Science.gov

Sample records for bacterial protein family

  1. New protein kinase and protein phosphatase families mediate signal transduction in bacterial catabolite repression.

    PubMed

    Galinier, A; Kravanja, M; Engelmann, R; Hengstenberg, W; Kilhoffer, M C; Deutscher, J; Haiech, J

    1998-02-17

    Carbon catabolite repression (CCR) is the prototype of a signal transduction mechanism. In enteric bacteria, cAMP was considered to be the second messenger in CCR by playing a role reminiscent of its actions in eukaryotic cells. However, recent results suggest that CCR in Escherichia coli is mediated mainly by an inducer exclusion mechanism. In many Gram-positive bacteria, CCR is triggered by fructose-1,6-bisphosphate, which activates HPr kinase, presumed to be one of the most ancient serine protein kinases. We here report cloning of the Bacillus subtilis hprK and hprP genes and characterization of the encoded HPr kinase and P-Ser-HPr phosphatase. P-Ser-HPr phosphatase forms a new family of phosphatases together with bacterial phosphoglycolate phosphatase, yeast glycerol-3-phosphatase, and 2-deoxyglucose-6-phosphate phosphatase whereas HPr kinase represents a new family of protein kinases on its own. It does not contain the domain structure typical for eukaryotic protein kinases. Although up to now the HPr modifying/demodifying enzymes were thought to exist only in Gram-positive bacteria, a sequence comparison revealed that they also are present in several Gram-negative pathogenic bacteria. PMID:9465101

  2. Defense Against Cannibalism: The SdpI Family of Bacterial Immunity/Signal Transduction Proteins

    PubMed Central

    Povolotsky, Tatyana Leonidovna; Orlova, Ekaterina; Tamang, Dorjee G.

    2010-01-01

    The SdpI family consists of putative bacterial toxin immunity and signal transduction proteins. One member of the family in Bacillus subtilis, SdpI, provides immunity to cells from cannibalism in times of nutrient limitation. SdpI family members are transmembrane proteins with 3, 4, 5, 6, 7, 8, or 12 putative transmembrane α-helical segments (TMSs). These varied topologies appear to be genuine rather than artifacts due to sequencing or annotation errors. The basic and most frequently occurring element of the SdpI family has 6 TMSs. Homologues of all topological types were aligned to determine the homologous TMSs and loop regions, and the positive-inside rule was used to determine sidedness. The two most conserved motifs were identified between TMSs 1 and 2 and TMSs 4 and 5 of the 6 TMS proteins. These showed significant sequence similarity, leading us to suggest that the primordial precursor of these proteins was a 3 TMS–encoding genetic element that underwent intragenic duplication. Various deletional and fusional events, as well as intragenic duplications and inversions, may have yielded SdpI homologues with topologies of varying numbers and positions of TMSs. We propose a specific evolutionary pathway that could have given rise to these distantly related bacterial immunity proteins. We further show that genes encoding SdpI homologues often appear in operons with genes for homologues of SdpR, SdpI’s autorepressor. Our analyses allow us to propose structure–function relationships that may be applicable to most family members. Electronic supplementary material The online version of this article (doi:10.1007/s00232-010-9260-7) contains supplementary material, which is available to authorized users. PMID:20563570

  3. Biochemical Roles for Conserved Residues in the Bacterial Fatty Acid-binding Protein Family.

    PubMed

    Broussard, Tyler C; Miller, Darcie J; Jackson, Pamela; Nourse, Amanda; White, Stephen W; Rock, Charles O

    2016-03-18

    Fatty acid kinase (Fak) is a ubiquitous Gram-positive bacterial enzyme consisting of an ATP-binding protein (FakA) that phosphorylates the fatty acid bound to FakB. In Staphylococcus aureus, Fak is a global regulator of virulence factor transcription and is essential for the activation of exogenous fatty acids for incorporation into phospholipids. The 1.2-Å x-ray structure of S. aureus FakB2, activity assays, solution studies, site-directed mutagenesis, and in vivo complementation were used to define the functions of the five conserved residues that define the FakB protein family (Pfam02645). The fatty acid tail is buried within the protein, and the exposed carboxyl group is bound by a Ser-93-fatty acid carboxyl-Thr-61-His-266 hydrogen bond network. The guanidinium of the invariant Arg-170 is positioned to potentially interact with a bound acylphosphate. The reduced thermal denaturation temperatures of the T61A, S93A, and H266A FakB2 mutants illustrate the importance of the hydrogen bond network in protein stability. The FakB2 T61A, S93A, and H266A mutants are 1000-fold less active in the Fak assay, and the R170A mutant is completely inactive. All FakB2 mutants form FakA(FakB2)2 complexes except FakB2(R202A), which is deficient in FakA binding. Allelic replacement shows that strains expressing FakB2 mutants are defective in fatty acid incorporation into phospholipids and virulence gene transcription. These conserved residues are likely to perform the same critical functions in all bacterial fatty acid-binding proteins. PMID:26774272

  4. Phylogenetic and Complementation Analysis of a Single-Stranded DNA Binding Protein Family from Lactococcal Phages Indicates a Non-Bacterial Origin

    PubMed Central

    Mariadassou, Mahendra; Bardowski, Jacek K.; Bidnenko, Elena

    2011-01-01

    Background The single-stranded-nucleic acid binding (SSB) protein superfamily includes proteins encoded by different organisms from Bacteria and their phages to Eukaryotes. SSB proteins share common structural characteristics and have been suggested to descend from an ancestor polypeptide. However, as other proteins involved in DNA replication, bacterial SSB proteins are clearly different from those found in Archaea and Eukaryotes. It was proposed that the corresponding genes in the phage genomes were transferred from the bacterial hosts. Recently new SSB proteins encoded by the virulent lactococcal bacteriophages (Orf14bIL67-like proteins) have been identified and characterized structurally and biochemically. Methodology/Principal Findings This study focused on the determination of phylogenetic relationships between Orf14bIL67-like proteins and other SSBs. We have performed a large scale phylogenetic analysis and pairwise sequence comparisons of SSB proteins from different phyla. The results show that, in remarkable contrast to other phage SSBs, the Orf14bIL67–like proteins form a distinct, self-contained and well supported phylogenetic group connected to the archaeal SSBs. Functional studies demonstrated that, despite the structural and amino acid sequence differences from bacterial SSBs, Orf14bIL67 protein complements the conditional lethal ssb-1 mutation of Escherichia coli. Conclusions/Significance Here we identified for the first time a group of phages encoded SSBs which are clearly distinct from their bacterial counterparts. All methods supported the recognition of these phage proteins as a new family within the SSB superfamily. Our findings suggest that unlike other phages, the virulent lactococcal phages carry ssb genes that were not acquired from their hosts, but transferred from an archaeal genome. This represents a unique example of a horizontal gene transfer between Archaea and bacterial phages. PMID:22073223

  5. Properties and Phylogeny of 76 Families of Bacterial and Eukaryotic Organellar Outer Membrane Pore-Forming Proteins

    PubMed Central

    Reddy, Bhaskara L.; Saier, Milton H.

    2016-01-01

    We here report statistical analyses of 76 families of integral outer membrane pore-forming proteins (OMPPs) found in bacteria and eukaryotic organelles. 47 of these families fall into one superfamily (SFI) which segregate into fifteen phylogenetic clusters. Families with members of the same protein size, topology and substrate specificities often cluster together. Virtually all OMPP families include only proteins that form transmembrane pores. Nine such families, all of which cluster together in the SFI phylogenetic tree, contain both α- and β-structures, are multi domain, multi subunit systems, and transport macromolecules. Most other SFI OMPPs transport small molecules. SFII and SFV homologues derive from Actinobacteria while SFIII and SFIV proteins derive from chloroplasts. Three families of actinobacterial OMPPs and two families of eukaryotic OMPPs apparently consist primarily of α-helices (α-TMSs). Of the 71 families of (putative) β-barrel OMPPs, only twenty could not be assigned to a superfamily, and these derived primarily from Actinobacteria (1), chloroplasts (1), spirochaetes (8), and proteobacteria (10). Proteins were identified in which two or three full length OMPPs are fused together. Family characteristic are described and evidence agrees with a previous proposal suggesting that many arose by adjacent β-hairpin structural unit duplications. PMID:27064789

  6. Evolution of a family of metazoan active-site-serine enzymes from penicillin-binding proteins: a novel facet of the bacterial legacy

    PubMed Central

    2008-01-01

    Background Bacterial penicillin-binding proteins and β-lactamases (PBP-βLs) constitute a large family of serine proteases that perform essential functions in the synthesis and maintenance of peptidoglycan. Intriguingly, genes encoding PBP-βL homologs occur in many metazoan genomes including humans. The emerging role of LACTB, a mammalian mitochondrial PBP-βL homolog, in metabolic signaling prompted us to investigate the evolutionary history of metazoan PBP-βL proteins. Results Metazoan PBP-βL homologs including LACTB share unique structural features with bacterial class B low molecular weight penicillin-binding proteins. The amino acid residues necessary for enzymatic activity in bacterial PBP-βL proteins, including the catalytic serine residue, are conserved in all metazoan homologs. Phylogenetic analysis indicated that metazoan PBP-βL homologs comprise four alloparalogus protein lineages that derive from α-proteobacteria. Conclusion While most components of the peptidoglycan synthesis machinery were dumped by early eukaryotes, a few PBP-βL proteins were conserved and are found in metazoans including humans. Metazoan PBP-βL homologs are active-site-serine enzymes that probably have distinct functions in the metabolic circuitry. We hypothesize that PBP-βL proteins in the early eukaryotic cell enabled the degradation of peptidoglycan from ingested bacteria, thereby maximizing the yield of nutrients and streamlining the cell for effective phagocytotic feeding. PMID:18226203

  7. Borrelia burgdorferi EbfC defines a newly-identified, widespread family of bacterial DNA-binding proteins

    PubMed Central

    Riley, Sean P.; Bykowski, Tomasz; Cooley, Anne E.; Burns, Logan H.; Babb, Kelly; Brissette, Catherine A.; Bowman, Amy; Rotondi, Matthew; Miller, M. Clarke; DeMoll, Edward; Lim, Kap; Fried, Michael G.; Stevenson, Brian

    2009-01-01

    The Lyme disease spirochete, Borrelia burgdorferi, encodes a novel type of DNA-binding protein named EbfC. Orthologs of EbfC are encoded by a wide range of bacterial species, so characterization of the borrelial protein has implications that span the eubacterial kingdom. The present work defines the DNA sequence required for high-affinity binding by EbfC to be the 4 bp broken palindrome GTnAC, where ‘n’ can be any nucleotide. Two high-affinity EbfC-binding sites are located immediately 5′ of B. burgdorferi erp transcriptional promoters, and binding of EbfC was found to alter the conformation of erp promoter DNA. Consensus EbfC-binding sites are abundantly distributed throughout the B. burgdorferi genome, occurring approximately once every 1 kb. These and other features of EbfC suggest that this small protein and its orthologs may represent a distinctive type of bacterial nucleoid-associated protein. EbfC was shown to bind DNA as a homodimer, and site-directed mutagenesis studies indicated that EbfC and its orthologs appear to bind DNA via a novel α-helical ‘tweezer’-like structure. PMID:19208644

  8. A new family of bacterial condensins

    PubMed Central

    Petrushenko, Zoya M.; She, Weifeng; Rybenkov, Valentin V.

    2011-01-01

    Condensins play a central role in global chromatin organization. In bacteria, two families of condensins have been identified, the MukBEF and SMC-ScpAB complexes. Only one of the two complexes is usually found in a given species, giving rise to a paradigm that a single condensin organizes bacterial chromosomes. Using sequence analysis, we identified a third family of condensins, MksBEF (MukBEF-like SMC proteins), which is broadly present in diverse bacteria. The proteins appear distantly related to MukBEF, have a similar operon organization and similar predicted secondary structures albeit with notably shorter coiled coils. All three subunits of MksBEF exhibit significant sequence variation and can be divided into a series of overlapping subfamilies. MksBEF often coexists with the SMC-ScpAB, MukBEF and, sometimes, other MksBEFs. In Pseudomonas aeruginosa, both SMC and MksB contribute to faithful chromosome partitioning, with their inactivation leading to increased frequencies of anucleate cells. Moreover, MksBEF can complement anucleate cell formation in SMC-deficient cells. Purified PaMksB showed activities typical for condensins including ATP-modulated DNA binding and condensation. Notably, DNA binding by MksB is negatively regulated by ATP, which sets it apart from other known SMC proteins. Thus, several specialized condensins might be involved in organization of bacterial chromosomes. PMID:21752107

  9. Architecture and Assembly of a Divergent Member of the ParM Family of Bacterial Actin-like Proteins

    PubMed Central

    Rivera, Christopher R.; Kollman, Justin M.; Polka, Jessica K.; Agard, David A.; Mullins, R. Dyche

    2011-01-01

    Eubacteria and archaea contain a variety of actin-like proteins (ALPs) that form filaments with surprisingly diverse architectures, assembly dynamics, and cellular functions. Although there is much data supporting differences between ALP families, there is little data regarding conservation of structure and function within these families. We asked whether the filament architecture and biochemical properties of the best-understood prokaryotic actin, ParM from plasmid R1, are conserved in a divergent member of the ParM family from plasmid pB171. Previous work demonstrated that R1 ParM assembles into filaments that are structurally distinct from actin and the other characterized ALPs. They also display three biophysical properties thought to be essential for DNA segregation: 1) rapid spontaneous nucleation, 2) symmetrical elongation, and 3) dynamic instability. We used microscopic and biophysical techniques to compare and contrast the architecture and assembly of these related proteins. Despite being only 41% identical, R1 and pB171 ParMs polymerize into nearly identical filaments with similar assembly dynamics. Conservation of the core assembly properties argues for their importance in ParM-mediated DNA segregation and suggests that divergent DNA-segregating ALPs with different assembly properties operate via different mechanisms. PMID:21339292

  10. Bacterial Ice Crystal Controlling Proteins

    PubMed Central

    Lorv, Janet S. H.; Rose, David R.; Glick, Bernard R.

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions. PMID:24579057

  11. Topological and Phylogenetic Analyses of Bacterial Holin Families and Superfamilies

    PubMed Central

    Reddy, Bhaskara L.; Saier, Milton H.

    2013-01-01

    Holins are small “hole-forming” transmembrane proteins that mediate bacterial cell lysis during programmed cell death or following phage infection. We have identified fifty two families of established or putative holins and have included representative members of these proteins in the Transporter Classification Database (TCDB; www.tcdb.org). We have identified the organismal sources of members of these families, calculated their average protein sizes, estimated their topologies and determined their relative family sizes. Topological analyses suggest that these proteins can have 1, 2, 3 or 4 transmembrane α-helical segments (TMSs), and members of a single family are frequently, but not always, of a single topology. In one case, proteins of a family proved to have either 2 or 4 TMSs, and the latter arose by intragenic duplication of a primordial 2 TMS protein-encoding gene resembling the former. Using established statistical approaches, some of these families have been shown to be related by common descent. Seven superfamilies, including 21 of the 52 recognized families were identified. Conserved motif and Pfam analyses confirmed most superfamily assignments. These results serve to expand upon the scope of channel-forming bacterial holins. PMID:23856191

  12. Bacterial-like PPP protein phosphatases

    PubMed Central

    Kerk, David; Uhrig, R Glen; Moorhead, Greg B

    2013-01-01

    Reversible phosphorylation is a widespread modification affecting the great majority of eukaryotic cellular proteins, and whose effects influence nearly every cellular function. Protein phosphatases are increasingly recognized as exquisitely regulated contributors to these changes. The PPP (phosphoprotein phosphatase) family comprises enzymes, which catalyze dephosphorylation at serine and threonine residues. Nearly a decade ago, “bacterial-like” enzymes were recognized with similarity to proteins from various bacterial sources: SLPs (Shewanella-like phosphatases), RLPHs (Rhizobiales-like phosphatases), and ALPHs (ApaH-like phosphatases). A recent article from our laboratory appearing in Plant Physiology characterizes their extensive organismal distribution, abundance in plant species, predicted subcellular localization, motif organization, and sequence evolution. One salient observation is the distinct evolutionary trajectory followed by SLP genes and proteins in photosynthetic eukaryotes vs. animal and plant pathogens derived from photosynthetic ancestors. We present here a closer look at sequence data that emphasizes the distinctiveness of pathogen SLP proteins and that suggests that they might represent novel drug targets. A second observation in our original report was the high degree of similarity between the bacterial-like PPPs of eukaryotes and closely related proteins of the “eukaryotic-like” phyla Myxococcales and Planctomycetes. We here reflect on the possible implications of these observations and their importance for future research. PMID:24675170

  13. Identification of a copper-repressible C-type heme protein of Methylococcus capsulatus (Bath). A member of a novel group of the bacterial di-heme cytochrome c peroxidase family of proteins.

    PubMed

    Karlsen, Odd A; Kindingstad, Louise; Angelskår, Solveig M; Bruseth, Live J; Straume, Daniel; Puntervoll, Pål; Fjellbirkeland, Anne; Lillehaug, Johan R; Jensen, Harald B

    2005-12-01

    Genomic sequencing of the methanotrophic bacterium, Methylococcus capsulatus (Bath), revealed an open reading frame (MCA2590) immediately upstream of the previously described mopE gene (MCA2589). Sequence analyses of the deduced amino acid sequence demonstrated that the MCA2590-encoded protein shared significant, but restricted, sequence similarity to the bacterial di-heme cytochrome c peroxidase (BCCP) family of proteins. Two putative C-type heme-binding motifs were predicted, and confirmed by positive heme staining. Immunospecific recognition and biotinylation of whole cells combined with MS analyses confirmed expression of MCA2590 in M. capsulatus as a protein noncovalently associated with the cellular surface of the bacterium exposed to the cell exterior. Similar to MopE, expression of MCA2590 is regulated by the bioavailability of copper and is most abundant in M. capsulatus cultures grown under low copper conditions, thus indicating an important physiological role under these growth conditions. MCA2590 is distinguished from previously characterized members of the BCCP family by containing a much longer primary sequence that generates an increased distance between the two heme-binding motifs in its primary sequence. Furthermore, the surface localization of MCA2590 is in contrast to the periplasmic location of the reported BCCP members. Based on our experimental and bioinformatical analyses, we suggest that MCA2590 is a member of a novel group of bacterial di-heme cytochrome c peroxidases not previously characterized. PMID:16336269

  14. The AVIT protein family

    PubMed Central

    Kaser, Alexandra; Winklmayr, Martina; Lepperdinger, Günther; Kreil, Günther

    2003-01-01

    Homologues of a protein originally isolated from snake venom and frog skin secretions are present in many vertebrate species. They contain 80–90 amino acids, 10 of which are cysteines with identical spacing. Various names have been given to these proteins, such as mamba intestinal protein 1 (MIT1), Bv8 (Bombina variegata molecular mass ∼8 kDa), prokineticins and endocrine-gland vascular endothelial growth factor (EG-VEGF). Their amino-terminal sequences are identical, and so we propose that the sequence of their first four residues, AVIT, is used as a name for this family. From a comparison of the sequences, two types of AVIT proteins can be discerned. These proteins seem to be distributed widely in mammalian tissues and are known to bind to G-protein-coupled receptors. Members of this family have been shown to stimulate contraction of the guinea pig ileum, to cause hyperalgesia after injection into rats and to be active as specific growth factors. Moreover, the messenger RNA level of one of these AVIT proteins changes rhythmically in the region of the brain known as the suprachiasmatic nucleus. This shows that members of this new family of small proteins are involved in diverse biological processes. PMID:12728244

  15. A Bioinformatics Analysis Reveals a Group of MocR Bacterial Transcriptional Regulators Linked to a Family of Genes Coding for Membrane Proteins

    PubMed Central

    Milano, Teresa

    2016-01-01

    The MocR bacterial transcriptional regulators are characterized by an N-terminal domain, 60 residues long on average, possessing the winged-helix-turn-helix (wHTH) architecture responsible for DNA recognition and binding, linked to a large C-terminal domain (350 residues on average) that is homologous to fold type-I pyridoxal 5′-phosphate (PLP) dependent enzymes like aspartate aminotransferase (AAT). These regulators are involved in the expression of genes taking part in several metabolic pathways directly or indirectly connected to PLP chemistry, many of which are still uncharacterized. A bioinformatics analysis is here reported that studied the features of a distinct group of MocR regulators predicted to be functionally linked to a family of homologous genes coding for integral membrane proteins of unknown function. This group occurs mainly in the Actinobacteria and Gammaproteobacteria phyla. An analysis of the multiple sequence alignments of their wHTH and AAT domains suggested the presence of specificity-determining positions (SDPs). Mapping of SDPs onto a homology model of the AAT domain hinted at possible structural/functional roles in effector recognition. Likewise, SDPs in wHTH domain suggested the basis of specificity of Transcription Factor Binding Site recognition. The results reported represent a framework for rational design of experiments and for bioinformatics analysis of other MocR subgroups. PMID:27446613

  16. A Bioinformatics Analysis Reveals a Group of MocR Bacterial Transcriptional Regulators Linked to a Family of Genes Coding for Membrane Proteins.

    PubMed

    Milano, Teresa; Angelaccio, Sebastiana; Tramonti, Angela; Di Salvo, Martino Luigi; Contestabile, Roberto; Pascarella, Stefano

    2016-01-01

    The MocR bacterial transcriptional regulators are characterized by an N-terminal domain, 60 residues long on average, possessing the winged-helix-turn-helix (wHTH) architecture responsible for DNA recognition and binding, linked to a large C-terminal domain (350 residues on average) that is homologous to fold type-I pyridoxal 5'-phosphate (PLP) dependent enzymes like aspartate aminotransferase (AAT). These regulators are involved in the expression of genes taking part in several metabolic pathways directly or indirectly connected to PLP chemistry, many of which are still uncharacterized. A bioinformatics analysis is here reported that studied the features of a distinct group of MocR regulators predicted to be functionally linked to a family of homologous genes coding for integral membrane proteins of unknown function. This group occurs mainly in the Actinobacteria and Gammaproteobacteria phyla. An analysis of the multiple sequence alignments of their wHTH and AAT domains suggested the presence of specificity-determining positions (SDPs). Mapping of SDPs onto a homology model of the AAT domain hinted at possible structural/functional roles in effector recognition. Likewise, SDPs in wHTH domain suggested the basis of specificity of Transcription Factor Binding Site recognition. The results reported represent a framework for rational design of experiments and for bioinformatics analysis of other MocR subgroups. PMID:27446613

  17. The family of bacterial ADP-ribosylating exotoxins.

    PubMed Central

    Krueger, K M; Barbieri, J T

    1995-01-01

    Pathogenic bacteria utilize a variety of virulence factors that contribute to the clinical manifestation of their pathogenesis. Bacterial ADP-ribosylating exotoxins (bAREs) represent one family of virulence factors that exert their toxic effects by transferring the ADP-ribose moiety of NAD onto specific eucaryotic target proteins. The observations that some bAREs ADP-ribosylate eucaryotic proteins that regulate signal transduction, like the heterotrimeric GTP-binding proteins and the low-molecular-weight GTP-binding proteins, has extended interest in bAREs beyond the bacteriology laboratory. Molecular studies have shown that bAREs possess little primary amino acid homology and have diverse quaternary structure-function organization. Underlying this apparent diversity, biochemical and crystallographic studies have shown that several bAREs have conserved active-site structures and possess a conserved glutamic acid within their active sites. PMID:7704894

  18. Bacterial Origin of a Mitochondrial Outer Membrane Protein Translocase

    PubMed Central

    Harsman, Anke; Niemann, Moritz; Pusnik, Mascha; Schmidt, Oliver; Burmann, Björn M.; Hiller, Sebastian; Meisinger, Chris; Schneider, André; Wagner, Richard

    2012-01-01

    Mitochondria are of bacterial ancestry and have to import most of their proteins from the cytosol. This process is mediated by Tom40, an essential protein that forms the protein-translocating pore in the outer mitochondrial membrane. Tom40 is conserved in virtually all eukaryotes, but its evolutionary origin is unclear because bacterial orthologues have not been identified so far. Recently, it was shown that the parasitic protozoon Trypanosoma brucei lacks a conventional Tom40 and instead employs the archaic translocase of the outer mitochondrial membrane (ATOM), a protein that shows similarities to both eukaryotic Tom40 and bacterial protein translocases of the Omp85 family. Here we present electrophysiological single channel data showing that ATOM forms a hydrophilic pore of large conductance and high open probability. Moreover, ATOM channels exhibit a preference for the passage of cationic molecules consistent with the idea that it may translocate unfolded proteins targeted by positively charged N-terminal presequences. This is further supported by the fact that the addition of a presequence peptide induces transient pore closure. An in-depth comparison of these single channel properties with those of other protein translocases reveals that ATOM closely resembles bacterial-type protein export channels rather than eukaryotic Tom40. Our results support the idea that ATOM represents an evolutionary intermediate between a bacterial Omp85-like protein export machinery and the conventional Tom40 that is found in mitochondria of other eukaryotes. PMID:22778261

  19. B. subtilis ykuD Protein at 2.0 Angstrom Resolution: Insights into the Structure and Function of a Novel, Ubiquitous Family of Bacterial Enzymes

    SciTech Connect

    Bielnicki,J.; Devedjiev, Y.; Derewenda, U.; Dauter, Z.; Joachimiak, A.; Derewenda, Z.

    2006-01-01

    The crystal structure of the product of the Bacillus subtilis ykuD gene was solved by the multiwavelength anomalous dispersion (MAD) method and refined using data to 2.0 Angstroms resolution. The ykuD protein is a representative of a distinctly prokaryotic and ubiquitous family found among both pathogenic and nonpathogenic Gram-positive and Gram-negative bacteria. The deduced amino acid sequence reveals the presence of an N-terminal LysM domain, which occurs among enzymes involved in cell wall metabolism, and a novel, putative catalytic domain with a highly conserved His/Cys-containing motif of hitherto unknown structure. As the wild-type protein did not crystallize, a double mutant was designed (Lys117Ala/Gln118Ala) to reduce excess surface conformational entropy. As expected, the structure of the LysM domain is similar to the NMR structure reported for an analogous domain from Escherichia coli murein transglycosylase MltD. The molecular model also shows that the 112-residue-long C-terminal domain has a novel tertiary fold consisting of a {beta}-sandwich with two mixed sheets, one containing five strands and the other, six strands. The two {beta}-sheets form a cradle capped by an {alpha}-helix. This domain contains a putative catalytic site with a tetrad of invariant His123, Gly124, Cys139, and Arg141. The stereochemistry of this active site shows similarities to peptidotransferases and sortases, and suggests that the enzymes of the ykuD family may play an important role in cell wall biology.

  20. Bacterial Heat Shock Protein Activity

    PubMed Central

    Maleki, Farajollah; Khosravi, Afra; Nasser, Ahmad; Taghinejad, Hamid

    2016-01-01

    Bacteria are exposed to different types of stress in their growth conditions. They have developed appropriate responses, modulated by the re-modeling of protein complexes and by phosphorylation dependent signal transduction systems, to adapt and to survive in a variety range of nature. Proteins are essential components for biologic activity in the eukaryotic and prokaryotic cell. Heat Shock Proteins (HSP) have been identified from various organisms and have critical role in cell hemostasis. Chaperone can sense environment and have different potential role in the organism evolution. PMID:27134861

  1. Thiol Dioxygenases: Unique Families of Cupin Proteins

    PubMed Central

    Simmons, C. R.; Karplus, P. A.; Dominy, J. E.

    2011-01-01

    Proteins in the cupin superfamily have a wide range of biological functions in archaea, bacteria and eukaryotes. Although proteins in the cupin superfamily show very low overall sequence similarity, they all contain two short but partially conserved cupin sequence motifs separated by a less conserved intermotif region that varies both in length and amino acid sequence. Furthermore, these proteins all share a common architecture described as a 6-stranded β-barrel core, and this canonical cupin or “jelly roll” β-barrel is formed with cupin motif 1, the intermotif region, and cupin motif 2 each forming two of the core six β-strands in the folded protein structure. The recently obtained crystal structures of cysteine dioxygenase (CDO), with contains conserved cupin motifs, show that it has the predicted canonical cupin β-barrel fold. Although there had been no reports of CDO activity in prokaryotes, we identified a number of bacterial cupin proteins of unknown function that share low similarity with mammalian CDO and that conserve many residues in the active site pocket of CDO. Putative bacterial CDOs predicted to have CDO activity were shown to have similar substrate specificity and kinetic parameters as eukaryotic CDOs. Information gleaned from crystal structures of mammalian CDO along with sequence information for homologs shown to have CDO activity facilitated the identification of a CDO family fingerprint motif. One key feature of the CDO fingerprint motif is that the canonical metal-binding glutamate residue in cupin motif 1 is replaced by a cysteine (in mammalian CDOs) or by a glycine (bacterial CDOs). The recent report that some putative bacterial CDO homologs are actually 3-mercaptopropionate dioxygenases suggests that the CDO family may include proteins with specificities for other thiol substrates. A paralog of CDO in mammals was also identified and shown to be the other mammalian thiol dioxygenase, cysteamine dioxygenase (ADO). A tentative

  2. Protein phosphorylation is involved in bacterial chemotaxis.

    PubMed Central

    Hess, J F; Oosawa, K; Matsumura, P; Simon, M I

    1987-01-01

    The nature of the biochemical signal that is involved in the excitation response in bacterial chemotaxis is not known. However, ATP is required for chemotaxis. We have purified all of the proteins involved in signal transduction and show that the product of the cheA gene is rapidly autophosphorylated, while some mutant CheA proteins cannot be phosphorylated. The presence of stoichiometric levels of two other purified components in the chemotaxis system, the CheY and CheZ proteins, induces dephosphorylation. We suggest that the phosphorylation of CheA by ATP plays a central role in signal transduction in chemotaxis. Images PMID:3313398

  3. Bacterial protein acetylation: new discoveries unanswered questions.

    PubMed

    Wolfe, Alan J

    2016-05-01

    Nε-acetylation is emerging as an abundant post-translational modification of bacterial proteins. Two mechanisms have been identified: one is enzymatic, dependent on an acetyltransferase and acetyl-coenzyme A; the other is non-enzymatic and depends on the reactivity of acetyl phosphate. Some, but not most, of those acetylations are reversed by deacetylases. This review will briefly describe the current status of the field and raise questions that need answering. PMID:26660885

  4. Fluorescent sensors based on bacterial fusion proteins

    NASA Astrophysics Data System (ADS)

    Prats Mateu, Batirtze; Kainz, Birgit; Pum, Dietmar; Sleytr, Uwe B.; Toca-Herrera, José L.

    2014-06-01

    Fluorescence proteins are widely used as markers for biomedical and technological purposes. Therefore, the aim of this project was to create a fluorescent sensor, based in the green and cyan fluorescent protein, using bacterial S-layers proteins as scaffold for the fluorescent tag. We report the cloning, expression and purification of three S-layer fluorescent proteins: SgsE-EGFP, SgsE-ECFP and SgsE-13aa-ECFP, this last containing a 13-amino acid rigid linker. The pH dependence of the fluorescence intensity of the S-layer fusion proteins, monitored by fluorescence spectroscopy, showed that the ECFP tag was more stable than EGFP. Furthermore, the fluorescent fusion proteins were reassembled on silica particles modified with cationic and anionic polyelectrolytes. Zeta potential measurements confirmed the particle coatings and indicated their colloidal stability. Flow cytometry and fluorescence microscopy showed that the fluorescence of the fusion proteins was pH dependent and sensitive to the underlying polyelectrolyte coating. This might suggest that the fluorescent tag is not completely exposed to the bulk media as an independent moiety. Finally, it was found out that viscosity enhanced the fluorescence intensity of the three fluorescent S-layer proteins.

  5. Tools for Characterizing Bacterial Protein Synthesis Inhibitors

    PubMed Central

    Orelle, Cédric; Carlson, Skylar; Kaushal, Bindiya; Almutairi, Mashal M.; Liu, Haipeng; Ochabowicz, Anna; Quan, Selwyn; Pham, Van Cuong; Squires, Catherine L.; Murphy, Brian T.

    2013-01-01

    Many antibiotics inhibit the growth of sensitive bacteria by interfering with ribosome function. However, discovery of new protein synthesis inhibitors is curbed by the lack of facile techniques capable of readily identifying antibiotic target sites and modes of action. Furthermore, the frequent rediscovery of known antibiotic scaffolds, especially in natural product extracts, is time-consuming and expensive and diverts resources that could be used toward the isolation of novel lead molecules. In order to avoid these pitfalls and improve the process of dereplication of chemically complex extracts, we designed a two-pronged approach for the characterization of inhibitors of protein synthesis (ChIPS) that is suitable for the rapid identification of the site and mode of action on the bacterial ribosome. First, we engineered antibiotic-hypersensitive Escherichia coli strains that contain only one rRNA operon. These strains are used for the rapid isolation of resistance mutants in which rRNA mutations identify the site of the antibiotic action. Second, we show that patterns of drug-induced ribosome stalling on mRNA, monitored by primer extension, can be used to elucidate the mode of antibiotic action. These analyses can be performed within a few days and provide a rapid and efficient approach for identifying the site and mode of action of translation inhibitors targeting the bacterial ribosome. Both techniques were validated using a bacterial strain whose culture extract, composed of unknown metabolites, exhibited protein synthesis inhibitory activity; we were able to rapidly detect the presence of the antibiotic chloramphenicol. PMID:24041905

  6. New Functions for the Ancient DedA Membrane Protein Family

    PubMed Central

    Sikdar, Rakesh; Kumar, Sujeet; Boughner, Lisa A.

    2013-01-01

    The DedA protein family is a highly conserved and ancient family of membrane proteins with representatives in most sequenced genomes, including those of bacteria, archaea, and eukarya. The functions of the DedA family proteins remain obscure. However, recent genetic approaches have revealed important roles for certain bacterial DedA family members in membrane homeostasis. Bacterial DedA family mutants display such intriguing phenotypes as cell division defects, temperature sensitivity, altered membrane lipid composition, elevated envelope-related stress responses, and loss of proton motive force. The DedA family is also essential in at least two species of bacteria: Borrelia burgdorferi and Escherichia coli. Here, we describe the phylogenetic distribution of the family and summarize recent progress toward understanding the functions of the DedA membrane protein family. PMID:23086209

  7. Bacterial proteins and peptides in cancer therapy

    PubMed Central

    Chakrabarty, Ananda M; Bernardes, Nuno; Fialho, Arsenio M

    2014-01-01

    Cancer is one of the most deadly diseases worldwide. In the last three decades many efforts have been made focused on understanding how cancer grows and responds to drugs. The dominant drug-development paradigm has been the “one drug, one target.” Based on that, the two main targeted therapies developed to combat cancer include the use of tyrosine kinase inhibitors and monoclonal antibodies. Development of drug resistance and side effects represent the major limiting factors for their use in cancer treatment. Nowadays, a new paradigm for cancer drug discovery is emerging wherein multi-targeted approaches gain ground in cancer therapy. Therefore, to overcome resistance to therapy, it is clear that a new generation of drugs is urgently needed. Here, regarding the concept of multi-targeted therapy, we discuss the challenges of using bacterial proteins and peptides as a new generation of effective anti-cancer drugs. PMID:24875003

  8. The stanniocalcin family of proteins.

    PubMed

    Wagner, Graham F; Dimattia, Gabriel E

    2006-09-01

    Stannniocalcin (STC) is a polypeptide hormone that was originally identified in bony fishes as a systemic regulator of mineral metabolism, and is best known for its regulatory effects on calcium/phosphate transport by the gills, gut and kidneys. The mammalian homolog to fish STC was discovered in 1995 and has resulted in progressively growing interest ever since as to its possible role in humans. Moreover, new discoveries in the mammalian STC field are resulting in significant reappraisals as to its role in fishes. Perhaps the most significant of these has been the discovery of a second gene encoding stanniocalcin-related protein, or STC-2, first in mammals and subsequently in fish. This review covers the comparative endocrinology of the STCs in fishes and mammals from the perspectives of structure, function and regulation. It then delves into some of the newer aspects of STC-1/STC-2 biology that have been uncovered using both classical and transgenic approaches. Of these, one of the most intriguing discoveries relates to the receptor-mediated sequestration of STC by target cell organelles. The functions of other newly discovered mammalian and fish STC variants are also discussed, as is the recent discovery of STC-related homologs in invertebrates. Based on our current state of knowledge, it is apparent that STC has an ancient lineage and that the STC family of proteins is proving to have significant roles in metabolism, reproduction and development. PMID:16902962

  9. The Alba protein family: Structure and function.

    PubMed

    Goyal, Manish; Banerjee, Chinmoy; Nag, Shiladitya; Bandyopadhyay, Uday

    2016-05-01

    Alba family proteins are small, basic, dimeric nucleic acid-binding proteins, which are widely distributed in archaea and a number of eukaryotes. This family of proteins bears the distinct features of regulation through acetylation/deacetylation, hence named as acetylation lowers binding affinity (Alba). Alba family proteins bind DNA cooperatively with no apparent sequence specificity. Besides DNA, Alba proteins also interact with diverse RNA species and associate with ribonucleo-protein complexes. Initially, Alba proteins were recognized as chromosomal proteins and supposed to be involved in the maintenance of chromatin architecture and transcription repression. However, recent studies have shown increasing evidence of functional plasticity among Alba family of proteins that widely range from genome packaging and organization, transcriptional and translational regulation, RNA metabolism, and development and differentiation processes. In recent years, Alba family proteins have attracted growing interest due to their widespread occurrence in large number of organisms. Presence in multiple copies, functional crosstalk, differential binding affinity, and posttranslational modifications are some of the key factors that might regulate the biological functions of Alba family proteins. In this review article, we present an overview of the Alba family proteins, their salient features and emphasize their functional role in different organisms reported so far. PMID:26900088

  10. Convergent evolution among immunoglobulin G-binding bacterial proteins.

    PubMed Central

    Frick, I M; Wikström, M; Forsén, S; Drakenberg, T; Gomi, H; Sjöbring, U; Björck, L

    1992-01-01

    Protein G, a bacterial cell-wall protein with high affinity for the constant region of IgG (IgGFc) antibodies, contains homologous repeats responsible for the interaction with IgGFc. A synthetic peptide corresponding to an 11-amino acid-long sequence in the COOH-terminal region of the repeats was found to bind to IgGFc and block the interaction with protein G. Moreover, two other IgGFc-binding bacterial proteins (proteins A and H), which do not contain any sequences homologous to the peptide, were also inhibited in their interactions with IgGFc by the peptide. Finally, a decapeptide based on a sequence in IgGFc blocked the binding of all three proteins to IgGFc. This unusually clear example of convergent evolution emphasizes the complexity of protein-protein interactions and suggests that bacterial surface-protein interaction with host protein adds selective advantages to the microorganism. Images PMID:1528858

  11. NAIP proteins are required for cytosolic detection of specific bacterial ligands in vivo.

    PubMed

    Rauch, Isabella; Tenthorey, Jeannette L; Nichols, Randilea D; Al Moussawi, Khatoun; Kang, James J; Kang, Chulho; Kazmierczak, Barbara I; Vance, Russell E

    2016-05-01

    NLRs (nucleotide-binding domain [NBD] leucine-rich repeat [LRR]-containing proteins) exhibit diverse functions in innate and adaptive immunity. NAIPs (NLR family, apoptosis inhibitory proteins) are NLRs that appear to function as cytosolic immunoreceptors for specific bacterial proteins, including flagellin and the inner rod and needle proteins of bacterial type III secretion systems (T3SSs). Despite strong biochemical evidence implicating NAIPs in specific detection of bacterial ligands, genetic evidence has been lacking. Here we report the use of CRISPR/Cas9 to generate Naip1(-/-) and Naip2(-/-) mice, as well as Naip1-6(Δ/Δ) mice lacking all functional Naip genes. By challenging Naip1(-/-) or Naip2(-/-) mice with specific bacterial ligands in vivo, we demonstrate that Naip1 is uniquely required to detect T3SS needle protein and Naip2 is uniquely required to detect T3SS inner rod protein, but neither Naip1 nor Naip2 is required for detection of flagellin. Previously generated Naip5(-/-) mice retain some residual responsiveness to flagellin in vivo, whereas Naip1-6(Δ/Δ) mice fail to respond to cytosolic flagellin, consistent with previous biochemical data implicating NAIP6 in flagellin detection. Our results provide genetic evidence that specific NAIP proteins function to detect specific bacterial proteins in vivo. PMID:27045008

  12. Bacterial Protein N-Glycosylation: New Perspectives and Applications*

    PubMed Central

    Nothaft, Harald; Szymanski, Christine M.

    2013-01-01

    Protein glycosylation is widespread throughout all three domains of life. Bacterial protein N-glycosylation and its application to engineering recombinant glycoproteins continue to be actively studied. Here, we focus on advances made in the last 2 years, including the characterization of novel bacterial N-glycosylation pathways, examination of pathway enzymes and evolution, biological roles of protein modification in the native host, and exploitation of the N-glycosylation pathways to create novel vaccines and diagnostics. PMID:23329827

  13. Genetic functions of the NAIP family of inflammasome receptors for bacterial ligands in mice.

    PubMed

    Zhao, Yue; Shi, Jianjin; Shi, Xuyan; Wang, Yupeng; Wang, Fengchao; Shao, Feng

    2016-05-01

    Biochemical studies suggest that the NAIP family of NLR proteins are cytosolic innate receptors that directly recognize bacterial ligands and trigger NLRC4 inflammasome activation. In this study, we generated Naip5(-/-), Naip1(-/-), and Naip2(-/-) mice and showed that bone marrow macrophages derived from these knockout mice are specifically deficient in detecting bacterial flagellin, the type III secretion system needle, and the rod protein, respectively. Naip1(-/-), Naip2(-/-), and Naip5(-/-) mice also resist lethal inflammasome activation by the corresponding ligand. Furthermore, infections performed in the Naip-deficient macrophages have helped to define the major signal in Legionella pneumophila, Salmonella Typhimurium and Shigella flexneri that is detected by the NAIP/NLRC4 inflammasome. Using an engineered S. Typhimurium infection model, we demonstrate the critical role of NAIPs in clearing bacterial infection and protecting mice from bacterial virulence-induced lethality. These results provide definitive genetic evidence for the important physiological function of NAIPs in antibacterial defense and inflammatory damage-induced lethality in mice. PMID:27114610

  14. Identification of Bacterial Protein O-Oligosaccharyltransferases and Their Glycoprotein Substrates

    PubMed Central

    Jones, Christopher E.; Fox, Kate L.; Ku, Shan C.; Blanchfield, Joanne T.; Jennings, Michael P.

    2013-01-01

    O-glycosylation of proteins in Neisseria meningitidis is catalyzed by PglL, which belongs to a protein family including WaaL O-antigen ligases. We developed two hidden Markov models that identify 31 novel candidate PglL homologs in diverse bacterial species, and describe several conserved sequence and structural features. Most of these genes are adjacent to possible novel target proteins for glycosylation. We show that in the general glycosylation system of N. meningitidis, efficient glycosylation of additional protein substrates requires local structural similarity to the pilin acceptor site. For some Neisserial PglL substrates identified by sensitive analytical approaches, only a small fraction of the total protein pool is modified in the native organism, whereas others are completely glycosylated. Our results show that bacterial protein O-glycosylation is common, and that substrate selection in the general Neisserial system is dominated by recognition of structural homology. PMID:23658772

  15. The DSF Family of Cell–Cell Signals: An Expanding Class of Bacterial Virulence Regulators

    PubMed Central

    Ryan, Robert P.; An, Shi-qi; Allan, John H.; McCarthy, Yvonne; Dow, J. Maxwell

    2015-01-01

    Many pathogenic bacteria use cell–cell signaling systems involving the synthesis and perception of diffusible signal molecules to control virulence as a response to cell density or confinement to niches. Bacteria produce signals of diverse structural classes. Signal molecules of the diffusible signal factor (DSF) family are cis-2-unsaturated fatty acids. The paradigm is cis-11-methyl-2-dodecenoic acid from Xanthomonas campestris pv. campestris (Xcc), which controls virulence in this plant pathogen. Although DSF synthesis was thought to be restricted to the xanthomonads, it is now known that structurally related molecules are produced by the unrelated bacteria Burkholderia cenocepacia and Pseudomonas aeruginosa. Furthermore, signaling involving these DSF family members contributes to bacterial virulence, formation of biofilms and antibiotic tolerance in these important human pathogens. Here we review the recent advances in understanding DSF signaling and its regulatory role in different bacteria. These advances include the description of the pathway/mechanism of DSF biosynthesis, identification of novel DSF synthases and new members of the DSF family, the demonstration of a diversity of DSF sensors to include proteins with a Per-Arnt-Sim (PAS) domain and the description of some of the signal transduction mechanisms that impinge on virulence factor expression. In addition, we address the role of DSF family signals in interspecies signaling that modulates the behavior of other microorganisms. Finally, we consider a number of recently reported approaches for the control of bacterial virulence through the modulation of DSF signaling. PMID:26181439

  16. Protein function annotation using protein domain family resources.

    PubMed

    Das, Sayoni; Orengo, Christine A

    2016-01-15

    As a result of the genome sequencing and structural genomics initiatives, we have a wealth of protein sequence and structural data. However, only about 1% of these proteins have experimental functional annotations. As a result, computational approaches that can predict protein functions are essential in bridging this widening annotation gap. This article reviews the current approaches of protein function prediction using structure and sequence based classification of protein domain family resources with a special focus on functional families in the CATH-Gene3D resource. PMID:26434392

  17. Computational Study on Hemoglobin Protein Family

    NASA Astrophysics Data System (ADS)

    Craciun, Dana; Isvoran, Adriana; Avram, Nicolae M.

    2009-05-01

    We have analyzed 19 proteins belonging to hemoglobin protein family: 3 for plants, 4 for invertebrates and the others for vertebrates. For every protein we have determined the following parameters: the fractal dimension of its backbone, the fractal dimension of its surface, the radius of gyration, the area of its molecular surface and the area of the surface of its cavities. At global level, we did not notice significant differences for the fractal parameters for proteins belonging to different organisms and it underlines that all these proteins perform the same biological function. We have obtained different values of the local and global surface fractal dimensions reflecting distinct roughness of protein pockets in comparison to the entire surface, also in good correlation with the biological function. The geometric characteristics are distinct for the three investigated families of proteins.

  18. NAIPs: building an innate immune barrier against bacterial pathogens. NAIPs function as sensors that initiate innate immunity by detection of bacterial proteins in the host cell cytosol.

    PubMed

    Kofoed, Eric M; Vance, Russell E

    2012-07-01

    The innate immune system of mammals encodes several families of immune detector proteins that monitor the cytosol for signs of pathogen invasion. One important but poorly understood family of cytosolic immunosurveillance proteins is the NLR (nucleotide-binding domain, leucine-rich repeat containing) proteins. Recent work has demonstrated that one subfamily of NLRs, the NAIPs (NLR family, apoptosis inhibitory proteins), are activated by specific interaction with bacterial ligands, such as flagellin. NAIP activation leads to assembly of a large multiprotein complex called the inflammasome, which initiates innate immune responses by activation of the Caspase-1 protease. NAIPs therefore appear to detect pathogen molecules via a simple and direct receptor-ligand mechanism. Interestingly, other NLR family members appear to detect pathogens indirectly, perhaps by responding to host cell "stress" caused by the pathogen. Thus, the NLR family may have evolved surprisingly diverse mechanisms for detecting pathogens. PMID:22513803

  19. Infectious Keratitis: Secreted Bacterial Proteins That Mediate Corneal Damage

    PubMed Central

    Marquart, Mary E.; O'Callaghan, Richard J.

    2013-01-01

    Ocular bacterial infections are universally treated with antibiotics, which can eliminate the organism but cannot reverse the damage caused by bacterial products already present. The three very common causes of bacterial keratitis—Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pneumoniae—all produce proteins that directly or indirectly cause damage to the cornea that can result in reduced vision despite antibiotic treatment. Most, but not all, of these proteins are secreted toxins and enzymes that mediate host cell death, degradation of stromal collagen, cleavage of host cell surface molecules, or induction of a damaging inflammatory response. Studies of these bacterial pathogens have determined the proteins of interest that could be targets for future therapeutic options for decreasing corneal damage. PMID:23365719

  20. Bacterial β-Kdo glycosyltransferases represent a new glycosyltransferase family (GT99).

    PubMed

    Ovchinnikova, Olga G; Mallette, Evan; Koizumi, Akihiko; Lowary, Todd L; Kimber, Matthew S; Whitfield, Chris

    2016-05-31

    Kdo (3-deoxy-d-manno-oct-2-ulosonic acid) is an eight-carbon sugar mostly confined to Gram-negative bacteria. It is often involved in attaching surface polysaccharides to their lipid anchors. α-Kdo provides a bridge between lipid A and the core oligosaccharide in all bacterial LPSs, whereas an oligosaccharide of β-Kdo residues links "group 2" capsular polysaccharides to (lyso)phosphatidylglycerol. β-Kdo is also found in a small number of other bacterial polysaccharides. The structure and function of the prototypical cytidine monophosphate-Kdo-dependent α-Kdo glycosyltransferase from LPS assembly is well characterized. In contrast, the β-Kdo counterparts were not identified as glycosyltransferase enzymes by bioinformatics tools and were not represented among the 98 currently recognized glycosyltransferase families in the Carbohydrate-Active Enzymes database. We report the crystallographic structure and function of a prototype β-Kdo GT from WbbB, a modular protein participating in LPS O-antigen synthesis in Raoultella terrigena The β-Kdo GT has dual Rossmann-fold motifs typical of GT-B enzymes, but extensive deletions, insertions, and rearrangements result in a unique architecture that makes it a prototype for a new GT family (GT99). The cytidine monophosphate-binding site in the C-terminal α/β domain closely resembles the corresponding site in bacterial sialyltransferases, suggesting an evolutionary connection that is not immediately evident from the overall fold or sequence similarities. PMID:27199480

  1. Phosphorylation of spore coat proteins by a family of atypical protein kinases.

    PubMed

    Nguyen, Kim B; Sreelatha, Anju; Durrant, Eric S; Lopez-Garrido, Javier; Muszewska, Anna; Dudkiewicz, Małgorzata; Grynberg, Marcin; Yee, Samantha; Pogliano, Kit; Tomchick, Diana R; Pawłowski, Krzysztof; Dixon, Jack E; Tagliabracci, Vincent S

    2016-06-21

    The modification of proteins by phosphorylation occurs in all life forms and is catalyzed by a large superfamily of enzymes known as protein kinases. We recently discovered a family of secretory pathway kinases that phosphorylate extracellular proteins. One member, family with sequence similarity 20C (Fam20C), is the physiological Golgi casein kinase. While examining distantly related protein sequences, we observed low levels of identity between the spore coat protein H (CotH), and the Fam20C-related secretory pathway kinases. CotH is a component of the spore in many bacterial and eukaryotic species, and is required for efficient germination of spores in Bacillus subtilis; however, the mechanism by which CotH affects germination is unclear. Here, we show that CotH is a protein kinase. The crystal structure of CotH reveals an atypical protein kinase-like fold with a unique mode of ATP binding. Examination of the genes neighboring cotH in B. subtilis led us to identify two spore coat proteins, CotB and CotG, as CotH substrates. Furthermore, we show that CotH-dependent phosphorylation of CotB and CotG is required for the efficient germination of B. subtilis spores. Collectively, our results define a family of atypical protein kinases and reveal an unexpected role for protein phosphorylation in spore biology. PMID:27185916

  2. S100 protein family in human cancer

    PubMed Central

    Chen, Hongyan; Xu, Chengshan; Jin, Qing’e; Liu, Zhihua

    2014-01-01

    S100 protein family has been implicated in multiple stages of tumorigenesis and progression. Among the S100 genes, 22 are clustered at chromosome locus 1q21, a region frequently rearranged in cancers. S100 protein possesses a wide range of intracellular and extracellular functions such as regulation of calcium homeostasis, cell proliferation, apoptosis, cell invasion and motility, cytoskeleton interactions, protein phosphorylation, regulation of transcriptional factors, autoimmunity, chemotaxis, inflammation and pluripotency. Many lines of evidence suggest that altered expression of S100 proteins was associated with tumor progression and prognosis. Therefore, S100 proteins might also represent potential tumor biomarkers and therapeutic targets. In this review, we summarize the evidence connecting S100 protein family and cancer and discuss the mechanisms by which S100 exerts its diverse functions. PMID:24660101

  3. Comparative analysis of rigidity across protein families.

    PubMed

    Wells, S A; Jimenez-Roldan, J E; Römer, R A

    2009-01-01

    We present a comparative study in which 'pebble game' rigidity analysis is applied to multiple protein crystal structures, for each of six different protein families. We find that the main-chain rigidity of a protein structure at a given hydrogen bond energy cutoff is quite sensitive to small structural variations, and conclude that the hydrogen bond constraints in rigidity analysis should be chosen so as to form and test specific hypotheses about the rigidity of a particular protein. Our comparative approach highlights two different characteristic patterns ('sudden' or 'gradual') for protein rigidity loss as constraints are removed, in line with recent results on the rigidity transitions of glassy networks. PMID:19773604

  4. Sensory properties of the PII signalling protein family.

    PubMed

    Forchhammer, Karl; Lüddecke, Jan

    2016-02-01

    PII signalling proteins constitute one of the largest families of signalling proteins in nature. An even larger superfamily of trimeric sensory proteins with the same architectural principle as PII proteins appears in protein structure databases. Large surface-exposed flexible loops protrude from the intersubunit faces, where effector molecules are bound that tune the conformation of the loops. Via this mechanism, PII proteins control target proteins in response to cellular ATP/ADP levels and the 2-oxoglutarate status, thereby coordinating the cellular carbon/nitrogen balance. The antagonistic (ATP versus ADP) and synergistic (2-oxoglutarate and ATP) mode of effector molecule binding is further affected by PII -receptor interaction, leading to a highly sophisticated signalling network organized by PII . Altogether, it appears that PII is a multitasking information processor that, depending on its interaction environment, differentially transmits information on the energy status and the cellular 2-oxoglutarate level. In addition to the basic mode of PII function, several bacterial PII proteins may transmit a signal of the cellular glutamine status via covalent modification. Remarkably, during the evolution of plant chloroplasts, glutamine signalling by PII proteins was re-established by acquisition of a short sequence extension at the C-terminus. This plant-specific C-terminus makes the interaction of plant PII proteins with one of its targets, the arginine biosynthetic enzyme N-acetyl-glutamate kinase, glutamine-dependent. PMID:26527104

  5. Protein turbines. I: The bacterial flagellar motor.

    PubMed Central

    Elston, T C; Oster, G

    1997-01-01

    The bacterial flagellar motor is driven by a flux of ions between the cytoplasm and the periplasmic lumen. Here we show how an electrostatic mechanism can convert this ion flux into a rotary torque. We demonstrate that, with reasonable parameters, the model can reproduce many of the experimental measurements. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 11 FIGURE 14 FIGURE 15 p720-a PMID:9251788

  6. Protein quality control in the bacterial periplasm.

    PubMed

    Merdanovic, Melisa; Clausen, Tim; Kaiser, Markus; Huber, Robert; Ehrmann, Michael

    2011-01-01

    Protein quality control involves sensing and treatment of defective or incomplete protein structures. Misfolded or mislocalized proteins trigger dedicated signal transduction cascades that upregulate the production of protein quality-control factors. Corresponding proteases and chaperones either degrade or repair damaged proteins, thereby reducing the level of aggregation-prone molecules. Because the periplasm of gram-negative bacteria is particularly exposed to environmental changes and respective protein-folding stresses connected with the presence of detergents, low or high osmolarity of the medium, elevated temperatures, and the host's immune response, fine-tuned protein quality control systems are essential for survival under these unfavorable conditions. This review discusses recent advances in the identification and characterization of the key cellular factors and the emerging general principles of the underlying molecular mechanisms. PMID:21639788

  7. Bacterial expansins and related proteins from the world of microbes.

    PubMed

    Georgelis, Nikolaos; Nikolaidis, Nikolas; Cosgrove, Daniel J

    2015-05-01

    The discovery of microbial expansins emerged from studies of the mechanism of plant cell growth and the molecular basis of plant cell wall extensibility. Expansins are wall-loosening proteins that are universal in the plant kingdom and are also found in a small set of phylogenetically diverse bacteria, fungi, and other organisms, most of which colonize plant surfaces. They loosen plant cell walls without detectable lytic activity. Bacterial expansins have attracted considerable attention recently for their potential use in cellulosic biomass conversion for biofuel production, as a means to disaggregate cellulosic structures by nonlytic means ("amorphogenesis"). Evolutionary analysis indicates that microbial expansins originated by multiple horizontal gene transfers from plants. Crystallographic analysis of BsEXLX1, the expansin from Bacillus subtilis, shows that microbial expansins consist of two tightly packed domains: the N-terminal domain D1 has a double-ψ β-barrel fold similar to glycosyl hydrolase family-45 enzymes but lacks catalytic residues usually required for hydrolysis; the C-terminal domain D2 has a unique β-sandwich fold with three co-linear aromatic residues that bind β-1,4-glucans by hydrophobic interactions. Genetic deletion of expansin in Bacillus and Clavibacter cripples their ability to colonize plant tissues. We assess reports that expansin addition enhances cellulose breakdown by cellulase and compare expansins with distantly related proteins named swollenin, cerato-platanin, and loosenin. We end in a speculative vein about the biological roles of microbial expansins and their potential applications. Advances in this field will be aided by a deeper understanding of how these proteins modify cellulosic structures. PMID:25833181

  8. Bacterial expansins and related proteins from the world of microbes

    PubMed Central

    Georgelis, Nikolaos; Nikolaidis, Nikolas; Cosgrove, Daniel J.

    2015-01-01

    The discovery of microbial expansins emerged from studies of the mechanism of plant cell growth and the molecular basis of plant cell wall extensibility. Expansins are wall-loosening proteins that are universal in the plant kingdom and are also found in a small set of phylogenetically diverse bacteria, fungi, and other organisms, most of which colonize plant surfaces. They loosen plant cell walls without detectable lytic activity. Bacterial expansins have attracted considerable attention recently for their potential use in cellulosic biomass conversion for biofuel production, as a means to disaggregate cellulosic structures by non-lytic means (‘amorphogenesis’). Evolutionary analysis indicates that microbial expansins originated by multiple horizontal gene transfers from plants. Crystallographic analysis of BsEXLX1, the expansin from Bacillus subtilis, shows that microbial expansins consist of two tightly-packed domains: the N-terminal domain D1 has a double-ψ β-barrel fold similar to glycosyl hydrolase family-45 enzymes, but lacks catalytic residues usually required for hydrolysis; the C-terminal domain D2 has a unique β-sandwich fold with three co-linear aromatic residues that bind β-1,4-glucans by hydrophobic interactions. Genetic deletion of expansin in Bacillus and Clavibacter cripples their ability to colonize plant tissues. We assess reports that expansin addition enhances cellulose breakdown by cellulase and compare expansins with distantly related proteins named swollenin, cerato-platanin and loosenin. We end in a speculative vein about the biological roles of microbial expansins and their potential applications. Advances in this field will be aided by a deeper understanding of how these proteins modify cellulosic structures. PMID:25833181

  9. Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation.

    PubMed

    Yang, Jieling; Zhao, Yue; Shi, Jianjin; Shao, Feng

    2013-08-27

    Inflammasome mediated by central nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) protein is critical for defense against bacterial infection. Here we show that type III secretion system (T3SS) needle proteins from several bacterial pathogens, including Salmonella typhimurium, enterohemorrhagic Escherichia coli, Shigella flexneri, and Burkholderia spp., can induce robust inflammasome activation in both human monocyte-derived and mouse bone marrow macrophages. Needle protein activation of human NRL family CARD domain containing 4 (NLRC4) inflammasome requires the sole human neuronal apoptosis inhibitory protein (hNAIP). Among the seven mouse NAIPs, NAIP1 functions as the mouse counterpart of hNAIP. We found that NAIP1 recognition of T3SS needle proteins was more robust in mouse dendritic cells than in bone marrow macrophages. Needle proteins, as well as flagellin and rod proteins from five different bacteria, exhibited differential and cell type-dependent inflammasome-stimulating activity. Comprehensive profiling of the three types of NAIP ligands revealed that NAIP1 sensing of the needle protein dominated S. flexneri-induced inflammasome activation, particularly in dendritic cells. hNAIP/NAIP1 and NAIP2/5 formed a large oligomeric complex with NLRC4 in the presence of corresponding bacterial ligands, and could support reconstitution of the NLRC4 inflammasome in a ligand-specific manner. PMID:23940371

  10. Opa+ Neisseria gonorrhoeae Exhibits Reduced Survival in Human Neutrophils Via Src Family Kinase-Mediated Bacterial Trafficking Into Mature Phagolysosomes

    PubMed Central

    Johnson, M. Brittany; Ball, Louise M.; Daily, Kylene P.; Martin, Jennifer N.; Columbus, Linda; Criss, Alison K.

    2015-01-01

    Summary During gonorrheal infection, there is a heterogeneous population of Neisseria gonorrhoeae (Gc) varied in their expression of opacity-associated (Opa) proteins. While Opa proteins are important for bacterial attachment and invasion of epithelial cells, Opa+ Gc has a survival defect after exposure to neutrophils. Here, we use constitutively Opa- and OpaD+ Gc in strain background FA1090 to show that Opa+ Gc is more sensitive to killing inside adherent, chemokine-treated primary human neutrophils due to increased bacterial residence in mature, degradative phagolysosomes that contain primary and secondary granule antimicrobial content. Although Opa+ Gc stimulates a potent oxidative burst, neutrophil killing of Opa+ Gc was instead attributable to non-oxidative components, particularly neutrophil proteases and the bactericidal/permeability-increasing protein. Blocking interaction of Opa+ Gc with carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) or inhibiting Src family kinase signaling, which is downstream of CEACAM activation, enhanced the survival of Opa+ Gc in neutrophils. Src family kinase signaling was required for fusion of Gc phagosomes with primary granules to generate mature phagolysosomes. Conversely, ectopic activation of Src family kinases or coinfection with Opa+ Gc resulted in decreased survival of Opa- Gc in neutrophils. From these results, we conclude that Opa protein expression is an important modulator of Gc survival characteristics in neutrophils by influencing phagosome dynamics and thus bacterial exposure to neutrophils’ full antimicrobial arsenal. PMID:25346239

  11. Homologs of the Acinetobacter baumannii AceI Transporter Represent a New Family of Bacterial Multidrug Efflux Systems

    PubMed Central

    Liu, Qi; Henderson, Peter J. F.

    2015-01-01

    ABSTRACT Multidrug efflux systems are a major cause of resistance to antimicrobials in bacteria, including those pathogenic to humans, animals, and plants. These proteins are ubiquitous in these pathogens, and five families of bacterial multidrug efflux systems have been identified to date. By using transcriptomic and biochemical analyses, we recently identified the novel AceI (Acinetobacter chlorhexidine efflux) protein from Acinetobacter baumannii that conferred resistance to the biocide chlorhexidine, via an active efflux mechanism. Proteins homologous to AceI are encoded in the genomes of many other bacterial species and are particularly prominent within proteobacterial lineages. In this study, we expressed 23 homologs of AceI and examined their resistance and/or transport profiles. MIC analyses demonstrated that, like AceI, many of the homologs conferred resistance to chlorhexidine. Many of the AceI homologs conferred resistance to additional biocides, including benzalkonium, dequalinium, proflavine, and acriflavine. We conducted fluorimetric transport assays using the AceI homolog from Vibrio parahaemolyticus and confirmed that resistance to both proflavine and acriflavine was mediated by an active efflux mechanism. These results show that this group of AceI homologs represent a new family of bacterial multidrug efflux pumps, which we have designated the proteobacterial antimicrobial compound efflux (PACE) family of transport proteins. PMID:25670776

  12. Bacterial pore-forming proteins as anthelmintics

    PubMed Central

    2013-01-01

    Crystal (Cry) proteins are made by the Gram-positive bacterium Bacillus thuringiensis (Bt). Cry proteins are pore-forming proteins and are the most widely used biological insecticides in the world. Our laboratory found some Cry proteins are highly effective against a broad range of nematodes (roundworms). Here, we discuss our results of Cry protein activity against intestinal roundworms. Both Cry5B and Cry21A have therapeutic activities against infections of the roundworm Heligmosomoides polygyrus bakeri in mice. Cry5B also shows highly therapeutic activity against Ancylostoma ceylanicum infection in hamsters. A. ceylanicum is a minor hookworm parasite of humans, and it is closely related to the more prevalent Ancylostoma duodenale. In addition, Cry proteins show excellent combinatorial therapeutic properties with nicotinic acetylcholine receptor (nAChR) agonists, one of the two classes of compounds approved by the World Health Organization for the treatment for intestinal roundworms in humans. Given their non-toxicity to humans and their broad spectrum of nematicidal action, Cry proteins show great potential as next-generation anthelmintics. PMID:22562659

  13. Function, structure, and mechanism in bacterial photosensory LOV proteins

    PubMed Central

    Herrou, Julien; Crosson, Sean

    2012-01-01

    LOV domains are protein photosensors conserved in bacteria, archaea, plants and fungi that detect blue light via a flavin cofactor. In the bacterial kingdom, LOV domains are present in both chemotrophic and phototrophic species, where they are found N-terminally of signaling and regulatory domains such as sensor histidine kinases, diguanylate cyclases/phosphodiesterases, DNA-binding domains, and σ factor regulators. In this review, we describe the current state of knowledge on the function of bacterial LOV proteins, the structural basis of LOV domain-mediated signal transduction, and the use of LOV domains as genetically-encoded photoswitches in synthetic biology. PMID:21822294

  14. Electronic structure of bacterial surface protein layers

    SciTech Connect

    Maslyuk, Volodymyr V.; Mertig, Ingrid; Bredow, Thomas; Mertig, Michael; Vyalikh, Denis V.; Molodtsov, Serguei L.

    2008-01-15

    We report an approach for the calculation of the electronic density of states of the dried two-dimensional crystalline surface protein layer (S layer) of the bacterium Bacillus sphaericus NCTC 9602. The proposed model is based on the consideration of individual amino acids in the corresponding conformation of the peptide chain which additively contribute to the electronic structure of the entire protein complex. The derived results agree well with the experimental data obtained by means of photoemission (PE), resonant PE, and near-edge x-ray absorption spectroscopy.

  15. Secretion of a bacterial protein by mammalian cells.

    PubMed

    Clément, J M; Jehanno, M

    1995-12-15

    The MalE protein is a periplasmic maltooligosaccharide binding protein from Escherichia coli. This protein is widely used as a model for protein export in bacteria and as a vector for the export and one-step affinity purification of foreign polypeptides. Expression of MalE was studied in various animal cell lines. The protein was exported into the culture medium, following the classical pathway of eukaryotic protein secretion. This was shown by a combination of approaches including the use of inhibitors of the Golgi complex and immunocytological methods. The signal sequence of MalE is required for secretion and a specific signal can be added to MalE that targets it to the endoplasmic reticulum. This work opens the way to the study of the secretion of a bacterial protein and to its use as a vector for protein secretion and purification from mammalian cells. PMID:8590643

  16. Identification of ligands for bacterial sensor proteins.

    PubMed

    Fernández, Matilde; Morel, Bertrand; Corral-Lugo, Andrés; Rico-Jiménez, Miriam; Martín-Mora, David; López-Farfán, Diana; Reyes-Darias, José Antonio; Matilla, Miguel A; Ortega, Álvaro; Krell, Tino

    2016-02-01

    Bacteria have evolved a variety of different signal transduction mechanisms. However, the cognate signal molecule for the very large amount of corresponding sensor proteins is unknown and their functional annotation represents a major bottleneck in the field of signal transduction. The knowledge of the signal molecule is an essential prerequisite to understand the signalling mechanisms. Recently, the identification of signal molecules by the high-throughput protein screening of commercially available ligand collections using differential scanning fluorimetry has shown promise to resolve this bottleneck. Based on the analysis of a significant number of different ligand binding domains (LBDs) in our laboratory, we identified two issues that need to be taken into account in the experimental design. Since a number of LBDs require the dimeric state for ligand recognition, it has to be assured that the protein analysed is indeed in the dimeric form. A number of other examples demonstrate that purified LBDs can contain bound ligand which prevents further binding. In such cases, the apo-form can be generated by denaturation and subsequent refolding. We are convinced that this approach will accelerate the functional annotation of sensor proteins which will help to understand regulatory circuits in bacteria. PMID:26511375

  17. FIGfams : yet another set of protein families.

    SciTech Connect

    Meyer, F.; Overbeek, R.; Rodriguez, A.; Mathematics and Computer Science; Univ. of Chicago; Fellowship for the Interpretation of Genomes

    2009-11-01

    We present FIGfams, a new collection of over 100,000 protein families that are the product of manual curation and close strain comparison. Using the Subsystem approach the manual curation is carried out, ensuring a previously unattained degree of throughput and consistency. FIGfams are based on over 950,000 manually annotated proteins and across many hundred Bacteria and Archaea. Associated with each FIGfam is a two-tiered, rapid, accurate decision procedure to determine family membership for new proteins. FIGfams are freely available under an open source license. These can be downloaded at ftp://ftp.theseed.org/FIGfams/. The web site for FIGfams is http://www.theseed.org/wiki/FIGfams/.

  18. Bacterial characterization using protein profiling in a microchip separations platform.

    PubMed

    Pizarro, Shelly A; Lane, Pamela; Lane, Todd W; Cruz, Evelyn; Haroldsen, Brent; VanderNoot, Victoria A

    2007-12-01

    A rapid microanalytical protein-based approach to bacterial characterization is presented. Chip gel electrophoresis (CGE) coupled with LIF detection was used to analyze lysates from different bacterial cell lines to obtain signature profiles of the soluble protein composition. The study includes Escherichia coli, Bacillus subtilis, and Bacillus anthracis (Delta Sterne strain) vegetative cells as well as endospores formed from the latter two species as model organisms to demonstrate the method. A unified protein preparation protocol was developed for both cell types to streamline the benchtop process and aid future automation. Cells and spores were lysed and proteins solubilized using a combination of thermal and chemical lysis methods. Reducing agents, necessary to solubilize spore proteins, were eliminated using a small-scale rapid size-exclusion chromatography step to eliminate interference with down-stream protein labeling. This approach was found to be compatible with nonspore cells (i.e., vegetative cells) as well, not adversely impacting the protein signatures. Data are presented demonstrating distinct CGE protein signatures for our model organisms, suggesting the potential for discrimination of organisms on the basis of empirical protein patterns. The goal of this work is to develop a fast and field-portable method for characterizing bacteria via their proteomes. PMID:18008300

  19. On the Entropy of Protein Families

    NASA Astrophysics Data System (ADS)

    Barton, John P.; Chakraborty, Arup K.; Cocco, Simona; Jacquin, Hugo; Monasson, Rémi

    2016-03-01

    Proteins are essential components of living systems, capable of performing a huge variety of tasks at the molecular level, such as recognition, signalling, copy, transport, ... The protein sequences realizing a given function may largely vary across organisms, giving rise to a protein family. Here, we estimate the entropy of those families based on different approaches, including Hidden Markov Models used for protein databases and inferred statistical models reproducing the low-order (1- and 2-point) statistics of multi-sequence alignments. We also compute the entropic cost, that is, the loss in entropy resulting from a constraint acting on the protein, such as the mutation of one particular amino-acid on a specific site, and relate this notion to the escape probability of the HIV virus. The case of lattice proteins, for which the entropy can be computed exactly, allows us to provide another illustration of the concept of cost, due to the competition of different folds. The relevance of the entropy in relation to directed evolution experiments is stressed.

  20. Structural and Sequence Analysis of Imelysin-Like Proteins Implicated in Bacterial Iron Uptake

    PubMed Central

    Xu, Qingping; Rawlings, Neil D.; Farr, Carol L.; Chiu, Hsiu-Ju; Grant, Joanna C.; Jaroszewski, Lukasz; Klock, Heath E.; Knuth, Mark W.; Miller, Mitchell D.; Weekes, Dana; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2011-01-01

    Imelysin-like proteins define a superfamily of bacterial proteins that are likely involved in iron uptake. Members of this superfamily were previously thought to be peptidases and were included in the MEROPS family M75. We determined the first crystal structures of two remotely related, imelysin-like proteins. The Psychrobacter arcticus structure was determined at 2.15 Å resolution and contains the canonical imelysin fold, while higher resolution structures from the gut bacteria Bacteroides ovatus, in two crystal forms (at 1.25 Å and 1.44 Å resolution), have a circularly permuted topology. Both structures are highly similar to each other despite low sequence similarity and circular permutation. The all-helical structure can be divided into two similar four-helix bundle domains. The overall structure and the GxHxxE motif region differ from known HxxE metallopeptidases, suggesting that imelysin-like proteins are not peptidases. A putative functional site is located at the domain interface. We have now organized the known homologous proteins into a superfamily, which can be separated into four families. These families share a similar functional site, but each has family-specific structural and sequence features. These results indicate that imelysin-like proteins have evolved from a common ancestor, and likely have a conserved function. PMID:21799754

  1. The Extended Family of Protein Tyrosine Phosphatases.

    PubMed

    Alonso, Andrés; Nunes-Xavier, Caroline E; Bayón, Yolanda; Pulido, Rafael

    2016-01-01

    In higher eukaryotes, the Tyr phosphorylation status of cellular proteins results from the coordinated action of Protein Tyrosine Kinases (PTKs) and Protein Tyrosine Phosphatases (PTPs). PTPs have emerged as highly regulated enzymes with diverse substrate specificity, and proteins with Tyr-dephosphorylation or Tyr-dephosphorylation-like properties can be clustered as the PTPome. This includes proteins from the PTP superfamily, which display a Cys-based catalytic mechanism, as well as enzymes from other gene families (Asp-based phosphatases, His-based phosphatases) that have converged in protein Tyr-dephosphorylation-related functions by using non-Cys-based catalytic mechanisms. Within the Cys-based members of the PTPome, classical PTPs dephosphorylate specific phosphoTyr (pTyr) residues from protein substrates, whereas VH1-like dual-specificity PTPs dephosphorylate pTyr, pSer, and pThr residues, as well as nonproteinaceous substrates, including phosphoinositides and phosphorylated carbohydrates. In addition, several PTPs have impaired catalytic activity as a result of amino acid substitutions at their active sites, but retain regulatory functions related with pTyr signaling. As a result of their relevant biological activity, many PTPs are linked to human disease, including cancer, neurodevelopmental, and metabolic diseases, making these proteins important drug targets and molecular markers in the clinic. Here, a brief overview on the biochemistry and physiology of the different groups of proteins that belong to the mammalian PTPome is presented. PMID:27514797

  2. Conserved Features in the Structure, Mechanism, and Biogenesis of the Inverse Autotransporter Protein Family.

    PubMed

    Heinz, Eva; Stubenrauch, Christopher J; Grinter, Rhys; Croft, Nathan P; Purcell, Anthony W; Strugnell, Richard A; Dougan, Gordon; Lithgow, Trevor

    2016-01-01

    The bacterial cell surface proteins intimin and invasin are virulence factors that share a common domain structure and bind selectively to host cell receptors in the course of bacterial pathogenesis. The β-barrel domains of intimin and invasin show significant sequence and structural similarities. Conversely, a variety of proteins with sometimes limited sequence similarity have also been annotated as "intimin-like" and "invasin" in genome datasets, while other recent work on apparently unrelated virulence-associated proteins ultimately revealed similarities to intimin and invasin. Here we characterize the sequence and structural relationships across this complex protein family. Surprisingly, intimins and invasins represent a very small minority of the sequence diversity in what has been previously the "intimin/invasin protein family". Analysis of the assembly pathway for expression of the classic intimin, EaeA, and a characteristic example of the most prevalent members of the group, FdeC, revealed a dependence on the translocation and assembly module as a common feature for both these proteins. While the majority of the sequences in the grouping are most similar to FdeC, a further and widespread group is two-partner secretion systems that use the β-barrel domain as the delivery device for secretion of a variety of virulence factors. This comprehensive analysis supports the adoption of the "inverse autotransporter protein family" as the most accurate nomenclature for the family and, in turn, has important consequences for our overall understanding of the Type V secretion systems of bacterial pathogens. PMID:27190006

  3. TIGRFAMS: The TIGRFAMs database of protein families

    DOE Data Explorer

    TIGRFAMs are protein families based on Hidden Markov Models or HMMs. Use this page to see the curated seed alignmet for each TIGRFam, the full alignment of all family members and the cutoff scores for inclusion in each of the TIGRFAMs. Also use this page to search through the TIGRFAMs and HMMs for text in the TIGRFAMs Text Search or search for specific sequences in the TIGRFAMs Sequence Search.[Copied from the Overview at http://www.jcvi.org/cms/research/projects/tigrfams/overview/] See also TIGRFAMs ordered by the roles they play at http://cmr.jcvi.org/tigr-scripts/CMR/shared/EvidenceList.cgi?ev_type=TIGRFAM&order_type=role.

  4. A structural DNA binding protein of African swine fever virus with similarity to bacterial histone-like proteins.

    PubMed

    Borca, M V; Irusta, P M; Kutish, G F; Carillo, C; Afonso, C L; Burrage, A T; Neilan, J G; Rock, D L

    1996-01-01

    Here we describe an African swine fever virus (ASFV) protein encoded by the open reading frame 5-AR that shares structural and functional similarities with the family of bacterial histone-like proteins which include histone-like DNA binding proteins, integration host factor, and Bacillus phage SPO1 transcription factor, TF1. The ASFV 5-AR gene was cloned by PCR and expressed in E. coli. Monospecific antiserum prepared to the 5-AR bacterial expression product specifically immunoprecipitated a protein of approximately 11.6 kDa from ASFV infected swine macrophages at late times post infection. Additionally, the 5-AR expression product was strongly recognized by ASFV convalescent pig serum, indicating its antigenicity during natural infection. Cloned p11.6 bound both double and single stranded DNA-cellulose columns. Consistent with a DNA binding function, immunoelectronmicroscopy localized p11.6 to the virion nucleoid, To our knowledge, p11.6 is the first bacterial histone-like DNA-binding protein found in an animal virus or eukaryotic cell system. PMID:8634022

  5. Effect of Dietary Protein Levels on Composition of Odorous Compounds and Bacterial Ecology in Pig Manure.

    PubMed

    Cho, Sungback; Hwang, Okhwa; Park, Sungkwon

    2015-09-01

    This study was performed to investigate the effect of different levels of dietary crude protein (CP) on composition of odorous compounds and bacterial communities in pig manure. A total of 48 male pigs (average initial body weight 45 kg) fed diets containing three levels of dietary CP (20%, 17.5%, and 15%) and their slurry samples were collected from the pits under the floor every week for one month. Changes in composition of odorous compounds and bacterial communities were analyzed by gas chromatography and 454 FLX titanium pyrosequencing systems, respectively. Levels of phenols, indoles, short chain fatty acid and branched chain fatty acid were lowest (p<0.05) in CP 15% group among three CP levels. Relative abundance of Bacteroidetes phylum and bacterial genera including Leuconostoc, Bacillus, Atopostipes, Peptonphilus, Ruminococcaceae_uc, Bacteroides, and Pseudomonas was lower (p<0.05) in CP 15% than in CP 20% group. There was a positive correlation (p<0.05) between odorous compounds and bacterial genera: phenol, indole, iso-butyric acid, and iso-valeric acid with Atopostipes, p-cresol and skatole with Bacteroides, acetic acid and butyric acid with AM982595_g of Porphyromonadaceae family, and propionic acid with Tissierella. Taken together, administration of 15% CP showed less production of odorous compounds than 20% CP group and this result might be associated with the changes in bacterial communities especially whose roles in protein metabolism. PMID:26194219

  6. Effect of Dietary Protein Levels on Composition of Odorous Compounds and Bacterial Ecology in Pig Manure

    PubMed Central

    Cho, Sungback; Hwang, Okhwa; Park, Sungkwon

    2015-01-01

    This study was performed to investigate the effect of different levels of dietary crude protein (CP) on composition of odorous compounds and bacterial communities in pig manure. A total of 48 male pigs (average initial body weight 45 kg) fed diets containing three levels of dietary CP (20%, 17.5%, and 15%) and their slurry samples were collected from the pits under the floor every week for one month. Changes in composition of odorous compounds and bacterial communities were analyzed by gas chromatography and 454 FLX titanium pyrosequencing systems, respectively. Levels of phenols, indoles, short chain fatty acid and branched chain fatty acid were lowest (p<0.05) in CP 15% group among three CP levels. Relative abundance of Bacteroidetes phylum and bacterial genera including Leuconostoc, Bacillus, Atopostipes, Peptonphilus, Ruminococcaceae_uc, Bacteroides, and Pseudomonas was lower (p<0.05) in CP 15% than in CP 20% group. There was a positive correlation (p<0.05) between odorous compounds and bacterial genera: phenol, indole, iso-butyric acid, and iso-valeric acid with Atopostipes, p-cresol and skatole with Bacteroides, acetic acid and butyric acid with AM982595_g of Porphyromonadaceae family, and propionic acid with Tissierella. Taken together, administration of 15% CP showed less production of odorous compounds than 20% CP group and this result might be associated with the changes in bacterial communities especially whose roles in protein metabolism. PMID:26194219

  7. Prolonged inhibition of bacterial protein synthesis abolishes Salmonella invasion.

    PubMed Central

    MacBeth, K J; Lee, C A

    1993-01-01

    We have found that prolonged inhibition of bacterial protein synthesis abolishes the ability of Salmonella typhimurium to enter HEp-2 cells. Our results suggest that an essential invasion factor has a functional half-life that is seen as a gradual loss of invasiveness in the absence of protein synthesis. Therefore, Salmonella invasiveness appears to be a transient phenotype that is lost unless protein synthesis is maintained. This finding may explain why salmonellae grown to stationary phase lose their ability to enter cultured cells. In addition, a short-lived capacity to enter cells may be important during infection so that bacterial invasiveness is limited to certain times and host sites during pathogenesis. PMID:8454361

  8. Bacterial GRAS domain proteins throw new light on gibberellic acid response mechanisms

    PubMed Central

    Zhang, Dapeng; Iyer, Lakshminarayan M.; Aravind, L.

    2012-01-01

    Summary: Gibberellic acids (GAs) are key plant hormones, regulating various aspects of growth and development, which have been at the center of the ‘green revolution’. GRAS family proteins, the primary players in GA signaling pathways, remain poorly understood. Using sequence-profile searches, structural comparisons and phylogenetic analysis, we establish that the GRAS family first emerged in bacteria and belongs to the Rossmann fold methyltransferase superfamily. All bacterial and a subset of plant GRAS proteins are likely to function as small-molecule methylases. The remaining plant versions have lost one or more AdoMet (SAM)-binding residues while preserving their substrate-binding residues. We predict that GRAS proteins might either modify or bind small molecules such as GAs or their derivatives. Contact: aravind@ncbi.nlm.nih.gov Supplementary Information: Supplementary Material for this article is available at Bioinformatics online. PMID:22829623

  9. Structural Aspects of Bacterial Outer Membrane Protein Assembly.

    PubMed

    Calmettes, Charles; Judd, Andrew; Moraes, Trevor F

    2015-01-01

    The outer membrane of Gram-negative bacteria is predominantly populated by β-Barrel proteins and lipid anchored proteins that serve a variety of biological functions. The proper folding and assembly of these proteins is essential for bacterial viability and often plays a critical role in virulence and pathogenesis. The β-barrel assembly machinery (Bam) complex is responsible for the proper assembly of β-barrels into the outer membrane of Gram-negative bacteria, whereas the localization of lipoproteins (Lol) system is required for proper targeting of lipoproteins to the outer membrane. PMID:26621472

  10. Co-translational protein targeting to the bacterial membrane

    PubMed Central

    Saraogi, Ishu; Shan, Shu-ou

    2013-01-01

    Co-translational protein targeting by the Signal Recognition Particle (SRP) is an essential cellular pathway that couples the synthesis of nascent proteins to their proper cellular localization. The bacterial SRP, which contains the minimal ribonucleoprotein core of this universally conserved targeting machine, has served as a paradigm for understanding the molecular basis of protein localization in all cells. In this review, we highlight recent biochemical and structural insights into the molecular mechanisms by which fundamental challenges faced by protein targeting machineries are met in the SRP pathway. Collectively, these studies elucidate how an essential SRP RNA and two regulatory GTPases in the SRP and SRP receptor (SR) enable this targeting machinery to recognize, sense and respond to its biological effectors, i.e. the cargo protein, the target membrane and the translocation machinery, thus driving efficient and faithful co-translational protein targeting. PMID:24513458

  11. Lethal protein produced in response to competition between sibling bacterial colonies

    PubMed Central

    Be’er, Avraham; Ariel, Gil; Kalisman, Oren; Helman, Yael; Sirota-Madi, Alexandra; Zhang, H.P.; Florin, E.-L.; Payne, Shelley M.; Ben-Jacob, Eshel; Swinney, Harry L.

    2010-01-01

    Sibling Paenibacillus dendritiformis bacterial colonies grown on low-nutrient agar medium mutually inhibit growth through secretion of a lethal factor. Analysis of secretions reveals the presence of subtilisin (a protease) and a 12 kDa protein, termed sibling lethal factor (Slf). Purified subtilisin promotes the growth and expansion of P. dendritiformis colonies, whereas Slf is lethal and lyses P. dendritiformis cells in culture. Slf is encoded by a gene belonging to a large family of bacterial genes of unknown function, and the gene is predicted to encode a protein of approximately 20 kDa, termed dendritiformis sibling bacteriocin. The 20 kDa recombinant protein was produced and found to be inactive, but exposure to subtilisin resulted in cleavage to the active, 12 kDa form. The experimental results, combined with mathematical modeling, show that subtilisin serves to regulate growth of the colony. Below a threshold concentration, subtilisin promotes colony growth and expansion. However, once it exceeds a threshold, as occurs at the interface between competing colonies, Slf is then secreted into the medium to rapidly reduce cell density by lysis of the bacterial cells. The presence of genes encoding homologs of dendritiformis sibling bacteriocin in other bacterial species suggests that this mechanism for self-regulation of colony growth might not be limited to P. dendritiformis. PMID:20308591

  12. Optimized bacterial expression of myocilin proteins and functional comparison of bacterial and eukaryotic myocilins

    PubMed Central

    Park, Bum-Chan; Shen, Xiang; Fautsch, Michael P.; Tibudan, Martin; Johnson, Douglas H.; Yue, Beatrice Y. J. T.

    2007-01-01

    Purpose To maximize the expression level of myocilin and its truncated proteins in Escherichia coli (E. coli) and to examine the biological effects of bacterially expressed myocilin as compared to eukaryotic myocilin on cultured human trabecular meshwork (TM) cells. Methods Myocilin full length (1-504 amino acids) and two truncated proteins, myocilin 1-270 and 271-504, were expressed and purified from an E. coli strain, Rosetta2(DE3)pLysS. The eukaryotic myocilin was purified from cultured medium of a transformed TM cell line (TM5) transduced with feline immunodeficiency virus that contains an internal cassette expressing full length myocilin. The morphology and adhesion of human TM cells plated either on fibronectin alone or on fibronectin/purified myocilin mixtures were assessed by phase contrast microscopy. Actin cytoskeleton was examined using Oregon Green phalloidin. Immunofluorescence staining for paxillin was also performed. Results The expression of full length and truncated myocilin proteins in Rosetta2(DE3)pLysS was markedly increased especially when the bacteria were grown in media supplemented with 1.0% glucose. Cell adhesion was impaired and microspikes were formed when TM cells were plated onto fibronectin/bacterial full length myocilin mixtures. Loss of actin stress fibers and focal adhesions was also observed. This myocilin phenotype was also seen with myocilin 1-270, but not with myocilin 271-504. The eukaryotic full length myocilin produced nearly identical de-adhesive effects as those of the bacterially expressed myocilin. Conclusions The condition for a high level expression of full length and truncated myocilins in E. coli was optimized. The bacterial and eukaryotic recombinant full length myocilin produced similar biological consequence on TM cells. The myocilin phenotype appears to be largely due to the NH2-terminal half of the protein. PMID:16902400

  13. Blocking of bacterial biofilm formation by a fish protein coating.

    PubMed

    Vejborg, Rebecca Munk; Klemm, Per

    2008-06-01

    Bacterial biofilm formation on inert surfaces is a significant health and economic problem in a wide range of environmental, industrial, and medical areas. Bacterial adhesion is generally a prerequisite for this colonization process and, thus, represents an attractive target for the development of biofilm-preventive measures. We have previously found that the preconditioning of several different inert materials with an aqueous fish muscle extract, composed primarily of fish muscle alpha-tropomyosin, significantly discourages bacterial attachment and adhesion to these surfaces. Here, this proteinaceous coating is characterized with regards to its biofilm-reducing properties by using a range of urinary tract infectious isolates with various pathogenic and adhesive properties. The antiadhesive coating significantly reduced or delayed biofilm formation by all these isolates under every condition examined. The biofilm-reducing activity did, however, vary depending on the substratum physicochemical characteristics and the environmental conditions studied. These data illustrate the importance of protein conditioning layers with respect to bacterial biofilm formation and suggest that antiadhesive proteins may offer an attractive measure for reducing or delaying biofilm-associated infections. PMID:18424549

  14. Bacterial Vegetative Insecticidal Proteins (Vip) from Entomopathogenic Bacteria.

    PubMed

    Chakroun, Maissa; Banyuls, Núria; Bel, Yolanda; Escriche, Baltasar; Ferré, Juan

    2016-06-01

    Entomopathogenic bacteria produce insecticidal proteins that accumulate in inclusion bodies or parasporal crystals (such as the Cry and Cyt proteins) as well as insecticidal proteins that are secreted into the culture medium. Among the latter are the Vip proteins, which are divided into four families according to their amino acid identity. The Vip1 and Vip2 proteins act as binary toxins and are toxic to some members of the Coleoptera and Hemiptera. The Vip1 component is thought to bind to receptors in the membrane of the insect midgut, and the Vip2 component enters the cell, where it displays its ADP-ribosyltransferase activity against actin, preventing microfilament formation. Vip3 has no sequence similarity to Vip1 or Vip2 and is toxic to a wide variety of members of the Lepidoptera. Its mode of action has been shown to resemble that of the Cry proteins in terms of proteolytic activation, binding to the midgut epithelial membrane, and pore formation, although Vip3A proteins do not share binding sites with Cry proteins. The latter property makes them good candidates to be combined with Cry proteins in transgenic plants (Bacillus thuringiensis-treated crops [Bt crops]) to prevent or delay insect resistance and to broaden the insecticidal spectrum. There are commercially grown varieties of Bt cotton and Bt maize that express the Vip3Aa protein in combination with Cry proteins. For the most recently reported Vip4 family, no target insects have been found yet. PMID:26935135

  15. Nramp defines a family of membrane proteins.

    PubMed Central

    Cellier, M; Privé, G; Belouchi, A; Kwan, T; Rodrigues, V; Chia, W; Gros, P

    1995-01-01

    Nramp (natural resistance-associated macrophage protein) is a newly identified family of integral membrane proteins whose biochemical function is unknown. We report on the identification of Nramp homologs from the fly Drosophila melanogaster, the plant Oryza sativa, and the yeast Saccharomyces cerevisiae. Optimal alignment of protein sequences required insertion of very few gaps and revealed remarkable sequence identity of 28% (yeast), 40% (plant), and 55% (fly) with the mammalian proteins (46%, 58%, and 73% similarity), as well as a common predicted transmembrane topology. This family is defined by a highly conserved hydrophobic core encoding 10 transmembrane segments. Other features of this hydrophobic core include several invariant charged residues, helical periodicity of sequence conservation suggesting conserved and nonconserved faces for several transmembrane helices, a consensus transport signature on the intracytoplasmic face of the membrane, and structural determinants previously described in ion channels. These characteristics suggest that the Nramp polypeptides form part of a group of transporters or channels that act on as yet unidentified substrates. Images Fig. 1 PMID:7479731

  16. Inactivation of indispensable bacterial proteins by early proteins of bacteriophages: implication in antibacterial drug discovery.

    PubMed

    Sau, S; Chattoraj, P; Ganguly, T; Chanda, P K; Mandal, N C

    2008-06-01

    Bacteriophages utilize host bacterial cellular machineries for their own reproduction and completion of life cycles. The early proteins that phage synthesize immediately after the entry of their genomes into bacterial cells participate in inhibiting host macromolecular biosynthesis, initiating phage-specific replication and synthesizing late proteins. Inhibition of synthesis of host macromolecules that eventually leads to cell death is generally performed by the physical and/or chemical modification of indispensable host proteins by early proteins. Interestingly, most modified bacterial proteins were shown to take part actively in phage-specific transcription and replication. Research on phages in last nine decades has demonstrated such lethal early proteins that interact with or chemically modify indispensable host proteins. Among the host proteins inhibited by lethal phage proteins, several are not inhibited by any chemical inhibitor available today. Under the context of widespread dissemination of antibiotic-resistant strains of pathogenic bacteria in recent years, the information of lethal phage proteins and cognate host proteins could be extremely invaluable as they may lead to the identification of novel antibacterial compounds. In this review, we summarize the current knowledge about some early phage proteins, their cognate host proteins and their mechanism of action and also describe how the above interacting proteins had been exploited in antibacterial drug discovery. PMID:18537683

  17. Transmitter and receiver modules in bacterial signaling proteins.

    PubMed Central

    Kofoid, E C; Parkinson, J S

    1988-01-01

    Prokaryotes are capable of sophisticated sensory behaviors. We have detected sequence motifs in bacterial signaling proteins that may act as transmitter or receiver modules in mediating protein-protein communication. These modules appear to retain their functional identities in many protein hosts, implying that they are structurally independent elements. We propose that the fundamental activity characterizing these domains is specific recognition and association of matched modules, accompanied by conformational changes in one or both of the interacting elements. Signal propagation is a natural consequence of this behavior. The versatility of this information-processing strategy is evident in the chemotaxis machinery of Escherichia coli, where proteins containing transmitters or receivers are linked in "dyadic relays" to form complex signaling networks. Images PMID:3293046

  18. Gibbs motif sampling: detection of bacterial outer membrane protein repeats.

    PubMed Central

    Neuwald, A. F.; Liu, J. S.; Lawrence, C. E.

    1995-01-01

    The detection and alignment of locally conserved regions (motifs) in multiple sequences can provide insight into protein structure, function, and evolution. A new Gibbs sampling algorithm is described that detects motif-encoding regions in sequences and optimally partitions them into distinct motif models; this is illustrated using a set of immunoglobulin fold proteins. When applied to sequences sharing a single motif, the sampler can be used to classify motif regions into related submodels, as is illustrated using helix-turn-helix DNA-binding proteins. Other statistically based procedures are described for searching a database for sequences matching motifs found by the sampler. When applied to a set of 32 very distantly related bacterial integral outer membrane proteins, the sampler revealed that they share a subtle, repetitive motif. Although BLAST (Altschul SF et al., 1990, J Mol Biol 215:403-410) fails to detect significant pairwise similarity between any of the sequences, the repeats present in these outer membrane proteins, taken as a whole, are highly significant (based on a generally applicable statistical test for motifs described here). Analysis of bacterial porins with known trimeric beta-barrel structure and related proteins reveals a similar repetitive motif corresponding to alternating membrane-spanning beta-strands. These beta-strands occur on the membrane interface (as opposed to the trimeric interface) of the beta-barrel. The broad conservation and structural location of these repeats suggests that they play important functional roles. PMID:8520488

  19. Pathogenic Leptospira species express surface-exposed proteins belonging to the bacterial immunoglobulin superfamily.

    PubMed

    Matsunaga, James; Barocchi, Michele A; Croda, Julio; Young, Tracy A; Sanchez, Yolanda; Siqueira, Isadora; Bolin, Carole A; Reis, Mitermayer G; Riley, Lee W; Haake, David A; Ko, Albert I

    2003-08-01

    Proteins with bacterial immunoglobulin-like (Big) domains, such as the Yersinia pseudotuberculosis invasin and Escherichia coli intimin, are surface-expressed proteins that mediate host mammalian cell invasion or attachment. Here, we report the identification and characterization of a new family of Big domain proteins, referred to as Lig (leptospiral Ig-like) proteins, in pathogenic Leptospira. Screening of L. interrogans and L. kirschneri expression libraries with sera from leptospirosis patients identified 13 lambda phage clones that encode tandem repeats of the 90 amino acid Big domain. Two lig genes, designated ligA and ligB, and one pseudogene, ligC, were identified. The ligA and ligB genes encode amino-terminal lipoprotein signal peptides followed by 10 or 11 Big domain repeats and, in the case of ligB, a unique carboxy-terminal non-repeat domain. The organization of ligC is similar to that of ligB but contains mutations that disrupt the reading frame. The lig sequences are present in pathogenic but not saprophytic Leptospira species. LigA and LigB are expressed by a variety of virulent leptospiral strains. Loss of Lig protein and RNA transcript expression is correlated with the observed loss of virulence during culture attenuation of pathogenic strains. High-pressure freeze substitution followed by immunocytochemical electron microscopy confirmed that the Lig proteins were localized to the bacterial surface. Immunoblot studies with patient sera found that the Lig proteins are a major antigen recognized during the acute host infection. These observations demonstrate that the Lig proteins are a newly identified surface protein of pathogenic Leptospira, which by analogy to other bacterial immunoglobulin superfamily virulence factors, may play a role in host cell attachment and invasion during leptospiral pathogenesis. PMID:12890019

  20. Interactions of Bacterial Proteins with Host Eukaryotic Ubiquitin Pathways

    PubMed Central

    Perrett, Charlotte Averil; Lin, David Yin-Wei; Zhou, Daoguo

    2011-01-01

    Ubiquitination is a post-translational modification in which one or more 76 amino acid polypeptide ubiquitin molecules are covalently linked to the lysine residues of target proteins. Ubiquitination is the main pathway for protein degradation that governs a variety of eukaryotic cellular processes, including the cell-cycle, vesicle trafficking, antigen presentation, and signal transduction. Not surprisingly, aberrations in the system have been implicated in the pathogenesis of many diseases including inflammatory and neurodegenerative disorders. Recent studies have revealed that viruses and bacterial pathogens exploit the host ubiquitination pathways to gain entry and to aid their survival/replication inside host cells. This review will summarize recent developments in understanding the biochemical and structural mechanisms utilized by bacterial pathogens to interact with the host ubiquitination pathways. PMID:21772834

  1. Correlated rigid modes in protein families.

    PubMed

    Striegel, D A; Wojtowicz, D; Przytycka, T M; Periwal, V

    2016-01-01

    A great deal of evolutionarily conserved information is contained in genomes and proteins. Enormous effort has been put into understanding protein structure and developing computational tools for protein folding, and many sophisticated approaches take structure and sequence homology into account. Several groups have applied statistical physics approaches to extracting information about proteins from sequences alone. Here, we develop a new method for sequence analysis based on first principles, in information theory, in statistical physics and in Bayesian analysis. We provide a complete derivation of our approach and we apply it to a variety of systems, to demonstrate its utility and its limitations. We show in some examples that phylogenetic alignments of amino-acid sequences of families of proteins imply the existence of a small number of modes that appear to be associated with correlated global variation. These modes are uncovered efficiently in our approach by computing a non-perturbative effective potential directly from the alignment. We show that this effective potential approaches a limiting form inversely with the logarithm of the number of sequences. Mapping symbol entropy flows along modes to underlying physical structures shows that these modes arise due to correlated compensatory adjustments. In the protein examples, these occur around functional binding pockets. PMID:27063781

  2. Correlated rigid modes in protein families

    NASA Astrophysics Data System (ADS)

    Striegel, D. A.; Wojtowicz, D.; Przytycka, T. M.; Periwal, V.

    2016-04-01

    A great deal of evolutionarily conserved information is contained in genomes and proteins. Enormous effort has been put into understanding protein structure and developing computational tools for protein folding, and many sophisticated approaches take structure and sequence homology into account. Several groups have applied statistical physics approaches to extracting information about proteins from sequences alone. Here, we develop a new method for sequence analysis based on first principles, in information theory, in statistical physics and in Bayesian analysis. We provide a complete derivation of our approach and we apply it to a variety of systems, to demonstrate its utility and its limitations. We show in some examples that phylogenetic alignments of amino-acid sequences of families of proteins imply the existence of a small number of modes that appear to be associated with correlated global variation. These modes are uncovered efficiently in our approach by computing a non-perturbative effective potential directly from the alignment. We show that this effective potential approaches a limiting form inversely with the logarithm of the number of sequences. Mapping symbol entropy flows along modes to underlying physical structures shows that these modes arise due to correlated compensatory adjustments. In the protein examples, these occur around functional binding pockets.

  3. Co-evolution of Bacterial Ribosomal Protein S15 with Diverse mRNA Regulatory Structures

    PubMed Central

    Slinger, Betty L.; Newman, Hunter; Lee, Younghan; Pei, Shermin; Meyer, Michelle M.

    2015-01-01

    RNA-protein interactions are critical in many biological processes, yet how such interactions affect the evolution of both partners is still unknown. RNA and protein structures are impacted very differently by mechanisms of genomic change. While most protein families are identifiable at the nucleotide level across large phylogenetic distances, RNA families display far less nucleotide similarity and are often only shared by closely related bacterial species. Ribosomal protein S15 has two RNA binding functions. First, it is a ribosomal protein responsible for organizing the rRNA during ribosome assembly. Second, in many bacterial species S15 also interacts with a structured portion of its own transcript to negatively regulate gene expression. While the first interaction is conserved in most bacteria, the second is not. Four distinct mRNA structures interact with S15 to enable regulation, each of which appears to be independently derived in different groups of bacteria. With the goal of understanding how protein-binding specificity may influence the evolution of such RNA regulatory structures, we examine whether examples of these mRNA structures are able to interact with, and regulate in response to, S15 homologs from organisms containing distinct mRNA structures. We find that despite their shared RNA binding function in the rRNA, S15 homologs have distinct RNA recognition profiles. We present a model to explain the specificity patterns observed, and support this model by with further mutagenesis. After analyzing the patterns of conservation for the S15 protein coding sequences, we also identified amino acid changes that alter the binding specificity of an S15 homolog. In this work we demonstrate that homologous RNA-binding proteins have different specificity profiles, and minor changes to amino acid sequences, or to RNA structural motifs, can have large impacts on RNA-protein recognition. PMID:26675164

  4. Co-evolution of Bacterial Ribosomal Protein S15 with Diverse mRNA Regulatory Structures.

    PubMed

    Slinger, Betty L; Newman, Hunter; Lee, Younghan; Pei, Shermin; Meyer, Michelle M

    2015-12-01

    RNA-protein interactions are critical in many biological processes, yet how such interactions affect the evolution of both partners is still unknown. RNA and protein structures are impacted very differently by mechanisms of genomic change. While most protein families are identifiable at the nucleotide level across large phylogenetic distances, RNA families display far less nucleotide similarity and are often only shared by closely related bacterial species. Ribosomal protein S15 has two RNA binding functions. First, it is a ribosomal protein responsible for organizing the rRNA during ribosome assembly. Second, in many bacterial species S15 also interacts with a structured portion of its own transcript to negatively regulate gene expression. While the first interaction is conserved in most bacteria, the second is not. Four distinct mRNA structures interact with S15 to enable regulation, each of which appears to be independently derived in different groups of bacteria. With the goal of understanding how protein-binding specificity may influence the evolution of such RNA regulatory structures, we examine whether examples of these mRNA structures are able to interact with, and regulate in response to, S15 homologs from organisms containing distinct mRNA structures. We find that despite their shared RNA binding function in the rRNA, S15 homologs have distinct RNA recognition profiles. We present a model to explain the specificity patterns observed, and support this model by with further mutagenesis. After analyzing the patterns of conservation for the S15 protein coding sequences, we also identified amino acid changes that alter the binding specificity of an S15 homolog. In this work we demonstrate that homologous RNA-binding proteins have different specificity profiles, and minor changes to amino acid sequences, or to RNA structural motifs, can have large impacts on RNA-protein recognition. PMID:26675164

  5. Chemiluminescence enzyme immunoassay using ProteinA-bacterial magnetite complex

    NASA Astrophysics Data System (ADS)

    Matsunaga, Tadashi; Sato, Rika; Kamiya, Shinji; Tanaka, Tsuyosi; Takeyama, Haruko

    1999-04-01

    Bacterial magnetic particles (BMPs) which have ProteinA expressed on their surface were constructed using magA which is a key gene in BMP biosynthesis in the magnetic bacterium Magnetospirillum sp. AMB-1. Homogenous chemiluminescence enzyme immunoassay using antibody bound ProteinA-BMP complexes was developed for detection of human IgG. A good correlation between the luminescence yield and the concentration of human IgG was obtained in the range of 1-10 3 ng/ml.

  6. Physiological Functions of APP Family Proteins

    PubMed Central

    Müller, Ulrike C.; Zheng, Hui

    2012-01-01

    Biochemical and genetic evidence establishes a central role of the amyloid precursor protein (APP) in Alzheimer disease (AD) pathogenesis. Biochemically, deposition of the β-amyloid (Aβ) peptides produced from proteolytic processing of APP forms the defining pathological hallmark of AD; genetically, both point mutations and duplications of wild-type APP are linked to a subset of early onset of familial AD (FAD) and cerebral amyloid angiopathy. As such, the biological functions of APP and its processing products have been the subject of intense investigation, and the past 20+ years of research have met with both excitement and challenges. This article will review the current understanding of the physiological functions of APP in the context of APP family members. PMID:22355794

  7. A versatile nano display platform from bacterial spore coat proteins

    PubMed Central

    Wu, I-Lin; Narayan, Kedar; Castaing, Jean-Philippe; Tian, Fang; Subramaniam, Sriram; Ramamurthi, Kumaran S.

    2015-01-01

    Dormant bacterial spores are encased in a thick protein shell, the ‘coat', which contains ∼70 different proteins. The coat protects the spore from environmental insults, and is among the most durable static structures in biology. Owing to extensive cross-linking among coat proteins, this structure has been recalcitrant to detailed biochemical analysis, so molecular details of how it assembles are largely unknown. Here, we reconstitute the basement layer of the coat atop spherical membranes supported by silica beads to create artificial spore-like particles. We report that these synthetic spore husk-encased lipid bilayers (SSHELs) assemble and polymerize into a static structure, mimicking in vivo basement layer assembly during sporulation in Bacillus subtilis. In addition, we demonstrate that SSHELs may be easily covalently modified with small molecules and proteins. We propose that SSHELs may be versatile display platforms for drugs and vaccines in clinical settings, or for enzymes that neutralize pollutants for environmental remediation. PMID:25854653

  8. Near-infrared fluorescent proteins engineered from bacterial phytochromes

    PubMed Central

    Shcherbakova, Daria M.; Baloban, Mikhail; Verkhusha, Vladislav V.

    2015-01-01

    Near-infrared fluorescent proteins (NIR FPs), photoactivatable NIR FPs and NIR reporters of protein-protein interactions developed from bacterial phytochrome photoreceptors (BphPs) have advanced non-invasive deep-tissue imaging. Here we provide a brief guide to the BphP-derived NIR probes with an emphasis on their in vivo applications. We describe phenotypes of NIR FPs and their photochemical and intracellular properties. We discuss NIR FP applications for imaging of various cell types, tissues and animal models in basic and translational research. In this discussion, we focus on NIR FPs that efficiently incorporate endogenous biliverdin chromophore and therefore can be used as straightforward as GFP-like proteins. We also overview a usage of NIR FPs in different imaging platforms, from planar epifluorescence to tomographic and photoacoustic technologies. PMID:26115447

  9. Near-infrared fluorescent proteins engineered from bacterial phytochromes.

    PubMed

    Shcherbakova, Daria M; Baloban, Mikhail; Verkhusha, Vladislav V

    2015-08-01

    Near-infrared fluorescent proteins (NIR FPs), photoactivatable NIR FPs and NIR reporters of protein-protein interactions developed from bacterial phytochrome photoreceptors (BphPs) have advanced non-invasive deep-tissue imaging. Here we provide a brief guide to the BphP-derived NIR probes with an emphasis on their in vivo applications. We describe phenotypes of NIR FPs and their photochemical and intracellular properties. We discuss NIR FP applications for imaging of various cell types, tissues and animal models in basic and translational research. In this discussion, we focus on NIR FPs that efficiently incorporate endogenous biliverdin chromophore and therefore can be used as straightforward as GFP-like proteins. We also overview a usage of NIR FPs in different imaging platforms, from planar epifluorescence to tomographic and photoacoustic technologies. PMID:26115447

  10. Protein–protein interactions and the spatiotemporal dynamics of bacterial outer membrane proteins

    PubMed Central

    Kleanthous, Colin; Rassam, Patrice; Baumann, Christoph G

    2015-01-01

    It has until recently been unclear whether outer membrane proteins (OMPs) of Gram-negative bacteria are organized or distributed randomly. Studies now suggest promiscuous protein–protein interactions (PPIs) between β-barrel OMPs in Escherichia coli govern their local and global dynamics, engender spatiotemporal patterning of the outer membrane into micro-domains and are the basis of β-barrel protein turnover. We contextualize these latest advances, speculate on areas of bacterial cell biology that might be influenced by the organization of OMPs into supramolecular assemblies, and highlight the new questions and controversies this revised view of the bacterial outer membrane raises. PMID:26629934

  11. Direct and Indirect Targeting of PP2A by Conserved Bacterial Type-III Effector Proteins.

    PubMed

    Jin, Lin; Ham, Jong Hyun; Hage, Rosemary; Zhao, Wanying; Soto-Hernández, Jaricelis; Lee, Sang Yeol; Paek, Seung-Mann; Kim, Min Gab; Boone, Charles; Coplin, David L; Mackey, David

    2016-05-01

    Bacterial AvrE-family Type-III effector proteins (T3Es) contribute significantly to the virulence of plant-pathogenic species of Pseudomonas, Pantoea, Ralstonia, Erwinia, Dickeya and Pectobacterium, with hosts ranging from monocots to dicots. However, the mode of action of AvrE-family T3Es remains enigmatic, due in large part to their toxicity when expressed in plant or yeast cells. To search for targets of WtsE, an AvrE-family T3E from the maize pathogen Pantoea stewartii subsp. stewartii, we employed a yeast-two-hybrid screen with non-lethal fragments of WtsE and a synthetic genetic array with full-length WtsE. Together these screens indicate that WtsE targets maize protein phosphatase 2A (PP2A) heterotrimeric enzyme complexes via direct interaction with B' regulatory subunits. AvrE1, another AvrE-family T3E from Pseudomonas syringae pv. tomato strain DC3000 (Pto DC3000), associates with specific PP2A B' subunit proteins from its susceptible host Arabidopsis that are homologous to the maize B' subunits shown to interact with WtsE. Additionally, AvrE1 was observed to associate with the WtsE-interacting maize proteins, indicating that PP2A B' subunits are likely conserved targets of AvrE-family T3Es. Notably, the ability of AvrE1 to promote bacterial growth and/or suppress callose deposition was compromised in Arabidopsis plants with mutations of PP2A genes. Also, chemical inhibition of PP2A activity blocked the virulence activity of both WtsE and AvrE1 in planta. The function of HopM1, a Pto DC3000 T3E that is functionally redundant to AvrE1, was also impaired in specific PP2A mutant lines, although no direct interaction with B' subunits was observed. These results indicate that sub-component specific PP2A complexes are targeted by bacterial T3Es, including direct targeting by members of the widely conserved AvrE-family. PMID:27191168

  12. Direct and Indirect Targeting of PP2A by Conserved Bacterial Type-III Effector Proteins

    PubMed Central

    Jin, Lin; Ham, Jong Hyun; Hage, Rosemary; Zhao, Wanying; Soto-Hernández, Jaricelis; Lee, Sang Yeol; Paek, Seung-Mann; Kim, Min Gab; Boone, Charles; Coplin, David L.; Mackey, David

    2016-01-01

    Bacterial AvrE-family Type-III effector proteins (T3Es) contribute significantly to the virulence of plant-pathogenic species of Pseudomonas, Pantoea, Ralstonia, Erwinia, Dickeya and Pectobacterium, with hosts ranging from monocots to dicots. However, the mode of action of AvrE-family T3Es remains enigmatic, due in large part to their toxicity when expressed in plant or yeast cells. To search for targets of WtsE, an AvrE-family T3E from the maize pathogen Pantoea stewartii subsp. stewartii, we employed a yeast-two-hybrid screen with non-lethal fragments of WtsE and a synthetic genetic array with full-length WtsE. Together these screens indicate that WtsE targets maize protein phosphatase 2A (PP2A) heterotrimeric enzyme complexes via direct interaction with B’ regulatory subunits. AvrE1, another AvrE-family T3E from Pseudomonas syringae pv. tomato strain DC3000 (Pto DC3000), associates with specific PP2A B’ subunit proteins from its susceptible host Arabidopsis that are homologous to the maize B’ subunits shown to interact with WtsE. Additionally, AvrE1 was observed to associate with the WtsE-interacting maize proteins, indicating that PP2A B’ subunits are likely conserved targets of AvrE-family T3Es. Notably, the ability of AvrE1 to promote bacterial growth and/or suppress callose deposition was compromised in Arabidopsis plants with mutations of PP2A genes. Also, chemical inhibition of PP2A activity blocked the virulence activity of both WtsE and AvrE1 in planta. The function of HopM1, a Pto DC3000 T3E that is functionally redundant to AvrE1, was also impaired in specific PP2A mutant lines, although no direct interaction with B’ subunits was observed. These results indicate that sub-component specific PP2A complexes are targeted by bacterial T3Es, including direct targeting by members of the widely conserved AvrE-family. PMID:27191168

  13. Self-sorting of foreign proteins in a bacterial nanocompartment.

    PubMed

    Rurup, W Frederik; Snijder, Joost; Koay, Melissa S T; Heck, Albert J R; Cornelissen, Jeroen J L M

    2014-03-12

    Nature uses bottom-up approaches for the controlled assembly of highly ordered hierarchical structures with defined functionality, such as organelles, molecular motors, and transmembrane pumps. The field of bionanotechnology draws inspiration from nature by utilizing biomolecular building blocks such as DNA, proteins, and lipids, for the (self-) assembly of new structures for applications in biomedicine, optics, or electronics. Among the toolbox of available building blocks, proteins that form cage-like structures, such as viruses and virus-like particles, have been of particular interest since they form highly symmetrical assemblies and can be readily modified genetically or chemically both on the outer or inner surface. Bacterial encapsulins are a class of nonviral protein cages that self-assemble in vivo into stable icosahedral structures. Using teal fluorescent proteins (TFP) engineered with a specific native C-terminal docking sequence, we report the molecular self-sorting and selective packaging of TFP cargo into bacterial encapsulins during in vivo assembly. Using native mass spectrometry techniques, we show that loading of either monomeric or dimeric TFP cargo occurs with unprecedented high fidelity and exceptional loading accuracy. Such self-assembling systems equipped with self-sorting capabilities would open up exciting opportunities in nanotechnology, for example, as artificial (molecular storage or detoxification) organelles or as artificial cell factories for in situ biocatalysis. PMID:24527660

  14. A large family of anti-activators accompanying XylS/AraC family regulatory proteins.

    PubMed

    Santiago, Araceli E; Yan, Michael B; Tran, Minh; Wright, Nathan; Luzader, Deborah H; Kendall, Melissa M; Ruiz-Perez, Fernando; Nataro, James P

    2016-07-01

    AraC Negative Regulators (ANR) suppress virulence genes by directly down-regulating AraC/XylS members in Gram-negative bacteria. In this study, we sought to investigate the distribution and molecular mechanisms of regulatory function for ANRs among different bacterial pathogens. We identified more than 200 ANRs distributed in diverse clinically important gram negative pathogens, including Vibrio spp., Salmonella spp., Shigella spp., Yersinia spp., Citrobacter spp., enterotoxigenic (ETEC) and enteroaggregative E. coli (EAEC), and members of the Pasteurellaceae. By employing a bacterial two hybrid system, pull down assays and surface plasmon resonance (SPR) analysis, we demonstrate that Aar (AggR-activated regulator), a prototype member of the ANR family in EAEC, binds with high affinity to the central linker domain of AraC-like member AggR. ANR-AggR binding disrupted AggR dimerization and prevented AggR-DNA binding. ANR homologs of Vibrio cholerae, Citrobacter rodentium, Salmonella enterica and ETEC were capable of complementing Aar activity by repressing aggR expression in EAEC strain 042. ANR homologs of ETEC and Vibrio cholerae bound to AggR as well as to other members of the AraC family, including Rns and ToxT. The predicted proteins of all ANR members exhibit three highly conserved predicted α-helices. Site-directed mutagenesis studies suggest that at least predicted α-helices 2 and 3 are required for Aar activity. In sum, our data strongly suggest that members of the novel ANR family act by directly binding to their cognate AraC partners. PMID:27038276

  15. Sequence analysis of the AAA protein family.

    PubMed Central

    Beyer, A.

    1997-01-01

    The AAA protein family, a recently recognized group of Walker-type ATPases, has been subjected to an extensive sequence analysis. Multiple sequence alignments revealed the existence of a region of sequence similarity, the so-called AAA cassette. The borders of this cassette were localized and within it, three boxes of a high degree of conservation were identified. Two of these boxes could be assigned to substantial parts of the ATP binding site (namely, to Walker motifs A and B); the third may be a portion of the catalytic center. Phylogenetic trees were calculated to obtain insights into the evolutionary history of the family. Subfamilies with varying degrees of intra-relatedness could be discriminated; these relationships are also supported by analysis of sequences outside the canonical AAA boxes: within the cassette are regions that are strongly conserved within each subfamily, whereas little or even no similarity between different subfamilies can be observed. These regions are well suited to define fingerprints for subfamilies. A secondary structure prediction utilizing all available sequence information was performed and the result was fitted to the general 3D structure of a Walker A/GTPase. The agreement was unexpectedly high and strongly supports the conclusion that the AAA family belongs to the Walker superfamily of A/GTPases. PMID:9336829

  16. A Functional Genomic Yeast Screen to Identify Pathogenic Bacterial Proteins

    PubMed Central

    Slagowski, Naomi L; Kramer, Roger W; Morrison, Monica F; LaBaer, Joshua; Lesser, Cammie F

    2008-01-01

    Many bacterial pathogens promote infection and cause disease by directly injecting into host cells proteins that manipulate eukaryotic cellular processes. Identification of these translocated proteins is essential to understanding pathogenesis. Yet, their identification remains limited. This, in part, is due to their general sequence uniqueness, which confounds homology-based identification by comparative genomic methods. In addition, their absence often does not result in phenotypes in virulence assays limiting functional genetic screens. Translocated proteins have been observed to confer toxic phenotypes when expressed in the yeast Saccharomyces cerevisiae. This observation suggests that yeast growth inhibition can be used as an indicator of protein translocation in functional genomic screens. However, limited information is available regarding the behavior of non-translocated proteins in yeast. We developed a semi-automated quantitative assay to monitor the growth of hundreds of yeast strains in parallel. We observed that expression of half of the 19 Shigella translocated proteins tested but almost none of the 20 non-translocated Shigella proteins nor ∼1,000 Francisella tularensis proteins significantly inhibited yeast growth. Not only does this study establish that yeast growth inhibition is a sensitive and specific indicator of translocated proteins, but we also identified a new substrate of the Shigella type III secretion system (TTSS), IpaJ, previously missed by other experimental approaches. In those cases where the mechanisms of action of the translocated proteins are known, significant yeast growth inhibition correlated with the targeting of conserved cellular processes. By providing positive rather than negative indication of activity our assay complements existing approaches for identification of translocated proteins. In addition, because this assay only requires genomic DNA it is particularly valuable for studying pathogens that are difficult to

  17. Bacterial Protein Synthesis as a Target for Antibiotic Inhibition.

    PubMed

    Arenz, Stefan; Wilson, Daniel N

    2016-01-01

    Protein synthesis occurs on macromolecular machines, called ribosomes. Bacterial ribosomes and the translational machinery represent one of the major targets for antibiotics in the cell. Therefore, structural and biochemical investigations into ribosome-targeting antibiotics provide not only insight into the mechanism of action and resistance of antibiotics, but also insight into the fundamental process of protein synthesis. This review summarizes the recent advances in our understanding of protein synthesis, particularly with respect to X-ray and cryoelectron microscopy (cryo-EM) structures of ribosome complexes, and highlights the different steps of translation that are targeted by the diverse array of known antibiotics. Such findings will be important for the ongoing development of novel and improved antimicrobial agents to combat the rapid emergence of multidrug resistant pathogenic bacteria. PMID:27481773

  18. Serum amyloid A is a retinol binding protein that transports retinol during bacterial infection

    PubMed Central

    Derebe, Mehabaw G; Zlatkov, Clare M; Gattu, Sureka; Ruhn, Kelly A; Vaishnava, Shipra; Diehl, Gretchen E; MacMillan, John B; Williams, Noelle S; Hooper, Lora V

    2014-01-01

    Retinol plays a vital role in the immune response to infection, yet proteins that mediate retinol transport during infection have not been identified. Serum amyloid A (SAA) proteins are strongly induced in the liver by systemic infection and in the intestine by bacterial colonization, but their exact functions remain unclear. Here we show that mouse and human SAAs are retinol binding proteins. Mouse and human SAAs bound retinol with nanomolar affinity, were associated with retinol in vivo, and limited the bacterial burden in tissues after acute infection. We determined the crystal structure of mouse SAA3 at a resolution of 2 Å, finding that it forms a tetramer with a hydrophobic binding pocket that can accommodate retinol. Our results thus identify SAAs as a family of microbe-inducible retinol binding proteins, reveal a unique protein architecture involved in retinol binding, and suggest how retinol is circulated during infection. DOI: http://dx.doi.org/10.7554/eLife.03206.001 PMID:25073702

  19. Protein export through the bacterial flagellar type III export pathway.

    PubMed

    Minamino, Tohru

    2014-08-01

    For construction of the bacterial flagellum, which is responsible for bacterial motility, the flagellar type III export apparatus utilizes both ATP and proton motive force across the cytoplasmic membrane and exports flagellar proteins from the cytoplasm to the distal end of the nascent structure. The export apparatus consists of a membrane-embedded export gate made of FlhA, FlhB, FliO, FliP, FliQ, and FliR and a water-soluble ATPase ring complex consisting of FliH, FliI, and FliJ. FlgN, FliS, and FliT act as substrate-specific chaperones that do not only protect their cognate substrates from degradation and aggregation in the cytoplasm but also efficiently transfer the substrates to the export apparatus. The ATPase ring complex facilitates the initial entry of the substrates into the narrow pore of the export gate. The export gate by itself is a proton-protein antiporter that uses the two components of proton motive force, the electric potential difference and the proton concentration difference, for different steps of the export process. A specific interaction of FlhA with FliJ located in the center of the ATPase ring complex allows the export gate to efficiently use proton motive force to drive protein export. The ATPase ring complex couples ATP binding and hydrolysis to its assembly-disassembly cycle for rapid and efficient protein export cycle. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey. PMID:24064315

  20. Rho-modifying bacterial protein toxins from Photorhabdus species.

    PubMed

    Jank, Thomas; Lang, Alexander E; Aktories, Klaus

    2016-06-15

    Photorhabdus bacteria live in symbiosis with entomopathogenic nematodes. The nematodes invade insect larvae, where they release the bacteria, which then produce toxins to kill the insects. Recently, the molecular mechanisms of some toxins from Photorhabdus luminescens and asymbiotica have been elucidated, showing that GTP-binding proteins of the Rho family are targets. The tripartite Tc toxin PTC5 from P. luminescens activates Rho proteins by ADP-ribosylation of a glutamine residue, which is involved in GTP hydrolysis, while PaTox from Photorhabdus asymbiotica inhibits the activity of GTPases by N-acetyl-glucosaminylation at tyrosine residues and activates Rho proteins indirectly by deamidation of heterotrimeric G proteins. PMID:26026623

  1. Modification of Bacterial Effector Proteins Inside Eukaryotic Host Cells

    PubMed Central

    Popa, Crina M.; Tabuchi, Mitsuaki; Valls, Marc

    2016-01-01

    Pathogenic bacteria manipulate their hosts by delivering a number of virulence proteins -called effectors- directly into the plant or animal cells. Recent findings have shown that such effectors can suffer covalent modifications inside the eukaryotic cells. Here, we summarize the recent reports where effector modifications by the eukaryotic machinery have been described. We restrict our focus on proteins secreted by the type III or type IV systems, excluding other bacterial toxins. We describe the known examples of effectors whose enzymatic activity is triggered by interaction with plant and animal cell factors, including GTPases, E2-Ubiquitin conjugates, cyclophilin and thioredoxins. We focus on the structural interactions with these factors and their influence on effector function. We also review the described examples of host-mediated post-translational effector modifications which are required for proper subcellular location and function. These host-specific covalent modifications include phosphorylation, ubiquitination, SUMOylation, and lipidations such as prenylation, fatty acylation and phospholipid binding. PMID:27489796

  2. Two novel human members of an emerging mammalian gene family related to mono-ADP-ribosylating bacterial toxins

    SciTech Connect

    Koch-Nolte, F.; Haag, F.; Braren, R.

    1997-02-01

    Mono-ADP-ribosylation is one of the posttranslational protein modifications regulating cellular metabolism, e.g., nitrogen fixation, in prokaryotes. Several bacterial toxins mono-ADP-ribosylate and inactivate specific proteins in their animal hosts. Recently, two mammalian GPI-anchored cell surface enzymes with similar activities were cloned (designated ART1 and ART2). We have now identified six related expressed sequence tags (ESTs) in the public database and cloned the two novel human genes from which these are derived (designated ART3 and ART4). The deduced amino acid sequences of the predicted gene products show 28% sequence identity to one another and 32-41% identity vs the muscle and T cell enzymes. They contain signal peptide sequences characteristic of GPI anchorage. Southern Zoo blot analyses suggest the presence of related genes in other mammalian species. By PCR screening of somatic cell hybrids and by in situ hybridization, we have mapped the two genes to human chromosomes 4p14-p15.l and 12q13.2- q13.3. Northern blot analyses show that these genes are specifically expressed in testis and spleen, respectively. Comparison of genomic and cDNA sequences reveals a conserved exon/intron structure, with an unusually large exon encoding the predicted mature membrane proteins. Secondary structure prediction analyses indicate conserved motifs and amino acid residues consistent with a common ancestry of this emerging mammalian enzyme family and bacterial mono(ADP-ribosyl)transferases. It is possible that the four human gene family members identified so far represent the {open_quotes}tip of an iceberg,{close_quote} i.e., a larger family of enzymes that influences the function of target proteins via mono-ADP-ribosylation. 35 refs., 4 figs.

  3. Structural and functional insight into the universal stress protein family

    PubMed Central

    Tkaczuk, Karolina L; A Shumilin, Igor; Chruszcz, Maksymilian; Evdokimova, Elena; Savchenko, Alexei; Minor, Wladek

    2013-01-01

    We present the crystal structures of two universal stress proteins (USP) from Archaeoglobus fulgidus and Nitrosomonas europaea in both apo- and ligand-bound forms. This work is the first complete synthesis of the structural properties of 26 USP available in the Protein Data Bank, over 75% of which were determined by structure genomics centers with no additional information provided. The results of bioinformatic analyses of all available USP structures and their sequence homologs revealed that these two new USP structures share overall structural similarity with structures of USPs previously determined. Clustering and cladogram analyses, however, show how they diverge from other members of the USP superfamily and show greater similarity to USPs from organisms inhabiting extreme environments. We compared them with other archaeal and bacterial USPs and discuss their similarities and differences in context of structure, sequential motifs, and potential function. We also attempted to group all analyzed USPs into families, so that assignment of the potential function to those with no experimental data available would be possible by extrapolation. PMID:23745136

  4. Mechanisms of Oxidative Protein Folding in the Bacterial Cell Envelope

    PubMed Central

    2010-01-01

    Abstract Disulfide-bond formation is important for the correct folding of a great number of proteins that are exported to the cell envelope of bacteria. Bacterial cells have evolved elaborate systems to promote the joining of two cysteines to form a disulfide bond and to repair misoxidized proteins. In the past two decades, significant advances have occurred in our understanding of the enzyme systems (DsbA, DsbB, DsbC, DsbG, and DsbD) used by the gram-negative bacterium Escherichia coli to ensure that correct pairs of cysteines are joined during the process of protein folding. However, a number of fundamental questions about these processes remain, especially about how they occur inside the cell. In addition, recent recognition of the increasing diversity among bacteria in the disulfide bond–forming capacity and in the systems for introducing disulfide bonds into proteins is raising new questions. We review here the marked progress in this field and discuss important questions that remain for future studies. Antioxid. Redox Signal. 13, 1231–1246. PMID:20367276

  5. Interactions of Dnd proteins involved in bacterial DNA phosphorothioate modification

    PubMed Central

    Xiong, Wei; Zhao, Gong; Yu, Hao; He, Xinyi

    2015-01-01

    DNA phosphorothioation (PT) is the first discovered physiological DNA backbone modification, in which a non-bridging oxygen atom of the phosphodiester bond is replaced with a sulfur atom in Rp (rectus for plane) configuration. PT modification is governed by a highly conserved gene cluster dndA/iscS-dndBCDE that is widespread across bacterial and archaeal species. However, little is known about how these proteins coordinately react with each other to perform oxygen–sulfur swap. We here demonstrated that IscS, DndC, DndD and DndE form a protein complex of which the molecular ratio for four proteins in the complex is approximate 1:1:1:1. DndB here displayed little or weak affinity to the complex and the constructs harboring dndACDE can confer the host in vivo PT modification. Using co-purification and pull down strategy, we demonstrated that the four proteins assemble into a pipeline in collinear to its gene organization, namely, IscS binding to DndC, DndC binding to DndD, and DndD binding to DndE. Moreover, weak interactions between DndE and IscS, DndE and DndC were also identified. PMID:26539172

  6. Aphids evolved novel secreted proteins for symbiosis with bacterial endosymbiont.

    PubMed

    Shigenobu, Shuji; Stern, David L

    2013-01-01

    Aphids evolved novel cells, called bacteriocytes, that differentiate specifically to harbour the obligatory mutualistic endosymbiotic bacteria Buchnera aphidicola. The genome of the host aphid Acyrthosiphon pisum contains many orphan genes that display no similarity with genes found in other sequenced organisms, prompting us to hypothesize that some of these orphan genes are related to lineage-specific traits, such as symbiosis. We conducted deep sequencing of bacteriocytes mRNA followed by whole mount in situ hybridizations of over-represented transcripts encoding aphid-specific orphan proteins. We identified a novel class of genes that encode small proteins with signal peptides, which are often cysteine-rich, that are over-represented in bacteriocytes. These genes are first expressed at a developmental time point coincident with the incorporation of symbionts strictly in the cells that contribute to the bacteriocyte and this bacteriocyte-specific expression is maintained throughout the aphid's life. The expression pattern suggests that recently evolved secretion proteins act within bacteriocytes, perhaps to mediate the symbiosis with beneficial bacterial partners, which is reminiscent of the evolution of novel cysteine-rich secreted proteins of leguminous plants that regulate nitrogen-fixing endosymbionts. PMID:23173201

  7. Evolutionary bases of carbohydrate recognition and substrate discrimination in the ROK protein family.

    PubMed

    Conejo, Maria S; Thompson, Steven M; Miller, Brian G

    2010-06-01

    The ROK (repressor, open reading frame, kinase) protein family (Pfam 00480) is a large collection of bacterial polypeptides that includes sugar kinases, carbohydrate responsive transcriptional repressors, and many functionally uncharacterized gene products. ROK family sugar kinases phosphorylate a range of structurally distinct hexoses including the key carbon source D: -glucose, various glucose epimers, and several acetylated hexosamines. The primary sequence elements responsible for carbohydrate recognition within different functional categories of ROK polypeptides are largely unknown due to a limited structural characterization of this protein family. In order to identify the structural bases for substrate discrimination in individual ROK proteins, and to better understand the evolutionary processes that led to the divergent evolution of function in this family, we constructed an inclusive alignment of 227 representative ROK polypeptides. Phylogenetic analyses and ancestral sequence reconstructions of the resulting tree reveal a discrete collection of active site residues that dictate substrate specificity. The results also suggest a series of mutational events within the carbohydrate-binding sites of ROK proteins that facilitated the expansion of substrate specificity within this family. This study provides new insight into the evolutionary relationship of ROK glucokinases and non-ROK glucokinases (Pfam 02685), revealing the primary sequence elements shared between these two protein families, which diverged from a common ancestor in ancient times. PMID:20512568

  8. Anopheles gambiae Ag-STAT, a new insect member of the STAT family, is activated in response to bacterial infection.

    PubMed

    Barillas-Mury, C; Han, Y S; Seeley, D; Kafatos, F C

    1999-02-15

    A new insect member of the STAT family of transcription factors (Ag-STAT) has been cloned from the human malaria vector Anopheles gambiae. The domain involved in DNA interaction and the SH2 domain are well conserved. Ag-STAT is most similar to Drosophila D-STAT and to vertebrate STATs 5 and 6, constituting a proposed ancient class A of the STAT family. The mRNA is expressed at all developmental stages, and the protein is present in hemocytes, pericardial cells, midgut, skeletal muscle and fat body cells. There is no evidence of transcriptional activation following bacterial challenge. However, bacterial challenge results in nuclear translocation of Ag-STAT protein in fat body cells and induction of DNA-binding activity that recognizes a STAT target site. In vitro treatment with pervanadate (vanadate and H2O2) translocates Ag-STAT to the nucleus in midgut epithelial cells. This is the first evidence of direct participation of the STAT pathway in immune responses in insects. PMID:10022838

  9. Holo- And Apo- Structures of Bacterial Periplasmic Heme Binding Proteins

    SciTech Connect

    Ho, W.W.; Li, H.; Eakanunkul, S.; Tong, Y.; Wilks, A.; Guo, M.; Poulos, T.L.

    2009-06-01

    An essential component of heme transport in Gram-negative bacterial pathogens is the periplasmic protein that shuttles heme between outer and inner membranes. We have solved the first crystal structures of two such proteins, ShuT from Shigella dysenteriae and PhuT from Pseudomonas aeruginosa. Both share a common architecture typical of Class III periplasmic binding proteins. The heme binds in a narrow cleft between the N- and C-terminal binding domains and is coordinated by a Tyr residue. A comparison of the heme-free (apo) and -bound (holo) structures indicates little change in structure other than minor alterations in the heme pocket and movement of the Tyr heme ligand from an 'in' position where it can coordinate the heme iron to an 'out' orientation where it points away from the heme pocket. The detailed architecture of the heme pocket is quite different in ShuT and PhuT. Although Arg{sup 228} in PhuT H-bonds with a heme propionate, in ShuT a peptide loop partially takes up the space occupied by Arg{sup 228}, and there is no Lys or Arg H-bonding with the heme propionates. A comparison of PhuT/ShuT with the vitamin B{sub 12}-binding protein BtuF and the hydroxamic-type siderophore-binding protein FhuD, the only two other structurally characterized Class III periplasmic binding proteins, demonstrates that PhuT/ShuT more closely resembles BtuF, which reflects the closer similarity in ligands, heme and B{sub 12}, compared with ligands for FhuD, a peptide siderophore.

  10. UGT-29 protein expression and localization during bacterial infection in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Wong, Rui-Rui; Lee, Song-Hua; Nathan, Sheila

    2014-09-01

    The nematode Caenorhabditis elegans is routinely used as an animal model to delineate complex molecular mechanisms involved in the host response to pathogen infection. Following up on an earlier study on host-pathogen interaction, we constructed a ugt-29::GFP transcriptional fusion transgenic worm strain to examine UGT-29 protein expression and localization upon bacterial infection. UGT-29 orthologs can be found in higher organisms including humans and is proposed as a member of the UDP-Glucoronosyl Transferase family of proteins which are involved in phase II detoxification of compounds detrimental to the host organism. Under uninfected conditions, UGT-29::GFP fusion protein was highly expressed in the C. elegans anterior pharynx and intestine, two major organs involved in detoxification. We further evaluated the localization of the enzyme in worms infected with the bacterial pathogen, Burkholderia pseudomallei. The infected ugt-29::GFP transgenic strain exhibited increased fluorescence in the pharynx and intestine with pronounced fluorescence also extending to body wall muscle. This transcriptional fusion GFP transgenic worm is a convenient and direct tool to provide information on UGT detoxification enzyme gene expression and could be a useful tool for a number of diverse applications.

  11. Investigation of antibacterial mechanism and identification of bacterial protein targets mediated by antibacterial medicinal plant extracts.

    PubMed

    Yong, Ann-Li; Ooh, Keng-Fei; Ong, Hean-Chooi; Chai, Tsun-Thai; Wong, Fai-Chu

    2015-11-01

    In this paper, we investigated the antibacterial mechanism and potential therapeutic targets of three antibacterial medicinal plants. Upon treatment with the plant extracts, bacterial proteins were extracted and resolved using denaturing gel electrophoresis. Differentially-expressed bacterial proteins were excised from the gels and subjected to sequence analysis by MALDI TOF-TOF mass spectrometry. From our study, seven differentially expressed bacterial proteins (triacylglycerol lipase, N-acetylmuramoyl-L-alanine amidase, flagellin, outer membrane protein A, stringent starvation protein A, 30S ribosomal protein s1 and 60 kDa chaperonin) were identified. Additionally, scanning electron microscope study indicated morphological damages induced on bacterial cell surfaces. To the best of our knowledge, this represents the first time these bacterial proteins are being reported, following treatments with the antibacterial plant extracts. Further studies in this direction could lead to the detailed understanding of their inhibition mechanism and discovery of target-specific antibacterial agents. PMID:25976788

  12. Identification of protein secretion systems in bacterial genomes

    PubMed Central

    Abby, Sophie S.; Cury, Jean; Guglielmini, Julien; Néron, Bertrand; Touchon, Marie; Rocha, Eduardo P. C.

    2016-01-01

    Bacteria with two cell membranes (diderms) have evolved complex systems for protein secretion. These systems were extensively studied in some model bacteria, but the characterisation of their diversity has lagged behind due to lack of standard annotation tools. We built online and standalone computational tools to accurately predict protein secretion systems and related appendages in bacteria with LPS-containing outer membranes. They consist of models describing the systems’ components and genetic organization to be used with MacSyFinder to search for T1SS-T6SS, T9SS, flagella, Type IV pili and Tad pili. We identified ~10,000 candidate systems in bacterial genomes, where T1SS and T5SS were by far the most abundant and widespread. All these data are made available in a public database. The recently described T6SSiii and T9SS were restricted to Bacteroidetes, and T6SSii to Francisella. The T2SS, T3SS, and T4SS were frequently encoded in single-copy in one locus, whereas most T1SS were encoded in two loci. The secretion systems of diderm Firmicutes were similar to those found in other diderms. Novel systems may remain to be discovered, since some clades of environmental bacteria lacked all known protein secretion systems. Our models can be fully customized, which should facilitate the identification of novel systems. PMID:26979785

  13. Structural studies of bacterial transcriptional regulatory proteins by multidimensional heteronuclear NMR

    SciTech Connect

    Volkman, B.F.

    1995-02-01

    Nuclear magnetic resonance spectroscopy was used to elucidate detailed structural information for peptide and protein molecules. A small peptide was designed and synthesized, and its three-dimensional structure was calculated using distance information derived from two-dimensional NMR measurements. The peptide was used to induce antibodies in mice, and the cross-reactivity of the antibodies with a related protein was analyzed with enzyme-linked immunosorbent assays. Two proteins which are involved in regulation of transcription in bacteria were also studied. The ferric uptake regulation (Fur) protein is a metal-dependent repressor which controls iron uptake in bacteria. Two- and three-dimensional NMR techniques, coupled with uniform and selective isotope labeling allowed the nearly complete assignment of the resonances of the metal-binding domain of the Fur protein. NTRC is a transcriptional enhancer binding protein whose N-terminal domain is a {open_quote}receiver domain{close_quote} in the family of {open_quote}two-component{close_quote} regulatory systems. Phosphorylation of the N-terminal domain of NTRC activates the initiation of transcription of aeries encoding proteins involved in nitrogen regulation. Three- and four-dimensional NMR spectroscopy methods have been used to complete the resonance assignments and determine the solution structure of the N-terminal receiver domain of the NTRC protein. Comparison of the solution structure of the NTRC receiver domain with the crystal structures of the homologous protein CheY reveals a very similar fold, with the only significant difference being the position of helix 4 relative to the rest of the protein. The determination of the structure of the NTRC receiver domain is the first step toward understanding a mechanism of signal transduction which is common to many bacterial regulatory systems.

  14. Sphingomonas paucimobilis beta-glucosidase Bgl1: a member of a new bacterial subfamily in glycoside hydrolase family 1.

    PubMed Central

    Marques, Ana Rita; Coutinho, Pedro M; Videira, Paula; Fialho, Arsénio M; Sá-Correia, Isabel

    2003-01-01

    The Sphingomonas paucimobilis beta-glucosidase Bgl1 is encoded by the bgl1 gene, associated with an 1308 bp open reading frame. The deduced protein has a potential signal peptide of 24 amino acids in the N-terminal region, and experimental evidence is consistent with the processing and export of the Bgl1 protein through the inner membrane to the periplasmic space. A His(6)-tagged 44.3 kDa protein was over-produced in the cytosol of Escherichia coli from a recombinant plasmid, which contained the S. paucimobilis bgl1 gene lacking the region encoding the putative signal peptide. Mature beta-glucosidase Bgl1 is specific for aryl-beta-glucosides and has no apparent activity with oligosaccharides derived from cellulose hydrolysis and other saccharides. A structure-based alignment established structural relations between S. paucimobilis Bgl1 and other members of the glycoside hydrolase (GH) family 1 enzymes. At subsite -1, the conserved residues required for catalysis by GH1 enzymes are present in Bgl1 with only minor differences. Major differences are found at subsite +1, the aglycone binding site. This alignment seeded a sequence-based phylogenetic analysis of GH1 enzymes, revealing an absence of horizontal transfer between phyla. Bootstrap analysis supported the definition of subfamilies and revealed that Bgl1, the first characterized beta-glucosidase from the genus Sphingomonas, represents a very divergent bacterial subfamily, closer to archaeal subfamilies than to others of bacterial origin. PMID:12444924

  15. Multiparametric Flow Cytometry Using Near-Infrared Fluorescent Proteins Engineered from Bacterial Phytochromes

    PubMed Central

    Telford, William G.; Shcherbakova, Daria M.; Buschke, David; Hawley, Teresa S.; Verkhusha, Vladislav V.

    2015-01-01

    Engineering of fluorescent proteins (FPs) has followed a trend of achieving longer fluorescence wavelengths, with the ultimate goal of producing proteins with both excitation and emission in the near-infrared (NIR) region of the spectrum. Flow cytometers are now almost universally equipped with red lasers, and can now be equipped with NIR lasers as well. Most red-shifted FPs of the GFP-like family are maximally excited by orange lasers (590 to 610 nm) not commonly found on cytometers. This has changed with the development of the iRFP series of NIR FPs from the protein family of bacterial phytochromes. The shortest wavelength variants of this series, iRFP670 and iRFP682 showed maximal excitation with visible red lasers. The longer wavelength variants iRFP702, iRFP713 and iRFP720 could be optimally excited by NIR lasers ranging from 685 to 730 nm. Pairs of iRFPs could be detected simultaneously by using red and NIR lasers. Moreover, a novel spectral cytometry technique, which relies on spectral deconvolution rather than optical filters, allowed spectra of all five iRFPs to be analyzed simultaneously with no spectral overlap. Together, the combination of iRFPs with the advanced flow cytometry will allow to first image tissues expressing iRFPs deep in live animals and then quantify individual cell intensities and sort out the distinct primary cell subpopulations ex vivo. PMID:25811854

  16. The sabotage of the bacterial transcription machinery by a small bacteriophage protein.

    PubMed

    Liu, Bing; Shadrin, Andrey; Sheppard, Carol; Mekler, Vladimir; Xu, Yingqi; Severinov, Konstantin; Matthews, Steve; Wigneshweraraj, Sivaramesh

    2014-01-01

    Many bacteriophages produce small proteins that specifically interfere with the bacterial host transcription machinery and thus contribute to the acquisition of the bacterial cell by the bacteriophage. We recently described how a small protein, called P7, produced by the Xp10 bacteriophage inhibits bacterial transcription initiation by causing the dissociation of the promoter specificity sigma factor subunit from the host RNA polymerase holoenzyme. In this addendum to the original publication, we present the highlights of that research. PMID:24701369

  17. Essential bacterial helicases that counteract the toxicity of recombination proteins.

    PubMed

    Petit, Marie-Agnès; Ehrlich, Dusko

    2002-06-17

    PcrA, Rep and UvrD are three closely related bacterial helicases with a DExx signature. PcrA is encoded by Gram-positive bacteria and is essential for cell growth. Rep and UvrD are encoded by Gram-negative bacteria, and mutants lacking both helicases are also not viable. To understand the non-viability of the helicase mutants, we characterized spontaneous extragenic suppressors of a Bacillus subtilis pcrA null mutation. Here we report that one of these suppressors maps in recF and that previously isolated mutations in B.subtilis recF, recL, recO and recR, which belong to the same complementation group, all suppress the lethality of a pcrA mutation. Similarly, recF, recO or recR mutations suppress the lethality of the Escherichia coli rep uvrD double mutant. We conclude that RecFOR proteins are toxic in cells devoid of PcrA in Gram-positive bacteria, or Rep and UvrD in Gram-negative bacteria, and propose that the RecFOR proteins interfere with an essential cellular process, possibly replication, when DExx helicases PcrA, or Rep and UvrD are absent. PMID:12065426

  18. Ribosome reinitiation at leader peptides increases translation of bacterial proteins.

    PubMed

    Korolev, Semen A; Zverkov, Oleg A; Seliverstov, Alexandr V; Lyubetsky, Vassily A

    2016-01-01

    Short leader genes usually do not encode stable proteins, although their importance in expression control of bacterial genomes is widely accepted. Such genes are often involved in the control of attenuation regulation. However, the abundance of leader genes suggests that their role in bacteria is not limited to regulation. Specifically, we hypothesize that leader genes increase the expression of protein-coding (structural) genes via ribosome reinitiation at the leader peptide in the case of a short distance between the stop codon of the leader gene and the start codon of the structural gene. For instance, in Actinobacteria, the frequency of leader genes at a distance of 10-11 bp is about 70 % higher than the mean frequency within the 1 to 65 bp range; and it gradually decreases as the range grows longer. A pronounced peak of this frequency-distance relationship is also observed in Proteobacteria, Bacteroidetes, Spirochaetales, Acidobacteria, the Deinococcus-Thermus group, and Planctomycetes. In contrast, this peak falls to the distance of 15-16 bp and is not very pronounced in Firmicutes; and no such peak is observed in cyanobacteria and tenericutes. Generally, this peak is typical for many bacteria. Some leader genes located close to a structural gene probably play a regulatory role as well. PMID:27084079

  19. Structural Insights into Protein-Protein Interactions Involved in Bacterial Cell Wall Biogenesis

    PubMed Central

    Laddomada, Federica; Miyachiro, Mayara M.; Dessen, Andréa

    2016-01-01

    The bacterial cell wall is essential for survival, and proteins that participate in its biosynthesis have been the targets of antibiotic development efforts for decades. The biosynthesis of its main component, the peptidoglycan, involves the coordinated action of proteins that are involved in multi-member complexes which are essential for cell division (the “divisome”) and/or cell wall elongation (the “elongasome”), in the case of rod-shaped cells. Our knowledge regarding these interactions has greatly benefitted from the visualization of different aspects of the bacterial cell wall and its cytoskeleton by cryoelectron microscopy and tomography, as well as genetic and biochemical screens that have complemented information from high resolution crystal structures of protein complexes involved in divisome or elongasome formation. This review summarizes structural and functional aspects of protein complexes involved in the cytoplasmic and membrane-related steps of peptidoglycan biosynthesis, with a particular focus on protein-protein interactions whereby disruption could lead to the development of novel antibacterial strategies. PMID:27136593

  20. Annotation extension through protein family annotation coherence metrics

    PubMed Central

    Bastos, Hugo P.; Clarke, Luka A.; Couto, Francisco M.

    2013-01-01

    Protein functional annotation consists in associating proteins with textual descriptors elucidating their biological roles. The bulk of annotation is done via automated procedures that ultimately rely on annotation transfer. Despite a large number of existing protein annotation procedures the ever growing protein space is never completely annotated. One of the facets of annotation incompleteness derives from annotation uncertainty. Often when protein function cannot be predicted with enough specificity it is instead conservatively annotated with more generic terms. In a scenario of protein families or functionally related (or even dissimilar) sets this leads to a more difficult task of using annotations to compare the extent of functional relatedness among all family or set members. However, we postulate that identifying sub-sets of functionally coherent proteins annotated at a very specific level, can help the annotation extension of other incompletely annotated proteins within the same family or functionally related set. As an example we analyse the status of annotation of a set of CAZy families belonging to the Polysaccharide Lyase class. We show that through the use of visualization methods and semantic similarity based metrics it is possible to identify families and respective annotation terms within them that are suitable for possible annotation extension. Based on our analysis we then propose a semi-automatic methodology leading to the extension of single annotation terms within these partially annotated protein sets or families. PMID:24130572

  1. RTX proteins: a highly diverse family secreted by a common mechanism

    PubMed Central

    Linhartová, Irena; Bumba, Ladislav; Mašín, Jiří; Basler, Marek; Osička, Radim; Kamanová, Jana; Procházková, Kateřina; Adkins, Irena; Hejnová-Holubová, Jana; Sadílková, Lenka; Morová, Jana; Šebo, Peter

    2010-01-01

    Repeats-in-toxin (RTX) exoproteins of Gram-negative bacteria form a steadily growing family of proteins with diverse biological functions. Their common feature is the unique mode of export across the bacterial envelope via the type I secretion system and the characteristic, typically nonapeptide, glycine- and aspartate-rich repeats binding Ca2+ ions. In this review, we summarize the current state of knowledge on the organization of rtx loci and on the biological and biochemical activities of therein encoded proteins. Applying several types of bioinformatic screens on the steadily growing set of sequenced bacterial genomes, over 1000 RTX family members were detected, with the biological functions of most of them remaining to be characterized. Activities of the so far characterized RTX family members are then discussed and classified according to functional categories, ranging from the historically first characterized pore-forming RTX leukotoxins, through the large multifunctional enzymatic toxins, bacteriocins, nodulation proteins, surface layer proteins, up to secreted hydrolytic enzymes exhibiting metalloprotease or lipase activities of industrial interest. PMID:20528947

  2. Genomic analysis of membrane protein families: abundance and conserved motifs

    PubMed Central

    Liu, Yang; Engelman, Donald M; Gerstein, Mark

    2002-01-01

    Background Polytopic membrane proteins can be related to each other on the basis of the number of transmembrane helices and sequence similarities. Building on the Pfam classification of protein domain families, and using transmembrane-helix prediction and sequence-similarity searching, we identified a total of 526 well-characterized membrane protein families in 26 recently sequenced genomes. To this we added a clustering of a number of predicted but unclassified membrane proteins, resulting in a total of 637 membrane protein families. Results Analysis of the occurrence and composition of these families revealed several interesting trends. The number of assigned membrane protein domains has an approximately linear relationship to the total number of open reading frames (ORFs) in 26 genomes studied. Caenorhabditis elegans is an apparent outlier, because of its high representation of seven-span transmembrane (7-TM) chemoreceptor families. In all genomes, including that of C. elegans, the number of distinct membrane protein families has a logarithmic relation to the number of ORFs. Glycine, proline, and tyrosine locations tend to be conserved in transmembrane regions within families, whereas isoleucine, valine, and methionine locations are relatively mutable. Analysis of motifs in putative transmembrane helices reveals that GxxxG and GxxxxxxG (which can be written GG4 and GG7, respectively; see Materials and methods) are among the most prevalent. This was noted in earlier studies; we now find these motifs are particularly well conserved in families, however, especially those corresponding to transporters, symporters, and channels. Conclusions We carried out a genome-wide analysis on patterns of the classified polytopic membrane protein families and analyzed the distribution of conserved amino acids and motifs in the transmembrane helix regions in these families. PMID:12372142

  3. Germins: A Diverse Protein Family Important For Crop Improvement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The germin protein family is comprised of two main subgroups in plants, oxalate oxidases (OXOs) and germin-like proteins (GLPs). These proteins are implicated in a variety of plant processes including germination, development, pollen formation, and response to abiotic and biotic stress. Here, we exa...

  4. Deciphering the Molecular and Functional Basis of Dbl Family Proteins

    PubMed Central

    Jaiswal, Mamta; Dvorsky, Radovan; Ahmadian, Mohammad Reza

    2013-01-01

    The diffuse B-cell lymphoma (Dbl) family of the guanine nucleotide exchange factors is a direct activator of the Rho family proteins. The Rho family proteins are involved in almost every cellular process that ranges from fundamental (e.g. the establishment of cell polarity) to highly specialized processes (e.g. the contraction of vascular smooth muscle cells). Abnormal activation of the Rho proteins is known to play a crucial role in cancer, infectious and cognitive disorders, and cardiovascular diseases. However, the existence of 74 Dbl proteins and 25 Rho-related proteins in humans, which are largely uncharacterized, has led to increasing complexity in identifying specific upstream pathways. Thus, we comprehensively investigated sequence-structure-function-property relationships of 21 representatives of the Dbl protein family regarding their specificities and activities toward 12 Rho family proteins. The meta-analysis approach provides an unprecedented opportunity to broadly profile functional properties of Dbl family proteins, including catalytic efficiency, substrate selectivity, and signaling specificity. Our analysis has provided novel insights into the following: (i) understanding of the relative differences of various Rho protein members in nucleotide exchange; (ii) comparing and defining individual and overall guanine nucleotide exchange factor activities of a large representative set of the Dbl proteins toward 12 Rho proteins; (iii) grouping the Dbl family into functionally distinct categories based on both their catalytic efficiencies and their sequence-structural relationships; (iv) identifying conserved amino acids as fingerprints of the Dbl and Rho protein interaction; and (v) defining amino acid sequences conserved within, but not between, Dbl subfamilies. Therefore, the characteristics of such specificity-determining residues identified the regions or clusters conserved within the Dbl subfamilies. PMID:23255595

  5. Bcl-2 family proteins: master regulators of cell survival.

    PubMed

    Hatok, Jozef; Racay, Peter

    2016-08-01

    The most prominent function of proteins of the Bcl-2 family is regulation of the initiation of intrinsic (mitochondrial) pathways of apoptosis. However, recent research has revealed that in addition to regulation of mitochondrial apoptosis, proteins of the Bcl-2 family play important roles in regulating other cellular pathways with a strong impact on cell survival like autophagy, endoplasmic reticulum (ER) stress response, intracellular calcium dynamics, cell cycle progression, mitochondrial dynamics and energy metabolism. This review summarizes the recent knowledge about functions of Bcl-2 family proteins that are related to cell survival. PMID:27505095

  6. Mu-8: visualizing differences between proteins and their families

    PubMed Central

    2014-01-01

    Background A complete understanding of the relationship between the amino acid sequence and resulting protein function remains an open problem in the biophysical sciences. Current approaches often rely on diagnosing functionally relevant mutations by determining whether an amino acid frequently occurs at a specific position within the protein family. However, these methods do not account for the biophysical properties and the 3D structure of the protein. We have developed an interactive visualization technique, Mu-8, that provides researchers with a holistic view of the differences of a selected protein with respect to a family of homologous proteins. Mu-8 helps to identify areas of the protein that exhibit: (1) significantly different bio-chemical characteristics, (2) relative conservation in the family, and (3) proximity to other regions that have suspect behavior in the folded protein. Methods Our approach quantifies and communicates the difference between a reference protein and its family based on amino acid indices or principal components of amino acid index classes, while accounting for conservation, proximity amongst residues, and overall 3D structure. Results We demonstrate Mu-8 in a case study with data provided by the 2013 BioVis contest. When comparing the sequence of a dysfunctional protein to its functional family, Mu-8 reveals several candidate regions that may cause function to break down. PMID:25237392

  7. DUF538 protein super family is predicted to be the potential homologue of bactericidal/permeability-increasing protein in plant system.

    PubMed

    Gholizadeh, Ashraf; Kohnehrouz, Samira Baghban

    2013-03-01

    DUF538 protein super family includes a number of plant proteins that their role is not yet clear. These proteins have been frequently reported to be expressed in plants under various stressful stimuli such as bacteria and elicitors. In order to further understand about this protein family we utilized bioinformatics tools to analyze its structure in details. As a result, plants DUF538 was predicted to be the partial structural homologue of BPI (bactericidal/permeability increasing) proteins in mammalian innate immune system that provides the first line of defense against different pathogens including bacteria, fungi, viruses and parasites. Moreover, on the base of the experimental data, it was identified that exogenously applied purified fused product of Celosia DUF538 affects the bacterial growth more possibly similar to BPI through the binding to the bacterial membranes. In conclusion, as the first ever time report, we nominated DUF538 protein family as the potential structural and functional homologue of BPI protein in plants, providing a basis to study the novel functions of this protein family in the biological systems in the future. PMID:23456176

  8. Conserved Features in the Structure, Mechanism, and Biogenesis of the Inverse Autotransporter Protein Family

    PubMed Central

    Heinz, Eva; Stubenrauch, Christopher J.; Grinter, Rhys; Croft, Nathan P.; Purcell, Anthony W.; Strugnell, Richard A.; Dougan, Gordon; Lithgow, Trevor

    2016-01-01

    The bacterial cell surface proteins intimin and invasin are virulence factors that share a common domain structure and bind selectively to host cell receptors in the course of bacterial pathogenesis. The β-barrel domains of intimin and invasin show significant sequence and structural similarities. Conversely, a variety of proteins with sometimes limited sequence similarity have also been annotated as “intimin-like” and “invasin” in genome datasets, while other recent work on apparently unrelated virulence-associated proteins ultimately revealed similarities to intimin and invasin. Here we characterize the sequence and structural relationships across this complex protein family. Surprisingly, intimins and invasins represent a very small minority of the sequence diversity in what has been previously the “intimin/invasin protein family”. Analysis of the assembly pathway for expression of the classic intimin, EaeA, and a characteristic example of the most prevalent members of the group, FdeC, revealed a dependence on the translocation and assembly module as a common feature for both these proteins. While the majority of the sequences in the grouping are most similar to FdeC, a further and widespread group is two-partner secretion systems that use the β-barrel domain as the delivery device for secretion of a variety of virulence factors. This comprehensive analysis supports the adoption of the “inverse autotransporter protein family” as the most accurate nomenclature for the family and, in turn, has important consequences for our overall understanding of the Type V secretion systems of bacterial pathogens. PMID:27190006

  9. Genome Pool Strategy for Structural Coverage of Protein Families

    SciTech Connect

    Jaroszewski, L.; Slabinski, L.; Wooley, J.; Deacon, A.M.; Lesley, S.A.; Wilson, I.A.; Godzik, A.

    2009-05-18

    Even closely homologous proteins often have different crystallization properties and propensities. This observation can be used to introduce an additional dimension into crystallization trials by simultaneous targeting multiple homologs in what we call a 'genome pool' strategy. We show that this strategy works because protein physicochemical properties correlated with crystallization success have a surprisingly broad distribution within most protein families. There are also easy and difficult families where this distribution is tilted in one direction. This leads to uneven structural coverage of protein families, with more easy ones solved. Increasing the size of the genome pool can improve chances of solving the difficult ones. In contrast, our analysis does not indicate that any specific genomes are easy or difficult. Finally, we show that the group of proteins with known 3D structures is systematically different from the general pool of known proteins and we assess the structural consequences of these differences.

  10. CPDadh: A new peptidase family homologous to the cysteine protease domain in bacterial MARTX toxins

    PubMed Central

    Pei, Jimin; Lupardus, Patrick J; Garcia, K Christopher; Grishin, Nick V

    2009-01-01

    A cysteine protease domain (CPD) has been recently discovered in a group of multifunctional, autoprocessing RTX toxins (MARTX) and Clostridium difficile toxins A and B. These CPDs (referred to as CPDmartx) autocleave the toxins to release domains with toxic effects inside host cells. We report identification and computational analysis of CPDadh, a new cysteine peptidase family homologous to CPDmartx. CPDadh and CPDmartx share a Rossmann-like structural core and conserved catalytic residues. In bacteria, domains of the CPDadh family are present at the N-termini of a diverse group of putative cell-cell interaction proteins and at the C-termini of some RHS (recombination hot spot) proteins. In eukaryotes, catalytically inactive members of the CPDadh family are found in cell surface protein NELF (nasal embryonic LHRH factor) and some putative signaling proteins. PMID:19309740

  11. Comparison of the Folding Mechanism of Highly Homologous Proteins in the Lipid-binding Protein Family

    EPA Science Inventory

    The folding mechanism of two closely related proteins in the intracellular lipid binding protein family, human bile acid binding protein (hBABP) and rat bile acid binding protein (rBABP) were examined. These proteins are 77% identical (93% similar) in sequence Both of these singl...

  12. Yeast Mitochondria as a Model System to Study the Biogenesis of Bacterial β-Barrel Proteins.

    PubMed

    Ulrich, Thomas; Oberhettinger, Philipp; Autenrieth, Ingo B; Rapaport, Doron

    2015-01-01

    Beta-barrel proteins are found in the outer membrane of Gram-negative bacteria, mitochondria, and chloroplasts. The evolutionary conservation in the biogenesis of these proteins allows mitochondria to assemble bacterial β-barrel proteins in their functional form. In this chapter, we describe exemplarily how the capacity of yeast mitochondria to process the trimeric autotransporter YadA can be used to study the role of bacterial periplasmic chaperones in this process. PMID:26427673

  13. Metagenome and Metatranscriptome Analyses Using Protein Family Profiles.

    PubMed

    Zhong, Cuncong; Edlund, Anna; Yang, Youngik; McLean, Jeffrey S; Yooseph, Shibu

    2016-07-01

    Analyses of metagenome data (MG) and metatranscriptome data (MT) are often challenged by a paucity of complete reference genome sequences and the uneven/low sequencing depth of the constituent organisms in the microbial community, which respectively limit the power of reference-based alignment and de novo sequence assembly. These limitations make accurate protein family classification and abundance estimation challenging, which in turn hamper downstream analyses such as abundance profiling of metabolic pathways, identification of differentially encoded/expressed genes, and de novo reconstruction of complete gene and protein sequences from the protein family of interest. The profile hidden Markov model (HMM) framework enables the construction of very useful probabilistic models for protein families that allow for accurate modeling of position specific matches, insertions, and deletions. We present a novel homology detection algorithm that integrates banded Viterbi algorithm for profile HMM parsing with an iterative simultaneous alignment and assembly computational framework. The algorithm searches a given profile HMM of a protein family against a database of fragmentary MG/MT sequencing data and simultaneously assembles complete or near-complete gene and protein sequences of the protein family. The resulting program, HMM-GRASPx, demonstrates superior performance in aligning and assembling homologs when benchmarked on both simulated marine MG and real human saliva MG datasets. On real supragingival plaque and stool MG datasets that were generated from healthy individuals, HMM-GRASPx accurately estimates the abundances of the antimicrobial resistance (AMR) gene families and enables accurate characterization of the resistome profiles of these microbial communities. For real human oral microbiome MT datasets, using the HMM-GRASPx estimated transcript abundances significantly improves detection of differentially expressed (DE) genes. Finally, HMM-GRASPx was used to

  14. Metagenome and Metatranscriptome Analyses Using Protein Family Profiles

    PubMed Central

    Zhong, Cuncong; Yooseph, Shibu

    2016-01-01

    Analyses of metagenome data (MG) and metatranscriptome data (MT) are often challenged by a paucity of complete reference genome sequences and the uneven/low sequencing depth of the constituent organisms in the microbial community, which respectively limit the power of reference-based alignment and de novo sequence assembly. These limitations make accurate protein family classification and abundance estimation challenging, which in turn hamper downstream analyses such as abundance profiling of metabolic pathways, identification of differentially encoded/expressed genes, and de novo reconstruction of complete gene and protein sequences from the protein family of interest. The profile hidden Markov model (HMM) framework enables the construction of very useful probabilistic models for protein families that allow for accurate modeling of position specific matches, insertions, and deletions. We present a novel homology detection algorithm that integrates banded Viterbi algorithm for profile HMM parsing with an iterative simultaneous alignment and assembly computational framework. The algorithm searches a given profile HMM of a protein family against a database of fragmentary MG/MT sequencing data and simultaneously assembles complete or near-complete gene and protein sequences of the protein family. The resulting program, HMM-GRASPx, demonstrates superior performance in aligning and assembling homologs when benchmarked on both simulated marine MG and real human saliva MG datasets. On real supragingival plaque and stool MG datasets that were generated from healthy individuals, HMM-GRASPx accurately estimates the abundances of the antimicrobial resistance (AMR) gene families and enables accurate characterization of the resistome profiles of these microbial communities. For real human oral microbiome MT datasets, using the HMM-GRASPx estimated transcript abundances significantly improves detection of differentially expressed (DE) genes. Finally, HMM-GRASPx was used to

  15. The KP4 killer protein gene family

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Killer protein 4 (KP4) is a well studied toxin secreted by the maize smut fungus Ustilago maydis that kills sensitive Ustilago strains as well as inhibits Fusarium and plant root growth. This small, cysteine rich protein is encoded by a virus that depends on host survival for replication. KP4 functi...

  16. An iron-containing dodecameric heptosyltransferase family modifies bacterial autotransporters in pathogenesis.

    PubMed

    Lu, Qiuhe; Yao, Qing; Xu, Yue; Li, Lin; Li, Shan; Liu, Yanhua; Gao, Wenqing; Niu, Miao; Sharon, Michal; Ben-Nissan, Gili; Zamyatina, Alla; Liu, Xiaoyun; Chen, She; Shao, Feng

    2014-09-10

    Autotransporters deliver virulence factors to the bacterial surface by translocating an effector passenger domain through a membrane-anchored barrel structure. Although passenger domains are diverse, those found in enteric bacteria autotransporters, including AIDA-I in diffusely adhering Escherichia coli (DAEC) and TibA in enterotoxigenic E. coli, are commonly glycosylated. We show that AIDA-I is heptosylated within the bacterial cytoplasm by autotransporter adhesin heptosyltransferase (AAH) and its paralogue AAH2. AIDA-I heptosylation determines DAEC adhesion to host cells. AAH/AAH2 define a bacterial autotransporter heptosyltransferase (BAHT) family that contains ferric ion and adopts a dodecamer assembly. Structural analyses of the heptosylated TibA passenger domain reveal 35 heptose conjugates forming patterned and solenoid-like arrays on the surface of a β helix. Additionally, CARC, the AIDA-like autotransporter from Citrobacter rodentium, is essential for colonization in mice and requires heptosylation by its cognate BAHT. Our study establishes a bacterial glycosylation system that regulates virulence and is essential for pathogenesis. PMID:25211077

  17. Sampling the membrane: function of rhomboid-family proteins.

    PubMed

    Lemberg, Marius K

    2013-05-01

    Rhomboids constitute a conserved protein superfamily that specifically binds membrane proteins and directs them into various different cellular pathways ranging from regulated secretion to endoplasmic reticulum (ER)-associated degradation (ERAD). Rhomboid proteases are known to release protein domains from membranes by a cut in their membrane anchor, whereas an emerging new class of rhomboid-family proteins lacks key catalytic residues and is not proteolytically active. Recent work has shown that these rhomboid pseudoproteases, including iRhoms and derlins, bind membrane proteins to regulate their fate, but the underlying molecular mechanism is not known. This review summarizes recent advances in the molecular understanding of rhomboid-family proteins and discusses common principles in how they recognize and bind proteins in the plane of the membrane. PMID:23369641

  18. Structural and Energetic Characterization of the Ankyrin Repeat Protein Family

    PubMed Central

    Parra, R. Gonzalo; Espada, Rocío; Verstraete, Nina; Ferreiro, Diego U.

    2015-01-01

    Ankyrin repeat containing proteins are one of the most abundant solenoid folds. Usually implicated in specific protein-protein interactions, these proteins are readily amenable for design, with promising biotechnological and biomedical applications. Studying repeat protein families presents technical challenges due to the high sequence divergence among the repeating units. We developed and applied a systematic method to consistently identify and annotate the structural repetitions over the members of the complete Ankyrin Repeat Protein Family, with increased sensitivity over previous studies. We statistically characterized the number of repeats, the folding of the repeat-arrays, their structural variations, insertions and deletions. An energetic analysis of the local frustration patterns reveal the basic features underlying fold stability and its relation to the functional binding regions. We found a strong linear correlation between the conservation of the energetic features in the repeat arrays and their sequence variations, and discuss new insights into the organization and function of these ubiquitous proteins. PMID:26691182

  19. Histone-Like Proteins of the Dinoflagellate Crypthecodinium cohnii Have Homologies to Bacterial DNA-Binding Proteins

    PubMed Central

    Wong, J. T. Y.; New, D. C.; Wong, J. C. W.; Hung, V. K. L.

    2003-01-01

    The dinoflagellates have very large genomes encoded in permanently condensed and histoneless chromosomes. Sequence alignment identified significant similarity between the dinoflagellate chromosomal histone-like proteins of Crypthecodinium cohnii (HCCs) and the bacterial DNA-binding and the eukaryotic histone H1 proteins. Phylogenetic analysis also supports the origin of the HCCs from histone-like proteins of bacteria. PMID:12796310

  20. Dynamic Filament Formation by a Divergent Bacterial Actin-Like ParM Protein

    PubMed Central

    Brzoska, Anthony J.; Jensen, Slade O.; Barton, Deborah A.; Davies, Danielle S.; Overall, Robyn L.; Skurray, Ronald A.; Firth, Neville

    2016-01-01

    Actin-like proteins (Alps) are a diverse family of proteins whose genes are abundant in the chromosomes and mobile genetic elements of many bacteria. The low-copy-number staphylococcal multiresistance plasmid pSK41 encodes ParM, an Alp involved in efficient plasmid partitioning. pSK41 ParM has previously been shown to form filaments in vitro that are structurally dissimilar to those formed by other bacterial Alps. The mechanistic implications of these differences are not known. In order to gain insights into the properties and behavior of the pSK41 ParM Alp in vivo, we reconstituted the parMRC system in the ectopic rod-shaped host, E. coli, which is larger and more genetically amenable than the native host, Staphylococcus aureus. Fluorescence microscopy showed a functional fusion protein, ParM-YFP, formed straight filaments in vivo when expressed in isolation. Strikingly, however, in the presence of ParR and parC, ParM-YFP adopted a dramatically different structure, instead forming axial curved filaments. Time-lapse imaging and selective photobleaching experiments revealed that, in the presence of all components of the parMRC system, ParM-YFP filaments were dynamic in nature. Finally, molecular dissection of the parMRC operon revealed that all components of the system are essential for the generation of dynamic filaments. PMID:27310470

  1. Strategies for the recovery of active proteins through refolding of bacterial inclusion body proteins

    PubMed Central

    Vallejo, Luis Felipe; Rinas, Ursula

    2004-01-01

    Recent advances in generating active proteins through refolding of bacterial inclusion body proteins are summarized in conjunction with a short overview on inclusion body isolation and solubilization procedures. In particular, the pros and cons of well-established robust refolding techniques such as direct dilution as well as less common ones such as diafiltration or chromatographic processes including size exclusion chromatography, matrix- or affinity-based techniques and hydrophobic interaction chromatography are discussed. Moreover, the effect of physical variables (temperature and pressure) as well as the presence of buffer additives on the refolding process is elucidated. In particular, the impact of protein stabilizing or destabilizing low- and high-molecular weight additives as well as micellar and liposomal systems on protein refolding is illustrated. Also, techniques mimicking the principles encountered during in vivo folding such as processes based on natural and artificial chaperones and propeptide-assisted protein refolding are presented. Moreover, the special requirements for the generation of disulfide bonded proteins and the specific problems and solutions, which arise during process integration are discussed. Finally, the different strategies are examined regarding their applicability for large-scale production processes or high-throughput screening procedures. PMID:15345063

  2. The small heat shock proteins family: the long forgotten chaperones.

    PubMed

    Garrido, C; Paul, C; Seigneuric, R; Kampinga, H H

    2012-10-01

    Small heat shock proteins are a rather heterogeneous family of ATP-independent chaperones, some of which have been proven to block protein aggregation and help the cells to survive stressful conditions. Although much less studied than high molecular weight HSPs like HSP70/HSPA or HSP90/HSPC, their implication in physio-pathological processes and human diseases is now well evidenced, as it will be discussed in the different reviews of this special issue. In this mini-review we will just present a general introduction about the small heat shock proteins family. This article is part of a Directed Issue entitled: Small HSPs in physiology and pathology. PMID:22449631

  3. The ProDom database of protein domain families.

    PubMed Central

    Corpet, F; Gouzy, J; Kahn, D

    1998-01-01

    The ProDom database contains protein domain families generated from the SWISS-PROT database by automated sequence comparisons. It can be searched on the World Wide Web (http://protein.toulouse.inra. fr/prodom.html ) or by E-mail (prodom@toulouse.inra.fr) to study domain arrangements within known families or new proteins. Strong emphasis has been put on the graphical user interface which allows for interactive analysis of protein homology relationships. Recent improvements to the server include: ProDom search by keyword; links to PROSITE and PDB entries; more sensitive ProDom similarity search with BLAST or WU-BLAST; alignments of query sequences with homologous ProDom domain families; and links to the SWISS-MODEL server (http: //www.expasy.ch/swissmod/SWISS-MODEL.html ) for homology based 3-D domain modelling where possible. PMID:9399865

  4. STATIC AND KINETIC SITE-SPECIFIC PROTEIN-DNA PHOTOCROSSLINKING: ANALYSIS OF BACTERIAL TRANSCRIPTION INITIATION COMPLEXES

    PubMed Central

    Naryshkin, Nikolai; Druzhinin, Sergei; Revyakin, Andrei; Kim, Younggyu; Mekler, Vladimir; Ebright, Richard H.

    2009-01-01

    Static site-specific protein-DNA photocrosslinking permits identification of protein-DNA interactions within multiprotein-DNA complexes. Kinetic site-specific protein-DNA photocrosslinking--involving rapid-quench-flow mixing and pulsed-laser irradiation--permits elucidation of pathways and kinetics of formation of protein-DNA interactions within multiprotein-DNA complexes. We present detailed protocols for application of static and kinetic site-specific protein-DNA photocrosslinking to bacterial transcription initiation complexes. PMID:19378179

  5. Roles of Hcp family proteins in the pathogenesis of the porcine extraintestinal pathogenic Escherichia coli type VI secretion system

    PubMed Central

    Peng, Ying; Wang, Xiangru; Shou, Jin; Zong, Bingbing; Zhang, Yanyan; Tan, Jia; Chen, Jing; Hu, Linlin; Zhu, Yongwei; Chen, Huanchun; Tan, Chen

    2016-01-01

    Hcp (hemolysin-coregulated protein) is considered a vital component of the functional T6SS (Type VI Secretion System), which is a newly discovered secretion system. Our laboratory has previously sequenced the whole genome of porcine extraintestinal pathogenic E. coli (ExPEC) strain PCN033, and identified an integrated T6SS encoding three different hcp family genes. In this study, we first identified a functional T6SS in porcine ExPEC strain PCN033, and demonstrated that the Hcp family proteins were involved in bacterial competition and the interactions with other cells. Interestingly, the three Hcp proteins had different functions. Hcp2 functioned predominantly in bacterial competition; all three proteins were involved in the colonization of mice; and Hcp1 and Hcp3 were predominantly contributed to bacterial-eukaryotic cell interactions. We showed an active T6SS in porcine ExPEC strain PCN033, and the Hcp family proteins had different functions in their interaction with other bacteria or host cells. PMID:27229766

  6. Roles of Hcp family proteins in the pathogenesis of the porcine extraintestinal pathogenic Escherichia coli type VI secretion system.

    PubMed

    Peng, Ying; Wang, Xiangru; Shou, Jin; Zong, Bingbing; Zhang, Yanyan; Tan, Jia; Chen, Jing; Hu, Linlin; Zhu, Yongwei; Chen, Huanchun; Tan, Chen

    2016-01-01

    Hcp (hemolysin-coregulated protein) is considered a vital component of the functional T6SS (Type VI Secretion System), which is a newly discovered secretion system. Our laboratory has previously sequenced the whole genome of porcine extraintestinal pathogenic E. coli (ExPEC) strain PCN033, and identified an integrated T6SS encoding three different hcp family genes. In this study, we first identified a functional T6SS in porcine ExPEC strain PCN033, and demonstrated that the Hcp family proteins were involved in bacterial competition and the interactions with other cells. Interestingly, the three Hcp proteins had different functions. Hcp2 functioned predominantly in bacterial competition; all three proteins were involved in the colonization of mice; and Hcp1 and Hcp3 were predominantly contributed to bacterial-eukaryotic cell interactions. We showed an active T6SS in porcine ExPEC strain PCN033, and the Hcp family proteins had different functions in their interaction with other bacteria or host cells. PMID:27229766

  7. MICAL-Family Proteins: Complex Regulators of the Actin Cytoskeleton

    PubMed Central

    Giridharan, Sai Srinivas Panapakkam

    2014-01-01

    Abstract Significance: The molecules interacting with CasL (MICAL) family members participate in a multitude of activities, including axonal growth cone repulsion, membrane trafficking, apoptosis, and bristle development in flies. An interesting feature of MICAL proteins is the presence of an N-terminal flavo-mono-oxygenase domain. This mono-oxygenase domain generates redox potential with which MICALs can either oxidize proteins or produce reactive oxygen species (ROS). Actin is one such protein that is affected by MICAL function, leading to dramatic cytoskeletal rearrangements. This review describes the MICAL-family members, and discusses their mechanisms of actin-binding and regulation of actin cytoskeleton organization. Recent Advances: Recent studies show that MICALs directly induce oxidation of actin molecules, leading to actin depolymerization. ROS production by MICALs also causes oxidation of collapsin response mediator protein-2, a microtubule assembly promoter, which subsequently undergoes phosphorylation. Critical Issues: MICAL proteins oxidize proteins through two mechanisms: either directly by oxidizing methionine residues or indirectly via the production of ROS. It remains unclear whether MICAL proteins employ both mechanisms or whether the activity of MICAL-family proteins might vary with different substrates. Future Directions: The identification of additional substrates oxidized by MICAL will shed new light on MICAL protein function. Additional directions include expanding studies toward the MICAL-like homologs that lack flavin adenine dinucleotide domains and oxidation activity. Antioxid. Redox Signal. 20, 2059–2073. PMID:23834433

  8. Chloroplast division in higher plants requires members of two functionally divergent gene families with homology to bacterial ftsZ.

    PubMed Central

    Osteryoung, K W; Stokes, K D; Rutherford, S M; Percival, A L; Lee, W Y

    1998-01-01

    The division of plastids is critical for viability in photosynthetic eukaryotes, but the mechanisms associated with this process are still poorly understood. We previously identified a nuclear gene from Arabidopsis encoding a chloroplast-localized homolog of the bacterial cell division protein FtsZ, an essential cytoskeletal component of the prokaryotic cell division apparatus. Here, we report the identification of a second nuclear-encoded FtsZ-type protein from Arabidopsis that does not contain a chloroplast targeting sequence or other obvious sorting signals and is not imported into isolated chloroplasts, which strongly suggests that it is localized in the cytosol. We further demonstrate using antisense technology that inhibiting expression of either Arabidopsis FtsZ gene (AtFtsZ1-1 or AtFtsZ2-1) in transgenic plants reduces the number of chloroplasts in mature leaf cells from 100 to one, indicating that both genes are essential for division of higher plant chloroplasts but that each plays a distinct role in the process. Analysis of currently available plant FtsZ sequences further suggests that two functionally divergent FtsZ gene families encoding differentially localized products participate in chloroplast division. Our results provide evidence that both chloroplastic and cytosolic forms of FtsZ are involved in chloroplast division in higher plants and imply that important differences exist between chloroplasts and prokaryotes with regard to the roles played by FtsZ proteins in the division process. PMID:9836740

  9. Complement activation and cytokine response by BioProtein, a bacterial single cell protein.

    PubMed

    Sikkeland, L I B; Thorgersen, E B; Haug, T; Mollnes, T E

    2007-04-01

    The bacterial single cell protein (BSCP), BioProtein, is dried bacterial mass derived from fermentation of the gram negative bacteria Methylococcus capsulatus, used for animal and fish feed. Workers in this industry suffer frequently from pulmonary and systemic symptoms which may be induced by an inflammatory reaction. The aim of the present study was to examine the effect of BSCP on inflammation in vitro as evaluated by complement activation and cytokine production. Human serum was incubated with BSCP and complement activation products specific for all pathways were detected by enzyme-linked immunosorbent assay (ELISA). Human whole blood anti-coagulated with lepirudin was incubated with BSCP and a panel of 27 biological mediators was measured using multiplex technology. BSCP induced a dose-dependent complement activation as revealed by a pronounced increase in alternative and terminal pathway activation (fivefold and 20-fold, respectively) at doses from 1 microg BSCP/ml serum and a similar, but less extensive (two- to fourfold) increase in activation of the lectin and classical pathways at doses from 100 and 1000 microg BSCP/ml serum, respectively. Similarly, BSCP induced a dose-dependent production of a number of cytokines, chemokines and growth factors in human whole blood. At doses as low as 0 x 05-0 x 5 microg BSCP/ml blood a substantial increase was seen for tumour necrosis factor (TNF)-alpha, interleukin (IL)-1-beta, IL-6, interferon (IFN)-gamma, IL-8, monocyte chemoattractant protein (MCP)-1, macrophage inflammatory protein (MIP)-1alpha, MIP-1beta, IL-4, IL-9, IL-17, IL-1Ra, granulocyte-colony-stimulating factor (G-CSF) and vascular endothelial growth factor (VEGF). Thus, BSCP induced a substantial activation of all three initial complement pathways as well as a pronounced cytokine response in vitro, indicating a potent inflammatory property of this agent. PMID:17302729

  10. Clustering proteins into families using artificial neural networks.

    PubMed

    Ferrán, E A; Ferrara, P

    1992-02-01

    An artificial neural network was used to cluster proteins into families. The network, composed of 7 x 7 neurons, was trained with the Kohonen unsupervised learning algorithm using, as inputs, matrix patterns derived from the bipeptide composition of 447 proteins, belonging to 13 different families. As a result of the training, and without any a priori indication of the number or composition of the expected families, the network self-organized the activation of its neurons into topologically ordered maps in which almost all the proteins (96.7%) were correctly clustered into the corresponding families. In a second computational experiment, a similar network was trained with one family of the previous learning set (76 cytochrome c sequences). The new neural map clustered these proteins into 25 different neurons (five in the first experiment), wherein phylogenetically related sequences were positioned close to each other. This result shows that the network can adapt the clustering resolution to the complexity of the learning set, a useful feature when working with an unknown number of clusters. Although the learning stage is time consuming, once the topological map is obtained, the classification of new proteins is very fast. Altogether, our results suggest that this novel approach may be a useful tool to organize the search for homologies in large macromolecular databases. PMID:1314686

  11. Integration of bacterial expansin-like proteins into cellulosome promotes the cellulose degradation.

    PubMed

    Chen, Chao; Cui, Zhenling; Song, Xiangfei; Liu, Ya-Jun; Cui, Qiu; Feng, Yingang

    2016-03-01

    Cellulosomes are multi-enzyme complexes assembled by cellulases and hemicellulases through dockerin-cohesin interactions, which are the most efficient system for the degradation of lignocellulosic resources in nature. Recent genomic analysis of a cellulosome-producing anaerobe Clostridium clariflavum DSM 19732 revealed that two expansin-like proteins, Clocl_1298 and Clocl_1862, contain a dockerin module, which suggests that they are components of the cellulosome. Bacterial expansin-like proteins do not have hydrolytic activities, but can facilitate the degradation of cellulosic biomass via synergistic effects with cellulases. In this study, the synergistic effect of the expansin-like proteins with both native and designer cellulosomes was investigated. The free expansin-like proteins, including expansin-like domains of Clocl_1298 and Clocl_1862, as well as a well-studied bacterial expansin-like protein BsEXLX1 from Bacillus subtilis, promoted the cellulose degradation by native cellulosomes, indicating the cellulosomal expansin-like proteins have the synergistic function. When they were integrated into a trivalent designer cellulosome, the synergistic effect was further amplified. The sequence and structure analyses indicated that these cellulosomal expansin-like proteins share the conserved functional mechanism with other bacterial expansin-like proteins. These results indicated that non-catalytic expansin-like proteins in the cellulosome can enhance the activity of the cellulosome in lignocellulose degradation. The involvement of functional expansin-like proteins in the cellulosome also implies new physiological functions of bacterial expansin-like proteins and cellulosomes. PMID:26521249

  12. IDENTIFICATION OF NICOTINAMIDE MONONUCLEOTIDE DEAMIDASE OF THE BACTERIAL PYRIDINE NUCLEOTIDE CYCLE REVEALS A NOVEL BROADLY CONSERVED AMIDOHYDROLASE FAMILY

    SciTech Connect

    Galeazzi, Luca; Bocci, Paolo; Amici, Adolfo; Brunetti, Lucia; Ruggieri, Silverio; Romine, Margaret F.; Reed, Samantha B.; Osterman, Andrei; Rodionov, Dmitry A.; Sorci, Leonardo; Raffaelli, Nadia

    2011-09-27

    The pyridine nucleotide cycle (PNC) is a network of salvage and recycling routes maintaining homeostasis of NAD(P) cofactor pool in the cell. Nicotinamide mononucleotide (NMN) deamidase (EC 3.5.1.42), one of the key enzymes of the bacterial PNC was originally described in Enterobacteria, but the corresponding gene eluded identification for over 30 years. A genomics-based reconstruction of NAD metabolism across hundreds bacterial species suggested that NMN deamidase reaction is the only possible way of nicotinamide salvage in the marine bacterium Shewanella oneidensis. This prediction was verified via purification of native NMN deamidase from S. oneidensis followed by the identification of the respective gene, termed pncC. Enzymatic characterization of the PncC protein, as well as phenotype analysis of deletion mutants, confirmed its proposed biochemical and physiological function in S. oneidensis. Of the three PncC homologs present in E. coli, NMN deamidase activity was confirmed only for the recombinant purified product of the ygaD gene. A comparative analysis at the level of sequence and three dimensional structure, which is available for one of the PncC family member, shows no homology with any previously described amidohydrolases. Multiple alignment analysis of functional and non functional PncC homologs, together with NMN docking experiments, allowed us to tentatively identify the active site area and conserved residues therein. An observed broad phylogenomic distribution of predicted functional PncCs in bacterial kingdom is consistent with a possible role in detoxification of NMN, resulting from NAD utilization by DNA ligase.

  13. The Protein 4.1 family: hub proteins in animals for organizing membrane proteins.

    PubMed

    Baines, Anthony J; Lu, Hui-Chun; Bennett, Pauline M

    2014-02-01

    Proteins of the 4.1 family are characteristic of eumetazoan organisms. Invertebrates contain single 4.1 genes and the Drosophila model suggests that 4.1 is essential for animal life. Vertebrates have four paralogues, known as 4.1R, 4.1N, 4.1G and 4.1B, which are additionally duplicated in the ray-finned fish. Protein 4.1R was the first to be discovered: it is a major mammalian erythrocyte cytoskeletal protein, essential to the mechanochemical properties of red cell membranes because it promotes the interaction between spectrin and actin in the membrane cytoskeleton. 4.1R also binds certain phospholipids and is required for the stable cell surface accumulation of a number of erythrocyte transmembrane proteins that span multiple functional classes; these include cell adhesion molecules, transporters and a chemokine receptor. The vertebrate 4.1 proteins are expressed in most tissues, and they are required for the correct cell surface accumulation of a very wide variety of membrane proteins including G-Protein coupled receptors, voltage-gated and ligand-gated channels, as well as the classes identified in erythrocytes. Indeed, such large numbers of protein interactions have been mapped for mammalian 4.1 proteins, most especially 4.1R, that it appears that they can act as hubs for membrane protein organization. The range of critical interactions of 4.1 proteins is reflected in disease relationships that include hereditary anaemias, tumour suppression, control of heartbeat and nervous system function. The 4.1 proteins are defined by their domain structure: apart from the spectrin/actin-binding domain they have FERM and FERM-adjacent domains and a unique C-terminal domain. Both the FERM and C-terminal domains can bind transmembrane proteins, thus they have the potential to be cross-linkers for membrane proteins. The activity of the FERM domain is subject to multiple modes of regulation via binding of regulatory ligands, phosphorylation of the FERM associated domain and

  14. The KCTD family of proteins: structure, function, disease relevance

    PubMed Central

    2013-01-01

    The family of potassium channel tetramerizationdomain (KCTD) proteins consists of 26 members with mostly unknown functions. The name of the protein family is due to the sequence similarity between the conserved N-terminal region of KCTD proteins and the tetramerization domain in some voltage-gated potassium channels. Dozens of publications suggest that KCTD proteins have roles in various biological processes and diseases. In this review, we summarize the character of Bric-a-brack,Tram-track, Broad complex(BTB) of KCTD proteins, their roles in the ubiquitination pathway, and the roles of KCTD mutants in diseases. Furthermore, we review potential downstream signaling pathways and discuss future studies that should be performed. PMID:24268103

  15. The neuronal calcium sensor family of Ca2+-binding proteins.

    PubMed Central

    Burgoyne, R D; Weiss, J L

    2001-01-01

    Ca(2+) plays a central role in the function of neurons as the trigger for neurotransmitter release, and many aspects of neuronal activity, from rapid modulation to changes in gene expression, are controlled by Ca(2+). These actions of Ca(2+) must be mediated by Ca(2+)-binding proteins, including calmodulin, which is involved in Ca(2+) regulation, not only in neurons, but in most other cell types. A large number of other EF-hand-containing Ca(2+)-binding proteins are known. One family of these, the neuronal calcium sensor (NCS) proteins, has a restricted expression in retinal photoreceptors or neurons and neuroendocrine cells, suggesting that they have specialized roles in these cell types. Two members of the family (recoverin and guanylate cyclase-activating protein) have established roles in the regulation of phototransduction. Despite close sequence similarities, the NCS proteins have distinct neuronal distributions, suggesting that they have different functions. Recent work has begun to demonstrate the physiological roles of members of this protein family. These include roles in the modulation of neurotransmitter release, control of cyclic nucleotide metabolism, biosynthesis of polyphosphoinositides, regulation of gene expression and in the direct regulation of ion channels. In the present review we describe the known sequences and structures of the NCS proteins, information on their interactions with target proteins and current knowledge about their cellular and physiological functions. PMID:11115393

  16. Systems Proteomics View of the Endogenous Human Claudin Protein Family.

    PubMed

    Liu, Fei; Koval, Michael; Ranganathan, Shoba; Fanayan, Susan; Hancock, William S; Lundberg, Emma K; Beavis, Ronald C; Lane, Lydie; Duek, Paula; McQuade, Leon; Kelleher, Neil L; Baker, Mark S

    2016-02-01

    Claudins are the major transmembrane protein components of tight junctions in human endothelia and epithelia. Tissue-specific expression of claudin members suggests that this protein family is not only essential for sustaining the role of tight junctions in cell permeability control but also vital in organizing cell contact signaling by protein-protein interactions. How this protein family is collectively processed and regulated is key to understanding the role of junctional proteins in preserving cell identity and tissue integrity. The focus of this review is to first provide a brief overview of the functional context, on the basis of the extensive body of claudin biology research that has been thoroughly reviewed, for endogenous human claudin members and then ascertain existing and future proteomics techniques that may be applicable to systematically characterizing the chemical forms and interacting protein partners of this protein family in human. The ability to elucidate claudin-based signaling networks may provide new insight into cell development and differentiation programs that are crucial to tissue stability and manipulation. PMID:26680015

  17. Deleted in liver cancer protein family in human malignancies (Review)

    PubMed Central

    Lukasik, D.; Wilczek, E.; Wasiutynski, A.; Gornicka, B.

    2011-01-01

    The Deleted in Liver Cancer (DLC) protein family comprises proteins that exert their function mainly by the Rho GTPase-activating protein (GAP) domain and by regulation of the small GTPases. Since Rho GTPases are key factors in cell proliferation, polarity, cytoskeletal remodeling and migration, the aberrant function of their regulators may lead to cell transformation. One subgroup of these proteins is the DLC family. It was found that the first identified gene from this family, DLC1, is often lost in hepatocellular carcinoma and may be involved as a tumor suppressor in the liver. Subsequent studies evaluated the hypothesis that the DLC1 gene acts as a tumor suppressor, not only in liver cancer, but also in other types of cancer. Following DLC1, two other members of the DLC protein family, DLC2 and DLC3, were identified. However, limited published data are available concerning the role of these proteins in malignant transformation. This review focuses on the structure and the role of DLC1 and its relatives in physiological conditions and summarizes data published thus far regarding DLC function in the neoplastic process. PMID:22866123

  18. Evolutionary Implications and Physicochemical Analyses of Selected Proteins of Type III Polyketide Synthase Family

    PubMed Central

    Mallika, V.; Sivakumar, K.C.; Soniya, E.V.

    2011-01-01

    Type III polyketide synthases have a substantial role in the biosynthesis of various polyketides in plants and microorganisms. Comparative proteomic analysis of type III polyketide synthases showed evolutionarily and structurally related positions in a compilation of amino acid sequences from different families. Bacterial and fungal type III polyketide synthase proteins showed <50% similarity but in higher plants, it exhibited >80% among chalcone synthases and >70% in the case of non-chalcone synthases. In a consensus phylogenetic tree based on 1000 replicates; bacterial, fungal and plant proteins were clustered in separate groups. Proteins from bryophytes and pteridophytes grouped immediately near to the fungal cluster, demonstrated how evolutionary lineage has occurred among type III polyketide synthase proteins. Upon physicochemical analysis, it was observed that the proteins localized in the cytoplasm and were hydrophobic in nature. Molecular structural analysis revealed comparatively stable structure comprising of alpha helices and random coils as major structural components. It was found that there was a decline in the structural stability with active site mutation as prophesied by the in silico mutation studies. PMID:21697991

  19. Mycobacterium tuberculosis Rv0899 defines a family of membrane proteins widespread in nitrogen-fixing bacteria

    PubMed Central

    Marassi, Francesca M.

    2011-01-01

    The Mycobacterium tuberculosis membrane protein Rv0899 confers adaptation of the bacterium to acidic environments. Due to strong sequence homology of its C-terminus to bacterial OmpA-like domains, Rv0899 has been proposed to constitute an outer membrane porin of M. tuberculosis. However, OmpA-like domains are widespread in a wide variety of bacterial proteins with different functions. Furthermore, the three-dimensional structure of Rv0899 does not contain a transmembrane β-barrel, and recent evidence demonstrates that it does not have porin activity. Instead, the rv0899 gene is part of an operon (rv0899-rv0901) that is required for fast ammonia secretion, pH neutralization and growth of M. tuberculosis in acidic environments. The mechanism whereby these functions are accomplished is not known. To gain further functional insights, a targeted search of the genomic databases was performed for proteins with sequence similarity beyond the OmpA-like C-terminus. The results presented here, show that Rv0899-like proteins are widespread in bacteria with functions in nitrogen metabolism, adaptation to nutrient poor environments, and/or establishing symbiosis with the host organism, and appear to form a protein family. These findings suggest that M. tuberculosis Rv0899 may also assist similar processes and lend further support to its role in ammonia secretion and M. tuberculosis adaptation to the host environment. PMID:21905117

  20. Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold.

    PubMed

    Beeby, Morgan; Ribardo, Deborah A; Brennan, Caitlin A; Ruby, Edward G; Jensen, Grant J; Hendrixson, David R

    2016-03-29

    Although it is known that diverse bacterial flagellar motors produce different torques, the mechanism underlying torque variation is unknown. To understand this difference better, we combined genetic analyses with electron cryo-tomography subtomogram averaging to determine in situ structures of flagellar motors that produce different torques, from Campylobacter and Vibrio species. For the first time, to our knowledge, our results unambiguously locate the torque-generating stator complexes and show that diverse high-torque motors use variants of an ancestrally related family of structures to scaffold incorporation of additional stator complexes at wider radii from the axial driveshaft than in the model enteric motor. We identify the protein components of these additional scaffold structures and elucidate their sequential assembly, demonstrating that they are required for stator-complex incorporation. These proteins are widespread, suggesting that different bacteria have tailored torques to specific environments by scaffolding alternative stator placement and number. Our results quantitatively account for different motor torques, complete the assignment of the locations of the major flagellar components, and provide crucial constraints for understanding mechanisms of torque generation and the evolution of multiprotein complexes. PMID:26976588

  1. Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold

    PubMed Central

    Ribardo, Deborah A.; Brennan, Caitlin A.; Ruby, Edward G.; Jensen, Grant J.; Hendrixson, David R.

    2016-01-01

    Although it is known that diverse bacterial flagellar motors produce different torques, the mechanism underlying torque variation is unknown. To understand this difference better, we combined genetic analyses with electron cryo-tomography subtomogram averaging to determine in situ structures of flagellar motors that produce different torques, from Campylobacter and Vibrio species. For the first time, to our knowledge, our results unambiguously locate the torque-generating stator complexes and show that diverse high-torque motors use variants of an ancestrally related family of structures to scaffold incorporation of additional stator complexes at wider radii from the axial driveshaft than in the model enteric motor. We identify the protein components of these additional scaffold structures and elucidate their sequential assembly, demonstrating that they are required for stator-complex incorporation. These proteins are widespread, suggesting that different bacteria have tailored torques to specific environments by scaffolding alternative stator placement and number. Our results quantitatively account for different motor torques, complete the assignment of the locations of the major flagellar components, and provide crucial constraints for understanding mechanisms of torque generation and the evolution of multiprotein complexes. PMID:26976588

  2. BCL-2 family proteins as regulators of mitochondria metabolism.

    PubMed

    Gross, Atan

    2016-08-01

    The BCL-2 family proteins are major regulators of apoptosis, and one of their major sites of action are the mitochondria. Mitochondria are the cellular hubs for metabolism and indeed selected BCL-2 family proteins also possess roles related to mitochondria metabolism and dynamics. Here we discuss the link between mitochondrial metabolism/dynamics and the fate of stem cells, with an emphasis on the role of the BID-MTCH2 pair in regulating this link. We also discuss the possibility that BCL-2 family proteins act as metabolic sensors/messengers coming on and off of mitochondria to "sample" the cytosol and provide the mitochondria with up-to-date metabolic information. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:26827940

  3. PSI-2: Structural Genomics to Cover Protein Domain Family Space

    PubMed Central

    Dessailly, Benoît H.; Nair, Rajesh; Jaroszewski, Lukasz; Fajardo, J. Eduardo; Kouranov, Andrei; Lee, David; Fiser, Andras; Godzik, Adam; Rost, Burkhard; Orengo, Christine

    2010-01-01

    Summary One major objective of structural genomics efforts, including the NIH-funded Protein Structure Initiative (PSI), has been to increase the structural coverage of protein sequence space. Here, we present the target selection strategy used during the second phase of PSI (PSI-2). This strategy, jointly devised by the bioinformatics groups associated with the PSI-2 large-scale production centres, targets representatives from large, structurally uncharacterised protein domain families, and from structurally uncharacterised subfamilies in very large and diverse families with incomplete structural coverage. These very large families are extremely diverse both structurally and functionally, and are highly over-represented in known proteomes. On the basis of several metrics, we then discuss to what extent PSI-2, during its first three years, has increased the structural coverage of genomes, and contributed structural and functional novelty. Together, the results presented here suggest that PSI-2 is successfully meeting its objectives and provides useful insights into structural and functional space. PMID:19523904

  4. Expression and localization of X11 family proteins in neurons.

    PubMed

    Motodate, Rika; Saito, Yuhki; Hata, Saori; Suzuki, Toshiharu

    2016-09-01

    The X11/Mint family of proteins comprises X11/X11α/Mint1, X11L/X11β/Mint2, and X11L2/X11γ/Mint3. Each of these molecules is an adaptor protein that contains a phosphotyrosine interaction/binding (PI/PTB) and two PDZ domains in its carboxy-terminal region. X11/Mint family members associate with a broad spectrum of membrane proteins, including Alzheimer's β-amyloid precursor protein (APP), alcadeins, and low density lipoprotein receptor proteins, as well as various cytoplasmic proteins including Arf, kalirin-7, and Munc18. In particular, X11 and X11L are thought to play various roles in the regulation of neural functions in brain. Nevertheless, the protein levels and respective localization of individual family members remain controversial. We analyzed the protein levels of X11 and X11L in the corresponding single- and double-knockout mice. X11 and X11L did not exhibit obvious changes of their protein levels when the other was absent, especially in cerebrum in which they were widely co-expressed. In cerebellum, X11 and X11L localized in characteristic patterns in various types of neurons, and X11 protein level increased without an obvious ectopic localization in X11L-knockout mice. Interestingly, only X11L protein existed specifically in brain, whereas, contrary to the accepted view, X11 protein was detected at the highest levels in brain but was also strongly detected in pancreas, testis, and paranephros. Together, our results indicate that both X11 and X11L exert largely in brain neurons, but X11 may also function in peripheral tissues. PMID:27268412

  5. Disorder and function: a review of the dehydrin protein family.

    PubMed

    Graether, Steffen P; Boddington, Kelly F

    2014-01-01

    Dehydration proteins (dehydrins) are group 2 members of the late embryogenesis abundant (LEA) protein family. The protein architecture of dehydrins can be described by the presence of three types of conserved sequence motifs that have been named the K-, Y-, and S-segments. By definition, a dehydrin must contain at least one copy of the lysine-rich K-segment. Abiotic stresses such as drought, cold, and salinity cause the upregulation of dehydrin mRNA and protein levels. Despite the large body of genetic and protein evidence of the importance of these proteins in stress response, the in vivo protective mechanism is not fully known. In vitro experimental evidence from biochemical assays and localization experiments suggests multiple roles for dehydrins, including membrane protection, cryoprotection of enzymes, and protection from reactive oxygen species. Membrane binding by dehydrins is likely to be as a peripheral membrane protein, since the protein sequences are highly hydrophilic and contain many charged amino acids. Because of this, dehydrins in solution are intrinsically disordered proteins, that is, they have no well-defined secondary or tertiary structure. Despite their disorder, dehydrins have been shown to gain structure when bound to ligands such as membranes, and to possibly change their oligomeric state when bound to ions. We review what is currently known about dehydrin sequences and their structures, and examine the various ligands that have been shown to bind to this family of proteins. PMID:25400646

  6. Disorder and function: a review of the dehydrin protein family

    PubMed Central

    Graether, Steffen P.; Boddington, Kelly F.

    2014-01-01

    Dehydration proteins (dehydrins) are group 2 members of the late embryogenesis abundant (LEA) protein family. The protein architecture of dehydrins can be described by the presence of three types of conserved sequence motifs that have been named the K-, Y-, and S-segments. By definition, a dehydrin must contain at least one copy of the lysine-rich K-segment. Abiotic stresses such as drought, cold, and salinity cause the upregulation of dehydrin mRNA and protein levels. Despite the large body of genetic and protein evidence of the importance of these proteins in stress response, the in vivo protective mechanism is not fully known. In vitro experimental evidence from biochemical assays and localization experiments suggests multiple roles for dehydrins, including membrane protection, cryoprotection of enzymes, and protection from reactive oxygen species. Membrane binding by dehydrins is likely to be as a peripheral membrane protein, since the protein sequences are highly hydrophilic and contain many charged amino acids. Because of this, dehydrins in solution are intrinsically disordered proteins, that is, they have no well-defined secondary or tertiary structure. Despite their disorder, dehydrins have been shown to gain structure when bound to ligands such as membranes, and to possibly change their oligomeric state when bound to ions. We review what is currently known about dehydrin sequences and their structures, and examine the various ligands that have been shown to bind to this family of proteins. PMID:25400646

  7. The bacterial flagellar protein export apparatus processively transports flagellar proteins even with extremely infrequent ATP hydrolysis

    PubMed Central

    Minamino, Tohru; Morimoto, Yusuke V.; Kinoshita, Miki; Aldridge, Phillip D.; Namba, Keiichi

    2014-01-01

    For self-assembly of the bacterial flagellum, a specific protein export apparatus utilizes ATP and proton motive force (PMF) as the energy source to transport component proteins to the distal growing end. The export apparatus consists of a transmembrane PMF-driven export gate and a cytoplasmic ATPase complex composed of FliH, FliI and FliJ. The FliI6FliJ complex is structurally similar to the α3β3γ complex of FOF1-ATPase. FliJ allows the gate to efficiently utilize PMF to drive flagellar protein export but it remains unknown how. Here, we report the role of ATP hydrolysis by the FliI6FliJ complex. The export apparatus processively transported flagellar proteins to grow flagella even with extremely infrequent or no ATP hydrolysis by FliI mutation (E211D and E211Q, respectively). This indicates that the rate of ATP hydrolysis is not at all coupled with the export rate. Deletion of FliI residues 401 to 410 resulted in no flagellar formation although this FliI deletion mutant retained 40% of the ATPase activity, suggesting uncoupling between ATP hydrolysis and activation of the gate. We propose that infrequent ATP hydrolysis by the FliI6FliJ ring is sufficient for gate activation, allowing processive translocation of export substrates for efficient flagellar assembly. PMID:25531309

  8. Data presenting a modified bacterial expression vector for expressing and purifying Nus solubility-tagged proteins.

    PubMed

    Gupta, Nidhi; Wu, Heng; Terman, Jonathan R

    2016-09-01

    Bacteria are the predominant source for producing recombinant proteins but while many exogenous proteins are expressed, only a fraction of those are soluble. We have found that a new actin regulatory enzyme Mical is poorly soluble when expressed in bacteria but the use of a Nus fusion protein tag greatly increases its solubility. However, available vectors containing a Nus tag have been engineered in a way that hinders the separation of target proteins from the Nus tag during protein purification. We have now used recombinant DNA approaches to overcome these issues and reengineer a Nus solubility tag-containing bacterial expression vector. The data herein present a modified bacterial expression vector useful for expressing proteins fused to the Nus solubility tag and separating such target proteins from the Nus tag during protein purification. PMID:27547802

  9. Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species.

    PubMed

    Pawluk, April; Staals, Raymond H J; Taylor, Corinda; Watson, Bridget N J; Saha, Senjuti; Fineran, Peter C; Maxwell, Karen L; Davidson, Alan R

    2016-01-01

    CRISPR-Cas systems provide sequence-specific adaptive immunity against foreign nucleic acids(1,2). They are present in approximately half of all sequenced prokaryotes(3) and are expected to constitute a major barrier to horizontal gene transfer. We previously described nine distinct families of proteins encoded in Pseudomonas phage genomes that inhibit CRISPR-Cas function(4,5). We have developed a bioinformatic approach that enabled us to discover additional anti-CRISPR proteins encoded in phages and other mobile genetic elements of diverse bacterial species. We show that five previously undiscovered families of anti-CRISPRs inhibit the type I-F CRISPR-Cas systems of both Pseudomonas aeruginosa and Pectobacterium atrosepticum, and a dual specificity anti-CRISPR inactivates both type I-F and I-E CRISPR-Cas systems. Mirroring the distribution of the CRISPR-Cas systems they inactivate, these anti-CRISPRs were found in species distributed broadly across the phylum Proteobacteria. Importantly, anti-CRISPRs originating from species with divergent type I-F CRISPR-Cas systems were able to inhibit the two systems we tested, highlighting their broad specificity. These results suggest that all type I-F CRISPR-Cas systems are vulnerable to inhibition by anti-CRISPRs. Given the widespread occurrence and promiscuous activity of the anti-CRISPRs described here, we propose that anti-CRISPRs play an influential role in facilitating the movement of DNA between prokaryotes by breaching the barrier imposed by CRISPR-Cas systems. PMID:27573108

  10. Transcriptional abundance is not the single force driving the evolution of bacterial proteins

    PubMed Central

    2013-01-01

    Background Despite rapid progress in understanding the mechanisms that shape the evolution of proteins, the relative importance of various factors remain to be elucidated. In this study, we have assessed the effects of 16 different biological features on the evolutionary rates (ERs) of protein-coding sequences in bacterial genomes. Results Our analysis of 18 bacterial species revealed new correlations between ERs and constraining factors. Previous studies have suggested that transcriptional abundance overwhelmingly constrains the evolution of yeast protein sequences. This transcriptional abundance leads to selection against misfolding or misinteractions. In this study we found that there was no single factor in determining the evolution of bacterial proteins. Not only transcriptional abundance (codon adaptation index and expression level), but also protein-protein associations (PPAs), essentiality (ESS), subcellular localization of cytoplasmic membrane (SLM), transmembrane helices (TMH) and hydropathicity score (HS) independently and significantly affected the ERs of bacterial proteins. In some species, PPA and ESS demonstrate higher correlations with ER than transcriptional abundance. Conclusions Different forces drive the evolution of protein sequences in yeast and bacteria. In bacteria, the constraints are involved in avoiding a build-up of toxic molecules caused by misfolding/misinteraction (transcriptional abundance), while retaining important functions (ESS, PPA) and maintaining the cell membrane (SLM, TMH and HS). Each of these independently contributes to the variation in protein evolution. PMID:23914835

  11. Genetic Reporter System for Positioning of Proteins at the Bacterial Pole

    PubMed Central

    Fixen, Kathryn R.; Janakiraman, Anuradha; Garrity, Sean; Slade, Daniel J.; Gray, Andrew N.; Karahan, Nilay; Hochschild, Ann; Goldberg, Marcia B.

    2012-01-01

    ABSTRACT Spatial organization within bacteria is fundamental to many cellular processes, although the basic mechanisms underlying localization of proteins to specific sites within bacteria are poorly understood. The study of protein positioning has been limited by a paucity of methods that allow rapid large-scale screening for mutants in which protein positioning is altered. We developed a genetic reporter system for protein localization to the pole within the bacterial cytoplasm that allows saturation screening for mutants in Escherichia coli in which protein localization is altered. Utilizing this system, we identify proteins required for proper positioning of the Shigella autotransporter IcsA. Autotransporters, widely distributed bacterial virulence proteins, are secreted at the bacterial pole. We show that the conserved cell division protein FtsQ is required for localization of IcsA and other autotransporters to the pole. We demonstrate further that this system can be applied to the study of proteins other than autotransporters that display polar positioning within bacterial cells. PMID:22375072

  12. Current Overview of Allergens of Plant Pathogenesis Related Protein Families

    PubMed Central

    Sinha, Mau; Singh, Rashmi Prabha; Kushwaha, Gajraj Singh; Iqbal, Naseer; Singh, Avinash; Kaushik, Sanket; Sharma, Sujata; Singh, Tej P.

    2014-01-01

    Pathogenesis related (PR) proteins are one of the major sources of plant derived allergens. These proteins are induced by the plants as a defense response system in stress conditions like microbial and insect infections, wounding, exposure to harsh chemicals, and atmospheric conditions. However, some plant tissues that are more exposed to environmental conditions like UV irradiation and insect or fungal attacks express these proteins constitutively. These proteins are mostly resistant to proteases and most of them show considerable stability at low pH. Many of these plant pathogenesis related proteins are found to act as food allergens, latex allergens, and pollen allergens. Proteins having similar amino acid sequences among the members of PR proteins may be responsible for cross-reactivity among allergens from diverse plants. This review analyzes the different pathogenesis related protein families that have been reported as allergens. Proteins of these families have been characterized in regard to their biological functions, amino acid sequence, and cross-reactivity. The three-dimensional structures of some of these allergens have also been evaluated to elucidate the antigenic determinants of these molecules and to explain the cross-reactivity among the various allergens. PMID:24696647

  13. Leucine-rich Repeats of Bacterial Surface Proteins Serve as Common Pattern Recognition Motifs of Human Scavenger Receptor gp340*

    PubMed Central

    Loimaranta, Vuokko; Hytönen, Jukka; Pulliainen, Arto T.; Sharma, Ashu; Tenovuo, Jorma; Strömberg, Nicklas; Finne, Jukka

    2009-01-01

    Scavenger receptors are innate immune molecules recognizing and inducing the clearance of non-host as well as modified host molecules. To recognize a wide pattern of invading microbes, many scavenger receptors bind to common pathogen-associated molecular patterns, such as lipopolysaccharides and lipoteichoic acids. Similarly, the gp340/DMBT1 protein, a member of the human scavenger receptor cysteine-rich protein family, displays a wide ligand repertoire. The peptide motif VEVLXXXXW derived from its scavenger receptor cysteine-rich domains is involved in some of these interactions, but most of the recognition mechanisms are unknown. In this study, we used mass spectrometry sequencing, gene inactivation, and recombinant proteins to identify Streptococcus pyogenes protein Spy0843 as a recognition receptor of gp340. Antibodies against Spy0843 are shown to protect against S. pyogenes infection, but no function or host receptor have been identified for the protein. Spy0843 belongs to the leucine-rich repeat (Lrr) family of eukaryotic and prokaryotic proteins. Experiments with truncated forms of the recombinant proteins confirmed that the Lrr region is needed in the binding of Spy0843 to gp340. The same motif of two other Lrr proteins, LrrG from the Gram-positive S. agalactiae and BspA from the Gram-negative Tannerella forsythia, also mediated binding to gp340. Moreover, inhibition of Spy0843 binding occurred with peptides containing the VEVLXXXXW motif, but also peptides devoid of the XXXXW motif inhibited binding of Lrr proteins. These results thus suggest that the conserved Lrr motif in bacterial proteins serves as a novel pattern recognition motif for unique core peptides of human scavenger receptor gp340. PMID:19465482

  14. Reactivity of human salivary proteins families toward food polyphenols.

    PubMed

    Soares, Susana; Vitorino, Rui; Osório, Hugo; Fernandes, Ana; Venâncio, Armando; Mateus, Nuno; Amado, Francisco; de Freitas, Victor

    2011-05-25

    Tannins are well-known food polyphenols that interact with proteins, namely, salivary proteins. This interaction is an important factor in relation to their bioavailability and is considered the basis of several important properties of tannins, namely, the development of astringency. It has been generally accepted that astringency is due to the tannin-induced complexation and/or precipitation of salivary proline-rich proteins (PRPs) in the oral cavity. However, this complexation is thought to provide protection against dietary tannins. Neverthless, there is no concrete evidence and agreement about which PRP families (acidic, basic, and glycosylated) are responsible for the interaction with condensed tannins. In the present work, human saliva was isolated, and the proteins existing in saliva were characterized by chromatographic and proteomic approaches (HPLC-DAD, ESI-MS, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and MALDI-TOF). These approaches were also adapted to study the affinity of the different families of salivary proteins to condensed tannins by the interaction of saliva with grape seed procyanidins. The results obtained when all the main families of salivary proteins are present in a competitive assay, like in the oral cavity, demonstrate that condensed tannins interact first with acidic PRPs and statherin and thereafter with histatins, glycosylated PRPs, and bPRPs. PMID:21417408

  15. Diversity and Evolution of Bacterial Twin Arginine Translocase Protein, TatC, Reveals a Protein Secretion System That Is Evolving to Fit Its Environmental Niche

    PubMed Central

    Simone, Domenico; Bay, Denice C.; Leach, Thorin; Turner, Raymond J.

    2013-01-01

    Background The twin-arginine translocation (Tat) protein export system enables the transport of fully folded proteins across a membrane. This system is composed of two integral membrane proteins belonging to TatA and TatC protein families and in some systems a third component, TatB, a homolog of TatA. TatC participates in substrate protein recognition through its interaction with a twin arginine leader peptide sequence. Methodology/Principal Findings The aim of this study was to explore TatC diversity, evolution and sequence conservation in bacteria to identify how TatC is evolving and diversifying in various bacterial phyla. Surveying bacterial genomes revealed that 77% of all species possess one or more tatC loci and half of these classes possessed only tatC and tatA genes. Phylogenetic analysis of diverse TatC homologues showed that they were primarily inherited but identified a small subset of taxonomically unrelated bacteria that exhibited evidence supporting lateral gene transfer within an ecological niche. Examination of bacilli tatCd/tatCy isoform operons identified a number of known and potentially new Tat substrate genes based on their frequent association to tatC loci. Evolutionary analysis of these Bacilli isoforms determined that TatCy was the progenitor of TatCd. A bacterial TatC consensus sequence was determined and highlighted conserved and variable regions within a three dimensional model of the Escherichia coli TatC protein. Comparative analysis between the TatC consensus sequence and Bacilli TatCd/y isoform consensus sequences revealed unique sites that may contribute to isoform substrate specificity or make TatA specific contacts. Synonymous to non-synonymous nucleotide substitution analyses of bacterial tatC homologues determined that tatC sequence variation differs dramatically between various classes and suggests TatC specialization in these species. Conclusions/Significance TatC proteins appear to be diversifying within particular bacterial

  16. Six Subgroups and Extensive Recent Duplications Characterize the Evolution of the Eukaryotic Tubulin Protein Family

    PubMed Central

    Findeisen, Peggy; Mühlhausen, Stefanie; Dempewolf, Silke; Hertzog, Jonny; Zietlow, Alexander; Carlomagno, Teresa; Kollmar, Martin

    2014-01-01

    Tubulins belong to the most abundant proteins in eukaryotes providing the backbone for many cellular substructures like the mitotic and meiotic spindles, the intracellular cytoskeletal network, and the axonemes of cilia and flagella. Homologs have even been reported for archaea and bacteria. However, a taxonomically broad and whole-genome-based analysis of the tubulin protein family has never been performed, and thus, the number of subfamilies, their taxonomic distribution, and the exact grouping of the supposed archaeal and bacterial homologs are unknown. Here, we present the analysis of 3,524 tubulins from 504 species. The tubulins formed six major subfamilies, α to ζ. Species of all major kingdoms of the eukaryotes encode members of these subfamilies implying that they must have already been present in the last common eukaryotic ancestor. The proposed archaeal homologs grouped together with the bacterial TubZ proteins as sister clade to the FtsZ proteins indicating that tubulins are unique to eukaryotes. Most species contained α- and/or β-tubulin gene duplicates resulting from recent branch- and species-specific duplication events. This shows that tubulins cannot be used for constructing species phylogenies without resolving their ortholog–paralog relationships. The many gene duplicates and also the independent loss of the δ-, ε-, or ζ-tubulins, which have been shown to be part of the triplet microtubules in basal bodies, suggest that tubulins can functionally substitute each other. PMID:25169981

  17. Cullin Family Proteins and Tumorigenesis: Genetic Association and Molecular Mechanisms

    PubMed Central

    Chen, Zhi; Sui, Jie; Zhang, Fan; Zhang, Caiguo

    2015-01-01

    Cullin family proteins function as scaffolds to form numerous E3 ubiquitin ligases with RING proteins, adaptor proteins and substrate recognition receptors. These E3 ligases further recognize numerous substrates to participate in a variety of cellular processes, such as DNA damage and repair, cell death and cell cycle progression. Clinically, cullin-associated E3 ligases have been identified to involve numerous human diseases, especially with regard to multiple cancer types. Over the past few years, our understanding of cullin proteins and their functions in genome stability and tumorigenesis has expanded enormously. Herein, this review briefly provides current perspectives on cullin protein functions, and mainly summarizes and discusses molecular mechanisms of cullin proteins in tumorigenesis. PMID:25663940

  18. Proteins of the ETS family with transcriptional repressor activity.

    PubMed

    Mavrothalassitis, G; Ghysdael, J

    2000-12-18

    ETS proteins form one of the largest families of signal-dependent transcriptional regulators, mediating cellular proliferation, differentiation and tumorigenesis. Most of the known ETS proteins have been shown to activate transcription. However, four ETS proteins (YAN, ERF, NET and TEL) can act as transcriptional repressors. In three cases (ERF, NET and TEL) distinct repression domains have been identified and there are indications that NET and TEL may mediate transcription via Histone Deacetylase recruitment. All four proteins appear to be regulated by MAPKs, though for YAN and ERF this regulation seems to be restricted to ERKs. YAN, ERF and TEL have been implicated in cellular proliferation although there are indications suggesting a possible involvement of YAN and TEL in differentiation as well. Other ETS-domain proteins have been shown to repress transcription in a context specific manner, and there are suggestions that the ETS DNA-binding domain may act as a transcriptional repressor. Transcriptional repression by ETS domain proteins adds an other level in the orchestrated regulation by this diverse family of transcription factors that often recognize similar if not identical binding sites on DNA and are believed to regulate critical genes in a variety of biological processes. Definitive assessment of the importance of this novel regulatory level will require the identification of ETS proteins target genes and the further analysis of transcriptional control and biological function of these proteins in defined pathways. PMID:11175368

  19. A Fungal Family of Transcriptional Regulators: the Zinc Cluster Proteins

    PubMed Central

    MacPherson, Sarah; Larochelle, Marc; Turcotte, Bernard

    2006-01-01

    The trace element zinc is required for proper functioning of a large number of proteins, including various enzymes. However, most zinc-containing proteins are transcription factors capable of binding DNA and are named zinc finger proteins. They form one of the largest families of transcriptional regulators and are categorized into various classes according to zinc-binding motifs. This review focuses on one class of zinc finger proteins called zinc cluster (or binuclear) proteins. Members of this family are exclusively fungal and possess the well-conserved motif CysX2CysX6CysX5-12CysX2CysX6-8Cys. The cysteine residues bind to two zinc atoms, which coordinate folding of the domain involved in DNA recognition. The first- and best-studied zinc cluster protein is Gal4p, a transcriptional activator of genes involved in the catabolism of galactose in the budding yeast Saccharomyces cerevisiae. Since the discovery of Gal4p, many other zinc cluster proteins have been characterized; they function in a wide range of processes, including primary and secondary metabolism and meiosis. Other roles include regulation of genes involved in the stress response as well as pleiotropic drug resistance, as demonstrated in budding yeast and in human fungal pathogens. With the number of characterized zinc cluster proteins growing rapidly, it is becoming more and more apparent that they are important regulators of fungal physiology. PMID:16959962

  20. Biochemical Characterization of a Family 15 Carbohydrate Esterase from a Bacterial Marine Arctic Metagenome

    PubMed Central

    De Santi, Concetta; Willassen, Nils Peder

    2016-01-01

    Background The glucuronoyl esterase enzymes of wood-degrading fungi (Carbohydrate Esterase family 15; CE15) form part of the hemicellulolytic and cellulolytic enzyme systems that break down plant biomass, and have possible applications in biotechnology. Homologous enzymes are predicted in the genomes of several bacteria, however these have been much less studied than their fungal counterparts. Here we describe the recombinant production and biochemical characterization of a bacterial CE15 enzyme denoted MZ0003, which was identified by in silico screening of a prokaryotic metagenome library derived from marine Arctic sediment. MZ0003 has high similarity to several uncharacterized gene products of polysaccharide-degrading bacterial species, and phylogenetic analysis indicates a deep evolutionary split between these CE15s and fungal homologs. Results MZ0003 appears to differ from previously-studied CE15s in some aspects. Some glucuronoyl esterase activity could be measured by qualitative thin-layer chromatography which confirms its assignment as a CE15, however MZ0003 can also hydrolyze a range of other esters, including p-nitrophenyl acetate, which is not acted upon by some fungal homologs. The structure of MZ0003 also appears to differ as it is predicted to have several large loop regions that are absent in previously studied CE15s, and a combination of homology-based modelling and site-directed mutagenesis indicate its catalytic residues deviate from the conserved Ser-His-Glu triad of many fungal CE15s. Taken together, these results indicate that potentially unexplored diversity exists among bacterial CE15s, and this may be accessed by investigation of the microbial metagenome. The combination of low activity on typical glucuronoyl esterase substrates, and the lack of glucuronic acid esters in the marine environment suggest that the physiological substrate of MZ0003 and its homologs is likely to be different from that of related fungal enzymes. PMID:27433797

  1. Broad Spectrum Activity of a Lectin-Like Bacterial Serine Protease Family on Human Leukocytes

    PubMed Central

    Ayala-Lujan, Jorge Luis; Vijayakumar, Vidhya; Gong, Mei; Smith, Rachel; Santiago, Araceli E.; Ruiz-Perez, Fernando

    2014-01-01

    The serine protease autotransporter from Enterobacteriaceae (SPATE) family, which number more than 25 proteases with apparent diverse functions, have been phylogenetically divided into two distinct classes, designated 1 and 2. We recently demonstrated that Pic and Tsh, two members of the class-2 SPATE family produced by intestinal and extraintestinal pathogenic E. coli, were able to cleave a number of O-glycosylated proteins on neutrophils and lymphocytes resulting in impaired leukocyte functions. Here we show that most members of the class-2 SPATE family have lectin-like properties and exhibit differential protease activity reliant on glycoprotein type and cell lineage. Protease activity was seen in virtually all tested O-glycosylated proteins including CD34, CD55, CD164, TIM1, TIM3, TIM4 and C1-INH. We also show that although SPATE proteins bound and cleaved glycoproteins more efficiently on granulocytes and monocytes, they also targeted glycoproteins on B, T and natural killer lymphocytes. Finally, we found that the characteristic domain-2 of class-2 SPATEs is not required for glycoprotease activity, but single amino acid mutations in Pic domain-1 to those residues naturally occurring in domain-1 of SepA, were sufficient to hamper Pic glycoprotease activity. This study shows that most class-2 SPATEs have redundant activities and suggest that they may function as immunomodulators at several levels of the immune system. PMID:25251283

  2. Broad spectrum activity of a lectin-like bacterial serine protease family on human leukocytes.

    PubMed

    Ayala-Lujan, Jorge Luis; Vijayakumar, Vidhya; Gong, Mei; Smith, Rachel; Santiago, Araceli E; Ruiz-Perez, Fernando

    2014-01-01

    The serine protease autotransporter from Enterobacteriaceae (SPATE) family, which number more than 25 proteases with apparent diverse functions, have been phylogenetically divided into two distinct classes, designated 1 and 2. We recently demonstrated that Pic and Tsh, two members of the class-2 SPATE family produced by intestinal and extraintestinal pathogenic E. coli, were able to cleave a number of O-glycosylated proteins on neutrophils and lymphocytes resulting in impaired leukocyte functions. Here we show that most members of the class-2 SPATE family have lectin-like properties and exhibit differential protease activity reliant on glycoprotein type and cell lineage. Protease activity was seen in virtually all tested O-glycosylated proteins including CD34, CD55, CD164, TIM1, TIM3, TIM4 and C1-INH. We also show that although SPATE proteins bound and cleaved glycoproteins more efficiently on granulocytes and monocytes, they also targeted glycoproteins on B, T and natural killer lymphocytes. Finally, we found that the characteristic domain-2 of class-2 SPATEs is not required for glycoprotease activity, but single amino acid mutations in Pic domain-1 to those residues naturally occurring in domain-1 of SepA, were sufficient to hamper Pic glycoprotease activity. This study shows that most class-2 SPATEs have redundant activities and suggest that they may function as immunomodulators at several levels of the immune system. PMID:25251283

  3. Computing a new family of shape descriptors for protein structures.

    PubMed

    Røgen, Peter; Sinclair, Robert

    2003-01-01

    The large-scale 3D structure of a protein can be represented by the polygonal curve through the carbon alpha atoms of the protein backbone. We introduce an algorithm for computing the average number of times that a given configuration of crossings on such polygonal curves is seen, the average being taken over all directions in space. Hereby, we introduce a new family of global geometric measures of protein structures, which we compare with the so-called generalized Gauss integrals. PMID:14632419

  4. A structural mechanism for bacterial autotransporter glycosylation by a dodecameric heptosyltransferase family.

    PubMed

    Yao, Qing; Lu, Qiuhe; Wan, Xiaobo; Song, Feng; Xu, Yue; Hu, Mo; Zamyatina, Alla; Liu, Xiaoyun; Huang, Niu; Zhu, Ping; Shao, Feng

    2014-01-01

    A large group of bacterial virulence autotransporters including AIDA-I from diffusely adhering E. coli (DAEC) and TibA from enterotoxigenic E. coli (ETEC) require hyperglycosylation for functioning. Here we demonstrate that TibC from ETEC harbors a heptosyltransferase activity on TibA and AIDA-I, defining a large family of bacterial autotransporter heptosyltransferases (BAHTs). The crystal structure of TibC reveals a characteristic ring-shape dodecamer. The protomer features an N-terminal β-barrel, a catalytic domain, a β-hairpin thumb, and a unique iron-finger motif. The iron-finger motif contributes to back-to-back dimerization; six dimers form the ring through β-hairpin thumb-mediated hand-in-hand contact. The structure of ADP-D-glycero-β-D-manno-heptose (ADP-D,D-heptose)-bound TibC reveals a sugar transfer mechanism and also the ligand stereoselectivity determinant. Electron-cryomicroscopy analyses uncover a TibC-TibA dodecamer/hexamer assembly with two enzyme molecules binding to one TibA substrate. The complex structure also highlights a high efficient hyperglycosylation of six autotransporter substrates simultaneously by the dodecamer enzyme complex. PMID:25310236

  5. A structural mechanism for bacterial autotransporter glycosylation by a dodecameric heptosyltransferase family

    PubMed Central

    Yao, Qing; Lu, Qiuhe; Wan, Xiaobo; Song, Feng; Xu, Yue; Hu, Mo; Zamyatina, Alla; Liu, Xiaoyun; Huang, Niu; Zhu, Ping; Shao, Feng

    2014-01-01

    A large group of bacterial virulence autotransporters including AIDA-I from diffusely adhering E. coli (DAEC) and TibA from enterotoxigenic E. coli (ETEC) require hyperglycosylation for functioning. Here we demonstrate that TibC from ETEC harbors a heptosyltransferase activity on TibA and AIDA-I, defining a large family of bacterial autotransporter heptosyltransferases (BAHTs). The crystal structure of TibC reveals a characteristic ring-shape dodecamer. The protomer features an N-terminal β-barrel, a catalytic domain, a β-hairpin thumb, and a unique iron-finger motif. The iron-finger motif contributes to back-to-back dimerization; six dimers form the ring through β-hairpin thumb-mediated hand-in-hand contact. The structure of ADP-D-glycero-β-D-manno-heptose (ADP-D,D-heptose)-bound TibC reveals a sugar transfer mechanism and also the ligand stereoselectivity determinant. Electron-cryomicroscopy analyses uncover a TibC–TibA dodecamer/hexamer assembly with two enzyme molecules binding to one TibA substrate. The complex structure also highlights a high efficient hyperglycosylation of six autotransporter substrates simultaneously by the dodecamer enzyme complex. DOI: http://dx.doi.org/10.7554/eLife.03714.001 PMID:25310236

  6. Protein Modification: Bacterial Effectors Rewrite the Rules of Ubiquitylation.

    PubMed

    Berk, Jason M; Hochstrasser, Mark

    2016-07-11

    A family of virulence factors from the bacterial pathogen Legionella pneumophila has been discovered to modify human Rab GTPases with ubiquitin. Surprisingly, this modification occurs via a non-canonical mechanism that uses nicotinamide adenine dinucleotide as a cofactor. PMID:27404243

  7. The NSD family of protein methyltransferases in human cancer.

    PubMed

    Vougiouklakis, Theodore; Hamamoto, Ryuji; Nakamura, Yusuke; Saloura, Vassiliki

    2015-08-01

    The NSD family of protein lysine methyltransferases consists of NSD1, NSD2/WHSC1/MMSET and NSD3/WHSC1L1. NSD2 haploinsufficiency causes Wolf-Hirschhorn syndrome, while NSD1 mutations lead to the Sotos syndrome. Recently, a number of studies showed that the NSD methyltransferases were overexpressed, amplified or somatically mutated in multiple types of cancer, suggesting their critical role in cancer. These enzymes methylate specific lysine residues on histone tails and their dysfunction results in epigenomic aberrations which play a fundamental role in oncogenesis. Furthermore, NSD1 was also reported to methylate a nonhistone protein substrate, RELA/p65 subunit of NF-κB, implying its regulatory function through nonhistone methylation pathways. In this review, we summarize the current research regarding the role of the NSD family proteins in cancer and underline their potential as targets for novel cancer therapeutics. PMID:25942451

  8. Ferritin family proteins and their use in bionanotechnology.

    PubMed

    He, Didi; Marles-Wright, Jon

    2015-12-25

    Ferritin family proteins are found in all kingdoms of life and act to store iron within a protein cage and to protect the cell from oxidative damage caused by the Fenton reaction. The structural and biochemical features of the ferritins have been widely exploited in bionanotechnology applications: from the production of metal nanoparticles; as templates for semi-conductor production; and as scaffolds for vaccine design and drug delivery. In this review we first discuss the structural properties of the main ferritin family proteins, and describe how their organisation specifies their functions. Second, we describe materials science applications of ferritins that rely on their ability to sequester metal within their cavities. Finally, we explore the use of ferritin as a container for drug delivery and as a scaffold for the production of vaccines. PMID:25573765

  9. The inverse autotransporter family: intimin, invasin and related proteins.

    PubMed

    Leo, Jack C; Oberhettinger, Philipp; Schütz, Monika; Linke, Dirk

    2015-02-01

    Intimin and invasin are adhesins and central virulence factors of attaching and effacing bacteria, such as enterohaemorrhagic Escherichia coli, and enteropathogenic Yersiniae, respectively. These proteins are prototypes of a large family of adhesins distributed widely in Gram-negative bacteria. It is now evident that this protein family represents a previously unrecognized autotransporter secretion system, termed type Ve secretion. In contrast to classical autotransport, where the transmembrane β-barrel domain or translocation unit is C-terminal to the extracellular region or passenger domain, type Ve-secreted proteins have an inverted topology with the passenger domain C-terminal to the translocation unit; hence the term inverse autotransporter. This minireview covers the recent advances in elucidating the structure and biogenesis of inverse autotransporters. PMID:25596886

  10. Ferritin family proteins and their use in bionanotechnology

    PubMed Central

    He, Didi; Marles-Wright, Jon

    2015-01-01

    Ferritin family proteins are found in all kingdoms of life and act to store iron within a protein cage and to protect the cell from oxidative damage caused by the Fenton reaction. The structural and biochemical features of the ferritins have been widely exploited in bionanotechnology applications: from the production of metal nanoparticles; as templates for semi-conductor production; and as scaffolds for vaccine design and drug delivery. In this review we first discuss the structural properties of the main ferritin family proteins, and describe how their organisation specifies their functions. Second, we describe materials science applications of ferritins that rely on their ability to sequester metal within their cavities. Finally, we explore the use of ferritin as a container for drug delivery and as a scaffold for the production of vaccines. PMID:25573765

  11. Regulation of bacterial RecA protein function.

    PubMed

    Cox, Michael M

    2007-01-01

    The RecA protein is a recombinase functioning in recombinational DNA repair in bacteria. RecA is regulated at many levels. The expression of the recA gene is regulated within the SOS response. The activity of the RecA protein itself is autoregulated by its own C-terminus. RecA is also regulated by the action of other proteins. To date, these include the RecF, RecO, RecR, DinI, RecX, RdgC, PsiB, and UvrD proteins. The SSB protein also indirectly affects RecA function by competing for ssDNA binding sites. The RecO and RecR, and possibly the RecF proteins, all facilitate RecA loading onto SSB-coated ssDNA. The RecX protein blocks RecA filament extension, and may have other effects on RecA activity. The DinI protein stabilizes RecA filaments. The RdgC protein binds to dsDNA and blocks RecA access to dsDNA. The PsiB protein, encoded by F plasmids, is uncharacterized, but may inhibit RecA in some manner. The UvrD helicase removes RecA filaments from RecA. All of these proteins function in a network that determines where and how RecA functions. Additional regulatory proteins may remain to be discovered. The elaborate regulatory pattern is likely to be reprised for RecA homologues in archaeans and eukaryotes. PMID:17364684

  12. TRIM family proteins: retroviral restriction and antiviral defence.

    PubMed

    Nisole, Sébastien; Stoye, Jonathan P; Saïb, Ali

    2005-10-01

    Members of the tripartite motif (TRIM) protein family are involved in various cellular processes, including cell proliferation, differentiation, development, oncogenesis and apoptosis. Some TRIM proteins display antiviral properties, targeting retroviruses in particular. The potential activity of TRIM19, better known as promyelocytic leukaemia protein, against several viruses has been well documented and, recently, TRIM5alpha has been identified as the factor responsible for the previously described Lv1 and Ref1 antiretroviral activities. There is also evidence indicating that other TRIM proteins can influence viral replication. These findings are reviewed here, and the possibility that TRIMs represent a new and widespread class of antiviral proteins involved in innate immunity is also considered. PMID:16175175

  13. The APOBEC Protein Family: United by Structure, Divergent in Function.

    PubMed

    Salter, Jason D; Bennett, Ryan P; Smith, Harold C

    2016-07-01

    The APOBEC (apolipoprotein B mRNA editing catalytic polypeptide-like) family of proteins have diverse and important functions in human health and disease. These proteins have an intrinsic ability to bind to both RNA and single-stranded (ss) DNA. Both function and tissue-specific expression varies widely for each APOBEC protein. We are beginning to understand that the activity of APOBEC proteins is regulated through genetic alterations, changes in their transcription and mRNA processing, and through their interactions with other macromolecules in the cell. Loss of cellular control of APOBEC activities leads to DNA hypermutation and promiscuous RNA editing associated with the development of cancer or viral drug resistance, underscoring the importance of understanding how APOBEC proteins are regulated. PMID:27283515

  14. A novel family of small proteins that affect plant development

    SciTech Connect

    John Charles Walker

    2011-04-29

    The DVL genes represent a new group of plant proteins that influence plant growth and development. Overexpression of DVL1, and other members of the DVL family, causes striking phenotypic changes. The DVL proteins share sequence homology in their C-terminal half. Point mutations in the C-terminal domain show it is necessary and deletion studies demonstrate the C-terminal domain is sufficient to confer the overexpression phenotypes. The phenotypes observed, and the conservation of the protein sequence in the plant kingdom, does suggest the DVL proteins have a role in modulating plant growth and development. Our working hypothesis is the DVL proteins function as regulators of cellular signaling pathways that control growth and development.

  15. Multiple oligomeric structures of a bacterial small heat shock protein

    PubMed Central

    Mani, Nandini; Bhandari, Spraha; Moreno, Rodolfo; Hu, Liya; Prasad, B. V. Venkataram; Suguna, Kaza

    2016-01-01

    Small heat shock proteins are ubiquitous molecular chaperones that form the first line of defence against the detrimental effects of cellular stress. Under conditions of stress they undergo drastic conformational rearrangements in order to bind to misfolded substrate proteins and prevent cellular protein aggregation. Owing to the dynamic nature of small heat shock protein oligomers, elucidating the structural basis of chaperone action and oligomerization still remains a challenge. In order to understand the organization of sHSP oligomers, we have determined crystal structures of a small heat shock protein from Salmonella typhimurium in a dimeric form and two higher oligomeric forms: an 18-mer and a 24-mer. Though the core dimer structure is conserved in all the forms, structural heterogeneity arises due to variation in the terminal regions. PMID:27053150

  16. Evolutionary hierarchy of vertebrate-like heterotrimeric G protein families.

    PubMed

    Krishnan, Arunkumar; Mustafa, Arshi; Almén, Markus Sällman; Fredriksson, Robert; Williams, Michael J; Schiöth, Helgi B

    2015-10-01

    Heterotrimeric G proteins perform a crucial role as molecular switches controlling various cellular responses mediated by G protein-coupled receptor (GPCR) signaling pathway. Recent data have shown that the vertebrate-like G protein families are found across metazoans and their closest unicellular relatives. However, an overall evolutionary hierarchy of vertebrate-like G proteins, including gene family annotations and in particular mapping individual gene gain/loss events across diverse holozoan lineages is still incomplete. Here, with more expanded invertebrate taxon sampling, we have reconstructed phylogenetic trees for each of the G protein classes/families and provide a robust classification and hierarchy of vertebrate-like heterotrimeric G proteins. Our results further extend the evidence that the common ancestor (CA) of holozoans had at least five ancestral Gα genes corresponding to all major vertebrate Gα classes and contain a total of eight genes including two Gβ and one Gγ. Our results also indicate that the GNAI/O-like gene likely duplicated in the last CA of metazoans to give rise to GNAI- and GNAO-like genes, which are conserved across invertebrates. Moreover, homologs of GNB1-4 paralogon- and GNB5 family-like genes are found in most metazoans and that the unicellular holozoans encode two ancestral Gβ genes. Similarly, most bilaterian invertebrates encode two Gγ genes which include a representative of the GNG gene cluster and a putative homolog of GNG13. Interestingly, our results also revealed key evolutionary events such as the Drosophila melanogaster eye specific Gβ subunit that is found conserved in most arthropods and several previously unidentified species specific expansions within Gαi/o, Gαs, Gαq, Gα12/13 classes and the GNB1-4 paralogon. Also, we provide an overall proposed evolutionary scenario on the expansions of all G protein families in vertebrate tetraploidizations. Our robust classification/hierarchy is essential to further

  17. Mechanisms of the sialidase and trans-sialidase activities of bacterial sialyltransferases from glycosyltransferase family 80.

    PubMed

    Mehr, Kevin; Withers, Stephen G

    2016-04-01

    Many important biological functions are mediated by complex glycan structures containing the nine-carbon sugar sialic acid (Sia) at terminal, non-reducing positions. Sia are introduced onto glycan structures by enzymes known as sialyltransferases (STs). Bacterial STs from the glycosyltransferase family GT80 are a group of well-studied enzymes used for the synthesis of sialylated glycan structures. While highly efficient at sialyl transfer, these enzymes also demonstrate sialidase and trans-sialidase activities for which there is some debate surrounding the corresponding enzymatic mechanisms. Here we propose a mechanism for STs from the glycosyltransferase family GT80 in which sialidase and trans-sialidase activities occur through reverse sialylation of CMP. The resulting CMP-Sia is then enzymatically hydrolyzed or used as a donor in subsequent ST reactions resulting in sialidase and trans-sialidase activities, respectively. We provide evidence for this mechanism by demonstrating that CMP is required for sialidase and trans-sialidase activities and that its removal with phosphatase ablates activity. We also confirm the formation of CMP-Sia using a coupled enzyme assay. A clear understanding of the sialidase and trans-sialidase mechanisms for this class of enzymes allows for more effective use of these enzymes in the synthesis of glycoconjugates. PMID:26582604

  18. Specificity of botulinum protease for human VAMP family proteins.

    PubMed

    Yamamoto, Hideyuki; Ida, Tomoaki; Tsutsuki, Hiroyasu; Mori, Masatoshi; Matsumoto, Tomoko; Kohda, Tomoko; Mukamoto, Masafumi; Goshima, Naoki; Kozaki, Shunji; Ihara, Hideshi

    2012-04-01

    The botulinum neurotoxin light chain (BoNT-LC) is a zinc-dependent metalloprotease that cleaves neuronal SNARE proteins such as SNAP-25, VAMP2, and Syntaxin1. This cleavage interferes with the neurotransmitter release of peripheral neurons and results in flaccid paralysis. SNAP, VAMP, and Syntaxin are representative of large families of proteins that mediate most membrane fusion reactions, as well as both neuronal and non-neuronal exocytotic events in eukaryotic cells. Neuron-specific SNARE proteins, which are target substrates of BoNT, have been well studied; however, it is unclear whether other SNARE proteins are also proteolyzed by BoNT. Herein, we define the substrate specificity of BoNT-LC/B, /D, and /F towards recombinant human VAMP family proteins. We demonstrate that LC/B, /D, and /F are able to cleave VAMP1, 2, and 3, but no other VAMP family proteins. Kinetic analysis revealed that all LC have higher affinity and catalytic activity for the non-neuronal SNARE isoform VAMP3 than for the neuronal VAMP1 and 2 isoforms. LC/D in particular exhibited extremely low catalytic activity towards VAMP1 relative to other interactions, which we determined through point mutation analysis to be a result of the Ile present at residue 48 of VAMP1. We also identified the VAMP3 cleavage sites to be at the Gln 59-Phe 60 (LC/B), Lys 42-Leu 43 (LC/D), and Gln 41-Lys 42 (LC/F) peptide bonds, which correspond to those of VAMP1 or 2. Understanding the substrate specificity and kinetic characteristics of BoNT towards human SNARE proteins may aid in the development of novel therapeutic uses for BoNT. PMID:22289120

  19. Target Molecular Simulations of RecA Family Protein Filaments

    PubMed Central

    Su, Zhi-Yuan; Lee, Wen-Jay; Su, Wan-Sheng; Wang, Yeng-Tseng

    2012-01-01

    Modeling of the RadA family mechanism is crucial to understanding the DNA SOS repair process. In a 2007 report, the archaeal RadA proteins function as rotary motors (linker region: I71-K88) such as shown in Figure 1. Molecular simulations approaches help to shed further light onto this phenomenon. We find 11 rotary residues (R72, T75-K81, M84, V86 and K87) and five zero rotary residues (I71, K74, E82, R83 and K88) in the simulations. Inclusion of our simulations may help to understand the RadA family mechanism. PMID:22837683

  20. TIM-family proteins inhibit HIV-1 release

    PubMed Central

    Li, Minghua; Ablan, Sherimay D.; Miao, Chunhui; Zheng, Yi-Min; Fuller, Matthew S.; Rennert, Paul D.; Maury, Wendy; Johnson, Marc C.; Freed, Eric O.; Liu, Shan-Lu

    2014-01-01

    Accumulating evidence indicates that T-cell immunoglobulin (Ig) and mucin domain (TIM) proteins play critical roles in viral infections. Herein, we report that the TIM-family proteins strongly inhibit HIV-1 release, resulting in diminished viral production and replication. Expression of TIM-1 causes HIV-1 Gag and mature viral particles to accumulate on the plasma membrane. Mutation of the phosphatidylserine (PS) binding sites of TIM-1 abolishes its ability to block HIV-1 release. TIM-1, but to a much lesser extent PS-binding deficient mutants, induces PS flipping onto the cell surface; TIM-1 is also found to be incorporated into HIV-1 virions. Importantly, TIM-1 inhibits HIV-1 replication in CD4-positive Jurkat cells, despite its capability of up-regulating CD4 and promoting HIV-1 entry. In addition to TIM-1, TIM-3 and TIM-4 also block the release of HIV-1, as well as that of murine leukemia virus (MLV) and Ebola virus (EBOV); knockdown of TIM-3 in differentiated monocyte-derived macrophages (MDMs) enhances HIV-1 production. The inhibitory effects of TIM-family proteins on virus release are extended to other PS receptors, such as Axl and RAGE. Overall, our study uncovers a novel ability of TIM-family proteins to block the release of HIV-1 and other viruses by interaction with virion- and cell-associated PS. Our work provides new insights into a virus-cell interaction that is mediated by TIMs and PS receptors. PMID:25136083

  1. Identification of novel members of the bacterial azoreductase family in Pseudomonas aeruginosa.

    PubMed

    Crescente, Vincenzo; Holland, Sinead M; Kashyap, Sapna; Polycarpou, Elena; Sim, Edith; Ryan, Ali

    2016-03-01

    Azoreductases are a family of diverse enzymes found in many pathogenic bacteria as well as distant homologues being present in eukarya. In addition to having azoreductase activity, these enzymes are also suggested to have NAD(P)H quinone oxidoreductase (NQO) activity which leads to a proposed role in plant pathogenesis. Azoreductases have also been suggested to play a role in the mammalian pathogenesis of Pseudomonas aeruginosa. In view of the importance of P. aeruginosa as a pathogen, we therefore characterized recombinant enzymes following expression of a group of putative azoreductase genes from P. aeruginosa expressed in Escherichia coli. The enzymes include members of the arsenic-resistance protein H (ArsH), tryptophan repressor-binding protein A (WrbA), modulator of drug activity B (MdaB) and YieF families. The ArsH, MdaB and YieF family members all show azoreductase and NQO activities. In contrast, WrbA is the first enzyme to show NQO activity but does not reduce any of the 11 azo compounds tested under a wide range of conditions. These studies will allow further investigation of the possible role of these enzymes in the pathogenesis of P. aeruginosa. PMID:26621870

  2. Bacterial origin of a diverse family of UDP-glycosyltransferase genes in the Tetranychus urticae genome.

    PubMed

    Ahn, Seung-Joon; Dermauw, Wannes; Wybouw, Nicky; Heckel, David G; Van Leeuwen, Thomas

    2014-07-01

    UDP-glycosyltransferases (UGTs) catalyze the conjugation of a variety of small lipophilic molecules with uridine diphosphate (UDP) sugars, altering them into more water-soluble metabolites. Thereby, UGTs play an important role in the detoxification of xenobiotics and in the regulation of endobiotics. Recently, the genome sequence was reported for the two-spotted spider mite, Tetranychus urticae, a polyphagous herbivore damaging a number of agricultural crops. Although various gene families implicated in xenobiotic metabolism have been documented in T. urticae, UGTs so far have not. We identified 80 UGT genes in the T. urticae genome, the largest number of UGT genes in a metazoan species reported so far. Phylogenetic analysis revealed that lineage-specific gene expansions increased the diversity of the T. urticae UGT repertoire. Genomic distribution, intron-exon structure and structural motifs in the T. urticae UGTs were also described. In addition, expression profiling after host-plant shifts and in acaricide resistant lines supported an important role for UGT genes in xenobiotic metabolism. Expanded searches of UGTs in other arachnid species (Subphylum Chelicerata), including a spider, a scorpion, two ticks and two predatory mites, unexpectedly revealed the complete absence of UGT genes. However, a centipede (Subphylum Myriapoda) and a water flea and a crayfish (Subphylum Crustacea) contain UGT genes in their genomes similar to insect UGTs, suggesting that the UGT gene family might have been lost early in the Chelicerata lineage and subsequently re-gained in the tetranychid mites. Sequence similarity of T. urticae UGTs and bacterial UGTs and their phylogenetic reconstruction suggest that spider mites acquired UGT genes from bacteria by horizontal gene transfer. Our findings show a unique evolutionary history of the T. urticae UGT gene family among other arthropods and provide important clues to its functions in relation to detoxification and thereby host

  3. The cloning of Grb10 reveals a new family of SH2 domain proteins.

    PubMed

    Ooi, J; Yajnik, V; Immanuel, D; Gordon, M; Moskow, J J; Buchberg, A M; Margolis, B

    1995-04-20

    SH2 domains function to bind proteins containing phosphotyrosine and are components of proteins that are important signal transducers for tyrosine kinases. We have cloned SH2 domain proteins by screening bacterial expression libraries with the tyrosine phosphorylated carboxyterminus of the epidermal growth factor (EGF) receptor. Here we report the identification of a new SH2 domain protein, Grb10. Grb10 is highly related to Grb7, an SH2 domain protein that we have previously identified. In addition to an SH2 domain, Grb7 and Grb10 have a central domain with similarity to a putative C. elegans gene likely to be involved in neuronal migration. At least three forms of Grb10 exist in fibroblasts apparently due to alternate translational start sites. Grb10 undergoes serine but not tyrosine phosphorylation after EGF treatment resulting in a shift mobility in a large fraction of Grb10 molecules. However Grb10 appears to bind poorly to EGF-Receptor and the true binding partner for the Grb10 SH2 domain is unclear. Grb10 maps to mouse chromosome 11 very close to the EGF-Receptor which is remarkably similar to Grb7 that maps near the EGF-Receptor related HER2 receptor. The finding of multiple family members with evolutionarily conserved domains indicates that these SH2 domain proteins are likely to have an important, although as of yet, unidentified function. PMID:7731717

  4. Methyl-accepting protein associated with bacterial sensory phodopsin I

    SciTech Connect

    Spudich, E.N.; Hasselbacher, C.A. ); Spudich, J.L. )

    1988-09-01

    In vivo radiolabeling of Halaobacterium halobium phototaxis mutants and revertants with L-(methyl-{sup 3}H) methionine implicated seven methyl-accepting protein bands with apparent molecular masses from 65 to 150 kilodaltons (kDa) in adaptation of the organism to chemo and photo stimuli, and one of these (94 kDa) was specifically implicated in photoaxis. The lability of the radiolabeled bands to mild base treatment indicated the the methyl linkages are carboxylmethylesters, as is the case in the eubacterial chemotaxis receptor-transducers. The 94-kDa protein was present in increased amounts in an overproducer of the apoprotein of sensory rhodopsin I, one of two retinal-containing photoaxis receptors in H. halobium. It was absent in a strain the contained sensory rhodopsin II and that lacked sensory rhodopsin I and was also absent in a mutant that lacked both photoreceptors. Based in the role of methyl-accepting proteins in chemotaxis in other bacteria, we suggest that the 94-kDa protein is the signal transducer for sensory rhodopsin I. By ({sup 3}H)retinal labeling studies, we previously identified a 25-kDa retinal-binding polypeptide that was derived from photochemically reactive sensory rhodopsin I. When H. halobium membranes containing sensory rhodopsin I were treated by a procedure that stably reduced ({sup 3}H) retinal onto the 25-kDa apoprotein, a 94-kDa protein was also found to be radiolabeled. Protease digestion confirmed that the 94-kDa retinal-labeled protein was the same as the methyl-accepting protein that was suggested above to be the siginal transducer for sensory rhodopsin I. Possible models are that the 25- and 94-kDa proteins are tightly interacting components of the photosensory signaling machinery or that both are forms of sensory rhodopsin I.

  5. Vaccinia Virus N1l Protein Resembles a B Cell Lymphoma-2 (Bcl-2) Family Protein

    SciTech Connect

    Aoyagi, M.; Zhai, D.; Jin, C.; Aleshin, A.E.; Stec, B.; Reed, J.C.; Liddington, R.C.; /Burnham Inst.

    2007-07-03

    Poxviruses encode immuno-modulatory proteins capable of subverting host defenses. The poxvirus vaccinia expresses a small 14-kDa protein, N1L, that is critical for virulence. We report the crystal structure of N1L, which reveals an unexpected but striking resemblance to host apoptotic regulators of the B cell lymphoma-2 (Bcl-2) family. Although N1L lacks detectable Bcl-2 homology (BH) motifs at the sequence level, we show that N1L binds with high affinity to the BH3 peptides of pro-apoptotic Bcl-2 family proteins in vitro, consistent with a role for N1L in modulating host antiviral defenses.

  6. A bacterial two-hybrid system that utilizes Gateway cloning for rapid screening of protein-protein interactions.

    PubMed

    Karna, S L Rajasekhar; Zogaj, Xhavit; Barker, Jeffrey R; Seshu, Janakiram; Dove, Simon L; Klose, Karl E

    2010-11-01

    Comprehensive clone sets representing the entire genome now exist for a large number of organisms. The Gateway entry clone sets are a particularly useful means to study gene function, given the ease of introduction into any Gateway-suitable destination vector. We have adapted a bacterial two-hybrid system for use with Gateway entry clone sets, such that potential interactions between proteins encoded within these clone sets can be determined by new destination vectors. We show that utilizing the Gateway clone sets for Francisella tularensis and Vibrio cholerae, known interactions between F. tularensis IglA and IglB and V. cholerae VipA and VipB could be confirmed with these destination vectors. Moreover, the introduction of unique tags into each vector allowed for visualization of the expressed hybrid proteins via Western immunoblot. This Gateway-suitable bacterial two-hybrid system provides a new tool for rapid screening of protein-protein interactions. PMID:21091448

  7. The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions.

    PubMed

    Deutscher, Josef; Aké, Francine Moussan Désirée; Derkaoui, Meriem; Zébré, Arthur Constant; Cao, Thanh Nguyen; Bouraoui, Houda; Kentache, Takfarinas; Mokhtari, Abdelhamid; Milohanic, Eliane; Joyet, Philippe

    2014-06-01

    The bacterial phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) carries out both catalytic and regulatory functions. It catalyzes the transport and phosphorylation of a variety of sugars and sugar derivatives but also carries out numerous regulatory functions related to carbon, nitrogen, and phosphate metabolism, to chemotaxis, to potassium transport, and to the virulence of certain pathogens. For these different regulatory processes, the signal is provided by the phosphorylation state of the PTS components, which varies according to the availability of PTS substrates and the metabolic state of the cell. PEP acts as phosphoryl donor for enzyme I (EI), which, together with HPr and one of several EIIA and EIIB pairs, forms a phosphorylation cascade which allows phosphorylation of the cognate carbohydrate bound to the membrane-spanning EIIC. HPr of firmicutes and numerous proteobacteria is also phosphorylated in an ATP-dependent reaction catalyzed by the bifunctional HPr kinase/phosphorylase. PTS-mediated regulatory mechanisms are based either on direct phosphorylation of the target protein or on phosphorylation-dependent interactions. For regulation by PTS-mediated phosphorylation, the target proteins either acquired a PTS domain by fusing it to their N or C termini or integrated a specific, conserved PTS regulation domain (PRD) or, alternatively, developed their own specific sites for PTS-mediated phosphorylation. Protein-protein interactions can occur with either phosphorylated or unphosphorylated PTS components and can either stimulate or inhibit the function of the target proteins. This large variety of signal transduction mechanisms allows the PTS to regulate numerous proteins and to form a vast regulatory network responding to the phosphorylation state of various PTS components. PMID:24847021

  8. The Bacterial Phosphoenolpyruvate:Carbohydrate Phosphotransferase System: Regulation by Protein Phosphorylation and Phosphorylation-Dependent Protein-Protein Interactions

    PubMed Central

    Aké, Francine Moussan Désirée; Derkaoui, Meriem; Zébré, Arthur Constant; Cao, Thanh Nguyen; Bouraoui, Houda; Kentache, Takfarinas; Mokhtari, Abdelhamid; Milohanic, Eliane; Joyet, Philippe

    2014-01-01

    SUMMARY The bacterial phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) carries out both catalytic and regulatory functions. It catalyzes the transport and phosphorylation of a variety of sugars and sugar derivatives but also carries out numerous regulatory functions related to carbon, nitrogen, and phosphate metabolism, to chemotaxis, to potassium transport, and to the virulence of certain pathogens. For these different regulatory processes, the signal is provided by the phosphorylation state of the PTS components, which varies according to the availability of PTS substrates and the metabolic state of the cell. PEP acts as phosphoryl donor for enzyme I (EI), which, together with HPr and one of several EIIA and EIIB pairs, forms a phosphorylation cascade which allows phosphorylation of the cognate carbohydrate bound to the membrane-spanning EIIC. HPr of firmicutes and numerous proteobacteria is also phosphorylated in an ATP-dependent reaction catalyzed by the bifunctional HPr kinase/phosphorylase. PTS-mediated regulatory mechanisms are based either on direct phosphorylation of the target protein or on phosphorylation-dependent interactions. For regulation by PTS-mediated phosphorylation, the target proteins either acquired a PTS domain by fusing it to their N or C termini or integrated a specific, conserved PTS regulation domain (PRD) or, alternatively, developed their own specific sites for PTS-mediated phosphorylation. Protein-protein interactions can occur with either phosphorylated or unphosphorylated PTS components and can either stimulate or inhibit the function of the target proteins. This large variety of signal transduction mechanisms allows the PTS to regulate numerous proteins and to form a vast regulatory network responding to the phosphorylation state of various PTS components. PMID:24847021

  9. [Immunodiffusion analysis of plasma proteins in the canine family].

    PubMed

    Baranov, O K; Iurishina, N A; Savina, M A

    1976-01-01

    Immunodiffusion studies have been made on the plasma of 9 species (Vulpes vulpes, V. corsak, Alopex lagopus, Canis aureus, C. lupus, C. familiaris, C. dingo, Nyctereutes procynoides, Fennecus zerde) from the family of Canidae using milk antisera. Unlike rabbit antisera used earlier, milk antisera make it possible to detect more significant antigenic divergency with respect to 5 alpha- and beta-globulins. These globulins seem to have a higher evolution rate of antigenic mosaics as compared to other plasma proteins in the family investigated. The family Canidae serologically may be divided into two main groups: 1) the genus Canis which includes the wolf, domestic dog, dingo, jackal and 2) species which significantly differ from the former (the fox, polar fox, dog fox, fennec). In relation to these two groups, the raccoon dog occupies special position. PMID:62473

  10. Diversity in the Sir2 family of protein deacetylases.

    PubMed

    Buck, Stephen W; Gallo, Christopher M; Smith, Jeffrey S

    2004-06-01

    The silent information regulator (Sir2) family of protein deacetylases (Sirtuins) are nicotinamide adenine dinucleotide (NAD)(+)-dependent enzymes that hydrolyze one molecule of NAD(+) for every lysine residue that is deacetylated. The Sirtuins are phylogenetically conserved in eukaryotes, prokaryotes, and Archeal species. Prokaryotic and Archeal species usually have one or two Sirtuin homologs, whereas eukaryotes typically have multiple versions. The founding member of this protein family is the Sir2 histone deacetylase of Saccharomyces cerevisiae, which is absolutely required for transcriptional silencing in this organism. Sirtuins in other organisms often have nonhistone substrates and in eukaryotes, are not always localized in the nucleus. The diversity of substrates is reflected in the various biological activities that Sirtuins function, including development, metabolism, apoptosis, and heterochromatin formation. This review emphasizes the great diversity in Sirtuin function and highlights its unusual catalytic properties. PMID:14742637

  11. Size dependent complexity of sequences in protein families

    NASA Astrophysics Data System (ADS)

    Li, J.; Wang, J.; Wang, W.

    2005-10-01

    The size dependent complexity of protein sequences in various families in the FSSP database is characterized by sequence entropy, sequence similarity and sequence identity. As the average length Lf of sequences in the family increases, an increasing trend of the sequence entropy and a decreasing trend of the sequence similarity and sequence identity are found. As Lf increases beyond 250, a saturation of the sequence entropy, the sequence similarity and the sequence identity is observed. Such a saturated behavior of complexity is attributed to the saturation of the probability Pg of global (long-range) interactions in protein structures when Lf >250. It is also found that the alphabet size of residue types describing the sequence diversity depends on the value of Lf, and becomes saturated at 12.

  12. Argonaute Family Protein Expression in Normal Tissue and Cancer Entities

    PubMed Central

    Bruckmann, Astrid; Hauptmann, Judith; Deutzmann, Rainer; Meister, Gunter; Bosserhoff, Anja Katrin

    2016-01-01

    The members of the Argonaute (AGO) protein family are key players in miRNA-guided gene silencing. They enable the interaction between small RNAs and their respective target mRNA(s) and support the catalytic destruction of the gene transcript or recruit additional proteins for downstream gene silencing. The human AGO family consists of four AGO proteins (AGO1-AGO4), but only AGO2 harbors nuclease activity. In this study, we characterized the expression of the four AGO proteins in cancer cell lines and normal tissues with a new mass spectrometry approach called AGO-APP (AGO Affinity Purification by Peptides). In all analyzed normal tissues, AGO1 and AGO2 were most prominent, but marked tissue-specific differences were identified. Furthermore, considerable changes during development were observed by comparing fetal and adult tissues. We also identified decreased overall AGO expression in melanoma derived cell lines compared to other tumor cell lines and normal tissues, with the largest differences in AGO2 expression. The experiments described in this study suggest that reduced amounts of AGO proteins, as key players in miRNA processing, have impact on several cellular processes. Deregulated miRNA expression has been attributed to chromosomal aberrations, promoter regulation and it is known to have a major impact on tumor development and progression. Our findings will further increase our basic understanding of the molecular basis of miRNA processing and its relevance for disease. PMID:27518285

  13. Argonaute Family Protein Expression in Normal Tissue and Cancer Entities.

    PubMed

    Völler, Daniel; Linck, Lisa; Bruckmann, Astrid; Hauptmann, Judith; Deutzmann, Rainer; Meister, Gunter; Bosserhoff, Anja Katrin

    2016-01-01

    The members of the Argonaute (AGO) protein family are key players in miRNA-guided gene silencing. They enable the interaction between small RNAs and their respective target mRNA(s) and support the catalytic destruction of the gene transcript or recruit additional proteins for downstream gene silencing. The human AGO family consists of four AGO proteins (AGO1-AGO4), but only AGO2 harbors nuclease activity. In this study, we characterized the expression of the four AGO proteins in cancer cell lines and normal tissues with a new mass spectrometry approach called AGO-APP (AGO Affinity Purification by Peptides). In all analyzed normal tissues, AGO1 and AGO2 were most prominent, but marked tissue-specific differences were identified. Furthermore, considerable changes during development were observed by comparing fetal and adult tissues. We also identified decreased overall AGO expression in melanoma derived cell lines compared to other tumor cell lines and normal tissues, with the largest differences in AGO2 expression. The experiments described in this study suggest that reduced amounts of AGO proteins, as key players in miRNA processing, have impact on several cellular processes. Deregulated miRNA expression has been attributed to chromosomal aberrations, promoter regulation and it is known to have a major impact on tumor development and progression. Our findings will further increase our basic understanding of the molecular basis of miRNA processing and its relevance for disease. PMID:27518285

  14. Characterization of the Roco protein family in Dictyostelium discoideum.

    PubMed

    van Egmond, Wouter N; van Haastert, Peter J M

    2010-05-01

    The Roco family consists of multidomain Ras-GTPases that include LRRK2, a protein mutated in familial Parkinson's disease. The genome of the cellular slime mold Dictyostelium discoideum encodes 11 Roco proteins. To study the functions of these proteins, we systematically knocked out the roco genes. Previously described functions for GbpC, Pats1, and QkgA (Roco1 to Roco3) were confirmed, while novel developmental defects were identified in roco4- and roco11-null cells. Cells lacking Roco11 form larger fruiting bodies than wild-type cells, while roco4-null cells show strong developmental defects during the transition from mound to fruiting body; prestalk cells produce reduced levels of cellulose, leading to unstable stalks that are unable to properly lift the spore head. Detailed phylogenetic analysis of four slime mold species reveals that QkgA and Roco11 evolved relatively late by duplication of an ancestor roco4 gene (later than approximately 300 million years ago), contrary to the situation with other roco genes, which were already present before the split of the common ancestor of D. discoideum and Polysphondylium pallidum (before approximately 600 million years ago). Together, our data show that the Dictyostelium Roco proteins serve a surprisingly diverse set of functions and highlight Roco4 as a key protein for proper stalk cell formation. PMID:20348387

  15. Eubacterial SpoVG Homologs Constitute a New Family of Site-Specific DNA-Binding Proteins

    PubMed Central

    Jutras, Brandon L.; Chenail, Alicia M.; Rowland, Christi L.; Carroll, Dustin; Miller, M. Clarke; Bykowski, Tomasz; Stevenson, Brian

    2013-01-01

    A site-specific DNA-binding protein was purified from Borrelia burgdorferi cytoplasmic extracts, and determined to be a member of the highly conserved SpoVG family. This is the first time a function has been attributed to any of these ubiquitous bacterial proteins. Further investigations into SpoVG orthologues indicated that the Staphylococcus aureus protein also binds DNA, but interacts preferentially with a distinct nucleic acid sequence. Site-directed mutagenesis and domain swapping between the S. aureus and B. burgdorferi proteins identified that a 6-residue stretch of the SpoVG α-helix contributes to DNA sequence specificity. Two additional, highly conserved amino acid residues on an adjacent β-sheet are essential for DNA-binding, apparently by contacts with the DNA phosphate backbone. Results of these studies thus identified a novel family of bacterial DNA-binding proteins, developed a model of SpoVG-DNA interactions, and provide direction for future functional studies on these wide-spread proteins. PMID:23818957

  16. Protein Oxidation Implicated as the Primary Determinant of Bacterial Radioresistance

    PubMed Central

    Daly, Michael J; Gaidamakova, Elena K; Matrosova, Vera Y; Vasilenko, Alexander; Zhai, Min; Leapman, Richard D; Lai, Barry; Ravel, Bruce; Li, Shu-Mei W; Kemner, Kenneth M; Fredrickson, James K

    2007-01-01

    In the hierarchy of cellular targets damaged by ionizing radiation (IR), classical models of radiation toxicity place DNA at the top. Yet, many prokaryotes are killed by doses of IR that cause little DNA damage. Here we have probed the nature of Mn-facilitated IR resistance in Deinococcus radiodurans, which together with other extremely IR-resistant bacteria have high intracellular Mn/Fe concentration ratios compared to IR-sensitive bacteria. For in vitro and in vivo irradiation, we demonstrate a mechanistic link between Mn(II) ions and protection of proteins from oxidative modifications that introduce carbonyl groups. Conditions that inhibited Mn accumulation or Mn redox cycling rendered D. radiodurans radiation sensitive and highly susceptible to protein oxidation. X-ray fluorescence microprobe analysis showed that Mn is globally distributed in D. radiodurans, but Fe is sequestered in a region between dividing cells. For a group of phylogenetically diverse IR-resistant and IR-sensitive wild-type bacteria, our findings support the idea that the degree of resistance is determined by the level of oxidative protein damage caused during irradiation. We present the case that protein, rather than DNA, is the principal target of the biological action of IR in sensitive bacteria, and extreme resistance in Mn-accumulating bacteria is based on protein protection. PMID:17373858

  17. Protein oxidation implicated as the primary determinant of bacterial radioresistance.

    PubMed

    Daly, Michael J; Gaidamakova, Elena K; Matrosova, Vera Y; Vasilenko, Alexander; Zhai, Min; Leapman, Richard D; Lai, Barry; Ravel, Bruce; Li, Shu-Mei W; Kemner, Kenneth M; Fredrickson, James K

    2007-04-01

    In the hierarchy of cellular targets damaged by ionizing radiation (IR), classical models of radiation toxicity place DNA at the top. Yet, many prokaryotes are killed by doses of IR that cause little DNA damage. Here we have probed the nature of Mn-facilitated IR resistance in Deinococcus radiodurans, which together with other extremely IR-resistant bacteria have high intracellular Mn/Fe concentration ratios compared to IR-sensitive bacteria. For in vitro and in vivo irradiation, we demonstrate a mechanistic link between Mn(II) ions and protection of proteins from oxidative modifications that introduce carbonyl groups. Conditions that inhibited Mn accumulation or Mn redox cycling rendered D. radiodurans radiation sensitive and highly susceptible to protein oxidation. X-ray fluorescence microprobe analysis showed that Mn is globally distributed in D. radiodurans, but Fe is sequestered in a region between dividing cells. For a group of phylogenetically diverse IR-resistant and IR-sensitive wild-type bacteria, our findings support the idea that the degree of resistance is determined by the level of oxidative protein damage caused during irradiation. We present the case that protein, rather than DNA, is the principal target of the biological action of IR in sensitive bacteria, and extreme resistance in Mn-accumulating bacteria is based on protein protection. PMID:17373858

  18. Protein Oxidation Implicated as the Primary Determinant of Bacterial Radioresistance

    SciTech Connect

    Daly, Michael J.; Gaidamakova, E.; Matrosova, V.; Vasilenko, A.; Zhai, M.; leapman, Richard D.; Lai, Barry; Ravel, Bruce; Li, Shu-Mei W.; Kemner, Kenneth M.; Fredrickson, Jim K.

    2007-04-02

    In the hierarchy of cellular targets damaged by ionizing radiation (IR), classical models of radiation toxicity place DNA at the top. Yet, many prokaryotes are killed by doses of IR that cause little DNA damage. Here we have probed the nature of manganese-facilitated IR resistance in Deinococcus radiodurans, which together with other extremely IR resistant bacteria have high intracellular Mn/Fe concentration ratios compared to IR sensitive bacteria. For in vitro and in vivo irradiation, we demonstrate a mechanistic link between Mn(II) ions and protection of proteins from oxidative modifications which introduce carbonyl groups. Conditions which inhibited Mn-accumulation or Mn redox-cycling rendered D. radiodurans radiation sensitive and highly susceptible to protein oxidation. X-ray fluorescence (XRF) microprobe analysis showed that Mn is globally distributed in D. radiodurans, but Fe is sequestered in a region between dividing cells. For a group of phylogenetically diverse IR resistant and sensitive bacteria, our findings support that the degree of resistance is determined by the level of oxidative protein damage caused during irradiation. We present the case that protein, rather than DNA, is the principal target of the biological action of IR in sensitive bacteria, and extreme resistance in Mn-accumulating bacteria is based on protein protection.

  19. Characterization of Aryl Hydrocarbon Receptor Interacting Protein (AIP) Mutations in Familial Isolated Pituitary Adenoma Families

    PubMed Central

    Igreja, Susana; Chahal, Harvinder S; King, Peter; Bolger, Graeme B; Srirangalingam, Umasuthan; Guasti, Leonardo; Chapple, J Paul; Trivellin, Giampaolo; Gueorguiev, Maria; Guegan, Katie; Stals, Karen; Khoo, Bernard; Kumar, Ajith V; Ellard, Sian; Grossman, Ashley B; Korbonits, Márta

    2010-01-01

    Familial isolated pituitary adenoma (FIPA) is an autosomal dominant condition with variable genetic background and incomplete penetrance. Germline mutations of the aryl hydrocarbon receptor interacting protein (AIP) gene have been reported in 15–40% of FIPA patients. Limited data are available on the functional consequences of the mutations or regarding the regulation of the AIP gene. We describe a large cohort of FIPA families and characterize missense and silent mutations using minigene constructs, luciferase and β-galactosidase assays, as well as in silico predictions. Patients with AIP mutations had a lower mean age at diagnosis (23.6±11.2 years) than AIP mutation-negative patients (40.4±14.5 years). A promoter mutation showed reduced in vitro activity corresponding to lower mRNA expression in patient samples. Stimulation of the protein kinase A-pathway positively regulates the AIP promoter. Silent mutations led to abnormal splicing resulting in truncated protein or reduced AIP expression. A two-hybrid assay of protein–protein interaction of all missense variants showed variable disruption of AIP-phosphodiesterase-4A5 binding. In summary, exonic, promoter, splice-site, and large deletion mutations in AIP are implicated in 31% of families in our FIPA cohort. Functional characterization of AIP changes is important to identify the functional impact of gene sequence variants. Hum Mutat 31:1–11, 2010. © 2010 Wiley-Liss, Inc. PMID:20506337

  20. The latent transforming growth factor beta binding protein (LTBP) family.

    PubMed Central

    Oklü, R; Hesketh, R

    2000-01-01

    The transforming growth factor beta (TGFbeta) cytokines are a multi-functional family that exert a wide variety of effects on both normal and transformed mammalian cells. The secretion and activation of TGFbetas is regulated by their association with latency-associated proteins and latent TGFbeta binding proteins (LTBPs). Over the past few years, three members of the LTBP family have been identified, in addition to the protoype LTBP1 first sequenced in 1990. Three of the LTBP family are expressed in a variety of isoforms as a consequence of alternative splicing. This review summarizes the differences between the isoforms in terms of the effects on domain structure and hence possible function. The close identity between LTBPs and members of the fibrillin family, mutations in which have been linked directly to Marfan's syndrome, suggests that anomalous expression of LTBPs may be associated with disease. Recent data indicating that differential expression of LTBP1 isoforms occurs during the development of coronary heart disease is considered, together with evidence that modulation of LTBP function, and hence of TGFbeta activity, is associated with a variety of cancers. PMID:11104663

  1. The ADF/cofilin family: actin-remodeling proteins

    PubMed Central

    Maciver, Sutherland K; Hussey, Patrick J

    2002-01-01

    The ADF/cofilins are a family of actin-binding proteins expressed in all eukaryotic cells so far examined. Members of this family remodel the actin cytoskeleton, for example during cytokinesis, when the actin-rich contractile ring shrinks as it contracts through the interaction of ADF/cofilins with both monomeric and filamentous actin. The depolymerizing activity is twofold: ADF/cofilins sever actin filaments and also increase the rate at which monomers leave the filament's pointed end. The three-dimensional structure of ADF/cofilins is similar to a fold in members of the gelsolin family of actin-binding proteins in which this fold is typically repeated three or six times; although both families bind polyphosphoinositide lipids and actin in a pH-dependent manner, they share no obvious sequence similarity. Plants and animals have multiple ADF/cofilin genes, belonging in vertebrates to two types, ADF and cofilins. Other eukaryotes (such as yeast, Acanthamoeba and slime moulds) have a single ADF/cofilin gene. Phylogenetic analysis of the ADF/cofilins reveals that, with few exceptions, their relationships reflect conventional views of the relationships between the major groups of organisms. PMID:12049672

  2. Role of the prion protein family in the gonads

    PubMed Central

    Allais-Bonnet, Aurélie; Pailhoux, Eric

    2014-01-01

    The prion-gene family comprises four members named PRNP (PRPc), PRND (Doppel), PRNT (PRT), and SPRN (Shadoo). According to species, PRND is located 16–52 kb downstream from the PRNP locus, whereas SPRN is located on another chromosome. The fourth prion-family gene, PRNT, belongs to the same genomic cluster as PRNP and PRND in humans and bovidae. PRNT and PRND possibly resulted from a duplication event of PRND and PRNP, respectively, that occurred early during eutherian species divergence. Although most of the studies concerning the prion-family has been done on PRPc and its involvement in transmissible neurodegenerative disorders, different works report some potential roles of these proteins in the reproductive function of both sexes. Among them, a clear role of PRND, that encodes for the Doppel protein, in male fertility has been demonstrated through gene targeting studies in mice. In other species, Doppel seems to play a role in testis and ovary development but its cellular localization is variable according to the gonadal developmental stage and to the mammalian species considered. For the other three genes, their roles in reproductive function appear ill-defined and/or controversial. The present review aimed to synthesize all the available data on these prion-family members and their relations with reproductive processes, mainly in the gonad of both sexes. PMID:25364761

  3. A genomic perspective on a new bacterial genus and species from the Alcaligenaceae family, Basilea psittacipulmonis

    PubMed Central

    2014-01-01

    Background A novel Gram-negative, non-haemolytic, non-motile, rod-shaped bacterium was discovered in the lungs of a dead parakeet (Melopsittacus undulatus) that was kept in captivity in a petshop in Basel, Switzerland. The organism is described with a chemotaxonomic profile and the nearly complete genome sequence obtained through the assembly of short sequence reads. Results Genome sequence analysis and characterization of respiratory quinones, fatty acids, polar lipids, and biochemical phenotype is presented here. Comparison of gene sequences revealed that the most similar species is Pelistega europaea, with BLAST identities of only 93% to the 16S rDNA gene, 76% identity to the rpoB gene, and a similar GC content (~43%) as the organism isolated from the parakeet, DSM 24701 (40%). The closest full genome sequences are those of Bordetella spp. and Taylorella spp. High-throughput sequencing reads from the Illumina-Solexa platform were assembled with the Edena de novo assembler to form 195 contigs comprising the ~2 Mb genome. Genome annotation with RAST, construction of phylogenetic trees with the 16S rDNA (rrs) gene sequence and the rpoB gene, and phylogenetic placement using other highly conserved marker genes with ML Tree all suggest that the bacterial species belongs to the Alcaligenaceae family. Analysis of samples from cages with healthy parakeets suggested that the newly discovered bacterial species is not widespread in parakeet living quarters. Conclusions Classification of this organism in the current taxonomy system requires the formation of a new genus and species. We designate the new genus Basilea and the new species psittacipulmonis. The type strain of Basilea psittacipulmonis is DSM 24701 (= CIP 110308 T, 16S rDNA gene sequence Genbank accession number JX412111 and GI 406042063). PMID:24581117

  4. Reduced bacterial adhesion to hydrocephalus shunt catheters mediated by cerebrospinal fluid proteins.

    PubMed Central

    Brydon, H L; Bayston, R; Hayward, R; Harkness, W

    1996-01-01

    BACKGROUND--Prosthetic infections are a major problem, requiring complex and lengthy management. The role of blood proteins in the pathogenesis of implant infection has been investigated, but research into the role of CSF protein in shunt infections has not been undertaken, even though a high CSF protein has been assumed to increase the risk of such infections. METHODS--New shunt catheters were exposed to either CSF or individual protein solutions, and the numbers of radiolabelled staphylococci that adhered to them were compared with controls that had been exposed to saline only. RESULTS--A significant reduction in bacteria adhering to the test catheter was found in each instance. Furthermore, the CSF with the highest protein content, from a patient with intraventricular haemorrhage, had the greatest inhibitory effect on bacterial adhesion. The effect of the solutions on the hydrophobicity of the silicone rubber was also investigated. The silicone rubber was more hydrophilic, and bacterial adhesion was less, with solutions containing a higher protein content, and these findings were in keeping with the current theories on the mechanism of bacterial adhesion to polymers. CONCLUSIONS--A high CSF protein content does not predispose to the development of shunt infections. PMID:8648336

  5. Rv0216, a Conserved Hypothetical Protein from Myocbacterium Tuberculosis that is Essential for Bacterial Survival During Infection, has a Double Hotdog Fold

    SciTech Connect

    Castell,A.; Johansson, P.; Unge, T.; Jones, T.; Backbro, K.

    2005-01-01

    The Mycobacterium tuberculosis genome contains about 4000 genes, of which approximately a third code for proteins of unknown function or are classified as conserved hypothetical proteins. We have determined the three-dimensional structure of one of these, the rv0216 gene product, which has been shown to be essential for M. tuberculosis growth in vivo. The structure exhibits the greatest similarity to bacterial and eukaryotic hydratases that catalyse the R-specific hydration of 2-enoyl coenzyme A. However, only part of the catalytic machinery is conserved in Rv0216 and it showed no activity for the substrate crotonyl-CoA. The structure of Rv0216 allows us to assign new functional annotations to a family of seven other M. tuberculosis proteins, a number if which are essential for bacterial survival during infection and growth.

  6. The PIN-FORMED (PIN) protein family of auxin transporters

    PubMed Central

    2009-01-01

    Summary The PIN-FORMED (PIN) proteins are secondary transporters acting in the efflux of the plant signal molecule auxin from cells. They are asymmetrically localized within cells and their polarity determines the directionality of intercellular auxin flow. PIN genes are found exclusively in the genomes of multicellular plants and play an important role in regulating asymmetric auxin distribution in multiple developmental processes, including embryogenesis, organogenesis, tissue differentiation and tropic responses. All PIN proteins have a similar structure with amino- and carboxy-terminal hydrophobic, membrane-spanning domains separated by a central hydrophilic domain. The structure of the hydrophobic domains is well conserved. The hydrophilic domain is more divergent and it determines eight groups within the protein family. The activity of PIN proteins is regulated at multiple levels, including transcription, protein stability, subcellular localization and transport activity. Different endogenous and environmental signals can modulate PIN activity and thus modulate auxin-distribution-dependent development. A large group of PIN proteins, including the most ancient members known from mosses, localize to the endoplasmic reticulum and they regulate the subcellular compartmentalization of auxin and thus auxin metabolism. Further work is needed to establish the physiological importance of this unexpected mode of auxin homeostasis regulation. Furthermore, the evolution of PIN-based transport, PIN protein structure and more detailed biochemical characterization of the transport function are important topics for further studies. PMID:20053306

  7. Two Pfam protein families characterized by a crystal structure of protein lpg2210 from Legionella pneumophila

    PubMed Central

    2013-01-01

    Background Every genome contains a large number of uncharacterized proteins that may encode entirely novel biological systems. Many of these uncharacterized proteins fall into related sequence families. By applying sequence and structural analysis we hope to provide insight into novel biology. Results We analyze a previously uncharacterized Pfam protein family called DUF4424 [Pfam:PF14415]. The recently solved three-dimensional structure of the protein lpg2210 from Legionella pneumophila provides the first structural information pertaining to this family. This protein additionally includes the first representative structure of another Pfam family called the YARHG domain [Pfam:PF13308]. The Pfam family DUF4424 adopts a 19-stranded beta-sandwich fold that shows similarity to the N-terminal domain of leukotriene A-4 hydrolase. The YARHG domain forms an all-helical domain at the C-terminus. Structure analysis allows us to recognize distant similarities between the DUF4424 domain and individual domains of M1 aminopeptidases and tricorn proteases, which form massive proteasome-like capsids in both archaea and bacteria. Conclusions Based on our analyses we hypothesize that the DUF4424 domain may have a role in forming large, multi-component enzyme complexes. We suggest that the YARGH domain may play a role in binding a moiety in proximity with peptidoglycan, such as a hydrophobic outer membrane lipid or lipopolysaccharide. PMID:24004689

  8. N-glycosylation of Campylobacter jejuni surface proteins promotes bacterial fitness.

    PubMed

    Alemka, Abofu; Nothaft, Harald; Zheng, Jing; Szymanski, Christine M

    2013-05-01

    Campylobacter jejuni is the etiologic agent of human bacterial gastroenteritis worldwide. In contrast, despite heavy colonization, C. jejuni maintains a commensal mode of existence in chickens. The consumption of contaminated chicken products is thought to be the principal mode of C. jejuni transmission to the human population. C. jejuni harbors a system for N-linked protein glycosylation that has been well characterized and modifies more than 60 periplasmic and membrane-bound proteins. However, the precise role of this modification in the biology of C. jejuni remains unexplored. We hypothesized that the N-glycans protect C. jejuni surface proteins from the action of gut proteases. The C. jejuni pglB mutant, deficient in the expression of the oligosaccharyltransferase, exhibited reduced growth in medium supplemented with chicken cecal contents (CCC) compared with that of wild-type (WT) cells. Inactivation of the cecal proteases by heat treatment or with protease inhibitors completely restored bacterial viability and partially rescued bacterial growth. Physiological concentrations of trypsin, but not chymotrypsin, also reduced C. jejuni pglB mutant CFU. Live or dead staining indicated that CCC preferentially influenced C. jejuni growth as opposed to bacterial viability. We identified multiple chicken cecal proteases by mass fingerprinting. The use of protease inhibitors that target specific classes indicated that both metalloproteases and serine proteases were involved in the attenuated growth of the oligosaccharyltransferase mutant. In conclusion, protein N-linked glycosylation of surface proteins may enhance C. jejuni fitness by protecting bacterial proteins from cleavage due to gut proteases. PMID:23460522

  9. N-Glycosylation of Campylobacter jejuni Surface Proteins Promotes Bacterial Fitness

    PubMed Central

    Nothaft, Harald; Zheng, Jing

    2013-01-01

    Campylobacter jejuni is the etiologic agent of human bacterial gastroenteritis worldwide. In contrast, despite heavy colonization, C. jejuni maintains a commensal mode of existence in chickens. The consumption of contaminated chicken products is thought to be the principal mode of C. jejuni transmission to the human population. C. jejuni harbors a system for N-linked protein glycosylation that has been well characterized and modifies more than 60 periplasmic and membrane-bound proteins. However, the precise role of this modification in the biology of C. jejuni remains unexplored. We hypothesized that the N-glycans protect C. jejuni surface proteins from the action of gut proteases. The C. jejuni pglB mutant, deficient in the expression of the oligosaccharyltransferase, exhibited reduced growth in medium supplemented with chicken cecal contents (CCC) compared with that of wild-type (WT) cells. Inactivation of the cecal proteases by heat treatment or with protease inhibitors completely restored bacterial viability and partially rescued bacterial growth. Physiological concentrations of trypsin, but not chymotrypsin, also reduced C. jejuni pglB mutant CFU. Live or dead staining indicated that CCC preferentially influenced C. jejuni growth as opposed to bacterial viability. We identified multiple chicken cecal proteases by mass fingerprinting. The use of protease inhibitors that target specific classes indicated that both metalloproteases and serine proteases were involved in the attenuated growth of the oligosaccharyltransferase mutant. In conclusion, protein N-linked glycosylation of surface proteins may enhance C. jejuni fitness by protecting bacterial proteins from cleavage due to gut proteases. PMID:23460522

  10. A Versatile Strategy for Production of Membrane Proteins with Diverse Topologies: Application to Investigation of Bacterial Homologues of Human Divalent Metal Ion and Nucleoside Transporters

    PubMed Central

    Huysmans, Gerard; Lesiuk, Amelia; Bullough, Per; Wang, Yingying; Bartlam, Mark; Phillips, Simon E.; Young, James D.; Goldman, Adrian; Postis, Vincent L. G.

    2015-01-01

    Membrane proteins play key roles in many biological processes, from acquisition of nutrients to neurotransmission, and are targets for more than 50% of current therapeutic drugs. However, their investigation is hampered by difficulties in their production and purification on a scale suitable for structural studies. In particular, the nature and location of affinity tags introduced for the purification of recombinant membrane proteins can greatly influence their expression levels by affecting their membrane insertion. The extent of such effects typically depends on the transmembrane topologies of the proteins, which for proteins of unknown structure are usually uncertain. For example, attachment of oligohistidine tags to the periplasmic termini of membrane proteins often interferes with folding and drastically impairs expression in Escherichia coli. To circumvent this problem we have employed a novel strategy to enable the rapid production of constructs bearing a range of different affinity tags compatible with either cytoplasmic or periplasmic attachment. Tags include conventional oligohistidine tags compatible with cytoplasmic attachment and, for attachment to proteins with a periplasmic terminus, either tandem Strep-tag II sequences or oligohistidine tags fused to maltose binding protein and a signal sequence. Inclusion of cleavage sites for TEV or HRV-3C protease enables tag removal prior to crystallisation trials or a second step of purification. Together with the use of bioinformatic approaches to identify members of membrane protein families with topologies favourable to cytoplasmic tagging, this has enabled us to express and purify multiple bacterial membrane transporters. To illustrate this strategy, we describe here its use to purify bacterial homologues of human membrane proteins from the Nramp and ZIP families of divalent metal cation transporters and from the concentrative nucleoside transporter family. The proteins are expressed in E. coli in a

  11. A Versatile Strategy for Production of Membrane Proteins with Diverse Topologies: Application to Investigation of Bacterial Homologues of Human Divalent Metal Ion and Nucleoside Transporters.

    PubMed

    Ma, Cheng; Hao, Zhenyu; Huysmans, Gerard; Lesiuk, Amelia; Bullough, Per; Wang, Yingying; Bartlam, Mark; Phillips, Simon E; Young, James D; Goldman, Adrian; Baldwin, Stephen A; Postis, Vincent L G

    2015-01-01

    Membrane proteins play key roles in many biological processes, from acquisition of nutrients to neurotransmission, and are targets for more than 50% of current therapeutic drugs. However, their investigation is hampered by difficulties in their production and purification on a scale suitable for structural studies. In particular, the nature and location of affinity tags introduced for the purification of recombinant membrane proteins can greatly influence their expression levels by affecting their membrane insertion. The extent of such effects typically depends on the transmembrane topologies of the proteins, which for proteins of unknown structure are usually uncertain. For example, attachment of oligohistidine tags to the periplasmic termini of membrane proteins often interferes with folding and drastically impairs expression in Escherichia coli. To circumvent this problem we have employed a novel strategy to enable the rapid production of constructs bearing a range of different affinity tags compatible with either cytoplasmic or periplasmic attachment. Tags include conventional oligohistidine tags compatible with cytoplasmic attachment and, for attachment to proteins with a periplasmic terminus, either tandem Strep-tag II sequences or oligohistidine tags fused to maltose binding protein and a signal sequence. Inclusion of cleavage sites for TEV or HRV-3C protease enables tag removal prior to crystallisation trials or a second step of purification. Together with the use of bioinformatic approaches to identify members of membrane protein families with topologies favourable to cytoplasmic tagging, this has enabled us to express and purify multiple bacterial membrane transporters. To illustrate this strategy, we describe here its use to purify bacterial homologues of human membrane proteins from the Nramp and ZIP families of divalent metal cation transporters and from the concentrative nucleoside transporter family. The proteins are expressed in E. coli in a

  12. Polyacrylamide Slab Gel Electrophoresis of Soluble Proteins for Studies of Bacterial Floras

    PubMed Central

    Moore, W. E. C.; Hash, D. E.; Holdeman, Lillian V.; Cato, Elizabeth P.

    1980-01-01

    A polyacrylamide slab gel electrophoresis procedure was used to compare cellular proteins from bacterial isolates of gingival crevice floras. Isolates with identical protein patterns consistently were shown to be members of the same species. When used to screen isolates, the procedure reduced total analytical time and expense without sacrificing accuracy, and it provided additional verification of the identity of strains characterized by conventional phenotypic tests. Images PMID:16345555

  13. Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells

    PubMed Central

    Galán, Jorge E.; Lara-Tejero, Maria; Marlovits, Thomas C.; Wagner, Samuel

    2015-01-01

    One of the most exciting developments in the field of bacterial pathogenesis in recent years is the discovery that many pathogens utilized complex nanomachines to deliver bacterially encoded effector proteins into target eukaryotic cells. These effector proteins modulate a variety of cellular functions for the pathogen’s benefit. One of these protein-delivery machines is the type III secretion system (T3SS). T3SSs are widespread in nature and are encoded not only by bacteria pathogenic to vertebrates or plants, but also by bacteria that are symbiotic to plants or insects. A central component of T3SSs is the needle complex, a supramolecular structure that mediates the passage of the secreted proteins across the bacterial envelope. Working in conjunction with several cytoplasmic components, the needle complex engages specific substrates in sequential order, moves them across the bacterial envelope, and ultimately delivers them into eukaryotic cells. The central role of T3SSs in pathogenesis makes them great targets for novel antimicrobial strategies. PMID:25002086

  14. Phylogenetic distribution and membrane topology of the LytR-CpsA-Psr protein family

    PubMed Central

    Hübscher, Judith; Lüthy, Lucas; Berger-Bächi, Brigitte; Stutzmann Meier, Patricia

    2008-01-01

    Background The bacterial cell wall is the target of many antibiotics and cell envelope constituents are critical to host-pathogen interactions. To combat resistance development and virulence, a detailed knowledge of the individual factors involved is essential. Members of the LytR-CpsA-Psr family of cell envelope-associated attenuators are relevant for β-lactam resistance, biofilm formation, and stress tolerance, and they are suggested to play a role in cell wall maintenance. However, their precise function is still unknown. This study addresses the occurrence as well as sequence-based characteristics of the LytR-CpsA-Psr proteins. Results A comprehensive list of LytR-CpsA-Psr proteins was established, and their phylogenetic distribution and clustering into subgroups was determined. LytR-CpsA-Psr proteins were present in all Gram-positive organisms, except for the cell wall-deficient Mollicutes and one strain of the Clostridiales. In contrast, the majority of Gram-negatives did not contain LytR-CpsA-Psr family members. Despite high sequence divergence, the LytR-CpsA-Psr domains of different subclusters shared a highly similar, predicted mixed a/β-structure, and conserved charged residues. PhoA fusion experiments, using MsrR of Staphylococcus aureus, confirmed membrane topology predictions and extracellular location of its LytR-CpsA-Psr domain. Conclusion The LytR-CpsA-Psr domain is unique to bacteria. The presence of diverse subgroups within the LytR-CpsA-Psr family might indicate functional differences, and could explain variations in phenotypes of respective mutants reported. The identified conserved structural elements and amino acids are likely to be important for the function of the domain and will help to guide future studies of the LytR-CpsA-Psr proteins. PMID:19099556

  15. Niobium Uptake and Release by Bacterial Ferric Ion Binding Protein

    PubMed Central

    Shi, Yanbo; Harvey, Ian; Campopiano, Dominic; Sadler, Peter J.

    2010-01-01

    Ferric ion binding proteins (Fbps) transport FeIII across the periplasm and are vital for the virulence of many Gram negative bacteria. Iron(III) is tightly bound in a hinged binding cleft with octahedral coordination geometry involving binding to protein side chains (including tyrosinate residues) together with a synergistic anion such as phosphate. Niobium compounds are of interest for their potential biological activity, which has been little explored. We have studied the binding of cyclopentadienyl and nitrilotriacetato NbV complexes to the Fbp from Neisseria gonorrhoeae by UV-vis spectroscopy, chromatography, ICP-OES, mass spectrometry, and Nb K-edge X-ray absorption spectroscopy. These data suggest that NbV binds strongly to Fbp and that a dinuclear NbV centre can be readily accommodated in the interdomain binding cleft. The possibility of designing niobium-based antibiotics which block iron uptake by pathogenic bacteria is discussed. PMID:20445753

  16. Web-based software for rapid "top-down" proteomic identification of protein biomarkers with implications for bacterial identification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have developed web-based software for the rapid identification of protein biomarkers of bacterial microorganisms. Proteins from bacterial cell lysates were ionized by matrix-assisted laser desorption/ionization (MALDI), mass-isolated and fragmented using a time-of-flight/time-of-flight (TOF-TOF)...

  17. Motility protein interactions in the bacterial flagellar motor.

    PubMed Central

    Garza, A G; Harris-Haller, L W; Stoebner, R A; Manson, M D

    1995-01-01

    Five proteins (MotA, MotB, FliG, FliM, and FliN) have been implicated in energizing flagellar rotation in Escherichia coli and Salmonella typhimurium. One model for flagellar function envisions that MotA and MotB comprise the stator of a rotary motor and that FliG, FliM, and FliN are part of the rotor. MotA probably functions as a transmembrane proton channel, and MotB has been proposed to anchor MotA to the peptidoglycan of the cell wall. To study interactions between the Mot proteins themselves and between them and other components of the flagellar motor, we attempted to isolate extragenic suppressors of 13 dominant or partially dominant motB missense mutations. Four of these yielded suppressors, which exhibited widely varying efficiencies of suppression. The pattern of suppression was partially alleles-specific, but no suppressor seriously impaired motility in a motB+ strain. Of 20 suppressors from the original selection, 15 were characterized by DNA sequencing. Fourteen of these cause single amino acid changes in MotA. Thirteen alter residues in, or directly adjacent to, the putative periplasmic loops of MotA, and the remaining one alters a residue in the middle of the fourth predicted transmembrane helix of MotA. We conclude that the MotA and MotB proteins form a complex and that their interaction directly involves or is strongly influenced by the periplasmic loops of MotA. The 15th suppressor from the original selection and 2 motB suppressors identified during a subsequent search cause single amino acid substitutions in FliG. This finding suggests that the postulated Mot-protein complex may be in close proximity to FliG at the stator-rotor interface of the flagellar motor. Images Fig. 1 Fig. 2 PMID:7892209

  18. Graphical models of residue coupling in protein families.

    PubMed

    Thomas, John; Ramakrishnan, Naren; Bailey-Kellogg, Chris

    2008-01-01

    Many statistical measures and algorithmic techniques have been proposed for studying residue coupling in protein families. Generally speaking, two residue positions are considered coupled if, in the sequence record, some of their amino acid type combinations are significantly more common than others. While the proposed approaches have proven useful in finding and describing coupling, a significant missing component is a formal probabilistic model that explicates and compactly represents the coupling, integrates information about sequence,structure, and function, and supports inferential procedures for analysis, diagnosis, and prediction.We present an approach to learning and using probabilistic graphical models of residue coupling. These models capture significant conservation and coupling constraints observable ina multiply-aligned set of sequences. Our approach can place a structural prior on considered couplings, so that all identified relationships have direct mechanistic explanations. It can also incorporate information about functional classes, and thereby learn a differential graphical model that distinguishes constraints common to all classes from those unique to individual classes. Such differential models separately account for class-specific conservation and family-wide coupling, two different sources of sequence covariation. They are then able to perform interpretable functional classification of new sequences, explaining classification decisions in terms of the underlying conservation and coupling constraints. We apply our approach in studies of both G protein-coupled receptors and PDZ domains, identifying and analyzing family-wide and class-specific constraints, and performing functional classification. The results demonstrate that graphical models of residue coupling provide a powerful tool for uncovering, representing, and utilizing significant sequence structure-function relationships in protein families. PMID:18451428

  19. Proteinaceous determinants of surface colonization in bacteria: bacterial adhesion and biofilm formation from a protein secretion perspective

    PubMed Central

    Chagnot, Caroline; Zorgani, Mohamed A.; Astruc, Thierry; Desvaux, Mickaël

    2013-01-01

    Bacterial colonization of biotic or abiotic surfaces results from two quite distinct physiological processes, namely bacterial adhesion and biofilm formation. Broadly speaking, a biofilm is defined as the sessile development of microbial cells. Biofilm formation arises following bacterial adhesion but not all single bacterial cells adhering reversibly or irreversibly engage inexorably into a sessile mode of growth. Among molecular determinants promoting bacterial colonization, surface proteins are the most functionally diverse active components. To be present on the bacterial cell surface, though, a protein must be secreted in the first place. Considering the close association of secreted proteins with their cognate secretion systems, the secretome (which refers both to the secretion systems and their protein substrates) is a key concept to apprehend the protein secretion and related physiological functions. The protein secretion systems are here considered in light of the differences in the cell-envelope architecture between diderm-LPS (archetypal Gram-negative), monoderm (archetypal Gram-positive) and diderm-mycolate (archetypal acid-fast) bacteria. Besides, their cognate secreted proteins engaged in the bacterial colonization process are regarded from single protein to supramolecular protein structure as well as the non-classical protein secretion. This state-of-the-art on the complement of the secretome (the secretion systems and their cognate effectors) involved in the surface colonization process in diderm-LPS and monoderm bacteria paves the way for future research directions in the field. PMID:24133488

  20. Exploiting Bacterial Operons To Illuminate Human Iron-Sulfur Proteins.

    PubMed

    Andreini, Claudia; Banci, Lucia; Rosato, Antonio

    2016-04-01

    Organisms from all kingdoms of life use iron-sulfur proteins (FeS-Ps) in a multitude of functional processes. We applied a bioinformatics approach to investigate the human portfolio of FeS-Ps. Sixty-one percent of human FeS-Ps bind Fe4S4 clusters, whereas 39% bind Fe2S2 clusters. However, this relative ratio varies significantly depending on the specific cellular compartment. We compared the portfolio of human FeS-Ps to 12 other eukaryotes and to about 700 prokaryotes. The comparative analysis of the organization of the prokaryotic homologues of human FeS-Ps within operons allowed us to reconstruct the human functional networks involving the conserved FeS-Ps common to prokaryotes and eukaryotes. These functional networks have been maintained during evolution and thus presumably represent fundamental cellular processes. The respiratory chain and the ISC machinery for FeS-P biogenesis are the two conserved processes that involve the majority of human FeS-Ps. Purine metabolism is another process including several FeS-Ps, in which BOLA proteins possibly have a regulatory role. The analysis of the co-occurrence of human FeS-Ps with other proteins highlighted numerous links between the iron-sulfur cluster machinery and the response mechanisms to cell damage, from repair to apoptosis. This relationship probably relates to the production of reactive oxygen species within the biogenesis and degradation of FeS-Ps. PMID:26889782

  1. Crystal structure analysis of a bacterial aryl acylamidase belonging to the amidase signature enzyme family.

    PubMed

    Lee, Saeyoung; Park, Eun-Hye; Ko, Hyeok-Jin; Bang, Won Gi; Kim, Hye-Yeon; Kim, Kyoung Heon; Choi, In-Geol

    2015-11-13

    The atomic structure of a bacterial aryl acylamidase (EC 3.5.1.13; AAA) is reported and structural features are investigated to better understand the catalytic profile of this enzyme. Structures of AAA were determined in its native form and in complex with the analgesic acetanilide, p-acetaminophenol, at 1.70 Å and 1.73 Å resolutions, respectively. The overall structural fold of AAA was identified as an α/β fold class, exhibiting an open twisted β-sheet core surrounded by α-helices. The asymmetric unit contains one AAA molecule and the monomeric form is functionally active. The core structure enclosing the signature sequence region, including the canonical Ser-cisSer-Lys catalytic triad, is conserved in all members of the Amidase Signature enzyme family. The structure of AAA in a complex with its ligand reveals a unique organization in the substrate-binding pocket. The binding pocket consists of two loops (loop1 and loop2) in the amidase signature sequence and one helix (α10) in the non-amidase signature sequence. We identified two residues (Tyr(136) and Thr(330)) that interact with the ligand via water molecules, and a hydrogen-bonding network that explains the catalytic affinity over various aryl acyl compounds. The optimum activity of AAA at pH > 10 suggests that the reaction mechanism employs Lys(84) as the catalytic base to polarize the Ser(187) nucleophile in the catalytic triad. PMID:26454172

  2. The ubiquitin family meets the Fanconi anemia proteins.

    PubMed

    Renaudin, Xavier; Koch Lerner, Leticia; Menck, Carlos Frederico Martins; Rosselli, Filippo

    2016-01-01

    Fanconi anaemia (FA) is a hereditary disorder characterized by bone marrow failure, developmental defects, predisposition to cancer and chromosomal abnormalities. FA is caused by biallelic mutations that inactivate genes encoding proteins involved in replication stress-associated DNA damage responses. The 20 FANC proteins identified to date constitute the FANC pathway. A key event in this pathway involves the monoubiquitination of the FANCD2-FANCI heterodimer by the collective action of at least 10 different proteins assembled in the FANC core complex. The FANC core complex-mediated monoubiquitination of FANCD2-FANCI is essential to assemble the heterodimer in subnuclear, chromatin-associated, foci and to regulate the process of DNA repair as well as the rescue of stalled replication forks. Several recent works have demonstrated that the activity of the FANC pathway is linked to several other protein post-translational modifications from the ubiquitin-like family, including SUMO and NEDD8. These modifications are related to DNA damage responses but may also affect other cellular functions potentially related to the clinical phenotypes of the syndrome. This review summarizes the interplay between the ubiquitin and ubiquitin-like proteins and the FANC proteins that constitute a major pathway for the surveillance of the genomic integrity and addresses the implications of their interactions in maintaining genome stability. PMID:27543315

  3. A bacterial type III secretion-based protein delivery tool for broad applications in cell biology

    PubMed Central

    Ittig, Simon J.; Schmutz, Christoph; Kasper, Christoph A.; Amstutz, Marlise; Schmidt, Alexander; Sauteur, Loïc; Vigano, M. Alessandra; Low, Shyan Huey; Affolter, Markus; Cornelis, Guy R.; Nigg, Erich A.

    2015-01-01

    Methods enabling the delivery of proteins into eukaryotic cells are essential to address protein functions. Here we propose broad applications to cell biology for a protein delivery tool based on bacterial type III secretion (T3S). We show that bacterial, viral, and human proteins, fused to the N-terminal fragment of the Yersinia enterocolitica T3S substrate YopE, are effectively delivered into target cells in a fast and controllable manner via the injectisome of extracellular bacteria. This method enables functional interaction studies by the simultaneous injection of multiple proteins and allows the targeting of proteins to different subcellular locations by use of nanobody-fusion proteins. After delivery, proteins can be freed from the YopE fragment by a T3S-translocated viral protease or fusion to ubiquitin and cleavage by endogenous ubiquitin proteases. Finally, we show that this delivery tool is suitable to inject proteins in living animals and combine it with phosphoproteomics to characterize the systems-level impact of proapoptotic human truncated BID on the cellular network. PMID:26598622

  4. The bacterial DNA repair protein Mfd confers resistance to the host nitrogen immune response.

    PubMed

    Guillemet, Elisabeth; Leréec, Alain; Tran, Seav-Ly; Royer, Corinne; Barbosa, Isabelle; Sansonetti, Philippe; Lereclus, Didier; Ramarao, Nalini

    2016-01-01

    Production of reactive nitrogen species (NO) is a key step in the immune response following infections. NO induces lesions to bacterial DNA, thus limiting bacterial growth within hosts. Using two pathogenic bacteria, Bacillus cereus and Shigella flexneri, we show that the DNA-repair protein Mfd (Mutation-Frequency-Decline) is required for bacterial resistance to the host-NO-response. In both species, a mutant deficient for mfd does not survive to NO, produced in vitro or by phagocytic cells. In vivo, the ∆mfd mutant is avirulent and unable to survive the NO-stress. Moreover, NO induces DNA-double-strand-breaks and point mutations in the Δmfd mutant. In overall, these observations demonstrate that NO damages bacterial DNA and that Mfd is required to maintain bacterial genomic integrity. This unexpected discovery reveals that Mfd, a typical housekeeping gene, turns out to be a true virulence factor allowing survival and growth of the pathogen in its host, due to its capacity to protect the bacterium against NO, a key molecule of the innate immune defense. As Mfd is widely conserved in the bacterial kingdom, these data highlight a mechanism that may be used by a large spectrum of bacteria to overcome the host immune response and especially the mutagenic properties of NO. PMID:27435260

  5. The bacterial DNA repair protein Mfd confers resistance to the host nitrogen immune response

    PubMed Central

    Guillemet, Elisabeth; Leréec, Alain; Tran, Seav-Ly; Royer, Corinne; Barbosa, Isabelle; Sansonetti, Philippe; Lereclus, Didier; Ramarao, Nalini

    2016-01-01

    Production of reactive nitrogen species (NO) is a key step in the immune response following infections. NO induces lesions to bacterial DNA, thus limiting bacterial growth within hosts. Using two pathogenic bacteria, Bacillus cereus and Shigella flexneri, we show that the DNA-repair protein Mfd (Mutation-Frequency-Decline) is required for bacterial resistance to the host-NO-response. In both species, a mutant deficient for mfd does not survive to NO, produced in vitro or by phagocytic cells. In vivo, the ∆mfd mutant is avirulent and unable to survive the NO-stress. Moreover, NO induces DNA-double-strand-breaks and point mutations in the Δmfd mutant. In overall, these observations demonstrate that NO damages bacterial DNA and that Mfd is required to maintain bacterial genomic integrity. This unexpected discovery reveals that Mfd, a typical housekeeping gene, turns out to be a true virulence factor allowing survival and growth of the pathogen in its host, due to its capacity to protect the bacterium against NO, a key molecule of the innate immune defense. As Mfd is widely conserved in the bacterial kingdom, these data highlight a mechanism that may be used by a large spectrum of bacteria to overcome the host immune response and especially the mutagenic properties of NO. PMID:27435260

  6. Protein-protein interactions of PDE4 family members - Functions, interactions and therapeutic value.

    PubMed

    Klussmann, Enno

    2016-07-01

    The second messenger cyclic adenosine monophosphate (cAMP) is ubiquitous and directs a plethora of functions in all cells. Although theoretically freely diffusible through the cell from the site of its synthesis it is not evenly distributed. It rather is shaped into gradients and these gradients are established by phospodiesterases (PDEs), the only enzymes that hydrolyse cAMP and thereby terminate cAMP signalling upstream of cAMP's effector systems. Miles D. Houslay has devoted most of his scientific life highly successfully to a particular family of PDEs, the PDE4 family. The family is encoded by four genes and gives rise to around 20 enzymes, all with different functions. M. Houslay has discovered many of these functions and realised early on that PDE4 family enzymes are attractive drug targets in a variety of human diseases, but not their catalytic activity as that is encoded in conserved domains in all family members. He postulated that targeting the intracellular location would provide the specificity that modern innovative drugs require to improve disease conditions with fewer side effects than conventional drugs. Due to the wealth of M. Houslay's work, this article can only summarize some of his discoveries and, therefore, focuses on protein-protein interactions of PDE4. The aim is to discuss functions of selected protein-protein interactions and peptide spot technology, which M. Houslay introduced into the PDE4 field for identifying interacting domains. The therapeutic potential of PDE4 interactions will also be discussed. PMID:26498857

  7. Distinct adaptor proteins assist exit of Kre2-family proteins from the yeast ER

    PubMed Central

    Noda, Yoichi; Hara, Takehiro; Ishii, Minako; Yoda, Koji

    2014-01-01

    ABSTRACT The Svp26 protein of S. cerevisiae is an ER- and Golgi-localized integral membrane protein with 4 potential membrane-spanning domains. It functions as an adaptor protein that facilitates the ER exit of Ktr3, a mannosyltransferase required for biosynthesis of O-linked oligosaccharides, and the ER exit of Mnn2 and Mnn5, mannosyltransferases, which participate in the biosynthesis of N-linked oligosaccharides. Ktr3 belongs to the Kre2 family, which consists of 9 members of type-II membrane proteins sharing sequence similarities. In this report, we examined all Kre2 family members and found that the Golgi localizations of two others, Kre2 and Ktr1, were dependent on Svp26 by immunofluorescence microscopy and cell fractionations in sucrose density gradients. We show that Svp26 functions in facilitating the ER exit of Kre2 and Ktr1 by an in vitro COPII budding assay. Golgi localization of Ktr4 was not dependent on Svp26. Screening null mutants of the genes encoding abundant COPII membrane proteins for those showing mislocalization of Ktr4 in the ER revealed that Erv41 and Erv46 are required for the correct Golgi localization of Ktr4. We provide biochemical evidence that the Erv41-Erv46 complex functions as an adaptor protein for ER exit of Ktr4. This is the first demonstration of the molecular function of this evolutionally conserved protein complex. The domain switching experiments show that the lumenal domain of Ktr4 is responsible for recognition by the Erv41-Erv46 complex. Thus, ER exit of Kre2-family proteins is dependent on distinct adaptor proteins and our results provide new insights into the traffic of Kre2-family mannosyltransferases. PMID:24585773

  8. The 1.3-Å resolution structure of Nitrosomonas europaea Rh50 and mechanistic implications for NH3 transport by Rhesus family proteins

    PubMed Central

    Lupo, Domenico; Li, Xiao-Dan; Durand, Anne; Tomizaki, Takashi; Cherif-Zahar, Baya; Matassi, Giorgio; Merrick, Mike; Winkler, Fritz K.

    2007-01-01

    The Rhesus (Rh) proteins are a family of integral membrane proteins found throughout the animal kingdom that also occur in a number of lower eukaryotes. The significance of Rh proteins derives from their presence in the human red blood cell membrane, where they constitute the second most important group of antigens used in transfusion medicine after the ABO group. Rh proteins are related to the ammonium transport (Amt) protein family and there is considerable evidence that, like Amt proteins, they function as ammonia channels. We have now solved the structure of a rare bacterial homologue (from Nitrosomonas europaea) of human Rh50 proteins at a resolution of 1.3 Å. The protein is a trimer, and analysis of its subunit interface strongly argues that all Rh proteins are likely to be homotrimers and that the human erythrocyte proteins RhAG and RhCE/D are unlikely to form heterooligomers as previously proposed. When compared with structures of bacterial Amt proteins, NeRh50 shows several distinctive features of the substrate conduction pathway that support the concept that Rh proteins have much lower ammonium affinities than Amt proteins and might potentially function bidirectionally. PMID:18032606

  9. Allosteric Coupling in the Bacterial Adhesive Protein FimH*

    PubMed Central

    Rodriguez, Victoria B.; Kidd, Brian A.; Interlandi, Gianluca; Tchesnokova, Veronika; Sokurenko, Evgeni V.; Thomas, Wendy E.

    2013-01-01

    The protein FimH is expressed by the majority of commensal and uropathogenic strains of Escherichia coli on the tips of type 1 fimbriae and mediates adhesion via a catch bond to its ligand mannose. Crystal structures of FimH show an allosteric conformational change, but it remains unclear whether all of the observed structural differences are part of the allosteric mechanism. Here we use the protein structural analysis tool RosettaDesign combined with human insight to identify and synthesize 10 mutations in four regions that we predicted would stabilize one of the conformations of that region. The function of each variant was characterized by measuring binding to the ligand mannose, whereas the allosteric state was determined using a conformation-specific monoclonal antibody. These studies demonstrated that each region investigated was indeed part of the FimH allosteric mechanism. However, the studies strongly suggested that some regions were more tightly coupled to mannose binding and others to antibody binding. In addition, we identified many FimH variants that appear locked in the low affinity state. Knowledge of regulatory sites outside the active and effector sites as well as the ability to make FimH variants locked in the low affinity state may be crucial to the future development of novel antiadhesive and antimicrobial therapies using allosteric regulation to inhibit FimH. PMID:23821547

  10. Bacterial SET domain proteins and their role in eukaryotic chromatin modification

    PubMed Central

    Alvarez-Venegas, Raúl

    2014-01-01

    It has been shown by many researchers that SET-domain containing proteins modify chromatin structure and, as expected, genes coding for SET-domain containing proteins have been found in all eukaryotic genomes sequenced to date. However, during the last years, a great number of bacterial genomes have been sequenced and an important number of putative genes involved in histone post-translational modifications (histone PTMs) have been identified in many bacterial genomes. Here, I aim at presenting an overview of SET domain genes that have been identified in numbers of bacterial genomes based on similarity to SET domains of eukaryotic histone methyltransferases. I will argue in favor of the hypothesis that SET domain genes found in extant bacteria are of bacterial origin. Then, I will focus on the available information on pathogen and symbiont SET-domain containing proteins and their targets in eukaryotic organisms, and how such histone methyltransferases allow a pathogen to inhibit transcriptional activation of host defense genes. PMID:24765100