the water quality degradation. The canal system is recharged by a combination of treated-untreated wastewater, and precipitation during the rainy season. Over 40 agricultural species, including vegetables, cereals and flowers, are produced in the "chinampas". In order to characterize the quality of Xochimilcos' water used for irrigation, spatial and temporal contaminant indicators such as microorganisms and heavy metals were investigated. Bacterial indicators (fecal coliforms, fecal enterococcus) were analyzed by standard analytical procedures, and heavy metals (such as Fe, Cu, Zn and Pb) were analyzed by particle induced X-ray emission (PIXE). The more contaminated sites coincide with the heavily populated areas. Seasonal variation of contaminants was observed, with the higher bacterial counts and heavy metal concentrations reported during the rainy season.

  11. Heavy metals in liquid pig manure in light of bacterial antimicrobial resistance

    SciTech Connect

    Hoelzel, Christina S.; Mueller, Christa; Harms, Katrin S.; Mikolajewski, Sabine; Schaefer, Stefanie; Schwaiger, Karin; Bauer, Johann

    2012-02-15

    Heavy metals are regularly found in liquid pig manure, and might interact with bacterial antimicrobial resistance. Concentrations of heavy metals were determined by atomic spectroscopic methods in 305 pig manure samples and were connected to the phenotypic resistance of Escherichia coli (n=613) against 29 antimicrobial drugs. Concentrations of heavy metals (/kg dry matter) were 0.08-5.30 mg cadmium, 1.1-32.0 mg chrome, 22.4-3387.6 mg copper, <2.0-26.7 mg lead, <0.01-0.11 mg mercury, 3.1-97.3 mg nickel and 93.0-8239.0 mg zinc. Associated with the detection of copper and zinc, resistance rates against {beta}-lactams were significantly elevated. By contrast, the presence of mercury was significantly associated with low antimicrobial resistance rates of Escherichia coli against {beta}-lactams, aminoglycosides and other antibiotics. Effects of subinhibitory concentrations of mercury on bacterial resistance against penicillins, cephalosporins, aminoglycosides and doxycycline were also demonstrated in a laboratory trial. Antimicrobial resistance in the porcine microflora might be increased by copper and zinc. By contrast, the occurrence of mercury in the environment might, due to co-toxicity, act counter-selective against antimicrobial resistant strains.

  12. EFFECTS OF DIVALENT METAL CHLORIDES ON RESPIRATION AND EXTRACTABLE ENZYMATIC ACTIVITIES OF DOUGLAS-FIR NEEDLE LITTER

    EPA Science Inventory

    The rates of CO2 evolution from Douglas-fir (Pseudotsuga menziesii Franco) needle litter, following application of divalent metal (Hg, Cd, Pb, Ni, Zn, and Cu) chlorides at rates of 10, 100, and 1,000 microgram/g and Ca chloride at 7, 68, and 683 microgram/g were monitored at 2- t...

  13. Sequential removal of heavy metals ions and organic pollutants using an algal-bacterial consortium.

    PubMed

    Muñoz, Raul; Alvarez, Maria Teresa; Muñoz, Adriana; Terrazas, Enrique; Guieysse, Benoit; Mattiasson, Bo

    2006-05-01

    The residual algal-bacterial biomass from photosynthetically supported, organic pollutant biodegradation processes, in enclosed photobioreactors, was tested for its ability to accumulate Cu(II), Ni(II), Cd(II), and Zn(II). Salicylate was chosen as a model contaminant. The algal-bacterial biomass combined the high adsorption capacity of microalgae with the low cost of the residual biomass, which makes it an attractive biosorbent for environmental applications. Cu(II) was preferentially taken-up from the medium when the metals were present both separately and in combination. There was no observed competition for adsorption sites, which suggested that Cu(II), Ni(II), Cd(II), and Zn(II) bind to different sites and that active Ni(II), Cd(II) and Zn(II) binding groups were present at very low concentrations. Therefore, special focus was given to Cu(II) biosorption. Cu(II) biosorption by the algal-bacterial biomass was characterized by an initial fast cell surface adsorption followed by a slower metabolically driven uptake. pH, Cu(II), and algal-bacterial concentration significantly affected the biosorption capacity for Cu(II). Maximum Cu(II) adsorption capacities of 8.5+/-0.4 mg g-1 were achieved at an initial Cu(II) concentration of 20 mg l-1 and at pH 5 for the tested algal-bacterial biomass. These are consistent with values reported for other microbial sorbents under similar conditions. The desorption of Cu(II) from saturated biomass was feasible by elution with a 0.0125 M HCl solution. Simultaneous Cu(II) and salicylate removal in a continuous stirred tank photobioreactor was not feasible due to the high toxicity of Cu(II) towards the microbial culture. The introduction of an adsorption column, packed with the algal-bacterial biomass, prior to the photobioreactor reduced Cu(II) concentration, thereby allowing the subsequent salicylate biodegradation in the photobioreactor. PMID:16307789

  14. Mercury and other heavy metals influence bacterial community structure in low-order Tennessee streams

    SciTech Connect

    Vishnivetskaya, Tatiana A; Mosher, Jennifer J; Palumbo, Anthony Vito; Podar, Mircea; Brown, Steven D; Brooks, Scott C; Southworth, George R; Drake, Meghan M; Brandt, Craig C

    2011-01-01

    High concentrations of the heavy metals U(VI) and Hg(II) as well as inorganic compounds including nitrate have contaminated streams located in the Department of Energy reservation in Oak Ridge, TN. Of particular concern is methylmercury (MeHg) as it is more neurotoxic than Hg0. Deltaproteobacteria including sulfate reducing bacteria (SRB) and iron reducing bacteria (IRB) have been generally identified as the primary methylators. In order to determine potential effects on microbial community composition by the contamination, surface stream sediments were collected 7 times during the year from 5 contaminated sites and 1 control site. Sixty samples were analyzed for bacterial community composition and geochemistry. Community characterization used GS 454 FLX pyrosequencing with 235 Mb of 16S rDNA sequence targeting the V4 region. Sorting and filtering of the raw reads resulted in 588,699 high quality sequences with lengths of >200 bp. The bacterial community was represented by 24 phyla and unclassified Bacteria including Proteobacteria (22.9-58.5%), Cyanobacteria (0.2-32.0%), Acidobacteria (1.6-30.6%), and Verrucomicrobia (3.4-31.0%). Redundancy analysis indicated there were no significant differences in the bacterial community structure between midchannel and near bank samples. However, significant correlations existed between the bacterial community and seasonal as well as geochemical variation. Further, several members of the community appear to be positively associated with MeHg including the Proteobacteria group that includes SRBs as well as Verrucomicrobia. This study is the first to indicate the influence of MeHg on an in-situ microbial community and suggests possible roles for each of these phyla in the Hg/MeHg cycle.

  15. Bacterial contamination of fabric and metal-bead identity card lanyards: a cross-sectional study.

    PubMed

    Pepper, Thomas; Hicks, Georgina; Glass, Stephen; Philpott-Howard, John

    2014-01-01

    In healthcare, fabric or metal-bead lanyards are universally used for carrying identity cards. However there is little information on microbial contamination with potential pathogens that may readily re-contaminate disinfected hands. We examined 108 lanyards from hospital staff. Most grew skin flora but 7/108 (6%) had potentially pathogenic bacteria: four grew methicillin-susceptible Staphylococcus aureus, and four grew probable fecal flora: 3 Clostridium perfringens and 1 Clostridium bifermentans (one lanyard grew both S. aureus and C. bifermentans). Unused (control) lanyards had little or no such contamination. The median duration of lanyard wear was 12 months (interquartile range 3-36 months). 17/108 (16%) of the lanyards had reportedly undergone decontamination including wiping with alcohol, chlorhexidine or chlorine dioxide; and washing with soap and water or by washing machine. Metal-bead lanyards had significantly lower median bacterial counts than those from fabric lanyards (1 vs. 4 CFU/cm(2); Mann-Whitney U=300.5; P<0.001). 12/32 (38%) of the metal-bead lanyards grew no bacteria, compared with 2/76 (3%) of fabric lanyards. We recommend that an effective decontamination regimen be instituted by those who use fabric lanyards, or that fabric lanyards be discarded altogether in preference for metal-bead lanyards or clip-on identity cards. PMID:25151656

  16. Bacterial assisted degradation of chlorpyrifos: The key role of environmental conditions, trace metals and organic solvents.

    PubMed

    Khalid, Saira; Hashmi, Imran; Khan, Sher Jamal

    2016-03-01

    Wastewater from pesticide industries, agricultural or surface runoff containing pesticides and their residues has adverse environmental impacts. Present study demonstrates effect of petrochemicals and trace metals on chlorpyrifos (CP) biotransformation often released in wastewater of agrochemical industry. Biodegradation was investigated using bacterial strain Pseudomonas kilonensis SRK1 isolated from wastewater spiked with CP. Optimal environmental conditions for CP removal were CFU (306 × 10(6)), pH (8); initial CP concentration (150 mg/L) and glucose as additional carbon source. Among various organic solvents (petrochemicals) used in this study toluene has stimulatory effect on CP degradation process using SRK1, contrary to this benzene and phenol negatively inhibited degradation process. Application of metal ions (Cu (II), Fe (II) Zn (II) at low concentration (1 mg/L) took part in biochemical reaction and positively stimulated CP degradation process. Metal ions at high concentrations have inhibitory effect on degradation process. A first order growth model was shown to fit the data. It could be concluded that both type and concentration of metal ions and petrochemicals can affect CP degradation process. PMID:26692411

  17. Isolation and Genomic Characterization of ‘Desulfuromonas soudanensis WTL’, a Metal- and Electrode-Respiring Bacterium from Anoxic Deep Subsurface Brine

    PubMed Central

    Badalamenti, Jonathan P.; Summers, Zarath M.; Chan, Chi Ho; Gralnick, Jeffrey A.; Bond, Daniel R.

    2016-01-01

    Reaching a depth of 713 m below the surface, the Soudan Underground Iron Mine (Soudan, MN, USA) transects a massive Archaean (2.7 Ga) banded iron formation, providing a remarkably accessible window into the terrestrial deep biosphere. Despite organic carbon limitation, metal-reducing microbial communities are present in potentially ancient anoxic brines continuously emanating from exploratory boreholes on Level 27. Using graphite electrodes deposited in situ as bait, we electrochemically enriched and isolated a novel halophilic iron-reducing Deltaproteobacterium, ‘Desulfuromonas soudanensis’ strain WTL, from an acetate-fed three-electrode bioreactor poised at +0.24 V (vs. standard hydrogen electrode). Cyclic voltammetry revealed that ‘D. soudanensis’ releases electrons at redox potentials approximately 100 mV more positive than the model freshwater surface isolate Geobacter sulfurreducens, suggesting that its extracellular respiration is tuned for higher potential electron acceptors. ‘D. soudanensis’ contains a 3,958,620-bp circular genome, assembled to completion using single-molecule real-time (SMRT) sequencing reads, which encodes a complete TCA cycle, 38 putative multiheme c-type cytochromes, one of which contains 69 heme-binding motifs, and a LuxI/LuxR quorum sensing cassette that produces an unidentified N-acyl homoserine lactone. Another cytochrome is predicted to lie within a putative prophage, suggesting that horizontal gene transfer plays a role in respiratory flexibility among metal reducers. Isolation of ‘D. soudanensis’ underscores the utility of electrode-based approaches for enriching rare metal reducers from a wide range of habitats. PMID:27445996

  18. Organohalide respiration: microbes breathing chlorinated molecules

    PubMed Central

    Leys, David; Adrian, Lorenz; Smidt, Hauke

    2013-01-01

    Bacterial respiration has taken advantage of almost every redox couple present in the environment. The reduction of organohalide compounds to release the reduced halide ion drives energy production in organohalide respiring bacteria. This process is centred around the reductive dehalogenases, an iron–sulfur and corrinoid containing family of enzymes. These enzymes, transcriptional regulators and the bacteria themselves have potential to contribute to future bioremediation solutions that address the pollution of the environment by halogenated organic compounds. PMID:23479746

  19. Anaerobic respiration on tellurate and other metalloids in bacteria from hydrothermal vent fields in the eastern Pacific Ocean.

    PubMed

    Csotonyi, Julius T; Stackebrandt, Erko; Yurkov, Vladimir

    2006-07-01

    This paper reports the discovery of anaerobic respiration on tellurate by bacteria isolated from deep ocean (1,543 to 1,791 m) hydrothermal vent worms. The first evidence for selenite- and vanadate-respiring bacteria from deep ocean hydrothermal vents is also presented. Enumeration of the anaerobic metal(loid)-resistant microbial community associated with hydrothermal vent animals indicates that a greater proportion of the bacterial community associated with certain vent fauna resists and reduces metal(loid)s anaerobically than aerobically, suggesting that anaerobic metal(loid) respiration might be an important process in bacteria that are symbiotic with vent fauna. Isolates from Axial Volcano and Explorer Ridge were tested for their ability to reduce tellurate, selenite, metavanadate, or orthovanadate in the absence of alternate electron acceptors. In the presence of metal(loid)s, strains showed an ability to grow and produce ATP, whereas in the absence of metal(loid)s, no growth or ATP production was observed. The protonophore carbonyl cyanide m-chlorophenylhydrazone depressed metal(loid) reduction. Anaerobic tellurate respiration will be a significant component in describing biogeochemical cycling of Te at hydrothermal vents. PMID:16820492

  20. Dynamics of the heme-binding bacterial gas-sensing dissimilative nitrate respiration regulator (DNR) and activation barriers for ligand binding and escape.

    PubMed

    Lobato, Laura; Bouzhir-Sima, Latifa; Yamashita, Taku; Wilson, Michael T; Vos, Marten H; Liebl, Ursula

    2014-09-19

    DNR (dissimilative nitrate respiration regulator) is a heme-binding transcription factor that is involved in the regulation of denitrification in Pseudomonas aeruginosa. In the ferrous deoxy state, the heme is 6-coordinate; external NO and CO can replace an internal ligand. Using fluorescence anisotropy, we show that high-affinity sequence-specific DNA binding occurs only when the heme is nitrosylated, consistent with the proposed function of DNR as NO sensor and transcriptional activator. This role is moreover supported by the NO "trapping" properties revealed by ultrafast spectroscopy that are similar to those of other heme-based NO sensor proteins. Dissociated CO-heme pairs rebind in an essentially barrierless way. This process competes with migration out of the heme pocket. The latter process is thermally activated (Ea ∼ 7 kJ/mol). This result is compared with other heme proteins, including the homologous CO sensor/transcription factor CooA, variants of the 5-coordinate mycobacterial sensor DosT and the electron transfer protein cytochrome c. This comparison indicates that thermal activation of ligand escape from the heme pocket is specific for systems where an external ligand replaces an internal one. The origin of this finding and possible implications are discussed. PMID:25037216

  1. Dynamics of the Heme-binding Bacterial Gas-sensing Dissimilative Nitrate Respiration Regulator (DNR) and Activation Barriers for Ligand Binding and Escape*

    PubMed Central

    Lobato, Laura; Bouzhir-Sima, Latifa; Yamashita, Taku; Wilson, Michael T.; Vos, Marten H.; Liebl, Ursula

    2014-01-01

    DNR (dissimilative nitrate respiration regulator) is a heme-binding transcription factor that is involved in the regulation of denitrification in Pseudomonas aeruginosa. In the ferrous deoxy state, the heme is 6-coordinate; external NO and CO can replace an internal ligand. Using fluorescence anisotropy, we show that high-affinity sequence-specific DNA binding occurs only when the heme is nitrosylated, consistent with the proposed function of DNR as NO sensor and transcriptional activator. This role is moreover supported by the NO “trapping” properties revealed by ultrafast spectroscopy that are similar to those of other heme-based NO sensor proteins. Dissociated CO-heme pairs rebind in an essentially barrierless way. This process competes with migration out of the heme pocket. The latter process is thermally activated (Ea ∼7 kJ/mol). This result is compared with other heme proteins, including the homologous CO sensor/transcription factor CooA, variants of the 5-coordinate mycobacterial sensor DosT and the electron transfer protein cytochrome c. This comparison indicates that thermal activation of ligand escape from the heme pocket is specific for systems where an external ligand replaces an internal one. The origin of this finding and possible implications are discussed. PMID:25037216

  2. A suite of recombinant luminescent bacterial strains for the quantification of bioavailable heavy metals and toxicity testing

    PubMed Central

    2009-01-01

    Background Recombinant whole-cell sensors have already proven useful in the assessment of the bioavailability of environmental pollutants like heavy metals and organic compounds. In this work 19 recombinant bacterial strains representing various Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli, Pseudomonas fluorescens) bacteria were constructed to express the luminescence encoding genes luxCDABE (from Photorhabdus luminescens) as a response to bioavailable heavy metals ("lights-on" metal sensors containing metal-response elements, 13 strains) or in a constitutive manner ("lights-off" constructs, 6 strains). Results The bioluminescence of all 13 "lights-on" metal sensor strains was expressed as a function of the sub-toxic metal concentrations enabling the quantitative determination of metals bioavailable for these strains. Five sensor strains, constructed for detecting copper and mercury, proved to be target metal specific, whereas eight other sensor strains were simultaneously induced by Cd2+, Hg2+, Zn2+and Pb2+. The lowest limits of determination of the "lights-on" sensor strains for the metals tested in this study were (μg l-1): 0.002 of CH3HgCl, 0.03 of HgCl2, 1.8 of CdCl2, 33 of Pb(NO3)2, 1626 of ZnSO4, 24 of CuSO4 and 340 of AgNO3. In general, the sensitivity of the "lights-on" sensor strains was mostly dependent on the metal-response element used while the selection of host bacterium played a relatively minor role. In contrast, toxicity of metals to the "lights-off" strains was only dependent on the bacterial host so that Gram-positive strains were remarkably more sensitive than Gram-negative ones. Conclusion The constructed battery of 19 recombinant luminescent bacterial strains exhibits several novel aspects as it contains i) metal sensor strains with similar metal-response elements in different host bacteria; ii) metal sensor strains with metal-response elements in different copies and iii) a "lights

  3. Composition, Reactivity and Regulation of Extracellular Metal-Reducing Structures (Bacterial Nanowires) Produced by Dissimilatory Metal - Reducing Bacteria.

    SciTech Connect

    Beveridge, Terrance J; Whitfield, Christopher

    2013-03-06

    This is the final technical report for the project. There were two objectives in the proposal. The first was to describe the composition and function of electrically conductive appendages, known as bacterial nanowires, which resemble pili but are longer and are electrically conductive. They were first identified on the dissimilatory metal-reducing bacteria (DMRB), Shewanella and Geobacter. Specifically, this project investigated the role of these structures in: (i) the reductive transformation of iron oxides as solid phase electron acceptors; (ii) the use of as uranium as a dissolved electron acceptor to form nanocrystalline particles of uraninite upon reduction. The Beveridge group investigated these processes using advanced cryo-transmission electron microscopy (cryoTEM) to visualize the points of connection between the distal ends of nanowires and the effect they have on solid phase Fe minerals. At the same time, immuno-electron microscopy was applied in an attempt to identify where metal reductases and cytochromes are located on the cell surface, or in the nanowires. The second objective was to define the surface physicochemistry of Shewanella spp. in an attempt to decipher how weak bonding (electrostatics and hydrophobicity) affects the adherence of the bacteria to Fe oxides. This bonding could be dictated by the chemistry of lipopolysaccharide (LPS), or the presence/absence of capsular polysaccharide.

  4. Effect of Metal-Rich Sewage Sludge Application on the Bacterial Communities of Grasslands

    PubMed Central

    Barkay, Tamar; Tripp, Susan C.; Olson, Betty H.

    1985-01-01

    The effect of long-term application of heavy metal-laden sewage sludge on the total heterotrophic aerobic and the cadmium-resistant soil bacterial communities was studied. Gram-positive bacteria were completely absent from resistant communities. These findings suggest that this group is highly susceptible to Cd. Shannon's diversity indices estimated for total communities did not reveal negative effects on the communities that developed in the presence of sludge. However, Cd-resistant communities isolated from long-term sludge-amended soils were more diverse than the resistant communities from a control sample, suggesting that adaptation to Cd as a stressor had occurred in the presence of sludge constituents. This higher diversity was attributed to Cd resistance in pseudomonads and gram-negative fermenters. Resistance did not develop by dissemination of Cd resistance plasmids, because these were rarely detected in the genomes of resistant strains. PMID:16346720

  5. Biodegradation of the metallic carcinogen hexavalent chromium Cr(VI) by an indigenously isolated bacterial strain

    PubMed Central

    Mishra, Susmita

    2010-01-01

    Background: Hexavalent chromium [Cr(VI)], a potential mutagen and carcinogen, is regularly introduced into the environment through diverse anthropogenic activities, including electroplating, leather tanning, and pigment manufacturing. Human exposure to this toxic metal ion not only causes potential human health hazards but also affects other life forms. The World Health Organization, the International Agency for Research on Cancer, and the Environmental Protection Agency have determined that Cr(VI) compounds are known human carcinogens. The Sukinda valley in Jajpur District, Orissa, is known for its deposit of chromite ore, producing nearly 98% of the chromite ore in India and one of the prime open cast chromite ore mines in the world (CES, Orissa Newsletter). Materials and Methods: Our investigation involved microbial remediation of Cr(VI) without producing any byproduct. Bacterial cultures tolerating high concentrations of Cr were isolated from the soil sample collected from the chromite-contaminated sites of Sukinda, and their bioaccumulation properties were investigated. Strains capable of growing at 250 mg/L Cr(VI) were considered as Cr resistant. Results: The experimental investigation showed the maximum specific Cr uptake at pH 7 and temperature 30°C. At about 50 mg/L initial Cr(VI) concentrations, uptake of the selected potential strain exceeded 98% within 12 h of incubation. The bacterial isolate was identified by 16S rRNA sequencing as Brevebacterium casei. Conclusion: Results indicated promising approach for microbial remediation of effluents containing elevated levels of Cr(VI). PMID:20976016

  6. Bacterial Killing by Light-Triggered Release of Silver from Biomimetic Metal Nanorods

    PubMed Central

    Yi, Ji; Zhang, Ran; Rivera, José G.; Messersmith, Phillip B.

    2014-01-01

    Illumination of noble metal nanoparticles at the plasmon resonance causes substantial heat generation, and the transient and highly localized temperature increases that result from this energy conversion can be exploited for photothermal therapy by plasmonically heating gold nanorods (NRs) bound to cell surfaces. Here, we report the first use of plasmonic heating to locally release silver from gold core/silver shell (Au@Ag) NRs targeted to bacterial cell walls. A novel biomimetic method of preparing Au@Ag core-shell NRs was employed, involving deposition of a thin organic polydopamine (PD) primer onto Au NR surfaces, followed by spontaneous electroless silver metallization, and conjugation of antibacterial antibodies and passivating polymers for targeting to gram-negative and gram-positive bacteria. Dramatic cytotoxicity of S. epidermidis and E. coli cells targeted with Au@Ag NRs was observed upon exposure to light as a result of the combined antibacterial effects of plasmonic heating and silver release. The antibacterial effect was much greater than with either plasmonic heating or silver alone, implying a strong therapeutic synergy between cell-targeted plasmonic heating and the associated silver release upon irradiation. Our findings suggest a potential antibacterial use of Au@Ag NRs when coupled with light irradiation, which was not previously described. PMID:23847147

  7. Nosepiece respiration monitor

    NASA Technical Reports Server (NTRS)

    Lavery, A. L.; Long, L. E.; Rice, N. E.

    1968-01-01

    Comfortable, inexpensive nosepiece respiration monitor produces rapid response signals to most conventional high impedance medical signal conditioners. The monitor measures respiration in a manner that produces a large signal with minimum delay.

  8. Common Components of Industrial Metal-Working Fluids as Sources of Carbon for Bacterial Growth

    PubMed Central

    Foxall-VanAken, S.; Brown, J. A.; Young, W.; Salmeen, I.; McClure, T.; Napier, S.; Olsen, R. H.

    1986-01-01

    Water-based metal-working fluids used in large-scale industrial operations consist of many components, but in the most commonly used formulations only three classes of components are present in high enough concentrations that they could, in principle, provide enough carbon to support the high bacterial densities (109 CFU/ml) often observed in contaminated factory fluids. These components are petroleum oil (1 to 5%), petroleum sulfonates (0.1 to 0.5%), and fatty acids (less than 0.1%, mainly linoleic and oleic acids supplied as tall oils). We isolated pure strains of predominating bacteria from contaminated reservoirs of two metal-working systems and randomly selected 12 strains which we tested in liquid culture for growth with each of the metal-working fluid components as the sole source of carbon. Of the 12 strains, 7 reached high density (109 CFU/ml from an initial inoculum of less than 2 × 103) in 24 h, and 1 strain did the same in 48 h with 0.05% oleic or linoleic acid as the carbon source. These same strains also grew on 1% naphthenic petroleum oil but required up to 72 h to reach densities near 108 CFU/ml. One strain grew slightly and the others not at all on the petroleum sulfonates. The four remaining strains did not grow on any of the components, even though they were among the predominating bacteria in the contaminated system. Of the seven strains that grew best on the fatty acids and on the naphthenic petroleum oil, five were tentatively identified as Acinetobacter species and two were identified as Pseudomonas species. Four of the bacteria that did not grow were tentatively identified as species of Pseudomonas, and one could not be identified. PMID:16347072

  9. Ecofriendly biosorption of dyes and metals by bacterial biomass of Aeromonas hydrophila RC1.

    PubMed

    Busi, Siddhardha; Chatterjee, Rahul; Rajkumari, Jobina; Hnamte, Sairengpuii

    2016-03-01

    The ability of dried bacterial biomass in azo dye and heavy metal removal from aqueous solution was explored. Biosorption of three textile dyes, Eriochrome black T (EBT), Acid Red 26 (AR) and Trypan blue (TB) and heavy metals (Pb and Cr) by dried biomass of Aeromonas hydrophila RC1, was investigated in a batch system under various parameters such as dye concentration, contact time, concentration of biomass, pH, and temperature. The experimental results showed that the extent of biosorption for dyes increased with increase in initial concentration of dyes, biomass concentration, contact time, temperature and decreased with increase in pH. The experimental isotherms data were analyzed using Langmuir and Freundlich isotherm equations. The Langmuir model yielded good fit to the experimental data (R² approximately 0.794, 0.844 and 0.969 for the dyes, EBT, AR and TB, respectively) with maximum monolayer adsorption capacity of 58.8 mg g⁻¹ for AR. Similarly results were obtained for heavy metals and the data fit in Langmuir model (R² value of 0.849 and 0.787) with q(m) value of 40 mg g⁻¹ for Pb. The results fit in pseudo first order kinetics with removal upto 96.67 % for Pb. Involvement of the surface characteristics of the biomass in biosorption was studied using scanning electron micrographs, FTIR, EDX and XRD analysis. Thus, use ofA. hydrophila RC1 biomass can be extensively employed in water treatment plants in order to get desired water quality in the most economical way. PMID:27097447

  10. Aqueous phase synthesis of copper nanoparticles: a link between heavy metal resistance and nanoparticle synthesis ability in bacterial systems

    NASA Astrophysics Data System (ADS)

    Ramanathan, Rajesh; Field, Matthew R.; O'Mullane, Anthony P.; Smooker, Peter M.; Bhargava, Suresh K.; Bansal, Vipul

    2013-02-01

    We demonstrate aqueous phase biosynthesis of phase-pure metallic copper nanoparticles (CuNPs) using a silver resistant bacterium Morganella morganii. This is particularly important considering that there has been no report that demonstrates biosynthesis and stabilization of pure copper nanoparticles in the aqueous phase. Electrochemical analysis of bacterial cells exposed to Cu2+ ions provides new insights into the mechanistic aspect of Cu2+ ion reduction within the bacterial cell and indicates a strong link between the silver and copper resistance machinery of bacteria in the context of metal ion reduction. The outcomes of this study take us a step closer towards designing rational strategies for biosynthesis of different metal nanoparticles using microorganisms.We demonstrate aqueous phase biosynthesis of phase-pure metallic copper nanoparticles (CuNPs) using a silver resistant bacterium Morganella morganii. This is particularly important considering that there has been no report that demonstrates biosynthesis and stabilization of pure copper nanoparticles in the aqueous phase. Electrochemical analysis of bacterial cells exposed to Cu2+ ions provides new insights into the mechanistic aspect of Cu2+ ion reduction within the bacterial cell and indicates a strong link between the silver and copper resistance machinery of bacteria in the context of metal ion reduction. The outcomes of this study take us a step closer towards designing rational strategies for biosynthesis of different metal nanoparticles using microorganisms. Electronic supplementary information (ESI) available: Sequence similarity analysis of proteins involved in the silver and copper resistance machinery of bacteria. See DOI: 10.1039/c2nr32887a

  11. Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure.

    PubMed

    Zhang, Chang; Nie, Shuang; Liang, Jie; Zeng, Guangming; Wu, Haipeng; Hua, Shanshan; Liu, Jiayu; Yuan, Yujie; Xiao, Haibing; Deng, Linjing; Xiang, Hongyu

    2016-07-01

    Heavy metals (HMs) contamination is a serious environmental issue in wetland soil. Understanding the micro ecological characteristic of HMs polluted wetland soil has become a public concern. The goal of this study was to identify the effects of HMs and soil physicochemical properties on soil microorganisms and prioritize some parameters that contributed significantly to soil microbial biomass (SMB) and bacterial community structure. Bacterial community structure was analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Relationships between soil environment and microorganisms were analyzed by correlation analysis and redundancy analysis (RDA). The result indicated relationship between SMB and HMs was weaker than SMB and physicochemical properties. The RDA showed all eight parameters explained 74.9% of the variation in the bacterial DGGE profiles. 43.4% (contain the variation shared by Cr, Cd, Pb and Cu) of the variation for bacteria was explained by the four kinds of HMs, demonstrating HMs contamination had a significant influence on the changes of bacterial community structure. Cr solely explained 19.4% (p<0.05) of the variation for bacterial community structure, and Cd explained 17.5% (p<0.05), indicating Cr and Cd were the major factors related to bacterial community structure changes. PMID:27046142

  12. Colour removal from aqueous solutions of metal-complex azo dyes using bacterial cells of Shewanella strain J18 143.

    PubMed

    Li, Tie; Guthrie, James Thomas

    2010-06-01

    The decoloration treatment of textile dye effluents through biodegradation, using bacterial cells, has been studied as a possible means of solving some of the problems that are associated with the pollution of water sources by colorants. In this paper, the use of whole bacterial cells of Shewanella J18 143 for the reduction of aqueous solutions of selected mono-azo, metal-complex dyes, namely Irgalan Grey GLN, Irgalan Black RBLN and Irgalan Blue 3GL, was investigated. The effects of temperature, pH and dye concentration on colour removal were also investigated and shown to be important. The operative conditions for the removal of colour were 30 degrees C, at pH 6.8, with a final dye concentration of 0.12 g/L in the colour reduction system. This study provides an extension to the application of Shewanella strain J18 143 bacterial cells in the decoloration of textile wastewaters. PMID:20167478

  13. Examining trace metal contamination in an unanthropogenically impacted lake in Algonquin Park: implications for environmental bacterial communities and antibiotic resistance

    NASA Astrophysics Data System (ADS)

    Elliott, A. V.; Plach, J.; Droppo, I.; Warren, L. A.

    2009-05-01

    Identifying the biogeochemical processes influencing the interactions amongst trace metals, microbial communities, pathogenicity and antibiotic resistance (ABR) is key to predicting the emergence, dissemination and maintenance of ABR in the environmental arena. The co-selection of heavy metal resistance and ABR has been documented in metal-contaminated environments. However, as yet, little research has been conducted assessing the metal status of 'pristine' area lakes and associated environmental bacterial communities. As part of a larger project evaluating metal-bacterial-ABR-pathogen interactions, a field survey of 6 variably contaminated aquatic systems was conducted in the summer of 2008, including Brewer Lake -a highly organic, circumneutral, Fe stained lake in Algonquin Park. To our knowledge, this study is the first to assess metal concentrations for the suite of Ag, As, Cd, Co, Cu, Ni, Pb, Se, Zn amongst the water column, suspended floc and bed sediments for this lake. The characterization and sampling protocol included 1) in situ characterization of overlying water column physicochemical parameters and 2) collection of water samples, suspended flocs (by field flow centrifugation) and bed sediment samples (by core; surficial and at depth) for subsequent metal analysis. Floc- and sediment-associated metals were partitioned into 6 operationally defined solid matrix fractions by sequential extraction: the exchangeable (loosely bound); carbonate; reducible amorphous Fe/Mn hydrous oxides; reducible crystalline Fe/Mn oxides; and residual fractions. Results indicate that the partitioning of metals between solid (floc, sediments) and dissolved compartments is largely element- dependent. Mean total metal concentrations in the sediments ranged from nM (Ag,Se, Cd) to μM (As, Co, Cu, Ni, Pb, Zn) with only Cu and Co (nM) and Zn ( μM) being detected in the water column. However in all cases floc-associated metal concentrations were an order of magnitude greater than in

  14. Carbon, Metals, and Grain Size Correlate with Bacterial Community Structure in Sediments of a High Arsenic Aquifer

    PubMed Central

    Legg, Teresa M.; Zheng, Yan; Simone, Bailey; Radloff, Kathleen A.; Mladenov, Natalie; González, Antonio; Knights, Dan; Siu, Ho Chit; Rahman, M. Moshiur; Ahmed, K. Matin; McKnight, Diane M.; Nemergut, Diana R.

    2011-01-01

    Bacterial communities can exert significant influence on the biogeochemical cycling of arsenic (As). This has globally important implications since As in drinking water affects the health of over 100 million people worldwide, including in the Ganges–Brahmaputra Delta region of Bangladesh where geogenic arsenic in groundwater can reach concentrations of more than 10 times the World Health Organization’s limit. Thus, the goal of this research was to investigate patterns in bacterial community composition across gradients in sediment texture and chemistry in an aquifer with elevated groundwater As concentrations in Araihazar, Bangladesh. We characterized the bacterial community by pyrosequencing 16S rRNA genes from aquifer sediment samples collected at three locations along a groundwater flow path at a range of depths between 1.5 and 15 m. We identified significant differences in bacterial community composition between locations in the aquifer. In addition, we found that bacterial community structure was significantly related to sediment grain size, and sediment carbon (C), manganese (Mn), and iron (Fe) concentrations. Deltaproteobacteria and Chloroflexi were found in higher proportions in silty sediments with higher concentrations of C, Fe, and Mn. By contrast, Alphaproteobacteria and Betaproteobacteria were in higher proportions in sandy sediments with lower concentrations of C and metals. Based on the phylogenetic affiliations of these taxa, these results may indicate a shift to more Fe-, Mn-, and humic substance-reducers in the high C and metal sediments. It is well-documented that C, Mn, and Fe may influence the mobility of groundwater arsenic, and it is intriguing that these constituents may also structure the bacterial community. PMID:22470368

  15. Pyrosequencing analysis of bacterial diversity in soils contaminated long-term with PAHs and heavy metals: Implications to bioremediation.

    PubMed

    Kuppusamy, Saranya; Thavamani, Palanisami; Megharaj, Mallavarapu; Venkateswarlu, Kadiyala; Lee, Yong Bok; Naidu, Ravi

    2016-11-01

    Diversity, distribution and composition of bacterial community of soils contaminated long-term with both polycyclic aromatic hydrocarbons (PAHs) and heavy metals were explored for the first time following 454 pyrosequencing. Strikingly, the complete picture of the Gram positive (+ve) and Gram negative (-ve) bacterial profile obtained in our study illustrates novel postulates that include: (1) Metal-tolerant and PAH-degrading Gram -ves belonging to the class Alphaproteobacteria persist relatively more in the real contaminated sites compared to Gram +ves, (2) Gram +ves are not always resistant to heavy metal toxicity, (3) Stenotrophomonas followed by Burkholderia and Pseudomonas are the dominant genera of PAH degraders with high metabolic activity in long-term contaminated soils, (4) Actinobacteria is the predominant group among the Gram +ves in soils contaminated with high molecular weight PAHs that co-exist with toxic heavy metals like Pb, Cu and Zn, (5) Microbial communities are nutrient-driven in natural environments and (6) Catabolically potential Gram +/-ves with diverse applicability to remediate the real contaminated sites evolve eventually in the historically-polluted soils. Thus, the most promising indigenous Gram +/-ve strains from the long-term contaminated sites with increased catabolic potential, enzymatic activity and metal tolerance need to be harnessed for mixed contaminant cleanups. PMID:27267691

  16. Health risk assessment of heavy metals and bacterial contamination in drinking water sources: a case study of Malakand Agency, Pakistan.

    PubMed

    Nawab, Javed; Khan, Sardar; Ali, Sharafat; Sher, Hassan; Rahman, Ziaur; Khan, Kifayatullah; Tang, Jianfeng; Ahmad, Aziz

    2016-05-01

    Human beings are frequently exposed to pathogens and heavy metals through ingestion of contaminated drinking water throughout the world particularly in developing countries. The present study aimed to assess the quality of water used for drinking purposes in Malakand Agency, Pakistan. Water samples were collected from different sources (dug wells, bore wells, tube wells, springs, and hand pumps) and analyzed for different physico-chemical parameters and bacterial pathogens (fecal coliform bacteria) using standard methods, while heavy metals were analyzed using atomic absorption spectrophotometry (AAS-PEA-700). In the study area, 70 % of water sources were contaminated with F. coliform representing high bacterial contamination. The heavy metals, such as Cd (29 and 8 %), Ni (16 and 78 %), and Cr (7 %), exceeded their respective safe limits of WHO (2006) and Pak-EPA (2008), respectively, in water sources, while Pb (9 %) only exceeded from WHO safe limit. The risk assessment tools such as daily intake of metals (DIMs) and health risk indexes (HRIs) were used for health risk estimation and were observed in the order of Ni > Cr > Mn > Pb > Cd and Cd > Ni > Pb > Mn > Cr, respectively. The HRI values of heavy metals for both children and adults were <1, showing lack of potential health risk to the local inhabitants of the study area. PMID:27075311

  17. Enhancement of Bacterial Transport in Aerobic and Anaerobic Environments: Assessing the Effect of Metal Oxide Chemical Heterogeneities

    SciTech Connect

    T.C. Onstott

    2005-09-30

    The goal of our research was to understand the fundamental processes that control microbial transport in physically and chemically heterogeneous aquifers and from this enhanced understanding determine the requirements for successful, field-scale delivery of microorganisms to metal contaminated subsurface sites. Our specific research goals were to determine; (1) the circumstances under which the preferential adsorption of bacteria to Fe, Mn, and Al oxyhydroxides influences field-scale bacterial transport, (2) the extent to which the adhesion properties of bacterial cells affect field-scale bacterial transport, (3) whether microbial Fe(III) reduction can enhance field-scale transport of Fe reducing bacteria (IRB) and other microorganisms and (4) the effect of field-scale physical and chemical heterogeneity on all three processes. Some of the spin-offs from this basic research that can improve biostimulation and bioaugmentation remediation efforts at contaminated DOE sites have included; (1) new bacterial tracking tools for viable bacteria; (2) an integrated protocol which combines subsurface characterization, laboratory-scale experimentation, and scale-up techniques to accurately predict field-scale bacterial transport; and (3) innovative and inexpensive field equipment and methods that can be employed to enhance Fe(III) reduction and microbial transport and to target microbial deposition under both aerobic and anaerobic conditions.

  18. Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater

    PubMed Central

    2013-01-01

    Background Heavy-metals exert considerable stress on the environment worldwide. This study assessed the resistance to and bioremediation of heavy-metals by selected protozoan and bacterial species in highly polluted industrial-wastewater. Specific variables (i.e. chemical oxygen demand, pH, dissolved oxygen) and the growth/die-off-rates of test organisms were measured using standard methods. Heavy-metal removals were determined in biomass and supernatant by the Inductively Couple Plasma Optical Emission Spectrometer. A parallel experiment was performed with dead microbial cells to assess the biosorption ability of test isolates. Results The results revealed that the industrial-wastewater samples were highly polluted with heavy-metal concentrations exceeding by far the maximum limits (in mg/l) of 0.05-Co, 0.2-Ni, 0.1-Mn, 0.1-V, 0.01-Pb, 0.01-Cu, 0.1-Zn and 0.005-Cd, prescribed by the UN-FAO. Industrial-wastewater had no major effects on Pseudomonas putida, Bacillus licheniformis and Peranema sp. (growth rates up to 1.81, 1.45 and 1.43 d-1, respectively) compared to other test isolates. This was also revealed with significant COD increases (p < 0.05) in culture media inoculated with living bacterial isolates (over 100%) compared to protozoan isolates (up to 24% increase). Living Pseudomonas putida demonstrated the highest removal rates of heavy metals (Co-71%, Ni-51%, Mn-45%, V-83%, Pb-96%, Ti-100% and Cu-49%) followed by Bacillus licheniformis (Al-23% and Zn-53%) and Peranema sp. (Cd-42%). None of the dead cells were able to remove more than 25% of the heavy metals. Bacterial isolates contained the genes copC, chrB, cnrA3 and nccA encoding the resistance to Cu, Cr, Co-Ni and Cd-Ni-Co, respectively. Protozoan isolates contained only the genes encoding Cu and Cr resistance (copC and chrB genes). Peranema sp. was the only protozoan isolate which had an additional resistant gene cnrA3 encoding Co-Ni resistance. Conclusion Significant differences (p < 0

  19. Soluble metals in residual oil fly ash alter innate and adaptive pulmonary immune responses to bacterial infection in rats

    SciTech Connect

    Roberts, Jenny R. . E-mail: jur6@cdc.gov; Young, Shih-Houng; Castranova, Vincent; Antonini, James M.

    2007-06-15

    The soluble metals of the pollutant, residual oil fly ash (ROFA), have been shown to alter pulmonary bacterial clearance in rats. The goal of this study was to determine the potential effects on both the innate and adaptive lung immune responses after bacterial infection in rats pre-exposed to the soluble metals in ROFA. Sprague-Dawley rats were intratracheally dosed (i.t.) at day 0 with ROFA (R-Total) (1.0 mg/100 g body weight), the soluble fraction of ROFA (R-Soluble), the soluble sample subject to a chelator (R-Chelex), or phosphate-buffered saline (Saline). On day 3, rats were administered an i.t. dose of 5 x 10{sup 4} Listeria monocytogenes. On days 6, 8, and 10, bacterial pulmonary clearance was monitored and bronchoalveolar lavage (BAL) was performed on days 3 (pre-infection), 6, 8, and 10. A concentrated first fraction of lavage fluid was retained for analysis of lactate dehydrogenase and albumin to assess lung injury. BAL cell number, phenotype, and production of reactive oxygen (ROS) and nitrogen species (RNS) were assessed, and a variety of cytokines were measured in the BAL fluid. Rats pre-treated with R-Soluble showed elevated lung injury/cytotoxicity and increased cellular influx into the lungs. R-Soluble-treatment also altered ROS, RNS, and cytokine levels, and caused a degree of macrophage and T cell inhibition. These effects of R-Soluble result in increased pulmonary bacterial burden after infection. The results suggest that soluble metals in ROFA increase lung injury and inflammation, and alter both innate and adaptive pulmonary immune responses.

  20. Composition, Reactivity and Regulation of Extracellular Metal-Reducing Structures (Bacterial Nanowires) Produced by Dissimilatory Metal - Reducing Bacteria

    SciTech Connect

    Beveridge, Terrance J.

    2004-06-01

    Approach. Previously, using conventional and cryoTEM techniques, surface physicochemistry assays, NMR structural analysis, etc., we showed that the structure and composition of Shewanella's lipopolysaccharide (LPS) and capsular polysaccharide (PS) significantly determined overall cell surface physicochemistry. In our study a strong correlation between such macroscopic parameters as surface electronegativity, hydrophobicity or hydrophilicity, and bacterial adhesion to hematite was observed. Rough LPS strains exhibited more than an order higher affinity and maximal sorption capacity to hematite when compared to encapsulated strains. These general trends, however, characterize bacterial adhesion only as a bulk process, being unable to reveal finer mechanisms taking place at the level of an individual cell. Cell surface physicochemical and structural heterogeneity suggests much more complex interactions at the bacterial-mineral interface than predicted by such approaches operating within macroscopic parameters.

  1. Functional diversity and dynamics of bacterial communities in a membrane bioreactor for the treatment of metal-working fluid wastewater.

    PubMed

    Grijalbo, Lucía; Garbisu, Carlos; Martín, Iker; Etxebarria, Javier; Gutierrez-Mañero, F Javier; Lucas Garcia, Jose Antonio

    2015-12-01

    An extensive microbiological study has been carried out in a membrane bioreactor fed with activated sludge and metal-working fluids. Functional diversity and dynamics of bacterial communities were studied with different approaches. Functional diversity of culturable bacterial communities was studied with different Biolog™ plates. Structure and dynamics of bacterial communities were studied in culturable and in non-culturable fractions using a 16S rRNA analysis. Among the culturable bacteria, Alphaproteobacteria and Gammaproteobacteria were the predominant classes. However, changes in microbial community structure were detected over time. Culture-independent analysis showed that Betaproteobacteria was the most frequently detected class in the membrane bioreactor (MBR) community with Zoogloea and Acidovorax as dominant genera. Also, among non-culturable bacteria, a process of succession was observed. Longitudinal structural shifts observed were more marked for non-culturable than for culturable bacteria, pointing towards an important role in the MBR performance. Microbial community metabolic abilities assessed with Biolog™ Gram negative, Gram positive and anaerobic plates also showed differences over time for Shannon's diversity index, kinetics of average well colour development, and the intensely used substrates by bacterial community in each plate. PMID:26608762

  2. Respiration in Aquatic Insects.

    ERIC Educational Resources Information Center

    MacFarland, John

    1985-01-01

    This article: (1) explains the respiratory patterns of several freshwater insects; (2) describes the differences and mechanisms of spiracular cutaneous, and gill respiration; and (3) discusses behavioral aspects of selected aquatic insects. (ML)

  3. Variability In Marine Plankton Community Respiration and The Effects On Carbon Fluxes

    NASA Astrophysics Data System (ADS)

    Robinson, Carol

    In order to divide the amount of photosynthetically fixed carbon between that which is simply recycled back to carbon dioxide and that which is exported to the oceanSs interior, it is important to understand the spatial and temporal variability of plankton respiration and how this relates to community structure and substrate supply. While measurements of community respiration constrain the maximum respiration rate and minimum growth efficiency of each microbial group within the plankton, an improved understanding of the transfer of carbon through the complex planktonic food web would be achieved if the respiration of each of the microbial groups within the plankton was known. Unfortunately, there are few studies directly apportioning community respiration to trophic group, and such accounting exercises are highly de- pendent upon the substrate utilisation efficiencies used. Whereas some studies advo- cate bacterial respiration to be the major component of community respiration, algal respiration is thought to account for the majority of community respiration in some eutrophic ecosystems. The present study analyses measurements of community respiration made in inter- disciplinary research programs in shelf seas, coastal upwelling regions and the open ocean. The specific objectives were to relate the magnitude and variability of commu- nity respiration to bacterial, algal and microzooplankton biomass and activity and to investigate the use of indicator measurements to predict community respiration.

  4. Effect of bacterial inoculation of strains of Pseudomonas aeruginosa, Alcaligenes feacalis and Bacillus subtilis on germination, growth and heavy metal (Cd, Cr, and Ni) uptake of Brassica juncea.

    PubMed

    Ndeddy Aka, Robinson Junior; Babalola, Olubukola Oluranti

    2016-01-01

    Bacterial inoculation may influence Brassica juncea growth and heavy metal (Ni, Cr, and Cd) accumulation. Three metal tolerant bacterial isolates (BCr3, BCd33, and BNi11) recovered from mine tailings, identified as Pseudomonas aeruginosa KP717554, Alcaligenes feacalis KP717561, and Bacillus subtilis KP717559 were used. The isolates exhibited multiple plant growth beneficial characteristics including the production of indole-3-acetic acid, hydrogen cyanide, ammonia, insoluble phosphate solubilization together with the potential to protect plants against fungal pathogens. Bacterial inoculation improved seeds germination of B. juncea plant in the presence of 0.1 mM Cr, Cd, and Ni, as compared to the control treatment. Compared with control treatment, soil inoculation with bacterial isolates significantly increased the amount of soluble heavy metals in soil by 51% (Cr), 50% (Cd), and 44% (Ni) respectively. Pot experiment of B. juncea grown in soil spiked with 100 mg kg(-1) of NiCl2, 100 mg kg(-1) of CdCl2, and 150 mg kg(-1) of K2Cr2O7, revealed that inoculation with metal tolerant bacteria not only protected plants against the toxic effects of heavy metals, but also increased growth and metal accumulation of plants significantly. These findings suggest that such metal tolerant, plant growth promoting bacteria are valuable tools which could be used to develop bio-inoculants for enhancing the efficiency of phytoextraction. PMID:26503637

  5. Uncovering the transmembrane metal binding site of the novel bacterial major facilitator superfamily-type copper importer CcoA

    DOE PAGESBeta

    Khalfaoui-Hassani, Bahia; Verissimo, Andreia F.; Koch, Hans -Georg; Daldal, Fevzi

    2016-01-19

    In this study, uptake and trafficking of metals and their delivery to their respective metalloproteins are important processes. Cells need precise control of each step to avoid exposure to excessive metal concentrations and their harmful consequences. Copper (Cu) is a required micronutrient used as a cofactor in proteins. However, in large amounts, it can induce oxidative damage; hence, Cu homeostasis is indispensable for cell survival. Biogenesis of respiratory heme-Cu oxygen (HCO) reductases includes insertion of Cu into their catalytic subunits to form heme-Cu binuclear centers. Previously, we had shown that CcoA is a major facilitator superfamily (MFS)-type bacterial Cu importermore » required for biogenesis of cbb3-type cytochromecoxidase (cbb3-Cox). Here, using Rhodobacter capsulatus, we focused on the import and delivery of Cu to cbb3-Cox. By comparing the CcoA amino acid sequence with its homologues from other bacterial species, we located several well-conserved Met, His, and Tyr residues that might be important for Cu transport. We determined the topology of the transmembrane helices that carry these residues to establish that they are membrane embedded, and substituted for them amino acids that do not ligand metal atoms. Characterization of these mutants for their uptake of radioactive64Cu and cbb3-Cox activities demonstrated that Met233 and His261 of CcoA are essential and Met237 and Met265 are important, whereas Tyr230 has no role for Cu uptake or cbb3-Cox biogenesis. These findings show for the first time that CcoA-mediated Cu import relies on conserved Met and His residues that could act as metal ligands at the membrane-embedded Cu binding domain of this transporter.« less

  6. Uncovering the Transmembrane Metal Binding Site of the Novel Bacterial Major Facilitator Superfamily-Type Copper Importer CcoA

    PubMed Central

    Khalfaoui-Hassani, Bahia; Verissimo, Andreia F.; Koch, Hans-Georg

    2016-01-01

    ABSTRACT Uptake and trafficking of metals and their delivery to their respective metalloproteins are important processes. Cells need precise control of each step to avoid exposure to excessive metal concentrations and their harmful consequences. Copper (Cu) is a required micronutrient used as a cofactor in proteins. However, in large amounts, it can induce oxidative damage; hence, Cu homeostasis is indispensable for cell survival. Biogenesis of respiratory heme-Cu oxygen (HCO) reductases includes insertion of Cu into their catalytic subunits to form heme-Cu binuclear centers. Previously, we had shown that CcoA is a major facilitator superfamily (MFS)-type bacterial Cu importer required for biogenesis of cbb3-type cytochrome c oxidase (cbb3-Cox). Here, using Rhodobacter capsulatus, we focused on the import and delivery of Cu to cbb3-Cox. By comparing the CcoA amino acid sequence with its homologues from other bacterial species, we located several well-conserved Met, His, and Tyr residues that might be important for Cu transport. We determined the topology of the transmembrane helices that carry these residues to establish that they are membrane embedded, and substituted for them amino acids that do not ligand metal atoms. Characterization of these mutants for their uptake of radioactive 64Cu and cbb3-Cox activities demonstrated that Met233 and His261 of CcoA are essential and Met237 and Met265 are important, whereas Tyr230 has no role for Cu uptake or cbb3-Cox biogenesis. These findings show for the first time that CcoA-mediated Cu import relies on conserved Met and His residues that could act as metal ligands at the membrane-embedded Cu binding domain of this transporter. PMID:26787831

  7. Whole-cell bacterial biosensors for rapid and effective monitoring of heavy metals and inorganic pollutants in wastewater.

    PubMed

    Olaniran, Ademola O; Hiralal, Lettisha; Pillay, Balakrishna

    2011-10-01

    The increasing number of potentially harmful pollutants in the wastewater effluent discharge necessitates the need for the development of fast and cost effective analytical techniques for extensive monitoring programmes to assess the effectiveness of the treatment process. This study compared the use of bacterial biosensors to the conventional Daphnia magna assay, Chemical Oxygen Demand (COD) and Biochemical Oxygen Demand (BOD) tests as well as chemical analysis, for monitoring the toxicity of wastewater. The bacterial biosensors constructed in this study, using S. sonnei and E. coli, were found to be sensitive to the toxicity of the wastewater effluents. A linear increase in bioluminescence with increasing concentration of heavy metals and inorganic pollutants in water was observed, with a correlation coefficient (r(2)) as high as 0.995 and 0.997, respectively. No notable correlation between biosensor toxicity and BOD and COD test results was observed. These bacterial biosensors could provide appropriate alternatives for a rapid, sensitive and cost effective detection of wastewater quality. However, the differences in sensitivity obtained for the different systems suggest that the use of a battery of toxicity assays may be required to provide a real ecotoxicological assessment of wastewater samples. PMID:21904738

  8. Direct Metal Transfer between Periplasmic Proteins Identifies a Bacterial Copper Chaperone†

    PubMed Central

    Bagai, Ireena; Rensing, Christopher; Blackburn, Ninian J.; McEvoy, Megan M.

    2008-01-01

    Transition metals require exquisite handling within cells to ensure that cells are not harmed by an excess of free metal species. In gram-negative bacteria, copper is only required in low amounts in the periplasm, not in the cytoplasm, so a key aspect of protection under excess metal conditions is to export copper from the periplasm. Additional protection could be conferred by a periplasmic chaperone in order to limit the free metal species prior to export. Using isothermal titration calorimetry, we have demonstrated that two periplasmic proteins, CusF and CusB, of the E. coli Cu(I)/Ag(I) efflux system undergo a metal dependent interaction. Through the development of a novel X-ray absorption spectroscopy approach using selenomethionine labeling to distinguish the metal sites of the two proteins, we have demonstrated transfer of Cu(I) occurs between CusF and CusB. The interaction between these proteins is highly specific, as a homolog of CusF with 51% sequence identity and similar affinity for metal, did not function in metal transfer. These experiments establish a metallochaperone activity for CusF in the periplasm of gram-negative bacteria, serving to protect the periplasm from metal-mediated damage. PMID:18847219

  9. Enhanced bioaccumulation of heavy metal ions by bacterial cells due to surface display of short metal binding peptides

    SciTech Connect

    Kotrba, P.; Ruml, T.; Doleckova, L.; Lorenzo, V. de

    1999-03-01

    Metal binding peptides of sequences Gly-His-His-Pro-His-Gly (named HP) and Gly-Cys-Gly-Cys-Pro-Cys-Gly-Cys-Gly (named CP) were genetically engineered into LamB protein and expressed in Escherichia coli. The Cd{sup 2+}-to-HP and Cd{sup 2+}-to-CP stoichiometries of peptides were 1:1 and 3:1, respectively. Hybrid LamB proteins were found to be properly folded in the outer membrane of E. coli. Isolated cell envelopes of E. coli bearing newly added metal binding peptides showed an up to 1.8-fold increase in Cd{sup 2+} binding capacity. The bioaccumulation of Cd{sup 2+}, Cu{sup 2+}, and Zn{sup 2+} by E. coli was evaluated. Surface display of CP multiplied the ability of E. coli to bind Cd{sup 2+} from growth medium fourfold. Display of HP peptide did not contribute to an increase in the accumulation of Cu{sup 2+} and Zn{sup 2+}. However, Cu{sup 2+} ceased contribution of HP for Cd{sup 2+} accumulation, probably due to the strong binding of Cu{sup 2+} to HP. Thus, considering the cooperation of cell structures with inserted peptides, the relative affinities of metal binding peptide and, for example, the cell wall to metal ion should be taken into account in the rational design of peptide sequences possessing specificity for a particular metal.

  10. Enhanced Bioaccumulation of Heavy Metal Ions by Bacterial Cells Due to Surface Display of Short Metal Binding Peptides

    PubMed Central

    Kotrba, Pavel; Dolečková, Lucie; de Lorenzo, Víctor; Ruml, Tomas

    1999-01-01

    Metal binding peptides of sequences Gly-His-His-Pro-His-Gly (named HP) and Gly-Cys-Gly-Cys-Pro-Cys-Gly-Cys-Gly (named CP) were genetically engineered into LamB protein and expressed in Escherichia coli. The Cd2+-to-HP and Cd2+-to-CP stoichiometries of peptides were 1:1 and 3:1, respectively. Hybrid LamB proteins were found to be properly folded in the outer membrane of E. coli. Isolated cell envelopes of E. coli bearing newly added metal binding peptides showed an up to 1.8-fold increase in Cd2+ binding capacity. The bioaccumulation of Cd2+, Cu2+, and Zn2+ by E. coli was evaluated. Surface display of CP multiplied the ability of E. coli to bind Cd2+ from growth medium fourfold. Display of HP peptide did not contribute to an increase in the accumulation of Cu2+ and Zn2+. However, Cu2+ ceased contribution of HP for Cd2+ accumulation, probably due to the strong binding of Cu2+ to HP. Thus, considering the cooperation of cell structures with inserted peptides, the relative affinities of metal binding peptide and, for example, the cell wall to metal ion should be taken into account in the rational design of peptide sequences possessing specificity for a particular metal. PMID:10049868

  11. Study of canal sediments contaminated with heavy metals: fungal versus bacterial bioleaching techniques.

    PubMed

    Sabra, Nada; Dubourguier, Henri-Charles; Duval, Marie-Nadège; Hamieh, Tayssir

    2011-01-01

    Filamentous fungi and lithotrophic bacteria were used to leach heavy metals from dredged sediments in semi-pilot scale air-lift bioreactors. A preliminary physico-chemical characterization of the sediments comprising a sequential extraction study revealed their high metallic contamination and a predominant association of the metals with sulphides and organic matter. The mobility of heavy metals from sediments was ranked by decreasing order as follows: Mn > Zn > Cd > Cu > Pb. The conditions that favoured the solubilization of heavy metals by filamentous fungi turned out to be also favourable for the activity of the sediment organotrophic bacteria. The latter produced organic acids under temporary hypoxic conditions and resulted in the solubilization of 77% of manganese, 44% of zinc, 12% of copper, and less than 2% of cadmium or lead. In general, the fungal organotrophic treatments were limited to the relatively mobile metals due to the weak nature of the organic acids produced and to their microbial consumption under limited saccharose conditions. The lithotrophic treatments yielded higher solubilization results than the organotrophic experiments. Sulphur resulted in a faster, and for some metals such as copper and cadmium, in better bioleaching results compared with reduced iron or with a combination of reduced iron and sulphur. The bioleaching percentages varied between 72 and 93% for cadmium, copper, manganese and zinc, except for lead because of the poor solubility of lead sulphate. The sediment's lithotrophic bacteria acidified the matrix through sulphur oxidation, and leached both loosely and tightly bound metals. PMID:21970173

  12. Mercury and other heavy metals influence bacterial community structure in contaminated Tennessee streams

    SciTech Connect

    Vishnivetskaya, Tatiana A; Mosher, Jennifer J; Palumbo, Anthony Vito; Yang, Zamin; Podar, Mircea; Brown, Steven D; Brooks, Scott C; Gu, Baohua; Southworth, George R; Drake, Meghan M; Brandt, Craig C; Elias, Dwayne A

    2011-01-01

    High concentrations of uranium, inorganic mercury [Hg(II)], and methylmercury (MeHg) have been detected in streams located in the Department of Energy reservation in Oak Ridge, TN. To determine the potential effects of the surface water contamination on the microbial community composition, surface stream sediments were collected 7 times during the year, from 5 contaminated locations and 1 control stream. Fifty-nine samples were analyzed for bacterial community composition and geochemistry. Community characterization was based on GS 454 FLX pyrosequencing with 235 Mb of 16S rRNA gene sequence targeting the V4 region. Sorting and filtering of the raw reads resulted in 588,699 high-quality sequences with lengths of >200 bp. The bacterial community consisted of 23 phyla, including Proteobacteria (ranging from 22.9 to 58.5% per sample), Cyanobacteria (0.2 to 32.0%), Acidobacteria (1.6 to 30.6%), Verrucomicrobia (3.4 to 31.0%), and unclassified bacteria. Redundancy analysis indicated no significant differences in the bacterial community structure between midchannel and near-bank samples. Significant correlations were found between the bacterial community and seasonal as well as geochemical factors. Furthermore, several community members within the Proteobacteria group that includes sulfate-reducing bacteria and within the Verrucomicrobia group appeared to be associated positively with Hg and MeHg. This study is the first to indicate an influence of MeHg on the in situ microbial community and suggests possible roles of these bacteria in the Hg/MeHg cycle.

  13. Expressing a bacterial mercuric ion binding protein in plant for phytoremediation of heavy metals.

    PubMed

    Hsieh, Ju-Liang; Chen, Ching-Yi; Chiu, Meng-Hsuen; Chein, Mei-Fang; Chang, Jo-Shu; Endo, Ginro; Huang, Chieh-Chen

    2009-01-30

    A specific mercuric ion binding protein (MerP) originating from transposon TnMERI1 of Bacillus megaterium strain MB1 isolated from Minamata Bay displayed good adsorption capability for a variety of heavy metals. In this study, the Gram-positive MerP protein was expressed in transgenic Arabidopsis to create a model system for phytoremediation of heavy metals. Under control of an actin promoter, the transgenic Arabidpsis showed higher tolerance and accumulation capacity for mercury, cadium and lead when compared with the control plant. Results from confocal microscopy analysis also indicate that MerP was localized at the cell membrane and vesicles of plant cells. The developed transgenic plants possessing excellent metal-accumulative ability could have potential applications in decontamination of heavy metals. PMID:18538925

  14. Impact of hydrocarbons, PCBs and heavy metals on bacterial communities in Lerma River, Salamanca, Mexico: Investigation of hydrocarbon degradation potential.

    PubMed

    Brito, Elcia M S; De la Cruz Barrón, Magali; Caretta, César A; Goñi-Urriza, Marisol; Andrade, Leandro H; Cuevas-Rodríguez, Germán; Malm, Olaf; Torres, João P M; Simon, Maryse; Guyoneaud, Remy

    2015-07-15

    Freshwater contamination usually comes from runoff water or direct wastewater discharges to the environment. This paper presents a case study which reveals the impact of these types of contamination on the sediment bacterial population. A small stretch of Lerma River Basin, heavily impacted by industrial activities and urban wastewater release, was studied. Due to industrial inputs, the sediments are characterized by strong hydrocarbon concentrations, ranging from 2 935 to 28 430μg·kg(-1) of total polyaromatic hydrocarbons (PAHs). These sediments are also impacted by heavy metals (e.g., 9.6μg·kg(-1) of Cd and 246μg·kg(-1) of Cu, about 8 times the maximum recommended values for environmental samples) and polychlorinated biphenyls (ranging from 54 to 123μg·kg(-1) of total PCBs). The bacterial diversity on 6 sediment samples, taken from upstream to downstream of the main industrial and urban contamination sources, was assessed through TRFLP. Even though the high PAH concentrations are hazardous to aquatic life, they are not the only factor driving bacterial community composition in this ecosystem. Urban discharges, leading to hypoxia and low pH, also strongly influenced bacterial community structure. The bacterial bioprospection of these samples, using PAH as unique carbon source, yielded 8 hydrocarbonoclastic strains. By sequencing the 16S rDNA gene, these were identified as similar to Mycobacterium goodii, Pseudomonas aeruginosa, Pseudomonas lundensis or Aeromonas veronii. These strains showed high capacity to degrade naphthalene (between 92 and 100% at 200mg·L(-1)), pyrene (up to 72% at 100mg·L(-1)) and/or fluoranthene (52% at 50mg·L(-1)) as their only carbon source on in vitro experiments. These hydrocarbonoclastic bacteria were detected even in the samples upstream of the city of Salamanca, suggesting chronical contamination, already in place longer before. Such microorganisms are clearly potential candidates for hydrocarbon degradation in the

  15. Application of a bacterial extracellular polymeric substance in heavy metal adsorption in a co-contaminated aqueous system

    PubMed Central

    de Oliveira Martins, Paula Salles; de Almeida, Narcisa Furtado; Leite, Selma Gomes Ferreira

    2008-01-01

    The application of a bacterial extracellular polymeric substance (EPS) in the bioremediation of heavy metals (Cd, Zn and Cu) by a microbial consortium in a hydrocarbon co-contaminated aqueous system was studied. At the low concentrations used in this work (1.00 ppm of each metal), it was not observed an inhibitory effect on the cellular growing. In the other hand, the application of the EPS lead to a lower concentration of the free heavy metals in solution, once a great part of them is adsorbed in the polymeric matrix (87.12% of Cd; 19.82% of Zn; and 37.64% of Cu), when compared to what is adsorbed or internalized by biomass (5.35% of Cd; 47.35% of Zn; and 24.93% of Cu). It was noted an increase of 24% in the consumption of ethylbenzene, among the gasoline components that were quantified, in the small interval of time evaluated (30 hours). Our results suggest that, if the experiments were conducted in a larger interval of time, it would possibly be noted a higher effect in the degradation of gasoline compounds. Still, considering the low concentrations that were evaluated, it is possible that a real system could be bioremediated by natural attenuation process, demonstrated by the low effect of those levels of contaminants and co-contaminants over the naturally present microbial consortium. PMID:24031307

  16. A simple synthesis method to produce metal oxide loaded carbon paper using bacterial cellulose gel and characterization of its electrochemical behavior in an aqueous electrolyte

    NASA Astrophysics Data System (ADS)

    Miyajima, Naoya; Jinguji, Ken; Matsumura, Taiyu; Matsubara, Toshihiro; Sakane, Hideto; Akatsu, Takashi; Tanaike, Osamu

    2016-04-01

    A simple synthetic chemical process to produce metal oxide loaded carbon papers was developed using bacterial cellulose gel, which consisted of nanometer-sized fibrous cellulose and water. Metal ions were successfully impregnated into the gel via aqueous solution media before drying and carbonization methods resulting in metal oxide contents that were easy to control through variations in the concentration of aqueous solutions. The papers loaded by molybdenum oxides were characterized as pseudocapacitor electrodes preliminary, and the large redox capacitance of the oxides was followed by a conductive fibrous carbon substrate, suggesting that a binder and carbon black additive-free electrode consisting of metal oxides and carbon paper was formed.

  17. Remobilization of toxic heavy metals adsorbed to bacterial wall-clay composites.

    PubMed Central

    Flemming, C A; Ferris, F G; Beveridge, T J; Bailey, G W

    1990-01-01

    Significant quantities of Ag(I), Cu(II), and Cr(III) were bound to isolated Bacillus subtilis 168 walls, Escherichia coli K-12 envelopes, kaolinite and smectite clays, and the corresponding organic material-clay aggregates (1:1, wt/wt). These sorbed metals were leached with HNO3, Ca(NO3)2, EDTA, fulvic acid, and lysozyme at several concentrations over 48 h at room temperature. The remobilization of the sorbed metals depended on the physical properties of the organic and clay surfaces and on the character and concentration of the leaching agents. In general, the order of remobilization of metals was Cr much less than Ag less than Cu. Cr was very stable in the wall, clay, and composite systems; pH 3.0, 500 microM EDTA, 120-ppm [mg liter-1] fulvic acid, and 160-ppm Ca remobilized less than 32% (wt/wt) of sorbed Cr. Ag (45 to 87%) and Cu (up to 100%) were readily removed by these agents. Although each leaching agent was effective at mobilizing certain metals, elevated Ca or acidic pH produced the greatest overall mobility. The organic chelators were less effective. Lysozyme digestion of Bacillus walls remobilized Cu from walls and Cu-wall-kaolinite composites, but Ag, Cr, and smectite partially inhibited enzyme activity, and the metals remained insoluble. The extent of metal remobilization was not always dependent on increasing concentrations of leaching agents; for example, Ag mobility decreased with some clays and some composites treated with high fulvic acid, EDTA, and lysozyme concentrations. Sometimes the organic material-clay composites reacted in a manner distinctly different from that of their individual counterparts; e.g., 25% less Cu was remobilized from wall- and envelope-smectite composites than from walls, envelopes, or smectite individually in 500 microM EDTA. Alternatively, treatment with 160-ppm Ca removed 1.5 to 10 times more Ag from envelope-kaolinite composites than from the individual components. The particle size of the deposited metal may account

  18. Accumulation of clinically relevant antibiotic-resistance genes, bacterial load, and metals in freshwater lake sediments in Central Europe.

    PubMed

    Devarajan, Naresh; Laffite, Amandine; Graham, Neil D; Meijer, Maria; Prabakar, Kandasamy; Mubedi, Josué I; Elongo, Vicky; Mpiana, Pius T; Ibelings, Bastiaan Willem; Wildi, Walter; Poté, John

    2015-06-01

    Wastewater treatment plants (WWTP) receive the effluents from various sources (communities, industrial, and hospital effluents) and are recognized as reservoir for antibiotic-resistance genes (ARGs) that are associated with clinical pathogens. The aquatic environment is considered a hot-spot for horizontal gene transfer, and lake sediments offer the opportunity for reconstructing the pollution history and evaluating the impacts. In this context, variation with depth and time of the total bacterial load, the abundance of faecal indicator bacteria (FIB; E. coli and Enterococcus spp. (ENT)), Pseudomonas spp., and ARGs (blaTEM, blaSHV, blaCTX-M, blaNDM, and aadA) were quantified in sediment profiles of different parts of Lake Geneva using quantitative PCR. The abundance of bacterial marker genes was identified in sediments contaminated by WWTP following eutrophication of the lake. Additionally, ARGs, including the extended-spectrum ß-lactam- and aminoglycoside-resistance genes, were identified in the surface sediments. The ARG and FIB abundance strongly correlated (r ≥ 0.403, p < 0.05, n = 34) with organic matter and metal concentrations in the sediments, indicating a common and contemporary source of contamination. The contamination of sediments by untreated or partially treated effluent water can affect the quality of ecosystem. Therefore, the reduction of contaminants from the source is recommended for further improvement of water quality. PMID:25933054

  19. Bacterial inoculants for enhanced seed germination of Spartina densiflora: Implications for restoration of metal polluted areas.

    PubMed

    Paredes-Páliz, Karina I; Pajuelo, Eloísa; Doukkali, Bouchra; Caviedes, Miguel Ángel; Rodríguez-Llorente, Ignacio D; Mateos-Naranjo, Enrique

    2016-09-15

    The design of effective phytoremediation programs is severely hindered by poor seed germination on metal polluted soils. The possibility that inoculation with plant growth promoting rhizobacteria (PGPR) could help overcoming this problem is hypothesized. Our aim was investigating the role of PGPR in Spartina densiflora seed germination on sediments with different physicochemical characteristics and metal pollution degrees. Gram negative Pantoea agglomerans RSO6 and RSO7, and gram positive Bacillus aryabhattai RSO25, together with the consortium of the three strains, were used for independent inoculation experiments. The presence of metals (As, Cu, Pb and Zn) in sediments reduced seed germination by 80%. Inoculation with Bacillus aryabhattai RSO25 or Pantoea agglomerans RSO6 and RSO7 enhanced up to 2.5 fold the germination rate of S. densiflora in polluted sediments regarding non-inoculated controls. Moreover, the germination process was accelerated and the germination period was extended. The consortium did not achieve further improvements in seed germination. PMID:27315751

  20. Ex Situ Formation of Metal Selenide Quantum Dots Using Bacterially Derived Selenide Precursors

    SciTech Connect

    Fellowes, Jonathan W.; Pattrick, Richard; Lloyd, Jon; Charnock, John M.; Coker, Victoria S.; Mosselmans, JFW; Weng, Tsu-Chien; Pearce, Carolyn I.

    2013-04-12

    Luminescent quantum dots were synthesized using bacterially derived selenide (SeII-) as the precursor. Biogenic SeII- was produced by the reduction of Se-IV by Veillonella atypica and compared directly against borohydride-reduced Se-IV for the production of glutathione-stabilized CdSe and beta-mercaptoethanol-stabilized ZnSe nanoparticles by aqueous synthesis. Biological SeII- formed smaller, narrower size distributed QDs under the same conditions. The growth kinetics of biologically sourced CdSe phases were slower. The proteins isolated from filter sterilized biogenic SeII- included a methylmalonyl-CoA decarboxylase previously characterized in the closely related Veillonella parvula. XAS analysis of the glutathione-capped CdSe at the S K-edge suggested that sulfur from the glutathione was structurally incorporated within the CdSe. A novel synchrotron based XAS technique was also developed to follow the nucleation of biological and inorganic selenide phases, and showed that biogenic SeII- is more stable and more resistant to beam-induced oxidative damage than its inorganic counterpart. The bacterial production of quantum dot precursors offers an alternative, 'green' synthesis technique that negates the requirement of expensive, toxic chemicals and suggests a possible link to the exploitation of selenium contaminated waste streams.

  1. RESPIROMETRY AS A TOOL TO DETERMINE METAL TOXICITY IN A SULFATE REDUCING BACTERIAL CULTURE

    EPA Science Inventory

    A novel method under development for treatment of acid mine drainage waste uses biologically- generated hydrogen sulfide (H2S) to precipitate the metals in acid mine drainage (principally zinc, copper, aluminum, nickel, cadmium, arsenic, manganese, iron, and cobalt). The insolub...

  2. REMOBILIZATION OF TOXIC HEAVY METALS ADSORBED TO BACTERIAL WALL-CLAY COMPOSITES

    EPA Science Inventory

    Significant quantities of Ag(I), Cu(II), and Cr(III) were bound to isolated Bacillus subtilis 168 walls, Escherichia coli K-12 envelopes, kaolinite and smectite clays, and the corresponding organic material-clay aggregates (1:1, wt/wt). hese sorbed metals were leached with HNO3, ...

  3. Effects of bioirrigation of non-biting midges (Diptera: Chironomidae) on lake sediment respiration

    PubMed Central

    Baranov, Viktor; Lewandowski, Jörg; Romeijn, Paul; Singer, Gabriel; Krause, Stefan

    2016-01-01

    Bioirrigation or the transport of fluids into the sediment matrix due to the activities of organisms such as bloodworms (larvae of Diptera, Chironomidae), has substantial impacts on sediment respiration in lakes. However, previous quantifications of bioirrigation impacts of Chironomidae have been limited by technical challenges such as the difficulty to separate faunal and bacterial respiration. This paper describes a novel method based on the bioreactive tracer resazurin for measuring respiration in-situ in non-sealed systems with constant oxygen supply. Applying this new method in microcosm experiments revealed that bioirrigation enhanced sediment respiration by up to 2.5 times. The new method is yielding lower oxygen consumption than previously reported, as it is only sensitive to aerobic heterotrophous respiration and not to other processes causing oxygen decrease. Hence it decouples the quantification of respiration of animals and inorganic oxygen consumption from microbe respiration in sediment. PMID:27256514

  4. Effects of bioirrigation of non-biting midges (Diptera: Chironomidae) on lake sediment respiration.

    PubMed

    Baranov, Viktor; Lewandowski, Jörg; Romeijn, Paul; Singer, Gabriel; Krause, Stefan

    2016-01-01

    Bioirrigation or the transport of fluids into the sediment matrix due to the activities of organisms such as bloodworms (larvae of Diptera, Chironomidae), has substantial impacts on sediment respiration in lakes. However, previous quantifications of bioirrigation impacts of Chironomidae have been limited by technical challenges such as the difficulty to separate faunal and bacterial respiration. This paper describes a novel method based on the bioreactive tracer resazurin for measuring respiration in-situ in non-sealed systems with constant oxygen supply. Applying this new method in microcosm experiments revealed that bioirrigation enhanced sediment respiration by up to 2.5 times. The new method is yielding lower oxygen consumption than previously reported, as it is only sensitive to aerobic heterotrophous respiration and not to other processes causing oxygen decrease. Hence it decouples the quantification of respiration of animals and inorganic oxygen consumption from microbe respiration in sediment. PMID:27256514

  5. Small ecosystem engineers as important regulators of lake's sediment respiration.

    NASA Astrophysics Data System (ADS)

    Baranov, Victor; Lewandowski, Joerg; Krause, Stefan; Romeijn, Paul

    2016-04-01

    Although shallow lakes are covering only about 1.5% of the land surface of the Earth, they are responsible for sequestration of carbon amounts similar or even larger than those sequestered in all marine sediments. One of the most important drivers of the carbon sequestration in lakes is sediment respiration. Especially in shallow lakes, bioturbation, i.e. the biogenic reworking of the sediment matrix and the transport of fluids within the sediment, severely impacts on sediment respiration. Widespread freshwater bioturbators such as chironomid larvae (Diptera, Chironomidae) are building tubes in the sediment and actively pump water through their burrows (ventilation). In the present work we study how different organism densities and temperatures (5-30°C) impact on respiration rates. In a microcosm experiment the bioreactive resazurin/resorufin smart tracer system was applied for quantifying the impacts of different densities of Chironomidae (Diptera) larvae (0, 1000, 2000 larvae/m2) on sediment respiration. Tracer transformation rates (and sediment respiration) were correlated with larval densities with highest transformation rates occurring in microcosms with highest larval densities. Respiration differences between defaunated sediment and sediment with 1000 and 2000 larvae per m2 was insignificant at 5 °C, and was progressively increasing with rising temperatures. At 30 °C respiration rates of sediment with 2000 larvae per m2 was 4.8 times higher than those of defaunated sediment. We interpret this as an effect of temperature on larval metabolic and locomotory activity. Furthermore, bacterial communities are benefiting from the combination of the high water temperatures and bioirrigation as bacterial community are able to maintain high metabolic rates due to oxygen supplied by bioirrigation. In the context of global climate change that means that chironomid ecosystem engineering activity will have a profound and increasing impact on lake sediment respiration

  6. Common components of industrial metal-working fluids as sources of carbon for bacterial growth. [Acinetobacter; Pseudomonas

    SciTech Connect

    Foxall-vanAken, S.; Brown, J.A. Jr.; Young, W.; Salmeen, I.; McClure, T.; Napier, S. Jr.; Olsen, R.H.

    1986-06-01

    Water-based metal-working fluids in large-scale industrial operations consist of many components, but in the most commonly used formulations only three classes of components are present in high enough concentrations that they could, in principle, provide enough carbon to support the high bacterial densities (10/sup 9/ CFU/ml) often observed in contaminated factory fluids. These components are petroleum oil (1 to 5%), petroleum sulfonates (0.1 to 0.5%), and fatty acids (less than 0.1%, mainly linoleic and oleic acids supplied as tall oils). Pure strains of predominating bacteria were isolated from contaminated reservoirs of two metal-working systems and randomly selected 12 strains which were tested in liquid culture for growth with each of the metal-working fluid components as the sole source of carbon. Of the 12 strains, 7 reached high density (10/sup 9/ CFU/ml from an initial inoculum of less than 2 x 10/sup 3/) in 24 h, and 1 strain did the same in 48 h with 0.05% oleic or linoleic acid as the carbon source. These same strains also grew on 1% naphthenic petroleum oil but required up to 72 h to reach densities near 10/sup 8/ CFU/ml. One strain grew slightly and the others not at all on the petroleum sulfonates. The four remaining strains did not grow on any of the components, even though they were among the predominating bacteria in the contaminated system. Of the seven strains that grew best on the fatty acids and on the naphthenic petroleum oil, five were tentatively identified as Acinetobacter species and two were identified as Pseudomonas species. Four of the bacteria that did not grow were tentatively identified as species of Pseudomonas, and one could not be identified.

  7. Bacterial exposure to metal-oxide nanoparticles: Methods, physical interactions, and biological effects

    NASA Astrophysics Data System (ADS)

    Horst, Allison Marie

    Nanotechnology is a major endeavor of this century, with proposed applications in fields ranging from agriculture to energy to medicine. Nanoscale titanium dioxide (nano-TiO2) is among the most widely produced nanoparticles worldwide, and already exists in consumer products including impermanent personal care products and surface coatings. Inevitably, nano-TiO2 will be transported into the environment via consumer or industrial waste, where its effects on organisms are largely unknown. Out of concern for the possible ill-effects of nanoparticles in the environment, there is now a field of study in nanotoxicology. Bacteria are ideal organisms for nanotoxicology research because they are environmentally important, respond rapidly to intoxication, and provide evidence for effects in higher organisms. My doctoral research focuses on the effects and interactions of nano-TiO2 in aqueous systems with planktonic bacteria. This dissertation describes four projects and the outcomes of the research: (1) A discovery, using a combination of environmental- and cryogenic-scanning electron microscopy and dynamic light scattering (DLS), that initially agglomerated nano-TiO2 is dispersed upon bacterial contact, as nanoparticles preferentially sorbed to cell surfaces. (2) Establishment of a method to disperse nanoparticles in an aqueous culture medium for nanotoxicology studies. A combination of electrostatic repulsion, steric hindrance and sonication yielded a high initial level of nano-TiO2 dispersion (i.e. < 300 nm average agglomerate size) and reduced nanoparticle sedimentation. The approach is described in the context of general considerations for dispersion that are transferable to other nanoparticle and media chemistries. (3) Assessment and optimization of optically-based assays to simultaneously study effects of nanoparticles on bacterial membranes (membrane potential, membrane permeability, and electron transport chain function) and generation of reactive oxygen species. A

  8. Plankton community respiration during a coccolithophore bloom

    NASA Astrophysics Data System (ADS)

    Robinson, Carol; Widdicombe, Claire E.; Zubkov, Mikhail V.; Tarran, Glen A.; Miller, Axel E. J.; Rees, Andrew P.

    Plankton dark community respiration (DCR), gross production (GP), bacterial production, protozoan herbivory, and phytoplankton, microzooplankton and heterotrophic bacterial abundance were measured during a bloom of the coccolithophore Emiliania huxleyi. The study, which was conducted in the northern North Sea during June 1999, included a spatial survey and a 6-day Lagrangian time series informed by a sulphur hexafluoride (SF 6) tracer-release experiment. E. huxleyi abundance in surface waters ranged from 380 to 3000 cells ml -1, while DCR varied between 2 and 4 mmol O 2 m -3 d -1 and GP between 2 and 5 mmol O 2 m -3 d -1. Euphotic zone integrated DCR and GP were in approximate balance, with a mean (±SD) P:R ratio of 0.9±0.4 ( n=9). However, highest GP occurred at the surface alongside maxima of E. huxleyi, whereas highest rates of DCR occurred at depths of 25-30 m associated with maxima in chlorophyll a and bacterial biomass. DCR was positively correlated with bacterial biomass, microzooplankton biomass, attenuance, particulate organic carbon, and chlorophyll a concentration; and negatively correlated with apparent oxygen utilisation. DCR was not correlated with in situ temperature, dissolved organic carbon concentration or E. huxleyi abundance. A˜100 h incubation of 0.8 μm filtered seawater enabled the estimation of a bacterial respiratory quotient (RQ) and growth efficiency (BGE) from the slopes of the linear regressions of the decrease in dissolved oxygen and increase in dissolved inorganic carbon (DIC) and bacterial carbon with time. During this experiment the bacterial RQ was 0.69 and the growth efficiency was 18%. This measured BGE was used in comparison with literature values to apportion DCR to that associated with bacterial (13-71%), microzooplankton (10-50%), and algal (11-28%) activity. This accounting exercise compared well with measured DCR (to within ±50%), the exact calculation being highly dependent on the BGE used.

  9. A Multinuclear Metal Complex Based DNase-Mimetic Artificial Enzyme: Matrix Cleavage for Combating Bacterial Biofilms.

    PubMed

    Chen, Zhaowei; Ji, Haiwei; Liu, Chaoqun; Bing, Wei; Wang, Zhenzhen; Qu, Xiaogang

    2016-08-26

    Extracellular DNA (eDNA) is an essential structural component during biofilm formation, including initial bacterial adhesion, subsequent development, and final maturation. Herein, the construction of a DNase-mimetic artificial enzyme (DMAE) for anti-biofilm applications is described. By confining passivated gold nanoparticles with multiple cerium(IV) complexes on the surface of colloidal magnetic Fe3 O4  /SiO2 core/shell particles, a robust and recoverable artificial enzyme with DNase-like activity was obtained, which exhibited high cleavage ability towards both model substrates and eDNA. Compared to the high environmental sensitivity of natural DNase in anti-biofilm applications, DMAE exhibited a much better operational stability and easier recoverability. When DMAE was coated on substratum surfaces, biofilm formation was inhibited for prolonged periods of time, and the DMAE excelled in the dispersion of established biofilms of various ages. Finally, the presence of DMAE remarkably potentiated the efficiency of traditional antibiotics to kill biofilm-encased bacteria and eradiate biofilms. PMID:27484616

  10. Trace metals and their relation to bacterial infections studied by X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Maser, J.; Wagner, D.; Lai, B.; Cai, Z.; Legnini, D.; Moric, I.; Bermudez, L.

    2003-03-01

    Bacterial pathogens survive in different environments in the human host by responding with expression of virulence factors that enable them to adapt to changing conditions. Trace elements regulate the expression of many virulence genes in bacteria and are thus important for their survival in the host. Mycobacteria are intracellular pathogens that can cause diseases such as tuberculosis or secondary infections in immunocompromised patients. We have used a hard x-ray microprobe to study the trace element distribution in the mycobacterial phagosome after infection of macrophages. We have studied phagosomes with virulent (M. avium) and nonvirulent (M. smegmatis) mycobacteria. In this article, we will show that the iron concentration in phagosomes with macrophages infected with nonvirulent M. smegmatis is reduced 24 hours after infection but increased in phagosomes in cells infected with virulent M. avium. In addition, we will show the effect activation of macrophages with tumor necrosis factor (TNF-α) or interferon (IFN-γ) has on the iron concentration in M. avium.

  11. Assessment of bacterial communities and characterization of lead-resistant bacteria in the rhizosphere soils of metal-tolerant Chenopodium ambrosioides grown on lead-zinc mine tailings.

    PubMed

    Zhang, Wen-hui; Huang, Zhi; He, Lin-yan; Sheng, Xia-fang

    2012-06-01

    Bacterial communities in the rhizosphere soils of metal tolerant and accumulating Chenopodium ambrosioides grown in highly and moderately lead-zinc mine tailings contaminated-soils as well as the adjacent soils with low metal contamination were characterized by using cultivation-independent and cultivation techniques. A total of 69, 73, and 83 bacterial operational taxonomic units (OTUs) having 84.8-100% similarity with the closest match in the database were detected among high, moderate, and low-contamination soil clone libraries, respectively. These OTUs had a Shannon diversity index value in the range of 4.06-4.30. There were 9, 10, and 14 bacterial genera specific to high, moderate, and low metal-contaminated soil clone libraries, respectively. Phylogenetic analysis showed that the Pb-resistant isolates belonged to 8 genera. Pseudomonas and Arthrobacter were predominant among the isolates. Most of the isolates (82-86%) produced indole acetic acid and siderophores. More strains from the highly metal-contaminated soil produced 1-aminocyclopropane-1-carboxylate deaminase than the strains from the moderately and lowly metal-contaminated soils. In experiments involving canola grown in quartz sand containing 200 mg kg(-1) of Pb, inoculation with the isolated Paenibacillus jamilae HTb8 and Pseudomonas sp. GTa5 was found to significantly increase the above-ground tissues dry weight (ranging from 19% to 36%) and Pb uptake (ranging from 30% to 40%) compared to the uninoculated control. These results show that C. ambrosioides harbor different metal-resistant bacterial communities in their rhizosphere soils and the isolates expressing plant growth promoting traits may be exploited for improving the phytoextraction efficiency of Pb-polluted environment. PMID:22397839

  12. Influence of charge and metal coordination of meso-substituted porphyrins on bacterial photoinactivation

    NASA Astrophysics Data System (ADS)

    Zoltan, Tamara; Vargas, Franklin; López, Verónica; Chávez, Valery; Rivas, Carlos; Ramírez, Álvaro H.

    2015-01-01

    The photodynamic effect of meso-substituted porphyrins with different charges and metal ions: meso-tetraphenylporphyrin tetrasulfonate 1, its nickel 2 and zinc complexes 3; meso-tetranaphthylporphyrin tetrasulfonate 4, and its zinc complex Zn 5; and tetra piridyl ethylacetate porphirins 6 and their nickel 7 and zinc 8 complexes, were synthesized and studied their antimicrobial activity against Escherichia coli. Fluorescence quantum yields (ΦF) were measured in water using reference TPPS4, obtaining higher values for complexes 3 and 4. The singlet oxygen ΦΔ were measured using histidine as trapping singlet oxygen and Rose Bengal as a reference standard. Complexes 1, 2 and 6 have the highest quantum yields of singlet oxygen formation, showing no relation with the peripheral charges and efficiency as Type II photosensitizers. Meanwhile complexes 3, 8 and 4 were the most efficient in producing radical species, determined with their reaction with NADH. The photoinduced antibacterial activity of complex was investigated at different concentrations of the photosensitizers with an irradiation time of 30 min. The higher antibacterial activities were obtained for the complexes 1-3 that are those with greater production of ROS and minor structural deformations. Complexes 7 and 8 had moderate activity, while 4-6 a low activity. Thus, in this work demonstrates that the production of ROS and structural deformations due to peripheral substituents and metal coordination, influence the activity of the complexes studied. Therefore, is important to perform comprehensive study physics and structurally when predicting or explain such activity.

  13. Structural and biochemical characterization of bacterial YpgQ protein reveals a metal-dependent nucleotide pyrophosphohydrolase.

    PubMed

    Jeon, Ye Ji; Park, Sun Cheol; Song, Wan Seok; Kim, Ok-Hee; Oh, Byung-Chul; Yoon, Sung-Il

    2016-07-01

    The optimal balance of cellular nucleotides and the efficient elimination of non-canonical nucleotides are critical to avoiding erroneous mutation during DNA replication. One such mechanism involves the degradation of excessive or abnormal nucleotides by nucleotide-hydrolyzing enzymes. YpgQ contains the histidine-aspartate (HD) domain that is involved in the hydrolysis of nucleotides or nucleic acids, but the enzymatic activity and substrate specificity of YpgQ have never been characterized. Here, we unravel the catalytic activity and structural features of YpgQ to report the first Mn(2+)-dependent pyrophosphohydrolase that hydrolyzes (deoxy)ribonucleoside triphosphate [(d)NTP] to (deoxy)ribonucleoside monophosphate and pyrophosphate using the HD domain. YpgQ from Bacillus subtilis (bsYpgQ) displays a helical structure and assembles into a unique dimeric architecture that has not been observed in other HD domain-containing proteins. Each bsYpgQ monomer accommodates a metal ion and a nucleotide substrate in a cavity located between the N- and C-terminal lobes. The metal cofactor is coordinated by the canonical residues of the HD domain, namely, two histidine residues and two aspartate residues, and is positioned in close proximity to the β-phosphate group of the nucleotide, allowing us to propose a nucleophilic attack mechanism for the nucleotide hydrolysis reaction. YpgQ enzymes from other bacterial species also catalyze pyrophosphohydrolysis but exhibit different substrate specificity. Comparative structural and mutational studies demonstrated that residues outside the major substrate-binding site of bsYpgQ are responsible for the species-specific substrate preference. Taken together, our structural and biochemical analyses highlight the substrate-recognition mode and catalysis mechanism of YpgQ in pyrophosphohydrolysis. PMID:27062940

  14. Outward- and inward-facing structures of a putative bacterial transition-metal transporter with homology to ferroportin

    PubMed Central

    Taniguchi, Reiya; Kato, Hideaki E.; Font, Josep; Deshpande, Chandrika N.; Wada, Miki; Ito, Koichi; Ishitani, Ryuichiro; Jormakka, Mika; Nureki, Osamu

    2015-01-01

    In vertebrates, the iron exporter ferroportin releases Fe2+ from cells into plasma, thereby maintaining iron homeostasis. The transport activity of ferroportin is suppressed by the peptide hormone hepcidin, which exhibits upregulated expression in chronic inflammation, causing iron-restrictive anaemia. However, due to the lack of structural information about ferroportin, the mechanisms of its iron transport and hepcidin-mediated regulation remain largely elusive. Here we report the crystal structures of a putative bacterial homologue of ferroportin, BbFPN, in both the outward- and inward-facing states. Despite undetectable sequence similarity, BbFPN adopts the major facilitator superfamily fold. A comparison of the two structures reveals that BbFPN undergoes an intra-domain conformational rearrangement during the transport cycle. We identify a substrate metal-binding site, based on structural and mutational analyses. Furthermore, the BbFPN structures suggest that a predicted hepcidin-binding site of ferroportin is located within its central cavity. Thus, BbFPN may be a valuable structural model for iron homeostasis regulation by ferroportin. PMID:26461048

  15. EPR investigation of Cu2+-substituted photosynthetic bacterial reaction centers: evidence for histidine ligation at the surface metal site.

    PubMed

    Utschig, L M; Poluektov, O; Tiede, D M; Thurnauer, M C

    2000-03-21

    The coordination environments of two distinct metal sites on the bacterial photosynthetic reaction center (RC) protein were probed with pulsed electron paramagnetic resonance (EPR) spectroscopy. For these studies, Cu2+ was bound specifically to a surface site on native Fe2+-containing RCs from Rhodobacter sphaeroides R-26 and to the native non-heme Fe site in biochemically Fe-removed RCs. The cw and pulsed EPR results clearly indicate two spectroscopically different Cu2+ environments. In the dark, the RCs with Cu2+ bound to the surface site exhibit an axially symmetric EPR spectrum with g(parallel) = 2.24, A(parallel) = 160 G, g(perpendicular) = 2.06, whereas the values g(parallel) = 2.31, A(parallel) = 143 G, and g(perpendicular) = 2.07 were observed when Cu(2+) was substituted in the Fe site. Examination of the light-induced spectral changes indicate that the surface Cu2+ is at least 23 A removed from the primary donor (P+) and reduced quinone acceptor (QA-). Electron spin-echo envelope modulation (ESEEM) spectra of these Cu-RC proteins have been obtained and provide the first direct solution structural information about the ligands in the surface metal site. From these pulsed EPR experiments, modulations were observed that are consistent with multiple weakly hyperfine coupled 14N nuclei in close proximity to Cu2+, indicating that two or more histidines ligate the Cu2+ at the surface site. Thus, metal and EPR analyses confirm that we have developed reliable methods for stoichiometrically and specifically binding Cu2+ to a surface site that is distinct from the well characterized Fe site and support the view that Cu2+ is bound at or near the Zn site that modulates electron transfer between the quinones QA and QB (QA-QB --> QAQB-) (Utschig, L. M., Ohigashi, Y., Thurnauer, M. C., and Tiede, D. M (1998) Biochemistry 37, 8278-8281) and proton uptake by QB- (Paddock, M. L., Graige, M. S., Feher, G., and Okamura, M. Y. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 6183

  16. Synergy of fresh and accumulated organic matter to bacterial growth.

    PubMed

    Farjalla, Vinicius F; Marinho, Claudio C; Faria, Bias M; Amado, André M; Esteves, Francisco de A; Bozelli, Reinaldo L; Giroldo, Danilo

    2009-05-01

    The main goal of this research was to evaluate whether the mixture of fresh labile dissolved organic matter (DOM) and accumulated refractory DOM influences bacterial production, respiration, and growth efficiency (BGE) in aquatic ecosystems. Bacterial batch cultures were set up using DOM leached from aquatic macrophytes as the fresh DOM pool and DOM accumulated from a tropical humic lagoon. Two sets of experiments were performed and bacterial growth was followed in cultures composed of each carbon substrate (first experiment) and by carbon substrates combined (second experiment), with and without the addition of nitrogen and phosphorus. In both experiments, bacterial production, respiration, and BGE were always higher in cultures with N and P additions, indicating a consistent inorganic nutrient limitation. Bacterial production, respiration, and BGE were higher in cultures set up with leachate DOM than in cultures set up with humic DOM, indicating that the quality of the organic matter pool influenced the bacterial growth. Bacterial production and respiration were higher in the mixture of substrates (second experiment) than expected by bacterial production and respiration in single substrate cultures (first experiment). We suggest that the differences in the concentration of some compounds between DOM sources, the co-metabolism on carbon compound decomposition, and the higher diversity of molecules possibly support a greater bacterial diversity which might explain the higher bacterial growth observed. Finally, our results indicate that the mixture of fresh labile and accumulated refractory DOM that naturally occurs in aquatic ecosystems could accelerate the bacterial growth and bacterial DOM removal. PMID:18985269

  17. Hybrid respiration-signal conditioner

    NASA Technical Reports Server (NTRS)

    Rinard, G. A.; Steffen, D. A.; Sturm, R. E.

    1979-01-01

    Hybrid impedance-pneumograph and respiration-rate signal conditioner element of hand-held vital signs monitor measures changes in impedance of chest during breathing cycle and generates analog respiration signal as output along with synchronous square wave that can be monitored by breath-rate processor.

  18. The Diesel Exhaust in Miners Study: III. Interrelations between Respirable Elemental Carbon and Gaseous and Particulate Components of Diesel Exhaust derived from Area Sampling in Underground Non-metal Mining Facilities

    PubMed Central

    Vermeulen, Roel; Coble, Joseph B.; Yereb, Daniel; Lubin, Jay H.; Blair, Aaron; Portengen, Lützen; Stewart, Patricia A.; Attfield, Michael; Silverman, Debra T.

    2010-01-01

    Diesel exhaust (DE) has been implicated as a potential lung carcinogen. However, the exact components of DE that might be involved have not been clearly identified. In the past, nitrogen oxides (NOx) and carbon oxides (COx) were measured most frequently to estimate DE, but since the 1990s, the most commonly accepted surrogate for DE has been elemental carbon (EC). We developed quantitative estimates of historical exposure levels of respirable elemental carbon (REC) for an epidemiologic study of mortality, particularly lung cancer, among diesel-exposed miners by back-extrapolating 1998–2001 REC exposure levels using historical measurements of carbon monoxide (CO). The choice of CO was based on the availability of historical measurement data. Here, we evaluated the relationship of REC with CO and other current and historical components of DE from side-by-side area measurements taken in underground operations of seven non-metal mining facilities. The Pearson correlation coefficient of the natural log-transformed (Ln)REC measurements with the Ln(CO) measurements was 0.4. The correlation of REC with the other gaseous, organic carbon (OC), and particulate measurements ranged from 0.3 to 0.8. Factor analyses indicated that the gaseous components, including CO, together with REC, loaded most strongly on a presumed ‘Diesel exhaust’ factor, while the OC and particulate agents loaded predominantly on other factors. In addition, the relationship between Ln(REC) and Ln(CO) was approximately linear over a wide range of REC concentrations. The fact that CO correlated with REC, loaded on the same factor, and increased linearly in log–log space supported the use of CO in estimating historical exposure levels to DE. PMID:20876234

  19. The Bacterial and Fungal Diversity of an Aged PAH- and Heavy Metal-Contaminated Soil is Affected by Plant Cover and Edaphic Parameters.

    PubMed

    Bourceret, Amélia; Cébron, Aurélie; Tisserant, Emilie; Poupin, Pascal; Bauda, Pascale; Beguiristain, Thierry; Leyval, Corinne

    2016-04-01

    Industrial wasteland soils with aged PAH and heavy metal contaminations are environments where pollutant toxicity has been maintained for decades. Although the communities may be well adapted to the presence of stressors, knowledge about microbial diversity in such soils is scarce. Soil microbial community dynamics can be driven by the presence of plants, but the impact of plant development on selection or diversification of microorganisms in these soils has not been established yet. To test these hypotheses, aged-contaminated soil samples from a field trial were collected. Plots planted with alfalfa were compared to bare soil plots, and bacterial and fungal diversity and abundance were assessed after 2 and 6 years. Using pyrosequencing of 16S rRNA gene and ITS amplicons, we showed that the bacterial community was dominated by Proteobacteria, Actinobacteria, and Bacteroidetes and was characterized by low Acidobacteria abundance, while the fungal community was mainly represented by members of the Ascomycota. The short-term toxic impact of pollutants usually reduces the microbial diversity, yet in our samples bacterial and fungal species richness and diversity was high suggesting that the community structure and diversity adapted to the contaminated soil over decades. The presence of plants induced higher bacterial and fungal diversity than in bare soil. It also increased the relative abundance of bacterial members of the Actinomycetales, Rhizobiales, and Xanthomonadales orders and of most fungal orders. Multivariate analysis showed correlations between microbial community structure and heavy metal and PAH concentrations over time, but also with edaphic parameters (C/N, pH, phosphorus, and nitrogen concentrations). PMID:26440298

  20. Measurements of respirable dust and nanoparticle concentrations in a titanium dioxide pigment production factory.

    PubMed

    Huang, Cheng-Hsiung; Tai, Chih-Yuan; Huang, Cheng-Yu; Tsai, Chuen-Jinn; Chen, Chun-Wan; Chang, Cheng-Ping; Shih, Tung-Sheng

    2010-08-01

    This study compared respirable dust and nanoparticle concentrations measured by different sampling devices at a titanium dioxide pigment factory. Respirable particle mass concentrations, nanoparticle concentrations, particle size distribution and particle metallic content were measured at different sampling locations. The sampling results of the Multi-orifice Uniform Deposit Impactor (MOUDI) showed that the particle size distribution at this titanium dioxide production factory fell in the range of 1-10 mu m. Generally, the higher levels of the respirable particle mass concentrations and nanoparticle number concentrations were near the packing site of the pigment titanium dioxide production factory. Metal analysis results revealed that the titanium dioxide concentrations in respirable dust and nanoparticles were within the limits specified by National Institute for Occupational Safety and Health (NIOSH). During sampling, particle metallic content analysis is essential for identifying the source of particles and for measuring respirable dust and nanoparticle concentrations. PMID:20623401

  1. Radar sensitivity to human heartbeats and respiration

    NASA Astrophysics Data System (ADS)

    Aardal, Øyvind; Brovoll, Sverre; Paichard, Yoann; Berger, Tor; Lande, Tor Sverre; Hamran, Svein-Erik

    2015-05-01

    Human heartbeats and respiration can be detected from a distance using radar. This can be used for medical applications and human being detection. It is useful to have a system independent measure of how detectable the vital signs are. In radar applications, the Radar Cross Section (RCS) is normally used to characterize the detectability of an object. Since the human vital signs are seen by the radar as movements of the torso, the modulations in the person RCS can be used as a system independent measure of the vital signs detectability. In this paper, measurements of persons seated in an anechoic chamber are presented. The measurements were calibrated using empty room and a metallic calibration sphere. A narrowband radar operating at frequencies from 500 MHz to 18 GHz in discrete steps was used. A turntable provided measurements at precise aspect angles all around the person under test. In an I & Q receiver, the heartbeat and respiration modulation is a combination of amplitude and phase mod- modulations. The measurements were filtered, leaving the modulations from the vital signs in the radar recordings. The procedure for RCS computation was applied to these filtered data, capturing the complex signatures. It was found that both the heartbeat and respiration detectability increase with increasing frequency. The heartbeat signatures are almost equal from the front and the back, while being almost undetectable from the sides of the person. The respiration signatures are slightly higher from the front than from the back, and smaller from the sides. The signature measurements presented in this paper provide an objective system independent measure of the detectability of human vital signs as a function of frequency and aspect angle. These measures are useful for example in system design and in assessing real measurement scenarios.

  2. Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation.

    PubMed

    Luo, Sheng-lian; Chen, Liang; Chen, Jue-liang; Xiao, Xiao; Xu, Tao-ying; Wan, Yong; Rao, Chan; Liu, Cheng-bin; Liu, Yu-tang; Lai, Cui; Zeng, Guang-ming

    2011-11-01

    This study investigates the heavy metal-resistant bacterial endophytes of Cd-hyperaccumulator Solanum nigrum L. grown on a mine tailing by using cultivation-dependent technique. Thirty Cd-tolerant bacterial endophytes were isolated from roots, stems, and leaves of S. nigrum L. and classified by amplified ribosomal DNA-restriction analysis into 18 different types. Phylogenetic analysis based on 16S rDNA sequences showed that these isolates belonged to four groups: Actinobacteria (43%), Proteobacteria (23%), Bacteroidetes (27%) and Firmicutes (7%). All the isolates were then characterized for their plant growth promoting traits as well as their resistances to different heavy metals; and the actual plant growth promotion and colonization ability were also assessed. Four isolates were re-introduced into S. nigrum L. under Cd stress and resulted in Cd phytotoxicity decrease, as dry weights of roots increased from 55% to 143% and dry weights of above-ground from 64% to 100% compared to the uninoculated ones. The total Cd accumulation of inoculated plants increased from 66% to 135% (roots) and from 22% to 64% (above-ground) compared to the uninoculated ones. Our research suggests that bacterial endophytes are a most promising resource and may be the excellent candidates of bio-inoculants for enhancing the phytoremediation efficiency. PMID:21868057

  3. Respiration signals from photoplethysmography.

    PubMed

    Nilsson, Lena M

    2013-10-01

    respiratory modulation of the pulse oximeter waveform and has been shown to predict fluid responsiveness in mechanically ventilated patients including infants. The pleth variability index value depends on the size of the tidal volume and on positive end-expiratory pressure. In conclusion, the respiration modulation of the PPG signal can be used to monitor respiratory rate. It is probable that improvements in neural network technology will increase sensitivity and specificity for detecting both central and obstructive apnea. The size of the PPG respiration variation can predict fluid responsiveness in mechanically ventilated patients. PMID:23449854

  4. Respiration in spiders (Araneae).

    PubMed

    Schmitz, Anke

    2016-05-01

    Spiders (Araneae) are unique regarding their respiratory system: they are the only animal group that breathe simultaneously with lungs and tracheae. Looking at the physiology of respiration the existence of tracheae plays an important role in spiders with a well-developed tracheal system. Other factors as sex, life time, type of prey capture and the high ability to gain energy anaerobically influence the resting and the active metabolic rate intensely. Most spiders have metabolic rates that are much lower than expected from body mass; but especially those with two pairs of lungs. Males normally have higher resting rates than females; spiders that are less evolved and possess a cribellum have lower metabolic rates than higher evolved species. Freely hunting spiders show a higher energy turnover than spiders hunting with a web. Spiders that live longer than 1 year will have lower metabolic rates than those species that die after 1 year in which development and reproduction must be completed. Lower temperatures and starvation, which most spiders can cope with, will decrease the metabolic rate as well. PMID:26820263

  5. Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases

    PubMed Central

    Hug, Laura A.; Maphosa, Farai; Leys, David; Löffler, Frank E.; Smidt, Hauke; Edwards, Elizabeth A.; Adrian, Lorenz

    2013-01-01

    Organohalide respiration is an anaerobic bacterial respiratory process that uses halogenated hydrocarbons as terminal electron acceptors during electron transport-based energy conservation. This dechlorination process has triggered considerable interest for detoxification of anthropogenic groundwater contaminants. Organohalide-respiring bacteria have been identified from multiple bacterial phyla, and can be categorized as obligate and non-obligate organohalide respirers. The majority of the currently known organohalide-respiring bacteria carry multiple reductive dehalogenase genes. Analysis of a curated set of reductive dehalogenases reveals that sequence similarity and substrate specificity are generally not correlated, making functional prediction from sequence information difficult. In this article, an orthologue-based classification system for the reductive dehalogenases is proposed to aid integration of new sequencing data and to unify terminology. PMID:23479752

  6. A comparison of conventional methods for the quantification of bacterial cells after exposure to metal oxide nanoparticles

    PubMed Central

    2014-01-01

    Background Due to potential interference of nanoparticles on bacterial quantification, there is a challenge to develop a fast, accurate and reproducible method for bacterial quantification. Currently various bacterial quantification methods are used by researchers performing nanoparticles study, but there has been no efficacy evaluation of these methods. Here we study interference of nanoparticles on three most commonly used conventional bacterial quantification methods, including colony counting to determine the colony-forming units (CFU), spectrophotometer method of optical density (OD) measurement, and flow cytometry (FCM). Results Three oxide nanoparticles including ZnO, TiO2, and SiO2 and four bacterial species including Salmonella enterica serovar Newport, Staphylococcus epidermidis, Enterococcus faecalis, and Escherichia coli were included in the test. Results showed that there is no apparent interference of the oxide nanoparticles on quantifications of all four bacterial species by FCM measurement; CFU counting is time consuming, less accurate and not suitable for automation; and the spectrophotometer method using OD measurement was the most unreliable method to quantify and detect the bacteria in the presence of the nanoparticles. Conclusion In summary, FCM measurement proved to be the best method, which is suitable for rapid, accurate and automatic detection of bacteria in the presence of the nanoparticles. PMID:25138641

  7. Changing sources of respiration between a black spruce forest and thermokarst bog

    NASA Astrophysics Data System (ADS)

    Waldrop, M. P.; McFarland, J.; Czimczik, C. I.; Euskirchen, E. S.; Amendolara, T.; Scott, G. J.; Turetsky, M. R.; Harden, J. W.; McGuire, A. D.

    2011-12-01

    Permafrost thaw in lowland black spruce forests (Picea mariana) which develop into thermokarst bogs can alter ecosystem carbon balance through positive or negative feedbacks to climate warming. In this context, the responses of plant and soil microbial communities to permafrost thaw, and their roles in altered carbon balance, need to be understood. In addition, gross changes in microbial community composition, such as fungal:bacterial ratios and their temperature response functions, are poorly characterized in permafrost thaw experiments. In this study, we compared carbon fluxes between a lowland black spruce forest with intact permafrost and an adjacent thermokarst bog that developed 20-30 years ago located near the Bonanza Creek Experimental Forest in Alaska. We quantified net ecosystem exchange (NEE), ecosystem respiration (ER), and gross primary productivity (GPP) using flux autochambers, and partitioned sources of ecosystem respiration into autotrophic vs. heterotrophic sources using radiocarbon analysis of ecosystem and microbial respiration, and atmospheric CO2. We further partitioned microbial respiration into fungal vs. bacterial sources using substrate inhibition techniques. Preliminary results indicate that in mid summer of 2011 the thermokarst bog was a source of CO2 to the atmosphere. NEE data indicated that the black spruce understory was a source of CO2. However, because flux tower data showed that the black spruce ecosystem was actually a net sink, GPP by the black spruce trees must have been large. In the black spruce forest ER was dominated by plant respiration in the spring and by microbial respiration in the fall whereas in the thermokarst bog CO2 was derived from deeper soil C sources. Although microbial respiration was roughly balanced between fungi and bacteria in the black spruce forest, respiration was dominantly bacterial in the thermokarst bog. Our initial results show that thermokarst bogs are source of C to the atmosphere during summer

  8. 78 FR 18601 - Respirator Certification Fees; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ... HUMAN SERVICES Centers for Disease Control and Prevention Respirator Certification Fees; Public Meeting... stakeholders to present information the impact of an increase on respirator fees on individual respirator... in respirator certification and approval fees on individual respirator manufacturers, the...

  9. Bacterial riboswitches cooperatively bind Ni2+ or Co2+ ions and control expression of heavy metal transporters

    PubMed Central

    Furukawa, Kazuhiro; Ramesh, Arati; Zhou, Zhiyuan; Weinberg, Zasha; Vallery, Tenaya; Winkler, Wade C.; Breaker, Ronald R.

    2015-01-01

    SUMMARY Bacteria regularly encounter widely varying metal concentrations in their surrounding environment. As metals become depleted, or, conversely, accrue to toxicity, microbes will activate cellular responses that act to maintain metal homeostasis. A suite of metal-sensing regulatory (‘metalloregulatory’) proteins orchestrate these responses by allosterically coupling the selective binding of target metals to the activity of DNA-binding domains. However, we report here the discovery, validation and structural details of a widespread class of riboswitch RNAs, whose members selectively and tightly bind the low abundance transition metals, Ni2+ and Co2+. These riboswitches bind metal cooperatively, and with affinities in the low micromolar range. The structure of a Co2+-bound RNA reveals a network of molecular contacts that explain how it achieves cooperative binding between adjacent sites. These findings reveal that bacteria have evolved to utilize highly selective metalloregulatory riboswitches, in addition to metalloregulatory proteins, for detecting and responding to toxic levels of heavy metals. PMID:25794617

  10. Characterization of antibacterial polyethersulfone membranes using the Respiration Activity Monitoring System (RAMOS).

    PubMed

    Kochan, Jozef; Scheidle, Marco; van Erkel, Joost; Bikel, Matías; Büchs, Jochen; Wong, John Erik; Melin, Thomas; Wessling, Matthias

    2012-10-15

    Membranes with antibacterial properties were developed using surface modification of polyethersulfone ultrafiltration membranes. Three different modification strategies using polyelectrolyte layer-by-layer (LbL) technique are described. The first strategy relying on the intrinsic antibacterial properties of poly(diallyldimethylammonium chloride) (PDADMAC) and poly(ethylenimine) (PEI) exhibits only little antibacterial effects. The other two strategies contain silver in both ionic (Ag(+)) and metallic (Ag(0)) form. Ag(+) embedded into negatively charged poly(sodium 4-styrene sulfonate) (PSS) layers totally inhibits bacterial growth. Ag(0) nanoparticles were introduced to the membrane surface by LbL deposition of chitosan- and poly(methacrylic acid) - sodium salt (PMA)-capped silver nanoparticles and subsequent UV or heat treatment. Antibacterial properties of the modified membranes were quantified by a new method based on the Respiration Activity Monitoring System (RAMOS), whereby the oxygen transfer rates (OTR) of E. coli K12 cultures on the membranes were monitored online. As opposed to colony forming counting method RAMOS yields more quantitative and reliable data on the antibacterial effect of membrane modification. Ag-imprinted polyelectrolyte film composed of chitosan (Ag(0))/PMA(Ag(0))/chitosan(Ag(0)) was found to be the most promising among the tested membranes. Further investigation revealed that the concentration and equal distribution of silver in the membrane surface plays an important role in bacterial growth inhibition. PMID:22884245

  11. Bacterial communities associated with the rhizosphere of pioneer plants (Bahia xylopoda and Viguiera linearis) growing on heavy metals-contaminated soils.

    PubMed

    Navarro-Noya, Yendi E; Jan-Roblero, Janet; González-Chávez, Maria del Carmen; Hernández-Gama, Regina; Hernández-Rodríguez, César

    2010-05-01

    In this study, the bacterial communities associated with the rhizospheres of pioneer plants Bahia xylopoda and Viguiera linearis were explored. These plants grow on silver mine tailings with high concentration of heavy metals in Zacatecas, Mexico. Metagenomic DNAs from rhizosphere and bulk soil were extracted to perform a denaturing gradient gel electrophoresis analysis (DGGE) and to construct 16S rRNA gene libraries. A moderate bacterial diversity and twelve major phylogenetic groups including Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes, Chloroflexi, Firmicutes, Verrucomicrobia, Nitrospirae and Actinobacteria phyla, and divisions TM7, OP10 and OD1 were recognized in the rhizospheres. Only 25.5% from the phylotypes were common in the rhizosphere libraries and the most abundant groups were members of the phyla Acidobacteria and Betaproteobacteria (Thiobacillus spp., Nitrosomonadaceae). The most abundant groups in bulk soil library were Acidobacteria and Actinobacteria, and no common phylotypes were shared with the rhizosphere libraries. Many of the clones detected were related with chemolithotrophic and sulfur-oxidizing bacteria, characteristic of an environment with a high concentration of heavy metal-sulfur complexes, and lacking carbon and organic energy sources. PMID:20084459

  12. Hospital Effluents Are One of Several Sources of Metal, Antibiotic Resistance Genes, and Bacterial Markers Disseminated in Sub-Saharan Urban Rivers.

    PubMed

    Laffite, Amandine; Kilunga, Pitchouna I; Kayembe, John M; Devarajan, Naresh; Mulaji, Crispin K; Giuliani, Gregory; Slaveykova, Vera I; Poté, John

    2016-01-01

    Data concerning the occurrence of emerging biological contaminants such as antibiotic resistance genes (ARGs) and fecal indicator bacteria (FIB) in aquatic environments in Sub-Saharan African countries is limited. On the other hand, antibiotic resistance remains a worldwide problem which may pose serious potential risks to human and animal health. Consequently, there is a growing number of reports concerning the prevalence and dissemination of these contaminants into various environmental compartments. Sediments provide the opportunity to reconstruct the pollution history and evaluate impacts so this study investigates the abundance and distribution of toxic metals, FIB, and ARGs released from hospital effluent wastewaters and their presence in river sediments receiving systems. ARGs (bla TEM, bla CTX-M, bla SHV, and aadA), total bacterial load, and selected bacterial species FIB [Escherichia coli, Enterococcus (ENT)] and species (Psd) were quantified by targeting species specific genes using quantitative PCR (qPCR) in total DNA extracted from the sediments recovered from 4 hospital outlet pipes (HOP) and their river receiving systems in the City of Kinshasa in the Democratic Republic of the Congo. The results highlight the great concentration of toxic metals in HOP, reaching the values (in mg kg(-1)) of 47.9 (Cr), 213.6 (Cu), 1434.4 (Zn), 2.6 (Cd), 281.5 (Pb), and 13.6 (Hg). The results also highlight the highest (P < 0.05) values of 16S rRNA, FIB, and ARGs copy numbers in all sampling sites including upstream (control site), discharge point, and downstream of receiving rivers, indicating that the hospital effluent water is not an exclusive source of the biological contaminants entering the urban rivers. Significant correlation were observed between (i) all analyzed ARGs and total bacterial load (16S rRNA) 0.51 to 0.72 (p < 0.001, n = 65); (ii) ARGs (except bla TEM) and FIB and Psd 0.57 < r < 0.82 (p < 0.001, n = 65); and (iii) ARGs (except bla TEM) and toxic

  13. Hospital Effluents Are One of Several Sources of Metal, Antibiotic Resistance Genes, and Bacterial Markers Disseminated in Sub-Saharan Urban Rivers

    PubMed Central

    Laffite, Amandine; Kilunga, Pitchouna I.; Kayembe, John M.; Devarajan, Naresh; Mulaji, Crispin K.; Giuliani, Gregory; Slaveykova, Vera I.; Poté, John

    2016-01-01

    Data concerning the occurrence of emerging biological contaminants such as antibiotic resistance genes (ARGs) and fecal indicator bacteria (FIB) in aquatic environments in Sub-Saharan African countries is limited. On the other hand, antibiotic resistance remains a worldwide problem which may pose serious potential risks to human and animal health. Consequently, there is a growing number of reports concerning the prevalence and dissemination of these contaminants into various environmental compartments. Sediments provide the opportunity to reconstruct the pollution history and evaluate impacts so this study investigates the abundance and distribution of toxic metals, FIB, and ARGs released from hospital effluent wastewaters and their presence in river sediments receiving systems. ARGs (blaTEM, blaCTX-M, blaSHV, and aadA), total bacterial load, and selected bacterial species FIB [Escherichia coli, Enterococcus (ENT)] and species (Psd) were quantified by targeting species specific genes using quantitative PCR (qPCR) in total DNA extracted from the sediments recovered from 4 hospital outlet pipes (HOP) and their river receiving systems in the City of Kinshasa in the Democratic Republic of the Congo. The results highlight the great concentration of toxic metals in HOP, reaching the values (in mg kg−1) of 47.9 (Cr), 213.6 (Cu), 1434.4 (Zn), 2.6 (Cd), 281.5 (Pb), and 13.6 (Hg). The results also highlight the highest (P < 0.05) values of 16S rRNA, FIB, and ARGs copy numbers in all sampling sites including upstream (control site), discharge point, and downstream of receiving rivers, indicating that the hospital effluent water is not an exclusive source of the biological contaminants entering the urban rivers. Significant correlation were observed between (i) all analyzed ARGs and total bacterial load (16S rRNA) 0.51 to 0.72 (p < 0.001, n = 65); (ii) ARGs (except blaTEM) and FIB and Psd 0.57 < r < 0.82 (p < 0.001, n = 65); and (iii) ARGs (except blaTEM) and toxic metals

  14. Predicting soil respiration from peatlands.

    PubMed

    Rowson, J G; Worrall, F; Evans, M G; Dixon, S D

    2013-01-01

    This study considers the relative performance of six different models to predict soil respiration from upland peat. Predicting soil respiration is important for global carbon budgets and gap filling measured data from eddy covariance and closed chamber measurements. Further to models previously published new models are presented using two sub-soil zones and season. Models are tested using data from the Bleaklow plateau, southern Pennines, UK. Presented literature models include ANOVA using logged environmental data, the Arrhenius equation, modified versions of the Arrhenius equation to include soil respiration activation energy and water table depth. New models are proposed including the introduction of two soil zones in the peat profile, and season. The first new model proposes a zone of high CO(2) productivity related to increased soil microbial CO(2) production due to the supply of labile carbon from plant root exudates and root respiration. The second zone is a deeper zone where CO(2) production is lower with less labile carbon. A final model allows the zone of high CO(2) production to become dormant during winter months when plants will senesce and will vary depending upon vegetation type within a fixed location. The final model accounted for, on average, 31.9% of variance in net ecosystem respiration within 11 different restoration sites whilst, using the same data set, the best fitting literature equation only accounted for 18.7% of the total variance. Our results demonstrate that soil respiration models can be improved by explicitly accounting for seasonality and the vertically stratified nature of soil processes. These improved models provide an enhanced basis for calculating the peatland carbon budgets which are essential in understanding the role of peatlands in the global C cycle. PMID:23178842

  15. [Dark respiration of terrestrial vegetations: a review].

    PubMed

    Sun, Jin-Wei; Yuan, Feng-Hui; Guan, De-Xin; Wu, Jia-Bing

    2013-06-01

    The source and sink effect of terrestrial plants is one of the hotspots in terrestrial ecosystem research under the background of global change. Dark respiration of terrestrial plants accounts for a large fraction of total net carbon balance, playing an important role in the research of carbon cycle under global climate change. However, there is little study on plant dark respiration. This paper summarized the physiological processes of plant dark respiration, measurement methods of the dark respiration, and the effects of plant biology and environmental factors on the dark respiration. The uncertainty of the dark respiration estimation was analyzed, and the future hotspots of related researches were pointed out. PMID:24066565

  16. Use of poly(lactic acid) amendments to promote the bacterial fixation of metals in zinc smelter tailings.

    PubMed

    Edenborn, H M

    2004-04-01

    The ability of poly(lactic acid) (PLA) to serve as a long-term source of lactic acid for bacterial sulfate reduction activity in zinc smelter tailings was investigated. Solid PLA polymers mixed in water hydrolyzed abiotically to release lactic acid into solution over an extended period of time. The addition of both PLA and gypsum was required for indigenous bacteria to lower redox potential, raise pH, and stimulate sulfate reduction activity in highly oxidized smelter tailings after one year of treatment. Bioavailable cadmium, copper, lead and zinc were all lowered significantly in PLA/gypsum treated soil, but PLA amendments alone increased the bioavailability of lead, nickel and zinc. Similar PLA amendments may be useful in constructed wetlands and reactive barrier walls for the passive treatment of mine drainage, where enhanced rates of bacterial sulfate reduction are desirable. PMID:14693443

  17. The influence of bacterial-humus preparations on the biological activity of soils polluted with oil products and heavy metals

    NASA Astrophysics Data System (ADS)

    Kozlova, E. N.; Stepanov, A. L.; Lysak, L. V.

    2015-04-01

    The influence of bacterial-humus preparations based on Gumigel ( Agrosintez Company) on the biological activity of soddy-podzolic soil polluted with Pb(CH3COO)2 and gasoline was studied in a model experiment. Some indicators of biological activity are shown to depend on soil pollution to different extents. The process of nitrogen fixation and the activity of dehydrogenase and phosphatase were mostly inhibited by Pb(CH3COO)2 and gasoline. Gasoline compared to Pb(CH3COO)2 inhibited the soil biological activity to a greater extent. The bacterial-humus preparations exerted a significant positive effect on the biological activity of the polluted soils manifested in the increase of the total number of bacteria and of the enzyme activity (1.5-5.0 times), in the intensification of nitrogen fixation and denitrification (3-8 times), as well as in the increase in the biomass of the plants grown (1.5-2.0 times). The application of bacterial suspensions of pure cultures or the microbial complex without the preparations of humic acids did not always give a positive effect.

  18. Partitioning Belowground Respiration in a Northern Peatland

    NASA Astrophysics Data System (ADS)

    Stewart, H. E.; Roulet, N. T.; Moore, T.

    2004-05-01

    Although they cover only 3% of the land surface, northern peatlands store up to one-third of the global soil carbon pool, deeming them a significant carbon sink. However, changes in peatland soil respiration could lead to peatlands becoming carbon sources with consequent feedbacks to climate change. In order to understand the global carbon balance we need to understand respiration processes, but compared to photosynthesis we know very little about respiration, especially belowground. Within soils there are three compartments among which carbon is transferred and respired: roots, rhizosphere and root-free soil. In order to further the understanding of respiration processes of northern peatlands, the relative importance of each type of belowground respiration was determined at two locations at Mer Bleue, a northern peatland located near Ottawa, Ontario. Weekly CO2 flux measurements, using dark chambers and a portable IRGA, were made throughout the growing season of 2003. At both areas there are reference plots to determine total respiration where the vegetation remained in tact. Treatment plots were also installed at both areas where foliage was removed in order to determine SOM (shrub-free) respiration. The shrub foliage was replaced with nylon `foliage' in an attempt to maintain soil temperature and moisture conditions. Root respiration was determined by incubating root segments on-site, taking air samples over a one hour period. Rhizosphere respiration was estimated by subtracting SOM, root and aboveground respiration from total respiration, and aboveground respiration was removed from the equation using a calculation from a peatland carbon model.

  19. Presence of the siderophores pyoverdine and pyochelin in the extracellular medium reduces toxic metal accumulation in Pseudomonas aeruginosa and increases bacterial metal tolerance.

    PubMed

    Braud, Armelle; Geoffroy, Valérie; Hoegy, Françoise; Mislin, Gaëtan L A; Schalk, Isabelle J

    2010-06-01

    In order to get access to iron, Pseudomonas aeruginosa strain PAO1 produces two major siderophores pyoverdine (PVD) and pyochelin (PCH). Both siderophores are able to chelate many other metals in addition to iron. However, despite this property, only iron is transported efficiently into the bacteria by the PVD and PCH uptake pathways. Growth studies with P. aeruginosa strains showed a lower sensitivity to toxic metals for the siderophore-producing strain than for the mutants unable to produce siderophores. Moreover, addition of PVD or PCH to the growth medium of a siderophore-deficient strain considerably reduced the toxicity of toxic metals present at concentrations of 100 µM in iron-limited and iron-supplemented growth conditions. Measurement by Inductively Coupled Plasma-Atomic Emission Spectrometry of the concentration of metals present in bacteria incubated with metals in the presence or absence of PVD or PCH indicated that both siderophores were able to sequester metals from the extracellular medium of the bacteria, decreasing metal diffusion into the bacteria. Pyoverdine was able to sequester Al(3+) , Co(2+) , Cu(2+) , Eu(3+) , Ni(2+) , Pb(2+) , Tb(3+) and Zn(2+) from the extracellular medium, and PCH, Al(3+) , Co(2+) , Cu(2+) , Ni(2+) , Pb(2+) and Zn(2+) . Moreover, the presence of 100 µM Cu(2+) and Ni(2+) increased PVD production by 290% and 380%, respectively, in a medium supplemented with iron. All these data suggest that PVD and PCH may contribute to P. aeruginosa resistance to heavy metals. PMID:23766115

  20. Mn Oxide Biogenesis and Metal Sequestration in the Presence of Co (II) and Cu (II) By Bacillus SG-1 Bacterial Spores

    SciTech Connect

    Bayat, N

    2004-02-05

    Mn oxides play an important role in degrading contaminants and cycling nutrients in soils and natural waters. The process in which Mn (II) oxidizes to form MnO, is slow; however, Bacillus SG-1 bacterial spores can catalyze the process and allow it to proceed up to five orders of magnitude faster. This experiment explored the affects of co-ion metal concentrations on Biogenic Mn oxide production and their ability to sequester metal cations. Spore solutions were prepared with different ratios of Metal (II): Mn (II) added over a three-week period; this was done separately for Co (II) and Cu (II). The copper solutions were analyzed with ICP/AES to check for the amount of copper and manganese left in solution after biogenic MnO, production. ICP/AES was used to analyze the ratio of Co: Mn in spores where Co was the co-ion metal. Observations showed very little dissolved Cu and Mn exist in solutions with low copper concentrations, but a large amount of Cu and Mn were left in solutions where higher Cu concentrations were used. This shows that high Cu concentration inhibits biogenic Mn oxide production and Cu sequestration. For the experiments with Co as the co-ion metal, it was observed that the ratio of Co: Mn in the spores is relatively similar to the ratios added; however, an exception to this rule was experiments where high concentrations of Co were used. The inconsistency in Co: Mn ratios at high Co concentrations showed that high Co concentrations also inhibit biogenic Mn oxide production.

  1. Ecology and Biotechnology of Selenium-Respiring Bacteria

    PubMed Central

    2015-01-01

    SUMMARY In nature, selenium is actively cycled between oxic and anoxic habitats, and this cycle plays an important role in carbon and nitrogen mineralization through bacterial anaerobic respiration. Selenium-respiring bacteria (SeRB) are found in geographically diverse, pristine or contaminated environments and play a pivotal role in the selenium cycle. Unlike its structural analogues oxygen and sulfur, the chalcogen selenium and its microbial cycling have received much less attention by the scientific community. This review focuses on microorganisms that use selenate and selenite as terminal electron acceptors, in parallel to the well-studied sulfate-reducing bacteria. It overviews the significant advancements made in recent years on the role of SeRB in the biological selenium cycle and their ecological role, phylogenetic characterization, and metabolism, as well as selenium biomineralization mechanisms and environmental biotechnological applications. PMID:25631289

  2. Ecology and biotechnology of selenium-respiring bacteria.

    PubMed

    Nancharaiah, Y V; Lens, P N L

    2015-03-01

    In nature, selenium is actively cycled between oxic and anoxic habitats, and this cycle plays an important role in carbon and nitrogen mineralization through bacterial anaerobic respiration. Selenium-respiring bacteria (SeRB) are found in geographically diverse, pristine or contaminated environments and play a pivotal role in the selenium cycle. Unlike its structural analogues oxygen and sulfur, the chalcogen selenium and its microbial cycling have received much less attention by the scientific community. This review focuses on microorganisms that use selenate and selenite as terminal electron acceptors, in parallel to the well-studied sulfate-reducing bacteria. It overviews the significant advancements made in recent years on the role of SeRB in the biological selenium cycle and their ecological role, phylogenetic characterization, and metabolism, as well as selenium biomineralization mechanisms and environmental biotechnological applications. PMID:25631289

  3. 30 CFR 57.5044 - Respirators.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... exceeding 1.0 WL, miners shall wear respirators approved by NIOSH for radon daughters prior to July 10, 1995 or under the equivalent section of 42 CFR part 84 and such respirator use shall be in compliance...

  4. 30 CFR 57.5044 - Respirators.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... exceeding 1.0 WL, miners shall wear respirators approved by NIOSH for radon daughters prior to July 10, 1995 or under the equivalent section of 42 CFR part 84 and such respirator use shall be in compliance...

  5. 30 CFR 57.5044 - Respirators.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... exceeding 1.0 WL, miners shall wear respirators approved by NIOSH for radon daughters prior to July 10, 1995 or under the equivalent section of 42 CFR part 84 and such respirator use shall be in compliance...

  6. 30 CFR 57.5044 - Respirators.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... exceeding 1.0 WL, miners shall wear respirators approved by NIOSH for radon daughters prior to July 10, 1995 or under the equivalent section of 42 CFR part 84 and such respirator use shall be in compliance...

  7. 30 CFR 57.5044 - Respirators.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... exceeding 1.0 WL, miners shall wear respirators approved by NIOSH for radon daughters prior to July 10, 1995 or under the equivalent section of 42 CFR part 84 and such respirator use shall be in compliance...

  8. Respirable bacteriophages for the treatment of bacterial lung infections.

    PubMed

    Hoe, Susan; Semler, Diana D; Goudie, Amanda D; Lynch, Karlene H; Matinkhoo, Sadaf; Finlay, Warren H; Dennis, Jonathan J; Vehring, Reinhard

    2013-12-01

    This review article discusses the development of respiratory therapeutics containing bacteriophages indicated for lung infections, specifically those that have become increasingly difficult to treat because of antibiotic resistance. Recent achievements and remaining problems are presented for each step necessary to develop a bacteriophage-containing dosage form for respiratory drug delivery, including selection of appropriate bacteriophages for therapy, processing and purification of phage preparations, formulation into a stable, solid dosage form, and delivery device selection. Safety and efficacy studies in animals and human subjects are also reviewed. PMID:23597003

  9. Soil Respiration in Response to Landscape Position

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variations in soil type, due to landscape position, may influence soil respiration. This study was conducted to determine how landscape position (summit, side-slope, and depression) influences heterotrophic and autotrophic soil respiration. Soil respiration was determined at three landscape positio...

  10. 42 CFR 84.174 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Air-Purifying Particulate Respirators § 84.174 Respirator containers; minimum requirements. (a) Except... contamination of respirators which are not removed, and to prevent damage to respirators during transit....

  11. 42 CFR 84.174 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Air-Purifying Particulate Respirators § 84.174 Respirator containers; minimum requirements. (a) Except... contamination of respirators which are not removed, and to prevent damage to respirators during transit....

  12. 42 CFR 84.174 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Air-Purifying Particulate Respirators § 84.174 Respirator containers; minimum requirements. (a) Except... contamination of respirators which are not removed, and to prevent damage to respirators during transit....

  13. 42 CFR 84.174 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Air-Purifying Particulate Respirators § 84.174 Respirator containers; minimum requirements. (a) Except... contamination of respirators which are not removed, and to prevent damage to respirators during transit....

  14. 42 CFR 84.174 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Air-Purifying Particulate Respirators § 84.174 Respirator containers; minimum requirements. (a) Except... contamination of respirators which are not removed, and to prevent damage to respirators during transit....

  15. MICROBIAL COLONIZATION, RESPIRATION AND BREAKDOWN OF MAPLE LEAVES ALONG A STREAM-MARSH CONTINUUM

    EPA Science Inventory

    Breakdown rates, macroinvertebrate and bacterial colonization, and microbial respiration were measured on decaying maple leaves at three sites along a stream-marsh continuum. Breakdown rates were 0.0284+/-0.0045 d-1 for leaves in a high-gradient, non-tidal stream; 0.0112 +/- 0.0...

  16. MICROBIAL COLONIZATION, RESPIRATION, AND BREAKDOWN OF MAPLE LEAVES ALONG A STREAM-MARSH CONTINUUM

    EPA Science Inventory

    Breakdown rates, macroinvertebrate and bacterial colonization, and microbial respiration were measured on decaying maple (Acer saccharum) leaves at three sites along a stream-marsh continuum. Breakdown rates (-k+-SE) were 0.0284+-0.0045 d-1 for leaves in a high-gradient, non-tida...

  17. RESPIRABLE PARTICLES AND MISTS IN MOUSE PULMONARY INFECTIVITY MODEL. EFFECT OF CHRONIC OR INTERMITTENT EXPOSURE

    EPA Science Inventory

    The effects of respirable-sized sulfuric acid mist or mixtures containing acid mist and carbon particles (A-C) on the susceptibility to bacterial and viral respiratory infection were studied in mice and hamsters. Both species showed mortalities upon single 3-hour exposure to 600 ...

  18. Antimicrobial Applications of Transition Metal Complexes of Benzothiazole Based Terpolymer: Synthesis, Characterization, and Effect on Bacterial and Fungal Strains

    PubMed Central

    Riswan Ahamed, Mohamed A.; Azarudeen, Raja S.; Kani, N. Mujafar

    2014-01-01

    Terpolymer of 2-amino-6-nitro-benzothiazole-ethylenediamine-formaldehyde (BEF) has been synthesized and characterized by elemental analysis and various spectral techniques like FTIR, UV-Visible, and 1H and 13C-NMR. The terpolymer metal complexes were prepared with Cu2+, Ni2+, and Zn2+ metal ions using BEF terpolymer as a ligand. The complexes have been characterized by elemental analysis and IR, UV-Visible, ESR, 1H-NMR, and 13C-NMR spectral studies. Gel permeation chromatography was used to determine the molecular weight of the ligand. The surface features and crystalline behavior of the ligand and its complexes were analyzed by scanning electron microscope and X-ray diffraction methods. Thermogravimetric analysis was used to analyze the thermal stability of the ligand and its metal complexes. Kinetic parameters such as activation energy (Ea) and order of reaction (n) and thermodynamic parameters, namely, ΔS, ΔF, S*, and Z, were calculated using Freeman-Carroll (FC), Sharp-Wentworth (SW), and Phadnis-Deshpande (PD) methods. Thermal degradation model of the terpolymer and its metal complexes was also proposed using PD method. Biological activities of the ligand and its complexes were tested against Shigella sonnei, Escherichia coli, Klebsiella species, Staphylococcus aureus, Bacillus subtilis, and Salmonella typhimurium bacteria and Aspergillus flavus, Aspergillus niger, Penicillium species, Candida albicans, Cryptococcus neoformans, Mucor species fungi. PMID:25298760

  19. Metal-assisted polyatomic SIMS and laser desorption/ionization for enhanced small molecule imaging of bacterial biofilms.

    PubMed

    Dunham, Sage J B; Comi, Troy J; Ko, Kyungwon; Li, Bin; Baig, Nameera F; Morales-Soto, Nydia; Shrout, Joshua D; Bohn, Paul W; Sweedler, Jonathan V

    2016-06-01

    Mass spectrometry imaging (MSI) has become an important analytical tool for many sectors of science and medicine. As the application of MSI expands into new areas of inquiry, existing methodologies must be adapted and improved to meet emerging challenges. Particularly salient is the need for small molecule imaging methods that are compatible with complex multicomponent systems, a challenge that is amplified by the effects of analyte migration and matrix interference. With a focus on microbial biofilms from the opportunistic pathogen Pseudomonas aeruginosa, the relative advantages of two established microprobe-based MSI techniques-polyatomic secondary ion mass spectrometry (SIMS) and laser desorption/ionization-are compared, with emphasis on exploring the effect of surface metallization on small molecule imaging. A combination of qualitative image comparison and multivariate statistical analysis demonstrates that sputtering microbial biofilms with a 2.5 nm layer of gold selectively enhances C60-SIMS ionization for several molecular classes including rhamnolipids and 2-alkyl-quinolones. Metallization also leads to the reduction of in-source fragmentation and subsequent ionization of media-specific background polymers, which improves spectral purity and image quality. These findings show that the influence of metallization upon ionization is strongly dependent on both the surface architecture and the analyte class, and further demonstrate that metal-assisted C60-SIMS is a viable method for small molecule imaging of intact molecular ions in complex biological systems. PMID:26945568

  20. Structural basis for organohalide respiration.

    PubMed

    Bommer, Martin; Kunze, Cindy; Fesseler, Jochen; Schubert, Torsten; Diekert, Gabriele; Dobbek, Holger

    2014-10-24

    Organohalide-respiring microorganisms can use a variety of persistent pollutants, including trichloroethene (TCE), as terminal electron acceptors. The final two-electron transfer step in organohalide respiration is catalyzed by reductive dehalogenases. Here we report the x-ray crystal structure of PceA, an archetypal dehalogenase from Sulfurospirillum multivorans, as well as structures of PceA in complex with TCE and product analogs. The active site harbors a deeply buried norpseudo-B12 cofactor within a nitroreductase fold, also found in a mammalian B12 chaperone. The structures of PceA reveal how a cobalamin supports a reductive haloelimination exploiting a conserved B12-binding scaffold capped by a highly variable substrate-capturing region. PMID:25278505

  1. The Effect of Graphene Oxide/Reduced Graphene Oxide Functionalized with Metal Nanoparticles on Dermal, Bacterial, and Cancerous/Non-Cancerous Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Chen, Arthur; Rafailovich, Miriam; Simon, Marcia; Isseroff, Rebecca; Walker, Stephen; Cho, Jae Hee; Jerome, John

    Graphene and metal nanoparticles are permeating health products but their effects individually and combined on human skin are uncertain. This project studied the effect of graphene oxide (GO) and reduced graphene oxide (rGO) functionalized with Ag or Pt nanoparticles (Ag/PtNPs) on bacterial, dermal (DFBC's), and cancerous (SCC13's) and non-cancerous (DO33's) epidermal cells. GO was functionalized with AgNPs or PtNPs, forming metallized-GO; then reduced with NaBH4. FTIR and SEM confirmed the synthesis and composition. Confocal and SEM showed that Ag-rGO, depending on nanoparticle size, killed either S. Aureus or K. Pneumoniae, while Pt-rGO and rGO had no effect. Rhodamine staining revealed that Ag-rGO was very toxic to SCC13's, but only slightly toxic to DO33's. Pt-rGO and rGO had little effect on SCC13's and DO33's. At high concentrations all GO solutions inhibited cell growth but were not cytotoxic. Optical microscopy displayed that every GO/rGO solution adhered to DFBC's and influenced their direction of growth, making GO/rGO potentially applicable for wound healing. Garcia MRSEC Polymers at Engineered Interfaces.

  2. Solution structure and metal-ion binding of the P4 element from bacterial RNase P RNA.

    PubMed Central

    Schmitz, M; Tinoco, I

    2000-01-01

    We determined the solution structure of two 27-nt RNA hairpins and their complexes with cobalt(III)-hexammine (Co(NH3)3+(6)) by NMR spectroscopy. The RNA hairpins used in this study are the P4 region from Escherichia coli RNase P RNA and a C-to-U mutant that confers altered divalent metal-ion specificity (Ca2+ replaces Mg2+) for catalytic activity of this ribozyme. Co(NH3)3+(6) is a useful spectroscopic probe for Mg(H2O)2+(6)-binding sites because both complexes have octahedral symmetry and have similar radii. The thermodynamics of binding to both RNA hairpins was studied using chemical shift changes upon titration with Mg2+, Ca2+, and Co(NH3)3+(6). We found that the equilibrium binding constants for each of the metal ions was essentially unchanged when the P4 model RNA hairpin was mutated, although the NMR structures show that the RNA hairpins adopt different conformations. In the C-to-U mutant a C.G base pair is replaced by U.G, and the conserved bulged uridine in the P4 wild-type stem shifts in the 3' direction by 1 nt. Intermolecular NOE cross-peaks between Co(NH3)3+(6) and RNA protons were used to locate the site of Co(NH3)3+(6) binding to both RNA hairpins. The metal ion binds in the major groove near a bulge loop, but is shifted 5' by more than 1 bp in the mutant. The change of the metal-ion binding site provides a possible explanation for changes in catalytic activity of the mutant RNase P in the presence of Ca2+. PMID:10999599

  3. Impact of Mining Waste on Airborne Respirable Particulates in Northeastern Oklahoma, United States

    EPA Science Inventory

    Atmospheric dispersion of particles from mine waste is potentially an important route of human exposure to metals in communities close to active and abandoned mining areas. In this study, we assessed sources of mass and metal concentrations in two size fractions of respirable pa...

  4. Degradation of the metal-cyano complex tetracyanonickelate(II) by cyanide-utilizing bacterial isolates. [Klebsiella; Pseudomonas putida

    SciTech Connect

    Silva-Avalos, J.; Richmond, M.G.; Nagappan, O.; Kunz, D.A. )

    1990-12-01

    Ten bacterial isolates capable of growth on tetracyanonickelate(II) {l brace}K{sub 2}(Ni(CN){sub 4}){r brace} (TCN) as the sole nitrogen source were isolated from soil, freshwater, and sewage sludge enrichments. Seven of the 10 were identified as pseudomonads, while the remaining 3 were classified as Klebsiella species. A detailed investigation of one isolate, Pseudomonas putide BCN3, revealed a rapid growth rate on TCN (generation time, 2 h), with substrate removal and growth occurring in parallel. In addition to TCN, all isolates were able to utilize KCN, although the latter was significantly more toxic; MICs ranged from 0.2 to 0.8 mM for KCN and {ge}50 mM for TCN. While growth occurred over a wide range of TCN concentrations (0.25 to 16 mM), degradation was most substantial under growth-limiting conditions and did not occur when ammonia was present. In addition, cells grown on TCN were found to accumulate nickel cyanide (Ni(CN){sub 2}) as a major biodegradation product. The results show that bacteria capable of growth on TCN can readily be isolated and that degradation (i) appears to parallel the capacity for growth on KCN, (ii) does not occur in the presence of ammonia, and (iii) proceeds via the formation of Ni(CN){sub 2} as a biological metabolite.

  5. Effect of Rocking Movements on Respiration

    PubMed Central

    Omlin, Ximena; Crivelli, Francesco; Heinicke, Lorenz; Zaunseder, Sebastian; Achermann, Peter; Riener, Robert

    2016-01-01

    For centuries, rocking has been used to promote sleep in babies or toddlers. Recent research suggested that relaxation could play a role in facilitating the transition from waking to sleep during rocking. Breathing techniques are often used to promote relaxation. However, studies investigating head motions and body rotations showed that vestibular stimulation might elicit a vestibulo-respiratory response, leading to an increase in respiration frequency. An increase in respiration frequency would not be considered to promote relaxation in the first place. On the other hand, a coordination of respiration to rhythmic vestibular stimulation has been observed. Therefore, this study aimed to investigate the effect of different movement frequencies and amplitudes on respiration frequency. Furthermore, we tested whether subjects adapt their respiration to movement frequencies below their spontaneous respiration frequency at rest, which could be beneficial for relaxation. Twenty-one healthy subjects (24–42 years, 12 males) were investigated using an actuated bed, moving along a lateral translation. Following movement frequencies were applied: +30%, +15%, -15%, and -30% of subjects’ rest respiration frequency during baseline (no movement). Furthermore, two different movement amplitudes were tested (Amplitudes: 15 cm, 7.5 cm; movement frequency: 0.3 Hz). In addition, five subjects (25–28 years, 2 males) were stimulated with their individual rest respiration frequency. Rocking movements along a lateral translation caused a vestibulo-respiratory adaptation leading to an increase in respiration frequency. The increase was independent of the applied movement frequencies or amplitudes but did not occur when stimulating with subjects’ rest respiration frequency. Furthermore, no synchronization of the respiration frequency to the movement frequency was observed. In particular, subjects did not lower their respiration frequency below their resting frequency. Hence, it was not

  6. Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities.

    PubMed

    Ge, Yuan; Schimel, Joshua P; Holden, Patricia A

    2011-02-15

    Increased use of engineered nanoparticles (ENPs) raises concerns about their environmental impacts, but the effects of metal oxide ENPs on environmental processes and the organisms that carry them out remain largely unknown. This study evaluated the impacts of TiO2 and ZnO ENPs on soil bacterial communities. Soils collected from a California grassland were exposed to different doses of nanoparticulate TiO2 (0, 0.5, 1.0, and 2.0 mg g(-1) soil) and ZnO (0.05, 0.1, and 0.5 mg g(-1) soil) in microcosms over 60 days. The effects on soil microbial biomass were assessed by substrate induced respiration (SIR) and total extractable soil DNA. The effects on bacterial community composition were evaluated by terminal restriction fragment length polymorphism (T-RFLP) analysis. Total soil respiration indicated impacts on overall microbial activity. We found that both nano-TiO2 and nano-ZnO reduced both microbial biomass (as indicated by declines in both SIR and DNA) and diversity (by T-RFLP). Both types of nanoparticles also altered the composition of the soil bacterial community. The effect of nano-ZnO was stronger than that of nano-TiO2, as reflected by lower DNA and stronger shifts in bacterial community composition for nano-ZnO at the same exposure concentration (0.5 mg g(-1) soil). Thus, nanoparticulate metal oxides may measurably and negatively impact soil bacterial communities. PMID:21207975

  7. A Versatile Strategy for Production of Membrane Proteins with Diverse Topologies: Application to Investigation of Bacterial Homologues of Human Divalent Metal Ion and Nucleoside Transporters.

    PubMed

    Ma, Cheng; Hao, Zhenyu; Huysmans, Gerard; Lesiuk, Amelia; Bullough, Per; Wang, Yingying; Bartlam, Mark; Phillips, Simon E; Young, James D; Goldman, Adrian; Baldwin, Stephen A; Postis, Vincent L G

    2015-01-01

    Membrane proteins play key roles in many biological processes, from acquisition of nutrients to neurotransmission, and are targets for more than 50% of current therapeutic drugs. However, their investigation is hampered by difficulties in their production and purification on a scale suitable for structural studies. In particular, the nature and location of affinity tags introduced for the purification of recombinant membrane proteins can greatly influence their expression levels by affecting their membrane insertion. The extent of such effects typically depends on the transmembrane topologies of the proteins, which for proteins of unknown structure are usually uncertain. For example, attachment of oligohistidine tags to the periplasmic termini of membrane proteins often interferes with folding and drastically impairs expression in Escherichia coli. To circumvent this problem we have employed a novel strategy to enable the rapid production of constructs bearing a range of different affinity tags compatible with either cytoplasmic or periplasmic attachment. Tags include conventional oligohistidine tags compatible with cytoplasmic attachment and, for attachment to proteins with a periplasmic terminus, either tandem Strep-tag II sequences or oligohistidine tags fused to maltose binding protein and a signal sequence. Inclusion of cleavage sites for TEV or HRV-3C protease enables tag removal prior to crystallisation trials or a second step of purification. Together with the use of bioinformatic approaches to identify members of membrane protein families with topologies favourable to cytoplasmic tagging, this has enabled us to express and purify multiple bacterial membrane transporters. To illustrate this strategy, we describe here its use to purify bacterial homologues of human membrane proteins from the Nramp and ZIP families of divalent metal cation transporters and from the concentrative nucleoside transporter family. The proteins are expressed in E. coli in a

  8. A Versatile Strategy for Production of Membrane Proteins with Diverse Topologies: Application to Investigation of Bacterial Homologues of Human Divalent Metal Ion and Nucleoside Transporters

    PubMed Central

    Huysmans, Gerard; Lesiuk, Amelia; Bullough, Per; Wang, Yingying; Bartlam, Mark; Phillips, Simon E.; Young, James D.; Goldman, Adrian; Postis, Vincent L. G.

    2015-01-01

    Membrane proteins play key roles in many biological processes, from acquisition of nutrients to neurotransmission, and are targets for more than 50% of current therapeutic drugs. However, their investigation is hampered by difficulties in their production and purification on a scale suitable for structural studies. In particular, the nature and location of affinity tags introduced for the purification of recombinant membrane proteins can greatly influence their expression levels by affecting their membrane insertion. The extent of such effects typically depends on the transmembrane topologies of the proteins, which for proteins of unknown structure are usually uncertain. For example, attachment of oligohistidine tags to the periplasmic termini of membrane proteins often interferes with folding and drastically impairs expression in Escherichia coli. To circumvent this problem we have employed a novel strategy to enable the rapid production of constructs bearing a range of different affinity tags compatible with either cytoplasmic or periplasmic attachment. Tags include conventional oligohistidine tags compatible with cytoplasmic attachment and, for attachment to proteins with a periplasmic terminus, either tandem Strep-tag II sequences or oligohistidine tags fused to maltose binding protein and a signal sequence. Inclusion of cleavage sites for TEV or HRV-3C protease enables tag removal prior to crystallisation trials or a second step of purification. Together with the use of bioinformatic approaches to identify members of membrane protein families with topologies favourable to cytoplasmic tagging, this has enabled us to express and purify multiple bacterial membrane transporters. To illustrate this strategy, we describe here its use to purify bacterial homologues of human membrane proteins from the Nramp and ZIP families of divalent metal cation transporters and from the concentrative nucleoside transporter family. The proteins are expressed in E. coli in a

  9. Respirable concrete dust--silicosis hazard in the construction industry.

    PubMed

    Linch, Kenneth D

    2002-03-01

    Concrete is an extremely important part of the infrastructure of modern life and must be replaced as it ages. Many of the methods of removing, repairing, or altering existing concrete structures have the potential for producing vast quantities of respirable dust. Since crystalline silica in the form of quartz is a major component of concrete, airborne respirable quartz dust may be produced during construction work involving the disturbance of concrete, thereby producing a silicosis hazard for exposed workers. Silicosis is a debilitating and sometimes fatal lung disease resulting from breathing microscopic particles of crystalline silica. Between 1992 and 1998, the National Institute for Occupational Safety and Health (NIOSH) made visits to construction projects where concrete was being mechanically disturbed in order to obtain data concerning respirable crystalline silica dust exposures. The construction activities studied included: abrasive blasting, concrete pavement sawing and drilling, and asphalt/concrete milling. Air samples of respirable dust were obtained using 10-mm nylon cyclone pre-separators, 37-mm polyvinyl chloride (PVC) filters, and constant-flow pumps calibrated at 1.7 L/min. In addition, high-volume respirable dust samples were obtained on 37-mm PVC filters using 1/2" metal cyclones (Sensidyne model 18) and constant-flow pumps calibrated at 9.0 L/min. Air sample analysis included total weight gain by gravimetric analysis according to NIOSH Analytical Method 600 and respirable crystalline silica (quartz and cristobalite) using x-ray diffraction, as per NIOSH Analytical Method 7500. For abrasive blasting of concrete structures, the respirable crystalline silica (quartz) concentration ranged up to 14.0 mg/m3 for a 96-minute sample resulting in an eight-hour time-weighted average (TWA) of 2.8 mg/m3. For drilling concrete highway pavement the respirable quartz concentrations ranged up to 4.4 mg/m3 for a 358-minute sample, resulting in an eight-hour TWA

  10. Prokaryotic community structure and respiration during long-term incubations

    PubMed Central

    Baltar, Federico; Lindh, Markus V; Parparov, Arkadi; Berman, Tom; Pinhassi, Jarone

    2012-01-01

    Despite the importance of incubation assays for studies in microbial ecology that frequently require long confinement times, few reports are available in which changes in the assemblage structure of aquatic prokaryotes were monitored during long-term incubations. We measured rates of dissolved organic carbon degradation and microbial respiration by consumption of dissolved oxygen (DO) in four experiments with Lake Kinneret near-surface water and, concomitantly, we analyzed the variability in prokaryotic community structure during long-term dark bottle incubations. During the first 24 h, there were only minor changes in bacterial community composition. Thereafter there were marked changes in the prokaryotic community structure during the incubations. In contrast, oxygen consumption rates (a proxy for both respiration and dissolved organic carbon degradation rates) remained stable for up to 10–23 days. This study is one of the first to examine closely the phylo-genetic changes that occur in the microbial community of untreated freshwater during long-term (days) incubations in dark, sealed containers. Novel information on the diversity of the main bacterial phylotypes that may be involved in dissolved organic matter degradation in lake Kinneret is also provided. Our results suggest that, under certain ecological settings, constant community metabolic rates can be maintained as a result of shifts in community composition. PMID:22950026

  11. Measuring aerobic respiration in stream ecosystems using the resazurin-resorufin system

    NASA Astrophysics Data System (ADS)

    GonzáLez-Pinzón, Ricardo; Haggerty, Roy; Myrold, David D.

    2012-09-01

    The use of smart tracers to study hydrologic systems is becoming more widespread. Smart tracers are compounds that irreversibly react in the presence of a process or condition under investigation. Resazurin (Raz) is a smart tracer that undergoes an irreversible reduction to resorufin (Rru) in the presence of cellular metabolic activity. We quantified the relationship between the transformation of Raz and aerobic bacterial respiration in pure culture experiments using two obligate aerobes and two facultative anaerobes, and in colonized surface and shallow (<10 cm) hyporheic sediments using reach-scale experiments. We found that the transformation of Raz to Rru was nearly perfectly (minr2 = 0.986), positively correlated with aerobic microbial respiration in all experiments. These results suggest that Raz can be used as a surrogate to measure respiration in situ and in vivoat different spatial scales, thus providing an alternative to investigate mechanistic controls of solute transport and stream metabolism on nutrient processing. Lastly, a comparison of respiration and mass-transfer rates in streams suggests that field-scale respiration is controlled by the slower of respiration and mass transfer, highlighting the need to understand both biogeochemistry and physics in stream ecosystems.

  12. An evaluation of respirator maintenance requirements.

    PubMed

    Brosseau, L M; Traubel, K

    1997-03-01

    A telephone survey was developed as part of a pilot study to evaluate the inspection, cleaning, maintenance, and storage aspects of respirator protection programs (RPP). Regulations and consensus standards such as those published by the Occupational Safety and Health Administration in the Code of Federal Regulations (CFR) or the American National Standards Institute (ANSI) require or recommend that RPP contain elements that ensure that the respirators provide proper protection. A great deal of research has been done to evaluate the effectiveness of new respirators; however, little research has been conducted to evaluate how respirators behave over time in real industrial settings Respirator inspection, cleaning, maintenance, and storage are significant factors in determining how well a respirator continues to perform. The telephone survey was developed by reviewing the requirements and recommendations of CFR 1910.134 and ANSI Z88.2-1980. Approximately 30 companies were selected based on their use of negative air-purifying respirators. Most of the companies represented the hardgoods manufacturing or service industries. Although the majority of companies were meeting requirements, responses indicated that the following improvements in RPP were necessary: (1) inspection of all respirator parts should be carried out before and after each use, (2) replacement parts should be made readily available on site, (3) regular cleaning should be performed, and (4) more hands-on practice with respirators and their maintenance should be incorporated into training sessions. PMID:9075316

  13. Respirator selection for clandestine methamphetamine laboratory investigation.

    PubMed

    Nelson, Gary O; Bronder, Gregory D; Larson, Scott A; Parker, Jay A; Metzler, Richard W

    2012-01-01

    First responders to illicit drug labs may not always have SCBA protection available. Air-purifying respirators using organic vapor cartridges with P-100 filters may not be sufficient. It would be better to use a NIOSH-approved CBRN respirator with its required multi-purpose cartridge system, which includes a P-100 filter. This would remove all the primary drug lab contaminants—organic vapors, acid gases, ammonia, phosphine, iodine, and airborne meth particulates. To assure the proper selection and use of a respirator, it is recommended that the contaminants present be identified and quantified and the OSHA 29 CFR 1910.134 respirator protection program requirements followed. PMID:22571884

  14. Purification, substrate range, and metal center of AtzC: the N-isopropylammelide aminohydrolase involved in bacterial atrazine metabolism.

    PubMed

    Shapir, Nir; Osborne, Jeffrey P; Johnson, Gilbert; Sadowsky, Michael J; Wackett, Lawrence P

    2002-10-01

    N-Isopropylammelide isopropylaminohydrolase, AtzC, the third enzyme in the atrazine degradation pathway in Pseudomonas sp. strain ADP, catalyzes the stoichiometric hydrolysis of N-isopropylammelide to cyanuric acid and isopropylamine. The atzC gene was cloned downstream of the tac promoter and expressed in Escherichia coli, where the expressed enzyme comprised 36% of the soluble protein. AtzC was purified to homogeneity by ammonium sulfate precipitation and phenyl column chromatography. It has a subunit size of 44,938 kDa and a holoenzyme molecular weight of 174,000. The K(m) and k(cat) values for AtzC with N-isopropylammelide were 406 micro M and 13.3 s(-1), respectively. AtzC hydrolyzed other N-substituted amino dihydroxy-s-triazines, and those with linear N-alkyl groups had higher k(cat) values than those with branched alkyl groups. Native AtzC contained 0.50 eq of Zn per subunit. The activity of metal-depleted AtzC was restored with Zn(II), Fe(II), Mn(II), Co(II), and Ni(II) salts. Cobalt-substituted AtzC had a visible absorbance band at 540 nm (Delta epsilon = 84 M(-1) cm(-1)) and exhibited an axial electron paramagnetic resonance (EPR) signal with the following effective values: g((x)) = 5.18, g((y)) = 3.93, and g((z)) = 2.24. Incubating cobalt-AtzC with the competitive inhibitor 5-azacytosine altered the effective EPR signal values to g((x)) = 5.11, g((y)) = 4.02, and g((z)) = 2.25 and increased the microwave power at half saturation at 10 K from 31 to 103 mW. Under the growth conditions examined, our data suggest that AtzC has a catalytically essential, five-coordinate Zn(II) metal center in the active site and specifically catalyzes the hydrolysis of intermediates generated during the metabolism of s-triazine herbicides. PMID:12218024

  15. Uncoupling Mitochondrial Respiration for Diabesity.

    PubMed

    Larrick, James W; Larrick, Jasmine W; Mendelsohn, Andrew R

    2016-08-01

    Until recently, the mechanism of adaptive thermogenesis was ascribed to the expression of uncoupling protein 1 (UCP1) in brown and beige adipocytes. UCP1 is known to catalyze a proton leak of the inner mitochondrial membrane, resulting in uncoupled oxidative metabolism with no production of adenosine triphosphate and increased energy expenditure. Thus increasing brown and beige adipose tissue with augmented UCP1 expression is a viable target for obesity-related disorders. Recent work demonstrates an UCP1-independent pathway to uncouple mitochondrial respiration. A secreted enzyme, PM20D1, enriched in UCP1+ adipocytes, exhibits catalytic and hydrolytic activity to reversibly form N-acyl amino acids. N-acyl amino acids act as endogenous uncouplers of mitochondrial respiration at physiological concentrations. Administration of PM20D1 or its products, N-acyl amino acids, to diet-induced obese mice improves glucose tolerance by increasing energy expenditure. In short-term studies, treated animals exhibit no toxicity while experiencing 10% weight loss primarily of adipose tissue. Further study of this metabolic pathway may identify novel therapies for diabesity, the disease state associated with diabetes and obesity. PMID:27378359

  16. Organized bacterial assemblies in manganese nodules: evidence for a role of S-layers in metal deposition

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohong; Schröder, Heinz C.; Schloßmacher, Ute; Müller, Werner E. G.

    2009-04-01

    Polymetallic/ferro-manganese nodules (Mn-nodules) reach sizes of up to 10 cm in diameter and are abundantly found on the seabed. To date, the origin of Mn-nodules remains unclear, and both abiogenic and biogenic origins have been proposed. In search of evidence for a contribution of microbial processes to the formation of Mn-nodules, we analyzed those spherical nodules which contain a concentrically banded texture in their interior. The Mn-nodules were collected at a depth of 5,152 m from the Clarion-Clipperton Zone. Our high-resolution scanning electron microscopy analyses reveal first published evidence that endolithic microorganisms exist and are arranged in a highly organized manner on plane mineral surfaces within the nodules. These microorganisms are adorned on their surfaces with S-layers, which are indicative for bacteria. Moreover, the data suggest that these S-layers are the crystallization seeds for the mineralization process. We conclude that the mineral material of the Mn-nodule has a biogenic origin, and hope that these data will contribute to the development of biotechnological approaches to concentrate metals from seawater using bacteria in bioreactors.

  17. Synthesis, aggregation and spectroscopic studies of novel water soluble metal free, zinc, copper and magnesium phthalocyanines and investigation of their anti-bacterial properties.

    PubMed

    Bayrak, Rıza; Akçay, Hakkı Türker; Beriş, Fatih Şaban; Sahin, Ertan; Bayrak, Hacer; Demirbaş, Ümit

    2014-12-10

    In this study, novel phthalonitrile derivative (3) was synthesized by the reaction between 4-nitrophthalonitrile (2) and a triazole derivative (1) containing pyridine moiety. Crystal structure of compound (3) was characterized by X-ray diffraction. New metal free and metallo-phthalocyanine complexes (Zn, Cu, and Mg) were synthesized using the phthalonitrile derivative (3). Cationic derivatives of these phthalocyanines (5, 7, 9, and 11) were prepared from the non-ionic phthalocyanines (4, 6, 8, and 10). All proposed structures were supported by instrumental methods. The aggregation behaviors of the phthalocyanines (4-11) were investigated in different solvents such as dimethylsulfoxide (DMSO), N,N-dimethylformamide (DMF), chloroform and water. Water soluble cationic Pcs (5, 7, 9, and 11) aggregated in water and sodium dodecyl sulfate was used to prevent the aggregation. The second derivatives of the UV-Vis spectra of aggregated Pcs were used for analyzing the Q and B bands of aggregated species. Thermal behaviors of the phthalocyanines were also studied. In addition, anti-bacterial properties of the phthalocyanines were investigated. We used four gram negative and two gram positive bacteria to determine antibacterial activity of these compounds. Compound 7 has the best activity against the all bacteria with 125μg/mL of MIC value. Compounds 4, 6, and 10 have the similar effect on the bacteria with 250μg/mL of MIC value. PMID:24952089

  18. Synthesis, aggregation and spectroscopic studies of novel water soluble metal free, zinc, copper and magnesium phthalocyanines and investigation of their anti-bacterial properties

    NASA Astrophysics Data System (ADS)

    Bayrak, Rıza; Akçay, Hakkı Türker; Beriş, Fatih Şaban; Şahin, Ertan; Bayrak, Hacer; Demirbaş, Ümit

    2014-12-01

    In this study, novel phthalonitrile derivative (3) was synthesized by the reaction between 4-nitrophthalonitrile (2) and a triazole derivative (1) containing pyridine moiety. Crystal structure of compound (3) was characterized by X-ray diffraction. New metal free and metallo-phthalocyanine complexes (Zn, Cu, and Mg) were synthesized using the phthalonitrile derivative (3). Cationic derivatives of these phthalocyanines (5, 7, 9, and 11) were prepared from the non-ionic phthalocyanines (4, 6, 8, and 10). All proposed structures were supported by instrumental methods. The aggregation behaviors of the phthalocyanines (4-11) were investigated in different solvents such as dimethylsulfoxide (DMSO), N,N-dimethylformamide (DMF), chloroform and water. Water soluble cationic Pcs (5, 7, 9, and 11) aggregated in water and sodium dodecyl sulfate was used to prevent the aggregation. The second derivatives of the UV-Vis spectra of aggregated Pcs were used for analyzing the Q and B bands of aggregated species. Thermal behaviors of the phthalocyanines were also studied. In addition, anti-bacterial properties of the phthalocyanines were investigated. We used four gram negative and two gram positive bacteria to determine antibacterial activity of these compounds. Compound 7 has the best activity against the all bacteria with 125 μg/mL of MIC value. Compounds 4, 6, and 10 have the similar effect on the bacteria with 250 μg/mL of MIC value.

  19. Patterns of benthic bacterial diversity in coastal areas contaminated by heavy metals, polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs)

    PubMed Central

    Quero, Grazia Marina; Cassin, Daniele; Botter, Margherita; Perini, Laura; Luna, Gian Marco

    2015-01-01

    Prokaryotes in coastal sediments are fundamental players in the ecosystem functioning and regulate processes relevant in the global biogeochemical cycles. Nevertheless, knowledge on benthic microbial diversity patterns across spatial scales, or as function to anthropogenic influence, is still limited. We investigated the microbial diversity in two of the most chemically polluted sites along the coast of Italy. One site is the Po River Prodelta (Northern Adriatic Sea), which receives contaminant discharge from one of the largest rivers in Europe. The other site, the Mar Piccolo of Taranto (Ionian Sea), is a chronically polluted area due to steel production plants, oil refineries, and intense maritime traffic. We collected sediments from 30 stations along gradients of contamination, and studied prokaryotic diversity using Illumina sequencing of amplicons of a 16S rDNA gene fragment. The main sediment variables and the concentration of eleven metals, polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) were measured. Chemical analyses confirmed the high contamination in both sites, with concentrations of PCBs particularly high and often exceeding the sediment guidelines. The analysis of more than 3 millions 16S rDNA sequences showed that richness decreased with higher contamination levels. Multivariate analyses showed that contaminants significantly shaped community composition. Assemblages differed significantly between the two sites, but showed wide within-site variations related with spatial gradients in the chemical contamination, and the presence of a core set of OTUs shared by the two geographically distant sites. A larger importance of PCB-degrading taxa was observed in the Mar Piccolo, suggesting their potential selection in this historically polluted site. Our results indicate that sediment contamination by multiple contaminants significantly alter benthic prokaryotic diversity in coastal areas, and suggests considering the potential

  20. Patterns of benthic bacterial diversity in coastal areas contaminated by heavy metals, polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs).

    PubMed

    Quero, Grazia Marina; Cassin, Daniele; Botter, Margherita; Perini, Laura; Luna, Gian Marco

    2015-01-01

    Prokaryotes in coastal sediments are fundamental players in the ecosystem functioning and regulate processes relevant in the global biogeochemical cycles. Nevertheless, knowledge on benthic microbial diversity patterns across spatial scales, or as function to anthropogenic influence, is still limited. We investigated the microbial diversity in two of the most chemically polluted sites along the coast of Italy. One site is the Po River Prodelta (Northern Adriatic Sea), which receives contaminant discharge from one of the largest rivers in Europe. The other site, the Mar Piccolo of Taranto (Ionian Sea), is a chronically polluted area due to steel production plants, oil refineries, and intense maritime traffic. We collected sediments from 30 stations along gradients of contamination, and studied prokaryotic diversity using Illumina sequencing of amplicons of a 16S rDNA gene fragment. The main sediment variables and the concentration of eleven metals, polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) were measured. Chemical analyses confirmed the high contamination in both sites, with concentrations of PCBs particularly high and often exceeding the sediment guidelines. The analysis of more than 3 millions 16S rDNA sequences showed that richness decreased with higher contamination levels. Multivariate analyses showed that contaminants significantly shaped community composition. Assemblages differed significantly between the two sites, but showed wide within-site variations related with spatial gradients in the chemical contamination, and the presence of a core set of OTUs shared by the two geographically distant sites. A larger importance of PCB-degrading taxa was observed in the Mar Piccolo, suggesting their potential selection in this historically polluted site. Our results indicate that sediment contamination by multiple contaminants significantly alter benthic prokaryotic diversity in coastal areas, and suggests considering the potential

  1. Bacterial Sialidase

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Data shows that elevated sialidase in bacterial vaginosis patients correlates to premature births in women. Bacterial sialidase also plays a significant role in the unusual colonization of Pseudomonas aeruginosa in cystic fibrosis patients. Crystals of Salmonella sialidase have been reproduced and are used for studying the inhibitor-enzyme complexes. These inhibitors may also be used to inhibit a trans-sialidase of Trypanosome cruzi, a very similar enzyme to bacterial sialidase, therefore preventing T. cruzi infection, the causitive agent of Chagas' disease. The Center for Macromolecular Crystallography suggests that inhibitors of bacterial sialidases can be used as prophylactic drugs to prevent bacterial infections in these critical cases.

  2. Depressive Symptoms and Impaired Respiration in Sleep.

    ERIC Educational Resources Information Center

    Bliwise, Donald L.; And Others

    1986-01-01

    Associations between depression and impaired respiration in sleep are frequently noted clinically. This relationship was documented psychometrically with the Geriatric Depression Scale, a self-report measure of nonsomatic depressive symptoms. Mean values and effect size suggest that impaired respiration in sleep was associated with only relatively…

  3. Direct reading of electrocardiograms and respiration rates

    NASA Technical Reports Server (NTRS)

    Wise, J. P.

    1969-01-01

    Technique for reading heart and respiration rates is more accurate and direct than the previous method. Index of a plastic calibrated card is aligned with a point on the electrocardiogram. Complexes are counted as indicated on the card and heart or respiration rate is read directly from the appropriate scale.

  4. Photosynthesis and Respiration in a Jar.

    ERIC Educational Resources Information Center

    Buttner, Joseph K.

    2000-01-01

    Describes an activity that reduces the biosphere to a water-filled jar to simulate the relationship between cellular respiration, photosynthesis, and energy. Allows students in high school biology and related courses to explore quantitatively cellular respiration and photosynthesis in almost any laboratory setting. (ASK)

  5. Artificial Respiration and Artificial Circulation

    PubMed Central

    Brook, Joseph; Brook, Morris H.; Lopez, Jose F.

    1965-01-01

    A training program in the newer methods of treatment of acute cardiopulmonary emergencies which was developed at the University Hospital, University of Saskatchewan, is reported. Artificial respiration by the chance rescuer, primary and secondary resuscitation, and post-resuscitation measures involving the use of special drugs and equipment by trained personnel are described. Figures and tables designed for wall-mounting and ready reference in an emergency situation are presented. Firstaid ventilatory adjuncts for use by trained personnel are classified and critically appraised, and the propriety of their use is emphasized. A plea is made to the medical profession and allied agencies to assume the responsibility of spreading knowledge of the new techniques more widely. Unless effective treatment is instituted early enough to prevent death or permanent anoxic damage to heart and brain, follow-through therapy will often be fruitless. PMID:14339303

  6. Sleep and Respiration in Microgravity

    NASA Technical Reports Server (NTRS)

    West, John B.; Elliott, Ann R.; Prisk, G. Kim; Paiva, Manuel

    2003-01-01

    Sleep is often reported to be of poor quality in microgravity, and studies on the ground have shown a strong relationship between sleep-disordered breathing and sleep disruption. During the 16-day Neurolab mission, we studied the influence of possible changes in respiratory function on sleep by performing comprehensive sleep recordings on the payload crew on four nights during the mission. In addition, we measured the changes in the ventilatory response to low oxygen and high carbon dioxide in the same subjects during the day, hypothesizing that changes in ventilatory control might affect respiration during sleep. Microgravity caused a large reduction in the ventilatory response to reduced oxygen. This is likely the result of an increase in blood pressure at the peripheral chemoreceptors in the neck that occurs when the normally present hydrostatic pressure gradient between the heart and upper body is abolished. This reduction was similar to that seen when the subjects were placed acutely in the supine position in one-G. In sharp contrast to low oxygen, the ventilatory response to elevated carbon dioxide was unaltered by microgravity or the supine position. Because of the similarities of the findings in microgravity and the supine position, it is unlikely that changes in ventilatory control alter respiration during sleep in microgravity. During sleep on the ground, there were a small number of apneas (cessation of breathing) and hypopneas (reduced breathing) in these normal subjects. During sleep in microgravity, there was a reduction in the number of apneas and hypopneas per hour compared to preflight. Obstructive apneas virtually disappeared in microgravity, suggesting that the removal of gravity prevents the collapse of upper airways during sleep. Arousals from sleep were reduced in microgravity compared to preflight, and virtually all of this reduction was as a result of a reduction in the number of arousals from apneas and hypopneas. We conclude that any sleep

  7. Modelling Soil respiration in agro-ecosystems

    NASA Astrophysics Data System (ADS)

    Delogu, Emilie; LeDantec, Valerie; Mordelet, Patrick; Buysse, Pauline; Aubinet, Marc; Pattey, Elizabeth

    2013-04-01

    A soil respiration model was developed to simulate soil respiration in crops on a daily time step. The soil heterotrophic respiration component was derived from Century (Parton et al., 1987). Soil organic carbon is divided into three major components including active, slow and passive soil carbon. Each pool has its own decomposition rate coefficient. Carbon flows between these pools are controlled by carbon inputs (crop residues), decomposition rate and microbial respiration loss parameters, both of which are a function of soil texture, soil temperature and soil water content. The model assumes that all C decompositions flows are associated with microbial activity and that microbial respiration occurs for each of these flows. Heterotrophic soil respiration is the sum of all these microbial respiration processes. To model the soil autotrophic respiration component, maintenance respiration is calculated from the nitrogen content and assuming an exponential relationship to account for temperature dependence (Ryan et al., 1991). Growth respiration is calculated assuming a dependence on both growth rate and construction cost of the considered organ (MacCree et al., 1982) A database, made of four different soil and climate conditions in mid-latitude was used to study the two components of the soil respiration model in wheat fields. Soil respiration were measured in three winter wheat fields at Lamasquère (43°49'N, 01°23'E, 2007) and Auradé (43°54'N, 01°10'E, 2008), South-West France and Lonzée (50°33'N, 4°44'E, 2007), Belgium, and in a spring wheat field at Ottawa (45°22'N, 75°43'W, 2007, 2011), Ontario, Canada. Manual closed chambers were used in the French sites. The Belgium and Canadian sites were equipped with automated closed chamber systems, which continuously collected 30-min soil respiration exchanges. All the sites were also equipped with eddy flux towers. When eddy flux data were collected over bare soil, the net ecosystem exchange (NEE) was equal to

  8. Physicochemical properties of respirable-size lunar dust

    NASA Astrophysics Data System (ADS)

    McKay, D. S.; Cooper, B. L.; Taylor, L. A.; James, J. T.; Thomas-Keprta, K.; Pieters, C. M.; Wentworth, S. J.; Wallace, W. T.; Lee, T. S.

    2015-02-01

    We separated the respirable dust and other size fractions from Apollo 14 bulk sample 14003,96 in a dry nitrogen environment. While our toxicology team performed in vivo and in vitro experiments with the respirable fraction, we studied the size distribution and shape, chemistry, mineralogy, spectroscopy, iron content and magnetic resonance of various size fractions. These represent the finest-grained lunar samples ever measured for either FMR np-Fe0 index or precise bulk chemistry, and are the first instance we know of in which SEM/TEM samples have been obtained without using liquids. The concentration of single-domain, nanophase metallic iron (np-Fe0) increases as particle size diminishes to 2 μm, confirming previous extrapolations. Size-distribution studies disclosed that the most frequent particle size was in the 0.1-0.2 μm range suggesting a relatively high surface area and therefore higher potential toxicity. Lunar dust particles are insoluble in isopropanol but slightly soluble in distilled water (~0.2 wt%/3 days). The interaction between water and lunar fines, which results in both agglomeration and partial dissolution, is observable on a macro scale over time periods of less than an hour. Most of the respirable grains were smooth amorphous glass. This suggests less toxicity than if the grains were irregular, porous, or jagged, and may account for the fact that lunar dust is less toxic than ground quartz.

  9. Apparatus and method for the characterization of respirable aerosols

    DOEpatents

    Clark, Douglas K.; Hodges, Bradley W.; Bush, Jesse D.; Mishima, Jofu

    2016-05-31

    An apparatus for the characterization of respirable aerosols, including: a burn chamber configured to selectively contain a sample that is selectively heated to generate an aerosol; a heating assembly disposed within the burn chamber adjacent to the sample; and a sampling segment coupled to the burn chamber and configured to collect the aerosol such that it may be analyzed. The apparatus also includes an optional sight window disposed in a wall of the burn chamber such that the sample may be viewed during heating. Optionally, the sample includes one of a Lanthanide, an Actinide, and a Transition metal.

  10. Effect of long-term industrial waste effluent pollution on soil enzyme activities and bacterial community composition.

    PubMed

    Subrahmanyam, Gangavarapu; Shen, Ju-Pei; Liu, Yu-Rong; Archana, Gattupalli; Zhang, Li-Mei

    2016-02-01

    Although numerous studies have addressed the influence of exogenous pollutants on microorganisms, the effect of long-term industrial waste effluent (IWE) pollution on the activity and diversity of soil bacteria was still unclear. Three soil samples characterized as uncontaminated (R1), moderately contaminated (R2), and highly contaminated (R3) receiving mixed organic and heavy metal pollutants for more than 20 years through IWE were collected along the Mahi River basin, Gujarat, western India. Basal soil respiration and in situ enzyme activities indicated an apparent deleterious effect of IWE on microbial activity and soil function. Community composition profiling of soil bacteria using 16S rRNA gene amplification and denaturing gradient gel electrophoresis (DGGE) method indicated an apparent bacterial community shift in the IWE-affected soils. Cloning and sequencing of DGGE bands revealed that the dominated bacterial phyla in polluted soil were affiliated with Firmicutes, Acidobacteria, and Actinobacteria, indicating that these bacterial phyla may have a high tolerance to pollutants. We suggested that specific bacterial phyla along with soil enzyme activities could be used as relevant biological indicators for long-term pollution assessment on soil quality. Graphical Abstract Bacterial community profiling and soil enzyme activities in long-term industrial waste effluent polluted soils. PMID:26803661

  11. Propane respiration jump-starts microbial response to a deep oil spill.

    PubMed

    Valentine, David L; Kessler, John D; Redmond, Molly C; Mendes, Stephanie D; Heintz, Monica B; Farwell, Christopher; Hu, Lei; Kinnaman, Franklin S; Yvon-Lewis, Shari; Du, Mengran; Chan, Eric W; Garcia Tigreros, Fenix; Villanueva, Christie J

    2010-10-01

    The Deepwater Horizon event resulted in suspension of oil in the Gulf of Mexico water column because the leakage occurred at great depth. The distribution and fate of other abundant hydrocarbon constituents, such as natural gases, are also important in determining the impact of the leakage but are not yet well understood. From 11 to 21 June 2010, we investigated dissolved hydrocarbon gases at depth using chemical and isotopic surveys and on-site biodegradation studies. Propane and ethane were the primary drivers of microbial respiration, accounting for up to 70% of the observed oxygen depletion in fresh plumes. Propane and ethane trapped in the deep water may therefore promote rapid hydrocarbon respiration by low-diversity bacterial blooms, priming bacterial populations for degradation of other hydrocarbons in the aging plume. PMID:20847236

  12. Bacterial Proteasomes

    PubMed Central

    Jastrab, Jordan B.; Darwin, K. Heran

    2015-01-01

    Interest in bacterial proteasomes was sparked by the discovery that proteasomal degradation is required for the pathogenesis of Mycobacterium tuberculosis, one of the world's deadliest pathogens. Although bacterial proteasomes are structurally similar to their eukaryotic and archaeal homologs, there are key differences in their mechanisms of assembly, activation, and substrate targeting for degradation. In this article, we compare and contrast bacterial proteasomes with their archaeal and eukaryotic counterparts, and we discuss recent advances in our understanding of how bacterial proteasomes function to influence microbial physiology. PMID:26488274

  13. Spartina alterniflora invasion alters soil microbial community composition and microbial respiration following invasion chronosequence in a coastal wetland of China.

    PubMed

    Yang, Wen; Jeelani, Nasreen; Leng, Xin; Cheng, Xiaoli; An, Shuqing

    2016-01-01

    The role of exotic plants in regulating soil microbial community structure and activity following invasion chronosequence remains unclear. We investigated soil microbial community structure and microbial respiration following Spartina alterniflora invasion in a chronosequence of 6-, 10-, 17-, and 20-year-old by comparing with bare flat in a coastal wetland of China. S. alterniflora invasion significantly increased soil moisture and salinity, the concentrations of soil water-soluble organic carbon and microbial biomass carbon (MBC), the quantities of total and various types of phospholipid fatty acids (PLFAs), the fungal:bacterial PLFAs ratio and cumulative microbial respiration compared with bare flat. The highest MBC, gram-negative bacterial and saturated straight-chain PLFAs were found in 10-year-old S. alterniflora soil, while the greatest total PLFAs, bacterial and gram-positive bacterial PLFAs were found in 10- and 17-year-old S. alterniflora soils. The monounsaturated:branched PLFAs ratio declined, and cumulative microbial respiration on a per-unit-PLFAs increased following S. alterniflora invasion in the chronosequence. Our results suggest that S. alterniflora invasion significantly increased the biomass of soil various microbial groups and microbial respiration compared to bare flat soil by increasing soil available substrate, and modifying soil physiochemical properties. Soil microbial community reached the most enriched condition in the 10-year-old S. alterniflora community. PMID:27241173

  14. Spartina alterniflora invasion alters soil microbial community composition and microbial respiration following invasion chronosequence in a coastal wetland of China

    NASA Astrophysics Data System (ADS)

    Yang, Wen; Jeelani, Nasreen; Leng, Xin; Cheng, Xiaoli; An, Shuqing

    2016-05-01

    The role of exotic plants in regulating soil microbial community structure and activity following invasion chronosequence remains unclear. We investigated soil microbial community structure and microbial respiration following Spartina alterniflora invasion in a chronosequence of 6-, 10-, 17-, and 20-year-old by comparing with bare flat in a coastal wetland of China. S. alterniflora invasion significantly increased soil moisture and salinity, the concentrations of soil water-soluble organic carbon and microbial biomass carbon (MBC), the quantities of total and various types of phospholipid fatty acids (PLFAs), the fungal:bacterial PLFAs ratio and cumulative microbial respiration compared with bare flat. The highest MBC, gram-negative bacterial and saturated straight-chain PLFAs were found in 10-year-old S. alterniflora soil, while the greatest total PLFAs, bacterial and gram-positive bacterial PLFAs were found in 10- and 17-year-old S. alterniflora soils. The monounsaturated:branched PLFAs ratio declined, and cumulative microbial respiration on a per-unit-PLFAs increased following S. alterniflora invasion in the chronosequence. Our results suggest that S. alterniflora invasion significantly increased the biomass of soil various microbial groups and microbial respiration compared to bare flat soil by increasing soil available substrate, and modifying soil physiochemical properties. Soil microbial community reached the most enriched condition in the 10-year-old S. alterniflora community.

  15. Spartina alterniflora invasion alters soil microbial community composition and microbial respiration following invasion chronosequence in a coastal wetland of China

    PubMed Central

    Yang, Wen; Jeelani, Nasreen; Leng, Xin; Cheng, Xiaoli; An, Shuqing

    2016-01-01

    The role of exotic plants in regulating soil microbial community structure and activity following invasion chronosequence remains unclear. We investigated soil microbial community structure and microbial respiration following Spartina alterniflora invasion in a chronosequence of 6-, 10-, 17-, and 20-year-old by comparing with bare flat in a coastal wetland of China. S. alterniflora invasion significantly increased soil moisture and salinity, the concentrations of soil water-soluble organic carbon and microbial biomass carbon (MBC), the quantities of total and various types of phospholipid fatty acids (PLFAs), the fungal:bacterial PLFAs ratio and cumulative microbial respiration compared with bare flat. The highest MBC, gram-negative bacterial and saturated straight-chain PLFAs were found in 10-year-old S. alterniflora soil, while the greatest total PLFAs, bacterial and gram-positive bacterial PLFAs were found in 10- and 17-year-old S. alterniflora soils. The monounsaturated:branched PLFAs ratio declined, and cumulative microbial respiration on a per-unit-PLFAs increased following S. alterniflora invasion in the chronosequence. Our results suggest that S. alterniflora invasion significantly increased the biomass of soil various microbial groups and microbial respiration compared to bare flat soil by increasing soil available substrate, and modifying soil physiochemical properties. Soil microbial community reached the most enriched condition in the 10-year-old S. alterniflora community. PMID:27241173

  16. Particulate Respirators Functionalized with Silver Nanoparticles Showed Excellent Real-Time Antimicrobial Effects against Pathogens.

    PubMed

    Zheng, Clark Renjun; Li, Shuai; Ye, Chengsong; Li, Xinyang; Zhang, Chiqian; Yu, Xin

    2016-07-01

    Particulate respirators designed to filtrate fine particulate matters usually do not possess antimicrobial functions. The current study aimed to functionalize particulate respirators with silver nanoparticles (nanosilver or AgNPs), which have excellent antimicrobial activities, utilizing a straightforward and effective method. We first enhanced the nanosilver-coating ability of nonwoven fabrics from a particulate respirator through surface modification by sodium oleate. The surfactant treatment significantly improved the fabrics' water wet preference where the static water contact angles reduced from 122° to 56°. Both macroscopic agar-plate tests and microscopic scanning electron microscope (SEM) characterization revealed that nanosilver functionalized fabrics could effectively inhibit the growth of two model bacterial strains (i.e., Staphylococcus aureus and Pseudomonas aeruginosa). The coating of silver nanoparticles would not affect the main function of particulate respirators (i.e., filtration of fine air-borne particles). Nanosilver coated particulate respirators with excellent antimicrobial activities can provide real-time protection to people in regions with severe air pollution against air-borne pathogens. PMID:27327938

  17. Environmental and Genotypic Effects on the Respiration Associated with Symbiotic Nitrogen Fixation in Peas 1

    PubMed Central

    Mahon, John D.

    1979-01-01

    Estimated values for the respiration associated with symbiotic nitrogen fixation in Pisum sativum L. were independent of irradiance, temperature, plant age, and CO2 concentration, despite large variation in the total rates of C2H2 reduction and root + nodule respiration. Similar values were also found in Phaseolus vulgaris L., Vicia faba L. and Glycine max (L.) Merr. Among all combinations of four Pisum cultivars with four Rhizobium leguminosarum inoculants only the plant genotype significantly affected the fixation-linked respiration, although both plant and bacterial types significantly influenced the total rate of C2H2 reduction. On the basis of measured rates of H2 evolution and C2H2 reduction, or total nitrogen gain in the same system, the least respiration per unit of ammonia produced symbiotically was estimated as 4.8 to 6.9 moles CO2 (mole NH3)−1 in Laxton's Progress and the greatest as 9.3 to 13.3 moles CO2 (mole NH3)−1 in an Indian cultivar, as compared to a theoretical minimum respiration requirement of 4.7 moles CO2 (mole NH3)−1 in peas. PMID:16660833

  18. Soil microbial community composition and respiration along an experimental precipitation gradient in a semiarid steppe

    PubMed Central

    Zhao, Cancan; Miao, Yuan; Yu, Chengde; Zhu, Lili; Wang, Feng; Jiang, Lin; Hui, Dafeng; Wan, Shiqiang

    2016-01-01

    As a primary limiting factor in arid and semiarid regions, precipitation strongly influences soil microbial properties. However, the patterns and mechanisms of soil microbial responses to precipitation have not been well documented. In this study, changes in soil microorganisms along an experimental precipitation gradient with seven levels of precipitation manipulation (i.e., ambient precipitation as a control, and ±20%, ±40%, and ±60% of ambient precipitation) were explored in a semiarid temperate steppe in northern China. Soil microbial biomass carbon and respiration as well as the ratio of fungal to bacterial biomass varied along the experimental precipitation gradient and peaked under the +40% precipitation treatment. The shifts in microbial community composition could be largely attributable to the changes in soil water and nutrient availability. The metabolic quotient increased (indicating reduced carbon use efficiency) with increasing precipitation due to the leaching of dissolved organic carbon. The relative contributions of microbial respiration to soil and ecosystem respiration increased with increasing precipitation, suggesting that heterotrophic respiration will be more sensitive than autotrophic respiration if precipitation increases in the temperate steppe as predicted under future climate-change scenarios. PMID:27074973

  19. BOREAS TE-5 Soil Respiration Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Ehleriinger, Jim; Brooks, J. Renee; Flanagan, Larry

    2000-01-01

    The BOREAS TE-5 team collected measurements in the NSA and SSA on gas exchange, gas composition, and tree growth. Soil respiration data were collected from 26-May-94 to 07-Sep-94 in the BOREAS NSA and SSA to compare the soil respiration rates in different forest sites using a LI-COR 6200 soil respiration chamber (model 6299). The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distrobuted Activity Archive Center (DAAC).

  20. The effect of subject characteristics and respirator features on respirator fit.

    PubMed

    Zhuang, Ziqing; Coffey, Christopher C; Ann, Roland Berry

    2005-12-01

    A recent study was conducted to compare five fit test methods for screening out poor-fitting N95 filtering-facepiece respirators. Eighteen models of NIOSH-certified, N95 filtering-facepiece respirators were used to assess the fit test methods by using a simulated workplace protection factor (SWPF) test. The purpose of this companion study was to investigate the effect of subject characteristics (gender and face dimensions) and respirator features on respirator fit. The respirator features studied were design style (folding and cup style) and number of sizes available (one size fits all, two sizes, and three sizes). Thirty-three subjects participated in this study. Each was measured for 12 face dimensions using traditional calipers and tape. From this group, 25 subjects with face size categories 1 to 10 tested each respirator. The SWPF test protocol entailed using the PortaCount Plus to determine a SWPF based on total penetration (face-seal leakage plus filter penetration) while the subject performed six simulated workplace movements. Six tests were conducted for each subject/respirator model combination with redonning between tests. The respirator design style (folding style and cup style) did not have a significant effect on respirator fit in this study. The number of respirator sizes available for a model had significant impact on respirator fit on the panel for cup-style respirators with one and two sizes available. There was no significant difference in the geometric mean fit factor between male and female subjects for 16 of the 18 respirator models. Subsets of one to six face dimensions were found to be significantly correlated with SWPFs (p < 0.05) in 16 of the 33 respirator model/respirator size combinations. Bigonial breadth, face width, face length, and nose protrusion appeared the most in subsets (five or six) of face dimensions and their multiple linear regression coefficients were significantly different from zero (p < 0.05). Lip length was found in

  1. Effects of substrate induced respiration on the stability of bottom ash in landfill cover environment.

    PubMed

    Ilyas, A; Lovat, E; Persson, K M

    2014-12-01

    The municipal solid waste incineration bottom ash is being increasingly used to construct landfill covers in Sweden. In post-closure, owing to increased cover infiltration, the percolating water can add external organic matter to bottom ash. The addition and subsequent degradation of this external organic matter can affect metal mobility through complexation and change in redox conditions. However, the impacts of such external organic matter addition on bottom ash stability have not been fully evaluated yet. Therefore, the objective of this study was to evaluate the impact of external organic matter on bottom ash respiration and metal leaching. The samples of weathered bottom ash were mixed with oven dried and digested wastewater sludge (1%-5% by weight). The aerobic respiration activity (AT4), as well as the leaching of metals, was tested with the help of respiration and batch leaching tests. The respiration and heavy metal leaching increased linearly with the external organic matter addition. Based on the results, it was concluded that the external organic matter addition would negatively affect the quality of landfill cover drainage. PMID:25395160

  2. A combined electrochemical and optical trapping platform for measuring single cell respiration rates at electrode interfaces

    SciTech Connect

    Gross, Benjamin J.; El-Naggar, Mohamed Y.

    2015-06-15

    Metal-reducing bacteria gain energy by extracellular electron transfer to external solids, such as naturally abundant minerals, which substitute for oxygen or the other common soluble electron acceptors of respiration. This process is one of the earliest forms of respiration on earth and has significant environmental and technological implications. By performing electron transfer to electrodes instead of minerals, these microbes can be used as biocatalysts for conversion of diverse chemical fuels to electricity. Understanding such a complex biotic-abiotic interaction necessitates the development of tools capable of probing extracellular electron transfer down to the level of single cells. Here, we describe an experimental platform for single cell respiration measurements. The design integrates an infrared optical trap, perfusion chamber, and lithographically fabricated electrochemical chips containing potentiostatically controlled transparent indium tin oxide microelectrodes. Individual bacteria are manipulated using the optical trap and placed on the microelectrodes, which are biased at a suitable oxidizing potential in the absence of any chemical electron acceptor. The potentiostat is used to detect the respiration current correlated with cell-electrode contact. We demonstrate the system with single cell measurements of the dissimilatory-metal reducing bacterium Shewanella oneidensis MR-1, which resulted in respiration currents ranging from 15 fA to 100 fA per cell under our measurement conditions. Mutants lacking the outer-membrane cytochromes necessary for extracellular respiration did not result in any measurable current output upon contact. In addition to the application for extracellular electron transfer studies, the ability to electronically measure cell-specific respiration rates may provide answers for a variety of fundamental microbial physiology questions.

  3. A combined electrochemical and optical trapping platform for measuring single cell respiration rates at electrode interfaces

    NASA Astrophysics Data System (ADS)

    Gross, Benjamin J.; El-Naggar, Mohamed Y.

    2015-06-01

    Metal-reducing bacteria gain energy by extracellular electron transfer to external solids, such as naturally abundant minerals, which substitute for oxygen or the other common soluble electron acceptors of respiration. This process is one of the earliest forms of respiration on earth and has significant environmental and technological implications. By performing electron transfer to electrodes instead of minerals, these microbes can be used as biocatalysts for conversion of diverse chemical fuels to electricity. Understanding such a complex biotic-abiotic interaction necessitates the development of tools capable of probing extracellular electron transfer down to the level of single cells. Here, we describe an experimental platform for single cell respiration measurements. The design integrates an infrared optical trap, perfusion chamber, and lithographically fabricated electrochemical chips containing potentiostatically controlled transparent indium tin oxide microelectrodes. Individual bacteria are manipulated using the optical trap and placed on the microelectrodes, which are biased at a suitable oxidizing potential in the absence of any chemical electron acceptor. The potentiostat is used to detect the respiration current correlated with cell-electrode contact. We demonstrate the system with single cell measurements of the dissimilatory-metal reducing bacterium Shewanella oneidensis MR-1, which resulted in respiration currents ranging from 15 fA to 100 fA per cell under our measurement conditions. Mutants lacking the outer-membrane cytochromes necessary for extracellular respiration did not result in any measurable current output upon contact. In addition to the application for extracellular electron transfer studies, the ability to electronically measure cell-specific respiration rates may provide answers for a variety of fundamental microbial physiology questions.

  4. A combined electrochemical and optical trapping platform for measuring single cell respiration rates at electrode interfaces.

    PubMed

    Gross, Benjamin J; El-Naggar, Mohamed Y

    2015-06-01

    Metal-reducing bacteria gain energy by extracellular electron transfer to external solids, such as naturally abundant minerals, which substitute for oxygen or the other common soluble electron acceptors of respiration. This process is one of the earliest forms of respiration on earth and has significant environmental and technological implications. By performing electron transfer to electrodes instead of minerals, these microbes can be used as biocatalysts for conversion of diverse chemical fuels to electricity. Understanding such a complex biotic-abiotic interaction necessitates the development of tools capable of probing extracellular electron transfer down to the level of single cells. Here, we describe an experimental platform for single cell respiration measurements. The design integrates an infrared optical trap, perfusion chamber, and lithographically fabricated electrochemical chips containing potentiostatically controlled transparent indium tin oxide microelectrodes. Individual bacteria are manipulated using the optical trap and placed on the microelectrodes, which are biased at a suitable oxidizing potential in the absence of any chemical electron acceptor. The potentiostat is used to detect the respiration current correlated with cell-electrode contact. We demonstrate the system with single cell measurements of the dissimilatory-metal reducing bacterium Shewanella oneidensis MR-1, which resulted in respiration currents ranging from 15 fA to 100 fA per cell under our measurement conditions. Mutants lacking the outer-membrane cytochromes necessary for extracellular respiration did not result in any measurable current output upon contact. In addition to the application for extracellular electron transfer studies, the ability to electronically measure cell-specific respiration rates may provide answers for a variety of fundamental microbial physiology questions. PMID:26133851

  5. BACTERIAL SORPTION OF HEAVY METALS

    EPA Science Inventory

    Four bacteria, Bacillus cereus, B. subtilis, Escherichia coli, and Pseudomonas aeruginosa, were examined for the ability to remove Ag+, Cd2+, Cu2+, and La3+ from solution by batch equilibration methods. d and Cu sorption over the concentration range 0.001 to 1 mM was described by...

  6. Respiration gated radiotherapy treatment: a technical study

    NASA Astrophysics Data System (ADS)

    Kubo, Hideo D.; Hill, Bruce C.

    1996-01-01

    In order to optimize external-beam conformal radiotherapy, patient movement during treatment must be minimized. For treatment on the upper torso, the target organs are known to move substantially due to patient respiration. This paper deals with the technical aspects of gating the radiotherapy beam synchronously with respiration: the optimal respiration monitoring system, measurements of organ displacement and linear accelerator gating. Several respiration sensors including a thermistor, a thermocouple, a strain gauge and a pneumotachograph were examined to find the optimal sensor. The magnitude of breast, chest wall and lung motion were determined using playback of fluoroscopic x-ray images recorded on a VCR during routine radiotherapy simulation. Total dose, beam symmetry and beam uniformity were examined to determine any effects on the Varian 2100C linear accelerator due to gating.

  7. Photosynthesis and Respiration in Leaf Slices.

    ERIC Educational Resources Information Center

    Brown, Simon

    1998-01-01

    Demonstrates how leaf slices provide an inexpensive material for illustrating several fundamental points about the biochemistry of photosynthesis and respiration. Presents experiments that illustrate the effects of photon flux density and herbicides and carbon dioxide concentration. (DDR)

  8. [Effects of Tillage on Soil Respiration and Root Respiration Under Rain-Fed Summer Corn Field].

    PubMed

    Lu, Xing-li; Liao, Yun-cheng

    2015-06-01

    To explore the effects of different tillage systems on soil respiration and root respiration under rain-fed condition. Based on a short-term experiment, this paper investigated soil respiration in summer corn growth season under four tillage treatments including subsoiling tillage (ST), no tillage (NT), rotary tillage (RT) and moldboard plow tillage (CT). The contribution of root respiration using root exclusion method was also discussed. The results showed that soil respiration rate presented a single peak trend under four tillage methods during the summer corn growing season, and the maximum value was recorded at the heading stage. The trends of soil respiration were as follows: heading stage > flowering stage > grain filling stage > maturity stage > jointing stage > seedling stage. The trends of soil respiration under different tillage systems were as follows: CT > ST > RT > NT. There was a significant correlation between soil respiration rate and soil temperatures (P < 0.05), which could explain 35%-75% variability of soil respiration using exponential function equation. However, there was no significant correlation between soil respiration rate and soil moisture. Root respiration accounted for 45.13%-56.86% of the proportion of soil respiratio n with the mean value 51.72% during the summer corn growing season under different tillage systems. Therefore, root exclusion method could be used to study the contribution of crop growth to carbon emission, to compare effects of different tillage systems on the contribution of root respiration provides the bases for selecting the measures to slow down the decomposition of soil carbon. PMID:26387335

  9. 42 CFR 84.250 - Vinyl chloride respirators; description.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Vinyl chloride respirators; description. 84.250... Respirators § 84.250 Vinyl chloride respirators; description. Vinyl chloride respirators, including all... escape from vinyl chloride atmospheres containing adequate oxygen to support life, are...

  10. 42 CFR 84.250 - Vinyl chloride respirators; description.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Vinyl chloride respirators; description. 84.250... Respirators § 84.250 Vinyl chloride respirators; description. Vinyl chloride respirators, including all... escape from vinyl chloride atmospheres containing adequate oxygen to support life, are...

  11. 42 CFR 84.250 - Vinyl chloride respirators; description.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Vinyl chloride respirators; description. 84.250... Respirators § 84.250 Vinyl chloride respirators; description. Vinyl chloride respirators, including all... escape from vinyl chloride atmospheres containing adequate oxygen to support life, are...

  12. 42 CFR 84.250 - Vinyl chloride respirators; description.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Vinyl chloride respirators; description. 84.250... Respirators § 84.250 Vinyl chloride respirators; description. Vinyl chloride respirators, including all... escape from vinyl chloride atmospheres containing adequate oxygen to support life, are...

  13. 42 CFR 84.250 - Vinyl chloride respirators; description.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Vinyl chloride respirators; description. 84.250... Respirators § 84.250 Vinyl chloride respirators; description. Vinyl chloride respirators, including all... escape from vinyl chloride atmospheres containing adequate oxygen to support life, are...

  14. 42 CFR 84.130 - Supplied-air respirators; description.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Supplied-air respirators; description. 84.130... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.130 Supplied-air respirators; description. Supplied-air respirators, including all...

  15. 42 CFR 84.130 - Supplied-air respirators; description.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Supplied-air respirators; description. 84.130... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.130 Supplied-air respirators; description. Supplied-air respirators, including all...

  16. 42 CFR 84.130 - Supplied-air respirators; description.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Supplied-air respirators; description. 84.130... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.130 Supplied-air respirators; description. Supplied-air respirators, including all...

  17. 42 CFR 84.197 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.197... Cartridge Respirators § 84.197 Respirator containers; minimum requirements. Respirators shall be equipped with a substantial, durable container bearing markings which show the applicant's name, the type...

  18. 42 CFR 84.134 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.134... Respirators § 84.134 Respirator containers; minimum requirements. Supplied-air respirators shall be equipped with a substantial, durable container bearing markings which show the applicant's name, the type...

  19. 42 CFR 84.191 - Chemical cartridge respirators; required components.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Chemical cartridge respirators; required components... Chemical Cartridge Respirators § 84.191 Chemical cartridge respirators; required components. (a) Each chemical cartridge respirator described in § 84.190 shall, where its design requires, contain the...

  20. 42 CFR 84.191 - Chemical cartridge respirators; required components.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Chemical cartridge respirators; required components... Chemical Cartridge Respirators § 84.191 Chemical cartridge respirators; required components. (a) Each chemical cartridge respirator described in § 84.190 shall, where its design requires, contain the...

  1. 42 CFR 84.191 - Chemical cartridge respirators; required components.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Chemical cartridge respirators; required components... Chemical Cartridge Respirators § 84.191 Chemical cartridge respirators; required components. (a) Each chemical cartridge respirator described in § 84.190 shall, where its design requires, contain the...

  2. 42 CFR 84.191 - Chemical cartridge respirators; required components.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Chemical cartridge respirators; required components... Chemical Cartridge Respirators § 84.191 Chemical cartridge respirators; required components. (a) Each chemical cartridge respirator described in § 84.190 shall, where its design requires, contain the...

  3. 42 CFR 84.191 - Chemical cartridge respirators; required components.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Chemical cartridge respirators; required components... Chemical Cartridge Respirators § 84.191 Chemical cartridge respirators; required components. (a) Each chemical cartridge respirator described in § 84.190 shall, where its design requires, contain the...

  4. 42 CFR 84.130 - Supplied-air respirators; description.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Supplied-air respirators; description. 84.130... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.130 Supplied-air respirators; description. Supplied-air respirators, including all...

  5. Ultrafine and respirable particle exposure during vehicle fire suppression

    PubMed Central

    Fent, Kenneth W.

    2015-01-01

    Vehicle fires are a common occurrence, yet few studies have reported exposures associated with burning vehicles. This article presents an assessment of firefighters’ potential for ultrafine and respirable particle exposure during vehicle fire suppression training. Fires were initiated within the engine compartment and passenger cabins of three salvaged vehicles, with subsequent water suppression by fire crews. Firefighter exposures were monitored with an array of direct reading particle and air quality instruments. A flexible metallic duct and blower drew contaminants to the instrument array, positioned at a safe distance from the burning vehicles, with the duct inlet positioned at the nozzle operator’s shoulder. The instruments measured the particle number, active surface area, respirable particle mass, photoelectric response, aerodynamic particle size distributions, and air quality parameters. Although vehicle fires were suppressed quickly (<10 minutes), firefighters may be exposed to short duration, high particle concentration episodes during fire suppression, which are orders of magnitude greater than the ambient background concentration. A maximum transient particle concentration of 1.21 × 107 particles per cm3, 170 mg m−3 respirable particle mass, 4700 μm2 cm−3 active surface area and 1400 (arbitrary units) in photoelectric response were attained throughout the series of six fires. Expressed as fifteen minute time-weighted averages, engine compartment fires averaged 5.4 × 104 particles per cm3, 0.36 mg m−3 respirable particle mass, 92 μm2 cm−3 active particle surface area and 29 (arbitrary units) in photoelectric response. Similarly, passenger cabin fires averaged 2.04 × 105 particles per cm3, 2.7 mg m−3 respirable particle mass, 320 μm2 cm−3 active particle surface area, and 34 (arbitrary units) in photoelectric response. Passenger cabin fires were a greater potential source of exposure than engine compartment fires. The wind direction

  6. Ultrafine and respirable particle exposure during vehicle fire suppression.

    PubMed

    Evans, Douglas E; Fent, Kenneth W

    2015-10-01

    Vehicle fires are a common occurrence, yet few studies have reported exposures associated with burning vehicles. This article presents an assessment of firefighters' potential for ultrafine and respirable particle exposure during vehicle fire suppression training. Fires were initiated within the engine compartment and passenger cabins of three salvaged vehicles, with subsequent water suppression by fire crews. Firefighter exposures were monitored with an array of direct reading particle and air quality instruments. A flexible metallic duct and blower drew contaminants to the instrument array, positioned at a safe distance from the burning vehicles, with the duct inlet positioned at the nozzle operator's shoulder. The instruments measured the particle number, active surface area, respirable particle mass, photoelectric response, aerodynamic particle size distributions, and air quality parameters. Although vehicle fires were suppressed quickly (<10 minutes), firefighters may be exposed to short duration, high particle concentration episodes during fire suppression, which are orders of magnitude greater than the ambient background concentration. A maximum transient particle concentration of 1.21 × 10(7) particles per cm(3), 170 mg m(-3) respirable particle mass, 4700 μm(2) cm(-3) active surface area and 1400 (arbitrary units) in photoelectric response were attained throughout the series of six fires. Expressed as fifteen minute time-weighted averages, engine compartment fires averaged 5.4 × 10(4) particles per cm(3), 0.36 mg m(-3) respirable particle mass, 92 μm(2) cm(-3) active particle surface area and 29 (arbitrary units) in photoelectric response. Similarly, passenger cabin fires averaged 2.04 × 10(5) particles per cm(3), 2.7 mg m(-3) respirable particle mass, 320 μm(2) cm(-3) active particle surface area, and 34 (arbitrary units) in photoelectric response. Passenger cabin fires were a greater potential source of exposure than engine compartment fires. The

  7. Bacterial multidrug efflux transporters.

    PubMed

    Delmar, Jared A; Su, Chih-Chia; Yu, Edward W

    2014-01-01

    Infections caused by bacteria are a leading cause of death worldwide. Although antibiotics remain a key clinical therapy, their effectiveness has been severely compromised by the development of drug resistance in bacterial pathogens. Multidrug efflux transporters--a common and powerful resistance mechanism--are capable of extruding a number of structurally unrelated antimicrobials from the bacterial cell, including antibiotics and toxic heavy metal ions, facilitating their survival in noxious environments. Transporters of the resistance-nodulation-cell division (RND) superfamily typically assemble as tripartite efflux complexes spanning the inner and outer membranes of the cell envelope. In Escherichia coli, the CusCFBA complex, which mediates resistance to copper(I) and silver(I) ions, is the only known RND transporter specific to heavy metals. Here, we describe the current knowledge of individual pump components of the Cus system, a paradigm for efflux machinery, and speculate on how RND pumps assemble to fight diverse antimicrobials. PMID:24702006

  8. The world-class Howard's Pass SEDEX Zn-Pb district, Selwyn Basin, Yukon. Part II: the roles of thermochemical and bacterial sulfate reduction in metal fixation

    NASA Astrophysics Data System (ADS)

    Gadd, Michael G.; Layton-Matthews, Daniel; Peter, Jan M.; Paradis, Suzanne; Jonasson, Ian R.

    2016-07-01

    The Howard's Pass district of sedimentary exhalative (SEDEX) Zn-Pb deposits is located in Yukon Territory and comprises 14 Zn-Pb deposits that contain an estimated 400.7 Mt of sulfide mineralization grading 4.5 % Zn and 1.5 % Pb. Mineralization is hosted in carbonaceous and calcareous and, to a lesser extent, siliceous mudstones. Pyrite is a minor but ubiquitous mineral in the host rocks stratigraphically above, within, and below mineralization. Petrographic analyses reveal that pyrite has a complex and protracted growth history, preserving multiple generations of pyrite within single grains. Sulfur isotope analysis of paragenetically complex pyrite by secondary ion mass spectrometry (SIMS) reveals that sulfur isotope compositions vary with textural zonation. Within the Zn-Pb deposits, framboidal pyrite is the earliest pyrite generation recognized, and this exclusively has negative δ34S values (mean = -16.6 ± 4.1 ‰; n = 55), whereas paragenetically later pyrite and galena possess positive δ34S values (mean = 29.1 ± 7.5 and 22.4 ± 3.0 ‰, n = 13 and 13, respectively). Previous studies found that sphalerite and galena mineral separates have exclusively positive δ34S values (mean = 16.8 ± 3.3 and 12.7 ± 2.8 ‰, respectively; Goodfellow and Jonasson 1986). These distinct sulfur isotope values are interpreted to reflect varying contributions of bacterially reduced seawater sulfate (negative; framboidal pyrite) and thermochemically reduced seawater sulfate and/or hydrothermal sulfate (positive; galena, sphalerite, later forms of pyrite). Textural evidence indicates that framboidal pyrite predates galena and sphalerite deposition. Collectively, the in situ and bulk sulfur isotope data are much more complex than δ34S values permitted by prevailing genetic models that invoke only biogenically reduced sulfur and coeval deposition of galena, sphalerite, and framboidal pyrite within a euxinic water column, and we present several lines of evidence that argue

  9. I. Development of Metal-Mediated SPOT-Synthesis Methods for the Efficient Construction of Small-Molecule Macroarrays. II. Design and Synthesis of Novel Bacterial Biofilm Inhibitors

    NASA Astrophysics Data System (ADS)

    Frei, Reto

    I. The use of small molecule probes to explore biological phenomena has become a valuable tool in chemical biology. As a result, methods that permit the rapid synthesis and biological evaluation of such compounds are highly sought-after. The small molecule macroarray represents one such approach for the synthesis and identification of novel bioactive agents. Macroarrays are readily constructed via the SPOT-synthesis technique on planar cellulose membranes, yielding spatially addressed libraries of ˜10-1000 unique compounds. We sought to expand the arsenal of chemical reactions compatible with this solid-phase platform, and developed highly efficient SPOT-synthesis protocols for the Mizoroki-Heck, Suzuki-Miyaura, and copper-catalyzed azide-alkyne cycloaddition reaction. We demonstrated that these metal-mediated reactions can be implemented, either individually or sequentially, for the efficient construction of small molecules in high purity on rapid time scales. Utilizing these powerful C-C and C-N bond forming coupling reactions, we constructed a series of macroarrays based on novel stilbene, phenyl-naphthalene, and triazole scaliblds. Subsequent biological testing of the stilbene and phenyl-naphthalene libraries revealed several potent antagonists and agonists, respectively, of the quorum sensing (QS) receptor LuxR in Vibrio fischeri. II. Bacteria living within biofilms are notorious for their resistance to known antibiotic agents, and constitute a major human health threat. Methods to attenuate biofilm growth would have a significant impact on the management of bacterial infections. Despite intense research efforts, small molecules capable of either inhibiting or dispersing biolilms remain scarce. We utilized natural products with purported anti-biofilm or QS inhibitory activity as sources of structural insight to guide the synthesis of novel biofilm modulators with improved activities. These studies revealed 2-aminobenzimidazole derivatives as highly potent

  10. Bacterial Keratitis

    MedlinePlus

    ... very quickly, and if left untreated, can cause blindness. The bacteria usually responsible for this type of ... to intense ultraviolet radiation exposure, e.g. snow blindness or welder's arc eye). Next Bacterial Keratitis Symptoms ...

  11. The short-term toxic effects of TiO₂nanoparticles toward bacteria through viability, cellular respiration, and lipid peroxidation.

    PubMed

    Erdem, Ayca; Metzler, David; Cha, Daniel K; Huang, C P

    2015-11-01

    To better understand the potential impacts of metal oxide nanoparticles (NPs) on Gram(+) Bacillus subtilis and Gram(-) Escherichia coli (K12) bacteria, eight different nanosized titanium dioxide (TiO2) suspensions with five different concentrations were used. Water quality parameters (pH, temperature, and ionic strength), light sources, and light intensities were also changed to achieve different environmental conditions. The photosensitive TiO2 NPs were found to be harmful to varying degrees under ambient conditions, with antibacterial activity increasing with primary particle sizes from 16 to 20 nm. The presence of light was a significant factor under most conditions tested, presumably due to its role in promoting generation of reactive oxygen species (ROS). However, bacterial growth inhibition was also observed under dark conditions and different water quality parameters, indicating that undetermined mechanisms additional to photocatalytic ROS production were responsible for toxicity. The results also indicated that nano-TiO2 particles in the absence and the presence of photoactivation induced lipid peroxidation and cellular respiration disruption. PMID:26165996

  12. Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans

    PubMed Central

    Caza, Mélissa; Kronstad, James W.

    2013-01-01

    Iron is the most abundant transition metal in the human body and its bioavailability is stringently controlled. In particular, iron is tightly bound to host proteins such as transferrin to maintain homeostasis, to limit potential damage caused by iron toxicity under physiological conditions and to restrict access by pathogens. Therefore, iron acquisition during infection of a human host is a challenge that must be surmounted by every successful pathogenic microorganism. Iron is essential for bacterial and fungal physiological processes such as DNA replication, transcription, metabolism, and energy generation via respiration. Hence, pathogenic bacteria and fungi have developed sophisticated strategies to gain access to iron from host sources. Indeed, siderophore production and transport, iron acquisition from heme and host iron-containing proteins such as hemoglobin and transferrin, and reduction of ferric to ferrous iron with subsequent transport are all strategies found in bacterial and fungal pathogens of humans. This review focuses on a comparison of these strategies between bacterial and fungal pathogens in the context of virulence and the iron limitation that occurs in the human body as a mechanism of innate nutritional defense. PMID:24312900

  13. Soil respiration partition and its components in the total agro-ecosystem respiration

    NASA Astrophysics Data System (ADS)

    Delogu, Emilie; LeDantec, Valerie; Mordelet, Patrick; Buysse, Pauline; Aubinet, Marc; Pattey, Elizabeth; Mary, Bruno

    2013-04-01

    Close to 15% of the Earth's terrestrial surface is used for cropland. In the context of global warming, and acknowledged by the Kyoto Protocol, agricultural soils could be a significant sink for atmospheric CO2. Understanding the factors influencing carbon fluxes of agricultural soils is essential for implementing efficient mitigation practices. Most of the soil respiration modeling studies was carried out in forest ecosystems, but only a few was carried out in agricultural ecosystems. In the study, we evaluated simple formalisms to model soil respiration using wheat data from four contrasting geographical mi-latitude regions. Soil respiration were measured in three winter wheat fields at Lamasquère (43°49'N, 01°23'E, 2007) and Auradé (43°54'N, 01°10'E, 2008), South-West France and Lonzée (50°33'N, 4°44'E, 2007), Belgium, and in a spring wheat field at Ottawa (45°22'N, 75°43'W, 2007, 2011), Ontario, Canada. Manual closed chambers were used in the French sites. The Belgium and Canadian sites were equipped with automated closed chamber systems, which continuously collected 30-min soil respiration exchanges. All the sites were also equipped with eddy flux towers. When eddy flux data were collected over bare soil, the net ecosystem exchange (NEE) was equal to soil respiration exchange. These NEE data were used to validate the model. Different biotic and abiotic descriptors were used to model daily soil respiration and its heterotrophic and autotrophic components: soil temperature, soil relative humidity, Gross Primary Productivity (GPP), shoot biomass, crop height, with different formalisms. It was interesting to conclude that using biotic descriptors did not improve the performances of the model. In fact, a combination of abiotic descriptors (soil humidity and soil temperature) allowed significant model formalism to model soil respiration. The simple soil respiration model was used to calculate the heterotrophic and autotrophic source contributions to

  14. Cholera Toxin Production Induced upon Anaerobic Respiration is Suppressed by Glucose Fermentation in Vibrio cholerae.

    PubMed

    Oh, Young Taek; Lee, Kang-Mu; Bari, Wasimul; Kim, Hwa Young; Kim, Hye Jin; Yoon, Sang Sun

    2016-03-01

    The causative agent of pandemic cholera, Vibrio cholerae, infects the anaerobic environment of the human intestine. Production of cholera toxin (CT), a major virulence factor of V. cholerae, is highly induced during anaerobic respiration with trimethylamine N-oxide (TMAO) as an alternative electron acceptor. However, the molecular mechanism of TMAO-stimulated CT production is not fully understood. Herein, we reveal that CT production during anaerobic TMAO respiration is affected by glucose fermentation. When the seventh pandemic V. cholerae O1 strain N16961 was grown with TMAO and additional glucose, CT production was markedly reduced. Furthermore, an N16961 Δcrp mutant, devoid of cyclic AMP receptor protein (CRP), was defective in CT production during growth by anaerobic TMAO respiration, further suggesting a role of glucose metabolism in regulating TMAO-mediated CT production. TMAO reductase activity was noticeably decreased when grown together with glucose or by mutation of the crp gene. A CRP binding region was identified in the promoter region of the torD gene, which encodes a structural subunit of the TMAO reductase. Gel shift assays further confirmed the binding of purified CRP to the torD promoter sequence. Together, our results suggest that the bacterial ability to respire using TMAO is controlled by CRP, whose activity is dependent on glucose availability. Our results reveal a novel mechanism for the regulation of major virulence factor production by V. cholerae under anaerobic growth conditions. PMID:26718467

  15. Microbial respiration and trophic regimes in the Northern Adriatic Sea (Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    La Ferla, Rosabruna; Azzaro, Maurizio; Maimone, Giovanna

    2006-08-01

    Remineralization in the Northern Adriatic Sea has been examined by studying the respiratory rates, through electron transport system activity, in four systems identified on the basis of different salinities, caused by riverine outflows, and different productivity regimes measured by apparent oxygen utilization. The sea waters influenced by river discharges were characterized by high respiratory activity while in fully marine waters respiration fell close to the typical value for the surface pelagic Mediterranean waters. A speculative approach to quantify the trophic balance in the examined sub-systems was adopted and the following ratios were computed: Primary Production/Respiration (PP/R); Primary Production/(Bacterial Production + Respiration) [PP/(BP + R)]; (Dissolved Organic Carbon + Particulate Organic Carbon)/Respiration [(DOC + POC)/R], using the data generated at the same time from the same multidisciplinary cruises. High variability of these metabolic ratios in the described subsystems occurred, so that shifting autotrophy and heterotrophy patterns through summer-winter and cross-productivity front trends occurred. Episodic heterotrophy has been found to happen in the North Adriatic Sea, although this is normally considered a productive ecosystem.

  16. BOREAS TE-2 Wood Respiration Data

    NASA Technical Reports Server (NTRS)

    Ryan, Michael G.; Lavigne, Michael; Hall, Forrest G. (Editor); Papagno, Andrea (Editor)

    2000-01-01

    The BOREAS TE-2 team collected several data sets in support of its efforts to characterize and interpret information on the respiration of the foliage, roots, and wood of boreal vegetation. This data set contains measurements of wood respiration conducted in the NSA during the growing season of 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  17. BOREAS TE-2 Root Respiration Data

    NASA Technical Reports Server (NTRS)

    Ryan, Michael G.; Lavigne, Michael; Hall, Forrest G. (Editor); Papagno, Andrea (Editor)

    2000-01-01

    The BOREAS TE-2 team collected several data sets in support of its efforts to characterize and interpret information on the respiration of the foliage, roots, and wood of boreal vegetation. This data set includes means of tree root respiration measurements on roots having diameters ranging from 0 to 2 mm conducted in the NSA during the growing season of 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  18. BOREAS TE-2 Continuous Wood Respiration Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Papagno, Andrea (Editor); Ryan, Michael G.; Lavigne, Michael

    2000-01-01

    The BOREAS TE-2 team collected several data sets in support of its efforts to characterize and interpret information on the respiration of the foliage, roots, and wood of boreal vegetation. This data set contains measurements of wood respiration measured continuously (about once per hour) in the NSA during the growing season of 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  19. BOREAS TE-2 Foliage Respiration Data

    NASA Technical Reports Server (NTRS)

    Ryan, Michael G.; Hall, Forrest G. (Editor); Lavigne, Michael; Papagno, Andrea (Editor)

    2000-01-01

    The BOREAS TE-2 team collected several data sets in support of its efforts to characterize and interpret information on the respiration of the foliage, roots, and wood of boreal vegetation. This data set contains measurements of foliar respiration conducted in the NSA during the growing season of 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  20. Changes in soil respiration components and their specific respiration along three successional forests in the subtropics

    DOE PAGESBeta

    Han, Tianfeng; Liu, Juxiu; Wang, Gangsheng; Huang, Wenjuan; Zhou, Guoyi

    2016-01-16

    1.Understanding how soil respiration components change with forest succession is critical for modelling and predicting soil carbon (C) processes and its sequestration below-ground. The specific respiration (a ratio of respiration to biomass) is increasingly being used as an indicator of forest succession conceptually based on Odum's theory of ecosystem development. However, the hypothesis that specific soil respiration declines with forest succession remains largely untested. 2.We used a trenching method to partition soil respiration into heterotrophic respiration and autotrophic respiration (RH and RA) and then evaluated the specific RH and specific RA in three successional forests in subtropical China. 3.Our resultsmore » showed a clear seasonality in the influence of forest succession on RH, with no significant differences among the three forests in the dry season but a higher value in the old-growth forest than the other two forests in the wet season. RA in the old-growth forest tended to be the highest among the three forests. Both the specific RH and specific RA decreased with the progressive maturity of three forests. 4.Lastly, our results highlight the importance of forest succession in determining the variation of RH in different seasons. With forest succession, soil microbes and plant roots become more efficient to conserve C resources, which would result in a greater proportion of C retained in soils.« less

  1. Complementarity among plant growth promoting traits in rhizospheric bacterial communities promotes plant growth

    PubMed Central

    Singh, Mangal; Awasthi, Ashutosh; Soni, Sumit K.; Singh, Rakshapal; Verma, Rajesh K.; Kalra, Alok

    2015-01-01

    An assessment of roles of rhizospheric microbial diversity in plant growth is helpful in understanding plant-microbe interactions. Using random combinations of rhizospheric bacterial species at different richness levels, we analysed the contribution of species richness, compositions, interactions and identity on soil microbial respiration and plant biomass. We showed that bacterial inoculation in plant rhizosphere enhanced microbial respiration and plant biomass with complementary relationships among bacterial species. Plant growth was found to increase linearly with inoculation of rhizospheric bacterial communities with increasing levels of species or plant growth promoting trait diversity. However, inoculation of diverse bacterial communities having single plant growth promoting trait, i.e., nitrogen fixation could not enhance plant growth over inoculation of single bacteria. Our results indicate that bacterial diversity in rhizosphere affect ecosystem functioning through complementary relationship among plant growth promoting traits and may play significant roles in delivering microbial services to plants. PMID:26503744

  2. Impacts of Shewanella oneidensis c-type cytochromes on aerobic and anaerobic respiration

    SciTech Connect

    Gao, Haichun; Barua, Soumitra; Liang, Yili; Wu, Lianming; Dong, Yangyang; Reed, Samantha B.; Chen, Jingrong; Culley, David E.; Kennedy, David W.; Yang, Yunfeng; He, Zhili; Nealson, Kenneth H.; Fredrickson, Jim K.; Tiedje, James M.; Romine, Margaret F.; Zhou, Jizhong

    2010-06-24

    Shewanella are renowned for their ability to utilize a wide range of electron acceptors (EA) for respiration, which has been partially accredited to the presence of a large number of the c-type cytochromes. To investigate the involvement of c-type cytochrome proteins in aerobic and anaerobic respiration of Shewanella oneidensis Mr -1, 36 in-frame deletion mutants, among possible 41 predicted, c-type cytochrome genes were obtained. The potential involvement of each individual c-type cytochrome in the reduction of a variety of EAs was assessed individually as well as in competition experiments. While results on the wellstudied c-type cytochromes CymA(SO4591) and MtrC(SO1778) were consistent with previous findings, collective observations were very interesting: the responses of S. oneidensis Mr -1 to low and highly toxic metals appeared to be significantly different; CcoO, CcoP and PetC, proteins involved in aerobic respiration in various organisms, played critical roles in both aerobic and anaerobic respiration with highly toxic metals as EA. In addition, these studies also suggested that an uncharacterized c-type cytochrome (SO4047) may be important to both aerobiosis and anaerobiosis.

  3. Development of conformal respirator monitoring technology

    SciTech Connect

    Shonka, J.J.; Weismann, J.J.; Logan, R.J.

    1997-04-01

    This report summarizes the results of a Small Business Innovative Research Phase II project to develop a modular, surface conforming respirator monitor to improve upon the manual survey techniques presently used by the nuclear industry. Research was performed with plastic scintillator and gas proportional modules in an effort to find the most conducive geometry for a surface conformal, position sensitive monitor. The respirator monitor prototype developed is a computer controlled, position-sensitive detection system employing 56 modular proportional counters mounted in molds conforming to the inner and outer surfaces of a commonly used respirator (Scott Model 801450-40). The molds are housed in separate enclosures and hinged to create a {open_quotes}waffle-iron{close_quotes} effect so that the closed monitor will simultaneously survey both surfaces of the respirator. The proportional counter prototype was also designed to incorporate Shonka Research Associates previously developed charge-division electronics. This research provided valuable experience into pixellated position sensitive detection systems. The technology developed can be adapted to other monitoring applications where there is a need for deployment of many traditional radiation detectors.

  4. [Respiration disorders after severe mechanical trauma].

    PubMed

    Deriabin, I I; Kustov, N A; Novikov, S A

    1979-11-01

    The external respiration has been studied in 221 patients. The disorders in pulmonary gas exchange subsequent to an injury are due to decreased ventilation volumes, delayed diffusion of inhaled gases and disturbed blood circulation in the lungs. Functional disorders are often aggravated by pulmonary complications. PMID:524676

  5. 78 FR 18535 - Respirator Certification Fees

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ... HUMAN SERVICES 42 CFR Part 84 RIN 0920-AA42 Respirator Certification Fees AGENCY: Centers for Disease... and Human Services (HHS) proposes to revise the fee structure currently used by the National Institute... number). SUPPLEMENTARY INFORMATION: This proposed rule is designed to establish fees for the...

  6. Microbial iron respiration: impacts on corrosion processes.

    PubMed

    Lee, A K; Newman, D K

    2003-08-01

    In this review, we focus on how biofilms comprising iron-respiring bacteria influence steel corrosion. Specifically, we discuss how biofilm growth can affect the chemistry of the environment around the steel at different stages of biofilm development, under static or dynamic fluid regimes. We suggest that a mechanistic understanding of the role of biofilm metabolic activity may facilitate corrosion control. PMID:12734693

  7. 42 CFR 84.1130 - Respirators; description.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... respective vapors, or from the chemical reaction between their respective vapors and gases. (3) Air-purifying... reaction with sorbent material in the canister. (c) Pesticide respirators, including all completely...) Front-mounted or back-mounted gas masks; (2) Chin-style gas mask; (3) Chemical cartridge; (4)...

  8. 42 CFR 84.1130 - Respirators; description.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... respective vapors, or from the chemical reaction between their respective vapors and gases. (3) Air-purifying... reaction with sorbent material in the canister. (c) Pesticide respirators, including all completely...) Front-mounted or back-mounted gas masks; (2) Chin-style gas mask; (3) Chemical cartridge; (4)...

  9. 42 CFR 84.1130 - Respirators; description.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... respective vapors, or from the chemical reaction between their respective vapors and gases. (3) Air-purifying... reaction with sorbent material in the canister. (c) Pesticide respirators, including all completely...) Front-mounted or back-mounted gas masks; (2) Chin-style gas mask; (3) Chemical cartridge; (4)...

  10. 42 CFR 84.1130 - Respirators; description.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... respective vapors, or from the chemical reaction between their respective vapors and gases. (3) Air-purifying... reaction with sorbent material in the canister. (c) Pesticide respirators, including all completely...) Front-mounted or back-mounted gas masks; (2) Chin-style gas mask; (3) Chemical cartridge; (4)...

  11. Temperature, Pulse, and Respiration. Learning Activity Package.

    ERIC Educational Resources Information Center

    Runge, Lillian

    This learning activity package on temperature, pulse, and respiration is one of a series of 12 titles developed for use in health occupations education programs. Materials in the package include objectives, a list of materials needed, information sheets, reviews (self evaluations) of portions of the content, and answers to reviews. These topics…

  12. Estimating Canopy Dark Respiration for Crop Models

    NASA Technical Reports Server (NTRS)

    Monje Mejia, Oscar Alberto

    2014-01-01

    Crop production is obtained from accurate estimates of daily carbon gain.Canopy gross photosynthesis (Pgross) can be estimated from biochemical models of photosynthesis using sun and shaded leaf portions and the amount of intercepted photosyntheticallyactive radiation (PAR).In turn, canopy daily net carbon gain can be estimated from canopy daily gross photosynthesis when canopy dark respiration (Rd) is known.

  13. Respiration patterns of resting wasps (Vespula sp.).

    PubMed

    Käfer, Helmut; Kovac, Helmut; Stabentheiner, Anton

    2013-04-01

    We investigated the respiration patterns of wasps (Vespula sp.) in their viable temperature range (2.9-42.4°C) by measuring CO2 production and locomotor and endothermic activity. Wasps showed cycles of an interburst-burst type at low ambient temperatures (Ta<5°C) or typical discontinuous gas exchange patterns with closed, flutter and open phases. At high Ta of >31°C, CO2 emission became cyclic. With rising Ta they enhanced CO2-emission primarily by an exponential increase in respiration frequency, from 2.6 mHz at 4.7°C to 74 mHz at 39.7°C. In the same range of Ta CO2 release per cycle decreased from 38.9 to 26.4 μl g(-1)cycle(-1). A comparison of wasps with other insects showed that they are among the insects with a low respiratory frequency at a given resting metabolic rate (RMR), and a relatively flat increase of respiratory frequency with RMR. CO2 emission was always accompanied by abdominal respiration movements in all open phases and in 71.4% of the flutter phases, often accompanied by body movements. Results suggest that resting wasps gain their highly efficient gas exchange to a considerable extent via the length and type of respiration movements. PMID:23399474

  14. Bacterial Immunity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A variety of bacterial agents reside in and around the environment that can cause illness and death in a poultry flock. Many cause disseminated disease while others exert more local effects such as the respiratory or gastrointestinal tract. The host, for our current purposes the laying hen, has de...

  15. Intracellular metabolite levels shape sulfur isotope fractionation during microbial sulfate respiration

    PubMed Central

    Wing, Boswell A.; Halevy, Itay

    2014-01-01

    We present a quantitative model for sulfur isotope fractionation accompanying bacterial and archaeal dissimilatory sulfate respiration. By incorporating independently available biochemical data, the model can reproduce a large number of recent experimental fractionation measurements with only three free parameters: (i) the sulfur isotope selectivity of sulfate uptake into the cytoplasm, (ii) the ratio of reduced to oxidized electron carriers supporting the respiration pathway, and (iii) the ratio of in vitro to in vivo levels of respiratory enzyme activity. Fractionation is influenced by all steps in the dissimilatory pathway, which means that environmental sulfate and sulfide levels control sulfur isotope fractionation through the proximate influence of intracellular metabolites. Although sulfur isotope fractionation is a phenotypic trait that appears to be strain specific, we show that it converges on near-thermodynamic behavior, even at micromolar sulfate levels, as long as intracellular sulfate reduction rates are low enough (<<1 fmol H2S⋅cell−1⋅d−1). PMID:25362045

  16. How to Properly Put On, Take Off a Disposable Respirator

    MedlinePlus

    ... the nose piece at your fingertips. Checking Your Seal 2 Cup the respirator in your hand allowing ... quick breath in to check whether the respirator seals tightly to the face. Place both hands completely ...

  17. Factors Controlling Respiration Rates and Respired Carbon Dioxide Signatures in Riverine Ecosystems of the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Ellis, E. E.; Richey, J. E.; Aufdenkampe, A. K.; Quay, P. D.; Krusche, A. V.; Alin, S. R.

    2006-12-01

    This study examined the processes controlling respiration rates observed in streams and rivers throughout the Amazon basin during the dry season by substituting spatial coverage for experimental manipulation. Throughout the Brazilian states of Amazonas and Acre, respiration rates ranged from 0.066 to 1.45 μM/hr of O2 consumed. In situ respiration was positively correlated with pH (r2=0.60), with pH values ranging from 3.95 to 8.57. Although the concentration of bulk size fractions of organic matter(dissolved organic carbon (DOC), fine particulate organic carbon, and coarse particulate organic carbon) were uncorrelated with both pH and respiration, respiration was positively correlated with the percentage of DOC that was less than 5 kDa as determined by centrifuge ultrafiltration (r2=0.52). No correlation was observed for the less than 100 kDa fraction. Further, pH was also correlated with the percentage of DOC in the <5 kDa fraction (r2=0.86), as the <5 kDa fraction increased from 34% in acidic blackwater streams to 91% in more basic whitewater rivers. These results suggest that low molecular weight organic matter (LMWOM, <5 kDa) is labile and supports higher respiration rates as compared to high molecular weight organic matter, and that pH may control the size distribution of dissolved organic matter. Further, at high pH sites with high respiration rates, net primary production ranged from 3.54 to 13.5 μM/hr of O2 produced. These rates suggest that higher pH sites are dominated by in situ production, resulting in high yields of LMWOM, which is rapidly consumed during the dry season. The 13C of respired CO2 was monitored during bottle incubations to characterize the source of organic matter being respired. Values ranged from -15.2 to -27.0‰, similar to the 13C of DIC at each site, indicating that respiration is a key process controlling the δ13C of the DIC. Furthermore, there is a positive correlation between the δ13C of respired CO2 and respiration rate (r2

  18. [Stem respiration of Pinus koraiensis in Changbai Mountains].

    PubMed

    Wang, Miao; Ji, Lanzhu; Li, Qiurong; Xiao, Dongmei; Liu, Hailiang

    2005-01-01

    In this paper, soil respiration chamber, a simple and precise method, was used to measure the stem respiration of trees. LI-6400-09 respiration chamber serving as a system is usually used in soil respiration, but we made polyvinyl chloride (PVC) collar and fixed it on the stem surface to measure the stem respiration. From May to October 2003, the stem respiration of Pinus koraiensis, the dominant tree species in Changbai Mountain, was measured in different time and different places using this technique. Meanwhile, the temperatures in the stems and in the forests were measured. The results showed that the stem respiration rate had a remarkably seasonal tendency with a single peak, the maximum was in August and the minimum was in February. The stem respiration rate had an exponential relationship with stem temperature, and the curve exponential regressions for stem respiration rate and temperature factor of trees with big DBH were better than those with small DBH. The stem respiration in different DBH trees was higher in the south stem face than that in the north stem face, and the variance of respiration rate between south and north decreased with a decrease of DBH trees. During the growing season from May to October, the average maintenance respiration accounted for 63.63% in different DBH trees, and the maintenance respiration contribution to total respiratory consumption increased with increasing DBH, which was 66.76, 73.29% and 50.84%, respectively. The stem respiration Q10 values ranged from 2.56-3.32 in different DBH of trees, and the seasonal tendency for stem R, and Rm in different DBH of trees was obtained by using respiration Q10. Therefore, the differences between different parts of stem and different DBH of trees should be considered in estimating the respiration model in ecosystem. PMID:15852948

  19. 42 CFR 84.1134 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84... Combination Gas Masks § 84.1134 Respirator containers; minimum requirements. (a) Except as provided in paragraph (b) of this section each respirator shall be equipped with a substantial, durable...

  20. 30 CFR 70.100 - Respirable dust standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Respirable dust standards. 70.100 Section 70... HEALTH MANDATORY HEALTH STANDARDS-UNDERGROUND COAL MINES Dust Standards § 70.100 Respirable dust standards. (a) Each operator shall continuously maintain the average concentration of respirable dust in...

  1. 21 CFR 892.1970 - Radiographic ECG/respirator synchronizer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radiographic ECG/respirator synchronizer. 892.1970... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1970 Radiographic ECG/respirator synchronizer. (a) Identification. A radiographic ECG/respirator synchronizer is a device intended to be used...

  2. What controls respiration rate in stored sugarbeet roots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although respiration is estimated to be responsible for 60 to 80% of the sucrose lost during storage, the mechanisms by which sugarbeet roots regulate their respiration rate are unknown. In plants, respiration rate is regulated by (1) available respiratory capacity, (2) cellular energy status, (3) ...

  3. 20 CFR 718.303 - Death from a respirable disease.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false Death from a respirable disease. 718.303... Death from a respirable disease. (a)(1) If a deceased miner was employed for ten or more years in one or more coal mines and died from a respirable disease, there shall be a rebuttable presumption that his...

  4. 20 CFR 410.462 - Presumption relating to respirable disease.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Presumption relating to respirable disease... Pneumoconiosis § 410.462 Presumption relating to respirable disease. (a) Even though the existence of... was employed for 10 years or more in the Nation's coal mines and died from a respirable disease,...

  5. 20 CFR 410.462 - Presumption relating to respirable disease.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Presumption relating to respirable disease... Pneumoconiosis § 410.462 Presumption relating to respirable disease. (a) Even though the existence of... was employed for 10 years or more in the Nation's coal mines and died from a respirable disease,...

  6. 20 CFR 718.303 - Death from a respirable disease.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false Death from a respirable disease. 718.303... Death from a respirable disease. (a)(1) If a deceased miner was employed for ten or more years in one or more coal mines and died from a respirable disease, there shall be a rebuttable presumption that his...

  7. 20 CFR 718.303 - Death from a respirable disease.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Death from a respirable disease. 718.303... Death from a respirable disease. (a)(1) If a deceased miner was employed for ten or more years in one or more coal mines and died from a respirable disease, there shall be a rebuttable presumption that his...

  8. 42 CFR 84.190 - Chemical cartridge respirators: description.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Chemical cartridge respirators: description. 84.190... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.190 Chemical cartridge respirators: description. (a) Chemical...

  9. 42 CFR 84.190 - Chemical cartridge respirators: description.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Chemical cartridge respirators: description. 84.190... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.190 Chemical cartridge respirators: description. (a) Chemical...

  10. 42 CFR 84.190 - Chemical cartridge respirators: description.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Chemical cartridge respirators: description. 84.190... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.190 Chemical cartridge respirators: description. (a) Chemical...

  11. 42 CFR 84.190 - Chemical cartridge respirators: description.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Chemical cartridge respirators: description. 84.190... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.190 Chemical cartridge respirators: description. (a) Chemical...

  12. 42 CFR 84.190 - Chemical cartridge respirators: description.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Chemical cartridge respirators: description. 84.190... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.190 Chemical cartridge respirators: description. (a) Chemical...

  13. [Bacterial vaginosis].

    PubMed

    Romero Herrero, Daniel; Andreu Domingo, Antonia

    2016-07-01

    Bacterial vaginosis (BV) is the main cause of vaginal dysbacteriosis in the women during the reproductive age. It is an entity in which many studies have focused for years and which is still open for discussion topics. This is due to the diversity of microorganisms that cause it and therefore, its difficult treatment. Bacterial vaginosis is probably the result of vaginal colonization by complex bacterial communities, many of them non-cultivable and with interdependent metabolism where anaerobic populations most likely play an important role in its pathogenesis. The main symptoms are an increase of vaginal discharge and the unpleasant smell of it. It can lead to serious consequences for women, such as an increased risk of contracting sexually transmitted infections including human immunodeficiency virus and upper genital tract and pregnancy complications. Gram stain is the gold standard for microbiological diagnosis of BV, but can also be diagnosed using the Amsel clinical criteria. It should not be considered a sexually transmitted disease but it is highly related to sex. Recurrence is the main problem of medical treatment. Apart from BV, there are other dysbacteriosis less characterized like aerobic vaginitis of which further studies are coming slowly but are achieving more attention and consensus among specialists. PMID:27474242

  14. Standing stocks, production, and respiration of phytoplankton and heterotrophic bacteria in the western Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Kirchman, David L.; Hill, Victoria; Cottrell, Matthew T.; Gradinger, Rolf; Malmstrom, Rex R.; Parker, Alexander

    2009-08-01

    Standing stocks and production rates for phytoplankton and heterotrophic bacteria were examined during four expeditions in the western Arctic Ocean (Chukchi Sea and Canada Basin) in the spring and summer of 2002 and 2004. Rates of primary production (PP) and bacterial production (BP) were higher in the summer than in spring and in shelf waters than in the basin. Most surprisingly, PP was 3-fold higher in 2004 than in 2002; ice-corrected rates were 1581 and 458 mg C m -2 d -1, respectively, for the entire region. The difference between years was mainly due to low ice coverage in the summer of 2004. The spatial and temporal variation in PP led to comparable variation in BP. Although temperature explained as much variability in BP as did PP or phytoplankton biomass, there was no relationship between temperature and bacterial growth rates above about 0 °C. The average ratio of BP to PP was 0.06 and 0.79 when ice-corrected PP rates were greater than and less than 100 mg C m -2 d -1, respectively; the overall average was 0.34. Bacteria accounted for a highly variable fraction of total respiration, from 3% to over 60% with a mean of 25%. Likewise, the fraction of PP consumed by bacterial respiration, when calculated from growth efficiency (average of 6.9%) and BP estimates, varied greatly over time and space (7% to >500%). The apparent uncoupling between respiration and PP has several implications for carbon export and storage in the western Arctic Ocean.

  15. Ammonium excretion and oxygen respiration of tropical copepods and euphausiids exposed to oxygen minimum zone conditions

    NASA Astrophysics Data System (ADS)

    Kiko, Rainer; Hauss, Helena; Buchholz, Friedrich; Melzner, Frank

    2016-04-01

    Calanoid copepods and euphausiids are key components of marine zooplankton communities worldwide. Most euphausiids and several copepod species perform diel vertical migrations (DVMs) that contribute to the export of particulate and dissolved matter to midwater depths. In vast areas of the global ocean, and in particular in the eastern tropical Atlantic and Pacific, the daytime distribution depth of many migrating organisms corresponds to the core of the oxygen minimum zone (OMZ). At depth, the animals experience reduced temperature and oxygen partial pressure (pO2) and an increased carbon dioxide partial pressure (pCO2) compared to their near-surface nighttime habitat. Although it is well known that low oxygen levels can inhibit respiratory activity, the respiration response of tropical copepods and euphausiids to relevant pCO2, pO2, and temperature conditions remains poorly parameterized. Further, the regulation of ammonium excretion at OMZ conditions is generally not well understood. It was recently estimated that DVM-mediated ammonium supply could fuel bacterial anaerobic ammonium oxidation - a major loss process for fixed nitrogen in the ocean considerably. These estimates were based on the implicit assumption that hypoxia or anoxia in combination with hypercapnia (elevated pCO2) does not result in a down-regulation of ammonium excretion. We exposed calanoid copepods from the Eastern Tropical North Atlantic (ETNA; Undinula vulgaris and Pleuromamma abdominalis) and euphausiids from the Eastern Tropical South Pacific (ETSP; Euphausia mucronata) and the ETNA (Euphausia gibboides) to different temperatures, carbon dioxide and oxygen levels to study their survival, respiration and excretion rates at these conditions. An increase in temperature by 10 °C led to an approximately 2-fold increase of the respiration and excretion rates of U. vulgaris (Q10, respiration = 1.4; Q10, NH4-excretion = 1.6), P. abdominalis (Q10, respiration = 2.0; Q10, NH4-excretion = 2.4) and

  16. Proteomic dataset of the organohalide-respiring bacterium Dehalococcoides mccartyi strain CBDB1 grown on hexachlorobenzene as electron acceptor

    PubMed Central

    Schiffmann, Christian L.; Otto, Wolfgang; Hansen, Rasmus; Nielsen, Per Halkjær; Adrian, Lorenz; Seifert, Jana; von Bergen, Martin; Jehmlich, Nico

    2016-01-01

    The proteome of the anaerobic organohalide-respiring bacterium Dehalococcoides mccartyi strain CBDB1 was analyzed by nano liquid chromatography coupled to mass spectrometry (LC-MS/MS). Two different preparation methods, (i) in-solution and (ii) in-gel proteolytic digestion were assessed to elucidate the core and the functional proteome of bacterial cultures grown in synthetic anaerobic medium with hexachlorobenzene as sole electron acceptor. A detailed analysis of the data presented is available (Schiffmann et al., 2014) [1]. PMID:26958645

  17. Proteomic dataset of the organohalide-respiring bacterium Dehalococcoides mccartyi strain CBDB1 grown on hexachlorobenzene as electron acceptor.

    PubMed

    Schiffmann, Christian L; Otto, Wolfgang; Hansen, Rasmus; Nielsen, Per Halkjær; Adrian, Lorenz; Seifert, Jana; von Bergen, Martin; Jehmlich, Nico

    2016-06-01

    The proteome of the anaerobic organohalide-respiring bacterium Dehalococcoides mccartyi strain CBDB1 was analyzed by nano liquid chromatography coupled to mass spectrometry (LC-MS/MS). Two different preparation methods, (i) in-solution and (ii) in-gel proteolytic digestion were assessed to elucidate the core and the functional proteome of bacterial cultures grown in synthetic anaerobic medium with hexachlorobenzene as sole electron acceptor. A detailed analysis of the data presented is available (Schiffmann et al., 2014) [1]. PMID:26958645

  18. Contribution of silver nanoparticles to extend Salmonella typhimurium growth under various respiration regimes.

    PubMed

    Hidouri, Slah; Yohmes, Mannoubia Ben; Landoulsi, Ahmed

    2016-10-01

    Living cells interact with different forms of metal; the resulted biochemical alteration depends on the dose. Over an average dose in ionic form, metals interact with respiration processes at various levels, and it induces oxidative stress by shifting the whole oxydoreduction equilibrium. To correct the toxicity, cell develops different ways to cancel the effect of the exceeded charges, and it reduces the ion to get a more stable form. In the case of nanoparticles, the reactivity of surface has been enhanced that can alter the biological mechanisms; the cell may develop different strategies to minimize this reactivity. The current study is focused on the pursuing of cell behavior regarding the presence of nanoparticles and their associated metals. Nanoparticles have been synthesized using bio-reducing agents and then were structurally characterized using X-ray diffraction, UV-Vis, and infra-red spectroscopy. The oxydoreduction flexibility of the post-synthesis modified nanoparticles was tested in vitro. Interactions with cells were done using Salmonella under various respiration conditions. The final results show the possible correction of oxidative stress effects and the recuperation of respiration. PMID:27287758

  19. Paper-Based Electrical Respiration Sensor.

    PubMed

    Güder, Firat; Ainla, Alar; Redston, Julia; Mosadegh, Bobak; Glavan, Ana; Martin, T J; Whitesides, George M

    2016-05-01

    Current methods of monitoring breathing require cumbersome, inconvenient, and often expensive devices; this requirement sets practical limitations on the frequency and duration of measurements. This article describes a paper-based moisture sensor that uses the hygroscopic character of paper (i.e. the ability of paper to adsorb water reversibly from the surrounding environment) to measure patterns and rate of respiration by converting the changes in humidity caused by cycles of inhalation and exhalation to electrical signals. The changing level of humidity that occurs in a cycle causes a corresponding change in the ionic conductivity of the sensor, which can be measured electrically. By combining the paper sensor with conventional electronics, data concerning respiration can be transmitted to a nearby smartphone or tablet computer for post-processing, and subsequently to a cloud server. This means of sensing provides a new, practical method of recording and analyzing patterns of breathing. PMID:27059088

  20. A MEMS turbine prototype for respiration harvesting

    NASA Astrophysics Data System (ADS)

    Goreke, U.; Habibiabad, S.; Azgin, K.; Beyaz, M. I.

    2015-12-01

    The design, manufacturing, and performance characterization of a MEMS-scale turbine prototype is reported. The turbine is designed for integration into a respiration harvester that can convert normal human breathing into electrical power through electromagnetic induction. The device measures 10 mm in radius, and employs 12 blades located around the turbine periphery along with ball bearings around the center. Finite element simulations showed that an average torque of 3.07 μNm is induced at 12 lpm airflow rate, which lies in normal breathing levels. The turbine and a test package were manufactured using CNC milling on PMMA. Tests were performed at respiration flow rates between 5-25 lpm. The highest rotational speed was measured to be 9.84 krpm at 25 lpm, resulting in 8.96 mbar pressure drop across the device and 370 mW actuation power.

  1. Frost Induces Respiration and Accelerates Carbon Depletion in Trees.

    PubMed

    Sperling, Or; Earles, J Mason; Secchi, Francesca; Godfrey, Jessie; Zwieniecki, Maciej A

    2015-01-01

    Cellular respiration depletes stored carbohydrates during extended periods of limited photosynthesis, e.g. winter dormancy or drought. As respiration rate is largely a function of temperature, the thermal conditions during such periods may affect non-structural carbohydrate (NSC) availability and, ultimately, recovery. Here, we surveyed stem responses to temperature changes in 15 woody species. For two species with divergent respirational response to frost, P. integerrima and P. trichocarpa, we also examined corresponding changes in NSC levels. Finally, we simulated respiration-induced NSC depletion using historical temperature data for the western US. We report a novel finding that tree stems significantly increase respiration in response to near freezing temperatures. We observed this excess respiration in 13 of 15 species, deviating 10% to 170% over values predicted by the Arrhenius equation. Excess respiration persisted at temperatures above 0 °C during warming and reoccurred over multiple frost-warming cycles. A large adjustment of NSCs accompanied excess respiration in P. integerrima, whereas P. trichocarpa neither excessively respired nor adjusted NSCs. Over the course of the years included in our model, frost-induced respiration accelerated stem NSC consumption by 8.4 mg (glucose eq.) cm(-3) yr(-1) on average in the western US, a level of depletion that may continue to significantly affect spring NSC availability. This novel finding revises the current paradigm of low temperature respiration kinetics. PMID:26629819

  2. Frost Induces Respiration and Accelerates Carbon Depletion in Trees

    PubMed Central

    Sperling, Or; Earles, J. Mason; Secchi, Francesca; Godfrey, Jessie; Zwieniecki, Maciej A.

    2015-01-01

    Cellular respiration depletes stored carbohydrates during extended periods of limited photosynthesis, e.g. winter dormancy or drought. As respiration rate is largely a function of temperature, the thermal conditions during such periods may affect non-structural carbohydrate (NSC) availability and, ultimately, recovery. Here, we surveyed stem responses to temperature changes in 15 woody species. For two species with divergent respirational response to frost, P. integerrima and P. trichocarpa, we also examined corresponding changes in NSC levels. Finally, we simulated respiration-induced NSC depletion using historical temperature data for the western US. We report a novel finding that tree stems significantly increase respiration in response to near freezing temperatures. We observed this excess respiration in 13 of 15 species, deviating 10% to 170% over values predicted by the Arrhenius equation. Excess respiration persisted at temperatures above 0°C during warming and reoccurred over multiple frost-warming cycles. A large adjustment of NSCs accompanied excess respiration in P. integerrima, whereas P. trichocarpa neither excessively respired nor adjusted NSCs. Over the course of the years included in our model, frost-induced respiration accelerated stem NSC consumption by 8.4 mg (glucose eq.) cm-3 yr-1 on average in the western US, a level of depletion that may continue to significantly affect spring NSC availability. This novel finding revises the current paradigm of low temperature respiration kinetics. PMID:26629819

  3. Respirators, internal dose, and Oyster Creek

    SciTech Connect

    Michal, R.

    1996-06-01

    This article looks at the experience of Oyster Creek in relaxing the requirements for the use of respirators in all facets of plant maintenance, on the overall dose received by plant maintenance personnel. For Roger Shaw, director of radiological controls for three years at GPU Nuclear Corporation`s Oyster Creek nuclear plant the correct dose balance is determined on a job-by-job basis: Does the job require a respirator, which is an effective means of decreasing worker inhalation of airborne radioactive particles? Will wearing a respirator slow down a worker, consequently increasing whole body radiation exposure by prolonging the time spent in fields of high external radiation? How does respiratory protection affect worker safety and to what degree? While changes to the Nuclear Regulatory Commission`s 10CFR20 have updated the radiation protection requirements for the nuclear industry, certain of the revisions have been directed specifically at reducing worker dose, Shaw said. {open_quotes}It basically delineates that dose is dose,{close_quotes} Shaw said, {open_quotes}regardless of whether it is acquired externally or internally.{close_quotes} The revision of Part 20 changed the industry`s attitude toward internal dose, which had always been viewed negatively. {open_quotes}Internal dose was always seen as preventable by wearing respirators and by using engineering techniques such as ventilation control and decontamination,{close_quotes} Shaw said, {open_quotes}whereas external dose, although reduced where practical, was seen as a fact of the job.{close_quotes}

  4. Significance of multiple neurochemicals that regulate respiration.

    PubMed

    Pilowsky, Paul M; Sun, Qi-Jian; Lonergan, Tina; Makeham, John M; Seyedabadi, Maryam; Verner, Todd A; Goodchild, Ann K

    2008-01-01

    Current efforts to characterize the neuronal mechanisms that underlie automatic breathing generally adopt a 'minimalist' approach. In this review, we survey three of the many neurochemicals that are known to be present in raphe neurons and may be involved in respiration. Specifically, we ask the question, 'Is the minimalist approach consistent with the large number of neuronal types and neurochemicals found in respiratory centres'? PMID:18085284

  5. Natural Niche for Organohalide-Respiring Chloroflexi

    PubMed Central

    Krzmarzick, Mark J.; Crary, Benjamin B.; Harding, Jevon J.; Oyerinde, Oyenike O.; Leri, Alessandra C.; Myneni, Satish C. B.

    2012-01-01

    The phylum Chloroflexi contains several isolated bacteria that have been found to respire a diverse array of halogenated anthropogenic chemicals. The distribution and role of these Chloroflexi in uncontaminated terrestrial environments, where abundant natural organohalogens could function as potential electron acceptors, have not been studied. Soil samples (116 total, including 6 sectioned cores) from a range of uncontaminated sites were analyzed for the number of Dehalococcoides-like Chloroflexi 16S rRNA genes present. Dehalococcoides-like Chloroflexi populations were detected in all but 13 samples. The concentrations of organochlorine ([organochlorine]), inorganic chloride, and total organic carbon (TOC) were obtained for 67 soil core sections. The number of Dehalococcoides-like Chloroflexi 16S rRNA genes positively correlated with [organochlorine]/TOC while the number of Bacteria 16S rRNA genes did not. Dehalococcoides-like Chloroflexi were also observed to increase in number with a concomitant accumulation of chloride when cultured with an enzymatically produced mixture of organochlorines. This research provides evidence that organohalide-respiring Chloroflexi are widely distributed as part of uncontaminated terrestrial ecosystems, they are correlated with the fraction of TOC present as organochlorines, and they increase in abundance while dechlorinating organochlorines. These findings suggest that organohalide-respiring Chloroflexi may play an integral role in the biogeochemical chlorine cycle. PMID:22101035

  6. DIFFUSION IN BIOFILMS RESPIRING ON ELECTRODES.

    PubMed

    Renslow, Rs; Babauta, Jt; Majors, Pd; Beyenal, H

    2013-01-01

    The goal of this study was to measure spatially and temporally resolved effective diffusion coefficients (D(e)) in biofilms respiring on electrodes. Two model electrochemically active biofilms, Geobacter sulfurreducens PCA and Shewanella oneidensis MR-1, were investigated. A novel nuclear magnetic resonance microimaging perfusion probe capable of simultaneous electrochemical and pulsed-field gradient nuclear magnetic resonance (PFG-NMR) techniques was used. PFG-NMR allowed noninvasive, nondestructive, high spatial resolution in situ D(e) measurements in living biofilms respiring on electrodes. The electrodes were polarized so that they would act as the sole terminal electron acceptor for microbial metabolism. We present our results as both two-dimensional D(e) heat maps and surface-averaged relative effective diffusion coefficient (D(rs)) depth profiles. We found that 1) D(rs) decreases with depth in G. sulfurreducens biofilms, following a sigmoid shape; 2) D(rs) at a given location decreases with G. sulfurreducens biofilm age; 3) average D(e) and D(rs) profiles in G. sulfurreducens biofilms are lower than those in S. oneidensis biofilms-the G. sulfurreducens biofilms studied here were on average 10 times denser than the S. oneidensis biofilms; and 4) halting the respiration of a G. sulfurreducens biofilm decreases the D(e) values. Density, reflected by D(e), plays a major role in the extracellular electron transfer strategies of electrochemically active biofilms. PMID:23420623

  7. Diffusion in biofilms respiring on electrodes

    SciTech Connect

    Renslow, Ryan S.; Babauta, Jerome T.; Majors, Paul D.; Beyenal, Haluk

    2012-11-15

    The goal of this study was to measure spatially and temporally resolved effective diffusion coefficients (De) in biofilms respiring on electrodes. Two model electrochemically active biofilms, Geobacter sulfurreducens PCA and Shewanella oneidensis MR-1, were investigated. A novel nuclear magnetic resonance microimaging perfusion probe capable of simultaneous electrochemical and pulsed-field gradient nuclear magnetic resonance (PFG-NMR) techniques was used. PFG-NMR allowed for noninvasive, nondestructive, high spatial resolution in situ De measurements in living biofilms respiring on electrodes. The electrodes were polarized so that they would act as the sole terminal electron acceptor for microbial metabolism. We present our results as both two-dimensional De heat maps and surface-averaged relative effective diffusion coefficient (Drs) depth profiles. We found that (1) Drs decreases with depth in G. sulfurreducens biofilms, following a sigmoid shape; (2) Drs at a given location decreases with G. sulfurreducens biofilm age; (3) average De and Drs profiles in G. sulfurreducens biofilms are lower than those in S. oneidensis biofilms—the G. sulfurreducens biofilms studied here were on average 10 times denser than the S. oneidensis biofilms; and (4) halting the respiration of a G. sulfurreducens biofilm decreases the De values. Density, reflected by De, plays a major role in the extracellular electron transfer strategies of electrochemically active biofilms.

  8. Respirable coal mine dust sample processing

    SciTech Connect

    Raymond, L.D.; Tomb, T.F.; Parobeck, P.S.

    1987-01-01

    The Federal Coal Mine Health and Safety Act of 1969 established mandatory dust standards for coal mines. Regulatory requirements for complying with the provisions of the Act were prescribed in Title 30, Code of Federal Regulations, Parts 70 and 71, which were published in the Federal Register on April 3, 1970, and March 28, 1972, respectively. These standard and sampling requirements of coal mine operators, along with a description of the laboratory which was established to process respirable coal mine dust samples collected in accordance with these requirements, were published in MESA Informational Report (MESA, the acronym for the Mining Enforcement and Safety Administration, was changed to MSHA, the acronym for the Mine Safety and Health Administration, in 1977). These standards and regulatory requirements continued under the Federal Mine Safety and Health Act of 1977 until November 1980, when major regulatory revisions were made in the operator's dust sampling program. This paper describes the changes in the respirable coal mine dust sampling program and the equipment and procedures used by MSHA to process respirable coal mine dust samples collected in accordance with regulatory requirements. 10 figs., 1 tab.

  9. How Ecosystems Breathe: Measuring Respiration of Soil

    NASA Astrophysics Data System (ADS)

    McTammany, M. E.

    2005-05-01

    Curriculum for general ecology labs often uses in-lab exercises and computer simulations to demonstrate ecological principles rather than experimental field projects. In addition, ecosystem processes can be difficult to incorporate into general ecology labs because the techniques require sophisticated equipment or complex field designs. As an alternative to in-lab projects, I have integrated field measurement of soil respiration into my general ecology lab to teach students aspects of experimental design (sampling, replication, error, etc.) and to demonstrate how organism-level processes operate beyond single organisms in nature and are influenced by environmental conditions. In a program laden with biomedical interests, analogies between organisms and ecosystems are quite appealing to students. Students in my general ecology course complete a 2-week field project in which they measure soil respiration inside a dark microcosm chamber. We use 10% KOH to trap evolved CO2 and titrate unreacted KOH in lab using 1N HCl. The protocol is simple, only requires some chemicals, and can be used in many different habitats (including flower beds on campus) quite easily. Potential experiments could involve varying environmental conditions, such as soil moisture, nutrient availability, gaseous environment, carbon supply, or temperature, to affect soil respiration rate.

  10. DIFFUSION IN BIOFILMS RESPIRING ON ELECTRODES

    PubMed Central

    Renslow, RS; Babauta, JT; Majors, PD; Beyenal, H

    2013-01-01

    The goal of this study was to measure spatially and temporally resolved effective diffusion coefficients (De) in biofilms respiring on electrodes. Two model electrochemically active biofilms, Geobacter sulfurreducens PCA and Shewanella oneidensis MR-1, were investigated. A novel nuclear magnetic resonance microimaging perfusion probe capable of simultaneous electrochemical and pulsed-field gradient nuclear magnetic resonance (PFG-NMR) techniques was used. PFG-NMR allowed noninvasive, nondestructive, high spatial resolution in situ De measurements in living biofilms respiring on electrodes. The electrodes were polarized so that they would act as the sole terminal electron acceptor for microbial metabolism. We present our results as both two-dimensional De heat maps and surface-averaged relative effective diffusion coefficient (Drs) depth profiles. We found that 1) Drs decreases with depth in G. sulfurreducens biofilms, following a sigmoid shape; 2) Drs at a given location decreases with G. sulfurreducens biofilm age; 3) average De and Drs profiles in G. sulfurreducens biofilms are lower than those in S. oneidensis biofilms—the G. sulfurreducens biofilms studied here were on average 10 times denser than the S. oneidensis biofilms; and 4) halting the respiration of a G. sulfurreducens biofilm decreases the De values. Density, reflected by De, plays a major role in the extracellular electron transfer strategies of electrochemically active biofilms. PMID:23420623

  11. Continuous respirable mine dust monitor development

    SciTech Connect

    Cantrell, B.K.; Williams, K.L.; Stein, S.W.

    1996-12-31

    In June 1992, the Mine Safety and Health Administration (MSHA) published the Report of the Coal Mine Respirable Dust Task Group, Review of the Program to Control Respirable Coal Mine Dust in the United States. As one of its recommendations, the report called for the accelerated development of two mine dust monitors: (1) a fixed-site monitor capable of providing continuous information on dust levels to the miner, mine operator, and to MSHA, if necessary, and (2) a personal sampling device capable of providing both a short-term personal exposure measurement as well as a full-shift measurement. In response to this recommendation, the U.S. Bureau of Mines initiated the development of a fixed-site machine-mounted continuous respirable dust monitor. The technology chosen for monitor development is the Rupprecht and Patashnick Co., Inc. tapered element oscillating microbalance. Laboratory and in-mine tests have indicated that, with modification, this sensor can meet the humidity and vibration requirements for underground coal mine use. The U.S. Department of Energy Pittsburgh Research Center (DOE-PRC) is continuing that effort by developing prototypes of a continuous dust monitor based on this technology. These prototypes are being evaluated in underground coal mines as they become available. This effort, conducted as a joint venture with MSHA, is nearing completion with every promise of success.

  12. Evaluation of the efficacy of a bacterial consortium for the removal of color, reduction of heavy metals, and toxicity from textile dye effluent.

    PubMed

    Jadhav, J P; Kalyani, D C; Telke, A A; Phugare, S S; Govindwar, S P

    2010-01-01

    A microbial consortium DAS consisting three bacterial sp. originally obtained from dye contaminated sites of Solapur, India was selected because it was capable of decolorizing textile effluent and dye faster than the individual bacteria under static conditions. Identification of the isolates by 16S rRNA techniques revealed the isolates to be Pseudomonas species. The concerted metabolic activity of these isolates led to complete decolorization of textile effluent as well as Reactive Orange 16 (100 mg l(-1)) within 48-h at pH 7 and 30 degrees C. Studies involving Reactive Orange 16 (RO16) dye were carried with the bacterial consortium DAS to elucidate the mechanism of biodegradation. Induction of the laccase and reductase enzyme during RO16 decolorization indicated their role in biodegradation. The biodegradation of RO16 was monitored by using IR spectroscopy, HPLC and GC-MS analysis. Cytotoxicity, genotoxicity and phytotoxicity studies carried out before and after decolorization of the textile effluent revealed the nontoxic nature of the biotreated sample. PMID:19720521

  13. Hydrological pulse regulating the bacterial heterotrophic metabolism between Amazonian mainstems and floodplain lakes

    PubMed Central

    Vidal, Luciana O.; Abril, Gwenäel; Artigas, Luiz F.; Melo, Michaela L.; Bernardes, Marcelo C.; Lobão, Lúcia M.; Reis, Mariana C.; Moreira-Turcq, Patrícia; Benedetti, Marc; Tornisielo, Valdemar L.; Roland, Fabio

    2015-01-01

    We evaluated in situ rates of bacterial carbon processing in Amazonian floodplain lakes and mainstems, during both high water (HW) and low water (LW) phases (p < 0.05). Our results showed that bacterial production (BP) was lower and more variable than bacterial respiration, determined as total respiration. Bacterial carbon demand was mostly accounted by BR and presented the same pattern that BR in both water phases. Bacterial growth efficiency (BGE) showed a wide range (0.2–23%) and low mean value of 3 and 6%, (in HW and LW, respectively) suggesting that dissolved organic carbon was mostly allocated to catabolic metabolism. However, BGE was regulated by BP in LW phase. Consequently, changes in BGE showed the same pattern that BP. In addition, the hydrological pulse effects on mainstems and floodplains lakes connectivity were found for BP and BGE in LW. Multiple correlation analyses revealed that indexes of organic matter (OM) quality (chlorophyll-a, N stable isotopes and C/N ratios) were the strongest seasonal drivers of bacterial carbon metabolism. Our work indicated that: (i) the bacterial metabolism was mostly driven by respiration in Amazonian aquatic ecosystems resulting in low BGE in either high or LW phase; (ii) the hydrological pulse regulated the bacterial heterotrophic metabolism between Amazonian mainstems and floodplain lakes mostly driven by OM quality. PMID:26483776

  14. Hydrological pulse regulating the bacterial heterotrophic metabolism between Amazonian mainstems and floodplain lakes.

    PubMed

    Vidal, Luciana O; Abril, Gwenäel; Artigas, Luiz F; Melo, Michaela L; Bernardes, Marcelo C; Lobão, Lúcia M; Reis, Mariana C; Moreira-Turcq, Patrícia; Benedetti, Marc; Tornisielo, Valdemar L; Roland, Fabio

    2015-01-01

    We evaluated in situ rates of bacterial carbon processing in Amazonian floodplain lakes and mainstems, during both high water (HW) and low water (LW) phases (p < 0.05). Our results showed that bacterial production (BP) was lower and more variable than bacterial respiration, determined as total respiration. Bacterial carbon demand was mostly accounted by BR and presented the same pattern that BR in both water phases. Bacterial growth efficiency (BGE) showed a wide range (0.2-23%) and low mean value of 3 and 6%, (in HW and LW, respectively) suggesting that dissolved organic carbon was mostly allocated to catabolic metabolism. However, BGE was regulated by BP in LW phase. Consequently, changes in BGE showed the same pattern that BP. In addition, the hydrological pulse effects on mainstems and floodplains lakes connectivity were found for BP and BGE in LW. Multiple correlation analyses revealed that indexes of organic matter (OM) quality (chlorophyll-a, N stable isotopes and C/N ratios) were the strongest seasonal drivers of bacterial carbon metabolism. Our work indicated that: (i) the bacterial metabolism was mostly driven by respiration in Amazonian aquatic ecosystems resulting in low BGE in either high or LW phase; (ii) the hydrological pulse regulated the bacterial heterotrophic metabolism between Amazonian mainstems and floodplain lakes mostly driven by OM quality. PMID:26483776

  15. Mechanism of Bacterial Oligosaccharyltransferase

    PubMed Central

    Gerber, Sabina; Lizak, Christian; Michaud, Gaëlle; Bucher, Monika; Darbre, Tamis; Aebi, Markus; Reymond, Jean-Louis; Locher, Kaspar P.

    2013-01-01

    N-Linked glycosylation is an essential post-translational protein modification in the eukaryotic cell. The initial transfer of an oligosaccharide from a lipid carrier onto asparagine residues within a consensus sequon is catalyzed by oligosaccharyltransferase (OST). The first X-ray structure of a complete bacterial OST enzyme, Campylobacter lari PglB, was recently determined. To understand the mechanism of PglB, we have quantified sequon binding and glycosylation turnover in vitro using purified enzyme and fluorescently labeled, synthetic peptide substrates. Using fluorescence anisotropy, we determined a dissociation constant of 1.0 μm and a strict requirement for divalent metal ions for consensus (DQNAT) sequon binding. Using in-gel fluorescence detection, we quantified exceedingly low glycosylation rates that remained undetected using in vivo assays. We found that an alanine in the −2 sequon position, converting the bacterial sequon to a eukaryotic one, resulted in strongly lowered sequon binding, with in vitro turnover reduced 50,000-fold. A threonine is preferred over serine in the +2 sequon position, reflected by a 4-fold higher affinity and a 1.2-fold higher glycosylation rate. The interaction of the +2 sequon position with PglB is modulated by isoleucine 572. Our study demonstrates an intricate interplay of peptide and metal binding as the first step of protein N-glycosylation. PMID:23382388

  16. Bacterial Games

    NASA Astrophysics Data System (ADS)

    Frey, Erwin; Reichenbach, Tobias

    Microbial laboratory communities have become model systems for studying the complex interplay between nonlinear dynamics of evolutionary selection forces, stochastic fluctuations arising from the probabilistic nature of interactions, and spatial organization. Major research goals are to identify and understand mechanisms that ensure viability of microbial colonies by allowing for species diversity, cooperative behavior and other kinds of "social" behavior. A synthesis of evolutionary game theory, nonlinear dynamics, and the theory of stochastic processes provides the mathematical tools and conceptual framework for a deeper understanding of these ecological systems. We give an introduction to the modern formulation of these theories and illustrate their effectiveness, focusing on selected examples of microbial systems. Intrinsic fluctuations, stemming from the discreteness of individuals, are ubiquitous, and can have important impact on the stability of ecosystems. In the absence of speciation, extinction of species is unavoidable, may, however, take very long times. We provide a general concept for defining survival and extinction on ecological time scales. Spatial degrees of freedom come with a certain mobility of individuals. When the latter is sufficiently high, bacterial community structures can be understood through mapping individual-based models, in a continuum approach, onto stochastic partial differential equations. These allow progress using methods of nonlinear dynamics such as bifurcation analysis and invariant manifolds. We conclude with a perspective on the current challenges in quantifying bacterial pattern formation, and how this might have an impact on fundamental research in nonequilibrium physics .

  17. Diversity and characterization of culturable bacterial endophytes from Zea mays and their potential as plant growth-promoting agents in metal-degraded soils.

    PubMed

    Pereira, S I A; Castro, P M L

    2014-12-01

    In this study, we evaluated the phylogenetic diversity of culturable bacterial endophytes of Zea mays plants growing in an agricultural soil contaminated with Zn and Cd. Endophytic bacterial counts were determined in roots and shoots, and isolates were grouped by random amplified polymorphic DNA and identified by 16S ribosomal RNA (rRNA) gene sequencing. Endophytes were further characterized for the production of plant growth-promoting (PGP) substances, such as NH3, siderophores, indol-3-acetic acid (IAA), hydrogen cyanide and extracellular enzymes, and for the capacity to solubilize phosphate. The endophytes producing higher amounts of IAA were screened for their tolerance to Zn and Cd and used as bioinoculants for maize seedlings grown in the Zn/Cd-contaminated soil. The counts of endophytes varied between plant tissues, being higher in roots (6.48 log10 g(-1) fresh weight) when compared to shoots (5.77 log10 g(-1) fresh weight). Phylogenetic analysis showed that endophytes belong to three major groups: α-Proteobacteria (31 %), γ-Proteobacteria (26 %) and Actinobacteria (26 %). Pseudomonas, Agrobacterium, Variovorax and Curtobacterium were among the most represented genera. Endophytes were well-adapted to high Zn/Cd concentrations (up to 300 mg Cd l(-1) and 1,000 mg Zn l(-1)) and showed ability to produce several PGP traits. Strains Ochrobactrum haematophilum ZR 3-5, Acidovorax oryzae ZS 1-7, Frigoribacterium faeni ZS 3-5 and Pantoea allii ZS 3-6 increased root elongation and biomass of maize seedlings grown in soil contaminated with Cd and Zn. The endophytes isolated in this study have potential to be used in bioremediation/phytoremediation strategies. PMID:25053283

  18. Use of a fluorescent redox probe for direct visualization of actively respiring bacteria.

    PubMed Central

    Rodriguez, G G; Phipps, D; Ishiguro, K; Ridgway, H F

    1992-01-01

    The redox dye 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) was employed for direct epifluorescent microscopic enumeration of respiring bacteria in environmental samples. Oxidized CTC is nearly colorless and is nonfluorescent; however, the compound is readily reduced via electron transport activity to fluorescent, insoluble CTC-formazan, which accumulates intracellularly. Bacteria containing CTC-formazan were visualized by epifluorescence microscopy in wet-mount preparations, on polycarbonate membrane filter surfaces, or in biofilms associated with optically opaque surfaces. Counterstaining of CTC-treated samples with the DNA-specific fluorochrome 4',6-diamidino-2-phenylindole allowed enumeration of active and total bacterial subpopulations within the same preparation. Municipal wastewater, groundwater, and seawater samples supplied with exogenous nutrients yielded CTC counts that were generally lower than total 4',6-diamidino-2-phenylindole counts but typically equal to or greater than standard heterotrophic (aerobic) plate counts. In unsupplemented water samples, CTC counts were typically lower than those obtained with the heterotrophic plate count method. Reduction of CTC by planktonic or biofilm-associated bacteria was suppressed by formaldehyde, presumably because of inhibition of electron transport activity and other metabolic processes. Because of their bright red fluorescence (emission maximum, 602 nm), actively respiring bacteria were readily distinguishable from abiotic particles and other background substances, which typically fluoresced at shorter wavelengths. The use of CTC greatly facilitated microscopic detection and enumeration of metabolically active (i.e., respiring) bacteria in environmental samples. Images PMID:1622256

  19. Large particle penetration through N95 respirator filters and facepiece leaks with cyclic flow.

    PubMed

    Cho, Kyungmin Jacob; Reponen, Tiina; McKay, Roy; Shukla, Rakesh; Haruta, Hiroki; Sekar, Padmini; Grinshpun, Sergey A

    2010-01-01

    The aim of this study was to investigate respirator filter and faceseal penetration of particles representing bacterial and fungal spore size ranges (0.7-4 mum). First, field experiments were conducted to determine workplace protection factors (WPFs) for a typical N95 filtering facepiece respirator (FFR). These data (average WPF = 515) were then used to position the FFR on a manikin to simulate realistic donning conditions for laboratory experiments. Filter penetration was also measured after the FFR was fully sealed on the manikin face. This value was deducted from the total penetration (obtained from tests with the partially sealed FFR) to determine the faceseal penetration. All manikin experiments were repeated using three sinusoidal breathing flow patterns corresponding to mean inspiratory flow rates of 15, 30, and 85 l min(-1). The faceseal penetration varied from 0.1 to 1.1% and decreased with increasing particle size (P < 0.001) and breathing rate (P < 0.001). The fractions of aerosols penetrating through the faceseal leakage varied from 0.66 to 0.94. In conclusion, even for a well-fitting FFR respirator, most particle penetration occurs through faceseal leakage, which varies with breathing flow rate and particle size. PMID:19700488

  20. Assessment of heavy metal and bacterial pollution in coastal aquifers from SIPCOT industrial zones, Gulf of Mannar, South Coast of Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Selvam, S.; Antony Ravindran, A.; Venkatramanan, S.; Singaraja, C.

    2015-06-01

    Heavy metals and microbiological contamination were investigated in groundwater in the industrial and coastal city of Thoothukudi. The main sources of drinking water in this area are water bores which are dug up to the depth of 10-50 m in almost every house. A number of chemical and pharmaceutical industries have been established since past three decades. Effluents from these industries are reportedly being directly discharged onto surrounding land, irrigation fields and surface water bodies forming point and non-point sources of contamination for groundwater in the study area. The study consists of the determination of physico-chemical properties, trace metals, heavy metals and microbiological quality of drinking water. Heavy metals were analysed using Inductively Coupled Plasma Mass Spectrometry and compared with the (WHO in Guidelines for drinking water quality, 2004) standards. The organic contamination was detected in terms of most probable number (MPN) test in order to find out faecal coliforms that were identified through biochemical tests. A comparison of the results of groundwater samples with WHO guidelines reveals that most of the groundwater samples are heavily contaminated with heavy metals like arsenic, selenium, lead, boron, aluminium, iron and vanadium. The selenium level was higher than 0.01 mg/l in 82 % of the study area and the arsenic concentration exceeded 0.01 mg/l in 42 % of the area. The results reveal that heavy metal contamination in the area is mainly due to the discharge of effluents from copper industries, alkali chemical industry, fertiliser industry, thermal power plant and sea food industries. The results showed that there are pollutions for the groundwater, and the total Coliform means values ranged from 0.6-145 MPN ml-1, faecal Coliform ranged from 2.2-143 MPN ml-1, Escherichia coli ranged from 0.9 to 40 MPN ml-1 and faecal streptococci ranged from 10-9.20 × 102 CFU ml-1. The coastal regions are highly contaminated with total

  1. Auto- and heterotrophic acidophilic bacteria enhance the bioremediation efficiency of sediments contaminated by heavy metals.

    PubMed

    Beolchini, Francesca; Dell'Anno, Antonio; De Propris, Luciano; Ubaldini, Stefano; Cerrone, Federico; Danovaro, Roberto

    2009-03-01

    This study deals with bioremediation treatments of dredged sediments contaminated by heavy metals based on the bioaugmentation of different bacterial strains. The efficiency of the following bacterial consortia was compared: (i) acidophilic chemoautotrophic, Fe/S-oxidising bacteria, (ii) acidophilic heterotrophic bacteria able to reduce Fe/Mn fraction, co-respiring oxygen and ferric iron and (iii) the chemoautotrophic and heterotrophic bacteria reported above, pooled together, as it was hypothesised that the two strains could cooperate through a mutual substrate supply. The effect of the bioremediation treatment based on the bioaugmentation of Fe/S-oxidising strains alone was similar to the one based only on Fe-reducing bacteria, and resulted in heavy-metal extraction yields typically ranging from 40% to 50%. The efficiency of the process based only upon autotrophic bacteria was limited by sulphur availability. However, when the treatment was based on the addition of Fe-reducing bacteria and the Fe/S oxidizing bacteria together, their growth rates and efficiency in mobilising heavy metals increased significantly, reaching extraction yields >90% for Cu, Cd, Hg and Zn. The additional advantage of the new bioaugmentation approach proposed here is that it is independent from the availability of sulphur. These results open new perspectives for the bioremediation technology for the removal of heavy metals from highly contaminated sediments. PMID:19118863

  2. Microbial respiration and root respiration follow divergent seasonal and diel temporal patterns in a temperate forest

    NASA Astrophysics Data System (ADS)

    Davidson, E. A.; Savage, K. E.; Tang, J.

    2010-12-01

    Soil respiration is often related to empirical measurements of soil temperature and water content, as if it were a single process that responds uniformly to these environmental drivers. However, we know that root and microbial processes both contribute to CO2 production within the soil, and the roots are connected to aboveground plant tissues, which may, in turn, be responding to other environmental cues. Trenched plots provide a method to separate these two processes, where only microbial respiration (Rm) occurs in the trenched plots that have had roots excluded, total soil respiration (Rt) occurs in untrenched reference plots, and root respiration (Rr) is inferred by the difference between the two treatments. Like all methods, this one has potential artifacts that may render the quantification of Rr uncertain, but the method is likely to demonstrate the phenology of Rr and its impact on diel and seasonal temporal patterns of Rt. We deployed three automated soil respiration chambers in both control and trenched plots at the Harvard Forest in central Massachusetts. Soil CO2 efflux was measured every half hour for each chamber from day-of-year 112 to 304, 2009 (with some data gaps in the intervening period due to equipment failure). For the combined measurement period, mean daily soil respiration and mean daily flux amplitude were significantly higher in the reference plots compared to the trenched plots. The peak flux also occurred about 2 hours later in the evening in the reference plots compared to the trenched plots. Breaking this period down into four seasonal windows (spring, early summer, late summer, and autumn), the mean daily flux was significantly higher in the reference plot for all seasons, the higher daily amplitude was significant only during the early summer, and the delay in peak emissions was significant during early and late summer. While roots were contributing to soil respiration in all measurement periods, their largest effect on daily mean

  3. Forest Soil Respiration: Identifying Sources and Controls

    NASA Astrophysics Data System (ADS)

    Högberg, P.

    2008-12-01

    Most of the respiration in forests comes from the soil. This flux is composed of two components, autotrophic and heterotrophic respiration. In a strict sense the former should be plant belowground respiration only, but the term is used here to denote respiration by roots, their mycorrhizal fungal symbionts and other closely associated organisms dependent on recent photosynthate. Heterotrophs are organisms using organic matter, chiefly above- and belowground litters, as substrate (i.e. substrates of in general much higher ecosystem age). Because of the complexity of the plant-soil system, the component fluxes are difficult to study. I will discuss results of different approaches to partition soil respiratory components and to study their controls. The focus will be on northern boreal forests. In these generally strongly nitrogen-limited forests, the autotrophic respiration equals or exceeds the heterotrophic component. The large autotrophic component reflects high plant allocation of C to roots and mycorrhizal fungi in response to the low N supply. A physiological manipulation, girdling, which stops the flow of photosynthates to roots, showed that autotrophic respiration could account for as much as 70% in N-limited forests, but only 40% in fertilized forests. Also using girdling, we could show that a shift to lower summertime temperature leads to a decrease in heterotrophic but not in autotrophic activity, suggesting substrate (photosynthate) limitation of the latter. Physiological manipulations like girdling and trenching cannot be used to reveal the finer details of soil C dynamics. Natural abundance stable isotope (13C) and 14C approaches also have their limitations if a high resolution in terms of time, space and organism is required. A very high resolution can, of course, be obtained in studies of laboratory micro- or mesocosms, but the possibility to extend the interpretation of their results to the field may be questioned. In the CANIFLEX (CArbon NItrogen

  4. Bacterial Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Lauga, Eric

    2016-01-01

    Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells, yet they represent the bulk of the world's biomass and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micrometer scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically complex environments. Using hydrodynamics as an organizing framework, I review the biomechanics of bacterial motility and look ahead to future challenges.

  5. How protective are respirator assigned protection factors: an uncertainty analysis.

    PubMed

    Nelson, T J; Jayjock, M A; Colton, C E

    2000-01-01

    This investigation evaluated the risk of overexposure for a selected assigned protection factor by performing Monte Carlo simulations. A model was constructed to assess respirator performance by calculating the concentration inside the respirator. Estimates of the factors that affect respirator performance were described as distributions. The distributions used a worst case estimate for concentration in the workplace, the worst case for respirator performance (the fifth percentile person), and the worst case for exhalation valve leakage. A Monte Carlo analysis then provided estimates of the percentage of time that concentration inside the respirator exceeded the occupational exposure limit (OEL). For a half-facepiece respirator with an APF of 10, the calculations indicated a low risk of being exposed above an OEL, with mean exposures being controlled well below an OEL. PMID:10885889

  6. Tillage Effects on Soil Properties & Respiration

    NASA Astrophysics Data System (ADS)

    Rusu, Teodor; Bogdan, Ileana; Moraru, Paula; Pop, Adrian; Duda, Bogdan; Cacovean, Horea; Coste, Camelia

    2015-04-01

    Soil tillage systems can be able to influence soil compaction, water dynamics, soil temperature and soil structural condition. These processes can be expressed as changes of soil microbiological activity, soil respiration and sustainability of agriculture. Objectives of this study were: 1) to assess the effects of tillage systems (Conventional System-CS, Minimum Tillage-MT, No-Tillage-NT) on soil compaction, soil temperature, soil moisture and soil respiration and 2) to establish the relationship that exists in changing soil properties. Three treatments were installed: CS-plough + disc; MT-paraplow + rotary grape; NT-direct sowing. The study was conducted on an Argic-Stagnic Faeoziom. The MT and NT applications reduce or completely eliminate the soil mobilization, due to this, soil is compacted in the first year of application. The degree of compaction is directly related to soil type and its state of degradation. The state of soil compaction diminished over time, tending toward a specific type of soil density. Soil moisture was higher in NT and MT at the time of sowing and in the early stages of vegetation and differences diminished over time. Moisture determinations showed statistically significant differences. The MT and NT applications reduced the thermal amplitude in the first 15 cm of soil depth and increased the soil temperature by 0.5-2.20C. The determinations confirm the effect of soil tillage system on soil respiration; the daily average was lower at NT (315-1914 mmoli m-2s-1) and followed by MT (318-2395 mmoli m-2s-1) and is higher in the CS (321-2480 mmol m-2s-1). Comparing with CS, all the two conservation tillage measures decreased soil respiration, with the best effects of no-tillage. An exceeding amount of CO2 produced in the soil and released into the atmosphere, resulting from aerobic processes of mineralization of organic matter (excessive loosening) is considered to be not only a way of increasing the CO2 in the atmosphere, but also a loss of

  7. Differences in the Effect of Coal Pile Runoff (Low pH, High Metal Concentrations) Versus Natural Carolina Bay Water (Low pH, Low Metal Concentrations) on Plant Condition and Associated Bacterial Epiphytes of Salvinia minima.

    PubMed

    Lindell, A H; Tuckfield, R C; McArthur, J V

    2016-05-01

    Numerous wetlands and streams have been impacted by acid mine drainage (AMD) resulting in lowered pH and increased levels of toxic heavy metals. Remediation of these contaminated sites requires knowledge on the response of microbial communities (especially epiphytic) and aquatic plants to these altered environmental conditions. We examined the effect of coal pile runoff waters as an example of AMD in contrast to natural water from Carolina Bays with low pH and levels of metals on Salvinia minima, a non-native, metal accumulating plant and associated epiphytic bacteria. Treatments included water from two Carolina Bays, one AMD basin and Hoagland's Solution at two pH levels (natural and adjusted to 5.0-5.5). Using controlled replicated microcosms (N = 64) we determined that the combination of low pH and high metal concentrations has a significant negative impact (p < 0.05) on plant condition and epiphytes. Solution metal concentrations dropped indicating removal from solution by S. minima in all microcosms. PMID:26908369

  8. Soil Respiration under Different Land Uses in Eastern China

    PubMed Central

    Fan, Li-Chao; Yang, Ming-Zhen; Han, Wen-Yan

    2015-01-01

    Land-use change has a crucial influence on soil respiration, which further affects soil nutrient availability and carbon stock. We monitored soil respiration rates under different land-use types (tea gardens with three production levels, adjacent woodland, and a vegetable field) in Eastern China at weekly intervals over a year using the dynamic closed chamber method. The relationship between soil respiration and environmental factors was also evaluated. The soil respiration rate exhibited a remarkable single peak that was highest in July/August and lowest in January. The annual cumulative respiration flux increased by 25.6% and 20.9% in the tea garden with high production (HP) and the vegetable field (VF), respectively, relative to woodland (WL). However, no significant differences were observed between tea gardens with medium production (MP), low production (LP), WL, and VF. Soil respiration rates were significantly and positively correlated with organic carbon, total nitrogen, and available phosphorous content. Each site displayed a significant exponential relationship between soil respiration and soil temperature measured at 5 cm depth, which explained 84–98% of the variation in soil respiration. The model with a combination of soil temperature and moisture was better at predicting the temporal variation of soil respiration rate than the single temperature model for all sites. Q10 was 2.40, 2.00, and 1.86–1.98 for VF, WL, and tea gardens, respectively, indicating that converting WL to VF increased and converting to tea gardens decreased the sensitivity of soil respiration to temperature. The equation of the multiple linear regression showed that identical factors, including soil organic carbon (SOC), soil water content (SWC), pH, and water soluble aluminum (WSAl), drove the changes in soil respiration and Q10 after conversion of land use. Temporal variations of soil respiration were mainly controlled by soil temperature, whereas spatial variations were

  9. ESTIMATING ROOT RESPIRATION IN SPRUCE AND BEECH: DECREASES IN SOIL RESPIRATION FOLLOWING GIRDLING

    EPA Science Inventory

    A study was undertaken to follow seasonal fluxes of CO2 from soil and to estimate the contribution of autotrophic (root + mycorrhizal) to total soil respiration (SR) in a mixed stand of European beech (Fagus sylvatica) and Norway spruce (Picea abies) near Freising, Germany. Matu...

  10. LINKAGE BETWEEN PRODUCTION AND RESPIRATION ON THE LOUISIANA CONTINENTAL SHELF.

    EPA Science Inventory

    Abstract for presentation. Original title, "PRIMARY PRODUCTION, BACTERIOPLANKTON PRODUCTION, AND COMMUNITY RESPIRATION IN STRATIFIED WATERS OF THE NORTHERN GULF OF MEXICO CONTINENTAL SHELF: LINKAGE TO HYPOXIA."

  11. Cyanide-insensitive Respiration in Pea Cotyledons 1

    PubMed Central

    James, Terrance W.; Spencer, Mary S.

    1979-01-01

    Mitochondria isolated by a zonal procedure from the cotyledons of germinating peas possessed a cyanide-resistant respiration. This respiration was virtually absent in mitochondria isolated during the first 24 hours of germination but thereafter increased gradually until the 6th or 7th day of seedling development. At this time between 15 and 20% of the succinate oxidation was not inhibited by cyanide. The activity of the cyanide-resistant respiration was also determined in the absence of cyanide. Relationships among mitochondrial structure, cyanide-resistant respiration, and seedling development are discussed. PMID:16660982

  12. Autotrophic and heterotrophic components of soil respiration in permafrost zone.

    NASA Astrophysics Data System (ADS)

    Udovenko, Maria; Goncharova, Olga

    2016-04-01

    Soil carbon dioxide emissions production is an important integral indicator of soil biological activity and it includes several components: the root respiration and microbial decomposition of organic matter. Separate determination of the components of soil respiration is necessary for studying the balance of carbon in the soil and to assessment its potential as a sink or source of carbon dioxide. The aim of this study was testing field methods of separate determination of root and microbial respiration in soils of north of West Siberia. The research took place near the town Nadym, Yamalo-Nenets Autonomous District (north of West Siberia).The study area was located in the northern taiga with sporadic permafrost. Investigations were carried out at two sites: in forest and in frozen peatland. 3 methods were tested for the separation of microbial and root respiration. 1) "Shading"; 2) "Clipping"(removing the above-ground green plant parts); 3)a modified method of roots exclusion (It is to compare the emission of soils of "peat spots", devoid of vegetation and roots, and soils located in close proximity to the spots on which there is herbaceous vegetation and moss). For the experiments on methods of "Shading" and "Clipping" in the forest and on the frozen peatland ware established 12 plots, 1 x 1 m (3 plots in the forest and at 9 plots on frozen peatland; 4 of them - control).The criterions for choosing location sites were the similarity of meso- and microrelief, the same depth of permafrost, the same vegetation. Measurement of carbon dioxide emissions (chamber method) was carried out once a day, in the evening, for a week. Separation the root and microbial respiration by "Shading" showed that in the forest the root respiration contribution is 5%, and microbial - 95%. On peatlands root respiration is 41%, 59% of the microbial. In the experiment "Clipping" in peatlands root respiration is 56%, the microbial respiration - 44%, in forest- root respiration is 17%, and

  13. Covert respiration measures for the detection of concealed information.

    PubMed

    Elaad, Eitan; Ben-Shakhar, Gershon

    2008-03-01

    A mock-theft experiment was designed to assess the efficiency of two covert respiration measures in detection of concealed information. The covert measures were further compared with three standard measures typically used for the detection of concealed knowledge (electrodermal, respiration and finger pulse measures). Results revealed that the covert respiration measures produced good discrimination between "guilty" (participants possessing concealed knowledge) and "innocent" participants. One of the covert measures produced detection efficiency that was similar to that of the standard respiration and finger pulse measures, but less than the electrodermal measure. PMID:18093718

  14. A survey of respirators usage for airborne chemicals in Korea.

    PubMed

    Han, Don-Hee; Kang, Min-Sun

    2009-10-01

    A questionnaire survey was undertaken to identify the current status of respirator usage in manufacturing work environments subject to gas/vapor chemicals exposure in Korea and to suggest improvements to enhance the effectiveness of respirator usage. The number of target companies included 17 big companies, 110 small & mid-size companies, and 5 foreign companies, and the number of respondents included 601 workers and 69 persons in charge of respirators (PCR). The results explained clearly that respirator programs in practice were extremely poor in small & mid-sized companies. The findings indicated that the selection of respirators was not appropriate. Quarter mask including filtering facepiece was the most common facepiece form for respirator and was worn by sixty-four percent. Not a little proportion of respondents (33%) complained about the fit: faceseal leakage between the face and facepiece. A filtering facepiece with carbon fiber filter was used as a substitution for a gas/vapor respirator. Another result was that the PCR respondents' perception of the administration of respirators was very low. The results of this survey suggest that regal enforcement of respiratory protection programs should be established in Korea. On the basis of these findings, respiratory protection programs should include respirator selection, maintenance, training, and fit testing. PMID:19834267

  15. The surface metal site in Blc. viridis photosynthetic bacterial reaction centers: Cu{sup 2+} as a probe of structure, location, and flexibility.

    SciTech Connect

    Utschig, L. M.; Dalosto, S. D.; Thurnauer, M. C.; Poluektov, O. G.

    2010-01-01

    Metal ion binding to a surface site on photosynthetic reaction centers (RCs) modulates light-induced electron and proton transfer events in the RC. Whereas many studies have elucidated aspects of metal ion modulation events in Rhodobacter sphaeroides RCs, much less is understood about the surface site in Blastochloris viridis (Blc. viridis) RCs. Interestingly, electron paramagnetic resonance studies revealed two spectroscopically distinct Cu{sup 2+} surface site environments in Blc. viridis RCs. Herein, Cu{sup 2+} has been used to spectroscopically probe the structure of these Cu{sup 2+} site(s) in response to freezing conditions, temperature, and charge separation. One Cu{sup 2+} environment in Blc. viridis RCs, termed CuA, exhibits temperature-dependent conformational flexibility. Different conformation states of the CuA{sup 2+} site are trapped when the RC is frozen in the dark either by fast-freeze or slow-freeze procedure. The second Cu{sup 2+} environment, termed CuB, is structurally invariant to different freezing conditions and shows resolved hyperfine coupling to three nitrogen atoms. Cu{sup 2+} is most likely binding at the same location on the RC, but in different coordination environments which may reflect two distinct conformational states of the isolated Blc. viridis RC protein.

  16. Underwater breathing: the mechanics of plastron respiration

    NASA Astrophysics Data System (ADS)

    Flynn, M. R.; Bush, John W. M.

    The rough, hairy surfaces of many insects and spiders serve to render them water-repellent; consequently, when submerged, many are able to survive by virtue of a thin air layer trapped along their exteriors. The diffusion of dissolved oxygen from the ambient water may allow this layer to function as a respiratory bubble or , and so enable certain species to remain underwater indefinitely. Maintenance of the plastron requires that the curvature pressure balance the pressure difference between the plastron and ambient. Moreover, viable plastrons must be of sufficient area to accommodate the interfacial exchange of O2 and CO2 necessary to meet metabolic demands. By coupling the bubble mechanics, surface and gas-phase chemistry, we enumerate criteria for plastron viability and thereby deduce the range of environmental conditions and dive depths over which plastron breathers can survive. The influence of an external flow on plastron breathing is also examined. Dynamic pressure may become significant for respiration in fast-flowing, shallow and well-aerated streams. Moreover, flow effects are generally significant because they sharpen chemical gradients and so enhance mass transfer across the plastron interface. Modelling this process provides a rationale for the ventilation movements documented in the biology literature, whereby arthropods enhance plastron respiration by flapping their limbs or antennae. Biomimetic implications of our results are discussed.

  17. Changes in lung tumor shape during respiration

    NASA Astrophysics Data System (ADS)

    Kyriakou, E.; McKenzie, D. R.

    2012-02-01

    Evidence that some lung tumors change shape during respiration is derived from respiratory gated CT data by statistical shape modeling and image manipulation. Some tumors behave as rigid objects while others show systematic shape changes. Two views of lung motion are presented to allow analysis of the results. In the first, lung motion is viewed as a wave motion in which inertial effects arising from mass are present and in the second it is a quasistatic motion in which the mass of the lung tissues is neglected. In the first scenario, the extremes of tumor compression and expansion are expected to correlate with maximum upward and downward velocity of the tumor, respectively. In the second, they should occur at end exhale and end inhale, respectively. An observed correlation between tumor strain and tumor velocity provides more support for the first view of lung motion and may explain why previous attempts at observing tumor shape changes during respiration have largely failed. The implications for the optimum gating of radiation therapy are discussed.

  18. Can we distinguish autotrophic respiration from heterotrophic respiration in a field site using high temporal resolution CO2 flux measurements?

    NASA Astrophysics Data System (ADS)

    Biro, Beatrice; Berger, Sina; Praetzel, Leandra; Blodau, Christian

    2016-04-01

    The processes behind C-cycling in peatlands are important to understand for assessing the vulnerability of peatlands as carbon sinks under changing climate conditions. Especially boreal peatlands are likely to underlie strong alterations in the future. It is expected that C-pools that are directly influenced by vegetation and water table fluctuations can be easily destabilized. The CO2 efflux through respiration underlies autotrophic and heterotrophic processes that show different feedbacks on changing environmental conditions. In order to understand the respiration fluxes better for more accurate modelling and prognoses, the determination of the relative importance of different respiration sources is necessary. Earlier studies used e.g. exfoliation experiments, incubation experiments or modelling approaches to estimate the different respiration sources for the total ecosystem respiration (Reco). To further the understanding in this topic, I want to distinguish autotrophic and heterotrophic respiration using high temporal resolution measurements. The study site was selected along a hydrological gradient in a peatland in southern Ontario (Canada) and measurements were conducted from May to September 2015 once per month. Environmental controls (water table, soil temperature and soil moisture) that effect the respiration sources were recorded. In my study I used a Li-COR 6400XT and a Los Gatos greenhouse gas analyzer (GGA). Reco was determined by chamber flux measurements with the GGA, while simultaneously CO2 respiration measurements on different vegetation compartments like roots, leaves and mosses were conducted using the Li-COR 6400XT. The difference between Reco and autotrophic respiration equals heterotrophic respiration. After the measurements, the vegetation plots were harvested and separated for all compartments (leaves, roots, mosses, soil organic matter), dried and weighed. The weighted respiration rates from all vegetation compartments sum up to

  19. Bacterial vaginosis.

    PubMed Central

    Spiegel, C A

    1991-01-01

    Bacterial vaginosis (BV) is the most common of the vaginitides affecting women of reproductive age. It appears to be due to an alteration in the vaginal ecology by which Lactobacillus spp., the predominant organisms in the healthy vagina, are replaced by a mixed flora including Prevotella bivia, Prevotella disiens, Porphyromonas spp., Mobiluncus spp., and Peptostreptococcus spp. All of these organisms except Mobiluncus spp. are also members of the endogenous vaginal flora. While evidence from treatment trials does not support the notion that BV is sexually transmitted, recent studies have shown an increased risk associated with multiple sexual partners. It has also been suggested that the pathogenesis of BV may be similar to that of urinary tract infections, with the rectum serving as a reservoir for some BV-associated flora. The organisms associated with BV have also been recognized as agents of female upper genital tract infection, including pelvic inflammatory disease, and the syndrome BV has been associated with adverse outcome of pregnancy, including premature rupture of membranes, chorioamnionitis, and fetal loss; postpartum endometritis; cuff cellulitis; and urinary tract infections. The mechanisms by which the BV-associated flora causes the signs of BV are not well understood, but a role for H2O2-producing Lactobacillus spp. in protecting against colonization by catalase-negative anaerobic bacteria has been recognized. These and other aspects of BV are reviewed. PMID:1747864

  20. Separation of root respiration from total soil respiration using carbon-13 labelling during free-air carbon dioxide enrichment (FACE)

    SciTech Connect

    Andrews, J.A.; Harrison, K.G.; Matamala, R.; Schlesinger, W.H.

    1999-10-01

    Soil respiration constitutes a major component of the global carbon cycle and is likely to be altered by climate change. However, there is an incomplete understanding of the extent to which various processes contribute to total soil respiration, especially the contributions of root and rhizosphere respiration. Here, using a stable carbon isotope tracer, the authors separate the relative contributions of root and soil heterotrophic respiration to total soil respiration in situ. The Free-Air Carbon dioxide Enrichment (FACE) facility in the Duke University Forest (NC) fumigates plots of an undisturbed loblolly pine (Pinus taeda L.) forest with CO{sub 2} that is strongly depleted in {sup 13}C. This labeled CO{sub 2} is found in the soil pore space through live root and mycorrhizal respiration and soil heterotroph respiration of labile root exudates. By measuring the depletion of {sup 13}CO{sub 2} in the soil system, the authors found that the rhizosphere contribution to soil CO{sub 2} reflected the distribution of fine roots in the soil and that late in the growing season roots contributed 55% of total soil respiration at the surface. This estimate may represent an upper limit on the contribution of roots to soil respiration because high atmospheric CO{sub 2} often increases in root density and/or root activity in the soil.

  1. Endotoxin-induced basal respiration alterations of renal HK-2 cells: A sign of pathologic metabolism down-regulation

    SciTech Connect

    Quoilin, C.; Mouithys-Mickalad, A.; Duranteau, J.; Gallez, B.; Hoebeke, M.

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer A HK-2 cells model of inflammation-induced acute kidney injury. Black-Right-Pointing-Pointer Two oximetry methods: high resolution respirometry and ESR spectroscopy. Black-Right-Pointing-Pointer Oxygen consumption rates of renal cells decrease when treated with LPS. Black-Right-Pointing-Pointer Cells do not recover normal respiration when the LPS treatment is removed. Black-Right-Pointing-Pointer This basal respiration alteration is a sign of pathologic metabolism down-regulation. -- Abstract: To study the mechanism of oxygen regulation in inflammation-induced acute kidney injury, we investigate the effects of a bacterial endotoxin (lipopolysaccharide, LPS) on the basal respiration of proximal tubular epithelial cells (HK-2) both by high-resolution respirometry and electron spin resonance spectroscopy. These two complementary methods have shown that HK-2 cells exhibit a decreased oxygen consumption rate when treated with LPS. Surprisingly, this cellular respiration alteration persists even after the stress factor was removed. We suggested that this irreversible decrease in renal oxygen consumption after LPS challenge is related to a pathologic metabolic down-regulation such as a lack of oxygen utilization by cells.

  2. Respirator Performance against Nanoparticles under Simulated Workplace Activities.

    PubMed

    Vo, Evanly; Zhuang, Ziqing; Horvatin, Matthew; Liu, Yuewei; He, Xinjian; Rengasamy, Samy

    2015-10-01

    Filtering facepiece respirators (FFRs) and elastomeric half-mask respirators (EHRs) are commonly used by workers for protection against potentially hazardous particles, including engineered nanoparticles. The purpose of this study was to evaluate the performance of these types of respirators against 10-400 nm particles using human subjects exposed to NaCl aerosols under simulated workplace activities. Simulated workplace protection factors (SWPFs) were measured for eight combinations of respirator models (2 N95 FFRs, 2 P100 FFRs, 2 N95 EHRs, and 2 P100 EHRs) worn by 25 healthy test subjects (13 females and 12 males) with varying face sizes. Before beginning a SWPF test for a given respirator model, each subject had to pass a quantitative fit test. Each SWPF test was performed using a protocol of six exercises for 3 min each: (i) normal breathing, (ii) deep breathing, (iii) moving head side to side, (iv) moving head up and down, (v) bending at the waist, and (vi) a simulated laboratory-vessel cleaning motion. Two scanning mobility particle sizers were used simultaneously to measure the upstream (outside the respirator) and downstream (inside the respirator) test aerosol; SWPF was then calculated as a ratio of the upstream and downstream particle concentrations. In general, geometric mean SWPF (GM-SWPF) was highest for the P100 EHRs, followed by P100 FFRs, N95 EHRs, and N95 FFRs. This trend holds true for nanoparticles (10-100 nm), larger size particles (100-400 nm), and the 'all size' range (10-400 nm). All respirators provided better or similar performance levels for 10-100 nm particles as compared to larger 100-400 nm particles. This study found that class P100 respirators provided higher SWPFs compared to class N95 respirators (P < 0.05) for both FFR and EHR types. All respirators provided expected performance (i.e. fifth percentile SWPF > 10) against all particle size ranges tested. PMID:26180261

  3. Cholera Toxin Production during Anaerobic Trimethylamine N-Oxide Respiration Is Mediated by Stringent Response in Vibrio cholerae*

    PubMed Central

    Oh, Young Taek; Park, Yongjin; Yoon, Mi Young; Bari, Wasimul; Go, Junhyeok; Min, Kyung Bae; Raskin, David M.; Lee, Kang-Mu; Yoon, Sang Sun

    2014-01-01

    As a facultative anaerobe, Vibrio cholerae can grow by anaerobic respiration. Production of cholera toxin (CT), a major virulence factor of V. cholerae, is highly promoted during anaerobic growth using trimethylamine N-oxide (TMAO) as an alternative electron acceptor. Here, we investigated the molecular mechanisms of TMAO-stimulated CT production and uncovered the crucial involvement of stringent response in this process. V. cholerae 7th pandemic strain N16961 produced a significantly elevated level of ppGpp, the bacterial stringent response alarmone, during anaerobic TMAO respiration. Bacterial viability was impaired, and DNA replication was also affected under the same growth condition, further suggesting that stringent response is induced. A ΔrelA ΔspoT ppGpp overproducer strain produced an enhanced level of CT, whereas anaerobic growth via TMAO respiration was severely inhibited. In contrast, a ppGpp-null strain (ΔrelA ΔspoT ΔrelV) grew substantially better, but produced no CT, suggesting that CT production and bacterial growth are inversely regulated in response to ppGpp accumulation. Bacterial capability to produce CT was completely lost when the dksA gene, which encodes a protein that works cooperatively with ppGpp, was deleted. In the ΔdksA mutant, stringent response growth inhibition was alleviated, further supporting the inverse regulation of CT production and anaerobic growth. In vivo virulence of ΔrelA ΔspoT ΔrelV or ΔdksA mutants was significantly attenuated. The ΔrelA ΔspoT mutant maintained virulence when infected with exogenous TMAO despite its defective growth. Together, our results reveal that stringent response is activated under TMAO-stimulated anaerobic growth, and it regulates CT production in a growth-dependent manner in V. cholerae. PMID:24648517

  4. Observing Mean Annual Mediterranean Maquis Ecosystem Respiration

    NASA Astrophysics Data System (ADS)

    Marras, S.; Bellucco, V.; Mereu, S.; Sirca, C.; Spano, D.

    2014-12-01

    In semi arid ecosystems, extremely low Soil Water Content (SWC) values may limit ecosystem respiration (Reco) to the point of hiding the typical exponential response of respiration to temperature. This work is aimed to understand and model the Reco of an evergreen Mediterranean maquis ecosystem and to estimate the contribution of soil CO2 efflux to Reco. The selected site is located in the center of the Mediterranean sea in Sardinia (Italy). Mean annual precipitation is 588 mm and mean annual temperature is 15.9 °C. Vegetation cover is heterogeneous: 70% covered by shrubs and 30% of bare soil. Net Ecosystem Exchange (NEE) is monitored with an Eddy Covariance (EC) tower since April 2004. Soil collars were placed underneath the dominant species (Juniperus phoenicea and Pistacia lentiscus) and over the bare soil. Soil CO2 efflux was measured once a month since April 2012. Soil temperature and SWC were monitored continuously at 5 cm depth in 4 different positions close to the soil collars. Six years of EC measurements (2005-2010) and two years of soil CO2 efflux (2012-2013) measurements were analysed. Reco was estimated from the measured EC fluxes at night after filtering for adequate turbulence (u* > 1.5). Reco measurements were then binned into 1°C intervals and median values were first fitted using the Locally Estimated Scatterplot Smoothing (LOESS) method (to determine the dominant trend of the experimental curve) Reco shows an exponential increase with air and soil temperature, until SWC measured at 0.2 m depth remains above 19% vol. Secondly, the coefficients of the selected Lloyd and Taylor (1994) were estimated through the nonlinear least square (nls) method: Rref (ecosystem respiration rate at a reference temperature of 10 °C was equal to 1.65 μmol m-2 s-1 and E0 (activation energy parameter that determines the temperature sensitivity) was equal to 322.46. In addition, bare and drier soils show a reduced response of measured CO2 efflux to increasing

  5. Ecological Application of Antibiotics as Respiratory Inhibitors of Bacterial Populations1

    PubMed Central

    Yetka, J. E.; Wiebe, W. J.

    1974-01-01

    Two terregenous and four marine bacterial isolates were treated with six antibiotics and antibiotic combinations. Comparisons made between responses of cells in early and late logarithmic and stationary growth phases indicated variable sensitivity to the agents. Bacteria in stationary and late log-phase cultures exhibited the greatest resistance, whereas the early log-phase cells exhibited greatest antibiotic susceptibility. We conclude that the tested antibiotics cannot be used for ecological purposes to delineate bacterial respiration in mixed microbial communities. PMID:4217588

  6. Bacterial tyrosinases.

    PubMed

    Claus, Harald; Decker, Heinz

    2006-01-01

    Tyrosinases are nearly ubiquitously distributed in all domains of life. They are essential for pigmentation and are important factors in wound healing and primary immune response. Their active site is characterized by a pair of antiferromagnetically coupled copper ions, CuA and CuB, which are coordinated by six histidine residues. Such a "type 3 copper centre" is the common feature of tyrosinases, catecholoxidases and haemocycanins. It is also one of several other copper types found in the multi-copper oxidases (ascorbate oxidase, laccase). The copper pair of tyrosinases binds one molecule of atmospheric oxygen to catalyse two different kinds of enzymatic reactions: (1) the ortho-hydroxylation of monophenols (cresolase activity) and (2) the oxidation of o-diphenols to o-diquinones (catecholase activity). The best-known function is the formation of melanins from L-tyrosine via L-dihydroxyphenylalanine (L-dopa). The complicated hydroxylation mechanism at the active centre is still not completely understood, because nothing is known about their tertiary structure. One main reason for this deficit is that hitherto tyrosinases from eukaryotic sources could not be isolated in sufficient quantities and purities for detailed structural studies. This is not the case for prokaryotic tyrosinases from different Streptomyces species, having been intensively characterized genetically and spectroscopically for decades. The Streptomyces tyrosinases are non-modified monomeric proteins with a low molecular mass of ca. 30kDa. They are secreted to the surrounding medium, where they are involved in extracellular melanin production. In the species Streptomyces, the tyrosinase gene is part of the melC operon. Next to the tyrosinase gene (melC2), this operon contains an additional ORF called melC1, which is essential for the correct expression of the enzyme. This review summarizes the present knowledge of bacterial tyrosinases, which are promising models in order to get more insights in

  7. 30 CFR 71.100 - Respirable dust standard.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Respirable dust standard. 71.100 Section 71.100... MANDATORY HEALTH STANDARDS-SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Dust Standards § 71.100 Respirable dust standard. Each operator shall continuously maintain the...

  8. 78 FR 56273 - Occupational Exposure to Respirable Crystalline Silica

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-12

    ...The Occupational Safety and Health Administration (OSHA) proposes to amend its existing standards for occupational exposure to respirable crystalline silica. The basis for issuance of this proposal is a preliminary determination by the Assistant Secretary of Labor for Occupational Safety and Health that employees exposed to respirable crystalline silica face a significant risk to their health......

  9. Study of contact characteristics between a respirator and a headform.

    PubMed

    Cai, Mang; Shen, Shengnan; Li, Hui; Zhang, Xiaotie; Ma, Yanzhao

    2016-01-01

    This article presents a computational study on contact characteristics of contact pressure and resultant deformation between an N95 filtering facepiece respirator and a newly developed digital headform. The geometry of the headform model is obtained based on computed tomography scanning of a volunteer. The segmentation and reconstruction of the headform model is performed by Mimics v16.0 (Materialise, Leuven, Belgium), which is a medical image processing software. The respirator model is obtained by scanning the surface of a 3M 8210 N95 respirator using a 3D digitizer and then the model is transformed by Geomagic Studio v12.0 (3D system, Rock Hill, SC), a reverse engineering software. The headform model contains a soft tissue layer, a skull layer, and a separate nose. The respirator model contains two layers (an inner face sealing layer and an outer layer) and a nose clip. Both the headform and respirator are modeled as solid elements and are deformable. The commercial software, LS-DYNA (LSTC, Livermore, CA), is used to simulate the contact between the respirator and headform. Contact pressures and resultant deformation of the headform are investigated. Effects of respirator stiffness on contact characteristics are also studied. A Matlab (MathWorks, Natick, MA) program is developed to calculate local gaps between the headform and respirator in the stable wearing state. PMID:26558322

  10. Automatic patient respiration failure detection system with wireless transmission

    NASA Technical Reports Server (NTRS)

    Dimeff, J.; Pope, J. M.

    1968-01-01

    Automatic respiration failure detection system detects respiration failure in patients with a surgically implanted tracheostomy tube, and actuates an audible and/or visual alarm. The system incorporates a miniature radio transmitter so that the patient is unencumbered by wires yet can be monitored from a remote location.

  11. Soil Respiration and Student Inquiry: A Perfect Match

    ERIC Educational Resources Information Center

    Hoyt, Catherine Marie; Wallenstein, Matthew David

    2011-01-01

    This activity explores the cycling of carbon between the atmosphere (primarily as CO[subscript 2]) and biomass in plants, animals, and microscopic organisms. Students design soil respiration experiments using a protocol that resembles current practice in soil ecology. Three methods for measuring soil respiration are presented. Student-derived…

  12. 30 CFR 70.300 - Respiratory equipment; respirable dust.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-UNDERGROUND COAL MINES Respiratory Equipment § 70.300 Respiratory equipment; respirable dust. Respiratory equipment approved by NIOSH under 42 CFR part 84 shall be... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Respiratory equipment; respirable dust....

  13. 75 FR 29699 - Total Inward Leakage Requirements for Respirators

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-27

    ... Inward Leakage Requirements for Respirators on Friday, October 30, 2009 (74 FR 56141). NIOSH held a... Federal Register on Friday, October 30, 2009 (74 FR 56141). The purpose of the meeting is to allow... process in the area of filtering facepiece or other half-mask respirator inward leakage measurement,...

  14. Responses of a macroinvertebrate community from a pristine, southern British Columbia, Canada, stream to metals in experimental mesocosms

    SciTech Connect

    Richardson, J.S.; Kiffney, P.M.

    2000-03-01

    Metal contamination is one of the most widespread impacts on surface waters. Experimental flumes receiving water and aquatic invertebrates from an undisturbed, forested stream were used to determine the impact of metals in a low-conductivity stream. The experimental flumes were exposed to a gradient of doses maintaining a constant ratio of metals (1995: Cu, Zn, Mn, and Pb; 1996: Cu and Zn) for 6 d. Benthos and emigration were sampled from each of the 16 troughs. The overall densities of benthos declined, but not significantly, as the dose of metals increased. On the basis of the slopes of the concentration-response curve, Baetis, Ameletus, and Paraleptophlebia were the most sensitive taxa present. Other taxa (e.g., Nemouridae and Oligochaeta) were mildly affected by high metal concentrations. Chironomidae showed no significant decrease in densities with increasing dose. Chironomids made up >80% of the benthos and is the primary reason for no significant dose effect on overall densities. No treatment effect was observed on either algal standing crop or bacterial respiration rates. The invertebrate genera most affected by exposure to metals in this study were also absent or rare in nearby urban streams with high metal concentrations.

  15. Oxidation of calprotectin by hypochlorous acid prevents chelation of essential metal ions and allows bacterial growth: Relevance to infections in cystic fibrosis.

    PubMed

    Magon, Nicholas J; Turner, Rufus; Gearry, Richard B; Hampton, Mark B; Sly, Peter D; Kettle, Anthony J

    2015-09-01

    Calprotectin provides nutritional immunity by sequestering manganese and zinc ions. It is abundant in the lungs of patients with cystic fibrosis but fails to prevent their recurrent infections. Calprotectin is a major protein of neutrophils and composed of two monomers, S100A8 and S100A9. We show that the ability of calprotectin to limit growth of Staphylococcus aureus and Pseudomonas aeruginosa is exquisitely sensitive to oxidation by hypochlorous acid. The N-terminal cysteine residue on S100A9 was highly susceptible to oxidation which resulted in cross-linking of the protein monomers. The N-terminal methionine of S100A8 was also readily oxidized by hypochlorous acid, forming both the methionine sulfoxide and the unique product dehydromethionine. Isolated human neutrophils formed these modifications on calprotectin when their myeloperoxidase generated hypochlorous acid. Up to 90% of the N-terminal amine on S100A8 in bronchoalveolar lavage fluid from young children with cystic fibrosis was oxidized. Oxidized calprotectin was higher in children with cystic fibrosis compared to disease controls, and further elevated in those patients with infections. Our data suggest that oxidative stress associated with inflammation in cystic fibrosis will stop metal sequestration by calprotectin. Consequently, strategies aimed at blocking extracellular myeloperoxidase activity should enable calprotectin to provide nutritional immunity within the airways. PMID:26006104

  16. Theoretical description of RESPIRATION-CP

    NASA Astrophysics Data System (ADS)

    Nielsen, Anders B.; Tan, Kong Ooi; Shankar, Ravi; Penzel, Susanne; Cadalbert, Riccardo; Samoson, Ago; Meier, Beat H.; Ernst, Matthias

    2016-02-01

    We present a quintuple-mode operator-based Floquet approach to describe arbitrary amplitude modulated cross polarization experiments under magic-angle spinning (MAS). The description is used to analyze variants of the RESPIRATION approach (RESPIRATIONCP) where recoupling conditions and the corresponding first-order effective Hamiltonians are calculated, validated numerically and compared to experimental results for 15N-13C coherence transfer in uniformly 13C,15N-labeled alanine and in uniformly 2H,13C,15N-labeled (deuterated and 100% back-exchanged) ubiquitin at spinning frequencies of 16.7 and 90.9 kHz. Similarities and differences between different implementations of the RESPIRATIONCP sequence using either CW irradiation or small flip-angle pulses are discussed.

  17. Paint spray tests for respirators: aerosol characteristics.

    PubMed

    Ackley, M W

    1980-05-01

    Liquid paint is sprayed from an atomizing nozzle to form an aerosol for testing paint spray respirators. The generated aerosol conditions are dependent upon liguid properties, spray-nozzle flow conditions and droplet evaporation. A technique was developed for controlling the aerosol concentrations reliably. Particle-size distributions of lacquer and enamel have been measured. The lacquer distribution was found to be multi-modal. Aerosol concentration dradients arise when the nozzle is not properly positioned. Filter loading resistance is significantly affected by these concentration variations. With regard to selection of standard aerosol test be improved by modifying the current NIOSH criteria to include a description of the particle-size distribution, a more precise definition of the paint and paint thinner chemical compositions, and a narrower concentration range. PMID:6932174

  18. Hereditary respiration deficiency in Saccharomycodes ludwigii.

    PubMed

    Nagai, S; Kané, N; Ochi, S; Kawai, K; Yamazaki, T

    1976-01-01

    Saccharomycodes ludwigii, supposed to be "petite-negative," gave rise to respiration-deficient mutants when acriflavine and ultraviolet irradiation, respectively, were applied to this yeast, strain IFO 1194. The frequency of such mutants was very low as compared with that in Saccharomyces cervisiae and other "petite-positive" yeasts. Cytochrome composition was characterized by spectrophotometry at the temperature of liquid nitrogen. The respiratory mutants examined contained cytochrome c unaltered in quality and quantity. Cytochrome b was often present only in small amounts though never absent, while cytochrome a + a3 was either present or absent. The respiratory mutants could form zygotes after conjugation with a wild-type culture of opposite mating type (alpha vs. a). The hybridization and segregation analysis of spore tetrads showed the inheritance of respiratory mutant character to be either Mendelian or non-Mendelian and similar to that of pet (nuclear) and rho- (cytoplasmic) mutants, respectively, in Saccharomyces cerevisiae. PMID:1087863

  19. Energy coupling and respiration in Nitrosomonas europaea.

    PubMed

    Drozd, J W

    1976-11-01

    Intact cells of Nitrosomonas europaea grown in an ammonium salts medium will oxidise ammonium ions, hydroxylamine and ascorbate-TMPD; there is no oxidation of carbon monoxide, methane or methanol. The Km value for ammonia oxidation is highly pH dependent with a minimum value of 0.5 mM above pH 8.0. This suggests that free ammonia is the species crossing the cytoplasmic membrane(s). The measurement of respiration driven proton translocation indicates that there is probably only one proton translocating loop (loop 3) association with hydroxylamine oxidation. The oxidation of "endogenous" substrates is sometimes associated with more than one proton-translocating loop. These results indicate that during growth hydroxylamine oxidation is probably associated with a maximum P/O ratio of 1. PMID:13754

  20. N95 respirator use during advanced pregnancy

    PubMed Central

    Roberge, Raymond J.; Kim, Jung-Hyun; Powell, Jeffrey B.

    2015-01-01

    Background To determine the physiological and subjective effects of wearing an N95 filtering facepiece respirator (N95 FFR) in advanced stages of pregnancy. Methods Healthy pregnant women (n = 22) and nonpregnant women (n = 22) had physiological and subjective measurements taken with and without wearing an N95 FFR during exercise and postural sedentary activities over a 1-hour period. Results There were no differences between the pregnant and nonpregnant women with respect to heart rate, respiratory rate, oxygen saturation, transcutaneous carbon dioxide level, chest wall temperature, aural temperature, and subjective perceptions of exertion and thermal comfort. No significant effect on fetal heart rate was noted. Conclusions Healthy pregnant women wearing an N95 FFR for 1 hour during exercise and sedentary activities did not exhibit any significant differences in measured physiological and subjective responses compared with nonpregnant women. PMID:25278401

  1. Measurements of photosynthesis and respiration in plants.

    PubMed

    Hunt, Stephen

    2003-03-01

    Methods for measuring the rates of photosynthesis and respiration in plants are reviewed. Closed systems that involve manometric techniques, 14CO2 fixation, O2 electrodes and other methods for measuring dissolved and gas phase O2 are described. These methods typically provide time-integrated rate measurements, and limitations to their use are discussed. Open gas exchange systems that use infra-red CO2 gas analysers and differential O2 analysers for measuring instantaneous rates of CO2 and O2 exchange are described. Important features of the analysers, design features of gas exchange systems, and sources of potential error are considered. The analysis of chlorophyll fluorescence parameters for estimating the quantum yield for O2 evolution and CO2 fixation is described in relation to new fluorescence imaging systems for large scale screening of photosynthetic phenotypes, and the microimaging of individual chloroplasts. PMID:12654031

  2. Respirator masks protect health but impact performance: a review.

    PubMed

    Johnson, Arthur T

    2016-01-01

    Respiratory protective masks are used whenever it is too costly or impractical to remove airborne contamination from the atmosphere. Respirators are used in a wide range of occupations, form the military to medicine. Respirators have been found to interfere with many physiological and psychological aspects of task performance at levels from resting to maximum exertion. Many of these limitations have been investigated in order to determine quantitatively how much performance decrement can be expected from different levels of respirator properties. The entire system, including respirator and wearer interactions, must be considered when evaluating wearer performances. This information can help respirator designers to determine trade-offs or managers to plan to compensate for reduced productivity of wearers. PMID:26865858

  3. Biological attributes of rehabilitated soils contaminated with heavy metals.

    PubMed

    Valentim Dos Santos, Jessé; Varón-López, Maryeimy; Fonsêca Sousa Soares, Cláudio Roberto; Lopes Leal, Patrícia; Siqueira, José Oswaldo; de Souza Moreira, Fatima Maria

    2016-04-01

    This study aimed to evaluate the effects of two rehabilitation systems in sites contaminated by Zn, Cu, Pb, and Cd on biological soil attributes [microbial biomass carbon (Cmic), basal and induced respiration, enzymatic activities, microorganism plate count, and bacterial and fungal community diversity and structure by denaturing gradient gel electrophoresis (DGGE)]. These systems (S1 and S2) consisted of excavation (trenching) and replacement of contaminated soil by uncontaminated soil in rows with Eucalyptus camaldulensis planting (S1-R and S2-R), free of understory vegetation (S1-BR), or completely covered by Brachiaria decumbens (S2-BR) in between rows. A contaminated, non-rehabilitated (NR) site and two contamination-free sites [Cerrado (C) and pasture (P)] were used as controls. Cmic, densities of bacteria and actinobacteria, and enzymatic activities (β-glucosidase, acid phosphatase, and urease) were significantly higher in the rehabilitated sites of system 2 (S2-R and S2-BR). However, even under high heavy metal contents (S1-R), the rehabilitation with eucalyptus was also effective. DGGE analysis revealed similarity in the diversity and structure of bacteria and fungi communities between rehabilitated sites and C site (uncontaminated). Principal component analysis showed clustering of rehabilitated sites (S2-R and S2-BR) with contamination-free sites, and S1-R was intermediate between the most and least contaminated sites, demonstrating that the soil replacement and revegetation improved the biological condition of the soil. The attributes that most explained these clustering were bacterial density, acid phosphatase, β-glucosidase, fungal and actinobacterial densities, Cmic, and induced respiration. PMID:26662102

  4. Remediation of grey forest soils heavily polluted with heavy metals by means of their leaching at acidic pH followed by the soil reclamation by means of neutralization and bacterial manure addition

    NASA Astrophysics Data System (ADS)

    Georgiev, Plamen; Groudev, Stoyan; Spasova, Irena; Nicolova, Marina

    2014-05-01

    Some grey forest soils in Western Bulgaria are heavily polluted with heavy metals (copper, lead, and zinc), arsenic, and uranium due to the infiltration of acid mine drainage generated at the abandoned uranium mine Curilo. This paper presents some results from a study about soil remediation based on the contaminants leaching from the topsoil by means of irrigation with solutions containing sulphuric acid or its in situ generation by means of sulphur-oxidizing chemolithotrophic bacteria in or without the presence of finely cut straw. These methods were tested in large scale zero suction lysimeters. The approaches based on S° and finely cut straw addition was the most efficient amongst the tested methods and for seven months of soil remediation the concentration of all soil contaminants were decreased below the relevant Maximum Admissible Concentration (MAC). Neutralization of the soil acidity was applied as a next stage of soil reclamation by adding CaCO3 and cow manure. As a result, soil pH increased from strongly acidic (2.36) to slightly acidic (6.15) which allowed subsequent addition of humic acids and bacterial manure to the topsoil. The soil habitat changed in this way facilitated the growth of microorganisms which restored the biogeochemical cycles of nitrogen and carbon to the levels typical for non-polluted grey forest soil.

  5. Carbon Monoxide Gas Is Not Inert, but Global, in Its Consequences for Bacterial Gene Expression, Iron Acquisition, and Antibiotic Resistance

    PubMed Central

    Wareham, Lauren K.; Begg, Ronald; Jesse, Helen E.; van Beilen, Johan W.A.; Ali, Salar; Svistunenko, Dimitri; McLean, Samantha; Hellingwerf, Klaas J.; Sanguinetti, Guido

    2016-01-01

    Abstract Aims: Carbon monoxide is a respiratory poison and gaseous signaling molecule. Although CO-releasing molecules (CORMs) deliver CO with temporal and spatial specificity in mammals, and are proven antimicrobial agents, we do not understand the modes of CO toxicity. Our aim was to explore the impact of CO gas per se, without intervention of CORMs, on bacterial physiology and gene expression. Results: We used tightly controlled chemostat conditions and integrated transcriptomic datasets with statistical modeling to reveal the global effects of CO. CO is known to inhibit bacterial respiration, and we found expression of genes encoding energy-transducing pathways to be significantly affected via the global regulators, Fnr, Arc, and PdhR. Aerobically, ArcA—the response regulator—is transiently phosphorylated and pyruvate accumulates, mimicking anaerobiosis. Genes implicated in iron acquisition, and the metabolism of sulfur amino acids and arginine, are all perturbed. The global iron-related changes, confirmed by modulation of activity of the transcription factor Fur, may underlie enhanced siderophore excretion, diminished intracellular iron pools, and the sensitivity of CO-challenged bacteria to metal chelators. Although CO gas (unlike H2S and NO) offers little protection from antibiotics, a ruthenium CORM is a potent adjuvant of antibiotic activity. Innovation: This is the first detailed exploration of global bacterial responses to CO, revealing unexpected targets with implications for employing CORMs therapeutically. Conclusion: This work reveals the complexity of bacterial responses to CO and provides a basis for understanding the impacts of CO from CORMs, heme oxygenase activity, or environmental sources. Antioxid. Redox Signal. 24, 1013–1028. PMID:26907100

  6. Respiration detection chip with integrated temperature-insensitive MEMS sensors and CMOS signal processing circuits.

    PubMed

    Wei, Chia-Ling; Lin, Yu-Chen; Chen, Tse-An; Lin, Ren-Yi; Liu, Tin-Hao

    2015-02-01

    An airflow sensing chip, which integrates MEMS sensors with their CMOS signal processing circuits into a single chip, is proposed for respiration detection. Three micro-cantilever-based airflow sensors were designed and fabricated using a 0.35 μm CMOS/MEMS 2P4M mixed-signal polycide process. Two main differences were present among these three designs: they were either metal-covered or metal-free structures, and had either bridge-type or fixed-type reference resistors. The performances of these sensors were measured and compared, including temperature sensitivity and airflow sensitivity. Based on the measured results, the metal-free structure with fixed-type reference resistors is recommended for use, because it has the highest airflow sensitivity and also can effectively reduce the output voltage drift caused by temperature change. PMID:24956395

  7. Direct Quantification of Microbial Community Respiration along a Contamination Gradient using a novel Hydrologic Smart Tracer

    NASA Astrophysics Data System (ADS)

    Stanaway, D. J.; Haggerty, R.; Feris, K. P.

    2010-12-01

    Heavy metal contamination in lotic ecosystems is a major health and environmental concern worldwide. The Resazurin Resorufin (Raz Rru) Smart Tracer system (Haggerty et al., 2008) provides a novel approach to test current models of microbial ecosystem response to chronic stressors such as heavy metals. These models predict that functional redundancy of metabolic capabilities of community members (e.g. respiration rate and enzyme activity) will compensate for decreases in species diversity until a stress threshold is reached. At this point, species diversity and function are expected to decline rapidly. Contrary to this model, microbial communities of the Clark Fork River (CF), Montana, demonstrate high levels of species diversity along the contamination gradient, whereas community function is inversely proportional to the level of contamination. The Raz Rru tool, a metabolically reactive hydrologic tracer, allows for direct quantification of in-situ microbial respiration rates. Therefore, this tool provides an opportunity to build upon studies of ecosystem response to contamination previously limited to extrapolation of point scale measurements to reach scale processes. The Raz Rru tool is used here to quantify the magnitude of metal induced limits on heterotrophic microbial respiration in communities that have evolved to different levels of chronic metal exposure. In this way we propose to be able to test a novel hypothesis concerning the nature of evolution of community processes to chronic stress and persistent environmental pollutants. Specifically, we hypothesize that metal contamination produces a measureable metabolic cost to both tolerant and intolerant communities. To test this hypothesis, rates of respiration associated with hyporheic sediments, supporting intact microbial communities, were quantified in the presence and absence of an acute Cd exposure in column experiments. Hyporheic sediment was collected from differently contaminated locations within

  8. Bioremediation of soils co-contaminated with heavy metals and 2,4,5-trichlorophenol by fruiting body of Clitocybe maxima.

    PubMed

    Liu, Hongying; Guo, Shanshan; Jiao, Kai; Hou, Junjun; Xie, Han; Xu, Heng

    2015-08-30

    Pot experiments were performed to investigate the single effect of 2,4,5-trichlorophenol (TCP) or heavy metals (Cu, Cd, Cu+Cd) and the combined effects of metals-TCP on the growth of Clitocybe maxima together with the accumulation of heavy metals as well as dissipation of TCP. Results showed a negative effect of contaminations on fruiting time and biomass of the mushroom. TCP decreased significantly in soils accounting for 70.66-96.24% of the initial extractable concentration in planted soil and 66.47-91.42% in unplanted soil, which showed that the dissipation of TCP was enhanced with mushroom planting. Higher biological activities (bacterial counts, soil respiration and laccase activity) were detected in planted soils relative to unplanted controls, and the enhanced dissipation of TCP in planted soils might be derived from the increased biological activities. The metals accumulation in mushroom increased with the augment of metal load, and the proportion of acetic acid (HOAc) extractable metal in soils with C. maxima was larger than that in unplanted soils, which may be an explanation of metal uptake by C. maxima. These results suggested that the presence of C. maxima was effective in promoting the bioremediation of soil contaminated with heavy metals and TCP. PMID:25863026

  9. Y-12 Respirator Flow Cycle Time Reduction Project

    SciTech Connect

    Hawk, C.T.; Rogers, P.E.

    2000-12-01

    In mid-July 2000, a Cycle Time Reduction (CTR) project was initiated by senior management to improve the flow and overall efficiency of the respirator distribution process at Y-12. A cross-functional team was formed to evaluate the current process and to propose necessary changes for improvement. Specifically, the team was challenged to make improvements that would eliminate production work stoppages due to the unavailability of respirators in Y-12 Stores. Prior to the team initiation, plant back orders for a specific model respirator were averaging above 600 and have been as high as 750+. The Cycle Time Reduction team segmented the respirator flow into detailed steps, with the focus and emphasis primarily being on the movement of dirty respirators out of work areas, transportation to Oak Ridge National Laboratory (ORNL) Laundry, and return back to Y-12 Stores inventory. The team selected a popular model respirator, size large, to track improvements. Despite a 30 percent increase in respirator usage for the same period of time in the previous year, the team has reduced the back orders by 89% with a steady trend downward. Summary of accomplishments: A 47 percent reduction in the average cycle time for dirty respirators to be laundered and stocked for reuse at the Y-12 Complex; A 73 percent reduction in the average cycle time for dirty respirators to be laundered and stocked for reuse specifically for major users: Enriched Uranium Operations (EUO) and Facilities Maintenance Organization (FMO); Development of a performance measure for tracking back orders; An 89 percent reduction in the number of laundered respirators on back order; Implementation of a tracking method to account for respirator loss; Achievement of an annual cost savings/avoidance of $800K with a one-time cost of $20K; Implementation of a routine pick-up schedule for EUO (major user of respirators); Elimination of activities no longer determined to be needed; Elimination of routine complaint calls to

  10. Bacterial differentiation.

    PubMed

    Shapiro, L; Agabian-Keshishian, N; Bendis, I

    1971-09-01

    technique can be used to select for mutants blocked in the various stages of morphogenesis. 3) Temperature-sensitive mutants of Caulobacter that are restricted in macromolecular synthesis and development at elevated temperatures have been isolated. 4) Genetic exchange in the Calflobacter genus has been demonstrated and is now being defined. Two questions related to control processes can now readily be approached experimentally. (i) Is the temporal progression of events occurring during bacterial differentiation controlled by regulator gene products? (ii) Is the differentiation cycle like a biosynthetic pathway where one event must follow another? The availability of temperature-sensitive mutants blocked at various stages of development permits access to both questions. An interesting feature of the differentiation cycle is that the polar organelle may represent a special segregated unit which is operative in the control of the differentiation process. Perhaps the sequential morphogenic changes exhibited by Caulobacter are dependent on the initial synthesis of this organelle. Because the ultimate expression of cell changes are dependent on selective protein synthesis, specific messenger RNA production-either from DNA present in an organelle or from the chromosome-may prove to be a controlling factor in cell differentiation. We have begun studies with RNA polymerase purified from Caulobacter crescentus to determine whether cell factors or alterations in the enzyme structure serve to change the specificity of transcription during the cell cycle. Control of sequential cell changes at the level of transcription has long been postulated and has recently been substantiated in the case of Bacillus sporulation (6). The Caulobacter bacteria now present another system in which direct analysis of these control mechanisms is feasible. PMID:5572165

  11. Radiolytic Hydrogen and Microbial Respiration in Subsurface Sediments

    NASA Astrophysics Data System (ADS)

    Blair, Carly C.; D'Hondt, Steven; Spivack, Arthur J.; Kingsley, Richard H.

    2007-12-01

    Radiolysis of water may provide a continuous flux of an electron donor (molecular hydrogen) to subsurface microbial communities. We assessed the significance of this process in anoxic marine sediments by comparing calculated radiolytic H2 production rates to estimates of net (organic-fueled) respiration at several Ocean Drilling Program (ODP) Leg 201 sites. Radiolytic H2 yield calculations are based on abundances of radioactive elements (uranium, thorium, and potassium), porosity, grain density, and a model of water radiolysis. Net respiration estimates are based on fluxes of dissolved electron acceptors and their products. Comparison of radiolytic H2 yields and respiration at multiple sites suggests that radiolysis gains importance as an electron donor source as net respiration and organic carbon content decrease. Our results suggest that radiolytic production of H2 may fuel 10% of the metabolic respiration at the Leg 201 site where organic-fueled respiration is lowest (ODP Site 1231). In sediments with even lower rates of organic-fueled respiration, water radiolysis may be the principal source of electron donors. Marine sedimentary ecosystems may be useful models for non-photosynthetic ecosystems on early Earth and on other planets and moons, such as Mars and Europa.

  12. [Spectral characteristics of soluble metabolites during endogenous respiration].

    PubMed

    Li, Zhi-hua; Zhang, Qin; Bai, Xu-li; Liu, Yi

    2014-09-01

    Endogenous respiration phase plays an important role in the sewage treatment process. In order to clearly understand the endogenous respiration process of the activated sludge process, three-dimensional fluorescence spectroscopy, ultraviolet spectroscopy and respirogram were employed for the analysis of endogenous respiration process. Results showed that the three-dimensional fluorescence spectroscopy and UV spectroscopy could identify all stages significantly. The following conclusions could be drawn: (1) Rapid decline phase of endogenous respiration:the excitation wavelength (EX) and emission wavelength (Em) of humic peak showed blue shift of 5 nm and 6 nm, respectively, the fluorescence index f450/500 and HIX (humification index) were reduced by 9. 3% and 0.2%, respectively, UV253/203 and UV254 increased by 37.5% and 200%, respectively. These results indicated the presence of bioavailable organics; (2)Slow decline phase of endogenous respiration: f450/500 was increased by 0. 5% , HIX was reduced by 0. 2% , UV253/203 was reduced by 20% , UV254 was increased by 16. 7%. These results indicated that hydrolysis or autolysis of cells might occur; (3)Stable phase of endogenous respiration: humic acid peak remained unchanged, indicating the adaption of microorganisms to starving environment. The analysis of the endogenous respiration process from the perspective of metabolites provides a new way for control of microbial wastewater treatment process. PMID:25518670

  13. The effects of respiration motion in PET/CT studies

    NASA Astrophysics Data System (ADS)

    Wan, Lu; Wu, Zhijian; Zhou, Fengyin; Ye, Sheng; Zeng, Shaoqun; Kao, Chien-Min; Chen, Chin-Tu; Zhang, Yongxue; Xie, Qingguo

    2008-03-01

    In recent years, the clinical status of positron emission tomography(PET)/computed tomography(CT) in achieving more accurate staging of lung cancer has been established and the technology has been enthusiastically accepted by the medical community. However, its capability in chest imaging is still limited by several physical factors. As a result of typical PET/CT imaging protocol, respiration-averaged PET data and free of respiration-averaged CT data are collected in a PET/CT scanning. In this work, we investigate the effects of respiration motion. We employ mathematical and Monte-Carlo simulations for generating PET/CT data. We scale a Zubal phantom to generate 30 phantoms having various sizes in order to represent different torso anatomic states during respiration. Images reconstructed from selected scaling PET data using the respective scaling PET attenuation maps serve as baseline results. PET/CT imaging protocol is simulated by reconstruction from respiration-averaged PET data with the selected PET attenuation maps. We also reconstruct PET images from respiratory-averaged PET data with respiration-averaged PET attenuation maps, which simulates conventional PET imaging protocol. We will compare the resulting images reconstructed from the above-mentioned approaches to evaluate the effects of respiration motion in PET/CT.

  14. Aerobic and Anaerobic Respiration in Profiles of Polesie Lubelskie Peatlands

    NASA Astrophysics Data System (ADS)

    Szafranek-Nakonieczna, Anna; Stêpniewska, Zofia

    2014-04-01

    Soil respiration is a very important factor influencing carbon deposition in peat and reflecting the intensity of soil organic matter decomposition, root respiration, and the ease of transporting gases to the surface. Carbon dioxide release from three different peat soil profiles (0-80 cm) of the Polesie Lubelskie Region (Eastern Poland) was analyzed under laboratory conditions. Peat samples were incubated at 5, 10, and 20°C in aerobic and anaerobic environments, and their CO2-evolution was analyzed up to 14 days. The respiration activity was found to be in the range of 0.013-0.497 g CO2 kg-1 DW d-1. The respiratory quotient was estimated to be in the range of 0.51-1.51, and the difference in respiration rates over 10°C ranged between 4.15 and 8.72 in aerobic and from 1.15 to 6.53 in anaerobic conditions. A strong influence of temperature, depth, the degree of peat decomposition, pH, and nitrate content on respiration activity was found. Lack of oxygen at low temperature caused higher respiration activity than under aerobic conditions. These results should be taken into account when the management of Polish peatlands is considered in the context of climate and carbon storage, and physicochemical properties of soil in relation to soil respiration activity are considered.

  15. Soil Respiration in Semiarid Temperate Grasslands under Various Land Management

    PubMed Central

    Hou, Xiangyang; Schellenberg, Michael P.

    2016-01-01

    Soil respiration, a major component of the global carbon cycle, is significantly influenced by land management practices. Grasslands are potentially a major sink for carbon, but can also be a source. Here, we investigated the potential effect of land management (grazing, clipping, and ungrazed enclosures) on soil respiration in the semiarid grassland of northern China. Our results showed the mean soil respiration was significantly higher under enclosures (2.17μmol.m−2.s−1) and clipping (2.06μmol.m−2.s−1) than under grazing (1.65μmol.m−2.s−1) over the three growing seasons. The high rates of soil respiration under enclosure and clipping were associated with the higher belowground net primary productivity (BNPP). Our analyses indicated that soil respiration was primarily related to BNPP under grazing, to soil water content under clipping. Using structural equation models, we found that soil water content, aboveground net primary productivity (ANPP) and BNPP regulated soil respiration, with soil water content as the predominant factor. Our findings highlight that management-induced changes in abiotic (soil temperature and soil water content) and biotic (ANPP and BNPP) factors regulate soil respiration in the semiarid temperate grassland of northern China. PMID:26808376

  16. Root Zone Respiration on Hydroponically Grown Wheat Plant Systems

    NASA Technical Reports Server (NTRS)

    Soler-Crespo, R. A.; Monje, O. A.

    2010-01-01

    Root respiration is a biological phenomenon that controls plant growth and physiological development during a plant's lifespan. This process is dependent on the availability of oxygen in the system where the plant is located. In hydroponic systems, where plants are submerged in a solution containing vital nutrients but no type of soil, the availability of oxygen arises from the dissolved oxygen concentration in the solution. This oxygen concentration is dependent on the , gas-liquid interface formed on the upper surface of the liquid, as given by Henry's Law, depending on pressure and temperature conditions. Respiration rates of the plants rise as biomass and root zone increase with age. The respiration rate of Apogee wheat plants (Triticum aestivum) was measured as a function of light intensity (catalytic for photosynthesis) and CO2 concentration to determine their effect on respiration rates. To determine their effects on respiration rate and plant growth microbial communities were introduced into the system, by Innoculum. Surfactants were introduced, simulating gray-water usage in space, as another factor to determine their effect on chemical oxygen demand of microbials and on respiration rates of the plants. It is expected to see small effects from changes in CO2 concentration or light levels, and to see root respiration decrease in an exponential manner with plant age and microbial activity.

  17. Respiration from the organ level to the stand

    SciTech Connect

    Sprugel, D.G.; Ryan, M.G.; Brooks, J.R.; Vogt, K.A.; Martin, T.A.

    1995-07-01

    The status of efforts to estimate respiration of conifers varies sharply from one tissue to another. There have been numerous measurements of foliage respiration in conifers, but relatively few measurements of within-stand variation in reference to parameters that might be used for scaling. However, a number of logical models for scaling have been proposed (e.g., light, age, or N) and general directions for future research seem well established. There are far fewer measurements of woody-tissue respiration that might be useful for scaling, but some consensus seems to have developed that the use of sapwood biomass and growth rates as indices may provide the key to scaling woody-tissue respiration up to the stand level. Root respiration is still bogged down by a plurality of methods, each of which seems to have some serious disadvantages, so that even the nature of within-stand variation is poorly known. Successful and believable scaling of root respiration from tissue-specific measurements to the stand level seems to be far in the future. Finally, proxy measurements such as litterfall and N concentration can and have been used to estimate respiration for whole stands without measuring tissue-specific rates at all, but all of these techniques require assumptions that need further testing before they will be generally accepted.

  18. Evaluation of dust respirators for elimination of mouse aeroallergens.

    PubMed

    Sakaguchi, M; Inouye, S; Miyazawa, H; Kamimura, H; Kimura, M; Yamazaki, S

    1989-01-01

    The efficiency of various dust respirators for eliminating mouse allergens [mouse urine proteins (MUP), pelts proteins (MPP) and serum albumin (MSA)] were evaluated with use of low-volume air samplers and immunochemical methods. Three kinds of dust respirators from one manufacturer which have different efficacy in the exclusion of dust particles were put on the fiber glass filter in each air sampler. Then the air in a mouse housing room was sampled. The allergens passed through the respirators, were trapped in the fiber glass filters, and then extracted from the filters. The allergens of MUP and MPP in the extract were measured by an inhibition method of fluorometric enzyme-linked immunosorbent assay (ELISA) for IgE antibody and those of MSA measured by a fluorometric sandwich ELISA. The respirator with the lowest capability of exclusion was found to eliminate 65-86% of respective allergens. The other two respirators with higher powers eliminated 98% of MUP. MPP and MSA were eliminated to undetectable levels through these respirators. This study provided a means for the evaluation of dust respirators for animal aeroallergens. PMID:2918688

  19. Workplace protection factors for an N95 filtering facepiece respirator.

    PubMed

    Janssen, Larry L; Nelson, Thomas J; Cuta, Karen T

    2007-09-01

    This study evaluated the workplace performance of an N95 filtering facepiece, air-purifying respirator in a steel foundry. Air samples were collected inside and outside respirators worn by workers who were properly trained and qualitatively fit tested. For most workers, three or four pairs of air samples were collected on each of 2 days. The 49 valid sample sets were analyzed for iron, silicon, and zirconium. Only iron was present in sufficient concentrations to perform workplace protection factor (WPF) calculations. Individual WPF measurements ranged from 5 to 753. The geometric mean of the distribution was 119 with a lower 5th percentile value of 19. Time-weighted average WPFs (WPF(TWA)) were also calculated for each day for each worker as an estimate of the protection an individual might receive with daily respirator use. The WPF(TWA) values ranged from 15 for the worker with the single WPF value of 5, to a high of 684. The distribution of WPF(TWA) had a geometric mean of 120 and a lower 5th percentile of 22. Both data treatments indicate this respirator's performance was consistent with the assigned protection factor of 10 typically used for half facepiece respirators. The respirator provided adequate protection as used in this study. All contaminant concentrations inside the respirator were well below the relevant occupational exposure limits. Data collected also illustrate the dynamic nature of faceseal leakage in the workplace. PMID:17654225

  20. Soil Respiration in Semiarid Temperate Grasslands under Various Land Management.

    PubMed

    Wang, Zhen; Ji, Lei; Hou, Xiangyang; Schellenberg, Michael P

    2016-01-01

    Soil respiration, a major component of the global carbon cycle, is significantly influenced by land management practices. Grasslands are potentially a major sink for carbon, but can also be a source. Here, we investigated the potential effect of land management (grazing, clipping, and ungrazed enclosures) on soil respiration in the semiarid grassland of northern China. Our results showed the mean soil respiration was significantly higher under enclosures (2.17 μmol.m(-2).s(-1)) and clipping (2.06 μmol.m(-2).s(-1)) than under grazing (1.65 μmol.m-(2).s(-1)) over the three growing seasons. The high rates of soil respiration under enclosure and clipping were associated with the higher belowground net primary productivity (BNPP). Our analyses indicated that soil respiration was primarily related to BNPP under grazing, to soil water content under clipping. Using structural equation models, we found that soil water content, aboveground net primary productivity (ANPP) and BNPP regulated soil respiration, with soil water content as the predominant factor. Our findings highlight that management-induced changes in abiotic (soil temperature and soil water content) and biotic (ANPP and BNPP) factors regulate soil respiration in the semiarid temperate grassland of northern China. PMID:26808376

  1. Respirator Use in a Hospital Setting: Establishing Surveillance Metrics

    PubMed Central

    Yarbrough, Mary I.; Ficken, Meredith E.; Lehmann, Christoph U.; Talbot, Thomas R.; Swift, Melanie D.; McGown, Paula W.; Wheaton, Robert F.; Bruer, Michele; Little, Steven W.; Oke, Charles A.

    2016-01-01

    Information that details use and supply of respirators in acute care hospitals is vital to prevent disease transmission, assure the safety of health care personnel, and inform national guidelines and regulations. Objective To develop measures of respirator use and supply in the acute care hospital setting to aid evaluation of respirator programs, allow benchmarking among hospitals, and serve as a foundation for national surveillance to enhance effective Personal Protective Equipment (PPE) use and management. Methods We identified existing regulations and guidelines that govern respirator use and supply at Vanderbilt University Medical Center (VUMC). Related routine and emergency hospital practices were documented through an investigation of hospital administrative policies, protocols, and programs. Respirator dependent practices were categorized based on hospital workflow: Prevention (preparation), patient care (response), and infection surveillance (outcomes). Associated data in information systems were extracted and their quality evaluated. Finally, measures representing major factors and components of respirator use and supply were developed. Results Various directives affecting multiple stakeholders govern respirator use and supply in hospitals. Forty-seven primary and secondary measures representing factors of respirator use and supply in the acute care hospital setting were derived from existing information systems associated with the implementation of these directives. Conclusion Adequate PPE supply and effective use that limit disease transmission and protect health care personnel are dependent on multiple factors associated with routine and emergency hospital practices. We developed forty-seven measures that may serve as the basis for a national PPE surveillance system, beginning with standardized measures of respirator use and supply for collection across different hospital types, sizes, and locations to inform hospitals, government agencies

  2. Oyxgen and Temperature Effects on Soybean Seed Coat Respiration Rates

    PubMed Central

    Sinclair, Thomas R.

    1988-01-01

    Soybean (Glycine max (L.) Merr) seed coat respiration rates in response to changing O2 concentration and temperature were examined experimentally and with a mathematical analysis. The experimental observations showed seed coat respiration rates were sensitive to O2 concentration below 0.25 micromole O2 cm−3. There was a steady decline in respiration rates from the saturating O2 concentration down to about 0 to 0.03 micromole O2 per cubic centimeter. Seed coat respiration rates were found to change linearly with temperature between 8 and 28°C. The explanation for these results was sought by examining the diffusion of O2 into the vascular bundles of the soybean seed coat. Differential equations describing O2 uptake in two distinct zones of the vascular bundle were solved. The outer zone was assumed to be O2 saturated and respiration proceeded at a constant rate per unit volume. The inner zone was assumed to have respiration rates which were linearly dependent on O2 concentration. The solution of this mathematical model showed considerable similarity with the experimental results. Respiration rates were predicted to saturate at about 0.31 micromole O2 per cubic centimeter and to decrease curvilinearly below that concentration. While the mathematical model predicted an exponential response in respiration rate to temperature, it was found that the exponential response is difficult to distinguish from a linear response in the temperature range studied experimentally. Consequently, both the experimental and theoretical studies showed the importance of O2 diffusion into soybean seed coat vascular bundles as a potential restriction on respiration rates. In particular, it was suggested that increases in the total length of the vascular bundles in the soybean seed coat was the major option for increasing the total respiratory capability. PMID:16665851

  3. Identification and characterization of a bacterial hydrosulphide ion channel

    SciTech Connect

    Czyzewski, Bryan K.; Wang, Da-Neng

    2012-10-26

    The hydrosulphide ion (HS{sup -}) and its undissociated form, hydrogen sulphide (H{sub 2}S), which are believed to have been critical to the origin of life on Earth, remain important in physiology and cellular signalling. As a major metabolite in anaerobic bacterial growth, hydrogen sulphide is a product of both assimilatory and dissimilatory sulphate reduction. These pathways can reduce various oxidized sulphur compounds including sulphate, sulphite and thiosulphate. The dissimilatory sulphate reduction pathway uses this molecule as the terminal electron acceptor for anaerobic respiration, in which process it produces excess amounts of H{sub 2}S. The reduction of sulphite is a key intermediate step in all sulphate reduction pathways. In Clostridium and Salmonella, an inducible sulphite reductase is directly linked to the regeneration of NAD{sup +}, which has been suggested to have a role in energy production and growth, as well as in the detoxification of sulphite. Above a certain concentration threshold, both H{sub 2}S and HS{sup -} inhibit cell growth by binding the metal centres of enzymes and cytochrome oxidase, necessitating a release mechanism for the export of this toxic metabolite from the cell. Here we report the identification of a hydrosulphide ion channel in the pathogen Clostridium difficile through a combination of genetic, biochemical and functional approaches. The HS{sup -} channel is a member of the formate/nitrite transport family, in which about 50 hydrosulphide ion channels form a third subfamily alongside those for formate (FocA) and for nitrite (NirC). The hydrosulphide ion channel is permeable to formate and nitrite as well as to HS{sup -} ions. Such polyspecificity can be explained by the conserved ion selectivity filter observed in the channel's crystal structure. The channel has a low open probability and is tightly regulated, to avoid decoupling of the membrane proton gradient.

  4. Influence of soil moisture on soil respiration

    NASA Astrophysics Data System (ADS)

    Fer, Miroslav; Kodesova, Radka; Nikodem, Antonin; Klement, Ales; Jelenova, Klara

    2015-04-01

    The aim of this work was to describe an impact of soil moisture on soil respiration. Study was performed on soil samples from morphologically diverse study site in loess region of Southern Moravia, Czech Republic. The original soil type is Haplic Chernozem, which was due to erosion changed into Regosol (steep parts) and Colluvial soil (base slope and the tributary valley). Soil samples were collected from topsoils at 5 points of the selected elevation transect and also from the parent material (loess). Grab soil samples, undisturbed soil samples (small - 100 cm3, and large - 713 cm3) and undisturbed soil blocks were taken. Basic soil properties were determined on grab soil samples. Small undisturbed soil samples were used to determine the soil water retention curves and the hydraulic conductivity functions using the multiple outflow tests in Tempe cells and a numerical inversion with HYDRUS 1-D. During experiments performed in greenhouse dry large undisturbed soil samples were wetted from below using a kaolin tank and cumulative water inflow due to capillary rise was measured. Simultaneously net CO2 exchange rate and net H2O exchange rate were measured using LCi-SD portable photosynthesis system with Soil Respiration Chamber. Numerical inversion of the measured cumulative capillary rise data using the HYDRUS-1D program was applied to modify selected soil hydraulic parameters for particular conditions and to simulate actual soil water distribution within each soil column in selected times. Undisturbed soil blocks were used to prepare thin soil sections to study soil-pore structure. Results for all soil samples showed that at the beginning of soil samples wetting the CO2 emission increased because of improving condition for microbes' activity. The maximum values were reached for soil column average soil water content between 0.10 and 0.15 cm3/cm3. Next CO2 emission decreased since the pore system starts filling by water (i.e. aggravated conditions for microbes

  5. Partitioning of soil respiration components in a Mediterranean maquis ecosystems

    NASA Astrophysics Data System (ADS)

    Sirca, C.; Carta, M.; Arca, A.; Duce, P.; Spano, D.

    2010-12-01

    Soil respiration is the sum of the CO2 fluxes from the soil produced by the autotrophic component (roots and the associated rhizosphere bacteria and mycorrhizal fungi) and the heterotrophic component (originating from soil micro-organisms that decompose the organic material, usually called basal respiration). Assessing CO2 flux from soil and its relationships with environmental factors is essential to better understand carbon budgets of terrestrial ecosystems. It has been widely recognized the need to improve our knowledge on variations of flux components over time and with climate. Therefore, separate estimations of autotrophic and heterotrophic components are required for analyzing and modeling soil respiration. However, field measurements of soil respiration are difficult. In addition, measurement methods are even more complicated when we attempt to estimate the contribution of the different components to the total CO2 flux (e.g., the trenching method of root and mycorrhizal hyphae exclusion). Moreover, relatively few experiments have been conducted to date on this topic and, to our knowledge, no studies have been focused on Mediterranean ecosystems. With the objective to collect information on soil respiration components in Mediterranean ecosystems, an experiment was set up in July 2008 and is still in progress. Trenching-plot technique and infrared gas exchange analyzer approaches are used for separating and quantifying the soil respiration components in a maquis ecosystem located in Sardinia, Italy. The contributions to the soil respiration by roots, arbuscular mycorrhizal hyphae and microbial organisms are quantified with trenched plot surrounded by a nylon mesh net of 41 and 1 µm and with control plots, where CO2 fluxes, soil moisture content and soil temperature are measured. Preliminary results showed that the three components of soil respiration had similar, coherent seasonal trends. The lowest values were recorded in winter months, and two peaks were

  6. Oxygen and carbon isotopic compositions of gases respired by humans

    SciTech Connect

    Epstein, S.; Zeiri, L. )

    1988-03-01

    Oxygen-isotope fractionation associated with respiration in human individuals at rest is linearly related to the fraction of the O{sub 2} utilized in the respiration process. The slope of this relationship is affected by a history of smoking, by vigorous exercise, and by the N{sub 2}/O{sub 2} ratio of the inhaled gas. For patients who suffer anemia-related diseases, the slope of this relationship is directly proportional to their level of hemoglobin. These results introduce a new approach for studying the mechanisms of O{sub 2} consumption in human respiration and how they are affected by related diseases.

  7. Occupational Exposure to Respirable Dust, Respirable Crystalline Silica and Diesel Engine Exhaust Emissions in the London Tunnelling Environment.

    PubMed

    Galea, Karen S; Mair, Craig; Alexander, Carla; de Vocht, Frank; van Tongeren, Martie

    2016-03-01

    Personal 8-h shift exposure to respirable dust, diesel engine exhaust emissions (DEEE) (as respirable elemental carbon), and respirable crystalline silica of workers involved in constructing an underground metro railway tunnel was assessed. Black carbon (BC) concentrations were also assessed using a MicroAeth AE51. During sprayed concrete lining (SCL) activities in the tunnel, the geometric mean (GM) respirable dust exposure level was 0.91mg m(-3), with the highest exposure measured on a back-up sprayer (3.20mg m(-3)). The GM respirable crystalline silica concentration for SCL workers was 0.03mg m(-3), with the highest measurement also for the back-up sprayer (0.24mg m(-3)). During tunnel boring machine (TBM) activities, the GM respirable dust concentration was 0.54mg m(-3). The GM respirable elemental carbon concentration for all the TBM operators was 18 µg m(-3); with the highest concentration measured on a segment lifter. The BC concentrations were higher in the SCL environment in comparison to the TBM environment (daily GM 18-54 µg m(-3) versus 3-6 µg m(-3)). This small-scale monitoring campaign provides additional personal data on exposures experienced by underground tunnel construction workers. PMID:26403363

  8. Effects of viruses on bacterial functions under contrasting nutritional conditions for four species of bacteria isolated from Hong Kong waters

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Yuan, Xiangcheng; Xu, Jie; Harrison, Paul J.; He, Lei; Yin, Kedong

    2015-09-01

    Free living viruses are ubiquitous in marine waters and concentrations are usually several times higher than the bacterial abundance. These viruses are capable of lysing host bacteria and therefore, play an important role in the microbial loop in oligotrophic waters. However, few studies have been conducted to compare the role of viruses in regulating bacterial abundance and heterotrophic activities between natural oligotrophic waters and anthropogenic influenced eutrophic waters. In this study, we examined viral effects on bacterial functions of four single bacterial species incubated with natural viral assemblages in seawater samples from eutrophic and oligotrophic waters. The viral-lysis of bacteria was significantly higher in eutrophic than oligotrophic waters. This suggests that viruses were capable of controlling bacterial abundance, respiration and production in the eutrophic waters. Cellular bacterial respiration and production was higher with viruses than without viruses, which was more evident in the oligotrophic waters. These results indicate that viruses can slow down bacterial consumption of oxygen and reduce bacteria-induced eutrophication effects in anthropogenic eutrophic waters, but switch to the role of sustaining the bacterial population when nutrients are limiting. There were bacterial species differences in resisting viral attack, which can influence the dominance and biodiversity of bacterial species in coastal waters.

  9. Effects of viruses on bacterial functions under contrasting nutritional conditions for four species of bacteria isolated from Hong Kong waters

    PubMed Central

    Liu, Hao; Yuan, Xiangcheng; Xu, Jie; Harrison, Paul J.; He, Lei; Yin, Kedong

    2015-01-01

    Free living viruses are ubiquitous in marine waters and concentrations are usually several times higher than the bacterial abundance. These viruses are capable of lysing host bacteria and therefore, play an important role in the microbial loop in oligotrophic waters. However, few studies have been conducted to compare the role of viruses in regulating bacterial abundance and heterotrophic activities between natural oligotrophic waters and anthropogenic influenced eutrophic waters. In this study, we examined viral effects on bacterial functions of four single bacterial species incubated with natural viral assemblages in seawater samples from eutrophic and oligotrophic waters. The viral-lysis of bacteria was significantly higher in eutrophic than oligotrophic waters. This suggests that viruses were capable of controlling bacterial abundance, respiration and production in the eutrophic waters. Cellular bacterial respiration and production was higher with viruses than without viruses, which was more evident in the oligotrophic waters. These results indicate that viruses can slow down bacterial consumption of oxygen and reduce bacteria-induced eutrophication effects in anthropogenic eutrophic waters, but switch to the role of sustaining the bacterial population when nutrients are limiting. There were bacterial species differences in resisting viral attack, which can influence the dominance and biodiversity of bacterial species in coastal waters. PMID:26404394

  10. Effects of the Changjiang (Yangtze) River discharge on planktonic community respiration in the East China Sea

    NASA Astrophysics Data System (ADS)

    Chen, Chung-Chi; Shiah, Fuh-Kwo; Chiang, Kuo-Ping; Gong, Gwo-Ching; Kemp, W. Michael

    2009-03-01

    Planktonic communities tend to flourish on the western margins of the East China Sea (ECS) fueled by substrates delivered largely from the Changjiang River, the fifth largest river in the world. To study the effects of the Changjiang River discharge on planktonic community respiration (CR), physical-chemical variables and key processes were measured in three consecutive summers in the ECS. Results showed that concentrations of nitrate and Chl a, protozoan biomass, bacterial production, as well as CR in the surface water were all negatively correlated with sea surface salinity, reflecting the strong influence of river discharge on the ECS shelf ecosystem. Moreover, mean values of nitrate, Chl a concentrations, and CR rates were proportionally related to the area of Changjiang diluted water (CDW; salinity ≤31.0 practical salinity units (psu)), an index of river discharge rate. Presumably, higher river flow delivers higher nutrient concentrations which stimulate phytoplankton growth, which in turn fuels CR. CR exhibited significant monthly and interannual variability, and rates appear to be dominated by bacteria and phytoplankton. Although the plankton community was relatively productive (mean = 0.8 mg C m-2 d-1) in the CDW, the mean ratio of production to respiration was low (0.42). This suggests that the heterotrophic processes regulating CR were supported by riverine organic carbon input in addition to in situ autotrophic production.

  11. Phylogeny of Dissimilatory Sulfite Reductases Supports an Early Origin of Sulfate Respiration

    PubMed Central

    Wagner, Michael; Roger, Andrew J.; Flax, Jodi L.; Brusseau, Gregory A.; Stahl, David A.

    1998-01-01

    Microorganisms that use sulfate as a terminal electron acceptor for anaerobic respiration play a central role in the global sulfur cycle. Here, we report the results of comparative sequence analysis of dissimilatory sulfite reductase (DSR) genes from closely and distantly related sulfate-reducing organisms to infer the evolutionary history of DSR. A 1.9-kb DNA region encoding most of the α and β subunits of DSR could be recovered only from organisms capable of dissimilatory sulfate reduction with a PCR primer set targeting highly conserved regions in these genes. All DNA sequences obtained were highly similar to one another (49 to 89% identity), and their inferred evolutionary relationships were nearly identical to those inferred on the basis of 16S rRNA. We conclude that the high similarity of bacterial and archaeal DSRs reflects their common origin from a conserved DSR. This ancestral DSR was either present before the split between the domains Bacteria, Archaea, and Eucarya or laterally transferred between Bacteria and Archaea soon after domain divergence. Thus, if the physiological role of the DSR was constant over time, then early ancestors of Bacteria and Archaea already possessed a key enzyme of sulfate and sulfite respiration. PMID:9603890

  12. Structural and Spectral Features of Selenium Nanospheres Produced by Se-Respiring Bacteria

    USGS Publications Warehouse

    Oremland, R.S.; Herbel, M.J.; Blum, J.S.; Langley, S.; Beveridge, T.J.; Ajayan, P.M.; Sutto, T.; Ellis, A.V.; Curran, S.

    2004-01-01

    Certain anaerobic bacteria respire toxic selenium oxyanions and in doing so produce extracellular accumulations of elemental selenium [Se(0)]. We examined three physiologically and phylogenetically diverse species of selenate- and selenite-respiring bacteria, Sulfurospirillum barnesii, Bacillus selenitireducens, and Selenihalanaerobacter shriftii, for the occurrence of this phenomenon. When grown with selenium oxyanions as the electron acceptor, all of these organisms formed extracellular granules consisting of stable, uniform nanospheres (diameter, ???300 nm) of Se(0) having monoclinic crystalline structures. Intracellular packets of Se(0) were also noted. The number of intracellular Se(0) packets could be reduced by first growing cells with nitrate as the electron acceptor and then adding selenite ions to washed suspensions of the nitrate-grown cells. This resulted in the formation of primarily extracellular Se nanospheres. After harvesting and cleansing of cellular debris, we observed large differences in the optical properties (UV-visible absorption and Raman spectra) of purified extracellular nanospheres produced in this manner by the three different bacterial species. The spectral properties in turn differed substantially from those of amorphous Se(0) formed by chemical oxidation of H2Se and of black, vitreous Se(0) formed chemically by reduction of selenite with ascorbate. The microbial synthesis of Se(0) nanospheres results in unique, complex, compacted nanostructural arrangements of Se atoms. These arrangements probably reflect a diversity of enzymes involved in the dissimilatory reduction that are subtly different in different microbes. Remarkably, these conditions cannot be achieved by current methods of chemical synthesis.

  13. Structural and Spectral Features of Selenium Nanospheres Produced by Se-Respiring Bacteria

    PubMed Central

    Oremland, Ronald S.; Herbel, Mitchell J.; Blum, Jodi Switzer; Langley, Sean; Beveridge, Terry J.; Ajayan, Pulickel M.; Sutto, Thomas; Ellis, Amanda V.; Curran, Seamus

    2004-01-01

    Certain anaerobic bacteria respire toxic selenium oxyanions and in doing so produce extracellular accumulations of elemental selenium [Se(0)]. We examined three physiologically and phylogenetically diverse species of selenate- and selenite-respiring bacteria, Sulfurospirillum barnesii, Bacillus selenitireducens, and Selenihalanaerobacter shriftii, for the occurrence of this phenomenon. When grown with selenium oxyanions as the electron acceptor, all of these organisms formed extracellular granules consisting of stable, uniform nanospheres (diameter, ∼300 nm) of Se(0) having monoclinic crystalline structures. Intracellular packets of Se(0) were also noted. The number of intracellular Se(0) packets could be reduced by first growing cells with nitrate as the electron acceptor and then adding selenite ions to washed suspensions of the nitrate-grown cells. This resulted in the formation of primarily extracellular Se nanospheres. After harvesting and cleansing of cellular debris, we observed large differences in the optical properties (UV-visible absorption and Raman spectra) of purified extracellular nanospheres produced in this manner by the three different bacterial species. The spectral properties in turn differed substantially from those of amorphous Se(0) formed by chemical oxidation of H2Se and of black, vitreous Se(0) formed chemically by reduction of selenite with ascorbate. The microbial synthesis of Se(0) nanospheres results in unique, complex, compacted nanostructural arrangements of Se atoms. These arrangements probably reflect a diversity of enzymes involved in the dissimilatory reduction that are subtly different in different microbes. Remarkably, these conditions cannot be achieved by current methods of chemical synthesis. PMID:14711625

  14. Two decades of warming increases diversity of a potentially lignolytic bacterial community.

    PubMed

    Pold, Grace; Melillo, Jerry M; DeAngelis, Kristen M

    2015-01-01

    As Earth's climate warms, the massive stores of carbon found in soil are predicted to become depleted, and leave behind a smaller carbon pool that is less accessible to microbes. At a long-term forest soil-warming experiment in central Massachusetts, soil respiration and bacterial diversity have increased, while fungal biomass and microbially-accessible soil carbon have decreased. Here, we evaluate how warming has affected the microbial community's capability to degrade chemically-complex soil carbon using lignin-amended BioSep beads. We profiled the bacterial and fungal communities using PCR-based methods and completed extracellular enzyme assays as a proxy for potential community function. We found that lignin-amended beads selected for a distinct community containing bacterial taxa closely related to known lignin degraders, as well as members of many genera not previously noted as capable of degrading lignin. Warming tended to drive bacterial community structure more strongly in the lignin beads, while the effect on the fungal community was limited to unamended beads. Of those bacterial operational taxonomic units (OTUs) enriched by the warming treatment, many were enriched uniquely on lignin-amended beads. These taxa may be contributing to enhanced soil respiration under warming despite reduced readily available C availability. In aggregate, these results suggest that there is genetic potential for chemically complex soil carbon degradation that may lead to extended elevated soil respiration with long-term warming. PMID:26042112

  15. Two decades of warming increases diversity of a potentially lignolytic bacterial community

    PubMed Central

    Pold, Grace; Melillo, Jerry M.; DeAngelis, Kristen M.

    2015-01-01

    As Earth's climate warms, the massive stores of carbon found in soil are predicted to become depleted, and leave behind a smaller carbon pool that is less accessible to microbes. At a long-term forest soil-warming experiment in central Massachusetts, soil respiration and bacterial diversity have increased, while fungal biomass and microbially-accessible soil carbon have decreased. Here, we evaluate how warming has affected the microbial community's capability to degrade chemically-complex soil carbon using lignin-amended BioSep beads. We profiled the bacterial and fungal communities using PCR-based methods and completed extracellular enzyme assays as a proxy for potential community function. We found that lignin-amended beads selected for a distinct community containing bacterial taxa closely related to known lignin degraders, as well as members of many genera not previously noted as capable of degrading lignin. Warming tended to drive bacterial community structure more strongly in the lignin beads, while the effect on the fungal community was limited to unamended beads. Of those bacterial operational taxonomic units (OTUs) enriched by the warming treatment, many were enriched uniquely on lignin-amended beads. These taxa may be contributing to enhanced soil respiration under warming despite reduced readily available C availability. In aggregate, these results suggest that there is genetic potential for chemically complex soil carbon degradation that may lead to extended elevated soil respiration with long-term warming. PMID:26042112

  16. Thoracic and respirable particle definitions for human health risk assessment

    EPA Science Inventory

    Provides estimates of the thoracic and respirable fractions, for adults and children during typical activities during both nasal and oral inhalation, that may be used in the design of experimental studies and interpretation of evidence of health effects.

  17. Effect of Pregnancy Upon Facial Anthropometrics and Respirator Fit Testing.

    PubMed

    Roberge, Raymond J; Kim, Jung-Hyun; Palmiero, Andrew; Powell, Jeffrey B

    2015-01-01

    Workers required to wear respirators must undergo additional respirator fit testing if a significant change in body weight occurs. Approximately 10% of working women of reproductive age will be pregnant and experience a significant change in weight, yet the effect of pregnancy-associated weight gain on respirator fit is unknown. Cephalo-facial anthropometric measurements and quantitative fit testing of N95 filtering facepiece respirators (N95 FFR) of 15 pregnant women and 15 matched, non-pregnant women were undertaken for comparisons between the groups. There were no significant differences between pregnant and non-pregnant women with respect to cephalo-facial anthropometric measurements or N95 FFR quantitative fit tests. Healthy pregnant workers, who adhere to the recommended weight gain limits of pregnancy, are unlikely to experience an increase in cephalo-facial dimensions that would mandate additional N95 FFR fit testing above that which is normally required on an annual basis. PMID:26011754

  18. Enumeration of Organohalide Respirers in Municipal Wastewater Anaerobic Digesters

    PubMed Central

    Smith, Bryan JK; Boothe, Melissa A; Fiddler, Brice A; Lozano, Tania M; Rahi, Russel K; Krzmarzick, Mark J

    2015-01-01

    Organohalide contaminants such as triclosan and triclocarban have been well documented in municipal wastewater treatment plants (WWTPs), but the degradation of these contaminants is not well understood. One possible removal mechanism is organohalide respiration by which bacteria reduce the halogenated compound. The purpose of this study was to determine the abundance of organohalide-respiring bacteria in eight WWTP anaerobic digesters. The obligate organohalide respiring Dehalococcoides mccartyi was the most abundant and averaged 3.3 × 107 copies of 16S rRNA genes per gram, while the Dehalobacter was much lower at 2.6 × 104 copies of 16S rRNA genes per gram. The genus Sulfurospirillum spp. was also detected at 1.0 × 107 copies of 16S rRNA genes per gram. No other known or putatively organohalide-respiring strains in the Dehalococcoidaceae family were found to be present nor were the genera Desulfitobacterium or Desulfomonile. PMID:26508873

  19. 42 CFR 84.1134 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Containers for gas masks combinations shall be designed and constructed to permit easy removal of the mask. ... Combination Gas Masks § 84.1134 Respirator containers; minimum requirements. (a) Except as provided...

  20. 42 CFR 84.1134 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Containers for gas masks combinations shall be designed and constructed to permit easy removal of the mask. ... Combination Gas Masks § 84.1134 Respirator containers; minimum requirements. (a) Except as provided...

  1. 42 CFR 84.1134 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Containers for gas masks combinations shall be designed and constructed to permit easy removal of the mask. ... Combination Gas Masks § 84.1134 Respirator containers; minimum requirements. (a) Except as provided...

  2. 42 CFR 84.1134 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Containers for gas masks combinations shall be designed and constructed to permit easy removal of the mask. ... Combination Gas Masks § 84.1134 Respirator containers; minimum requirements. (a) Except as provided...

  3. Microbial Iron Respiration Can Protect Steel from Corrosion

    PubMed Central

    Dubiel, M.; Hsu, C. H.; Chien, C. C.; Mansfeld, F.; Newman, D. K.

    2002-01-01

    Microbiologically influenced corrosion (MC) of steel has been attributed to the activity of biofilms that include anaerobic microorganisms such as iron-respiring bacteria, yet the mechanisms by which these organisms influence corrosion have been unclear. To study this process, we generated mutants of the iron-respiring bacterium Shewanella oneidensis strain MR-1 that were defective in biofilm formation and/or iron reduction. Electrochemical impedance spectroscopy was used to determine changes in the corrosion rate and corrosion potential as a function of time for these mutants in comparison to the wild type. Counter to prevailing theories of MC, our results indicate that biofilms comprising iron-respiring bacteria may reduce rather than accelerate the corrosion rate of steel. Corrosion inhibition appears to be due to reduction of ferric ions to ferrous ions and increased consumption of oxygen, both of which are direct consequences of microbial respiration. PMID:11872499

  4. Microbial iron respiration can protect steel from corrosion.

    PubMed

    Dubiel, M; Hsu, C H; Chien, C C; Mansfeld, F; Newman, D K

    2002-03-01

    Microbiologically influenced corrosion (MC) of steel has been attributed to the activity of biofilms that include anaerobic microorganisms such as iron-respiring bacteria, yet the mechanisms by which these organisms influence corrosion have been unclear. To study this process, we generated mutants of the iron-respiring bacterium Shewanella oneidensis strain MR-1 that were defective in biofilm formation and/or iron reduction. Electrochemical impedance spectroscopy was used to determine changes in the corrosion rate and corrosion potential as a function of time for these mutants in comparison to the wild type. Counter to prevailing theories of MC, our results indicate that biofilms comprising iron-respiring bacteria may reduce rather than accelerate the corrosion rate of steel. Corrosion inhibition appears to be due to reduction of ferric ions to ferrous ions and increased consumption of oxygen, both of which are direct consequences of microbial respiration. PMID:11872499

  5. EFFECT OF PREGNANCY UPON FACIAL ANTHROPOMETRICS AND RESPIRATOR FIT TESTING

    PubMed Central

    Roberge, Raymond J.; Kim, Jung-Hyun; Palmiero, Andrew; Powell, Jeffrey B.

    2016-01-01

    Workers required to wear respirators must undergo additional respirator fit testing if a significant change in body weight occurs. Approximately 10% of working women of reproductive age will be pregnant and experience a significant change in weight, yet the effect of pregnancy-associated weight gain on respirator fit is unknown. Cephalo-facial anthropometric measurements and quantitative fit testing of N95 filtering facepiece respirators (N95 FFR) of 15 pregnant women and 15 matched, non-pregnant women were undertaken for comparisons between the groups.There were no significant differences between pregnant and non-pregnant women with respect to cephalo-facial anthropometric measurements or N95 FFR quantitative fit tests. Healthy pregnant workers, who adhere to the recommended weight gain limits of pregnancy, are unlikely to experience an increase in cephalo-facial dimensions that would mandate additional N95 FFR fit testing above that which is normally required on an annual basis. PMID:26011754

  6. Quantifying rhizosphere respiration for two cool-season perennial forages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the regulation of ecosystem carbon dioxide flux from forage production systems requires knowledge of component fluxes, including photosynthetic uptake and respiratory loss. Experimental separation of soil respiration into its heterotrophic (free-living soil organisms) and rhizosphere c...

  7. Fitting characteristics of eighteen N95 filtering-facepiece respirators.

    PubMed

    Coffey, Christopher C; Lawrence, Robert B; Campbell, Donald L; Zhuang, Ziqing; Calvert, Catherine A; Jensen, Paul A

    2004-04-01

    Four performance measures were used to evaluate the fitting characteristics of 18 models of N95 filtering-facepiece respirators: (1) the 5th percentile simulated workplace protection factor (SWPF) value, (2) the shift average SWPF value, (3) the h-value, and (4) the assignment error. The effect of fit-testing on the level of protection provided by the respirators was also evaluated. The respirators were tested on a panel of 25 subjects with various face sizes. Simulated workplace protection factor values, determined from six total penetration (face-seal leakage plus filter penetration) tests with re-donning between each test, were used to indicate respirator performance. Five fit-tests were used: Bitrex, saccharin, generated aerosol corrected for filter penetration, PortaCount Plus corrected for filter penetration, and the PortaCount Plus with the N95-Companion accessory. Without fit-testing, the 5th percentile SWPF for all models combined was 2.9 with individual model values ranging from 1.3 to 48.0. Passing a fit-test generally resulted in an increase in protection. In addition, the h-value of each respirator was computed. The h-value has been determined to be the population fraction of individuals who will obtain an adequate level of protection (i.e., SWPF >/=10, which is the expected level of protection for half-facepiece respirators) when a respirator is selected and donned (including a user seal check) in accordance with the manufacturer's instructions without fit-testing. The h-value for all models combined was 0.74 (i.e., 74% of all donnings resulted in an adequate level of protection), with individual model h-values ranging from 0.31 to 0.99. Only three models had h-values above 0.95. Higher SWPF values were achieved by excluding SWPF values determined for test subject/respirator combinations that failed a fit-test. The improvement was greatest for respirator models with lower h-values. Using the concepts of shift average and assignment error to measure

  8. Helmet-Cam: tool for assessing miners’ respirable dust exposure

    PubMed Central

    Cecala, A.B.; Reed, W.R.; Joy, G.J.; Westmoreland, S.C.; O’Brien, A.D.

    2015-01-01

    Video technology coupled with datalogging exposure monitors have been used to evaluate worker exposure to different types of contaminants. However, previous application of this technology used a stationary video camera to record the worker’s activity while the worker wore some type of contaminant monitor. These techniques are not applicable to mobile workers in the mining industry because of their need to move around the operation while performing their duties. The Helmet-Cam is a recently developed exposure assessment tool that integrates a person-wearable video recorder with a datalogging dust monitor. These are worn by the miner in a backpack, safety belt or safety vest to identify areas or job tasks of elevated exposure. After a miner performs his or her job while wearing the unit, the video and dust exposure data files are downloaded to a computer and then merged together through a NIOSH-developed computer software program called Enhanced Video Analysis of Dust Exposure (EVADE). By providing synchronized playback of the merged video footage and dust exposure data, the EVADE software allows for the assessment and identification of key work areas and processes, as well as work tasks that significantly impact a worker’s personal respirable dust exposure. The Helmet-Cam technology has been tested at a number of metal/nonmetal mining operations and has proven to be a valuable assessment tool. Mining companies wishing to use this technique can purchase a commercially available video camera and an instantaneous dust monitor to obtain the necessary data, and the NIOSH-developed EVADE software will be available for download at no cost on the NIOSH website. PMID:26380529

  9. Tai Chi training reduced coupling between respiration and postural control.

    PubMed

    Holmes, Matthew L; Manor, Brad; Hsieh, Wan-hsin; Hu, Kun; Lipsitz, Lewis A; Li, Li

    2016-01-01

    In order to maintain stable upright stance, the postural control system must account for the continuous perturbations to the body's center-of-mass including those caused by spontaneous respiration. Both aging and disease increase "posturo-respiratory synchronization;" which reflects the degree to which respiration affects postural sway fluctuations over time. Tai Chi training emphasizes the coordination of respiration and bodily movements and may therefore optimize the functional interaction between these two systems. The purpose of the project was to examine the effect of Tai Chi training on the interaction between respiration and postural control in older adults. We hypothesized that Tai Chi training would improve the ability of the postural control system to compensate for respiratory perturbations and thus, reduce posturo-respiratory synchronization. Participants were recruited from supportive housing facilities and randomized to a 12-week Tai Chi intervention (n=28; 86 ± 5 yrs) or educational-control program (n=34, 85 ± 6 yrs). Standing postural sway and respiration were simultaneously recorded with a force plate and respiratory belt under eyes-open and eyes-closed conditions. Posturo-respiratory synchronization was determined by quantifying the variation of the phase relationship between the dominant oscillatory mode of respiration and corresponding oscillations within postural sway. Groups were similar in age, gender distribution, height, body mass, and intervention compliance. Neither intervention altered average sway speed, sway magnitude or respiratory rate. As compared to the education-control group, however, Tai Chi training reduced posturo-respiratory synchronization when standing with eyes open or closed (p<0.001). Tai Chi training did not affect traditional parameters of standing postural control or respiration, yet reduced the coupling between respiration and postural control. The beneficial effects of Tai Chi training may therefore stem in part

  10. Reducing respirator fit test errors: a multi-donning approach.

    PubMed

    Campbell, D L; Coffey, C C; Jensen, P A; Zhuang, Z

    2005-08-01

    As a continuation of recent studies to assess the accuracy of existing fit test methods, a multi-donning approach to fit testing is presented. As an example of that approach, a multi-donning quantitative fit test for filtering-facepiece respirators is presented and analyzed by comparing its error rates with those of the single-donning approach of current fit test methods. That analysis indicates the multi-donning fit test has the potential to reduce both the alpha error and the beta error to half that of single-donning fit tests. The alpha error is the error of failing a respirator that should pass; the beta error is the error of passing a respirator that should fail. Lowering fit test error rates for filtering-facepiece respirators is important because fit testing is an essential means of helping assure that an individual has selected an adequately fitting respirator. To reduce the alpha and beta error inherent in current fit test methods, the proposed fit test for filtering-facepiece respirators incorporates five donnings of the facepiece, unlike the single donning of existing fit test methods. The analysis presented here indicates that the multiple-donning approach reduces the element of chance in the fit test result and thereby increases the consistency and accuracy of the fit tests. The time to conduct the multi-donning test can approximate the time for current, single-donning tests by shortening the time the respirator is worn after each donning to about 10 sec. And, unlike current fit tests for filtering-facepieces that measure only faceseal leakage, the example multiple-donning fit test considered here is based on a measurement of total leakage (faceseal plus filter). Utilizing total respirator leakage can result in simpler quantitative fit test instrumentation and a fit test that is more relevant to the workplace. Further trials with human subjects are recommended in order to validate the proposed multi-donning approach. PMID:16080261

  11. Does metal pollution matter with C retention by rice soil?

    NASA Astrophysics Data System (ADS)

    Bian, Rongjun; Cheng, Kun; Zheng, Jufeng; Liu, Xiaoyu; Liu, Yongzhuo; Li, Zhipeng; Li, Lianqing; Smith, Pete; Pan, Genxing; Crowley, David; Zheng, Jinwei; Zhang, Xuhui; Zhang, Liangyun; Hussain, Qaiser

    2015-08-01

    Soil respiration, resulting in decomposition of soil organic carbon (SOC), emits CO2 to the atmosphere and increases under climate warming. However, the impact of heavy metal pollution on soil respiration in croplands is not well understood. Here we show significantly increased soil respiration and efflux of both CO2 and CH4 with a concomitant reduction in SOC storage from a metal polluted rice soil in China. This change is linked to a decline in soil aggregation, in microbial abundance and in fungal dominance. The carbon release is presumably driven by changes in carbon cycling occurring in the stressed soil microbial community with heavy metal pollution in the soil. The pollution-induced increase in soil respiration and loss of SOC storage will likely counteract efforts to increase SOC sequestration in rice paddies for climate change mitigation.

  12. Does metal pollution matter with C retention by rice soil?

    PubMed Central

    Bian, Rongjun; Cheng, Kun; Zheng, Jufeng; Liu, Xiaoyu; Liu, Yongzhuo; Li, Zhipeng; Li, Lianqing; Smith, Pete; Pan, Genxing; Crowley, David; Zheng, Jinwei; Zhang, Xuhui; Zhang, Liangyun; Hussain, Qaiser

    2015-01-01

    Soil respiration, resulting in decomposition of soil organic carbon (SOC), emits CO2 to the atmosphere and increases under climate warming. However, the impact of heavy metal pollution on soil respiration in croplands is not well understood. Here we show significantly increased soil respiration and efflux of both CO2 and CH4 with a concomitant reduction in SOC storage from a metal polluted rice soil in China. This change is linked to a decline in soil aggregation, in microbial abundance and in fungal dominance. The carbon release is presumably driven by changes in carbon cycling occurring in the stressed soil microbial community with heavy metal pollution in the soil. The pollution-induced increase in soil respiration and loss of SOC storage will likely counteract efforts to increase SOC sequestration in rice paddies for climate change mitigation. PMID:26272277

  13. Soil microbial respiration and PICT responses to an industrial and historic lead pollution: a field study.

    PubMed

    Bérard, Annette; Capowiez, Line; Mombo, Stéphane; Schreck, Eva; Dumat, Camille; Deola, Frédéric; Capowiez, Yvan

    2016-03-01

    We performed a field investigation to study the long-term impacts of Pb soil contamination on soil microbial communities and their catabolic structure in the context of an industrial site consisting of a plot of land surrounding a secondary lead smelter. Microbial biomass, catabolic profiles, and ecotoxicological responses (PICT) were monitored on soils sampled at selected locations along 110-m transects established on the site. We confirmed the high toxicity of Pb on respirations and microbial and fungal biomasses by measuring positive correlations with distance from the wall factory and negative correlation with total Pb concentrations. Pb contamination also induced changes in microbial and fungal catabolic structure (from carbohydrates to amino acids through carboxylic malic acid). Moreover, PICT measurement allowed to establish causal linkages between lead and its effect on biological communities taking into account the contamination history of the ecosystem at community level. The positive correlation between qCO2 (based on respiration and substrate use) and PICT suggested that the Pb stress-induced acquisition of tolerance came at a greater energy cost for microbial communities in order to cope with the toxicity of the metal. In this industrial context of long-term polymetallic contamination dominated by Pb in a field experiment, we confirmed impacts of this metal on soil functioning through microbial communities, as previously observed for earthworm communities. PMID:26233741

  14. Resazurin as a Proxy for Estimating Stream Respiration

    NASA Astrophysics Data System (ADS)

    Gonzalez Pinzon, R. A.; Haggerty, R.; Argerich, A.; Briggs, M.; Lautz, L. K.; Lemke, D.; Hare, D. K.

    2010-12-01

    Hydrologic retention in stream ecosystems favors the reactions of solutes and nutrients in metabolically active transient storage (MATS) zones. These zones are hot spots where metabolic activity is expected to contribute significantly to ecosystem respiration. We compare the results of a series of coinjections of resazurin (Raz) as a redox sensitive tracer, and NaCl as a conservative tracer to investigate the function of MATS zones. Raz is a dye that undergoes an irreversible reduction to resorufin (Rru) when exposed to aerobic respiration. To characterize the transformation of Raz we measured the BTC of the tracers at the boundary conditions, and during plateau concentrations we sampled the longitudinal profile of surface water. We also used the two-station diel technique to quantify gross primary production (GPP) and community respiration (CR) within the reaches. Injections have been performed in streams with different morphology, streambed composition, and riparian vegetation in Oregon-USA (WS 1 and WS 3 in the HJ Andrews Forest LTER, and Drift Creek), Spain (Riera de Santa Fe del Montseny, Catalonia) and Wyoming-USA (Cherry Creek). The results support the idea that under different ranges of community respiration, the transformation of Raz to Rru is a proxy for quantifying MATS, characterizing spatial heterogeneity in respiration rates, and ultimately, could be used to estimate ecosystem respiration in environments where direct measurement is challenging.

  15. Respiration during Postharvest Development of Soursop Fruit, Annona muricata L

    PubMed Central

    Bruinsma, Johan; Paull, Robert E.

    1984-01-01

    Fruit of soursop, Annona muricata L., showed increased CO2 production 2 days after harvest, preceding the respiratory increase that coincided with autocatalytic ethylene evolution and other ripening phenomena. Experiments to alter gas exchange patterns of postharvest fruit parts and tissue cylinders had little success. The respiratory quotient of tissue discs was near unity throughout development. 2,4-Dinitrophenol uncoupled respiration more effectively than carbonylcyanide m-chlorophenylhydrazone; 0.4 millimolar KCN stimulated, 4 millimolar salicylhydroxamic acid slightly inhibited, and their combination strongly inhibited respiration, as did 10 millimolar NaN3. Tricarboxylic acid cycle members and ascorbate were more effective substrates than sugars, but acetate and glutarate strongly inhibited. Disc respiration showed the same early peak as whole fruit respiration; this peak is thus an inherent characteristic of postharvest development and cannot be ascribed to differences between ovaries of the aggregatetype fruit. The capacity of the respiratory apparatus did not change during this preclimacteric peak, but the contents of rate-limiting malate and citrate increased after harvest. It is concluded that the preclimacteric rise in CO2 evolution reflects increased mitochondrial respiration because of enhanced supply of carboxylates as a substrate, probably induced by detachment from the tree. The second rise corresponds with the respiration during ripening of other climacteric fruits. PMID:16663783

  16. Development of a Molecular System for Studying Microbial Arsenate Respiration

    NASA Astrophysics Data System (ADS)

    Saltikov, C. W.; Newman, D. K.

    2002-12-01

    The toxic element arsenic is a major contaminant of many groundwaters and surface waters throughout the world. Arsenic enrichment is primarily of geological origin resulting from weathering processes and geothermal activity. Not surprisingly, microorganisms inhabiting anoxic arsenic-contaminated environments have evolved to exploit arsenate during respiration. Numerous bacteria have been isolated that use arsenate as a terminal electron acceptor for respiratory growth. The diversity of this metabolism appears to be widespread throughout the microbial tree of life, suggesting respiratory arsenate reduction is ancient in origin. Yet little is known about the molecular mechanisms for how these organisms respire arsenate. We have developed a model system in Shewanella trabarsenatis, strain ANA-3, a facultative anaerobe that respires arsenate and tolerates high concentrations of arsenite (10 mM). Through loss-of-function studies, we have identified genes involved in both arsenic resistance and arsenate respiration. The genes that confer resistance to arsenic are homologous to the well-characterized ars operon of E. coli. However, the respiratory arsenate reductase is predicted to encode a novel protein that shares homologous regions (~ 40 % similarity) to molybdopterin anaerobic reductases specific for DMSO, thiosulfate, nitrate, and polysulfide. I will discuss our emerging model for how strain ANA-3 respires arsenate and the relationship between arsenite resistance and arsenate respiration. I will also highlight the relevance of this type of analysis for biogeochemical studies.

  17. Respirator leakage in the pharmaceutical industry of northwest England.

    PubMed

    Burgess, G L; Mashingaidze, M T

    1999-11-01

    Field qualitative fit tests were conducted at 10 separate companies in the Northwest of England to determine the proportion of leaking respirators in a cross-section of pharmaceutical manufacturing industries. The 3 M FT-10 Qualitative Fit Test Apparatus was used to test a total of 211 half-face particulate respirator wearers. Participants wore their own respirators and were asked to don them as they would normally. In all cases, no specific intervention had occurred prior to testing. Results indicated a failure rate of 69% (of the 211 subjects tested, 145 respirators were leaking). Successful results were not associated with the frequency of use (p = 0.71) or years of experience wearing respirators (p = 0.59). Similarly, successful results were not associated with respirator training in the current job (p = 0.38) or training in previous jobs (p = 0.49). Leakage was not consistent across the 10 companies, with two companies exhibiting a 100% failure rate while another company had 26 successful tests in 50 wearers (52% pass rate). Only 35 of the 211 participants performed a negative pressure test. Of these, 80% successfully passed the test, which was significantly greater than the 22% pass rate among those who had not performed the pressure test (p < 0.001). PMID:10616324

  18. Devices used to humidify respired gases.

    PubMed

    Rathgeber, Jörg

    2006-06-01

    The efficiency of HMEs decreases with increasing tidal volumes. HMEs always result in an elevation of the inspiratory and expiratory airway resistances; this should be considered especially in cases that involve spontaneous respiration. The pressure drop across HMEs should be less than 2 hPa for a flow of 60 L/min, a level that also has been measured for cascade humidifiers.HMEs with a hygroscopic coating of CaCl2 should be given preference over LiCl-coated ones, especially because products of the same efficiency are available with CaCl2 coating. Lithium is a potentially toxic substance that can be taken up by way of bronchopulmonary resorption after accidental washing out [37]. Therefore, a possible safety hazard cannot be eliminated, especially in neonates and babies. Not least for these reasons HMEs must never be combined with active humidification systems or medication nebulizers. Even if the reduction in functional efficiency of the HME that is caused by washing off of the coating of hygroscopic substances is disregarded, the presence of medication aerosols in the HME, in particular, can result in a dangerous increase in resistance to gas flow. The internal volumes of HMEs should be as small as possible so that they do not increase the effective deadspace too much. A combination of HMEsand catheter mounts results in a further increase in the deadspace, and there-fore, must be considered critically, especially in cases that involve spontaneous respiration. If a catheter mount is necessary to add flexibility to the breathing system, the HME preferably should be connected directly onto the tracheal tube with the catheter mount behind it; otherwise, the humidification efficiency of the HME will be reduced by condensation in the catheter mount. Children should be ventilated with special HMEs that have a small internal volume. Caution is required in patients who have elevated sputum production, pulmonary trauma with bleeding, pulmonary edema, or a similar condition

  19. 30 CFR 71.301 - Respirable dust control plan; approval by District Manager and posting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Respirable dust control plan; approval by... WORK AREAS OF UNDERGROUND COAL MINES Respirable Dust Control Plans § 71.301 Respirable dust control plan; approval by District Manager and posting. (a) The District Manager will approve respirable...

  20. 30 CFR 90.300 - Respirable dust control plan; filing requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Respirable dust control plan; filing... DEVELOPMENT OF PNEUMOCONIOSIS Respirable Dust Control Plans § 90.300 Respirable dust control plan; filing requirements. (a) If an operator abates a violation of § 90.100 (Respirable dust standard) or §...

  1. 42 CFR 84.1157 - Chemical cartridge respirators with particulate filters; performance requirements; general.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Chemical cartridge respirators with particulate...-Purifying High Efficiency Respirators and Combination Gas Masks § 84.1157 Chemical cartridge respirators with particulate filters; performance requirements; general. Chemical cartridge respirators...

  2. 42 CFR 84.1157 - Chemical cartridge respirators with particulate filters; performance requirements; general.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Chemical cartridge respirators with particulate...-Purifying High Efficiency Respirators and Combination Gas Masks § 84.1157 Chemical cartridge respirators with particulate filters; performance requirements; general. Chemical cartridge respirators...

  3. 42 CFR 84.1157 - Chemical cartridge respirators with particulate filters; performance requirements; general.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Chemical cartridge respirators with particulate...-Purifying High Efficiency Respirators and Combination Gas Masks § 84.1157 Chemical cartridge respirators with particulate filters; performance requirements; general. Chemical cartridge respirators...

  4. 30 CFR 70.101 - Respirable dust standard when quartz is present.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Respirable dust standard when quartz is present. When the respirable dust in the mine atmosphere of the... concentration of respirable dust in the mine atmosphere during each shift to which each miner in the active... average concentration of respirable dust in the mine atmosphere associated with that mechanized...

  5. 30 CFR 70.101 - Respirable dust standard when quartz is present.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Respirable dust standard when quartz is present. When the respirable dust in the mine atmosphere of the... concentration of respirable dust in the mine atmosphere during each shift to which each miner in the active... average concentration of respirable dust in the mine atmosphere associated with that mechanized...

  6. 30 CFR 70.101 - Respirable dust standard when quartz is present.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Respirable dust standard when quartz is present. When the respirable dust in the mine atmosphere of the... concentration of respirable dust in the mine atmosphere during each shift to which each miner in the active... average concentration of respirable dust in the mine atmosphere associated with that mechanized...

  7. Aerosol penetration behavior of respirator valves.

    PubMed

    Brosseau, L M

    1998-03-01

    Exhalation and inhalation valves from half-facepiece negative pressure respirators were evaluated for leakage during an 8-hour cyclic breathing test period using two work rates (415 and 622 kg-m/min) and two particle sizes (0.3 and 0.8 micron). Three different models (manufacturers) of exhalation valves were tested, with two lots for each model. Exhalation valve leakage ranged from 0.0 to 0.03%; no failure of exhalation valves occurred. No differences in lot or manufacturer were found. Differences in particle size did not lead to differences in penetration at the lower work rate; at the higher work rate 0.3-micron particles were less penetrating than 0.8-micron particles (0.03 versus 0.06%). When tested for air leakage at a pressure of 2.54 cm H2O, following the National Institute for Occupational Safety and Health certification method, exhalation valves exhibited no leakage either before or after the experiments. Inhalation valves averaged 20% leakage for all experiments; 0.3-micron particles were again less penetrating (13%) than 0.8-micron particles (27%). No inhalation valve failure occurred. No differences in lot (within manufacturer) were found; there were, however, significant differences in particle penetration among the three manufacturers' inhalation valves. Airflow leakage through the inhalation valves did not change during the experimental period, but differed among the three manufacturers. Measurements using airflow leakage and particle penetration produced the same ranking for the three manufacturers' inhalation valves. PMID:9530803

  8. A bacterial bioreporter panel to assay the cytotoxicity of atmospheric particulate matter

    NASA Astrophysics Data System (ADS)

    Kessler, Nivi; Schauer, James J.; Yagur-Kroll, Sharon; Melamed, Sahar; Tirosh, Ofir; Belkin, Shimshon; Erel, Yigal

    2012-12-01

    Numerous studies have demonstrated that elevated concentrations of suspended atmospheric particulate matter (PM) are associated with adverse health effects. In order to minimize the adverse public health effects of atmospheric PM by exposure management, there is a need for a greater understanding of the toxic mechanisms and the components that are responsible for the toxic effects. The aim of this study was to utilize bioassay techniques to investigate these aspects. For this purpose a reporter panel of 9 genetically engineered bacterial (Escherichia coli) strains was composed. Each panel member was designed to report on a different stress condition with a measurable light signal produced by the luciferase enzyme. Toxic mechanisms and components were studied using six anthropogenic PM source samples, including two vehicle combustion particles, three coal fly ash (CFA) samples and an urban dust sample. The most prominent outcome of the panel exposure results were broad panel responses observed for two of the CFA samples, indicating oxidative stress, respiration inhibition and iron deficiency. These responses were relieved when the samples were treated with EDTA, a non-specific metal chelator, suggesting the involvement of metals in the observed effects. Bioavailability analysis of the samples suggests that chromium was related to the toxic responses induced by two of the CFA samples. Oxidative stress was also observed in several samples of ambient atmospheric aerosols and excess metal toxicity in an urban dust sample collected in a parking lot. The reporter panel approach, as demonstrated in this study, has the potential of providing novel insights as to the mechanisms of atmospheric PM toxicity. Furthermore, combining the panel's results with bioavailability data can enlighten about the role of different PM components in the observed toxicity.

  9. [Differences in soil respiration between cropland and grassland ecosystems and factors influencing soil respiration on the Loess Plateau].

    PubMed

    Zhou, Xiao-Gang; Zhang, Yan-Jun; Nan, Ya-Fang; Liu, Qing-Fang; Guo, Sheng-Li

    2013-03-01

    Understanding the effect of land-use change on soil respiration rates becomes critical in predicting soil carbon cycling under conversion of arable into grassland on the Loess Plateau. From July 2010 to December 2011, CO2 efflux from the soil surface was measured between 08:00 to 10:00 am in clear days by a Licor-8100 closed chamber system (Li-COR, Lincoln, NE, US). Also, soil temperature and soil moisture at the 5-cm depth was measured using a Li-Cor thermocouple and a hand-held frequency-domain reflectometer (ML2x, Delta-T Devices Ltd, UK) at each PVC collar, respectively. We found marked differences (P < 0.05) in soil respiration related to different land-use: the mean cropland soil respiration [1.35 micromol x (m2 x s)(-1)] was 24% (P < 0.05) less than the paired grassland soil respiration [1.67 micromol x (m2 x s)(-1)] (P < 0.05) during the period of experiment and the cumulative CO2-C emissions in grassland (856 g x m(-2)) was 23% (P < 0.05) higher than that in cropland (694 g x m(-2)). Soil moisture from 0-5 cm depth was much drier in cropland and significantly different between cropland and grassland except for winter. However, there were no clear relationships between soil moisture and soil respiration. Soil temperature at 5-cm depth was 2.5 degress C higher in grassland during the period of experiment (P < 0.05). Regression of soil temperature vs. soil respiration indicated significant exponential relationships both in grassland and cropland. Besides, there were intrinsic differences in response of soil respiration to temperature between the cropland and grassland ecosystems: grassland and cropland respiration response was significantly different at the alpha = 0.05 level, also expressed by a higher temperature sensitivity of soil respiration (Q10) in cropland (2.30) relative to grassland (1.74). Soil temperature of cropland and grassland can explain 79% of the variation in the soil respiration in grassland, compared to 82% in cropland. Therefore, land

  10. 42 CFR 84.1130 - Respirators; description.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... against dusts: (i) Having an air contamination level not less than 0.05 milligram per cubic meter of air... contamination level not less than 2 million particles per cubic foot of air, including but not limited to... metals having an air contamination level not less than 0.05 milligram per cubic meter, including but...

  11. Divergent PCB organohalide-respiring consortia enriched from the efflux channel of a former Delor manufacturer in Eastern Europe.

    PubMed

    Praveckova, Martina; Brennerova, Maria V; Cvancarova, Monika; De Alencastro, Luiz Felippe; Holliger, Christof; Rossi, Pierre

    2015-10-01

    Polychlorinated biphenyl (PCB) organohalide-respiring communities from the efflux channel of a former Delor manufacturer in Eastern Slovakia were assessed using metagenomic, statistical and cultivation-adapted approaches. Multivariate analysis of environmental factors together with terminal restriction fragment length polymorphisms of the bacterial communities in the primary sediments revealed both temporal and spatial heterogeneity in the distribution of microbial populations, which reflects the dynamic pattern of contamination and altered conditions for biodegradation activity along the channel. Anaerobic microcosms were developed from eight sediments sampled along the channel, where high concentrations of PCBs - from 6.6 to 136mg/kg dry weight, were measured. PCB dehalorespiring activity, congruent with changes in the microbial composition in all microcosms, was detected. After 10 months of cultivation, the divergently evolved consortia achieved up to 35.9 percent reduction of the total PCB concentration. Phylogenetic-analysis of the active Chloroflexi-related organohalide-respiring bacteria by partial sequencing of 16S rRNA genes in cDNA from microcosms with the highest PCB dechlorination activity revealed diverse and unique complexity of the populations. The predominant organohalide respirers were either affiliated with Dehalococcoides sp. and Dehalococcoides-like group (DLG) organisms or were composed of currently unknown distant clades of DLG bacteria. The present study should encourage researchers to explore the full potential of the indigenous PCB dechlorinating populations to develop effective bioremediation approaches that can perform the complete mineralization of PCBs in polluted environments. PMID:26092554

  12. Organoheterotrophic Bacterial Abundance Associates with Zinc Removal in Lignocellulose-Based Sulfate-Reducing Systems.

    PubMed

    Drennan, Dina M; Almstrand, Robert; Lee, Ilsu; Landkamer, Lee; Figueroa, Linda; Sharp, Jonathan O

    2016-01-01

    Syntrophic relationships between fermentative and sulfate-reducing bacteria are essential to lignocellulose-based systems applied to the passive remediation of mining-influenced waters. In this study, seven pilot-scale sulfate-reducing bioreactor columns containing varying ratios of alfalfa hay, pine woodchips, and sawdust were analyzed over ∼500 days to investigate the influence of substrate composition on zinc removal and microbial community structure. Columns amended with >10% alfalfa removed significantly more sulfate and zinc than did wood-based columns. Enumeration of sulfate reducers by functional signatures (dsrA) and their putative identification from 16S rRNA genes did not reveal significant correlations with zinc removal, suggesting limitations in this directed approach. In contrast, a strong indicator of zinc removal was discerned in comparing the relative abundance of core microorganisms shared by all reactors (>80% of total community), many of which had little direct involvement in metal or sulfate respiration. The relative abundance of Desulfosporosinus, the dominant putative sulfate reducer within these reactors, correlated to representatives of this core microbiome. A subset of these clades, including Treponema, Weissella, and Anaerolinea, was associated with alfalfa and zinc removal, and the inverse was found for a second subset whose abundance was associated with wood-based columns, including Ruminococcus, Dysgonomonas, and Azospira. The construction of a putative metabolic flowchart delineated syntrophic interactions supporting sulfate reduction and suggests that the production of and competition for secondary fermentation byproducts, such as lactate scavenging, influence bacterial community composition and reactor efficacy. PMID:26605699

  13. Response of pinon and juniper respiration to drought and warming

    NASA Astrophysics Data System (ADS)

    Collins, A.; McDowell, N. G.

    2013-12-01

    Drought and temperature-induced tree mortality is believed to be occurring globally, though the physiological mechanisms underlying documented mortality events are not well understood. Understanding the controls on forest carbon cycling and their responses during drought and temperature stress is critical in informing vegetation models and thus predictions of forest response to climate change. Pinon pine (Pinus edulis) and oneseed juniper (Juniperus monosperma) are widespread species in forests of the Southwestern United States and known to be susceptible to mortality due to altered precipitation and temperature regimes. Respiration is a key component of the carbon budget and its response to abiotic stress is thought to play a role in mortality or survival. The ability of these species to acclimate respiration to altered temperature and/or precipitation is a key model parameter, but is currently not known. A careful examination of the response of pinon and juniper respiration to increased temperature and drought conditions is thus a necessary step in predicting their future distribution in a changing environment. We established a rainfall and temperature manipulation experiment in a pinon-juniper woodland near Los Alamos, NM. In-situ trees were exposed to one of five treatments: warming alone, drought alone, warming plus drought, ambient control, and chamber control. Respiration measurements were conducted on the bole of each tree once per month between June and November 2012. A polycarbonate gas-exchange chamber was temporarily sealed to the bole of each tree during the night of each measurement cycle. Air was circulated from the chamber to a closed-path infra-red gas analyzer and CO2 flux was measured hourly. Preliminary analysis of results shows marked differences between the two species. Heated pinon showed elevated respiration and an unchanging Q10 of respiration while all other pinon treatments were no different from ambient control in either parameter

  14. Bacterial biomass, metabolic state, and activity in stream sediments: relation to environmental variables and multiple assay comparisons.

    PubMed

    Bott, T L; Kaplan, L A

    1985-08-01

    Bacterial biomass, metabolic condition, and activity were measured over a 16-month period in the surface sediments of the following four field sites with differing dissolved organic matter regimes: a woodlot spring seep, a meadow spring seep, a second-order stream, and a third-order stream. Total bacterial biomass was measured by lipid phosphate and epifluorescence microscopic counts (EMC), and viable biomass was measured by C most probable number, EMC with 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride reduction, and ATP. Bacterial metabolic condition was determined from the percentage of respiring cells, poly-beta-hydroxybutyrate concentrations, and adenylate energy charge. Activity measures included C-lipid synthesis, P-phospholipid synthesis, the rate of uptake of algal lysate dissolved organic carbon, and respiration, from which biosynthesis was calculated (dissolved organic carbon uptake corrected for respiration). Total bacterial biomass (from EMC) ranged from 0.012 to 0.354 mug of C/mg of dry sediment and was usually lowest in the third-order stream. The percentage of cells respiring was less than 25% at all sites, indicating that most bacteria were dormant or dead. Adenylate energy charge was measured only in the third-order stream and was uniformly low. Poly-beta-hydroxybutyrate concentrations were greater in the woodlot spring seep than in the second- and third-order streams. Uptake of algal lysate dissolved organic carbon ranged from undetectable levels to 166 mg of C . m . h. Little community respiration could be attributed to algal lysate metabolism. Phospholipid synthesis ranged from 0.006 to 0.354 pmol . mg of dry sediment . h. Phospholipid synthesis rates were used to estimate bacterial turnover at the study sites. An estimated 375 bacterial generations per year were produced in the woodlot spring seep, and 67 per year were produced in the third-order stream. PMID:16346867

  15. Metal Inhibition of Growth and Manganese Oxidation in Pseudomonas putida GB-1

    NASA Astrophysics Data System (ADS)

    Pena, J.; Sposito, G.

    2009-12-01

    Biogenic manganese oxides (MnO2) are ubiquitous nanoparticulate minerals that contribute to the adsorption of nutrient and toxicant metals, the oxidative degradation of various organic compounds, and the respiration of metal-reducing bacteria in aquatic and terrestrial environments. The formation of these minerals is catalyzed by a diverse and widely-distributed group of bacteria and fungi, often through the enzymatic oxidation of aqueous Mn(II) to Mn(IV). In metal-impacted ecosystems, toxicant metals may alter the viability and metabolic activity of Mn-oxidizing organisms, thereby limiting the conditions under which biogenic MnO2 can form and diminishing their potential as adsorbent materials. Pseudomonas putida GB-1 (P. putida GB-1) is a model Mn-oxidizing laboratory culture representative of freshwater and soil biofilm-forming bacteria. Manganese oxidation in P. putida GB-1 occurs via two single-electron-transfer reactions, involving a multicopper oxidase enzyme found on the bacterial outer membrane surface. Near the onset of the stationary phase of growth, dark brown MnO2 particles are deposited in a matrix of bacterial cells and extracellular polymeric substances, thus forming heterogeneous biomineral assemblages. In this study, we assessed the influence of various transition metals on microbial growth and manganese oxidation capacity in a P. putida GB-1 culture propagated in a nutrient-rich growth medium. The concentration-response behavior of actively growing P. putida GB-1 cells was investigated for Fe, Co, Ni, Cu and Zn at pH ≈ 6 in the presence and absence of 1 mM Mn. Toxicity parameters such as EC0, EC50 and Hillslope, and EC100 were obtained from the sigmoidal concentration-response curves. The extent of MnO2 formation in the presence of the various metal cations was documented 24, 50, 74 and 104 h after the metal-amended medium was inoculated. Toxicity values were compared to twelve physicochemical properties of the metals tested. Significant

  16. Analysis of respirable particulate exposure and its effect to public health around lead smelter and e-waste processing industry in West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Marselina, M.; Roosmini, D.; Salami, I. R. S.; Ayu A, M.; Cahyadi, W.

    2016-03-01

    Respirable particulate exposure strongly affects human health, especially for children who lived around industrial area. This study was conducted to evaluate the effect of respirable particulate exposure to lung capacity of children. Study location in this study was Parung Panjang District, area of lead smelter industry and also in Astana Anyar District, area of e-waste processing industry. Thirty children were involved in Astana Anyar District and also thirty children in Parung Panjang District. The control groups were also studied in both areas. Predicted average daily intake (ADD) of respirable particulate was estimated and lung or respiration condition of children was measured by using spirometer. The lung condition of respondents was estimated by FEV1.0 and FVC values. As the result, the predicted ADD of children in lead smelter area is 3 times higher than the predicted ADD of children in e-waste processing area. It was correlated positively with the higher PM2.5 concentration in Parung Panjang District than the PM2.5 concentration in Astana Anyar District. Metals concentration in Parung Panjang was also measured with X-Ray Fluorescence (XRF) in this study and it was clearly state that metals concentration in location study were higher than metals concentration in control area.

  17. Comparison of epifluorescent viable bacterial count methods

    NASA Technical Reports Server (NTRS)

    Rodgers, E. B.; Huff, T. L.

    1992-01-01

    Two methods, the 2-(4-Iodophenyl) 3-(4-nitrophenyl) 5-phenyltetrazolium chloride (INT) method and the direct viable count (DVC), were tested and compared for their efficiency for the determination of the viability of bacterial populations. Use of the INT method results in the formation of a dark spot within each respiring cell. The DVC method results in elongation or swelling of growing cells that are rendered incapable of cell division. Although both methods are subjective and can result in false positive results, the DVC method is best suited to analysis of waters in which the number of different types of organisms present in the same sample is assumed to be small, such as processed waters. The advantages and disadvantages of each method are discussed.

  18. Bacterial molybdoenzymes: old enzymes for new purposes.

    PubMed

    Leimkühler, Silke; Iobbi-Nivol, Chantal

    2016-01-01

    Molybdoenzymes are widespread in eukaryotic and prokaryotic organisms where they play crucial functions in detoxification reactions in the metabolism of humans and bacteria, in nitrate assimilation in plants and in anaerobic respiration in bacteria. To be fully active, these enzymes require complex molybdenum-containing cofactors, which are inserted into the apoenzymes after folding. For almost all the bacterial molybdoenzymes, molybdenum cofactor insertion requires the involvement of specific chaperones. In this review, an overview on the molybdenum cofactor biosynthetic pathway is given together with the role of specific chaperones dedicated for molybdenum cofactor insertion and maturation. Many bacteria are involved in geochemical cycles on earth and therefore have an environmental impact. The roles of molybdoenzymes in bioremediation and for environmental applications are presented. PMID:26468212

  19. Impact of Land Use on Soil Respiration in Southwestern Victoria

    NASA Astrophysics Data System (ADS)

    Teodosio, B.; Daly, E.; Pauwels, V. R. N.

    2015-12-01

    Land use management is one of the key contributors to the global environmental change. Considerable changes in landscapes have been experienced in Southwestern Victoria, Australia in the past two decades. Eucalyptus globulus (blue gum) plantations have expanded, resulting in possible changes in the water and carbon balances of catchments. The shift from pastures to plantations could have a significant impact on the local carbon balance with possible effects on atmospheric CO2 concentration and vegetation productivity. We present preliminary measurements from a field study comparing soil respiration in a plantation and a pasture. Adjacent catchments in Southwestern Victoria, near Gatum, were used as study areas; the prominent difference between the two catchments is the land use, with one catchment being used as a pasture for livestock grazing and the other catchment being mainly planted with blue gums. The variability of soil respiration in the pasture is governed by differences in soil moisture and substrate content due to local features of the topography and livestock grazing. Soil respiration measurements in the plantation were taken on mounds, access tracks, and open spaces. Most observations on mounds had higher soil respiration possibly due to root and mycorrhizal respiration. The measurements in open spaces had comparable values with mound measurements; this might be due to a less limited radiation. The soil respiration between trees had lower values, possibly because of radiation limitation due to the canopy cover. These preliminary measurements allow us to compare soil respiration variability across catchments with different land uses. This is important to estimate CO2 fluxes from soil to the atmosphere in large areas and will be valuable in estimating gross primary production from measurements of net ecosystem exchange.

  20. Temporal changes of soil respiration under different tree species.

    PubMed

    Akburak, Serdar; Makineci, Ender

    2013-04-01

    Soil respiration rates were measured monthly (from April 2007 to March 2008) under four adjacent coniferous plantation sites [Oriental spruce (Picea orientalis L.), Austrian pine (Pinus nigra Arnold), Turkish fir (Abies bornmulleriana L.), and Scots pine (Pinus sylvestris L.)] and adjacent natural Sessile oak forest (Quercus petraea L.) in Belgrad Forest-Istanbul/Turkey. Also, soil moisture, soil temperature, and fine root biomass were determined to identify the underlying environmental variables among sites which are most likely causing differences in soil respiration. Mean annual soil moisture was determined to be between 6.3 % and 8.1 %, and mean annual temperature ranged from 13.0°C to 14.2°C under all species. Mean annual fine root biomass changed between 368.09 g/m(2) and 883.71 g/m(2) indicating significant differences among species. Except May 2007, monthly soil respiration rates show significantly difference among species. However, focusing on tree species, differences of mean annual respiration rates did not differ significantly. Mean annual soil respiration ranged from 0.56 to 1.09 g C/m(2)/day. The highest rates of soil respiration reached on autumn months and the lowest rates were determined on summer season. Soil temperature, soil moisture, and fine root biomass explain mean annual soil respiration rates at the highest under Austrian pine (R (2) = 0.562) and the lowest (R (2) = 0.223) under Turkish fir. PMID:22828980

  1. Seasonality of temperate forest photosynthesis and daytime respiration

    NASA Astrophysics Data System (ADS)

    Wehr, R.; Munger, J. W.; McManus, J. B.; Nelson, D. D.; Zahniser, M. S.; Davidson, E. A.; Wofsy, S. C.; Saleska, S. R.

    2016-06-01

    Terrestrial ecosystems currently offset one-quarter of anthropogenic carbon dioxide (CO2) emissions because of a slight imbalance between global terrestrial photosynthesis and respiration. Understanding what controls these two biological fluxes is therefore crucial to predicting climate change. Yet there is no way of directly measuring the photosynthesis or daytime respiration of a whole ecosystem of interacting organisms; instead, these fluxes are generally inferred from measurements of net ecosystem–atmosphere CO2 exchange (NEE), in a way that is based on assumed ecosystem-scale responses to the environment. The consequent view of temperate deciduous forests (an important CO2 sink) is that, first, ecosystem respiration is greater during the day than at night; and second, ecosystem photosynthetic light-use efficiency peaks after leaf expansion in spring and then declines, presumably because of leaf ageing or water stress. This view has underlain the development of terrestrial biosphere models used in climate prediction and of remote sensing indices of global biosphere productivity. Here, we use new isotopic instrumentation to determine ecosystem photosynthesis and daytime respiration in a temperate deciduous forest over a three-year period. We find that ecosystem respiration is lower during the day than at night—the first robust evidence of the inhibition of leaf respiration by light at the ecosystem scale. Because they do not capture this effect, standard approaches overestimate ecosystem photosynthesis and daytime respiration in the first half of the growing season at our site, and inaccurately portray ecosystem photosynthetic light-use efficiency. These findings revise our understanding of forest–atmosphere carbon exchange, and provide a basis for investigating how leaf-level physiological dynamics manifest at the canopy scale in other ecosystems.

  2. Seasonality of temperate forest photosynthesis and daytime respiration.

    PubMed

    Wehr, R; Munger, J W; McManus, J B; Nelson, D D; Zahniser, M S; Davidson, E A; Wofsy, S C; Saleska, S R

    2016-06-30

    Terrestrial ecosystems currently offset one-quarter of anthropogenic carbon dioxide (CO2) emissions because of a slight imbalance between global terrestrial photosynthesis and respiration. Understanding what controls these two biological fluxes is therefore crucial to predicting climate change. Yet there is no way of directly measuring the photosynthesis or daytime respiration of a whole ecosystem of interacting organisms; instead, these fluxes are generally inferred from measurements of net ecosystem-atmosphere CO2 exchange (NEE), in a way that is based on assumed ecosystem-scale responses to the environment. The consequent view of temperate deciduous forests (an important CO2 sink) is that, first, ecosystem respiration is greater during the day than at night; and second, ecosystem photosynthetic light-use efficiency peaks after leaf expansion in spring and then declines, presumably because of leaf ageing or water stress. This view has underlain the development of terrestrial biosphere models used in climate prediction and of remote sensing indices of global biosphere productivity. Here, we use new isotopic instrumentation to determine ecosystem photosynthesis and daytime respiration in a temperate deciduous forest over a three-year period. We find that ecosystem respiration is lower during the day than at night-the first robust evidence of the inhibition of leaf respiration by light at the ecosystem scale. Because they do not capture this effect, standard approaches overestimate ecosystem photosynthesis and daytime respiration in the first half of the growing season at our site, and inaccurately portray ecosystem photosynthetic light-use efficiency. These findings revise our understanding of forest-atmosphere carbon exchange, and provide a basis for investigating how leaf-level physiological dynamics manifest at the canopy scale in other ecosystems. PMID:27357794

  3. Mechanism and Consequences of Anaerobic Respiration of Cobalt by Shewanella oneidensis Strain MR-1 ▿

    PubMed Central

    Hau, Heidi H.; Gilbert, Alan; Coursolle, Dan; Gralnick, Jeffrey A.

    2008-01-01

    Bacteria from the genus Shewanella are the most diverse respiratory organisms studied to date and can utilize a variety of metals and metal(loid)s as terminal electron acceptors. These bacteria can potentially be used in bioremediation applications since the redox state of metals often influences both solubility and toxicity. Understanding molecular mechanisms by which metal transformations occur and the consequences of by-products that may be toxic to the organism and thus inhibitory to the overall process is significant to future applications for bioremediation. Here, we examine the ability of Shewanella oneidensis to catalyze the reduction of chelated cobalt. We describe an unexpected ramification of [Co(III)-EDTA]− reduction by S. oneidensis: the formation of a toxic by-product. We found that [Co(II)-EDTA]2−, the product of [Co(III)-EDTA]− respiration, inhibited the growth of S. oneidensis strain MR-1 and that this toxicity was partially abolished by the addition of MgSO4. We demonstrate that [Co(III)-EDTA]− reduction by S. oneidensis requires the Mtr extracellular respiratory pathway and associated pathways required to develop functional Mtr enzymes (the c-type cytochrome maturation pathway) and ensure proper localization (type II secretion). The Mtr pathway is known to be required for a variety of substrates, including some chelated and insoluble metals and organic compounds. Understanding the full substrate range for the Mtr pathway is crucial for developing S. oneidensis strains as a tool for bioremediation. PMID:18836009

  4. Pyrogenic effect of respirable road dust particles

    NASA Astrophysics Data System (ADS)

    Jayawardena, Umesh; Tollemark, Linda; Tagesson, Christer; Leanderson, Per

    2009-02-01

    Because pyrogenic (fever-inducing) compounds on ambient particles may play an important role for particle toxicity, simple methods to measure pyrogens on particles are needed. Here we have used a modified in vitro pyrogen test (IPT) to study the release of interleukin 1β (IL-1β) in whole human blood exposed to respirable road-dust particles (RRDP). Road dusts were collected from the roadside at six different streets in three Swedish cities and particles with a diameter less than 10 μm (RRDP) were prepared by a water sedimentation procedure followed by lyophilisation. RRDP (200 μl of 1 - 106 ng/ml) were mixed with 50 μl whole blood and incubated at 37 °C overnight before IL-1β was analysed with chemiluminescence ELISA in 384-well plates. Endotoxin (lipopolysaccharide from Salmonella minnesota), zymosan B and Curdlan (P-1,3-glucan) were used as positive controls. All RRDP samples had a pyrogenic effect and the most active sample produced 1.6 times more IL-1β than the least active. This formation was of the same magnitude as in samples with 10 ng LPS/ml and was larger than that evoked by zymosan B and Curdlan (by mass basis). The method was sensitive enough to determine formation of IL-1β in mixtures with 10 ng RRDP/ml or 0.01 ng LPS/ml. The endotoxin inhibitor, polymyxin B (10 μg/ml), strongly reduced the RRDP-induced formation of IL-1β at 1μg RRDP/ml (around 80 % inhibition), but had only marginal or no effects at higher RRDP-concentrations (10 and 100 μg /ml). In summary, all RRDP tested had a clear pyrogen effect in this in vitro model. Endotoxin on the particles but also other factors contributed to the pyrogenic effect. As opposed to the limulus amebocyte lysate (LAL) assay (which measures endotoxin alone), IPT measures a broad range of pyrogens that may be present on particulate matter. The IPT method thus affords a simple, sensitive and quantitative determination of the total pyrogenic potential of ambient particles.

  5. Cytochemical Differences in Bacterial Glycocalyx

    NASA Astrophysics Data System (ADS)

    Krautgartner, Wolf Dietrich; Vitkov, Ljubomir; Hannig, Matthias; Pelz, Klaus; Stoiber, Walter

    2005-02-01

    To examine new cytochemical aspects of the bacterial adhesion, a strain 41452/01 of the oral commensal Streptococcus sanguis and a wild strain of Staphylococcus aureus were grown with and without sucrose supplementation for 6 days. Osmiumtetraoxyde (OsO4), uranyl acetate (UA), ruthenium red (RR), cupromeronic blue (CB) staining with critical electrolytic concentrations (CECs), and the tannic acid-metal salt technique (TAMST) were applied for electron microscopy. Cytochemically, only RR-positive fimbriae in S. sanguis were visualized. By contrast, some types of fimbriae staining were observed in S. aureus glycocalyx: RR-positive, OsO4-positive, tannophilic and CB-positive with ceasing point at 0.3 M MgCl2. The CB staining with CEC, used for the first time for visualization of glycoproteins of bacterial glycocalyx, also reveals intacellular CB-positive substances-probably the monomeric molecules, that is, subunits forming the fimbriae via extracellular assembly. Thus, glycosylated components of the biofilm matrix can be reliably related to single cells. The visualization of intracellular components by CB with CEC enables clear distinction between S. aureus and other bacteria, which do not produce CB-positive substances. The small quantities of tannophilic substances found in S. aureus makes the use of TAMST for the same purpose difficult. The present work protocol enables, for the first time, a partial cytochemical differentiation of the bacterial glycocalyx.

  6. Automatic respiration tracking for radiotherapy using optical 3D camera

    NASA Astrophysics Data System (ADS)

    Li, Tuotuo; Geng, Jason; Li, Shidong

    2013-03-01

    Rapid optical three-dimensional (O3D) imaging systems provide accurate digitized 3D surface data in real-time, with no patient contact nor radiation. The accurate 3D surface images offer crucial information in image-guided radiation therapy (IGRT) treatments for accurate patient repositioning and respiration management. However, applications of O3D imaging techniques to image-guided radiotherapy have been clinically challenged by body deformation, pathological and anatomical variations among individual patients, extremely high dimensionality of the 3D surface data, and irregular respiration motion. In existing clinical radiation therapy (RT) procedures target displacements are caused by (1) inter-fractional anatomy changes due to weight, swell, food/water intake; (2) intra-fractional variations from anatomy changes within any treatment session due to voluntary/involuntary physiologic processes (e.g. respiration, muscle relaxation); (3) patient setup misalignment in daily reposition due to user errors; and (4) changes of marker or positioning device, etc. Presently, viable solution is lacking for in-vivo tracking of target motion and anatomy changes during the beam-on time without exposing patient with additional ionized radiation or high magnet field. Current O3D-guided radiotherapy systems relay on selected points or areas in the 3D surface to track surface motion. The configuration of the marks or areas may change with time that makes it inconsistent in quantifying and interpreting the respiration patterns. To meet the challenge of performing real-time respiration tracking using O3D imaging technology in IGRT, we propose a new approach to automatic respiration motion analysis based on linear dimensionality reduction technique based on PCA (principle component analysis). Optical 3D image sequence is decomposed with principle component analysis into a limited number of independent (orthogonal) motion patterns (a low dimension eigen-space span by eigen-vectors). New

  7. Respirable Silica Dust Suppression During Artificial Stone Countertop Cutting

    PubMed Central

    Cooper, Jared H.; Johnson, David L.; Phillips, Margaret L.

    2015-01-01

    Purpose: To assess the relative efficacy of three types of controls in reducing respirable silica exposure during artificial stone countertop cutting with a handheld circular saw. Approach: A handheld worm drive circular saw equipped with a diamond segmented blade was fitted with water supply to wet the blade as is typical. The normal wetted-blade condition was compared to (i) wetted-blade plus ‘water curtain’ spray and (ii) wetted-blade plus local exhaust ventilation (LEV). Four replicate 30-min trials of 6-mm deep, 3-mm wide cuts in artificial quartz countertop stone were conducted at each condition in a 24-m3 unventilated tent. One dry cutting trial was also conducted for comparison. Respirable cyclone breathing zone samples were collected on the saw operator and analyzed gravimetrically for respirable mass and by X-ray diffraction for respirable quartz mass. Results: Mean quartz content of the respirable dust was 58.5%. The ranges of 30-min mass and quartz task concentrations in mg m−3 were as follows—wet blade alone: 3.54–7.51 and 1.87–4.85; wet blade + curtain: 1.81–5.97 and 0.92–3.41; and wet blade + LEV: 0.20–0.69 and <0.12–0.20. Dry cutting task concentrations were 69.6mg m−3 mass and 44.6mg m−3 quartz. There was a statistically significant difference (α = 0.05) between the wet blade + LEV and wet blade only conditions, but not between the wet blade + curtain and wet blade only conditions, for both respirable dust and respirable silica. Conclusions: Sawing with a wetted blade plus LEV reduced mean respirable dust and quartz task exposures by a factor of 10 compared to the wet blade only condition. We were unable to show a statistically significant benefit of a water curtain in the ejection path, but the data suggested some respirable dust suppression. PMID:25326187

  8. Exposure to inhalable, respirable, and ultrafine particles in welding fume.

    PubMed

    Lehnert, Martin; Pesch, Beate; Lotz, Anne; Pelzer, Johannes; Kendzia, Benjamin; Gawrych, Katarzyna; Heinze, Evelyn; Van Gelder, Rainer; Punkenburg, Ewald; Weiss, Tobias; Mattenklott, Markus; Hahn, Jens-Uwe; Möhlmann, Carsten; Berges, Markus; Hartwig, Andrea; Brüning, Thomas

    2012-07-01

    This investigation aims to explore determinants of exposure to particle size-specific welding fume. Area sampling of ultrafine particles (UFP) was performed at 33 worksites in parallel with the collection of respirable particles. Personal sampling of respirable and inhalable particles was carried out in the breathing zone of 241 welders. Median mass concentrations were 2.48 mg m(-3) for inhalable and 1.29 mg m(-3) for respirable particles when excluding 26 users of powered air-purifying respirators (PAPRs). Mass concentrations were highest when flux-cored arc welding (FCAW) with gas was applied (median of inhalable particles: 11.6 mg m(-3)). Measurements of particles were frequently below the limit of detection (LOD), especially inside PAPRs or during tungsten inert gas welding (TIG). However, TIG generated a high number of small particles, including UFP. We imputed measurements respirable or inhalable fraction of the welding fume (expressed as their mass) remains challenging. PMID:22539559

  9. Soil and sediment bacteria capable of aerobic nitrate respiration.

    PubMed Central

    Carter, J P; Hsaio, Y H; Spiro, S; Richardson, D J

    1995-01-01

    Several laboratory strains of gram-negative bacteria are known to be able to respire nitrate in the presence of oxygen, although the physiological advantage gained from this process is not entirely clear. The contribution that aerobic nitrate respiration makes to the environmental nitrogen cycle has not been studied. As a first step in addressing this question, a strategy which allows for the isolation of organisms capable of reducing nitrate to nitrite following aerobic growth has been developed. Twenty-nine such strains have been isolated from three soils and a freshwater sediment and shown to comprise members of three genera (Pseudomonas, Aeromonas, and Moraxella). All of these strains expressed a nitrate reductase with an active site located in the periplasmic compartment. Twenty-two of the strains showed significant rates of nitrate respiration in the presence of oxygen when assayed with physiological electron donors. Also isolated was one member of the gram-positive genus Arthrobacter, which was likewise able to respire nitrate in the presence of oxygen but appeared to express a different type of nitrate reductase. In the four environments studied, culturable bacteria capable of aerobic nitrate respiration were isolated in significant numbers (10(4) to 10(7) per g of soil or sediment) and in three cases were as abundant as, or more abundant than, culturable bacteria capable of denitrification. Thus, it seems likely that the corespiration of nitrate and oxygen may indeed make a significant contribution to the flux of nitrate to nitrite in the environment. PMID:7487017

  10. Partitioning Autotrophic and Heterotrophic Respiration at Howland Forest

    NASA Astrophysics Data System (ADS)

    Carbone, M. S.; Hollinger, D. Y.; Davidson, E. A.; Hughes, H.; Savage, K. E.

    2014-12-01

    Terrestrial ecosystem respiration is the combined flux of CO2 to the atmosphere from above- and below-ground, plant (autotrophic) and microbial (heterotrophic) sources. Flux measurements alone (e.g., from eddy covariance towers or soil chambers) cannot distinguish the contributions from these sources, which may change seasonally and respond differently to temperature and moisture. The development of improved process-based models that can predict how plants and microbes respond to changing environmental conditions (on seasonal, interannual, or decadal timescales) requires data from field experiments to distinguish among these respiration sources. We tested the viability of partitioning of soil and ecosystem respiration into autotrophic and heterotrophic components with different approaches at the Howland Forest in central Maine, USA. These include an experimental manipulation using the classic root trenching approach, combined with continuous measurements of d13CO2 as well as targeted ∆14CO2 measurements. For the isotopic measurements, we used a two-end member isotope mass balance approach to determine the fraction of soil respiration from autotrophic and heterotrophic sources. Results from these approaches will be compared, and together used in a model-data fusion context to better constrain the partitioning of ecosystem respiration in the ecosystem model, FöBAAR.

  11. Cannabinoid-induced changes in respiration of brain mitochondria.

    PubMed

    Fišar, Zdeněk; Singh, Namrata; Hroudová, Jana

    2014-11-18

    Cannabinoids exert various biological effects that are either receptor-mediated or independent of receptor signaling. Mitochondrial effects of cannabinoids were interpreted either as non-receptor-mediated alteration of mitochondrial membranes, or as indirect consequences of activation of plasma membrane type 1 cannabinoid receptors (CB1). Recently, CB1 receptors were confirmed to be localized to the membranes of neuronal mitochondria, where their activation directly regulates respiration and energy production. Here, we performed in-depth analysis of cannabinoid-induced changes of mitochondrial respiration using both an antagonist/inverse agonist of CB1 receptors, AM251 and the cannabinoid receptor agonists, Δ(9)-tetrahydrocannabinol (THC), cannabidiol, anandamide, and WIN 55,212-2. Relationships were determined between cannabinoid concentration and respiratory rate driven by substrates of complex I, II or IV in pig brain mitochondria. Either full or partial inhibition of respiratory rate was found for the tested drugs, with an IC50 in the micromolar range, which verified the significant role of non-receptor-mediated mechanism in inhibiting mitochondrial respiration. Effect of stepwise application of THC and AM251 evidenced protective role of AM251 and corroborated the participation of CB1 receptor activation in the inhibition of mitochondrial respiration. We proposed a model, which includes both receptor- and non-receptor-mediated mechanisms of cannabinoid action on mitochondrial respiration. This model explains both the inhibitory effect of cannabinoids and the protective effect of the CB1 receptor inverse agonist. PMID:25195527

  12. Exposure to Inhalable, Respirable, and Ultrafine Particles in Welding Fume

    PubMed Central

    Pesch, Beate

    2012-01-01

    This investigation aims to explore determinants of exposure to particle size-specific welding fume. Area sampling of ultrafine particles (UFP) was performed at 33 worksites in parallel with the collection of respirable particles. Personal sampling of respirable and inhalable particles was carried out in the breathing zone of 241 welders. Median mass concentrations were 2.48 mg m−3 for inhalable and 1.29 mg m−3 for respirable particles when excluding 26 users of powered air-purifying respirators (PAPRs). Mass concentrations were highest when flux-cored arc welding (FCAW) with gas was applied (median of inhalable particles: 11.6 mg m−3). Measurements of particles were frequently below the limit of detection (LOD), especially inside PAPRs or during tungsten inert gas welding (TIG). However, TIG generated a high number of small particles, including UFP. We imputed measurements respirable or inhalable fraction of the welding fume (expressed as their mass) remains challenging. PMID:22539559

  13. Subarctic Pacific evidence for a glacial deepening of the oceanic respired carbon pool

    NASA Astrophysics Data System (ADS)

    Jaccard, S. L.; Galbraith, E. D.; Sigman, D. M.; Haug, G. H.; Francois, R.; Pedersen, T. F.; Dulski, P.; Thierstein, H. R.

    2009-01-01

    Measurements of benthic foraminiferal cadmium:calcium (Cd/Ca) have indicated that the glacial-interglacial change in deep North Pacific phosphate (PO 4) concentration was minimal, which has been taken by some workers as a sign that the biological pump did not store more carbon in the deep glacial ocean. Here we present sedimentary redox-sensitive trace metal records from Ocean Drilling Program (ODP) Site 882 (NW subarctic Pacific, water depth 3244 m) to make inferences about changes in deep North Pacific oxygenation - and thus respired carbon storage - over the past 150,000 yr. These observations are complemented with biogenic barium and opal measurements as indicators for past organic carbon export to separate the influences of deep-water oxygen concentration and sedimentary organic carbon respiration on the redox state of the sediment. Our results suggest that the deep subarctic Pacific water mass was depleted in oxygen during glacial maxima, though it was not anoxic. We reconcile our results with the existing benthic foraminiferal Cd/Ca by invoking a decrease in the fraction of the deep ocean nutrient inventory that was preformed, rather than remineralized. This change would have corresponded to an increase in the deep Pacific storage of respired carbon, which would have lowered atmospheric carbon dioxide (CO 2) by sequestering CO 2 away from the atmosphere and by increasing ocean alkalinity through a transient dissolution event in the deep sea. The magnitude of change in preformed nutrients suggested by the North Pacific data would have accounted for a majority of the observed decrease in glacial atmospheric pCO 2.

  14. Anaerobic microbial remobilization of coprecipitated metals

    DOEpatents

    Francis, A.J.; Dodge, C.J.

    1994-10-11

    A process is provided for solubilizing coprecipitated metals. Metals in waste streams are concentrated by treatment with an iron oxide coprecipitating agent. The coprecipitated metals are solubilized by contacting the coprecipitate with a bacterial culture of a Clostridium species ATCC 53464. The remobilized metals can then be recovered and recycled. 4 figs.

  15. Anaerobic microbial remobilization of coprecipitated metals

    DOEpatents

    Francis, Arokiasamy J.; Dodge, Cleveland J.

    1994-10-11

    A process is provided for solubilizing coprecipitated metals. Metals in wastestreams are concentrated by treatment with an iron oxide coprecipitating agent. The coprecipitated metals are solubilized by contacting the coprecipitate with a bacterial culture of a Clostridium species ATCC 53464. The remobilized metals can then be recovered and recycled.

  16. Sulfur minimization in bacterial leaching

    SciTech Connect

    Seth, R.; Prasad, D.; Henry, J.G.

    1996-11-01

    The production of sewage biosolids in Ontario in 1989 was estimated to be 7 million m{sup 3} of wet sludge per year. Of this amount, land application accounts for between 20 and 30% of the total. Unfortunately, the use of sewage biosolids on agricultural land is often prohibited because of heavy metal contamination of the biosolids. High cost and operational problems have made chemical methods of metal extraction unattractive. Consequently, microbiological methods of leaching of heavy metals have been studied for over a decade. A relatively simple microbiological process has been investigated in recent years in flask level experiments and recently in a semicontinuous system. The process exploits nonacidophilic and acidophilic indigenous thiobacilli to extract heavy metals from sewage biosolids. These thiobacilli use elemental sulfur as the energy source, producing sulfuric acid. However, the resulting decontaminated biosolids can cause environmental problems like acidification of the soil, when acid is generated from the residual sulfur in the biosolids. The present study examines the possibility of reducing the amount of sulfur added in batch and semicontinuous bacterial leaching systems, and maximizing sulfur oxidation efficiency, thereby reducing the residual sulfur in leached biosolids.

  17. Estimating Daytime Ecosystem Respiration to Improve Estimates of Gross Primary Production of a Temperate Forest

    PubMed Central

    Sun, Jinwei; Wu, Jiabing; Guan, Dexin; Yao, Fuqi; Yuan, Fenghui; Wang, Anzhi; Jin, Changjie

    2014-01-01

    Leaf respiration is an important component of carbon exchange in terrestrial ecosystems, and estimates of leaf respiration directly affect the accuracy of ecosystem carbon budgets. Leaf respiration is inhibited by light; therefore, gross primary production (GPP) will be overestimated if the reduction in leaf respiration by light is ignored. However, few studies have quantified GPP overestimation with respect to the degree of light inhibition in forest ecosystems. To determine the effect of light inhibition of leaf respiration on GPP estimation, we assessed the variation in leaf respiration of seedlings of the dominant tree species in an old mixed temperate forest with different photosynthetically active radiation levels using the Laisk method. Canopy respiration was estimated by combining the effect of light inhibition on leaf respiration of these species with within-canopy radiation. Leaf respiration decreased exponentially with an increase in light intensity. Canopy respiration and GPP were overestimated by approximately 20.4% and 4.6%, respectively, when leaf respiration reduction in light was ignored compared with the values obtained when light inhibition of leaf respiration was considered. This study indicates that accurate estimates of daytime ecosystem respiration are needed for the accurate evaluation of carbon budgets in temperate forests. In addition, this study provides a valuable approach to accurately estimate GPP by considering leaf respiration reduction in light in other ecosystems. PMID:25419844

  18. Facial bacterial infections: folliculitis.

    PubMed

    Laureano, Ana Cristina; Schwartz, Robert A; Cohen, Philip J

    2014-01-01

    Facial bacterial infections are most commonly caused by infections of the hair follicles. Wherever pilosebaceous units are found folliculitis can occur, with the most frequent bacterial culprit being Staphylococcus aureus. We review different origins of facial folliculitis, distinguishing bacterial forms from other infectious and non-infectious mimickers. We distinguish folliculitis from pseudofolliculitis and perifolliculitis. Clinical features, etiology, pathology, and management options are also discussed. PMID:25441463

  19. Evaluation of Respirable Crystalline Silica in High School Ceramics Classrooms

    PubMed Central

    Fechser, Matthew; Alaves, Victor; Larson, Rodney; Sleeth, Darrah

    2014-01-01

    Air concentrations of respirable crystalline silica were measured in eleven (11) high school ceramics classrooms located in Salt Lake County, UT, USA. Respirable dust was collected on PVC filters using precision flow pumps and cyclone samplers (n = 44). Filters were subsequently analyzed for respirable dust and percent crystalline silica content. The geometric mean of the silica concentrations was 0.009 mg/m3 near the teacher’s work station and 0.008 mg/m3 near the kilns. The number of students in the classroom was correlated to the silica concentration in the ceramics classroom, but no correlation was found between the silica concentrations and either the size of the classroom or the age of the building. Results from this study indicate that ceramics teachers may be at an increased risk of exposure to crystalline silica based on the ACGIH TLV of 0.025 mg/m3, with an exceedance of 21%. PMID:24464235

  20. Indoor-outdoor relationships of respirable sulfates and particles

    NASA Astrophysics Data System (ADS)

    Dockery, Douglas W.; Spengler, John D.

    Indoor and outdoor concentrations of respirable particulates and sulfates have been measured in 68 homes in six cities for at least 1 yr. A conservation of mass model was derived describing indoor concentrations in terms of outdoor concentrations, infiltration and indoor sources. The measured data were analysed to identify important building characteristics and to quantify their effect. The mean infiltration rate of outdoor fine particulates was found to be approximately 70%. Cigarette smoking was found to be the dominant indoor source of respirable particulates. Increased indoor concentrations of sulfates were found to be associated with smoking and also with gas stoves. The effect of full air conditioning of the building was to reduce infiltration of outdoor fine particulates by about one half, while preventing dilution and purging of internally generated pollutants. The model for indoor respirable particulate and sulfate levels was found to compare well with measurements.

  1. The Path of Carbon in Photosynthesis VII. Respiration and Photosynthesis

    DOE R&D Accomplishments Database

    Benson, A. A.; Calvin, M.

    1949-07-21

    The relationship of respiration to photosynthesis in barley seedling leaves and the algae, Chlorella and Scenedesmus, has been investigated using radioactive carbon dioxide and the techniques of paper chromatography and radioautography. The plants are allowed to photosynthesize normally for thirty seconds in c{sup 14}O{sub 2} after which they are allowed to respire in air or helium in the light or dark. Respiration of photosynthetic intermediates as evidenced by the appearance of labeled glutomic, isocitric, fumaric and succinic acids is slower in the light than in the dark. Labeled glycolic acid is observed in barley and algae. It disappears rapidly in the dark and is maintained and increased in quantity in the light in C0{sub 2}-free air.

  2. Energy transduction by anaerobic ferric iron respiration in Thiobacillus ferrooxidans

    SciTech Connect

    Pronk, J.T.; Liem, K.; Bos, P.; Kuenen, J.G. )

    1991-07-01

    Formate-grown cells of the obligately chemolithoautotrophic acidophile Thiobacillus ferrooxidans were capable of formate- and elemental sulfur-dependent reduction of ferric iron under anaerovic conditions. Under aerobic conditions, both oxygen and ferric iron could be simultaneously used as electron acceptors. To investigate whether anaerobic ferric iron respiration by T. ferrooxidans is an energy-transducing process, uptake of amino acids was studied. Glycine uptake by starved cells did not occur in the absence of an electron donor, neither under aerobic conditions nor under anaerobic conditions. Uptake of glycine could be driven by formate- and ferrous iron-dependent oxygen uptake. Under anaerobic conditions, ferric iron respiration with the electron donors formate and elemental sulfur could energize glycine uptake. Glycine uptake was inhibited by the uncoupler 2,4-dinitrophenol. The results indicate that anaerobic ferric iron respiration can contribute to the energy budget of T. ferrooxidans.

  3. Plutonium hazard in respirable dust on the surface of soil.

    PubMed

    Johnson, C J; Tidball, R R; Severson, R C

    1976-08-01

    Plutonium-239 in the fine particulate soil fraction of surface dust is subject to suspension by air currents and is a potential health hazard to humans who may inhale it. This respirable particulate fraction is defined as particles less than or equal to 5 micrometers. The respirable fraction of surface dust was separated by ultrasonic dispersion and a standard water-sedimentation procedure. Plutonium concentration in this fraction of off-site soils located downwind from the Rocky Flats Nuclear Weapons Plant (Jefferson County, Colorado) were as much as 380 times the background concentration. It is prposed that this method of evaluation defines more precisely the potential health hazard from the respirable fraction of plutonium-contaminated soils. PMID:941018

  4. Evaluation of respirable crystalline silica in high school ceramics classrooms.

    PubMed

    Fechser, Matthew; Alaves, Victor; Larson, Rodney; Sleeth, Darrah

    2014-02-01

    Air concentrations of respirable crystalline silica were measured in eleven (11) high school ceramics classrooms located in Salt Lake County, UT, USA. Respirable dust was collected on PVC filters using precision flow pumps and cyclone samplers (n = 44). Filters were subsequently analyzed for respirable dust and percent crystalline silica content. The geometric mean of the silica concentrations was 0.009 mg/m3 near the teacher's work station and 0.008 mg/m3 near the kilns. The number of students in the classroom was correlated to the silica concentration in the ceramics classroom, but no correlation was found between the silica concentrations and either the size of the classroom or the age of the building. Results from this study indicate that ceramics teachers may be at an increased risk of exposure to crystalline silica based on the ACGIH TLV of 0.025 mg/m3, with an excess of 21%. PMID:24464235

  5. Determination of critical anthropometric parameters for design of respirators

    SciTech Connect

    You-Hin Liau

    1982-12-01

    Anthropometric data were collected from 243 workers in a respirator fit-test programme, and an attempt was made to determine a correlation between these data and the Protection Factor obtained from quantitative fit-testing for half-mask respirators. Data were collected for two direct and five indirect facial measurements from front- and side-view slides of test subjects. For analysis, the data were normalized with relevant respirators dimensions (4 brands and 10 sizes). Results of linear regression analysis indicated that correlation coefficients between Protection Factor and anthropometric data (face length, mouth width, face width, nasal root breadth) were, respectively, 0.04, 0.22, 0.30 and 0.04. These correlation coefficients are for white males without facial hair. The analysis showed the 'critical' parameters to be mouth width and face width; however, a person with certain combinations of anthropometric parameters may provide a better correlation with Protection Factor.

  6. Demonstrating Bacterial Flagella.

    ERIC Educational Resources Information Center

    Porter, John R.; And Others

    1992-01-01

    Describes an effective laboratory method for demonstrating bacterial flagella that utilizes the Proteus mirabilis organism and a special harvesting technique. Includes safety considerations for the laboratory exercise. (MDH)

  7. Effects of respirators under heat/work conditions

    SciTech Connect

    James, R.; Dukes-Dobos, F.; Smith, R.

    1984-06-01

    Physiological responses and perceived strain of five unacclimatized male subjects were studied. The subjects were exposed to heat during an exercise task and were evaluated while wearing half and full facepiece, cartridge-type, air-purifying respirators, and without a respirator. The exercise consisted of walking on a treadmill for a period of 1 hour in a controlled environmental chamber at each of two different energy expenditure levels (200 and 400 kcal/hr)(approx. = 58 and 116 Watts) and two different heat exposures (air temperatures of 25/sup 0/C and 43.3./sup 0/C). The results indicated that wearing a full facepiece respirator imposed significant physiological strain added to that caused by the heat and workloads used in the study. Five of the six physiological measures show this increased physiological strain: (1) heart rate; (2) minute ventilation; (3) oxygen consumption; (4) energy expenditure; and (5) oral temperature. There was no detectable effect on sweat rate. Although subjective ratings indicated more discomfort with increasing physiological strain, the observed correlations between such measures were low (T/sub b/ < .60). The net consequence of the significant effects indicates that workers' tolerance to moderate or high levels of work under hot conditions while wearing a respirator is reduced. The reduction is more pronounced when wearing a full mask than when wearing a half mask. Changes in respirator design which minimize respiratory dead space are suggested to alleviate this problem. Otherwise, prevention of excessive physiological strain from respirator use when working at moderate or higher levels at hot job sites could necessitate more rest breaks or limiting work time under such conditions.

  8. Evaluation of Five Decontamination Methods for Filtering Facepiece Respirators

    PubMed Central

    Bergman, Michael S.; Eimer, Benjamin C.; Shaffer, Ronald E.

    2009-01-01

    Concerns have been raised regarding the availability of National Institute for Occupational Safety and Health (NIOSH)-certified N95 filtering facepiece respirators (FFRs) during an influenza pandemic. One possible strategy to mitigate a respirator shortage is to reuse FFRs following a biological decontamination process to render infectious material on the FFR inactive. However, little data exist on the effects of decontamination methods on respirator integrity and performance. This study evaluated five decontamination methods [ultraviolet germicidal irradiation (UVGI), ethylene oxide, vaporized hydrogen peroxide (VHP), microwave oven irradiation, and bleach] using nine models of NIOSH-certified respirators (three models each of N95 FFRs, surgical N95 respirators, and P100 FFRs) to determine which methods should be considered for future research studies. Following treatment by each decontamination method, the FFRs were evaluated for changes in physical appearance, odor, and laboratory performance (filter aerosol penetration and filter airflow resistance). Additional experiments (dry heat laboratory oven exposures, off-gassing, and FFR hydrophobicity) were subsequently conducted to better understand material properties and possible health risks to the respirator user following decontamination. However, this study did not assess the efficiency of the decontamination methods to inactivate viable microorganisms. Microwave oven irradiation melted samples from two FFR models. The remainder of the FFR samples that had been decontaminated had expected levels of filter aerosol penetration and filter airflow resistance. The scent of bleach remained noticeable following overnight drying and low levels of chlorine gas were found to off-gas from bleach-decontaminated FFRs when rehydrated with deionized water. UVGI, ethylene oxide (EtO), and VHP were found to be the most promising decontamination methods; however, concerns remain about the throughput capabilities for EtO and VHP

  9. Bioirrigation impacts on sediment respiration and microbial metabolic activity

    NASA Astrophysics Data System (ADS)

    Baranov, V. A.; Lewandowski, J.; Romeijn, P.; Krause, S.

    2015-12-01

    Some bioturbators build tubes in the sediment and pump water through their burrows (ventilation). Oxygen is transferred through the burrow walls in the adjacent sediment (bioirrigation). Bioirrigation is playing a pivotal role in the mediation of biogeochemical processes in lake sediments and has the potential to enhance nutrient cycling. The present study investigates the impact of bioirrigation on lake sediment metabolism, respiration rates and in particular, the biogeochemical impacts of bioirrigation intensity as a function of organism density. We therefore apply the bioreactive Resazurin/Resorufin smart tracer system for quantifying the impact of different densities of Chironomidae (Diptera) larvae (0-2112 larvae/m2) on lake sediment respiration in a microcosm experiment. Tracer decay has been found to be proportional to the amount of the aerobic respiration at the sediment-water interface. Tracer transformation was in good agreement with Chironomidae density (correlation, r=0.9). Tracer transformation rates (and sediment respiration) were found to be correlated to Chironomidae density, with highest transformation rates observed in the microcosms with highest density of 2112 larvae/m2. This relationship was not linear though, with sediment respiration rates at the highest larvae densities declining from the linear trend predicted from lower and intermediate larvae density-respiration relationships. We interpret this effect as a density dependent suppression of the Chironomid's metabolic activity. The observations of this study have implications for eutrophied lakes with high densities of bioirrigators. Despite high density of bioirrigirrigating benthos, mineralization of the organic matter in such habitats would likely be lower than in lakes with intermediate densities of the bioturbators.

  10. Effects of Pulsed Currents on Respiration and the Heart

    PubMed Central

    Lee, W. R.; Zoledziowski, S.; Temiyachol, S

    1967-01-01

    The effects on the respiratory and circulatory systems of rabbits of pulsed currents from two sources have been studied. The sources were an industrial high voltage test-set (source A) and an automobile ignition system (source B). When the fore-limb to fore-limb pathway was used, source A produced complete arrest of respiration at the highest output voltage, 5kV (corresponding to a current of 392 mA), and at a pulse repetition rate of 30 per second. Progressive reduction of either of these factors resulted in progressively less interference with respiration. With the fore-limb to hind-limb pathway complete arrest of respiration occurred at an output voltage of 2 kV (corresponding to a current of 140 mA) and at a pulse repetition rate of 30 per second. Again progressive reduction of either current or pulse repetition rate resulted in progressively less interference with respiration, although at 30 per second even with the lowest voltage setting (1 kV; 64 mA) only diaphragmatic respiration occurred. Source B used on either pathway up to a pulse repetition rate of 16 per second did not cause complete arrest of respiration whether the current was taken straight from the ignition coil or off the distributor. Neither source caused ventricular fibrillation either when delivering pulses at a preset rate or when the pulses were timed to coincide with successive T waves of the E.C.G. In these experiments the trains of pulses falling on the T waves lasted about 10 seconds. With both sources the current and voltage waveforms were similar and in phase. With source A increase in current was directly related to increase in applied voltage. These findings suggest that under these experimental conditions, with minimum contact resistance, the animal impedance is resistive with no significant reactance. Images PMID:6028717

  11. 30 CFR 90.301 - Respirable dust control plan; approval by District Manager; copy to part 90 miner.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Respirable dust control plan; approval by... EVIDENCE OF THE DEVELOPMENT OF PNEUMOCONIOSIS Respirable Dust Control Plans § 90.301 Respirable dust... respirable dust control plans on a mine-by-mine basis. When approving respirable dust control plans,...

  12. The nature of respiration noise and its multifractal properties

    NASA Astrophysics Data System (ADS)

    Vovk, I. V.; Grinchenko, V. T.; Matsypura, V. T.

    2013-09-01

    Using a conventional and original technique of recording normal human vesicular and tracheal respiration noise and their fractal analysis, it has been established that noise has a multifractal character and the nature of the occurrence of vesicular and tracheal noise is different. It is been demonstrated that vesicular noise occurs as a result of expansion-contraction deformation of the lung parenchyma during act of respiration, and tracheal noise, as is known, occurs due to pressure pulsations on the internal surface of the trachea caused by nonstationary airflow in the glottal zone.

  13. Antoine Lavoisier and the study of respiration: 200 years old.

    PubMed

    Stokes, M A

    1991-03-01

    Antoine Lavoisier has been called the father of modern chemistry. From a medical point of view, he introduced the study of respiration and metabolism and so founded biochemistry. With his experiments, our knowledge of how the body works made immense strides forward. Two hundred years ago, he wrote his last authentic and untouched account of his views on respiration, in a letter to Joseph Black in Edinburgh. This opportunity has been taken to briefly review this work and the life of a man who did much to improve our understanding of ourselves. PMID:2003841

  14. Using nonlocal means to separate cardiac and respiration sounds

    NASA Astrophysics Data System (ADS)

    Rudnitskii, A. G.

    2014-11-01

    The paper presents the results of applying nonlocal means (NLMs) approach in the problem of separating respiration and cardiac sounds in a signal recorded on a human chest wall. The performance of the algorithm was tested both by simulated and real signals. As a quantitative efficiency measure of NLM filtration, the angle of divergence between isolated and reference signal was used. It is shown that for a wide range of signal-to-noise ratios, the algorithm makes it possible to efficiently solve this problem of separating cardiac and respiration sounds in the sum signal recorded on a human chest wall.

  15. Changes in rhizosphere bacterial gene expression following glyphosate treatment.

    PubMed

    Newman, Molli M; Lorenz, Nicola; Hoilett, Nigel; Lee, Nathan R; Dick, Richard P; Liles, Mark R; Ramsier, Cliff; Kloepper, Joseph W

    2016-05-15

    In commercial agriculture, populations and interactions of rhizosphere microflora are potentially affected by the use of specific agrichemicals, possibly by affecting gene expression in these organisms. To investigate this, we examined changes in bacterial gene expression within the rhizosphere of glyphosate-tolerant corn (Zea mays) and soybean (Glycine max) in response to long-term glyphosate (PowerMAX™, Monsanto Company, MO, USA) treatment. A long-term glyphosate application study was carried out using rhizoboxes under greenhouse conditions with soil previously having no history of glyphosate exposure. Rhizosphere soil was collected from the rhizoboxes after four growing periods. Soil microbial community composition was analyzed using microbial phospholipid fatty acid (PLFA) analysis. Total RNA was extracted from rhizosphere soil, and samples were analyzed using RNA-Seq analysis. A total of 20-28 million bacterial sequences were obtained for each sample. Transcript abundance was compared between control and glyphosate-treated samples using edgeR. Overall rhizosphere bacterial metatranscriptomes were dominated by transcripts related to RNA and carbohydrate metabolism. We identified 67 differentially expressed bacterial transcripts from the rhizosphere. Transcripts downregulated following glyphosate treatment involved carbohydrate and amino acid metabolism, and upregulated transcripts involved protein metabolism and respiration. Additionally, bacterial transcripts involving nutrients, including iron, nitrogen, phosphorus, and potassium, were also affected by long-term glyphosate application. Overall, most bacterial and all fungal PLFA biomarkers decreased after glyphosate treatment compared to the control. These results demonstrate that long-term glyphosate use can affect rhizosphere bacterial activities and potentially shift bacterial community composition favoring more glyphosate-tolerant bacteria. PMID:26901800

  16. Metal Preferences and Metallation*

    PubMed Central

    Foster, Andrew W.; Osman, Deenah; Robinson, Nigel J.

    2014-01-01

    The metal binding preferences of most metalloproteins do not match their metal requirements. Thus, metallation of an estimated 30% of metalloenzymes is aided by metal delivery systems, with ∼25% acquiring preassembled metal cofactors. The remaining ∼70% are presumed to compete for metals from buffered metal pools. Metallation is further aided by maintaining the relative concentrations of these pools as an inverse function of the stabilities of the respective metal complexes. For example, magnesium enzymes always prefer to bind zinc, and these metals dominate the metalloenzymes without metal delivery systems. Therefore, the buffered concentration of zinc is held at least a million-fold below magnesium inside most cells. PMID:25160626

  17. Resource-dependent attenuation of species interactions during bacterial succession

    PubMed Central

    Rivett, Damian W; Scheuerl, Thomas; Culbert, Christopher T; Mombrikotb, Shorok B; Johnstone, Emma; Barraclough, Timothy G; Bell, Thomas

    2016-01-01

    Bacterial communities are vital for many economically and ecologically important processes. The role of bacterial community composition in determining ecosystem functioning depends critically on interactions among bacterial taxa. Several studies have shown that, despite a predominance of negative interactions in communities, bacteria are able to display positive interactions given the appropriate evolutionary or ecological conditions. We were interested in how interspecific interactions develop over time in a naturalistic setting of low resource supply rates. We assembled aquatic bacterial communities in microcosms and assayed the productivity (respiration and growth) and substrate degradation while tracking community composition. The results demonstrated that while bacterial communities displayed strongly negative interactions during the early phase of colonisation and acclimatisation to novel biotic and abiotic factors, this antagonism declined over time towards a more neutral state. This was associated with a shift from use of labile substrates in early succession to use of recalcitrant substrates later in succession, confirming a crucial role of resource dynamics in linking interspecific interactions with ecosystem functioning. PMID:26894447

  18. Resource-dependent attenuation of species interactions during bacterial succession.

    PubMed

    Rivett, Damian W; Scheuerl, Thomas; Culbert, Christopher T; Mombrikotb, Shorok B; Johnstone, Emma; Barraclough, Timothy G; Bell, Thomas

    2016-09-01

    Bacterial communities are vital for many economically and ecologically important processes. The role of bacterial community composition in determining ecosystem functioning depends critically on interactions among bacterial taxa. Several studies have shown that, despite a predominance of negative interactions in communities, bacteria are able to display positive interactions given the appropriate evolutionary or ecological conditions. We were interested in how interspecific interactions develop over time in a naturalistic setting of low resource supply rates. We assembled aquatic bacterial communities in microcosms and assayed the productivity (respiration and growth) and substrate degradation while tracking community composition. The results demonstrated that while bacterial communities displayed strongly negative interactions during the early phase of colonisation and acclimatisation to novel biotic and abiotic factors, this antagonism declined over time towards a more neutral state. This was associated with a shift from use of labile substrates in early succession to use of recalcitrant substrates later in succession, confirming a crucial role of resource dynamics in linking interspecific interactions with ecosystem functioning. PMID:26894447

  19. Vimentin in Bacterial Infections

    PubMed Central

    Mak, Tim N.; Brüggemann, Holger

    2016-01-01

    Despite well-studied bacterial strategies to target actin to subvert the host cell cytoskeleton, thus promoting bacterial survival, replication, and dissemination, relatively little is known about the bacterial interaction with other components of the host cell cytoskeleton, including intermediate filaments (IFs). IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge about the role of IFs in bacterial infections, focusing on the type III IF protein vimentin. Recent studies have revealed the involvement of vimentin in host cell defenses, acting as ligand for several pattern recognition receptors of the innate immune system. Two main aspects of bacteria-vimentin interactions are presented in this review: the role of vimentin in pathogen-binding on the cell surface and subsequent bacterial invasion and the interaction of cytosolic vimentin and intracellular pathogens with regards to innate immune signaling. Mechanistic insight is presented involving distinct bacterial virulence factors that target vimentin to subvert its function in order to change the host cell fate in the course of a bacterial infection. PMID:27096872

  20. Bacterial Ion Channels.

    PubMed

    Compton, Emma L R; Mindell, Joseph A

    2010-09-01

    Bacterial ion channels were known, but only in special cases, such as outer membrane porins in Escherichia coli and bacterial toxins that form pores in their target (bacterial or mammalian) membranes. The exhaustive coverage provided by a decade of bacterial genome sequencing has revealed that ion channels are actually widespread in bacteria, with homologs of a broad range of mammalian channel proteins coded throughout the bacterial and archaeal kingdoms. This review discusses four groups of bacterial channels: porins, mechano-sensitive (MS) channels, channel-forming toxins, and bacterial homologs of mammalian channels. The outer membrane (OM) of gram-negative bacteria blocks access of essential nutrients; to survive, the cell needs to provide a mechanism for nutrients to penetrate the OM. Porin channels provide this access by forming large, nonspecific aqueous pores in the OM that allow ions and vital nutrients to cross it and enter the periplasm. MS channels act as emergency release valves, allowing solutes to rapidly exit the cytoplasm and to dissipate the large osmotic disparity between the internal and external environments. MS channels are remarkable in that they do this by responding to forces exerted by the membrane itself. Some bacteria produce toxic proteins that form pores in trans, attacking and killing other organisms by virtue of their pore formation. The review focuses on those bacterial toxins that kill other bacteria, specifically the class of proteins called colicins. Colicins reveal the dangers of channel formation in the plasma membrane, since they kill their targets with exactly that approach. PMID:26443789